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Abstract. Many interesting program properties like determinism or
information flow security are hyperproperties, that is, they relate mul-
tiple executions of the same program. Hyperproperties can be verified
using relational logics, but these logics require dedicated tool support
and are difficult to automate. Alternatively, constructions such as self-
composition represent multiple executions of a program by one product
program, thereby reducing hyperproperties of the original program to
trace properties of the product. However, existing constructions do not
fully support procedure specifications, for instance, to derive the deter-
minism of a caller from the determinism of a callee, making verification
non-modular.

We present modular product programs, a novel kind of product pro-
gram that permits hyperproperties in procedure specifications and, thus,
can reason about calls modularly. We demonstrate its expressiveness by
applying it to information flow security with advanced features such as
declassification and termination-sensitivity. Modular product programs
can be verified using off-the-shelf verifiers; we have implemented our
approach to secure information flow using the Viper verification infras-
tructure.

1 Introduction

The past decades have seen significant progress in automated reasoning about
program behavior. In the most common scenario, the goal is to prove trace
properties of programs such as functional correctness or termination. However,
important program properties such as information flow security, injectivity, and
determinism cannot be expressed as properties of individual traces; these so-
called hyperproperties relate different executions of the same program. For exam-
ple, proving determinism of a program requires showing that any two executions
from identical initial states will result in identical final states.

An important attribute of reasoning techniques about programs is modular-
ity. A technique is modular if it allows reasoning about parts of a program in
isolation, e.g., verifying each procedure separately and using only the specifica-
tions of other procedures. Modularity is vital for scalability and to verify libraries
without knowing all of their clients. Fully modular reasoning about hyperprop-
erties thus requires the ability to formulate relational specifications, which relate
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different executions of a procedure, and to apply those specifications where the
procedure is called. As an example, the statement

if (x) then {y:=x} else {y:= call f(x)}
can be proved to be deterministic if f’s relational specification guarantees that
its result deterministically depends on its input.

Relational program logics [11,27,29] allow directly proving general hyper-
properties, however, automating relational logics is difficult and requires building
dedicated tools. Alternatively, self-composition [9] and product programs [6,7]
reduce a hyperproperty to an ordinary trace property, thus making it possible to
use off-the-shelf program verifiers for proving hyperproperties. Both approaches
construct a new program that combines the behaviors of multiple runs of the
original program. However, by the nature of their construction, neither approach
supports modular verification based on relational specifications: Procedure calls
in the original program will be duplicated, which means that there is no sin-
gle program point at which a relational specification can be applied. For the
aforementioned example, self-composition yields the following program:

if (x) then {y:=x} else {y:= call f(x)} ;

if (x’) then {y’:=x’} else {y’:= call f(x’)}
Determinism can now be verified by proving the trace property that identical
values for x and x’ in the initial state imply identical values for y and y’ in the
final state. However, such a proof cannot make use of a relational specification
for procedure f (expressing that f is deterministic). Such a specification relates
several executions of f, whereas each call in the self-composition belongs to a
single execution. Instead, verification requires a precise functional specification
of f, which exactly determines its result value in terms of the input. Verifying
such precise functional specifications increases the verification effort and is at
odds with data abstraction (for instance, a collection might not want to promise
the exact iteration order); inferring them is beyond the state of the art for most
procedures [28]. Existing product programs allow aligning or combining some
statements and can thereby lift this requirement in some cases, but this requires
manual effort during the construction, depends on the used specifications, and
does not solve the problem in general.

In this paper, we present modular product programs, a novel kind of prod-
uct programs that allows modular reasoning about hyperproperties. Modular
product programs enable proving k-safety hyperproperties, i.e., hyperproperties
that relate finite prefixes of k execution traces, for arbitrary values of k [12]. We
achieve this via a transformation that, unlike existing products, does not dupli-
cate loops or procedure calls, meaning that for any loop or call in the original
program, there is exactly one statement in the k-product at which a relational
specification can be applied. Like existing product programs, modular products
can be reasoned about using off-the-shelf program verifiers.

We demonstrate the expressiveness of modular product programs by apply-
ing them to prove secure information flow, a 2-safety hyperproperty. We show
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how modular products enable proving traditional non-interference using natural
and concise information flow specifications, and how to extend our approach for
proving the absence of timing or termination channels, and supporting declassi-
fication in an intuitive way.

To summarize, we make the following contributions:

– We introduce modular k-product programs, which enable modular proofs of
arbitrary k-safety hyperproperties for sequential programs using off-the-shelf
verifiers.

– We demonstrate the usefulness of modular product programs by applying
them to secure information flow, with support for declassification and pre-
venting different kinds of side channels.

– We implement our product-based approach for information flow verification
in an automated verifier and show that our tool can automatically prove
information flow security of challenging examples.

After giving an informal overview of our approach in Sect. 2 and introducing
our programming and assertion language in Sect. 3, we formally define modular
product programs in Sect. 4. We sketch a soundness proof in Sect. 5. Section 6
demonstrates how to apply modular products for proving secure information
flow. We describe and evaluate our implementation in Sect. 7, discuss related
work in Sect. 8, and conclude in Sect. 9.

2 Overview

In this section, we will illustrate the core concepts behind modular k-products on
an example program. We will first show how modular products are constructed,
and subsequently demonstrate how they allow using relational specifications to
modularly prove hyperproperties.

2.1 Relational Specifications

Consider the example program in Fig. 1, which counts the number of female
entries in a sequence of people. Now assume we want to prove that the program
is deterministic, i.e., that its output state is completely determined by its input
arguments. This can be expressed as a 2-safety hyperproperty which states that,
for two terminating executions of the program with identical inputs, the outputs
will be the same. This hyperproperty can be expressed by the relational (as
opposed to unary) specification main :

1

people =
2

people
1

count =
2

count, where
ix refers to the value of the variable x in the ith execution.

Intuitively, it is possible to prove this specification by giving is female a pre-
cise functional specification like is female : true � res = 1 − person mod 2,
meaning that is female can be invoked in any state and that res = 1 − person
mod 2 will hold if it returns. From this specification and an appropriate loop
invariant, main can be shown to be deterministic. However, this specification
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Fig. 1. Example program. The parameter people contains a sequence of integers that
each encode attributes of a person; the main procedure counts the number of females
in this sequence.

is unnecessarily strong. For proving determinism, it is irrelevant what exactly
the final value of count is; it is only important that it is uniquely determined
by the procedure’s inputs. Proving hyperproperties using only unary specifica-
tions, however, critically depends on having exact specifications for every value
returned by a called procedure, as well as all heap locations modified by it.
Not only are such specifications difficult to infer and cumbersome to provide
manually; this requirement also fundamentally removes the option of underspec-
ifying program behavior, which is often desirable in practice. Because of these
limitations, verification techniques that require precise functional specifications
for proving hyperproperties often do not work well in practice, as observed by
Terauchi and Aiken for the case of self-composition [28].

Proving determinism of the example program becomes much simpler if we
are able to reason about two program executions at once. If both runs start
with identical values for people then they will have identical values for people, i ,
and count when they reach the loop. Since the loop guard only depends on i
and people, it will either be true for both executions or false for both. Assuming
that is female behaves deterministically, all three variables will again be equal
in both executions at the end of the loop body. This means that the program
establishes and preserves the relational loop invariant that people, i , and count
have identical values in both executions, from which we can deduce the desired
relational postcondition. Our modular product programs enable this modular
and intuitive reasoning, as we explain next.

2.2 Modular Product Programs

Like other product programs, our modular k-product programs multiply the
state space of the original program by creating k renamed versions of all original
variables. However, unlike other product programs, they do not duplicate control
structures like loops or procedure calls, while still allowing different executions
to take different paths through the program.

Modular product programs achieve this as follows: The set of transitions
made by the execution of a product is the union of the transitions made by
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Fig. 2. Modular 2-product of the program in Fig. 1 (slightly simplified). Parameters
and local variables have been duplicated, but control flow statements have not. All
statements are parameterized by activation variables.

the executions of the original program it represents. This means that if two
executions of an if-then-else statement execute different branches, an execution
of the product will execute the corresponding versions of both branches; however,
it will be aware of the fact that each branch is taken by only one of the original
executions, and the transformation of the statements inside each branch will
ensure that the state of the other execution is not modified by executing it.

For this purpose, modular product programs use boolean activation variables
that store, for each execution, the condition under which it is currently active. All
activation variables are initially true. For every statement that directly changes
the program state, the product performs the state change for all active execu-
tions. Control structures update which executions are active (for instance based
on the loop condition) and pass this information down (into the branches of a
conditional, the body of a loop, or the callee of a procedure call) to the level of
atomic statements1. This representation avoids duplicating these control struc-
tures.

Figure 2 shows the modular 2-product of the program in Fig. 1. Consider
first the main procedure. Its parameters have been duplicated, there are now
two copies of all variables, one for each execution. This is analogous to self-
composition or existing product programs. In addition, the transformed pro-
cedure has two boolean parameters p1 and p2; these variables are the initial

1 The information stored in activation variables is similar to a path condition in sym-
bolic execution, which is also updated every time a branch is taken. However, they
differ for loops and calls.
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activation variables of the procedure. Since main is the entry point of the pro-
gram, the initial activation variables can be assumed to be true.

Consider what happens when the product is run with arbitrary input values
for people1 and people2. The product will first initialize i1 and i2 to zero, like
it does with i in the original program, and analogously for count1 and count2.

The loop in the original program has been transformed to a single loop in the
product. Its condition is true if the original loop condition is true for any active
execution. This means that the loop will iterate as long as at least one execution
of the original program would. Inside the loop body, the fresh activation variables
l1 and l2 represent whether the corresponding executions would execute the loop
body. That is, for each execution, the respective activation variable will be true if
the previous activation variable (p1 or p2, respectively) is true, meaning that this
execution actually reaches the loop, and the loop guard is true for that execution.
All statements in the loop body are then transformed using these new activation
variables. Consequently, the loop will keep iterating while at least one execution
executes the loop, but as soon as the loop guard is false for any execution, its
activation variable will be false and the loop body will have no effect.

Conceptually, procedure calls are handled very similarly to loops. For the call
to is female in the original program, only a single call is created in the product.
This call is executed if at least one activation variable is true, i.e., if at least
one execution would perform the call in the original program. In addition to
the (duplicated) arguments of the original call, the current activation variables
are passed to the called procedure. In the transformed version of is female , all
statements are then made conditional on those activation variables. Therefore,
like with loops, a call in the product will be performed if at least one execution
would perform it in the original program, but it will have no effect on the state
of the executions that are not active when the call is made.

The transformed version of is female shows how conditionals are handled. We
introduce four fresh activation variables t1, t2, f1, and f2, two for each execution.
The first pair encodes whether the then-branch should be executed by either of
the two executions; the second encodes the same for the else-branch. These acti-
vation variables are then used to transform the branches. Consequently, neither
branch will have an effect for inactive executions, and exactly one branch has
an effect for each active execution.

To summarize, our activation variables ensure that the sequence of state-
changing statements executed by each execution is the same in the product and
the original program. We achieve this without duplicating control structures or
imposing restrictions on the control flow.

2.3 Interpretation of Relational Specifications

Since modular product programs do not duplicate calls, they provide a simple
way of interpreting relational procedure specifications: If all executions call a
procedure, its relational precondition is required to hold before the call and the
relational postcondition afterwards. If a call is performed by some executions
but not all, the relational specification are not meaningful, and thus cannot be
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required to hold. To encode this intuition, we transform every relational pre-
or postcondition Q̂ of the original program into an implication (

∧k
i=1 pi) ⇒ Q̂.

In the transformed version, both pre- and postconditions are made conditional
on the conjunction of all activation parameters pi of the procedure. As a result,
both will be trivially true if at least one execution is not active at the call site.

In our example, we give is female the relational specification is female :
true 1

person = 2
person ⇒ 1

res = 2
res , which expresses determinism. This speci-

fication will be transformed into a unary specification of the product program:
is female : p1 ∧ p2 ⇒ true � p1 ∧ p2 ⇒ (person1 = person2 ⇒ res1 = res2).

Assume for the moment that is female also has a unary precondition person ≥
0. Such a specification should hold for every call, and therefore for every active
execution, even if other executions are inactive. Therefore, its interpretation
in the product program is (p1 ⇒ person1 ≥ 0) ∧ (p2 ⇒ person2 ≥ 0). The
translation of other unary assertions is analogous.

Note that it is possible (and useful) to give a procedure both a relational and
a unary specification; in the product this is encoded by simply conjoining the
transformed versions of the unary and the relational assertions.

2.4 Product Program Verification

We can now prove determinism of our example using the product program.
Verifying is female is simple. For main, we want to prove the transformed spec-
ification main : (p1 ∧ p2 ⇒ people1 = people2) � (p1 ∧ p2 ⇒ count1 = count2).
We use the relational loop invariant

1
i =

2
i ∧ 1

count =
2

count ∧ 1

people =
2

people,
encoded as p1 ∧ p2 ⇒ i1 = i2 ∧ count1 = count2 ∧ people1 = people2. The loop
invariant holds trivially if either p1 or p2 is false. Otherwise, it ensures l1 = l2
and current1 = current2. Using the specification of is female , we obtain t1 = t2,
which implies that the loop invariant is preserved. The loop invariant implies
the postcondition.

3 Preliminaries

We model our setting according to the relational logic by Banerjee, Naumann
and Nikouei [5]2 and, like them, use a standard Hoare logic [4] to reason about
single program executions. Figure 3 shows the language we use to define mod-
ular product programs. x ranges over the set of local integer variable names
Var. Note that this language is deterministic; non-determinism can for exam-
ple be modelled via additional inputs, as is often done for modelling fairness in
concurrent programs [16]. Program configurations have the form 〈s, σ〉, where
σ ∈ Σ maps variable names to values. The value of expression e in state σ is

2 Our handling of procedure calls is slightly different, but amounts to restricting proce-
dures to work only on local variables not used in the rest of the program (as opposed
to having a global state on which all procedures work directly), and only interacting
with the rest of the program via explicitly declared return parameters.
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Fig. 3. Language.

denoted as σ(e). The small-step transition relation for program configurations
has the form 〈s, σ〉 → 〈s′, σ′〉. A hypothesis context Φ maps procedure names to
specifications.

The judgment Φ � s : P � Q denotes that statement s, when executed
in a state fulfilling the unary assertion P , will not fault, and if the execution
terminates, the resulting state will fulfill the unary assertion Q. For an extensive
discussion of the language and its operational and axiomatic semantics, see [5].

In addition to standard unary expressions and assertions, we define relational
expressions and assertions. They differ from normal expressions and assertions
in that they contain parameterized variable references of the form ix and are
evaluated over a tuple of states instead of a single one. A relational expression
is k-relational if for all contained variable references ix, 1 ≤ i ≤ k, and analogous
for relational assertions. The value of a variable reference ix with 1 ≤ i ≤ k
in a tuple of states (σ1, . . . , σk) is σi(x); the evaluation of arbitrary relational
expressions and the validity of relational assertions (σ1, . . . , σk) � P̂ are defined
accordingly.

Definition 1. A k-relational specification s : P̂ k Q̂ holds iff P̂ and Q̂ are
k-relational assertions, and for all σ1, . . . , σk, σ′

1, . . . , σ
′
k, if (σ1, . . . , σk) � P̂ and

∀i ∈ {1, . . . , k}. 〈s, σi〉 →∗ 〈skip, σ′
i〉, then (σ′

1, . . . , σ
′
k) � Q̂.

We write s : P̂ Q̂ for the most common case s : P̂ 2 Q̂.

4 Modular k-Product Programs

In this section, we define the construction of modular products for arbitrary
k. We will subsequently define the transformation of both relational and unary
specifications to modular products.

4.1 Product Construction

Assume as given a function (Var, N) → Var that renames variables for different
executions. We write e(i) for the renaming of expression e for execution i and
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require that ∀x, y, i, j. i �= j ⇒ x(i) �= y(j). We write fresh(x1, x2, . . .) to denote
that the variable names x1, x2, . . . are fresh names that do not occur in the
program and have not yet been used during the transformation. e̊ is used to
abbreviate e(1), . . . , e(k).

We denote the modular k-product of a statement s that is parameterized
by the activation variables p(1), . . . , p(k) as �s�p̊

k. The product construction for
procedures is defined as

�procedure m(x1, . . . , xm) returns (y1, . . . , yn){s}�k

= procedure m(p(1), . . . , p(k), args) returns (rets){�s�p̊
k}

where

args = x1
(1), . . . , x1

(k), . . . , xm
(1), . . . , xm

(k)

rets = y1
(1), . . . , y1

(k), . . . , yn
(1), . . . , yn

(k)

Figure 4 shows the product construction rules for statements, which gen-
eralize the transformation explained in Sect. 2. We write if (e) then {s} as a
shorthand for if (e) then {s} else {skip}, and

⊙k
i=1 si for the sequential com-

position of k statements s1; . . . ; sk.
The core principle behind our encoding is that statements that directly

change the state are duplicated for each execution and made conditional under
the respective activation variables, whereas control statements are not dupli-
cated and instead manipulate the activation variables to pass activation infor-
mation to their sub-statements. This enables us to assert or assume relational
assertions before and after any statement from the original program. The only
state-changing statements in our language, variable assignments, are therefore
transformed to a sequence of conditional assignments, one for each execution.
Each assignment is executed only if the respective execution is currently active.

Duplicating conditionals would also duplicate the calls and loops in their
branches. To avoid that, modular products eliminate top-level conditionals;
instead, new activation variables are created and assigned the values of the cur-
rent activation variables conjoined with the guard for each branch. The branches
are then sequentially executed based on their respective activation variables.

A while loop is transformed to a single while loop in the product program
that iterates as long as the loop guard is true for any active execution. Inside
the loop, fresh activation variables indicate whether an execution reaches the
loop and its loop condition is true. The loop body will then modify the state
of an execution only if its activation variable is true. The resulting construct
affects the program state in the same way as a self-composition of the original
loop would, but the fact that our product contains only a single loop enables us
to use relational loop invariants instead of full functional specifications.

For procedure calls, it is crucial that the product contains a single call for
every call in the original program, in order to be able to apply relational spec-
ifications at the call site. As explained before, initial activation parameters are
added to every procedure declaration, and all parameters are duplicated k times.
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Fig. 4. Construction rules for statement products.

Procedure calls are therefore transformed such that the values of the current acti-
vation variables are passed, and all arguments are passed once for each execution.
The return values are stored in temporary variables and subsequently assigned
to the actual target variables only for those executions that actually execute the
call, so that for all other executions, the target variables are not affected.

The transformation wraps the call in a conditional so that the call is per-
formed only if at least one execution is active. This prevents the transformation
from introducing infinite recursion that is not present in the original program.

Note that for an inactive execution i, arbitrary argument values are passed
in procedure calls, since the passed variables aj

(i) are not initialized. This is
unproblematic because these values will not be used by the procedure. It is
important to not evaluate ej

(i) for inactive executions, since this could lead to
false alarms for languages where expression evaluation can fail.
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4.2 Transformation of Assertions

We now define how to transform unary and relational assertions for use in a
modular product.

Unary assertions such as ordinary procedure preconditions describe state
properties that should hold for every single execution. When checking or assum-
ing that a unary assertion holds at a specific point in the program, we need to
take into account that it only makes sense to do so for executions that actually
reach that program point. We can express this by making the assertion con-
ditional on the activation variable of the respective execution; as a result, any
unary assertion is trivially valid for all inactive executions.

A k-relational assertion, on the other hand, describes the relation between
the states of all k executions. Checking or assuming a relational assertion at
some point is meaningful only if all executions actually reach that point. This
can be expressed by making relational assertions conditional on the conjunction
of all current activation variables. If at least one execution does not reach the
assertion, it holds trivially.

We formalize this idea by defining a function α that maps relational asser-
tions P̂ to unary assertions P of the product program such that α(P̂ ) =
P̂ [V ar(1)/

1

V ar] . . . [V ar(k)/
k

V ar]. Assertions can then be transformed for use in
a k-product as follows:

– The transformation �P̂ p̊
k of a k-relational assertion P̂ with the activation

variables p(1), . . . , p(k) is (
∧k

i=1 p(i)) ⇒ α(P̂ ).
– The transformation �P p̊

k of a unary assertion P is
∧k

i=1(p
(i) ⇒ P (i)).

Importantly, our approach allows using mixed assertions and specifications,
which represent conjunctions of unary and relational assertions. For example, it is
common to combine a unary precondition that ensures that a procedure will not
raise an error with a relational postcondition that states that it is deterministic.

A mixed assertion Ř of the form P ∧ Q̂ means that the unary assertion P
holds for every single execution, and if all executions are currently active, the
relational assertion Q̂ holds as well. The transformation of mixed assertions is
straightforward: �Řp̊

k = �P p̊
k ∧ �Q̂p̊

k.

4.3 Heap-Manipulating Programs

The approach outlined so far can easily be extended to programs that work on
a mutable heap, assuming that object references are opaque, i.e., they cannot
be inspected or used in arithmetic. In order to create a distinct state space for
each execution represented in the product, allocation statements are duplicated
and made conditional like assignments, and therefore create a different object
for each active execution. The renaming of a field dereference e.f is then defined
as e(i).f . As a result, the heap of a k-product will consist of k partitions that
do not contain references to each other, and execution i will only ever interact
with objects from its partition of the heap.
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The verification of modular products of heap-manipulating programs does
not depend on any specific way of achieving framing. Our implementation is
based on implicit dynamic frames [25], but other approaches are feasible as well,
provided that procedures can be specified in such a way that the caller knows
the heap stays unmodified for all executions whose activation variables are false.

Since the handling of the heap is largely orthogonal to our main technique,
we will not go into further detail here, but we do support heap-manipulating
programs in our implementation.

5 Soundness and Completeness

A product construction is sound if an execution of a k-product mirrors k sep-
arate executions of the original program such that properties proved about the
product entail hyperproperties of the original program. In this section, we sketch
a soundness proof of our k-product construction in the presence of only unary
procedure specifications. We also sketch a proof for relational specifications for
the case k = 2, making use of the relational logic presented by Banerjee et al. [5].
Finally, we informally discuss the completeness of modular products.

5.1 Soundness with Unary Specifications

A modular k-product must soundly encode k executions of the original program.
That is, if an encoded unary specification holds for a product program then the
original specification holds for the original program.

We define a relation σ �i σ′ that denotes that σ contains a renamed version
of all variables in σ′, i.e., ∀v ∈ dom(σ′) : σ(v(i)) = σ′(v). Without the index i, �
denotes the same but without renaming, and is used to express equality modulo
newly introduced activation variables.

Theorem 1. Assume that for all procedures m in a hypothesis context Φ we
have that m : S � T ∈ dom(Φ) if and only if m : �Sp̊

k � �T p̊
k ∈ dom(Φ′).

Then Φ′ � �s�p̊
k : �P p̊

k � �Qp̊
k implies that Φ � s : P � Q.

Proof (Sketch). We sketch a proof based on the operational semantics of our
language. We show that the execution of the product program with exactly one
active execution corresponds to a single execution of the original program.

Assume that Φ′ � �s�p̊
k : �P p̊

k � �Qp̊
k, and that σ � �P p̊

k. If �s�p̊
k does not

diverge when executed from σ we have that 〈�s�p̊
k, σ〉 →∗ 〈skip, σ′〉 and σ′ �

�Qp̊
k. We now prove that a run of the product with all but one execution being

inactive reflects the states that occur in a run of the original program. Assume
that σ � p(1)∧∧k

i=2(¬p(i)) and 〈s, σ1〉 →∗ 〈skip, σ′
1〉 and initially σ �1 σ1, which

implies σ1 � P . We prove by induction on the derivation of 〈s, σ1〉 →∗ 〈skip, σ′
1〉

that 〈�s�p̊
k, σ〉 →∗ 〈skip, σ′〉 and σ′ �1 σ′

1, meaning that the product execution
terminates, and subsequently by induction on the derivation of 〈�s�p̊

k, σ〉 →∗

〈skip, σ′〉 that σ′ �1 σ′
1, from which we can derive that σ′

1 � Q. ��
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5.2 Soundness for Relational Specifications

The main advantage of modular product programs over other kinds of product
programs is that it allows reasoning about procedure calls in terms of relational
specifications. We therefore need to show the soundness of our approach in the
presence of procedures with such specifications. In particular, we must establish
that if a transformed relational specification holds for a modular product then
the original relational specification will hold for a set of k executions of the
original program.

Our proof sketch is phrased in terms of biprograms as introduced by Banerjee
et al. [5]. Biprogram executions correspond to two partly aligned executions of
their two underlying programs. A biprogram ss can have the form (s1|s2) or
‖s‖; the former represents the two executions of s1 and s2, whereas the latter
represents an aligned execution of s by both executions, which enables using
relational specifications for procedure calls3. We denote the small-step transition
relation between biprogram configurations as 〈ss, σ1|σ2〉 �∗ 〈ss′, σ′

1|σ′
2〉. We

make use of a relation σ � σ1|σ2 that denotes that σ contains renamed versions
of all variables in both σ1 and σ2 with the same values.

Biprograms do not allow mixed procedure specifications, meaning that a
procedure can either have only a unary specification, or it can have only a
relational specification, in which case it can only be invoked by both executions
simultaneously. As mentioned before, our approach does not have this limitation,
but we can artificially enforce it for the purposes of the soundness proof.

We can now state our theorem. Since biprograms represent the execution of
two programs, we formulate soundness for k = 2 here.

Theorem 2. Assume that hypothesis context Φ maps procedure names to rela-
tional specifications if all calls to the procedure in s can be aligned from any pair
of states satisfying P̂ , and to unary specifications otherwise. Assume further that
hypothesis context Φ′ maps the same procedure names to their transformed spec-
ifications. Finally, assume that Φ′ � �s�p̊

2 : �P̂ p̊
2 � �Q̂p̊

2 and (σ1, σ2) � P̂ . If
〈s, σ1〉 →∗ 〈skip, σ′

1〉 and 〈s, σ2〉 →∗ 〈skip, σ′
2〉, then (σ′

1, σ
′
2) � Q̂.

Proof (Sketch). The proof follows the same basic outline as the one for Theorem 1
but reasons about the operational semantics of biprograms representing two
executions of s.

Assume that Φ′ � �s�p̊
2 : �P̂ p̊

2 � �Q̂p̊
2 and σ � �P̂ p̊

2. If �s�p̊
2 does not diverge

when executed from σ we get that 〈�s�p̊
2, σ〉 →∗ 〈skip, σ′〉 and σ′ � �Q̂p̊

2. Assume
that initially σ � σ1|σ2, which implies that (σ1, σ2) � P̂ . We prove by induction
on the derivation of 〈�s�p̊

2, σ〉 →∗ 〈skip, σ′〉 that (1) if σ � p(1) ∧ p(2), then there
exists ss that represents two executions of s s.t. 〈ss, σ1|σ2〉 �∗ 〈‖skip‖, σ′

1|σ′
2〉

and σ′
� σ′

1|σ′
2; (2) if σ � p(1) ∧ ¬p(2), then 〈s, σ1〉 →∗ 〈skip, σ′

1〉 and σ′
�

σ′
1|σ2; (3) if σ � ¬p(1) ∧ p(2), then 〈s, σ2〉 →∗ 〈skip, σ′

2〉 and σ′
� σ1|σ′

2; (4) if
σ � ¬p(1) ∧ ¬p(2), then σ � σ′. From the first point and semantic consistency
3 We modified the original notation to avoid clashes with our own concepts introduced

earlier.
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of the relational logic, we can conclude that (σ′
1, σ

′
2) � Q̂. Finally, we prove that

〈�s�p̊
2, σ〉 →∗ 〈skip, σ′〉 by showing that non-termination of the product implies

the non-termination of at least one of the two original program runs. If the
condition of a loop in the product remains true forever, the loop condition of at
least one encoded execution must be true after every iteration. We show that
(1) this is not due to an interaction of multiple executions, since the condition
for every execution will remain false if it becomes false once, and (2) since the
encoded states of active executions progress as they do in the original program,
the condition of a single execution in the product remains true forever only if it
does in the original program. A similar argument shows that the product cannot
diverge because of infinite recursive calls. ��

5.3 Completeness

We believe modular product programs to be complete, meaning that any hyper-
property of multiple executions of a program can be proved about its modular
product program. Since the product faithfully models the executions of the orig-
inal program, the completeness of modular products is potentially limited only
by the underlying verification logic and the assertion language, but not by the
product construction itself.

6 Modular Verification of Secure Information Flow

In this section, we demonstrate the expressiveness of modular product programs
by showing how they can be used to verify an important hyperproperty, informa-
tion flow security. We first concentrate on secure information flow in the classical
sense [9], and later demonstrate how the ability to check relational assertions at
any point in the program can be exploited to prove advanced properties like the
absence of timing and termination channels, and to encode declassification.

6.1 Non-interference

Secure information flow, i.e., the property that secret information is not leaked
to the public outputs of a program, can be expressed as a relational 2-safety
property of a program called non-interference. Non-interference states that, if
a program is run twice, with the public (often called low) inputs being equal
in both runs but the secret (or high) inputs possibly being different, the public
outputs of the program must be equal in both runs [8]. This property guarantees
that the high inputs do not influence the low outputs.

We can formalize non-interference as follows:

Definition 2. A statement s that operates on a set of variables X =
{x1, . . . , xn}, of which some subset Xl ⊆ X is low, satisfies non-interference
iff for all σ1, σ2 and σ′

1, σ
′
2, if ∀x ∈ Xl. σ1(x) = σ2(x) and 〈s, σ1〉 →∗ 〈skip, σ′

1〉
and 〈s, σ2〉 →∗ 〈skip, σ′

2〉 then ∀x ∈ Xl.σ
′
1(x) = σ′

2(x).
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Since our definition of non-interference describes a hyperproperty, we can
verify it using modular product programs:

Theorem 3. A statement s that operates on a set of variables X =
{x1, . . . , xn}, of which some subset Xl ⊆ X is low, satisfies non-interference
under a unary precondition P if Φ � �s�p̊

2 : �P p̊
2 ∧ (∀x ∈ Xl. x

(1) = x(2)) � ∀x ∈
Xl. x

(1) = x(2)

Proof (Sketch). Since non-interference can be expressed using a 2-relational spec-
ification, the theorem follows directly from Theorem 2. ��

For non-deterministic programs whose behavior can be modelled by adding
input parameters representing the non-deterministic choices, those parameters
can be considered low if the choice is not influenced in any way by secret data.

An expanded notion of secure information flow considers observable events
in addition to regular program outputs [17]. An event is a statement that has an
effect that is visible to an outside observer, but may not necessarily affect the
program state. The most important examples of events are output operations like
printing a string to the console or sending a message over a network. Programs
that cause events can be considered information flow secure only if the sequence
of produced events is not influenced by high data. One way to verify this using
our approach is to track the sequence of produced events in a ghost variable
and verify that its value never depends on high data. This approach requires
substantial amounts of additional specifications.

Modular product programs offer an alternative approach for preventing leaks
via events, since they allow formulating assertions about the relation between the
activation variables of different executions. In particular, if a given event has the
precondition that all activation variables are equal when the event statement is
reached then this event will either be executed by both executions or be skipped
by both executions. As a result, the sequence of events produced by a program
will be equal in all executions.

6.2 Information Flow Specifications

The relational specifications required for modularly proving non-interference
with the previously described approach have a specific pattern: they can contain
functional specifications meant to be valid for both executions (e.g., to make
sure both executions run without errors), they may require that some informa-
tion is low, which is equivalent to the two renamings of the same expression
being equal, and, in addition, they may assert that the control flow at a specific
program point is low.

We therefore introduce modular information flow specifications, which can
express all properties required for proving secure information flow but are trans-
parent w.r.t. the encoding or the verification methodology, i.e., they allow
expressing that a given operation or value must not be secret without knowl-
edge of the encoding of this fact into an assertion about two different program
executions. We define information flow specifications as follows:
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(SIFAssertions) P̃ ::= P̃ ∧ P̃ | e | low(e) | lowEvent | P̃ ⇒ P̃ | ∀x. P̃

low(e) and lowEvent may be used on the left side of an implication only if the
right side has the same form. low(e) specifies that the value of the expression e is
not influenced by high data. Note that e can be any expression and is not limited
to variable references; this reflects the fact that our approach can label secrecy in
a more fine-grained way than, e.g., a type system. One can, for example, declare
to be public whether a number is odd while keeping its value secret.

Fig. 5. Translation of information flow specifications.

lowEvent specifies that high data must not influence if and how often the cur-
rent program point is reached by an execution, which is a sufficient precondition
of any statement that causes an observable event. In particular, if a procedure
outputs an expression e, the precondition lowEvent ∧ low(e) guarantees that no
high information will be leaked via this procedure.

Information flow specifications can express complex properties. e1 ⇒ low(e2),
for example, expresses that if e1 is true, e2 must not depend on high data;
e1 ⇒ lowEvent says the same about the current control flow. A possible use case
for these assertions is the precondition of a library function that prints e2 to a
low-observable channel if e1 is true, and to a secure channel otherwise.

The encoding �P̃ �p̊ of an information flow assertion P̃ under the activation
variables p(1) and p(2) is defined in Fig. 5. Note that high-ness of some expres-
sion is not modelled by its renamings being definitely unequal, but by leaving
underspecified whether they are equal or not, meaning that high-ness is simply
the absence of the knowledge of low-ness. As a result, it is never necessary to
specify explicitly that an expression is high. This approach (which is also used
in self-composition) is analogous to the way type systems encode security levels,
where low is typically a subtype of high. For the example in Fig. 1, a possible,
very precise information flow specification could say that the results of main are
low if the first bit of all entries in people is low. We can write this as main :
low(|people|)∧∀i ∈ {0, . . . , |people|− 1}. low(people[ i ] mod 2) � low(count). In
the product, this will be translated to main : p1∧p2 ⇒ |people1| = |people2|∧∀i ∈
{0, . . . , |people1| − 1}. (people1[ i ] mod 2) = (people2[ i ] mod 2) count1 =
count2.

In this scenario, the loop in main could have the simple invariant low( i) ∧
low(count), and the procedure is female could have the contract is female :
true � (low(person mod 2) ⇒ low(res)). This contract follows a useful pattern
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Fig. 6. Password check example: leaking secret data is desired.

where, instead of requiring an input to be low and promising that an output will
be low for all calls, the output is decribed as conditionally low based on the level
of the input, which is more permissive for callers.

The example shows that the information relevant for proving secure informa-
tion flow can be expressed concisely, without requiring any knowledge about the
methodology used for verification. Modular product programs therefore enable
the verification of the information flow security of main based solely on modular,
relational specifications, and without depending on functional specifications.

6.3 Secure Information Flow with Arbitrary Security Lattices

The definition of secure information flow used in Definition 2 is a special case
in which there are exactly two possible classifications of data, high and low. In
the more general case, classifications come from an arbitrary lattice 〈L,�〉 of
security levels s.t. for some l1, l2 ∈ L, information from an input with level l1
may influence an output with level l2 only if l1 � l2. Instead of the specification
low(e), information flow assertions can therefore have the form levelBelow(e, l),
meaning that the security level of expression e is at most l.

It is well-known that techniques for verifying information flow security with
two levels can conceptually be used to verify programs with arbitrary finite
security lattices [23] by splitting the verification task into |L| different verifica-
tion tasks, one for each element of L. Instead, we propose to combine all these
verification tasks into a single task by using a symbolic value for l, i.e., declar-
ing an unconstrained global constant representing l. Specifications can then be
translated as follows:

levelBelow(e, l′) =̂ l′ � l ⇒ e(1) = e(2)

Since no information about l is known, verification will only succeed if all
assertions can be proven for all possible values of l, which is equivalent to proving
them separately for each possible value of l.

6.4 Declassification

In practice, non-interference is too strong a property for many use cases. Often,
some leakage of secret data is required for a program to work correctly. Consider
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Fig. 7. Programs with a termination channel (left), and a timing channel (right). In
both cases, h is high.

the case of a password check (see Fig. 6): A secret internal password is compared
to a non-secret user input. While the password itself must not be leaked, the
information whether the user input matches the password should influence the
public outcome of the program, which is forbidden by non-interference.

To incorporate this intention, the relevant part of the secret information
can be declassified [24], e.g., via a declassification statement declassify e that
declares an arbitrary expression e to be low. With modular products, declassifi-
cation can be encoded via a simple assumption stating that, if the declassification
is executed in both executions, the expression is equal in both executions:

�declassify e�p̊
2 = assume (p(1) ∧ p(2)) ⇒ e(1) = e(2)

Introducing an assumption of this form is sound if the information flow
specifications from Sect. 6.2 are used to specify the program. Since high-ness
is encoded as the absence of the knowledge that an expression is equal in both
executions, not by the knowledge that they are different, there is no danger that
assuming equality will contradict current knowledge and thereby cause unsound-
ness. As in the information flow specifications, the declassified expression can be
arbitrarily complex, so that it is for example possible to declassify the sign of an
integer while keeping all other information about it secret.

The example in Fig. 6 becomes valid if we add declassify result at the
end of the procedure, or if we declassify a more complex expression by adding
declassify equal (password, input) at some earlier point. The latter would
arguably be safer because it specifies exactly the information that is intended to
be leaked, and would therefore prevent accidentally leaking more if the imple-
mentation of the checking loop was faulty.

This kind of declassification has the following interesting properties: First, it
is imperative, meaning that the declassified information may be leaked (e.g., via
a print statement) after the execution of the declassification statement, but not
before. Second, it is semantic, meaning that the declassification affects the value
of the declassified expression as opposed to, e.g., syntactically the declassified
variable. As a result, it will be allowed to leak any expression whose value con-
tains the same (or a part of the) secret information which was declassified, e.g.,
the expression f(e) if f is a deterministic function and e has been declassified.



520 M. Eilers et al.

6.5 Preventing Termination Channels

In Definition 2, we have considered only terminating program executions. In
practice, however, termination is a possible side-channel that can leak secret
information to an outside observer. Figure 7 (left) shows an example of a program
that verifies under the methodology presented so far, but leaks information about
the secret input h to an observer: If h is initially negative, the program will
enter an endless loop. Anyone who can observe the termination behavior of the
program can therefore conclude if h was negative or not.

To prevent leaking information via a termination side channel, it is necessary
to verify that the termination of a program depends only on public data. We will
show that modular product programs are expressive enough to encode and check
this property. We will focus on preventing non-termination caused by infinite
loops here; preventing infinite recursion works analogously. In particular, we want
to prove that if a loop iterates forever in one execution, any other execution with
the same low inputs will also reach this loop and iterate forever. More precisely,
this means that

(A) if a loop does not terminate, then whether or not an execution reaches that
loop must not depend on high data.

(B) whether a loop that is reached by both executions terminates must not
depend on high data.

We propose to verify these properties by requiring additional specifications
that state, for every loop, an exact condition under which it terminates. This
condition may neither over- nor underapproximate the termination behavior;
the loop must terminate if and only if the condition is true. For Fig. 7 (left) the
condition is h ≥ 0. We also require a ranking function for the cases when the
termination condition is true. We can then prove the following:

(a) If the termination condition of a loop evaluates to false, then any two exe-
cutions with identical low inputs either both reach the loop or both do
not reach the loop (i.e., reaching the loop is a low event). This guarantees
property (A) above.

(b) For loops executed by both executions, the loop’s termination condition is
low. This guarantees property (B) under the assumption that the termina-
tion condition is exact.

(c) The termination condition is sound, i.e., every loop terminates if its termi-
nation condition is true. We prove this by showing that if the termination
condition is true, we can prove the termination of the loop using the supplied
ranking function.

(d) The termination condition is complete, i.e., every loop terminates only if its
termination condition is true. We prove this by showing that if the condition
is false, the loop condition will always remain true. This check, along with the
previous proof obligation, ensures that the termination condition is exact.

(e) Every statement in a loop body terminates if the loop’s termination con-
dition is true, i.e., the loop’s termination condition implies the termination
conditions of all statements in its body.
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Fig. 8. Program instrumentation for termination leak prevention. We abbreviate
while (e) terminates(ec, er) do {s} as w.

We introduce an annotated while loop while (e) terminates(ec, er) do {s},
where ec is the exact termination condition and er is the ranking function, i.e.,
an integer expression whose value decreases with every loop iteration but never
becomes negative if the termination condition is true. Based on these annota-
tions, we present a program instrumentation term (s, c) that inserts the checks
outlined above for every while loop in s. c is the termination condition of the
outside scope, i.e., for the instrumentation of a nested loop, it is the termina-
tion condition ec of the outer loop. The instrumentation is defined for annotated
while loops in Fig. 8; for all other statements, it does not make any changes
except instrumenting all substatements. The instrumentation uses information
flow assertions as defined in Sect. 6.2. Again, we make use of the fact that mod-
ular products allow checking relational assertions at arbitrary program points
and formulating assertions about the control flow.

We now prove that if an instrumented statement verifies under some 2-
relational precondition then any two runs from a pair of states fulfilling that
precondition will either both terminate or both loop forever.

Theorem 4. If s′ = term(s, false), and �s′�p̊
2 verifies under some precondition

P = �P̂ p̊
2, and for some σ1, σ2, σ

′
1, (σ1, σ2) � P̂ and 〈s, σ1〉 →∗ 〈skip, σ′

1〉, then
there exists some σ′

2 s.t. 〈s, σ2〉 →∗ 〈skip, σ′
2〉.

Proof (Sketch). We first establish that our instrumentation ensures that each
statement terminates (1) if and (2) only if its termination condition is true, (1)
by showing equivalence to a standard termination proof, and (2) by a contra-
diction if a loop which should not terminate does. Since the execution from σ1

terminates, by the second condition, its termination condition must have been
true before the loop. We case split on whether the other execution also reaches
the loop or not. If it does then the termination condition before the loop is
identical in both executions, so by the first condition, the other execution also
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terminates. If it does not then the loop is not executed at all by the other exe-
cution, and therefore cannot cause non-termination. ��

6.6 Preventing Timing Channels

A program has a timing channel if high input data influences the program’s
execution time, meaning that an attacker who can observe the time the program
executes can gain information about those secrets. Timing channels can occur
in combination with observable events; the time at which an event occurs may
depend on a secret even if the overall execution time of a program does not.

Consider the example in Fig. 7 (right). Assuming main receives a positive
secret h, both the print statement and the end of the program execution will be
reached later for larger values of h.

Using modular product programs, we can verify the absence of timing side
channels by adding ghost state to the program that tracks the time passed since
the program has started; this could, for example, be achieved via a simple step
counting mechanism, or by tracking the sequence of previously executed bytecode
statements. This ghost state is updated separately for both executions. We can
then assert anywhere in the program that the passed time does not depend
on high data in the same way we do for program variables. In particular, we
can enforce that the passed time is equal whenever an observable event occurs,
and we can enable users to write relational specifications that compare the time
passed in both executions of a loop or a procedure.

7 Implementation and Evaluation

We have implemented our approach for secure information flow in the Viper ver-
ification infrastructure [22] and applied it to a number of example programs from
the literature. Both the implementation and examples are available at http://
viper.ethz.ch/modularproducts/.

7.1 Implementation in Viper

Our implementation supports a version of the Viper language that adds the
following features:

1. The assertions low(e) and lowEvent for information flow specifications
2. A declassify statement
3. Variations of the existing method declarations and while loops that include

the termination annotations shown in Sect. 6.5

The implementation transforms a program in this extended language into a
modular 2-product in the original language, which can then be verified by the
(unmodified) Viper back-end verifiers. All specifications are provided as infor-
mation flow specifications (see Sect. 6.2) such that users require no knowledge
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about the transformation or the methodology behind information flow verifica-
tion. Error messages are automatically translated back to the original program.

Declassification is implemented as described in Sect. 6.4. Our implementation
optionally verifies the absence of timing channels; the metric chosen for tracking
execution time is simple step-counting. Viper uses implicit dynamic frames [25] to
reason about heap-manipulating programs; our implementation uses quantified
permissions [21] to support unbounded heap data structures.

For languages with opaque object references, secure information flow can
require that pointers are low, i.e., equal up to a consistent renaming of addresses.
Therefore, our approach to duplicating the heap state space in the implementa-
tion differs from that described in Sect. 4.3: Instead of duplicating objects, our
implementation creates a single new statement for every new in the original pro-
gram, but duplicates the fields each object has. As a result, if both executions
execute the same new statement, the newly created object will be considered low
afterwards (but the values of its fields might still be high).

7.2 Qualitative Evaluation

We have evaluated our implementation by verifying a number of examples in the
extended Viper language. The examples are listed in Table 1 and include all code
snippets shown in this paper as well as a number of examples from the litera-
ture [2,3,6,13,14,17,18,23,26,28]. They combine complex language features like
mutable state on the heap, arrays and procedure calls, as well as timing and ter-
mination channels, declassification, and non-trivial information flows (e.g., flows
whose legality depends on semantic information not available in a standard infor-
mation flow type system). We manually added pre- and postconditions as well
as loop invariants; for those that have forbidden flows and therefore should not
verify, we also added a legal version that declassifies the leaked information. Our
implementation returns the correct result for all examples.

In all cases but one, our approach allows us to express all information flow
related assertions, i.e., procedure specifications and loop invariants, purely as
relational specifications in terms of low-assertions (see Table 1). For all these
examples, we completely avoid the need to specify the functional behavior of the
program. Unlike the original product program paper [6], we also do not inline
any procedure calls; verification is completely modular.

The only exception is an example that, depending on a high input, executes
different loops with identical behavior, and for which we need to prove that
the execution time is low. In this case we have to provide invariants for both
loops that exactly specify their execution time in order to prove that the overall
execution time after the conditional is low. Nevertheless, the specification of the
procedure containing the loop is again expressed with a relational specification
using only low. For all other examples, unary specifications were only needed to
verify the absence of runtime errors (e.g., out-of-bounds array accesses), which
Viper verifies by default. Consequently, a verified program cannot leak low data
through such errors, which is typically not guaranteed by type systems or static
analyses.
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File Event Heap Array Decl. Term. Time Call LOC Ann/SF/NI/TM/F TV CG TSE

antopolous1 [2] x 25 7/3/3/0/2 0.78 1.10

antopolous2 [2] x x 61 14/0/14/0/0 0.72 0.91

banerjee [3] x x x 76 17/11/6/0/0 1.02 0.61

constanzo [13] x x 22 7/2/5/0/0 0.67 0.28

darvas [14] x x 33 12/8/4/0/0 0.67 0.35

example x x 31 7/1/6/0/0 0.73 0.59

example decl x x 19 5/2/3/0/0 0.72 0.77

example term x x 31 8/4/2/2/0 0.77 0.43

example time x x x x 32 9/0/9/0/0 0.70 0.38

joana 1 tl [17] x x x 28 1/0/1/0/0 0.62 0.23

joana 2 bl [17] x x 18 2/0/2/0/0 0.63 0.25

joana 2 t [17] x 15 1/0/1/0/0 0.62 0.20

joana 3 bl [17] x x x x 47 5/1/2/2/0 0.77 0.47

joana 3 br [17] x x x x 43 8/0/2/6/0 0.83 0.60

joana 3 tl [17] x x x 33 8/2/2/4/0 0.75 0.53

joana 3 tr [17] x x x x 35 8/4/2/2/0 0.76 0.51

joana 13 l [17] x 12 1/0/1/0/0 0.62 0.24

kusters [18] x x 29 9/6/3/0/0 0.64 0.44

naumann [23] x x 20 6/3/6/0/0 0.81 0.88

product [6] x x x 65 30/21/21/0/0 5.47 15.73

smith [26] x x 43 12/6/8/0/0 0.87 0.89

terauchi1 [28] 14 2/0/2/0/0 0.62 0.26

terauchi2 [28] x x 21 4/0/4/0/0 0.63 0.30

terauchi3 [28] 24 5/1/4/0/0 0.66 0.40

Table 1. Evaluated examples. We show the used language features, lines of code includ-
ing specifications, overall lines used for specifications (Ann), unary specifications for
safety (SF), relational specifications for non-interference (NI), specifications for ter-
mination (TM), and functional specifications required for non-interference (F). Note
that some lines contain specifications belonging to multiple categories. Columns TSE

and TV CG show the running times of the verifiers for the SE backend and the VCG
backend, respectively, in seconds.

7.3 Performance

For all but one example, the runtime (averaged over 10 runs on a Lenovo
ThinkPad T450s running Ubuntu) with both the Symbolic Execution (SE) and
the Verification Condition Generation (VCG) verifiers is under or around one
second (see Table 1). The one exception, which makes extensive use of unbounded
heap data structures, takes ca. five seconds when verified using VCG, and 15 in
the SE verifier. This is likely a result of inefficiencies in our encoding: The created
product has a high number of branching statements, and some properties have
to be proved more than once, two issues which have a much larger performance
impact for SE than for VCG. We believe that it is feasible to remove much of
this overhead by optimizing the encoding; we leave this as future work.
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8 Related Work

The notion of k-safety hyperproperties was originally introduced by Clarkson
and Schneider [12]. Here, we focus on statically proving hyperproperties for
imperative and object-oriented programs; much more work exists for testing
or monitoring hyperproperties like secure information flow at runtime, or for
reasoning about hyperproperties in different programming paradigms.

Relational logics such as Relational Hoare Logic [11], Relational Separation
Logic [29] and others [1,10] allow reasoning directly about relational properties
of two different program executions. Unlike our approach, they usually allow
reasoning about the executions of two different programs; as a result, they do
not give special support for two executions of the same program calling the same
procedure with a relational specification. Recently, Banerjee et al. [5] introduced
biprograms, which allow explicitly expressing alignment between executions and
using relational specifications to reason about aligned calls; however, this app-
roach requires that procedures with relational specifications are always called
by both executions, which is for instance not the case if a call occurs under
a high guard in secure information flow verification. We handle such cases by
interpreting relational specifications as trivially true; one can then still resort to
functional specifications to complete the proof. Their work also does not allow
mixed specifications, which are easily supported in our product programs. Rela-
tional program logics are generally difficult to automate. Recent work by Sousa
and Dillig [27] presents a logic that can be applied automatically by an algorithm
that implicitly constructs different product programs that align some identical
statements, but does not fully support relational specifications. Moreover, their
approach requires dedicated tool support, whereas our modular product pro-
grams can be verified using off-the-shelf tools.

The approach of reducing hyperproperties to ordinary trace properties was
introduced by self-composition [9]. While self-composition is theoretically com-
plete, it does not allow modular reasoning with relational specifications. The
resulting problem of having to fully specify program behavior was pointed out
by Terauchi and Aiken [28]; since then, there have been a number of different
attempts to solve this problem by allowing (parts of) programs to execute in
lock-step. Terauchi and Aiken [28] did this for secure information flow by relying
on information from a type system; other similar approaches exist [23].

Product programs [6,7] allow different interleavings of program executions.
The initial product program approach [6] would in principle allow the use of
relational specifications for procedure calls, but only under the restriction that
both program executions always follow the same control flow. The generalized
approach [7] allows combining different programs and arbitrary numbers of exe-
cutions. This product construction is non-deterministic and usually interactive.
In some (but not all) cases, programmers can manually construct product pro-
grams that avoid duplicated calls and loops and thereby allow using relational
specifications. However, whether this is possible depends on the used specifica-
tion, meaning that the product construction and verification are intertwined and
a new product has to be constructed when specifications change. In contrast, our
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new product construction is fully deterministic and automatic, allows arbitrary
control flows while still being able to use relational specifications for all loops
and calls, and therefore avoids the issue of requiring full functional specifications.

Considerable work has been invested into proving specific hyperproperties
like secure information flow. One popular approach is the use of type systems
[26]; while those are modular and offer good performance, they overapproximate
possible program behaviors and are therefore less precise than approaches using
logics. In particular, they require labeling any single value as either high or
low, and do not allow distinctions like the one we made for the example in
Fig. 1, where only the first bits of a sequence of integers were low. In addition,
type systems typically struggle to prevent information leaks via side channels
like termination or program aborts. There have been attempts to create type
systems that handle some of these limitations (e.g. [15]).

Static analyses [2,17] enable fully automatic reasoning. They are typically
not modular and, similarly to type systems, need to abstract semantic informa-
tion, which can lead to false positives. They strike a trade-off different from our
solution, which requires specifications, but enables precise, modular reasoning.

A number of logic-based approaches to proving specific hyperproperties exist.
As an example, Darvas et al. use dynamic logic for proving non-interference [14];
this approach offers some automation, but requires user interaction for most
realistic programs. Leino et al. [19] verify determinism up to equivalence using
self-composition, which suffers from the drawbacks explained above.

Different kinds of declassification have been studied extensively, Sabelfeld
and Sands [24] provide a good overview. Li and Zdancewic [20] introduce down-
grading policies that describe which information can be declassified and, similar
to our approach, can do so for arbitrary expressions.

9 Conclusion and Future Work

We have presented modular product programs, a novel form of product programs
that enable modular reasoning about k-safety hyperproperties using relational
specifications with off-the-shelf verifiers. We showed that modular products are
expressive enough to handle advanced aspects of secure information flow verifi-
cation. They can prove the absence of termination and timing side channels and
encode declassification. Our implementation shows that our technique works in
practice on a number of challenging examples from the literature, and exhibits
good performance even without optimizations.

For future work, we plan to infer relational properties by using standard
program analysis techniques on the products. We also plan to generalize our
technique to prove probabilistic secure information flow for concurrent program
by combining our encoding with ideas from concurrent separation logic. Finally,
we plan to optimize our encoding to further improve performance.
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14. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

https://doi.org/10.1007/978-3-319-12154-3_1
https://doi.org/10.1007/978-3-319-12154-3_1
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-54792-8_10
https://doi.org/10.1007/978-3-642-54792-8_10
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20


528 M. Eilers et al.

15. Deng, Z., Smith, G.: Lenient array operations for practical secure information flow.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30
June 2004, Pacific Grove, CA, USA, p. 115 (2004)

16. Francez, N.: Fairness. Springer-Verlag, New York Inc., New York (1986). https://
doi.org/10.1007/978-1-4612-4886-6

17. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Int. J.
Inf. Sec. 14(3), 263–287 (2015)
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Armaël Guéneau1, Arthur Charguéraud1,2, and François Pottier1(B)

1 Inria, Paris, France
francois.pottier@inria.fr
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Abstract. We present a framework for simultaneously verifying the
functional correctness and the worst-case asymptotic time complexity
of higher-order imperative programs. We build on top of Separation
Logic with Time Credits, embedded in an interactive proof assistant.
We formalize the O notation, which is key to enabling modular specifi-
cations and proofs. We cover the subtleties of the multivariate case, where
the complexity of a program fragment depends on multiple parameters.
We propose a way of integrating complexity bounds into specifications,
present lemmas and tactics that support a natural reasoning style, and
illustrate their use with a collection of examples.

1 Introduction

A program or program component whose functional correctness has been verified
might nevertheless still contain complexity bugs: that is, its performance, in some
scenarios, could be much poorer than expected.

Indeed, many program verification tools only guarantee partial correctness,
that is, do not even guarantee termination, so a verified program could run
forever. Some program verification tools do enforce termination, but usually
do not allow establishing an explicit complexity bound. Tools for automatic
complexity inference can produce complexity bounds, but usually have limited
expressive power.

In practice, many complexity bugs are revealed by testing. Some have also
been detected during ordinary program verification, as shown by Filliâtre and
Letouzey [14], who find a violation of the balancing invariant in a widely-
distributed implementation of binary search trees. Nevertheless, none of these
techniques can guarantee, with a high degree of assurance, the absence of com-
plexity bugs in software.

To illustrate the issue, consider the binary search implementation in Fig. 1.
Virtually every modern software verification tool allows proving that this OCaml
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code (or analogous code, expressed in another programming language) satisfies
the specification of a binary search and terminates on all valid inputs. This code
might even pass a lightweight testing process, as some search queries will be
answered very quickly, even if the array is very large. Yet, a more thorough
testing process would reveal a serious issue: a search for a value that is stored
in the second half of the range [i, j) takes linear time. It would be embarrassing
if such faulty code was deployed, as it would aggravate benevolent users and
possibly allow malicious users to mount denial-of-service attacks.

(* Requires t to be a sorted array of integers.

Returns k such that i <= k < j and t.(k) = v

or -1 if there is no such k. *)

let rec bsearch t v i j =

if j <= i then -1 else

let k = i + (j - i) / 2 in

if v = t.(k) then k

else if v < t.(k) then bsearch t v i k

else bsearch t v (i+1) j

Fig. 1. A flawed binary search. This code is provably correct and terminating, yet
exhibits linear (instead of logarithmic) time complexity for some input parameters.

As illustrated above, complexity bugs can affect execution time, but could
also concern space (including heap space, stack space, and disk space) or other
resources, such as the network, energy, and so on. In this paper, for simplicity,
we focus on execution time only. That said, much of our work is independent of
which resource is considered. We expect that our techniques could be adapted
to verify asymptotic bounds on the use of other non-renewable resources, such
as the network.

We work with a simple model of program execution, where certain opera-
tions, such as calling a function or entering a loop body, cost one unit of time,
and every other operation costs nothing. Although this model is very remote
from physical running time, it is independent of the compiler, operating system,
and hardware [18,24] and still allows establishing asymptotic time complexity
bounds, and therefore, detecting complexity bugs—situations where a program
is asymptotically slower than it should be.

In prior work [11], the second and third authors present a method for ver-
ifying that a program satisfies a specification that includes an explicit bound
on the program’s worst-case, amortized time complexity. They use Separation
Logic with Time Credits, a simple extension of Separation Logic [23] where the
assertion $1 represents a permission to perform one step of computation, and is
consumed when exercised. The assertion $n is a separating conjunction of n such
time credits. Separation Logic with Time Credits is implemented in the second
author’s interactive verification framework, CFML [9,10], which is embedded in
the Coq proof assistant.

www.dbooks.org
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Using CFML, the second and third authors verify the correctness and time
complexity of an OCaml implementation of the Union-Find data structure [11].
However, their specifications involve concrete cost functions: for instance, the
precondition of the function find indicates that calling find requires and con-
sumes $(2α(n) + 4), where n is the current number of elements in the data
structure, and where α denotes an inverse of Ackermann’s function. We would
prefer the specification to give the asymptotic complexity bound O(α(n)), which
means that, for some function f ∈ O(α(n)), calling find requires and consumes
$f(n). This is the purpose of this paper.

We argue that the use of asymptotic bounds, such as O(α(n)), is necessary
for (verified or unverified) complexity analysis to be applicable at scale. At a
superficial level, it reduces clutter in specifications and proofs: O(mn) is more
compact and readable than 3mn+2n log n+5n+3m+2. At a deeper level, it is
crucial for stating modular specifications, which hide the details of a particular
implementation. Exposing the fact that find costs 2α(n) + 4 is undesirable: if
a tiny modification of the Union-Find module changes this cost to 2α(n) + 5,
then all direct and indirect clients of the Union-Find module must be updated,
which is intolerable. Furthermore, sometimes, the constant factors are unknown
anyway. Applying the Master Theorem [12] to a recurrence equation only yields
an order of growth, not a concrete bound. Finally, for most practical purposes, no
critical information is lost when concrete bounds such as 2α(n) + 4 are replaced
with asymptotic bounds such as O(α(n)). Indeed, the number of computation
steps that take place at the source level is related to physical time only up to
a hardware- and compiler-dependent constant factor. The use of asymptotic
complexity in the analysis of algorithms, initially advocated by Hopcroft and by
Tarjan, has been widely successful and is nowadays standard practice.

One must be aware of several limitations of our approach. First, it is not a
worst-case execution time (WCET) analysis: it does not yield bounds on actual
physical execution time. Second, it is not fully automated. We place emphasis
on expressiveness, as opposed to automation. Our vision is that verifying the
functional correctness and time complexity of a program, at the same time,
should not involve much more effort than verifying correctness alone. Third,
we control only the growth of the cost as the parameters grow large. A loop
that counts up from 0 to 260 has complexity O(1), even though it typically
won’t terminate in a lifetime. Although this is admittedly a potential problem,
traditional program verification falls prey to analogous pitfalls: for instance, a
program that attempts to allocate and initialize an array of size (say) 248 can be
proved correct, even though, on contemporary desktop hardware, it will typically
fail by lack of memory. We believe that there is value in our approach in spite
of these limitations.

Reasoning and working with asymptotic complexity bounds is not as simple
as one might hope. As demonstrated by several examples in Sect. 2, typical paper
proofs using the O notation rely on informal reasoning principles which can easily
be abused to prove a contradiction. Of course, using a proof assistant steers us
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clear of this danger, but implies that our proofs cannot be quite as simple and
perhaps cannot have quite the same structure as their paper counterparts.

A key issue that we run against is the handling of existential quantifiers.
According to what was said earlier, the specification of a sorting algorithm, say
mergesort, should be, roughly: “there exists a cost function f ∈ O(λn.n log n)
such that mergesort is content with $f(n), where n is the length of the input
list.” Therefore, the very first step in a näıve proof of mergesort must be to
exhibit a witness for f , that is, a concrete cost function. An appropriate witness
might be λn.2n log n, or λn.n log n + 3, who knows? This information is not
available up front, at the very beginning of the proof; it becomes available only
during the proof, as we examine the code of mergesort, step by step. It is not
reasonable to expect the human user to guess such a witness. Instead, it seems
desirable to delay the production of the witness and to gradually construct a cost
expression as the proof progresses. In the case of a nonrecursive function, such
as insertionsort, the cost expression, once fully synthesized, yields the desired
witness. In the case of a recursive function, such as mergesort, the cost expression
yields the body of a recurrence equation, whose solution is the desired witness.

We make the following contributions:

1. We formalize O as a binary domination relation between functions of type
A → Z, where the type A is chosen by the user. Functions of several variables
are covered by instantiating A with a product type. We contend that, in order
to define what it means for a ∈ A to “grow large”, or “tend towards infinity”,
the type A must be equipped with a filter [6], that is, a quantifier Ua.P .
(Eberl [13] does so as well.) We propose a library of lemmas and tactics that
can prove nonnegativeness, monotonicity, and domination assertions (Sect. 3).

2. We propose a standard style of writing specifications, in the setting of the
CFML program verification framework, so that they integrate asymptotic
time complexity claims (Sect. 4). We define a predicate, specO, which imposes
this style and incorporates a few important technical decisions, such as the
fact that every cost function must be nonnegative and nondecreasing.

3. We propose a methodology, supported by a collection of Coq tactics, to prove
such specifications (Sect. 5). Our tactics, which heavily rely on Coq metavari-
ables, help gradually synthesize cost expressions for straight-line code and
conditionals, and help construct the recurrence equations involved in the anal-
ysis of recursive functions, while delaying their resolution.

4. We present several classic examples of complexity analyses (Sect. 6), includ-
ing: a simple loop in O(n.2n), nested loops in O(n3) and O(nm), binary search
in O(log n), and Union-Find in O(α(n)).

Our code can be found online in the form of two standalone Coq libraries
and a self-contained archive [16].

2 Challenges in Reasoning with the O Notation

When informally reasoning about the complexity of a function, or of a code
block, it is customary to make assertions of the form “this code has asymptotic
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complexity O(1)”, “that code has asymptotic complexity O(n)”, and so on. Yet,
these assertions are too informal: they do not have sufficiently precise meaning,
and can be easily abused to produce flawed paper proofs.

A striking example appears in Fig. 2, which shows how one might “prove”
that a recursive function has complexity O(1), whereas its actual cost is O(n).
The flawed proof exploits the (valid) relation O(1) + O(1) = O(1), which means
that a sequence of two constant-time code fragments is itself a constant-time
code fragment. The flaw lies in the fact that the O notation hides an existential
quantification, which is inadvertently swapped with the universal quantification
over the parameter n. Indeed, the claim is that “there exists a constant c such
that, for every n, waste(n) runs in at most c computation steps”. However,
the proposed proof by induction establishes a much weaker result, to wit: “for
every n, there exists a constant c such that waste(n) runs in at most c steps”.
This result is certainly true, yet does not entail the claim.

An example of a different nature appears in Fig. 3. There, the auxiliary func-
tion g takes two integer arguments n and m and involves two nested loops, over
the intervals [1, n] and [1,m]. Its asymptotic complexity is O(n + nm), which,
under the hypothesis that m is large enough, can be simplified to O(nm). The
reasoning, thus far, is correct. The flaw lies in our attempt to substitute 0 for m

Incorrect claim: The OCaml function waste has asymptotic complexity O(1).

let rec waste n =

if n > 0 then waste (n-1)

Flawed proof:
Let us prove by induction on n that waste(n) costs O(1).
– Case n ≤ 0: waste(n) terminates immediately. Therefore, its cost is O(1).
– Case n > 0: A call to waste(n) involves constant-time processing, followed with a

call to waste(n − 1). By the induction hypothesis, the cost of the recursive call is
O(1). We conclude that the cost of waste(n) is O(1) + O(1), that is, O(1).

Fig. 2. A flawed proof that waste(n) costs O(1), when its actual cost is O(n).

Incorrect claim: The OCaml function f has asymptotic complexity O(1).

let g (n, m) =

for i = 1 to n do

for j = 1 to m do () done

done

let f n = g (n, 0)

Flawed proof:
– g(n, m) involves nm inner loop iterations, thus costs O(nm).
– The cost of f(n) is the cost of g(n, 0), plus O(1). As the cost of g(n, m) is O(nm),

we find, by substituting 0 for m, that the cost of g(n, 0) is O(0). Thus, f(n) is O(1).

Fig. 3. A flawed proof that f(n) costs O(1), when its actual cost is O(n).
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Incorrect claim: The OCaml function h has asymptotic complexity O(nm2).

1 let h (m , n ) =
2 for i = 0 to m−1 do

3 let p = ( if i = 0 then pow2 n else n∗i ) in

4 for j = 1 to p do ( ) done

5 done

Flawed proof:
– The body of the outer loop (lines 3-4) has asymptotic cost O(ni). Indeed, as soon

as i > 0 holds, the inner loop performs ni constant-time iterations. The case where
i = 0 does not matter in an asymptotic analysis.

– The cost of h(m, n) is the sum of the costs of the iterations of the outer loop:
∑m−1

i=0 O(ni) = O n · ∑m−1
i=0 i

)
= O(nm2).

Fig. 4. A flawed proof that h(m, n) costs O(nm2), when its actual cost is O(2n +nm2).

in the bound O(nm). Because this bound is valid only for sufficiently large m, it
does not make sense to substitute a specific value for m. In other words, from the
fact that “g(n,m) costs O(nm) when n and m are sufficiently large”, one cannot
deduce anything about the cost of g(n, 0). To repair this proof, one must take
a step back and prove that g(n,m) has asymptotic complexity O(n + nm) for
sufficiently large n and for every m. This fact can be instantiated with m = 0,
allowing one to correctly conclude that g(n, 0) costs O(n). We come back to this
example in Sect. 3.3.

One last example of tempting yet invalid reasoning appears in Fig. 4. We
borrow it from Howell [19]. This flawed proof exploits the dubious idea that “the
asymptotic cost of a loop is the sum of the asymptotic costs of its iterations”. In
more precise terms, the proof relies on the following implication, where f(m,n, i)
represents the true cost of the i-th loop iteration and g(m,n, i) represents an
asymptotic bound on f(m,n, i):

f(m,n, i) ∈ O(g(m,n, i)) ⇒ ∑m−1
i=0 f(m,n, i) ∈ O

(∑m−1
i=0 g(m,n, i)

)

As pointed out by Howell, this implication is in fact invalid. Here, f(m,n, 0) is 2n

and f(m,n, i) when i > 0 is ni, while g(m,n, i) is just ni. The left-hand side of
the above implication holds, but the right-hand side does not, as 2n +

∑m−1
i=1 ni

is O(2n + nm2), not O(nm2). The Summation lemma presented later on in
this paper (Lemma 8) rules out the problem by adding the requirement that f
be a nondecreasing function of the loop index i. We discuss in depth later on
(Sect. 4.5) why cost functions should and can be monotonic.

The examples that we have presented show that the informal reasoning style
of paper proofs, where the O notation is used in a loose manner, is unsound.
One cannot hope, in a formal setting, to faithfully mimic this reasoning style. In
this paper, we do assign O specifications to functions, because we believe that
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this style is elegant, modular and scalable. However, during the analysis of a
function body, we abandon the O notation. We first synthesize a cost expression
for the function body, then check that this expression is indeed dominated by
the asymptotic bound that appears in the specification.

3 Formalizing the O Notation

3.1 Domination

In many textbooks, the fact that f is bounded above by g asymptotically, up to
constant factor, is written “f = O(g)” or “f ∈ O(g)”. However, the former
notation is quite inappropriate, as it is clear that “f = O(g)” cannot be literally
understood as an equality. Indeed, if it truly were an equality, then, by symmetry
and transitivity, f1 = O(g) and f2 = O(g) would imply f1 = f2. The latter
notation makes much better sense: O(g) is then understood as a set of functions.
This approach has in fact been used in formalizations of the O notation [3].
Yet, in this paper, we prefer to think directly in terms of a domination preorder
between functions. Thus, instead of “f ∈ O(g)”, we write f � g.

Although the O notation is often defined in the literature only in the special
case of functions whose domain is N, Z or R, we must define domination in
the general case of functions whose domain is an arbitrary type A. By later
instantiating A with a product type, such as Z

k, we get a definition of domination
that covers the multivariate case. Thus, let us fix a type A, and let f and g inhabit
the function type A → Z.1

Fixing the type A, it turns out, is not quite enough. In addition, the type A
must be equipped with a filter [6]. To see why that is the case, let us work
towards the definition of domination. As is standard, we wish to build a notion
of “growing large enough” into the definition of domination. That is, instead of
requiring a relation of the form |f(x)| ≤ c |g(x)| to be “everywhere true”, we
require it to be “ultimately true”, that is, “true when x is large enough”.2 Thus,
f � g should mean, roughly:

“up to a constant factor, ultimately, |f | is bounded above by |g|.”
That is, somewhat more formally:

“for some c, for every sufficiently large x, |f(x)| ≤ c |g(x)|”
In mathematical notation, we would like to write: ∃c. Ux. |f(x)| ≤ c |g(x)|.

For such a formula to make sense, we must define the meaning of the formula
Ux.P , where x inhabits the type A. This is the reason why the type A must be
1 At this time, we require the codomain of f and g to be Z. Following Avigad and

Donnelly [3], we could allow it to be an arbitrary nondegenerate ordered ring. We
have not yet needed this generalization.

2 When A is N, provided g(x) is never zero, requiring the inequality to be “everywhere
true” is in fact the same as requiring it to be “ultimately true”. Outside of this special
case, however, requiring the inequality to hold everywhere is usually too strong.
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equipped with a filter U, which intuitively should be thought of as a quantifier,
whose meaning is “ultimately”. Let us briefly defer the definition of a filter
(Sect. 3.2) and sum up what has been explained so far:

Definition 1 (Domination). Let A be a filtered type, that is, a type A equipped
with a filter UA.

The relation �A on A → Z is defined as follows:

f �A g ≡ ∃c. UA x. |f(x)| ≤ c |g(x)|

3.2 Filters

Whereas ∀x.P means that P holds of every x, and ∃x.P means that P holds
of some x, the formula Ux.P should be taken to mean that P holds of every
sufficiently large x, that is, P ultimately holds.

The formula Ux.P is short for U (λx.P ). If x ranges over some type A, then
U must have type P(P(A)), where P(A) is short for A → Prop. To stress this
better, although Bourbaki [6] states that a filter is “a set of subsets of A”, it is
crucial to note that P(P(A)) is the type of a quantifier in higher-order logic.

Definition 2 (Filter). A filter [6] on a type A is an object U of type P(P(A))
that enjoys the following four properties, where Ux.P is short for U (λx.P ):

(1) (P1 ⇒ P2) ⇒ Ux.P1 ⇒ Ux.P2 (covariance)
(2a) Ux.P1 ∧ Ux.P2 ⇒ Ux.(P1 ∧ P2) (stability under binary intersection)
(2b) Ux.True (stability under 0-ary intersection)
(3) Ux.P ⇒ ∃x.P (nonemptiness)

Properties (1)–(3) are intended to ensure that the intuitive reading of Ux.P
as: “for sufficiently large x, P holds” makes sense. Property (1) states that if
P1 implies P2 and if P1 holds when x is large enough, then P2, too, should
hold when x is large enough. Properties (2a) and (2b), together, state that if
each of P1, . . . , Pk independently holds when x is large enough, then P1, . . . , Pk

should simultaneously hold when x is large enough. Properties (1) and (2b)
together imply ∀x.P ⇒ Ux.P . Property (3) states that if P holds when x is large
enough, then P should hold of some x. In classical logic, it would be equivalent
to ¬(Ux.False).

In the following, we let the metavariable A stand for a filtered type, that is, a
pair of a carrier type and a filter on this type. By abuse of notation, we also write
A for the carrier type. (In Coq, this is permitted by an implicit projection.) We
write UA for the filter.

3.3 Examples of Filters

When U is a universal filter, Ux.Q(x) is (by definition) equivalent to ∀x.Q(x).
Thus, a predicate Q is “ultimately true” if and only if it is “everywhere true”.
In other words, the universal quantifier is a filter.
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Definition 3 (Universal filter). Let T be a nonempty type. Then λQ.∀x.Q(x)
is a filter on T .

When U is the order filter associated with the ordering ≤, the formula
Ux.Q(x) means that, when x becomes sufficiently large with respect to ≤, the
property Q(x) becomes true.

Definition 4 (Order filter). Let (T,≤) be a nonempty ordered type, such that
every two elements have an upper bound. Then λQ.∃x0.∀x ≥ x0. Q(x) is a filter
on T .

The order filter associated with the ordered type (Z,≤) is the most natural
filter on the type Z. Equipping the type Z with this filter yields a filtered type,
which, by abuse of notation, we also write Z. Thus, the formula UZ x.Q(x) means
that Q(x) becomes true “as x tends towards infinity”.

By instantiating Definition 1 with the filtered type Z, we recover the classic
definition of domination between functions of Z to Z:

f �Z g ⇐⇒ ∃c. ∃n0. ∀n ≥ n0. |f(n)| ≤ c |g(n)|

We now turn to the definition of a filter on a product type A1 ×A2, where A1

and A2 are filtered types. Such a filter plays a key role in defining domination
between functions of several variables. The following product filter is the most
natural construction, although there are others:

Definition 5 (Product filter). Let A1 and A2 be filtered types. Then

λQ.∃Q1, Q2.

⎧
⎨

⎩

UA1 x1. Q1

∧ UA2 x2. Q2

∧ ∀x1, x2. Q1(x1) ∧ Q2(x2) ⇒ Q(x1, x2)

is a filter on the product type A1 × A2.

To understand this definition, it is useful to consider the special case where
A1 and A2 are both Z. Then, for i ∈ {1, 2}, the formula UAi

xi. Qi means
that the predicate Qi contains an infinite interval of the form [ai,∞). Thus,
the formula ∀x1, x2. Q1(x1) ∧ Q2(x2) ⇒ Q(x1, x2) requires the predicate Q to
contain the infinite rectangle [a1,∞) × [a2,∞). Thus, a predicate Q on Z

2 is
“ultimately true” w.r.t. to the product filter if and only if it is “true on some
infinite rectangle”. In Bourbaki’s terminology [6, Chap. 1, Sect. 6.7], the infinite
rectangles form a basis of the product filter.

We view the product filter as the default filter on the product type A1 × A2.
Whenever we refer to A1 × A2 in a setting where a filtered type is expected, the
product filter is intended.

We stress that there are several filters on Z, including the universal filter
and the order filter, and therefore several filters on Z

k. Therefore, it does not
make sense to use the O notation without specifying which filter one consid-
ers. Consider again the function g(n,m) in Fig. 3 (Sect. 2). One can prove that
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g(n,m) has complexity O(nm + n) with respect to the standard filter on Z
2.

With respect to this filter, this complexity bound is equivalent to O(mn), as the
functions λ(m,n).mn + n and λ(m,n).mn dominate each other. Unfortunately,
this does not allow deducing anything about the complexity of g(n, 0), since the
bound O(mn) holds only when n and m grow large. An alternate approach is to
prove that g(n,m) has complexity O(nm + n) with respect to a stronger filter,
namely the product of the standard filter on Z and the universal filter on Z.
With respect to that filter, the functions λ(m,n).mn + n and λ(m,n).mn are
not equivalent. This bound does allow instantiating m with 0 and deducing that
g(n, 0) has complexity O(n).

3.4 Properties of Domination

Many properties of the domination relation can be established with respect to an
arbitrary filtered type A. Here are two example lemmas; there are many more.
As before, f and g range over A → Z. The operators f + g, max(f, g) and f.g
denote pointwise sum, maximum, and product, respectively.

Lemma 6 (Sum and Max Are Alike). Assume f and g are ultimately non-
negative, that is, UA x. f(x) ≥ 0 and UA x. g(x) ≥ 0 hold. Then, we have
max(f, g) �A f + g and f + g �A max(f, g).

Lemma 7 (Multiplication). f1 �A g1 and f2 �A g2 imply f1.f2 �A g1.g2.

Lemma 7 corresponds to Howell’s Property 5 [19]. Whereas Howell states this
property on N

k, our lemma is polymorphic in the type A. As noted by Howell,
this lemma is useful when the cost of a loop body is independent of the loop
index. In the case where the cost of the i-th iteration may depend on the loop
index i, the following, more complex lemma is typically used instead:

Lemma 8 (Summation). Let f, g range over A → Z → Z. Let i0 ∈ Z.
Assume the following three properties:

1. UA a. ∀i ≥ i0. f(a)(i) ≥ 0.
2. UA a. ∀i ≥ i0. g(a)(i) ≥ 0.
3. for every a, the function λi.f(a)(i) is nondecreasing on the interval [i0,∞).

Then,
λ(a, i).f(a)(i) �A×Z λ(a, i).g(a)(i)

implies
λ(a, n).

∑n
i=i0

f(a)(i) �A×Z λ(a, n).
∑n

i=i0
g(a)(i).

Lemma 8 uses the product filter on A×Z in its hypothesis and conclusion. It
corresponds to Howell’s property 2 [19]. The variable i represents the loop index,
while the variable a collectively represents all other variables in scope, so the
type A is usually instantiated with a tuple type (an example appears in Sect. 6).

An important property is the fact that function composition is compatible,
in a certain sense, with domination. This allows transforming the parameters
under which an asymptotic analysis is carried out (examples appear in Sect. 6).
Due to space limitations, we refer the reader to the Coq library for details [16].
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3.5 Tactics

Our formalization of filters and domination forms a stand-alone Coq library [16].
In addition to many lemmas about these notions, the library proposes automated
tactics that can prove nonnegativeness, monotonicity, and domination goals.
These tactics currently support functions built out of variables, constants, sums
and maxima, products, powers, logarithms. Extending their coverage is ongoing
work. This library is not tied to our application to the complexity analysis of
programs. It could have other applications in mathematics.

4 Specifications with Asymptotic Complexity Claims

In this section, we first present our existing approach to verified time complexity
analysis. This approach, proposed by the second and third authors [11], does not
use the O notation: instead, it involves explicit cost functions. We then discuss
how to extend this approach with support for asymptotic complexity claims.
We find that, even once domination (Sect. 3) is well-understood, there remain
nontrivial questions as to the style in which program specifications should be
written. We propose one style which works well on small examples and which
we believe should scale well to larger ones.

4.1 CFML with Time Credits for Cost Analysis

CFML [9,10] is a system that supports the interactive verification of OCaml
programs, using higher-order Separation Logic, inside Coq. It is composed of a
trusted standalone tool and a Coq library. The CFML tool transforms a piece
of OCaml code into a characteristic formula, a Coq formula that describes the
semantics of the code. The characteristic formula is then exploited, inside Coq,
to state that the code satisfies a certain specification (a Separation Logic triple)
and to interactively prove this statement. The CFML library provides a set of
Coq tactics that implement the reasoning rules of Separation Logic.

In prior work [11], the second and third authors extend CFML with time
credits [2,22] and use it to simultaneously verify the functional correctness and
the (amortized) time complexity of OCaml code. To illustrate the style in which
they write specifications, consider a function that computes the length of a list:

let rec length l =

match l with

| [] -> 0

| _ :: l -> 1 + length l

About this function, one can prove the following statement:

∀(A : Type)(l : list A). { $(|l| + 1) } (length l) {λy. [ y = |l| ]}



544 A. Guéneau et al.

This is a Separation Logic triple {H} (t) {Q}. The postcondition λy. [ y = |l| ]
asserts that the call length l returns the length of the list l.3 The precondition
$(|l| + 1) asserts that this call requires |l| + 1 credits. This triple is proved in a
variant of Separation Logic where every function call and every loop iteration
consumes one credit. Thus, the above specification guarantees that the execution
of length l involves no more than |l| + 1 function calls or loop iterations. Our
previous paper [11, Definition 2] gives a precise definition of the meaning of
triples.

As argued in prior work [11, Sect. 2.7], bounding the number of function
calls and loop iterations is equivalent, up to a constant factor, to bounding the
number of reduction steps of the program. Assuming that the OCaml compiler
is complexity-preserving, this is equivalent, up to a constant factor, to bounding
the number of instructions executed by the compiled code. Finally, assuming
that the machine executes one instruction in bounded time, this is equivalent,
up to a constant factor, to bounding the execution time of the compiled code.
Thus, the above specification guarantees that length runs in linear time.

Instead of understanding Separation Logic with Time Credits as a variant
of Separation Logic, one can equivalently view it as standard Separation Logic,
applied to an instrumented program, where a pay() instruction has been inserted
at the beginning of every function body and loop body. The proof of the pro-
gram is carried out under the axiom {$1} (pay()) {λ .�}, which imposes the
consumption of one time credit at every pay() instruction. This instruction has
no runtime effect: it is just a way of marking where credits must be consumed.

For example, the OCaml function length is instrumented as follows:

let rec length l =

pay();

match l with [] -> 0 | _ :: l -> 1 + length l

Executing “length l” involves executing pay() exactly |l| + 1 times. For this
reason, a valid specification of this instrumented code in ordinary Separation
Logic must require at least |l| + 1 credits in its precondition.

4.2 A Modularity Challenge

The above specification of length guarantees that length runs in linear time,
but does not allow predicting how much real time is consumed by a call to
length. Thus, this specification is already rather abstract. Yet, it is still too
precise. Indeed, we believe that it would not be wise for a list library to publish
a specification of length whose precondition requires exactly |l| + 1 credits.
Indeed, there are implementations of length that do not meet this specification.
For example, the tail-recursive implementation found in the OCaml standard
library, which in practice is more efficient than the näıve implementation shown

3 The square brackets denote a pure Separation Logic assertion. |l| denotes the length
of the Coq list l. CFML transparently reflects OCaml integers as Coq relative integers
and OCaml lists as Coq lists.
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above, involves exactly |l|+2 function calls, therefore requires |l|+2 credits. By
advertising a specification where |l| + 1 credits suffice, one makes too strong a
guarantee, and rules out the more efficient implementation.

After initially publishing a specification that requires $(|l| + 1), one could of
course still switch to the more efficient implementation and update the published
specification so as to require $(|l| + 2) instead of $(|l| + 1). However, that would
in turn require updating the specification and proof of every (direct and indirect)
client of the list library, which is intolerable.

To leave some slack, one should publish a more abstract specification. For
example, one could advertise that the cost of length l is an affine function of
the length of the list l, that is, the cost is a · |l| + b, for some constants a and b:

∃(a, b : Z). ∀(A : Type)(l : list A). {$(a · |l| + b)} (length l) {λy. [ y = |l| ]}

This is a better specification, in the sense that it is more modular. The näıve
implementation of length shown earlier and the efficient implementation in
OCaml’s standard library both satisfy this specification, so one is free to choose
one or the other, without any impact on the clients of the list library. In fact,
any reasonable implementation of length should have linear time complexity
and therefore should satisfy this specification.

That said, the style in which the above specification is written is arguably
slightly too low-level. Instead of directly expressing the idea that the cost of
length l is O(|l|), we have written this cost under the form a · |l| + b. It is
preferable to state at a more abstract level that cost is dominated by λn.n: such
a style is more readable and scales to situations where multiple parameters and
nonstandard filters are involved. Thus, we propose the following statement:

∃cost : Z → Z.

{
cost �Z λn. n
∀(A : Type)(l : list A). {$cost(|l|)} (length l) {λy. [ y = |l| ]}

Thereafter, we refer to the function cost as the concrete cost of length, as
opposed to the asymptotic bound, represented here by the function λn. n. This
specification asserts that there exists a concrete cost function cost , which is
dominated by λn. n, such that cost(|l|) credits suffice to justify the execution
of length l. Thus, cost(|l|) is an upper bound on the actual number of pay()
instructions that are executed at runtime.

The above specification informally means that length l has time complexity
O(n) where the parameter n represents |l|, that is, the length of the list l. The
fact that n represents |l| is expressed by applying cost to |l| in the precondition.
The fact that this analysis is valid when n grows large enough is expressed by
using the standard filter on Z in the assertion cost �Z λn. n.

In general, it is up to the user to choose what the parameters of the cost
analysis should be, what these parameters represent, and which filter on these
parameters should be used. The example of the Bellman-Ford algorithm (Sect. 6)
illustrates this.
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Record specO (A : filterType) (le : A → A → Prop)
(bound : A → Z) (P : (A → Z) → Prop)

:= { cost : A → Z;
cost_spec : P cost;
cost_dominated : dominated A cost bound;
cost_nonneg : ∀x, 0 ≤ cost x;
cost_monotonic : monotonic le Z.le cost; }.

Fig. 5. Definition of specO.

4.3 A Record for Specifications

The specifications presented in the previous section share a common structure.
We define a record type that captures this common structure, so as to make
specifications more concise and more recognizable, and so as to help users adhere
to this specification pattern.

This type, specO, is defined in Fig. 5. The first three fields in this record type
correspond to what has been explained so far. The first field asserts the existence
of a function cost of A to Z, where A is a user-specified filtered type. The second
field asserts that a certain property P cost is satisfied; it is typically a Separation
Logic triple whose precondition refers to cost. The third field asserts that cost
is dominated by the user-specified function bound. The need for the last two
fields is explained further on (Sects. 4.4 and 4.5).

Using this definition, our proposed specification of length (Sect. 4.2) is stated
in concrete Coq syntax as follows:

Theorem length_spec:
specO Z_filterType Z.le (fun n ⇒ n) (fun cost ⇒

∀A (l:list A), triple (length l)
PRE ($ (cost |l|))
POST (fun y ⇒ [ y = |l| ]))

The key elements of this specification are Z_filterType, which is Z, equipped
with its standard filter; the asymptotic bound fun n ⇒ n, which means that
the time complexity of length is O(n); and the Separation Logic triple, which
describes the behavior of length, and refers to the concrete cost function cost.

One key technical point is that specO is a strong existential, whose witness
can be referred to via to the first projection, cost. For instance, the concrete
cost function associated with length can be referred to as cost length_spec.
Thus, at a call site of the form length xs, the number of required credits is
cost length_spec |xs|.

In the next subsections, we explain why, in the definition of specO, we require
the concrete cost function to be nonnegative and monotonic. These are design
decisions; although these properties may not be strictly necessary, we find that
enforcing them greatly simplifies things in practice.
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4.4 Why Cost Functions Must Be Nonnegative

There are several common occasions where one is faced with the obligation of
proving that a cost expression is nonnegative. These proof obligations arise from
several sources.

One source is the Separation Logic axiom for splitting credits, whose state-
ment is $(m + n) = $m � $n, subject to the side conditions m ≥ 0 and n ≥ 0.
Without these side conditions, out of $0, one would be able to create $1 � $(−1).
Because our logic is affine, one could then discard $(−1), keeping just $1. In
short, an unrestricted splitting axiom would allow creating credits out of thin
air.4 Another source of proof obligations is the Summation lemma (Lemma8),
which requires the functions at hand to be (ultimately) nonnegative.

Now, suppose one is faced with the obligation of proving that the expression
cost length_spec |xs| is nonnegative. Because length_spec is an existential
package (a specO record), this is impossible, unless this information has been
recorded up front within the record. This is the reason why the field cost_nonneg
in Fig. 5 is needed.

For simplicity, we require cost functions to be nonnegative everywhere, as
opposed to within a certain domain. This requirement is stronger than neces-
sary, but simplifies things, and can easily be met in practice by wrapping cost
functions within “max(0,−)”. Our Coq tactics automatically insert “max(0,−)”
wrappers where necessary, making this issue mostly transparent to the user. In
the following, for brevity, we write c+ for max(0, c), where c ∈ Z.

4.5 Why Cost Functions Must Be Monotonic

One key reason why cost functions should be monotonic has to do with the
“avoidance problem”. When the cost of a code fragment depends on a local
variable x, can this cost be reformulated (and possibly approximated) in such
a way that the dependency is removed? Indeed, a cost expression that makes
sense outside the scope of x is ultimately required.

The problematic cost expression is typically of the form E[|x|], where |x|
represents some notion of the “size” of the data structure denoted by x, and E is
an arithmetic context, that is, an arithmetic expression with a hole. Furthermore,
an upper bound on |x| is typically available. This upper bound can be exploited
if the context E is monotonic, i.e., if x ≤ y implies E[x] ≤ E[y]. Because the
hole in E can appear as an actual argument to an abstract cost function, we
must record the fact that this cost function is monotonic.

To illustrate the problem, consider the following OCaml function, which
counts the positive elements in a list of integers. It does so, in linear time,
by first building a sublist of the positive elements, then computing the length of
this sublist.
4 Another approach would be to define $n only for n ∈ N, in which case an unrestricted

axiom would be sound. However, as we use Z everywhere, that would be inconvenient.
A more promising idea is to view $n as linear (as opposed to affine) when n is
negative. Then, $(−1) cannot be discarded, so unrestricted splitting is sound.
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let count_pos l =

let l’ = List.filter (fun x -> x > 0) l in

List.length l’

How would one go about proving that this code actually has linear time complex-
ity? On paper, one would informally argue that the cost of the sequence pay();
filter; length is O(1) + O(|l|) + O(|l′|), then exploit the inequality |l′| ≤ |l|,
which follows from the semantics of filter, and deduce that the cost is O(|l|).

In a formal setting, though, the problem is not so simple. Assume that we
have two specification lemmas length_spec and filter_spec for List.length
and List.filter, which describe the behavior of these OCaml functions and
guarantee that they have linear-time complexity. For brevity, let us write just
g and f for the functions cost length_spec and cost filter_spec. Also, at
the mathematical level, let us write l↓ for the sublist of the positive elements
of the list l. It is easy enough to check that the cost of the expression “pay();
let l’ = ... in List.length l’” is 1 + f(|l|) + g(|l′|). The problem, now, is
to find an upper bound for this cost that does not depend on l′, a local variable,
and to verify that this upper bound, expressed as a function of |l|, is dominated
by λn. n. Indeed, this is required in order to establish a specO statement about
count_pos.

What might this upper bound be? That is, which functions cost of Z to Z

are such that (A) 1+f(|l|)+g(|l′|) ≤ cost(|l|) can be proved (in the scope of the
local variable l′) and (B) cost �Z λn. n holds? Three potential answers come to
mind:

1. Within the scope of l′, the equality l′ = l↓ is available, as it follows from
the postcondition of filter. Thus, within this scope, 1 + f(|l|) + g(|l′|) is
provably equal to let l′ = l↓ in 1 + f(|l|) + g(|l′|), that is, 1 + f(|l|) + g(|l↓|).
This remark may seem promising, as this cost expression does not depend
on l′. Unfortunately, this approach falls short, because this cost expression
cannot be expressed as the application of a closed function cost to |l|. Indeed,
the length of the filtered list, |l↓|, is not a function of the length of l. In short,
substituting local variables away in a cost expression does not always lead to
a usable cost function.

2. Within the scope of l′, the inequality |l′| ≤ |l| is available, as it follows from
l′ = l↓. Thus, inequality (A) can be proved, provided we take:

cost = λn. max
0≤n′≤n

1 + f(n) + g(n′)

Furthermore, for this definition of cost , the domination assertion (B) holds
as well. The proof relies on the fact the functions g and ĝ, where ĝ is
λn. max0≤n′≤n g(n′) [19], dominate each other. Although this approach
seems viable, and does not require the function g to be monotonic, it is a
bit more complicated than we would like.
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3. Let us now assume that the function g is monotonic, that is, nondecreasing.
As before, within the scope of l′, the inequality |l′| ≤ |l| is available. Thus, the
cost expression 1 + f(|l|) + g(|l′|) is bounded by 1 + f(|l|) + g(|l|). Therefore,
inequalities (A) and (B) are satisfied, provided we take:

cost = λn. 1 + f(n) + g(n)

We believe that approach 3 is the simplest and most intuitive, because it
allows us to easily eliminate l′, without giving rise to a complicated cost function,
and without the need for a running maximum.

However, this approach requires that the cost function g, which is short for
cost length_spec, be monotonic. This explains why we build a monotonicity
condition in the definition of specO (Fig. 5, last line). Another motivation for
doing so is the fact that some lemmas (such as Lemma 8, which allows reasoning
about the asymptotic cost of an inner loop) also have monotonicity hypotheses.

The reader may be worried that, in practice, there might exist concrete cost
functions that are not monotonic. This may be the case, in particular, of a cost
function f that is obtained as the solution of a recurrence equation. Fortunately,
in the common case of functions of Z to Z, the “running maximum” function f̂
can always be used in place of f : indeed, it is monotonic and has the same
asymptotic behavior as f . Thus, we see that both approaches 2 and 3 above
involve running maxima in some places, but their use seems less frequent with
approach 3.

5 Interactive Proofs of Asymptotic Complexity Claims

To prove a specification lemma, such as length_spec (Sect. 4.3) or loop_spec
(Sect. 4.4), one must construct a specO record. By definition of specO (Fig. 5),
this means that one must exhibit a concrete cost function cost and prove a
number of properties of this function, including the fact that, when supplied
with $(cost . . .), the code runs correctly (cost_spec) and the fact that cost is
dominated by the desired asymptotic bound (cost_dominated).

Thus, the very first step in a näıve proof attempt would be to guess an
appropriate cost function for the code at hand. However, such an approach would
be painful, error-prone, and brittle. It seems much preferable, if possible, to enlist
the machine’s help in synthesizing a cost function at the same time as we step
through the code—which we have to do anyway, as we must build a Separation
Logic proof of the correctness of this code.

To illustrate the problem, consider the recursive function p, whose integer
argument n is expected to satisfy n ≥ 0. For the sake of this example, p calls an
auxiliary function g, which we assume runs in constant time.

let rec p n =

if n <= 1 then () else begin g(); p(n-1) end

Suppose we wish to establish that p runs in linear time. As argued at the
beginning of the paper (Sect. 2, Fig. 2), it does not make sense to attempt a proof
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by induction on n that “p n runs in time O(n)”. Instead, in a formal framework,
we must exhibit a concrete cost function cost such that cost(n) credits justify
the call p n and cost grows linearly, that is, cost �Z λn. n.

Let us assume that a specification lemma g_spec for the function g has
been established already, so the number of credits required by a call to g is
cost g_spec (). In the following, we write G as a shorthand for this constant.

Because this example is very simple, it is reasonably easy to manually come
up with an appropriate cost function for p. One valid guess is λn. 1+Σn

i=2(1+G).
Another valid guess, obtained via a simplification step, is λn. 1+(1+G)(n−1)+.
Another witness, obtained via an approximation step, is λn. 1 + (1 + G)n+.
As the reader can see, there is in fact a spectrum of valid witnesses, ranging
from verbose, low-level to compact, high-level mathematical expressions. Also,
it should be evident that, as the code grows larger, it can become very difficult
to guess a valid concrete cost function.

This gives rise to two questions. Among the valid cost functions, which one
is preferable? Which ones can be systematically constructed, without guessing?

Among the valid cost functions, there is a tradeoff. At one extreme, a low-level
cost function has exactly the same syntactic structure as the code, so it is easy to
prove that it is an upper bound for the actual cost of the code, but a lot of work
may be involved in proving that it is dominated by the desired asymptotic bound.
At the other extreme, a high-level cost function can be essentially identical to the
desired asymptotic bound, up to explicit multiplicative and additive constants,
so the desired domination assertion is trivial, but a lot of accounting work may
be involved in proving that this function represents enough credits to execute
the code. Thus, by choosing a cost function, we shift some of the burden of the
proof from one subgoal to another. From this point of view, no cost function
seems inherently preferable to another.

From the point of view of systematic construction, however, the answer is
more clear-cut. It seems fairly clear that it is possible to systematically build a
cost function whose syntactic structure is the same as the syntactic structure of
the code. This idea goes at least as far back as Wegbreit’s work [26]. Coming up
with a compact, high-level expression of the cost, on the other hand, seems to
require human insight.

To provide as much machine assistance as possible, our system mechanically
synthesizes a low-level cost expression for a piece of OCaml code. This is done
transparently, at the same time as the user constructs a proof of the code in
Separation Logic. Furthermore, we take advantage of the fact that we are using
an interactive proof assistant: we allow the user to guide the synthesis process.
For instance, the user controls how a local variable should be eliminated, how the
cost of a conditional construct should be approximated (i.e., by a conditional or
by a maximum), and how recurrence equations should be solved. In the following,
we present this semi-interactive synthesis process. We first consider straight-line
(nonrecursive) code (Sect. 5.1), then recursive functions (Sect. 5.2).
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5.1 Synthesizing Cost Expressions for Straight-Line Code

The CFML library provides the user with interactive tactics that implement the
reasoning rules of Separation Logic. We set things up in such a way that, as
these rules are applied, a cost expression is automatically synthesized.

WeakenCost
{$ c+

2 � H} (e) {Q} c+
2 ≤ c1

{$ c1 � H} (e) {Q}

Seq
{$ c+

1 � H} (e1) {Q′} {$ c+
2 � Q′()} (e2) {Q}

{$ (c+
1 + c+

2 )+ � H} (e1; e2) {Q}

Let
{$ c+

1 � H} (e1) {Q′} ∀x. {$ c+
2 � Q′(x)} (e2) {Q}

{$ (c+
1 + c+

2 )+ � H} (let x = e1 in e2) {Q}

Val
H � Q(v)

{$ 0+ � H} (v) {Q}

If
b = true ⇒ {$ c+

1 � H} (e1) {Q}
b = false ⇒ {$ c+

2 � H} (e2) {Q}
{$ (if b then c1 else c2)+ � H} (if b then e1 else e2) {Q}

Pay
H � Q()

{$ 1+ � H} (pay()) {Q}

For
∀i. a ≤ i < b ⇒ {$ c(i)+ � I(i)} (e) {I(i + 1)} H � I(a) � Q

{$ (Σa≤i<b c(i)+)+ � H} (for i = a to b − 1 do e done) {I(b) � Q}

Fig. 6. The reasoning rules of Separation Logic, specialized for cost synthesis.

To this end, we use specialized variants of the reasoning rules, whose premises
and conclusions take the form {$n � H} (e) {Q}. Furthermore, to simplify the
nonnegativeness side conditions that must be proved while reasoning, we make all
cost expressions obviously nonnegative by wrapping them in max(0,−). Recall
that c+ stands for max(0, c), where c ∈ Z. Our reasoning rules work with triples
of the form {$ c+ � H} (e) {Q}. They are shown in Fig. 6.

Because we wish to synthesize a cost expression, our Coq tactics maintain
the following invariant: whenever the goal is {$ c+ � H} (e) {Q}, the cost c is
uninstantiated, that is, it is represented in Coq by a metavariable, a placeholder.
This metavariable is instantiated when the goal is proved by applying one of
the reasoning rules. Such an application produces new subgoals, whose precon-
ditions contain new metavariables. As this process is repeated, a cost expression
is incrementally constructed.

The rule WeakenCost is a special case of the consequence rule of Separation
Logic. It is typically used once at the root of the proof: even though the initial
goal {$ c1 � H} (e) {Q} may not satisfy our invariant, because it lacks a −+

wrapper and because c1 is not necessarily a metavariable, WeakenCost gives
rise to a subgoal {$ c+

2 � H} (e) {Q} that satisfies it. Indeed, when this rule is
applied, a fresh metavariable c2 is generated. WeakenCost can also be explicitly
applied by the user when desired. It is typically used just before leaving the scope
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of a local variable x to approximate a cost expression c+
2 that depends on x with

an expression c1 that does not refer to x.
The Seq rule is a special case of the Let rule. It states that the cost of a

sequence is the sum of the costs of its subexpressions. When this rule is applied
to a goal of the form {$ c+ � H} (e) {Q}, where c is a metavariable, two new
metavariables c1 and c2 are introduced, and c is instantiated with c+

1 + c+
2 .

The Let rule is similar to Seq, but involves an additional subtlety: the cost c2

must not refer to the local variable x. Naturally, Coq enforces this condition: any
attempt to instantiate the metavariable c2 with an expression where x occurs
fails. In such a situation, it is up to the user to use WeakenCost so as to avoid
this dependency. The example of count_pos (Sect. 4.5) illustrates this issue.

The Val rule handles values, which in our model have zero cost. The symbol
� denotes entailment between Separation Logic assertions.

The If rule states that the cost of an OCaml conditional expression is a
mathematical conditional expression. Although this may seem obvious, one sub-
tlety lurks here. Using WeakenCost, the cost expression if b then c1 else c2 can
be approximated by max(c1, c2). Such an approximation can be beneficial, as
it leads to a simpler cost expression, or harmful, as it causes a loss of informa-
tion. In particular, when carried out in the body of a recursive function, it can
lead to an unsatisfiable recurrence equation. We let the user decide whether this
approximation should be performed.

The Pay rule handles the pay() instruction, which is inserted by the CFML
tool at the beginning of every function and loop body (Sect. 4.1). This instruction
costs one credit.

The For rule states that the cost of a for loop is the sum, over all values of
the index i, of the cost of the i-th iteration of the body. In practice, it is typically
used in conjunction with WeakenCost, which allows the user to simplify and
approximate the iterated sum Σa≤i<b c(i)+. In particular, if the synthesized
cost c(i) happens to not depend on i, or can be approximated so as to not
depend on i, then this iterated sum can be expressed under the form c(b − a)+.
A variant of the For rule, not shown, covers this common case. There is in
principle no need for a primitive treatment of loops, as loops can be encoded in
terms of higher-order recursive functions, and our program logic can express the
specifications of these combinators. Nevertheless, in practice, primitive support
for loops is convenient.

This concludes our exposition of the reasoning rules of Fig. 6. Coming back
to the example of the OCaml function p (Sect. 5), under the assumption that the
cost of the recursive call p(n-1) is f(n−1), we are able, by repeated application of
the reasoning rules, to automatically find that the cost of the OCaml expression:

if n <= 1 then () else begin g(); p(n-1) end

is: 1+ if n ≤ 1 then 0 else (G+ f(n− 1)). The initial 1 accounts for the implicit
pay(). This may seem obvious, and it is. The point is that this cost expression
is automatically constructed: its synthesis adds no overhead to an interactive
proof of functional correctness of the function p.
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5.2 Synthesizing and Solving Recurrence Equations

There now remains to explain how to deal with recursive functions. Suppose
S(f) is the Separation Logic triple that we wish to establish, where f stands for
an as-yet-unknown cost function. Following common informal practice, we would
like to do this in two steps. First, from the code, derive a “recurrence equation”
E(f), which in fact is usually not an equation, but a constraint (or a conjunction
of constraints) bearing on f . Second, prove that this recurrence equation admits
a solution that is dominated by the desired asymptotic cost function g. This
approach can be formally viewed as an application of the following tautology:

∀E. (∀f.E(f) → S(f)) → (∃f.E(f) ∧ f � g) → (∃f.S(f) ∧ f � g)

The conclusion S(f)∧ f � g states that the code is correct and has asymptotic
cost g. In Coq, applying this tautology gives rise to a new metavariable E, as
the recurrence equation is initially unknown, and two subgoals.

During the proof of the first subgoal, ∀f.E(f) → S(f), the cost function f
is abstract (universally quantified), but we are allowed to assume E(f), where
E is initially a metavariable. So, should the need arise to prove that f satisfies
a certain property, this can be done just by instantiating E. In the example of
the OCaml function p (Sect. 5), we prove S(f) by induction over n, under the
hypothesis n ≥ 0. Thus, we assume that the cost of the recursive call p(n-1)
is f(n − 1), and must prove that the cost of p n is f(n). We synthesize the
cost of p n as explained earlier (Sect. 5.1) and find that this cost is 1 + if n ≤
1 then 0 else (G + f(n − 1)). We apply WeakenCost and find that our proof is
complete, provided we are able to prove the following inequation:

1 + if n ≤ 1 then 0 else (G + f(n − 1)) ≤ f(n)

We achieve that simply by instantiating E as follows:

E := λf. ∀n. n ≥ 0 → 1 + if n ≤ 1 then 0 else (G + f(n − 1)) ≤ f(n)

This is our “recurrence equation”—in fact, a universally quantified, conditional
inequation. We are done with the first subgoal.

We then turn to the second subgoal, ∃f.E(f)∧f � g. The metavariable E is
now instantiated. The goal is to solve the recurrence and analyze the asymptotic
growth of the chosen solution. There are at least three approaches to solving
such a recurrence.

First, one can guess a closed form that satisfies the recurrence. For example,
the function f := λn. 1+ (1+G)n+ satisfies E(f) above. But, as argued earlier,
guessing is in general difficult and tedious.

Second, one can invoke Cormen et al.’s Master Theorem [12] or the more
general Akra-Bazzi theorem [1,21]. Unfortunately, at present, these theorems
are not available in Coq, although an Isabelle/HOL formalization exists [13].

The last approach is Cormen et al.’s substitution method [12, Sect. 4]. The
idea is to guess a parameterized shape for the solution; substitute this shape into
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the goal; gather a set of constraints that the parameters must satisfy for the goal
to hold; finally, show that these constraints are indeed satisfiable. In the above
example, as we expect the code to have linear time complexity, we propose that
the solution f should have the shape λn.(an++b), where a and b are parameters,
about which we wish to gradually accumulate a set of constraints. From a formal
point of view, this amounts to applying the following tautology:

∀P. ∀C. (∀ab. C(a, b) → P (λn.(an+ + b))) → (∃ab. C(a, b)) → ∃f.P (f)

This application again yields two subgoals. During the proof of the first subgoal,
C is a metavariable and can be instantiated as desired (possibly in several steps),
allowing us to gather a conjunction of constraints bearing on a and b. During the
proof of the second subgoal, C is fixed and we must check that it is satisfiable.
In our example, the first subgoal is:

E(λn.(an+ + b)) ∧ λn.(an+ + b) �Z λn.n

The second conjunct is trivial. The first conjunct simplifies to:

∀n. n ≥ 0 → 1 + if n ≤ 1 then 0 else (G + a(n − 1)+ + b) ≤ an+ + b

By distinguishing the cases n = 0, n = 1, and n > 1, we find that this property
holds provided we have 1 ≤ b and 1 ≤ a + b and 1 + G ≤ a. Thus, we prove this
subgoal by instantiating C with λ(a, b).(1 ≤ b ∧ 1 ≤ a + b ∧ 1 + G ≤ a).

There remains to check the second subgoal, that is, ∃ab.C(a, b). This is easy;
we pick, for instance, a := 1 + G and b := 1. This concludes our use of Cormen
et al.’s substitution method.

In summary, by exploiting Coq’s metavariables, we are able to set up our
proofs in a style that closely follows the traditional paper style. During a first
phase, as we analyze the code, we synthesize a cost function and (if the code
is recursive) a recurrence equation. During a second phase, we guess the shape
of a solution, and, as we analyze the recurrence equation, we synthesize a con-
straint on the parameters of the shape. During a last phase, we check that this
constraint is satisfiable. In practice, instead of explicitly building and applying
tautologies as above, we use the first author’s procrastination library [16],
which provides facilities for introducing new parameters, gradually gathering
constraints on these parameters, and eventually checking that these constraints
are satisfiable.

6 Examples

Binary Search. We prove that binary search has time complexity O(log n),
where n = j − i denotes the width of the search interval [i, j). The code is as in
Fig. 1, except that the flaw is fixed by replacing i+1 with k+1 on the last line.
As outlined earlier (Sect. 5), we synthesize the following recurrence equation on
the cost function f :

f(0) + 3 ≤ f(1) ∧ ∀n ≥ 0. 1 ≤ f(n) ∧ ∀n ≥ 2. f(n/2) + 3 ≤ f(n)
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We apply the substitution method and search for a solution of the form
λn. if n ≤ 0 then 1 else a log n+b, which is dominated by λn. log n. Substituting
this shape into the above constraints, we find that they boil down to (4 ≤ b)∧(0 ≤
a ∧ 1 ≤ b) ∧ (3 ≤ a). Finally, we guess a solution, namely a := 3 and b := 4.

Dependent Nested Loops. Many algorithms involve dependent nested for
loops, that is, nested loops, where the bounds of the inner loop depend on the
outer loop index, as in the following simplified example:

for i = 1 to n do

for j = 1 to i do () done

done

For this code, the cost function λn.
∑n

i=1(1 +
∑i

j=1 1) is synthesized. There
remains to prove that it is dominated by λn.n2. We could recognize and prove
that this function is equal to λn.n(n+3)

2 , which clearly is dominated by λn.n2.
This works because this example is trivial, but, in general, computing explicit
closed forms for summations is challenging, if at all feasible.

A higher-level approach is to exploit the fact that, if f is monotonic, then∑n
i=1 f(i) is less than n.f(n). Applying this lemma twice, we find that the above

cost function is less than λn.
∑n

i=1(1+ i) which is less than λn.n(1+n) which is
dominated by λn.n2. This simple-minded approach, which does not require the
Summation lemma (Lemma 8), is often applicable. The next example illustrates
a situation where the Summation lemma is required.

A Loop Whose Body Has Exponential Cost. In the following simple exam-
ple, the loop body is just a function call:

for i = 0 to n-1 do b(i) done

Thus, the cost of the loop body is not known exactly. Instead, let us assume
that a specification for the auxiliary function b has been proved and that its cost
is O(2i), that is, cost b �Z λi. 2i holds. We then wish to prove that the cost
of the whole loop is also O(2n).

For this loop, the cost function λn.
∑n

i=0(1 + cost b (i)) is automatically
synthesized. We have an asymptotic bound for the cost of the loop body, namely:
λi. 1 + cost b (i) �Z λi. 2i. The side conditions of the Summation lemma
(Lemma 8) are met: in particular, the function λi. 1 + cost b (i) is monotonic.
The lemma yields λn.

∑n
i=0(1 + cost b (i)) �Z λn.

∑n
i=0 2i. Finally, we have

λn.
∑n

i=0 2i = λn. 2n+1 − 1 �Z λn. 2n.

The Bellman-Ford Algorithm. We verify the asymptotic complexity of an
implementation of Bellman-Ford algorithm, which computes shortest paths in a
weighted graph with n vertices and m edges. The algorithm involves an outer
loop that is repeated n−1 times and an inner loop that iterates over all m edges.
The specification asserts that the asymptotic complexity is O(nm):

∃cost : Z
2 → Z.

{
cost �Z2 λ(m,n). nm
{$cost(#edges(g),#vertices(g))} (bellmanford g) {. . .}
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By exploiting the fact that a graph without duplicate edges must satisfy
m ≤ n2, we prove that the complexity of the algorithm, viewed as a function of
n, is O(n3).

∃cost : Z → Z.

{
cost �Z λn. n3

{$cost(#vertices(g))} (bellmanford g) {. . .}
To prove that the former specification implies the latter, one instantiates m
with n2, that is, one exploits a composition lemma (Sect. 3.4). In practice, we
publish both specifications and let clients use whichever one is more convenient.

Union-Find. Charguéraud and Pottier [11] use Separation Logic with Time
Credits to verify the correctness and time complexity of a Union-Find imple-
mentation. For instance, they prove that the (amortized) concrete cost of find
is 2α(n) + 4, where n is the number of elements. With a few lines of proof,
we derive a specification where the cost of find is expressed under the form
O(α(n)):

specO Z_filterType Z.le (fun n ⇒ alpha n) (fun cost ⇒
∀D R V x, x \in D → triple (UnionFind_ml.find x)
PRE (UF D R V � $(cost (card D)))
POST (fun y ⇒ UF D R V � [ R x = y ])).

Union-Find is a mutable data structure, whose state is described by the abstract
predicate UF D R V. In particular, the parameter D represents the domain of the
data structure, that is, the set of all elements created so far. Thus, its cardinal,
card D, corresponds to n. This case study illustrates a situation where the cost
of an operation depends on the current state of a mutable data structure.

7 Related Work

Our work builds on top of Separation Logic [23] with Time Credits [2], which
has been first implemented in a verification tool and exploited by the second
and third authors [11]. We refer the reader to their paper for a survey of the
related work in the general area of formal reasoning about program complexity,
including approaches based on deductive program verification and approaches
based on automatic complexity analysis. In this section, we restrict our attention
to informal and formal treatments of the O notation.

The O notation and its siblings are documented in several textbooks [7,15,20].
Out of these, only Howell [19,20] draws attention to the subtleties of the multi-
variate case. He shows that one cannot take for granted that the properties of the
O notation, which in the univariate case are well-known, remain valid in the mul-
tivariate case. He states several properties which, at first sight, seem natural and
desirable, then proceeds to show that they are inconsistent, so no definition of the
O notation can satisfy them all. He then proposes a candidate notion of domina-
tion between functions whose domain is N

k. His notation, f ∈ Ô(g), is defined
as the conjunction of f ∈ O(g) and f̂ ∈ O(ĝ), where the function f̂ is a “running
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maximum” of the function f , and is by construction monotonic. He shows that this
notion satisfies all the desired properties, provided some of them are restricted by
additional side conditions, such as monotonicity requirements.

In this work, we go slightly further than Howell, in that we consider functions
whose domain is an arbitrary filtered type A, rather than necessarily N

k. We give
a standard definition of O and verify all of Howell’s properties, again restricted
with certain side conditions. We find that we do not need Ô, which is fortunate, as
it seems difficult to define f̂ in the general case where f is a function of domain A.
The monotonicity requirements that we impose are not exactly the same as
Howell’s, but we believe that the details of these administrative conditions do
not matter much, as all of the functions that we manipulate in practice are
everywhere nonnegative and monotonic.

Avigad and Donnelly [3] formalize the O notation in Isabelle/HOL. They
consider functions of type A → B, where A is arbitrary and B is an ordered
ring. Their definition of “f = O(g)” requires |f(x)| ≤ c|g(x)| for every x, as
opposed to “when x is large enough”. Thus, they get away without equipping
the type A with a filter. The price to pay is an overly restrictive notion of
domination, except in the case where A is N, where both ∀x and Ux yield the
same notion of domination—this is Brassard and Bratley’s “threshold rule” [7].
Avigad and Donnelly suggest defining “f = O(g) eventually” as an abbreviation
for ∃f ′, (f ′ = O(g) ∧ Ux.f(x) = f ′(x)). In our eyes, this is less elegant than
parameterizing O with a filter in the first place.

Eberl [13] formalizes the Akra-Bazzi method [1,21], a generalization of the
well-known Master Theorem [12], in Isabelle/HOL. He creates a library of Lan-
dau symbols specifically for this purpose. Although his paper does not mention
filters, his library in fact relies on filters, whose definition appears in Isabelle’s
Complex library. Eberl’s definition of the O symbol is identical to ours. That
said, because he is concerned with functions of type N → R or R → R, he does
not define product filters, and does not prove any lemmas about domination in
the multivariate case. Eberl sets up a decision procedure for domination goals,
like x ∈ O(x3), as well as a procedure that can simplify, say, O(x3+x2) to O(x3).

TiML [25] is a functional programming language where types carry time
complexity annotations. Its type-checker generates proof obligations that are
discharged by an SMT solver. The core type system, whose metatheory is formal-
ized in Coq, employs concrete cost functions. The TiML implementation allows
associating a O specification with each toplevel function. An unverified compo-
nent recognizes certain classes of recurrence equations and automatically applies
the Master Theorem. For instance, mergesort is recognized to be O(mn log n),
where n is the input size and m is the cost of a comparison. The meaning of the
O notation in the multivariate case is not spelled out; in particular, which filter
is meant is not specified.

Boldo et al. [4] use Coq to verify the correctness of a C program which
implements a numerical scheme for the resolution of the one-dimensional acoustic
wave equation. They define an ad hoc notion of “uniform O” for functions of
type R

2 → R, which we believe can in fact be viewed as an instance of our
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generic definition of domination, at an appropriate product filter. Subsequent
work on the Coquelicot library for real analysis [5] includes general definitions of
filters, limits, little-o and asymptotic equivalence. A few definitions and lemmas
in Coquelicot are identical to ours, but the focus in Coquelicot is on various
filters on R, whereas we are more interested in filters on Z

k.
The tools RAML [17] and Pastis [8] perform fully automated amortized time

complexity analysis of OCaml programs. They can be understood in terms of
Separation Logic with Time Credits, under the constraint that the number of
credits that exist at each program point must be expressed as a polynomial over
the variables in scope at this point. The a priori unknown coefficients of this
polynomial are determined by an LP solver. Pastis produces a proof certificate
that can be checked by Coq, so the trusted computing base of this approach is
about the same as ours. RAML and Pastis offer much stronger automation than
our approach, but have weaker expressive power. It would be very interesting to
offer access to a Pastis-like automated system within our interactive system.
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Abstract. Multiplicative Weights (MW) is a simple yet powerful algo-
rithm for learning linear classifiers, for ensemble learning à la boosting,
for approximately solving linear and semidefinite systems, for comput-
ing approximate solutions to multicommodity flow problems, and for
online convex optimization, among other applications. Recent work in
algorithmic game theory, which applies a computational perspective to
the design and analysis of systems with mutually competitive actors, has
shown that no-regret algorithms like MW naturally drive games toward
approximate Coarse Correlated Equilibria (CCEs), and that for certain
games, approximate CCEs have bounded cost with respect to the opti-
mal states of such systems.

In this paper, we put such results to practice by building distributed
systems such as routers and load balancers with performance and conver-
gence guarantees mechanically verified in Coq. The main contributions
on which our results rest are (1) the first mechanically verified implemen-
tation of Multiplicative Weights (specifically, we show that our MW is
no regret) and (2) a language-based formulation, in the form of a DSL, of
the class of games satisfying Roughgarden smoothness, a broad charac-
terization of those games whose approximate CCEs have cost bounded
with respect to optimal. Composing (1) with (2) within Coq yields a
new strategy for building distributed systems with mechanically veri-
fied complexity guarantees on the time to convergence to near-optimal
system configurations.

Keywords: Multiplicative weights · Algorithmic game theory
Smooth games · Interactive theorem proving · Coq

1 Introduction

The Multiplicative Weights algorithm (MW, [1,25]) solves the general problem of
“combining expert advice”, in which an agent repeatedly chooses which action,
or “expert”, to play against an adaptive environment. The agent, after playing
an action, learns from the environment both the cost of that action and of other
actions it could have played in that round. The environment, in turn, may adapt
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in order to minimize environment costs. MW works by maintaining a weighted
distribution over the action space, in which each action initially has equal weight,
and by updating weights with a linear or exponential loss function to penalize
poorly performing actions.

MW is a no-regret algorithm: its expected cost approaches that of the best
fixed action the agent could have chosen in hindsight (i.e., external regret tends to
zero) as time t → ∞. Moreover, this simple algorithm performs remarkably well:
in number of rounds logarithmic in the size of the action space, MW’s expected
regret can be bounded by a small constant ε (MW has bounded external regret).
In [1], Arora, Hazan, and Kale showed that MW has wide-ranging connections
to numerous problems in computer science, including optimization, linear and
semidefinite programming, and machine learning (cf. boosting [14]).

Our work targets another important application of MW: the approximate
solution of multi-agent games, especially as such games relate to the construc-
tion of distributed systems. It is well known (cf. [30, Chapter 4]) that no-regret
algorithms such as MW converge, when played by multiple independent agents,
to a large equilibrium class known as Coarse Correlated Equilibria (CCEs). CCEs
may not be socially optimal, but for some games, such as Roughgarden’s smooth
games [35], the social cost of such equilibrium states can be bounded by a con-
stant factor of the optimal cost of the game (the game has bounded Price of
Anarchy, or POA). Therefore, to drive the social cost of a smooth game to near
optimal, it suffices simply to let each agent play a no-regret algorithm such
as MW.

Moreover, a number of distributed systems can be encoded as games, espe-
cially when the task being distributed is viewed as an optimization problem.
Consider, for example, distributed balancing of network flows over a set of web
servers, an application we return to in Sect. 3. Assuming the set of flows is fixed,
and that the cost of (or latency incurred by) assigning a flow to a particular web
server increases as a function of the number of flows already assigned to that
server (the traffic), then the load balancing application is encodable as a game
in which each flow is a “player” attempting to optimize its cost (latency). An
optimal solution of this game minimizes the total latency across all flows. Since
the game is Roughgarden smooth (assuming affine cost functions), the social
cost of its CCEs as induced by letting each player independently run MW is
bounded with respect to that of an optimal solution.

1.1 Contributions

In this paper, we put such results to work by building the first verified implemen-
tation of the MW algorithm – which we use to drive all games to approximate
CCEs – and by defining a language-based characterization of a subclass of games
called Roughgarden smooth games that have robust Price of Anarchy guarantees
extending even to approximate CCEs. Combining our verified MW with smooth
games, we construct distributed systems for applications such as routing and
load balancing that have verified convergence and correctness guarantees.
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Specifically, our main contributions are:

– a new architecture, as embodied in the Cage system (https://github.com/
gstew5/cage), for the construction of distributed systems with verified com-
plexity guarantees, by composition of verified Multiplicative Weights (MW)
with robust Price of Anarchy bounds via Roughgarden smoothness;

– the first formally verified implementation of the MW algorithm;
– a language-based characterization of Roughgarden smooth games, in the

form of a mechanized DSL for the construction of such games together with
smoothness preservation theorems showing that each combinator in the lan-
guage preserves smoothness;

– the application of the resulting system to distributed routing and load bal-
ancing.

By verified, we mean our MW implementation has mechanically checked con-
vergence bounds and proof of correctness within an interactive theorem prover
(specifically, Ssreflect [16], an extension of the Coq [5] system). By convergence
and correctness, we mean that we prove both that MW produces the right answer
(functional correctness with respect to a high-level functional specification), but
also that it does so with external regret1 bounded by a function of the number
of iterations of the protocol (convergence). Convergence of MW in turn implies
convergence to an approximate CCE. By composing this second convergence
property with Roughgarden smoothness, we bound the social, or total, cost of
the resulting system state with respect to the optimal.

As we’ve mentioned, MW has broad application across a number of subdis-
ciplines of computer science, including linear programming, optimization, and
machine learning. Although our focus in this paper is the use of MW to imple-
ment no-regret dynamics, a general strategy for computing the CCEs of multi-
agent games, our implementation of MW (Sect. 5.3) could be used to build, e.g.,
a verified LP solver or verified implementation of boosting as well.

Limitations. The approach we outline above does not apply to all distributed
systems, nor even to all distributed systems encodable as games. In particular, in
order to prove POA guarantees in our approach, the game encoding a particular
distributed system must first be shown Roughgarden smooth, a condition which
does not always apply (e.g., to network formation games [35, Section 2]). More
positively, the Smooth Games DSL we present in Sects. 3 and 4 provides one
method by which to explore the combinatorial nature of Roughgarden smooth-
ness, as we demonstrate with some examples in Sect. 3.

Relationship to Prior Work. Some of the ideas we present in this paper pre-
viously appeared in summary form in a 3-page brief announcement at PODC
2017 [4]. The current paper significantly expands on the architecture of the Cage
system, our verified implementation of Multiplicative Weights, the definition of
the Smooth Games DSL, and the composition theorems of Sect. 6 proving that
the pieces fit together to imply system-wide convergence and quality bounds.
1 The expected (per-step) cost of the algorithm minus that of the best fixed action.

https://github.com/gstew5/cage
https://github.com/gstew5/cage
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1.2 Organization

The following section provides background on games, algorithmic game the-
ory, and smoothness. Section 3 presents an overview of the main components of
the Cage approach, via application to examples. Section 4 provides more detail
on the combinators of our Smooth Games DSL. Section 5 presents our verified
implementation of MW. Section 6 describes the composition theorems proving
that multi-agent MW converges to near-optimal ε-CCEs. Sections 7 and 8 present
related work and conclude.

2 Background

2.1 Games

Von Neumann, Morgenstern, and Nash [28,29] (in the US) and Bachelier, Borel,
and Zermelo [3,8,43] (in Europe) were the first to study the mathematical theory
of strategic interaction, modern game theory. Nash’s famous result [27] showed
that in all finite games, mixed-strategy equilibria (those in which players are
allowed to randomize) always exist. Since the 1950s, game theory has had huge
influence in numerous fields, especially economics.

In our context, a game is a tuple of a finite type A (the strategy space) and
a cost function Ci mapping tuples of strategies of type A1 × A2 × . . . × AN to
values of type R, the cost to player i of state (a1, . . . , ai, . . . , aN ). For readers
interested in formalization-related aspects, Listing 1 provides additional details.

Listing 1: Games in Ssreflect-Coq

In Ssreflect-Coq, an extension of the standard Coq system, a finite type
A : finType pairs the type A with an enumerator enum : list A such that
for all a : A, count a enum = 1 (every element is included exactly once). To
define games, we use operational type classes [38], which facilitate parameter
sharing:

Class game (A : finType) (N : nat) (R : realFieldType)

‘(costClass : CostClass N R A) : Type � {}.

costClass declares the cost function Ci, and N is the number of players.

A state s : A1 × A2 × . . . × AN is a Pure Nash Equilibrium (PNE) when no
player i ∈ [1, N ] has incentive to change its strategy: ∀s′

i. Ci(s) ≤ Ci(s′
i, s−i).

Here s′
i is an arbitrary strategy. Strategy si is player i’s move in state s. By

s′
i, s−i we denote the state in which player i’s strategy is s′

i and all other players
play s. In other words, no player can decrease its cost by unilateral deviation.

Pure-strategy Nash equilibria do not always exist. Mixed Nash Equilibria
(MNE), which do exist in all finite games, permit players to randomize over
the strategy space, by playing a distribution σi over A. The overall state is the
product distribution over the player distributions. Every PNE is trivially an
MNE, by letting players choose deterministic distributions σi.
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Correlated Equilibria (CEs) generalize MNEs to situations in which players
coordinate via a trusted third party. In what follows, we’ll mostly be interested
in a generalization of CEs, called Coarse Correlated Equilibria (CCEs), and
their approximate relaxations. Specifically, a distribution σ over AN (Listing
2) is a CCE when ∀i∀s′

i. Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′
i, s−i)]. Es∼σ[Ci(s)] is the

expected cost to player i in distribution σ. The CCE condition states that there
is no s′

i that could decrease player i’s expected cost. CCEs are essentially a
relaxation of MNEs which do not require σ to be a product distribution (i.e.,
the players’ strategies may be correlated). CEs are a subclass of CCEs in which
Es∼σ[Ci(s′

i, s−i)] may be conditioned on si.
A distribution σ over states may only be approximately a CCE. Define as ε-

approximate those CCEs σ for which ∀i∀s′. Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′
i, s−i)] + ε.

Moving to s′
i can decrease player i’s expected cost, but only by at most ε.

Listing 2: Discrete Distributions in Ssreflect-Coq

Since our games A are finite, discrete distributions suffice to formalize
MNEs, CEs, and CCEs. We model such distributions as finite functions
(those with finite domain) from the strategy space A to R:

Record dist (A : finType) : Type �
mkDist { pmf :> {ffun A → R}; dist ax : dist axiom pmf }.

Here {ffun A → R} is Ssreflect syntax for the type of finite functions from A
to R. The second projection of the record, dist ax, asserts that pmf represents
a valid distribution: pmf is positive and

∑
a:A pmf a = 1.

The Coq predicate eCCE:

Definition eCCE (ε : R) (σ : dist AN ) : Prop �
∀(i : [0..N − 1]) (s′ : A),
expectedCost i σ ≤ (expectedUnilateralCost i σ s′) + ε.

states that distribution σ (over N -tuples of strategies A, one per player) is
an ε-approximate CCE, or ε-CCE.

2.2 Algorithmic Game Theory

Equilibria are only useful if we’re able to quantify, with respect to the game
being analyzed:

1. How good equilibrium states are with respect to the optimal configurations
of a game. By optimal, we usually mean states s∗ that optimize the social
cost: ∀s.

∑
i Ci(s∗) ≤ ∑

i Ci(s).
2. How “easy” (read computationally tractable) it is to drive competing players

of the game toward an equilibrium state.

Algorithmic game theory and the related fields of mechanism design and dis-
tributed optimization provide excellent tools here.
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Good Equilibria. The Price of Anarchy, or POA, of game (A,C) quantifies the
cost of equilibrium states of (A,C) with respect to optimal configurations. Pre-
cisely, define POA as the ratio of the social cost of the worst equilibrium s to
the social cost of an optimal state s∗. POA near 1 indicates high-quality equi-
libria: finding an equilibrium in such a game leads to overall social cost close
to optimal. Prior work in algorithmic game theory has established nontrivial
POA bounds for a number of game classes: on various classes of congestion and
routing games [2,6,10], on facility location games [40], and others [11,32].

In the system of Sect. 3, we use the related concept of Roughgarden smooth
games [35], or simply smooth games, which define a subclass of games with
canonical POA proofs. To each smooth game are associated two constants, λ
and μ. The precise definition of the smoothness condition is less relevant here
than its consequences: if a cost-minimization game is (λ, μ)-smooth, then it has
POA λ/(1−μ). Not all games are smooth, but for those that are, the POA bound
above extends even to CCEs and their approximations, a particularly large (and
therefore tractable) class of equilibria [35, Sects. 3 and 4].

Tractable Dynamics. Good equilibrium bounds are most useful when we know
how quickly a particular game converges to equilibrium [7,9,12,13,17]. Certain
classes of games, e.g. potential games [26], reach equilibria under a simple model
of dynamics called best response. As we’ve mentioned, we use a different dis-
tributed learning algorithm in this work, variously called Multiplicative Weights
(MW) [1] or sometimes Randomized Weighted Majority [25], which drives all
games to CCEs, a larger class of equilibrium states than those achieved by poten-
tial games under best response.

3 Cage by Example

No-regret algorithms such as MW can be used to drive multi-agent sys-
tems toward the ε-CCEs of arbitrary games. Although the CCEs of general
games may have high social cost, those of smooth games, as identified by
Roughgarden [35], have robust Price of Anarchy (POA) bounds that extend
even to ε-CCEs. Figure 1 depicts how these pieces fit together in the high-
level architecture of our Cage system, which formalizes the results of Sect. 2
in Coq. Shaded boxes are program-related components while white boxes are
proof related.

3.1 Overview

At the top, we have a domain-specific language in Coq (DSL, box 1) that gener-
ates games with automatically verified POA bounds. To execute such games, we
have verified (also in Coq) an implementation of the Multiplicative Weights algo-
rithm (MW, 2). Correctness of MW implies convergence bounds on the games it
executes: O((ln |A|)/ε2) iterations suffice to drive the game to an ε-CCE (here,
|A| is the size of the action space, or game type, A).

www.dbooks.org
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Fig. 1. System architecture

We compose N instances of multiplicative weights (4), one per agent, with a
server (3) that facilitates communication, implemented in OCaml and modeled
by an operational semantics in Coq. To actually execute games, we use Coq’s
code extraction mechanism to generate OCaml code that runs clients against
the server, using an unverified OCaml shim to send and receive messages. We
prove performance guarantees in Coq from POA bounds on the game and from
the regret bound on MW.

3.2 Smooth Games DSL

The combinators exposed by the Smooth Games DSL operate over game types
A, cost functions C, and smoothness parameters λ and μ. Basic combinators in
this language include (i) Resource and (ii) Unit games, the first for coordinating
access to shared resources under congestion and the second with fixed cost 0.
Combinators that take other games as arguments include:

– the bias combinator Bias(A, b), which adds the fixed value b to the cost func-
tion associated with game A;

– the scalar combinator Scalar(A,m), which multiplies the output of the cost
function C associated with game A by a fixed value m;

– the product combinator A × B, corresponding to the parallel composition of
two games A and B with cost equal to the sum of the costs in the two games;

– the subtype game {x : A, P (x)}, which constructs a new game over the
dependent sum type Σx : A.P (x) (values x satisfying the predicate P );
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– the singleton game Singleton(A), which has cost 1 if if player i “uses” the
underlying resource (BResource(f i) = true), and 0 otherwise. The function
B−(−) generalizes the notion of resource usage beyond the primitive Resource
game. For example, BScalar(A,m)(x) = BA(x): usage in a game built from the
scalar combinator reduces to usage in the underlying game.

3.3 Example: Distributed Routing

We illustrate the Smooth Games DSL with an example: distributed routing over
networks with affine latency functions (Fig. 2). This game is known to have POA
5/2 [35].

In a simple version of the game, N routing agents each choose a path from
a global source vertex s to a global sink vertex t. Latency over edge e, modeled
by an affine cost function ce(x) = aex+ be, scales in the amount of traffic x over
that edge. An optimal solution minimizes the total cost to all agents.

Fig. 2. Routing game with
affine edge costs

We model each link in the network as a
Resource game, which in its most basic form is
defined by the following inductive datatype:

Inductive Resource : Type �
| RYes : Resource
| RNo : Resource.

RYes indicates the agent chose to use the resource
(a particular edge) and RNo otherwise. The cost
function for Resource is defined by:

Definition ResourceCostFun (i : [0..N − 1]) (s : [0..N − 1] →fin Resource) : R �
if si is RYes then traffic s else 0.

in which s is a map from agent labels to resource strategies and traffic s is the
total number of agents that chose to use resource s. An agent pays traffic s if
it uses the resource, otherwise 0. We implement Resource as a distinct inductive
type, even though it’s isomorphic to bool, to ensure that types in the Smooth
Games DSL have unique game instances. To give each resource the more inter-
esting cost function ce(x) = aex + be, we compose Resource with a second com-
binator, Affine(ae, be,Resource), which has cost 0 if an agent does not use the
resource, and cost ae∗(traffic s)+ be otherwise. This combinator preserves (λ, μ)-
smoothness assuming λ+μ ≥ 1, a side condition which holds for Resource games.

We encode m affine resources by applying Affine to Resource m times, then
folding under product:

T � Affine(a1,b1,Resource)
× Affine(a2,b2,Resource)
× . . .
× Affine(am,bm,Resource)

The associated cost function is the sum of the individual resource cost functions.
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Values of type T may assign RYes to a subset of resources that doesn’t corre-
spond to a valid path in a graph G = (V,E). To prevent this behavior, we apply
to T the subtype combinator Σ, specialized to a predicate isValidPath(G, s, t)
enforcing that strategies (r1, r2, . . . , r|E|) correspond to valid paths from s to
t: T’ � ΣisValidPath(G,s,t)(T). The game T’ is (5/3, 1/3)-smooth, just like the
underlying Resource game, which implies POA of (5/3)/(1 – 1/3) = 5/2.

3.4 Example: Load Balancing

Fig. 3. Load balancing game

As a second example, consider the load balanc-
ing game depicted in Fig. 3, in which a number of
network flows are distributed over several servers
with affine cost functions. In general, N load bal-
ancing agents are responsible for distributing M
flows over K servers. The cost of allocating a flow
to a server is modeled by an affine cost function
which scales in the total load (number of flows)
on that server. Like routing, the load balancing
game has POA 5/2. This is no coincidence; both
are special cases of “finite congestion games”, a
class of games which have POA 5/2 when costs

are linear [10]. The connection between them can be seen more concretely by
observing that they are built up from the same primitive Resource game.

We model the system as an NM -player K-resource game in which each player
corresponds to a single network flow. Each load balancing agent poses as multiple
players (MW instances) in the game, one per flow, and composes the actions
chosen by these players to form its overall strategy. The result of running the
game is an approximate CCE with respect to the distribution of flows over
servers.

Each server is defined as a Resource with an affine cost function, using
the same data type and cost function as in the routing example. Instead of
isValidPath, we use a new predicate exactlyOne to ensure that each network flow
is assigned to exactly one server.

4 Smooth Games

Roughgarden smoothness [35] characterizes a subclass of games with canoni-
cal Price of Anarchy (POA) proofs. In [35], Roughgarden showed that smooth
games have canonical POA bounds not only with respect to pure Nash equilibria
but also with respect to mixed Nash equilibria, correlated equilibra, CCEs, and
their approximate relaxations. In the context of Cage, we use smoothness to
bound the social cost of games executed by multiple clients each running MW.
We show how the technical pieces fit together, in the form of bounds on an
operational semantics of the entire Cage system, in Sect. 6. This section intro-
duces the technical definition of smoothness and the language of combinators,
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Syntax

Scalars m, b; Predicates P
Game types A, B ::= Resource | Unit | Bias(A, b) | Scalar(A, m)

| A × B | {x : A, P (x)} | Singleton(A)

Judgment �(λ,μ) (A, C) read “Game (A, C) is (λ, μ)-smooth.”

�( 5
3 , 1

3 ) (Resource, ResourceCostFun)
ResourceSmooth

�(1,0) (Unit, fun i f. 0)
UnitSmooth

�(λ,μ) (A, C)

�(1,0) (Singleton(A), fun i f. if BA(f i) then 1 else 0)
SingletonSmooth

�(λ,μ) (A, C)

�(λ,μ) ({x : A, P (x)}, fun i f. Ci (fun j. (f j).1))
SigmaSmooth

�(λ,μ) (A, C) 1 ≤ λ + μ 0 ≤ b

�(λ,μ) (Bias(A, b), fun i f. Ci f + b)
BiasSmooth

�(λ,μ) (A, C) 0 ≤ m

�(λ,μ) (Scalar(A, m), fun i f. m ∗ Ci f)
ScalarSmooth

�(λA,μA) (A, CA) �(λB ,μB) (B, CB)

�(max(λA,λB),max(μA,μB)) (A × B, fun i f. CA
i f + CB

i f)
ProductSmooth

Fig. 4. Smooth games DSL

or Smooth Games DSL of Sect. 3, that we use to build games that are smooth
by construction.

Definition 1 (Smoothness). A game (A,C) is (λ, μ)-smooth if for any two
states s, s∗ : AN , the following inequality holds:

k∑

i=1

Ci(s∗
i , s−i) ≤ λ · C(s∗) + μ · C(s).

Here, Ci(s∗
i , s−i) denotes the individual cost to player i in the mixed state where

all other players follow their strategies from s, while player i follows the corre-
sponding strategy from s∗. Smooth games bound the individual cost of players’
unilateral deviations from state s to s∗ by the weighted social costs of s and s∗.
In essence, when λ and μ are small, the effect of any single player’s deviation
from a given state has minimal effect.

The smoothness inequality leads to natural proofs of POA for a variety of
equilibrium classes. As an example, consider the following bound on the expected
cost of ε-CCEs of (λ, μ)-smooth games:
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Lemma smooth eCCE (d : dist (state N T )) (s′ : state N T ) (ε : R) :
eCCE ε d → optimal s′ →
ExpectedCost d ≤ λ∗(Cost s′) + μ∗(ExpectedCost d) + N∗ε.

ExpectedCost d is the sum for all players i of the expected cost to player i of
distribution d. N is the number of players in the game.

The smooth eCCE bound implies the following Price of Anarchy bound on
the expected cost, summed across all players, of distribution d:

Lemma smooth POA ε (d : dist (state N T )) s′ :
eCCE ε d → optimal s′ →
ExpectedCost d ≤ λ/(1 − μ)∗(Cost s′) + (N∗ε)/(1 − μ).

If d is an ε-CCE, then its cost is no more than λ/(1 - μ) times the optimal
cost of s′, plus an additional term that scales in the number of players N . For
example, for concrete values λ = 5/3, μ = 1/3, ε = 0.0375, and N = 5, we get
multiplicative approximation factor λ/(1 − μ) = 5/2 and additive factor 0.28. A
value of ε = 0.0375 is reasonable; as Sect. 5 will show, it takes fewer than 20, 000
iterations of the Multiplicative Weights algorithm, in a game with strategy space
of size 1000, to produce ε ≤ 0.0375.

4.1 Combinators

Figure 4 lists the syntax and combinators of the Smooth Games DSL we used
in Sect. 3 to build smooth routing and load balancing games.

The smoothness proof accompanying the judgment of Resource games is
the least intuitive, and provides some insight into the behavior of smooth
games. The structure of our proof borrows from a stronger result given by
Roughgarden [35]: smoothness for resource games with affine cost functions
and multiple resources. The key step is the following inequality first noted by
Christodoulou and Koutsoupias [10]:

y(z + 1) ≤ 5
3
y2 +

1
3
z2

for non-negative integers y and z. We derive ( 5
3 , 1

3 )-smoothness of Resource games
from the following inequalities:

N−1∑

i=0

Ci(s∗
i , s−i) ≤ (traffic s∗) · (traffic s + 1) (1)

(traffic s∗) · (traffic s + 1) ≤ 5
3

· (traffic s∗)2 +
1
3

· (traffic s)2 (2)

(traffic s∗) · (traffic s + 1) ≤ 5
3

· C(s∗) +
1
3

· C(s) (3)

N−1∑

i=0

Ci(s∗
i , s−i) ≤ 5

3
· C(s∗) +

1
3
μ · C(s) (4)



572 S. Merten et al.

The inequality in step 1 is due to the fact that the cost per player in state s∗

is at most traffic s + 1, and there are exactly traffic s∗ players incurring such
cost. I.e., (traffic s∗) · (traffic s + 1) is the number of nonzero terms times the
upper bound on each term. The substitution in step 3 comes from the fact that
in any state s, C(s) = (traffic s)2; each of the m players using the resource incur
cost m.

The proofs of smoothness for other combinators are straightforward. For
example, since Unit games always have cost 0, all values of λ and μ satisfy
the smoothness inequality: 0 ≤ λ · 0 + μ · 0. We restrict the range of the cost
function in SingletonSmooth games to {0, 1} by applying the function BA(·),
which generalizes the notion of “using a resource” to all the game types of
Fig. 4. Smoothness of the Singleton game follows by case analysis on the results
of BA(·) in the states s and s∗ of the smoothness inequality. The games produced
by the SigmaSmooth combinator have costs equal to those of the underlying
games but restrict the domain to those states satisfying a predicate P . Since
smoothness of the underlying bound holds for all states in A, the same bound
holds of the restricted domain of states a ∈ A drawn from P . Smoothness of
product games relies on the fact that smoothness still holds if λ and μ are
replaced with larger values. Thus, each of the argument games to ProductSmooth
is (max(λA, λB),max(μA, μB))-smooth. The overall product game, which sums
the costs of its argument games, is (max(λA, λB),max(μA, μB))-smooth as well.

It’s possible to derive combinators from those defined in Fig. 4. For example,
define as Affine(m, b,A) the game with cost function mx+ b. We implement this
game as {p : Scalar(m,A) × Scalar(b,Singleton(A)), p.1 = p.2}, or the subset of
product games over the scalar game Scalar(m,A) and the {0, 1} scalar game over
b such that the first and second projections of each strategy p are equal.

5 Multiplicative Weights (MW)

At the heart of the Cage architecture of Sect. 3 lies our verified implementation
of the Multiplicative Weights algorithm. In this section, we present the details of
the algorithm and sketch its convergence proof. Section 5.3 presents our verified
MW implementation and mechanized proof of convergence.

For all a ∈ A, client initializes w1(a) = 1.

For time t ∈ [1 . . . T ] :
Client Environment

Let Γt �
∑

a∈A wt(a).
Play strategy pt(a) = wt(a)/Γt.

Choose cost vector ct.

Update weights wt+1(a) � wt(a) ∗ (1 − η ∗ ct(a))

Fig. 5. Multiplicative Weights (MW)
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5.1 The Algorithm

The MW algorithm (Fig. 5) pits a client, or agent, against an adaptive envi-
ronment. The agent maintains a weight distribution w over the action space,
initialized to give each action equal weight. At each time step t ∈ [1 . . . T ], the
agent commits to the distribution wt/

∑
a∈A wt(a), communicating this mixed

strategy to the environment. After receiving a cost vector ct from the environ-
ment, the agent updates its weights wt+1 to penalize high-cost actions, at a rate
determined by a learning constant η ∈ (0, 1/2]. High η close to 1/2 leads to
higher penalties, and thus relatively less exploration of the action space.

The environment is typically adaptive, and may be implemented by a number
of other agents also running instances of MW. The algorithm proceeds for a fixed
number of epochs T , or until some bound on expected external regret (expected
cost minus the cost of the best fixed action) is achieved. In what follows, we
always assume that costs lie in the range [−1, 1]. Costs in an arbitrary but
bounded range are also possible (with a concomitant relaxation of the algorithm’s
regret bounds), as are variations of MW to solve payoff maximization instead of
cost minimization.

5.2 MW Is No Regret

The MW algorithm converges reasonably quickly: To achieve expected regret at
most ε, it’s sufficient to run the algorithm O((ln |A|)/ε2) iterations, where |A|
is the size of the action space [36, Chapter 17]. Regret can be driven arbitrarily
small as the number of iterations approaches infinity. Bounded regret suffices to
prove convergence to an approximate CCE, as [36] also shows.

In this section, we present a high-level sketch of the proof that MW is no
regret. We follow [36, Chapter 17], which has additional details. At the level
of the mathematics, our formal proof makes no significant departures from
Roughgarden.

Definition 2 (Per-Step External Regret). Let a∗ be the best fixed action in
hindsight (i.e., the action with minimum cost given the cost vectors received from
the environment) and let OPT �

∑T
t=1 ct(a∗). The expected per-step external

regret of MW is (
T∑

t=1

ζt − OPT

)

/ T.

The summed term defines the cumulative expected cost of the algorithm for time
t ∈ [1 . . . T ], where by ζt we denote the expected cost at time t:

ζt =
∑

a∈A

pt(a) · ct(a) =
∑

a∈A

wt(a)
Γt

· ct(a)
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To get per-step expected regret, we subtract the cumulative cost of a∗ and divide
by the number of time steps T .

Theorem 1 (MW Has Bounded Regret). The algorithm of Fig. 5 has
expected per-step external regret at most η + ln |A| / ηT .

Proof Sketch. The proof of Theorem 1 uses a potential-function argument, with
potential Φt equal the sum of the weights Γt =

∑
a∈A wt(a) at time t. It proceeds

by relating the cumulative expected cost
∑

t ζt of the algorithm to OPT , the
cost of the best fixed action, through the intermediate quantity ΓT+1.

The proof additionally relies on the following two facts derived from the
Taylor expansion ln(1 − x) = −x − x2

2 − x3

3 − · · · :
ln(1 − x) ≤ −x, x < 1

−x − x2 ≤ ln(1 − x), x ≤ 1/2

	

By letting η =

√
ln |A| / T (cf. [36, Chapter 17]), it’s possible to restate the

regret bound of Theorem 1 to the following arguably nicer bound:

Corollary 1 (MW Is No Regret)
(

T∑

t=1

ζt − OPT

)

/ T ≤ 2
√

ln |A| / T

Here, the number of iterations T must be large enough to ensure that η =√
ln |A| / T ≤ 1/2, thus ensuring that η ∈ (0, 1/2].

5.3 MW Architecture

Fig. 6. MW architecture

Our implementation and proof
of MW (Fig. 6) were designed to
be extensible. At a high level,
the proof structure follows the
program refinement methodol-
ogy, in which a high-level mathe-
matical but inefficient specifica-
tion of MW (High-Level Func-
tional Specification) is gradually
made more efficient by a series of
refinements to various features
of the program (for example, by
replacing an inefficient implementation of a key-value map with a more efficient
balanced binary tree).

For each such refinement, we prove that every behavior of the lower-level
program is a possible behavior of the higher-level program it refines. Thus spec-
ifications proved for all behaviors of the high-level program also apply to each
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behavior at the low level. By behavior here, we mean the trace of action distri-
butions output by MW as it interacts with, and receives cost vectors from, the
environment.

We factor the lower implementation layers (Medium and Low) into an inter-
preter and operational semantics over a domain-specific language specialized to
MW-style algorithms (MW DSL). The DSL defines commands for maintain-
ing and updating weights tables as well as commands for interacting with the
environment. We prove, for any DSL program c, that the interpretation of that
program refines its behavior with respect to the small-step operational semantics
(Medium). Our overall proof specializes this general refinement to an implemen-
tation of MW as a command in the DSL, in order to relate that command’s
interpreted behavior to the high-level functional specification.

5.4 MW DSL

The syntax and semantics of the MW DSL are given in Fig. 7. The small-step
operational semantics (� c, σ ⇒ c′, σ′) is parameterized by an environment ora-
cle that defines functions for sending action distributions to the environment
(oracle send) and for receiving the resulting cost vectors (oracle recv). The oracle
will in general be implemented by other clients also running MW (Sect. 6) but is
left abstract here to facilitate abstraction and reuse. The oracle is stateful (the
type T , of oracle states, may be updated both by oracle send and oracle recv).

Most of the operational semantics rules are straightforward. In the MW-
Step-Weights rule for updating the state’s weights table, we make use of
an auxiliary expression evaluation function E−[−] (standard and therefore not
shown in Fig. 7). The only other interesting rules are those for send and recv,
which call oracle send and oracle recv respectively. In the relation oracle recv, the
first two arguments are treated as inputs (the input oracle state of type T and
the channel) while the second two are treated as outputs (the cost vector of type
A → Q and the output oracle state). In the relation oracle send, the first three
arguments are inputs while only the last (the output oracle state) is an output.

Multiplicative Weights. As an example of an MW DSL program, consider our
implementation (Listing 1.1) of the high-level MW of Fig. 5. To the right of
each program line, we give comments describing the effect of each command.
The program is itself divided into three functions:mult weights init, which ini-
tializes the weights table to assign weight 1 to each action a in the action space
A; mult weights body, which defines the body of the main loop of MW; and
mult weights, which simply composes mult weights init with mult weights body.
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Listing 1.1. MW DSL Implementation of Multiplicative Weights

Definition mult weights init (A : Type) �
update (λ a : A ⇒ 1); (∗ For all a ∈ A, initialize w1(a) = 1. ∗)
send. (∗ Commit to the uniform distribution over actions. ∗)

Definition mult weights body (A : Type) �
recv; (∗ Block until agent receives cost vector ct from environment. ∗)
update (λ a : A ⇒ weight a ∗ (1 − η ∗ cost a)); (∗ Update weights. ∗)
send. (∗ Commit to distribution wt/Γt. ∗)

Definition mult weights (A : Type) (n : N.t) �
mult weights init A; (∗ Initialize weights and commit to initial mixed strategy. ∗)
iter n (mult weights body A). (∗ Do n iterations of the MW main loop. ∗)

The MW DSL contains commands and expressions that are specialized to
MW-style applications. Consider the function mult weights body (line 5). It first
receives a cost vector from the environment using the specialized recv command.
At the level of the MW DSL, recv is somewhat abstract. The program does not
specify, e.g., which network socket to use. Implementation details such as these
are resolved by the MW interpreter, which we discuss below in Sect. 5.5.

After recv, mult weights body implements an update to its weights table as
defined by the command: update (λa : A ⇒ weight a ∗ (1 − η ∗ cost a)). As an
argument to the update, we embed a function from actions a ∈ A to expressions
that defines how the weight of each action a should change at this step (time t+
1). The expressions weight a and cost a refer to the weight and cost, respectively,
of action a at time t. The anonymous function term is defined in Ssreflect-
Coq, the metalanguage in which the MW DSL is defined.

5.5 Interpreter

To run MW DSL programs, we wrote an executable interpreter in Coq with
type:

interp (c : com A) (s : cstate) : option cstate.

The type cstate defines the state of the interpreter after each step, and in general
maps quite closely to the type of states σ used in the MW DSL operational
semantics. It is given by the record:
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Syntax

Binary operators ⊕ ::= + | − | ∗
Expressions e ::= d | −e | weight a | cost a | η | e1 ⊕ e2

Commands c ::= skip | update (λa : A ⇒ e) | c1; c2 | iter n c | recv | send

Environment Oracle

oracle recv : T → oracle chanty → (A → Q) → T → Prop
oracle send : T → dist A → oracle chanty → T → Prop

States σ �
{ SCosts : A → Q; SCostsOk : ∀a. |SCosts a| ≤ 1
; SPrevCosts : seq {c : A → Q | ∀a. |c a| ≤ 1}
; SWeights : A → Q

; SWeightsOk : ∀a. 0 < SWeights a
; SEta : Q; SEtaOk : 0 < SEta ≤ 1/2
; SOutputs : seq (dist A)
; SChan : oracle chanty
; SOracleSt : T }.

Current cost vector
Previous cost vectors
Weights table

The η parameter
Committed distributions
I/O channel
Environment/oracle state

Operational Semantics

σ′ = σ{SWeights � λa : A ⇒ Eσ[e[x ← a]]}
� update (λx : A ⇒ e), σ ⇒ skip, σ′ MW-Step-Weights

� skip; c2, σ ⇒ c2, σ

� c1, σ ⇒ c′
1, σ

′

� c1; c2, σ ⇒ c′
1; c2, σ

′

� iter 1 c, σ ⇒ c, σ

1 < n

� iter n c, σ ⇒ c; iter (n − 1) c, σ

oracle recv (SOracleSt σ) (SChan σ) c t

� recv, σ ⇒ skip, σ{SCosts � c; SPrevCosts � SCosts σ :: SPrevCosts σ; SOracleSt � t}
oracle send (SOracleSt σ) d ch t

� send, σ ⇒ skip, σ{SOutputs � d :: SOutputs σ; SChan � ch; SOracleSt � t}

Fig. 7. MW DSL syntax and operational semantics, parameterized by an environment
oracle defining the type T of environment states and the functions oracle recv and
oracle send for interacting with the environment. The type A is that of states in the
underlying game.

Record cstate : Type �
{ SCosts : M.t Q

; SPrevCosts : list (M.t Q)
; SWeights : M.t Q

; SEta : Q

; SOutputs : list (A → Q)
; SChan : oracle chanty
; SOracleSt : T }.

Current cost vector
Previous cost vectors
Weights table
The η parameter
Committed distributions
I/O channel
Environment/oracle state
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At the level of cstates, we use efficient purely functional data structures such as
AVL trees. For example, the type M.t Q denotes an AVL-tree map from actions
A to rational numbers Q. In the small-step semantics state, by contrast, we
model the weights table not as a balanced binary tree but as a Ssreflect-Coq
finite function, of type {ffun A → Q}, which directly maps actions of type A to
values of type Q.

To speed up computation on rationals, we use a dyadic representation q = n
2d ,

which facilitates fast multiplication. We do exact arithmetic on dyadic Q instead
of floating point arithmetic to avoid floating-point precision error. Verification of
floating-point error bounds is an interesting but orthogonal problem (cf. [31,34]).

The field SOutputs in the cstate record, a list of functions mapping actions
a ∈ A to their probabilities, stores the history of weights distributions generated
by the interpreter as send commands are executed. To implement commands
such as send and recv, we parameterize our MW interpreter by an environment
oracle, just as we did the operational semantics. The operations implemented
by the interpreter environment oracle are functional versions of the operational
semantics oracle send and oracle recv:

oracle send′ : ∀A:Type, T → A → oracle chanty ∗ T
oracle recv′ : ∀A:Type, T → oracle chanty → list (A∗Q) ∗ T

The oracle state type T is provided by the implementation of the oracle, as in
the operational semantics. The command oracle send′ takes a state of type T
and a value of type A as arguments and returns a pair of a channel of type
oracle chanty (on which to listen for a response from the environment) and a
new oracle state of type T . The command oracle recv′ takes as arguments the
oracle state and channel and returns a list of (a, q) pairs, representing a cost
vector over actions, along with the new oracle state.

5.6 Proof

The top-level theorem proved of our high-level functional specification of MW is:

Theorem perstep weights noregret :
(expCostsR − OPTR)/T ≤ η + ln size A / (η ∗T).

The expression expCostsR is the cumulative expected cost of MW on a sequence
of cost vectors, or the sum, for each time t, of the expected cost of the MW
algorithm at time t. OPTR is the cumulative cost over T rounds of the best
fixed action. The number η (a dyadic rational required to lie in range (0, 1/2])
is the learning parameter provided to MW and ln size A is the natural log of
the size of the action space A. T is the number of time steps. In contrast to the
interpreter and semantics of Sect. 5.3 (where we do exact arithmetic on dyadics),
for reasoning and specification at the level of the proof we use Coq’s real number
library and real-valued functions such as square root and log.

By choosing η to equal
√

ln size A / T , Corollary 1 showed that it’s possi-
ble to restate the right-hand side of the inequality in perstep weights noregret to
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2 ∗ sqrt (ln size A / T), thus giving an arguably nicer bound. Since in our imple-
mentation of MW we require that η be a dyadic rational, we cannot implement
η =

√
ln size A / T directly (ln size A is irrational). We do, however, prove the

following tight approximation for all values of η approaching
√

ln size A / T :

Lemma perstep weights noregret’ :
∀r : R. r = −1 → η = (1+r)∗(sqrt (ln size A / T)) →
(expCostsR − OPTR)/T ≤
(1+r)∗(sqrt (ln size A / T)) + (sqrt (ln size A / T))/(1+r).

In the statement of this lemma, the r term quantifies the error (how far
η is from its optimal value sqrt (ln size A / T). We require that r = −1 to
ensure that division by 1 + r is well-defined. The resulting bound approaches
2 ∗ sqrt (ln size A / T) as r approaches 0.

High-Level Functional Specification. Our high-level functional specification of
MW closely models the mathematical specification of MW given in Fig. 5. For
example, the following four definitions:

Definition weights : Type � {ffun A → Q}.

Definition costs : Type � {ffun A → Q}.

Definition init weights : weights � λ( : A) ⇒ 1.

Definition update weights (w:weights) (c:costs) : weights �
λa : A ⇒ w a ∗ (1 − η ∗ c a).

construct the types of weight (weights) and cost vectors (costs), represented
as finite functions from A to Q; define the initial weight vector (init weights),
which maps all actions to cost 1; and define the MW weight update rule
(update weights). The recursive function:

Fixpoint weights of (cs : seq costs) (w : weights) : weights �
if cs is c :: cs′ then update weights (weights of cs′ w) c else w.

defines the vector that results from using update weights to repeatedly update
w with respect to cost vectors cs.

Adaptive Vs. Oblivious Adversaries. In our high-level specification of MW, we
parameterize functions like weights of by a fixed sequence of cost vectors cs
rather than model interaction with the environment, as is done in Fig. 5. An
execution of our low-level interpreted MW, even against an adaptive adversary,
is always simulatable by the high-level functional specification by recording in
the low-level execution the cost vectors produced by the adversary, as is done
by the SPrevCosts field (Sect. 5.5), and then passing this sequence to weights of.
This strategy is quite similar to using backward induction to solve the MW game
for an oblivious adversary.

Connecting the Dots. To connect the MW interpreter to the high-level specifi-
cation, we prove a series of refinement theorems (technically, backward simula-
tions). As example, consider:
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Lemma interp step plus :
∀(a0 : A) (s : state A) (t t′ : cstate) (c : com A),
interp c t = Some t′ →
match states s t →
∃c′ s′, final com c′ ∧

((c =CSkip ∧ s = s′) ∨ step plus a0 c s c′ s′) ∧
match states s′ t′.

which relates the behavior of the interpreter (interp c t) when run on an arbitrary
command c in cstate t to our model of MW DSL commands as specified by the
operational semantics.

To prove that the operational semantics correctly refines our high-level func-
tional specification of MW (and therefore satisfies the regret bounds given at
the start of Sect. 5.6), we prove a similar series of refinements. Since backward
simulations compose transitively, we prove regret bounds on our interpreted MW
just by composing the refinements in series. The bounds we prove in this way
are parametric in the environment oracle with which MW is instantiated. When
the oracle state types differ from source to target in a particular simulation, as
is the case in our proof that the MW DSL interpreter refines the operational
semantics, we require that the oracles simulate as well.

6 Coordinated MW

A system of multiple agents each running MW yields an ε-CCE of the underlying
game. If the game being played is smooth – for example, it was built using the
combinators of the Smooth Games DSL of Sect. 4 – then the resulting ε-CCE
has bounded social cost with respect to a globally optimal strategy. In this
section, we put these results together by (1) defining an operational semantics of
distributed interaction among multiple clients each running MW, and (2) proving
that distributed executions of this semantics yield near-optimal solutions, as long
as the underlying game being played is smooth.

6.1 Machine Semantics

We model the evolution of the distributed machine by the operational seman-
tics in Fig. 8. Client states (client state) bundle commands from the MW DSL
(Sect. 5) with MW states parameterized by the ClientPkg oracle. The client ora-
cle send and receive functions model single-element (pin) queues, represented as
values of type option (dist A), storing values sent by an MW node, and of type
option (A → Q), storing values received by an MW node.

States of the coordinated machine (type machine state N A) map client
indices in range [0..N − 1] to client states (type client state A). Machine states
also record, at each iteration of the distributed MW protocol, the history of dis-
tributions received from the clients in that round (type seq ([0..N−1] → dist A)),
which will be used to prove Price of Anarchy bounds in the next section
(Sect. 6.2). We say that all clients have sent in a particular machine state m,
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Client Oracle

ClientPkg �
{ sent : option (dist A);

received : option (A → Q);
received ok : ∀v. received = Some v → ∀a. 0 ≤ va ≤ 1 }

client oracle recv A (p : ClientPkg) (− : unit) (v : A → Q) (p′ : ClientPkg) �
p.received = Some v ∧ p′.received = None ∧ p′.sent = p.sent

client oracle send A (p : ClientPkg) (d : dist A) (− : unit) (p′ : ClientPkg) �
p.sent = None ∧ p′.sent = Some d ∧ p′.received = p.received

Machine States

client state A � σ � (com A ∗ state A ClientPkg unit)
machine state N A � m �

{ clients : [0..N − 1] → client state A;
hist : seq ([0..N − 1] → dist A) }

all clients have sent A (m : machine state) (f : [0..N − 1] → dist A) �
∀i : [0..N − 1]. let (−, σ) � m.clients i in
(SOracleSt σ).received = None ∧ (SOracleSt σ).sent = Some fi.

Machine Step � m =⇒ m′

cost vec A i : A → Q � λa.
∑

(p:[0..N−1]→A|pi=a)

∏
(j|i�=j) fj pj ∗ Ci p

m.clients i = (c, σ) m′.clients i = (c, σ′) σ ∼O σ′

(SOracleSt σ).sent = None (SOracleSt σ′).received = Some (cost vec f i)

server sent cost vector i f m m′

m.clients i = (c, σ) (SOracleSt σ).sent = None � c, σ ⇒ c′, σ′

� m =⇒ m{ clients � m.clients[i �→ (c′, σ′)] }
ClientStep

all clients have sent m f
(∀i. server sent cost vector i f m m′) m′.hist = f :: m.hist

� m =⇒ m′ ServerStep

Fig. 8. Semantics of the distributed machine

committing to the set of distributions f , if each client’s received buffer is empty
and its sent buffer contains the distribution fi, of type dist A.

The machine step relation models a server–client protocol, distinguishing
server steps (ServerStep) from client steps (ClientStep). Client steps, which run
commands in the language of Fig. 7, may interleave arbitrarily. Server steps are
synchronized by the all clients have sent relation to run only after all clients have
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completed the current round. The work done by the server is modeled by the
auxiliary relation server sent cost vector i f m m′, which constructs and sends to
client i the cost vector derived from the set of client distributions f . The relation
σ ∼O σ′ states that σ and σ′ are equal up to their SOracleSt components.

In the distributed MW setting, the cost to player i of a particular action a : A
is defined as the expected value, over all N -player strategy vectors p in which
player i chose action a (pi = a), of the cost to player i of p, with the expectation
over the (N − 1)-size product distribution induced by the players j = i.

6.2 Convergence and Optimality

Our proof that MW is no regret (Sect. 5) extends to system-wide convergence
and optimality guarantees, with respect to the distributed execution model of
Fig. 8 in which each client runs our MW implementation. The proof has three
major steps:

1. Show that no-regret clients implementing MW are still no regret when inter-
leaved in the distributed semantics of Fig. 8.

2. Prove that per-client regret bounds – one for each client running MW – imply
system-wide convergence to an ε-CCE.

3. Use POA results for smooth games from Sect. 4 to bound the cost, with
respect to that of an optimal state, of all such ε-CCEs.

Composing 1, 2, and 3 proves that the distributed machine of Fig. 8 – when
instantiated to clients running MW – converges to near-optimal solutions to
smooth games. We briefly describe each part in turn.

Part 1 : No-regret clients are still no regret when interleaved. That MW no-regret
bounds lift to an MW client running in the context of the distributed operational
semantics of Fig. 8 follows from the oracular structure of our implementation
of MW (Sect. 5) – clients interact with other clients and with the server only
through the oracle.

In particular, for any execution � m =⇒+ m′ of the machine of Fig. 8, and
for any client i, there is a corresponding execution of client i with respect to a
small nondeterministic oracle that simply “guesses” which cost vector to supply
every time the MW client executes a recv operation. Because MW is no regret
for all possible sequences of cost vectors, proving a refinement against the non-
deterministic oracle implies a regret bound on client i’s execution from state mi

to state m′
i.

We lift this argument to all the clients running in the Fig. 8 semantics by
proving the following theorem:

Theorem all clients bounded regret A m m′ T (ε : rat) :
hist m = nil → 0 < size (hist m′) → final state m′ →
� m =⇒+ m′ →
(∀i, m.clients i = (mult weights A T, init state A η tt (init ClientPkg A))) →
η + ln size A/(η ∗T) ≤ ε →
machine regret eps m′ ε.
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The predicate machine regret eps holds in state s′, against regret bound ε, if all
clients have expected regret in state s′ at most ε (with respect to the σT distri-
bution we describe below), for any rational ε larger than η + ln size A/(η ∗T)
(the regret bound we proved of MW in Sect. 5).

We assume that the history is empty in the initial state (hist m = nil), and
that at least one round was completed (0 < size (hist m′)). By final state m′, we
mean that all clients have synchronized with the server (by receiving a cost vector
and sending a distribution) and then have terminated in CSkip. All clients in state
m are initialized to execute T steps of MW over game A (mult weights A T), from
an initial state and initial ClientPkg.

Part 2: System-wide convergence to an ε-CCE. The machine semantics of Fig. 8
converges to an approximate Coarse Correlated Equilibrium (ε-CCE).

More formally, consider an execution � m =⇒+ m′ of the Fig. 8 semantics
that results in a state m′ for which machine regret eps m′ ε (all clients have regret
at most ε, as established in Part I). The distribution σT , defined as the time-
averaged history of the product of the distributions output by the MW clients
at each round, is an ε-CCE:

σT � λp.

∑T
i=1

∏N
j=1(hist m′)j

i pj

T

By (hist m′)j
i we mean the distribution associated to player j at time i, as

recorded in the execution history stored in state m′. The value ((hist m′)j
i pj) is

the probability that client j chose action pj in round i.
We formalize this property in the following Coq theorem:

Theorem machine regret eCCE m′ ε :
machine regret eps m′ ε →
eCCE ε σT .

which states that σT is an eCCE, with approximation factor ε, as long as each
client’s expected regret over σT is at most ε (machine regret eps m′ ε) – exactly
the property we proved in Part 1 above.

Part 3 System-wide regret bounds. The machine semantics of Fig. 8 converge to
a state with expected cost bounded with respect to the optimal cost.

Consider an execution of the Fig. 8 semantics � m =⇒+ m′ and an ε satisfying
the conditions of all clients bounded regret. If the underlying game is smooth,
the expected cost of the time-averaged distribution of the clients in m′, σT , is
bounded with respect to the cost of an optimal strategy profile s′ by the following
Coq theorem:

Theorem systemwide POA bound A m m′ T (ε : rat) s′ :
hist m = nil → � m =⇒+ m′ → 0 < size (hist m′) → final state m′ →
(∀i, m.clients i = (mult weights A T, init state A η tt (init ClientPkg A))) →
η + ln size A/(η∗T) ≤ ε →
optimal s′ →
ExpectedCost σT ≤ λ/(1−μ) ∗ Cost s′ + (N∗ε/(1−μ))
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In the above theorem, λ and μ are the smoothness parameters of the game A
while N is the number of players. Cost s′ is the social (total) cost of the optimal
state s′.

7 Related Work

Reinforcement Learning, Bandits. There is extensive work on reinforcement
learning [39], multi-agent reinforcement learning (MARL [19]), and multi-armed
bandits (MAB, [15]), more than can be cited here. We note, however, that Q-
learning [41], while similar in spirit to MW, addresses the more general scenario
in which an agent’s action space is modeled by an arbitrary Markov Decision
Process (in MW, the action space is a single set A). Our verified MW imple-
mentation is most suitable, therefore, for use in the full-information analog of
MAB problems, in which actions are associated with “arms” and each agent
learns the cost of all arms – not just the one it pulled – at each time step. In
this domain, MW has good convergence bounds, as we prove formally of our
implementation in this paper. Relaxing our verified MW and formal proofs to
the partial information Bandit setting is interesting future work.

Verified Distributed Systems. EventML [33] is a domain-specific language for
specifying distributed algorithms in the Logic of Events, which can be mechan-
ically verified within the Nuprl proof assistant. Work has been done to develop
methods for formally verifying distributed systems in Isabelle [20]. Model check-
ing has been used extensively (e.g., [21,24]) to test distributed systems for bugs.

Verdi [42] is a Coq framework for implementing verified distributed sys-
tems. A Verdi system is implemented as a collection of handler functions which
exchange messages through the network or communicate with the “outside
world” via input and output. Application-level safety properties of the system
can be proved with respect to a simple, idealized network semantics. A verified
system transformer (VST) can then be used to transform the executable sys-
tem into one which is robust to network faults such as reordering, duplication,
and dropping of packets. The safety properties of the system proved under the
original network semantics are preserved under the new faulty semantics, with
minimal additional proof effort required of the programmer.

The goals of Verdi are complementary to our own. We implement a veri-
fied no-regret MW algorithm, together with a language of Roughgarden smooth
games, for constructing distributed systems with verified convergence and cor-
rectness guarantees. Verdi allows safety properties of a distributed system to
be lifted to analogous systems which tolerate various network faults, and pro-
vides a robust runtime system for execution in a practical setting. It stands to
reason, then, that Verdi (as well as follow-on related work such as [37]) may pro-
vide a natural avenue for building robust executable versions of our distributed
applications. We leave this for future work.

Chapar [23] is a Coq framework for verifying causal consistency of distributed
key-value stores as well as correctness of client programs with respect to causally
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consistent key-value stores. The implementation of a key-value store is proved
correct with respect to a high-level specification using a program refinement
method similar to ours. Although Chapar’s goal isn’t to verify robustness to
network faults, node crashes and message losses are modeled by its abstract
operational semantics.

IronFleet [18] is a framework and methodology for building verified dis-
tributed systems using a mix of TLA-style state machine refinement, Hoare
logic, and automated theorem proving. An IronFleet system is comprised of
three layers: a high-level state machine specification of the overall system, a
more detailed distributed protocol layer which describes the behavior of each
agent in the system as a state machine, and the implementation layer in which
each agent is programmed using a variant of the Dafny [22] language extended
with a trusted set of UDP networking operations. Correctness properties are
proved with respect to the high-level specifications, and a series of refinements
is used to prove that every behavior in the implementation layer is a refine-
ment of some behavior in the high-level specification. IronFleet has been used to
prove safety and liveness properties of IronRSL, a Paxos-based replicated state
machine, as well as IronKV, a shared key-value store.

Alternative Proofs. Variant proofs of Theorem 1, such as the one via KL-
divergence (cf. [1, Section 2.2]), could be formalized in our framework without
modifying most parts of the MW implementation. In particular, because we have
proved once and for all that our interpreted MW refines a high-level specification
of MW, it would be sufficient to formalize the new proof just with respect to the
high-level program of Sect. 5.6.

8 Conclusion

This paper reports on the first formally verified implementation of Multiplica-
tive Weights (MW), a simple yet powerful algorithm for approximately solving
Coarse Correlated Equilibria, among many other applications. We prove our
MW implementation correct via a series of program refinements with respect
to a high-level implementation of the algorithm. We present a DSL for building
smooth games and show how to compose MW with smoothness to build dis-
tributed systems with verified Price of Anarchy bounds. Our implementation
and proof are open source and available online.
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Abstract. We present a novel program verification approach based on
coinduction, which takes as input an operational semantics. No interme-
diates like program logics or verification condition generators are needed.
Specifications can be written using any state predicates. We implement
our approach in Coq, giving a certifying language-independent verifi-
cation framework. Our proof system is implemented as a single module
imported unchanged into language-specific proofs. Automation is reached
by instantiating a generic heuristic with language-specific tactics. Man-
ual assistance is also smoothly allowed at points the automation can-
not handle. We demonstrate the power and versatility of our approach
by verifying algorithms as complicated as Schorr-Waite graph marking
and instantiating our framework for object languages in several styles
of semantics. Finally, we show that our coinductive approach subsumes
reachability logic, a recent language-independent sound and (relatively)
complete logic for program verification that has been instantiated with
operational semantics of languages as complex as C, Java and JavaScript.

1 Introduction

Formal verification is a powerful technique for ensuring program correctness, but
it requires a suitable verification framework for the target language. Standard
approaches such as Hoare logic [1] (or verification condition generators) require
significant effort to adapt and prove sound and relatively complete for a given
language, with few or no theorems or tools that can be reused between languages.
To use a software engineering metaphor, Hoare logic is a design pattern rather
than a library. This becomes literal when we formalize it in a proof assistant.

We present instead a single language-independent program verification frame-
work, to be used with an executable semantics of the target programming lan-
guage given as input. The core of our approach is a simple theorem which gives
a coinduction principle for proving partial correctness.

To trust a non-executable semantics of a desired language, an equivalence
to an executable semantics is typically proved. Executable semantics of pro-
gramming languages abound in the literature. Recently, executable semantics of
several real languages have been proposed, e.g. of C [2], Java [3], JavaScript [4,5],
Python [6], PHP [7], CAML [8], thanks to the development of executable seman-
tics engineering frameworks like K [9], PLT-Redex [10], Ott [11], etc., which
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make defining a formal semantics for a programming language almost as easy as
implementing an interpreter, if not easier. Our coinductive program verification
approach can be used with any of these executable semantics or frameworks,
and is correct-by-construction: no additional “axiomatic semantics”, “program
logic”, or “semantics suitable for verification” with soundness proofs needed.

As detailed in Sect. 6, we are not the first to propose a language-independent
verification infrastructure that takes an operational semantics as input, nor the
first to propose coinduction for proving isolated properties about some pro-
grams. However, we believe that coinduction can offer a fresh, promising and
general approach as a language-independent verification infrastructure, with a
high potential for automation that has not been fully explored yet. In this paper
we make two steps in this direction, by addressing the following research ques-
tions:

RQ1 Is it feasible to have a sound and (relatively) complete verification infras-
tructure based on coinduction, which is language-independent and versa-
tile, i.e., takes an arbitrary language as input, given by its operational
semantics?

RQ2 Is it possible to match, or even exceed, the capabilities of existing language-
independent verification approaches based on operational semantics?

To address RQ1, we make use of a key mathematical result, Theorem 1, which
has been introduced in more general forms in the literature, e.g., in [12,13] and
in [14]. We mechanized it in Coq in a way that allows us to instantiate it with
a transition relation corresponding to any target language semantics, hereby
producing certifying program verification for that language. Using the resulting
coinduction principle to show that a program meets a specification produces a
proof which depends only on the operational semantics. We demonstrate our
proofs can be effectively automated, on examples including heap data structures
and recursive functions, and describe the implemented proof strategy and how
it can be reused across languages defined using a variety of operational styles.

To address RQ2, we show that our coinductive approach not only subsumes
reachability logic [15], whose practicality has been demonstrated with languages
like C, Java, and JavaScript, but also offers several specific advantages. Reacha-
bility logic consists of a sound and (relatively) complete proof system that takes
a given language operational semantics as a theory and derives reachability prop-
erties about programs in that language. A mechanical procedure can translate
any proof using reachability logic into a proof using our coinductive approach.

We first introduce our approach with a simple intuitive example, then prove
its correctness. We then discuss mechanical verification experiments across dif-
ferent languages, show how reachability logic proofs can be translated into coin-
ductive proofs, and conclude with related and future work. Our entire Coq for-
malization, proofs and experiments are available at [16].
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2 Overview and Basic Notions

Section 4 will show the strengths of our approach by means of verifying rather
complex programs. Here our objective is different, namely to illustrate it by ver-
ifying a trivial IMP (C-style) program: s=0; while (--n) {s=s+n;}. Let sum
stand for the program and loop for its while loop. When run with a positive ini-
tial value n of n, it sets s to the sum of 1, . . . , n−1. To illustrate non-termination,
we assume unbounded integers, so loop runs forever for non-positive n. An IMP
language syntax sufficient for this example and a possible execution trace are
given in Fig. 1. The exact step granularity is not critical for our approach, as
long as diverging executions produce infinite traces.

Pgm ::= Stmt

Exp ::= Id
| Int
| -- Id
| Exp op Exp

Stmt ::= skip

| Stmt Stmt
| Id = Exp ;

| if Exp { Stmt }

else { Stmt }

| while Exp { Stmt }

〈s=0; while (--n) {s=s+n;} | n �→ 4〉
〈while (--n) {s=s+n;} | n �→ 4, s �→ 0〉

〈if (--n) {s=s+n; loop} else {skip} | n �→ 4, s �→ 0〉
〈if (3) {s=s+n; loop} else {skip} | n �→ 3, s �→ 0〉

〈s=s+n; loop | n �→ 3, s �→ 0〉
〈s=0+n; loop | n �→ 3, s �→ 0〉
〈s=0+3; loop | n �→ 3, s �→ 0〉

〈s=3; loop | n �→ 3, s �→ 0〉
〈skip; loop | n �→ 3, s �→ 3〉

〈while (--n) {s=s+n;} | n �→ 3, s �→ 3〉
· · · | · · ·

〈while (--n) {s=s+n;} | n �→ 1, s �→ 6〉
〈if (--n) {s=s+n; loop} else {skip} | n �→ 1, s �→ 6〉

〈if (0) {s=s+n; loop} else {skip} | n �→ 0, s �→ 6〉
〈skip | n �→ 0, s �→ 6〉

Fig. 1. Syntax of IMP (left) and sample execution of sum (right)

While our coinductive program verification approach is self-contained and
thus can be presented without reliance on other verification approaches, we prefer
to start by discussing the traditional Hoare logic approach, for two reasons. First,
it will put our coinductive approach in context, showing also how it avoids some
of the limitations of Hoare logic. Second, we highlight some of the subtleties of
Hoare logic when related to operational semantics, which will help understand
the reasons and motivations underlying our definitions and notations.

2.1 Intuitive Hoare Logic Proof

A Hoare logic specification/triple has the form {|ϕpre |} code {|ϕpost |}. The conve-
nience of this notation depends on specializing to a particular target language,
such as allowing variable names to be used directly in predicates to stand for
their values, or writing only the current statement. This hides details of the
environment/state representation, and some framing conventions or composi-
tionality assumptions over the unmentioned parts. A Hoare triple specifies a set
of (partial correctness) reachability claims about a program’s behavior, and it is
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(IMP statement rules)
·

{|ϕ[e/x]|} x= e; {|ϕ|} (HL-asgn)

{|ϕ1|} s1 {|ϕ2|}, {|ϕ2|} s2 {|ϕ3|}
{|ϕ1|} s1 s2 {|ϕ3|} (HL-seq)

{|ϕ ∧ e �= 0|} s1 {|ϕ′|}, {|ϕ ∧ e = 0|} s2 {|ϕ′|}
{|ϕ|} if (e) then {s1} else {s2} {|ϕ′|} (HL-if)

{|ϕ ∧ e �= 0|} s {|ϕ|}
{|ϕ|} while (e) {s} {|ϕ ∧ e = 0|} (HL-while)

(Generic rule)
|= ψ → ϕ, {|ϕ|} s {|ϕ′|}, |= ϕ′ → ψ′

{|ψ|} s {|ψ′|} (HL-conseq)

Fig. 2. IMP program logic.

typically an over-approximation (i.e., it specifies more reachability claims than
desired or feasible). Specifically, assume some formal language semantics of IMP
defining an execution step relation R ⊆ C × C on a set C of configurations
of the form 〈code |σ〉, like those in Fig. 1. We write a →R b for (a, b) ∈ R.
Section 2.3 (Fig. 3) discusses several operational semantics approaches we exper-
imented with (Sect. 4), that yield such step relations R. A (partial correctness)
reachability claim (c, P ), relating an initial state c ∈ C and a target set of states
P ⊆ C, is valid (or holds) iff the initial state c can either reach a state in P or can
take an infinite number of steps (with →R); we write c ⇒R P to indicate that
claim (c, P ) is valid, and a → b or c ⇒ P instead of a →R b or c ⇒R P , resp.,
when R is understood. Then {|ϕpre |}code{|ϕpost |} specifies the set of reachability
claims

{(〈code |σpre〉, {〈skip |σpost 〉 | σpost � ϕpost}) | σpre � ϕpre}
and it is valid iff all of its reachability claims are valid. It is necessary for P
in reachability claims (c, P ) specified by Hoare triples to be a set of configura-
tions (and thus an over-approximation): it is generally impossible for ϕpost to
determine exactly the possible final configuration or configurations.

While one can prove Hoare triples valid directly using the step relation →R

and induction, or coinduction like we propose in this paper, the traditional app-
roach is to define a language-specific proof system for deriving Hoare triples from
other triples, also known as a Hoare logic, or program logic, for the target pro-
gramming language. Figure 2 shows such a program logic for IMP. Hoare logics
are generally not executable, so testing cannot show whether they match the
intended semantics of the language. Even for a simple language like IMP, if one
mistakenly writes e = 1 instead of e �= 0 in rule (HL-while), then one gets an
incorrect program logic. When trusted verification is desired, the program logic
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needs to be proved sound w.r.t. a reference executable semantics of the language,
i.e, that each derivable Hoare triple is valid. This is a highly non-trivial task for
complex languages (C, Java, JavaScript), in addition to defining a Hoare logic
itself. Our coinductive approach completely avoids this difficulty by requiring no
additional semantics of the programming language for verification purposes.

The property to prove is that sum (or more specifically loop) exits only when
n is 0, with s as the sum

∑n−1
i=1 i (or n(n−1)

2 ). In more detail, any configuration
whose statement begins with sum and whose store defines n as n can run indef-
initely or reach a state where it has just left the loop with n 	→ 0, s 	→∑n−1

i=1 i,
and the store otherwise unchanged. As a Hoare logic triple, that specification is

{|n = n|} s=0; while(--n){s=s+n;} {|s =
∑n−1

i=1
i ∧ n=0|}

As seen, this Hoare triple asserts the validity of the set of reachability claims

S ≡ {(cn,σ, Pn,σ) | ∀n,∀σ undefined in n} (1)

where

cn,σ ≡ 〈s=0; while(--n){s=s+n;} | n 	→n, σ〉
Pn,σ ≡ {〈skip | n 	→ 0, s 	→ ∑n−1

i=1 i, σ′〉 | ∀σ′ undefined in n, s}
We added the σ and σ′ state frames above for the sake of complete details about
what Hoare triples actually specify, and to illustrate why P in claims (c, P )
needs to be a set. Since the addition/removal of σ and σ′ does not change the
subsequent proofs, for the remainder of this section, for simplicity, we drop them.

Now let us assume, without proof, that the proof system in Fig. 2 is sound
(for the executable step relation →R of IMP discussed above), and let us use it to
derive a proof of the sum example. Note that the proof system in Fig. 2 assumes
that expressions have no side effects and thus can be used unchanged in state
formulae, which is customary in Hoare logics, so the program needs to be first
translated out into an equivalent one without the problematic --n where expres-
sions have no side effects. We could have had more Hoare logic rules instead of
needing to translate the code segment, but this would quickly make our program
logics significantly more complicated. Either way, with even a simple imperative
programming language like we have here, it is necessary to either add Hoare
logic rules to Fig. 2 or to modify our code segment. These inconveniences are
taken for granted in Hoare logic based verifiers, and they require non-negligible
additional effort if trusted verification is sought. For comparison, our coinductive
verification approach proposed in this paper requires no transformation of the
original program. After modifying the above problematic expression, our code
segment gets translated to the (hopefully) equivalent code:

s=0; n=n-1; while (n) {s=s+n; n=n-1;}
Let loop’ be the new loop and let ϕinv , its invariant, be

s =
((n − 1) − n) (n + n)

2



594 B. Moore et al.

The program variable n stands for its current value, while the mathematical
variable n stands for the initial (sometimes called “old”) value of n. Next, using
the assign and sequence Hoare logic rules in Fig. 2, as well as basic arithmetic
via the (HL-conseq) rule, we derive

{|n = n|} s=0; n=n-1; {|ϕinv |} (2)

Similarly, we can derive {|ϕinv ∧ n �= 0|} s=s+n; n=n-1; {|ϕinv |}. Then, applying
the while rule, we derive {|ϕinv |} loop’ {|ϕinv ∧ n = 0|}. The rest follows by the
sequence rule with the above, (2), and basic arithmetic.

This example is not complicated, in fact it is very intuitive. However, it
abstracts out a lot of details in order to make it easy for a human to understand.
It is easy to see the potential difficulties that can arise in larger examples from
needing to factor out the side effect, and from mixing both program variables
and mathematical variables in Hoare logic specifications and proofs. With our
coinduction verification framework, all of these issues are mitigated.

2.2 Intuitive Coinduction Proof

Since our coinductive approach is language-independent, we do not commit to
any particular, language-specific formalism for specifying reachability claims,
such as Hoare triples. Consequently, we will work directly with raw reachability
claims/specifications S ⊆ C × P(C) consisting of sets of pairs (c, P ) with c ∈ C
and P ⊆ C as seen above. We show how to coinductively prove the claim for
the example sum program in the form given in (1), relying on nothing but a
general language-independent coinductive machinery and the trusted execution
step relation →R of IMP. Recall that we drop the state frames (σ) in (1).

Intuitively, our approach consists of symbolic execution with the language
step relation, plus coinductive reasoning for circular behaviors. Specifically, sup-
pose that Scirc ⊆ C × P(C) is a specification corresponding to some code with
circular behavior, say some loop. Pairs (c, P ) ∈ Scirc with c ∈ P are already
valid, that is, c ⇒R P for those. “Execute” the other pairs (c, P ) ∈ Scirc with
the step relation →R, obtaining a new specification S′ containing pairs of the
form (d, P ), where c →R d; since we usually have a mathematical description of
the pairs in Scirc and S′, this step has the feel of symbolic execution. Note that
Scirc is valid if S′ is valid. Do the same for S′ obtaining a new specification S′′,
and so on and so forth. If at any moment during this (symbolic) execution pro-
cess we reach a specification S that is included in our original Scirc , then simply
assume that S is valid. While this kind of cyclic reasoning may not seem sound,
it is in fact valid, and justified by coinduction, which captures the essence of par-
tial correctness, language-independently. Reaching something from the original
specification shows we have reached some fixpoint, and coinduction is directly
related to greatest fixpoints. This is explained in detail in Sect. 3.

In many examples it is useful to chain together individual proofs, similar to
(HL-seq). Thus, we introduce the following sequential composition construct:
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Definition 1. For S1, S2 ⊆ C × P(C), let S1
o
9 S2 ≡ {(c, P ) | ∃Q . (c,Q) ∈

S1 ∧ ∀d ∈ Q, (d, P ) ∈ S2}. Also, we define trans(S) as S o
9 S (trans can be

thought of as a transitivity proof rule).

If S1 and S2 are valid then S1
o
9 S2 is also valid (Lemma 2).

Given n, let Qn and Tn be the following sets of configurations, where Qn and
Tn represent the invariant set and terminal set, respectively:

Qn ≡ {〈loop | n 	→n′, s 	→∑n−1
i=n′ i〉 | ∀n′}

Tn ≡ {〈skip | n 	→ 0, s 	→ ∑n−1
i=1 i〉}

and let us define the following specifications:

S1 ≡ {(〈s=0; loop | n 	→n〉, Qn) | ∀n}
S2 ≡ {(〈loop | n 	→n′, s 	→∑n−1

i=n′ i〉, Tn) | ∀n, n′}

Our target S in (1) is included in S1
o
9S2, so it suffices to show that S1 and S2 are

valid. S1 clearly is: 〈s=0;loop | n 	→n〉 →+
R 〈loop | n 	→ n, s 	→ 0〉 represents the

(symbolic) execution step or steps taken to assign program variable s, and the
set of specifications {(〈loop | n 	→ n, s 	→ 0〉, Qn) | ∀n} is vacuously valid (note
∑n−1

i=n i = 0). For the validity of S2, we partition it in two subsets, one where
n′ = 1 and another with n′ �= 1 (case analysis). The former holds same as S1,
noting that

〈loop | n 	→ 1, s 	→∑n−1
i=1 i〉 →+

R 〈skip | n 	→ 0, s 	→∑n−1
i=1 i〉

The latter holds by coinduction (for S2), because first

〈loop | n 	→ n′, s 	→ ∑n−1
i=n′ i〉 →+

R 〈loop | n 	→ n′ − 1, s 	→∑n−1
i=n′−1 i〉

and second the following inclusion holds:

{(〈loop | n 	→n′ − 1, s 	→ ∑n−1
i=n′−1 i〉, Tn) | ∀n, n′} ⊆ S2

The key part of the proof above was to show that the reachability claim
about the loop (S2) was stable under the language semantics. Everything else was
symbolic execution using the (trusted) operational semantics of the language. By
allowing desirable program properties to be uniformly specified as reachability
claims about the (executable) language semantics itself, our approach requires
no auxiliary formalization of the language for verification purposes, and thus no
soundness or equivalence proofs and no transformations of the original program
to make it fit the restrictions of the auxiliary semantics. Unlike for the Hoare
logic proof, the main “proof rules” used were just performing execution steps
using the operational semantics rules, as well as the generic coinductive principle.
Section 3 provides all the technical details.
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Structural Operational Semantics

〈x | σ〉 → 〈σ(x) | σ〉
〈--x | σ〉 → 〈i | σ[i/x]〉 if i = σ(x) −Int 1

〈e1 | σ〉 → 〈e′
1 | σ′〉

〈e1 op e2 | σ〉 → 〈e′
1 op e2 | σ′〉

〈e2 | σ〉 → 〈e′
2 | σ′〉

〈i1 op e2 | σ〉 → 〈i1 op e′
2 | σ′〉

〈i1 op i2 | σ〉 → 〈i1 opInt i2 | σ〉
〈s1 | σ〉 → 〈s′

1 | σ′〉
〈s1 s2 | σ〉 → 〈s′

1 s2 | σ′〉
〈skip s | σ〉 → 〈s | σ〉

〈e | σ〉 → 〈e′ | σ′〉
〈x := e | σ〉 → 〈x := e′ | σ′〉

〈x := i | σ〉 → 〈skip | σ[i/x]〉
〈e | σ〉 → 〈e′ | σ′〉

〈if e then {s1} else {s2} | σ〉 → 〈if e′
then {s1} else {s2} | σ′〉

〈if i then {s1} else {s2} | σ〉 → 〈s1 | σ〉 if i �= 0

〈if 0 then {s1} else {s2} | σ〉 → 〈s2 | σ〉
〈while e {s} | σ〉 → 〈if e then {s while e {s}} else {skip} | σ〉

Reduction Semantics
(evaluation contexts syntax omitted— [17])

r → r′

E[r] → E[r′]

〈E | σ〉[x] → 〈E | σ〉[σ(x)]

〈E | σ〉[--x] → 〈E | σ[i/x]〉[i] if i = σ(x) −Int 1

〈E | σ〉[x:= i] → 〈E | σ[i/x]〉[skip]
i1 op i2 → i1 opInt i2

skip s → s
if i then {s1} else {s2} → s1 if i �= 0

if 0 then {s1} else {s2} → s2

while e {s} → if e then {s while e {s}} else {skip}

K Semantics
(configuration and strictness omitted— [9])

〈x
i

...〉k 〈... x �→ i ...〉state

〈 -- x

i −Int 1
...〉k 〈... x �→ i

i −Int 1
...〉state

〈x := i

skip

...〉k 〈... x �→
i

...〉state

(plus the last five simple rules under reduction semantics)

Fig. 3. Three different operational semantics of IMP, generating the same execution
step relation R (or →R).
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2.3 Defining Execution Step Relations

Since our coinductive verification framework is parametric in a step relation,
which also becomes the only trust base when certified verification is sought, it is
imperative for its practicality to support a variety of approaches to define step
relations. Ideally, it should not be confined to any particular semantic style that
ultimately defines a step relation, and it should simply take existing semantics
“off-the-shelf” and turn them into sound and relatively complete program veri-
fiers for the defined languages. We briefly recall three of the semantic approaches
that we experimented with in our Coq formalization [16].

Small-step structural operational semantics [18] (Fig. 3 top) is one of the most
popular semantic approaches. It defines the transition relation inductively. This
semantic style is easy to use, though often inconvenient to define some features
such as abrupt changes of control and true concurrency. Additionally, finding
the next successor of a configuration may take longer than in other approaches.
Reduction semantics with evaluation contexts [17], depicted in the middle of
Fig. 3, is another popular approach. It allows us to elegantly and compactly define
complex evaluation strategies and semantics of control intensive constructs (e.g.,
call/cc), and it avoids a recursive definition of the transition relation. On the
other hand, it requires an auxiliary definition of contexts along with splitting
and plugging functions.

As discussed in Sect. 1, several large languages have been given formal seman-
tics using K [9] (Fig. 3 bottom). K is more involved and less conventional than
the other approaches, so it is a good opportunity to evaluate our hypothesis that
we can just “plug-and-play” operational semantics in our coinductive framework.
A K-style semantics extends the code in the configuration to a list of terms, and
evaluates within subterms by having a transition that extracts the term to the
front of the list, where it can be examined directly. This allows a non-recursive
definition of transition, whose cases can be applied by unification.

In practice, in our automation, we only need to modify how a successor for
a configuration is found. Besides that, the proofs remain exactly the same.

3 Coinduction as Partial Correctness

The intuitive coinductive proof of the correctness of sum in Sect. 2.2 likely raised
a lot of questions. We give formal details of that proof in this section as well
go through some definitions and results of the underlying theory. All proofs,
including our Coq formalization, are in [16].

3.1 Definitions and Main Theorem

First, we introduce a definition that we used intuitively in the previous section:

Definition 2. If R ⊆ C × C, let validR ⊆ C × P(C) be defined as validR =
{(c, P ) | c ⇒R P holds}.



598 B. Moore et al.

Recall from Sect. 2.1 that c ⇒R P holds iff the initial state c can either reach
a state in P or can take an infinite number of steps (with →R). Pairs (c, P ) ∈
C × P(C) are called claims or specifications, and our objective is to prove they
hold, i.e., c ⇒R P . Sets of claims S ⊆ C × P(C) are valid if S ⊆ validR. To
show such inclusions by coinduction, we notice that validR is a greatest fixpoint,
specifically of the following operator:

Definition 3. Given R ⊆ C × C, let stepR : P(C × P(C)) → P(C × P(C)) be

stepR(S) = {(c, P ) | c ∈ P ∨ ∃d . c →R d ∧ (d, P ) ∈ S}
Therefore, to prove (c, P ) ∈ stepR(S), one must show either that c ∈ P or

that (succ(c), P ) ∈ S, where succ(c) is a resulting configuration after taking a
step from c by the operational semantics.

Definition 4. Given a monotone function F : P(D) → P(D), let its F -closure
F ∗ : P(D) → P(D) be defined as F ∗(X) = μY. F (Y ) ∪ X, where μ is the least
fixpoint operator. This is well-defined as Y 	→ F (Y )∪X is monotone for any X.

The following lemma suffices for reachability verification:

Lemma 1. For any R⊆C×C and S ⊆C×P(C), we have S ⊆ stepR(step∗
R(S))

implies S ⊆ validR.

The intuition behind this lemma is captured in Sect. 2.2: we continue taking
steps and once we reach a set of states already seen, we know our claim is valid.
This would not be valid if stepR(step∗

R(S)) was replaced simply with step∗
R(S),

as X ⊆ F ∗(X) hold trivially for any F and X. Lemma 1 (along with elementary
set properties) replaces the entire program logic shown in Fig. 2. The only formal
definition specific to the target language is the operational semantics. Lemma 1
does not need to be modified or re-proven to use it with other languages or
semantics. It generalizes into a more powerful result, that can be used to derive
a variety of coinductive proof principles:

Theorem 1. If F,G : P(D) → P(D) are monotone and G(F (A)) ⊆ F (G∗(A))
for any A ⊆ D, then X ⊆ F (G∗(X)) implies X ⊆ νF for any X ⊆ D, where
νF is the greatest fixpoint of F .

Proofs, including a verified proof in our Coq formulation are in [16]. The
proof can also be derived from [12–14], though techniques from these papers
had previously not been applied to program verification. Lemma1 is an easy
corollary, with both F and G instantiated as stepR, along with a proof that
ν stepR = validR (see [16]). However, instantiating F and G to be the same
function is not always best. An interesting and useful G is the transitivity func-
tion trans in Definition 1, which satisfies the hypothesis in Theorem 1 when F is
stepR. [16] shows other sound instantiations of G.

We can also use Theorem 1 with other definitions of validity expressible as
a greatest fixpoint, e.g., all-path validity. For nondeterministic languages we
might prefer to say c ⇒∀ P holds if no path from c reaches a stuck configuration
without passing through P . This is the greatest fixpoint of

step∀
R(S) = {(c, P ) | c ∈ P ∨ ∃d . c →R d ∧ ∀d . (c →R d implies (d, P ) ∈ S)}
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The universe of validity notions that can be expressed coinductively, and thus
the universe of instances of Theorem 1 is virtually limitless. Below is another
notion of validity that we experimented with in our Coq formalization [16].
When proving global program invariants or safety properties of non-deterministic
programs, we want to state not only reachability claims c ⇒ P , but also that all
the transitions from c to configurations in P respect some additional property,
say T . For example, a global state invariant I can be captured by a T such that
(a, b) ∈ T iff I(a) and I(b), while an arbitrary safety property can be captured by
a T that encodes a monitor for it. This notion of validity, which we call (all-path)
“until” validity, is the greatest fixpoint of:

until∀R(S) ={(c, T, P ) | c ∈ P ∨
∃d . c →R d ∧ ∀d . (c →R d implies (c, d) ∈ T ∧ (d, T, P ) ∈ S)}

This allows verification of properties that are not expressible using Hoare logic.

3.2 Example Proof: Sum

Now we demonstrate the results above by providing all the details that were
skipped in our informal proof in Sect. 2.2. The property that we want to prove,
expressed as a set of claims (c, P ), is

S ≡ {(〈s=0;while(--n){s=s+n;} T | n 	→n, σ[⊥/s]〉,
{〈T | n 	→ 0, s 	→∑n−1

i=1 i, σ〉}) | ∀n, T, σ}

We have to prove S ⊆ validR. Note that this specification is more general than
the specifications in Sect. 2.2. Here, T represents the remainder of the code to
be executed, while σ represents the remainder of the store, with σ[⊥/s] as σ
restricted to Dom(σ)/{s}. Thus, we write out the entire configuration here,
which gives us freedom in expressing more complex specifications if needed.

Instead of proving this directly, we will prove two subclaims valid and connect
them via sequential composition (Definition 1). First, we need the following:

Lemma 2. S1
o
9 S2 ⊆ validR if S1 ⊆ validR and S2 ⊆ validR.

As before, let

Qn ≡ {〈loop; T | n 	→ n′, s 	→ ∑n−1
i=n′ i, σ〉 | ∀n′}

Tn ≡ {〈T | n 	→ 0, s 	→∑n−1
i=1 i〉}

and define

S1 ≡ {(〈s=0; loop; T | n 	→n, σ[⊥/s]〉, Qn) | ∀n, T, σ}
S2 ≡ {(〈loop; T | n 	→ n′, s 	→ ∑n−1

i=n′ i, σ〉, Tn) | ∀n, n′, T, σ}
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Since S ⊆ S1
o
9 S2 (by Qn), it suffices to show S1 ∪ S2 ⊆ validR. To prove

S1 ⊆ validR, by Lemma 1 we show S1 ⊆ stepR(step∗
R(S1)). Regardless of the

employed executable semantics, this should hold:

∀n, T, σ. 〈s=0; loop; T | n 	→n, σ[⊥/s]〉 →R 〈loop; T | n 	→ n, s 	→ 0, σ〉
Choosing the second case of the disjunction in stepR with d matching this step,
it suffices to show

{(〈loop; T | n 	→ n, s 	→ 0, σ〉, Qn) | ∀n, T, σ} ⊆ step∗
R(S1)

Note that we can unfold any fixpoint F ∗(S) to get the following two equations:

F (F ∗(S)) ⊆ F (F ∗(S)) ∪ S = F ∗(S) S ⊆ F (F ∗(S)) ∪ S = F ∗(S) (3)

We use the first equation to expose an application of stepR on the right hand
side, so it suffices to show the above is a subset of stepR(step∗

R(S)). We then use
the first case of the disjunction (showing c ∈ P ) in stepR, and instantiating n′

to n proves this goal, since
∑n−1

i=n i = 0. Thus S1 ⊆ validR.
Now we prove S2 ⊆ validR, or S2 ⊆ stepR(step∗

R(S2)). First, note the oper-
ational semantics of IMP rewrites while loops to if statements. Then, by the
definition of stepR, it suffices to show that

{(〈if(--n){s=s+n;loop};T | n �→ n′, s �→ ∑n−1
i=n′ i, σ〉, Tn) | ∀n, n′, T, σ} ⊆ step∗

R(S2)

Using the first unfolding from (3), it suffices to show the above is a subset of
stepR(step∗

R(S2)), i.e. we expose an application of stepR on the right hand side.
The definition of stepR thus allows the left hand side to continue taking execution
steps, as long as we keep unfolding the fixpoint. Continuing this, the if condition
becomes a single, but symbolic, boolean value. Specifically, it suffices to show:

{(〈if(n′
-1 �= 0){s=s+n;loop};T | n �→ n′-1, s �→ ∑n−1

i=n′ i, σ〉, Tn) |∀n, n′, T, σ}⊆step∗
R(S2)

Further progress requires making a case distinction on whether n′ − 1 = 0. A
case distinction corresponds to observing that A ∪ B ⊆ X if both A ⊆ X and
B ⊆ X. Here we split the current set of claims into those with n′ − 1 = 0 and
n′ − 1 �= 0, and separately establish the following inclusions:

{(〈if(false){s=s+n;loop};T | n �→ 0, s �→ ∑n−1
i=1 i, σ〉, Tn) | ∀n, T, σ} ⊆ step∗

R(S2)

{(〈if(true){s=s+n;loop};T | n �→ n′-1, s �→∑n−1
i=n′ i, σ〉, Tn)|∀n, n′�=1,T, σ} ⊆ step∗

R(S2)

Continuing symbolic execution and using
∑n−1

i=n′ i+(n′ −1) =
∑n−1

i=n′−1 i, we get

{(〈T | n �→ 0, s �→ ∑n−1
i=1 i, σ〉, Tn) | ∀n, T, σ} ⊆ step∗

R(S2)

{(〈loop; T | n �→ n′ − 1, s �→ ∑n−1
i=n′−1 i, σ〉, Tn) | ∀n, n′, T, σ, n′ − 1 �= 0} ⊆ step∗

R(S2)

In the n′ − 1 = 0 case, the current configuration is already in the corresponding
target set. To conclude, we expose another application of stepR as before, but use
the clause c ∈ P of the disjunction in stepR to leave the trivial goal ∀n, T, σ. 〈T |
n 	→ 0, s 	→ n(n−1)

2 , σ〉 ∈ {〈T | n 	→ 0, s 	→ n(n−1)
2 , σ〉}. For the n′ − 1 �= 0 case,
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we have a set of claims that are contained in the initial specification S2. We
conclude by showing S2 ⊆ step∗

R(S2) from the second equation in (3) by noting
that S ⊆ F ∗(S) for any F . So this set of claims is contained in S2 by instantiating
the universally quantified variable n′ in the definition of S2 with n′ − 1. Thus it
is contained in step∗

R(S2) and thus it is a subset of validR.

3.3 Example Proof: Reverse

Consider now the following program to reverse a linked list, written in the HIMP
language (Fig. 5a). We will discuss HIMP in more detail Sect. 4.

decl p; decl y; p := 0;

while (x<>0) { y := (x+1); *(x+1) := p; p := x; x := y; }

Call the above code rev and the loop rev-loop. We prove this program is
correct following intuitions from separation logic [19,20] but using the exact
same coinductive technical machinery as before. Assuming we have a predicate
that matches a heap containing only a linked list starting at address x and
representing the list l (which we will see in Sect. 4.2), our specification becomes:

S ≡ {(〈rev; T | list(l, x)〉, {〈T |λr.list(rev(l), r)〉}) | ∀l, x, T}

where rev is the mathematical list reverse. We proceed as in the previous exam-
ple, first using lemma then stepping with the semantics, but with Qn as

{〈rev-loop; T | list(A, x) ∗ list(B, p) ∗ x 	→ x ∗ p 	→ p ∗ y 	→ y ∗ λr.list(B++A, r)〉
| ∀A,B, p, y}

where ++ is list append. We continue as before to prove our original specification.
S1 and S2 follow from our choice for Qn, our “loop invariant.” Specifically,

S1 ≡ {(〈rev;T | list(l, x)〉, {〈rev-loop;T | list(A, x) ∗ list(B, p) ∗ x �→ x ∗ p �→ p ∗ y �→ y

∗ λr.list(B++A, r)〉 | ∀A, B, p, y}) | ∀l, x, T}
S2 ≡ {(〈rev-loop;T | list(A, x) ∗ list(B, p) ∗ x �→ x ∗ p �→ p ∗ y �→ y ∗ λr.list(B++A, r)〉,

{〈T | λr.list(rev(l), r)〉}) | ∀A, B, p, y, l, x, T}

Then, the individual proofs for these specifications closely follow the same
flavor as in the previous example: use stepR to execute the program via the
operational semantics, use unions to case split as needed, and finish when we
reach something in the target set or that was previously in our specification. The
inherent similarity between these two examples hints that automation should not
be too difficult. We go into detail regarding such automation in Sect. 4.

Reasoning with fixpoints and functions like stepR can be thought of as rea-
soning with proof rules, but ones which interact with the target programming
language only through its operational semantics. The stepR operation corre-
sponds, conceptually, to two such proof rules: taking an execution step and
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HIMP

append(x, y)

decl p;

if (!x) return y;

p := x;

while (*(p+1)<>0) p := *(p+1);

*(p+1) := y;

return x;

Stack

: append over if over begin

1+ dup @ dup while nip repeat

drop ! else nip then ;

Lambda

(λ (λ IfNil 1 0

((λ (λ 0 0)

(λ 1 (λ 1 1 0))) (λ
(λ (λ (λ 0 1)) (Deref 0)

(λ IfNil (Cdr 0)

((λ 5) (Assign 0

(Cons (Car 0) 3)))

(2 (Cdr 0)))))

1)))

Fig. 4. Destructive list append in three languages.

showing that the current configuration is in the target set. Sequential composi-
tion and the trans rule corresponds to a transitivity rule used to chain together
separate proofs. Unions correspond to case analysis. The fixpoint in the closure
definition corresponds to iterative uses of these proof rules or to referring back
to claims in the original specification.

4 Experiments

Now that we have proved the correctness of our coinductive verification approach
and have seen some simple examples, we must consider the following pragmatic
question: “Can this simple approach really work?”. We have implemented it in
Coq, and specified and verified programs in a variety of languages, each language
being defined as an operational semantics [16]. We show not only that coinductive
program verification is feasible and versatile, but also that it is amenable to
highly effective proof automation. The simplifications in the manual proof, such
as taking many execution steps at once, translate easily into proof tactics.

We first discuss the example languages and programs, and the reusable ele-
ments in specifications, especially an effective style of representation predicates
for heap-allocated data structures. Then we show how we wrote specifications
for example programs. Next we describe our proof automation, which was based
on an overall heuristic applied unchanged for each language, though parameter-
ized over subroutines which required somewhat more customization. Finally, we
conclude with discussion of our verification of the Schorr-Waite graph-marking
example and a discussion of our support for verification of divergent programs.

4.1 Languages

We discuss three languages following different paradigms, each defined opera-
tionally. Many language semantics are available with the distributions of K [9],
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PLT-Redex [10], and Ott [11], e.g., but we believe these three languages are suf-
ficient to illustrate the language-independence of our approach. Figure 4 shows
a destructive linked list append function in each of the three languages.

HIMP (IMP with Heap) is an imperative language with (recursive) functions
and a heap. The heap addresses are integers, to demonstrate reasoning about low-
level representations, and memory allocation/deallocation are primitives. The
configuration is a 5-tuple of current code, local variable environment mapping
identifiers to values, call stack with frames as pairs of code and environment,
heap, and a collection of functions as a map from function name to definition.

Stack is a Forth-like stack based language, though, unlike in Forth, we do
make control structures part of the grammar. A shared data stack is used both
for local state and to communicate between function invocations, eliminating the
store, formal parameters on function declarations, and the environment of stack
frames. Stack’s configuration is also a 5-tuple, but instead of a current environ-
ment there is a stack of values, and stack frames do not store an environment.

Lambda is a call-by-value lambda calculus, extended with primitive integers,
pair and nil values, and primitive operations for heap access. Fixpoint combina-
tors enable recursive definitions without relying on primitive support for named
functions. We use De Bruijn indices instead of named variables. The semantics
is based on a CEK/CESK machine [21,22], extended with a heap. Lambda’s
configuration is a 4-tuple: current expression, environment, heap, continuation.

Pgm ::= FunDef ∗

FunDef ::=
Id ( Id∗

, ) { Stmt }

Exp ::= Id ( Exp∗
, )

| alloc | load Exp
| Exp . Id
| build Map
| ...

Stmt ::= * Exp := Exp
| dealloc Exp
| Id ( Exp∗

, ) | decl Id
| return Exp ;

| return ;

| ...
(a) HIMP syntax, ex-
tending the IMP syntax

Pgm ::= FunDef *

FunDef ::=
name : Inst*

Inst ::= Dup n
| Roll n
| Pop | Push z
| BinOp f
| Load | Store
| Call name | Ret
| If Inst* Inst*
| While

Inst* Inst*

(b) Stack syntax

Pgm ::= Val

Val ::= Nat | Inc | Dec | Add
| Add1 Nat | Eq | Eq Val
| Nil | Cons | Cons1 Val
| Car | Cdr
| Closure (Exp, Env)
| Pair (Val , Val)

Exp ::= Exp Exp | λ Exp
| Var Nat
| if Exp then Exp else Exp
| Exp ; Exp | Deref Exp
| & Exp | * Exp | Exp := Exp

Env ::= Val∗

(c) Lambda syntax

Fig. 5. Syntax of HIMP, Stack, and Lambda
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4.2 Specifying Data Structures

Our coinductive verification approach is agnostic to how claims in C ×P(C) are
specified. In Coq, we can specify sets using any definable predicates. Within this
design space, we chose matching logic [23] for our experiments, which introduces
patterns that concisely generalize the formulae of first order logic (FOL) and
separation logic, as well as term unification. Symbols apply on patterns to build
other patterns, just like terms, and patterns can be combined using FOL con-
nectives, just like formulae. E.g., pattern P ∧Q matches a value if P and Q both
match it, [t] matches only the value t, ∃x.P matches if there is any assignment of
x under which P matches, and [[ϕ]] where ϕ is a FOL formula matches any value
if ϕ holds, and no values otherwise (in [23] neither [t] nor [[ϕ]] require a visible
marker, but in Coq patterns are a distinct type, requiring explicit injections).

To specify programs manipulating heap data structures we use patterns
matching subheaps that contain a data structure representing an abstract value.
Following [24], we define representation predicates for data structures as func-
tions from abstract values to more primitive patterns. The basic ingredients are
primitive map patterns: pattern emp for the empty map, k 	→ v for the singleton
map binding key k to value v, and P ∗ Q for maps which are a disjoint union
of submaps matching P and, resp., Q. We use abbreviation 〈ϕ〉 ≡ [[ϕ]] ∧ emp
to facilitate inline assertions, and p 	→{v0, . . . , vi} ≡ p 	→ v0 ∗ . . . ∗ (p + i) 	→ vi to
describe values at contiguous addresses. A heap pattern for a linked list starting
at address p and holding list l is defined recursively by

list(nil, p) = 〈p = 0〉
list(x : l, p) = 〈p �= 0〉 ∗ ∃pl . p 	→{x, pl} ∗ list(l, pl)

We also define list seg(l, e, p) for list segments, useful in algorithms using pointers
to the middle of a list, by generalizing the constant 0 (the pointer to the end of
the list) to the trailing pointer parameter e. Also, simple binary trees:

tree(leaf, p) = 〈p = 0〉
tree(node(x, l, r), p) = 〈p �= 0〉 ∗ ∃pl, pr.p 	→{x, lp, rp} ∗ tree(l, lp) ∗ tree(r, rp)

Given such patterns, specifications and proofs can be done in terms of the
abstract values represented in memory. Moreover, such primitive patterns are
widely reusable across different languages, and so is our proof automation that
deals with primitive patterns. Specifically, our proof scripting specific to such
pattern definitions is concerned exclusively with unfolding the definition when
allowed, deciding what abstract value, if any, is represented at a given address
in a partially unfolded heap. This is further used to decide how another claim
applies to the current state when attempting a transitivity step.

4.3 Specifying Reachability Claims

As mentioned, claims in C × P(C) can be specified using any logical formalism,
here the full power of Coq. An explicit specification can be verbose and low-level,
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Table 1. Example list specifications

call(Head, [x], [H] ∧ list(v : l, x), λr.〈r = v〉 ∗ [H])

call(Tail, [x], [H] ∧ list(v : l, x), λr.[H] ∧ ∗ list(l, r))

call(Add, [y, x], list(l, x), λr.list(y : l, r))

call(Add′, [y, x], [H] ∧ list(l, x), λr.list seg([y], x, r) ∗ [H])

call(Swap, [x], list(a : b : l, x), λr.list(b : a : l, x))

call(Dealloc, [x], list(l, x), λr.emp)

call(Length, [x], [H] ∧ list(l, x), λr.〈r = len(l)〉 ∗ [H])

call(Sum, [x], [H] ∧ list(l, x), λr.〈r = sum(l)〉〉 ∗ [H])

call(Reverse, [x], list(l, x), λr.list(rev(l), r))

call(Append, [x, y], list(a, x) ∗ list(b, y), λr.list(a++b, r))

call(Copy, [x], [H] ∧ list(l, x), λr.list(l, r) ∗ [H])

call(Delete, [v, x], list(l, x), λr.list(delete(v, l), r))

especially when many semantic components in the configuration stay unchanged.
However, any reasonable logic allows making definitions to reduce verbosity and
redundancy. Our use of matching logic particularly facilitates framing conditions,
allowing us to regain the compactness and elegance of Hoare logic or separation
logic specifications with definable syntactic sugar. For example, defining

call(f(formals){body}, args, Pin , Pout) =

{(〈f(args)�rest , env , stk , heap, funs〉, {〈r � rest , env , stk , heap′, funs〉
| ∀r, heap′. heap′ � Pout(r) ∗ [Hf ]})

| ∀rest , env , stk , heap, Hf , funs. heap �Pin ∗ [Hf ] ∧ f �→f(formals){body}∈ funs}

gives the equivalent of the usual Hoare pre-/post-condition on function calls,
including heap framing (in separation logic style). The notation x � y represents
the order of evaluation: evaluate x first followed by y. This is often used when y
can depend on the value x takes after evaluation.

The first parameter is the function definition. The second is the arguments.
The heap effect is described as a pattern Pin for the allowable initial states of
the heap and function Pout from returned values to corresponding heap pat-
terns. For example, we specify the definition D of append in Fig. 4 by writing
call(D, [x, y], (list(a, x) ∗ list(b, y)), (λr.list(a++b, r))), which is as compact and
elegant as it can be. More specifications are given in Table 1. A number of
specifications assert that part of the heap is left entirely unchanged by writ-
ing [H] ∧ . . . in the precondition to bind a variable H to a specific heap, and
using the variable in the postcondition (just repeating a representation predi-
cate might permit a function to reallocate internal nodes in a data structure to
different addresses). The specifications Add and Add’ show that it can be a bit
more complicated to assert that an input list is used undisturbed as a suffix of
a result list. Specifications such as Length, Append, and Delete are written in
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terms of corresponding mathematical functions on the lists represented in the
heap, separating those functional descriptions from details of memory layout.

When a function contains loops, proving that it meets a specification often
requires making some additional claims about configurations which are just
about to enter loops, as we saw in Sect. 2.2. We support this with another pat-
tern that takes the current code at an intermediate point in the execution of a
function, and a description of the environment:

stmt(code, env , Pin , Pout) =
{(〈code, (env , ef ), stk , heap, funs〉, {〈return r � rest , env ′, stk , heap′, funs〉

| ∀r, rest , env ′, heap′.heap′ � Pout(r) ∗ [Hf ]})
| ∀ef , stk , heap,Hf , funs . heap � Pin ∗ [Hf ]}

Verifying the definition of append in Fig. 4 meets the call specification above
requires an auxiliary claim about the loop, which can be written using stmt as

stmt(while (*(p+1)<>0) . . . , (x 	→ x, y 	→ y, p 	→ p),
(list seg(lx, p, x) ∗ list(lp, p) ∗ list(ly, y)), (λr.list(lx++lp++ly, r)))

The patterns above were described using HIMP’s configurations; we defined
similar ones for Stack and Lambda also.

4.4 Proofs and Automation

The basic heuristic in our proofs, which is also the basis of our proof automation,
is to attack a goal by preferring to prove that the current configuration is in the
target set if possible, then trying to use claims in the specification by transitivity,
and only last resorting to taking execution steps according to the operational
semantics or making case distinctions. Each of these operations begins, as in
the example proofs, with certain manipulations of the definitions and fixpoints
in the language-independent core. Our heuristic is reusable, as a proof tactic
parameterized over sub-tactics for the more specific operations. A prelude to the
main loop begins by applying the main theorem to move from claiming validity
to showing a coinduction-style inclusion, and breaking down a specification with
several classes of claims into a separate proof goal for each family of claims.

Additionally, our automation leverages support offered by the proof assis-
tant, such as handling conjuncts by trying to prove each case, existentials by
introducing a unification variable, equalities by unification, and so on. More-
over, we added tactics for map equalities and numerical formulae, which are
shared among all languages involving maps and integers. The current proof goal
after each step is always a reachability claim. So even in proofs which are not
completely automatic, the proof automation can give up by leaving subgoals for
the user, who can reinvoke the proof automation after making some proof steps
of their own as long as they leave a proof goal in the same form.
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Proving the properties in Table 1 sometimes required making additional
claims about while loops or auxiliary recursive functions. All but the last four
were proved automatically by invoking (an instance of) our heuristic proof tactic:

Proof. list_solver. Qed.

Append and copy needed to make use of associativity of list append. Reverse
used a loop reversing the input list element by element onto an output list, which
required relating the tail recursive rev app(x : l, y) = rev app(l, x : y) with the
Coq standard library definition rev(x : l) = rev(l)++[x]. Manually applying these
lemmas merely modified the proof scripts to

list_solver. rewrite app_ass in * |- . list_run.
list_solver. rewrite <- rev_alt in * |- . list_run.

These proofs were used verbatim in each of our example languages. The only
exceptions were append and copy for Lambda, for which the app ass lemma was
not necessary. For Delete, simple reasoning about delete(v , l) when v is and is
not at the head of the list is required, though the actual reasoning in Coq varies
between our example languages. No additional lemmas or tactics equivalent to
Hoare rules are needed in any of these proofs.

4.5 Other Data Structures

Matching logic allows us to concisely define many other important data struc-
tures. Besides lists, we also have proofs in Coq with trees, graphs, and stacks [16].
These data structures are all used for proving properties about the Schorr-Waite
algorithm. In the next section we go into more detail about these data structures
and how they are used in proving the Schorr-Waite algorithm.

4.6 Schorr-Waite

Our experiments so far demonstrate that our coinductive verification approach
applies across languages in different paradigms, and can handle usual heap pro-
grams with a high degree of automation. Here we show that we can also handle
the famous Schorr-Waite graph marking algorithm [25], which is a well-known
verification challenge, “The Schorr-Waite algorithm is the first mountain that
any formalism for pointer aliasing should climb” [26]. To give the reader a feel
for what it takes to mechanically verify such an algorithm, previous proofs in [27]
and [28] required manually produced proof scripts of about 470 and, respectively,
over 1400 lines and they both used conventional Hoare logic. In comparison our
proof is 514 lines. Line counts are a crude measure, but we can at least conclude
that the language independence and generality of our approach did not impose
any great cost compared to using language-specific program logics.

The version of Schorr-Waite that we verified is based on [29]. First, however,
we verify a simpler property of the algorithm, showing that the given code cor-
rectly marks a tree, in the absence of sharing or cycles. Then we prove the same



608 B. Moore et al.

code works on general graphs by considering the tree resulting from a depth first
traversal. We define graphs by extending the definition of trees to allow a child
of a node in an abstract tree to be a reference back to some existing node, in
addition to an explicit subtree or a null pointer for a leaf. To specify that graph
nodes are at their original addresses after marking, we include an address along
with the mark flag in the abstract data structure in the pattern

grph(leaf,m, p′) = 〈p′ = 0〉
grph(backref(p),m, p′) = 〈p′ = p〉
grph(node(p, l, r),m, p′) = 〈p′=p〉 ∗ ∃pl, pr .

p 	→{m, pl, pr} ∗ grph(l,m, pl) ∗ grph(r,m, pr)

The overall specification is call(Mark , [p], grph(G, 0, p), λr.grph(G, 3, p)).
To describe the intermediate states in the algorithm, including the clever

pointer-reversal trick used to encode a stack, we define another data structure for
the context, in zipper style. A position into a tree is described by its immediate
context, which is either the topmost context, or the point immediately left or
right of a sibling tree, in a parent context. These are represented by nodes
with intermediate values of the mark field, with one field pointing to the sibling
subtree and the other pointing to the representation of the rest of the context.

stack(Top, p) = 〈p = 0〉
stack(LeftOf(r, k), p) = ∃pr, pk . p 	→{1, pr, pk} ∗ grph(r, 0, pr) ∗ stack(k, pk)

stack(RightOf(l, k), p) = ∃pl, pk . p 	→{2, pk, pl} ∗ stack(k, pk) ∗ grph(l, 3, pl)

This is the second data structure needed to specify the main loop. When it is
entered, there are only two live local variables, one pointing to the next address
to visit and the other keeping context. The next node can either be the root of
an unmarked subtree, with the context as stack, or the first node in the implicit
stack when ascending after marking a tree, with the context pointing to the node
that was just finished. For simplicity, we write a separate claim for each case.

stmt(Loop, (p 	→ p, q 	→ q), (grph(G, 0, p) ∗ stack(S, q)), λr.grph(plug(G,S), 3))
stmt(Loop, (p 	→ p, q 	→ q), (stack(S, p) ∗ grph(G, 3, q)), λr.grph(plug(G,S), 3))

The application of all the semantic steps was handled entirely automatically,
the manual proof effort being entirely concerned with reasoning about the pred-
icates above, for which no proof automation was developed.

4.7 Divergence

Our coinductive framework can also be used to verify a program is divergent.
Such verification is often a topic that is given its own treatment, as in [30,31],
though in our framework, no additional care is needed. To prove a program is
divergent on all inputs, one verifies a set of claims of the form (c, ∅), so that no
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configuration can be determined valid by membership in the final set of states.
We have verified the divergence of a simple program under each style of IMP
semantics in Fig. 3, as well as programs in each language from Sect. 4.1. These
program include the omega combinator and the sum program from Sect. 3.2 with
true replacing the loop guard.

4.8 Summary of Experiments

Statistics are shown in Table 2. For each example, size shows the amount of
code to be verified, the size of the specification, and the size of the proof script.
If verifying an example required auxiliary definitions or lemmas specific to that
example, the size of those definitions were counted with the specification or proof.
Many examples were verified by a single invocation of our automatic proof tactic,
giving 1-line proofs. Other small proofs required human assistance only in the
form of applying lemmas about the domain. Proofs are generally smaller than
the specifications, which are usually about as large as the code. This is similar
to the results for Bedrock [32], and good for a foundational verification system.

Table 2. Proof statistics

Size (lines) Time (s)

Example Code Spec Proof Prove Check

Simple
undefined 2 3 1 2.1 1.1
average3 2 5 1 2.3 0.8

min 3 4 2 2.1 0.7
max 3 4 2 2.1 0.7

multiply 9 6 1 7.2 1.4
sum(rec) 6 7 6 4.2 1.0
sum(iter) 6 11 8 6.0 1.0

Trees
height 8 3 3 20.5 4.1

size 5 3 1 8.0 2.2
find 6 9 1 15.5 3.1

mirror 7 6 1 19.0 4.2
dealloc 15 7 1 19.6 4.1

flatten(rec) 12 10 1 30.9 6.8
flatten(iter) 24 17 4 150.3 22.8

Size (lines) Time (s)

Example Code Spec Proof Prove Check

Lists: head 2 4 1 2.1 0.8
tail 2 4 1 2.2 0.9
add 4 4 1 4.8 1.2

swap 6 4 1 19.6 3.6
dealloc 6 4 1 6.3 1.3

length(rec) 4 4 1 4.8 1.4
length(iter) 4 8 1 7.2 1.5

sum(rec) 4 4 1 8.2 2.0
sum(iter) 4 8 1 9.11 1.7

reverse 8 5 3 15.0 2.2
append 7 9 3 19.4 3.6

copy 14 11 3 55.0 9.3
delete 16 18 9 44.6 6.0

Schorr-Waite
tree 14 91 116 60.1 7.6

graph 14 91 203 133.6 18.2

The reported “Proof” time is the time for Coq to process the proof script,
which includes running proof tactics and proof searches to construct a com-
plete proof. If this run succeeds, it produces a proof certificate file which can
be rechecked without that overhead. For an initial comparison with Bedrock
we timed their SinglyLinkedList.v example, which verifies length, reverse,
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and append functions that closely resemble our example code. The total time
to run the Bedrock proof script was 93 s, and 31 s to recheck the proof cer-
tificate, distinctly slower than our times in Table 2. To more precisely match
the Bedrock examples we modified our programs to represent lists nodes with
fields at successive addresses rather than using HIMP’s records, but this only
improved performance, down to 20 s to run the proof scripts, and 4 s to check
the certificates.

5 Subsuming Reachability Logic

Reachability logic [33] is a closely related approach to program verification using
operational semantics. In fact, our coinductive approach came about when trying
to distill reachability logic into its mathematical essence. The practicality of
reachability logic has recently been demonstrated, as the reachability logic proof
system has been shown to work with several independently developed semantics
of real-world languages, such as C, Java, and JavaScript [15].

5.1 Advantages of Coinduction

Axiom :

ϕ ⇒ ϕ′ ∈ A
A �C ϕ ⇒ ϕ′

Reflexivity :

A � ϕ ⇒ ϕ

Transitivity :

A �C ϕ1 ⇒+ ϕ2 A ∪ C � ϕ2 ⇒ ϕ3

A �C ϕ1 ⇒ ϕ3

Logic Framing :

A �C ϕ ⇒ ϕ′ ψ is a FOL formula
A �C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ

Consequence :

|= ϕ1 → ϕ′
1 A �C ϕ′

1 ⇒ ϕ′
2 |= ϕ′

2 → ϕ2

A �C ϕ1 ⇒ ϕ2

Case Analysis :
A �C ϕ1 ⇒ ϕ A �C ϕ2 ⇒ ϕ

A �C ϕ1 ∨ ϕ2 ⇒ ϕ

Abstraction :

A �C ϕ ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A �C ∃X ϕ ⇒ ϕ′

Circularity :

A �C∪{ϕ⇒ϕ′} ϕ ⇒ ϕ′

A �C ϕ ⇒ ϕ′

Fig. 6. Reachability Logic proof
system. Sequent A  ϕ ⇒ ϕ′ is a
shorthand for A ∅ ϕ ⇒ ϕ′.

A mechanical proof of our soundness theorem
gives a more usable verification framework,
since reachability logic requires operational
semantics to be given as a set of rewrite rules,
while our approach does not. Further, reacha-
bility logic fixes a set of syntactic proof rules,
while in our approach the mathematical fix-
points and functions act as proof rules with-
out explicitly requiring any. In fact, the gen-
erality of our approach allows introductions
of other derived rules that do not compromise
the soundness result. Similarly, the generality
allows higher-order verification, which reach-
ability logic cannot handle.

Further, we saw in Sect. 3 that the general
proof of our theorem is entirely mathemati-
cal. We instantiate it with the stepR func-
tion to get a program verification framework.
However, if we instantiate it with other func-
tions, we could get frameworks for proving
different properties, such as all-path valid-
ity or the “until” notion of validity previ-
ously mentioned. Reachability logic does not
support any other notion of validity with-
out changes to its proof system, which then
require new proofs of soundness and relative
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completeness. For our framework, the proof of the main theorem does not need
to be modified at all, and one only needs to prove that all-path validity is a
greatest fixpoint (see Sect. 3). The same is true for any property. In this sense,
this coinduction framework is much more general than the reachability logic
proof system presented in [34].

5.2 Reachability Logic Proof System

The key construct in reachability logic is the notion of circularity. Circularities,
represented as C in Fig. 6, intuitively represent claims that are conjectured to
be true but have not yet been proved true. These claims are proved using the
Circularity rule, which is analogous in our coinductive framework to referring back
to claims previously seen. Most of the other rules in Fig. 6 are not as interesting.
Transitivity requires progress before the circularities are flushed as axioms. This
corresponds to the outer stepR in our coinductive framework.

Clearly, there are obvious parallels between the Reachability Logic proof
system and our coinductive framework. We have formalized and mechanically
verified a detailed proof that reachability logic is an instance of our coinductive
verification framework. One can refer to [16] for full details, but we briefly discuss
the nature of the proof below.

5.3 Reachability Logic is Coinduction

To formalize what it means for reachability logic to be an instance of coinduction,
we first need some definitions. First, we need a translation from a reachability
rule to a set of coinductive claims. In a reachability rule ϕ ⇒ ϕ′, both ϕ and
ϕ′ are patterns which respectively describe (symbolically) the starting and the
reached configurations. Both ϕ and ϕ′ can have free variables. Let Var be the
set of variables. Then, we define the set of claims

Sϕ⇒ϕ′ ≡ {(c, ρ(ϕ′)) | c ∈ ρ(ϕ), ∀ρ : Var → Cfg}
where Cfg is the model of configurations and ρ(·) is the extension of the valuation
ρ to patterns [15]. Also, let the claims derived from a set of reachability rules
X = {ϕ1 ⇒ ϕ′

1, . . . , ϕn ⇒ ϕ′
n} be:

X ≡
⋃

ϕi⇒ϕ′
i∈X

Sϕi⇒ϕ′
i

In reachability logic, programming language semantics are defined as theo-
ries, that is, as sets of (one-step) reachability rules A with patterns over a given
signature of symbols. Each theory A defines a transition relation over the con-
figurations in Cfg , say RA, which is then used to define the semantic validity
in reachability logic, A |= ϕ ⇒ ϕ′. It is possible and easier to prove our main
theorem more generally, for any transition relation R that satisfies R �+ A:

R �+ A if R �+ ϕ ⇒ ϕ′ for each ϕ ⇒ ϕ′ ∈ A
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where R �+ ϕ ⇒ ϕ′ if for each ρ : Var → Cfg and γ : Cfg such that (ρ, γ) � ϕ
[33], there is a γ′ such that γ →R γ′ and (γ′, ρ(ϕ′)) is a valid reachability claim.

Lemma 3. RA �+ A and if Sϕ⇒ϕ′ ⊆ validRA then A � ϕ ⇒ ϕ′.

This lemma suggests what to do: take any reachability logic proof of A �
ϕ ⇒ ϕ′ and any transition relation R such that R �+ A, and produce a coin-
ductive proof of Sϕ⇒ϕ′ ⊆ validR. This gives us not only a procedure to associate
coinductive proofs to reachability logic proofs, but also an alternative method
to prove the soundness of reachability logic. This is what we do below:

Theorem 2. If there is a reachability logic proof derivation for A � ϕ ⇒ ϕ′ and
a transition relation R such that R �+ A, then Sϕ⇒ϕ′ ⊆ validR, and in particular
this holds by applying Theorem1 to an inclusion C ⊆ stepR(derived∗

R(C)). Here,
derivedR is a particular function satisfying the conditions for G in Theorem1
(see [16] for more details), and C is a set of reachability rules consisting of ϕ ⇒ ϕ′

along with those reachability rules which appear as conclusions of instances of
the Circularity proof rule in the proof tree of A � ϕ ⇒ ϕ′.

To prove Theorem 2, we apply the Set Circularity theorem of reachability
logic [35], which states that any reachability logic claim A � ϕ ⇒ ϕ′ is provable
iff there is some set of claims C such that ϕ ⇒ ϕ′ ∈ C and for each ϕi ⇒ ϕ′

i ∈ C
there is a proof of A �C ϕi ⇒ ϕ′

i which does not use the Circularity proof rule. In
the forward direction, we can take C as defined in the statement of Theorem 2.
The main idea is to convert proof trees into inclusions of sets of claims:

Lemma 4. Given a proof derivation of A �C ϕa ⇒ ϕb which does not use the
Circularity proof rule (last rule in Fig. 6), if R �+ A and C is nonempty then
Sϕa⇒ϕb

⊆ stepR(derived∗
R(C)).

This lemma is proven by strengthening the inclusion into one that can be proven
by structural induction over the Reachability Logic proof rules besides Circularity.

Combining this lemma with Set Circularity shows that C = ∪iSϕi⇒ϕ′
i

⊆
validR which implies that Sϕ⇒ϕ′ ⊆ validR exactly as desired. We have mecha-
nized the proofs of Lemmas 3 and 4 in Coq [16]. This is a major result, consti-
tuting an independent soundness proof for Reachability Logic, and helps demon-
strate the strength of our coinductive framework, despite its simplicity. More-
over, this allows proofs done using reachability logic as in [15] to be translated
to mechanically verified proofs in Coq, immediately allowing foundational veri-
fication of programs written in any language.

6 Other Related Work

Here we discuss work other than reachability logic that is related to our coinduc-
tive verification system. We discuss commonly used program verifiers, including
approaches based on operational semantics and Iris [36], an approach with some
language independence. We also discuss related coinduction schemata.
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6.1 Current Verification Tools

A number of prominent tools such as Why [37], Boogie [38,39], and Bedrock
[24,32] provide program verification for a fixed language, and support other
languages by translation if at all. For example, Frama-C and Krakatoa, respec-
tively, attempt to verify C and Java by translation through Why. Also, Spec#
and Havoc, respectively, verify C# and C by translation through Boogie. We are
not aware of soundness proofs for these translations. Such proofs would be highly
non-trivial, requiring formal semantics of both source and target languages.

All of these systems are based on a verification condition (VC) generator for
their programming language. Bedrock is closest in architecture and guarantees
to our system, as it is implemented in Coq and verification results in a Coq
proof certificate that the specification is sound with respect to a semantics of
the object language. Bedrock supports dynamically created code, and modular
verification of higher-order functions, for which our framework has preliminary
support. Bedrock also makes more aggressive attempts at complete automation,
which costs increased runtime. Most fundamentally, Bedrock is built around a
VC generator for a fixed target language.

In sharp contrast to the above approaches, we demonstrated that a small-
step operational semantics suffices for program verification, without a need to
define any other semantics, or verification condition generators, for the same
language. A language-independent, sound and (relatively) complete coinductive
proof method then allows us to verify properties of programs using directly
the operational semantics. As seen in Sect. 4.8 this language independence does
not compromise other desirable properties. The required human effort and the
performance of the verification task compare well with foundational program
verifiers such as Bedrock, and we provide the same high confidence in correctness:
the trust base consists of the operational semantics only.

6.2 Operational Semantics Based Approaches

Verifiable C [40] is a program verification tool for the C programming language
based on an operational semantics for C defined in Coq. Hoare triples are then
proved as lemmas about the operational semantics. However, in this approach
and other similar approaches, it is necessary to prove such lemmas. Without
them, verification of any nontrivial C program would be nearly impossible. In
our approach, while we can also define and prove Hoare triples as lemmas, doing
so is not needed to make program verification feasible, as demonstrated in the
previous sections. We only need some additional domain reasoning in Coq, which
logics like Verifiable C require in addition to Hoare logic reasoning. Thus, our
approach automatically yields a program verification tool for any language with
minimal additional reasoning, while approaches such as Verifiable C need over
40,000 lines of Coq to define the program logic. We believe this is completely
unnecessary, and hope our coinductive framework will be the first step in elimi-
nating such superfluous logics.
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The work by the FLINT group [41–43] is another approach to program ver-
ification based on operational semantics. Languages developed use shallowly
embedded state predicates in Coq, and inference rules are derived directly from
the operational semantics. However, their work is not generic over operational
semantics. For example, [43] is developed in the context of a particular machine
model, with a fixed memory representation and register file. Even simple changes
such as adding registers require updating soundness proofs. Our approach has a
single soundness theorem that can be instantiated for any language.

Iris [36] is a concurrent separation logic that has language independence,
with operational semantics formalized in Coq. Iris adds monoids and invariants
to the program logic in order to facilitate verification. It also derives some Hoare-
style rules for verification from the semantics of a language. However, there are
still structural Hoare rules that depend on the language that must be added
manually. Additionally, once proof rules are generated, they are specialized to
that particular language. Further, the verification in the paper relies on Hoare
style reasoning, while in our approach, we do not assume any such verification
style, as we work directly with the mathematical specifications. Finally, the
monoids used are not generated and are specific to the program language used.

6.3 Other Coinduction Schemata

A categorical generalization of our key theorem was presented as a recursion
scheme in [12,13]. The titular result of the former is the dual of the λ-coiteration
scheme of the latter, which specializes to preorder categories to give our The-
orem 1. A more recent and more general result is [14], which also generalized
other recent work on coinductive proofs such as [44]. Unlike these approaches,
which were presented for showing bisimilarity, the novelty of our approach stems
in the use of these techniques directly to show Hoare-style functional correct-
ness claims, and in the development of the afferent machinery and automa-
tion that makes it work with a variety of languages, and not in advancing the
already solid mathematical foundations of coinduction. Various weaker coin-
duction schemes are folklore, such as Isabelle/HOL’s standard library’s lemma
coinduct3: mono(f) ∧ A⊆f(μx. f(x) ∪ A ∪ νf) =⇒ A⊆ν(f).

7 Conclusion and Future Work

We presented a language-independent program verification framework. Proofs
can be as simple as with a custom Hoare logic, but only an operational semantics
of the target language is required. We have mechanized a proof of the correctness
of our approach in Coq. Combining this with a coinductive proof thus produces a
Coq proof certificate concluding that the program meets the specification accord-
ing to the provided semantics. Our approach is amenable to proof automation.
Further automation may improve convenience and cannot compromise sound-
ness of the proof system. A language designer need only give an authoritative
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semantics to enable program verification for a new language, rather than needing
to have the experience and invest the effort to design and prove the soundness
of a custom program logic.

One opportunity for future work is using our approach to provide proof cer-
tificates for reachability logic program verifiers such as K [9]. The K prover was
used to verify programs in several real programming languages [15]. While the
proof system is sound, trusting the results of these tools requires trusting the
implementation of the K system. Our translation in Sect. 5 will allow us to pro-
duce proof objects in Coq for proofs done in K’s backend, which will make it
sufficient to trust only Coq’s proof checker to rely on the results from K’s prover.

Another area for future work is verifying programs with higher-order specifi-
cations, where a specification can make reachability claims about values quanti-
fied over in the specification. This allows higher-order functions to have specifica-
tions that require functional arguments to themselves satisfy some specification.
We have begun preliminary work on proving validity of such specifications using
the notions of compatibility up-to presented in [14]. Combining this with more
general forms of claims may allow modular verification of concurrent programs,
as in RGsep [45]. See [16] for initial work in these areas.

Other areas for future work are evaluating the reusability of proof automa-
tion between languages, and using the ability to easily verify programs under a
modified semantics, e.g. adding time costs to allow proving real-time properties.
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15. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program
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Abstract. Our increasing dependence on complex and critical informa-
tion infrastructures and the emerging threat of sophisticated attacks,
ask for extended efforts to ensure the correctness and security of these
systems. Byzantine fault-tolerant state-machine replication (BFT-SMR)
provides a way to harden such systems. It ensures that they maintain
correctness and availability in an application-agnostic way, provided that
the replication protocol is correct and at least n − f out of n replicas
survive arbitrary faults. This paper presents Velisarios, a logic-of-events
based framework implemented in Coq, which we developed to implement
and reason about BFT-SMR protocols. As a case study, we present the
first machine-checked proof of a crucial safety property of an implemen-
tation of the area’s reference protocol: PBFT.

Keywords: Byzantine faults · State machine replication
Formal verification · Coq

1 Introduction

Critical information infrastructures such as the power grid or water supply sys-
tems assume an unprecedented role in our society. On one hand, our lives depend
on the correctness of these systems. On the other hand, their complexity has
grown beyond manageability. One state of the art technique to harden such crit-
ical systems is Byzantine fault-tolerant state-machine replication (BFT-SMR).
It is a generic technique that is used to turn any service into one that can toler-
ate arbitrary faults, by extensively replicating the service to mask the behavior
of a minority of possibly faulty replicas behind a majority of healthy replicas,
operating in consensus.1 The total number of replicas n is a parameter over the
maximum number of faulty replicas f , which the system is configured to tolerate

This work is partially supported by the Fonds National de la Recherche Luxembourg
(FNR) through PEARL grant FNR/P14/8149128.

1 For such techniques to be useful and in order to avoid persistent and shared vul-
nerabilities, replicas need to be rejuvenated periodically [17,76], they need to be
diverse enough [43], and ideally they need to be physically far apart. Diversity and
rejuvenation are not covered here.
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at any point in time. Typically, n = 3f +1 for classical protocols such as in [16],
and n = 2f + 1 for protocols that rely on tamper-proof components such as
in [82]. Because such protocols tolerate arbitrary faults, a faulty replica is one
that does not behave according to its specification. For example it can be one
that is controlled by an attacker, or simply one that contains a bug.

Ideally, we should guarantee the correctness and security of such replicated
and distributed, hardened systems to the highest standards known to mankind
today. That is, the proof of their correctness should be checked by a machine and
their model refined down to machine code. Unfortunately, as pointed out in [29],
most distributed algorithms, including BFT protocols, are published in pseudo-
code or, in the best case, a formal but not executable specification, leaving their
safety and liveness questionable. Moreover, Lamport, Shostak, and Pease wrote
about such programs: “We know of no area in computer science or mathematics
in which informal reasoning is more likely to lead to errors than in the study of
this type of algorithm.” [54]. Therefore, we focus here on developing a generic
and extensible formal verification framework for systematically supporting the
mechanical verification of BFT protocols and their implementations.2

Our framework provides, among other things, a model that captures the
idea of arbitrary/Byzantine faults; a collection of standard assumptions to rea-
son about systems with faulty components; proof tactics that capture common
reasoning patterns; as well as a general library of distributed knowledge. All
these parts can be reused to reason about any BFT protocol. For example, most
BFT protocols share the same high-level structure (they essentially disseminate
knowledge and vote on the knowledge they gathered), which we capture in our
knowledge theory. We have successfully used this framework to prove a crucial
safety property of an implementation of a complex BFT-SMR protocol called
PBFT [14–16]. We handle all the functionalities of the base protocol, including
garbage collection and view change, which are essential in practical protocols.
Garbage collection is used to bound message logs and buffers. The view change
procedure enables BFT protocols to make progress in case the primary—a dis-
tinguished replica used in some fault-tolerant protocols to coordinate votes—
becomes faulty.

Contributions. Our contributions are as follows: (1) Section 3 presents Velisar-
ios, our continuing effort towards a generic and extensible logic-of-events based
framework for verifying implementations of BFT-SMR protocols using Coq [25].
(2) As discussed in Sect. 4, our framework relies on a library to reason about
distributed epistemic knowledge. (3) We implemented Castro’s landmark PBFT
protocol, and proved its agreement safety property (see Sect. 5). (4) We imple-
mented a runtime environment to run the OCaml code we extract from Coq (see
Sect. 6). (5) We released Velisarios and our PBFT safety proof under an open
source licence.3

2 Ideally, both (1) the replication mechanism and (2) the instances of the replicated
service should be verified. However, we focus here on (1), which has to be done only
once, while (2) needs to be done for every service and for every replica instance.

3 Available at: https://github.com/vrahli/Velisarios.

www.dbooks.org

https://github.com/vrahli/Velisarios
https://www.dbooks.org/


Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq 621

Why PBFT? We have chosen PBFT because several BFT-SMR protocols
designed since then either use (part of) PBFT as one of their main building
blocks, or are inspired by it, such as [6,8,26,45,46,82], to cite only a few. There-
fore, a bug in PBFT could imply bugs in those protocols too. Castro provided
a thorough study of PBFT: he described the protocol in [16], studied how to
proactively rejuvenate replicas in [14], and provided a pen-and-paper proof of
PBFT’s safety in [15,17]. Even though we use a different model—Castro used I/O
automata (see Sect. 7.1), while we use a logic-of-events model (see Sect. 3)—our
mechanical proof builts on top of his pen-and-paper proof. One major difference
is that here we verify actual running code, which we obtain thanks to Coq’s
extraction mechanism.

2 PBFT Recap

This section provides a rundown of PBFT [14–16], which we use as running
example to illustrate our model of BFT-SMR protocols presented in Sect. 3.

2.1 Overview of the Protocol

We describe here the public-key based version of PBFT, for which Castro pro-
vides a formal pen-and-paper proof of its safety. PBFT is considered the first
practical BFT-SMR protocol. Compared to its predecessors, it is more efficient
and it does not rely on unrealistic assumptions. It works with asynchronous,
unreliable networks (i.e., messages can be dropped, altered, delayed, duplicated,
or delivered out of order), and it tolerates independent network failures. To
achieve this, PBFT assumes strong cryptography in the form of collision-resistant
digests, and an existentially unforgeable signature scheme. It supports any deter-
ministic state machine. Each state machine replica maintains the service state
and implements the service operations. Clients send requests to all replicas and
await f + 1 matching replies from different replicas. PBFT ensures that healthy
replicas execute the same operations in the same order.

To tolerate up to f faults, PBFT requires |R| = 3f+1 replicas. Replicas move
trough a succession of configurations called views. In each view v, one replica
(p = v mod |R|) assumes the role of primary and the others become backups.
The primary coordinates the votes, i.e., it picks the order in which client requests
are executed. When a backup suspects the primary to be faulty, it requests a
view-change to select another replica as new primary.

Normal-Case. During normal-case operation, i.e., when the primary is not sus-
pected to be faulty by a majority of replicas, clients send requests to be executed,
which trigger agreement among the replicas. Various kinds of messages have to be
sent among clients and replicas before a client knows its request has been exe-
cuted. Figure 1 shows the resulting message patterns for PBFT’s normal-case
operation and view-change protocol. Let us discuss here normal-case operation:



622 V. Rahli et al.

Replica 0 = primary v

Client

Replica 1 = primary v+1

Replica 2

Replica 3

request pre-prepare prepare commit reply view-change new-view

view v view v+1

Fig. 1. PBFT normal-case (left) and view-change (right) operations

1. Request: To initiate agreement, a client c sends a request of the form
〈REQUEST, o, t, c〉σc

to the primary, but is also prepared to broadcast it to
all replicas if replies are late or primaries change. 〈REQUEST, o, t, c〉σc

specifies
the operation to execute o and a timestamp t that orders requests of the same
client. Replicas will not re-execute requests with a lower timestamp than the
last one processed for this client, but are prepared to resend recent replies.

2. Pre-prepare: The primary of view v puts the pending requests in a total order
and initiates agreement by sending 〈PRE-PREPARE, v, n,m〉σp

to all the back-
ups, where m should be the nth executed request. The strictly monotonically
increasing and contiguous sequence number n ensures preservation of this
order despite message reordering.

3. Prepare: Backup i acknowledges the receipt of a pre-prepare message by send-
ing the digest d of the client’s request in 〈PREPARE, v, n, d, i〉σi

to all replicas.
4. Commit: Replica i acknowledges the reception of 2f prepares matching a

valid pre-prepare by broadcasting 〈COMMIT, v, n, d, i〉σi
. In this case, we say

that the message is prepared at i.
5. Execution & Reply: Replicas execute client operations after receiving 2f + 1

matching commits, and follow the order of sequence numbers for this exe-
cution. Once replica i has executed the operation o requested by client c, it
sends 〈REPLY, v, t, c, i, r〉σi

to c, where r is the result of applying o to the ser-
vice state. Client c accepts r if it receives f +1 matching replies from different
replicas.

Client and replica authenticity, and message integrity are ensured through
signatures of the form 〈m〉σi

. A replica accepts a message m only if: (1) m’s
signature is correct, (2) m’s view number matches the current view, and (3) the
sequence number of m is in the water mark interval (see below).

PBFT buffers pending client requests, processing them later in batches.
Moreover, it makes use of checkpoints and water marks (which delimit sequence
number intervals) to limit the size of all message logs and to prevent replicas
from exhausting the sequence number space.

Garbage Collection. Replicas store all correct messages that were created or
received in a log. Checkpoints are used to limit the number of logged messages
by removing the ones that the protocol no longer needs. A replica starts check-
pointing after executing a request with a sequence number divisible by some
predefined constant, by multicasting the message 〈CHECKPOINT, v, n, d, i〉σi

to all
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other replicas. Here n is the sequence number of the last executed request and
d is the digest of the state. Once a replica received f + 1 different checkpoint
messages4 (possibly including its own) for the same n and d, it holds a proof of
correctness of the log corresponding to d, which includes messages up to sequence
number n. The checkpoint is then called stable and all messages lower than n
(except view-change messages) are pruned from the log.

View Change. The view change procedure ensures progress by allowing replicas
to change the leader so as to not wait indefinitely for a faulty primary. Each
backup starts a timer when it receives a request and stops it after the request has
been executed. Expired timers cause the backup to suspect the leader and request
a view change. It then stops receiving normal-case messages, and multicasts
〈VIEW-CHANGE, v + 1, n, s, C, P, i〉σi

, reporting the sequence number n of the last
stable checkpoint s, its proof of correctness C, and the set of messages P with
sequence numbers greater than n that backup i prepared since then. When the
new primary p receives 2f+1 view-change messages, it multicasts 〈NEW-VIEW, v+
1, V,O,N〉σp

, where V is the set of 2f + 1 valid view-change messages that p
received; O is the set of messages prepared since the latest checkpoint reported
in V ; and N contains only the special null request for which the execution is a
no-op. N is added to the O set to ensure that there are no gaps between the
sequence numbers of prepared messages sent by the new primary. Upon receiving
this new-view message, replicas enter view v + 1 and re-execute the normal-case
protocol for all messages in O ∪ N .

We have proved a critical safety property of PBFT, including its garbage
collection and view change procedures, which are essential in practical protocols.
However, we have not yet developed generic abstractions to specifically reason
about garbage collection and view changes, that can be reused in other protocols,
which we leave as future work.

2.2 Properties

PBFT with |R| = 3f +1 replicas is safe and live. Its safety boils down to lineariz-
ability [42], i.e., the replicated service behaves like a centralized implementation
that executes operations atomically one at a time. Castro used a modified ver-
sion of linearizability in [14] to deal with faulty clients. As presented in Sect. 5,
we proved the crux of this property, namely the agreement property (we leave
linearizability for future work).

As informally explained by Castro [14], assuming weak synchrony (which
constrains message transmission delays), PBFT is live, i.e., clients will eventually
receive replies to their requests. In the future, we plan to extend Velisarios to
support liveness and mechanize PBFT’s liveness proof.

4 Castro first required 2f + 1 checkpoint messages [16] but relaxed this requirement
in [14].
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2.3 Differences with Castro’s Implementation

As mentioned above, besides the normal-case operation, our Coq implementa-
tion of PBFT handles garbage collection, view changes and request batching.
However, we slightly deviated from Castro’s implementation [14], primarily in
the way checkpoints are handled: we always work around sending messages that
are not between the water marks, and a replica always requires its own check-
point before clearing its log. Assuming the reader is familiar with PBFT, we now
detail these deviations and refer the reader to [14] for comparison.

(1) To the best of our knowledge, to ensure liveness, Castro’s implementation
requires replicas to resend prepare messages below the low water mark when
adopting a new-view message and processing the pre-prepares in O ∪ N . In
contrast, our implementation never sends messages with sequence numbers
lower than the low water mark. This liveness issue can be resolved by bring-
ing late replicas up to date through a state transfer.

(2) We require a new leader to send its own view-change message updated with
its latest checkpoint as part of its new-view message. If not, it may happen
that a checkpoint stabilizes after the view-change message is sent and before
the new-view message is prepared. This might result in a new leader sending
messages in O∪N with a sequence number below its low water mark, which
it avoids by updating its own view-change message to contain its latest
checkpoint.

(3) We require replicas to wait for their own checkpoint message before sta-
bilizing a checkpoint and garbage collecting logs. This avoids stabilizing a
checkpoint that has not been computed locally. Otherwise, a replica could
lose track of the last executed request if its sequence number is superseded
by the one in the checkpoint. Once proven, a state transfer of the latest
checkpoint state and an update of the last executed request would also
resolve this point.

We slightly deviated from Castro’s protocol to make our proofs go through.
We leave it for future work to formally study whether we could do without these
changes, or whether they are due to shortcomings of the original specification.

3 Velisarios Model

Using PBFT as a running example, we now present our Coq model for Byzan-
tine fault-tolerant distributed systems, which relies on a logic of events—Fig. 2
outlines our formalization.

3.1 The Logic of Events

We adapt the Logic of Events (LoE) we used in EventML [9,11,71] to not
only deal with crash faults, but arbitrary faults in general (including malicious
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Fig. 2. Outline of formalization

faults). LoE, related to Lamport’s notion of causal order [53] and to event struc-
tures [60,65], was developed to reason about events occurring in the execution
of a distributed system. LoE has recently been used to verify consensus pro-
tocols [71,73] and cyber-physical systems [3]. Another standard model of dis-
tributed computing is Chandy and Lamport’s global state semantics [19], where
a distributed system is modeled as a single state machine: a state is the collection
of all processes at a given time, and a transition takes a message in flight and
delivers it to its recipient (a process in the collection). Each of these two models
has advantages and disadvantages over the other. We chose LoE because in our
experience it corresponds more closely to the way distributed system researchers
and developers reason about protocols. As such, it provides a convenient com-
munication medium between distributed systems and verification experts.

In LoE, an event is an abstract entity that corresponds either (1) to the
handling of a received message, or (2) to some arbitrary activity about which
no information is provided (see the discussion about trigger in Sect. 3.4). We use
those arbitrary events to model arbitrary/Byzantine faults. An event happens at
a specific point in space/time: the space coordinate of an event is called its loca-
tion, and the time coordinate is given by a well-founded ordering on events that
totally orders all events at the same location. Processes react to the messages that
triggered the events happening at their locations one at a time, by transitioning
through their states and creating messages to send out, which in turn might trig-
ger other events. In order to reason about distributed systems, we use the notion
of event orderings (see Sect. 3.4), which essentially are collections of ordered
events and represent runs of a system. They are abstract entities that are never
instantiated. Rather, when proving a property about a distributed system, one
has to prove that the property holds for all event orderings corresponding to all
possible runs of the system (see Sects. 3.5 and 5 for examples). Some runs/event
orderings are not possible and therefore excluded through assumptions, such as
the ones described in Sect. 3.6. For example, exists at most f faulty excludes
event orderings where more than f out of n nodes could be faulty.

In the next few sections, we explain the different components (messages,
authentication, event orderings, state machines, and correct traces) of Velisarios,
and their use in our PBFT case study. Those components are parameterized
by abstract types (parameters include the type of messages and the kind of
authentication schemes), which we later have to instantiate in order to reason
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about a given protocol, e.g. PBFT, and to obtain running code. The choices we
made when designing Velisarios were driven by our goal to generate running code.
For example, we model cryptographic primitives to reason about authentication.

3.2 Messages

Model. Some events are caused by messages of type msg, which is a parameter
of our model. Processes react to messages to produce message/destinations pairs
(of type DirectedMsg), called directed messages. A directed message is typically
handled by a message outbox, which sends the message to the listed destina-
tions.5 A destination is the name (of type name, which is a parameter of our
model) of a node participating in the protocol.

PBFT. In our PBFT implementation, we instantiate the msg type using the
following datatype (we only show some of the normal-case operation messages,
leaving out for example the more involved pre-prepare messages—see Sect. 2.1):
Inductive PBFTmsg :=
| REQUEST (r : Request)
| PREPARE (p : Prepare)
| REPLY (r : Reply) . . .

Inductive Bare Prepare :=
| bare prepare (v : View) (n : SeqNum) (d : digest) (i : Rep).
Inductive Prepare :=
| prepare (b : Bare Prepare) (a : list Token).

As for prepares, all messages are defined as follows: we first define bare messages
that do not contain authentication tokens (see Sect. 3.3), and then authenticated
messages as pairs of a bare message and an authentication token. Views and
sequence numbers are nats, while digests are parameters of the specification.
PBFT involves two types of nodes: replicas of the form PBFTreplica(r), where r
is of type Rep; and clients of the form PBFTclient(c), where c is of type Client.
Both Rep and Client are parameters of our formalization, such that Rep is of
arity 3f+1, where f is a parameter that stands for the number of tolerated faults.

3.3 Authentication

Model. Our model relies on an abstract concept of keys, which we use to imple-
ment and reason about authenticated communication. Capturing authenticity at
the level of keys allows us to talk about impersonation through key leakage. Keys
are divided into sending keys (of type sending key) to authenticate a message
for a target node, and receiving keys (of type receiving key) to check the valid-
ity of a received message. Both sending key and receiving key are parameters
of our model.6 Each node maintains local keys (of type local keys), which con-
sists of two lists of directed keys: one for sending keys and one for receiving keys.
Directed keys are pairs of a key and a list of node names identifying the processes
that the holder of the key can communicate with.
5 Message inboxes/outboxes are part of the runtime environment but not part of the

model.
6 Sending and receiving keys must be different when using asymmetric cryptography,

and can be the same when using symmetric cryptography.
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Sending keys are used to create authentication tokens of type Token, which we
use to authenticate messages. Tokens are parameters of our model and abstract
away from concrete concepts such as digital signatures or MACs. Typically,
a message consists of some data plus some tokens that authenticates the data.
Therefore, we introduce the following parameters: (1) the type data, for the kind
of data that can be authenticated; (2) a create function to authenticate some
data by generating authentication tokens using the sending keys; and (3) a verify
function to verify the authenticity of some data by checking that it corresponds
to some token using the receiving keys.

Once some data has been authenticated, it is typically sent over the net-
work to other nodes, which in turn need to check the authenticity of the data.
Typically, when a process sends an authenticated message to another process it
includes its identity somewhere in the message. This identity is used to select the
corresponding receiving key to check the authenticity of the data using verify. To
extract this claimed identity we require users to provide a data sender function.

It often happens in practice that a message contains more than one
piece of authenticated data (e.g., in PBFT, pre-prepare messages contain
authenticated client requests). Therefore, we require users to provide a
get contained auth data function that extracts all authenticated pieces of data
contained in a message. Because we sometimes want to use different tokens to
authenticate some data (e.g., when using MACs), an authenticated piece of data
of type auth data is defined as a pair of: (1) a piece of data, and (2) a list of
tokens.

PBFT. Our PBFT implementation leaves keys and authentication tokens
abstract because our safety proof is agnostic to the kinds of these elements.
However, we turn them into actual asymmetric keys when extracting OCaml
code (see Sect. 6 for more details). The create and verify functions are also left
abstract until we extract the code to OCaml. Finally, we instantiate the data
(the objects that can be authenticated, i.e., bare messages here), data sender,
and get contained auth data parameters using:

Inductive PBFTdata := | PBFTdata request (r : Bare Request)
| PBFTdata prepare (p : Bare Prepare) | PBFTdata reply (r : Bare Reply) . . .

Definition PBFTdata sender (m : data) : option name := match m with

| PBFTdata request (bare request o t c) ⇒ Some (PBFTclient c)
| PBFTdata prepare (bare prepare v n d i) ⇒ Some (PBFTreplica i)
| PBFTdata reply (bare reply v t c i r) ⇒ Some (PBFTreplica i) . . .

Definition PBFTget contained auth data (m : msg) : list auth data := match m with

| REQUEST (request b a) ⇒ [(PBFTdata request b,a)]
| PREPARE (prepare b a) ⇒ [(PBFTdata prepare b,a)]
| REPLY (reply b a) ⇒ [(PBFTdata reply b,a)] . . .
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3.4 Event Orderings

A typical way to reason about a distributed system is to reason about its pos-
sible runs, which are sometimes modeled as execution traces [72], and which
are captured in LoE using event orderings. An event ordering is an abstract
representation of a run of a distributed system; it provides a formal definition
of a message sequence diagram as used by system designers (see for example
Fig. 1). As opposed to [72], a trace here is not just one sequence of events but
instead can be seen as a collection of local traces (one local trace per sequen-
tial process), where a local trace is a collection of events all happening at the
same location and ordered in time, and such that some events of different local
traces are causally ordered. Event orderings are never instantiated. Instead, we
express system properties as predicates on event orderings. A system satisfies
such a property if every possible execution of the system satisfies the predicate.
We first formally define the components of an event ordering, and then present
the axioms that these components have to satisfy.

Components. An event ordering is formally defined as the tuple:7

Class EventOrdering :=
{ Event : Type; happenedBefore : Event → Event → Prop;

loc : Event → name; direct pred : Event → option Event;
trigger : Event → option msg; keys : Event → local keys; }

where (1) Event is an abstract type of events; (2) happenedBefore is an order-
ing relation on events; (3) loc returns the location at which events happen;
(4) direct pred returns the direct local predecessor of an event when one exists,
i.e., for all events except initial events; (5) given an event e, trigger either returns
the message that triggered e, or it returns None to indicate that no information
is available regarding the action that triggered the event (see below); (6) keys
returns the keys a node can use at a given event to communicate with other
nodes. The event orderings presented here are similar to the ones used in [3,71],
which we adapted to handle Byzantine faults by modifying the type of trigger
so that events can be triggered by arbitrary actions and not necessarily by the
receipt of a message, and by adding support for authentication through keys.

The trigger function returns None to capture the fact that nodes can some-
times behave arbitrarily. This includes processes behaving correctly, i.e., accord-
ing to their specifications; as well as (possibly malicious) processes deviating from
their specifications. Note that this does not preclude from capturing the behavior
of correct processes because for all event orderings where trigger returns None
for an event where the node behaved correctly, there is a similar event ordering,
where trigger returns the triggering message at that event. To model that at most
f nodes out of n can be faulty we use the exists at most f faulty assumption,
which enforces that trigger returns None at most f nodes.

Moreover, even though non-syntactically valid messages do not trigger events
because they are discarded by message boxes, a triggering message could be
7 A Coq type class is essentially a dependent record.
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syntactically valid, but have an invalid signature. Therefore, it is up to the pro-
grammer to ensure that processes only react to messages with valid signatures
using the verify function. Our authenticated messages were sent non byz and
exists at most f faulty assumptions presented in Sect. 3.6 are there to constrain
trigger to ensure that at most f nodes out of n can diverge from their specifica-
tions, for example, by producing valid signatures even though they are not the
nodes they claim to be (using leaked keys of other nodes).

Axioms. The following axioms characterize the behavior of these components:

1. Equality between events is decidable. Events are abstract entities that corre-
spond to points in space/time that can be seen as pairs of numbers (one for
the space coordinate and one for the time coordinate), for which equality is
decidable.

2. The happened before relation is transitive and well-founded. This allows us
to prove properties by induction on causal time. We assume here that it is
not possible to infinitely go back in time, i.e., that there is a beginning of
(causal) time, typically corresponding to the time a system started.

3. The direct predecessor e2 of e1 happens at the same location and before e1.
This makes local orderings sub-orderings of the happenedBefore ordering.

4. If an event e does not have a direct predecessor (i.e., e is an initial event)
then there is no event happening locally before e.

5. The direct predecessor function is injective, i.e., two different events cannot
have the same direct predecessor.

6. If an event e1 happens locally before e2 and e is the direct predecessor of e2,
then either e = e1 or e1 happens before e. From this, it follows that the direct
predecessor function can give us the complete local history of an event.

Notation. We use a ≺ b to stand for (happenedBefore a b); a � b to stand
for (a ≺ b or a=b); and a � b to stand for (a � b and loc a=loc b). We also
sometimes write EO instead of EventOrdering.

Some functions take an event ordering as a parameter. For readability, we
sometimes omit those when they can be inferred from the context. Similarly, we
will often omit type declarations of the form (T : Type).

Correct Behavior. To prove properties about distributed systems, one only
reasons about processes that have a correct behavior. To do so we only reason
about events in event orderings that are correct in the sense that they were
triggered by some message:

Definition isCorrect (e : Event) := match trigger e with Some m ⇒ True | None ⇒ False end.

Definition arbitrary (e : Event) := ∼ isCorrect e.

Next, we characterize correct replica histories as follows: (1) First we say that
an event e has a correct trace if all local events prior to e are correct. (2) Then,
we say that a node i has a correct trace before some event e, not necessarily
happening at i , if all events happening before e at i have a correct trace:
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Definition has correct bounded trace (e : Event) := forall e’ , e’ � e → isCorrect e’ .
Definition has correct trace before (e : Event) (i : name) :=

forall e’ , e’ � e → loc e’ = i → has correct bounded trace e’ .

3.5 Computational Model

Model. We now present our computational model, which we use when extract-
ing OCaml programs. Unlike in EventML [71] where systems are first specified as
event observers (abstract processes), and then later refined to executable code,
we skip here event observers, and directly specify systems using executable state
machines, which essentially consist of an update function and a current state.
We define a system of distributed state machines as a function that maps names
to state machines. Systems are parametrized by a function that associates state
types with names in order to allow for different nodes to run different machines.

Definition Update S I O := S → I → (option S * O).
Record StateMachine S I O := MkSM { halted : bool; update : Update S I O ; state : S }.
Definition System (F : name → Type) I O := forall (i : name), StateMachine (F i) I O .

where S is the type of the machine’s state, I /O are the input/output types, and
halted indicates whether the state machine is still running or not.

Let us now discuss how we relate state machines and events. We define
state sm before event and state sm after event that compute a machine’s state
before and after a given event e. These states are computed by extracting the
local history of events up to e using direct pred, and then updating the state
machine by running it on the triggering messages of those events. These func-
tions return None if some arbitrary event occurs or the machine halts some-
time along the way. Otherwise they return Some s, where s is the state of the
machine updated according to the events. Therefore, assuming they return Some
amounts to assuming that all events prior to e are correct, i.e., we can prove that
if state sm after event sm e = Some s then has correct trace before e (loc e).
As illustrated below, we use these functions to adopt a Hoare-like reasoning
style by stating pre/post-conditions on the state of a process prior and after
some event.

PBFT. We implement PBFT replicas as state machines, which we derive from
an update function that dispatches input messages to the corresponding han-
dlers. Finally, we define PBFTsys as the function that associates PBFTsm with
replicas and a halted machine with clients (because we do not reason here about
clients).

Definition PBFTupdate (i : Rep) := fun state msg ⇒ match msg with

| REQUEST r ⇒ PBFThandle request i state r
| PREPARE p ⇒ PBFThandle prepare i state p . . .

Definition PBFTsm (i : Rep) := MkSM false (PBFTupdate i) (initial state i).
Definition PBFTsys := fun name ⇒ match name with

| PBFTreplica i ⇒ PBFTsm i | PBFTclient c ⇒ haltedSM end.
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Let us illustrate how we reason about state machines through a simple exam-
ple that shows that they maintain a view that only increases over time. It shows
a local property, while Sect. 5 presents the distributed agreement property that
makes use of the assumptions presented in Sect. 3.6. As mentioned above we
prove such properties for all possible event orderings, which means that they are
true for all possible runs of the system. In this lemma, s1 is the state prior to
the event e, and s2 is the state after handling e. It does not have pre-conditions,
and its post-condition states that the view in s1 is smaller than the view in s2 .

Lemma current view increases : forall (eo : EO) (e : Event) i s1 s2 ,
state sm before event (PBFTsm i) e = Some s1
→ state sm after event (PPBFTsm i) e = Some s2
→ current view s1 ≤ current view s2 .

3.6 Assumptions

Model. Let us now turn to the assumptions we make regarding the network
and the behavior of correct and faulty nodes.

Assumption 1. Proving safety properties of crash fault-tolerant protocols that
only require reasoning about past events, such as agreement, does not require
reasoning about faults and faulty replicas. To prove such properties, one merely
has to follow the causal chains of events back in time, and if a message is received
by a node then it must have been sent by some node that had not crashed at
that time. The state of affairs is different when dealing with Byzantine faults.

One issue it that Byzantine nodes can deviate from their specifications or
impersonate other nodes. However, BFT protocols are designed in such a way
that nodes only react to collections of messages, called certificates, that are larger
than the number of faults. This means that there is always at least one correct
node that can be used to track down causal chains of events.

A second issue is that, in general, we cannot assume that some received
message was sent as such by the designated (correct) sender of the mes-
sage because messages can be manipulated while in flight. As captured by
the authenticated messages were sent or byz predicate defined below,8 we can
only assume that the authenticated parts of the received message were actu-
ally sent by the designated senders, possibly inside larger messages, provided
the senders did not leak their keys. As usual, we assume that attackers cannot
break the cryptographic primitives, i.e., that they cannot authenticate messages
without the proper keys [14].

1.Definition authenticated messages were sent or byz (P : AbsProcess) :=
2. forall e (a : auth data),
3. In a (bind op list get contained auth data (trigger e))
4. → verify auth data (loc e) a (keys e) = true

8 For readability, we show a slightly simplified version of this axiom. The full
axiom can be found in https://github.com/vrahli/Velisarios/blob/master/model/
EventOrdering.v.

https://github.com/vrahli/Velisarios/blob/master/model/EventOrdering.v
https://github.com/vrahli/Velisarios/blob/master/model/EventOrdering.v
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5. → exists e’ , e’ ≺ e ∧ am auth a = authenticate (am data a) (keys e’)
6. ∧ ( (exists dst m,
7. In a (get contained auth data m) ∧ In (m,dst) (P eo e’)
8. ∧ data sender (loc e) (am data a) = Some (loc e’))
9. ∨

10. (exists e”,
11. e” � e’ ∧ arbitrary e’ ∧ arbitrary e” ∧ got key for (loc e) (keys e”) (keys e’)
12. ∧ data sender (loc e) (am data a) = Some (loc e”)) ).

This assumption says that if the authenticated piece of data a is part of the
message that triggered some event e (L.3), and a is verified (L.4), then there
exists a prior event e’ such that the data was authenticated while handling e’
using the keys available at that time (L.5). Moreover, (1) either the sender of
the data was correct while handling e’ and sent the data as part of a message
following the process described by P (L.6–8); or (2) the node at which e’ occurred
was Byzantine at that time, and either it generated the data itself (e.g. when
e”=e’ ), or it impersonated some other replica (by obtaining the keys that some
node leaked at event e”) (L.10–12).

We used a few undefined abstractions in this predicate: An AbsProcess
is an abstraction of a process, i.e., a function that returns the collection
of messages generated while handling a given event: (forall (eo : EO)
(e : Event), list DirectedMsg). The bind op list function is wrapped around
get contained auth data to handle the fact that trigger might return None,
in which case bind op list returns nil. The verify auth data function takes an
authenticated message a and some keys and: (1) invokes data sender (defined
in Sect. 3.3) to extract the expected sender s of a; (2) searches among its keys
for a receiving key that it can use to verify that s indeed authenticated a; and
(3) finally verifies the authenticity of a using that key and the verify function.
The authenticate function simply calls create and uses the sending keys to create
tokens. The got key for function takes a name i and two local keys lk1 and lk2 ,
and states that the sending keys for i in lk1 are all included in lk2 .

However, it turns out that because we never reason about faulty nodes, we
never have to deal with the right disjunct of the above formula. Therefore, this
assumption about received messages can be greatly simplified when we know
that the sender is a correct replica, which is always the case when we use this
assumption because BFT protocols as designed so that there is always a correct
node that can be used to track down causal chains of events. We now define
the following simpler assumption, which we have proved to be a consequence of
authenticated messages were sent or byz:

Definition authenticated messages were sent non byz (P : AbsProcess) :=
forall (e : Event) (a : auth data) (c : name),

In a (bind op list get contained auth data (trigger e))
→ has correct trace before e c
→ verify auth data (loc e) a (keys e) = true
→ data sender (loc e) (am data a) = Some c
→ exists e’ dst m, e’ ≺ e ∧ loc e’ = c.

∧ am auth a = authenticate (am data a) (keys e’)
∧ In a (get contained auth data m)
∧ In (m,dst) (P eo e’)
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As opposed to the previous formula, this one assumes that the authenticated data
was sent by a correct replica, which has a correct trace prior to the event e—the
event when the message containing a was handled.

Assumption 2. Because processes need to store their keys to sign and verify mes-
sages, we must connect those keys to the ones in the model. We do this through
the correct keys assumption, which states that for each event e, if a process has
a correct trace up to e, then the keys (keys e) from the model are the same as
the ones stored in its state (which are computed using state sm before event).

Assumption 3. Finally, we present our assumption regarding the number of
faulty nodes. There are several ways to state that there can be at most f faulty
nodes. One simple definition is (where node is a subset of name as discussed in
Sect. 4.2):

Definition exists at most f faulty (E : list Event) (f : nat) :=
exists (faulty : list node), length faulty ≤ f

∧ forall e1 e2 , In e2 E → e1 � e2 → ∼ In (loc e1 ) faulty
→ has correct bounded trace e1 .

This assumption says that at most f nodes can be faulty by stating that the
events happening at nodes that are not in the list of faulty nodes faulty , of
length f , are correct up to some point characterized by the partial cut E of a
given event ordering (i.e., the collection of events happening before those in E ).

PBFT Assumption 4. In addition to the ones above, we made further assump-
tions about PBFT. Replicas sometimes send message hashes instead of sending
the entire messages. For example, pre-prepare messages contain client requests,
but prepare and commit messages simply contain digests of client requests. Con-
sequently, our PBFT formalization is parametrized by the following create and
verify functions, and we assume that the create function is collision resistant:9

Class PBFThash := MkPBFThash {
create hash : list PBFTmsg → digest; verify hash : list PBFTmsg → digest → bool; }.

Class PBFThash axioms := MkPBFThash axioms {
create hash collision resistant :

forall msgs1 msgs2 , create hash msgs1 = create hash msgs2 → msgs1 = msgs2 ; }.

The version of PBFT, called PBFT-PK in [14], that we implemented relies
on digital signatures. However, we did not have to make any more assumptions
regarding the cryptographic primitives than the ones presented above, and in
particular we did not assume anything that is true about digital signatures and
false about MACs. Therefore, our safety proof works when using either digital
signatures or MAC vectors. As discussed below, this is true because we adapted
the way messages are verified (we have not verified the MAC version of PBFT
but a slight variant of PBFT-PK) and because we do not deal with liveness.
9 Note that our current collision resistant assumption is too strong because it is always

possible to find two distinct messages that are hashed to the same hash. We leave it
to future work to turn it into a more realistic probabilistic assumption.
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As Castro showed [14, Chap. 3], PBFT-PK has to be adapted when digital
signatures are replaced by MAC vectors. Among other things, it requires “sig-
nificant and subtle changes to the view change protocol” [14, Sect. 3.2]. Also, to
the best of our knowledge, in PBFT-PK backups do not check the authenticity
of requests upon receipt of pre-prepares. They only check the authenticity of
requests before executing them [14, p. 42]. This works when using digital sig-
natures but not when using MACs: one backup might not execute the request
because its part of the MAC vector does not check out, while another backup
executes the request because its part of the MAC vector checks out, which would
lead to inconsistent states and break safety. Castro lists other problems related
to liveness.

Instead, as in the MAC version of PBFT [14, p. 42], in our implementation
we always check requests’ validity when checking the validity of a pre-prepare. If
we were to check the validity of requests only before executing them, we would
have to assume that two correct replicas would either both be able to verify
the data, or both would not be able to do so. This assumption holds for digital
signatures but not for MAC vectors.

4 Methodology

Because distributed systems are all about exchanging information among nodes,
we have developed a theory that captures abstractions and reasoning patterns to
deal with knowledge dissemination (see Sect. 4.4). In the presence of faulty nodes,
one has to ensure that this knowledge is reliable. Fault-tolerant state-machine
replication protocols provide such guarantees by relying on certificates, which
ensure that we can always get hold of a correct node to trace back information
through the system. This requires reasoning about the past, i.e., reasoning by
induction on causal time using the happenedBefore relation.

4.1 Automated Inductive Reasoning

We use induction on causal time to prove both distributed and local proper-
ties. As discussed here, we automated the typical reasoning pattern we use to
prove local properties. As an example, in our PBFT formalization, we proved
the following local property: if a replica has a prepare message in its log, then
it either received or generated it. Moreover, as for any kinds of programs, using
Velisarios we prove local properties about processes by reasoning about all pos-
sible paths they can take when reacting upon messages. Thus, a typical proof of
such a lemma using Velisarios goes as follows: (1) we go by induction on events;
(2) we split the code of a process into all possible execution paths; (3) we prune
the paths that could not happen because they invalidate some hypotheses of the
lemma being proved; and (4) we automatically prove some other cases by induc-
tion hypothesis. We packaged this reasoning as a Coq tactic, which in practice
can significantly reduce the number of cases to prove, and used this automation
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technique to prove local properties of PBFT, such as Castro’s A.1.2 local invari-
ants [14]. Because of PBFT’s complexity, our Coq tactic typically reduces the
number of cases to prove from between 50 to 60 cases down to around 7 cases,
sometimes less, as we show in this histogram of goals left to interactively prove
after automation:

# of goals left to prove 0 1 2 3 4 5 6 7 8

# of lemmas 8 1 5 4 4 2 9 17 3

4.2 Quorums

As usual, we use quorum theory to trace back correct information between nodes.
A (Byzantine) quorum w.r.t. a given set of nodes N , is a subset Q of N , such
that f + 1 ≤ (2 ∗ |Q|) − |N | (where |X| is the size of X), i.e. every two quorums
intersect [59,83] in sufficiently many replicas.10 Typically, a quorum corresponds
to a majority of nodes that agree on some property. In case of state machine
replication, quorums are used to ensure that a majority of nodes agree to update
the state using the same operation. If we know that two quorums intersect, then
we know that both quorums agree, and therefore that the states cannot diverge.
In order to reason about quorums, we have proved the following general lemma:11

Lemma overlapping quorums :
forall (l1 l2 : NRlist node), exists Correct ,

(length l1 + length l2 ) - num nodes ≤ length Correct
∧ subset Correct l1 ∧ subset Correct l2 ∧ no repeats Correct .

This lemma implies that if we have two sets of nodes l1 and l2 (NRlist ensures
that the sets have no repeats), such that the sum of their length is greater than
the total number of nodes (num nodes), there must exist an overlapping subset
of nodes (Correct). We use this result below in Sect. 4.4.

The node type parameter is the collection of nodes that can participate in
quorums. For example, PBFT replicas can participate in quorums but clients
cannot. This type comes with a node2name function to convert nodes into names.

4.3 Certificates

Lemmas that require reasoning about several replicas are much more complex
than local properties. They typically require reasoning about some information
computed by a collection of replicas (such as quorums) that vouch for the infor-
mation. In PBFT, a collection of 2f +1 messages from different replicas is called

10 We use here Castro’s notation where quorums are majority quorums [79] (also called
write quorums) that require intersections to be non-empty, as opposed to read quo-
rums that are only required to intersect with write quorums [36].

11 We present here a simplified version for readability.
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a strong (or quorum) certificate, and a collection of f +1 messages from different
replicas is called a weak certificate.

When working with strong certificates, one typically reasons as follows:
(1) Because PBFT requires 3f +1 replicas, two certificates of size 2f +1 always
intersect in f +1 replicas. (2) One message among those f +1 messages must be
from a correct replica because at most f replicas can be faulty. (3) This correct
replica can vouch for the information of both quorums—we use that replica to
trace back the corresponding information to the point in space/time where/when
it was generated. We will get back to this in Sect. 4.4.

When working with weak certificates, one typically reasons as follows:
Because, the certificate has size f + 1 and there are at most f faulty nodes,
there must be one correct replica that can vouch for the information of the
certificate.

4.4 Knowledge Theory

Model. Let us now present an excerpt of our distributed epistemic knowledge
library. Knowledge is a widely studied concept [10,30,31,37–39,70]. It is often
captured using possible-worlds models, which rely on Kripke structures: an agent
knows a fact if that fact is true in all possible worlds. For distributed systems,
agents are nodes and a possible world at a given node is essentially one that has
the same local history as the one of the current world, i.e., it captures the current
state of the node. As Halpern stresses, e.g. in [37], such a definition of knowl-
edge is external in the sense that it cannot necessarily be computed, though some
work has been done towards deriving programs from knowledge-based specifica-
tions [10]. We follow a different, more pragmatic and computational approach,
and say that a node knows some piece of data if it is stored locally, as opposed to
the external and logical notion of knowing facts mentioned above. This computa-
tional notion of knowledge relies on exchanging messages to propagate it, which
is what is required to derive programs from knowledge-based specifications (i.e.,
to compute that some knowledge is gained [20,37]).

We now extend the model presented in Sect. 3 with two epistemic modal
operators know and learn that express what it means for a process to know
and learn some information, and which bear some resemblance with the fact
discovery and fact publication notions discussed in [38]. Formally, we extend our
model with the following parameters, which can be instantiated as many times
as needed for all the pieces of known/learned data that one wants to reason
about—see below for examples:

Class LearnAndKnow := MkLearnAndKnow {
lak data : Type; lak data2info : lak data → lak info;
lak info : Type; lak know : lak data → lak memory → Prop;
lak memory : Type; lak data2owner : lak data → node;

lak data2auth : lak data → auth data; }.

The lak data type is the type of “raw” data that we have knowledge of; while
lak info is some distinct information that might be shared by different pieces
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of data. For example, PBFT replicas collect batches of 2f + 1 (pre-)prepare
messages from different replicas, that share the same view, sequence number, and
digest. In that case, the (pre-)prepare messages are the raw data that contain the
common information consisting of a view, a sequence number, and a digest. The
lak memory type is the type of objects used to store one’s knowledge, such as a
state machine state. One has to provide a lak data2info function to extract the
information embedded in some piece of data. The lak know predicate explains
what it means to know some piece of data. The lak data2owner function extracts
the “owner” of some piece of data, typically the node that generated the data. In
order to authenticate pieces of data, the lak data2auth function extracts some
piece of authenticated data from some piece of raw data. For convenience, we
define the following wrapper around lak data2owner:

Definition lak data2node (d : lak data) : name := node2name (lak data2owner d).

Let us now turn to the two main components of our theory, namely the
know and learn epistemic modal operators. These operators provide an abstrac-
tion barrier: they allow us to abstract away from how knowledge is stored and
computed, in order to focus on the mere fact that we have that knowledge.

Definition know (sm : node → StateMachine lak memory) (e : Event) (d : lak data) :=
exists mem i , loc e = node2name i

∧ state sm after event (sm i) e = Some mem
∧ lak know d mem.

where we simply write (StateMachine S ) for a state machine with a state of
type S , that takes messages as inputs, and outputs lists of directed messages.
This states that the state machine (sm i) knows the data d at event e if its state
is mem at e and (lak know d mem) is true. We define learn as follows:

Definition learn (e : Event) (d : lak data) :=
exists i , loc e = node2name i

∧ In (lak data2auth d) (bind op list get contained auth data (trigger e))
∧ verify auth data (loc e) (lak data2auth d) (keys e) = true.

This states that a node learns d at some event e, if e was triggered by a message
that contains the data d . Moreover, because we deal with Byzantine faults, we
require that to learn some data one has to be able to verify its authenticity.

Next, we define a few predicates that are useful to track down knowledge.
The first one is a local predicate that says that for a state machine to know
about a piece of information it has to either have learned it or generated it.

Definition learn or know (sm : node → StateMachine lak memory) :=
forall (d : lak data) (e : Event),

know sm e d → (exists e’ , e’ � e ∧ learn e’ d) ∨ lak data2node d = loc e.

The next one is a distributed predicate that states that if one learns some piece
of information that is owned by a correct node, then that correct node must
have known that piece of information:
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Definition learn if know (sm : node → StateMachine lak memory) :=
forall (d : lak data) (e : Event),

(learn e d ∧ has correct trace before e (lak data2node d))
→ exists e’ , e’ ≺ e ∧ loc e’ = lak data2node d ∧ know sm e’ d .

Using these two predicates, we have proved this general lemma about knowl-
edge propagating through nodes:

Lemma know propagates :
forall (e : Event) (sm : node → StateMachine lak memory) (d : lak data),

(learn or know sm ∧ learn if know sm)
→ (know sm e d ∧ has correct trace before e (lak data2node d))
→ exists e’ , e’ � e ∧ loc e’ = lak data2node d ∧ know sm e’ d .

This lemma says that, assuming learn or know and learn if know, if one knows
at some event e some data d that is owned by a correct node, then that correct
node must have known that data at a prior event e’ . We use this lemma to track
down information through correct nodes.

As mentioned in Sect. 4.3, when reasoning about distributed systems, one
often needs to reason about certificates, i.e., about collections of messages
from different sources. In order to capture this, we introduce the following
know certificate predicate, which says that the state machine sm knows the
information i at event e if there exists a list l of pieces of data of length at
least k (the certificate size) that come from different sources, and such that sm
knows each of these pieces of data, and each piece of data carries the common
information nfo:

Definition know certificate (sm : node → StateMachine lak memory)
(e : Event) (k : nat) (nfo : lak info) (P : list lak data → Prop) :=

exists (l : list lak data),
k ≤ length l ∧ no repeats (map lak data2owner l) ∧ P l
∧ forall d , In d l → (know sm e d ∧ nfo = lak data2info d).

Using this predicate, we can then combine the quorum and knowledge the-
ories to prove the following lemma, which captures the fact that if there are
two quorums for information nfo1 (known at e1 ) and nfo2 (known at e2 ), and
the intersection of the two quorums is guaranteed to contain a correct node,
then there must be a correct node (at which e1’ and e2’ happen) that owns
and knows both nfo1 and nfo2—this lemma follows from know propagates and
overlapping quorums:

Lemma know in intersection :
forall (sm : node → StateMachine lak memory) (e1 e2 : Event) (nfo1 nfo2 : lak info)

(k f : nat) (P : list lak data → Prop) (E : list Event),
(learn or know sm ∧ learn if know sm)
→ (k ≤ num nodes ∧ num nodes + f < 2 * k)
→ (exists at most f faulty E f ∧ In e1 E ∧ In e2 E)
→ (know certificate sm e1 k nfo1 P ∧ know certificate sm e2 k nfo2 P)
→ exists e1’ e2’ d1 d2 , loc e1’ = loc e2’ ∧ e1’ � e1 ∧ e2’ � e2

∧ loc e1’ = lak data2node d1 ∧ loc e2’ = lak data2node d2
∧ know sm e1’ d1 ∧ know sm e2’ d2
∧ i1 = lak data2info d1 ∧ i2 = lak data2info d2 .
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Similarly, we proved the following lemma, which captures the fact that there
is always a correct replica that can vouch for the information of a weak certificate:

Lemma know weak certificate :

forall (e : Event) (k f : nat) (nfo : lak info) (P : list lak data → Prop) (E : list Event),

(f < k ∧ exists at most f faulty E f ∧ In e E ∧ know certificate e k nfo P)

→ exists d, has correct trace before e (node2node d) ∧ know e d ∧ nfo = lak data2info d.

PBFT. One of the key lemmas to prove PBFT’s safety says that if two cor-
rect replicas have prepared some requests with the same sequence and view
numbers, then the requests must be the same [14, Inv.A.1.4]. As mentioned in
Sect. 2.1, a replica has prepared a request if it received pre-prepare and pre-
pare messages from a quorum of replicas. To prove this lemma, we instantiated
LearnAndKnow as follows: lak data can either be a pre-prepare or a prepare mes-
sage; lak info is the type of triples view/sequence number/digest; lak memory
is the type of states maintained by replicas; lak data2info extracts the view,
sequence number and digest contained in pre-prepare and prepare messages;
lak know states that the pre-prepare or prepare message is stored in the state;
lak data2owner extracts the sender of the message; and lak data2auth is similar
to the PBFTget contained auth data function presented in Sect. 3.6. The two
predicates learn or know and learn if know, which we proved using the tactic
discussed in Sect. 4.1, are true about this instance of LearnAndKnow. Inv.A.1.4 is
then a straightforward consequence of know in intersection applied to the two
quorums.

5 Verification of PBFT

Agreement. Velisarios is designed as a general, reusable, and extensible frame-
work that can be instantiated to prove the correctness of any BFT protocol. We
demonstrated its usability by proving that our PBFT implementation satisfies
the standard agreement property, which is the crux of linearizability (we leave
linearizability for future work—see Sect. 2.2 for a high-level definition). Agree-
ment states that, regardless of the view, any two replies sent by correct replicas
i1 and i2 at events e1 and e2 for the same timestamp ts to the same client c
contain the same replies. We proved that this is true in any event ordering that
satisfies the assumptions from Sect. 3.6:12

Lemma agreement :

forall (eo : EventOrdering) (e1 e2 : Event) (v1 v2 : View) (ts : Timestamp)

(c : Client) (i1 i2 : Rep) (r1 r2 : Request) (a1 a2 : list Token),

authenticated messages were sent or byz sys eo PBFTsys ∧ correct keys eo
→ (exists at most f faulty [e1 ,e2 ] f ∧ loc e1 = PBFTreplica i1 ∧ loc e2 = PBFTreplica i2)

→ In (send reply v1 ts c i1 r1 a1) (output system on event PBFTsys e1)

→ In (send reply v2 ts c i2 r2 a2) (output system on event PBFTsys e2)

→ r1 = r2 .

12 See agreement in https://github.com/vrahli/Velisarios/blob/master/PBFT/
PBFTagreement.v.

https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTagreement.v
https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTagreement.v
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where Timestamps are nats; authenticated messages were sent or byz sys is
defined on systems using authenticated messages were sent or byz; the func-
tion output system on event is similar to state sm after event (see Sect. 3.5)
but returns the outputs of a given state machine at a given event instead of
returning its state; and send reply builds a reply message. To prove this lemma,
we proved most of the invariants stated by Castro in [14, Appendix A]. In addi-
tion, we proved that if the last executed sequence number of two correct replicas
is the same, then these two replicas have, among other things, the same service
state.13

As mentioned above, because our model is based on LoE, we only ever prove
such properties by induction on causal time. Similarly, Castro proved most of his
invariants by induction on the length of the executions. However, he used other
induction principles to prove some lemmas, such as Inv.A.1.9, which he proved by
induction on views [14, p. 151]. This invariant says that prepared requests have
to be consistent with the requests sent in pre-prepare messages by the primary.
A straightforward induction on causal time was more natural in our setting.

Castro used a simulation method to prove PBFT’s safety: he first proved
the safety of a version without garbage collection and then proved that the ver-
sion with garbage collection implements the one without. This requires defining
two versions of the protocol. Instead, we directly prove the safety of the one
with garbage collection. This involved proving further invariants about stored,
received and sent messages, essentially that they are always within the water
marks.

Proof Effort. In terms of proof effort, developing Velisarios and verifying PBFT’s
agreement property took us around 1 person year. Our generic Velisarios frame-
work consists of around 4000 lines of specifications and around 4000 lines of
proofs. Our verified implementation of PBFT consists of around 20000 lines of
specifications and around 22000 lines of proofs.

6 Extraction and Evaluation

Extraction. To evaluate our PBFT implementation (i.e., PBFTsys defined
in Sect. 3.5—a collection of state machines), we generate OCaml code using
Coq’s extraction mechanism. Most parameters, such as the number of toler-
ated faults, are instantiated before extraction. Note that not all parameters
need to be instantiated. For example, as mentioned in Sect. 3.1, neither do we
instantiate event orderings, nor do we instantiate our assumptions (such as
exists at most f faulty), because they are not used in the code but are only
used to prove that properties are true about all possible runs. Also, keys, signa-
tures, and digests are only instantiated by stubs in Coq. We replace those stubs
when extracting OCaml code by implementations provided by the nocrypto [66]
library, which is the cryptographic library we use to hash, sign, and verify mes-
sages (we use RSA).
13 See same states if same next to execute in https://github.com/vrahli/Velisarios/

blob/master/PBFT/PBFTsame states.v.
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Evaluation. To run the extracted code in a real distributed environment, we
implemented a small trusted runtime environment in OCaml that uses the Async
library [5] to handle sender/receiver threads. We show among other things here
that the average latency of our implementation is acceptable compared to the
state of the art BFT-SMaRt [8] library. Note that because we do not offer a
new protocol, but essentially a re-implementation of PBFT, we expect that on
average the scale will be similar in other execution scenarios such as the ones
studied by Castro in [14]. We ran our experiments using desktops with 16 GB
of memory, and 8 i7-6700 cores running at 3.40 GHz. We report some of our
experiments where we used a single client, and a simple state machine where the
state is a number, and an operation is either adding or subtracting some value.

We ran a local simulation to measure the performance of our PBFT imple-
mentation without network and signatures: when 1 client sends 1 million
requests, it takes on average 27.6 µs for the client to receive f + 1 (f = 1)
replies.
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Fig. 3. (1) Single machine (top/left); (2) several machines (top/right); (3) single
machine using MACs (bottom/left); (4) view change response time (bottom/right)

Top/left of Fig. 3 shows the experiment where we varied f from 1 to 3,
and replicas sent messages, signed using RSA, through sockets, but on a sin-
gle machine. As mentioned above, we implemented the digital signature-based
version of PBFT, while BFT-SMaRt uses a more efficient MAC-based authen-
tication scheme, which in part explains why BFT-SMaRt is around one order
of magnitude faster than our implementation. As in [14, Table 8.9], we expect a
similar improvement when using the more involved, and as of yet not formally
verified, MAC-based version of PBFT (bottom/left of Fig. 3 shows the average
response time when replacing digital signatures by MACs, without adapting
the rest of the protocol). Top/right of Fig. 3 presents results when running our
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version of PBFT and BFT-SMaRt on several machines, for f = 1. Finally, bot-
tom/right of Fig. 3 shows the response time of our view-change protocol. In this
experiment, we killed the primary after 16 s of execution, and it took around 7 s
for the system to recover.

Trusted Computing Base. The TCB of our system includes: (1) the fact that our
LoE model faithfully reflects the behavior of distributed systems (see Sect. 3.4);
(2) the validity of our assumptions: authenticated messages were sent or byz;
exists at most f faulty; correct keys; and create hash collision resistant
(Sect. 3.6); (3) Coq’s logic and implementation; (4) OCaml and the nocrypto
and Async libraries we use in our runtime environment, and the runtime envi-
ronment itself (Sect. 6); (5) the hardware and software on which our framework
is running.

7 Related Work

Our framework is not the first one for implementing and reasoning about the
correctness of distributed systems (see Fig. 4). However, to the best of our knowl-
edge, (1) it is the first theorem prover based tool for verifying the correctness of
asynchronous Byzantine fault-tolerant protocols and their implementations; and
(2) we provide the first mechanical proof of the safety of a PBFT implementa-
tion. Velisarios has evolved from our earlier EventML framework [71], primarily
to reason about Byzantine faults and distributed epistemic knowledge.

Fig. 4. Comparison with related work

7.1 Logics and Models

IOA [33–35,78] is the model used by Castro [14] to prove PBFT’s safety. It is
a programming/specification language for describing asynchronous distributed
systems as I/O automata [58] (labeled state transition systems) and stating
their properties. While IOA is state-based, the logic we use in this paper is
event-based. IOA can interact with a large range of tools such as type checkers,
simulators, model checkers, theorem provers, and there is support for synthesis
of Java code [78]. In contrast, our methodology allows us to both implement and
verify protocols within the same tool, namely Coq.
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TLA+ [24,51] is a language for specifying and reasoning about systems. It com-
bines: (1) TLA [52], which is a temporal logic for describing systems [51], and
(2) set theory, to specify data structures. TLAPS [24] uses a collection of theo-
rem provers, proof assistants, SMT solvers, and decision procedures to mechan-
ically check TLA proofs. Model checker integration helps catch errors before
verification attempts. TLA+ has been used in a large number of projects (e.g.,
[12,18,44,56,63,64]) including proofs of safety and liveness of Multi-Paxos [18],
and safety of a variant of an abstract model of PBFT [13]. To the best of our
knowledge, TLA+ does not perform program synthesis.

The Heard-Of (HO) Model [23] requires processes to execute in lock-step
through rounds into which the distributed algorithms are divided. Asynchronous
fault-tolerant systems are treated as synchronous systems with adversarial envi-
ronments that cause messages to be dropped. The HO-model was implemented
in Isabelle/HOL [22] and used, for example, to verify the EIGByz [7] Byzantine
agreement algorithm for synchronous systems with reliable links. This formaliza-
tion uses the notion of global state of the system [19], while our approach relies on
Lamport’s happened before relation [53], which does not require reasoning about
a distributed system as a single entity (a global state). Model checking and the
HO-model were also used in [21,80,81] for verifying the crash fault-tolerant con-
sensus algorithms presented in [23]. To the best of our knowledge, there is no
tool that allows generating code from algorithms specified using the HO-model.

Event-B [1] is a set-theory-based language for modeling reactive systems and
for refining high-level abstract specifications into low-level concrete ones. It sup-
ports code generation [32,61], with some limitations (not all features are cov-
ered). The Rodin [2] platform for Event-B provides support for refinement, and
automated and interactive theorem proving. Both have been used in a number of
projects, such as: to prove the safety and liveness of self-� systems [4]; to prove
the agreement and validity properties of the synchronous crash-tolerant Floodset
consensus algorithm [57]; and to prove the agreement and validity of synchronous
Byzantine agreement algorithms [50]. In [50], the authors assume that messages
cannot be forged (using PBFT, at most f nodes can forge messages), and do not
verify implementations of these algorithms.

7.2 Tools

Verdi [85,86] is a framework to develop and reason about distributed systems
using Coq. As in our framework, Verdi leaves no gaps between verified and
running code. Instead, OCaml code is extracted directly from the verified Coq
implementation. Verdi provides a compositional way of specifying distributed
systems. This is done by applying verified system transformers. For example,
Raft [67]—an alternative to Paxos—transforms a distributed system into a crash-
tolerant one. One difference between our respective methods is that they verify
a system by reasoning about the evolution of its global state, while we use
Lamport’s happened before relation. Moreover, they do not deal with the full
spectrum of arbitrary faults (e.g., malicious faults).
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Disel [75,84] is a verification framework that implements a separation-style pro-
gram logic, and that enables compositional verification of distributed systems.

IronFleet [40,41] is a framework for building and reasoning about distributed
systems using Dafny [55] and the Z3 theorem prover [62]. Because systems are
both implemented in and verified using Dafny, IronFleet also prevents gaps
between running and verified code. It uses a combination of TLA-style state-
machine refinements [51] to reason about the distributed aspects of protocols,
and Floyd-Hoare-style imperative verification techniques to reason about local
behavior. The authors have implemented, among other things, the Paxos-based
state machine replication library IronRSL, and verified its safety and liveness.

PSync [28] is a domain specific language embedded in Scala, that enables exe-
cuting and verifying fault-tolerant distributed algorithms in synchronous and
partially asynchronous networks. PSync is based on the HO-model, and has been
used to implement several crash fault-tolerant algorithms. Similar to the Verdi
framework, PSync makes use of a notion of global state and supports reason-
ing based on the multi-sorted first-order Consensus verification logic (CL) [27].
To prove safety, users have to provide invariants, which CL checks for validity.
Unlike Verdi, IronFleet and PSync, we focus on Byzantine faults.

ByMC is a model checker for verifying safety and liveness of fault-tolerant dis-
tributed algorithms [47–49]. It applies an automated method for model checking
parametrized threshold-guarded distributed algorithms (e.g., processes waiting
for messages from a majority of distinct senders). ByMC is based on a short
counter-example property, which says that if a distributed algorithm violates a
temporal specification then there is a counterexample whose length is bounded
and independent of the parameters (e.g. the number of tolerated faults).

Ivy [69] allows debugging infinite-state systems using bounded verification, and
formally verifying their safety by gradually building universally quantified induc-
tive invariants. To the best of our knowledge, Ivy does not support faults.

Actor Services [77] allows verifying the distributed and functional properties
of programs communicating via asynchronous message passing at the level of
the source code (they use a simple Java-like language). It supports modular
reasoning and proving liveness. To the best of our knowledge, it does not deal
with faults.

PVS has been extensively used for verification of synchronous systems that tol-
erate malicious faults such as in [74], to the extent that its design was influenced
by these verification efforts [68].

8 Conclusions and Future Work

We introduced Velisarios, a framework to implement and reason about BFT-
SMR protocols using the Coq theorem prover, and described a methodology
based on learn/know epistemic modal operators. We used this framework to
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prove the safety of a complex system, namely Castro’s PBFT protocol. In the
future, we plan to also tackle liveness/timeliness. Indeed, proving the safety of
a distributed system is far from being enough: a protocol that does not run
(which is not live) is useless. Following the same line of reasoning, we want to
tackle timeliness because, for real world systems, it is not enough to prove that
a system will eventually reply. One often desires that the system replies in a
timely fashion.
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Abstract. Numeric static analysis for Java has a broad range of poten-
tially useful applications, including array bounds checking and resource
usage estimation. However, designing a scalable numeric static analy-
sis for real-world Java programs presents a multitude of design choices,
each of which may interact with others. For example, an analysis could
handle method calls via either a top-down or bottom-up interprocedu-
ral analysis. Moreover, this choice could interact with how we choose
to represent aliasing in the heap and/or whether we use a relational
numeric domain, e.g., convex polyhedra. In this paper, we present a
family of abstract interpretation-based numeric static analyses for Java
and systematically evaluate the impact of 162 analysis configurations
on the DaCapo benchmark suite. Our experiment considered the pre-
cision and performance of the analyses for discharging array bounds
checks. We found that top-down analysis is generally a better choice
than bottom-up analysis, and that using access paths to describe heap
objects is better than using summary objects corresponding to points-
to analysis locations. Moreover, these two choices are the most signifi-
cant, while choices about the numeric domain, representation of abstract
objects, and context-sensitivity make much less difference to the preci-
sion/performance tradeoff.

1 Introduction

Static analysis of numeric program properties has a broad range of useful appli-
cations. Such analyses can potentially detect array bounds errors [50], analyze
a program’s resource usage [28,30], detect side channels [8,11], and discover
vectors for denial of service attacks [10,26].

One of the major approaches to numeric static analysis is abstract inter-
pretation [18], in which program statements are evaluated over an abstract
domain until a fixed point is reached. Indeed, the first paper on abstract
interpretation [18] used numeric intervals as one example abstract domain,
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 653–682, 2018.
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and many subsequent researchers have explored abstract interpretation-based
numeric static analysis [13,22–25,31].

Despite this long history, applying abstract interpretation to real-world Java
programs remains a challenge. Such programs are large, have many interacting
methods, and make heavy use of heap-allocated objects. In considering how to
build an analysis that aims to be sound but also precise, prior work has explored
some of these challenges, but not all of them together. For example, several works
have considered the impact of the choice of numeric domain (e.g., intervals vs.
convex polyhedra) in trading off precision for performance but not considered
other tradeoffs [24,38]. Other works have considered how to integrate a numeric
domain with analysis of the heap, but unsoundly model method calls [25] and/or
focus on very precise properties that do not scale beyond small programs [23,24].
Some scalability can be recovered by using programmer-specified pre- and post-
conditions [22]. In all of these cases, there is a lack of consideration of the broader
design space in which many implementation choices interact. (Sect. 7 considers
prior work in detail.)

In this paper, we describe and then systematically explore a large design
space of fully automated, abstract interpretation-based numeric static analyses
for Java. Each analysis is identified by a choice of five configurable options—the
numeric domain, the heap abstraction, the object representation, the interpro-
cedural analysis order, and the level of context sensitivity. In total, we study 162
analysis configurations to asses both how individual configuration options per-
form overall and to study interactions between different options. To our knowl-
edge, our basic analysis is one of the few fully automated numeric static analyses
for Java, and we do not know of any prior work that has studied such a large
static analysis design space.

We selected analysis configuration options that are well-known in the static
analysis literature and that are key choices in designing a Java static analysis. For
the numeric domain, we considered both intervals [17] and convex polyhedra [19],
as these are popular and bookend the precision/performance spectrum. (See
Sect. 2.)

Modeling the flow of data through the heap requires handling pointers and
aliasing. We consider three different choices of heap abstraction: using summary
objects [25,27], which are weakly updated, to summarize multiple heap locations;
access paths [21,52], which are strongly updated ; and a combination of the two.

To implement these abstractions, we use an ahead-of-time, global points-
to analysis [44], which maps static/local variables and heap-allocated fields to
abstract objects. We explore three variants of abstract object representation:
the standard allocation-site abstraction (the most precise) in which each syn-
tactic new in the program represents an abstract object; class-based abstraction
(the least precise) in which each class represents all instances of that class;
and a smushed string abstraction (intermediate precision) which is the same
as allocation-site abstraction except strings are modeled using a class-based
abstraction [9]. (See Sect. 3.)
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We compare three choices in the interprocedural analysis order we use to
model method calls: top-down analysis, which starts with main and analyzes
callees as they are encountered; and bottom-up analysis, which starts at the leaves
of the call tree and instantiates method summaries at call sites; and a hybrid
analysis that is bottom-up for library methods and top-down for application
code. In general, top-down analysis explores fewer methods, but it may analyze
callees multiple times. Bottom-up analysis explores each method once but needs
to create summaries, which can be expensive.

Finally, we compare three kinds of context-sensitivity in the points-to analy-
sis: context-insensitive analysis, 1-CFA analysis [46] in which one level of calling
context is used to discriminate pointers, and type-sensitive analysis [49] in which
the type of the receiver is the context. (See Sect. 4.)

We implemented our analysis using WALA [2] for its intermediate represen-
tation and points-to analyses and either APRON [33,41] or ELINA [47,48] for
the interval or polyhedral, respectively, numeric domain. We then applied all 162
analysis configurations to the DaCapo benchmark suite [6], using the numeric
analysis to try to prove array accesses are within bounds. We measured the anal-
yses’ performance and the number of array bounds checks they discharged. We
analyzed our results by using a multiple linear regression over analysis features
and outcomes, and by performing data visualizations.

We studied three research questions. First, we examined how analysis config-
uration affects performance. We found that using summary objects causes signif-
icant slowdowns, e.g., the vast majority of the analysis runs that timed out used
summary objects. We also found that polyhedral analysis incurs a significant
slowdown, but only half as much as summary objects. Surprisingly, bottom-up
analysis provided little performance advantage generally, though it did provide
some benefit for particular object representations. Finally, context-insensitive
analysis is faster than context-sensitive analysis, as might be expected, but the
difference is not great when combined with more approximate (class-based and
smushed string) abstract object representations.

Second, we examined how analysis configuration affects precision. We found
that using access paths is critical to precision. We also found that the bottom-
up analysis has worse precision than top-down analysis, especially when using
summary objects, and that using a more precise abstract object representation
improves precision. But other traditional ways of improving precision do so only
slightly (the polyhedral domain) or not significantly (context-sensitivity).

Finally, we looked at the precision/performance tradeoff for all programs.
We found that using access paths is always a good idea, both for precision
and performance, and top-down analysis works better than bottom-up. While
summary objects, originally proposed by Fu [25], do help precision for some
programs, the benefits are often marginal when considered as a percentage of
all checks, so they tend not to outweigh their large performance disadvantage.
Lastly, we found that the precision gains for more precise object representations
and polyhedra are modest, and performance costs can be magnified by other
analysis features.
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Table 1. Analysis configuration options, and their possible settings.

Config. Option Setting Description

Numeric domain (ND) INT Intervals

POL Polyhedra

Heap abstraction (HA) SO Only summary objects

AP Only access paths

AP+SO Both access paths and summary objects

Abstract object ALLO Alloc-site abstraction

representation (OR) CLAS Class-based abstraction

SMUS Alloc-site except Strings

Inter-procedural analysis TD Top-down

order (AO) BU Bottom-up

TD+BU Hybrid top-down and bottom-up

Context sensitivity (CS) CI Context-insensitive

1CFA 1-CFA

1TYP Type-sensitive

In summary, our empirical study provides a large, comprehensive evaluation
of the effects of important numeric static analysis design choices on performance,
precision, and their tradeoff; it is the first of its kind. Our code and data is
available at https://github.com/plum-umd/JANA.

2 Numeric Static Analysis

A numeric static analysis is one that tracks numeric properties of memory loca-
tions, e.g., that x � 5 or y > z. A natural starting point for a numeric static
analysis for Java programs is numeric abstract interpretation over program vari-
ables within a single procedure/method [18].

A standard abstract interpretation expresses numeric properties using a
numeric abstract domain, of which the most common are intervals (also known as
boxes) and convex polyhedra. Intervals [17] define abstract states using inequal-
ities of the form p relop n where p is a variable, n is a constant integer, and
relop is a relational operator such as �. A variable such as p is sometimes called
a dimension, as it describes one axis of a numeric space. Convex polyhedra [19]
define abstract states using linear relationships between variables and constants,
e.g., of the form 3p1 − p2 � 5. Intervals are less precise but more efficient than
polyhedra. Operation on intervals have time complexity linear in the number of
dimensions whereas the time complexity for polyhedra operations is exponential
in the number of dimensions.1

1 Further, the time complexity of join is O(d · c2d+1
) where c is the number of con-

straints, and d is the number of dimensions [47].

https://github.com/plum-umd/JANA
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Numeric abstract interpretation, including our own analyses, are usually flow-
sensitive, i.e., each program point has an associated abstract state characteriz-
ing properties that hold at that point. Variable assignments are strong updates,
meaning information about the variable is replaced by information from the
right-hand side of the assignment. At merge points (e.g., after the completion of
a conditional), the abstract states of the possible prior states are joined to yield
properties that hold regardless of the branch taken. Loop bodies are reanalyzed
until their constituent statements’ abstract states reach a fixed point. Reaching
a fixed point is accelerated by applying the numeric domain’s standard widening
operator [4] in place of join after a fixed number of iterations.

Scaling a basic numeric abstract interpreter to full Java requires making
many design choices. Table 1 summarizes the key choices we study in this paper.
Each configuration option has a range of settings that potentially offer different
precision/performance tradeoffs. Different options may interact with each other
to affect the tradeoff. In total, we study five options with two or three settings
each. We have already discussed the first option, the numeric domain (ND), for
which we consider intervals (INT) and polyhedra (POL). The next two options
consider the heap, and are discussed in the next section, and the last two options
consider method calls, and are discussed in Sect. 4.

For space reasons, our paper presentation focuses on the high-level design
and tradeoffs. Detailed algorithms are given formally in the technical report [51]
for the heap and interprocedural analysis.

3 The Heap

The numeric analysis described so far is sufficient only for analyzing code with
local, numeric variables. To analyze numeric properties of heap-manipulating
programs, we must also consider heap locations x.f , where x is a reference to a
heap-allocated object, and f is a numeric field.2 To do so requires developing a
heap abstraction (HA) that accounts for aliasing. In particular, when variables x
and y may point to the same heap object, an assignment to x.f could affect y.f .
Moreover, the referent of a pointer may be uncertain, e.g., the true branch of a
conditional could assign location o1 to x, while the false branch could assign o2

to x. This uncertainty must be reflected in subsequent reads of x.f .
We use a points-to analysis to reason about aliasing. A points-to analysis

computes a mapping Pt from variables x and access paths x.f to (one or more)
abstract objects [44]. If Pt maps two variables/paths p1 and p2 to a common
abstract object o then p1 and p2 may alias. We also use points-to analysis to
determine the call graph, i.e., to determine what method may be called by an
expression x.m(. . .) (discussed in Sect. 4).

2 In our implementation, statements such as z = x.f.g are decomposed so that paths
are at most length one, e.g., w = x.f ; z = w.g.
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3.1 Summary Objects (SO)

The first heap abstraction we study is based on Fu [25]: use a summary object
(SO) to abstract information about multiple heap locations as a single abstract
state “variable” [27]. As an example, suppose that Pt(x) = {o} and we encounter
the assignment x.f := 5. Then in this approach, we add a variable o f to the
abstract state, modeling the field f of object o, and we add constraint o f = n.
Subsequent assignments to such summary objects must be weak updates, to
respect the may alias semantics of the points-to analysis. For example, suppose
y.f may alias x.f , i.e., o ∈ Pt(x)∩Pt(y). Then after a later assignment y.f := 7
the analysis would weakly update o f with 7, producing constraints 5 � o f � 7
in the abstract state. These constraints conservatively model that either o f = 5
or o f = 7, since the assignment to y.f may or may not affect x.f .

In general, weak updates are more expensive than strong updates, and read-
ing a summary object is more expensive than reading a variable. A strong update
to x is implemented by forgetting x in the abstract state,3 and then re-adding it
to be equal to the assigned-to value. Note that x cannot appear in the assigned-to
value because programs are converted into static single assignment form (Sect. 5).
A weak update—which is not directly supported in the numeric domain libraries
we use—is implemented by copying the abstract state, strongly updating x in
the copy, and then joining the two abstract states. Reading from a summary
object requires “expanding” the abstract state with a copy o′ f of the summary
object and its constraints, creating a constraint on o′ f , and then forgetting o′ f .
Doing this ensures that operations on a variable into which a summary object is
read do not affect prior reads. A normal read just references the read variable.

Fu [25] argues that this basic approach is better than ignoring heap locations
entirely by measuring how often field reads are not unconstrained, as would be
the case for a heap-unaware analysis. However, it is unclear whether the approach
is sufficiently precise for applications such as array-bounds check elimination.
Using the polyhedra numeric domain should help. For example, a Buffer class
might store an array in one field and a conservative bound on an array’s length
in another. The polyhedral domain will permit relating the latter to the former
while the interval domain will not. But the slowdown due to the many added
summary objects may be prohibitive.

3.2 Access Paths (AP)

An alternative heap abstraction we study is to treat access paths (AP) as if
they are normal variables, while still accounting for possible aliasing [21,52]. In
particular, a path x.f is modeled as a variable x f , and an assignment x.f := n
strongly updates x f to be n. At the same time, if there exists another path y.f
and x and y may alias, then we must weakly update y f as possibly containing n.
In general, determining which paths must be weakly updated depends on the
abstract object representation and context-sensitivity of the points-to analysis.
3 Doing so has the effect of “connecting” constraints that are transitive via x. For

example, given y � x � 5, forgetting x would yield constraint y � 5.
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Two key benefits of AP over SO are that (1) AP supports strong updates to
paths x.f , which are more precise and less expensive than weak updates, and (2)
AP may require fewer variables to be tracked, since, in our design, access paths
are mostly local to a method whereas points-to sets are computed across the
entire program. On the other hand, SO can do better at summarizing invariants
about heap locations pointed to by other heap locations, i.e., not necessarily via
an access path. Especially when performing an interprocedural analysis, such
information can add useful precision.

Combined (AP+SO). A natural third choice is to combine AP and SO. Doing
so sums both the costs and benefits of the two approaches. An assignment
x.f := n strongly updates x f and weakly updates o f for each o in Pt(x)
and each y f where Pt(x) ∩ Pt(y) �= ∅. Reading from x.f when it has not been
previously assigned to is just a normal read, after first strongly updating x f to
be the join of the summary read of o f for each o ∈ Pt(x).

3.3 Abstract Object Representation (OR)

Another key precision/performance tradeoff is the abstract object representation
(OR) used by the points-to analysis. In particular, when Pt(x) = {o1, ..., on},
where do the names o1, ..., on come from? The answer impacts the naming of sum-
mary objects, the granularity of alias checks for assignments to access paths, and
the precision of the call-graph, which requires aliasing information to determine
which methods are targeted by a dynamic dispatch x.m(...).

As shown in the third row of Table 1, we explore three representations for
abstract objects. The first choice names abstract objects according to their allo-
cation site (ALLO)—all objects allocated at the same program point have the
same name. This is precise but potentially expensive, since there are many possi-
ble allocation sites, and each path x.f could be mapped to many abstract objects.
We also consider representing abstract objects using class names (CLAS), where
all objects of the same class share the same abstract name, and a hybrid smushed
string (SMUS) approach, where every String object has the same abstract name
but objects of other types have allocation-site names [9]. The class name app-
roach is the least precise but potentially more efficient since there are fewer
names to consider. The smushed string analysis is somewhere in between. The
question is whether the reduction in names helps performance enough, without
overly compromising precision.

4 Method Calls

So far we have considered the first three options of Table 1, which handle
integer variables and the heap. This section considers the last two options—
interprocedural analysis order (AO) and context sensitivity (CS).
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4.1 Interprocedural Analysis Order (AO)

We implement three styles of interprocedural analysis: top-down (TD), bottom-
up (BU), and their combination (TD+BU). The TD analysis starts at the pro-
gram entry point and, as it encounters method calls, analyzes the body of the
callee (memoizing duplicate calls). The BU analysis starts at the leaves of the
call graph and analyzes each method in isolation, producing a summary of its
behavior [29,53]. (We discuss call graph construction in the next subsection.)
This summary is then instantiated at each method call. The hybrid analysis
works top-down for application code but bottom-up for any code from the Java
standard library.

Top-Down (TD). Assuming the analyzer knows the method being called, a
simple approach to top-down analysis would be to transfer the caller’s state to
the beginning of callee, analyze the callee in that state, and then transfer the
state at the end of the callee back to the caller. Unfortunately, this approach
is prohibitively expensive because the abstract state would accumulate all local
variables and access paths across all methods along the call-chain.

We avoid this blowup by analyzing a call to method m while considering only
relevant local variables and heap abstractions. Ignoring the heap for the moment,
the basic approach is as follows. First, we make a copy Cm of the caller’s abstract
state C. In Cm, we set variables for m’s formal numeric arguments to the actual
arguments and then forget (as defined in Sect. 3.1) the caller’s local variables.
Thus Cm will only contain the portion of C relevant to m. We analyze m’s body,
starting in Cm, to yield the final state C ′

m. Lastly, we merge C and C ′
m, strongly

update the variable that receives the returned result, and forget the callee’s local
variables—thus avoiding adding the callee’s locals to the caller’s state.

Now consider the heap. If we are using summary objects, when we copy C
to Cm we do not forget those objects that might be used by m (according to
the points-to analysis). As m is analyzed, the summary objects will be weakly
updated, ultimately yielding state C ′

m at m’s return. To merge C ′
m with C, we

first forget the summary objects in C not forgotten in Cm and then concatenate
C ′

m with C. The result is that updated summary objects from C ′
m replace those

that were in the original C.
If we are using access paths, then at the call we forget access paths in C

because assignments in m’s code might invalidate them. But if we have an access
path x.f in the caller and we pass x to m, then we retain x.f in the callee but
rename it to use m′s parameter’s name. For example, x.f becomes y.f if m’s
parameter is y. If y is never assigned to in m, we can map y.f back to x.f (in
the caller) once m returns.4 All other access paths in Cm are forgotten prior to
concatenating with the caller’s state.

Note that the above reasoning is only for numeric values. We take no partic-
ular steps for pointer values as the points-to analysis already tracks those across
all methods.

4 Assignments to y.f in the callee are fine; only assignments to y are problematic.
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Bottom Up (BU). In the BU analysis, we analyze a method m’s body to
produce a method summary and then instantiate the summary at calls to m.
Ignoring the heap, producing a method summary for m is straightforward: start
analyzing m in a state Cm in which its (numeric) parameters are unconstrained
variables. When m returns, forget all variables in the final state except the
parameters and return value, yielding a state C ′

m that is the method summary.
Then, when m is called, we concatenate C ′

m with the current abstract state; add
constraints between the parameters and their actual arguments; strongly update
the variable receiving the result with the summary’s returned value; and then
forget those variables.

When using the polyhedral numeric domain, C ′
m can express relationships

between input and output parameters, e.g., ret � z or ret = x+y. For the
interval domain, which is non-relational, summaries are more limited, e.g., they
can express ret � 100 but not ret � x. As such, we expect bottom-up analysis
to be far more useful with the polyhedral domain than the interval domain.

Summary Objects. Now consider the heap. Recall that when using summary
objects in the TD analysis, reading a path x.f into z “expands” each sum-
mary object o f when o ∈ Pt(x) and strongly updates z with the join of these
expanded objects, before forgetting them. This expansion makes a copy of each
summary object’s constraints so that later use of z does not incorrectly impact
the summary. However, when analyzing a method bottom-up, we may not yet
know all of a summary object’s constraints. For example, if x is passed into the
current method, we will not (yet) know if o f is assigned to a particular numeric
range in the caller.

We solve this problem by allocating a fresh, unconstrained placeholder object
at each read of x.f and include it in the initialization of the assigned-to variable z.
The placeholder is also retained in m’s method summary. Then at a call to m,
we instantiate each placeholder with the constraints in the caller involving the
placeholder’s summary location. We also create a fresh placeholder in the caller
and weakly update it to the placeholder in the callee; doing so allows for further
constraints to be added from calls further up the call chain.

Access Paths. If we are using access paths, we treat them just as in TD—each x.f
is allocated a special variable that is strongly updated when possible, according
to the points-to analysis. These are not kept in method summaries. When also
using summary objects, at the first read to x.f we initialize it from the summary
objects derived from x’s points-to set, following the above expansion procedure.
Otherwise x.f will be unconstrained.

Hybrid (TD+BU). In addition to TD or BU analysis (only), we implemented
a hybrid strategy that performs TD analysis for the application, but BU analy-
sis for code from the Java standard library. Library methods are analyzed first,
bottom-up. Application method calls are analyzed top-down. When an appli-
cation method calls a library method, it applies the BU method call approach.
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TD+BU could potentially be better than TD because library methods, which are
likely called many times, only need to be analyzed once. TD+BU could similarly
be better than BU because application methods, which are likely not called as
many times as library methods, can use the lower-overhead TD analysis.

Now, consider the interaction between the heap abstraction and the analysis
order. The use of access paths (only) does not greatly affect the normal TD/BU
tradeoff: TD may yield greater precision by adding constraints from the caller
when analyzing the callee, while BU’s lower precision comes with the benefit of
analyzing method bodies less often. Use of summary objects complicates this
tradeoff. In the TD analysis, the use of summary objects adds a relatively stable
overhead to all methods, since they are included in every method’s abstract
state. For the BU analysis, methods further down in the call chain will see fewer
summary objects used, and method bodies may end up being analyzed less often
than in the TD case. On the other hand, placeholder objects add more dimensions
overall (one per read) and more work at call sites (to instantiate them). But,
instantiating a summary may be cheaper than reanalyzing the method.

4.2 Context Sensitivity (CS)

The last design choice we considered was context-sensitivity. A context-
insensitive (CI) analysis conflates information from different call sites of the
same method. For example, two calls to method m in which the first passes
x1, y1 and the second passes x2, y2 will be conflated such that within m we will
only know that either x1 or x2 is the first parameter, and either y1 or y2 is
the second; we will miss the correlation between parameters. A context sensitive
analysis provides some distinction among different call sites. A 1-CFA analy-
sis [46] (1CFA) distinguishes based on one level of calling context, i.e., two calls
originating from different program points will be distinguished, but two calls
from the same point, but in a method called from two different points will not.
A type-sensitive analysis [49] (1TYP) uses the type of the receiver as the context.

Context sensitivity in the points-to analysis affects alias checks, e.g., when
determining whether an assignment to x.f might affect y.f . It also affects the
abstract object representation and call graph construction. Due to the latter,
context sensitivity also affects our interprocedural numeric analysis. In a context-
sensitive analysis, a single method is essentially treated as a family of methods
indexed by a calling context. In particular, our analysis keeps track of the current
context as a frame, and when considering a call to method x.m(), the target
methods to which m may refer differ depending on the frame. This provides more
precision than a context-insensitive (i.e., frame-less) approach, but the analysis
may consider the same method code many times, which adds greater precision
but also greater expense. This is true both for TD and BU, but is perhaps more
detrimental to the latter since it reduces potential method summary reuse. On
the other hand, more precise analysis may reduce unnecessary work by pruning
infeasible call graph edges. For example, when a call might dynamically dispatch
to several different methods, the analysis must consider them all, joining their
abstract states. A more precise analysis may consider fewer target methods.
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5 Implementation

We have implemented an analysis for Java with all of the options described
in the previous two sections. Our implementation is based on the intermedi-
ate representation in the T. J. Watson Libraries for Analysis (WALA) version
1.3.10 [2], which converts a Java bytecode program into static single assignment
(SSA) form [20], which is then analyzed. We use APRON [33,41] trunk revision
1096 (published on 2016/05/31) implementation of intervals, and ELINA [47,48],
snapshot as of October 4, 2017, for convex polyhedra. Our current implemen-
tation supports all non-floating point numeric Java values and comprises 14 K
lines of Scala code.

Next we discuss a few additional implementation details.

Preallocating Dimensions. In both APRON and ELINA, it is very expensive to
perform join operations that combine abstract states with different variables.
Thus, rather than add dimensions as they arise during abstract interpretation,
we instead preallocate all necessary dimensions—including for local variables,
access paths, and summary objects, when enabled—at the start of a method
body. This ensures the abstract states have the same dimensions at each join
point. We found that, even though this approach makes some states larger than
they need to be, the overall performance savings is still substantial.

Arrays. Our analysis encodes an array as an object with two fields, contents,
which represents the contents of the array, and len, representing the array’s
length. Each read/write from a[i] is modeled as a weak read/write of contents
(because all array elements are represented with the same field), with an added
check that i is between 0 and len. We treat Strings as a special kind of array.

Widening. As is standard in abstract interpretation, our implementation per-
forms widening to ensure termination when analyzing loops. In a pilot study, we
compared widening after between one and ten iterations. We found that there
was little added precision when applying widening after more than three iter-
ations when trying to prove array indexes in bounds (our target application,
discussed next). Thus we widen at that point in our implementation.

Limitations. Our implementation is sound with a few exceptions. In particular,
it ignores calls to native methods and uses of reflection. It is also unsound in its
handling of recursive method calls. If the return value of a recursive method is
numeric, it is regarded as unconstrained. Potential side effects of the recursive
calls are not modeled.

6 Evaluation

In this section, we present an empirical study of our family of analyses, focusing
on the following research questions:
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RQ1: Performance. How does the configuration affect analysis running time?
RQ2: Precision. How does the configuration affect analysis precision?
RQ3: Tradeoffs. How does the configuration affect precision and performance?

To answer these questions, we chose an important analysis client, array index
out-of-bound analysis, and ran it on the DaCapo benchmark suite [6]. We vary
each of the analysis features listed in Table 1, yielding 162 total configurations. To
understand the impact of analysis features, we used multiple linear regression and
logistic regression to model precision and performance (the dependent variables)
in terms of analysis features and across programs (the independent variables).
We also studied per-program data directly.

Overall, we found that using access paths is a significant boon to precision
but costs little in performance, while using summary objects is the reverse,
to the point that use of summary objects is a significant source of timeouts.
Polyhedra add precision compared to intervals, and impose some performance
cost, though only half as much as summary objects. Interestingly, when both
summary objects and polyhedra together would result in a timeout, choosing
the first tends to provide better precision over the second. Finally, bottom-up
analysis harms precision compared to top-down analysis, especially when only
summary objects are enabled, but yields little gain in performance.

6.1 Experimental Setup

We evaluated our analyses by using them to perform array index out of bounds
analysis. More specifically, for each benchmark program, we counted how many
array access instructions (x[i]=y, y=x[i], etc.) an analysis configuration could
verify were in bounds (i.e., i<x.length), and measured the time taken to per-
form the analysis.

Benchmarks. We analyzed all eleven programs from the DaCapo benchmark
suite [6] version 2006-10-MR2. The first three columns of Table 2 list the pro-
grams’ names, their size (number of IR instructions), and the number of array
bounds checks they contain. The rest of the table indicates the fastest and
most precise analysis configuration for each program; we discuss these results
in Sect. 6.4. We ran each benchmark three times under each of the 162 analysis
configurations. The experiments were performed on two 2.4 GHz single processor
(with four logical cores) Intel Xeon E5-2609 servers, each with 128GB memory
running Ubuntu 16.04 (LTS). On each server, we ran three analysis configura-
tions in parallel, binding each process to a designated core.

Since many analysis configurations are time-intensive, we set a limit of 1 hour
for running a benchmark under a particular configuration. All performance
results reported are the median of the three runs. We also use the median preci-
sion result, though note the analyses are deterministic, so the precision does not
vary except in the case of timeouts. Thus, we treat an analysis as not timing out
as long as either two or three of the three runs completed, and otherwise it is a
timeout. Among the 1782 median results (11 benchmarks, 162 configurations),
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Table 2. Benchmarks and overall results.

# Best Performance Best Precision

Prog. Size Checks Time (min) # Checks Percent Time (min) # Checks Percent

BU-AP-CI-CLAS-INT TD-AP+SO-1TYP-CLAS-INT

antlr 55734 1526 0.6 1176 77.1% 18.5 1306 85.6%

BU-AP-CI-CLAS-INT TD-AP-1TYP-SMUS-POL

bloat 150197 4621 4.0 2538 54.9% 17.2 2795 60.5%

BU-AP-CI-CLAS-INT TD-AP-1TYP-SMUS-INT

chart 167621 7965 3.3 5593 70.2% 7.7 5654 71.0%

BU-AP-CI-ALLO-INT TD-AP+SO-1TYP-SMUS-POL

eclipse 18938 1043 0.2 896 85.9% 3.3 977 93.7%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-SMUS-INT

fop 33243 1337 0.4 998 74.6% 2.6 1137 85.0%

BU-AP-CI-SMUS-INT TD-AP+SO-CI-SMUS-INT

hsqldb 19497 1020 0.3 911 89.3% 1.4 975 95.6%

BU-AP-CI-SMUS-INT TD-AP-1CFA-CLAS-POL

jython 127661 4232 1.3 2667 63.0% 33.6 2919 69.0%

BU-AP-CI-SMUS-INT TD-AP+SO-1TYP-ALLO-INT

luindex 69027 2764 1.8 1682 60.9% 46.8 2015 72.9%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-ALLO-POL

lusearch 20242 1062 0.2 912 85.9% 54.2 979 92.2%

BU-AP-CI-CLAS-INT TD-AP+SO-CI-CLAS-INT

pmd 116422 4402 1.7 3153 71.6% 49.5 3301 75.0%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-SMUS-POL

xalan 20315 1043 0.2 912 87.4% 3.8 981 94.1%

667 of them (37%) timed out. The percentage of the configurations that timed
out analyzing a program ranged from 0% (xalan) to 90% (chart).

Statistical Analysis. To answer RQ1 and RQ2, we constructed a model for each
question using multiple linear regression. Roughly put, we attempt to produce a
model of performance (RQ1) and precision (RQ2)—the dependent variables—in
terms of a linear combination of analysis configuration options (i.e., one choice
from each of the five categories given in Table 1) and the benchmark program
(i.e., one of the eleven subjects from DaCapo)—the independent variables. We
include the programs themselves as independent variables, which allows us to
roughly factor out program-specific sources of performance or precision gain/loss
(which might include size, complexity, etc.); this is standard in this sort of regres-
sion [45]. Our models also consider all two-way interactions among analysis
options. In our scenario, a significant interaction between two option settings
suggests that the combination of them has a different impact on the analysis
precision and/or performance compared to their independent impact.
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To obtain a model that best fits the data, we performed variable selection
via the Akaike Information Criterion (AIC) [12], a standard measure of model
quality. AIC drops insignificant independent variables to better estimate the
impact of analysis options. The R2 values for the models are good, with the
lowest of any model being 0.71.

After performing the regression, we examine the results to discover potential
trends. Then we draw plots to examine how those trends manifest in the different
programs. This lets us study the whole distribution, including outliers and any
non-linear behavior, in a way that would be difficult if we just looked at the
regression model. At the same time, if we only looked at plots it would be hard
to see general trends because there is so much data.

Threats to Validity. There are several potential threats to the validity of our
study. First, the benchmark programs may not be representative of programs
that analysis users are interested in. That said, the programs were drawn from
a well-studied benchmark suite, so they should provide useful insights.

Second, the insights drawn from the results of the array index out-of-bound
analysis may not reflect the trends of other analysis clients. We note that array
bounds checking is a standard, widely used analysis.

Third, we examined a design space of 162 analysis configurations, but there
are other design choices we did not explore. Thus, there may be other indepen-
dent variables that have important effects. In addition, there may be limitations
specific to our implementation, e.g., due to precisely how WALA implements
points-to analysis. Even so, we relied on time-tested implementations as much
as possible, and arrived at our choices of analysis features by studying the liter-
ature and conversing with experts. Thus, we believe our study has value even if
further variables are worth studying.

Fourth, for our experiments we ran each analysis configuration three times,
and thus performance variation may not be fully accounted for. While more trials
would add greater statistical assurance, each trial takes about a week to run on
our benchmark machines, and we observed no variation in precision across the
trials. We did observe variations in performance, but they were small and did
not affect the broader trends. In more detail, we computed the variance of the
running time among a set of three runs of a configuration as (max-min)/median
to calculate the variance. The average variance across all configurations is only
4.2%. The maximum total time difference (max-min) is 32 min, an outlier from
eclipse. All the other time differences are within 4 min.

6.2 RQ1: Performance

Table 3 summarizes our regression model for performance. We measure perfor-
mance as the time to run both the core analysis and perform array index out-
of-bounds checking. If a configuration timed out while analyzing a program, we
set its running time as one hour, the time limit (characterizing a lower bound
on the configuration’s performance impact). Another option would have been to
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Table 3. Model of run-time performance in terms of analysis configuration options
(Table 1), including two-way interactions. Independent variables for individual pro-
grams not shown. R2 of 0.72.

leave the configuration out of the regression, but doing so would underrepresent
the important negative contribution to performance.

In the top part of the table, the first column shows the independent vari-
ables and the second column shows a setting. One of the settings, identified by
dashes in the remaining columns, is the baseline in the regression. We use the
following settings as baselines: TD, AP+SO, 1TYP, ALLO, and POL. We chose
the baseline according to what we expected to be the most precise settings. For
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Table 4. Model of timeout in terms of analysis configuration options (Table 1).
Independent variables for individual programs not shown. R2 of 0.77.

the other settings, the third column shows the estimated effect of that setting
with all other settings (including the choice of program, each an independent
variable) held fixed. For example, the fifth row of the table shows that AP (only)
decreases overall analysis time by 37.6 min compared to AP+SO (and the other
baseline settings). The fourth column shows the 95% confidence interval around
the estimate, and the last column shows the p-value. As is standard, we consider
p-values less than 0.05 (5%) significant; such rows are highlighted green.

The bottom part of the table shows the additional effects of two-way combi-
nations of options compared to the baseline effects of each option. For example,
the BU:CLAS row shows a coefficient of –8.87. We add this to the individual
effects of BU (–1.98) and CLAS (–11.0) to compute that BU:CLAS is 21.9 min
faster (since the number is negative) than the baseline pair of TD:ALLO. Not
all interactions are shown, e.g., AO:CS is not in the table. Any interactions not
included were deemed not to have meaningful effect and thus were dropped by
the model generation process [12].

Setting the running time of a timed-out configuration as one hour in Table 3
may under-report a configuration’s (negative) performance impact. For a more
complete view, we follow the suggestion of Arcuri and Briand [3], and construct a
model of success/failure using logistic regression. We consider “if a configuration
timed out” as the categorical dependent variable, and the analysis configuration
options and the benchmark programs as independent variables.

Table 4 summarizes our logistic regression model for timeout. The coefficients
in the third column represent the change in log likelihood associated with each
configuration setting, compared to the baseline setting. Negative coefficients indi-
cate lower likelihood of timeout. The exponential of the coefficient, Exp(coef) in
the fifth column, indicates roughly how strongly that configuration setting being
turned on affects the likelihood relative to the baseline setting. For example, the
third row of the table shows that BU is roughly 5 times less likely to time out
compared to TD, a significant factor to the model.

Tables 3 and 4 present several interesting performance trends.



Evaluating Design Tradeoffs in Numeric Static Analysis for Java 669

Summary Objects Incur a Significant Slowdown. Use of summary objects results
in a very large slowdown, with high significance. We can see this in the AP
row in Table 3. It indicates that using only AP results in an average 37.6-min
speedup compared to the baseline AP+SO (while SO only had no significant
difference from the baseline). We observed a similar trend in Table 4; use of
summary objects has the largest effect, with high significance, on the likelihood
of timeout. Indeed, 624 out of the 667 analyses that timed out had summary
objects enabled (i.e., SO or AP+SO). We investigated further and found the
slowdown from summary objects is mostly due to significantly larger number of
dimensions included in the abstract state. For example, analyzing jython with
AP-TD-CI-ALLO-INT has, on average, 11 numeric variables when analyzing a
method, and the whole analysis finished in 15 min. Switching AP to SO resulted
in, on average, 1473 variables per analyzed method and the analysis ultimately
timed out.

The Polyhedral Domain is Slow, But Not as Slow as Summary Objects. Choosing
INT over baseline POL nets a speedup of 16.51 min. This is the second-largest
performance effect with high significance, though it is half as large as the effect
of SO. Moreover, per Table 4, turning on POL is more likely to result in timeout;
409 out of 667 analyses that timed out used POL.

Heavyweight CS and OR Settings Hurt Performance, Particularly When Using
Summary Objects. For CS settings, CI is faster than baseline 1TYP by 7.1 min,
while there is not a statistically significant difference with 1CFA. For the OR
settings, we see that the more lightweight representations CLAS and SMUS are
faster than baseline ALLO by 11.00 and 7.15 min, respectively, when using base-
line AP+SO. This makes sense because these representations have a direct effect
on reducing the number of summary objects. Indeed, when summary objects are
disabled, the performance benefit disappears: AP:CLAS and AP:SMUS add back
9.55 and 6.25 min, respectively.

Bottom-up Analysis Provides No Substantial Performance Advantage. Table 4
indicates that a BU analysis is less likely to time out than a TD analysis. How-
ever, the performance model in Table 3 does not show a performance advantage
of bottom-up analysis: neither BU nor TD+BU provide a statistically significant
impact on running time over baseline TD. Setting one hour for the configura-
tions that timed out in the performance model might fail to capture the negative
performance of top-down analysis. This observation underpins the utility of con-
structing a success/failure analysis to complement the performance model. In any
case, we might have expected bottom-up analysis to provide a real performance
advantage (Sect. 4.1), but that is not what we have observed.

6.3 RQ2: Precision

Table 5 summarizes our regression model for precision, using the same format as
Table 3. We measure precision as the number of array indexes proven to be in
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Table 5. Model of precision, measured as # of array indexes proved in bounds,
in terms of analysis configuration options (Table 1), including two-way interactions.
Independent variables for individual programs not shown. R2 of 0.98.

bounds. As recommended by Arcuri and Briand [3], we omit from the regression
those configurations that timed out.5 We see several interesting trends.

Access Paths are Critical to Precision. Removing access paths from the config-
uration, by switching from AP+SO to SO, yields significantly lower precision.
We see this in the SO (only) row in the table, and in all of its interactions (i.e.,
SO:opt and opt:SO rows). In contrast, AP on its own is not statistically worse
than AP+SO, indicating that summary objects often add little precision. This
is unfortunate, given their high performance cost.

Bottom-up Analysis Harms Precision Overall, Especially for SO (Only). BU has
a strongly negative effect on precision: 129.98 fewer checks compared to TD.
Coupled with SO it fares even worse: BU:SO nets 686.79 fewer checks, and
TD+BU:SO nets 630.99 fewer. For example, for xalan the most precise configura-
tion, which uses TD and AP+SO, discharges 981 checks, while all configurations

5 The alternative of setting precision to be 0 would misrepresent the general power of
a configuration, particularly when combined with runs that did not time out. Fewer
runs might reduce statistical power, however, which is captured in the model.
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that instead use BU and SO on xalan discharge close to zero checks. The same
basic trend holds for just about every program.

The Relational Domain Only Slightly Improves Precision. The row for INT is
not statistically different from the baseline POL. This is a bit of a surprise, since
by itself POL is strictly more precise than INT. In fact, it does improve preci-
sion empirically when coupled with either AP or SO—the interaction AP:INT
and SO:INT reduces the number of checks. This sets up an interesting perfor-
mance tradeoff that we explore in Sect. 6.4: using AP+SO with INT vs. using AP
with POL.

More Precise Abstract Object Representation Improves Precision, But Context
Sensitivity Does Not. The table shows CLAS discharges 90.15 fewer checks com-
pared to ALLO. Examining the data in detail, we found this occurred because
CLAS conflates all arrays of the same type as one abstract object, thus impre-
cisely approximating those arrays’ lengths, in turn causing some checks to fail.

Also notice that context sensitivity (CS) does not appear in the model, mean-
ing it does not significantly increase or decrease the precision of array bounds
checking. This is interesting, because context-sensitivity is known to reduce
points-to set size [35,49] (thus yielding more precise alias checks and dispatch
targets). However, for our application this improvement has minimal impact.

6.4 RQ3: Tradeoffs

Finally, we examine how analysis settings affect the tradeoff between precision
and performance. To begin out discussion, recall Table 2 (page 12), which shows
the fastest configuration and the most precise configuration for each benchmark.
Further, the table shows the configurations’ running time, number of checks
discharged, and percentage of checks discharged.

We see several interesting patterns in this table, though note the table shows
just two data points and not the full distribution. First, the configurations in
each column are remarkably consistent. The fastest configurations are all of
the form BU-AP-CI-*-INT, only varying in the abstract object representation.
The most precise configurations are more variable, but all include TD and some
form of AP. The rest of the options differ somewhat, with different forms of
precision benefiting different benchmarks. Finally, notice that, overall, the fastest
configurations are much faster than the most precise configurations—often by
an order of magnitude—but they are not that much less precise—typically by
5–10% points.

To delve further into the tradeoff, we examine, for each program, the overall
performance and precision distribution for the analysis configurations, focusing
on particular options (HA, AO, etc.). As settings of option HA have come up
prominently in our discussion so far, we start with it and then move through
the other options. Figure 1 gives per-benchmark scatter plots of this data. Each
plotted point corresponds to one configuration, with its performance on the x-
axis and number of discharged array bounds checks on the y-axis. We regard a
configuration that times out as discharging no checks, so it is plotted at (60, 0).
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Fig. 1. Tradeoffs: AP vs. SO vs. AP+SO.



Evaluating Design Tradeoffs in Numeric Static Analysis for Java 673

Fig. 2. Tradeoffs: TD vs. BU vs. TD+BU.
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Fig. 3. Tradeoffs: ALLO vs. SMUS vs. CLAS.

The shape of a point indicates the HA setting of the corresponding configuration:
black circle for AP, red triangle for AP+SO, and blue cross for SO.

As a general trend, we see that access paths improve precision and do little to
harm performance; they should always be enabled. More specifically, configura-
tions using AP and AP+SO (when they do not time out) are always toward the
top of the graph, meaning good precision. Moreover, the performance profile of
SO and AP+SO is quite similar, as evidenced by related clusters in the graphs
differing in the y-axis, but not the x-axis. In only one case did AP+SO time out
when SO alone did not.6

On the flip side, summary objects are a significant performance bottleneck for
a small boost in precision. On the graphs, we can see that the black AP circles
are often among the most precise, while AP+SO tend to be the best (8/11 cases
in Table 2). But AP are much faster. For example, for bloat, chart, and jython,
only AP configurations complete before the timeout, and for pmd, all but four
of the configurations that completed use AP.

Top-Down Analysis is Preferred: Bottom-up is less precise and does little to
improve performance. Figure 2 shows a scatter plot of the precision/performance
behavior of all configurations, distinguishing those with BU (black circles), TD
(red triangles), and TD+BU (blue crosses). Here the trend is not as stark as
with HA, but we can see that the mass of TD points is towards the upper-
left of the plots, except for some timeouts, while BU and TD+BU have more
configurations at the bottom, with low precision. By comparing the same (x,y)
coordinate on a graph in this figure with the corresponding graph in the previous
one, we can see options interacting. Observe that the cluster of black circles
at the lower left for antlr in Fig. 2(a) correspond to SO-only configurations in
Fig. 1(a), thus illustrating the strong negative interaction on precision of BU:SO
we discussed in the previous subsection. The figures (and Table 2) also show that
the best-performing configurations involve bottom-up analysis, but usually the

6 In particular, for eclipse, configuration TD+BU-SO-1CFA-ALLO-POL finished at
59 min, while TD+BU-AP+SO-1CFA-ALLO-POL timed out.
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Fig. 4. Tradeoffs: INT vs. POL.
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benefit is inconsistent and very small. And TD+BU does not seem to balance
the precision/performance tradeoff particularly well.

Precise Object Representation Often Helps with Precision at a Modest Cost to
Performance. Figure 3 shows a representative sample of scatter plots illustrating
the tradeoff between ALLO, CLAS, and SMUS. In general, we see that the highest
points tend to be ALLO, and these are more to the right of CLAS and SMUS. On
the other hand, the precision gain of ALLO tends to be modest, and these usu-
ally occur (examining individual runs) when combining with AP+SO. However,
summary objects and ALLO together greatly increase the risk of timeouts and
low performance. For example, for eclipse the row of circles across the bottom
are all SO-only.

The Precision Gains of POLY are More Modest than Gains Due to Using
AP+SO (over AP). Figure 4 shows scatter plots comparing INT and POLY. We
investigated several groupings in more detail and found an interesting interac-
tion between the numeric domain and the heap abstraction: POLY is often better
than INT for AP (only). For example, the points in the upper left of bloat use AP,
and POLY is slightly better than INT. The same phenomenon occurs in luindex in
the cluster of triangles and circles to the upper left. But INT does better further
up and to the right in luindex. This is because these configurations use AP+SO,
which times out when POLY is enabled. A similar phenomenon occurs for the two
points in the upper right of pmd, and the most precise points for hsqldb. Indeed,
when a configuration with AP+SO-INT terminates, it will be more precise than
those with AP-POLY, but is likely slower. We manually inspected the cases where
AP+SO-INT is more precise than AP-POLY, and found that it mostly is because
of the limitation that access paths are dropped through method calls. AP+SO
rarely terminates when coupled with POLY because of the very large number of
dimensions added by summary objects.

7 Related Work

Our numeric analysis is novel in its focus on fully automatically identifying
numeric invariants in real (heap-manipulating, method-calling) Java programs,
while aiming to be sound. We know of no prior work that carefully studies
precision and performance tradeoffs in this setting. Prior work tends to be much
more imprecise and/or intentionally unsound, but scale better, or more precise,
but not scale to programs as large as those in the DaCapo benchmark suite.

Numeric vs. Heap Analysis. Many abstract interpretation-based analyses focus
on numeric properties or heap properties, but not both. For example, Calcagno
et al. [13] uses separation logic to create a compositional, bottom-up heap anal-
ysis. Their client analysis for Java checks for NULL pointers [1], but not out-of-
bounds array indexes. Conversely, the PAGAI analyzer [31] for LLVM explores
abstract interpretation algorithms for precise invariants of numeric variables, but
ignores the heap (soundly treating heap locations as �).
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Numeric Analysis in Heap-Manipulating Programs. Fu [25] first proposed the
basic summary object heap abstraction we explore in this paper. The approach
uses a points-to analysis [44] as the basis of generating abstract names for sum-
mary objects that are weakly updated [27]. The approach does not support
strong updates to heap objects and ignores procedure calls, making unsound
assumptions about effects of calls to or from the procedure being analyzed. Fu’s
evaluation on DaCapo only considered how often the analysis yields a non-�
field, while ours considers how often the analysis can prove that an array index
is in bounds, which is a more direct measure of utility. Our experiments strongly
suggest that when modeled soundly and at scale, summary objects add enormous
performance overhead while doing much less to assist precision when compared
to strongly updatable access paths alone [21,52].

Some prior work focuses on inferring precise invariants about heap-allocated
objects, e.g., relating the presence of an object in a collection to the value of
one of the object’s fields. Ferrera et al. [23,24] also propose a composed anal-
ysis for numeric properties of heap manipulating programs. Their approach is
amenable to both points-to and shape analyses (e.g., TVLA [34]), supporting
strong updates for the latter. Deskcheck [39] and Chang and Rival [14,15] also
aim to combine shape analysis and numeric analysis, in both cases requiring the
analyst to specify predicates about the data structures of interest. Magill [37]
automatically converts heap-manipulating programs into integer programs such
that proving a numeric property of the latter implies a numeric shape property
(e.g., a list’s length) of the former. The systems just described support more
precise invariants than our approach, but are less general or scalable: they tend
to focus on much smaller programs, they do not support important language fea-
tures (e.g., Ferrara’s approach lacks procedures, Deskcheck lacks loops), and
may require manual annotation.

Clousot [22] also aims to check numeric invariants on real programs that use
the heap. Methods are analyzed in isolation but require programmer-specified
pre/post conditions and object invariants. In contrast, our interprocedural anal-
ysis is fully automated, requiring no annotations. Clousot’s heap analysis makes
local, optimistic (and unsound) assumptions about aliasing,7 while our approach
aims to be sound by using a global points-to analysis.

Measuring Analysis Parameter Tradeoffs. We are not aware of work explor-
ing performance/precision tradeoffs of features in realistic abstract interpreters.
Oftentimes, papers leave out important algorithmic details. The initial Astreé
paper [7] contains a wealth of ideas, but does not evaluate them systemati-
cally, instead reporting anecdotal observations about their particular analysis
targets. More often, papers focus on one element of an analysis to evaluate, e.g.,
Logozzo [36] examines precision and performance tradeoffs useful for certain
kinds of numeric analyses, and Ferrara [24] evaluates his technique using both
intervals and octagons as the numeric domain. Regarding the latter, our paper
shows that interactions with the heap abstraction can have a strong impact on

7 Interestingly, Clousot’s assumptions often, but not always, lead to sound results [16].
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the numeric domain precision/performance tradeoff. Prior work by Smaragdakis
et al. [49] investigates the performance/precision tradeoffs of various implemen-
tation decisions in points-to analysis. Paddle [35] evaluates tradeoffs among
different abstractions of heap allocation sites in a points-to analysis, but specif-
ically only evaluates the heap analysis and not other analyses that use it.

8 Conclusion and Future Work

We presented a family of static numeric analyses for Java. These analyses imple-
ment a novel combination of techniques to handle method calls, heap-allocated
objects, and numeric analysis. We ran the 162 resulting analysis configurations
on the DaCapo benchmark suite, and measured performance and precision in
proving array indexes in bounds. Using a combination of multiple linear regres-
sion and data visualization, we found several trends. Among others, we discov-
ered that strongly updatable access paths are always a good idea, adding sig-
nificant precision at very little performance cost. We also found that top-down
analysis also tended to improve precision at little cost, compared to bottom-up
analysis. On the other hand, while summary objects did add precision when
combined with access paths, they also added significant performance overhead,
often resulting in timeouts. The polyhedral numeric domain improved precision,
but would time out when using a richer heap abstraction; intervals and a richer
heap would work better.

The results of our study suggest several directions for future work. For
example, for many programs, a much more expensive analysis often did not
add much more in terms of precision; a pre-analysis that identifies the tradeoff
would be worthwhile. Another direction is to investigate a more sparse repre-
sentation of summary objects that retains their modest precision benefits, but
avoids the overall blowup. We also plan to consider other analysis configuration
options. Our current implementation uses an ahead-of-time points-to analysis to
model the heap; an alternative solution is to analyze the heap along with the
numeric analysis [43]. Concerning abstract object representation and context
sensitivity, there are other potentially interesting choices, e.g., recency abstrac-
tion [5] and object sensitivity [40]. Other interesting dimensions to consider are
field sensitivity [32] and widening, notably widening with thresholds. Finally, we
plan to explore other effective ways to design hybrid top-down and bottom-up
analysis [54], and investigate sparse inter-procedural analysis for better perfor-
mance [42].
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41. Miné, A.: APRON numerical abstract domain library. http://apron.cri.ensmp.fr/
library/

42. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for c-like languages. In: PLDI (2012)

43. Pioli, A., Hind, M.: Combining interprocedural pointer analysis and conditional
constant propagation. Technical report, IBM T. J. Watson Research Center (1999)

44. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36579-6 10

45. Seltman, H.: Experimental design and analysis (2015). http://www.stat.cmu.edu/
∼hseltman/309/Book/Book.pdf. e-book

46. Shivers, O.: Control-flow analysis of higher-order languages or taming lambda.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University (1991)
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Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and
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variable analysis
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data usage
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(Section 10)

−−−→←−−−
α•

γ• −−−−→←−−−−
α�

γ�

γF

γX

γQ

Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

was later demonstrated to be flawed. Notably, one of the flaws was a program-
ming error, which entirely excluded some data from the analysis [23]. Its critics
hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many different contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces,
by partitioning the operational trace semantics of a program based on its out-
come (cf. outcome semantics in Fig. 1), and a further abstraction ignores inter-
mediate state computations (cf. dependency semantics in Fig. 1). Starting the
development of the semantics from the operational trace semantics enables a
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uniform mathematical reasoning about programs semantics and program prop-
erties (Sect. 3). In particular, since input data usage is not a trace property or a
subset-closed property [11] (Sect. 4), we show that a formulation of the semantics
using sets of sets of traces is necessary for a sound validation of input data usage
via fixpoint approximation [28].

This clear design principle provides a unifying framework for reasoning about
existing analyses based on dependencies. We survey existing analyses and iden-
tify key design decisions that limit or facilitate their applicability to input data
usage, and we assess their precision. We show that non-interference analyses [6]
are sound for proving that a terminating program does not use any of its input
data; although this is too strong a property in general. We prove that strongly
live variable analysis [20] is sound for data usage even for non-terminating pro-
grams, albeit it is imprecise with respect to implicit dependencies between pro-
gram variables. We then derive a more precise static analysis similar to depen-
dency analyses used in the context of backward program slicing [37]. Finally, we
demonstrate the value of expressing these analyses as abstract interpretations
by combining them with an existing abstraction of compound data structures
such as arrays and lists [16]. This allows us to detect unused chunks of the input
data, and thus apply our work to realistic data science applications.

2 Trace Semantics

The semantics of a program is a mathematical characterization of its behavior
when executed for all possible input data. We model the operational semantics
of a program as a transition system 〈Σ, τ〉 where Σ is a (potentially infinite) set
of program states and the transition relation τ ⊆ Σ × Σ describes the possible
transitions between states [12,14]. Note that this model allows representing pro-
grams with (possibly unbounded) non-determinism. The set Ω

def= {s ∈ Σ | ∀s′ ∈
Σ : 〈s, s′〉 �∈ τ} is the set of final states of the program.

In the following, let Σn def= {s0 · · · sn−1 | ∀i < n : si ∈ Σ} be the set of
all sequences of exactly n program states. We write ε to denote the empty
sequence, i.e., Σ0 def= {ε}. Let Σ� def=

⋃
n∈N

Σn be the set of all finite sequences,

Σ+ def= Σ� \ Σ0 be the set of all non-empty finite sequences, Σω be the set
of all infinite sequences, Σ+∞ def= Σ+ ∪ Σω be the set of all non-empty finite
or infinite sequences and Σ�∞ def= Σ� ∪ Σω be the set of all finite or infi-
nite sequences of program states. In the following, we write σσ′ for the con-
catenation of two sequences σ, σ′ ∈ Σ�∞ (with σε = εσ = σ, and σσ′ = σ

when σ ∈ Σω), T+ def= T ∩ Σ+ and Tω def= T ∩ Σω for the selection of the
non-empty finite sequences and the infinite sequences of T ∈ P (Σ�∞), and
T ; T ′ def= {σsσ′ | s ∈ Σ ∧ σs ∈ T ∧ sσ′ ∈ T ′} for the merging of two sets of
sequences T ∈ P (Σ+) and T ′ ∈ P (Σ+∞), when a finite sequence in T termi-
nates with the initial state of a sequence in T ′.

Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of program
states described by the transition relation τ , that is, 〈s, s′〉 ∈ τ for each pair of
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T0 =

{
Σω

}

T1 =
{

Ω
}

∪
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{

Ω
}

∪
{

τ Ω
}

∪
{

τ τ Σω
}

Fig. 2. First fixpoint iterates of the trace semantics Λ.

consecutive states s, s′ ∈ Σ in the sequence. The set of final states Ω and the
transition relation τ can be understood as sets of traces of length one and length
two, respectively. The trace semantics Λ ∈ P (Σ+∞) generated by a transition
system 〈Σ, τ〉 is the union of all finite traces that are terminating with a final
state in Ω, and all infinite traces. It can be expressed as a least fixpoint in the
complete lattice 〈P (Σ+∞) ,�,�,, Σω, Σ+〉 [12]:

Λ = lfp� Θ

Θ(T ) def= Ω ∪ (τ ; T )
(1)

where the computational order is T1 � T2
def= T+

1 ⊆ T+
2 ∧ Tω

1 ⊇ Tω
2 . Figure 2

illustrates the first fixpoint iterates. The fixpoint iteration starts from the set
of all infinite sequences of program states. At each iteration, the final program
states in Ω are added to the set, and sequences already in the set are extended
by prepending transitions to them. In this way, we add increasingly longer finite
traces, and we remove infinite sequences of states with increasingly longer pre-
fixes not forming traces. In particular, the i-th iterate builds all finite traces of
length less than or equal to i, and selects all infinite sequences whose prefixes
of length i form traces. At the limit we obtain all infinite traces and all finite
traces that terminate in a final state in Ω. Note that Λ is suffix-closed.

The trace semantics Λ fully describes the behavior of a program. However, to
reason about a particular property of a program, it is not necessary to consider
all aspects of its behavior. In fact, reasoning is facilitated by the design of a
semantics that abstracts away from irrelevant details about program executions.
In the next sections, we define our property of interest and use abstract inter-
pretation [14] to systematically derive, by successive abstractions of the trace
semantics, a semantics that precisely captures such a property.

3 Input Data Usage

A property is specified by its extension, that is, the set of elements having such a
property [14,15]. Thus, properties of program traces in Σ+∞ are sets of traces in
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P (Σ+∞), and properties of programs with trace semantics in P (Σ+∞) are sets
of sets of traces in P (P (Σ+∞)). Accordingly, a program P satisfies a property
H ∈ P (P (Σ+∞)) if and only if its semantics [[P ]] ∈ P (Σ+∞) belongs to H:

P |= H ⇔ [[P ]] ∈ H (2)

Some program properties are defined in terms of individual program traces
and can be equivalently expressed as trace properties. This is the case for the
traditional safety [26] and liveness [4] properties of programs. In such a case, a
program P satisfies a trace property T if and only if all traces in its semantics
[[P ]] belong to the property: P |= T ⇔ [[P ]] ⊆ T .

Program properties that establish a relation between different program traces
cannot be expressed as trace properties [11]. Examples are security properties
such as non-interference [21,35]. In this paper, we consider a closely related but
more general property called input data usage, which expresses that the outcome
of a program does not depend on (some of) its input data. The notion of outcome
accounts for non-determinism as well as non-termination. Thus, our notion of
dependency encompasses non-interference as well as notions of dependency that
arise in many other contexts [1,9]. We further explore this in Sects. 8 to 10.

Let each program P with trace semantics [[P ]] have a set IP of input variables
and a set OP of output variables1. For simplicity, we can assume that these
variables are all of the same type (e.g., boolean variables) and their values are
all in a set V of possible values (e.g., V = {t, f} where t is the boolean value
true and f is the boolean value false). Given a trace σ ∈ [[P ]], we write σ[0] to
denote its initial state and σ[ω] to denote its outcome, that is, its final state if
the trace is finite or ⊥ if the trace is infinite. The input variables at the initial
states of the traces of a program store the values of its input data: we write
σ[0](i) to denote the value of the input data stored in the input variable i at the
initial state of the trace σ, and σ1[0] �=i σ2[0] to denote that the initial states
of two traces σ1 and σ2 disagree on the value of the input variable i but agree
on the values of all other variables. The output variables at the final states of
the finite traces of a program store its result: we write σ[ω](o) to denote the
result stored in the output variable o at the final state of a finite trace σ. We
can now formally define when an input variable i ∈ IP is unused with respect to
a program with trace semantics [[P ]] ∈ P (Σ+∞):

unusedi([[P ]]) def= ∀σ ∈ [[P ]], v ∈ V: σ[0](i) �= v ⇒
∃σ′ ∈ [[P ]] : σ′[0] �=i σ[0] ∧ σ′[0](i) = v ∧ σ[ω] = σ′[ω]

(3)

Intuitively, an input variable i is unused if all feasible program outcomes (e.g.,
the outcome σ[ω] of a trace σ) are feasible from all possible initial values of i
(i.e., for all possible initial values v of i that differ from the initial value of i
in σ, there exists a trace with initial value v for i that has the same outcome
σ[ω]). In other words, the outcome of the program is the same independently of
1 The approach can be easily extended to infinite inputs and/or outputs via abstrac-

tions such as the one later presented in Sect. 11.
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1 eng l i s h = input ( )
2 math = input ( )
3 s c i e n c e = input ( )
4 bonus = input ( )
5

6 pass ing = True
7 i f not eng l i s h : e n g l i s h = False # eng l i s h should be pass ing
8 i f not math : pas s ing = bonus
9 i f not math : pas s ing = bonus # math should be s c i e n c e

10

11 print ( pas s ing )

Fig. 3. Simple program to check if a student has passed three school subjects. The
programmer has made two mistakes at line 7 and at line 9, which cause the input data
stored in the variables english and science to be unused.

the initial value of the input variable i. Note that this definition accounts for
non-determinism (since it considers each program outcome independently) and
non-termination (since a program outcome can be ⊥).

Example 1. Let us consider the simple program P in Fig. 3. Based on the input
variables english, math, and science (cf. lines 1–3), the program is supposed
to check if a student has passed all three considered school subjects and store
the result in the output variable passing (cf. line 11). For mathematics and
science, the student is allowed a bonus based on the input variable bonus (cf.
line 8 and 9). However, the programmer has made two mistakes at line 7 and at
line 9, which cause the input variables english and science to be unused.

Let us now consider the input variable science. The trace semantics of the
program (simplified to consider only the variables science and passing) is:

[[P ]]science = {(t ) . . . (tt), (t ) . . . (tf), (f ) . . . (ft), (f ) . . . (ff)}

where each state (v1v2) shows the boolean value v1 of science and v2 of passing,
and denotes any boolean value. We omitted the trace suffixes for brevity. The
input variable science is unused, since each result value (t or f) for passing is
feasible from all possible initial values of science. Note that all other outcomes
of the program (i.e., non-termination) are not feasible.

Let us now consider the input variable math. The trace semantics of the
program (now simplified to only consider math and passing) is the following:

[[P ]]math = {(t ) . . . (tt), (f ) . . . (ft), (f ) . . . (ff)}

In this case, the input variable math is used since only the initial state (f ) yields
the result value f for passing (in the final state (ff)). �

The input data usage property N can now be formally defined as follows:

N def=
{
[[P ]] ∈ P

(
Σ+∞)

| ∀i ∈ IP : unusedi([[P ]])
}

(4)

which states that the outcome of a program does not depend on any input data.
In practice one is interested in weaker input data usage properties for a subset



An Abstract Interpretation Framework for Data Usage 689

J of the input variables, i.e., NJ
def= {[[P ]] ∈ P (Σ+∞) | ∀i ∈ J ⊆ IP : unusedi

([[P ]])}.
In the following, we use abstract interpretation to reason about input data

usage. In the next section, we discuss the challenges to the application of the
standard abstract interpretation framework that emerge from the fact that input
data usage cannot be expressed as a trace property.

4 Sound Input Data Usage Validation

In the standard framework of abstract interpretation, one defines a semantics
that precisely captures a property S of interest by abstraction of the trace seman-
tics Λ [12]. Then, further abstractions Λ� provide sound over-approximations
γ(Λ�) of Λ (by means of a concretization function γ): Λ ⊆ γ(Λ�). For a trace
property, an over-approximation γ([[P ]]�) of the semantics [[P ]] of a program P
allows a sound validation of the property: since [[P ]] ⊆ γ([[P ]]�), we have that
γ([[P ]]�) ⊆ S ⇒ [[P ]] ⊆ S and so, if γ([[P ]]�) ⊆ S, we can conclude that P |= S
(cf. Sect. 3). This conclusion is also valid for all other subset-closed properties
[11]: since by definition γ([[P ]]�) ∈ S ⇒ ∀T ⊆ γ([[P ]]�) : T ∈ S, we have that
γ([[P ]]�) ∈ S ⇒ [[P ]] ∈ S (and so we can conclude that P |= S). However, for pro-
gram properties that are not subset-closed, we have that γ([[P ]]�) ∈ S �⇒ [[P ]] ∈ S
[28] and so we cannot conclude that P |= S, even if γ([[P ]]�) ∈ S (cf. Eq. 2).

We have seen in the previous section that input data usage is not a trace
property. The example below shows that it is not a subset-closed property either.

Example 2. Let us consider again the program P and its semantics [[P ]]science
and [[P ]]math shown in Example 1. We have seen in Example 1 that the semantics
[[P ]]science belongs to the data usage property N : [[P ]]science ∈ N . Let us consider
now the following subset T of [[P ]]science:

T = {(t ) . . . (tt), (f ) . . . (ft), (f ) . . . (ff)}

In this case, the input variable science is used. Indeed, we can observe that T
coincides with [[P ]]math (except for the considered input variable). Thus T �∈ N
even though T ⊆ [[P ]]science. �

Since input data usage is not subset-closed, we are in the unfortunate sit-
uation that we cannot use the standard abstract interpretation framework to
soundly prove that a program does not use (some of) its input data using an
over-approximation of the semantics of the program: γ([[P ]]�) ∈ NJ �⇒ [[P ]] ∈ NJ .

We solve this problem in the next section, by lifting the trace semantics
[[P ]] ∈ P (Σ+∞) of a program P (i.e., a set of traces) to a set of sets of traces
�P � ∈ P (P (Σ+∞)) [28]. In this setting, a program P satisfies a property H if
and only if its semantics �P � is a subset of H:

P |= H ⇔ �P � ⊆ H (5)
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As we will explain in the next section, now an over-approximation γ(�P ��) of
�P � allows again a sound validation of the property: since �P � ⊆ γ(�P ��), we
have that γ(�P ��) ⊆ H ⇒ �P � ⊆ H (and so we can conclude that P |= H).

More specifically, in the next section, we define a program semantics �P � that
precisely captures which subset J of the input variables is unused by a program
P . In later sections, we present further abstractions �P �� that over-approximate
the subset of the input variables that may be used by P , and thus allows a sound
validation of an under-approximation J� of J : γ(�P ��) ⊆ NJ� ⇒ �P � ⊆ NJ� . In
other words, this means that every input variable reported as unused by an
abstraction is indeed not used by the program.

5 Outcome Semantics

We lift the trace semantics Λ to a set of sets of traces by partitioning. The
partitioning abstraction αQ : P (Σ+∞) → P (P (Σ+∞)) of a set of traces T is:

αQ(T ) def= {T ∩ C | C ∈ Q} (6)

where Q ∈ P (P (Σ+∞)) is a partition of sequences of program states.
More specifically, to reason about input data usage of a program P , we lift

the trace semantics [[P ]] to �P � by partitioning it into sets of traces that yield the
same program outcome. The key insight behind this idea is that, given an input
variable i, the initial states of all traces in a partition give all initial values for i
that yield a program outcome; the variable i is unused if and only if these initial
values are all the possible values for i (or the set of values is empty because the
outcome is unfeasible, cf. Eq. 3). Thus, if the trace semantics [[P ]] of a program
P belongs to the input data usage property NJ , then each partition in �P � must
also belong to NJ , and vice versa: we have that [[P ]] ∈ NJ ⇔ �P � ⊆ NJ , which
is precisely what we want (cf. Eq. 5).

Let T+
o=v denote the subset of the finite sequences of program states in T ∈

P (Σ+∞) with value v for the output variable o in their outcome (i.e., their
final state): T+

o=v
def= {σ ∈ T+ | σ[ω](o) = v}. We define the outcome partition

O ∈ P (P (Σ+∞)) of sequences of program states:

O
def=

{
Σ+

o1=v1,...,ok=vk
| v1, . . . , vk ∈ V

}
∪ {Σω}

where V is the set of possible values of the output variables o1, . . . , ok (cf. Sect. 3).
The partition contains all sets of finite sequences that agree on the values of the
output variables in their outcome, and all infinite sequences of program states
(i.e., all sequences with outcome ⊥). We instantiate αQ above with the outcome
partition to obtain the outcome abstraction α• : P (Σ+∞) → P (P (Σ+∞)):

α•(T ) def=
{
T+

o1=v1,...,ok=vk
| v1, . . . , vk ∈ V

}
∪ {Tω} (7)
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Example 3. The program P of Example 1 has only one output variable passing
with boolean value t or f. Let us consider again the trace semantics [[P ]]math
shown in Example 1. Its outcome abstraction α•([[P ]]math) is:

α•([[P ]]math) = {∅, {(f ) . . . (ff)} , {(t ) . . . (tt), (f ) . . . (ft)}}

Note that all traces with different result values for the output variable passing
belong to different sets of traces (i.e., partitions) in α•([[P ]]math). The empty set
corresponds to the (unfeasible) non-terminating outcome of the program. �

We can now use the outcome abstraction α• to define the outcome semantics
Λ• ∈ P (P (Σ+∞)) as an abstraction of the trace semantics Λ:

Definition 1. The outcome semantics Λ• ∈ P (P (Σ+∞)) is defined as:

Λ•
def= α•(Λ) (8)

where α• is the outcome abstraction (cf. Eq. 7) and Λ ∈ P (Σ+∞) is the trace
semantics (cf. Eq. 1).

The outcome semantics contains the set of all infinite traces and all sets of finite
traces that agree on the value of the output variables in their outcome.

In the following, we express the outcome semantics Λ• in a constructive
fixpoint form. This allows us to later derive further abstractions of Λ• by fixpoint
transfer and fixpoint approximation [12]. Given a set of sets of traces S, we
write S+

o=v
def= {T ∈ S | T = T+

o=v} for the selection of the sets of traces in S

that agree on the value v of the output variable o in their outcome, and Sω def=
{T ∈ S | T = Tω} for the selection of the sets of infinite traces in S. When S+

o=v

(resp. Sω) contains a single set of traces T , we abuse notation and write S+
o=v

(resp. Sω) to also denote T . The following result gives a fixpoint definition of
Λ• in the complete lattice 〈P (P (Σ+∞)) ,�·,�· ,· , {Σω, ∅} , {∅, Σ+}〉, where the
computational order �· is defined (similarly to �, cf. Sect. 2) as:

S1 �· S2
def=

∧

v1,...,vk∈V

S1
+
o1=v1,...,ok=vk

⊆ S2
+
o1=v1,...,ok=vk

∧ Sω
1 ⊇ Sω

2

Theorem 1. The outcome semantics Λ• ∈ P (P (Σ+∞)) can be expressed as a
least fixpoint in 〈P (P (Σ+∞)) ,�·,�· ,· , {Σω, ∅} , {∅, Σ+}〉 as:

Λ• = lfp�· Θ•

Θ•(S) def= {Ωo1=v1,...,ok=vk
| v1, . . . , vk ∈ V} ∪· {τ ; T | T ∈ S}

(9)

where S1 ∪· S2
def=

{
S1

+
o1=v1,...,ok=vk

∪ S2
+
o1=v1,...,ok=vk

| v1, . . . , vk ∈ V
}
∪Sω

1 ∪Sω
2 .

Figure 4 illustrates the first fixpoint iterates of the outcome semantics for a
single output variable o. The fixpoint iteration starts from the partition contain-
ing the set of all infinite sequences of program states and the empty set (which
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S0 =

{{
Σω

}
, ∅

}

S1 =

{{
Ωo=v

} ∣∣∣∣∣ v ∈ V

}
∪

{{
τ Σω

}}

S2 =

{{
Ωo=v

}
∪

{
τ Ωo=v

} ∣
v ∈ V

}
∪

{{
τ τ Σω

}}

Fig. 4. First iterates of the outcome semantics Λ• for a single output variable o.

represents an empty set of finite traces). At the first iteration, the empty set is
replaced with a partition of the final states Ω based on the value v of the output
variable o, while the infinite sequences are extended by prepending transitions
to them (similarly to the trace semantics, cf. Eq. 1). At the next iterations, all
sequences contained in each partition are further extended, and the final states
that agree on the value v of o are again added to the matching set of traces that
agree on v in their outcome. At the limit, we obtain a partition containing the
set of all infinite traces and all sets of finite traces that agree on the value v of
the output variable o in their outcome.

To prove Theorem 1 we first need to show that the outcome abstraction α•
preserves least upper bounds of non-empty sets of sets of traces.

Lemma 1. The outcome abstraction α• is Scott-continuous.

Proof. We need to show that for any non-empty ascending chain C of sets of
traces with least upper bound �C, we have that α•(�C) = �· {α•(T ) | T ∈ C},
that is, α•(�C) is the least upper bound of α•(C), the image of C via α•.

First, we know that α• is monotonic, i.e., for any two sets of traces T1 and
T2 we have T1 � T2 ⇒ α•(T1) �· α•(T2). Since �C is the least upper bound of
C, for any set T in C we have that T � �C and, since α• is monotonic, we have
that α•(T ) �· α•(�C). Thus α(�C) is an upper bound of {α•(T ) | T ∈ C}.

To show that α(�C) is the least upper bound of α•(C), we need to show that
for any other upper bound U of α•(C) we have α•(�C) �· U . Let us assume by
absurd that α•(�C) ��· U . Then, there exists T1 ∈ α•(�C) and T2 ∈ U such that
T1 �� T2: T+

1 ⊃ T+
2 or Tω

1 ⊂ Tω
2 . Let us assume that T+

1 ⊃ T+
2 . By definition of

α•, we observe that T1 is a partition of �·C and, since �·C is the least upper bound
of C, U cannot be an upper bound of α•(C) (since T2 does not contain enough
finite traces). Similarly, if Tω

1 ⊂ Tω
2 , then U cannot be an upper bound of α•(C)

(since T2 contains too many infinite traces). Thus, we must have α•(�C) �· U
and we can conclude that α(�C) is the least upper bound of α•(C). �

We can now prove Theorem 1 by Kleenian fixpoint transfer [12].
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Proof (Sketch). The proof follows by Kleenian fixpoint transfer. We have that
〈P (P (Σ+∞)) ,�·,�· ,· , {Σω, ∅} , {∅, Σ+}〉 is a complete lattice and that φ+∞ (cf.
Eq. 1) and Θ• (cf. Eq. 8) are monotonic function. Additionally, we have that the
outcome abstraction α• (cf. Eq. 7) is Scott-continuous (cf. Lemma 1) and such
that α•(Σω) = {Σω, ∅} and α• ◦ φ+∞ = Θ• ◦ α•. Then, by Kleenian fixpoint
transfer, we have that α•(Λ) = α•(lfp� φ+∞) = lfp�· Θ•. Thus, we can conclude
that Λ• = lfp�· Θ•. �

Finally, we show that the outcome semantics Λ• is sound and complete for
proving that a program does not use (a subset of) its input variables.

Theorem 2. A program does not use a subset J of its input variables if and
only if its outcome semantics Λ• is a subset of NJ :

P |= NJ ⇔ Λ• ⊆ NJ

Proof (Sketch). The proof follows immediately from the definition of NJ (cf.
Eq. 3 and Sect. 4) and the definition of Λ• (cf. Eq. 8). �

Example 4. Let us consider again the program P and its semantics [[P ]]science
shown in Example 1. The corresponding outcome semantics α•([[P ]]science) is:

α•([[P ]]science) = {∅, {(t ) . . . (tf), (f ) . . . (ff)} , {(t ) . . . (tt), (f ) . . . (ft)}}

Note that all sets of traces in α•([[P ]]science) belong to N{science}: the initial
states of all traces in a non-empty partition contain all possible initial values (t
or f) for the input variable science. Thus, P satisfies N{science} and, indeed,
the input variable science is unused by P . �

As discussed in Sect. 4, we now can again use the standard framework of
abstract interpretation to soundly over-approximate Λ• and prove that a pro-
gram does not use (some of) its input data. In the next section, we propose
an abstraction that remains sound and complete for input data usage. Further
sound but not complete abstractions are presented in later sections.

6 Dependency Semantics

We observe that, to reason about input data usage, it is not necessary to consider
all intermediate state computations between the initial state of a trace and its
outcome. Thus, we can further abstract the outcome semantics Λ• into a set Λ�
of (dependency) relations between initial states and outcomes of a set of traces.

We lift the abstraction defined for this purpose on sets of traces [12] to
α� : P (P (Σ+∞)) → P (P (Σ × Σ⊥)) on sets of sets of traces:

α�(S) def= {{〈σ[0], σ[ω]〉 ∈ Σ × Σ⊥ | σ ∈ T} | T ∈ S} (10)

where Σ⊥
def= Σ ∪ {⊥}. The dependency abstraction α� ignores all intermediate

states between the initial state σ[0] and the outcome σ[ω] of all traces σ in
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all partitions T of S. Observe that a trace σ that consists of a single state
s is abstracted as a pair 〈s, s〉. The corresponding dependency concretization
function γ� : P (P (Σ × Σ⊥)) → P (P (Σ+∞)) over-approximates the original
sets of traces by inserting arbitrary intermediate states:

γ�(S) def=
{
T ∈ P

(
Σ+∞)

| {〈σ[0], σ[ω]〉 ∈ Σ × Σ⊥ | σ ∈ T} ∈ S
}

(11)

Example 5. Let us consider again the program of Example 1 and its outcome
semantics α•([[P ]]math) shown in Example 3. Its dependency abstraction is:

α�(α•([[P ]]math)) = {∅, {〈f , ff〉} , {〈t ,tt〉, 〈f , ft〉}}

which explicitly ignores intermediate program states. �
Using α�, we now define the dependency semantics Λ� ∈ P (P (Σ+∞)) as

an abstraction of the outcome semantics Λ•.

Definition 2. The dependency semantics Λ� ∈ P (P (Σ+∞)) is defined as:

Λ�
def= α�(Λ•) (12)

where Λ• ∈ P (P (Σ+∞)) is the outcome semantics (cf. Eq. 8) and α� is the
dependency abstraction (cf. Eq. 10).

Neither the Kleenian fixpoint transfer nor the Tarskian fixpoint transfer can
be used to obtain a fixpoint definition for the dependency semantics, but we
have to proceed by union of disjoint fixpoints [12]. To this end, we observe that
the outcome semantics Λ• can be equivalently expressed as follows:

Λ• = Λ+
• ∪ Λω

• = lfp�·
∅ Θ+

• ∪ lfp�·
{Σω} Θω

•

Θ+
• (S) def= {Ωo1=v1,...,ok=vk

| v1, . . . , vk ∈ V} ∪· {τ ; T | T ∈ S}

Θω
• (S) def= {τ ; T | T ∈ S}

(13)

where Λ+
• and Λω

• separately compute the set of all sets of finite traces that agree
on their outcome, and the set of all infinite traces, respectively.

In the following, given a set of traces T ∈ P (Σ+∞) and its dependency abstrac-
tion α�(T ), we abuse notation and write T+ (resp. Tω) to also denote α�(T )+ def=
α�(T ) ∩ (Σ × Σ) (resp. α�(T )ω def= α�(T ) ∩ (Σ × {⊥})). Similarly, we reuse the
symbols for the computational order �·, least upper bound �· , and greatest lower
bound · , instead of their abstractions. We can now use the Kleenian and Tarskian
fixpoint transfer to separately derive fixpoint definitions of α�(Λ+

• ) and α�(Λω
• )

in 〈P (P (Σ × Σ⊥)) ,�·,�· ,· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉.

Lemma 2. The abstraction Λ+
�

def= α�(Λ+
• ) ∈ P (P (Σ × Σ)) can be expressed

as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λ+
� = lfp�·

{∅} Θ+
�

Θ+
�(S) def= {Ωo1=v1,...,ok=vk

× Ωo1=v1,...,ok=vk
| v1, . . . , vk ∈ V} ∪· {τ ◦ R | R ∈ S}

(14)
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Proof (Sketch). By Kleenian fixpoint transfer (cf. Theorem 17 in [12]). �

Lemma 3. The abstraction Λω
�

def= α�(Λω
• ) ∈ P (P (Σ × Σ)) can be expressed

as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λω
� = lfp�·

{Σ×{⊥}} Θω
�

Θω
�(S) def= {τ ◦ R | R ∈ S}

(15)

Proof (Sketch). By Tarskian fixpoint transfer (cf. Theorem 18 in [12]). �

The fixpoint iteration for Λ+
� starts from the set containing only the empty

relation. At the first iteration, the empty relation is replaced by all relations
between pairs of final states that agree on the values of the output variables.
At each next iteration, all relations are combined with the transition relation
to obtain relations between initial and final states of increasingly longer traces.
At the limit, we obtain the set of all relations between the initial and the final
states of a program that agree on the final value of the output variables. The
fixpoint iteration for Λω

� starts from the set containing (the set of) all pairs of
states and the ⊥ outcome, and each iteration discards more and more pairs with
initial states that do not belong to infinite traces of the program.

Now we can use Lemmas 2 and 3 to express the dependency semantics Λ�
in a constructive fixpoint form (as the union of Λ+

� and Λω
�).

Theorem 3. The dependency semantics Λ� ∈ P (P (Σ × Σ⊥)) can be expressed
as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λ� = Λ+
� ∪ Λω

� = lfp�·
{Σ×{⊥},∅} Θ�

Θ�(S) def= {Ωo1=v1,...,ok=vk
× Ωo1=v1,...,ok=vk

| v1, . . . , vk ∈ V} ∪· {τ ◦ R | R ∈ S}
(16)

Proof (Sketch). The proof follows immediately from Lemmas 2 and 3. �

Finally, we show that the dependency semantics Λ� is sound and complete
for proving that a program does not use (a subset of) its input variables.

Theorem 4. A program does not use a subset J of its input variables if and
only if the image via γ� of its dependency semantics Λ� is a subset of NJ :

P |= NJ ⇔ γ�(Λ�) ⊆ NJ

Proof (Sketch). The proof follows from the definition of Λ� (cf. Eq. 12) and γ�
(cf. Eq. 11), and from Theorem 2. �

Example 6. Let us consider again the program P and its outcome semantics
α•([[P ]]science) from Example 4. The corresponding dependency semantics is:

α�(α•([[P ]]science)) = {∅, {〈t ,tf〉, 〈f , ff〉} , {〈t ,tt〉, 〈f , ft〉}}
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and, by definition of γ�, we have that its concretization γ�(α�(α•([[P ]]science)))
is an over-approximation of α•([[P ]]science). In particular, since intermediate state
computations are irrelevant for deciding the input data usage property, all sets
of traces in γ�(α�(α•([[P ]]science))) are over-approximations of exactly one set
in α•([[P ]]science) with the same set of initial states and outcome. Thus, in this
case, we can observe that all sets of traces in γ�(α�(α•([[P ]]science))) belong to
N{science} and correctly conclude that P does not use the variable science. �

At this point we have a sound and complete program semantics that captures
only the minimal information needed to decide which input variables are unused
by a program. In the rest of the paper, we present various static analyses for
input data usage by means of sound abstractions of this semantics, which under-
approximate (resp. over-approximate) the subset of the input variables that are
unused (resp. used) by a program.

7 Input Data Usage Abstractions

We introduce a simple sequential programming language with boolean variables,
which we use for illustration throughout the rest of the paper:

e ::= v | x | not e | e and e | e or e (expressions)
s ::= skip | x = e | if e : s else : s | while e : s | s s (statements)

where v ranges over boolean values, and x ranges over program variables. The
skip statement, which does nothing, is a placeholder useful, for instance, for
writing a conditional if statement without an else branch: if e : s else : skip.
In the following, we often simply write if e : s instead of if e : s else : skip.
Note that our work is not limited by the choice of a particular programming
language, as the formal treatment in previous sections is language independent.

In Sects. 8 and 9, we show that existing static analyses based on dependencies
[6,20] are abstractions of the dependency semantics Λ�. We define each abstrac-
tion Λ� over a partially ordered set 〈A,�A〉 called abstract domain. More specifi-
cally, for each program statement s, we define a transfer function Θ�[[s]] : A → A,
and the abstraction Λ� is the composition of the transfer functions of all state-
ments in a program. We derive a more precise static analysis similar to depen-
dency analyses used for program slicing [37] in Sect. 10. Finally, Sect. 11 demon-
strates the value of expressing such analyses as abstract domains by combining
them with an existing abstraction of compound data structures such as arrays
and lists [16] to detect unused chunks of input data.

8 Secure Information Flow Abstractions

Secure information flow analysis [18] aims at proving that a program will not leak
sensitive information. Most analyses focus on proving non-interference [35] by
classifying program variables into different security levels [17], and ensuring the
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absence of information flow from variables with higher security level to variables
with lower security level. The most basic classification comprises a low security
level L, and a high security level H: program variables classified as L are public
information, while variables classified as H are private information.

In our context, if we classify input variables as H and all other variables as L,
possiblistic non-interference [21] coincides with the input data usage property N
(cf. Eq. 4) restricted to consider only terminating programs. However, in general,
(possibilistic) non-interference is too strong for our purposes as it requires that
none of the input variables is used by a program. We illustrate this using as
an example a non-interference analysis recently proposed by Assaf et al. [6]
that is conveniently formalized in the framework of abstract interpretation. We
briefly present here a version of the originally proposed analysis, simplified to
consider only the security levels L and H, and we point out the significance of
the definitions for input data usage.

Let L def= {L,H} be the set of security levels, and let the set X of all program
variables be partitioned into a set XL of variables classified as L and a set XH

of variables classified as H (i.e., the input variables). A dependency constraint
L � x expresses that the current value of the variable x depends only on the
initial values of variables having at most security level L (i.e., it does not depend
on the initial value of any of the input variables). The non-interference analysis
ΛF proposed by Assaf et al. is a forward analysis in the lattice 〈P (F) ,�F,�F〉
where F def= {L � x | x ∈ X} is the set of all dependency constraints, S1 �F

S2
def= S1 ⊇ S2, and S1 �F S2

def= S1 ∩ S2. The transfer function ΘF[[s]] : P (F) →
P (F) for each statement s in our simple programming language is defined as
follows:

ΘF[[skip]](S) def= S

ΘF[[x = e]](S) def= {L � y ∈ S | y �= x} ∪ {L � x | VF[[e]]S}

ΘF[[if e : s1 else : s2]](S) def=

{
ΘF[[s1]](S) �F ΘF[[s2]](S) if VF[[e]]S
{L � x ∈ S | x �∈ w(s1) ∪ w(s2)} otherwise

ΘF[[while e : s]](S) def= lfp�F
S ΘF[[if e : s else : skip]]

ΘF[[s1 s2]](S) def= ΘF[[s2]] ◦ ΘF[[s1]](S)

where w(s) denotes the set of variables modified by the statement s, and VF[[e]]S
determines whether a set of dependencies S guarantees that the expression e has
a unique value independently of the initial value of the input variables. For a
variable x, VF[[x]]S is true if and only if L � x ∈ S. Otherwise, VF[[e]]S is
defined recursively on the structure of e, and it is always true for a boolean
value v [6]. An assignment x = e discards all dependency constraints related
to the assigned variable x, and adds constraints L � x if e has a unique value
independently of the initial values of the input variables. This captures an explicit
flow of information between e and x. A conditional statement if e : s1 else : s2

joins the dependency constraints obtained from s1 and s2, if e does not depend
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on the initial values of the input variables (i.e., VF[[e]]S is true). Otherwise, it
discards all dependency constraints related to the variables modified in either of
its branches. This captures an implicit flow of information from e. The initial
set of dependencies contains a constraint L � x for each variable x that is not
an input variable. We exemplify the analysis below.

Example 7. Let us consider again the program P from Example 1 (stripped of
the input and print statements, which are not present in our simple language):

1 passing = True

2 if not english: english = False # english should be passing

3 if not math: passing = bonus

4 if not math: passing = bonus # math should be science

The analysis begins from the set of dependency constraints {L � passing},
which classifies input variables as H and all other variables as L. The assignment
at line 1 leaves the set unchanged as the value of the expression True on the
right-hand side of the assignment does not depend on the initial value of the
input variables. The set remains unchanged by the conditional statement at line
2, even though the boolean condition depends on the input variable english,
because the variable passing is not modified. Finally, at line 3 and 4, the anal-
ysis captures an explicit flow of information from the input variable bonus and
an implicit flow of information from the input variable math. Thus, the set of
dependency constraints becomes empty at line 3, and remains empty at line 4.

Observe that, in this case, non-interference does not hold since the result of
the program depends on some of the input variables. Therefore, the analysis is
only able to conclude that at least one of the input variables may be used by
the program, but it cannot determine which input variables are unused. �

The example shows that non-interference is too strong a property in general.
Of course, one could determine which input variables are unused by running
multiple instances of the non-interference analysis ΛF, each one of them classify-
ing a single different input variable as H and all other variables as L. However,
this becomes cumbersome in a data science application where a program reads
and manipulates a large amount of input data.

Moreover, we emphasize that our input data usage property is more general
than (possibilistic) non-interference since it also considers non-termination. We
are not aware of any work on termination-sensitive possibilistic non-interference.

Example 8. Let us modify the program P shown in Example 7 as follows:
1 pass ing = True
2 while not eng l i s h : e n g l i s h = False

In this case, since the loop at line 2 does not modify the output variable passing,
the non-interference analysis ΛF will leave the initial set of dependency con-
straints {L � passing} unchanged, meaning that the result of the program does
not depend on any of its input variables. However, the input variable english
is used since its value influences the outcome of the program: the program ter-
minates if english is true, and does not terminate otherwise. �
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The example demonstrates that the analysis is unsound for a non-terminating
program.2 We show that the non-interference analysis ΛF is sound for proving
that a program does not use any of its input variables, only if the program is
terminating. We define the concretization function γF : P (F) → P (P (Σ × Σ)):

γF(S) def= {R ∈ P (Σ × Σ) | αF(R) �F S} (17)

The abstraction function αF : P (P (Σ × Σ)) → P (F) maps each relation R
between states of a program to the corresponding set of dependency constraints:
αF(R) def= {L � x | x ∈ XL ∧ ∀i ∈ XH : unusedi,x(R)}, where unusedi,x is the
relational abstraction of unusedi (cf. Eq. 3) in which we compare only the result
stored in the variable x (i.e., we compare σ[ω](o) and σ′[ω](o), instead of σ[ω]
and σ′[ω] as in Eq. 3).

Theorem 5. A terminating program does not use any of its input variables if
the image via γ� ◦ γF of its non-interference abstraction ΛF is a subset of N :

γ�(γF(ΛF)) ⊆ N ⇒ P |= N

Proof. Let us assume that γ�(γF(ΛF)) ⊆ N . By definition of γF (cf. Eq. 17),
since the program is terminating, we have that Λ� ⊆ γF(ΛF) and, by mono-
tonicity of the concretization function γ� (cf. Eq. 11), we have that γ�(Λ�) ⊆
γ�(γF(ΛF)). Thus, since γ�(γF(ΛF)) ⊆ N , we have that γ�(Λ�) ⊆ N . The
conclusion follows from Theorem 4. �

Note that the termination of the program is necessary for the proof of The-
orem 5. Indeed, for a non-terminating program, we have that Λ� �⊆ γF(ΛF)
(since Λ� includes relational abstractions of infinite traces that are missing
from γF(ΛF)) and thus we cannot conclude the proof.

This result shows that the non-interference analysis ΛF is an abstraction of
the dependency semantics Λ� presented earlier. However, we remark that the
same result applies to all other instances in this important class of analysis [5,25,
etc.], which are therefore subsumed by our framework.

9 Strongly Live Variable Abstraction

Strongly live variable analysis [20] is a variant of the classic live variable analysis
[32] performed by compilers to determine, for each program point, which vari-
ables may be potentially used before they are assigned to. A variable is strongly
live if it is used in an assignment to another strongly live variable, or if is used in
a statement other than an assignment. Otherwise, a variable is considered faint.

2 The case of a program using an input variable and then always diverging is not
problematic because the analysis would be imprecise but still sound.
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Strongly live variable analysis ΛX is a backward analysis in the complete
lattice 〈P (X) ,⊆,∪,∩, ∅,X〉, where X is the set of all program variables. The
transfer function ΘX[[s]] : P (X) → P (X) for each statement s is defined as:

ΘX[[skip]](S) def= S

ΘX[[x = e]](S) def=

{
(S \ {x}) ∪ vars(e) x ∈ S

S otherwise

ΘX[[if b : s1 else : s2]](S) def= vars(b) ∪ ΘX[[s1]](S) ∪ ΘX[[s2]](S)

ΘX[[while b : s]](S) def= vars(b) ∪ ΘX[[s]](S)

ΘX[[s1 s2]](S) def= ΘX[[s1]] ◦ ΘX[[s2]](S)

where vars(e) is the set of variables in the expression e. For input data usage, the
initial set of strongly live variables contains the output variables of the program.

Example 9. Let us consider again the program P shown in Example 7. The
strongly live variable analysis begins from the set {passing} containing the out-
put variable passing. At line 3, the set of strongly live variables is {math, bonus}
since bonus is used in an assignment to the strongly live variable passing, and
math is used in the condition of the if statement. Finally, at line 1, the set of
strongly live variables is {english, math, bonus} because english is used in the
condition of the if statement at line 2. Thus, strongly live variable analysis is
able to conclude that the input variable science is unused. However, it is not
precise enough to determine that the variable english is also unused. �

The imprecision of the analysis derives from the fact that it does not capture
implicit flows of information precisely (cf. Sect. 8) but only over-approximates
their presence. Thus, the analysis is unable to detect when a conditional state-
ment, for instance, modifies only variables that have no impact on the outcome
of a program; a situation likely to arise due to a programming error, as shown in
the previous example. However, in virtue of this imprecise treatment of implicit
flows, we can show that strongly live variable analysis is sound for input data
usage, even for non-terminating programs.

We define the concretization function γX : P (X) → P (P (Σ × Σ⊥)) as:

γX(S) def= {R ∈ Σ × Σ⊥ | ∀i ∈ X \ S : unusedi(R)} (18)

where we abuse notation and use unusedi (cf. Eq. 3) to also denote its depen-
dency abstraction (cf. Eq. 10). We now show that strongly live variable analysis
is sound for proving that a program does not use the faint variables.

Theorem 6. A program does not use a subset J of its input variables if the
image via γ� ◦ γX of its strongly live variable abstraction ΛX is a subset of NJ :

γ�(γX(ΛX)) ⊆ NJ ⇒ P |= NJ
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Proof. Let us assume that γ�(γX(ΛX)) ⊆ NJ . By definition of γX (cf. Eq. 18),
we have that Λ� ⊆ γX(ΛX) and, by monotonicity of γ� (cf. Eq. 11), we have
that γ�(Λ�) ⊆ γ�(γX(ΛX)). Thus, since γ�(γX(ΛX)) ⊆ NJ , we have that
γ�(Λ�) ⊆ NJ . The conclusion follows from Theorem 4. �

This result shows that also strongly live variable analysis is subsumed by our
framework as it is an abstraction of the dependency semantics Λ�.

10 Syntactic Dependency Abstractions

In the following, we derive a more precise data usage analysis based on syntactic
dependencies between program variables. For simplicity, the analysis does not
take program termination into account, but we discuss possible solutions at the
end of the section. Due to space limitations, we only provide a terse description
of the abstraction and refer to [36] for further details.

U

B W

N

Fig. 5. Hasse diagram for the complete lattice 〈usage, �usage, �usage, �usage, N, U〉.

In order to capture implicit dependencies from variables appearing in boolean
conditions of conditional and while statements, we track when the value of a
variable is used or modified in a statement based on the level of nesting of the
statement in other statements. More formally, each program variable maps to a
value in the complete lattice shown in Fig. 5: the values U (used) and N (not-
used) respectively denote that a variable may be used and is not used at the
current nesting level; the values B (below) and W (overwritten) denote that
a variable may be used at a lower nesting level, and the value W additionally
indicates that the variable is modified at the current nesting level.

A variable is used (i.e., maps to U) if it is used in an assignment to another
variable that is used in the current or a lower nesting level (i.e., a variable that
maps to U or B). We define the operator assign[[x = e]] to compute the effect
of an assignment on a map m : X → usage, where X is the set of all variables:

assign[[x = e]](m) def= λy.

⎧
⎪⎨

⎪⎩

W y = x ∧ y �∈ vars(e) ∧ m(x) ∈ {U,B}
U y ∈ vars(e) ∧ m(x) ∈ {U,B}
m(y) otherwise

(19)

The assigned variable is overwritten (i.e., maps to W ), unless it is used in e.
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Another reason for a variable to be used is if it appears in the boolean
condition e of a statement that uses another variable or modifies another used
variable (i.e., there exists a variable x that maps to U or W ):

filter[[e]](m) def= λy.

{
U y ∈ vars(e) ∧ ∃x ∈ X: m(x) ∈ {U,W}
m(y) otherwise

(20)

We maintain a stack of these maps that grows or shrinks based on the level
of nesting of the currently analyzed statement. More formally, a stack is a tuple
〈m0,m1, . . . ,mk〉 of mutable length k, where each element m0,m1, . . . ,mk is a
map from X to usage. In the following, we use Q to denote the set of all stacks,
and we abuse notation by writing assign[[x = e]] and filter[[e]] to also denote
the corresponding operators on stacks:

assign[[x = e]](〈m0,m1, . . . ,mk〉) def= 〈assign[[x = e]](m0),m1, . . . ,mk〉

filter[[e]](〈m0,m1, . . . ,mk〉) def= 〈filter[[e]](m0),m1, . . . ,mk〉

The operator push duplicates the map at the top of the stack and modifies
the copy using the operator inc, to account for an increased nesting level:

push(〈m0,m1, . . . ,mk〉) def= 〈inc(m0),m0,m1, . . . ,mk〉

inc(m) def= λy.

⎧
⎪⎨

⎪⎩

B m(y) ∈ {U}
N m(y) ∈ {W}
m(y) otherwise

(21)

A used variable (i.e., mapping to U) becomes used below (i.e., now maps to B),
and a modified variable (i.e., mapping to W ) becomes unused (i.e., now maps
to N). The dual operator pop combines the two maps at the top of the stack:

pop(〈m0,m1, . . . ,mk〉) def= 〈dec(m0,m1), . . . ,mk〉

dec(m, k) def= λy.

{
k(y) m(y) ∈ {B,N}
m(y) otherwise

(22)

where the dec operator restores the value a variable y mapped to before increas-
ing the nesting level (i.e., k(y)) if it has not changed since (i.e., if the variable
still maps to B or N), and otherwise retains the new value y maps to.

We can now define the data usage analysis ΛQ, which is a backward analysis
on the lattice 〈Q,�Q,�Q〉. The partial order �Q and the least upper bound
�Q are the pointwise lifting, for each element of the stack, of the partial order
and least upper bound between maps from X to usage (which in turn are the
pointwise lifting of the partial order �usage and least upper bound �usage of the
usage lattice, cf. Fig. 5). We define the transfer function ΘQ[[s]] : Q → Q for
each statement s in our simple programming language as follows:
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math, bonus �→ U, passing �→ W �Q passing �→ U = math, bonus, passing �→ U
if not math :

bonus �→ U, passing �→ W | passing �→ U
passing = bonus

passing �→ B | passing �→ U
passing �→ U

Fig. 6. Data usage analysis of the last statement of the program shown in Example 7.
Stack elements are separated by | and, for brevity, variables mapping to N are omitted.

ΘQ[[skip]](q) def= q

ΘQ[[x = e]](q) def= assign[[x = e]](q)

ΘQ[[if b : s1 else : s2]](q)
def= pop ◦ filter[[b]] ◦ ΘQ[[s1]] ◦ push(q)

�Q pop ◦ filter[[b]] ◦ ΘQ[[s2]] ◦ push(q)

ΘQ[[while b : s]](q) def= lfp�Q
t ΘQ[[if b : s else : skip]]

ΘQ[[s1 s2]](q)
def= ΘQ[[s1]] ◦ ΘQ[[s2]](q)

The initial stack contains a single map, in which the output variables map to
the value U , and all other variables map to N . We exemplify the analysis below.

Example 10. Let us consider again the program P shown in Example 7. The
initial stack begins with a single map m, in which the output variable passing
maps to U and all other variables map to N .

At line 4, before analyzing the body of the conditional statement, a modified
copy of m is pushed onto the stack: this copy maps passing to B, meaning that
passing is only used in a lower nesting level, and all other variables still map to
N (cf. Eq. 21). As a result of the assignment (cf. Eq. 19), passing is overwritten
(i.e., maps to W ), and bonus is used (i.e., maps to U). Since the body of the
conditional statement modifies a used variable and uses another variable, the
analysis of its boolean condition makes math used as well (cf. Eq. 20). Finally,
the maps at the top of the stack are merged and the result maps math, bonus,
and passing to U , and all other variables to N (cf. Eq. 22). The analysis is
visualized in Fig. 6.

The stack remains unchanged at line 3 and line 2, since the statement at line
3 is identical to line 4 and the body of the conditional statement at line 2 does
not modify any used variable and does not use any other variable. Finally, at
line 1 the variable passing is modified (i.e., it now maps to W ), while math and
bonus remain used (i.e., they map to U). Thus, the analysis is precise enough
to conclude that the input variables english and science are unused. �

Note that, similarly to the non-interference analysis presented in Sect. 8, the
data usage analysis ΛQ does not consider non-termination. Indeed, for the pro-
gram shown in Example 8, the analysis does not capture that the input variable
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english is used, even though the termination of the program depends on its
value. We define the concretization function γQ : Q → P (P (Σ × Σ)) as:

γQ(〈m0, . . . , mk〉) def
= {R ∈ Σ × Σ | ∀i ∈ X: m0(i) ∈ {N} ⇒ unusedi(R)} (23)

where again we write unusedi (cf. Eq. 3) to also denote its dependency abstrac-
tion. We now show that ΛQ is sound for proving that a program does not use a
subset of its input variables, if the program is terminating.

Theorem 7. A terminating program does not use a subset J of its input vari-
ables if the image via γ� ◦ γQ of its abstraction ΛQ is a subset of NJ :

γ�(γQ(ΛQ)) ⊆ NJ ⇒ P |= NJ

Proof. Let us assume that γ�(γQ(ΛQ)) ⊆ NJ . Since the program is terminating,
we have that Λ� ⊆ γQ(ΛQ), by definition of the concretization function γQ (cf.
Eq. 23). Then, by monotonicity of γ� (cf. Eq. 11), we have that γ�(Λ�) ⊆
γ�(γQ(ΛQ)). Thus, since γ�(γQ(ΛQ)) ⊆ NJ , we have that γ�(Λ�) ⊆ NJ . The
conclusion follows from Theorem 4. �

In order to take termination into account, one could map each variable
appearing in the guard of a loop to the value U . Alternatively, one could run
a termination analysis [3,33,34], along with the data usage analysis, and only
map to U variables appearing in the loop guard of a possibly non-terminating
loop.

11 Piecewise Abstractions

The static analyses presented so far can be used only to detect unused data
stored in program variables. However, realistic data science applications read
and manipulate data organized in data structures such as arrays, lists, and dic-
tionaries. In the following, we demonstrate that having expressed the analyses
as abstract domains allows us to easily lift the analyses to such a scenario. In
particular, to detect unused chunks of the input data, we combine the more pre-
cise data usage analysis presented in the previous section with the array content
abstraction proposed by Cousot et al. [16]. Due to space limitations, we provide
only an informal description of the resulting abstract domain and refer to [36]
for further details and examples. The analyses presented in earlier sections can
be similarly combined with the array abstraction for the same purpose.

We extend our small programming language introduced in Sect. 7 with integer
variables, arithmetic and boolean comparison expressions, and arrays:

e ::= · · · | a[e] | len(a) | e ⊕ e | e �� e (expressions)
s ::= · · · | a[e] = e (statements)

where ⊕ and �� respectively range over arithmetic and boolean comparison oper-
ators, a ranges over array variables, and len(a) denotes the length of a.
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Piecewise Array Abstraction. The array abstraction [16] divides an array into
consecutive segments, each segment being a uniform abstraction of the array
content in that segment. The bounds of the segments are specified by sets of
side-effect free expressions restricted to a canonical normal form, all having the
same (concrete) value. The abstraction is parametric in the choice of the abstract
domains used to manipulate sets of expressions and to represent the array con-
tent within each segment. For our analysis, we use the octagon abstract domain
[31] for the expressions, and the usage lattice presented in the previous section
(cf. Fig. 5) for the segments. Thus, an array a is abstracted, for instance, as
{0, i} N {j + 1}? U {len(a)}, where the symbol ? indicates that the segment
{0, i} N {j + 1} might be empty. The abstraction indicates that all array ele-
ments (if any) from index i (which is equal to zero) to index j (the bound j + 1
is exclusive) are unused, and all elements from j + 1 to len(a) − 1 may be used.
Let A be the set of all such array abstractions. The initial segmentation of an
array a ∈ A is a single segment with unused content (i.e., {0} N {len(a)}?).

For our analysis, we augment the array abstraction with new back-
ward assignment and filter operators. The operators assignA[[a[i] = e]] and
filterA[[e]] split and fill segments to take into account assignments and accesses
to array elements that influence the program outcome. For instance, an assign-
ment to a[i] with an expression containing a used variable modifies the segmen-
tation {0} N {len(a)}? into {0} N {i}? U {i + 1} N {len(a)}?, which indicates
that the array element at index i is used by the program. An access a[i] in a
boolean condition guarding a statement that uses or modifies another used vari-
ables is handled analogously. Instead, the operator assignA[[x = e]] modifies the
segmentation of an array by replacing each occurrence of the assigned variable
x with the canonical normal form of the expression e. For instance, an assign-
ment i = i + 1 modifies the segmentation {0} N {i}? U {i + 1} N {len(a)}? into
{0} N {i + 1}? U {i + 2} N {len(a)}?. If e cannot be precisely put into a canon-
ical normal form, the operator replaces the assigned variable with an approxi-
mation of e as an integer interval [13] computed using the underlying numerical
domain, and possibly merges segments together as a result of the approximation.
For instance, a non-linear assignment i = i∗j approximated as i = [0, 1] modifies
the segmentation {0} N {i}? U {i + 1} N {len(a)}? into {0} U {2} N {len(a)}?,
which loses the information that the initial segment of the array is unused.

When merging control flows, segmentations are compared or joined by means
of a unification algorithm [16], which finds the coarsest common refinement
of both segmentations. Then, the comparison �A or the join �A is performed
pointwise for each segment using the corresponding operators of the underlying
abstract domain chosen to abstract the array content. For our analysis, we adapt
and refine the originally proposed unification algorithm to take into account the
knowledge of the numerical domain chosen to abstract the segment bounds. We
refer to [36] for further details. A widening �A limits the number of segments to
enforce termination of the analysis.

Piecewise Data Usage Analysis. We can now map each scalar variable to an
element of the usage lattice and each array variable to an array segmentation
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1 f a i l e d = 0
2 i = 1 # 1 should be 0
3 while i < len ( grades ) :
4 i f grades [ i ] < 4 : f a i l e d = f a i l e d + 1
5 i = i + 1
6 pass ing = 2 ∗ f a i l e d < len ( grades )

Fig. 7. Another program to check if a student has passed a number of exams based on
their grades stored in the array grades. The programmer has made a mistake at line
2 that causes the program to ignore the grade stored at index 0 in grades.

grades {→� 0} N {i}? U {i + 1}? U {len(grades)}?
while i < len(grades) :

grades {→� 0} N {i}? U {i + 1}? B {i + 2}? B {len(grades)}? | . . .
if grades[i] < 4:

grades {→� 0} N {i + 1}? B {i + 2}? B {len(grades)}? | · · · | . . .
failed = failed + 1
grades {→� 0} N {i + 1}? B {i + 2}? B {len(grades)}? | · · · | . . .

grades {→� 0} N {i + 1}? B {i + 2}? B {len(grades)}? | . . .
i = i + 1
grades {→� 0} N {i}? B {i + 1}? B {len(grades)}? | . . .

grades {→� 0} N {len(grades)}?

Fig. 8. Data usage analysis of the loop statement of the program shown in Example 11.
Stack elements are separated by | and, for brevity, only array variables are shown.

in A, and use the data usage analysis ΛQ presented in the previous section to
identify unused input data stored in variables and portions of arrays.

Example 11. Let us consider the program shown in Fig. 7 where the array vari-
able grades and the variable passing are the input and output variables, respec-
tively. The initial stack contains a single map in which passing maps to U , all
other scalar variables map to N , and grades maps to {0} N {len(grades)}?,
indicating that all elements of the array (if any) are unused.

At line 6, the assignment modifies the variable passing (i.e., passing now
maps to W ) and uses the variable failed (i.e., failed now maps to U), while
every other variable remains unchanged.

The result of the analysis of the loop statement at line 3 is shown
in Fig. 8. The analysis of the loop begins by pushing (cf. Eq. 21) a map
onto the stack in which passing becomes unused (i.e., maps to N) and
failed is used only in a lower nesting level (i.e., maps to B), and every
other variable still remains unchanged. At the first iteration of the anal-
ysis of the loop body, the assignment at line 4 uses failed and thus
the access grades[i] at line 3 creates a used segment in the segmentation
for grades, which becomes {0} N {i}? U {i + 1} N {len(grades)}?. At the
second iteration, the push operator turns the used segment {i} U {i + 1}
into {i} B {i + 1}, and the assignment to i modifies the segment into
{i + 1} B {i + 2} (while the segmentation in the second stack element becomes
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{0} N {i + 1}? U {i + 2} N {len(grades)}?). Then, the access to the array at
line 3 creates again a used segment {i} U {i + 1} (in the first segmentation)
and the analysis continues with the result of the pop operator (cf. Eq. 22):
{0} N {i}? U {i + 1}? U {i + 2}? N {len(grades)}?. After widening, the last
two segments are merged into a single segment, and the analysis of the loop
terminates with {0} N {i}? U {i + 1}? U {len(grades)}?.

Finally, the analysis of the assignment at line 2 produces the segmentation
{0} N {1}? U {2}? U {len(grades)}?, which correctly indicates that the first
element of the array grades (if any) is unused by the program. �

Implementation. The analyses presented in this and in the previous section are
implemented in the prototype static analyzer lyra and are available online3.

The implementation is in python and, at the time of writing, accepts pro-
grams written in a limited subset of python without user-defined classes. A
type inference is run before the analysis of a program. The analysis is performed
backwards on the control flow graph of the program with a standard worklist
algorithm [32], using widening at loop heads to enforce termination.

12 Related Work

The most directly relevant work has been discussed throughout the paper. The
non-interference analysis proposed by Assaf et al. [6] (cf. Sect. 8) is similar to the
logic of Amtoft and Banerjee [5] and the type system of Hunt and Sands [25].
The data usage analysis proposed in Sect. 10 is similar to dependency analyses
used for program slicing [37] (e.g., [24]). Both analyses as well as strongly live
variable analysis (cf. Sect. 9) are based on the syntactic presence of a variable
in the definition of another variable. To overcome this limitation, one should
look further for semantic dependencies between values of program variables. In
this direction, Giacobazzi, Mastroeni, and others [19,22,29] have proposed the
notion of abstract dependency. However, note that an analysis based on abstract
dependencies would over-approximate the subset of the input variables that are
unused by a program. Indeed, the absence of an abstract dependency between
variables (e.g., a dependency between the parity of the variables [19,29]) does
not imply the absence of a (concrete) dependency between the variables (i.e., a
dependency between the values of the variables). Thus, such an analysis could
not be used to prove that a program does not use a subset of its input variables,
but would be used to prove that a program uses a subset of its input variables.

Semantics formulations using sets of sets of traces have already been pro-
posed in the literature [6,28]. Mastroeni and Pasqua [28] lift the hierarchy of
semantics developed by Cousot [12] to sets of sets of traces to obtain a hierarchy
of semantics suitable for verifying general program properties (i.e., properties
that are not subset-closed, cf. Sect. 7). However, none of the semantics that they
proposed is suitable for input data usage: all semantics in the hierarchy are
abstractions of a semantics that contains sets with both finite and infinite traces
3 http://www.pm.inf.ethz.ch/research/lyra.html.
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and thus, unlike our outcome semantics (cf. Sect. 5), cannot be used to reason
about terminating and non-terminating outcomes of a program. Similarly, as
observed in [28], the semantics proposed by Assaf et al. [6] can be used to verify
only subset-closed properties. Thus, it cannot be used for input data usage.

Finally, to the best of our knowledge, our work is the first to aim at detecting
programming errors in data science code using static analysis. Closely related
are [7,10] which, however, focus on spreadsheet applications and target errors
in the data rather than the code that analyzes it. Recent work [2] proposes an
approach to repair bias in data science code. We believe that our work can be
applied in this context to prove absence of bias, e.g., by showing that a program
does not use gender information to decide whether to hire a person.

13 Conclusion and Future Work

In this paper, we have proposed an abstract interpretation framework to auto-
matically detect input data that remains unused by a program. Additionally, we
have shown that existing static analyses based on dependencies are subsumed
by our unifying framework and can be used, with varying degrees of precision,
for proving that a program does not use some of its input data. Finally, we have
proposed a data usage analysis for more realistic data science applications that
store input data in compound data structures such as arrays or lists.

As part of our future work, we plan to use our framework to guide the design
of new, more precise static analyses for data usage. We also want to explore the
complementary direction of proving that a program uses its input data by devel-
oping an analysis based on abstract dependencies [19,22,29] between program
variables, as discussed above. Additionally, we plan to investigate other appli-
cations of our work such as provenance or lineage analysis [9] as well as proving
absence of algorithmic bias [2]. Finally, we want to study other programming
errors related to data usage such as accidental data duplication.
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Abstract. There are two kinds of higher-order extensions of model
checking: HORS model checking and HFL model checking. Whilst the
former has been applied to automated verification of higher-order func-
tional programs, applications of the latter have not been well studied. In
the present paper, we show that various verification problems for func-
tional programs, including may/must-reachability, trace properties, and
linear-time temporal properties (and their negations), can be naturally
reduced to (extended) HFL model checking. The reductions yield a sound
and complete logical characterization of those program properties. Com-
pared with the previous approaches based on HORS model checking, our
approach provides a more uniform, streamlined method for higher-order
program verification.

1 Introduction

There are two kinds of higher-order extensions of model checking in the liter-
ature: HORS model checking [16,32] and HFL model checking [42]. The for-
mer is concerned about whether the tree generated by a given higher-order tree
grammar called a higher-order recursion scheme (HORS) satisfies the property
expressed by a given modal μ-calculus formula (or a tree automaton), and the
latter is concerned about whether a given finite state system satisfies the prop-
erty expressed by a given formula of higher-order modal fixpoint logic (HFL),
a higher-order extension of the modal μ-calculus. Whilst HORS model check-
ing has been applied to automated verification of higher-order functional pro-
grams [17,18,22,26,33,41,43], there have been few studies on applications of
HFL model checking to program/system verification. Despite that HFL has been
introduced more than 10 years ago, we are only aware of applications to assume-
guarantee reasoning [42] and process equivalence checking [28].

In the present paper, we show that various verification problems for higher-
order functional programs can actually be reduced to (extended) HFL model
checking in a rather natural manner. We briefly explain the idea of our reduction
below.1 We translate a program to an HFL formula that says “the program has
a valid behavior” (where the validity of a behavior depends on each verification
1 In this section, we use only a fragment of HFL that can be expressed in the modal

μ-calculus. Some familiarity with the modal μ-calculus [25] would help.
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problem). Thus, a program is actually mapped to a property, and a program
property is mapped to a system to be verified; this has been partially inspired by
the recent work of Kobayashi et al. [19], where HORS model checking problems
have been translated to HFL model checking problems by switching the roles of
models and properties.

For example, consider a simple program fragment read(x); close(x) that
reads and then closes a file (pointer) x. The transition system in Fig. 1 shows
a valid access protocol to read-only files. Then, the property that a read oper-
ation is allowed in the current state can be expressed by a formula of the form
〈read〉ϕ, which says that the current state has a read-transition, after which
ϕ is satisfied. Thus, the program read(x); close(x) being valid is expressed
as 〈read〉〈close〉true,2 which is indeed satisfied by the initial state q0 of the
transition system in Fig. 1. Here, we have just replaced the operations read
and close of the program with the corresponding modal operators 〈read〉 and
〈close〉. We can also naturally deal with branches and recursions. For example,
consider the program close(x)�(read(x); close(x)), where e1�e2 represents a
non-deterministic choice between e1 and e2. Then the property that the pro-
gram always accesses x in a valid manner can be expressed by (〈close〉true) ∧
(〈read〉〈close〉true). Note that we have just replaced the non-deterministic
branch with the logical conjunction, as we wish here to require that the program’s
behavior is valid in both branches. We can also deal with conditional branches if
HFL is extended with predicates; if b then close(x) else (read(x); close(x))
can be translated to (b ⇒ 〈close〉true) ∧ (¬b ⇒ 〈read〉〈close〉true). Let us
also consider the recursive function f defined by:

f x = close(x)�(read(x); read(x); fx),

Then, the program f x being valid can be represented by using a (greatest)
fixpoint formula:

νF.(〈close〉true) ∧ (〈read〉〈read〉F ).

If the state q0 satisfies this formula (which is indeed the case), then we know that
all the file accesses made by f x are valid. So far, we have used only the modal
μ-calculus formulas. If we wish to express the validity of higher-order programs,
we need HFL formulas; such examples are given later.

Fig. 1. File access protocol

2 Here, for the sake of simplicity, we assume that we are interested in the usage of the
single file pointer x, so that the name x can be ignored in HFL formulas; usage of
multiple files can be tracked by using the technique of [17].
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We generalize the above idea and formalize reductions from various classes
of verification problems for simply-typed higher-order functional programs with
recursion, integers and non-determinism – including verification of may/must-
reachability, trace properties, and linear-time temporal properties (and their
negations) – to (extended) HFL model checking where HFL is extended with
integer predicates, and prove soundness and completeness of the reductions.
Extended HFL model checking problems obtained by the reductions are (neces-
sarily) undecidable in general, but for finite-data programs (i.e., programs that
consist of only functions and data from finite data domains such as Booleans), the
reductions yield pure HFL model checking problems, which are decidable [42].

Our reductions provide sound and complete logical characterizations of a
wide range of program properties mentioned above. Nice properties of the logi-
cal characterizations include: (i) (like verification conditions for Hoare triples,)
once the logical characterization is obtained as an HFL formula, purely logical
reasoning can be used to prove or disprove it (without further referring to the
program semantics); for that purpose, one may use theorem provers with various
degrees of automation, ranging from interactive ones like Coq, semi-automated
ones requiring some annotations, to fully automated ones (though the latter two
are yet to be implemented), (ii) (unlike the standard verification condition gen-
eration for Hoare triples using invariant annotations) the logical characterization
can automatically be computed, without any annotations,3 (iii) standard logical
reasoning can be applied based on the semantics of formulas; for example, co-
induction and induction can be used for proving ν- and μ-formulas respectively,
and (iv) thanks to the completeness, the set of program properties character-
izable by HFL formula is closed under negations; for example, from a formula
characterizing may-reachability, one can obtain a formula characterizing non-
reachability by just taking the De Morgan dual.

Compared with previous approaches based on HORS model checking [18,
22,26,33,37], our approach based on (extended) HFL model checking provides
more uniform, streamlined methods for higher-order program verification. HORS
model checking provides sound and complete verification methods for finite-data
programs [17,18], but for infinite-data programs, other techniques such as pred-
icate abstraction [22] and program transformation [27,31] had to be combined
to obtain sound (but incomplete) reductions to HORS model checking. Fur-
thermore, the techniques were different for each of program properties, such as
reachability [22], termination [27], non-termination [26], fair termination [31],
and fair non-termination [43]. In contrast, our reductions are sound and com-
plete even for infinite-data programs. Although the obtained HFL model check-
ing problems are undecidable in general, the reductions allow us to treat various
program properties uniformly; all the verifications are boiled down to the issue
of how to prove μ- and ν-formulas (and as remarked above, we can use induction
and co-induction to deal with them). Technically, our reduction to HFL model

3 This does not mean that invariant discovery is unnecessary; invariant discovery is
just postponed to the later phase of discharging verification conditions, so that it
can be uniformly performed among various verification problems.
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checking may actually be considered an extension of HORS model checking in
the following sense. HORS model checking algorithms [21,32] usually consist of
two phases, one for computing a kind of higher-order “procedure summaries”
in the form of variable profiles [32] or intersection types [21], and the other for
nested least/greatest fixpoint computations. Our reduction from program ver-
ification to extended HFL model checking (the reduction given in Sect. 7, in
particular) can be regarded as an extension of the first phase to deal with infi-
nite data domains, where the problem for the second phase is expressed in the
form of extended HFL model checking: see [23] for more details.

The rest of this paper is structured as follows. Section 2 introduces HFL
extended with integer predicates and defines the HFL model checking problem.
Section 3 informally demonstrates some examples of reductions from program
verification problems to HFL model checking. Section 4 introduces a functional
language used to formally discuss the reductions in later sections. Sections 5, 6,
and 7 consider may/must-reachability, trace properties, and temporal properties
respectively, and present (sound and complete) reductions from verification of
those properties to HFL model checking. Section 8 discusses related work, and
Sect. 9 concludes the paper. Proofs are found in an extended version [23].

2 (Extended) HFL

In this section, we introduce an extension of higher-order modal fixpoint logic
(HFL) [42] with integer predicates (which we call HFLZ; we often drop the
subscript and write HFL, as in Sect. 1), and define the HFLZ model checking
problem. The set of integers can actually be replaced by another infinite set X
of data (like the set of natural numbers or the set of finite trees) to yield HFLX .

2.1 Syntax

For a map f , we write dom(f) and codom(f) for the domain and codomain
of f respectively. We write Z for the set of integers, ranged over by the meta-
variable n below. We assume a set Pred of primitive predicates on integers,
ranged over by p. We write arity(p) for the arity of p. We assume that Pred
contains standard integer predicates such as = and <, and also assume that, for
each predicate p ∈ Pred, there also exists a predicate ¬p ∈ Pred such that,
for any integers n1, . . . , nk, p(n1, . . . , nk) holds if and only if ¬p(n1, . . . , nk) does
not hold; thus, ¬p(n1, . . . , nk) should be parsed as (¬p)(n1, . . . , nk), but can
semantically be interpreted as ¬(p(n1, . . . , nk)).

The syntax of HFLZ formulas is given by:

ϕ (formulas) :: = n | ϕ1 op ϕ2 | true | false | p(ϕ1, . . . , ϕk) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| X | 〈a〉ϕ | [a]ϕ | μXτ .ϕ | νXτ .ϕ | λX : σ.ϕ | ϕ1 ϕ2

τ (types) :: = • | σ → τ σ (extended types) :: = τ | int
Here, op ranges over a set of binary operations on integers, such as +, and
X ranges over a denumerable set of variables. We have extended the origi-
nal HFL [42] with integer expressions (n and ϕ1 op ϕ2), and atomic formulas
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p(ϕ1, . . . , ϕk) on integers (here, the arguments of integer operations or predicates
will be restricted to integer expressions by the type system introduced below).
Following [19], we have omitted negations, as any formula can be transformed
to an equivalent negation-free formula [30].

We explain the meaning of each formula informally; the formal semantics
is given in Sect. 2.2. Like modal μ-calculus [10,25], each formula expresses a
property of a labeled transition system. The first line of the syntax of formu-
las consists of the standard constructs of predicate logics. On the second line,
as in the standard modal μ-calculus, 〈a〉ϕ means that there exists an a-labeled
transition to a state that satisfies ϕ. The formula [a]ϕ means that after any a-
labeled transition, ϕ is satisfied. The formulas μXτ .ϕ and νXτ .ϕ represent the
least and greatest fixpoints respectively (the least and greatest X that X = ϕ)
respectively; unlike the modal μ-calculus, X may range over not only propo-
sitional variables but also higher-order predicate variables (of type τ). The λ-
abstractions λX :σ.ϕ and applications ϕ1 ϕ2 are used to manipulate higher-order
predicates. We often omit type annotations in μXτ .ϕ, νXτ .ϕ and λX : σ.ϕ, and
just write μX.ϕ, νX.ϕ and λX.ϕ.

Example 1. Consider ϕab ϕ where ϕab = μX•→•.λY : •.Y ∨ 〈a〉(X(〈b〉Y )). We
can expand the formula as follows:

ϕab ϕ = (λY. • .Y ∨ 〈a〉(ϕab(〈b〉Y )))ϕ = ϕ ∨ 〈a〉(ϕab(〈b〉ϕ))
= ϕ ∨ 〈a〉(〈b〉ϕ ∨ 〈a〉(ϕab(〈b〉〈b〉ϕ))) = · · · ,

and obtain ϕ ∨ (〈a〉〈b〉ϕ) ∨ (〈a〉〈a〉〈b〉〈b〉ϕ) ∨ · · ·. Thus, the formula means that
there is a transition sequence of the form anbn for some n ≥ 0 that leads to a
state satisfying ϕ.

Following [19], we exclude out unmeaningful formulas such as (〈a〉true)+1 by
using a simple type system. The types •, int, and σ → τ describe propositions,
integers, and (monotonic) functions from σ to τ , respectively. Note that the
integer type int may occur only in an argument position; this restriction is
required to ensure that least and greatest fixpoints are well-defined. The typing
rules for formulas are given in Fig. 2. In the figure, Δ denotes a type environment,
which is a finite map from variables to (extended) types. Below we consider only
well-typed formulas.

2.2 Semantics and HFLZ Model Checking

We now define the formal semantics of HFLZ formulas. A labeled transition
system (LTS) is a quadruple L = (U,A,−→, sinit), where U is a finite set of
states, A is a finite set of actions, −→ ⊆ U×A×U is a labeled transition relation,
and sinit ∈ U is the initial state. We write s1

a−→ s2 when (s1, a, s2) ∈ −→.
For an LTS L = (U,A,−→, sinit) and an extended type σ, we define the

partially ordered set (DL,σ,�L,σ) inductively by:

DL,• = 2U �L,•=⊆ DL,int = Z �L,int= {(n, n) | n ∈ Z}
DL,σ→τ = {f ∈ DL,σ → DL,τ | ∀x, y.(x �L,σ y ⇒ f x �L,τ f y)}
�L,σ→τ= {(f, g) | ∀x ∈ DL,σ.f(x) �L,τ g(x)}
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Δ �H n : int
(HT-Int)

Δ �H ϕi : int for each i ∈ {1, 2}
Δ �H ϕ1 op ϕ2 : int

(HT-Op)

Δ �H true : • (HT-True)

Δ �H false : • (HT-False)

arity(p) = k
Δ �H ϕi : int for each i ∈ {1, . . . , k}

Δ �H p(ϕ1, . . . , ϕk) : •
(HT-Pred)

Δ, X : σ �H X : σ
(HT-Var)

Δ �H ϕi : • for each i ∈ {1, 2}
Δ �H ϕ1 ∨ ϕ2 : • (HT-Or)

Δ �H ϕi : • for each i ∈ {1, 2}
Δ �H ϕ1 ∧ ϕ2 : •

(HT-And)
Δ �H ϕ : •

Δ �H 〈a〉ϕ : • (HT-Some)

Δ �H ϕ : •
Δ �H [a]ϕ : • (HT-All)

Δ, X : τ �H ϕ : τ

Δ �H μXτ . ϕ : τ
(HT-Mu)

Δ, X : τ �H ϕ : τ

Δ �H νXτ . ϕ : τ
(HT-Nu)

Δ, X : σ �H ϕ : τ

Δ �H λX : σ. ϕ : σ → τ
(HT-Abs)

Δ �H ϕ1 : σ → τ Δ �H ϕ2 : σ

Δ �H ϕ1 ϕ2 : τ
(HT-App)

Fig. 2. Typing rules for HFLZ formulas

Note that (DL,τ ,�L,τ ) forms a complete lattice (but (DL,int,�L,int) does not).
We write ⊥L,τ and �L,τ for the least and greatest elements of DL,τ (which are
λx̃.∅ and λx̃.U) respectively. We sometimes omit the subscript L below. Let �Δ�L
be the set of functions (called valuations) that maps X to an element of DL,σ

for each X : σ ∈ Δ. For an HFL formula ϕ such that Δ �H ϕ : σ, we define
�Δ �H ϕ : σ�L as a map from �Δ�L to Dσ, by induction on the derivation4 of
Δ �H ϕ : σ, as follows.

�Δ �H n : int�L(ρ) = n �Δ �H true : •�L(ρ) = U �Δ �H false : •�L(ρ) = ∅
�Δ �H ϕ1 op ϕ2 : int�L(ρ) = (�Δ �H ϕ1 : int�L(ρ))�op�(�Δ �H ϕ2 : int�L(ρ))
�Δ �H p(ϕ1, . . . , ϕk) : •�L(ρ) =
{

U if (�Δ �H ϕ1 : int�L(ρ), . . . , �Δ �H ϕk : int�L(ρ)) ∈ �p�
∅ otherwise

�Δ,X : σ �H X : σ�L(ρ) = ρ(X)
�Δ �H ϕ1 ∨ ϕ2 : •�L(ρ) = �Δ �H ϕ1 : •�L(ρ) ∪ �Δ �H ϕ2 : •�L(ρ)
�Δ �H ϕ1 ∧ ϕ2 : •�L(ρ) = �Δ �H ϕ1 : •�L(ρ) ∩ �Δ �H ϕ2 : •�L(ρ)

�Δ �H 〈a〉ϕ : •�L(ρ) = {s | ∃s′ ∈ �Δ �H ϕ : •�L(ρ). s a−→ s′}
�Δ �H [a]ϕ : •�L(ρ) = {s | ∀s′ ∈ U. (s a−→ s′ implies s′ ∈ �Δ �H ϕ : •�L(ρ))}
�Δ �H μXτ .ϕ : τ�L(ρ) = lfpL,τ (�Δ �H λX : τ. ϕ : τ → τ�L(ρ))

�Δ �H νXτ .ϕ : τ�L(ρ) = gfpL,τ (�Δ �H λX : τ. ϕ : τ → τ�L(ρ))

�Δ �H λX : σ. ϕ : σ → τ�L(ρ) = {(v, �Δ,X : σ �H ϕ : τ�L(ρ[X �→ v])) | v ∈ DL,σ}
�Δ �H ϕ1 ϕ2 : τ�L(ρ) = �Δ �H ϕ1 : σ → τ�L(ρ)(�Δ �H ϕ2 : σ�L(ρ))

4 Note that the derivation of each judgment Δ �H ϕ : σ is unique if there is any.



Higher-Order Program Verification via HFL Model Checking 717

Here, �op� denotes the binary function on integers represented by op and �p�
denotes the k-ary relation on integers represented by p. The least/greatest fix-
point operators lfpL,τ and gfpL,τ are defined by lfpL,τ (f) =

�
L,τ{x ∈ DL,τ |

f(x) �L,τ x} and gfpL,τ (f) =
⊔

L,τ{x ∈ DL,τ | x �L,τ f(x)}. Here,
⊔

L,τ and�
L,τ respectively denote the least upper bound and the greatest lower bound

with respect to �L,τ . We often omit the subscript L and write �Δ �H ϕ : σ� for
�Δ �H ϕ : σ�L. For a closed formula, i.e., a formula well-typed under the empty
type environment ∅, we often write �ϕ�L or just �ϕ� for �∅ �H ϕ : σ�L(∅).

Example 2. For the LTS Lfile in Fig. 1, we have:

�νX•.(〈close〉true ∧ 〈read〉X)� =
gfpL,•(λx ∈ DL,•.�X : • � 〈close〉true ∧ 〈read〉X : •�({X �→ x})) = {q0}.

In fact, x = {q0} ∈ DL,• satisfies the equation: �X : • � 〈close〉true∧ 〈read〉X :
•�L({X �→ x}) = x, and x = {q0} ∈ DL,• is the greatest such element.

Consider the following LTS L1:

�������	q0

a ��
�������	q1

b ��
�������	q2

c
��

and ϕab (〈c〉true) where ϕab is the one introduced in Example 1. Then,
�ϕab (〈c〉true)�L1 = {q0, q2}.

Definition 1 (HFLZ model checking). For a closed formula ϕ of type •,
we write L, s |= ϕ if s ∈ �ϕ�L, and write L |= ϕ if sinit ∈ �ϕ�L. HFLZ model
checking is the problem of, given L and ϕ, deciding whether L |= ϕ holds.

The HFLZ model checking problem is undecidable, due to the presence of
integers; in fact, the semantic domain DL,σ is not finite for σ that contains int.
The undecidability is obtained as a corollary of the soundness and completeness
of the reduction from the may-reachability problem to HFL model checking
discussed in Sect. 5. For the fragment of pure HFL (i.e., HFLZ without integers,
which we write HFL∅ below), the model checking problem is decidable [42].

The order of an HFLZ model checking problem L
?

|= ϕ is the highest
order of types of subformulas of ϕ, where the order of a type is defined by:
order(•) = order(int) = 0 and order(σ → τ) = max(order(σ) + 1, order(τ)).
The complexity of order-k HFL∅ model checking is k-EXPTIME complete [1],
but polynomial time in the size of HFL formulas under the assumption that the
other parameters (the size of LTS and the largest size of types used in formulas)
are fixed [19].

Remark 1. Though we do not have quantifiers on integers as primitives, we can
encode them using fixpoint operators. Given a formula ϕ : int → •, we can
express ∃x : int.ϕ(x) and ∀x : int.ϕ(x) by (μXint→•.λx : int.ϕ(x) ∨ X(x − 1) ∨
X(x + 1))0 and (νXint→•.λx : int.ϕ(x) ∧ X(x − 1) ∧ X(x + 1))0 respectively.
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2.3 HES

As in [19], we often write an HFLZ formula as a sequence of fixpoint equations,
called a hierarchical equation system (HES).

Definition 2. An (extended) hierarchical equation system (HES) is a pair
(E , ϕ) where E is a sequence of fixpoint equations, of the form: Xτ1

1 =α1

ϕ1; · · · ;Xτn
n =αn

ϕn, where αi ∈ {μ, ν}. We assume that X1 : τ1, . . . , Xn : τn �H

ϕi : τi holds for each i ∈ {1, . . . , n}, and that ϕ1, . . . , ϕn, ϕ do not contain any
fixpoint operators.

The HES Φ = (E , ϕ) represents the HFLZ formula toHFL(E , ϕ)
defined inductively by: toHFL(ε, ϕ) = ϕ and toHFL(E ;Xτ =α ϕ′, ϕ) =
toHFL([αXτ .ϕ′/X]E , [αXτ .ϕ′/X]ϕ). Conversely, every HFLZ formula can be
easily converted to an equivalent HES. In the rest of the paper, we often rep-
resent an HFLZ formula in the form of HES, and just call it an HFLZ for-
mula. We write �Φ� for �toHFL(Φ)�. An HES (Xτ1

1 =α1 ϕ1; · · · ;Xτn
n =αn

ϕn, ϕ)
can be normalized to (Xτ0

0 =ν ϕ;Xτ1
1 =α1 ϕ1; · · · ;Xτn

n =αn
ϕn,X0) where

τ0 is the type of ϕ. Thus, we sometimes call just a sequence of equations
Xτ0

0 =ν ϕ;Xτ1
1 =α1 ϕ1; · · · ;Xτn

n =αn
ϕn an HES, with the understand-

ing that “the main formula” is the first variable X0. Also, we often write
Xτ x1 · · · xk =α ϕ for the equation Xτ =α λx1. · · · λxk.ϕ. We often omit type
annotations and just write X =α ϕ for Xτ =α ϕ.

Example 3. The formula νX.μY.〈b〉X∨〈a〉Y (which means that the current state
has a transition sequence of the form (a∗b)ω) is expressed as the following HES:

((X =ν Y ;Y =μ 〈b〉X ∨ 〈a〉Y ), X) .

3 Warming Up

To help readers get more familiar with HFLZ and the idea of reductions, we give
here some variations of the examples of verification of file-accessing programs
in Sect. 1, which are instances of the “resource usage verification problem” [15].
General reductions will be discussed in Sects. 5, 6 and 7, after the target language
is set up in Sect. 4.

Consider the following OCaml-like program, which uses exceptions.

let readex x = read x; (if * then () else raise Eof) in
let rec f x = readex x; f x in
let d = open_in "foo" in try f d with Eof -> close d

Here, * represents a non-deterministic boolean value. The function readex reads
the file pointer x, and then non-deterministically raises an end-of-file (Eof) excep-
tion. The main expression (on the third line) first opens file “foo”, calls f to read
the file repeatedly, and closes the file upon an end-of-file exception. Suppose, as
in the example of Sect. 1, we wish to verify that the file “foo” is accessed following
the protocol in Fig. 1.

First, we can remove exceptions by representing an exception handler as a
special continuation [6]:
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let readex x h k = read x; (if * then k() else h()) in
let rec f x h k = readex x h (fun _ -> f x h k) in
let d = open_in "foo" in f d (fun _ -> close d) (fun _ -> ())

Here, we have added to each function two parameters h and k, which represent
an exception handler and a (normal) continuation respectively.

Let Φ be (E , F true (λr.〈close〉true) (λr.true)) where E is:

Readex x h k =ν 〈read〉(k true ∧ h true);
F x h k =ν Readex x h (λr.F x h k).

Here, we have just replaced read/close operations with the modal operators
〈read〉 and 〈close〉, non-deterministic choice with a logical conjunction, and the
unit value ( ) with true. Then, Lfile |= Φ if and only if the program performs only
valid accesses to the file (e.g., it does not access the file after a close operation),
where Lfile is the LTS shown in Fig. 1. The correctness of the reduction can be
informally understood by observing that there is a close correspondence between
reductions of the program and those of the HFL formula above, and when the
program reaches a read command read x, the corresponding formula is of the
form 〈read〉 · · ·, meaning that the read operation is valid in the current state;
a similar condition holds also for close operations. We will present a general
translation and prove its correctness in Sect. 6.

Let us consider another example, which uses integers:

let rec f y x k = if y=0 then (close x; k())
else (read x; f (y-1) x k) in

let d = open_in "foo" in f n d (fun _ -> ())

Here, n is an integer constant. The function f reads x y times, and then calls the
continuation k. Let L′

file be the LTS obtained by adding to Lfile a new state q2

and the transition q1
end−→ q2 (which intuitively means that a program is allowed

to terminate in the state q1), and let Φ′ be (E ′, F n true (λr.〈end〉true)) where
E ′ is:

F y x k =μ (y = 0 ⇒ 〈close〉(k true)) ∧ (y �= 0 ⇒ 〈read〉(F (y − 1) x k)).

Here, p(ϕ1, . . . , ϕk) ⇒ ϕ is an abbreviation of ¬p(ϕ1, . . . , ϕk) ∨ ϕ. Then, L′
file |=

Φ′ if and only if (i) the program performs only valid accesses to the file, (ii) it
eventually terminates, and (iii) the file is closed when the program terminates.
Notice the use of μ instead of ν above; by using μ, we can express liveness
properties. The property L′

file |= Φ′ indeed holds for n ≥ 0, but not for n < 0. In
fact, F n x k is equivalent to false for n < 0, and 〈read〉n〈close〉(k true) for
n ≥ 0.
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4 Target Language

This section sets up, as the target of program verification, a call-by-name5 higher-
order functional language extended with events. The language is essentially the
same as the one used by Watanabe et al. [43] for discussing fair non-termination.

4.1 Syntax and Typing

We assume a finite set Ev of names called events, ranged over by a, and a
denumerable set of variables, ranged over by x, y, . . .. Events are used to express
temporal properties of programs. We write x̃ (˜t, resp.) for a sequence of variables
(terms, resp.), and write |x̃| for the length of the sequence.

A program is a pair (D, t) consisting of a set D of function definitions {f1 x̃1 =
t1, . . . , fn x̃n = tn} and a term t. The set of terms, ranged over by t, is defined
by:

t:: = ( ) | x | n | t1 op t2 | event a; t | if p(t′1, . . . , t
′
k) then t1 else t2

| t1t2 | t1�t2.

Here, n and p range over the sets of integers and integer predicates as in HFL
formulas. The expression event a; t raises an event a, and then evaluates t.
Events are used to encode program properties of interest. For example, an asser-
tion assert(b) can be expressed as if b then ( ) else (event fail;Ω), where
fail is an event that expresses an assertion failure and Ω is a non-terminating
term. If program termination is of interest, one can insert “event end” to every
termination point and check whether an end event occurs. The expression t1�t2
evaluates t1 or t2 in a non-deterministic manner; it can be used to model, e.g.,
unknown inputs from an environment. We use the meta-variable P for programs.
When P = (D, t) with D = {f1 x̃1 = t1, . . . , fn x̃n = tn}, we write funs(P ) for
{f1, . . . , fn} (i.e., the set of function names defined in P ). Using λ-abstractions,
we sometimes write f = λx̃.t for the function definition f x̃ = t. We also regard
D as a map from function names to terms, and write dom(D) for {f1, . . . , fn}
and D(fi) for λx̃i.ti.

Any program (D, t) can be normalized to (D ∪ {main = t},main) where
main is a name for the “main” function. We sometimes write just D for a
program (D,main), with the understanding that D contains a definition of
main.

We restrict the syntax of expressions using a type system. The set of simple
types, ranged over by κ, is defined by:

κ:: = � | η → κ η:: = κ | int.

The types �, int, and η → κ describe the unit value, integers, and functions
from η to κ respectively. Note that int is allowed to occur only in argument

5 Call-by-value programs can be handled by applying the CPS transformation before
applying the reductions to HFL model checking.
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positions. We defer typing rules to [23], as they are standard, except that we
require that the righthand side of each function definition must have type �; this
restriction, as well as the restriction that int occurs only in argument positions,
does not lose generality, as those conditions can be ensured by applying CPS
transformation. We consider below only well-typed programs.

4.2 Operational Semantics

We define the labeled transition relation t
�−→D t′, where � is either ε or an

event name, as the least relation closed under the rules in Fig. 3. We implicitly
assume that the program (D, t) is well-typed, and this assumption is maintained
throughout reductions by the standard type preservation property. In the rules
for if-expressions, �t′i� represents the integer value denoted by t′i; note that the
well-typedness of (D, t) guarantees that t′i must be arithmetic expressions con-
sisting of integers and integer operations; thus, �t′i� is well defined. We often

omit the subscript D when it is clear from the context. We write t
�1···�k−→ ∗

D t′ if

t
�1−→D · · · �k−→D t′. Here, ε is treated as an empty sequence; thus, for example,

we write t
ab−→∗

D t′ if t
a−→D

ε−→D
b−→D

ε−→D t′.

Fig. 3. Labeled transition semantics

For a program P = (D, t0), we define the set Traces(P )(⊆ Ev∗ ∪ Evω) of
traces by:

Traces(D, t0) = {�0 · · · �n−1 ∈ ({ε} ∪ Ev)∗ | ∀i ∈ {0, . . . , n − 1}.ti
�i−→D ti+1}

∪{�0�1 · · · ∈ ({ε} ∪ Ev)ω | ∀i ∈ ω.ti
�i−→D ti+1}.

Note that since the label ε is regarded as an empty sequence, �0�1�2 = aa if
�0 = �2 = a and �1 = ε, and an element of ({ε} ∪ Ev)ω is regarded as that of
Ev∗ ∪ Evω. We write FinTraces(P ) and InfTraces(P ) for Traces(P ) ∩ Ev∗

and Traces(P ) ∩ Evω respectively. The set of full traces FullTraces(D, t0)(⊆
Ev∗ ∪ Evω) is defined as:

{�0 · · · �n−1 ∈ ({ε} ∪ Ev)∗ | tn = ( ) ∧ ∀i ∈ {0, . . . , n − 1}.ti
�i−→D ti+1}

∪{�0�1 · · · ∈ ({ε} ∪ Ev)ω | ∀i ∈ ω.ti
�i−→D ti+1}.
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Example 4. The last example in Sect. 1 is modeled as Pfile = (D, f ( )), where
D = {f x = (event close; ( ))�(event read; event read; f x)}. We have:

Traces(P ) = {readn | n ≥ 0} ∪ {read2nclose | n ≥ 0} ∪ {readω}
FinTraces(P ) = {readn | n ≥ 0} ∪ {read2nclose | n ≥ 0}
InfTraces(P ) = {readω} FullTraces(P ) = {read2nclose | n ≥ 0} ∪ {readω}.

5 May/Must-Reachability Verification

Here we consider the following problems:

– May-reachability: “Given a program P and an event a, may P raise a?”
– Must-reachability: “Given a program P and an event a, must P raise a?”

Since we are interested in a particular event a, we restrict here the event set
Ev to a singleton set of the form {a}. Then, the may-reachability is formalized

as a
?∈ Traces(P ), whereas the must-reachability is formalized as “does every

trace in FullTraces(P ) contain a?” We encode both problems into the validity
of HFLZ formulas (without any modal operators 〈a〉 or [a]), or the HFLZ model
checking of those formulas against a trivial model (which consists of a single state
without any transitions). Since our reductions are sound and complete, the char-
acterizations of their negations –non-reachability and may-non-reachability– can
also be obtained immediately. Although these are the simplest classes of prop-
erties among those discussed in Sects. 5, 6 and 7, they are already large enough
to accommodate many program properties discussed in the literature, including
lack of assertion failures/uncaught exceptions [22] (which can be characterized as
non-reachability; recall the encoding of assertions in Sect. 4), termination [27,29]
(characterized as must-reachability), and non-termination [26] (characterized as
may-non-reachability).

5.1 May-Reachability

As in the examples in Sect. 3, we translate a program to a formula that says
“the program may raise an event a” in a compositional manner. For example,
event a; t can be translated to true (since the event will surely be raised imme-
diately), and t1�t2 can be translated to t†1 ∨ t†2 where t†i is the result of the
translation of ti (since only one of t1 and t2 needs to raise an event).

Definition 3. Let P = (D, t) be a program. ΦP,may is the HES (D†may , t†may),
where D†may and t†may are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†may =
(

f1 x̃1 =μ t1
†may ; · · · ; fn x̃n =μ tn

†may
)

( )†may = false x†may = x n†may = n (t1 op t2)
†may = t1

†may op t2
†may

(if p(t′1, . . . , t
′
k) then t1 else t2)

†may =
(p(t′1

†may , . . . , t′k
†may) ∧ t1

†may) ∨ (¬p(t′1
†may , . . . , t′k

†may) ∧ t2
†may)

(event a; t)†may = true (t1t2)
†may = t1

†mayt2
†may (t1�t2)

†may = t1
†may ∨ t2

†may .



Higher-Order Program Verification via HFL Model Checking 723

Note that, in the definition of D†may , the order of function definitions in D does
not matter (i.e., the resulting HES is unique up to the semantic equality), since
all the fixpoint variables are bound by μ.

Example 5. Consider the program:

Ploop = ({loop x = loop x}, loop(event a; ( ))).

It is translated to the HES Φloop = (loop x =μ loop x, loop(true)). Since loop ≡
μloop.λx.loop x is equivalent to λx.false, Φloop is equivalent to false. In fact,
Ploop never raises an event a (recall that our language is call-by-name).

Example 6. Consider the program Psum = (Dsum ,main) where Dsum is:

main = sum n (λr.assert(r ≥ n))
sum x k = if x = 0 then k 0 else sum (x − 1) (λr.k(x + r))

Here, n is some integer constant, and assert(b) is the macro introduced in Sect. 4.
We have used λ-abstractions for the sake of readability. The function sum is a
CPS version of a function that computes the summation of integers from 1 to
x. The main function computes the sum r = 1 + · · · + n, and asserts r ≥ n. It is
translated to the HES ΦP2,may = (Esum ,main) where Esum is:

main =μ sum n (λr.(r ≥ n ∧ false) ∨ (r < n ∧ true));
sum x k =μ (x = 0 ∧ k 0) ∨ (x �= 0 ∧ sum (x − 1) (λr.k(x + r))).

Here, n is treated as a constant. Since the shape of the formula does not depend
on the value of n, the property “an assertion failure may occur for some n” can
be expressed by ∃n.ΦP2,may. ��

The following theorem states that ΦP,may is a complete characterization of
the may-reachability of P .

Theorem 1. Let P be a program. Then, a ∈ Traces(P ) if and only if L0 |=
ΦP,may for L0 = ({s	}, ∅, ∅, s	).

A proof of the theorem above is found in [23]. We only provide an outline. We
first show the theorem for recursion-free programs and then lift it to arbitrary
programs by using the continuity of functions represented in the fixpoint-free
fragment of HFLZ formulas. To show the theorem for recursion-free programs,
we define the reduction relation t −→D t′ by:

fx̃ = u ∈ D |x̃| = |˜t|
E[f ˜t] −→D E[[˜t/x̃]u]

(�t′1�, . . . , �t
′
k�) ∈ �p�

E[if p(t′1, . . . , t
′
k) then t1 else t2] −→D E[t1]

(�t′1�, . . . , �t
′
k�) �∈ �p�

E[if p(t′1, . . . , t
′
k) then t1 else t2] −→D E[t2]

Here, E ranges over the set of evaluation contexts given by E:: = [ ] | E�t
| t�E | event a;E. The reduction relation differs from the labeled transition
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relation given in Sect. 4, in that � and event a; · · · are not eliminated. By the def-
inition of the translation, the theorem holds for programs in normal form (with
respect to the reduction relation), and the semantics of translated HFL formulas
is preserved by the reduction relation; thus the theorem holds for recursion-free
programs, as they are strongly normalizing.

5.2 Must-Reachability

The characterization of must-reachability can be obtained by an easy modifica-
tion of the characterization of may-reachability: we just need to replace branches
with logical conjunction.

Definition 4. Let P = (D, t) be a program. ΦP,must is the HES (D†must , t†must),
where D†must and t†must are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†must =
(

f1 x̃1 =μ t1
†must ; · · · ; fn x̃n =μ tn

†must
)

( )†must = false x†must = x n†must = n (t1 op t2)
†must = t1

†must op t2
†must

(if p(t′1, . . . , t
′
k) then t1 else t2)

†must =
(p(t′1

†must , . . . , t′k
†must) ⇒ t1

†must) ∧ (¬p(t′1
†must , . . . , t′k

†must) ⇒ t2
†must)

(event a; t)†must = true (t1t2)
†must = t1

†mustt2
†must (t1�t2)

†must = t1
†must ∧ t2

†must .

Here, p(ϕ1, . . . , ϕk) ⇒ ϕ is a shorthand for ¬p(ϕ1, . . . , ϕk) ∨ ϕ.

Example 7. Consider Ploop = (D, loopmn) where D is:

loop x y = if x ≤ 0 ∨ y ≤ 0 then (event end; ( ))
else (loop (x − 1) (y ∗ y))�(loop x (y − 1))

Here, the event end is used to signal the termination of the program. The function
loop non-deterministically updates the values of x and y until either x or y
becomes non-positive. The must-termination of the program is characterized by
ΦPloop,must = (E , loopmn) where E is:

loop x y =μ (x ≤ 0 ∨ y ≤ 0 ⇒ true)
∧(¬(x ≤ 0 ∨ y ≤ 0) ⇒ (loop (x − 1) (y ∗ y)) ∧ (loop x (y − 1))).

We write Musta(P ) if every π ∈ FullTraces(P ) contains a. The following
theorem, which can be proved in a manner similar to Theorem 1, guarantees that
ΦP,must is indeed a sound and complete characterization of the must-reachability.

Theorem 2. Let P be a program. Then, Musta(P ) if and only if L0 |= ΦP,must
for L0 = ({s	}, ∅, ∅, s	).
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6 Trace Properties

Here we consider the verification problem: “Given a (non-ω) regular language
L and a program P , does every finite event sequence of P belong to L? (i.e.

FinTraces(P )
?⊆ L)” and reduce it to an HFLZ model checking problem. The

verification of file-accessing programs considered in Sect. 3 may be considered an
instance of the problem.

Here we assume that the language L is closed under the prefix operation;
this does not lose generality because FinTraces(P ) is also closed under the
prefix operation. We write AL = (Q,Σ, δ, q0, F ) for the minimal, deterministic
automaton with no dead states (hence the transition function δ may be partial).
Since L is prefix-closed and the automaton is minimal, w ∈ L if and only if
δ̂(q0, w) is defined (where δ̂ is defined by: δ̂(q, ε) = q and δ̂(q, aw) = δ̂(δ(q, a), w)).
We use the corresponding LTS LL = (Q,Σ, {(q, a, q′) | δ(q, a) = q′}, q0) as the
model of the reduced HFLZ model checking problem.

Given the LTS LL above, whether an event sequence a1 · · · ak belongs to L

can be expressed as LL

?

|= 〈a1〉 · · · 〈ak〉true. Whether all the event sequences

in {aj,1 · · · aj,kj
| j ∈ {1, . . . , n}} belong to L can be expressed as LL

?

|=
∧

j∈{1,...,n}〈aj,1〉 · · · 〈aj,kj
〉true. We can lift these translations for event sequences

to the translation from a program (which can be considered a description of a
set of event sequences) to an HFLZ formula, as follows.

Definition 5. Let P = (D, t) be a program. ΦP,path is the HES (D†path , t†path),
where D†path and t†path are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†path =
(

f1 x̃1 =ν t1
†path ; · · · ; fn x̃n =ν tn

†path
)

( )†path = true x†path = x n†path = n (t1 op t2)
†path = t1

†path op t2
†path

(if p(t′1, . . . , t
′
k) then t1 else t2)

†path =
(p(t′1

†path , . . . , t′k
†path) ⇒ t1

†path) ∧ (¬p(t′1
†path , . . . , t′k

†path) ⇒ t2
†path)

(event a; t)†path = 〈a〉t†path (t1t2)
†path = t1

†patht2
†path (t1�t2)

†path = t1
†path ∧ t2

†path .

Example 8. The last program discussed in Sect. 3 is modeled as P2 =
(D2, f m g), where m is an integer constant and D2 consists of:

f y k = if y = 0 then (event close; k ( )) else (event read; f (y − 1) k)
g r = event end; ( )

Here, we have modeled accesses to the file, and termination as events. Then,
ΦP2,path = (EP2,path, f m g) where EP2,path is:6

f n k =ν (n = 0 ⇒ 〈close〉(k true)) ∧ (n �= 0 ⇒ 〈read〉(f (n − 1) k))
g r =ν 〈end〉true.

Let L be the prefix-closure of read∗ · close · end. Then LL is L′
file in Sect. 3, and

FinTraces(P2)⊆L can be verified by checking LL|=ΦP2,path. ��
6 Unlike in Sect. 3, the variables are bound by ν since we are not concerned with the

termination property here.
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Theorem 3. Let P be a program and L be a regular, prefix-closed language.
Then, FinTraces(P ) ⊆ L if and only if LL |= ΦP,path.

As in Sect. 5, we first prove the theorem for programs in normal form, and
then lift it to recursion-free programs by using the preservation of the semantics
of HFLZ formulas by reductions, and further to arbitrary programs by using the
(co-)continuity of the functions represented by fixpoint-free HFLZ formulas. See
[23] for a concrete proof.

7 Linear-Time Temporal Properties

This section considers the following problem: “Given a program P and an ω-
regular word language L, does InfTraces(P )∩L = ∅ hold?”. From the viewpoint
of program verification, L represents the set of “bad” behaviors. This can be
considered an extension of the problems considered in the previous sections.

The reduction to HFL model checking is more involved than those in the
previous sections. To see the difficulty, consider the program P0:

({f = if c then (event a; f) else (event b; f)}, f) ,

where c is some boolean expression. Let L be the complement of (a∗b)ω, i.e.,
the set of infinite sequences that contain only finitely many b’s. Following Sect. 6
(and noting that InfTraces(P )∩L = ∅ is equivalent to InfTraces(P ) ⊆ (a∗b)ω

in this case), one may be tempted to prepare an LTS like the one in Fig. 4 (which
corresponds to the transition function of a (parity) word automaton accepting
(a∗b)ω), and translate the program to an HES ΦP0 of the form:

(f =α (c ⇒ 〈a〉f) ∧ (¬c ⇒ 〈b〉f), f) ,

where α is μ or ν. However, such a translation would not work. If c = true,
then InfTraces(P0) = aω, hence InfTraces(P0) ∩ L �= ∅; thus, α should be μ
for ΦP0 to be unsatisfied. If c = false, however, InfTraces(P0) = bω, hence
InfTraces(P0) ∩ L = ∅; thus, α must be ν for ΦP0 to be satisfied.

Fig. 4. LTS for (a∗b)ω

The example above suggests that we actually need to distinguish between the
two occurrences of f in the body of f ’s definition. Note that in the then- and
else-clauses respectively, f is called after different events a and b. This difference
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is important, since we are interested in whether b occurs infinitely often. We
thus duplicate f , and replace the program with the following program Pdup :

({fb = if c then (event a; fa) else (event b; fb),
fa = if c then (event a; fa) else (event b; fb)}, fb).

For checking InfTraces(P0) ∩ L = ∅, it is now sufficient to check that fb is
recursively called infinitely often. We can thus obtain the following HES:

((fb =ν (c ⇒ 〈a〉fa) ∧ (¬c ⇒ 〈b〉fb); fa =μ (c ⇒ 〈a〉fa) ∧ (¬c ⇒ 〈b〉fb)), fb).

Note that fb and fa are bound by ν and μ respectively, reflecting the fact that
b should occur infinitely often, but a need not. If c = true, the formula is
equivalent to νfb.〈a〉μfa.〈a〉fa, which is false. If c = false, then the formula is
equivalent to νfb.〈b〉fb, which is satisfied by by the LTS in Fig. 4.

The general translation is more involved due to the presence of higher-order
functions, but, as in the example above, the overall translation consists of two
steps. We first replicate functions according to what events may occur between
two recursive calls, and reduce the problem InfTraces(P ) ∩ L

?= ∅ to a problem
of analyzing which functions are recursively called infinitely often, which we call
a call-sequence analysis. We can then reduce the call-sequence analysis to HFL
model checking in a rather straightforward manner (though the proof of the
correctness is non-trivial). The resulting HFL formula actually does not contain
modal operators.7 So, as in Sect. 5, the resulting problem is the validity checking
of HFL formulas without modal operators.

In the rest of this section, we first introduce the call-sequence analysis prob-
lem and its reduction to HFL model checking in Sect. 7.1. We then show how to
reduce the temporal verification problem InfTraces(P ) ∩ L

?= ∅ to an instance
of the call-sequence analysis problem in Sect. 7.2.

7.1 Call-Sequence Analysis

We define the call-sequence analysis and reduce it to an HFL model-checking
problem. As mentioned above, in the call-sequence analysis, we are interested in
analyzing which functions are recursively called infinitely often. Here, we say that

g is recursively called from f , if f s̃
ε−→D [s̃/x̃]tf

˜�−→∗
D g ˜t, where f x̃ = tf ∈ D

and g “originates from” tf (a more formal definition will be given in Definition 6
below). For example, consider the following program Papp , which is a twisted
version of Pdup above.

({apphx = hx,
fb x = if x > 0 then (event a; app fa (x − 1)) else (event b; app fb 5),
fa x = if x > 0 then (event a; app fa (x − 1)) else (event b; app fb 5)}, fb 5).

7 In the example above, we can actually remove 〈a〉 and 〈b〉, as information about
events has been taken into account when f was duplicated.
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Then fa is “recursively called” from fb in fb 5 a−→∗
D app fa 4 ε−→∗

D fa 4 (and so is
app). We are interested in infinite chains of recursive calls f0f1f2 · · ·, and which
functions may occur infinitely often in each chain. For instance, the program
above has the unique infinite chain (fbf

5
a )ω, in which both fa and fb occur

infinitely often. (Besides the infinite chain, the program has finite chains like
fb app; note that the chain cannot be extended further, as the body of app does
not have any occurrence of recursive functions: app, fa and fb.)

We define the notion of “recursive calls” and call-sequences formally below.

Definition 6 (Recursive call relation, call sequences). Let P = (D, f1 s̃)
be a program, with D = {fi x̃i = ui}1≤i≤n. We define D
 := D∪{f 


i x̃ = ui}1≤i≤n

where f 

1, . . . , f



n are fresh symbols. (Thus, D
 has two copies of each function

symbol, one of which is marked by �.) For the terms ˜ti and ˜tj that do not contain

marked symbols, we write fi ˜ti�Dfj ˜tj if (i) [˜ti/x̃i][f


1/f1, . . . , f



n/fn]ui

˜�−→∗
D�f



j
˜t′j

and (ii) ˜tj is obtained by erasing all the marks in ˜t′j. We write Callseq(P ) for
the set of (possibly infinite) sequences of function symbols:

{f1 g1 g2 · · · | f1 s̃�Dg1 ˜t1�Dg2 ˜t2�D · · · }.
We write InfCallseq(P ) for the subset of Callseq(P ) consisting of infinite
sequences, i.e., Callseq(P ) ∩ {f1, . . . , fn}ω.

For example, for Papp above, Callseq(P ) is the prefix closure of {(fbf
5
a )ω}∪

{s · app | s is a non-empty finite prefix of (fbf
5
a )ω}, and InfCallseq(P ) is the

singleton set {(fbf
5
a )ω}.

Definition 7 (Call-sequence analysis). A priority assignment for a pro-
gram P is a function Ω : funs(P ) → N from the set of function symbols of P
to the set N of natural numbers. We write |=csa (P,Ω) if every infinite call-
sequence g0g1g2 · · · ∈ InfCallseq(P ) satisfies the parity condition w.r.t. Ω, i.e.,
the largest number occurring infinitely often in Ω(g0)Ω(g1)Ω(g2) . . . is even.
Call-sequence analysis is the problem of, given a program P with a priority
assignment Ω, deciding whether |=csa (P,Ω) holds.

For example, for Papp and the priority assignment Ωapp = {app �→ 3, fa �→
1, fb �→ 2}, |=csa (Papp , Ωapp) holds.

The call-sequence analysis can naturally be reduced to HFL model checking
against the trivial LTS L0 = ({s	}, ∅, ∅, s	) (or validity checking).

Definition 8. Let P = (D, t) be a program and Ω be a priority assignment for
P . The HES Φ(P,Ω),csa is (D†csa , t†csa ), where D†csa and t†csa are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†csa =
(

f1 x̃1 =α1 t1
†csa ; · · · ; fn x̃n =αn

tn
†csa

)

( )†csa = true x†csa = x n†csa = n (t1 op t2)
†csa = t1

†csa op t2
†csa

(if p(t′1, . . . , t
′
k) then t1 else t2)

†csa =
(p(t′1

†csa , . . . , t′k
†csa ) ⇒ t1

†csa ) ∧ (¬p(t′1
†csa , . . . , t′k

†csa ) ⇒ t2
†csa )

(event a; t)†csa = t†csa (t1 t2)
†csa = t1

†csa t2
†csa (t1�t2)

†csa = t1
†csa ∧ t2

†csa .
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Here, we assume that Ω(fi) ≥ Ω(fi+1) for each i ∈ {1, . . . , n − 1}, and αi = ν
if Ω(fi) is even and μ otherwise.

The following theorem states the soundness and completeness of the reduc-
tion. See [23] for a proof.

Theorem 4. Let P be a program and Ω be a priority assignment for P . Then
|=csa (P,Ω) if and only if L0 |= Φ(P,Ω),csa .

Example 9. For Papp and Ωapp above, (Papp , Ωapp)†csa = (E , fb 5), where: E is:

apphx =μ hx; fb x =ν (x > 0 ⇒ app fa (x − 1)) ∧ (x ≤ 0 ⇒ app fb 5);
fa x =μ (x > 0 ⇒ app fa (x − 1)) ∧ (x ≤ 0 ⇒ app fb 5).

Note that L0 |= (Papp , Ωapp)†csa holds.

7.2 From Temporal Verification to Call-Sequence Analysis

This subsection shows a reduction from the temporal verification problem

InfTraces(P ) ∩ L
?= ∅ to a call-sequence analysis problem

?

|=csa (P ′, Ω).
For the sake of simplicity, we assume without loss of generality that every

program P = (D, t) in this section is non-terminating and every infinite reduc-
tion sequence produces infinite events, so that FullTraces(P ) = InfTraces(P )
holds. We also assume that the ω-regular language L for the temporal verification
problem is specified by using a non-deterministic, parity word automaton [10].
We recall the definition of non-deterministic, parity word automata below.

Definition 9 (Parity automaton). A non-deterministic parity word automa-
ton is a quintuple A = (Q,Σ, δ, qI , Ω) where (i) Q is a finite set of states; (ii)
Σ is a finite alphabet; (iii) δ, called a transition function, is a total map from
Q × Σ to 2Q; (iv) qI ∈ Q is the initial state; and (v) Ω ∈ Q → N is the priority
function. A run of A on an ω-word a0a1 · · · ∈ Σω is an infinite sequence of states
ρ = ρ(0)ρ(1) · · · ∈ Qω such that (i) ρ(0) = qI , and (ii) ρ(i + 1) ∈ δ(ρ(i), ai) for
each i ∈ ω. An ω-word w ∈ Σω is accepted by A if, there exists a run ρ of A on
w such that max{Ω(q) | q ∈ Inf(ρ)} is even, where Inf(ρ) is the set of states
that occur infinitely often in ρ. We write L(A) for the set of ω-words accepted
by A.

For technical convenience, we assume below that δ(q, a) �= ∅ for every q ∈ Q and
a ∈ Σ; this does not lose generality since if δ(q, a) = ∅, we can introduce a new
“dead” state qdead (with priority 1) and change δ(q, a) to {qdead}. Given a parity
automaton A, we refer to each component of A by QA, ΣA, δA, qI,A and ΩA.

Example 10. Consider the automaton Aab = ({qa, qb}, {a, b}, δ, qa, Ω), where δ is
as given in Fig. 4, Ω(qa) = 0, and Ω(qb) = 1. Then, L(Aab) = (a∗b)ω = (a∗b)∗aω.
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The goal of this subsection is, given a program P and a parity word automaton
A, to construct another program P ′ and a priority assignment Ω for P ′, such
that InfTraces(P ) ∩ L(A) = ∅ if and only if |=csa (P ′, Ω).

Note that a necessary and sufficient condition for InfTraces(P ) ∩ L(A) = ∅
is that no trace in InfTraces(P ) has a run whose priority sequence satisfies
the parity condition; in other words, for every sequence in InfTraces(P ), and
for every run for the sequence, the largest priority that occurs in the associated
priority sequence is odd. As explained at the beginning of this section, we reduce
this condition to a call sequence analysis problem by appropriately duplicating
functions in a given program. For example, recall the program P0:

({f = if c then (event a; f) else (event b; f)}, f) .

It is translated to P ′
0:

({fb = if c then (event a; fa) else (event b; fb),
fa = if c then (event a; fa) else (event b; fb)}, fb),

where c is some (closed) boolean expression. Since the largest priorities encoun-
tered before calling fa and fb (since the last recursive call) respectively are 0
and 1, we assign those priorities plus 1 (to flip odd/even-ness) to fa and fb

respectively. Then, the problem of InfTraces(P0) ∩ L(A) = ∅ is reduced to
|=csa (P ′

0, {fa �→ 1, fb �→ 2}). Note here that the priorities of fa and fb represent
summaries of the priorities (plus one) that occur in the run of the automa-
ton until fa and fb are respectively called since the last recursive call; thus, the
largest priority of states that occur infinitely often in the run for an infinite trace
is equivalent to the largest priority that occurs infinitely often in the sequence of
summaries (Ω(f1)−1)(Ω(f2)−1)(Ω(f3)−1) · · · computed from a corresponding
call sequence f1f2f3 · · ·.

Due to the presence of higher-order functions, the general reduction is more
complicated than the example above. First, we need to replicate not only function
symbols, but also arguments. For example, consider the following variation P1

of P0 above:

({g k = if c then (event a; k) else (event b; k), f = g f}, f) .

Here, we have just made the calls to f indirect, by preparing the function g.
Obviously, the two calls to k in the body of g must be distinguished from each
other, since different priorities are encountered before the calls. Thus, we dupli-
cate the argument k, and obtain the following program P ′

1:

({g ka kb = if c then (event a; ka) else (event b; kb), fa = g fa fb, fb = g fa fb}, fa).

Then, for the priority assignment Ω = {fa �→ 1, fb �→ 2, g �→ 1}, InfTraces(P1)∩
L(Aab) = ∅ if and only if |=csa (P ′

1, Ω). Secondly, we need to take into account
not only the priorities of states visited by A, but also the states themselves.
For example, if we have a function definition f h = h(event a; f h), the largest
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priority encountered before f is recursively called in the body of f depends on
the priorities encountered inside h, and also the state of A when h uses the argu-
ment event a; f (because the state after the a event depends on the previous
state in general). We, therefore, use intersection types (a la Kobayashi and Ong’s
intersection types for HORS model checking [21]) to represent summary infor-
mation on how each function traverses states of the automaton, and replicate
each function and its arguments for each type. We thus formalize the translation
as an intersection-type-based program transformation; related transformation
techniques are found in [8,11,12,20,38].

Definition 10. Let A = (Q,Σ, δ, qI , Ω) be a non-deterministic parity word
automaton. Let q and m range over Q and the set codom(Ω) of priorities respec-
tively. The set TypesA of intersection types, ranged over by θ, is defined by:

θ:: = q | ρ → θ ρ:: = int | ∧

1≤i≤k(θi,mi)

We assume a certain total order < on TypesA × N, and require that in
∧

1≤i≤k(θi,mi), (θi,mi) < (θj ,mj) holds for each i < j.

We often write (θ1,m1) ∧ · · · ∧ (θk,mk) for
∧

1≤i≤k(θi,mi), and � when k = 0.
Intuitively, the type q describes expressions of simple type �, which may be evalu-
ated when the automaton A is in the state q (here, we have in mind an execution
of the product of a program and the automaton, where the latter takes events
produced by the program and changes its states). The type (

∧

1≤i≤k(θi,mi)) → θ
describes functions that take an argument, use it according to types θ1, . . . , θk,
and return a value of type θ. Furthermore, the part mi describes that the argu-
ment may be used as a value of type θi only when the largest priority visited since
the function is called is mi. For example, given the automaton in Example 10, the
function λx.(event a;x) may have types (qa, 0) → qa and (qa, 0) → qb, because
the body may be executed from state qa or qb (thus, the return type may be any
of them), but x is used only when the automaton is in state qa and the largest
priority visited is 1. In contrast, λx.(event b;x) have types (qb, 1) → qa and
(qb, 1) → qb.

Using the intersection types above, we shall define a type-based transforma-
tion relation of the form Γ �A t : θ ⇒ t′, where t and t′ are the source and target
terms of the transformation, and Γ , called an intersection type environment, is a
finite set of type bindings of the form x : int or x : (θ,m,m′). We allow multiple
type bindings for a variable x except for x :int (i.e. if x :int ∈ Γ , then this must
be the unique type binding for x in Γ ). The binding x : (θ,m,m′) means that x
should be used as a value of type θ when the largest priority visited is m; m′ is
auxiliary information used to record the largest priority encountered so far.

The transformation relation Γ �A t : θ ⇒ t′ is inductively defined by
the rules in Fig. 5. (For technical convenience, we have extended terms with
λ-abstractions; they may occur only at top-level function definitions.) In the
figure, [k] denotes the set {i ∈ N | 1 ≤ i ≤ k}. The operation Γ ↑ m used in the
figure is defined by:

Γ ↑ m = {x : int | x : int ∈ Γ} ∪ {x : (θ,m1,max(m2,m)) | x : (θ,m1,m2) ∈ Γ}
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The operation is applied when the priority m is encountered, in which case the
largest priority encountered is updated accordingly. The key rules are IT-Var,
IT-Event, IT-App, and IT-Abs. In IT-Var, the variable x is replicated for
each type; in the target of the translation, xθ,m and xθ′,m′ are treated as different
variables if (θ,m) �= (θ′,m′). The rule IT-Event reflects the state change caused
by the event a to the type and the type environment. Since the state change may
be non-deterministic, we transform t for each of the next states q1, . . . , qn, and
combine the resulting terms with non-deterministic choice. The rule IT-App
and IT-Abs replicates function arguments for each type. In addition, in IT-
App, the operation Γ ↑ mi reflects the fact that t2 is used as a value of type θi

after the priority mi is encountered. The other rules just transform terms in a
compositional manner. If target terms are ignored, the entire rules are close to
those of Kobayashi and Ong’s type system for HORS model checking [21].

Fig. 5. Type-based transformation rules for terms

We now define the transformation for programs. A top-level type environment
Ξ is a finite set of type bindings of the form x : (θ,m). Like intersection type
environments, Ξ may have more than one binding for each variable. We write
Ξ �A t : θ to mean {x : (θ,m, 0) | x : (θ,m) ∈ Ξ} �A t : θ. For a set D of function
definitions, we write Ξ �A D ⇒ D′ if dom(D′) = { fθ,m | f : (θ,m) ∈ Ξ } and
Ξ �A D(f) : θ ⇒ D′(fθ,m) for every f :(θ,m) ∈ Ξ. For a program P = (D, t), we
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write Ξ �A P ⇒ (P ′, Ω′) if P ′ = (D′, t′), Ξ �A D ⇒ D′ and Ξ �A t : qI ⇒ t′,
with Ω′(fθ,m) = m+1 for each fθ,m ∈ dom(D′). We just write �A P ⇒ (P ′, Ω′)
if Ξ �A P ⇒ (P ′, Ω′) holds for some Ξ.

Example 11. Consider the automaton Aab in Example 10, and the program P2 =
(D2, f 5) where D2 consists of the following function definitions:

g k = (event a; k)�(event b; k),
f x = if x > 0 then g (f(x − 1)) else (event b; f 5).

Let Ξ be: {g : ((qa, 0) ∧ (qb, 1) → qa, 0), g : ((qa, 0) ∧ (qb, 1) → qb, 0), f : (int →
qa, 0), f : (int → qb, 1)}. Then, Ξ �A P1 ⇒ ((D′

2, fint→qa,0 5), Ω) where:

D′
2 = {g(qa,0)∧(qb,1)→qa,0 kqa,0 kqb,1 = tg, g(qa,0)∧(qb,1)→qb,0 kqa,0 kqb,1 = tg,

fint→qa,0 xint = tf,qa , fint→qb,1 xint = tf,qb}
tg = (event a; kqa,0)�(event b; kqb,1),
tf,q = if xint > 0 then

g(qa,0)∧(qb,1)→q,0 (fint→qa,0(xint − 1)) (fint→qb,1(xint − 1))
else (event b; fint→qb,1 5), (for each q ∈ {qa, qb})

Ω = {g(qa,0)∧(qb,1)→qa,0 �→ 1, g(qa,0)∧(qb,1)→qb,0 �→ 1, fint→qa,0 �→ 1, fint→qb,1 �→ 2}.

Notice that f , g, and the arguments of g have been duplicated. Further-
more, whenever fθ,m is called, the largest priority that has been encountered
since the last recursive call is m. For example, in the then-clause of fint→qa,0,
fint→qb,1(x−1) may be called through g(qa,0)∧(qb,1)→qa,0. Since g(qa,0)∧(qb,1)→qa,0

uses the second argument only after an event b, the largest priority encountered
is 1. This property is important for the correctness of our reduction.

The following theorems below claim that our reduction is sound and com-
plete, and that there is an effective algorithm for the reduction: see [23] for
proofs.

Theorem 5. Let P be a program and A be a parity automaton. Suppose that
Ξ �A P ⇒ (P ′, Ω). Then InfTraces(P )∩L(A) = ∅ if and only if |=csa (P ′, Ω).

Theorem 6. For every P and A, one can effectively construct Ξ, P ′ and Ω
such that Ξ �A P ⇒ (P ′, Ω).

The proof of Theorem 6 above also implies that the reduction from temporal
property verification to call-sequence analysis can be performed in polynomial
time. Combined with the reduction from call-sequence analysis to HFL model
checking, we have thus obtained a polynomial-time reduction from the temporal

verification problem InfTraces(P )
?⊆ L(A) to HFL model checking.

8 Related Work

As mentioned in Sect. 1, our reduction from program verification problems to
HFL model checking problems has been partially inspired by the translation of
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Kobayashi et al. [19] from HORS model checking to HFL model checking. As in
their translation (and unlike in previous applications of HFL model checking [28,
42]), our translation switches the roles of properties and models (or programs)
to be verified. Although a combination of their translation with Kobayashi’s
reduction from program verification to HORS model checking [17,18] yields an
(indirect) translation from finite-data programs to pure HFL model checking
problems, the combination does not work for infinite-data programs. In contrast,
our translation is sound and complete even for infinite-data programs. Among the
translations in Sects. 5, 6 and 7, the translation in Sect. 7.2 shares some similarity
to their translation, in that functions and their arguments are replicated for
each priority. The actual translations are however quite different; ours is type-
directed and optimized for a given automaton, whereas their translation is not.
This difference comes from the difference of the goals: the goal of [19] was to
clarify the relationship between HORS and HFL, hence their translation was
designed to be independent of an automaton. The proof of the correctness of
our translation in Sect. 7 is much more involved due to the need for dealing with
integers. Whilst the proof of [19] could reuse the type-based characterization of
HORS model checking [21], we had to generalize arguments in both [19,21] to
work on infinite-data programs.

Lange et al. [28] have shown that various process equivalence checking prob-
lems (such as bisimulation and trace equivalence) can be reduced to (pure) HFL
model checking problems. The idea of their reduction is quite different from ours.
They reduce processes to LTSs, whereas we reduce programs to HFL formulas.

Major approaches to automated or semi-automated higher-order program
verification have been HORS model checking [17,18,22,27,31,33,43], (refine-
ment) type systems [14,24,34–36,39,41,44], Horn clause solving [2,7], and their
combinations. As already discussed in Sect. 1, compared with the HORS model
checking approach, our new approach provides more uniform, streamlined meth-
ods. Whilst the HORS model checking approach is for fully automated verifi-
cation, our approach enables various degrees of automation: after verification
problems are automatically translated to HFLZ formulas, one can prove them
(i) interactively using a proof assistant like Coq (see [23]), (ii) semi-automatically,
by letting users provide hints for induction/co-induction and discharging the rest
of proof obligations by (some extension of) an SMT solver, or (iii) fully auto-
matically by recasting the techniques used in the HORS-based approach; for
example, to deal with the ν-only fragment of HFLZ, we can reuse the tech-
nique of predicate abstraction [22]. For a more technical comparison between
the HORS-based approach and our HFL-based approach, see [23].

As for type-based approaches [14,24,34–36,39,41,44], most of the refinement
type systems are (i) restricted to safety properties, and/or (ii) incomplete. A
notable exception is the recent work of Unno et al. [40], which provides a rela-
tively complete type system for the classes of properties discussed in Sect. 5. Our
approach deals with a wider class of properties (cf. Sects. 6 and 7). Their “rel-
ative completeness” property relies on Godel coding of functions, which cannot
be exploited in practice.
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The reductions from program verification to Horn clause solving have recently
been advocated [2–4] or used [34,39] (via refinement type inference problems)
by a number of researchers. Since Horn clauses can be expressed in a fragment
of HFL without modal operators, fixpoint alternations (between ν and μ), and
higher-order predicates, our reductions to HFL model checking may be viewed
as extensions of those approaches. Higher-order predicates and fixpoints over
them allowed us to provide sound and complete characterizations of properties
of higher-order programs for a wider class of properties. Bjørner et al. [4] pro-
posed an alternative approach to obtaining a complete characterization of safety
properties, which defunctionalizes higher-order programs by using algebraic data
types and then reduces the problems to (first-order) Horn clauses. A disadvan-
tage of that approach is that control flow information of higher-order programs
is also encoded into algebraic data types; hence even for finite-data higher-order
programs, the Horn clauses obtained by the reduction belong to an undecidable
fragment. In contrast, our reductions yield pure HFL model checking problems
for finite-data programs. Burn et al. [7] have recently advocated the use of higher-
order (constrained) Horn clauses for verification of safety properties (i.e., which
correspond to the negation of may-reachability properties discussed in Sect. 5.1 of
the present paper) of higher-order programs. They interpret recursion using the
least fixpoint semantics, so their higher-order Horn clauses roughly corresponds
to a fragment of the HFLZ without modal operators and fixpoint alternations.
They have not shown a general, concrete reduction from safety property verifi-
cation to higher-order Horn clause solving.

The characterization of the reachability problems in Sect. 5 in terms of formu-
las without modal operators is a reminiscent of predicate transformers [9,13] used
for computing the weakest preconditions of imperative programs. In particular,
[5] and [13] respectively used least fixpoints to express weakest preconditions for
while-loops and recursions.

9 Conclusion

We have shown that various verification problems for higher-order functional
programs can be naturally reduced to (extended) HFL model checking prob-
lems. In all the reductions, a program is mapped to an HFL formula expressing
the property that the behavior of the program is correct. For developing verifica-
tion tools for higher-order functional programs, our reductions allow us to focus
on the development of (automated or semi-automated) HFLZ model checking
tools (or, even more simply, theorem provers for HFLZ without modal operators,
as the reductions of Sects. 5 and 7 yield HFL formulas without modal opera-
tors). To this end, we have developed a prototype model checker for pure HFL
(without integers), which will be reported in a separate paper. Work is under
way to develop HFLZ model checkers by recasting the techniques [22,26,27,43]
developed for the HORS-based approach, which, together with the reductions
presented in this paper, would yield fully automated verification tools. We have
also started building a Coq library for interactively proving HFLZ formulas,
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as briefly discussed in [23]. As a final remark, although one may fear that our
reductions may map program verification problems to “harder” problems due
to the expressive power of HFLZ, it is actually not the case at least for the
classes of problems in Sects. 5 and 6, which use the only alternation-free frag-
ment of HFLZ. The model checking problems for μ-only or ν-only HFLZ are
semi-decidable and co-semi-decidable respectively, like the source verification
problems of may/must-reachability and their negations of closed programs.
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