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Abstract. Smart contracts are computer programs that are executed
by a network of mutually distrusting agents, without the need of an
external trusted authority. Smart contracts handle and transfer assets of
considerable value (in the form of crypto-currency like Bitcoin). Hence,
it is crucial that their implementation is bug-free. We identify the util-
ity (or expected payoff) of interacting with such smart contracts as the
basic and canonical quantitative property for such contracts. We present
a framework for such quantitative analysis of smart contracts. Such a
formal framework poses new and novel research challenges in program-
ming languages, as it requires modeling of game-theoretic aspects to ana-
lyze incentives for deviation from honest behavior and modeling utilities
which are not specified as standard temporal properties such as safety
and termination. While game-theoretic incentives have been analyzed in
the security community, their analysis has been restricted to the very spe-
cial case of stateless games. However, to analyze smart contracts, stateful
analysis is required as it must account for the different program states
of the protocol. Our main contributions are as follows: we present (i) a
simplified programming language for smart contracts; (ii) an automatic
translation of the programs to state-based games; (iii) an abstraction-
refinement approach to solve such games; and (iv) experimental results
on real-world-inspired smart contracts.

1 Introduction

In this work we present a quantitative stateful game-theoretic framework for
formal analysis of smart-contracts.

Smart Contracts. Hundreds of crypto-currencies are in use today, and invest-
ments in them are increasing steadily [24]. These currencies are not controlled
by any central authority like governments or banks, instead they are governed
by the blockchain protocol, which dictates the rules and determines the out-
comes, e.g., the validity of money transactions and account balances. Blockchain
was initially used for peer-to-peer Bitcoin payments [43], but recently it is also
used for running programs (called smart contracts). A smart contract is a pro-
gram that runs on the blockchain, which enforces its correct execution (i.e., that
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it is running as originally programmed). This is done by encoding semantics
in crypto-currency transactions. For example, Bitcoin transaction scripts allow
users to specify conditions, or contracts, which the transactions must satisfy
prior to acceptance. Transaction scripts can encode many useful functions, such
as validating that a payer owns a coin she is spending or enforcing rules for
multi-party transactions. The Ethereum crypto-currency [16] allows arbitrary
stateful Turing-complete conditions over the transactions which gives rise to
smart contracts that can implement a wide range of applications, such as finan-
cial instruments (e.g., financial derivatives or wills) or autonomous governance
applications (e.g., voting systems). The protocols are globally specified and their
implementation is decentralized. Therefore, there is no central authority and they
are immutable. Hence, the economic consequences of bugs in a smart contract
cannot be reverted.

Types of Bugs. There are two types of bugs with monetary consequences:

1. Coding errors. Similar to standard programs, bugs could arise from coding
mistakes. At one reported case [33], mistakenly replacing += operation with
=+ enabled loss of tokens that were backed by $800,000 of investment.

2. Dishonest interaction incentives. Smart contracts do not fully dictate the
behavior of participants. They only specify the outcome (e.g., penalty or
rewards) of the behaviors. Hence, a second source for bugs is the high level
interaction aspects that could give a participant unfair advantage and incen-
tive for dishonest behavior. For example, a naive design of rock-paper-scissors
game [29] allows playing sequentially, rather than concurrently, and gives
advantage to the second player who can see the opponent’s move.

DAO Attack: Interaction of Two Types of Bugs. Quite interestingly a coding
bug can incentivize dishonest behavior as in the famous DAO attack [48]. The
Decentralized Autonomous Organization (DAO) [38] is an Ethereum smart con-
tract [51]. The contract consists of investor-directed venture capital fund. On
June 17, 2016 an attacker exploited a bug in the contract to extract $80 mil-
lion [48]. Intuitively, the root cause was that the contract allowed users to first get
hold of their funds, and only then updated their balance records while a semantic
detail allowed the attacker to withdraw multiple times before the update.

Necessity of Formal Framework. Since bugs in smart contracts have direct eco-
nomic consequences and are irreversible, they have the same status as safety-
critical errors for programs and reactive systems and must be detected before
deployment. Moreover, smart contracts are deployed rapidly. There are over a
million smart contracts in Ethereum, holding over 15 billion dollars at the time
of writing [31]. It is impossible for security researchers to analyze all of them,
and lack of automated tools for programmers makes them error prone. Hence, a
formal analysis framework for smart contract bugs is of great importance.

Utility Analysis. In verification of programs, specifying objectives is non-trivial
and a key goal is to consider specification-less verification, where basic proper-
ties are considered canonical. For example, termination is a basic property in
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program analysis; and data-race freedom or serializability are basic properties
in concurrency. Given these properties, models are verified wrt them without
considering any other specification. For smart contracts, describing the correct
specification that prevents dishonest behavior is more challenging due to the
presence of game-like interactions. We propose to consider the expected user
utility (or payoff) that is guaranteed even in presence of adversarial behavior of
other agents as a canonical property. Considering malicious adversaries is stan-
dard in game theory. For example, the expected utility of a fair lottery is 0. An
analysis reporting a different utility signifies a bug.

New Research Challenges. Coding bugs are detected by classic verification, pro-
gram analysis, and model checking tools [23,39]. However, a formal framework
for incentivization bugs presents a new research challenge for the programming
language community. Their analysis must overcome two obstacles: (a) the frame-
work will have to handle game-theoretic aspects to model interactions and incen-
tives for dishonest behavior; and (b) it will have to handle properties that cannot
be deduced from standard temporal properties such as safety or termination, but
require analysis of monetary gains (i.e., quantitative properties).

While game-theoretic incentives are widely analyzed by the security commu-
nity (e.g., see [13]), their analysis is typically restricted to the very special case
of one-shot games that do not consider different states of the program, and thus
the consequences of decisions on the next state of the program are ignored. In
addition their analysis is typically ad-hoc and stems from brainstorming and
special techniques. This could work when very few protocols existed (e.g., when
bitcoin first emerged) and deep thought was put into making them elegant and
analyzable. However, the fast deployment of smart contracts makes it crucial to
automate the process and make it accessible to programmers.

Our Contribution. In this work we present a formal framework for quantitative
analysis of utilities in smart contracts. Our contributions are as follows:

1. We present a simplified (loop-free) programming language that allows game-
theoretic interactions. We show that many classical smart contracts can
be easily described in our language, and conversely, a smart contract pro-
grammed in our language can be easily translated to Solidity [30], which is
the most popular Ethereum smart contract language.

2. The underlying mathematical model for our language is stateful concurrent
games. We automatically translate programs in our language to such games.

3. The key challenge to analyze such game models automatically is to tackle the
state-space explosion. While several abstraction techniques have been consid-
ered for programs [14,35,45], they do not work for game-theoretic models with
quantitative objectives. We present an approach based on interval-abstraction
for reducing the states, establish soundness of our abstraction, and present a
refinement process. This is our core technical contribution.

4. We present experimental results on several classic real-world smart contracts.
We show that our approach can handle contracts that otherwise give rise
to games with up to 1023 states. While special cases of concurrent games
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(namely, turn-based games) have been studied in verification and reactive
synthesis, there are no practical methods to solve general concurrent quan-
titative games. To the best of our knowledge, there are no tools to solve
quantitative concurrent games other than academic examples of few states,
and we present the first practical method to solve quantitative concurrent
games that scales to real-world smart contract analysis.

In summary, our contributions range from (i) modeling of smart contracts as
state-based games, to (ii) an abstraction-refinement approach to solve such
games, to (iii) experimental results on real-world smart contracts.

2 Background on Ethereum Smart Contracts

2.1 Programmable Smart Contracts

Ethereum [16] is a decentralized virtual machine, which runs programs called
contracts. Contracts are written in a Turing-complete bytecode language, called
Ethereum Virtual Machine (EVM) bytecode [53]. A contract is invoked by call-
ing one of its functions, where each function is defined by a sequence of instruc-
tions. The contract maintains a persistent internal state and can receive (trans-
fer) currency from (to) users and other contracts. Users send transactions to
the Ethereum network to invoke functions. Each transaction may contain input
parameters for the contract and an associated monetary amount, possibly 0,
which is transferred from the user to the contract.

Upon receiving a transaction, the contract collects the money sent to it,
executes a function according to input parameters, and updates its internal state.
All transactions are recorded on a decentralized ledger, called blockchain. A
sequence of transactions that begins from the creation of the network uniquely
determines the state of each contract and balances of users and contracts. The
blockchain does not rely on a trusted central authority, rather, each transaction
is processed by a large network of mutually untrusted peers called miners. Users
constantly broadcast transactions to the network. Miners add transactions to
the blockchain via a proof-of-work consensus protocol [43].

Subtleties. In this work, for simplicity, we ignore some details in the underlying
protocol of Ethereum smart contract. We briefly describe these details below:

– Transaction fees. In exchange for including her transactions in the blockchain,
a user pays transaction fees to the miners, proportionally to the execution
time of her transaction. This fact could slightly affect the monetary analysis
of the user gain, but could also introduce bugs in a program, as there is a
bound on execution time that cannot be exceeded. Hence, it is possible that
some functions could never be called, or even worse, a user could actively
give input parameters that would prevent other users from invoking a certain
function.
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– Recursive invocation of contracts. A contract function could invoke a function
in another contract, which in turn can have a call to the original contract.
The underling Ethereum semantic in recursive invocation was the root cause
for the notorious DAO hack [27].

– Behavior of the miners. Previous works have suggested that smart contracts
could be implemented to encourage miners to deviate from their honest behav-
ior [50]. This could in theory introduce bugs into a contract, e.g., a contract
might give unfair advantage for a user who is a big miner.

2.2 Tokens and User Utility

A user’s utility is determined by the Ether she spends and receives, but could
also be affected by the state of the contract. Most notably, smart contracts
are used to issue tokens, which can be viewed as a stake in a company or an
organization, in return to an Ether (or tokens) investment (see an example in
Fig. 1). These tokens are transferable among users and are traded in exchanges in
return to Ether, Bitcoin and Fiat money. At the time of writing, smart contracts
instantiate tokens worth billions of dollars [32]. Hence, gaining or losing tokens
has clear utility for the user. At a larger scope, user utility could also be affected
by more abstract storage changes. Some users would be willing to pay to have
a contract declare them as Kings of Ether [4], while others could gain from
registering their domain name in a smart contract storage [40]. In the examples
provided in this work we mainly focus on utility that arises from Ether, tokens
and the like. However, our approach is general and can model any form of utility
by introducing auxiliary utility variables and definitions.

Fig. 1. Token contract example.

3 Programming Language for Smart Contracts

In this section we present our programming language for smart contracts
that supports concurrent interactions between parties. A party denotes an
agent that decides to interact with the contract. A contract is a tuple C =
(N, I,M,R,X0, F, T ) where X := N ∪ I ∪ M is a set of variables, R describes
the range of values that can be stored in each variable, X0 is the initial values
stored in variables, F is a list of functions and T describes for each function, the
time segment in which it can be invoked. We now formalize these concepts.

Variables. There are three distinct and disjoint types of variables in X:

www.dbooks.org

https://www.dbooks.org/


744 K. Chatterjee et al.

– N contains “numeric” variables that can store a single integer.
– I contains “identification” (“id”) variables capable of pointing to a party in

the contract by her address or storing Null. The notion of ids is quite flexible
in our approach: The only dependence on ids is that they should be distinct
and an id should not act on behalf of another id. We simply use different
integers to denote distinct ids and assume that a “faking of identity” does
not happen. In Ethereum this is achieved by digital signatures.

– M is the set of “mapping” variables. Each m ∈ M maps parties to integers.

Bounds and Initial Values. The tuple R = (R,R) where R,R : N ∪ M → Z

represent lower and upper bounds for integer values that can be stored in a
variable. For example, if n ∈ N , then n can only store integers between R(n)
and R(n). Similarly, if m ∈ M is a mapping and i ∈ I stores an address to
a party in the contract, then m [i] can save integers between R(m) and R(m).
The function X0 : X → Z ∪ {Null} assigns an initial value to every variable.
The assigned value is an integer in case of numeric and mapping variables, i.e.,
a mapping variable maps everything to its initial value by default. Id variables
can either be initialized by Null or an id used by one of the parties.

Functions and Timing. The sequence F =< f1, f2, . . . , fn > is a list of functions
and T = (T , T ), where T , T : F → N. The function fi can only be invoked in
time-frame T (fi) =

[
T (fi), T (fi)

]
. The contract uses a global clock, for example

the current block number in the blockchain, to keep track of time.
Note that we consider a single contract, and interaction between multiple

contracts is a subject of future work.

3.1 Syntax

We provide a simple overview of our contract programming language. Our lan-
guage is syntactically similar to Solidity [30], which is a widely used language
for writing Ethereum contracts. A translation mechanism for different aspects is
discussed in [19]. An example contract, modeling a game of rock-paper-scissors,
is given in Fig. 2. Here, a party, called issuer has issued the contract and taken
the role of Alice. Any other party can join the contract by registering as Bob
and then playing rock-paper-scissors. To demonstrate our language, we use a
bidding mechanism.

Declaration of Variables. The program begins by declaring variables1, their type,
name, range and initial value. For example, Bids is a map variable that assigns
a value between 0 and 100 to every id. This value is initially 0. Line numbers
(labels) are defined in Sect. 3.2 below and are not part of the syntax.

Declaration of Functions. After the variables, the functions are defined one-by-
one. Each function begins with the keyword function followed by its name and
1 For simplicity, we demonstrate our method with global variables only. However, the

method is applicable to general variables as long as their ranges are well-defined at
each point of the program.
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Fig. 2. A rock-paper-scissors contract.

the time interval in which it can be called by parties. Then comes a list of input
parameters. Each parameter is of the form variable : party which means
that the designated party can choose a value for that variable. The chosen value
is required to be in the range specified for that variable. The keyword caller
denotes the party that has invoked this function and payable signifies that the
party should not only decide a value, but must also pay the amount she decides.
For example, registerBob can be called in any time between 1 and 10 by any of
the parties. At each such invocation the party that has called this function must
pay some amount which will be saved in the variable bid. After the decisions
and payments are done, the contract proceeds with executing the function.

Types of Functions. There are essentially two types of functions, depending on
their parameters. One-party functions, such as registerBob and getReward
require parameters from caller only, while multi-party functions, such as play
ask several, potentially different, parties for input. In this case all parties provide
their input decisions and payments concurrently and without being aware of the
choices made by other parties, also a default value is specified for every decision
in case a relevant party does not take part.

Summary. Putting everything together, in the contract specified in Fig. 2, any
party can claim the role of Bob between time 1 and time 10 by paying a bid
to the contract, if the role is not already occupied. Then at time 11 one of the

www.dbooks.org

https://www.dbooks.org/


746 K. Chatterjee et al.

parties calls play and both parties have until time 15 to decide which choice
(rock, paper, scissors or none) they want to make. Then the winner can call
getReward and collect her prize.

3.2 Semantics

In this section we present the details of the semantics. In our programming
language there are several key aspects which are non-standard in programming
languages, such as the notion of time progress, concurrency, and interactions of
several parties. Hence we present a detailed description of the semantics. We
start with the requirements.

Requirements. In order for a contract to be considered valid, other than following
the syntax rules, a few more requirements must be met, which are as follows:

– We assume that no division by zero or similar undefined behavior happens.
– To have a well-defined message passing, we also assume that no multi-party

function has an associated time interval intersecting that of another function.
– Finally, for each non-id variable v, it must hold that R(v) ≤ X0(v) ≤ R(v)

and similarly, for every function fi, we must have T (fi) < T (fi).

Overview of Time Progress. Initially, the time is 0. Let Ft be the set of functions
executable at time t, i.e., Ft = {fi ∈ F |t ∈ T (fi)}, then Ft is either empty
or contains one or more one-party functions or consists of a single multi-party
function. We consider the following cases:

– Ft empty. If Ft is empty, then nothing can happen until the clock ticks.
– Execution of one-party functions. If Ft contains one or more one-party func-

tions, then each of the parties can call any subset of these functions at time
t. If there are several calls at the same time, the contract might run them
in any order. While a function call is being executed, all parties are able to
see the full state of the contract, and can issue new calls. When there are
no more requests for function calls, the clock ticks and the time is increased
to t + 1. When a call is being executed and is at the beginning part of the
function, its caller can send messages or payments to the contract. Values of
these messages and payments will then be saved in designated variables and
the execution continues. If the caller fails to make a payment or specify a
value for a decision variable or if her specified values/payments are not in the
range of their corresponding variables, i.e. they are too small or too big, the
call gets canceled and the contract reverts any changes to variables due to
the call and continues as if this call had never happened.

– Execution of multi-party functions. If Ft contains a single multi-party function
fi and t < T (fi), then any party can send messages and payments to the
contract to specify values for variables that are designated to be paid or
decided by her. These choices are hidden and cannot be observed by other
participants. She can also change her decisions as many times as she sees fit.
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The clock ticks when there are no more valid requests for setting a value for
a variable or making a payment. This continues until we reach time T (fi). At
this time parties can no longer change their choices and the choices become
visible to everyone. The contract proceeds with execution of the function. If a
party fails to make a payment/decision or if Null is asked to make a payment
or a decision, default behavior will be enforced. Default value for payments
is 0 and default behavior for other variables is defined as part of the syntax.
For example, in function play of Fig. 2, if a party does not choose, a default
value of 0 is enforced and given the rest of this function, this will lead to a
definite loss.

Given the notion of time progress we proceed to formalize the notion of
“runs” of the contract. This requires the notion of labels, control-flow graphs,
valuations, and states, which we describe below.

Labels. Starting from 0, we give the contract, beginning and end points of every
function, and every command a label. The labels are given in order of appearance.
As an example, see the labels in parentheses in Fig. 2.

Entry and Exit Labels. We denote the first (beginning point) label in a function
fi by �i and its last (end point) label by �i.

Control Flow Graphs (CFGs). We define the control flow graph CFGi of the
function fi in the standard manner, i.e. CFGi = (V,E), where there is a vertex
corresponding to every labeled entity inside fi. Each edge e ∈ E has a condition
cond(e) which is a boolean expression that must be true when traversing that
edge. For more details see [19].

Valuations. A valuation is a function val, assigning a value to every variable.
Values for numeric variables must be integers in their range, values for identity
variables can be party ids or Null and a value assigned to a map variable m must
be a function val(m) such that for each identity i, we have R(m) ≤ val(m)(i) ≤
R(m). Given a valuation, we extend it to expressions containing mathematical
operations in the straight-forward manner.

States. A state of the contract is a tuple s = (t, b, l, val, c), where t is a time
stamp, b ∈ N ∪ {0} is the current balance of the contract, i.e., the total amount
of payment to the contract minus the total amount of payouts, l is a label (that
is being executed), val assigns values to variables and c ∈ P ∪{⊥}, is the caller of
the current function. c =⊥ corresponds to the case where the caller is undefined,
e.g., when no function is being executed. We use S to denote the set of all states
that can appear in a run of the contract as defined below.

Runs. A run ρ of the contract is a finite sequence {ρj = (tj , bj , lj , valj , cj)}r
j=0

of states, starting from (0, 0, 0,X0,⊥), that follows all rules of the contract and
ends in a state with time-stamp tr > maxfi

T (fi). These rules must be followed
when switching to a new state in a run:

– The clock can only tick when there are no valid pending requests for running
a one-party function or deciding or paying in multi-party functions.
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– Transitions that happen when the contract is executing a function must follow
its control flow graph and update the valuation correctly.

– No variable can contain an out-of-bounds value. If an overflow or underflow
happens, the closest possible value will be saved. This rule also ensures that
the contract will not create new money, given that paying more than the
current balance of the contract results in an underflow.

– Each party can call any set of the functions at any time.

Remark 1. Note that in our semantics each function body completes its execu-
tion in a single tick of the clock. However, ticks might contain more than one
function call and execution.

Run Prefixes. We use H to mean the set of all prefixes of runs and denote the
last state in η ∈ H by end(η). A run prefix η′ is an extension of η if it can be
obtained by adding one state to the end of η.

Probability Distributions. Given a finite set X , a probability distribution on X
is a function δ : X → [0, 1] such that

∑
x∈X δ(x) = 1. Given such a distribution,

its support, Supp(δ), is the set of all x ∈ X such that δ(x) > 0. We denote the
set of all probability distributions on X by Δ(X ).

Typically for programs it suffices to define runs for the semantics. However,
given that there are several parties in contracts, their semantics depends on the
possible choices of the parties. Hence we need to define policies for parties, and
such policies will define probability distribution over runs, which constitute the
semantics for contracts. To define policies we first define moves.

Moves. We use M for the set of all moves. The moves that can be taken by
parties in a contract can be summarized as follows:

– Calling a function fi, we denote this by call(fi).
– Making a payment whose amount, y is saved in x, we denote this by pay(x, y).
– Deciding the value of x to be y, we denote this by decide(x, y).
– Doing none of the above, we denote this by �.

Permitted Moves. We define Pi : S → M, so that Pi(s) is the set of permitted
moves for the party with identity i if the contract is in state s = (t, b, l, val, pj).
It is formally defined as follows:

– If fk is a function that can be called at state s, then call(fk) ∈ Pi(s).
– If l = �q is the first label of a function fq and x is a variable that can be

decided by i at the beginning of the function fq, then decide(x, y) ∈ Pi(s) for
all permissible values of y. Similarly if x can be paid by i, pay(x, y) ∈ Pi(s).

– � ∈ Pi(s).

Policies and Randomized Policies. A policy πi for party i is a function πi : H →
A, such that for every η ∈ H, πi(η) ∈ Pi(end(η)). Intuitively, a policy is a way
of deciding what move to use next, given the current run prefix. A policy profile
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π = (πi) is a sequence assigning one policy to each party i. The policy profile π
defines a unique run ρπ of the contract which is obtained when parties choose
their moves according to π. A randomized policy ξi for party i is a function
ξi : H → Δ(M), such that Supp(ξi(s)) ⊆ Pi(s). A randomized policy assigns a
probability distribution over all possible moves for party i given the current run
prefix of the contract, then the party can follow it by choosing a move randomly
according to the distribution. We use Ξ to denote the set of all randomized policy
profiles, Ξi for randomized policies of i and Ξ−i to denote the set of randomized
policy profiles for all parties except i. A randomized policy profile ξ is a sequence
(ξi) assigning one randomized policy to each party. Each such randomized policy
profile induces a unique probability measure on the set of runs, which is denoted
as Probξ [·]. We denote the expectation measure associated to Probξ [·] by E

ξ [·].

3.3 Objective Function and Values of Contracts

As mentioned in the introduction we identify expected payoff as the canonical
property for contracts. The previous section defines expectation measure given
randomized policies as the basic semantics. Given the expected payoff, we define
values of contracts as the worst-case guaranteed payoff for a given party. We
formalize the notion of objective function (the payoff function).

Objective Function. An objective o for a party p is in one of the following forms:

– (p+ −p−), where p+ is the total money received by party p from the contract
(by “payout” statements) and p− is the total money paid by p to the contract
(as “payable” parameters).

– An expression containing mathematical and logical operations (addition, mul-
tiplication, subtraction, integer division, and, or, not) and variables chosen
from the set N ∪{m [i] |m ∈ M, i ∈ I}. Here N is the set of numeric variables,
m[i]’s are the values that can be saved inside maps.2

– A sum of the previous two cases.

Informally, p is trying to choose her moves so as to maximize o.

Run Outcomes. Given a run ρ of the program and an objective o for party p,
the outcome κ(ρ, o, p) is the value of o computed using the valuation at end(ρ)
for all variables and accounting for payments in ρ to compute p+ and p−.

Contract Values. Since we consider worst-case guaranteed payoff, we consider
that there is an objective o for a single party p which she tries to maximize
and all other parties are adversaries who aim to minimize o. Formally, given a
contract C and an objective o for party p, we define the value of contract as:

V(C, o, p) := sup
ξp∈Ξp

inf
ξ−p∈Ξ−p

E
(ξp,ξ−p) [κ(ρ, o, p)] ,

2 We are also assuming, as in many programming languages, that True = 1 and
False = 0.
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This corresponds to p trying to maximize the expected value of o and all other
parties maliciously colluding to minimize it. In other words, it provides the worst-
case guarantee for party p, irrespective of the behavior of the other parties, which
in the worst-case is adversarial to party p.

3.4 Examples

One contribution of our work is to present the simplified programming language,
and to show that this simple language can express several classical smart con-
tracts. To demonstrate the applicability, we present several examples of classical
smart contracts in this section. In each example, we present a contract and a
“buggy” implementation of the same contract that has a different value. In Sect. 6
we show that our automated approach to analyze the contracts can compute con-
tract values with enough precision to differentiate between the correct and the
buggy implementation. All of our examples are motivated from well-known bugs
that have happened in real life in Ethereum.

Rock-Paper-Scissors. Let our contract be the one specified in Fig. 2 and
assume that we want to analyze it from the point of view of the issuer p. Also,
let the objective function be (p+ − p− + 10 · AliceWon) . Intuitively, this means
that winning the rock-paper-scissors game is considered to have an additional
value of 10, other than the spending and earnings. The idea behind this is similar
to the case with chess tournaments, in which players not only win a prize, but
can also use their wins to achieve better “ratings”, so winning has extra utility.

A common bug in writing rock-paper-scissors is allowing the parties to move
sequentially, rather than concurrently [29]. If parties can move sequentially and
the issuer moves after Bob, then she can ensure a utility of 10, i.e. her worst-case
expected reward is 10. However, in the correct implementation as in Fig. 2, the
best strategy for both players is to bid 0 and then Alice can win the game with
probability 1/3 by choosing each of the three options with equal probability.
Hence, her worst-case expected reward is 10/3.

Auction. Consider an open auction, in which during a fixed time interval every-
one is allowed to bid for the good being sold and everyone can see others’ bids.
When the bidding period ends a winner emerges and every other participant can
get their money back. Let the variable HighestBid store the value of the highest
bid made at the auction. Then for a party p, one can define the objective as:

p+ − p− + (Winner==p) × HighestBid.

This is of course assuming that the good being sold is worth precisely as much as
the highest bid. A correctly written auction should return a value of 0 to every
participant, because those who lose the auction must get their money back and
the party that wins pays precisely the highest bid. The contract in Fig. 3 (left)
is an implementation of such an auction. However, it has a slight problem. The
function bid allows the winner to reduce her bid. This bug is fixed in the contract
on the right.
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Fig. 3. A buggy auction contract (left) and its fixed version (right).

Three-Way Lottery. Consider a three-party lottery contract issued by a party
p. The other two players can sign up by buying tickets worth 1 unit each. Then
each of the players is supposed to randomly and uniformly choose a nonce. A
combination of these nonces produces the winner with equal probability for all
three parties. If a person does not make a choice or pay the fees, she will cer-
tainly lose the lottery. The rules are such that if the other two parties choose
the same nonce, which is supposed to happen with probability 1

3 , then the issuer
wins. Otherwise the winner is chosen according to the parity of sum of nonces.
This gives everyone a winning probability of 1

3 if all sides play uniformly at ran-
dom. However, even if one of the sides refuses to play uniformly at random, the
resulting probabilities of winning stays the same because each side’s probability
of winning is independent of her own choice assuming that others are playing
randomly. We assume that the issuer p has objective p+−p−. This is because the
winner can take other players’ money. In a bug-free contract we will expect the
value of this objective to be 0, given that winning has a probability of 1

3 . How-
ever, the bug here is due to the fact that other parties can collude. For example,
the same person might register as both players and then opt for different nonces.
This will ensure that the issuer loses. The bug can be solved by ensuring one’s
probability of winning is 1

3 if she honestly plays uniformly at random, no matter
what other parties do. For more details about this contract see [19].

Token Sale. Consider a contract that sells tokens modeling some aspect of
the real world, e.g. shares in a company. At first anyone can buy tokens at a
fixed price of 1 unit per token. However, there are a limited number of tokens
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available and at most 1000 of them are meant to be sold. The tokens can then
be transferred between parties, which is the subject of our next example. For
now, Fig. 4 (left) is an implementation of the selling phase. However, there is
a big problem here. The problem is that one can buy any number of tokens as
long as there is at least one token remaining. For example, one might first buy
999 tokens and then buy another 1000. If we analyze the contract from the point
of view of a solo party p with objective balance[p], then it must be capped by
1000 in a bug-free contract, while the process described above leads to a value
of 1999. The fixed contract is in Fig. 4 (right). This bug is inspired by a very
similar real-world bug described in [52].

Token Transfer. Consider the same bug-free token sale as in the previous
example, we now add a function for transferring tokens. An owner can choose
a recipient and an amount less than or equal to her balance and transfer that
many tokens to the recipient. Figure 5 (left) is an implementation of this concept.
Taking the same approach and objective as above, we expect a similar result.
However, there is again an important bug in this code. What happens if a party
transfers tokens to herself? She gets free extra tokens! This has been fixed in the
contract on the right. This example models a real-world bug as in [42].

Fig. 4. A buggy token sale (left) and its fixed version (right).

Translation to Solidity. All aspects of our programming language are already
present in Solidity, except for the global clock and concurrent interactions. The
global clock can be modeled by the number of the current block in the blockchain
and concurrent interactions can be implemented using commitment schemes. For
more details see [19].

4 Bounded Analysis and Games

Since smart contracts can be easily described in our programming language,
and programs in our programming language can be translated to Solidity, the
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Fig. 5. A buggy transfer function (left) and its fixed version (right).

main aim to automatically compute values of contracts (i.e., compute guaranteed
payoff for parties). In this section, we introduce the bounded analysis problem
for our programming language framework, and present concurrent games which
is the underlying mathematical framework for the bounded analysis problem.

4.1 Bounded Analysis

As is standard in verification, we consider the bounded analysis problem, where
the number of parties and the number of function calls are bounded. In standard
program analysis, bugs are often detected with a small number of processes, or a
small number of context switches between concurrent threads. In the context of
smart contracts, we analogously assume that the number of parties and function
calls are bounded.

Contracts with Bounded Number of Parties and Function Calls. Formally, a con-
tract with bounded number of parties and function calls is as follows:

– Let C be a contract and k ∈ N, we define Ck as an equivalent contract that
can have at most k parties. This is achieved by letting P = {p1, p2, . . . , pk}
be the set of all possible ids in the contract. The set P must contain all ids
that are in the program source, therefore k is at least the number of such ids.
Note that this does not restrict that ids are controlled by unique users, and
a real-life user can have several different ids. We only restrict the analysis to
bounded number of parties interacting with the smart contract.

– To ensure runs are finite, number of function calls by each party is also
bounded. Specifically, each party can call each function at most once dur-
ing each time frame, i.e. between two consecutive ticks of the clock. This
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closely resembles real-life contracts in which one’s ability to call many func-
tions is limited by the capacity of a block in the blockchain, given that the
block must save all messages.

4.2 Concurrent Games

The programming language framework we consider has interacting agents that
act simultaneously, and we have the program state. We present the mathematical
framework of concurrent games, which are games played on finite state spaces
with concurrent interaction between the players.

Concurrent Game Structures. A concurrent two-player game structure is a tuple
G = (S, s0, A, Γ1, Γ2, δ), where S is a finite set of states, s0 ∈ S is the start state,
A is a finite set of actions, Γ1, Γ2 : S → 2A \ ∅ such that Γi assigns to each state
s ∈ S, a non-empty set Γi(s) ⊆ A of actions available to player i at s, and finally
δ : S × A × A → S is a transition function that assigns to every state s ∈ S and
action pair a1 ∈ Γ1(s), a2 ∈ Γ2(s) a successor state δ(s, a1, a2) ∈ S.

Plays and Histories. The game starts at state s0. At each state si ∈ S, player
1 chooses an action ai

1 ∈ Γ1(si) and player 2 chooses an action ai
2 ∈ Γ2(si).

The choices are made simultaneously and independently. The game subsequently
transitions to the new state si+1 = δ(si, a1, a2) and the same process continues.
This leads to an infinite sequence of tuples p =

(
si, a

i
1, a

i
2

)∞
i=0

which is called
a play of the game. We denote the set of all plays by P. Every finite prefix
p[..r] :=

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . . , (sr, a

r
1, a

r
2)

)
of a play is called a history and

the set of all histories is denoted by H . If h = p[..r] is a history, we denote the
last state appearing according to h, i.e. sr+1 = δ(sr, a

r
1, a

r
2), by last(h). We also

define p[.. − 1] as the empty history.

Strategies and Mixed Strategies. A strategy is a recipe that describes for a player
the action to play given the current game history. Formally, a strategy ϕi for
player i is a function ϕi : H → A, such that ϕi(h) ∈ Γi(last(h)). A pair
ϕ = (ϕ1,ϕ2) of strategies for the two players is called a strategy profile. Each such
ϕ induces a unique play. A mixed strategy σi : H → Δ(A) for player i given the
history of the game. Intuitively, such a strategy suggests a distribution of actions
to player i at each step and then she plays one of them randomly according to
that distribution. Of course it must be the case that Supp(σi(h)) ⊆ Γi(last(h)).
A pair σ = (σ1, σ2) of mixed strategies for the two players is called a mixed
strategy profile. Note that mixed strategies generalize strategies with random-
ization. Every mixed strategy profile σ = (σ1, σ2) induces a unique probability
measure on the set of plays, which is denoted as Probσ[·], and the associated
expectation measure is denoted by E

σ[·].
State and History Utilities. In a game structure G, a state utility function u for
player 1 is of the form u : S → R. Intuitively, this means that when the game
enters state s, player 1 receives a reward of u(s). State utilities can be extended
to history utilities. We define the utility of a history to be the sum of utilities
of all the states included in that history. Formally, if h =

(
si, a

i
1, a

i
2

)r

i=0
, then
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u(h) =
∑r

i=0 u(si). Given a play p ∈ P, we denote the utility of its prefix of
length L by uL(p).

Games. A game is a pair (G, u) where G is a game structure and u is a utility
function for player 1. We assume that player 1 is trying to maximize u, while
player 2’s goal is to minimize it.

Values. The L-step finite-horizon value of a game (G, u) is defined as

υL(G, u) := sup
σ1

inf
σ2

E
(σ1,σ2) [uL(p)] , (1)

where σi iterates over all possible mixed strategies of player i. This models the
fact that player 1 is trying to maximize the utility in the first L steps of the run,
while player 2 is minimizing it. The values of games can be computed using the
value-iteration algorithm or dynamic programming, which is standard. A more
detailed overview of the algorithms for games is provided in [19].

Remark 2. Note that in (1), limiting player 2 to pure strategies does not change
the value of the game. Hence, we can assume that player 2 is an arbitrarily
powerful nondeterministic adversary and get the exact same results.

4.3 Translating Contracts to Games

The translation from bounded smart contracts to games is straightforward,
where the states of the concurrent game encodes the states of the contract. Cor-
respondences between objects in the contract and game are as follows: (a) moves
in contracts with actions in games; (b) run prefixes in contracts with histories
in games; (c) runs in contracts with plays in games; and (d) policies (resp., ran-
domized policies) in contracts with strategies (resp., mixed strategies) in games.
Note that since all runs of the bounded contract are finite and have a limited
length, we can apply finite horizon analysis to the resulting game, where L is the
maximal length of a run in the contract. This gives us the following theorem:

Theorem 1 (Correspondence). Given a bounded contract Ck for a party p
with objective o, a concurrent game can be constructed such that value of this
game, υL(G, u), is equal to the value of the bounded contract, V(Ck, o, p).

For details of the translation of smart contracts to games and proof of the
theorem above see [19].

Remark 3. In standard programming languages, there are no parties to interact
and hence the underlying mathematical models are graphs. In contrast, for smart
contracts programming languages, where parties interact in a game-like manner,
we have to consider games as the mathematical basis of our analysis.
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5 Abstraction for Quantitative Concurrent Games

Abstraction is a key technique to handle large-scale systems. In the previous
section we described that smart contracts can be translated to games, but due
to state-space explosion (since we allow integer variables), the resulting state
space of the game is huge. Hence, we need techniques for abstraction, as well
as refinement of abstraction, for concurrent games with quantitative utilities. In
this section we present such abstraction refinement for quantitative concurrent
games, which is our main technical contribution in this paper. We show the
soundness of our approach and its completeness in the limit. Then, we introduce
a specific method of abstraction, called interval abstraction, which we apply to
the games obtained from contracts and show that soundness and refinement are
inherited from the general case. We also provide a heuristic for faster refining of
interval abstractions for games obtained from contracts.

5.1 Abstraction for Quantitative Concurrent Games

Abstraction considers a partition of the state space, and reduces the number of
states by taking each partition set as a state. In case of transition systems (or
graphs) the standard technique is to consider existential (or universal) abstrac-
tion to define transitions between the partition sets. However, for game-theoretic
interactions such abstraction ideas are not enough. We now describe the key
intuition for abstraction in concurrent games with quantitative objectives and
formalize it. We also provide a simple example for illustration.

Abstraction Idea and Key Intuition. In an abstraction the state space of the
game (G, u) is partitioned into several abstract states, where an abstract state
represents a set of states of the original game. Intuitively, an abstract state
represents a set of similar states of the original game. Given an abstraction our
goal is to define two games that can provide lower and upper bound on the value
of the original game. This leads to the concepts of lower and upper abstraction.

– Lower abstraction. The lower abstraction (G↓, u↓) represents a lower bound on
the value. Intuitively, the utility is assigned as minimal utility among states
in the partition, and when an action profile can lead to different abstract
states, then the adversary, i.e. player 2, chooses the transition.

– Upper abstraction. The upper abstraction (G↑, u↑) represents an upper bound
on the value. Intuitively, the utility is assigned as maximal utility among
states in the partition, and when an action profile can lead to different
abstract states, then player 1 is chooses between the possible states.

Informally, the lower abstraction gives more power to the adversary, player 2,
whereas the upper abstraction is favorable to player 1.

General Abstraction for Concurrent Games. Given a game (G, u) consisting of a
game structure G = (S, s0, A, Γ1, Γ2, δ) and a utility function u, and a partition
Π of S, the lower and upper abstractions, (G↓ = (Sa, sa0, A

a, Γ ↓
1 , Γ ↓

2 , δ↓), u↓) and
(G↑ = (Sa, sa0, A

a, Γ ↑
1 , Γ ↑

2 , δ↑), u↑), of (G, u) with respect to Π are defined as:
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– Sa = Π ∪ D, where D = Π × A × A is a set of dummy states for giving more
power to one of the players. Members of Sa are called abstracted states.

– The start state of G is in the start state of G↑ and G↓, i.e. s0 ∈ sa0 ∈ Π.
– Aa = A∪Π. Each action in abstracted games either corresponds to an action

in the original game or to a choice of the next state.
– If two states s1, s2 ∈ S, are in the same abstracted state sa ∈ Π, then they

must have the same set of available actions for both players, i.e. Γ1(s1) =
Γ1(s2) and Γ2(s1) = Γ2(s2). Moreover, sa inherits these action sets. Formally,
Γ ↓

1 (sa) = Γ ↑
1 (sa) = Γ1(s1) = Γ1(s2) and Γ ↓

2 (sa) = Γ ↑
2 (sa) = Γ2(s1) = Γ2(s2).

– For all π ∈ Π and a1 ∈ Γ ↓
1 (π) and a2 ∈ Γ ↓

2 (π), we have δ↓(π, a1, a2) =
(π, a1, a2) ∈ D. Similarly for a1 ∈ Γ ↑

1 (π) and a2 ∈ Γ ↑
2 (π), δ↑(π, a1, a2) =

(π, a1, a2) ∈ D. This means that all transitions from abstract states in Π go
to the corresponding dummy abstract state in D.

– If d = (π, a1, a2) ∈ D is a dummy abstract state, then let Xd = {π′ ∈
Π | ∃ s ∈ π δ(s, a1, a2) ∈ π′} be the set of all partition sets that can be
reached from π by a1, a2 in G. Then in G↓, Γ ↓

1 (d) is a singleton, i.e., player 1
has no choice, and Γ ↓

2 (d) = Xd, i.e., player 2 can choose which abstract state
is the next. Conversely, in G↑, Γ ↑

2 (d) is a singleton and player 2 has no choice,
while Γ ↑

1 (d) = Xd and player 1 chooses the next abstract state.
– In line with the previous point, δ↓(d, a1, a2) = a2 and δ↑(d, a1, a2) = a1 for

all d ∈ D and available actions a1 and a2.
– We have u↓(sa) = mins∈sa{u(s)} and u↑(sa) = maxs∈sa{u(s)}. The utility of

a non-dummy abstracted state in G↓, resp. G↑, is the minimal, resp. maximal,
utility among the normal states included in it. Also, for each dummy state
d ∈ D, we have u↓(d) = u↑(d) = 0.

Given a partition Π of S, either (i) there is no lower or upper abstraction cor-
responding to it because it puts states with different sets of available actions
together; or (ii) there is a unique lower and upper abstraction pair. Hence we
will refer to the unique abstracted pair of games by specifying Π only.

Remark 4. Dummy states are introduced for conceptual clarity in explaining the
ideas because in lower abstraction all choices are assigned to player 2 and upper
abstraction to player 1. However, in practice, there is no need to create them,
as the choices can be allowed to the respective players in the predecessor state.

Example. Figure 6 (left) shows a concurrent game with (G, u) with 4 states. The
utilities are denoted in red. The edges correspond to transitions in δ and each
edge is labeled with its corresponding action pair. Here A = {a,b}, Γ1(s0) =
Γ2(s0) = Γ2(s1) = Γ1(s2) = Γ2(s2) = Γ2(s3) = A and Γ1(s1) = Γ1(s3) = {a}.
Given that action sets for s0 and s2 are equal, we can create abstracted games
using the partition Π = {π0, π1, π2} where π1 = {s0, s2} and other sets are single-
tons. The resulting game structure is depicted in Fig. 6 (center). Dummy states
are shown by circles and whenever a play reaches a dummy state in G↓, player 2
chooses which red edge should be taken. Conversely, in G↑ player 1 makes this
choice. Also, u↑(π0) = max{u(s0), u(s2)} = 10, u↓(π0) = min{u(s0), u(s2)} = 0
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Fig. 6. An example concurrent game (left), abstraction process (center) and the cor-
responding G↓ without dummy states (right).

and u↑(π1)u↓(π1) = u(s1) = 10, u↑(π2) = u↓(π2) = u(s3) = 0. The final
abstracted G↓ of the example above, without dummy states, is given in Fig. 6
(right).

5.2 Abstraction: Soundness, Refinement, and Completeness in
Limit

For an abstraction we need three key properties: (a) soundness, (b) refinement
of the abstraction, and (c) completeness in the limit. The intuitive description
is as follows: (a) soundeness requires that the value of the games is between
the value of the lower and upper abstraction; (b) refinement requires that if
the partition is refined, then the values of lower and upper abstraction becomes
closer; and (c) completeness requires that if the partitions are refined enough,
then the value of the original game can be approximated. We present each of
these results below.

Soundness. Soundness means that when we apply abstraction, value of the
original game must lie between values of the lower and upper abstractions. Intu-
itively, this means abstractions must provide us with some interval containing
the value of the game. We expect the value of (G↓, u↓) to be less than or equal
to the value of the original game because in (G↓, u↓), the utilities are less than in
(G, u) and player 2 has more power, given that she can choose which transition
to take. Conversely, we expect (G↑, u↑) to have a higher value than (G, u).

Formal Requirement for Soundness. An abstraction of a game (G, u) leading to
abstraction pair (G↑, u↑), (G↓, u↓) is sound if for every L, we have υ2L(G↓, u↓) ≤
υL(G, u) ≤ υ2L(G↑, u↑). The factor 2 in the inequalities above is due to the
fact that each transition in the original game is modeled by two transitions in
abstracted games, one to a dummy state and a second one out of it. We now
present our soundness result.

Theorem 2 (Soundness, Proof in [19]). Given a game (G, u) and a partition
Π of its state space, if G↑ and G↓ exist, then the abstraction is sound, i.e. for
all L, it is the case that υ2L(G↓, u↓) ≤ υL(G, u) ≤ υ2L(G↑, u↑).
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Refinement. We say that a partition Π2 is a refinement of a partition Π1,
and write Π2 
 Π1, if every π ∈ Π1 is a union of several πi’s in Π2, i.e. π =⋃

i∈I πi and for all i ∈ I, πi ∈ Π2. Intuitively, this means that Π2 is obtained
by further subdividing the partition sets in Π1. It is easy to check that 
 is a
partial order over partitions. We expect that if Π2 
 Π1, then the abstracted
games resulting from Π2 give a better approximation of the value of the original
game in comparison with abstracted games resulting from Π1. This is called the
refinement property.

Formal Requirement for the Refinement Property. Two abstractions of a game
(G, u) using two partitions Π1,Π2, such that Π2 
 Π1, and leading to abstracted
games (G↑

i , u
↑
i ), (G

↓
i , u

↓
i ) corresponding to each Πi satisfy the refinement property

if for every L, we have υ2L(G
↓
1, u

↓
1) ≤ υ2L(G

↓
2, u

↓
2) ≤ υ2L(G

↑
2, u

↑
2) ≤ υ2L(G

↑
1, u

↑
1).

Theorem 3 (Refinement Property, Proof in [19]). Let Π2 
 Π1 be two
partitions of the state space of a game (G, u), then the abstractions corresponding
to Π1,Π2 satisfy the refinement property.

Completeness in the Limit. We say that an abstraction is complete in the
limit, if by refining it enough the values of upper and lower abstractions get as
close together as desired. Equivalently, this means that if we want to approximate
the value of the original game within some predefined threshold of error, we can
do so by repeatedly refining the abstraction.

Formal Requirement for Completeness in the Limit. Given a game (G, u), a fixed
finite-horizon L and an abstracted game pair corresponding to a partition Π1,
the abstraction is said to be complete in the limit, if for every ε ≥ 0 there exists
Π2 
 Π1, such that if (G↓

2, u
↓
2), (G

↑
2, u

↑
2) are the abstracted games corresponding

to Π2, then υL(G
↑
2, u

↑
2) − υL(G

↓
2, u

↓
2) ≤ ε.

Theorem 4 (Completeness in the Limit, Proof in [19]). Every abstraction
on a game (G, u) using a partition Π is complete in the limit for all values of L.

5.3 Interval Abstraction

In this section, we turn our focus to games obtained from contracts and provide
a specific method of abstraction that can be applied to them.

Intuitive Overview. Let (G, u) be a concurrent game obtained from a contract as
in the Sect. 4.3. Then the states of G, other than the unique dummy state, corre-
spond to states of the contract Ck. Hence, they are of the form s = (t, b, l, val, p),
where t is the time, b the contract balance, l is a label, p is the party calling
the current function and val is a valuation. In an abstraction, one cannot put
states with different times or labels or callers together, because they might have
different moves and hence different action sets in the corresponding game. The
main idea in interval abstraction is to break the states according to intervals
over their balance and valuations. We can then refine the abstraction by making
the intervals smaller. We now formalize this concept.
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Objects. Given a contract Ck, let O be the set of all objects that can have an
integral value in a state s of the contract. This consists of the contract balance,
numeric variables and m[p]’s where m is a map variable and p is a party. More
precisely, O = {B}∪N ∪{m[p]|m ∈ M, p ∈ P} where B denotes the balance. For
an o ∈ O, the value assigned to o at state s is denoted by os.

Interval Partition. Let Ck be a contract and (G, u) its corresponding game. A
partition Π of the state space of G is called an interval partition if:

– The dummy state is put in a singleton set πd.
– Each π ∈ Π except πd has associated values, tπ, lπ, pπ and for each o ∈ O,

oπ, oπ, such that π = {s ∈ S|s = (tπ, b, lπ, val, pπ) and for all o ∈ O, oπ ≤
so ≤ oπ}. Basically, each partition set includes states with the same time,
label and caller in which the value of every object o is in an interval [oπ, oπ].

We call an abstraction using an interval partition, an interval abstraction.

Refinement Heuristic. We can start with big intervals and continually break them
into smaller ones to get refined abstractions and a finer approximation of the
game value. We use the following heuristic to choose which intervals to break:
Assume that the current abstracted pair of games are (G↓, u↓) and (G↑, u↑)
corresponding to an interval partition Π. Let d = (πd, a1, a2) be a dummy state
in G↑ and define the skewness of d as υ(G↑

d, u
↑)−υ(G↓

d, u
↓). Intuitively, skewness

of d is a measure of how different the outcomes of the games G↑ and G↓ are,
from the point when they have reached d. Take a label l with maximal average
skewness among its corresponding dummy states and cut all non-unit intervals
of it in more parts to get a new partition Π′. Continue the same process until
the approximation is as precise as desired. Intuitively, it tries to refine parts of
the abstraction that show the most disparity between G↓ and G↑ with the aim
to bring their values closer. Our experiments show its effectiveness.

Soundness and Completeness in the Limit. If we restrict our attention to interval
abstractions, soundness is inherited from general abstractions and completeness
in the limit holds because Π∗ is an interval partition. Therefore, using interval
abstractions is both sound and complete in the limit.

Interval Refinement. An interval partition Π′ is interval refinement of a given
interval partition Π if Π′ 
 Π. Refinement property is inherited from general
abstractions. This intuitively means that Π′ is obtained by breaking the intervals
in some sets of Π into smaller intervals.

Conclusion. We devised a sound abstraction-refinement method for approximat-
ing values of contracts. Our method is also complete in the limit. It begins
by converting the contract to a game, then applies interval abstraction to the
resulting game and repeatedly refines the abstraction using a heuristic until the
desired precision is reached.
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6 Experimental Results

Implementation and Optimizations. The state-space of the games corre-
sponding to the smart contracts is huge. Hence the original game corresponding
to the contract is computationally too expensive to construct. Therefore, we
do not first construct the game and then apply abstraction, instead we first
apply the interval abstraction, and construct the lower and upper abstraction
and compute values in them. We optimized our implementation by removing
dummy states and exploiting acyclicity using backward-induction. More details
are provided in [19].

Experimental Results. We present our experimental results (Table 1) for the
five examples mentioned in Sect. 3.4. In each of the examples, the original game
is quite large, and the size of the state space is calculated without creating them.
In our experimental results we show the abstracted game size, the refinement of
games to larger sizes, and how the lower and upper bound on the values change.
We used an Ubuntu machine with 3.2 GHz Intel i7-5600U CPU and 12 GB RAM.

Interpretation of the Experimental Results. Our results demonstrate the effec-
tiveness of our approach in automatically approximating values of large games
and real-world smart contracts. Concretely, the following points are shown:

– Refinement Property. By repeatedly refining the abstractions, values of lower
and upper abstractions get closer at the expense of a larger state space.

– Distinguishing Correct and Buggy Programs. Values of the lower and upper
abstractions provide an approximation interval containing the contract value.
These intervals shrink with refinement until the intervals for correct and
buggy programs become disjoint and distinguishable.

– Bug Detection. One can anticipate a sensible value for the contract, and an
approximation interval not containing the value shows a bug. For example,
in token sale, the objective (number of tokens sold) is at most 1000, while
results show the buggy program has a value between 1741 and 2000.

– Quantification of Economic Consequences. Abstracted game values can also
be seen as a method to quantify and find limits to the economic gain or loss
of a party. For example, our results show that if the buggy auction contract
is deployed, a party can potentially gain no more than 1000 units from it.

7 Comparison with Related Work

Blockchain Security Analysis. The first security analysis of Bitcoin protocol
was done by Nakamoto [43] who showed resilience of the blockchain against
double-spending. A stateful analysis was done by Sapirshtein et al. [47] and by
Sompolinsky and Zohar [49] in which states of the blockchain were considered.
It was done using MDPs where only the attacker decides on her actions and the
victim follows a predefined protocol. Our paper is the first work that is using
two-player and concurrent games to analyze contracts and the first to use stateful
analysis on arbitrary smart contracts, rather than a specific protocol.

www.dbooks.org

https://www.dbooks.org/


762 K. Chatterjee et al.

Table 1. Experimental results for correct and buggy contracts. l := υ(G↓, u↓) denotes
the lower value and u := υ(G↑, u↑) is the upper value. Times are in seconds.
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Smart Contract Security. Delmolino et al. [29] held a contract programming
workshop and showed that even simple contracts can contain incentive misalign-
ment bugs. Luu et al. [41] introduced a symbolic model checker with which
they could detect specific erroneous patterns. However the use of model checker
cannot be extended to game-theoretic analysis. Bhargavan et al. [9] translated
solidity programs to F ∗ and then used standard verification tools to detect vul-
nerable code patterns. See [7] for a survey of the known causes for Solidity bugs
that result in security vulnerabilities.

Games and Verification. Abstraction for concurrent games has been considered
wrt qualitative temporal objectives [3,22,28,44]. Several works considered con-
current games with only pure strategies [28,36,37]. Concurrent games with pure
strategies are extremely restrictive and effectively similar to turn-based games.
The min-max theorem (determinacy) does not hold for them even in special
cases of one-shot games or games with qualitative objectives.

Quantitative analysis with games is studied in [12,17,21]. However these
approaches either consider games without concurrent interactions or do not con-
sider any abstraction-refinement. A quantitative abstraction-refinement frame-
work has been considered in [18]; however, there is no game-theoretic interac-
tion. Abstraction-refinement for games has also been considered [20,36]; however,
these works neither consider games with concurrent interaction, nor quantitative
objectives. Moreover, [20,36] start with a finite-state model without variables,
and interval abstraction is not applicable to these game-theoretic frameworks.
In contrast, our technical contribution is an abstraction-refinement approach for
quantitative games and its application to analysis of smart contracts.

Formal Methods in Security. There is a huge body of work on program anal-
ysis for security; see [1,46] for survey. Formal methods are used to create safe
programming languages (e.g., [34,46]) and to define new logics that can express
security properties (e.g., [5,6,15]). They are also used to automatically verify
security and cryptographic protocols, e.g., [2,8,11] for a survey. However, all of
these works aimed to formalize qualitative properties such as privacy violation
and information leakage. To the best of our knowledge, our framework is the first
attempt to use formal methods as a tool for reasoning about monetary loses and
identifying them as security errors.

Bounded Model Checking (BMC). BMC was proposed by Biere et al. in 1999 [10].
The idea in BMC is to search for a counterexample in executions whose length
is at most k. If no bug is found then one increases k until either a bug is found,
the problem becomes intractable, or some pre-known upper bound is reached.

Interval Abstraction. The first infinite abstract domain was introduced in [25].
This was later used to prove that infinite abstract domains can lead to effective
static analysis for a given programming language [26]. However, none of the
standard techniques is applicable to game analysis.
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8 Conclusion

In this work we present a programming language for smart contracts, and an
abstraction-refinement approach for quantitative concurrent games to automat-
ically analyze (i.e., compute worst-case guaranteed utilities of) such contracts.
This is the first time a quantitative stateful game-theoretic framework is studied
for formal analysis of smart contracts. There are several interesting directions
of future work. First, we present interval-based abstraction techniques for such
games, and whether different abstraction techniques can lead to more scalability
or other classes of contracts is an interesting direction of future work. Second,
since we consider worst-case guarantees, the games we obtain are two-player
zero-sum games. The extension to study multiplayer games and compute values
for rational agents is another interesting direction of future work. Finally, in this
work we do not consider interaction between smart contracts, and an extension
to encompass such study will be a subject of its own.
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Abstract. In sequential languages, dynamic contracts are usually
expressed as boolean functions without externally observable effects,
written within the language. We propose an analogous notion of concur-
rent contracts for languages with session-typed message-passing concur-
rency. Concurrent contracts are partial identity processes that monitor
the bidirectional communication along channels and raise an alarm if a
contract is violated. Concurrent contracts are session-typed in the usual
way and must also satisfy a transparency requirement, which guarantees
that terminating compliant programs with and without the contracts are
observationally equivalent. We illustrate concurrent contracts with sev-
eral examples. We also show how to generate contracts from a refinement
session-type system and show that the resulting monitors are redundant
for programs that are well-typed.

Keywords: Contracts · Session types · Monitors

1 Introduction

Contracts, specifying the conditions under which software components can safely
interact, have been used for ensuring key properties of programs for decades.
Recently, contracts for distributed processes have been studied in the context of
session types [15,17]. These contracts can enforce the communication protocols,
specified as session types, between processes. In this setting, we can assign each
channel a monitor for detecting whether messages observed along the channel
adhere to the prescribed session type. The monitor can then detect any deviant
behavior the processes exhibit and trigger alarms. However, contracts based
solely on session types are inherently limited in their expressive power. Many
contracts that we would like to enforce cannot even be stated using session
types alone. As a simple example, consider a “factorization service” which may
be sent a (possibly large) integer x and is supposed to respond with a list of
prime factors. Session types can only express that the request is an integer and
the response is a list of integers, which is insufficient.

In this paper, we show that by generalizing the class of monitors beyond
those derived from session types, we can enforce, for example, that multiplying
the numbers in the response yields the original integer x. This paper focuses on
monitoring more expressive contracts, specifically those that cannot be expressed
with session types, or even refinement types.
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 771–798, 2018.
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To handle these contracts, we have designed a model where our monitors exe-
cute as transparent processes alongside the computation. They are able to main-
tain internal state which allows us to check complex properties. These monitoring
processes act as partial identities, which do not affect the computation except
possibly raising an alarm, and merely observe the messages flowing through the
system. They then perform whatever computation is needed, for example, they
can compute the product of the factors, to determine whether the messages
are consistent with the contract. If the message is not consistent, they stop the
computation and blame the process responsible for the mistake. To show that
our contracts subsume refinement-based contracts, we encode refinement types
in our model by translating refinements into monitors. This encoding is useful
because we can show a blame (safety) theorem stating that monitors that enforce
a less precise refinement type than the type of the process being monitored will
not raise alarms. Unfortunately, the blame theory for the general model is chal-
lenging because the contracts cannot be expressed as types.

The main contributions of this paper are:

– A novel approach to contract checking via partial-identity monitors
– A method for verifying that monitors are partial identities, and a proof that

the method is correct
– Examples showing the breadth of contracts that our monitors can enforce
– A translation from refinement types to our monitoring processes and a blame

theorem for this fragment

The rest of this paper is organized as follows. We first review the background
on session types in Sect. 2. Next, we show a range of example contracts in Sect. 3.
In Sect. 4, we show how to check that a monitor process is a partial identity and
prove the method correct. We then show how we can encode refinements in our
system in Sect. 5. We discuss related work in Sect. 6. Due to space constraints, we
only present the key theorems. Detailed proofs can be found in our companion
technical report [12].

2 Session Types

Session types prescribe the communication behavior of message-passing concur-
rent processes. We approach them here via their foundation in intuitionistic
linear logic [4,5,22]. The key idea is that an intuitionistic linear sequent

A1, . . . , An � C

is interpreted as the interface to a process expression P . We label each of the
antecedents with a channel name ai and the succedent with a channel name c.
The ai are the channels used and c is the channel provided by P .

a1 : A1, . . . , an : An � P :: (c : C)

We abbreviate the antecedents by Δ. All the channels ai and c must be dis-
tinct, and bound variables may be silently renamed to preserve this invariant in
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the rules. Furthermore, the antecedents are considered modulo exchange. Cut
corresponds to parallel composition of two processes that communicate along a
private channel x, where P is the provider along x and Q the client.

Δ � P :: (x : A) x : A,Δ′ � Q :: (c : C)
Δ,Δ′ � x:A ← P ; Q :: (c : C)

cut

Operationally, the process x ← P ; Q spawns P as a new process and continues
as Q, where P and Q communicate along a fresh channel a, which is substituted
for x. We sometimes omit the type A of x in the syntax when it is not relevant.

In order to define the operational semantics rigorously, we use multiset rewrit-
ing [6]. The configuration of executing processes is described as a collection C of
propositions proc(c, P ) (process P is executing, providing along c) and msg(c,M)
(message M is sent along c). All the channels c provided by processes and mes-
sages in a configuration must be distinct.

A cut spawns a new process, and is in fact the only way new processes are
spawned. We describe a transition C −→ C′ by defining how a subset of C can
be rewritten to a subset of C′, possibly with a freshness condition that applies
to all of C in order to guarantee the uniqueness of each channel provided.

proc(c, x:A ← P ; Q) −→ proc(a, [a/x]P ), proc(c, [a/x]Q) (a fresh)

Each of the connectives of linear logic then describes a particular kind of com-
munication behavior which we capture in similar rules. Before we move on to
that, we consider the identity rule, in logical form and operationally.

A � A
id

b : A � a ← b :: (a : A) id
proc(a, a ← b), C −→ [b/a]C

Operationally, it corresponds to identifying the channels a and b, which we imple-
ment by substituting b for a in the remainder C of the configuration (which we
make explicit in this rule). The process offering a terminates. We refer to a ← b
as forwarding since any messages along a are instead “forwarded” to b.

We consider each class of session type constructors, describing their process
expression, typing, and asynchronous operational semantics. The linear logical
semantics can be recovered by ignoring the process expressions and channels.

Internal and External Choice. Even though we distinguish a provider and its
client, this distinction is orthogonal to the direction of communication: both may
either send or receive along a common private channel. Session typing guarantees
that both sides will always agree on the direction and kind of message that is
sent or received, so our situation corresponds to so-called binary session types.

First, the internal choice c : A ⊕ B requires the provider to send a token
inl or inr along c and continue as prescribed by type A or B, respectively. For
practical programming, it is more convenient to support n-ary labelled choice
⊕{� : A�}�∈L where L is a set of labels. A process providing c : ⊕{� : A�}�∈L

sends a label k ∈ L along c and continues with type Ak. The client will operate
dually, branching on a label received along c.
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k ∈ L Δ � P :: (c : Ak)

Δ � c.k ; P :: (c : ⊕{� : A�}�∈L)
⊕R

Δ, c : A� � Q� :: (d : D) for every � ∈ L

Δ, c : ⊕{� : A�}�∈L � case c (� ⇒ Q�)�∈L :: (d : D)
⊕L

The operational semantics is somewhat tricky, because we communicate asyn-
chronously. We need to spawn a message carrying the label �, but we also need
to make sure that the next message sent along the same channel does not over-
take the first (which would violate session fidelity). Sending a message therefore
creates a fresh continuation channel c′ for further communication, which we sub-
stitute in the continuation of the process. Moreover, the recipient also switches
to this continuation channel after the message is received.

proc(c, c.k ; P ) −→ proc(c′, [c′/c]P ),msg(c, c.k ; c ← c′) (c′ fresh)
msg(c, c.k ; c ← c′), proc(d, case c (� ⇒ Q�)�∈L) −→ proc(d, [c′/c]Qk)

It is interesting that the message along c, followed by its continuation c′ can be
expressed as a well-typed process expression using forwarding c.k ; c ← c′. This
pattern will work for all other pairs of send/receive operations.

External choice reverses the roles of client and provider, both in the typing
and the operational rules. Below are the semantics and the typing is in Fig. 6.

proc(d, c.k ; Q) −→ msg(c′, c.k ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, case c (� ⇒ P�)�∈L),msg(c′, c.k ; c′ ← c) −→ proc(c′, [c′/c]Pk)

Sending and Receiving Channels. Session types are higher-order in the
sense that we can send and receive channels along channels. Sending a channel
is perhaps less intuitive from the logical point of view, so we show that and just
summarize the rules for receiving.

If we provide c : A ⊗ B, we send a channel a : A along c and continue as B.
From the typing perspective, it is a restricted form of the usual two-premise ⊗R
rule by requiring the first premise to be an identity. This restriction separates
spawning of new processes from the sending of channels.

Δ � P :: B

Δ, a : A � send c a ; P :: (c : A ⊗ B)
⊗R∗ Δ, x : A, c : B � Q :: (d : D)

Δ, c : A ⊗ B � x ← recv c ; Q :: (d : D)
⊗L

The operational rules follow the same patterns as the previous case.

proc(c, send c a ; P ) −→ proc(c′, [c′/c]P ),msg(send c a ; c ← c′) (c′ fresh)
msg(c, send c a ; c ← c′), proc(d, x ← recv c ; Q) −→ proc(d, [c′/c][a/x]Q)

Receiving a channel (written as a linear implication A � B) works symmet-
rically. Below are the semantics and the typing is shown in Fig. 6.

proc(d, send c a ; Q) −→ msg(c′, send c a ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, x ← recv c ; P ),msg(c′, send c a ; c′ ← c) −→ proc(c′, [c′/c][a/x]P )

Termination. We have already seen that a process can terminate by forwarding.
Communication along a channel ends explicitly when it has type 1 (the unit of
⊗) and is closed. By linearity there must be no antecedents in the right rule.

· � close c :: (c : 1) 1R
Δ � Q :: (d : D)

Δ, c : 1 � wait c ; Q :: (d : D) 1L



Session-Typed Concurrent Contracts 775

Since there cannot be any continuation, the message takes a simple form.

proc(c, close c) −→ msg(c, close c)
msg(c, close c), proc(d,wait c ; Q) −→ proc(d,Q)

Quantification. First-order quantification over elements of domains such as
integers, strings, or booleans allows ordinary basic data values to be sent and
received. At the moment, since we have no type families indexed by values, the
quantified variables cannot actually appear in their scope. This will change in
Sect. 5 so we anticipate this in these rules.

The proof of an existential quantifier contains a witness term, whose value
is what is sent. In order to track variables ranging over values, a new context
Ψ is added to all judgments and the preceding rules are modified accordingly.
All value variables n declared in context Ψ must be distinct. Such variables are
not linear, but can be arbitrarily reused, and are therefore propagated to all
premises in all rules. We write Ψ � v : τ to check that value v has type τ in
context Ψ .

Ψ � v : τ Ψ ; Δ � P :: (c : [v/n]A)

Ψ ; Δ � send c v ; P :: (c : ∃n:τ. A)
∃R

Ψ, n:τ ; Δ, c : A � Q :: (d : D)

Ψ ; Δ, c : ∃n:τ. A � n ← recv c ; Q :: (d : D)
∃L

proc(c, send c v ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c v ; c ← c′)
msg(c, send c v ; c ← c′), proc(d, n ← recv c ; Q) −→ proc(d, [c′/c][v/n]Q)

The situation for universal quantification is symmetric. The semantics are given
below and the typing is shown in Fig. 6.

proc(d, send c v ; Q) −→ msg(c′, send c v ; c′ ← c), proc(d, [c′/c]Q)
proc(c, x ← recv c ; P ),msg(c′, send c v ; c′ ← c) −→ proc(c′, [c′/c][v/n]P )

Processes may also make internal transitions while computing ordinary values,
which we don’t fully specify here. Such a transition would have the form

proc(c, P [e]) −→ proc(c, P [e′]) if e 	→ e′

where P [e] would denote a process with an ordinary value expression in evalua-
tion position and e 	→ e′ would represent a step of computation.

Shifts. For the purpose of monitoring, it is important to track the direction of
communication. To make this explicit, we polarize the syntax and use shifts to
change the direction of communication (for more detail, see prior work [18]).

Negative types A−, B− ::= �{� : A−
� }�∈L | A+ � B− | ∀n:τ.A− | ↑A+

Positive types A+, B+ ::= ⊕{� : A+
� }�∈L | A+ ⊗ B+ | 1 | ∃n:τ.A+ | ↓A−

Types A,B,C,D ::= A− | A+

From the perspective of the provider, all negative types receive and all posi-
tive types send. It is then clear that ↑A must receive a shift message and then
start sending, while ↓A must send a shift message and then start receiving.
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For this restricted form of shift, the logical rules are otherwise uninformative.
The semantics are given below and the typing is shown in Fig. 6.

proc(c, send c shift ; P ) −→ proc(c′, [c′/c]P ), msg(c, send c shift ; c ← c′) (c′ fresh)
msg(c, send c shift ; c ← c′), proc(d, shift ← recv d ; Q) −→ proc(d, [c′/c]Q)
proc(d, send d shift ; Q) −→ msg(c′, send c shift ; c′ ← c), proc(d, [c′/c]Q)
proc(c, shift ← recv c ; P ), msg(c′, send c shift ; c′ ← c) −→ proc(c′, [c′/c]P )

Recursive Types. Practical programming with session types requires them to
be recursive, and processes using them also must allow recursion. For example,
lists with elements of type int can be defined as the purely positive type list+.

list+ = ⊕{ cons : ∃n:int. list+ ; nil : 1 }

A provider of type c : list is required to send a sequence such as cons·v1·cons·v2 · · ·
where each vi is an integer. If it is finite, it must be terminated with nil · end. In
the form of a grammer, we could write

From ::= cons · v · From | nil · end

A second example is a multiset (bag) of integers, where the interface allows
inserting and removing elements, and testing if it is empty. If the bag is empty
when tested, the provider terminates after responding with the empty label.

bag− = �{ insert : ∀n:int. bag−, remove : ∀n:int. bag−,
is empty : ↑ ⊕{empty : 1, nonempty : ↓ bag−} }

The protocol now describes the following grammar of exchanged messages, where
To goes to the provider, From comes from the provider, and v stands for integers.

To ::= insert · v · To | remove · v · To | is empty · shift · From
From ::= empty · end | nonempty · shift · To

For these protocols to be realized in this form and support rich subtyping and
refinement types without change of protocol, it is convenient for recursive types
to be equirecursive. This means a defined type such as list+ is viewed as equal
to its definition ⊕{. . .} rather than isomorphic. For this view to be consistent,
we require type definitions to be contractive [11], that is, they need to provide
at least one send or receive interaction before recursing.

The most popular formalization of equirecursive types is to introduce an
explicit μ-constructor. For example, list = μα.⊕{ cons : ∃n:int. α, nil : 1 } with
rules unrolling the type μα.A to [(μα.A)/α]A. An alternative (see, for example,
Balzers and Pfenning 2017 [3]) is to use an explicit definition just as we stated,
for example, list and bag, and consider the left-hand side equal to the right-hand
side in our discourse. In typing, this works without a hitch. When we consider
subtyping explicitly, we need to make sure we view inference systems on types as
being defined co-inductively. Since a co-inductively defined judgment essentially
expresses the absence of a counterexample, this is exactly what we need for
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the operational properties like progress, preservation, or absence of blame. We
therefore adopt this view.

Recursive Processes. In addition to recursively defined types, we also need
recursively defined processes. We follow the general approach of Toninho
et al. [23] for the integration of a (functional) data layer into session-typed
communication. A process can be named p, ascribed a type, and be defined as
follows.

p : ∀n1:τ1. . . . ,∀nk:τk.{A ← A1, . . . , Am}
x ← p n1 . . . nk ← y1, . . . , ym = P

where we check (n1:τ1, . . . , nk:τk) ; (y1:A1, . . . , ym:Am) � P :: (x : A)
We use such process definitions when spawning a new process with the syntax

c ← p e1 . . . , ek ← d1, . . . , dm ; P

which we check with the rule

(Ψ � ei : τi)i∈{1,...,k} Δ′ = (d1:A1, . . . , dm:Am) Ψ ; Δ, c : A � Q :: (d : D)

Ψ ; Δ, Δ′ � c ← p e1 . . . ek ← d1, . . . , dm ; Q :: (d : D)
pdef

After evaluating the value arguments, the call consumes the channels dj (which
will not be available to the continuation Q, due to linearity). The continuation
Q will then be the (sole) client of c and The new process providing c will execute
[c/x][d1/y1] . . . [dm/ym]P .

One more quick shorthand used in the examples: a tail-call c ← p e ← d in
the definition of a process that provides along c is expanded into c′ ← p e ← d ;
c ← c′ for a fresh c′. Depending on how forwarding is implemented, however, it
may be much more efficient [13].

Stopping Computation. Finally, in order to be able to successfully monitor
computation, we need the capability to stop the computation. We add an abort l
construct that aborts on a particular label. We also add assert blocks to check
conditions on observable values. The semantics are given below and the typing
is in Fig. 6.

proc(c, assert l True; Q) −→ proc(c, Q) proc(c, assert l False; Q) −→ abort(l)

Progress and preservation were proven for the above system, with the exception
of the abort and assert rules, in prior work [18]. The additional proof cases do
not change the proof significantly.

3 Contract Examples

In this section, we present monitoring processes that can enforce a variety of
contracts. The examples will mainly use lists as defined in the previous section.
Our monitors are transparent, that is, they do not change the computation.
We accomplish this by making them act as partial identities (described in more
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detail in Sect. 4). Therefore, any monitor that enforces a contract on a list must
peel off each layer of the type one step at a time (by sending or receiving over
the channel as dictated by the type), perform the required checks on values or
labels, and then reconstruct the original type (again, by sending or receiving as
appropriate).

Refinement. The simplest kind of monitoring process we can write is one that
models a refinement of an integer type; for example, a process that checks
whether every element in the list is positive. This is a recursive process that
receives the head of the list from channel b, checks whether it is positive (if yes,
it continues to the next value, if not it aborts), and then sends the value along to
reconstruct the monitored list a. We show three refinement monitors in Fig. 1.
The process pos implements the refinement mentioned above.

pos : {list ← list}
a ← pos mon ← b =
case b of

| nil ⇒ a.nil ; wait b ; close a

| cons ⇒ x ← recv b ;
assert(x > 0)ρ ;
a.cons ; send a x ;
a ← pos mon ← b; ;

empty : {list ← list}
a ← empty ← b =
case b of

| nil ⇒ wait b ;
a.nil ; close a

| cons ⇒ abortρ; ;

nempty : {list ← list}
a ← nempty ← b =
case b of

| nil ⇒ abortρ

| cons ⇒ a.cons ;
x ← recv b ;
send a x ; a ← b; ;

Fig. 1. Refinement examples

Our monitors can also exploit information that is contained in the labels in
the external and internal choices. The empty process checks whether the list b is
empty and aborts if b sends the label cons. Similarly, the nempty monitor checks
whether the list b is not empty and aborts if b sends the label nil. These two
monitors can then be used by a process that zips two lists and aborts if they
are of different lengths. These two monitors enforce the refinements {nil} ⊆
{nil, cons} and {cons} ⊆ {nil, cons}. We discuss how to generate monitors
from refinement types in more detail in Sect. 5.

Monitors with Internal State. We now move beyond refinement contracts,
and model contracts that have to maintain some internal state (Fig. 2).

We first present a monitor that checks whether the given list is sorted in
ascending order (ascending). The monitor’s state consists of a lower bound on
the subsequent elements in the list. This value has an option type, which can
either be None if no bound has yet been set, or Some b if b is the current bound.

If the list is empty, there is no bound to check, so no contract failure can
happen. If the list is nonempty, we check to see if a bound has already been set.
If not, we set the bound to be the first received element. If there is already a
bound in place, then we check if the received element is greater or equal to the
bound. If it is not, then the list must be unsorted, so we abort with a contract
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ascending : option int → {list ← list}; ;
m ← ascending bound ← n =
case n of

| nil ⇒ m.nil ; wait n ; close m

| cons ⇒ x ← recv n ;
case bound of

| None ⇒ m.cons ; send m x ;
m ← ascending (Some x) ← n

| Some a ⇒ assert (x ≥ a)ρ ;
m.cons ; send m x ;
m ← ascending (Some x) ← n; ;

match : int → {list ← list}; ;
a ← match count ← b =
case b of

| nil ⇒ assert (count = 0)ρ ;
a.nil ; wait b ; close a

| cons ⇒ a.cons ; x ← recv b ;
if (x = 1) then send a x ;
a ← match (count + 1) ← b;

else if (x = −1)
then assert(count > 0)ρ ;
send a x ;
a ← match (count−1) ← b ;

else abortρ //invalid input

Fig. 2. Monitors using internal state

failure. Note that the output list m is the same as the input list n because every
element that we examine is then passed along unchanged to m.

We can use the ascending monitor to verify that the output list of a sorting
procedure is in sorted order. To take the example one step further, we can verify
that the elements in the output list are in fact a permutation of the elements
in the input list of the sorting procedure as follows. Using a reasonable hash
function, we hash each element as it is sent to the sorting procedure. Our monitor
then keeps track of a running total of the sum of the hashes, and as elements
are received from the sorting procedure, it computes their hash and subtracts it
from the total. After all of the elements are received, we check that the total is
0 – if it is, with high probability, the two lists are permutations of each other.
This example is an instance of result checking, inspired by Wasserman and Blum
[26]. The monitor encoding is straightforward and omitted from the paper.

Our next example match validates whether a set of right and left parentheses
match. The monitor can use its internal state to push every left parenthesis it
sees on its stack and to pop it off when it sees a right parenthesis. For brevity,
we model our list of parentheses by marking every left parenthesis with a 1 and
right parenthesis with a -1. So the sequence ()()) would look like 1,−1, 1,−1,−1.
As we can see, this is not a proper sequence of parenthesis because adding all of
the integer representations does not yield 0. In a similar vein, we can implement
a process that checks that a tree is serialized correctly, which is related to recent
work on context-free session types by Thiemann and Vasconcelos [21].

Mapper. Finally, we can also define monitors that check higher-order contracts,
such as a contract for a mapping function (Fig. 3). Consider the mapper which
takes an integer and doubles it, and a function map that applies this mapper to
a list of integers to produce a new list of integers. We can see that any integer
that the mapper has produced will be strictly larger than the original integer,
assuming the original integer is positive. In order to monitor this contract, it
makes sense to impose a contract on the mapper itself. This mapper mon process
enforces both the precondition, that the original integer is positive, and the
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mapper tp : { {done : 1 ; next : ∀n : int.∃n : int.mapper tp}}
m ← mapper =
case m of

| done ⇒ close m

| next ⇒ x ← recv m ; send m (2 ∗ x) ; m ← mapper

map : {list ← mapper tp ; list}
k ← map ← m l =
case l of

| nil ⇒ m.done ; k.nil ; wait l ; close k

| cons ⇒ m′ ← mapper mon ← m; //run monitor

x ← recv l ; send m′ x ; y ← recv m′ ; k.cons ; send k y ; k ← map m′ l; ;
mapper mon : {mapper tp ← mapper tp}
n ← mapper mon ← m =
case n of

| done ⇒ m.done ; wait m ; close n

| next ⇒ x ← recv n ; assert(x > 0)ρ1 //checks precondition

m.next ; send m x ; y ← recv m ; assert(y > x)ρ2 //checks postcondition

send n y ; n ← mapper mon ← m

Fig. 3. Higher-order monitor

postcondition, that the resulting integer is greater than the original. We can
now run the monitor on the mapper, in the map process, before applying the
mapper to the list l.

4 Monitors as Partial Identity Processes

In the literature on contracts, they are often depicted as guards on values sent to
and returned from functions. In our case, they really are processes that monitor
message-passing communications between processes. For us, a central property of
contracts is that a program may be executed with or without contract checking
and, unless an alarm is raised, the observable outcome should be the same.
This means that contract monitors should be partial identity processes passing
messages back and forth along channels while testing properties of the messages.

This may seem very limiting at first, but session-typed processes can maintain
local state. For example, consider the functional notion of a dependent contract,
where the contract on the result of a function depends on its input. Here, a
function would be implemented by a process to which you send the arguments
and which sends back the return value along the same channel. Therefore, a
monitor can remember any (non-linear) “argument values” and use them to
validate the “result value”. Similarly, when a list is sent element by element,
properties that can be easily checked include constraints on its length, or whether
it is in ascending order. Moreover, local state can include additional (private)
concurrent processes.

This raises a second question: how can we guarantee that a monitor really is a
partial identity? The criterion should be general enough to allow us to naturally
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express the contracts from a wide range of examples. A key constraint is that
contracts are expressed as session-typed processes, just like functional contracts
should be expressed within the functional language, or object contracts within
the object oriented language, etc.

The purpose of this section is to present and prove the correctness of a
criterion on session-typed processes that guarantees that they are observationally
equivalent to partial identity processes. All the contracts in this paper can be
verified to be partial identities under our definition.

4.1 Buffering Values

As a first simple example let’s take a process that receives one positive integer
n and factors it into two integers p and q that are sent back where p ≤ q. The
part of the specification that is not enforced is that if n is not prime, p and q
should be proper factors, but we at least enforce that all numbers are positive
and n = p ∗ q. We are being very particular here, for the purpose of exposition,
marking the place where the direction of communication changes with a shift
(↑). Since a minimal number of shifts can be inferred during elaboration of the
syntax [18], we suppress it in most examples.

factor t = ∀n:int. ↑ ∃p:int.∃q:int.1
factor monitor : {factor t ← factor t}
c ← factor monitor ← d =

n ← recv c ; assert (n > 0)ρ1 ; shift ← recv c ; send d n ; send d shift ;
p ← recv d ; assert(p > 0)ρ2 ; q ← recv d ; assert(q > 0)ρ3 ; assert(p ≤ q)ρ4 ;
assert(n = p ∗ q)ρ5 ; send c p ; send c q ; c ← d

This is a one-time interaction (the session type factor t is not recursive), so the
monitor terminates. It terminates here by forwarding, but we could equally well
have replaced it by its identity-expanded version at type 1, which is wait d ;
close c.

The contract could be invoked by the provider or by the client. Let’s consider
how a provider factor might invoke it:

factor : {factor t}
c ← factor =

c′ ← factor raw ; c′ ← factor monitor ← c′ ; c ← c′

To check that factor monitor is a partial identity we need to track that p and q are
received from the provider, in this order. In general, for any received message, we
need to enter it into a message queue q and we need to check that the messages
are passed on in the correct order. As a first cut (to be generalized several times),
we write for negative types:

[q](b : B−) ; Ψ � P :: (a : A−)

which expresses that the two endpoints of the monitor are a : A− and b : B−

(both negative), and we have already received the messages in q along a. The
context Ψ declares types for local variables.
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A monitor, at the top level, is defined with

mon : τ1 → . . . → τn → {A ← A}
a ← mon x1 . . . xn ← b = P

where context Ψ declares value variables x. The body P here is type-checked as
one of (depending on the polarity of A)

[ ](b : A−) ; Ψ � P :: (a : A−) or (b : A+) ; Ψ � P :: [ ](a : A+)

where Ψ = (x1:τ1) · · · (xn:τn). A use such as

c ← mon e1 . . . en ← c

is transformed into
c′ ← mon e1 . . . en ← c ; c ← c′

for a fresh c′ and type-checked accordingly.
In general, queues have the form q = m1 · · · mn with

m ::= lk labels ⊕,�
| c channels ⊗,� | n value variables ∃,∀
| end close 1 | shift shifts ↑, ↓

where m1 is the front of the queue and mn the back.
When a process P receives a message, we add it to the end of the queue

q. We also need to add it to Ψ context, marked as unrestricted (non-linear) to
remember its type. In our example τ = int.

[q · n](b : B) ; Ψ, n:τ � P :: (a : A−)
[q](b : B) ; Ψ � n ← recv a ; P :: (a : ∀n:τ.A−)

∀R

Conversely, when we send along b the message must be equal to the one at
the front of the queue (and therefore it must be a variable). The m is a value
variable and remains in the context so it can be reused for later assertion checks.
However, it could never be sent again since it has been removed from the queue.

[q](b : [m/n]B) ; Ψ,m:τ � P :: (a : A)
[m · q](b : ∀n:τ.B) ; Ψ,m:τ � send b m ; Q :: (a : A) ∀L

All the other send and receive rules for negative types (∀, �, �) follow
exactly the same pattern. For positive types, a queue must be associated with
the channel along which the monitor provides (the succedent of the sequent
judgment).

(b : B+) ; Ψ � Q :: [q](a : A+)

Moreover, when end has been received along b the corresponding process has
terminated and the channel is closed, so we generalize the judgment to

ω ; Ψ � Q :: [q](a : A+) with ω = · | (b : B).
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The shift messages change the direction of communication. They therefore
need to switch between the two judgments and also ensure that the queue has
been emptied before we switch direction. Here are the two rules for ↑, which
appears in our simple example:

[q · shift](b : B−) ; Ψ � P :: (a : A+)
[q](b : B−) ; Ψ � shift ← recv a ; P :: (a : ↑A+)

↑R

We notice that after receiving a shift, the channel a already changes polarity (we
now have to send along it), so we generalize the judgment, allowing the succedent
to be either positive or negative. And conversely for the other judgment.

[q](b : B−) ; Ψ � P :: (a : A)
ω ; Ψ � Q :: [q](a : A+) where ω = · | (b : B)

When we send the final shift, we initialize a new empty queue. Because the
queue is empty the two sides of the monitor must have the same type.

(b : B+) ; Ψ � Q :: [ ](a : B+)
[shift](b : ↑B+) ; Ψ � send b shift ; Q :: (a : B+)

↑L

The rules for forwarding are also straightforward. Both sides need to have
the same type, and the queue must be empty. As a consequence, the immediate
forward is always a valid monitor at a given type.

(b : A+) ; Ψ � a ← b :: [ ](a : A+) id+

[ ](b : A−) ; Ψ � a ← b :: (a : A−) id−

4.2 Rule Summary

The current rules allow us to communicate only along the channels a and b
that are being monitored. If we send channels along channels, however, these
channels must be recorded in the typing judgment, but we are not allowed to
communicate along them directly. On the other hand, if we spawn internal (local)
channels, say, as auxiliary data structures, we should be able to interact with
them since such interactions are not externally observable. Our judgment thus
requires two additional contexts: Δ for channels internal to the monitor, and Γ
for externally visible channels that may be sent along the monitored channels.
Our full judgments therefore are

[q](b : B−) ; Ψ ; Γ ; Δ � P :: (a : A)
ω ; Ψ ; Γ ; Δ � Q :: [q](a : A+) where ω = · | (b : B)

So far, it is given by the following rules

(∀� ∈ L) (b : B�) ; Ψ ; Γ ; Δ � Q� :: [q · �](a : A+)
(b : ⊕{� : B�}�∈L) ; Ψ ; Γ ; Δ � case b (� ⇒ Q�)�∈L :: [q](a : A+)

⊕L

ω ; Ψ ; Γ ; Δ � P :: [q](a : Bk) (k ∈ L)
ω ; Ψ ; Γ ; Δ � a.k ; P :: [k · q](a : ⊕{� : B�}�∈L)

⊕R
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(∀� ∈ L) [q · �](b : B) ; Ψ ; Γ ; Δ � P� :: (a : A�)
[q](b : B) ; Ψ ; Γ ; Δ � case a (� ⇒ P�)�∈L :: (a : �{� : A�}�∈L)

�R

[q](b : Bk) ; Ψ ; Γ ; Δ � P :: (a : A) (k ∈ L)
[k · q](b : ⊕{� : B�}�∈L) ; Ψ ; Γ ; Δ � b.k ; P :: (a : A)

�L

(b : B) ; Ψ ; Γ, x:C ; Δ � Q :: [q · x](a : A)
(b : C ⊗ B) ; Ψ ; Γ ; Δ � x ← recv b ; Q :: [q](a : A)

⊗L

ω ; Ψ ; Γ ; Δ � P :: [q](a : A)
ω ; Ψ ; Γ, x:C ; Δ � send a x ; P :: [x · q](a : C ⊗ A)

⊗R

[q · x](b : B) ; Ψ ; Γ, x:C ; Δ � P :: (a : A)
[q](b : B) ; Ψ ; Γ ; Δ � x ← recv a ; P :: (a : C � A) �R

[q](b : B) ; Ψ ; Γ ; Δ � Q :: (a : A)
[x · q](b : C � B) ; Ψ ; Γ, x:C ; Δ � send b x ; Q :: (a : A) �L

· ; Ψ ; Γ ; Δ � Q :: [q · end](a : A)
(b : 1) ; Ψ ; Γ ; Δ � wait b ; Q :: [q](a : A) 1L

· ; Ψ ; · ; · � close a :: [end](a : 1) 1R

(b : B) ; Ψ, n:τ ; Γ ; Δ � Q :: [q · n](a : A)
(b : ∃n:τ.B) ; Ψ ; Γ ; Δ � n ← recv b ; Q :: [q](a : A) ∃L

ω ; Ψ,m:τ ; Γ ; Δ � P :: [q](a : [m/n]A)
ω ; Ψ,m:τ ; Γ ; Δ � send a m ; P :: [m · q](a : ∃n:τ.A) ∃R

[q · n](b : B) ; Ψ, n:τ ; Γ ; Δ � P :: (a : A−)
[q](b : B) ; Ψ ; Γ ; Δ � v ← recv a ; P :: (a : ∀n:τ.A−)

∀R

[q](b : [m/n]B) ; Ψ,m:τ ; Γ ; Δ � P :: (a : A)
[m · q](b : ∀n:τ.B) ; Ψ,m:τ ; Γ ; Δ � send b m ; Q :: (a : A) ∀L

(b : B−) ; Ψ ; Γ ; Δ � Q :: [q · shift](a : A+)
(b : ↓B−) ; Ψ ; Γ ; Δ � shift ← recv b ; Q :: [q](a : A+)

↓L

[ ](b : A−) ; Ψ ; Γ ; Δ � P :: (a : A−)
(b : A−) ; Ψ ; Γ ; Δ � send a shift ; P :: [shift](a : ↓A−)

↓R

[q · shift](b : B−) ; Ψ ; Γ ; Δ � P :: (a : A+)
[q](b : B−) ; Ψ ; Γ ; Δ � shift ← recv a ; P :: (a : ↑A+)

↑R

(b : B+) ; Ψ ; Γ ; Δ � Q :: [ ](a : B+)
[shift](b : ↑B+) ; Ψ ; Γ ; Δ � send b shift ; Q :: (a : B+)

↑L
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4.3 Spawning New Processes

The most complex part of checking that a process is a valid monitor involves
spawning new processes. In order to be able to spawn and use local (private)
processes, we have introduced the (so far unused) context Δ that tracks such
channels. We use it here only in the following two rules:

Ψ ; Δ � P :: (c : C) ω ; Ψ ; Γ ; Δ′, c:C � Q :: [q](a : A+)
ω ; Ψ ; Γ ; Δ,Δ′ � (c : C) ← P ; Q :: [q](a : A+)

cut+1

Ψ ; Δ � P :: (c : C) [q](b : B−) ; Ψ ; Γ ; Δ′, c:C � Q :: (a : A)
[q](b : B−) ; Ψ ; Γ ; Δ,Δ′ � (c : C) ← P ; Q :: (a : A)

cut−1

The second premise (that is, the continuation of the monitor) remains the mon-
itor, while the first premise corresponds to a freshly spawned local progress
accessible through channel c. All the ordinary left rules for sending or receiving
along channels in Δ are also available for the two monitor validity judgments.
By the strong ownership discipline of intuitionistic session types, none of this
information can flow out of the monitor.

It is also possible for a single monitor to decompose into two monitors that
operate concurrently, in sequence. In that case, the queue q may be split any-
where, as long as the intermediate type has the right polarity. Note that Γ must
be chosen to contain all channels in q2, while Γ ′ must contain all channels in q1.

ω ; Ψ ; Γ ; Δ � P :: [q2](c : C+) (c : C+) ; Ψ ; Γ ′ ; Δ′ � Q :: [q1](a : A+)

ω ; Ψ ; Γ, Γ ′ ; Δ, Δ′ � c : C+ ← P ; Q :: [q1 · q2](a : A+)
cut+2

Why is this correct? The first messages sent along a will be the messages in q1.
If we receive messages along c in the meantime, they will be first the messages
in q2 (since P is a monitor), followed by any messages that P may have received
along b if ω = (b : B). The second rule is entirely symmetric, with the flow of
messages in the opposite direction.

[q1](b : B−) ; Ψ ; Γ ; Δ � P :: (c : C−) [q2](c : C−) ; Ψ ′ ; Γ ′ ; Δ′ � Q :: (a : A)

[q1 · q2](b : B−) ; Ψ ; Γ, Γ ′ ; Δ, Δ′ � c : C− ← P ; Q :: (a : A)
cut−2

The next two rules allow a monitor to be attached to a channel x that is
passed between a and b. The monitored version of x is called x′, where x′ is
chosen fresh. This apparently violates our property that we pass on all messages
exactly as received, because here we pass on a monitored version of the original.
However, if monitors are partial identities, then the original x and the new x′

are indistinguishable (unless a necessary alarm is raised), which will be a tricky
part of the correctness proof.

(x : C+) ; Ψ ; · ; Δ � P :: [ ](x′ : C+) ω ; Ψ ; Γ, x′:C+ ; Δ′ � Q :: [q1 · x′ · q2](a : A+)

ω ; Ψ ; Γ, x:C+ ; Δ, Δ′ � x′ ← P ; Q :: [q1 · x · q2](a : A+)
cut++

3

[ ](x : C−) ; Ψ ; · ; Δ � P :: (x′ : C−) [q1 · x′ · q2](b : B−) ; Ψ ; Γ, x′:C− ; Δ′ � Q :: (a : A)

[q1 · x · q2](b : B−) ; Ψ ; Γ ; Δ, Δ′ � x′ ← P ; Q :: (a : A)
cut−−

3
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There are two more versions of these rules, depending on whether the types of
x and the monitored types are positive or negative. These rules play a critical
role in monitoring higher-order processes, because monitoring c : A+ � B−

may require us to monitor the continuation c : B− (already covered) but also
communication along the channel x : A+ received along c.

In actual programs, we mostly use cut x ← P ; Q in the form x ← p e ← d ; Q
where p is a defined process. The rules are completely analogous, except that for
those rules that require splitting a context in the conclusion, the arguments d
will provide the split for us. When a new sub-monitor is invoked in this way, we
remember and eventually check that the process p must also be a partial identity
process, unless we are already checking it. This has the effect that recursively
defined monitors with proper recursive calls are in fact allowed. This is impor-
tant, because monitors for recursive types usually have a recursive structure. An
illustration of this can be seen in pos in Fig. 1.

4.4 Transparency

We need to show that monitors are transparent, that is, they are indeed observa-
tionally equivalent to partial identity processes. Because of the richness of types
and process expressions and the generality of the monitors allowed, the proof
has some complexities. First, we define the configuration typing, which consists
of just three rules. Because we also send and receive ordinary values, we also
need to type (closed) substitutions σ = (v1/n1, . . . , vk/nk) using the judgment
σ :: Ψ .

(·) :: (·)
· � v : τ

(v/n) :: (n : τ)
σ1 :: Ψ1 σ2 :: Ψ2

(σ1, σ2) :: (Ψ1, Ψ2)

For configurations, we use the judgment

Δ � C :: Δ′

which expresses that process configuration C uses the channels in Δ and provides
the channels in Δ′. Channels that are neither used nor offered by C are “passed
through”. Messages are just a restricted form of processes, so they are typed
exactly the same way. We write pred for either proc or msg.

Δ � (·) :: Δ

Δ0 � C1 :: Δ1 Δ1 � C2 :: Δ2

Δ0 � C1, C2 :: Δ2

Ψ ; Δ � P :: (c : A) σ : Ψ

Δ′,Δ[σ] � pred(c, P [σ]) :: (Δ′, c : A[σ]) pred ::= proc | msg

To characterize observational equivalence of processes, we need to first charac-
terize the possible messages and the direction in which they flow: towards the
client (channel type is positive) or towards the provider (channel type is nega-
tive). We summarize these in the following table. In each case, c is the channel
along with the message is transmitted, and c′ is the continuation channel.
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Message to client of c Message to provider of c
msg+(c, c.k ; c ← c′) (⊕) msg−(c′, c.k ; c′ ← c) (�)
msg+(c, send c d ; c ← c′) (⊗) msg−(c′, send c d ; c′ ← c) (�)
msg+(c, close c) (1)
msg+(c, send c v ; c ← c′) (∃) msg−(c′, send c v ; c′ ← c) (∀)
msg+(c, send c shift ; c ← c′) (↓) msg−(c′, send c shift ; c′ ← c) (↑)

The notion of observational equivalence we need does not observe “nontermi-
nation”, that is, it only compares messages that are actually received. Since
messages can flow in two directions, we need to observe messages that arrive at
either end. We therefore do not require, as is typical for bisimulation, that if one
configuration takes a step, another configuration can also take a step. Instead we
say if both configurations send an externally visible message, then the messages
must be equivalent.

Supposing Γ � C : Δ and Γ � D :: Δ, we write Γ � C ∼ D :: Δ for
our notion of observational equivalence. It is the largest relation satisfying that
Γ � C ∼ D : Δ implies

1. If Γ ′ � msg+(c, P ) :: Γ then Γ ′ � (msg+(c, P ), C) ∼ (msg+(c, P ),D) :: Δ.
2. If Δ � msg−(c, P ) :: Δ′ then Γ � (C,msg−(c, P )) ∼ (D,msg−(c, P )) :: Δ′.
3. If C = (C′,msg+(c, P )) with Γ � C′ :: Δ′

1 and Δ′
1 � msg+(c, P ) :: Δ

and D = (D′,msg+(c,Q)) with Γ � D′ :: Δ′
2 and Δ′

2 � msg+(c,Q) :: Δ
then Δ′

1 = Δ′
2 = Δ′ and P = Q and Γ � C′ ∼ D′ :: Δ′.

4. If C = (msg−(c, P ), C′) with Γ � msg−(c, P ) :: Γ ′
1 and Γ ′

1 � C′ :: Δ
and D = (msg−(c,Q),D′) with Γ � msg−(c,Q) :: Γ ′

2 and Γ ′
2 � D′ :: Δ

then Γ ′
1 = Γ ′

2 = Γ ′ and P = Q and Γ ′ � C′ ∼ D′ :: Δ.
5. If C −→ C′ then Γ � C′ ∼ D :: Δ.
6. If D −→ D′ then Γ � C ∼ D′ :: Δ.

Clauses (1) and (2) correspond to absorbing a message into a configuration,
which may later be received by a process according to clauses (5) and (6).

Clauses (3) and (4) correspond to observing messages, either by a client
(clause (3)) or provider (clause (4)).

In clause (3) we take advantage of the property that a new continuation
channel in the message P (one that does not appear already in Γ ) is always
chosen fresh when created, so we can consistently (and silently) rename it in
C′, Δ′

1, and P (and D′, Δ′
2, and Q, respectively). This slight of hand allows us

to match up the context and messages exactly. An analogous remark applies to
clause (4). A more formal description would match up the contexts and messages
modulo two renaming substitution which allow us to leave Γ and Δ fixed.

Clauses (5) and (6) make sense because a transition never changes the inter-
face to a configuration, except when executing a forwarding proc(a, a ← b) which
substitutes b for a in the remaining configuration. We can absorb this renam-
ing into the renaming substitution. Cut creates a new channel, which remains
internal since it is linear and will have one provider and one client within the
new configuration. Unfortunately, our notation is already somewhat unwieldy
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and carrying additional renaming substitutions further obscures matters. We
therefore omit them in this presentation.

We now need to define a relation ∼M such that (a) it satisfies the closure
conditions of ∼ and is therefore an observational equivalence, and (b) allows us
to conclude that monitors satisfying our judgment are partial identities. Unfor-
tunately, the theorem is rather complex, so we will walk the reader through a
sequence of generalizations that account for various phenomena.

The ⊕,� Fragment. For this fragment, we have no value variables, nor are we
passing channels. Then the top-level properties we would like to show are

(1+) If (y : A+) ; · ; · � P :: (x : A+)[ ]
then y : A+ � proc(x, x ← y) ∼M P :: (x : A+)

(1−) If [ ](y : A−) ; · ; · � P :: (x : A−)
then y : A− � proc(x, x ← y) ∼M P :: (x : A−)

Of course, asserting that proc(x, x ← y) ∼M P will be insufficient, because
this relation is not closed under the conditions of observational equivalence. For
example, if we add a message along y to both sides, P will change its state once
it receives the message, and the queue will record that this message still has to
be sent. To generalize this, we need to define the queue that corresponds to a
sequence of messages. First, a single message:

Message to client of c Message to provider of c

〈〈msg+(c, c.k ; c ← c′)〉〉 = k (⊕) 〈〈msg−(c′, c.k ; c′ ← c)〉〉 = k (�)

〈〈msg+(c, send c d ; c ← c′)〉〉 = d (⊗) 〈〈msg−(c′, send c d ; c′ ← c)〉〉 = d (�)
〈〈msg+(c, close c)〉〉 = end (1)

〈〈msg+(c, send c v ; c ← c′)〉〉 = v (∃) 〈〈msg−(c′, send c v ; c′ ← c)〉〉 = v (∀)

〈〈msg+(c, send c shift ; c ← c′)〉〉 = shift (↓) 〈〈msg−(c′, send c shift ; c′ ← c)〉〉 = shift (↑)

We extend this to message sequences with 〈〈 〉〉 = (·) and 〈〈E1, E2〉〉 = 〈〈E1〉〉 · 〈〈E2〉〉,
provided Δ0 � E1 : Δ1 and Δ1 � E2 :: Δ2.

Then we build into the relation that sequences of messages correspond to the
queue.

(2+) If (y:B+) ; · ; · ; · � P :: (x:A+)[〈〈E〉〉] then y : B+ � E ∼M proc(x, P ) ::
(x : A+).

(2−) If [〈〈E〉〉](y:B−)· ; · ; · � P :: (x:A−) then y:B− � E ∼M proc(x, P ) ::
(x:A−).

When we add shifts the two propositions become mutually dependent, but
otherwise they remain the same since the definition of 〈〈E〉〉 is already general
enough. But we need to generalize the type on the opposite side of queue to be
either positive or negative, because it switches polarity after a shift has been
received. Similarly, the channel might terminate when receiving 1, so we also
need to allow ω, which is either empty or of the form y : B.

(3+) If ω ; · ; · ; · � P :: (x:A+)[〈〈E〉〉] then ω � E ∼M proc(x, P ) :: (x:A+).
(3−) If [〈〈E〉〉](y:B−) ; · ; · ; · � P :: (x:A) then y:B− � E ∼M proc(x, P ) ::

(x:xA).
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Next, we can permit local state in the monitor (rules cut+1 and cut−1 ). The fact
that neither of the two critical endpoints y and x, nor any (non-local) channel,s
can appear in the typing of the local process is key. That local process will evolve
to a local configuration, but its interface will not change and it cannot access
externally visible channels. So we generalize to allow a configuration D that does
not use any channels, and any channels it offers are used by P .

(4+) If ω ; · ; · ; Δ � P :: [〈〈E〉〉](x : A+) and · � D :: Δ then ω � E ∼M

D, proc(x, P ) :: [q](x : A+).
(4−) If [〈〈E〉〉](y : B−) ; · ; · ; Δ � P :: (x : A) and · � D :: Δ then Γ, y : B− �

E ∼M D, proc(x, P ) :: (x : A).

Next, we can allow value variables necessitated by the universal and existential
quantifiers. Since they are potentially dependent, we need to apply the closing
substitution σ to a number of components in our relation.

(5+) If ω ; Ψ ; · ; Δ � P :: [q](x : A+) and σ : Ψ and q[σ] = 〈〈E〉〉 and · � D :: Δ[σ]
then ω[σ] � E ∼M D, proc(x, P [σ]) :: (x : A+[σ]).

(5−) If [q](y : B−) ; Ψ ; · ; Δ � P :: (x : A) and σ : Ψ and q[σ] = E and
· � D :: Δ[σ] then y : B−[σ] � E ∼M D, proc(x, P [σ]) :: (x : A[σ]).

Breaking up the queue by spawning a sequence of monitors (rule cut+2 and cut−2 )
just comes down to the compositionally of the partial identity property. This is
a new and separate way that two configurations might be in the ∼M relation,
rather than a replacement of a previous definition.

(6) If ω � E1 ∼M D1 :: (z : C) and (z : C) � E2 ∼M D2 :: (x : A) then
ω � (E1, E2) ∼M (D1,D2) :: (x : A).

At this point, the only types that have not yet accounted for are ⊗ and
�. If these channels were only “passed through” (without the four cut3 rules),
this would be rather straightforward. However, for higher-order channel-passing
programs, a monitor must be able to spawn a monitor on a channel that it
receives before sending on the monitored version. First, we generalize properties
(5) to allow the context Γ of channels that may occur in the queue q and the
process P , but that P may not interact with.

(7+) If ω ; Ψ ; Γ ; Δ � P :: [q](x : A+) and σ : Ψ and q[σ] = 〈〈E〉〉 and
· � D :: Δ[σ] then Γ [σ], ω[σ] � E ∼M D, proc(x, P [σ]) :: (x : A+[σ]).

(7−) If [q](y : B−) ; Ψ ; Γ ; Δ � P :: (x : A) and σ : Ψ and q[σ] = E and
· � D :: Δ[σ] then Γ [σ], y : B−[σ] � E ∼M D, proc(x, P [σ]) :: (x : A[σ]).

In addition we need to generalize property (6) into (8) and (9) to allow multiple
monitors to run concurrently in a configuration.

(8) If Γ � E ∼M D :: Δ then (Γ ′, Γ ) � E ∼M D :: (Γ ′,Δ).
(9) If Γ1 � E1 ∼M D1 :: Γ2 and Γ2 � E2 ∼M D2 :: Γ3 then Γ1 � (E1, E2) ∼M

(D1,D2) :: Γ3.

At this point we can state the main theorem regarding monitors.
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Theorem 1. If Γ � E ∼M D :: Δ according to properties (7+), (7−), (8), and(9)
then Γ � E ∼ D :: Δ.

Proof. By closure under conditions 1–6 in the definition of ∼.

By applying it as in equations (1+) and (1−), generalized to include value
variables as in (5+) and (5−) we obtain:

Corollary 1. If [ ](b : A−) ; Ψ � P :: (a : A−) or (b : A+) ; Ψ � P :: [ ](a : A+)
then P is a partial identity process.

5 Refinements as Contracts

In this section we show how to check refinement types dynamically using our
contracts. We encode refinements as type casts, which allows processes to remain
well-typed with respect to the non-refinement type system (Sect. 2). These casts
are translated at run time to monitors that validate whether the cast expresses
an appropriate refinement. If so, the monitors behave as identity processes; oth-
erwise, they raise an alarm and abort. For refinement contracts, we can prove a
safety theorem, analogous to the classic “Well-typed Programs Can’t be Blamed”
[25], stating that if a monitor enforces a contract that casts from type A to type
B, where A is a subtype of B, then this monitor will never raise an alarm.

5.1 Syntax and Typing Rules

We first augment messages and processes to include casts as follows. We write
〈A ⇐ B〉ρ to denote a cast from type B to type A, where ρ is a unique label for
the cast. The cast for values is written as (〈τ ⇐ τ ′〉ρ). Here, the types τ ′ and τ
are refinement types of the form {n:t | b}, where b is a boolean expression that
expresses simple properties of the value n.

P ::= · · · | x ← 〈τ ⇐ τ ′〉ρ v ; Q | a:A ← 〈A ⇐ B〉ρ b

Adding casts to forwarding is expressive enough to encode a more general cast
〈A ⇐ B〉ρP . For instance, the process x:A ← 〈A ⇐ B〉ρP ; Qx can be encoded
as: y:B ← P ;x:A ← 〈A ⇐ B〉ρ y ; Qx.

One of the additional rules to type casts is shown below (both rules can be
found in Fig. 6). We only allow casts between two types that are compatible
with each other (written A ∼ B), which is co-inductively defined based on the
structure of the types (the full definition is omitted from the paper).

A ∼ B

Ψ ; b : B � a ← 〈A ⇐ B〉ρ b :: (a : A) id cast
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5.2 Translation to Monitors

At run time, casts are translated into monitoring processes. A cast a ← 〈A ⇐
B〉ρ b is implemented as a monitor. This monitor ensures that the process that
offers a service on channel b behaves according to the prescribed type A. Because
of the typing rules, we are assured that channel b must adhere to the type B.

Figure 4 is a summary of all the translation rules, except recursive types.
The translation is of the form: [[〈A ⇐ B〉ρ]]a,b = P , where A, B are types; the
channels a and b are the offering channel and monitoring channel (respectively)
for the resulting monitoring process P ; and ρ is a label of the monitor (i.e., the
contract).

Note that this differs from blame labels for high-order functions, where the
monitor carries two labels, one for the argument, and one for the body of the
function. Here, the communication between processes is bi-directional. Though
the blame is always triggered by processes sending messages to the monitor,
our contracts may depend on a set of the values received so far, so it does not
make sense to blame one party. Further, in the case of forwarding, the processes
at either end of the channel are behaving according to the types (contracts)
assigned to them, but the cast may forcefully connect two processes that have
incompatible types. In this case, it is unfair to blame either one of the processes.
Instead, we raise an alarm of the label of the failed contract.

The translation is defined inductively over the structure of the types. The
tensor rule generates a process that first receives a channel (x) from the channel
being monitored (b). It then spawns a new monitor (denoted by the @monitor
keyword) to monitor channel x, making sure that it behaves as type A1, and
passes the new monitor’s offering channel y to channel a. Finally, the monitor
continues to monitor b to make sure that it behaves as type A2. The lolli rule is
similar to the tensor rule, except that the monitor first receives a channel from
its offering channel. Similar to the higher-order function case, the argument
position is contravariant, so the newly spawned monitor checks that the received
channel behaves as type B1. The exists rule generates a process that first receives
a value from the channel b, then checks the boolean condition e to validate the
contract. The forall rule is similar, except the argument position is contravariant,
so the boolean expression e′ is checked on the offering channel a. The with rule
generates a process that checks that all of the external choices promised by the
type �{� : A�}�∈I are offered by the process being monitored. If a label in the
set I is not implemented, then the monitor aborts with the label ρ. The plus
rule requires that, for internal choices, the monitor checks that the monitored
process only offers choices within the labels in the set ⊕{� : A�}�∈I .

For ease of explanation, we omit details for translating casts involving recur-
sive types. Briefly, these casts are translated into recursive processes. For each
pair of compatible recursive types A and B, we generate a unique monitor name
f and record its type f : {A ← B} in a context Ψ . The translation algorithm
needs to take additional arguments, including Ψ to generate and invoke the
appropriate recursive process when needed. For instance, when generating the
monitor process for f : {list ← list}, we follow the rule for translating internal
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[[〈1 ⇐ 1〉ρ]]a,b = wait b; close a
one

[[〈A1 � A2 ⇐ B1 � B2〉ρ]]a,b =
x ← recv a;
@monitor y ← [[〈B1 ⇐ A1〉ρ]]y,x ← x
send b y;
[[〈A2 ⇐ B2〉ρ]]a,b

�
[[〈A1 ⊗ A2 ⇐ B1 ⊗ B2〉ρ]]a,b =
x ← recv b;
@monitor y ← [[〈A1 ⇐ B1〉ρ]]y,x ← x
send a y;
[[〈A2 ⇐ B2〉ρ]]a,b

⊗

[[〈∀{n : τ | e}. A ⇐ ∀{n : τ ′ | e′}. B〉ρ]]a,b = x ← recv a;
assert ρ e′(x) (send b x; [[〈A ⇐ B〉ρ]]a,b)

∀

[[〈∃{n : τ | e}. A ⇐ ∃{n : τ ′ | e′}. B〉ρ]]a,b = x ← recv b;
assert ρ e(x) (send a x; [[〈A ⇐ B〉ρ]]a,b)

∃

∀�, � ∈ I ∩ J, a.� ; [[〈A� ⇐ B�〉ρ]]a,b = Q� ∀�, � ∈ J ∧ � /∈ I, Q� = abort ρ

[[〈⊕{� : A�}�∈I ⇐ ⊕{� : B�}�∈J〉ρ]]a,b = case b (� ⇒ Q�)�∈I

⊕

∀�, � ∈ I ∩ J, b.� ; [[〈A� ⇐ B�〉ρ]]a,b = Q� ∀�, � ∈ I ∧ � /∈ J, Q� = abort ρ

[[〈 {� : A�}�∈I ⇐ {� : B�}�∈J〉ρ]]a,b = case a (� ⇒ Q�)�∈I

[[〈↑A ⇐ ↑B〉ρ]]a,b =
shift ← recv b;
send a shift ; [[〈A ⇐ B〉ρ]]a,b

↑
[[〈↓A ⇐ ↓B〉ρ]]a,b =
shift ← recv a;
send b shift ; [[〈A ⇐ B〉ρ]]a,b

↓

Fig. 4. Cast translation

choices. For [[〈list ⇐ list〉ρ]]y,x we apply the cons case in the translation to get
@monitor y ← f ← x.

5.3 Metatheory

We prove two formal properties of cast-based monitors: safety and transparency.
Because of the expressiveness of our contracts, a general safety (or blame)

theorem is difficult to achieve. However, for cast-based contracts, we can prove
that a cast which enforces a subtyping relation, and the corresponding monitor,
will not raise an alarm. We first define our subtyping relation in Fig. 5. In addi-
tion to the subtyping between refinement types, we also include label subtyping
for our session types. A process that offers more external choices can always be
used as a process that offers fewer external choices. Similarly, a process that
offers fewer internal choices can always be used as a process that offers more
internal choices (e.g., non-empty list can be used as a list). The subtyping rules
for internal and external choices are drawn from work by Acay and Pfenning [1].
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1 ≤ 1
1

A ≤ A′ B ≤ B′

A ⊗ B ≤ A′ ⊗ B′ ⊗
A′ ≤ A B ≤ B′

A � B ≤ A′ � B′ �

Ak ≤ A′
k for k ∈ J J ⊆ I

⊕{labk : Ak}k∈J ≤ ⊕{labk : A′
k}k∈I

⊕
Ak ≤ A′

k for k ∈ J I ⊆ J

&{labk : Ak}k∈J ≤ &{labk : A′
k}k∈I

&

A ≤ B

↓ A ≤ ↓ B
↓

A ≤ B

↑ A ≤ ↑ B
↑

A ≤ B τ1 ≤ τ2

∃n : τ1.A ≤ ∃n : τ2.B
∃

A ≤ B τ2 ≤ τ1

∀n : τ1.A ≤ ∀n : τ2.B
∀

def(A) ≤ def(B)

A ≤ B
def

∀v:τ, [v/x]b1 �→∗ true implies [v/x]b2 �→∗ true

{x:τ | b1} ≤ {x:τ | b2}
refine

Fig. 5. Subtyping

For recursive types, we directly examine their definitions. Because of these recur-
sive types, our subtyping rules are co-inductively defined.

We prove a safety theorem (i.e., well-typed casts do not raise alarms) via
the standard preservation theorem. The key is to show that the monitor process
generated from the translation algorithm in Fig. 4 is well-typed under a typing
relation which guarantees that no abort state can be reached. We refer to the type
system presented thus far in the paper as T , where monitors that may evaluate
to abort can be typed. We define a stronger type system S which consists of the
rules in T with the exception of the abort rule and we replace the assert rule
with the assert strong rule. The new rule for assert, which semantically verifies
that the condition b is true using the fact that the refinements are stored in the
context Ψ , is shown below. The two type systems are summarized in Fig. 6.

Theorem 2 (Monitors are well-typed). Let Ψ be the context containing the
type bindings of all recursive processes.

1. Ψ ; b : B �T [[〈A ⇐ B〉ρ]]Ψa,b :: (a : A).
2. If B ≤ A, then Ψ ; b : B �S [[〈A ⇐ B〉ρ]]Ψa,b :: (a : A).

Proof. The proof is by induction over the monitor translation rules. For 2, we
need to use the sub-typing relation to show that (1) for the internal and external
choice cases, no branches that include abort are generated; and (2) for the forall
and exists cases, the assert never fails (i.e., the assert strong rule applies). ��

As a corollary, we can show that when executing in a well-typed context, a
monitor process translated from a well-typed cast will never raise an alarm.

Corollary 2 (Well-typed casts cannot raise alarms). � C :: b : B and
B ≤ A implies C, proc(a, [[〈A ⇐ B〉ρ]]a,b) �−→∗ abort(ρ).

Finally, we prove that monitors translated from casts are partial identify
processes.
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Both System T and S

Ψ ; b : A � a ← b :: (a : A)
id

Ψ ; Δ � P :: (x : A) x : A, Δ′ � Q :: (c : C)

Ψ ; Δ, Δ′ � x:A ← P ; Q :: (c : C)
cut

Ψ ; Δ � P :: (c : A+)

Ψ ; Δ � shift ← recv c ; P :: (c : ↑A+)
↑R

Ψ ; Δ, c : A+ � Q :: (d : D)

Ψ ; Δ, c : ↑A+ � send c shift ; Q :: (d : D)
↑L

Ψ ; Δ � P :: (c : A−)

Ψ ; Δ � send c shift ; P :: (c : ↓A−)
↓R

Ψ ; Δ, c : A− � Q :: (d : D)

Ψ ; Δ, c : ↓A− � shift ← recv c ; Q :: (d : D)
↓L

· � close c :: (c : 1)
1R

Ψ ; Δ � Q :: (d : D)

Ψ ; Δ, c : 1 � wait c ; Q :: (d : D)
1L

Ψ ; Δ � P :: (c : B)

Ψ ; Δ, a : A � send c a ; P :: (c : A ⊗ B)
⊗R

Ψ ; Δ, x : A, c : B � Q :: (d : D)

Ψ ; Δ, c : A ⊗ B � x ← recv c ; Q :: (d : D)
⊗L

Ψ ; Δ, x : A � P :: (c : B)

Ψ ; Δ � x ← recv c ; P :: (c : A � B)
�R

Ψ ; Δ, c : B � Q :: (d : D)

Ψ ; Δ, a : A, c : A � B � send c a ; Q :: (d : D)
�L

Ψ ; Δ � P� :: (c : A�) for every � ∈ L

Ψ ; Δ � case c (� ⇒ P�)�∈L :: (c : {� : A�}�∈L)
R

k ∈ L Ψ ; Δ, c : Ak � Q :: (d : D)

Ψ ; Δ, c : {� : A�}�∈L � c.k ; Q :: (d : D)
L

k ∈ L Ψ ; Δ � P :: (c : Ak)

Ψ ; Δ � c.k ; P :: (c : ⊕{� : A�}�∈L)
⊕R

Ψ ; Δ, c : A� � Q� :: (d : D) for every � ∈ L

Ψ ; Δ, c : ⊕{� : A�}�∈L � case c (� ⇒ Q�)�∈L :: (d : D)
⊕L

Ψ � v : τ Ψ ; Δ � P :: (c : [v/n]A)

Ψ ; Δ � send c v ; P :: (c : ∃n:τ. A)
∃R

Ψ, n:τ ; Δ, c : A � Q :: (d : D)

Ψ ; Δ, c : ∃n:τ. A � n ← recv c ; Q :: (d : D)
∃L

Ψ, n:τ ; Δ � P :: (c : A)

Ψ ; Δ � n ← recv c ; P :: (c : ∀n:τ. A)
∀R

Ψ � v : τ Ψ ; Δ, c : [v/n]A � Q :: (d : D)

Ψ ; Δ, c : ∀n:τ. A � send c v ; Q :: (d : D)
∀L

Ψ � v : τ ′ Ψ, x : τ ; Δ � Q :: (c : C) τ ∼ τ ′

Ψ ; Δ � x ← 〈τ ⇐ τ ′〉ρ v ; Q :: (c : C)
val cast

A ∼ B

Ψ ; b : B � a ← 〈A ⇐ B〉ρ b :: (a : A)
id cast

System T only

Ψ � b : bool Ψ ; Δ � Q :: (x : A)

Ψ ; Δ � assert ρ b; Q :: (x : A)
assert

Ψ ; Δ � abort ρ :: (x : A)
abort

System S only
Ψ � b true Ψ ; Δ � Q :: (x : A)

Ψ ; Δ � assert ρ b; Q :: (x : A)
assert strong

Fig. 6. Typing process expressions

Theorem 3 (Casts are transparent).
b : B � proc(b, a ← b) ∼ proc(a, [[〈A ⇐ B〉ρ]]a,b) :: (a : A).

Proof. We just need to show that the translated process passes the partial iden-
tity checks. We can show this by induction over the translation rules and by
applying the rules in Sect. 4. We note that rules in Sect. 4 only consider identical
types; however, our casts only cast between two compatible types. Therefore, we
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can lift A and B to their super types (i.e., insert abort cases for mismatched
labels), and then apply the checking rules. This does not change the semantics
of the monitors.

6 Related Work

There is a rich body of work on higher-order contracts and the correctness of
blame assignments in the context of the lambda calculus [2,7,8,10,16,24,25]. The
contracts in these papers are mostly based on refinement or dependent types. Our
contracts are more expressive than the above, and can encode refinement-based
contracts. While our monitors are similar to reference monitors (such as those
described by Schneider [19]), they have a few features that are not inherent to
reference monitors such as the fact that our monitors are written in the target
language. Our monitors are also able to monitor contracts in a higher-order
setting by spawning a separate monitor for the sent/received channel.

Disney et al.’s [9] work, which investigates behavioral contracts that enforce
temporal properties for modules, is closely related to our work. Our contracts
(i.e., session types) also enforce temporal properties; the session types specify the
order in which messages are sent and received by the processes. Our contracts
can also make use of internal state, as those of Disney et al, but our system is
concurrent, while their system does not consider concurrency.

Recently, gradual typing for two-party session-type systems has been devel-
oped [14,20]. Even though this formalism is different from our contracts, the way
untyped processes are gradually typed at run time resembles how we monitor
type casts. Because of dynamic session types, their system has to keep track of
the linear use of channels, which is not needed for our monitors.

Most recently, Melgratti and Padovani have developed chaperone contracts
for higher-order session types [17]. Their work is based on a classic interpre-
tation of session types, instead of an intuitionistic one like ours, which means
that they do not handle spawning or forwarding processes. While their contracts
also inspect messages passed between processes, unlike ours, they cannot model
contracts which rely on the monitor making use of internal state (e.g., the paren-
thesis matching). They proved a blame theorem relying on the notion of locally
correct modules, which is a semantic categorization of whether a module satisfies
the contract. We did not prove a general blame theorem; instead, we prove a
somewhat standard safety theorem for cast-based contracts.

The Whip system [27] addresses a similar problem as our prior work [15],
but does not use session types. They use a dependent type system to imple-
ment a contract monitoring system that can connect services written in different
languages. Their system is also higher order, and allows processes that are moni-
tored by Whip to interact with unmonitored processes. While Whip can express
dependent contacts, Whip cannot handle stateful contracts. Another distinguish-
ing feature of our monitors is that they are partial identity processes encoded in
the same language as the processes to be monitored.

www.dbooks.org
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7 Conclusion

We have presented a novel approach for contract-checking for concurrent pro-
cesses. Our model uses partial identity monitors which are written in the same
language as the original processes and execute transparently. We define what
it means to be a partial identity monitor and prove our characterization cor-
rect. We provide multiple examples of contracts we can monitor including ones
that make use of the monitor’s internal state, ones that make use of the idea
of probabilistic result checking, and ones that cannot be expressed as depen-
dent or refinement types. We translate contracts in the refinement fragment into
monitors, and prove a safety theorem for that fragment.
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and a Carnegie Mellon University Presidential Fellowship.

References

1. Acay, C., Pfenning, F.: Intersections and unions of session types. In: Proceedings
Eighth Workshop on Intersection Types and Related Systems, ITRS 2016, Porto,
Portugal, pp. 4–19, 26 June 2016. https://dx.doi.org/10.4204/EPTCS.242.3

2. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2011) (2011). https://doi.acm.org/10.1145/1570506.1570507

3. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP), 37:1–37:29 (2017). https://doi.org/10.1145/3110281

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

6. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009). https://doi.org/10.
1016/j.ic.2008.11.006

7. Dimoulas, C., Findler, R.B., Flanagan, C., Felleisen, M.: Correct blame for con-
tracts: no more scapegoating. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, pp.
215–226. ACM, New York (2011). https://doi.acm.org/10.1145/1926385.1926410

8. Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete monitors for behavioral
contracts. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 214–233. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 11

9. Disney, T., Flanagan, C., McCarthy, J.: Temporal higher-order contracts. In: 16th
ACM SIGPLAN International Conference on Functional Programming (ICFP
2011) (2011). https://doi.acm.org/10.1145/2034773.2034800

10. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2002, pp. 48–59. ACM, New York (2002). https://doi.acm.org/10.
1145/581478.581484

https://dx.doi.org/10.4204/EPTCS.242.3
https://doi.acm.org/10.1145/1570506.1570507
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1016/j.ic.2008.11.006
https://doi.org/10.1016/j.ic.2008.11.006
https://doi.acm.org/10.1145/1926385.1926410
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.acm.org/10.1145/2034773.2034800
https://doi.acm.org/10.1145/581478.581484
https://doi.acm.org/10.1145/581478.581484


Session-Typed Concurrent Contracts 797

11. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

12. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. Tech-
nical report CMU-CyLab-17-004, CyLab, Carnegie Mellon University, February
2018

13. Griffith, D.: Polarized Substructural Session Types. Ph.D. thesis, University of
Illinois at Urbana-Champaign, April 2016

14. Igarashi, A., Thiemann, P., Vasconcelos, V.T., Wadler, P.: Gradual session types.
Proc. ACM Program. Lang. 1(ICFP), 38:1–38:28 (2017). https://doi.org/10.1145/
3110282

15. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, pp. 582–594.
ACM, New York (2016). https://doi.acm.org/10.1145/2837614.2837662

16. Keil, M., Thiemann, P.: Blame assignment for higher-order contracts with intersec-
tion and union. In: 20th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2015) (2015). https://doi.acm.org/10.1145/2784731.2784737

17. Melgratti, H., Padovani, L.: Chaperone contracts for higher-order sessions.
Proc. ACM Program. Lang. 1(ICFP), 35:1–35:29 (2017). https://doi.org/10.1145/
3110279

18. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 1

19. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

20. Thiemann, P.: Session types with gradual typing. In: Maffei, M., Tuosto, E. (eds.)
TGC 2014. LNCS, vol. 8902, pp. 144–158. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45917-1 10

21. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pp. 462–475. ACM, New York (2016). https://acm.doi.org/10.4230/
LIPIcs.ECOOP.2016.9

22. Toninho, B.: A Logical Foundation for Session-based Concurrent Computation.
Ph.D. thesis, Carnegie Mellon University and New University of Lisbon (2015)

23. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

24. Wadler, P.: A complement to blame. In: 1st Summit on Advances in Programming
Languages (SNAPL 2015) (2015). https://doi.acm.org/10.4230/LIPIcs.SNAPL.
2015.309

25. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 1

26. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J.
ACM 44(6), 826–849 (1997). https://doi.org/10.1145/268999.269003

27. Waye, L., Chong, S., Dimoulas, C.: Whip: higher-order contracts for modern ser-
vices. Proc. ACM Program. Lang. 1(ICFP), 36:1–36:28 (2017). https://doi.org/10.
1145/3110280

www.dbooks.org

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/3110282
https://doi.org/10.1145/3110282
https://doi.acm.org/10.1145/2837614.2837662
https://doi.acm.org/10.1145/2784731.2784737
https://doi.org/10.1145/3110279
https://doi.org/10.1145/3110279
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-662-45917-1_10
https://doi.org/10.1007/978-3-662-45917-1_10
https://acm.doi.org/10.4230/LIPIcs.ECOOP.2016.9
https://acm.doi.org/10.4230/LIPIcs.ECOOP.2016.9
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.acm.org/10.4230/LIPIcs.SNAPL.2015.309
https://doi.acm.org/10.4230/LIPIcs.SNAPL.2015.309
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/268999.269003
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3110280
https://www.dbooks.org/


798 H. Gommerstadt et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Typing Discipline for Statically Verified
Crash Failure Handling in Distributed

Systems

Malte Viering1(B), Tzu-Chun Chen1, Patrick Eugster1,2,3, Raymond Hu4,
and Lukasz Ziarek5

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
viering@dsp.tu-darmstadt.de
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Abstract. A key requirement for many distributed systems is to be
resilient toward partial failures, allowing a system to progress despite
the failure of some components. This makes programming of such sys-
tems daunting, particularly in regards to avoiding inconsistencies due
to failures and asynchrony. This work introduces a formal model for
crash failure handling in asynchronous distributed systems featuring a
lightweight coordinator, modeled in the image of widely used systems
such as ZooKeeper and Chubby. We develop a typing discipline based
on multiparty session types for this model that supports the specifica-
tion and static verification of multiparty protocols with explicit failure
handling. We show that our type system ensures subject reduction and
progress in the presence of failures. In other words, in a well-typed system
even if some participants crash during execution, the system is guaran-
teed to progress in a consistent manner with the remaining participants.

1 Introduction

Distributed Programs, Partial Failures, and Coordination. Developing programs
that execute across a set of physically remote, networked processes is challeng-
ing. The correct operation of a distributed program requires correctly designed
protocols by which concurrent processes interact asynchronously, and correctly
implemented processes according to their roles in the protocols. This becomes
particularly challenging when distributed programs have to be resilient to partial
failures, where some processes crashes while others remain operational. Partial
failures affect both safety and liveness of applications. Asynchrony is the key
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issue, resulting in the inability to distinguish slow processes from failed ones. In
general, this makes it impossible for processes to reach agreement, even when
only a single process can crash [19].

In practice, such impasses are overcome by making appropriate assumptions
for the considered infrastructure and applications. One common approach is to
assume the presence of a highly available coordination service [26] – realized using
a set of replicated processes large enough to survive common rates of process
failures (e.g., 1 out of 3, 2 out of 5) – and delegating critical decisions to this
service. While this coordinator model has been in widespread use for many years
(cf. consensus service [22]), the advent of cloud computing has recently brought it
further into the mainstream, via instances like Chubby [4] and ZooKeeper [26].
Such systems are used not only by end applications but also by a variety of
frameworks and middleware systems across the layers of the protocol stack [11,
20,31,40].

Typing Disciplines for Distributed Programs. Typing disciplines for distributed
programs is a promising and active research area towards addressing the chal-
lenges in the correct development of distributed programs. See Hüttel et al.
[27] for a broad survey. Session types are one of the established typing disci-
plines for message passing systems. Originally developed in the π-calculus [23],
these have been later successfully applied to a range of practical languages, e.g.,
Java [25,41], Scala [39], Haskell [34,38], and OCaml [28,37]. Multiparty session
types (MPSTs) [15,24] generalize session types beyond two participants. In a
nutshell, a standard MPST framework takes (1) a specification of the whole
multiparty message protocol as a global type; from which (2) local types, describ-
ing the protocol from the perspective of each participant, are derived; these are
in turn used to (3) statically type check the I/O actions of endpoint programs
implementing the session participants. A well-typed system of session endpoint
programs enjoys important safety and liveness properties, such as no reception
errors (only expected messages are received) and session progress. A basic intu-
ition behind MPSTs is that the design (i.e., restrictions) of the type language
constitutes a class of distributed protocols for which these properties can be
statically guaranteed by the type system.

Unfortunately, no MPST work supports protocols for asynchronous dis-
tributed programs dealing with partial failures due to process crashes, so the
aforementioned properties no longer hold in such an event. Several MPST works
have treated communication patterns based on exception messages (or inter-
rupts) [6,7,16]. In these works, such messages may convey exceptional states
in an application sense; from a protocol compliance perspective, however, these
messages are the same as any other message communicated during a normal
execution of the session. This is in contrast to process failures, which may inval-
idate already in-transit (orphan) messages, and where the task of agreeing on
the concerted handling of a crash failure is itself prone to such failures.

Outside of session types and other type-based approaches, there have been a
number of advances on verifying fault tolerant distributed protocols and appli-
cations (e.g., based on model checking [29], proof assistants [44]); however, little
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work exists on providing direct compile-time support for programming such
applications in the spirit of MPSTs.

Contributions and Challenges. This paper puts forward a new typing discipline
for safe specification and implementation of distributed programs prone to pro-
cess crash failures based on MPSTs. The following summarizes the key challenges
and contributions.

Multiparty session calculus with coordination service. We develop an
extended multiparty session calculus as a formal model of processes prone
to crash failures in asynchronous message passing systems. Unlike standard
session calculi that reflect only “minimal” networking infrastructures, our
model introduces a practically-motivated coordinator artifact and explicit,
asynchronous messages for run-time crash notifications and failure handling.

MPSTs with explicit failure handling. We introduce new global and local
type constructs for explicit failure handling, designed for specifying protocols
tolerating partial failures. Our type system carefully reworks many of the
key elements in standard MPSTs to manage the intricacies of handling crash
failures. These include the well-formedness of failure-prone global types, and
the crucial coherence invariant on MPST typing environments to reflect the
notion of system consistency in the presence of crash failures and the resulting
errors. We show safety and progress for a well-typed MPST session despite
potential failures.

To fit our model to practice, we introduce programming constructs similar
to well-known and intuitive exception handling mechanisms, for handling con-
current and asynchronous process crash failures in sessions. These constructs
serve to integrate user-level session control flow in endpoint processes and the
underlying communications with the coordination service, used by the target
applications of our work to outsource critical failure management decisions (see
Fig. 1). It is important to note that the coordinator does not magically solve
all problems. Key design challenges are to ensure that communication with it
is fully asynchronous as in real-life, and that it is involved only in a “minimal”
fashion. Thus we treat the coordinator as a first-class, asynchronous network
artifact, as opposed to a convenient but impractical global “oracle” (cf. [6]),
and our operational semantics of multiparty sessions remains primarily chore-
ographic in the original spirit of distributed MPSTs, unlike works that resort
to a centralized orchestrator to conduct all actions [5,8]. As depicted in Fig. 1,
application-specific communication does not involve the coordinator. Our model
lends itself to common practical scenarios where processes monitor each other
in a peer-based fashion to detect failures, and rely on a coordinator only to
establish agreement on which processes have failed, and when.

A long version of this paper is available online [43]. The long version contains:
full formal definitions, full proofs, and a prototype implementation in Scala.

Example. As a motivating example, Fig. 2 gives a global formal specification for
a big data streaming task between a distributed file system (DFS) dfs, and two
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Fig. 1. Coordinator model for asyn-
chronous distributed systems. The coor-
dinator is implemented by replicated
processes (internals omitted).

Fig. 2. Global type for a big data
streaming task with failure han-
dling capabilities.

workers w1,2 . The DFS streams data to two workers, which process the data and
write the result back. Most DFSs have built-in fault tolerance mechanisms [20],
so we consider dfs to be robust, denoted by the annotation [[dfs]]; the workers,
however, may individually fail. In the try-handle construct t(...)h(...), the try-
block t(...) gives the normal (i.e., failure-free) flow of the protocol, and h(...)
contains the explicit handlers for potential crashes. In the try-block, the workers
receive data from the DFS (dfs→wi), perform local computations, and send back
the result (wi→dfs). If a worker crashes ({wi} : ...), the other worker will also take
over the computation of the crashed worker, allowing the system to still produce
a valid result. If both workers crash (by any interleaving of their concurrent
crash events), the global type specifies that the DFS should safely terminate its
role in the session.

We shall refer to this basic example, that focuses on the new failure handling
constructs, in explanations in later sections. We also give many further examples
throughout the following sections to illustrate the potential session errors due to
failures exposed by our model, and how our framework resolves them to recover
MPST safety and progress.

Roadmap. Section 2 describes the adopted system and failure model. Section 3
introduces global types for guiding failure handling. Section 4 introduces our pro-
cess calculus with failure handling capabilities and a coordinator. Section 5 intro-
duces local types, derived from global types by projection. Section 6 describes
typing rules, and defines coherence of session environments with respect to end-
point crashes. Section 7 states properties of our model. Section 8 discusses related
work. Sect. 9 draws conclusions.

2 System and Failure Model

In distributed systems care is required to avoid partial failures affecting liveness
(e.g., waiting on messages from crashed processes) or safety (e.g., when processes
manage to communicate with some peers but not others before crashing) prop-
erties of applications. Based on the nature of the infrastructure and application,
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appropriate system and failure models are chosen along with judiciously made
assumptions to overcome such impasses in practice.

We pinpoint the key characteristics of our model, according to our practical
motivations and standard distributed systems literature, that shape the design
choices we make later for the process calculus and types. As it is common we
augment our system with a failure detector (FD) to allow for distinguishing slow
and failed processes. The advantage of the FD (1) in terms of reasoning is that
it concentrates all assumptions to solve given problems and (2) implementation-
wise it yields a single main module where time-outs are set and used.
Concretely we make the following assumptions on failures and the system:

(1) Crash-stop failures: Application processes fail by crashing (halting), and
do not recover.

(2) Asynchronous system: Application processes and the network are asyn-
chronous, meaning that there are no upper bounds on processes’ relative
speeds or message transmission delays.

(3) Reliable communication: Messages transmitted between correct (i.e.,
non-failed) participants are eventually received.

(4) Robust coordinator: The coordinator (coordination service) is perma-
nently available.

(5) Asynchronous reliable failure detection: Application processes have
access to local FDs which eventually detect all failed peers and do not falsely
suspect peers.

(1)–(3) are standard in literature on fault-tolerant distributed systems [19].
Note that processes can still recover but will not do so within sessions (or

will not be re-considered for those). Other failure models, e.g., network parti-
tions [21] or Byzantine failures [32], are subject of future work. The former are
not tolerated by ZooKeeper et al., and the latter have often been argued to be
a too generic failure model (e.g., [3]).

The assumption on the coordinator (4) implicitly means that the number
of concomitant failures among the coordinator replicas is assumed to remain
within a minority, and that failed replicas are replaced in time (to tolerate fur-
ther failures). Without loss of validity, the coordinator internals can be treated
as a blackbox. The final assumption (5) on failure detection is backed in practice
by the concept of program-controlled crash [10], which consists in communicat-
ing decisions to disregard supposedly failed processes also to those processes,
prompting them to reset themselves upon false suspicion. In practice systems
can be configured to minimize the probability of such events, and by a “two-
level” membership consisting in evicting processes from individual sessions (cf.
recovery above) more quickly than from a system as a whole; several authors
have also proposed network support to entirely avoid false suspicions (e.g., [33]).

These assumptions do not make handling of failures trivial, let alone mask
them. For instance, the network can arbitrarily delay messages and thus reorder
them with respect to their real sending times, and (so) different processes can
detect failures at different points in time and in different orders.
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Fig. 3. Syntax of global types with explicit handling of partial failures.

3 Global Types for Explicit Handling of Partial Failures

Based on the foundations of MPSTs, we develop global types to formalize spec-
ifications of distributed protocols with explicit handling of partial failures due
to role crashes, simply referred to as failures. We present global types before
introducing the process calculus to provide a high-level intuition of how failure
handling works in our model.

The syntax of global types is depicted in Fig. 3. We use the following base
notations: p, q , ... for role (i.e., participant) names; l1, l2, ... for message labels;
and t , t ′, ... for type variables. Base types S may range over, bool, int, etc.

Global types are denoted by G. We first summarize the constructs from
standard MPST [15,24]. A branch type p → q{li(Si).Gi}i∈I means that p can
send to q one of the messages of type Sk with label lk, where k is a member of the
non-empty index set I. The protocol then proceeds according to the continuation
Gk. When I is a singleton, we may simply write p→q l(S).G. We use t for type
variables and take an equi-recursive view, i.e., μt .G and its unfolding [μt .G/t ]
are equivalent. We assume type variable occurrences are bound and guarded
(e.g., μt .t is not permitted). end is for termination.

We now introduce our extensions for partial failure handling. A try-handle
t(G1)h(H )κ.G2 describes a “failure-atomic” protocol unit: all live (i.e., non-
crashed) roles will eventually reach a consistent protocol state, despite any con-
current and asynchronous role crashes. The try-block G1 defines the default
protocol flow, and H is a handling environment. Each element of H maps a han-
dler signature F , that specifies a set of failed roles {pi}i∈I , to a handler body
specified by a G. The handler body G specifies how the live roles should proceed
given the failure of roles F . The protocol then proceeds (for live roles) according
to the continuation G2 after the default block G1 or failure handling defined in
H has been completed as appropriate.

To simplify later technical developments, we annotate each try-handle term
in a given G by a unique κ ∈ N that lexically identifies the term within G. These
annotations may be assigned mechanically. As a short hand, we refer to the try-
block and handling environment of a particular try-handle by its annotation;
e.g., we use κ to stand for t(G1)h(H )κ. In the running examples (e.g., Fig. 2), if
there exists only one try-handle, we omit κ for simplicity.

Top-Level Global Types and Robust Roles. We use the term top-level global type
to mean the source protocol specified by a user, following a typical top-down
interpretation of MPST frameworks [15,24]. We allow top-level global types to
be optionally annotated [[p̃]]G, where [[p̃]] specifies a set of robust roles—i.e., roles
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that can be assumed to never fail. In practice, a participant may be robust if
it is replicated or is made inherently fault tolerant by other means (e.g., the
participant that represents the distributed file system in Fig. 2).

Well-Formedness. The first stage of validation in standard MPSTs is to check
that the top-level global type satisfies the supporting criteria used to ensure the
desired properties of the type system. We first list basic syntactic conditions
which we assume on any given G: (i) each F is non-empty; (ii) a role in a F
cannot occur in the corresponding handler body (a failed role cannot be involved
in the handling of its own failure); and (iii) every occurrence of a non-robust
role p must be contained within a, possibly outer, try-handle that has a handler
signature {p} (the protocol must be able to handle its potential failure). Lastly,
to simplify the presentation without loss of generality, we impose that separate
branch types not defined in the same default block or handler body must have
disjoint label sets. This can be implicitly achieved by combining label names
with try-handle annotations.

Assuming the above, we define well-formedness for our extended global types.
We write G′ ∈ G to mean that G′ syntactically occurs in G (∈ is reflexive); sim-
ilarly for the variations κ ∈ G and κ ∈ κ′. Recall κ is shorthand for t(G1)h(H )κ.
We use a lookup function outerG(κ) for the set of all try-handles in G that enclose
a given κ, including κ itself, defined by outerG(κ) = {κ′ | κ ∈ κ′ ∧ κ′ ∈ G}.

Definition 1 (Well-formedness). Let κ stand for t(G1)h(H )κ, and κ′ for
t(G′

1)h(H ′)κ′
. A global type G is well-formed if both of the following conditions

hold. For all κ ∈ G:

1. ∀F1 ∈ dom(H ).∀F2 ∈ dom(H ).∃κ′ ∈ outerG(κ) s.t. F1 ∪ F2 ∈ dom(H ′)
2. �F ∈ dom(H ).∃κ′ ∈ outerG(κ).∃F ′ ∈ dom(H ′) s.t. κ′ �= κ ∧ F ′ ⊆ F

The first condition asserts that for any two separate handler signatures of
a handling environment of κ, there always exists a handler whose handler sig-
nature matches the union of their respective failure sets – this handler is either
inside the handling environment of κ itself, or in the handling environment of
an outer try-handle. This ensures that if roles are active in different handlers of
the same try-handle then there is a handler whose signature corresponds to the
union over the signatures of those different handlers. Example 2 together with
Example 3 in Sect. 4 illustrate a case where this condition is needed. The second
condition asserts that if the handling environment of a try-handle contains a
handler for F , then there is no outer try-handle with a handler for F ′ such that
F ′ ⊆ F . The reason for this condition is that in the case of nested try-handles,
our communication model allows separate try-handles to start failure handling
independently (the operational semantics will be detailed in the next section; see
(TryHdl) in Fig. 6). The aim is to have the relevant roles eventually converge on
performing the handling of the outermost try-handle, possibly by interrupting
the handling of an inner try-handle. Consider the following example:
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Example 1. G = t(t(G′)h({p1 , p2} : G1)2)h({p1} : G′
1)

1 violates condition 2
because, when p1 and p2 both failed, the handler signature {p1} will still be
triggered (i.e., the outer try-handle will eventually take over). It is not sensible
to run G′

1 instead of G1 (which is for the crashes of p1 and p2 ).

Fig. 4. Challenges under pure asynchronous interactions with a coordinator. Between
time (1) and time (2), the task φ = (κ, ∅) is interrupted by the crash of Pa. Between
time (3) and time (4), due to asynchrony and multiple crashes, Pc starts handling the
crash of {Pa, Pd} without handling the crash of {Pa}. Finally after (4) Pb and Pc finish
their common task.

4 A Process Calculus for Coordinator-Based Failure
Handling

Figure 4 depicts a scenario that can occur in practical asynchronous systems
with coordinator-based failure handling through frameworks such as ZooKeeper
(Sect. 2). Using this scenario, we first illustrate challenges, formally define our
model, and then develop a safe type system.

The scenario corresponds to a global type of the form t(G)h({Pa} :
Ga, {Pa, Pd} : Gad, ...)κ, with processes Pa..d and a coordinator Ψ . We define
a task to mean a unit of interactions, which includes failure handling behav-
iors. Initially all processes are collaborating on a task φ, which we label (κ, ∅)
(identifying the task context, and the set of failed processes). The shaded boxes
signify which task each process is working on. Dotted arrows represent notifica-
tions between processes and Ψ related to task completion, and solid arrows for
failure notifications from Ψ to processes. During the scenario, Pa first fails, then
Pd fails: the execution proceeds through failure handling for {Pa} and {Pa, Pd}.

(I) When Pb reaches the end of its part in φ, the application has Pb notify
Ψ . Pb then remains in the context of φ (the continuation of the box after
notifying) in consideration of other non-robust participants still working
on φ—Pb may yet need to handle their potential failure(s).
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Fig. 5. Grammar for processes, applications, systems, and evaluation contexts.

(II) The processes of synchronizing on the completion of a task or performing
failure handling are themselves subject to failures that may arise concur-
rently. In Fig. 4, all processes reach the end of φ (i.e., four dotted arrows
from φ), but Pa fails. Ψ determines this failure and it initiates failure
handling at time (1), while done notifications for φ continue to arrive
asynchronously at time (2). The failure handling for crash of Pa is itself
interrupted by the second failure at time (3).

(III) Ψ can receive notifications that are no longer relevant. For example, at
time (2), Ψ has received all done notifications for φ, but the failure of Pa

has already triggered failure handling from time (1).
(IV) Due to multiple concurrent failures, interacting participants may end up

in different tasks: around time (2), Pb and Pd are in task φ′ = (κ, {Pa}),
whereas Pc is still in φ (and asynchronously sending or receiving messages
with the others). Moreover, Pc never executes φ′ because of delayed noti-
fications, so it goes from φ directly to (κ, {Pa, Pd}).

Processes. Figure 5 defines the grammar of processes and (distributed) applica-
tions. Expressions e, ei, .. can be values v, vi, ..., variables x, xi, ..., and standard
operations. (Application) processes are denoted by P, Pi, .... An initialization
a[p](y).P agrees to play role p via shared name a and takes actions defined in P ;
actions are executed on a session channel c : η, where c ranges over s[p] (session
name and role name) and session variables y; η represents action statements.

A try-handle t(η)h(H)φ attempts to execute the local action η, and can handle
failures occurring therein as defined in the handling environment H, analogously
to global types. H thus also maps a handler signature F to a handler body η
defining how to handle F . Annotation φ = (κ, F ) is composed of two elements:
an identity κ of a global try-handle, and an indication of the current handler sig-
nature which can be empty. F = ∅ means that the default try-block is executing,
whereas F �= ∅ means that the handler body for F is executing. Term 0 only
occurs in a try-handle during runtime. It denotes a yielding for a notification
from a coordinator (introduced shortly).

Other statements are similar to those defined in [15,24]. Term 0 represents
an idle action. For convention, we omit 0 at the end of a statement. Action
p! l(e).η represents a sending action that sends p a label l with content e, then
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it continues as η. Branching p?{li(xi).ηi}i∈I represents a receiving action from p
with several possible branches. When label lk is selected, the transmitted value
v is saved in xk, and ηk{v/xk} continues. For convenience, when there is only
one branch, the curly brackets are omitted, e.g., c : p?l(x).P means there is only
one branch l(x). X〈e〉 is for a statement variable with one parameter e, and
def D in η is for recursion, where declaration D defines the recursive body that
can be called in η. The conditional statement is standard.

The structure of processes ensures that failure handling is not interleaved
between different sessions. However, we note that in standard MPSTs [15,24],
session interleaving must anyway be prohibited for the basic progress property.
Since our aim will be to show progress, we disallow session interleaving within
process bodies. Our model does allow parallel sessions at the top-level, whose
actions may be concurrently interleaved during execution.

(Distributed) Systems. A (distributed) system in our programming framework
is a composition of an application, which contains more than one process, and
a coordinator (cf. Fig. 1). A system can be running within a private session s,
represented by (νs)S, or S | S ′ for systems running in different sessions indepen-
dently and in parallel (i.e., no session interleaving). The job of the coordinator
is to ensure that even in the presence of failures there is consensus on whether
all participants in a given try-handle completed their local actions, or whether
failures need to be handled, and which ones. We use Ψ = G : (F, d) to denote
a (robust) coordinator for the global type G, which stores in (F, d) the fail-
ures F that occurred in the application, and in d done notifications sent to the
coordinator. The coordinator is denoted by ψ when viewed as a role.

A (distributed) application1 is a process P , a parallel composition N |N ′, or
a global queue carrying messages s : h. A global queue s : h carries a sequence
of messages m, sent by participants in session s. A message is either a regular
message 〈p, q , l(v)〉 with label l and content v sent from p to q or a notifica-
tion. A notification may contain the role of a coordinator. There are done and
failure notifications with two kinds of done notifications dn used for coordina-
tion: 〈p, ψ〉φ notifies ψ that p has finished its local actions of the try-handle
φ; 〈ψ, p〉φ is sent from ψ to notify p that ψ has received all done notifications
for the try-handle φ so that p shall end its current try-handle and move to its
next task. For example, in Fig. 4 at time (4) the coordinator will inform Pb and
Pc via 〈ψ,Pb〉(κ,{Pa,Pd}).〈ψ,Pc〉(κ,{Pa,Pd}) that they can finish the try-handle
(κ, {Pa, Pd}). Note that the appearance of 〈ψ, p〉φ implies that the coordina-
tor has been informed that all participants in φ have completed their local
actions. We define two kinds of failure notifications: 〈[ψ, crash F ]〉 notifies ψ
that F occurred, e.g., {q} means q has failed; 〈[p, crash F ]〉 is sent from ψ to
notify p about the failure F for possible handling. We write 〈[p̃, crash F ]〉, where
p̃ = p1 , ..., pn short for 〈[p1 , crash F ]〉 · ... · 〈[pn , crash F ]〉; similarly for 〈ψ, p̃〉φ.

1 Other works use the term network which is the reason why we use N instead of,
e.g., A. We call it application to avoid confusion with the physical network which
interconnects all processes as well as the coordinator.
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Fig. 6. Operational semantics of distributed applications, for local actions.

Following the tradition of other MPST works the global queue provides an
abstraction for multiple FIFO queues, each queue being between two endpoints
(cf. TCP) with no global ordering. Therefore mi ·mj can be permuted to mj ·mi

in the global queue if the sender or the receiver differ. For example the following
messages are permutable: 〈p, q , l(v)〉 · 〈p, q ′, l(v)〉 if q �= q′ and 〈p, q , l(v)〉 · 〈ψ, p〉φ

and 〈p, q , l(v)〉 · 〈[q , crash F ]〉. But 〈ψ, p〉φ · 〈[p, crash F ]〉 is not permutable, both
have the same sender and receiver (ψ is the sender of 〈[p, crash F ]〉).

Basic Dynamic Semantics for Applications. Figure 6 shows the operational
semantics of applications. We use evaluation contexts as defined in Fig. 5. Con-
text E is either a hole [ ], a default context t(E)h(H)φ.η, or a recursion context
def D in E. We write E[η] to denote the action statement obtained by filling the
hole in E[·] with η.

Rule (Link) says that (local) processes who agree on shared name a, obeying
to some protocol (global type), playing certain roles pi represented by a[pi ](yi).P ,
together will start a private session s; this will result in replacing every variable
yi in Pi and, at the same time, creating a new global queue s : ∅, and appointing
a coordinator G : (∅, ∅), which is novel in our work.

Rule (Snd) in Fig. 6 reduces a sending action q! l(e) by emitting a message
〈p, q , l(v)〉 to the global queue s : h. Rule (Rcv) reduces a receiving action
if the message arriving at its end is sent from the expected sender with an
expected label. Rule (Rec) is for recursion. When the recursive body, defined
inside η, is called by X〈e〉 where e is evaluated to v, it reduces to the statement
η{v/x} which will again implement the recursive body. Rule (Str) says that
processes which are structurally congruent have the same reduction. Processes,
applications, and systems are considered modulo structural congruence, denoted
by ≡, along with α-renaming. Rule (Par) and (Str) together state that a parallel
composition has a reduction if its sub-application can reduce. Rule (Sys) states
that a system has a reduction if its application has a reduction, and (New)
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says a reduction can proceed under a session. Rule (Crash) states that a process
on channel s[p] can fail at any point in time. (Crash) also adds a notification
〈[ψ, crash F ]〉 which is sent to ψ (the coordinator). This is an abstraction for
the failure detector described in Sect. 2 (5), the notification 〈[ψ, crash F ]〉 is the
first such notification issued by a participant based on its local failure detector.
Adding the notification into the global queue instead of making the coordinator
immediately aware of it models that failures are only detected eventually. Note
that a failure is not annotated with a level because failures transcend all levels,
and asynchrony makes it impossible to identify “where” exactly they occurred.
As a failure is permanent it can affect multiple try-handles. The (Crash) rule
does not apply to participants which are robust, i.e., that conceptually cannot fail
(e.g., dfs in Fig. 2). Rule (Crash) removes channel s[p] (the failed process) from
application N , and removes messages and notifications delivered from, or heading
to, the failed p by function remove(h, p). Function remove(h, p) returns a new
queue after removing all regular messages and notifications that contain p, e.g.,
let h = 〈p2 , p1 , l(v)〉 · 〈p3 , p2 , l′(v′)〉 · 〈p3 , p4 , l′(v′)〉 · 〈p2 , ψ〉φ · 〈[p2 , crash {p3}]〉 ·
〈ψ, p2 〉φ then remove(h, p2 ) = 〈p3 , p4 , l′(v′)〉. Messages are removed to model
that in a real system send/receive does not constitute an atomic action.

Handling at Processes. Failure handling, defined in Fig. 7, is based on the obser-
vations that (i) a process that fails stays down, and (ii) multiple processes
can fail. As a consequence a failure can trigger multiple failure handlers either
because these handlers are in different (subsequent) try-handles or because of
additional failures. Therefore a process needs to retain the information of who
failed. For simplicity we do not model state at processes, but instead processes
read but do not remove failure notifications from the global queue. We define
Fset(h, p) to return the union of failures for which there are notifications head-
ing to p, i.e., 〈[p, crash F ]〉, issued by the coordinator in queue h up to the first
done notification heading to p:

Definition 2 (Union of Existing Failures Fset(h, p))

Fset(∅, p) = ∅ Fset(h, p) =

⎧

⎪

⎨

⎪

⎩

F ∪ Fset(h′, p) if h = 〈[p, crash F ]〉 · h′

∅ if h = 〈ψ, p〉φ · h′

Fset(h′, p) otherwise

In short, if the global queue is ∅, then naturally there are no failure notifications.
If the global queue contains a failure notification sent from the coordinator, say
〈[p, crash F ]〉, we collect the failure. If the global queue contains done notification
〈ψ, p〉φ sent from the coordinator then all participants in φ have finished their
local actions, which implies that the try-handle φ can be completed. Our failure
handling semantics, (TryHdl), allows a try-handle φ = (κ, F ) to handle different
failures or sets of failures by allowing a try-handle to switch between different
handlers. F thus denotes the current set of handled failures. For simplicity we
refer to this as the current(ly handled) failure set. This is a slight abuse of
terminology, done for brevity, as obviously failures are only detected with a



A Typing Discipline for Statically Verified Crash Failure Handling 811

Fig. 7. Operational semantics of distributed applications, for endpoint handling.

certain lag. The handling strategy for a process is to handle the—currently—
largest set of failed processes that this process has been informed of and is
able to handle. This largest set is calculated by ∪{A | A ∈ dom(H) ∧ F ⊂ A ⊆
Fset(h, p)}, that selects all failure sets which are larger than the current one (A ∈
dom(H) ∧ F ⊂ A) if they are also triggered by known failures (A ⊆ Fset(h, p)).
Condition F ′ : η′ ∈ H in (TryHdl) ensures that there exists a handler for F ′. The
following example shows how (TryHdl) is applied to switch handlers.

Example 2. Take h such that Fset(h, p) = {p1} and H = {p1} : η1, {p2} :
η2, {p1, p2} : η12 in process P = s[p] : t(η1)h(H)(κ,{p1}), which indicates that
P is handling failure {p1}. Assume now one more failure occurs and results in a
new queue h′ such that Fset(h′, p) = {p1, p2}. By (TryHdl), the process acting at
s[p] is handling the failure set {p1, p2} such that P = s[p] : t(η12)h(H)(κ,{p1,p2})

(also notice the η12 inside the try-block). A switch to only handling {p2} does
not make sense, since, e.g., η2 can contain p1. Figure 2 shows a case where the
handling strategy differs according to the number of failures.

In Sect. 3 we formally define well-formedness conditions, which guarantee that
if there exist two handlers for two different handler signatures in a try-handle,
then a handler exists for their union. The following example demonstrates why
such a guarantee is needed.

Example 3. Assume a slightly different P compared to the previous examples
(no handler for the union of failures): P = s[p] : E[t(η)h(H)(κ,∅)] with H =
{p1} : η1, {p2} : η2. Assume also that Fset(h, p) = {p1, p2}. Here (TryHdl) will
not apply since there is no failure handling for {p1, p2} in P . If we would allow
a handler for either {p1} or {p2} to be triggered we would have no guarantee
that other participants involved in this try-handle will all select the same failure
set. Even with a deterministic selection, i.e., all participants in that try-handle
selecting the same handling activity, there needs to be a handler with handler
signature = {p1, p2} since it is possible that p1 is involved in η2. Therefore the
type system will ensure that there is a handler for {p1, p2} either at this level or
at an outer level.
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(I) explains that a process finishing its default action (Pb) cannot leave its
current try-handle (κ, ∅) immediately because other participants may fail (Pa

failed). Below Eq. 1 also shows this issue from the perspective of semantics:

s[p] : t(0)h(F :q!l(10).q?l′(x))(κ,∅).η′ | s[q ] : t(p?l(x′).p!l′(x′ + 10))h(H )(κ,F ).η′′

| s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉 · h
(1)

In Eq. 1 the process acting on s[p] ended its try-handle (i.e., the action is 0 in
the try-block), and if s[p] finishes its try-handle the participant acting on s[q ]
which started handling F would be stuck.

To solve the issue, we use (SndDone) and (RcvDone) for completing a local
try-handle with the help of a coordinator. The rule (SndDone) sends out a
done notification 〈p, ψ〉φ if the current action in φ is 0 and sets the action to 0,
indicating that a done notification from the coordinator is needed for ending the
try-handle.

Assume process on channel s[p] finished its local actions in the try-block (i.e.,
as in Eq. 1 above), then by (SndDone), we have

(1) → s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉 · 〈p, ψ〉(κ,∅) · h |
s[p] : t(0)h(F :q!l(10).q?l′(x))(κ,∅).η′ | s[q ] : t(p?l(x′).p!l′(x′ + 10))h(H )(κ,F ).η′′

where notification 〈p, ψ〉(κ,∅) is added to inform the coordinator. Now the process
on channel s[p] can still handle failures defined in its handling environment. This
is similar to the case described in (II).

Rule (RcvDone) is the counterpart of (SndDone). Once a process receives a
done notification for φ from the coordinator it can finish the try-handle φ and
reduces to the continuation η. Consider Eq. 2 below, which is similar to Eq. 1 but
we take a case where the try-handle can be reduced with (RcvDone). In Eq. 2
(SndDone) is applied:

s[p] :t(0)h(F :q!l(10).q?l′(x))(κ,∅).η′ |
s[q ] :t(0)h(F :p?l(x′).p!l′(x′ + 10))(κ,∅).η′′ | s : h (2)

With h = 〈ψ, q〉(κ,∅) · 〈ψ, p〉(κ,∅) · 〈[q , crash F ]〉 · 〈[p, crash F ]〉 both processes
can apply (RcvDone) and safely terminate the try-handle (κ, ∅). Note that
Fset(h, p) = Fset(h, q) = ∅ (by Definition 2), i.e., rule (TryHdl) can not be
applied since a done notification suppresses the failure notification. Thus Eq. 2
will reduce to:

(2) →∗ s[p] : η′ | s[q ] : η′′ | s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉

It is possible that η′ or η′′ have handlers for F . Note that once a queue
contains 〈ψ, p〉(κ,∅), all non-failed process in the try-handle (κ, ∅) have sent done
notifications to ψ (i.e. applied rule (SndDone)). The coordinator which will be
introduced shortly ensures this.
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Fig. 8. Operational semantics for the coordinator.

Rule (Cln) removes a normal message from the queue if the label in the mes-
sage does not exist in the target process, which can happen when a failure handler
was triggered. The function labels(η) returns all labels of receiving actions in η
which are able to receive messages now or possible later. This removal based
on the syntactic process is safe because in a global type separate branch types
not defined in the same default block or handler body must have disjoint sets of
labels (c.f., Sect. 3). Let φ ∈ P if try-handle φ appears inside P . Rule (ClnDone)
removes a done notification of φ from the queue if no try-handle φ exists, which
can happen in case of nesting when a handler of an outer try-handle is triggered.

Handling at Coordinator. Figure 8 defines the semantics of the coordinator. We
firstly give the auxiliary definition of roles(G) which gives the set of all roles
appearing in G.

In rule (F), F represents the failures that the coordinator is aware of. This rule
states that the coordinator collects and removes a failure notification 〈[ψ, crash p]〉
heading to it, retains this notification by G : (F ′, d), F ′ = F ∪ {p}, and issues
failure notifications to all non-failed participants.

Rules (CollectDone, IssueDone), in short inform all participants in φ =
(κ, F ) to finish their try-handle φ if the coordinator has received sufficient done
notifications of φ and did not send out failure notifications that interrupt the task
(κ, F ) (e.g. see (III)). Rule (CollectDone) collects done notifications, i.e., 〈p, ψ〉φ,
from the queue and retains these notification; they are used in (IssueDone). For
introducing (IssueDone), we first introduce hdl(G, (κ, F )) to return a set of
handler signatures which can be triggered with respect to the current handler:

Definition 3. hdl(G, (κ, F )) = dom(H ) \ P(F ) if t(G0)h(H )κ ∈ G where P(F )
represents a powerset of F .

Also, we abuse the function roles to collect the non-coordinator roles of φ in
d, written roles(d, φ); similarly, we write roles(G,φ) where φ = (κ, F ) to collect
the roles appearing in the handler body F in the try-handle of κ in G. Remember
that d only contains done notifications sent by participants.

Rule (IssueDone) is applied for some φ when conditions ∀F ′ ∈
hdl(G,φ).(F ′ �⊆ F ) and roles(d, φ) ⊇ roles(G,φ) \ F are both satisfied, where F
contains all failures the coordinator is aware of. Intuitively, these two conditions
ensure that (1) the coordinator only issues done notifications to the participants
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in the try-handle φ if it did not send failure notifications which will trigger a
handler of the try-handle φ; (2) the coordinator has received all done notifica-
tions from all non-failed participants of φ. We further explain both conditions
in the following examples, starting from condition ∀F ′ ∈ hdl(G,φ).(F ′ �⊆ F ),
which ensures no handler in φ can be triggered based on the failure notifications
F sent out by the coordinator.

Example 4. Assume a process playing role pi is Pi = s[pi] : t(ηi)h(Hi)φi . Where
i ∈ {1, 2, 3} and Hi = {p2} : ηi2, {p3} : ηi3, {p2, p3} : ηi23 and the coordinator
is G : ({p2, p3}, d) where t(...)h(H )κ ∈ G and dom(H ) = dom(Hi) for any
i ∈ {1, 2, 3} and d = 〈p1 , ψ〉(κ,{p2}) · 〈p1 , ψ〉(κ,{p2,p3}) · d′. For any φ in d, the
coordinator checks if it has issued any failure notification that can possibly
trigger a new handler of φ:

1. For φ = (κ, {p2}) the coordinator issued failure notifications that can inter-
rupt a handler since

hdl(G, (κ, {p2})) = dom(H ) \ P({p2}) = {{p3}, {p2, p3}}
and {p2, p3} ⊆ {p2, p3}. That means the failure notifications issued by the
coordinator, i.e., {p2, p3}, can trigger the handler with signature {p2, p3}.
Thus the coordinator will not issue done notifications for φ = (κ, {p2}). A
similar case is visualized in Fig. 4 at time (2).

2. For φ = (κ, {p2, p3}) the coordinator did not issue failure notifications that
can interrupt a handler since

hdl(G, (κ, {p2, p3})) = dom(H ) \ P({p2, p3}) = ∅
so that ∀F ′ ∈ hdl(G, (κ, {p2, p3})).(F ′ �⊆ {p2, p3}) is true. The coordinator
will issue done notifications for φ = (κ, {p2, p3}).

Another condition roles(d, φ) ⊇ roles(G,φ) \ F states that only when the
coordinator sees sufficient done notifications (in d) for φ, it issues done notifi-
cations to all non-failed participants in φ, i.e., 〈ψ, roles(G , φ) \ F 〉φ. Recall that
roles(d, φ) returns all roles which have sent a done notification for the handling of
φ and roles(G,φ) returns all roles involving in the handling of φ. Intuitively one
might expect the condition to be roles(d, φ) = roles(G,φ); the following example
shows why this would be wrong.

Example 5. Consider a process P acting on channel s[p] and {q} �∈ dom(H):

P = s[p] : t(...t(...)h({q} :η,H′)φ′
.η′)h(H)φ

Assume P has already reduced to:

P = s[p] : t(0)h(H)φ

We show why roles(d, φ) ⊇ roles(G,φ) \F is necessary. We start with the simple
cases and then move to the more involving ones.
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Fig. 9. The grammar of local types.

(a) Assume q did not fail, the coordinator is G : (∅, d), and all roles in φ issued
a done notification. Then roles(d, φ) = roles(G,φ) and F = ∅.

(b) Assume q failed in the try-handle φ′, the coordinator is G : ({q}, d), and
all roles except q in φ issued a done notification. roles(d, φ) �= roles(G,φ)
however roles(d, φ) = roles(G,φ) \ {q}. Cases like this are the reason why
(IssueDone) only requires done notifications from non-failed roles.

(c) Assume q failed after it has issued a done notification for φ (i.e., q finished
try-handle φ′) and the coordinator collected it (by (CollectDone)), so we
have G : ({q}, d) and q ∈ roles(d, φ). Then roles(d, φ) ⊃ roles(G,φ) \ {q}.
i.e. (IssueDone) needs to consider done notifications from failed roles.

Thus rule (IssueDone) has the condition roles(d, φ) ⊇ roles(G,φ) \F because of
cases like (b) and (c).

The interplay between issuing of done notification (IssueDone) and issuing
of failure notifications (F) is non-trivial. The following proposition clarifies that
the participants in the same try-handle φ will never get confused with handling
failures or completing the try-handle φ.

Proposition 1. Given s : h with h = h′ · 〈ψ, p〉φ · h′′ and Fset(h, p) �= ∅, the
rule (TryHdl) is not applicable for the try-handle φ at the process playing role p.

5 Local Types

Figure 9 defines local types for typing behaviors of endpoint processes with failure
handling. Type p! is the primitive for a sending type, and p? is the primitive for
a receiving type, derived from global type p → q{li(Si).Gi}i∈I by projection.
Others correspond straightforwardly to process terms. Note that type end only
appears in runtime type checking. Below we define G�p to project a global type
G on p, thus generating p’s local type.

Definition 4 (Projection). Consider a well-formed top-level global type [[q̃ ]]G.
Then G�p is defined as follows:

(1) G�p where G = t(G0)h(F1 :G1, ..., Fn :Gn)κ.G′ =
{

t(G0�p)h(F1 :G1�p, ..., Fn :Gn�p)(κ,∅).G′�p if p ∈ roles(G)
G′�p otherwise

(2) p1 → p2{li(Si).Gi}i∈I�p =

⎧

⎨

⎩

p2!{li(Si).Gi�p}i∈I if p = p1

p1?{li(Si).Gi�p}i∈I if p = p2

G1�p if ∀i, j ∈ I.Gi�p = Gj�p
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(3) (μt .G)�p = μt .(G�p) if � ∃t(G′)h(H ) ∈ G and G�p �= t ′ for any t ′

(4) t�p = t (5) end�p = end

Otherwise it is undefined.

The main rule is (1): if p appears somewhere in the target try-handle global
type then the endpoint type has a try-handle annotated with κ and the default
logic (i.e., F = ∅). Note that even if G0�p = end the endpoint still gets such a
try-handle because it needs to be ready for (possible) failure handling; if p does
not appear anywhere in the target try-handle global type, then the projection
skips to the continuation.

Rule (2) produces local types for interaction endpoints. If the endpoint is a
sender (i.e., p = p1), then its local type abstracts that it will send something from
one of the possible internal choices defined in {li(Si)}i∈I to p2, then continue as
Gk�p, gained from the projection, if k ∈ I is chosen. If the endpoint is a receiver
(i.e., p = p2), then its local type abstracts that it will receive something from
one of the possible external choices defined in {li(Si)}i∈I sent by p1; the rest is
similarly as for the sender. However, if p is not in this interaction, then its local
type starts from the next interaction which p is in; moreover, because p does
not know what choice that p1 has made, every path Gi�p lead by branch li shall
be the same for p to ensure that interactions are consistent. For example, in
G = p1 → p2{l1(S1).p3 → p1 l3(S), l2(S2).p3 → p1 l4(S)}, interaction p3 → p1

continues after p1 → p2 takes place. If l3 �= l4, then G is not projectable for p3

because p3 does not know which branch that p1 has chosen; if p1 chose branch
l1, but p3 (blindly) sends out label l4 to p1, for p1 it is a mistake (but it is
not a mistake for p3) because p1 is expecting to receive label l3. To prevent
such inconsistencies, we adopt the projection algorithm proposed in [24]. Other
session type works [17,39] provide ways to weaken the classical restriction on
projection of branching which we use.

Rule (3) forbids a try-handle to appear in a recursive body, e.g., μt .
t(G)h(F : t)κ.G is not allowed, but t(μt .G)h(H )κ and t(G)h(F : μt .G′,H )κ are
allowed. This is because κ is used to avoid confusion of messages from different
try-handles. If a recursive body contains a try-handle, we have to dynamically
generate different levels to maintain interaction consistency, so static type check-
ing does not suffice. We are investigating alternative runtime checking mecha-
nisms, but this is beyond the scope of this paper. Other rules are straightforward.

Example 6. Recall the global type G from Fig. 2 in Sect. 1. Applying projection
rules defined in Definition 4 to G on every role in G we obtain the following:

Tdfs = G�dfs = t(μt .w1 !ld1(S).w2 !ld2(S).w1 ?lr1(S
′).w2 ?lr2(S

′).t)h(Hdfs)(1,∅)

Hdfs = {w1} :μt ′.w2 !l′d1
(S).w2 ?l′r1

(S′).t ′,
{w2} :μt ′′.w1 !l′d2

(S).w1 ?l′r2
(S′).t ′′, {w1 ,w2} :end

Tw1 = G�w1 = t(μt .dfs?ld1(S).dfs!lr1(S
′).t)h(Hw1 )

(1,∅)

Hw1 = {w1} :end, {w2} :μt ′.dfs?l′d2
(S).dfs!l′r2

(S′).t ′, {w1 ,w2} :end

Tw2 = G�w2 = t(μt .dfs?ld2(S).dfs!lr2(S
′).t)h(Hw2 )

(1,∅)

Hw2 = {w1} :μt ′′.dfs?l′d1
(S).dfs!l′r1

(S′).t ′′, {w2} :end, {w1 ,w2} :end
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Fig. 10. Typing rules for processes

6 Type System

Next we introduce our type system for typing processes. Figures 10 and 11 present
typing rules for endpoints processes, and typing judgments for applications and
systems respectively.

We define shared environments Γ to keep information on variables and the
coordinator, and session environments Δ to keep information on endpoint types:

Γ ::= ∅ |Γ,X : S T |Γ, x : S |Γ, a : G |Γ,Ψ Δ ::= ∅ |Δ, c : T |Δ, s : h
m ::= 〈p, q , l(S)〉 | 〈[p, crash F ]〉 | 〈p, q〉φ h ::= ∅ | h · m

Γ maps process variables X and content variables x to their types, shared names
a to global types G, and a coordinator Ψ = G : (F, d) to failures and done
notifications it has observed. Δ maps session channels c to local types and session
queues to queue types. We write Γ, Γ ′ = Γ∪Γ ′ when dom(Γ )∩dom(Γ ′) = ∅; same
for Δ,Δ′. Queue types h are composed of message types m. Their permutation is
defined analogously to the permutation for messages. The typing judgment for
local processes Γ � P � Δ states that process P is well-typed by Δ under Γ .

Since we do not define sequential composition for processes, our type sys-
tem implicitly forbids session interleaving by �T-ini�. This is different from
other session type works [15,24], where session interleaving is prohibited for the
progress property; here the restriction is inherent to the type system.

Figure 10 lists our typing rules for endpoint processes. Rule �T-ini� says
that if a process’s set of actions is well-typed by G�p on some c, this process can
play role p in a, which claims to have interactions obeying behaviors defined in
G. 〈G〉 means that G is closed, i.e., devoid of type variables. This rule forbids
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Fig. 11. Typing rules for applications and systems.

a[p].b[q ].P because a process can only use one session channel. Rule �T-snd�
states that an action for sending is well-typed to a sending type if the label and
the type of the content are expected; �T-rcv� states that an action for branching
(i.e., for receiving) is well-typed to a branching type if all labels and the types of
contents are as expected. Their follow-up actions shall also be well-typed. Rule
�T-0� types an idle process. Predicate end-only Δ is defined as stating whether
all endpoints in Δ have type end:

Definition 5 (End-only Δ). We say Δ is end-only if and only if ∀s[p] ∈
dom(Δ), Δ(s[p]) = end.

Rule �T-yd� types yielding actions, which only appear at runtime. Rule �T-if�
is standard in the sense that the process is well-typed by Δ if e has boolean type
and its sub-processes (i.e., η1 and η2) are well-typed by Δ. Rules �T-var,T-def�
are based on a recent summary of MPSTs [14]. Note that �T-def� forbids the
type μt .t . Rule �T-th� states that a try-handle is well-typed if it is annotated
with the expected level φ, its default statement is well-typed, H and H have the
same handler signatures, and all handling actions are well-typed.

Figure 11 shows typing rules for applications and systems. Rule �T-∅� types
an empty queue. Rules �T-m,T-D,T-F � simply type messages based on their
shapes. Rule �T-pa� says two applications composed in parallel are well-typed
if they do not share any session channel. Rule �T-s� says a part of a system S
can start a private session, say s, if S is well-typed according to a Γ � Δs that
is coherent (defined shortly). The system (νs)S with a part becoming private in
s is well-typed to Δ \ Δs, that is, Δ after removing Δs.

Definition 6 (A Session Environment Having s Only: Δs)

Δs = {s[p] : T | s[p] ∈ dom(Δ)} ∪ {s : h | s ∈ dom(Δ)}
Rule �T-sys� says that a system Ψ � N is well-typed if application N is well-
typed and there exists a coordinator Ψ for handling this application. We say
Γ � Δ is coherent under Γ if the local types of all endpoints are dual to each
other after their local types are updated because of messages or notifications in
s : h.
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Coherence. We say that a session environment is coherent if, at any time, given
a session with its latest messages and notifications, every endpoint participating
in it is able to find someone to interact with (i.e., its dual party exists) right
now or afterwards.

Example 7. Continuing with Example 6 – the session environment Γ � Δ is
coherent even if w2 will not receive any message from dfs at this point. The only
possible action to take in Δ is that dfs sends out a message to w1 . When this
action fires, Δ is reduced to Δ′ under a coordinator. (The reduction relation
Γ � Δ →T Γ ′ � Δ′, where Γ = Γ0,Ψ and Γ ′ = Γ0,Ψ ′, is defined based on
the rules of operational semantics of applications in Sect. 4, Figs. 6 and 7). In
Δ′, which abstracts the environment when dfs sends a message to w1 , w2 will
be able to receive this message.

Δ = s[dfs] : Tdfs , s[w1 ] : Tw1 , s[w2 ] : Tw2 , s : ∅
Δ′ = s[dfs] : t(w2 !ld2(S).w1 ?lr1(S

′).w2 ?lr2(S
′).T )h(H)(1,∅),

s[w1 ] : Tw1 , s[w2 ] : Tw2 , s : 〈dfs,w1 , ld1(S)〉
where T = μt .w1 !ld1(S).w2 !ld2(S).w1 ?lr1(S

′).w2 ?lr2(S
′).t

We write s[p] : T �� s[q ] : T ′ to state that actions of the two types are dual:

Definition 7 (Duality). We define s[p] : T �� s[q ] : T ′ as follows:

s[p] : end �� s[q ] : end s[p] : end �� s[q ] : end s[p] : end �� s[q ] : end

s[p] : end �� s[q ] : end s[p] : t �� s[q ] : t s[p] : T �� s[q ] : T ′

s[p] : μt .T �� s[q ] : μt .T ′

∀i ∈ I. s[p] : Ti �� s[q ] : T ′
i

s[p] : q! {li(Si).Ti}i∈I �� s[q ] : p? {li(Si).T ′
i}i∈I

s[p] : T1 �� s[q ] : T2 s[p] : T ′
1 �� s[q ] : T ′

2 dom(H1) = dom(H2)
∀F ∈ dom(H1). s[p] : H1(F ) �� s[q ] : H2(F )
s[p] : t(T1)h(H1)φ.T ′

1 �� s[q ] : t(T2)h(H2)φ.T ′
2

Operation T � p is to filter T to get the partial type which only contains
actions of p. For example, p1!l′(S′).p2!l(S) � p2 = p2!l(S) and p1!{T1, T2} �
p2 = p2?l(S) where T1 = l1(S1).p2?l(S) and T2 = l2(S2).p2?l(S). Next
we define (h)p→q to filter h to generate (1) the normal message types sent
from p heading to q , and (2) the notifications heading to q . For example
(〈p, q , l(S)〉 · 〈[q , crash F ]〉 · 〈ψ, q〉φ · 〈[p, crash F ]〉)p→q = p?l(S) · 〈[F ]〉 · 〈ψ〉φ. The
message types are abbreviated to contain only necessary information.

We define T−ht to mean the effect of ht on T . Its concept is similar to the
session remainder defined in [35], which returns new local types of participants
after participants consume messages from the global queue. Since failure notifica-
tions will not be consumed in our system, and we only have to observe the change
of a participant’s type after receiving or being triggered by some message types
in ht, we say that T−ht represents the effect of ht on T . The behaviors follows
our operational semantics of applications and systems defined in Figs. 6, 7, and 8.
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For example t(q?{li(Si).Ti}i∈I)h(H)φ.T ′−q?lk(Sk)·ht = t(Tk)h(H)φ.T ′−ht
where k ∈ I.

Now we define what it means for Δ to be coherent under Γ :

Definition 8 (Coherence). Γ � Δ coherent if the following conditions hold:

1. If s : h ∈ Δ, then ∃G : (F, d) ∈ Γ and {p | s[p] ∈ dom(Δ)} ⊆ roles(G) and G
is well-formed and ∀p ∈ roles(G), G�p is defined.

2. ∀s[p] : T, s[q ] : T ′ ∈ Δ we have s[p] : T �q−(h)q→p �� s[q ] : T ′ �p−(h)p→q .

In condition 1, we require a coordinator for every session so that when a failure
occurs, the coordinator can announce failure notifications to ask participants to
handle the failure. Condition 2 requires that, for any two endpoints, say s[p]
and s[q ], in Δ, equation s[p] : T � q−(h)q→p �� s[q ] : T ′ � p−(h)p→q , must hold.
This condition asserts that interactions of non-failed endpoints are dual to each
other after the effect of h; while failed endpoints are removed from Δ, thus the
condition is satisfied immediately.

7 Properties

We show that our type system ensures properties of subject congruence, sub-
ject reduction, and progress. All auxiliary definitions and proofs are in the long
version [43].

The property of subject congruence states that if S (a system containing an
application and a coordinator) is well-typed by some session environment, then
a S ′ that is structurally congruent to it is also well-typed by the same session
environment:

Theorem 1 (Subject Congruence). Γ � S � Δ and S ≡ S ′ imply Γ �
S ′ � Δ.

Subject reduction states that a well-typed S (coherent session environment
respectively) is always well-typed (coherent respectively) after reduction:

Theorem 2 (Subject Reduction)

– Γ � S � Δ with Γ � Δ coherent and S →∗ S ′ imply that ∃Δ′, Γ ′ such that
Γ ′ � S ′ � Δ′ and Γ � Δ →∗

T Γ ′ � Δ′ or Δ ≡ Δ′ and Γ ′ � Δ′ coherent.
– Γ � S � ∅ and S →∗ S ′ imply that Γ ′ � S ′ � ∅ for some Γ ′.

We allow sessions to run in parallel at the top level, e.g., S = (νs1)(Ψ1 � N1) |
... | (νsn)(Ψn � Nn). Assume we have S with a[p].P ∈ S. If we cannot apply

rule (Link), S cannot reduce. To prevent this kind of situation, we require S to
be initializable such that, ∀a[p].P ∈ S, (Link) is applicable.

The following property states that S never gets stuck (property of progress):

Theorem 3 (Progress). If Γ � S � ∅ and S is initializable, then either
S →∗ S ′ and S ′ is initializable or S ′ = Ψ � s : h | ... | Ψ ′ � s′ : h′ and h, ..., h′

only contain failure notifications sent by coordinators and messages heading to
failed participants.
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After all processes in S terminate, failure notifications sent by coordinators are
left; thus the final system can be of the form Ψ � s : h | ... | Ψ ′ � s′ : h′, where
h, ..., h′ have failure notifications sent by coordinators and thus reduction rules
(CollectDone), (IssueDone), and (F) will not be applied.

Minimality. The following proposition points out that, when all roles defined in a
global type, say G, are robust, then the application obeying to G will never have
interaction with a coordinator (i.e., interactions of the application are equivalent
to those without a coordinator). This is an important property, as it states that
our model does not incur coordination overhead when all participants are robust,
or in failure-agnostic contexts as considered in previous MPST works.

Proposition 2. Assume ∀p ∈ roles(G) = {p1, ..., pn}, p is robust and Pi =
s[pi] : ηi for i ∈ {1..n} and S = (ν s)(Ψ � P1|...|Pn|s : h) where Pi, i ∈ {1..n}
contains no try-handle. Then we have Γ � S � ∅ and whenever S →∗ S ′ we
have Ψ ∈ S ′,Ψ = G : (∅, ∅).

Proof. Immediately by typing rules �T-ini,T-s,T-sys�, Definition 4 (Projec-
tion), and the operational semantics defined in Figs. 6, 7, and 8.

8 Related Work

Several session type works study exception handling [7,9,16,30]. However, to the
best of our knowledge this is the first theoretical work to develop a formalism
and typing discipline for the coordinator-based model of crash failure handling
in practical asynchronous distributed systems.

Structured interactional exceptions [7] study exception handling for binary
sessions. The work extends session types with a try-catch construct and a throw
instruction, allowing participants to raise runtime exceptions. Global escape [6]
extends previous works on exception handling in binary session types to MPSTs.
It supports nesting and sequencing of try-catch blocks with restrictions. Reduc-
tion rules for exception handling are of the form Σ � P → Σ′ � P ′, where Σ is
the exception environment. This central environment at the core of the semantics
is updated synchronously and atomically. Furthermore, the reduction of a try-
catch block to its continuation is done in a synchronous reduction step involving
all participants in a block. Lastly this work can only handle exceptions, i.e.,
explicitly raised application-level failures. These do not affect communication
channels [6], unlike participant crashes.

Similarly, our previous work [13] only deals with exceptions. An interaction
p → q : S ∨ F defines that p can send a message of type S to q. If F is not
empty then instead of sending a message p can throw F . If a failure is thrown
only participants that have casual dependencies to that failure are involved in
the failure handling. No concurrent failures are allowed therefore all interactions
which can raise failures are executed in a lock step fashion. As a consequence,
the model can not be used to deal with crash failures.

www.dbooks.org

https://www.dbooks.org/


822 M. Viering et al.

Adameit et al. [1] propose session types for link failures, which extend session
types with an optional block which surrounds a process and contains default
values. The default values are used if a link failure occurs. In contrast to our
work, the communication model is overall synchronous whereas our model is
asynchronous; the optional block returns default values in case of a failure but
it is still the task of the developer to do something useful with it.

Demangeon et al. study interrupts in MPSTs [16]. This work introduces an
interruptible block {|G|}c〈l by r〉;G′ identified by c; here the protocol G can be
interrupted by a message l from r and is continued by G′ after either a normal
or an interrupted completion of G. Interrupts are more a control flow instruction
like exceptions than an actual failure handling construct, and the semantics can
not model participant crashes.

Neykova and Yoshida [36] show that MPSTs can be used to calculate safe
global states for a safe recovery in Erlang’s let it crash model [2]. That work
is well suited for recovery of lightweight processes in an actor setting. However,
while it allows for elaborate failure handling by connecting (endpoint) processes
with runtime monitors, the model does not address the fault tolerance of runtime
monitors themselves. As monitors can be interacting in complex manners repli-
cation does not seem straightforwardly applicable, at least not without poten-
tially hampering performance (just as with straightforward replication of entire
applications).

Failure handling is studied in several process calculi and communication-
centered programming languages without typing discipline. The conversation
calculus [42] models exception behavior in abstract service-based systems with
message-passing based communication. The work does not use channel types but
studies the behavioral theory of bisimilarity. Error recovery is also studied in a
concurrent object setting [45]; interacting objects are grouped into coordinated
atomic actions (CAs) which enable safe error recovery. CAs can however not
be nested. PSYNC [18] is a domain specific language based on the heard-of
model of distributed computing [12]. Programs written in PSYNC are structured
into rounds which are executed in a lock step manner. PSYNC comes with
a state-based verification engine which enables checking of safety and liveness
properties; for that programmers have to define non-trivial inductive invariants
and ranking functions. In contrast to the coordinator model, the heard-of model
is not widely deployed in practice. Verdi [44] is a framework for implementing
and verifying distributed systems in Coq. It provides the possibility to verify
the system against different network models. Verdi enables the verification of
properties in an idealized fault model and then transfers the guarantees to more
realistic fault models by applying transformation functions. Verdi supports safety
properties but no liveness properties.

9 Final Remarks

Implementation. Based on our presented calculus we developed a domain-specific
language and corresponding runtime system in Scala, using ZooKeeper as the
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coordinator. Specifically our implementation provides mechanisms for (1) inter-
acting with ZooKeeper as coordinator, (2) done and failure notification delivery
and routing, (3) practical failure detection and dealing with false suspicions and
(4) automatically inferring try-handle levels.

Conclusions. This work introduces a formal model of verified crash failure han-
dling featuring a lightweight coordinator as common in many real-life systems.
The model carefully exposes potential problems that may arise in distributed
applications due to partial failures, such as inconsistent endpoint behaviors and
orphan messages. Our typing discipline addresses these challenges by building on
the mechanisms of MPSTs, e.g., global type well-formedness for sound failure
handling specifications, modeling asynchronous permutations between regular
messages and failure notifications in sessions, and the type-directed mechanisms
for determining correct and orphaned messages in the event of failure. We adapt
coherence of session typing environments (i.e., endpoint consistency) to con-
sider failed roles and orphan messages, and show that our type system statically
ensures subject reduction and progress in the presence of failures.

Future Work. We plan to expand our implementation and develop further appli-
cations. We believe dynamic role participation and role parameterization would
be valuable for failure handling. Also, we are investigating options to enable
addressing the coordinator as part of the protocol so that pertinent runtime
information can be persisted by the coordinator. We plan to add support to our
language and calculus for solving various explicit agreement tasks (e.g., consen-
sus, atomic commit) via the coordinator.
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1 NOVA-LINCS, Departamento de Informática, FCT, Universidade Nova de Lisboa,
Lisbon, Portugal

btoninho@fct.unl.pt
2 Department of Computing, Imperial College London, London, UK

Abstract. This work exploits the logical foundation of session types to
determine what kind of type discipline for the π-calculus can exactly
capture, and is captured by, λ-calculus behaviours. Leveraging the proof
theoretic content of the soundness and completeness of sequent calculus
and natural deduction presentations of linear logic, we develop the first
mutually inverse and fully abstract processes-as-functions and functions-
as-processes encodings between a polymorphic session π-calculus and a
linear formulation of System F. We are then able to derive results of
the session calculus from the theory of the λ-calculus: (1) we obtain
a characterisation of inductive and coinductive session types via their
algebraic representations in System F; and (2) we extend our results to
account for value and process passing, entailing strong normalisation.

1 Introduction

Dating back to Milner’s seminal work [29], encodings of λ-calculus into π-calculus
are seen as essential benchmarks to examine expressiveness of various extensions
of the π-calculus. Milner’s original motivation was to demonstrate the power of
link mobility by decomposing higher-order computations into pure name pass-
ing. Another goal was to analyse functional behaviours in a broad computa-
tional universe of concurrency and non-determinism. While operationally cor-
rect encodings of many higher-order constructs exist, it is challenging to obtain
encodings that are precise wrt behavioural equivalence: the semantic distance
between the λ-calculus and the π-calculus typically requires either restricting
process behaviours [45] (e.g. via typed equivalences [5]) or enriching the λ-
calculus with constants that allow for a suitable characterisation of the term
equivalence induced by the behavioural equivalence on processes [43].

Encodings in π-calculi also gave rise to new typing disciplines: Session types
[20,22], a typing system that is able to ensure deadlock-freedom for commu-
nication protocols between two or more parties [23], were originally motivated
“from process encodings of various data structures in an asynchronous version of
the π-calculus” [21]. Recently, a propositions-as-types correspondence between
linear logic and session types [8,9,54] has produced several new developments
c© The Author(s) 2018
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https://doi.org/10.1007/978-3-319-89884-1_29

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_29&domain=pdf
http://orcid.org/0000-0002-0746-7514
http://orcid.org/0000-0002-3925-8557
https://www.dbooks.org/


828 B. Toninho and N. Yoshida

and logically-motivated techniques [7,26,49,54] to augment both the theory and
practice of session-based message-passing concurrency. Notably, parametric ses-
sion polymorphism [7] (in the sense of Reynolds [41]) has been proposed and a
corresponding abstraction theorem has been shown.

Our work expands upon the proof theoretic consequences of this proposi-
tions-as-types correspondence to address the problem of how to exactly match
the behaviours induced by session π-calculus encodings of the λ-calculus with
those of the λ-calculus. We develop mutually inverse and fully abstract encodings
(up to typed observational congruences) between a polymorphic session-typed
π-calculus and the polymorphic λ-calculus. The encodings arise from the proof
theoretic content of the equivalence between sequent calculus (i.e. the session
calculus) and natural deduction (i.e. the λ-calculus) for second-order intuitionis-
tic linear logic, greatly generalising [49]. While fully abstract encodings between
λ-calculi and π-calculi have been proposed (e.g. [5,43]), our work is the first to
consider a two-way, both mutually inverse and fully abstract embedding between
the two calculi by crucially exploiting the linear logic-based session discipline.
This also sheds some definitive light on the nature of concurrency in the (log-
ical) session calculi, which exhibit “don’t care” forms of non-determinism (e.g.
processes may race on stateless replicated servers) rather than “don’t know”
non-determinism (which requires less harmonious logical features [2]).

In the spirit of Gentzen [14], we use our encodings as a tool to study non-
trivial properties of the session calculus, deriving them from results in the λ-
calculus: We show the existence of inductive and coinductive sessions in the poly-
morphic session calculus by considering the representation of initial F -algebras
and final F -coalgebras [28] in the polymorphic λ-calculus [1,19] (in a linear set-
ting [6]). By appealing to full abstraction, we are able to derive processes that
satisfy the necessary algebraic properties and thus form adequate uniform rep-
resentations of inductive and coinductive session types. The derived algebraic
properties enable us to reason about standard data structure examples, provid-
ing a logical justification to typed variations of the representations in [30].

We systematically extend our results to a session calculus with λ-term and
process passing (the latter being the core calculus of [50], inspired by Benton’s
LNL [4]). By showing that our encodings naturally adapt to this setting, we
prove that it is possible to encode higher-order process passing in the first-
order session calculus fully abstractly, providing a typed and proof-theoretically
justified re-envisioning of Sangiorgi’s encodings of higher-order π-calculus [46].
In addition, the encoding instantly provides a strong normalisation property of
the higher-order session calculus.

Contributions and the outline of our paper are as follows:

§ 3.1 develops a functions-as-processes encoding of a linear formulation
of System F, Linear-F, using a logically motivated polymorphic session π-
calculus, Polyπ, and shows that the encoding is operationally sound and
complete.
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§ 3.2 develops a processes-as-functions encoding of Polyπ into Linear-F, aris-
ing from the completeness of the sequent calculus wrt natural deduction, also
operationally sound and complete.
§ 3.3 studies the relationship between the two encodings, establishing they
are mutually inverse and fully abstract wrt typed congruence, the first two-
way embedding satisfying both properties.
§ 4 develops a faithful representation of inductive and coinductive session
types in Polyπ via the encoding of initial and final (co)algebras in the poly-
morphic λ-calculus. We demonstrate a use of these algebraic properties via
examples.
§ 4.2 and 4.3 study term-passing and process-passing session calculi, extend-
ing our encodings to provide embeddings into the first-order session calculus.
We show full abstraction and mutual inversion results, and derive strong nor-
malisation of the higher-order session calculus from the encoding.

In order to introduce our encodings, we first overview Polyπ, its typing system
and behavioural equivalence (§ 2). We discuss related work and conclude with
future work (§ 5). Detailed proofs can be found in [52].

2 Polymorphic Session π-Calculus

This section summarises the polymorphic session π-calculus [7], dubbed Polyπ,
arising as a process assignment to second-order linear logic [15], its typing system
and behavioural equivalences.

2.1 Processes and Typing

Syntax. Given an infinite set Λ of names x, y, z, u, v, the grammar of processes
P,Q,R and session types A,B,C is defined by:

P,Q,R ::= x〈y〉.P | x(y).P | P | Q | (νy)P | [x ↔ y] | 0
| x〈A〉.P | x(Y ).P | x.inl;P | x.inr;P | x.case(P,Q) | !x(y).P

A,B ::= 1 | A � B | A ⊗ B | A & B | A ⊕ B | !A | ∀X.A | ∃X.A | X

x〈y〉.P denotes the output of channel y on x with continuation process P ; x(y).P
denotes an input along x, bound to y in P ; P | Q denotes parallel composition;
(νy)P denotes the restriction of name y to the scope of P ; 0 denotes the inactive
process; [x ↔ y] denotes the linking of the two channels x and y (implemented
as renaming); x〈A〉.P and x(Y ).P denote the sending and receiving of a type A
along x bound to Y in P of the receiver process; x.inl;P and x.inr;P denote the
emission of a selection between the left or right branch of a receiver x.case(P,Q)
process; !x(y).P denotes an input-guarded replication, that spawns replicas upon
receiving an input along x. We often abbreviate (νy)x〈y〉.P to x〈y〉.P and omit
trailing 0 processes. By convention, we range over linear channels with x, y, z
and shared channels with u, v, w.
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(out)

x〈y〉.P x〈y〉−−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(outT)

x〈A〉.P x〈A〉−−−→ P

(inT)

x(Y ).P
x(B)−−−→ P{B/Y }

(lout)

x.inl; P x.inl−−→ P

(id)

(νx)([x ↔ y] | P ) τ−→ P{y/x}
(lin)

x.case(P, Q) x.inl−−→ P

(rep)

!x(y).P
x(z)−−−→ P{z/y} |!x(y).P

(open)

P
x〈y〉−−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−−→ Q′

P | Q
τ−→ (νy)(P ′ | Q′)

(par)

P
α−→ Q

P | R
α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q
τ−→ P ′ | Q′

(res)

P
α−→ Q

(νy)P α−→ (νy)Q

Fig. 1. Labelled transition system.

The syntax of session types is that of (intuitionistic) linear logic proposi-
tions which are assigned to channels according to their usages in processes: 1
denotes the type of a channel along which no further behaviour occurs; A � B
denotes a session that waits to receive a channel of type A and will then pro-
ceed as a session of type B; dually, A ⊗ B denotes a session that sends a
channel of type A and continues as B; A & B denotes a session that offers
a choice between proceeding as behaviours A or B; A ⊕ B denotes a session
that internally chooses to continue as either A or B, signalling appropriately
to the communicating partner; !A denotes a session offering an unbounded (but
finite) number of behaviours of type A; ∀X.A denotes a polymorphic session that
receives a type B and behaves uniformly as A{B/X}; dually, ∃X.A denotes an
existentially typed session, which emits a type B and behaves as A{B/X}.

Operational Semantics. The operational semantics of our calculus is presented
as a standard labelled transition system (Fig. 1) in the style of the early system
for the π-calculus [46].

In the remainder of this work we write ≡ for a standard π-calculus structural
congruence extended with the clause [x ↔ y] ≡ [y ↔ x]. In order to streamline
the presentation of observational equivalence [7,36], we write ≡! for structural
congruence extended with the so-called sharpened replication axioms [46], which
capture basic equivalences of replicated processes (and are present in the proof
dynamics of the exponential of linear logic). A transition P

α−−→ Q denotes that
P may evolve to Q by performing the action represented by label α. An action
α (α) requires a matching α (α) in the environment to enable progress. Labels
include: the silent internal action τ , output and bound output actions (x〈y〉 and
(νz)x〈z〉); input action x(y); the binary choice actions (x.inl, x.inl, x.inr, and
x.inr); and output and input actions of types (x〈A〉 and x(A)).

The labelled transition relation is defined by the rules in Fig. 1, subject to
the side conditions: in rule (res), we require y �∈ fn(α); in rule (par), we require
bn(α)∩ fn(R) = ∅; in rule (close), we require y �∈ fn(Q). We omit the symmetric
versions of (par), (com), (lout), (lin), (close) and closure under α-conversion. We
write ρ1ρ2 for the composition of relations ρ1, ρ2. We write −→ to stand for τ−→≡.
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(�R)
Ω; Γ ; Δ, x:A � P :: z:B

Ω; Γ ; Δ � z(x).P :: z:A � B
(⊗R)

Ω; Γ ; Δ1 � P :: y:A Ω; Γ ; Δ2 � Q :: z:B
Ω; Γ ; Δ1, Δ2 � (νx)z〈y〉.(P | Q) :: z:A ⊗ B

(∀R)
Ω, X; Γ ; Δ � P :: z:A

Ω; Γ ; Δ � z(X).P :: z:∀X.A
(∀L)

Ω � B type Ω; Γ ; Δ, x:A{B/X} � P :: z:C
Ω; Γ ; Δ, x:∀X.A � x〈B〉.P :: z:C

(∃R)
Ω � B type Ω; Γ ; Δ � P :: z:A{B/X}

Ω; Γ ; Δ � z〈B〉.P :: z:∃X.A
(∃L)

Ω, X; Γ ; Δ, x:A � P :: z:C
Ω; Γ ; Δ, x:∃X.A � x(X).P :: z:C

(id)
Ω; Γ ; x:A � [x ↔ z] :: z:A

(cut)
Ω; Γ ; Δ1 � P :: x:A Ω; Γ ; Δ2, x:A � Q :: z:C

Ω; Γ ; Δ1, Δ2 � (νx)(P | Q) :: z:C

Fig. 2. Typing rules (abridged – see [52] for all rules).

Weak transitions are defined as usual: we write =⇒ for the reflexive, transitive
closure of τ−→ and −→+ for the transitive closure of τ−→. Given α �= τ , notation α=⇒
stands for =⇒ α−→=⇒ and τ=⇒ stands for =⇒.

Typing System. The typing rules of Polyπ are given in Fig. 2, following [7].
The rules define the judgment Ω;Γ ;Δ � P :: z:A, denoting that process P offers
a session of type A along channel z, using the linear sessions in Δ, (potentially)
using the unrestricted or shared sessions in Γ , with polymorphic type variables
maintained in Ω. We use a well-formedness judgment Ω � A type which states
that A is well-formed wrt the type variable environment Ω (i.e. fv(A) ⊆ Ω).
We often write T for the right-hand side typing z:A, · for the empty context
and Δ,Δ′ for the union of contexts Δ and Δ′, only defined when Δ and Δ′ are
disjoint. We write · � P :: T for ·; ·; · � P :: T .

As in [8,9,36,54], the typing discipline enforces that channel outputs always
have as object a fresh name, in the style of the internal mobility π-calculus [44].
We clarify a few of the key rules: Rule ∀R defines the meaning of (impredicative)
universal quantification over session types, stating that a session of type ∀X.A
inputs a type and then behaves uniformly as A; dually, to use such a session
(rule ∀L), a process must output a type B which then warrants the use of the
session as type A{B/X}. Rule �R captures session input, where a session of
type A � B expects to receive a session of type A which will then be used to
produce a session of type B. Dually, session output (rule ⊗R) is achieved by
producing a fresh session of type A (that uses a disjoint set of sessions to those
of the continuation) and outputting the fresh session along z, which is then a
session of type B. Linear composition is captured by rule cut which enables a
process that offers a session x:A (using linear sessions in Δ1) to be composed with
a process that uses that session (amongst others in Δ2) to offer z:C. As shown
in [7], typing entails Subject Reduction, Global Progress, and Termination.

Observational Equivalences. We briefly summarise the typed congruence and
logical equivalence with polymorphism, giving rise to a suitable notion of rela-
tional parametricity in the sense of Reynolds [41], defined as a contextual logical
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relation on typed processes [7]. The logical relation is reminiscent of a typed
bisimulation. However, extra care is needed to ensure well-foundedness due to
impredicative type instantiation. As a consequence, the logical relation allows us
to reason about process equivalences where type variables are not instantiated
with the same, but rather related types.

Typed Barbed Congruence (∼=). We use the typed contextual congruence
from [7], which preserves observable actions, called barbs. Formally, barbed con-
gruence, noted ∼=, is the largest equivalence on well-typed processes that is τ -
closed, barb preserving, and contextually closed under typed contexts; see [7,52]
for the full definition.

Logical Equivalence (≈L). The definition of logical equivalence is no more than
a typed contextual bisimulation with the following intuitive reading: given two
open processes P and Q (i.e. processes with non-empty left-hand side typings),
we define their equivalence by inductively closing out the context, composing
with equivalent processes offering appropriately typed sessions. When processes
are closed, we have a single distinguished session channel along which we can
perform observations, and proceed inductively on the structure of the offered
session type. We can then show that such an equivalence satisfies the necessary
fundamental properties (Theorem 2.3).

The logical relation is defined using the candidates technique of Girard [16].
In this setting, an equivalence candidate is a relation on typed processes satisfy-
ing basic closure conditions: an equivalence candidate must be compatible with
barbed congruence and closed under forward and converse reduction.

Definition 2.1 (Equivalence Candidate). An equivalence candidate R at
z:A and z:B, noted R :: z:A ⇔ B, is a binary relation on processes such that,
for every (P,Q) ∈ R :: z:A ⇔ B both · � P :: z:A and · � Q :: z:B hold, together
with the following (we often write (P,Q) ∈ R :: z:A ⇔ B as P R Q :: z:A ⇔ B):

1. If (P,Q) ∈ R :: z:A ⇔ B, · � P ∼= P ′ :: z:A, and · � Q ∼= Q′ :: z:B then
(P ′, Q′) ∈ R :: z:A ⇔ B.

2. If (P,Q) ∈ R :: z:A ⇔ B then, for all P0 such that · � P0 :: z:A and P0 =⇒ P ,
we have (P0, Q) ∈ R :: z:A ⇔ B. Symmetrically for Q.

To define the logical relation we rely on some auxiliary notation, pertaining
to the treatment of type variables arising due to impredicative polymorphism.
We write ω : Ω to denote a mapping ω that assigns a closed type to the type
variables in Ω. We write ω(X) for the type mapped by ω to variable X. Given
two mappings ω : Ω and ω′ : Ω, we define an equivalence candidate assignment η
between ω and ω′ as a mapping of equivalence candidate η(X) :: −:ω(X)⇔ ω′(X)
to the type variables in Ω, where the particular choice of a distinguished right-
hand side channel is delayed (i.e. to be instantiated later on). We write η(X)(z)
for the instantiation of the (delayed) candidate with the name z. We write η :
ω ⇔ ω′ to denote that η is a candidate assignment between ω and ω′; and ω̂(P )
to denote the application of mapping ω to P .
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We define a sequent-indexed family of process relations, that is, a set of pairs
of processes (P,Q), written Γ ;Δ � P ≈L Q :: T [η : ω ⇔ω′], satisfying some
conditions, typed under Ω;Γ ;Δ � T , with ω : Ω, ω′ : Ω and η : ω ⇔ ω′. Logical
equivalence is defined inductively on the size of the typing contexts and then on
the structure of the right-hand side type. We show only select cases (see [52] for
the full definition).

Definition 2.2 (Logical Equivalence). (Base Case) Given a type A and
mappings ω, ω′, η, we define logical equivalence, noted P ≈L Q :: z:A[η : ω ⇔ ω′],
as the smallest symmetric binary relation containing all pairs of processes (P,Q)
such that (i) · � ω̂(P ) :: z:ω̂(A); (ii) · � ω̂′(Q) :: z:ω̂′(A); and (iii) satisfies the
conditions given below:

– P ≈L Q :: z:X[η : ω ⇔ ω′] iff (P, Q) ∈ η(X)(z)

– P ≈L Q :: z:A � B[η : ω ⇔ ω′] iff ∀P ′, y. (P
z(y)−−−→ P ′) ⇒ ∃Q′.Q

z(y)
=⇒ Q′ s.t. ∀R1, R2.R1 ≈L

R2 :: y:A[η : ω ⇔ ω′](νy)(P ′ | R1) ≈L (νy)(Q′ | R2) :: z:B[η : ω ⇔ ω′]

– P ≈L Q :: z:A ⊗ B[η : ω ⇔ ω′] iff ∀P ′, y. (P
(νy)z〈y〉−−−−−−→ P ′) ⇒ ∃Q′.Q

(νy)z〈y〉
=⇒ Q′ s.t.

∃P1, P2, Q1, Q2. P ′ ≡! P1 | P2 ∧ Q′ ≡! Q1 | Q2 ∧ P1 ≈L Q1 :: y:A[η : ω ⇔ ω′] ∧ P2 ≈L

Q2 :: z:B[η : ω ⇔ ω′]

– P ≈L Q :: z:∀X.A[η : ω ⇔ ω′] iff ∀B1, B2, P ′, R :: −:B1 ⇔ B2. (P
z(B1)−−−−→ P ′) implies

∃Q′.Q
z(B2)
=⇒ Q′, P ′ ≈L Q′ :: z:A[η[X �→ R] : ω[X �→ B1] ⇔ ω′[X �→ B2]]

(Inductive Case). Let Γ,Δ be non empty. Given Ω;Γ ;Δ � P :: T and Ω;Γ ;Δ �
Q :: T , the binary relation on processes Γ ;Δ � P ≈L Q :: T [η : ω ⇔ ω′] (with
ω, ω′ : Ω and η : ω ⇔ ω′) is inductively defined as:

Γ ; Δ, y : A  P ≈L Q :: T [η : ω ⇔ ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω ⇔ ω′],
Γ ; Δ  (νy)(ω̂(P ) | ω̂(R1)) ≈L (νy)(ω̂′(Q) | ω̂′(R2)) :: T [η : ω ⇔ ω′]

Γ, u:A; Δ  P ≈L Q :: T [η : ω ⇔ ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω ⇔ ω′],
Γ ; Δ  (νu)(ω̂(P ) |!u(y).ω̂(R1)) ≈L (νu)(ω̂′(Q) |!u(y).ω̂′(R2)) :: T [η : ω ⇔ ω′]

For the sake of readability we often omit the η : ω ⇔ ω′ portion of ≈L, which
is henceforth implicitly universally quantified. Thus, we write Ω;Γ ;Δ � P ≈L

Q :: z:A (or P ≈L Q) iff the two given processes are logically equivalent for all
consistent instantiations of its type variables.

It is instructive to inspect the clause for type input (∀X.A): the two processes
must be able to match inputs of any pair of related types (i.e. types related by
a candidate), such that the continuations are related at the open type A with
the appropriate type variable instantiations, following Girard [16]. The power of
this style of logical relation arises from a combination of the extensional flavour
of the equivalence and the fact that polymorphic equivalences do not require the
same type to be instantiated in both processes, but rather that the types are
related (via a suitable equivalence candidate relation).
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Theorem 2.3 (Properties of Logical Equivalence [7])

Parametricity: If Ω;Γ ;Δ � P :: z:A then, for all ω, ω′ : Ω and η : ω ⇔ ω′,
we have Γ ;Δ � ω̂(P ) ≈L ω̂′(P ) :: z:A[η : ω ⇔ ω′].

Soundness: If Ω;Γ ;Δ � P ≈L Q :: z:A then C[P ] ∼= C[Q] :: z:A, for any closing
C[−].

Completeness: If Ω;Γ ;Δ � P ∼= Q :: z:A then Ω;Γ ;Δ � P ≈L Q :: z:A.

3 To Linear-F and Back

We now develop our mutually inverse and fully abstract encodings between Polyπ
and a linear polymorphic λ-calculus [55] that we dub Linear-F. We first introduce
the syntax and typing of the linear λ-calculus and then proceed to detail our
encodings and their properties (we omit typing ascriptions from the existential
polymorphism constructs for readability).

Definition 3.1 (Linear-F). The syntax of terms M,N and types A,B of
Linear-F is given below.

M, N :: = λx:A.M | M N | 〈M ⊗ N〉 | let x ⊗ y = M in N | !M | let !u = M in N | ΛX.M
| M [A] | pack A with M | let (X, y) = M in N | let1 = M in N | 〈〉 | T | F

A, B :: = A � B | A ⊗ B | !A | ∀X.A | ∃X.A | X | 1 | 2

The syntax of types is that of the multiplicative and exponential fragments of
second-order intuitionistic linear logic: λx:A.M denotes linear λ-abstractions;
M N denotes the application; 〈M ⊗ N〉 denotes the multiplicative pairing of M
and N , as reflected in its elimination form let x ⊗ y = M inN which simultane-
ously deconstructs the pair M , binding its first and second projection to x and
y in N , respectively; !M denotes a term M that does not use any linear vari-
ables and so may be used an arbitrary number of times; let !u = M in N binds
the underlying exponential term of M as u in N ; ΛX.M is the type abstraction
former; M [A] stands for type application; packAwith M is the existential type
introduction form, where M is a term where the existentially typed variable
is instantiated with A; let (X, y) = M in N unpacks an existential package M ,
binding the representation type to X and the underlying term to y in N ; the
multiplicative unit 1 has as introduction form the nullary pair 〈〉 and is elimi-
nated by the construct let1 = M in N , where M is a term of type 1. Booleans
(type 2 with values T and F) are the basic observable.

The typing judgment in Linear-F is given as Ω;Γ ;Δ � M : A, following the
DILL formulation of linear logic [3], stating that term M has type A in a lin-
ear context Δ (i.e. bindings for linear variables x:B), intuitionistic context Γ
(i.e. binding for intuitionistic variables u:B) and type variable context Ω. The
typing rules are standard [7]. The operational semantics of the calculus are the
expected call-by-name semantics with commuting conversions [27]. We write ⇓
for the evaluation relation. We write ∼= for the largest typed congruence that is
consistent with the observables of type 2 (i.e. a so-called Morris-style equivalence
as in [5]).
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3.1 Encoding Linear-F into Session π-Calculus

We define a translation from Linear-F to Polyπ generalising the one from
[49], accounting for polymorphism and multiplicative pairs. We translate typ-
ing derivations of λ-terms to those of π-calculus terms (we omit the full typing
derivation for the sake of readability).

Proof theoretically, the λ-calculus corresponds to a proof term assignment
for natural deduction presentations of logic, whereas the session π-calculus from
§ 2 corresponds to a proof term assignment for sequent calculus. Thus, we obtain
a translation from λ-calculus to the session π-calculus by considering the proof
theoretic content of the constructive proof of soundness of the sequent calcu-
lus wrt natural deduction. Following Gentzen [14], the translation from natural
deduction to sequent calculus maps introduction rules to the corresponding right
rules and elimination rules to a combination of the corresponding left rule, cut
and/or identity.

Since typing in the session calculus identifies a distinguished channel along
which a process offers a session, the translation of λ-terms is parameterised by a
“result” channel along which the behaviour of the λ-term is implemented. Given
a λ-term M , the process �M�z encodes the behaviour of M along the session
channel z. We enforce that the type 2 of booleans and its two constructors are
consistently translated to their polymorphic Church encodings before applying
the translation to Polyπ. Thus, type 2 is first translated to ∀X.!X� !X�X,
the value T to ΛX.λu:!X.λv:!X.let !x = u in let !y = v in x and the value F to
ΛX.λu:!X.λv:!X.let !x = u in let !y = v in y. Such representations of the booleans
are adequate up to parametricity [6] and suitable for our purposes of relating
the session calculus (which has no primitive notion of value or result type) with
the λ-calculus precisely due to the tight correspondence between the two calculi.

Definition 3.2 (From Linear-F to Polyπ). �Ω�; �Γ �; �Δ� � �M�z :: z:A
denotes the translation of contexts, types and terms from Linear-F to the poly-
morphic session calculus. The translations on contexts and types are the identity
function. Booleans and their values are first translated to their Church encodings
as specified above. The translation on λ-terms is given below:

�x�z � [x ↔ z] �M N�z � (νx)(�M�x | (νy)x〈y〉.(�N�y | [x ↔ z]))

�u�z � (νx)u〈x〉.[x ↔ z] �let !u = M in N�z � (νx)(�M�x | �N�z{x/u})

�λx:A.M�z � z(x).�M�z �〈M ⊗ N〉�z � (νy)z〈y〉.(�M�y | �N�z)

�!M�z � !z(x).�M�x �let x ⊗ y = M in N�z � (νw)(�M�y | y(x).�N�z)

�ΛX.M�z � z(X).�M�z �M [A]�z � (νx)(�M�x | x〈A〉.[x ↔ z])

�pack A with M�z � z〈A〉.�M�z �let (X, y) = M in N�z � (νx)(�M�y | y(X).�N�z)

�〈〉�z � 0 �let1 = M in N�z � (νx)(�M�x | �N�z)

To translate a (linear) λ-abstraction λx:A.M , which corresponds to the proof
term for the introduction rule for �, we map it to the corresponding �R rule,
thus obtaining a process z(x).�M�z that inputs along the result channel z a
channel x which will be used in �M�z to access the function argument. To encode
the application M N , we compose (i.e. cut) �M�x, where x is a fresh name, with
a process that provides the (encoded) function argument by outputting along x
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a channel y which offers the behaviour of �N�y. After the output is performed,
the type of x is now that of the function’s codomain and thus we conclude by
forwarding (i.e. the id rule) between x and the result channel z.

The encoding for polymorphism follows a similar pattern: To encode the
abstraction ΛX.M , we receive along the result channel a type that is bound
to X and proceed inductively. To encode type application M [A] we encode the
abstraction M in parallel with a process that sends A to it, and forwards accord-
ingly. Finally, the encoding of the existential package pack Awith M maps to an
output of the type A followed by the behaviour �M�z, with the encoding of the
elimination form let (X, y) = M inN composing the translation of the term of
existential type M with a process performing the appropriate type input and
proceeding as �N�z.

Example 3.3 (Encoding of Linear-F). Consider the following λ-term corre-
sponding to a polymorphic pairing function (recall that we write z〈w〉.P for
(νw)z〈w〉.P ):

M � ΛX.ΛY.λx:X.λy:Y.〈x ⊗ y〉 and N � ((M [A][B] M1) M2)

Then we have, with x̃ = x1x2x3x4:

�N�z ≡ (νx̃)(�M�x1 | x1〈A〉.[x1 ↔ x2] | x2〈B〉.[x2 ↔ x3] |
x3〈x〉.(�M1�x | [x3 ↔ x4]) | x4〈y〉.(�M2�y | [x4 ↔ z]))

≡ (νx̃)(x1(X).x1(Y ).x1(x).x1(y).x1〈w〉.([x ↔ w] | [y ↔ x1]) | x1〈A〉.[x1 ↔ x2] |
x2〈B〉.[x2 ↔ x3] | x3〈x〉.(�M1�x | [x3 ↔ x4]) | x4〈y〉.(�M2�y | [x4 ↔ z]))

We can observe that N −→+ (((λx:A.λy:B.〈x ⊗ y〉)M1)M2) −→+ 〈M1 ⊗ M2〉. At
the process level, each reduction corresponding to the redex of type application
is simulated by two reductions, obtaining:

�N�z −→+ (νx3, x4)(x3(x).x3(y).x3〈w〉.([x ↔ w] | [y ↔ x3]) |
x3〈x〉.(�M1�x | [x3 ↔ x4]) | x4〈y〉.(�M2�y | [x4 ↔ z])) = P

The reductions corresponding to the β-redexes clarify the way in which the
encoding represents substitution of terms for variables via fine-grained name
passing. Consider �〈M1 ⊗ M2〉�z � z〈w〉.(�M1�w | �M2�z) and

P −→+ (νx, y)(�M1�x | �M2�y | z〈w〉.([x ↔ w] | [y ↔ z]))

The encoding of the pairing of M1 and M2 outputs a fresh name w which will
denote the behaviour of (the encoding of) M1, and then the behaviour of the
encoding of M2 is offered on z. The reduct of P outputs a fresh name w which
is then identified with x and thus denotes the behaviour of �M1�w. The channel
z is identified with y and thus denotes the behaviour of �M2�z, making the two
processes listed above equivalent. This informal reasoning exposes the insights
that justify the operational correspondence of the encoding. Proof-theoretically,
these equivalences simply map to commuting conversions which push the pro-
cesses �M1�x and �M2�z under the output on z.

Theorem 3.4 (Operational Correspondence)

– If Ω;Γ ;Δ � M : A and M −→ N then �M�z =⇒ P such that �N�z ≈L P
– If �M�z −→ P then M −→+ N and �N�z ≈L P
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3.2 Encoding Session π-calculus to Linear-F

Just as the proof theoretic content of the soundness of sequent calculus wrt natu-
ral deduction induces a translation from λ-terms to session-typed processes, the
completeness of the sequent calculus wrt natural deduction induces a translation
from the session calculus to the λ-calculus. This mapping identifies sequent cal-
culus right rules with the introduction rules of natural deduction and left rules
with elimination rules combined with (type-preserving) substitution. Crucially,
the mapping is defined on typing derivations, enabling us to consistently identify
when a process uses a session (i.e. left rules) or, dually, when a process offers a
session (i.e. right rules).

Fig. 3. Translation on typing derivations (excerpt – see [52])

Definition 3.5 (From Polyπ to Linear-F). We write �Ω�; �Γ �; �Δ� � �P � : A
for the translation from typing derivations in Polyπ to derivations in Linear-F.
The translations on types and contexts are the identity function. The translation
on processes is given below, where the leftmost column indicates the typing rule
at the root of the derivation (see Fig. 3 for an excerpt of the translation on
typing derivations, where we write �P �Ω;Γ ;Δ�z:A to denote the translation of
Ω;Γ ;Δ � P :: z:A. We omit Ω and Γ when unchanged).

(1R) �0� � 〈〉 (�L) �(νy)x〈y〉.(P | Q)� � �Q�{(x �P �)/x}
(id) �[x ↔ y]� � x (�R) �z(x).P � � λx:A.�P �

(1L) �P � � let1 = x in �P � (⊗R) �(νx)z〈x〉.(P | Q)� � 〈�P � ⊗ �Q�〉
(!R) �!z(x).P � � !�P � (⊗L) �x(y).P � � let x ⊗ y = x in �P �

(!L) �P{u/x}� � let !u = x in �P � (copy) �(νx)u〈x〉.P � � �P �{u/x}
(∀R) �z(X).P � � ΛX.�P � (∀L) �x〈B〉.P � � �P �{(x[B])/x}
(∃R) �z〈B〉.P � � pack B with �P � (∃L) �x(Y ).P � � let (Y, x) = x in �P �

(cut) �(νx)(P | Q)� � �Q�{�P �/x} (cut!) �(νu)(!u(x).P | Q)� � �Q�{�P �/u}
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For instance, the encoding of a process z(x).P :: z:A � B, typed by rule �R,
results in the corresponding � I introduction rule in the λ-calculus and thus is
λx:A.�P �. To encode the process (νy)x〈y〉.(P | Q), typed by rule �L, we make
use of substitution: Given that the sub-process Q is typed as Ω;Γ ;Δ′, x:B �
Q :: z:C, the encoding of the full process is given by �Q�{(x �P �)/x}. The term
x �P � consists of the application of x (of function type) to the argument �P �,
thus ensuring that the term resulting from the substitution is of the appropriate
type. We note that, for instance, the encoding of rule ⊗L does not need to
appeal to substitution – the λ-calculus let style rules can be mapped directly.
Similarly, rule ∀R is mapped to type abstraction, whereas rule ∀L which types
a process of the form x〈B〉.P maps to a substitution of the type application
x[B] for x in �P �. The encoding of existential polymorphism is simpler due to
the let-style elimination. We also highlight the encoding of the cut rule which
embodies parallel composition of two processes sharing a linear name, which
clarifies the use/offer duality of the intuitionistic calculus – the process that
offers P is encoded and substituted into the encoded user Q.

Theorem 3.6. If Ω;Γ ;Δ � P :: z:A then �Ω�; �Γ �; �Δ� � �P � : A.

Example 3.7 (Encoding of Polyπ). Consider the following processes

P � z(X).z(Y ).z(x).z(y).z〈w〉.([x ↔ w] | [y ↔ z]) Q � z〈1〉.z〈1〉.z〈x〉.z〈y〉.z(w).[w ↔ r]

with � P :: z:∀X.∀Y.X � Y � X ⊗ Y and z:∀X.∀Y.X � Y � X ⊗ Y � Q :: r:1.
Then: �P � = ΛX.ΛY.λx:X.λy:Y.〈x ⊗ y〉 �Q� = let x ⊗ y = z[1][1] 〈〉 〈〉 in let1 = y in x

�(νz)(P | Q)� = let x ⊗ y = (ΛX.ΛY.λx:X.λy:Y.〈x ⊗ y〉)[1][1] 〈〉 〈〉 in let1 = y in x

By the behaviour of (νz)(P | Q), which consists of a sequence of cuts, and its
encoding, we have that �(νz)(P | Q)� −→+ 〈〉 and (νz)(P | Q) −→+ 0 = �〈〉�.

In general, the translation of Definition 3.5 can introduce some distance
between the immediate operational behaviour of a process and its correspond-
ing λ-term, insofar as the translations of cuts (and left rules to non let-form
elimination rules) make use of substitutions that can take place deep within the
resulting term. Consider the process at the root of the following typing judg-
ment Δ1,Δ2,Δ3 � (νx)(x(y).P1 | (νy)x〈y〉.(P2 | w(z).0)) :: w:1 � 1, derivable
through a cut on session x between instances of �R and �L, where the continu-
ation process w(z).0 offers a session w:1 � 1 (and so must use rule 1L on x). We
have that: (νx)(x(y).P1 | (νy)x〈y〉.(P2 | w(z).0)) −→ (νx, y)(P1 | P2 | w(z).0).
However, the translation of the process above results in the term λz:1.let1 =
((λy:A.�P1�) �P2�) in let1 = z in 〈〉, where the redex that corresponds to the pro-
cess reduction is present but hidden under the binder for z (corresponding to
the input along w). Thus, to establish operational completeness we consider full
β-reduction, denoted by −→β , i.e. enabling β-reductions under binders.

Theorem 3.8 (Operational Completeness). Let Ω;Γ ;Δ � P :: z:A. If P −→
Q then �P � −→∗

β �Q�.
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In order to study the soundness direction it is instructive to consider typed
process x:1 � 1 � x〈y〉.(νz)(z(w).0 | z〈w〉.0) :: v:1 and its translation:

�x〈y〉.(νz)(z(w).0 | z〈w〉.0)� = �(νz)(z(w).0 | z〈w〉.0)�{(x 〈〉)/x}
= let1 = (λw:1.let1 = w in 〈〉) 〈〉 in let1 = x 〈〉 in 〈〉

The process above cannot reduce due to the output prefix on x, which cannot
synchronise with a corresponding input action since there is no provider for x
(i.e. the channel is in the left-hand side context). However, its encoding can
exhibit the β-redex corresponding to the synchronisation along z, hidden by the
prefix on x. The corresponding reductions hidden under prefixes in the encoding
can be soundly exposed in the session calculus by appealing to the commuting
conversions of linear logic (e.g. in the process above, the instance of rule �L
corresponding to the output on x can be commuted with the cut on z).

As shown in [36], commuting conversions are sound wrt observational equiva-
lence, and thus we formulate operational soundness through a notion of extended
process reduction, which extends process reduction with the reductions that are
induced by commuting conversions. Such a relation was also used for similar
purposes in [5] and in [26], in a classical linear logic setting. For conciseness, we
define extended reduction as a relation on typed processes modulo ≡.

Definition 3.9 (Extended Reduction [5]). We define �→ as the type preserv-
ing relations on typed processes modulo ≡ generated by:

1. C[(νy)x〈y〉.P ] | x(y).Q �→ C[(νy)(P | Q)];
2. C[(νy)x〈y〉.P ] | !x(y).Q �→ C[(νy)(P | Q)] | !x(y).Q; and
3. (νx)(!x(y).Q) �→ 0

where C is a (typed) process context which does not capture the bound name y.

Theorem 3.10 (Operational Soundness). Let Ω;Γ ;Δ � P :: z:A and
�P � −→ M , there exists Q such that P �→∗ Q and �Q� =α M .

3.3 Inversion and Full Abstraction

Having established the operational preciseness of the encodings to-and-from
Polyπ and Linear-F, we establish our main results for the encodings. Specifically,
we show that the encodings are mutually inverse up-to behavioural equivalence
(with fullness as its corollary), which then enables us to establish full abstraction
for both encodings.

Theorem 3.11 (Inverse). If Ω;Γ ;Δ � M : A then Ω;Γ ;Δ � ��M�z� ∼= M :
A. Also, if Ω;Γ ;Δ � P :: z:A then Ω;Γ ;Δ � ��P ��z ≈L P :: z:A.

Corollary 3.12 (Fullness). Let Ω;Γ ;Δ � P :: z:A. ∃M s.t. Ω;Γ ;Δ � M : A
and Ω;Γ ;Δ � �M�z ≈L P :: z:A Also, let Ω;Γ ;Δ � M : A. ∃P s.t. Ω;Γ ;Δ �
P :: z:A and Ω;Γ ;Δ � �P � ∼= M : A.
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We now state our full abstraction results. Given two Linear-F terms of the
same type, equivalence in the image of the �−�z translation can be used as a proof
technique for contextual equivalence in Linear-F. This is called the soundness
direction of full abstraction in the literature [18] and proved by showing the
relation generated by �M�z ≈L �N�z forms ∼=; we then establish the completeness
direction by contradiction, using fullness.

Theorem 3.13 (Full Abstraction). Ω;Γ ;Δ � M ∼= N : A iff Ω;Γ ;Δ �
�M�z ≈L �N�z :: z:A.

We can straightforwardly combine the above full abstraction with Theo-
rem 3.11 to obtain full abstraction of the �−� translation.

Theorem 3.14 (Full Abstraction). Ω;Γ ;Δ � P ≈L Q :: z:A iff Ω;Γ ;Δ �
�P � ∼= �Q� : A.

4 Applications of the Encodings

In this section we develop applications of the encodings of the previous sections.
Taking advantage of full abstraction and mutual inversion, we apply non-trivial
properties from the theory of the λ-calculus to our session-typed process setting.

In § 4.1 we study inductive and coinductive sessions, arising through encod-
ings of initial F -algebras and final F -coalgebras in the polymorphic λ-calculus.

In § 4.2 we study encodings for an extension of the core session calculus
with term passing, where terms are derived from a simply-typed λ-calculus.
Using the development of § 4.2 as a stepping stone, we generalise the encodings
to a higher-order session calculus (§ 4.3), where processes can send, receive and
execute other processes. We show full abstraction and mutual inversion theorems
for the encodings from higher-order to first-order. As a consequence, we can
straightforwardly derive a strong normalisation property for the higher-order
process-passing calculus.

4.1 Inductive and Coinductive Session Types

The study of polymorphism in the λ-calculus [1,6,19,40] has shown that para-
metric polymorphism is expressive enough to encode both inductive and coinduc-
tive types in a precise way, through a faithful representation of initial and final
(co)algebras [28], without extending the language of terms nor the semantics of
the calculus, giving a logical justification to the Church encodings of inductive
datatypes such as lists and natural numbers. The polymorphic session calculus
can express fairly intricate communication behaviours, including generic proto-
cols through both existential and universal polymorphism (i.e. protocols that are
parametric in their sub-protocols). Using our fully abstract encodings between
the two calculi, we show that session polymorphism is expressive enough to
encode inductive and coinductive sessions, “importing” the results for the λ-
calculus, which may then be instantiated to provide a session-typed formulation
of the encodings of data structures in the π-calculus of [30].
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Inductive and Coinductive Types in System F. Exploring an algebraic
interpretation of polymorphism where types are interpreted as functors, it can be
shown that given a type F with a free variable X that occurs only positively (i.e.
occurrences of X are on the left-hand side of an even number of function arrows),
the polymorphic type ∀X.((F (X) → X) → X) forms an initial F -algebra [1,42]
(we write F (X) to denote that X occurs in F ). This enables the representation of
inductively defined structures using an algebraic or categorical justification. For
instance, the natural numbers can be seen as the initial F -algebra of F (X) = 1+
X (where 1 is the unit type and + is the coproduct), and are thus already present
in System F, in a precise sense, as the type ∀X.((1 + X) → X) → X (noting
that both 1 and + can also be encoded in System F). A similar story can be
told for coinductively defined structures, which correspond to final F -coalgebras
and are representable with the polymorphic type ∃X.(X → F (X)) × X, where
× is a product type. In the remainder of this section we assume the positivity
requirement on F mentioned above.

While the complete formal development of the representation of inductive
and coinductive types in System F would lead us to far astray, we summarise
here the key concepts as they apply to the λ-calculus (the interested reader can
refer to [19] for the full categorical details).

Fig. 4. Diagrams for initial F -algebras and final F -coalgebras

To show that the polymorphic type Ti � ∀X.((F (X) → X) → X) is an
initial F -algebra, one exhibits a pair of λ-terms, often dubbed fold and in, such
that the diagram in Fig. 4(a) commutes (for any A, where F (f), where f is a
λ-term, denotes the functorial action of F applied to f), and, crucially, that fold
is unique. When these conditions hold, we are justified in saying that Ti is a least
fixed point of F . Through a fairly simple calculation, it is easy to see that:

fold � ΛX.λx:F (X) → X.λt:Ti.t[X](x)
in � λx:F (Ti).ΛX.λy:F (X) → X.y (F (fold[X](x))(x))

satisfy the necessary equalities. To show uniqueness one appeals to parametricity,
which allows us to prove that any function of the appropriate type is equivalent
to fold. This property is often dubbed initiality or universality.

The construction of final F -coalgebras and their justification as greatest fixed
points is dual. Assuming products in the calculus and taking Tf � ∃X.(X →
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F (X)) × X, we produce the λ-terms

unfold � ΛX.λf :X → F (X).λx:Tf .pack X with (f, x)
out � λt : Tf .let (X, (f, x)) = t in F (unfold[X](f)) (f(x))

such that the diagram in Fig. 4(b) commutes and unfold is unique (again, up to
parametricity). While the argument above applies to System F, a similar devel-
opment can be made in Linear-F [6] by considering Ti � ∀X.!(F (X) � X) � X
and Tf � ∃X.!(X � F (X)) ⊗ X. Reusing the same names for the sake of con-
ciseness, the associated linear λ-terms are:

fold � ΛX.λu:!(F (X) � X).λy:Ti.(y[X] u) : ∀X.!(F (X) � X) � Ti � X

in � λx:F (Ti).ΛX.λy:!(F (X) � X).let !u = y in k (F (fold[X](!u))(x)) : F (Ti) � Ti

unfold � ΛX.λu:!(X � F (X)).λx:X.pack X with 〈u ⊗ x〉 : ∀X.!(X � F (X)) � X � Tf

out � λt : Tf .let (X, (u, x)) = t in let !f = u in F (unfold[X](!f)) (f(x)) : Tf � F (Tf )

Inductive and Coinductive Sessions for Free. As a consequence of full
abstraction we may appeal to the �−�z encoding to derive representations of fold
and unfold that satisfy the necessary algebraic properties. The derived processes
are (recall that we write x〈y〉.P for (νy)x〈y〉.P ):

�fold�z � z(X).z(u).z(y).(νw)((νx)([y ↔ x] | x〈X〉.[x ↔ w]) | w〈v〉.([u ↔ v] | [w ↔ z]))

�unfold�z � z(X).z(u).z(x).z〈X〉.z〈y〉.([u ↔ y] | [x ↔ z])

We can then show universality of the two constructions. We write Px,y to
single out that x and y are free in P and Pz,w to denote the result of employing
capture-avoiding substitution on P , substituting x and y by z and w. Let:

foldP(A)y1,y2 � (νx)(�fold�x | x〈A〉.x〈v〉.(u〈y〉.[y ↔ v] | x〈z〉.([z ↔ y1] | [x ↔ y2])))

unfoldP(A)y1,y2 � (νx)(�unfold�x | x〈A〉.x〈v〉.(u〈y〉.[y ↔ v] | x〈z〉.([z ↔ y1] | [x ↔ y2])))

where foldP(A)y1,y2 corresponds to the application of fold to an F -algebra A
with the associated morphism F (A) � A available on the shared channel u,
consuming an ambient session y1:Ti and offering y2:A. Similarly, unfoldP(A)y1,y2

corresponds to the application of unfold to an F -coalgebra A with the associated
morphism A � F (A) available on the shared channel u, consuming an ambient
session y1:A and offering y2:Tf .

Theorem 4.1 (Universality of foldP). ∀Q such that X;u:F (X) � X; y1:Ti �
Q :: y2:X we have X;u:F (X) � X; y1:Ti � Q ≈L foldP(X)y1,y2 :: y2:X

Theorem 4.2 (Universality of unfoldP). ∀Q and F -coalgebra A s.t ·; ·; y1:A �
Q :: y2:Tf we have that ·;u:F (A) � A; y1:A � Q ≈L unfoldP(A)y1,y2 :: y2::Tf .

Example 4.3 (Natural Numbers). We show how to represent the natural numbers
as an inductive session type using F (X) = 1 ⊕ X, making use of in:

zerox � (νz)(z.inl;0 | �in(z)�x) succy,x � (νs)(s.inr; [y ↔ s] | �in(s)�x)
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with Nat � ∀X.!((1 ⊕ X) � X) � X where � zerox :: x:Nat and y:Nat �
succy,x :: x:Nat encode the representation of 0 and successor, respectively. The
natural 1 would thus be represented by onex � (νy)(zeroy | succy,x). The
behaviour of type Nat can be seen as a that of a sequence of internal choices of
arbitrary (but finite) length. We can then observe that the foldP process acts as
a recursor. For instance consider:

stepDecd � d(n).n.case(zerod, [n ↔ d]) decx,z � (νu)(!u(d).stepDecd | foldP(Nat)x,z)

with stepDecd :: d:(1 ⊕ Nat) � Nat and x:Nat � decx,z :: z:Nat, where dec
decrements a given natural number session on channel x. We have that:

(νx)(onex | decx,z) ≡ (νx, y.u)(zeroy | succy,x!u(d).stepDecd | foldP(Nat)x,z) ≈L zeroz

We note that the resulting encoding is reminiscent of the encoding of lists of
[30] (where zero is the empty list and succ the cons cell). The main differences
in the encodings arise due to our primitive notions of labels and forwarding, as
well as due to the generic nature of in and fold.

Example 4.4 (Streams). We build on Example 4.3 by representing streams of
natural numbers as a coinductive session type. We encode infinite streams of
naturals with F (X) = Nat ⊗ X. Thus: NatStream � ∃X.!(X � (Nat ⊗ X)) ⊗ X.
The behaviour of a session of type NatStream amounts to an infinite sequence of
outputs of channels of type Nat. Such an encoding enables us to construct the
stream of all naturals nats (and the stream of all non-zero naturals oneNats):

genHdNextz � z(n).z〈y〉.(n〈n′〉.[n′ ↔ y] | !z(w).n〈n′〉.succn′,w)
natsy � (νx, u)(zerox | !u(z).genHdNextz | unfoldP(!Nat)x,y)
oneNatsy � (νx, u)(onex | !u(z).genHdNextz | unfoldP(!Nat)x,y)

with genHdNextz :: z:!Nat � Nat⊗!Nat and both natsy and oneNats ::
y:NatStream. genHdNextz consists of a helper that generates the current head of
a stream and the next element. As expected, the following process implements
a session that “unrolls” the stream once, providing the head of the stream and
then behaving as the rest of the stream (recall that out : Tf � F (Tf )).

(νx)(natsx | �out(x)�y) :: y:Nat ⊗ NatStream

We note a peculiarity of the interaction of linearity with the stream encoding:
a process that begins to deconstruct a stream has no way of “bottoming out” and
stopping. One cannot, for instance, extract the first element of a stream of nat-
urals and stop unrolling the stream in a well-typed way. We can, however, easily
encode a “terminating” stream of all natural numbers via F (X) = (Nat⊗!X) by
replacing the genHdNextz with the generator given as:

genHdNextTerz � z(n).z〈y〉.(n〈n′〉.[n′ ↔ y] | !z(w).!w(w′).n〈n′〉.succn′,w′)

It is then easy to see that a usage of �out(x)�y results in a session of type
Nat⊗!NatStream, enabling us to discard the stream as needed. One can replay
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this argument with the operator F (X) = (!Nat ⊗ X) to enable discarding of
stream elements. Assuming such modifications, we can then show:

(νy)((νx)(natsx | �out(x)�y) | y(n).[y ↔ z]) ≈L oneNatsz :: z:NatStream

4.2 Communicating Values – Sessπλ

We now consider a session calculus extended with a data layer obtained from a
λ-calculus (whose terms are ranged over by M,N and types by τ, σ). We dub
this calculus Sessπλ.

P,Q :: = · · · | x〈M〉.P | x(y).P
M,N :: = λx:τ.M | M N | x

A,B :: = · · · | τ ∧ A | τ ⊃ A
τ, σ :: = · · · | τ → σ

Without loss of generality, we consider the data layer to be simply-typed, with
a call-by-name semantics, satisfying the usual type safety properties. The typ-
ing judgment for this calculus is Ψ � M : τ . We omit session polymorphism
for the sake of conciseness, restricting processes to communication of data
and (session) channels. The typing judgment for processes is thus modified to
Ψ ;Γ ;Δ � P :: z:A, where Ψ is an intuitionistic context that accounts for vari-
ables in the data layer. The rules for the relevant process constructs are (all
other rules simply propagate the Ψ context from conclusion to premises):

Ψ � M : τ Ψ ;Γ ;Δ � P :: z:A
Ψ ;Γ ;Δ � z〈M〉.P :: z:τ ∧ A

(∧R)
Ψ, y:τ ;Γ ;Δ,x:A � Q :: z:C

Ψ ;Γ ;Δ,x:τ ∧ A � x(y).Q :: z:C
(∧L)

Ψ, x:τ ;Γ ;Δ � P :: z:A
Ψ ;Γ ;Δ � z(x).P :: z:τ ⊃ A

(⊃R)
Ψ � M : τ Ψ ;Γ ;Δ,x:A � Q :: z:C
Ψ ;Γ ;Δ,x:τ ⊃ A � x〈M〉.Q :: z:C

(⊃L)

With the reduction rule given by:1 x〈M〉.P | x(y).Q −→ P | Q{M/y}. With a
simple extension to our encodings we may eliminate the data layer by encoding
the data objects as processes, showing that from an expressiveness point of
view, data communication is orthogonal to the framework. We note that the
data language we are considering is not linear, and the usage discipline of data
in processes is itself also not linear.

To First-Order Processes. We now introduce our encoding for Sessπλ, defined
inductively on session types, processes, types and λ-terms (we omit the purely
inductive cases on session types and processes for conciseness). As before, the
encoding on processes is defined on typing derivations, where we indicate the
typing rule at the root of the typing derivation.

�τ ∧ A� � !�τ� ⊗ �A� �τ ⊃ A� � !�τ� � �A� �τ → σ� � !�τ� � �σ�

(∧R) �z〈M〉.P � � z〈x〉.(!x(y).�M�y | �P �) (∧L) �x(y).P � � x(y).�P �

(⊃R) �z(x).P � � z(x).�P � (⊃L) �x〈M〉.P � � x〈y〉.(!y(w).�M�w | �P �)

1 For simplicity, in this section, we define the process semantics through a reduction
relation.
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�x�z � x〈y〉.[y ↔ z] �λx:τ.M�z � z(x).�M�z

�M N�z � (νy)(�M�y | y〈x〉.(!x(w).�N�w | [y ↔ z]))

The encoding addresses the non-linear usage of data elements in processes by
encoding the types τ ∧ A and τ ⊃ A as !�τ� ⊗ �A� and !�τ� � �A�, respectively.
Thus, sending and receiving of data is codified as the sending and receiving of
channels of type !, which therefore can be used non-linearly. Moreover, since
data terms are themselves non-linear, the τ → σ type is encoded as !�τ� � �σ�,
following Girard’s embedding of intuitionistic logic in linear logic [15].

At the level of processes, offering a session of type τ ∧ A (i.e. a process of
the form z〈M〉.P ) is encoded according to the translation of the type: we first
send a fresh name x which will be used to access the encoding of the term M .
Since M can be used an arbitrary number of times by the receiver, we guard
the encoding of M with a replicated input, proceeding with the encoding of P
accordingly. Using a session of type τ ⊃ A follows the same principle. The input
cases (and the rest of the process constructs) are completely homomorphic.

The encoding of λ-terms follows Girard’s decomposition of the intuitionistic
function space [49]. The λ-abstraction is translated as input. Since variables in
a λ-abstraction may be used non-linearly, the case for variables and application
is slightly more intricate: to encode the application M N we compose M in
parallel with a process that will send the “reference” to the function argument
N which will be encoded using replication, in order to handle the potential
for 0 or more usages of variables in a function body. Respectively, a variable
is encoded by performing an output to trigger the replication and forwarding
accordingly. Without loss of generality, we assume variable names and their
corresponding replicated counterparts match, which can be achieved through α-
conversion before applying the translation. We exemplify our encoding as follows:

�z(x).z〈x〉.z〈(λy:σ.x)〉.0� = z(x).z〈w〉.(!w(u).�x�u | z〈v〉.(!v(i).�λy:σ.x�i | 0))
= z(x).z〈w〉.(!w(u).x〈y〉.[y ↔ u] | z〈v〉.(!v(i).i(y).x〈t〉.[t ↔ i] | 0))

Properties of the Encoding. We discuss the correctness of our encoding. We
can straightforwardly establish that the encoding preserves typing.

To show that our encoding is operationally sound and complete, we capture
the interaction between substitution on λ-terms and the encoding into processes
through logical equivalence. Consider the following reduction of a process:

(νz)(z(x).z〈x〉.z〈(λy:σ.x)〉.0 | z〈λw:τ0.w〉.P )
−→ (νz)(z〈λw:τ0.w〉.z〈(λy:σ.λw:τ0.w)〉.0 | P ) (1)

Given that substitution in the target session π-calculus amounts to renaming,
whereas in the λ-calculus we replace a variable for a term, the relationship
between the encoding of a substitution M{N/x} and the encodings of M and
N corresponds to the composition of the encoding of M with that of N , but
where the encoding of N is guarded by a replication, codifying a form of explicit
non-linear substitution.
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Lemma 4.5 (Compositionality). Let Ψ, x:τ � M : σ and Ψ � N : τ . We have
that �M{N/x}�z ≈L (νx)(�M�z |!x(y).�N�y)

Revisiting the process to the left of the arrow in Eq. 1 we have:

�(νz)(z(x).z〈x〉.z〈(λy:σ.x)〉.0 | z〈λw:τ0.w〉.P )�

= (νz)(�z(x).z〈x〉.z〈(λy:σ.x)〉.0�z | z〈x〉.(!x(b).�λw:τ0.w�b | �P �))
−→ (νz, x)(z〈w〉.(!w(u).x〈y〉.[y ↔ u] | z〈v〉.(!v(i).�λy:σ.x�i | 0) | !x(b).�λw:τ0.w�b | �P �))

whereas the process to the right of the arrow is encoded as:

�(νz)(z〈λw:τ0.w〉.z〈(λy:σ.λw:τ0.w)〉.0 | P )�
= (νz)(z〈w〉.(!w(u).�λw:τ0.w�u | z〈v〉.(!v(i).�λy:σ.λw:τ0.w�i | �P �)))

While the reduction of the encoded process and the encoding of the reduct
differ syntactically, they are observationally equivalent – the latter inlines the
replicated process behaviour that is accessible in the former on x. Having char-
acterised substitution, we establish operational correspondence for the encoding.

Theorem 4.6 (Operational Correspondence)

1. If Ψ � M : τ and �M�z −→ Q then M −→+ N such that �N�z ≈L Q
2. If Ψ ;Γ ;Δ � P :: z:A and �P � −→ Q then P −→+ P ′ such that �P ′� ≈L Q
3. If Ψ � M : τ and M −→ N then �M�z =⇒ P such that P ≈L �N�z

4. If Ψ ;Γ ;Δ � P :: z:A and P −→ Q then �P � −→+ R with R ≈L �Q�

The process equivalence in Theorem 4.6 above need not be extended to
account for data (although it would be relatively simple to do so), since the
processes in the image of the encoding are fully erased of any data elements.

Back to λ-Terms. We extend our encoding of processes to λ-terms to Sessπλ.
Our extended translation maps processes to linear λ-terms, with the session type
τ ∧ A interpreted as a pair type where the first component is replicated. Dually,
τ ⊃ A is interpreted as a function type where the domain type is replicated. The
remaining session constructs are translated as in § 3.2.

�τ ∧ A� � !�τ� ⊗ �A� �τ ⊃ A� � !�τ� � �A� �τ → σ� � !�τ� � �σ�

(∧L) �x(y).P � � let y ⊗ x = x in let !y = y in �P � (∧R) �z〈M〉.P � � 〈!�M� ⊗ �P �〉
(⊃R) �x(y).P � � λx:!�τ�.let !x = x in �P � (⊃L) �x〈M〉.P � � �P �{(x !�M�)/x}

�λx:τ.M� � λx:!�τ�.let !x = x in �M� �M N� � �M� !�N� �x� � x

The treatment of non-linear components of processes is identical to our pre-
vious encoding: non-linear functions τ → σ are translated to linear functions of
type !τ � σ; a process offering a session of type τ ∧A (i.e. a process of the form
z〈M〉.P , typed by rule ∧R) is translated to a pair where the first component is
the encoding of M prefixed with ! so that it may be used non-linearly, and the
second is the encoding of P . Non-linear variables are handled at the respective
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binding sites: a process using a session of type τ ∧ A is encoded using the elimi-
nation form for the pair and the elimination form for the exponential; similarly,
a process offering a session of type τ ⊃ A is encoded as a λ-abstraction where
the bound variable is of type !�τ�. Thus, we use the elimination form for the
exponential, ensuring that the typing is correct. We illustrate our encoding:

�z(x).z〈x〉.z〈(λy:σ.x)〉.0� = λx:!�τ�.let !x = x in 〈!x ⊗ 〈!�λy:σ.x� ⊗ 〈〉〉〉
= λx:!�τ�.let !x = x in 〈!x ⊗ 〈!(λy:!�σ�.let !y = y in x) ⊗ 〈〉〉〉

Properties of the Encoding. Unsurprisingly due to the logical correspon-
dence between natural deduction and sequent calculus presentations of logic,
our encoding satisfies both type soundness and operational correspondence (c.f.
Theorems 3.6, 3.8 and 3.10). The full development can be found in [52].

Relating the Two Encodings. We prove the two encodings are mutually
inverse and preserve the full abstraction properties (we write =β and =βη for β-
and βη-equivalence, respectively).

Theorem 4.7 (Inverse). If Ψ ;Γ ;Δ � P :: z:A then ��P ��z ≈L �P �. Also, if
Ψ � M : τ then ��M�z� =β �M�.

The equivalences above are formulated between the composition of the encod-
ings applied to P (resp. M) and the process (resp. λ-term) after applying the
translation embedding the non-linear components into their linear counterparts.
This formulation matches more closely that of § 3.3, which applies to linear cal-
culi for which the target languages of this section are a strict subset (and avoids
the formalisation of process equivalence with terms). We also note that in this
setting, observational equivalence and βη-equivalence coincide [3,31]. Moreover,
the extensional flavour of ≈L includes η-like principles at the process level.

Theorem 4.8. Let · � M : τ and · � N : τ . �M� =βη �N� iff �M�z ≈L �N�z.
Also, let · � P :: z:A and · � Q :: z:A. We have that �P � ≈L �Q� iff �P � =βη �Q�.

We establish full abstraction for the encoding of λ-terms into processes (The-
orem 4.8) in two steps: The completeness direction (i.e. from left-to-right) follows
from operational completeness and strong normalisation of the λ-calculus. The
soundness direction uses operational soundness. The proof of Theorem 4.8 uses
the same strategy of Theorem 3.14, appealing to the inverse theorems.

4.3 Higher-Order Session Processes – Sessπλ+

We extend the value-passing framework of the previous section, accounting for
process-passing (i.e. the higher-order) in a session-typed setting. As shown in
[50], we achieve this by adding to the data layer a contextual monad that encap-
sulates (open) session-typed processes as data values, with a corresponding elim-
ination form in the process layer. We dub this calculus Sessπλ+.

P,Q :: = · · · | x ← M ← yi;Q M.N :: = · · · | {x ← P ← yi:Ai}
τ, σ :: = · · · | {xj :Aj � z:A}
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The type {xj :Aj � z:A} is the type of a term which encapsulates an open process
that uses the linear channels xj :Aj and offers A along channel z. This formulation
has the added benefit of formalising the integration of session-typed processes
in a functional language and forms the basis for the concurrent programming
language SILL [37,50]. The typing rules for the new constructs are (for simplicity
we assume no shared channels in process monads):

Ψ ; ·; xi:Ai � P :: z:A

Ψ � {z ← P ← xi:Ai} : {xi:Ai � z:A} {}I

Ψ � M : {xi:Ai � x:A} Δ1 = yi:Ai Ψ ; Γ ; Δ2, x:A � Q :: z:C

Ψ ; Γ ; Δ1, Δ2 � x ← M ← yi; Q :: z:C
{}E

Rule {}I embeds processes in the term language by essentially quoting an
open process that is well-typed according to the type specification in the monadic
type. Dually, rule {}E allows for processes to use monadic values through com-
position that consumes some of the ambient channels in order to provide the
monadic term with the necessary context (according to its type). These con-
structs are discussed in substantial detail in [50]. The reduction semantics of the
process construct is given by (we tacitly assume that the names y and c do not
occur in P and omit the congruence case):

(c ← {z ← P ← xi:Ai} ← yi;Q) −→ (νc)(P{y/xi{c/z}} | Q)

The semantics allows for the underlying monadic term M to evaluate to a
(quoted) process P . The process P is then executed in parallel with the contin-
uation Q, sharing the linear channel c for subsequent interactions. We illustrate
the higher-order extension with following typed process (we write {x ← P} when
P does not depend on any linear channels and assume � Q :: d:Nat ∧ 1):

P � (νc)(c〈{d ← Q}〉.c(x).0 | c(y).d ← y; d(n).c〈n〉.0) (2)

Process P above gives an abstract view of a communication idiom where a
process (the left-hand side of the parallel composition) sends another process
Q which potentially encapsulates some complex computation. The receiver then
spawns the execution of the received process and inputs from it a result value
that is sent back to the original sender. An execution of P is given by:

P −→ (νc)(c(x).0 | d ← {d ← Q}; d(n).c〈n〉.0) −→ (νc)(c(x).0 | (νd)(Q | d(n).c〈n〉.0))
−→+ (νc)(c(x).0 | c〈42〉.0) −→ 0

Given the seminal work of Sangiorgi [46], such a representation naturally begs
the question of whether or not we can develop a typed encoding of higher-order
processes into the first-order setting. Indeed, we can achieve such an encoding
with a fairly simple extension of the encoding of § 4.2 to Sessπλ+ by observing
that monadic values are processes that need to be potentially provided with
extra sessions in order to be executed correctly. For instance, a term of type
{x:A � y:B} denotes a process that given a session x of type A will then offer
y:B. Exploiting this observation we encode this type as the session A � B,
ensuring subsequent usages of such a term are consistent with this interpretation.
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�{xj :Aj  z:A}� � �Aj� � �A�

�{x ← P → yi}�z � z(y0). . . . .z(yn).�P{z/x}� (z �∈ fn(P ))

�x ← M ← yi; Q� � (νx)(�M�x | x〈a0〉.([a0 ↔ y0] | · · · | x〈an〉.([an ↔ yn] | �Q�) . . . ))

To encode the monadic type {xj :Aj � z:A}, denoting the type of process P
that is typed by xj :Aj � P :: z:A, we require that the session in the image of the
translation specifies a sequence of channel inputs with behaviours Aj that make
up the linear context. After the contextual aspects of the type are encoded, the
session will then offer the (encoded) behaviour of A. Thus, the encoding of the
monadic type is �A0� � . . . � �An� � �A�, which we write as �Aj� � �A�.
The encoding of monadic expressions adheres to this behaviour, first performing
the necessary sequence of inputs and then proceeding inductively. Finally, the
encoding of the elimination form for monadic expressions behaves dually, com-
posing the encoding of the monadic expression with a sequence of outputs that
instantiate the consumed names accordingly (via forwarding). The encoding of
process P from Eq. 2 is thus:

�P � = (νc)(�c〈{d ← Q}〉.c(x).0� | �c(y).d ← y; d(n).c〈n〉.0�)
= (νc)(c〈w〉.(!w(d).�Q� | c(x).0)c(y).(νd)(y〈b〉.[b ↔ d] | d(n).c〈m〉.(n〈e〉.[e ↔ m] | 0)))

Properties of the Encoding. As in our previous development, we can show
that our encoding for Sessπλ+ is type sound and satisfies operational correspon-
dence. The full development is omitted but can be found in [52].

We encode Sessπλ+ into λ-terms, extending § 4.2 with:

�{xi:Ai � z:A}� � �Ai� � �A�

�x ← M ← yi;Q� � �Q�{(�M� yi)/x} �{x ← P ← wi}� � λw0. . . . .λwn.�P �

The encoding translates the monadic type {xi:Ai � z:A} as a linear function
�Ai� � �A�, which captures the fact that the underlying value must be pro-
vided with terms satisfying the requirements of the linear context. At the level
of terms, the encoding for the monadic term constructor follows its type specifi-
cation, generating a nesting of λ-abstractions that closes the term and proceed-
ing inductively. For the process encoding, we translate the monadic application
construct analogously to the translation of a linear cut, but applying the appro-
priate variables to the translated monadic term (which is of function type). We
remark the similarity between our encoding and that of the previous section,
where monadic terms are translated to a sequence of inputs (here a nesting
of λ-abstractions). Our encoding satisfies type soundness and operational corre-
spondence, as usual. Further showcasing the applications of our development, we
obtain a novel strong normalisation result for this higher-order session-calculus
“for free”, through encoding to the λ-calculus.

Theorem 4.9 (Strong Normalisation). Let Ψ ;Γ ;Δ � P :: z:A. There is no
infinite reduction sequence starting from P .

Theorem 4.10 (Inverse Encodings). If Ψ ;Γ ;Δ � P :: z:A then ��P ��z ≈L

�P �. Also, if Ψ � M : τ then ��M�z� =β �M�.
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Theorem 4.11. Let � M : τ , � N : τ , � P :: z:A and � Q :: z:A. �M� =βη �N�
iff �M�z ≈L �N�z and �P � ≈L �Q� iff �P � =βη �Q�.

5 Related Work and Concluding Remarks

Process Encodings of Functions. Toninho et al. [49] study encodings of the
simply-typed λ-calculus in a logically motivated session π-calculus, via encodings
to the linear λ-calculus. Our work differs since they do not study polymorphism
nor reverse encodings; and we provide deeper insights through applications of
the encodings. Full abstraction or inverse properties are not studied.

Sangiorgi [43] uses a fully abstract compilation from the higher-order π-
calculus (HOπ) to the π-calculus to study full abstraction for Milner’s encodings
of the λ-calculus. The work shows that Milner’s encoding of the lazy λ-calculus
can be recovered by restricting the semantic domain of processes (the so-called
restrictive approach) or by enriching the λ-calculus with suitable constants. This
work was later refined in [45], which does not use HOπ and considers an oper-
ational equivalence on λ-terms called open applicative bisimulation which coin-
cides with Lévy-Longo tree equality. The work [47] studies general conditions
under which encodings of the λ-calculus in the π-calculus are fully abstract wrt
Lévy-Longo and Böhm Trees, which are then applied to several encodings of (call-
by-name) λ-calculus. The works above deal with untyped calculi, and so reverse
encodings are unfeasible. In a broader sense, our approach takes the restrictive
approach using linear logic-based session typing and the induced observational
equivalence. We use a λ-calculus with booleans as observables and reason with
a Morris-style equivalence instead of tree equalities. It would be an interesting
future work to apply the conditions in [47] in our typed setting.

Wadler [54] shows a correspondence between a linear functional language
with session types GV and a session-typed process calculus with polymorphism
based on classical linear logic CP. Along the lines of this work, Lindley and
Morris [26], in an exploration of inductive and coinductive session types through
the addition of least and greatest fixed points to CP and GV, develop an encoding
from a linear λ-calculus with session primitives (Concurrent μGV) to a pure
linear λ-calculus (Functional μGV) via a CPS transformation. They also develop
translations between μCP and Concurrent μGV, extending [25]. Mapping to the
terminology used in our work [17], their encodings are shown to be operationally
complete, but no results are shown for the operational soundness directions and
neither full abstraction nor inverse properties are studied. In addition, their
operational characterisations do not compose across encodings. For instance,
while strong normalisation of Functional μGV implies the same property for
Concurrent μGV through their operationally complete encoding, the encoding
from μCP to μGV does not necessarily preserve this property.

Types for π-calculi delineate sequential behaviours by restricting composition
and name usages, limiting the contexts in which processes can interact. Therefore
typed equivalences offer a coarser semantics than untyped semantics. Berger et
al. [5] study an encoding of System F in a polymorphic linear π-calculus, showing
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it to be fully abstract based on game semantics techniques. Their typing system
and proofs are more complex due to the fine-grained constraints from game
semantics. Moreover, they do not study a reverse encoding. Orchard and Yoshida
[33] develop embeddings to-and-from PCF with parallel effects and a session-
typed π-calculus, but only develop operational correspondence and semantic
soundness results, leaving the full abstraction problem open.

Polymorphism and Typed Behavioural Semantics. The work of [7] stud-
ies parametric session polymorphism for the intuitionistic setting, developing a
behavioural equivalence that captures parametricity, which is used (denoted as
≈L) in our paper. The work [39] introduces a typed bisimilarity for polymor-
phism in the π-calculus. Their bisimilarity is of an intensional flavour, whereas
the one used in our work follows the extensional style of Reynolds [41]. Their
typing discipline (originally from [53], which also develops type-preserving encod-
ings of polymorphic λ-calculus into polymorphic π-calculus) differs significantly
from the linear logic-based session typing of our work (e.g. theirs does not ensure
deadlock-freedom). A key observation in their work is the coarser nature of typed
equivalences with polymorphism (in analogy to those for IO-subtyping [38]) and
their interaction with channel aliasing, suggesting a use of typed semantics and
encodings of the π-calculus for fine-grained analyses of program behaviour.

F-Algebras and Linear-F. The use of initial and final (co)algebras to give a
semantics to inductive and coinductive types dates back to Mendler [28], with
their strong definability in System F appearing in [1,19]. The definability of
inductive and coinductive types using parametricity also appears in [40] in the
context of a logic for parametric polymorphism and later in [6] in a linear variant
of such a logic. The work of [55] studies parametricity for the polymorphic linear
λ-calculus of this work, developing encodings of a few inductive types but not
the initial (or final) algebraic encodings in their full generality. Inductive and
coinductive session types in a logical process setting appear in [26,51]. Both
works consider a calculus with built-in recursion – the former in an intuitionistic
setting where a process that offers a (co)inductive protocol is composed with
another that consumes the (co)inductive protocol and the latter in a classical
framework where composed recursive session types are dual each other.

Conclusion and Future Work. This work answers the question of what kind
of type discipline of the π-calculus can exactly capture and is captured by λ-
calculus behaviours. Our answer is given by showing the first mutually inverse
and fully abstract encodings between two calculi with polymorphism, one being
the Polyπ session calculus based on intuitionistic linear logic, and the other (a
linear) System F. This further demonstrates that the linear logic-based articula-
tion of name-passing interactions originally proposed by [8] (and studied exten-
sively thereafter e.g. [7,9,25,36,50,51,54]) provides a clear and applicable tool
for message-passing concurrency. By exploiting the proof theoretic equivalences
between natural deduction and sequent calculus we develop mutually inverse
and fully abstract encodings, which naturally extend to more intricate settings
such as process passing (in the sense of HOπ). Our encodings also enable us to
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derive properties of the π-calculi “for free”. Specifically, we show how to obtain
adequate representations of least and greatest fixed points in Polyπ through the
encoding of initial and final (co)algebras in the λ-calculus. We also straightfor-
wardly derive a strong normalisation result for the higher-order session calcu-
lus, which otherwise involves non-trivial proof techniques [5,7,12,13,36]. Future
work includes extensions to the classical linear logic-based framework, including
multiparty session types [10,11]. Encodings of session π-calculi to the λ-calculus
have been used to implement session primitives in functional languages such as
Haskell (see a recent survey [32]), OCaml [24,34,35] and Scala [48]. Following
this line of work, we plan to develop encoding-based implementations of this
work as embedded DSLs. This would potentially enable an exploration of alge-
braic constructs beyond initial and final co-algebras in a session programming
setting. In particular, we wish to further study the meaning of functors, natural
transformations and related constructions in a session-typed setting, both from
a more fundamental viewpoint but also in terms of programming patterns.
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Abstract. Concurrent Kleene Algebra (CKA) was introduced by Hoare,
Moeller, Struth and Wehrman in 2009 as a framework to reason about
concurrent programs. We prove that the axioms for CKA with bounded
parallelism are complete for the semantics proposed in the original paper;
consequently, these semantics are the free model for this fragment. This
result settles a conjecture of Hoare and collaborators. Moreover, the tech-
nique developed to this end allows us to establish a Kleene Theorem for
CKA, extending an earlier Kleene Theorem for a fragment of CKA.

1 Introduction

Concurrent Kleene Algebra (CKA) [8] is a mathematical formalism which extends
Kleene Algebra (KA) with a parallel composition operator, in order to express
concurrent program behaviour.1 In spite of such a seemingly simple addition,
extending the existing KA toolkit (notably, completeness) to the setting of CKA
turned out to be a challenging task. A lot of research happened since the original
paper, both foundational [13,20] and on how CKA could be used to reason about
important verification tasks in concurrent systems [9,11]. However, and despite
several conjectures [9,13], the question of the characterisation of the free CKA
and the completeness of the axioms remained open, making it impractical to use
CKA in verification tasks. This paper settles these two open questions. We answer
positively the conjecture that the free model of CKA is formed by series parallel
pomset languages, downward-closed under Gischer’s subsumption order [6]—a
generalisation of regular languages to sets of partially ordered words. To this
end, we prove that the original axioms proposed in [8] are indeed complete.

Our proof of completeness is based on extending an existing complete-
ness result that establishes series-parallel rational pomset languages as the free
Bi-Kleene Algebra (BKA) [20]. The extension to the existing result for BKA pro-
vides a clear understanding of the difficulties introduced by the presence of the
exchange axiom and shows how to separate concerns between CKA and BKA, a
technique which is also useful elsewhere. For one, our construction also provides

1 In its original formulation, CKA also features an operator (parallel star) for
unbounded parallelism: in harmony with several recent works [13,14], we study the
variant of CKA without parallel star, sometimes called “weak” CKA.
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an extension of (half of) Kleene’s theorem for BKA [14] to CKA, establishing
pomset automata as an operational model for CKA and opening the door to
decidability procedures similar to those previously studied for KA. Furthermore,
it reduces deciding the equational theory of CKA to deciding the equational
theory of BKA.

BKA is defined as CKA with the only (but significant) omission of the
exchange law, (e ‖ f) · (g ‖ h) �CKA (e · g) ‖ (f · h). The exchange law is the
core element of CKA as it softens true concurrency: it states that when two
sequentially composed programs (i.e., e · g and f · h) are composed in parallel,
they can be implemented by running their heads in parallel, followed by running
their tails in parallel (i.e., e ‖ f , then g ‖ h). The exchange law allows the imple-
menter of a CKA expression to interleave threads at will, without violating the
specification.

To illustrate the use of the exchange law, consider a protocol with three
actions: query a channel c, collect an answer from the same channel, and print
an unrelated message m on screen. The specification for this protocol requires
the query to happen before reception of the message, but the printing action
being independent, it may be executed concurrently. We will write this specifica-
tion as (q(c) · r(c)) ‖ p(m), with the operator · denoting sequential composition.
However, if one wants to implement this protocol in a sequential programming
language, a total ordering of these events has to be introduced. Suppose we
choose to implement this protocol by printing m while we wait to receive an
answer. This implementation can be written q(c) · p(m) · r(c). Using the laws
of CKA, we can prove that q(c) · p(m) · r(c) �CKA (q(c) · r(c)) ‖ p(m), which we
interpret as the fact that this implementation respects the specification. Intu-
itively, this means that the specification lists the necessary dependencies, but
the implementation can introduce more.

Having a complete axiomatisation of CKA has two main benefits. First, it
allows one to get certificates of correctness. Indeed, if one wants to use CKA for
program verification, the decision procedure presented in [3] may be used to test
program equivalence. If the test gives a negative answer, this algorithm provides
a counter-example. However if the answer is positive, no meaningful witness
is produced. With the completeness result presented here, that is constructive
in nature, one could generate an axiomatic proof of equivalence in these cases.
Second, it gives one a simple way of checking when the aforementioned procedure
applies. By construction, we know that two terms are semantically equivalent
whenever they are equal in every concurrent Kleene algebra, that is any model of
the axioms of CKA. This means that if we consider a specific semantic domain,
one simply needs to check that the axioms of CKA hold in there to know that
the decision procedure of [3] is sound in this model.

While this paper was in writing, a manuscript with the same result
appeared [19]. Among other things, the proof presented here is different in that it
explicitly shows how to syntactically construct terms that express certain pom-
set languages, as opposed to showing that such terms must exist by reasoning
on a semantic level. We refer to Sect. 5 for a more extensive comparison.
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The remainder of this paper is organised as follows. In Sect. 2, we give an
informal overview of the completeness proof. In Sect. 3, we introduce the nec-
essary concepts, notation and lemmas. In Sect. 4, we work out the proof. We
discuss the result in a broader perspective and outline further work in Sect. 5.

2 Overview of the Completeness Proof

We start with an overview of the steps necessary to arrive at the main result. As
mentioned, our strategy in tackling CKA-completeness is to build on the existing
BKA-completeness result. Following an observation by Laurence and Struth, we
identify downward-closure (under Gischer’s subsumption order [6]) as the feature
that distinguishes the pomsets giving semantics to BKA-expressions from those
associated with CKA-expressions. In a slogan,

CKA-semantics = BKA-semantics + downward-closure.

This situation is depicted in the upper part of the commuting diagram in Fig. 1.
Intuitively, downward-closure can be thought of as the semantic outcome of
adding the exchange axiom, which distinguishes CKA from BKA. Thus, if a and
b are events that can happen in parallel according to the BKA-semantics of a
term, then a and b may also be ordered in the CKA-semantics of that same term.

Fig. 1. The connection between BKA and CKA semantics mediated by closure.

The core of our CKA-completeness proof will be to construct a syntactic
counterpart to the semantic closure. Concretely, we shall build a function that
maps a CKA term e to an equivalent term e↓, called the (syntactic) closure of e.
The lower part of the commuting diagram in Fig. 1 shows the property that e↓
must satisfy in order to deserve the name of closure: its BKA semantics has to
be the same as the CKA semantics of e.
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Example 2.1. Consider e = a ‖ b, whose CKA-semantics prescribe that a and
b are events that may happen in parallel. One closure of this term would be
e↓ = a ‖ b+a·b+b·a, whose BKA-semantics stipulate that either a and b execute
purely in parallel, or a precedes b, or b precedes a—thus matching the optional
parallelism of a and b. For a more non-trivial example, take e = a� ‖ b�, which
represents that finitely many repetitions of a and b occur, possibly in parallel.
A closure of this term would be e↓ = (a� ‖ b�)�: finitely many repetitions of a
and b occur truly in parallel, which is repeated indefinitely.

In order to find e↓ systematically, we are going to construct it in stages,
through a completely syntactic procedure where each transformation has to be
valid according to the axioms. There are three main stages.

(i) We note that, not unexpectedly, the hardest case for computing the closure
of a term is when e is a parallel composition, i.e., when e = e0 ‖ e1 for
some CKA terms e0 and e1. For the other operators, the closure of the
result can be obtained by applying the same operator to the closures of its
arguments. For instance, (e + f) ↓ = e↓+f↓. This means that we can focus
on calculating the closure for the particular case of parallel composition.

(ii) We construct a preclosure of such terms e, whose BKA semantics contains
all but possibly the sequentially composed pomsets of the CKA semantics
of e. Since every sequentially composed pomset decomposes (uniquely) into
non-sequential pomsets, we can use the preclosure as a basis for induction.

(iii) We extend this preclosure of e to a proper closure, by leveraging the fixpoint
axioms of KA to solve a system of linear inequations. This system encodes
“stringing together” non-sequential pomsets to build all pomsets in e.

As a straightforward consequence of the closure construction, we obtain a
completeness theorem for CKA, which establishes the set of closed series-rational
pomset languages as the free CKA.

3 Preliminaries

We fix a finite set of symbols Σ, the alphabet. We use the symbols a, b and c to
denote elements of Σ. The two-element set {0, 1} is denoted by 2. Given a set
S, the set of subsets (powerset) of S is denoted by 2S .

In the interest of readability, the proofs for technical lemmas in this section
can be found in the full version [15].

3.1 Pomsets

A trace of a sequential program can be modelled as a word, where each letter
represents an atomic event, and the order of the letters in the word represents
the order in which the events took place. Analogously, a trace of a concurrent
program can be thought of as word where letters are partially ordered, i.e., there
need not be a causal link between events. In literature, such a partially ordered
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word is commonly called a partial word [7], or partially ordered multiset (pomset,
for short) [6]; we use the latter term.

A formal definition of pomsets requires some work, because the partial order
should order occurrences of events rather than the events themselves. For this
reason, we first define a labelled poset.

Definition 3.1. A labelled poset is a tuple 〈S,≤, λ〉, where 〈S,≤〉 is a partially
ordered set (i.e., S is a set and ≤ is a partial order on S), in which S is called
the carrier and ≤ is the order; λ : S → Σ is a function called the labelling.

We denote labelled posets with lower-case bold symbols u, v, et cetera. Given
a labelled poset u, we write Su for its carrier, ≤u for its order and λu for its
labelling. We write 1 for the empty labelled poset. We say that two labelled
posets are disjoint if their carriers are disjoint.

Disjoint labelled posets can be composed parallelly and sequentially; parallel
composition simply juxtaposes the events, while sequential composition imposes
an ordering between occurrences of events originating from the left operand and
those originating from the right operand.

Definition 3.2. Let u and v be disjoint. We write u ‖ v for the parallel com-
position of u and v, which is the labelled poset with the carrier Su∪v = Su ∪Sv,
the order ≤u‖v = ≤u ∪ ≤v and the labeling λu‖v defined by

λu‖v(x) =

{
λu(x) x ∈ Su;
λv(x) x ∈ Sv.

Similarly, we write u · v for the sequential composition of u and v, that is,
labelled poset with the carrier Su∪v and the partial order

≤u·v = ≤u ∪ ≤v ∪ (Su × Sv),

as well as the labelling λu·v = λu‖v.

Note that 1 is neutral for sequential and parallel composition, in the sense that
we have 1 ‖ u = 1 · u = u = u · 1 = u ‖ 1.

There is a natural ordering between labelled posets with regard to concur-
rency.

Definition 3.3. Let u,v be labelled posets. A subsumption from u to v is a
bijection h : Su → Sv that preserves order and labels, i.e., u ≤u u′ implies that
h(u) ≤v h(u′), and λv ◦h = λu. We simplify and write h : u → v for a subsump-
tion from u to v. If such a subsumption exists, we write v � u. Furthermore, h
is an isomorphism if both h and its inverse h−1 are subsumptions. If there exists
an isomorphism from u to v we write u ∼= v.

Intuitively, if u � v, then u and v both order the same set of (occurrences
of) events, but u has more causal links, or “is more sequential” than v. One
easily sees that � is a preorder on labelled posets of finite carrier.

Since the actual contents of the carrier of a labelled poset do not matter, we
can abstract from them using isomorphism. This gives rise to pomsets.
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Definition 3.4. A pomset is an isomorphism class of labelled posets, i.e., the
class [v] � {u : u ∼= v} for some labelled poset v. Composition lifts to pomsets:
we write [u] ‖ [v] for [u ‖ v] and [u] · [v] for [u · v]. Similarly, subsumption also
lifts to pomsets: we write [u] � [v], precisely when u � v.

We denote pomsets with upper-case symbols U , V , et cetera. The empty
pomset, i.e., [1] = {1}, is denoted by 1; this pomset is neutral for sequential
and parallel composition. To ensure that [v] is a set, we limit the discussion to
labelled posets whose carrier is a subset of some set S. The labelled posets in
this paper have finite carrier; it thus suffices to choose S = N to represent all
pomsets with finite (or even countably infinite) carrier.

Composition of pomsets is well-defined: if u and v are not disjoint, we can
find u′,v′ disjoint from u,v respectively such that u ∼= u′ and v ∼= v′. The choice
of representative does not matter, for if u ∼= u′ and v ∼= v′, then u · v ∼= u′ · v′.
Subsumption of pomsets is also well-defined: if u′ ∼= u � v ∼= v′, then u′ � v′.
One easily sees that � is a partial order on finite pomsets, and that sequential
and parallel composition are monotone with respect to �, i.e., if U � W and
V � X, then U · V � W · X and U ‖ V � W ‖ X. Lastly, we note that both
types of composition are associative, both on the level of pomsets and labelled
posets; we therefore omit parentheses when no ambiguity is likely.

Series-Parallel Pomsets. If a ∈ Σ, we can construct a labelled poset with a
single element labelled by a; indeed, since any labelled poset thus constructed
is isomorphic, we also use a to denote this isomorphism class; such a pomset is
called a primitive pomset. A pomset built from primitive pomsets and sequential
and parallel composition is called series-parallel ; more formally:
Definition 3.5. The set of series-parallel pomsets, denoted SP(Σ), is the small-
est set such that 1 ∈ SP(Σ) as well as a ∈ SP(Σ) for every a ∈ Σ, and is closed
under parallel and sequential composition.

We elide the sequential composition operator when we explicitly construct a
pomset from primitive pomsets, i.e., we write ab instead of a · b for the pomset
obtained by sequentially composing the (primitive) pomsets a and b. In this
notation, sequential composition takes precedence over parallel composition.

All pomsets encountered in this paper are series-parallel. A useful feature of
series-parallel pomsets is that we can deconstruct them in a standard fashion [6].

Lemma 3.1. Let U ∈ SP(Σ). Then exactly one of the following is true: either
(i) U = 1, or (ii) U = a for some a ∈ Σ, or (iii) U = U0 · U1 for U0, U1 ∈
SP(Σ) \ {1}, or (iv) U = U0 ‖ U1 for U0, U1 ∈ SP(Σ) \ {1}.

In the sequel, it will be useful to refer to pomsets that are not of the third
kind above, i.e., cannot be written as U0 · U1 for U0, U1 ∈ SP(Σ) \ {1}, as non-
sequential pomsets. Lemma 3.1 gives a normal form for series-parallel pomsets,
as follows.
Corollary 3.1. A pomset U ∈ SP(Σ) can be uniquely decomposed as U = U0 ·
U1 · · · Un−1, where for all 0 ≤ i < n, Ui is series parallel and non-sequential.
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Factorisation. We now go over some lemmas on pomsets that will allow us
to factorise pomsets later on. First of all, one easily shows that subsumption is
irrelevant on empty and primitive pomsets, as witnessed by the following lemma.

Lemma 3.2. Let U and V be pomsets such that U � V or V � U . If U is
empty or primitive, then U = V .

We can also consider how pomset composition and subsumption relate. It is
not hard to see that if a pomset is subsumed by a sequentially composed pomset,
then this sequential composition also appears in the subsumed pomset. A similar
statement holds for pomsets that subsume a parallel composition.

Lemma 3.3 (Factorisation). Let U , V0, and V1 be pomsets such that U is
subsumed by V0 · V1. Then there exist pomsets U0 and U1 such that:

U = U0 · U1, U0 � V0, and U1 � V1.

Also, if U0, U1 and V are pomsets such that U0 ‖ U1 � V , then there exist
pomsets V0 and V1 such that:

V = V0 ‖ V1, U0 � V0, and U1 � V1.

The next lemma can be thought of as a generalisation of Levi’s lemma [21],
a well-known statement about words, to pomsets. It says that if a sequential
composition is subsumed by another (possibly longer) sequential composition,
then there must be a pomset “in the middle”, describing the overlap between
the two; this pomset gives rise to a factorisation.

Lemma 3.4. Let U and V be pomsets, and let W0,W1, . . . , Wn−1 with n > 0 be
non-empty pomsets such that U · V � W0 · W1 · · · Wn−1. There exists an m < n
and pomsets Y,Z such that:

Y · Z � Wm, U � W0 · W1 · · · Wm−1 · Y, and V � Z · Wm+1 · Wm+2 · · · Wn.

Moreover, if U and V are series-parallel, then so are Y and Z.

Levi’s lemma also has an analogue for parallel composition.

Lemma 3.5. Let U, V,W,X be pomsets such that U ‖ V = W ‖ X. There exist
pomsets Y0, Y1, Z0, Z1 such that

U = Y0 ‖ Y1, V = Z0 ‖ Z1, W = Y0 ‖ Z0, and X = Y1 ‖ Z1.

The final lemma is useful when we have a sequentially composed pomset
subsumed by a parallelly composed pomset. It tells us that we can factor the
involved pomsets to find subsumptions between smaller pomsets. This lemma
first appeared in [6], where it is called the interpolation lemma.
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Lemma 3.6 (Interpolation). Let U, V,W,X be pomsets such that U · V is
subsumed by W ‖ X. Then there exist pomsets W0,W1,X0,X1 such that

W0 · W1 � W, X0 · X1 � X, U � W0 ‖ X0, and V � W1 ‖ X1.

Moreover, if W and X are series-parallel, then so are W0, W1, X0 and X1.

On a semi-formal level, the interpolation lemma can be understood as follows.
If U · V � W ‖ X, then the events in W are partitioned between those that end
up in U , and those that end up in V ; these give rise to the “sub-pomsets” W0

and W1 of W , respectively. Similarly, X partitions into “sub-pomsets” X0 and
X1. We refer to Fig. 2 for a graphical depiction of this situation.

Now, if y precedes z in W0 ‖ X0, then y must precede z in W ‖ X, and
therefore also in U · V . Since y and z are both events in U , it then follows that
y precedes z in U , establishing that U � W0 ‖ X0. Furthermore, if y precedes z
in W , then we can exclude the case where y is in W1 and z in W0, for then z
precedes y in U ·V , contradicting that y precedes z in U ·V . Accordingly, either
y and z both belong to W0 or W1, or y is in W0 while z is in W1; in all of these
cases, y must precede z in W0 · W1. The other subsumptions hold analogously.

W0

X0

W1

X1

W0 W1

X0 X1

�

U V

W

X

Fig. 2. Splitting pomsets in the interpolation lemma

Pomset Languages. The semantics of BKA and CKA are given in terms of sets
of series-parallel pomsets.

Definition 3.6. A subset of SP(Σ) is referred to as a pomset language.

As a convention, we denote pomset languages by the symbols U , V, et cetera.
Sequential and parallel composition of pomsets extends to pomset languages in
a pointwise manner, i.e.,

U · V � {U · V : U ∈ U , V ∈ V}
and similarly for parallel composition. Like languages of words, pomset languages
have a Kleene star operator, which is similarly defined, i.e., U� �

⋃
n∈N

Un, where
the nth power of U is inductively defined as U0 � {1} and Un+1 � Un · U .

A pomset language U is closed under subsumption (or simply closed) if when-
ever U ∈ U with U ′ � U and U ′ ∈ SP(Σ), it holds that U ′ ∈ U . The closure
under subsumption (or simply closure) of a pomset language U , denoted U↓, is
defined as the smallest pomset language that contains U and is closed, i.e.,

U↓ � {U ′ ∈ SP(Σ) : ∃U ∈ U . U ′ � U}
Closure relates to union, sequential composition and iteration as follows.
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Lemma 3.7. Let U ,V be pomset languages; then:

(U ∪ V)↓ = U↓ ∪ V↓, (U · V)↓ = U↓ · V↓, and U�↓ = U↓�.

Proof. The first claim holds for infinite unions, too, and follows immediately
from the definition of closure.

For the second claim, suppose that U ∈ U and V ∈ V, and that W � U · V .
By Lemma 3.3, we find pomsets W0 and W1 such that W = W0 · W1, with
W0 � U and W1 � V . It then holds that W0 ∈ U↓ and W1 ∈ V↓, meaning that
W = W0 · W1 ∈ U↓ · V↓. This shows that (U · V)↓ � U↓ · V↓. Proving the reverse
inclusion is a simple matter of unfolding the definitions.

For the third claim, we can calculate directly using the first and second parts
of this lemma:

U�↓ =
( ⋃

n∈N

U · U · · · U︸ ︷︷ ︸
n times

)
↓ =

⋃
n∈N

(
U · U · · · U︸ ︷︷ ︸

n times

)
↓ =

⋃
n∈N

U↓ · U↓ · · · U↓︸ ︷︷ ︸
n times

= U↓�

��

3.2 Concurrent Kleene Algebra

We now consider two extensions of Kleene Algebra (KA), known as Bi-Kleene
Algebra (BKA) and Concurrent Kleene Algebra (CKA). Both extend KA with an
operator for parallel composition and thus share a common syntax.

Definition 3.7. The set T is the smallest set generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e ‖ f | e�

The BKA-semantics of a term is a straightforward inductive application of
the operators on the level of pomset languages. The CKA-semantics of a term
is the BKA-semantics, downward-closed under the subsumption order; the CKA-
semantics thus includes all possible sequentialisations.

Definition 3.8. The function �−�
BKA

: T → 2SP(Σ) is defined as follows:

�0�
BKA

� ∅ �e + f�
BKA

� �e�
BKA

∪ �f�
BKA

�e��
BKA

� �e�
�
BKA

�1�
BKA

� {1} �e · f�
BKA

� �e�
BKA

· �f�
BKA

�a�
BKA

� {a} �e ‖ f�
BKA

� �e�
BKA

‖ �f�
BKA

Finally, �−�
CKA

: T → 2SP(Σ) is defined as �e�
CKA

� �e�
BKA

↓.
Following Lodaya and Weil [22], if U is a pomset language such that U =

�e�
BKA

for some e ∈ T , we say that the language U is series-rational. Note that
if U is such that U = �e�

CKA
for some term e ∈ T , then U is closed by definition.

To axiomatise semantic equivalence between terms, we build the following
relations, which match the axioms proposed in [20]. The axioms of CKA as
defined in [8] come from a double quantale structure mediated by the exchange
law; these imply the ones given here. The converse implication does not hold;
in particular, our syntax does not include an infinitary greatest lower bound
operator. However, BKA (as defined in this paper) does have a finitary greatest
lower bound [20], and by the existence of closure, so does CKA.
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Definition 3.9. The relation ≡BKA is the smallest congruence on T (with respect
to all operators) such that for all e, f, g ∈ T :

e + 0 ≡BKA e e + e ≡BKA e e + f ≡BKA f + e e + (f + g) ≡BKA (f + g) + h

e · 1 ≡BKA e 1 · e ≡BKA e e · (f · g) ≡BKA (e · f) · g

e · 0 ≡BKA 0 ≡BKA 0 · e e · (f + g) ≡BKA e · f + e · h (e + f) · g ≡BKA e · g + f · g

e ‖ f ≡BKA f ‖ e e ‖ 1 ≡BKA e e ‖ (f ‖ g) ≡BKA (e ‖ f) ‖ g

e ‖ 0 ≡BKA 0 e ‖ (f + g) ≡BKA e ‖ f + e ‖ g 1 + e · e� ≡BKA e�

e + f · g �BKA g =⇒ f� · e �BKA g

in which we use e �BKA f as a shorthand for e+f ≡BKA f . The final (conditional)
axiom is referred to as the least fixpoint axiom.

The relation ≡CKA is the smallest congruence on T that satisfies the rules of
≡BKA, and furthermore satisfies the exchange law for all e, f, g, h ∈ T :

(e ‖ f) · (g ‖ h) �CKA (e · g) ‖ (f · h)

where we similarly use e �CKA f as a shorthand for e + f ≡CKA f .

We can see that ≡BKA includes the familiar axioms of KA, and stipulates
that ‖ is commutative and associative with unit 1 and annihilator 0, as well as
distributive over +. When using CKA to model concurrent program flow, the
exchange law models sequentialisation: if we have two programs, the first of
which executes e followed by g, and the second of which executes f followed by
h, then we can sequentialise this by executing e and f in parallel, followed by
executing g and h in parallel.

We use the symbol T in statements that are true for T ∈ {BKA,CKA}. The
relation ≡T is sound for equivalence of terms under T [13].

Lemma 3.8. Let e, f ∈ T . If e ≡T f , then �e�
T

= �f�
T
.

Since all binary operators are associative (up to ≡T), we drop parentheses
when writing terms like e + f + g—this does not incur ambiguity with regard to
�−�

T
. We furthermore consider · to have precedence over ‖, which has precedence

over +; as usual, the Kleene star has the highest precedence of all operators. For
instance, when we write e + f · g� ‖ h, this should be read as e + ((f · (g�)) ‖ h).

In case of BKA, the implication in Lemma 3.8 is an equivalence [20], and thus
gives a complete axiomatisation of semantic BKA-equivalence of terms.2

Theorem 3.1. Let e, f ∈ T . Then e ≡BKA f if and only if �e�
BKA

= �f�
BKA

.

Given a term e ∈ T , we can determine syntactically whether its (BKA or
CKA) semantics contains the empty pomset, using the function defined below.
2 Strictly speaking, the proof in [20] includes the parallel star operator in BKA. Since

this is a conservative extension of BKA, this proof applies to BKA as well.
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Definition 3.10. The nullability function ε : T → 2 is defined as follows:

ε(0) � 0 ε(e + f) � ε(e) ∨ ε(f) ε(e�) � 1

ε(1) � 1 ε(e · f) � ε(e) ∧ ε(f)

ε(a) � 0 ε(e ‖ f) � ε(e) ∧ ε(f)

in which ∨ and ∧ are understood as the usual lattice operations on 2.

That ε encodes the presence of 1 in the semantics is witnessed by the
following.

Lemma 3.9. Let e ∈ T . Then ε(e) �T e and 1 ∈ �e�
T

if and only if ε(e) = 1.

In the sequel, we need the (parallel) width of a term. This is defined as follows.

Definition 3.11. Let e ∈ T . The (parallel) width of e, denoted by |e|, is defined
as 0 when e ≡BKA 0; for all other cases, it is defined inductively, as follows:

|1| � 0 |e + f | � max(|e|, |f |) |e ‖ f | � |e| + |f |
|a| � 1 |e · f | � max(|e|, |f |) |e�| � |e|

The width of a term is invariant with respect to equivalence of terms.

Lemma 3.10. Let e, f ∈ T . If e ≡BKA f , then |e| = |f |.
The width of a term is related to its semantics as demonstrated below.

Lemma 3.11. Let e ∈ T , and let U ∈ �e�
BKA

be such that U �= 1. Then |e| > 0.

3.3 Linear Systems

KA is equipped to find the least solutions to linear inequations. For instance,
if we want to find X such that e · X + f �KA X, it is not hard to show that
e� · f is the least solution for X, in the sense that this choice of X satisfies the
inequation, and for any choice of X that also satisfies this inequation it holds that
e� · f �KA X. Since KA is contained in BKA and CKA, the same constructions
also apply there. These axioms generalise to systems of linear inequations in
a straightforward manner; indeed, Kozen [18] exploited this generalisation to
axiomatise KA. In this paper, we use systems of linear inequations to construct
particular expressions. To do this, we introduce vectors and matrices of terms.

For the remainder of this section, we fix I as a finite set.

Definition 3.12. An I-vector is a function from I to T . Addition of I-vectors
is defined pointwise, i.e., if p and q are I-vectors, then p + q is the I-vector
defined for i ∈ I by (p + q)(i) � p(i) + q(i).

An I-matrix is a function from I2 to T . Left-multiplication of an I-vector
by an I-matrix is defined in the usual fashion, i.e., if M is an I-matrix and p is
an I-vector, then M · p is the I-vector defined for i ∈ I by

(M · p)(i) �
∑
j∈I

M(i, j) · p(j)
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Equivalence between terms extends pointwise to I-vectors. More precisely,
we write p ≡T q for I-vectors p and q when p(i) ≡T q(i) for all i ∈ I, and p �T q
when p + q ≡T q.

Definition 3.13. An I-linear system L is a pair 〈M,p〉 where M is an I-matrix
and p is an I-vector. A solution to L in T is an I-vector s such that M ·s+p �T s.
A least solution to L in T is a solution s in T such that for any solution t in T
it holds that s �T t.

It is not very hard to show that least solutions of a linear system are unique,
up to ≡T; we therefore speak of the least solution of a linear system.

Interestingly, any I-linear system has a least solution, and one can con-
struct this solution using only the operators of KA. The construction proceeds
by induction on |I|. In the base, where I is empty, the solution is trivial; for the
inductive step it suffices to reduce the problem to finding the least solution of a
strictly smaller linear system. This construction is not unlike Kleene’s procedure
to obtain a regular expression from a finite automaton [17]. Alternatively, we
can regard the existence of least solutions as a special case of Kozen’s proof of
the fixpoint for matrices over a KA, as seen in [18, Lemma 9].

As a matter of fact, because this construction uses the axioms of KA exclu-
sively, the least solution that is constructed is the same for both BKA and CKA.

Lemma 3.12. Let L be an I-linear system. One can construct a single I-
vector x that is the least solution to L in both BKA and CKA.

We include a full proof of the lemma above using the notation of this paper
in the full version of this paper [15].

4 Completeness of CKA

We now turn our attention to proving that ≡CKA is complete for CKA-semantic
equivalence of terms, i.e., that if e, f ∈ T are such that �e�

CKA
= �f�

CKA
, then

e ≡CKA f . In the interest of readability, proofs of technical lemmas in this section
can be found in the full version of this paper [15].

As mentioned before, our proof of completeness is based on the completeness
result for BKA reproduced in Theorem 3.1. Recall that �e�

CKA
= �e�

BKA
↓. To reuse

completeness of BKA, we construct a syntactic variant of the closure operator,
which is formalised below.

Definition 4.1. Let e ∈ T . We say that e↓ is a closure of e if both e ≡CKA e↓
and �e↓�

BKA
= �e�

BKA
↓ hold.

Example 4.1. Let e = a ‖ b; as proposed in Sect. 2, we claim that e↓ = a ‖
b+b·a+a·b is a closure of e. To see why, first note that e �CKA e↓ by construction.
Furthermore,

ab ≡CKA (a ‖ 1) · (1 ‖ b) �CKA (a · 1) ‖ (1 · b) ≡CKA a ‖ b

and similarly ba �CKA e; thus, e ≡CKA e↓. Lastly, the pomsets in �e�
BKA

↓ and �e↓�
BKA

are simply a ‖ b, ab and ba, and therefore �e↓�
BKA

= �e�
BKA

↓.
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Laurence and Struth observed that the existence of a closure for every term
implies a completeness theorem for CKA, as follows.

Lemma 4.1. Suppose that we can construct a closure for every element of T .
If e, f ∈ T such that �e�

CKA
= �f�

CKA
, then e ≡CKA f .

Proof. Since �e�
CKA

= �e�
BKA

↓ = �e↓�
BKA

and similarly �f�
CKA

= �f↓�
BKA

, we have
�e↓�

BKA
= �f↓�

BKA
. By Theorem 3.1, we get e↓ ≡BKA f↓, and thus e↓ ≡CKA f↓, since

all axioms of BKA are also axioms of CKA. By e ≡CKA e↓ and f↓ ≡CKA f , we can
then conclude that e ≡CKA f . ��

The remainder of this section is dedicated to showing that the premise of
Lemma 4.1 holds. We do this by explicitly constructing a closure e↓ for every
e ∈ T . First, we note that closure can be constructed for the base terms.

Lemma 4.2. Let e ∈ 2 or e = a for some a ∈ Σ. Then e is a closure of itself.

Furthermore, closure can be constructed compositionally for all operators
except parallel composition, in the following sense.

Lemma 4.3. Suppose that e0, e1 ∈ T , and that e0 and e1 have closures e0↓ and
e1↓. Then (i) e0↓+ e1↓ is a closure of e0 + e1, (ii) e0↓ · e1↓ is a closure of e0 · e1,
and (iii) (e0↓)� is a closure of e�

0.

Proof. Since e0↓ ≡CKA e0 and e1↓ ≡CKA e1, by the fact that ≡CKA is a congruence we
obtain e0↓ + e1↓ ≡CKA e0 + e1. Similar observations hold for the other operators.
We conclude using Lemma 3.7. ��

It remains to consider the case where e = e0 ‖ e1. In doing so, our induction
hypothesis is that any f ∈ T with |f | < |e0 ‖ e1| has a closure, as well as any
strict subterm of e0 ‖ e1.

4.1 Preclosure

To get to a closure of a parallel composition, we first need an operator on terms
that is not a closure quite yet, but whose BKA-semantics is “closed enough” to
cover the non-sequential elements of the CKA-semantics of the term.

Definition 4.2. Let e ∈ T . A preclosure of e is a term ẽ ∈ T such that ẽ ≡CKA e.
Moreover, if U ∈ �e�

CKA
is non-sequential, then U ∈ �ẽ�

BKA
.

Example 4.2. Suppose that e0 ‖ e1 = (a ‖ b) ‖ c. A preclosure of e0 ‖ e1 could be

ẽ = a ‖ b ‖ c + (a · b + b · a) ‖ c + (b · c + c · b) ‖ a + (a · c + c · a) ‖ b

To verify this, note that e �CKA ẽ by construction; remains to show that ẽ �CKA e.
This is fairly straightforward: since a·b+b·a �CKA a ‖ b, we have (a·b+b·a) ‖ c �CKA

e; the other terms are treated similarly. Consequently, e ≡CKA ẽ. Furthermore,
there are seven non-sequential pomsets in �e�

CKA
; they are

a ‖ b ‖ c ab ‖ c ba ‖ c bc ‖ a cb ‖ a ac ‖ b ca ‖ b

Each of these pomsets is found in �ẽ�
BKA

. It should be noted that ẽ is not a closure
of e; to see this, consider for instance that abc ∈ �e�

CKA
, while abc �∈ �ẽ�

BKA
.
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The remainder of this section is dedicated to showing that, under the induc-
tion hypothesis, we can construct a preclosure for any parallelly composed term.
This is not perfectly straightforward; for instance, consider the term e0 ‖ e1 dis-
cussed in Example 4.2. At first glance, one might be tempted to choose e0↓ ‖ e1↓
as a preclosure, since e0↓ and e1↓ exist by the induction hypothesis. In that case,
e0↓ = a ‖ b+a · b+ b ·a is a closure of e0. Furthermore, e1↓ = c is a closure of e1,
by Lemma 4.2. However, e0↓ ‖ e1↓ is not a preclosure of e0 ‖ e1, since (a · c) ‖ b
is non-sequential and found in �e0 ‖ e1�CKA

, but not in �e0↓ ‖ e1↓�
BKA

.
The problem is that the preclosure of e0 and e1 should also allow (partial)

sequentialisation of parallel parts of e0 and e1; in this case, we need to sequen-
tialise the a part of a ‖ b with c, and leave b untouched. To do so, we need
to be able to split e0 ‖ e1 into pairs of constituent terms, each of which rep-
resents a possible way to divvy up its parallel parts. For instance, we can split
e0 ‖ e1 = (a ‖ b) ‖ c parallelly into a ‖ b and c, but also into a and b ‖ c, or into
a ‖ c and b. The definition below formalises this procedure.

Definition 4.3. Let e ∈ T ; Δe is the smallest relation on T such that

1 Δe e e Δe 1
� Δe0 r

� Δe1+e0 r

� Δe1 r

� Δe0+e1 r

� Δe r

� Δe� r

� Δe0 r ε(e1) = 1
� Δe0·e1 r

� Δe1 r ε(e0) = 1
� Δe0·e1 r

�0 Δe0 r0 �1 Δe1 r1

�0 ‖ �1 Δe0‖e1 r0 ‖ r1

Given e ∈ T , we refer to Δe as the parallel splitting relation of e, and to
the elements of Δe as parallel splices of e. Before we can use Δe to construct
the preclosure of e, we go over a number of properties of the parallel splitting
relation. The first of these properties is that a given e ∈ T has only finitely many
parallel splices. This will be useful later, when we involve all parallel splices of
e in building a new term, i.e., to guarantee that the constructed term is finite.

Lemma 4.4. For e ∈ T , Δe is finite.

We furthermore note that the parallel composition of any parallel splice of e
is ordered below e by �BKA. This guarantees that parallel splices never contain
extra information, i.e., that their semantics do not contain pomsets that do not
occur in the semantics of e. It also allows us to bound the width of the parallel
splices by the width of the term being split, as a result of Lemma 3.10.

Lemma 4.5. Let e ∈ T . If � Δe r, then � ‖ r �BKA e.

Corollary 4.1. Let e ∈ T . If � Δe r, then |�| + |r| ≤ |e|.

Finally, we show that Δe is dense when it comes to parallel pomsets, meaning
that if we have a parallelly composed pomset in the semantics of e, then we can
find a parallel splice where one parallel component is contained in the semantics
of one side of the pair, and the other component in that of the other.
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Lemma 4.6. Let e ∈ T , and let V,W be pomsets such that V ‖ W ∈ �e�
BKA

.
Then there exist �, r ∈ T with � Δe r such that V ∈ ���

BKA
and W ∈ �r�

BKA
.

Proof. The proof proceeds by induction on e. In the base, we can discount the
case where e = 0, for then the claim holds vacuously. This leaves us two cases.

– If e = 1, then V ‖ W ∈ �e�
BKA

entails V ‖ W = 1. By Lemma 3.1, we find
that V = W = 1. Since 1 Δe 1 by definition of Δe, the claim follows when we
choose � = r = 1.

– If e = a for some a ∈ Σ, then V ‖ W ∈ �e�
BKA

entails V ‖ W = a. By Lemma
3.1, we find that either V = 1 and W = a, or V = a and W = 1. In the
former case, we can choose � = 1 and r = a, while in the latter case we can
choose � = a and r = 1. It is then easy to see that our claim holds in either
case.

For the inductive step, there are four cases to consider.

– If e = e0 + e1, then U0 ‖ U1 ∈ �ei�BKA
for some i ∈ 2. But then, by induction,

we find �, r ∈ T with � Δei
r such that V ∈ ���

BKA
and W ∈ �r�

BKA
. Since this

implies that � Δe r, the claim follows.
– If e = e0 · e1, then there exist pomsets U0, U1 such that V ‖ W = U0 ·U1, and

Ui ∈ �ei�BKA
for all i ∈ 2. By Lemma 3.1, there are two cases to consider.

• Suppose that Ui = 1 for some i ∈ 2, meaning that V ‖ W = U0 · U1 =
U1−i ∈ �e1−i�BKA

for this i. By induction, we find �, r ∈ T with � Δe1−i
r,

and V ∈ ���
BKA

as well as W ∈ �r�
BKA

. Since Ui = 1 ∈ �ei�BKA
, we have that

ε(ei) = 1 by Lemma 3.9, and thus � Δe r.
• Suppose that V = 1 or W = 1. In the former case, V ‖ W = W =

U0 · U1 ∈ �e�
CKA

. We then choose � = 1 and r = e to satisfy the claim.
In the latter case, we can choose � = e and r = 1 to satisfy the claim
analogously.

– If e = e0 ‖ e1, then there exist pomsets U0, U1 such that V ‖ W = U0 ‖ U1,
and Ui ∈ �ei�BKA

for all i ∈ 2. By Lemma 3.5, we find pomsets V0, V1,W0,W1

such that V = V0 ‖ V1, W = W0 ‖ W1, and Ui = Vi ‖ Wi for i ∈ 2. For i ∈ 2,
we then find by induction �i, ri ∈ T with �i Δei

ri such that Vi ∈ ��i�BKA
and

Wi ∈ �ri�BKA
. We then choose � = �0 ‖ �1 and r = r0 ‖ r1. Since V = V0 ‖ V1,

it follows that V ∈ ���
BKA

, and similarly we find that W ∈ �r�
BKA

. Since � Δe r,
the claim follows.

– If e = e�
0, then there exist U0, U1, . . . , Un−1 ∈ �e0�BKA

such that V ‖ W =
U0 · U1 · · · Un−1. If n = 0, i.e., V ‖ W = 1, then V = W = 1. In that case, we
can choose � = e and r = 1 to find that � Δe r, V ∈ ���

BKA
and W ∈ �r�

BKA
,

satisfying the claim.
If n > 0, we can assume without loss of generality that, for 0 ≤ i < n, it
holds that Ui �= 1. By Lemma 3.1, there are two subcases to consider.

• Suppose that V,W �= 1; then n = 1 (for otherwise Uj = 1 for some
0 ≤ j < n by Lemma 3.1, which contradicts the above). Since V ‖
W = U0 ∈ �e0�BKA

, we find by induction �, r ∈ T with � Δe0 r such that
V ∈ ���

BKA
and W ∈ �r�

BKA
. The claim then follows by the fact that � Δe r.
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• Suppose that V = 1 or W = 1. In the former case, V ‖ W = W =
U0 · U1 · · · Un−1 ∈ �e�

CKA
. We then choose � = 1 and r = e to satisfy the

claim. In the latter case, we can choose � = e and r = 1 to satisfy the
claim analogously. ��

Example 4.3. Let U = a ‖ c and V = b, and note that U ‖ V ∈ �e0 ‖ e1�CKA
. We

can then find that a Δa 1 and 1 Δb b, and thus a ‖ 1 Δe0 1 ‖ b. Since also c Δc 1,
it follows that (a ‖ 1) ‖ c Δe0‖e1 (1 ‖ b) ‖ 1. We can then choose � = (a ‖ 1) ‖ c
and r = (1 ‖ b) ‖ 1 to find that U ∈ ���

BKA
and V ∈ �r�

BKA
, while � Δe0‖e1 r.

With parallel splitting in hand, we can define an operator on terms that
combines all parallel splices of a parallel composition in a way that accounts for
all of their downward closures.

Definition 4.4. Let e, f ∈ T , and suppose that, for every g ∈ T such that
|g| < |e| + |f |, there exists a closure g↓. The term e � f is defined as follows:

e � f � e ‖ f +
∑

�Δe‖f r

|�|,|r|<|e‖f |

�↓ ‖ r↓

Note that e�f is well-defined: the sum is finite since Δe‖f is finite by Lemma
4.4, and furthermore �↓ and r↓ exist, as we required that |�|, |r| < |e ‖ f |.

Example 4.4. Let us compute e0 � e1 and verify that we obtain a preclosure of
e0 ‖ e1. Working through the definition, we see that Δe0‖e1 consists of the pairs

〈(1 ‖ 1) ‖ 1, (a ‖ b) ‖ c〉 〈(1 ‖ 1) ‖ c, (a ‖ b) ‖ 1〉 〈(1 ‖ b) ‖ 1, (a ‖ 1) ‖ c〉

〈(1 ‖ b) ‖ c, (a ‖ 1) ‖ 1〉 〈(a ‖ 1) ‖ 1, (1 ‖ b) ‖ c〉 〈(a ‖ 1) ‖ c, (1 ‖ b) ‖ 1〉

Since closure is invariant with respect to ≡CKA, we can simplify these terms by
applying the axioms of CKA. After folding the unit subterms, we are left with

〈1, a ‖ b ‖ c〉 〈c, a ‖ b〉 〈b, a ‖ c〉 〈b ‖ c, a〉 〈a, b ‖ c〉 〈a ‖ c, b〉

Recall that a ‖ b + a · b + b · a is a closure of a ‖ b. Now, we find that

e0 � e1 = (a ‖ b) ‖ c + c ‖ (a ‖ b + a · b + b · a)
+ b ‖ (a ‖ c + a · c + c · a) + (b ‖ c + b · c + c · b) ‖ a

+ a ‖ (b ‖ c + b · c + c · b) + (a ‖ c + a · c + c · a) ‖ b

≡CKA a ‖ b ‖ c + a ‖ (b · c + c · b) + b ‖ (a · c + c · a) + c ‖ (a · b + b · a)

which was shown to be a preclosure of e0 ‖ e1 in Example 4.2.

The general proof of correctness for � as a preclosure plays out as follows.
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Lemma 4.7. Let e, f ∈ T , and suppose that, for every g ∈ T with |g| < |e|+|f |,
there exists a closure g↓. Then e � f is a preclosure of e ‖ f .

Proof. We start by showing that e�f ≡CKA e ‖ f . First, note that e ‖ f �BKA e�f
by definition of e�f . For the other direction, suppose that �, r ∈ T are such that
� Δe‖f r. By definition of closure, we know that �↓ ‖ r↓ ≡CKA � ‖ r. By Lemma
4.5, we have � ‖ r �BKA e ‖ f . Since every subterm of e� f is ordered below e ‖ f
by �CKA, we have that e � f �CKA e ‖ f . It then follows that e ‖ f ≡CKA e � f .

For the second requirement, suppose that X ∈ �e ‖ f�
CKA

is non-sequential.
We then know that there exists a Y ∈ �e ‖ f�

BKA
such that X � Y . This leaves

us two cases to consider.

– If X is empty or primitive, then Y = X by Lemma 3.2, thus X ∈ �e ‖ f�
BKA

.
By the fact that e ‖ f �BKA e � f and by Lemma 3.8, we find X ∈ �e � f�

BKA
.

– If X = X0 ‖ X1 for non-empty pomsets X0 and X1, then by Lemma 3.3 we
find non-empty pomsets Y0 and Y1 with Y = Y0 ‖ Y1 such that Xi � Yi for
i ∈ 2. By Lemma 4.6, we find �, r ∈ T with � Δe‖f r such that Y0 ∈ ���

BKA

and Y1 ∈ �r�
BKA

. By Lemma 3.11, we find that |�|, |r| ≥ 1. Corollary 4.1 then
allows us to conclude that |�|, |r| < |e ‖ f |.
This means that �↓ ‖ r↓ �BKA e � f . Since X0 ∈ ��↓�

BKA
and X1 ∈ �r↓�

BKA
by

definition of closure, we can derive by Lemma 3.8 that

X = X0 ‖ X1 ∈ ��↓ ‖ r↓�
BKA

⊆ �e � f�
BKA ��

4.2 Closure

The preclosure operator discussed above covers the non-sequential pomsets in
the language �e ‖ f�

CKA
; it remains to find a term that covers the sequential

pomsets contained in �e ‖ f�
CKA

.
To better give some intuition to the construction ahead, we first explore

the observations that can be made when a sequential pomset W · X appears
in the language �e ‖ f�

CKA
; without loss of generality, assume that W is non-

sequential. In this setting, there must exist U ∈ �e�
BKA

and V ∈ �f�
BKA

such that
W · X � U ‖ V . By Lemma 3.6, we find pomsets U0, U1, V0, V1 such that

W � U0 ‖ V0 X � U1 ‖ V1 U0 · U1 � U V0 · V1 � V

This means that U0 · U1 ∈ �e�
CKA

and V0 · V1 ∈ �f�
CKA

. Now, suppose we could
find e0, e1, f0, f1 ∈ T such that

e0 · e1 �CKA e U0 ∈ �e0�CKA
U1 ∈ �e1�CKA

f0 · f1 �CKA f V0 ∈ �f0�CKA
V1 ∈ �f1�CKA

Then we have W ∈ �e0 � f0�BKA
, and X ∈ �e1 ‖ f1�CKA

. Thus, if we can find a
closure of e1 ‖ f1, then we have a term whose BKA-semantics contains W · X.
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There are two obstacles that need to be resolved before we can use the obser-
vations above to find the closure of e ‖ f . The first problem is that we need to
be sure that this process of splitting terms into sequential components is at all
possible, i.e., that we can split e into e0 and e1 with e0 ·e1 �CKA e and Ui ∈ �ei�CKA

for i ∈ 2. We do this by designing a sequential analogue to the parallel splitting
relation seen before. The second problem, which we will address later in this
section, is whether this process of splitting a parallel term e ‖ f according to the
exchange law and finding a closure of remaining term e1 ‖ f1 is well-founded,
i.e., if we can find “enough” of these terms to cover all possible ways of sequen-
tialising e ‖ f . This will turn out to be possible, by using the fixpoint axioms of
KA as in Sect. 3.3 with linear systems.

We start by defining the sequential splitting relation.3

Definition 4.5. Let e ∈ T ; ∇e is the smallest relation on T such that

1 ∇1 1 a ∇a 1 1 ∇a a 1 ∇e�
0

1
� ∇e0 r

� ∇e0+e1 r

� ∇e1 r

� ∇e0+e1 r

� ∇e0 r

� ∇e0·e1 r · e1

� ∇e1 r

e0 · � ∇e0·e1 r

�0 ∇e0 r0 �1 ∇e1 r1

�0 ‖ �1 ∇e0‖e1 r0 ‖ r1

� ∇e0 r

e�
0 · � ∇e�

0
r · e�

0

Given e ∈ T , we refer to ∇e as the sequential splitting relation of e, and to the
elements of ∇e as sequential splices of e. We need to establish a few properties
of the sequential splitting relation that will be useful later on. The first of these
properties is that, as for parallel splitting, ∇e is finite.

Lemma 4.8. For e ∈ T , ∇e is finite.

We also have that the sequential composition of splices is provably below
the term being split. Just like the analogous lemma for parallel splitting, this
guarantees that our sequential splices never give rise to semantics not contained
in the split term. This lemma also yields an observation about the width of
sequential splices when compared to the term being split.

Lemma 4.9. Let e ∈ T . If �, r ∈ T with � ∇e r, then � · r �CKA e.

Corollary 4.2. Let e ∈ T . If �, r ∈ T with � ∇e r, then |�|, |r| ≤ |e|.

Lastly, we show that the splices cover every way of (sequentially) splitting
up the semantics of the term being split, i.e., that ∇e is dense when it comes to
sequentially composed pomsets.

Lemma 4.10. Let e ∈ T , and let V and W be pomsets such that V ·W ∈ �e�
CKA

.
Then there exist �, r ∈ T with � ∇e r such that V ∈ ���

CKA
and W ∈ �r�

CKA
.

Proof. The proof proceeds by induction on e. In the base, we can discount the
case where e = 0, for then the claim holds vacuously. This leaves us two cases.
3 The contents of this relation are very similar to the set of left- and right-spines of a

NetKAT expression as used in [5].
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– If e = 1, then V · W = 1; by Lemma 3.1, we find that V = W = 1. Since
1 ∇e 1 by definition of ∇e, the claim follows when we choose � = r = 1.

– If e = a for some a ∈ Σ, then V · W = a; by Lemma 3.1, we find that either
V = a and W = 1 or V = 1 and W = a. In the former case, we can choose
� = a and r = 1 to satisfy the claim; the latter case can be treated similarly.

For the inductive step, there are four cases to consider.

– If e = e0 + e1, then V · W ∈ �ei�CKA
for some i ∈ 2. By induction, we find

�, r ∈ T with � ∇ei
r such that V ∈ ���

CKA
and W ∈ �r�

CKA
. Since � ∇e r in

this case, the claim follows.
– If e = e0 · e1, then there exist U0 ∈ �e0�CKA

and U1 ∈ �e1�CKA
such that

V · W = U0 · U1. By Lemma 3.4, we find a series-parallel pomset X such that
either V � U0 · X and X · W � U1, or V · X � U0 and W � X · U1. In the
former case, we find that X · W ∈ �e1�CKA

, and thus by induction �′, r ∈ T
with �′ ∇e1 r such that X ∈ ��′�

CKA
and W ∈ �r�

CKA
. We then choose � = e0 · �′

to find that � ∇e r, as well as V � U0 · X ∈ �e0�CKA
· ��′�

CKA
= ���

CKA
and

thus V ∈ ���
CKA

. The latter case can be treated similarly; here, we use the
induction hypothesis on e0.

– If e = e0 ‖ e1, then there exist U0 ∈ �e0�CKA
and U1 ∈ �e1�CKA

such that
V ·W � U0 ‖ U1. By Lemma 3.6, we find series-parallel pomsets V0, V1,W0,W1

such that V � V0 ‖ V1 and W � W0 ‖ W1, as well as Vi · Wi � Ui for all
i ∈ 2. In that case, Vi ·Wi ∈ �ei�CKA

for all i ∈ 2, and thus by induction we find
�i, ri ∈ T with �i ∇ei

ri such that Vi ∈ ��i�CKA
and Wi ∈ �ri�CKA

. We choose
� = �0 ‖ �1 and r = r0 ‖ r1 to find that V ∈ ��0 ‖ r0�CKA

and W ∈ ��1 ‖ r1�CKA
,

as well as � ∇e r.
– If e = e�

0, then there exist U0, U1, . . . , Un−1 ∈ �e0�CKA
such that V · W =

U0 · U1 · · · Un−1. Without loss of generality, we can assume that for 0 ≤ i < n
it holds that Ui �= 1. In the case where n = 0 we have that V · W = 1, thus
V = W = 1, we can choose � = r = 1 to satisfy the claim.
For the case where n > 0, we find by Lemma 3.4 an 0 ≤ m < n and series-
parallel pomsets X,Y such that X · Y � Um, and V � U0 · U1 · · · Um−1 · X
and W � Y · Um+1 · Um+2 · · · Un. Since X · Y � Um ∈ �e0�CKA

and thus
X · Y ∈ �e0�CKA

, we find by induction �′, r′ ∈ T with �′ ∇e0 r′ and X ∈ ��′�
CKA

and Y ∈ �r′�
CKA

. We can then choose � = e�
0 ·�′ and r = r′ ·e�

0 to find that V �
U0 ·U1 · · · Um−1 ·X ∈ �e�

0�CKA
·��′�

CKA
= ���

CKA
and W � Y ·Um+1 ·Um+2 · · · Un ∈

�r′�
CKA

·�e�
0�CKA

= �r�
CKA

, and thus that V ∈ ���
CKA

and W ∈ �r�
CKA

. Since � ∇e r
holds, the claim follows. ��

Example 4.5. Let U be the pomset ca and let V be bc. Furthermore, let e be the
term (a · b + c)�, and note that U · V ∈ �e�

CKA
. We then find that a ∇a 1, and

thus a ∇a·b 1 · b. We can now choose � = (a · b + c)� ·a and r = (1 · b) · (a · b + c)�

to find that U ∈ ���
CKA

and V ∈ �r�
CKA

, while � ∇e r.

We know how to split a term sequentially. To resolve the second problem,
we need to show that the process of splitting terms repeatedly ends somewhere.
This is formalised in the notion of right-hand remainders, which are the terms
that can appear as the right hand of a sequential splice of a term.
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Definition 4.6. Let e ∈ T . The set of (right-hand) remainders of e, written
R(e), is the smallest satisfying the rules

e ∈ R(e)
f ∈ R(e) � ∇f r

r ∈ R(e)

Lemma 4.11. Let e ∈ T . R(e) is finite.

With splitting and remainders we are in a position to define the linear system
that will yield the closure of a parallel composition. Intuitively, we can think of
this system as an automaton: every variable corresponds to a state, and every row
of the matrix describes the “transitions” of the corresponding state, while every
element of the vector describes the language “accepted” by that state without
taking a single transition. Solving the system for a least fixpoint can be thought
of as finding an expression that describes the language of the automaton.

Definition 4.7. Let e, f ∈ T , and suppose that, for every g ∈ T such that
|g| < |e| + |f |, there exists a closure g↓. We choose

Ie,f = {g ‖ h : g ∈ R(e), h ∈ R(f)}

The Ie,f -vector pe,f and Ie,f -matrix Me,f are chosen as follows.

pe,f (g ‖ h) � g ‖ f Me,f (g ‖ h, g′ ‖ h′) �
∑

�g∇gg′

�h∇hh′

�g � �h

Ie,f is finite by Lemma 4.11. We write Le,f for the Ie,f -linear system
〈Me,f , pe,f 〉.

We can check that Me,f is well-defined. First, the sum is finite, because ∇g

and ∇h are finite by Lemma 4.8. Second, if g ‖ h ∈ I and �g, rg, �h, rh ∈ T
such that �g ∇g rg and �h ∇h rh, then |�g| ≤ |g| ≤ |e| and |�h| ≤ |h| ≤ |f | by
Corollary 4.2, and thus, if d ∈ T such that |d| < |�g| + |�h|, then |d| < |e| + |f |,
and therefore a closure of d exists, meaning that �g � �h exists, too.

The least solution to Le,f obtained through Lemma 3.12 is the I-vector
denoted by se,f . We write e ⊗ f for se,f (e ‖ f), i.e., the least solution at e ‖ f .

Using the previous lemmas, we can then show that e ⊗ f is indeed a closure
of e ‖ f , provided that we have closures for all terms of strictly lower width. The
intuition of this proof is that we use the uniqueness of least fixpoints to show
that e ‖ f ≡CKA e ⊗ f , and then use the properties of preclosure and the normal
form of series-parallel pomsets to show that �e ‖ f�

CKA
= �e ⊗ f�

BKA
.

Lemma 4.12. Let e, f ∈ T , and suppose that, for every g ∈ T with |g| <
|e| + |f |, there exists a closure g↓. Then e ⊗ f is a closure of e ‖ f .
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Proof. We begin by showing that e ‖ f ≡CKA e ⊗ f . We can see that pe,f is a
solution to Le,f , by calculating for g ‖ h ∈ Ie,f :

(pe,f + Me,f · pe,f )(g ‖ h)
= g ‖ h +

∑
rg‖rh∈I

( ∑
�g∇grg

�h∇hrh

�g � �h

)
· (rg ‖ rh) (def. Me,f , pe,f )

≡CKA g ‖ h +
∑

rg‖rh∈I

∑
�g∇grg

�h∇hrh

(�g � �h) · (rg ‖ rh) (distributivity)

≡CKA g ‖ h +
∑

rg‖rh∈I

∑
�g∇grg

�h∇hrh

(�g ‖ �h) · (rg ‖ rh) (Lemma 4.7)

�CKA g ‖ h +
∑

rg‖rh∈I

∑
�g∇grg

�h∇hrh

(�g · rg) ‖ (�h · rh) (exchange)

�CKA g ‖ h +
∑

rg‖rh∈I

∑
�g∇grg

�h∇hrh

g ‖ h (Lemma 4.9)

≡CKA g ‖ h (idempotence)
= pe,f (g ‖ h) (def. pe,f )

To see that pe,f is the least solution to Le,f , let qe,f be a solution to Le,f . We
then know that Me,f · qe,f + pe,f �CKA qe,f ; thus, in particular, pe,f �CKA qe,f .
Since the least solution to a linear system is unique up to ≡CKA, we find that
se,f ≡CKA pe,f , and therefore that e ⊗ f = se,f (e ‖ f) ≡CKA pe,f (e ‖ f) = e ‖ f .

It remains to show that if U ∈ �e ‖ f�
CKA

, then U ∈ �e ⊗ f�
BKA

. To show this,
we show the more general claim that if g ‖ h ∈ I and U ∈ �g ‖ h�

CKA
, then

U ∈ �se,f (g ‖ h)�
BKA

. Write U = U0 · U1 · · · Un−1 such that for 0 ≤ i < n, Ui is
non-sequential (as in Corollary 3.1). The proof proceeds by induction on n. In the
base, we have that n = 0. In this case, U = 1, and thus U ∈ �g ‖ h�

BKA
by Lemma

3.2. Since g ‖ h = pe,f (g ‖ h) �BKA se,f (g ‖ h), it follows that U ∈ �se,f (g ‖ h)�
BKA

by Lemma 3.8.
For the inductive step, assume the claim holds for n−1. We write U = U0 ·U ′,

with U ′ = U1 · U2 · · · Un−1. Since U0 · U ′ ∈ �g ‖ h�
CKA

, there exist W ∈ �g�
CKA

and X ∈ �h�
CKA

such that U0 · U ′ � W ‖ X. By Lemma 3.6, we find pomsets
W0,W1,X0,X1 such that W0·W1 � W and X0·X1 � X, as well as U0 � W0 ‖ X0

and U ′ � W1 ‖ X1. By Lemma 4.10, we find �g, rg, �h, rh ∈ T with �g ∇g rg and
�h ∇h rh, such that W0 ∈ ��g�CKA

, W1 ∈ �rg�CKA
, X0 ∈ ��h�

CKA
and X1 ∈ �rh�

CKA
.

From this, we know that U0 ∈ ��g ‖ �h�
CKA

and U ′ ∈ �rg ‖ rh�
CKA

. Since U0 is
non-sequential, we have that U0 ∈ ��g � �h�

BKA
. Moreover, by induction we find

that U ′ ∈ �se,f (rg ‖ rh)�
BKA

. Since �g � �h �BKA Me,f (g ‖ h, rg ‖ rh) by definition
of Me,f , we furthermore find that

(�g � �h) · se,f (rg ‖ rh) �BKA Me,f (g ‖ h, rg ‖ rh) · se,f (rg ‖ rh)

Since rg ‖ rh ∈ I, we find by definition of the solution to a linear system that

Me,f (g ‖ h, rg ‖ rh) · se,f (rg ‖ rh) �BKA se,f (g ‖ h)

By Lemma 3.8 and the above, we conclude that U = U0 · U ′ ∈ �se,f (g ‖ h)�
BKA

. ��
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For a concrete example where we find a closure of a (non-trivial) parallel
composition by solving a linear system, we refer to Appendix A.

With closure of parallel composition, we can construct a closure for any term
and therefore conclude completeness of CKA.

Theorem 4.1. Let e ∈ T . We can construct a closure e↓ of e.

Proof. The proof proceeds by induction on |e| and the structure of e, i.e., by
considering f before g if |f | < |g|, or if f is a strict subterm of g (in which case
|f | ≤ |g| also holds). It is not hard to see that this induces a well-ordering on T .

Let e be a term of width n, and suppose that the claim holds for all terms
of width at most n − 1, and for all strict subterms of e. There are three cases.

– If e = 0, e = 1 or e = a for some a ∈ Σ, the claim follows from Lemma 4.2.
– If e = e0 + e1, or e = e0 · e1, or e = e�

0, the claim follows from Lemma 4.3.
– If e = e0 ‖ e1, then e0 ⊗ e1 exists by the induction hypothesis. By Lemma

4.12, we then find that e0 ⊗ e1 is a closure of e. ��

Corollary 4.3. Let e, f ∈ T . If �e�
CKA

= �f�
CKA

, then e ≡CKA f .

Proof. Follows from Theorem 4.1 and Lemma 4.1. ��

5 Discussion and Further Work

By building a syntactic closure for each series-rational expression, we have shown
that the standard axiomatisation of CKA is complete with respect to the CKA-
semantics of series-rational terms. Consequently, the algebra of closed series-
rational pomset languages forms the free CKA.

Our result leads to several decision procedures for the equational theory of
CKA. For instance, one can compute the closure of a term as described in the
present paper, and use an existing decision procedure for BKA [3,12,20]. Note
however that although this approach seems suited for theoretical developments
(such as formalising the results in a proof assistant), its complexity makes it less
appealing for practical use. More practically, one could leverage recent work by
Brunet et al. [3], which provides an algorithm to compare closed series-rational
pomset languages. Since this is the free concurrent Kleene algebra, this algorithm
can now be used to decide the equational theory of CKA. We also obtain from
the latter paper that this decision problem is expspace-complete.

We furthermore note that the algorithm to compute downward closure can
be used to extend half of the result from [14] to a Kleene theorem that relates the
CKA-semantics of expressions to the pomset automata proposed there: if e ∈ T ,
we can construct a pomset automaton A with a state q such that LA(q) = �e�

CKA
.

Having established pomset automata as an operational model of CKA, a
further question is whether these automata are amenable to a bisimulation-based
equivalence algorithm, as is the case for finite automata [10]. If this is the case,
optimisations such as those in [2] might have analogues for pomset automata
that can be found using the coalgebraic method [23].
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While this work was in development, an unpublished draft by Laurence and
Struth [19] appeared, with a first proof of completeness for CKA. The general
outline of their proof is similar to our own, in that they prove that closure of
pomset languages preserves series-rationality, and hence there exists a syntac-
tic closure for every series-rational expression. However, the techniques used to
establish this fact are quite different from the developments in the present paper.
First, we build the closure via syntactic methods: explicit splitting relations and
solutions of linear systems. Instead, their proof uses automata theoretic construc-
tions and algebraic closure properties of regular languages; in particular, they
rely on congruences of finite index and language homomorphisms. We believe
that our approach leads to a substantially simpler and more transparent proof.
Furthermore, even though Laurence and Struth do not seem to use any fun-
damentally non-constructive argument, their proof does not obviously yield an
algorithm to effectively compute the closure of a given term. In contrast, our
proof is explicit enough to be implemented directly; we wrote a simple Python
script (under six hundred lines) to do just that [16].

A crucial ingredient in this work was the computation of least solutions of
linear systems. This kind of construction has been used on several occasions for
the study of Kleene algebras [1,4,18], and we provide here yet another variation
of such a result. We feel that linear systems may not have yet been used to their
full potential in this context, and could still lead to interesting developments.

A natural extension of the work conducted here would be to turn our atten-
tion to the signature of concurrent Kleene algebra that includes a “parallel star”
operator e‖. The completeness result of Laurence and Struth [20] holds for BKA
with the parallel star, so in principle one could hope to extend our syntactic
closure construction to include this operator. Unfortunately, using the results of
Laurence and Struth, we can show that this is not possible. They defined a notion
of depth of a series-parallel pomset, intuitively corresponding to the nesting of
parallel and sequential components. An important step in their development
consists of proving that for every series-parallel-rational language there exists a
finite upper bound on the depth of its elements. However, the language

�
a‖�

CKA

does not enjoy this property: it contains every series-parallel pomset exclusively
labelled with the symbol a. Since we can build such pomsets with arbitrary
depth, it follows that there does not exist a syntactic closure of the term a‖.
New methods would thus be required to tackle the parallel star operator.

Another aspect of CKA that is not yet developed to the extent of KA is the
coalgebraic perspective. We intend to investigate whether the coalgebraic tools
developed for KA can be extended to CKA, which will hopefully lead to efficient
bisimulation-based decision procedures [2,5].

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. This work was partially supported by the ERC Starting Grant ProFoundNet
(grant code 679127).
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A Worked Example: A Non-trivial Closure

In this appendix, we solve an instance of a linear system as defined in Defini-
tion 4.7 for a given parallel composition. For the sake of brevity, the steps are
somewhat coarse-grained; the reader is encouraged to reproduce the steps by
hand.

Consider the expression e ‖ f = a∗ ‖ b. The linear system Le,f that we
obtain from this expression consists of six inequations; in matrix form (with
zeroes omitted), this system is summarised as follows:4

1 ‖ 1
1 ‖ b

a · a� ‖ 1
a� ‖ 1

a · a� ‖ b
a� ‖ b

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1
b 1 b
a a� a · a� a · a�

1 a� a� · a a�

a ‖ b a a� ‖ b a · a� ‖ b a� a · a� a · a� ‖ b
b 1 a� ‖ b a · a� ‖ b a� a · a� a� ‖ b

⎞
⎟⎟⎟⎟⎟⎟⎠

Let us proceed under the assumption that x is a solution to the system; the
constraint imposed on x by the first two rows is given by the inequations

x(1 ‖ 1) + 1 �CKA x(1 ‖ 1) (1)
b · x(1 ‖ 1) + x(1 ‖ b) + b �CKA x(1 ‖ b) (2)

Because these inequations do not involve the other positions of the system, we
can solve them in isolation, and use their solutions to find solutions for the
remaining positions; it turns out that choosing x(1 ‖ 1) = 1 and x(1 ‖ b) = b
suffices here.

We carry on to fill these values into the inequations given by the third and
fourth row of the linear system. After some simplification, these work out to be

a · a� + a · a� · x(a� ‖ 1) + a� · x(a · a� ‖ 1) �CKA x(a · a� ‖ 1) (3)
a� + a� · a · x(a� ‖ 1) + a� · x(a · a� ‖ 1) �CKA x(a� ‖ 1) (4)

Applying the least fixpoint axiom to (3) and simplifying, we obtain

a · a� + a · a� · x(a� ‖ 1) �CKA x(a · a� ‖ 1) (5)

Substituting this into (4) and simplifying, we find that

a� + a · a� · x(a� ‖ 1) �CKA x(a� ‖ 1) (6)

This inequation, in turn, gives us that a� �CKA x(a� ‖ 1) by the least fixpoint
axiom. Plugging this back into (3) and simplifying, we find that

a · a� + a� · x(a · a� ‖ 1) �CKA x(a · a� ‖ 1) (7)
4 Actually, the system obtained from a� ‖ b as a result of Definition 4.7 is slightly

larger; it also contains rows and columns labelled by 1 · a� ‖ 1 and 1 · a� ‖ b; these
turn out to be redundant. We omit these rows from the example for simplicity.
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Again by the least fixpoint axiom, this tells us that a · a� �CKA x(a · a� ‖ 1). One
easily checks that x(a · a� ‖ 1) = a · a� and x(a� ‖ 1) = a� are solutions to (3)
and (4); by the observations above, they are also the least solutions.

It remains to find the least solutions for the final two positions. Filling in the
values that we already have, we find the following for the fifth row:

a ‖ b + a · b + (a� ‖ b) · a · a� + (a · a� ‖ b) · a�

+ a� · x(a · a� ‖ b) + a · a� · x(a� ‖ b) + a · a� ‖ b �CKA x(a · a� ‖ b) (8)

Applying the exchange law5 to the first three terms, we find that they are con-
tained in (a · a� ‖ b) · a�, as is the last term; (8) thus simplifies to

(a · a� ‖ b) · a� + a� · x(a · a� ‖ b) + a · a� · x(a� ‖ b) �CKA x(a · a� ‖ b) (9)

By the least fixpoint axiom, we find that

a� · (a · a� ‖ b) · a� + a · a� · x(a� ‖ b) �CKA x(a · a� ‖ b) (10)

For the sixth row, we find that after filling in the solved positions, we have

b + b + (a� ‖ b) · a · a� + (a · a� ‖ b) · a�

+ a� · x(a · a� ‖ b) + a · a� · x(a� ‖ b) + a� ‖ b �CKA x(a� ‖ b) (11)

Simplifying and applying the exchange law as before, it follows that

(a� ‖ b) · a� + a� · x(a · a� ‖ b) + a · a� · x(a� ‖ b) �CKA x(a� ‖ b) (12)

We then subsitute (10) into (12) to find that

(a� ‖ b) · a� + a · a� · x(a� ‖ b) �CKA x(a� ‖ b) (13)

which, by the least fixpoint axiom, tells us that a� · (a� ‖ b) · a� �CKA x(a� ‖ b).
Plugging the latter back into (9), we find that

a� · (a · a� ‖ b) · a� + a · a� · a� · (a� ‖ b) · a� �CKA x(a · a� ‖ b) (14)

which can, using the exchange law, be reworked into

a� · (a · a� ‖ b) · a� �CKA x(a · a� ‖ b) (15)

Now, if we choose x(a · a� ‖ b) = a� · (a · a� ‖ b) · a� and x(a� ‖ b) = a� · (a� ‖
b) · a�, we find that these choices satisfy (9) and (12)—making them part of a
solution; by construction, they are also the least solutions.

In summary, x is a solution to the linear system, and by construction it is
also the least solution. The reader is encouraged to verify that our choice of
x(a� ‖ b) is indeed a closure of a� ‖ b.
5 A caveat here is that applying the exchange law indiscriminately may lead to a

term that is not a closure (specifically, it may violate the semantic requirement in
Definition 4.1). The algorithm used to solve arbitrary linear systems in Lemma 3.12
does not make use of the exchange law to simplify terms, and thus avoids this pitfall.
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Abstract. ORCA is a garbage collection protocol for actor-based pro-
grams. Multiple actors may mutate the heap while the collector is run-
ning without any dedicated synchronisation. ORCA is applicable to any
actor language whose type system prevents data races and which sup-
ports causal message delivery. We present a model of ORCA which is
parametric to the host language and its type system. We describe the
interplay between the host language and the collector. We give invariants
preserved by ORCA, and prove its soundness and completeness.

1 Introduction

Actor-based systems are massively parallel programs in which individual actors
communicate by exchanging messages. In such systems it is essential to be able
to manage data automatically with as little synchronisation as possible. In pre-
vious work [9,12], we introduced the ORCA protocol for garbage collection in
actor-based systems. ORCA is language-agnostic, and it allows for concurrent
collection of objects in actor-based programs with no additional locking or syn-
chronisation, no copying on message passing and no stop-the-world steps. ORCA
can be implemented in any actor-based system or language that has a type sys-
tem which prevents data races and that supports causal message delivery. There
are currently two instantiations of ORCA, one is for Pony [8,11] and the other
for Encore [5]. We hypothesise that ORCA could be applied to other actor-based
systems that use static types to enforce isolation [7,21,28,36]. For libraries, such
as Akka, which provide actor-like facilities, pluggable type systems could be used
to enforce isolation [20].

This paper develops a formal model of ORCA. More specifically, the paper
contributions are:

1. Identification of the requirements that the host language must statically guar-
antee;

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 885–911, 2018.
https://doi.org/10.1007/978-3-319-89884-1_31
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2. Description and model of ORCA at a language-agnostic level;
3. Identification of invariants that ensure global consistency without synchroni-

sation;
4. Proofs of soundness, i.e. live objects will not be collected, and proofs of com-

pleteness, i.e. all garbage will be identified as such.

A formal model facilitates the understanding of how ORCA can be applied
to different languages. It also allows us to explore extensions such as shared
mutable state across actors [40], reduction of tracing of immutable references [12],
or incorporation of borrowing [4]. Alternative implementations of ORCA that
rely on deep copying (e.g., to reduce type system complexity) across actors on
different machines can also be explored through our formalism.

Developing a formal model of ORCA presents challenges:

Can the model be parametric in the host language? We achieved parametric-
ity by concentrating on the effects rather than the mechanisms of the lan-
guage. We do not model language features, instead, we model actor behaviour
through non-deterministic choice between heap mutation and object creation.
All other actions, such as method call, conditionals, loops etc., are irrelevant.

Can the model be parametric in the host type system? We achieved parametricity
by concentrating on the guarantees rather than the mechanism afforded by the
type system. We do not define judgments, but instead, assume the existence
of judgements which determines whether a path is readable or writeable from
a given actor. Through an (uninterpreted) precondition to any heap muta-
tion, we require that no aliasing lets an object writeable from an actor be
readable/writeable from any other actor.

How to relax atomicity? ORCA relies on a global invariant that relates the number
of references to any data object and the number of messages with a path to
that object. This invariant only holds if actors execute atomically. Since we
desire actors to run in parallel, we developed a more subtle, and weaker,
definition of the invariant.

The full proofs and omitted definitions are available in appendix [16].

2 Host Language Requirements

ORCA makes some assumptions about its host language, we describe them here.

2.1 Actors and Objects

Actors are active entities with a thread of control, while objects are data struc-
tures. Both actors and objects may have fields and methods. Method calls on
objects are synchronous, whereas method calls on actors amount to asynchronous
message sends—they all called behaviours. Messages are stored in a FIFO queue.
When idle, an actor processes the top message from its queue. At any given point
of time an actor may be either idle, executing a behaviour, or collecting garbage.
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Fig. 1. Actors and objects. Full arrows are references, grey arrows are overwritten
references: references that no longer exist.

Fig. 2. Capabilities. Heap mutation may modify what object is reachable through a
path, but not the path’s capability.

Figure 1 shows actors α1 and α2, objects ω1 to ω4. In [16] we show how
to create this object graph in Pony. In Fig. 1(a), actor α1 points to object ω1

through field f1 to ω2 through field f3, and object ω1 points to ω3 through field
f5. In Fig. 1(b), actor α1 creates ω4 and assigns it to this.f1.f5. In Fig. 1(c), α1

has given up its reference to ω1 and sent it to act2 which stored it in field f6.
Note that the process of sending sent not only ω1 but also implicitily ω4.

2.2 Mutation, Transfer and Accessibility

Message passing is the only way to share objects. This falls out of the capability
system. If an actor shares an object with another actor, then either it gives up
the object or neither actor has a write capability to that object. For example,
after α1 sends ω1 to α2, it cannot mutate ω1. As a consequence, heap mutation
only decreases accessibility, while message sends can transfer accessibility from
sender to receiver. When sending immutable data the sender does not need to
transfer accessibility. However, when it sends a mutable object it cannot keep
the ability to read or to write the object. Thus, upon message send of a mutable
object, the actor must consume, or destroy, its reference to that object.

2.3 Capabilities and Accessibility

ORCA assumes that a host language’s type system assigns access rights to paths.
A path is a sequence of field names. We call these access rights capabilities.

We expect the following three capabilities; read, write, tag. The first two allow
reading and writing an object’s fields respectively. The tag capability only allows
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identity comparison and sending the object in a message. The type system must
ensure that actors have no read-write races. This is natural for actor languages [5,
7,11,21].

Figure 2 shows capabilities assigned to the paths in Fig. 1: α1.f1.f5 has capa-
bility write, thus α1 can read and write to the object reachable from that path.
Note that capapabilities assigned to paths are immutable, while the contents of
those paths may change. For example, in Fig. 1(a), α1 can write to ω3 through
path f1.f5, while in Fig. 1(b) it can write to ω4 through the same path. In
Fig. 1(a) and (b), α2 can use the address of ω1 but cannot read or write it,
due to the tag capability, and therefore cannot access ω3 (in Fig. 1(a)) nor ω4

(in Fig. 1(b)). However, in Fig. 1(c) the situation reverses: α2, which received ω1

with write capability is now able to reach it through field f6, and therefore ω4.
Notice that the existence of a path from an actor to an object does not imply
that the object is accessible to the actor: In Fig. 1(a), there is a path from α2 to
ω3, but α2 cannot access ω3. Capabilities protect against data races by ensuring
that if an object can be mutated by an actor, then no other actor can access its
fields.

2.4 Causality

ORCA uses messages to deliver protocol-related information, it thus requires
causal delivery. Messages must be delivered after any and all messages that
caused them. Causality is the smallest transitive relation, such that if a message
m′ is sent by some actor after it received or sent m, then m is a cause of m′.
Causal delivery entails that m′ be delivered after m.

For example, if actor α1 sends m1 to actor α2, then sends m2 to actor α3,
and α3 receives m2 and sends m3 to α2, then m1 is a cause of m2, and m2 is
a cause of m3. Causal delivery requires that α2 receive m1 before receiving m3.
No requirements are made on the order of delivery to different actors.

3 Overview of ORCA

We introduce ORCA and discuss how to localise the necessary information to
guarantee safe deallocation of objects in the presence of sharing. Every actor
has a local heap in which it allocates objects. An actor owns the objects it has
allocated, and ownership is fixed for an object’s life-time, but actors are free to
reference objects that they do not own. Actors are obligated to collect their own
objects once these are no longer needed. While collecting, an actor must be able
to determine whether an object can be deallocated using only local information.
This allows all other actors to make progress at any point.

3.1 Mutation and Collection

ORCA relies on capabilities for actors to reference objects owned by other actors
and to support concurrent mutation to parts of the heap that are not being
concurrently collected. Capabilities avoid the need for barriers.
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I1 An object accessible with write capability from an actor is not accessible with
read or write capability from any other actor.

This invariant ensures an actor, while executing garbage collection, can safely
trace any object to which it has read or write access without the need to protect
against concurrent mutation from other actors.

3.2 Local Collection

An actor can collect its objects based on local information without consulting
other actors. For this to be safe, the actor must know that an owned, locally
inaccessible, object is also globally inaccessible (i.e., inaccessible from any other
actors or messages)1. Shared objects are reference counted by their owner to
ensure:

I2 An object accessible from a message queue or from a non-owning actor has
reference count larger than zero in the owning actor.

Thus, a locally inaccessible object with a reference count of 0 can be collected.

3.3 Messages and Collection

I1 and I2 are sufficient to ensure that local collection is safe. Maintaining I2 is not
trivial as accessibility is affected by message sends. Moreover, it is possible for an
actor to share a read object with another actor through a message. What if that
actor drops its reference to the object? The object’s owner should be informed
so it can decrease its reference count. What happens when an actor receives
an object in a message? The object’s owner should be infomed, so that it can
increase its reference count. To reduce message traffic, ORCA uses distributed,
weighted, deferred reference counts. Each actor maintains reference counts that
tracks the sharing of its objects. It also maintains counts for “foreign objects”,
tracking references to objects owned by other actors. This reference count for
non-owning actors is what allows sending/receiving objects without having to
inform their owner while maintaining I2. For any object or actor ι, we denote
with LRC(ι) the reference count for ι in ι’s owner, and with FRC(ι) we denote
the sum of the reference counts for ι in all other actors. The counts do not reflect
the number of references, rather the existence of references:

I3 If a non-owning actor can access an object through a path from its fields or
call stack, its reference count for this object is greater than 0.

An object is globally accessible if it is accessible from any actor or from a message
in some queue. Messages include reference increment or decrement messages—
these are ORCA-level messages and they are not visible to applications. We
introduce two logical counters: AMC(ι) to account for the number of application

1 For example, in Fig. 1(c) ω4 in is locally inaccessible, but globally accessible.
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Fig. 3. Black arrows are references, numbered in creation order. Blue solid arrows are
application messages and blue dashed arrows ORCA-level message. (Color figure online)

messages with paths to ι, and OMC(ι) to account for ORCA-level messages
with reference count increment and decrement requests. These counters are not
present at run-time, but they will be handy for reasoning about ORCA. The
owner’s view of an object is described by the LRC and the OMC, while the
foreign view is described by the FRC and the AMC. These two views must
agree:

I4 ∀ ι. LRC(ι) + OMC(ι) = AMC(ι) + FRC(ι)

I2, I3 and I4 imply that a locally inaccessible object with LRC = 0 can be
reclaimed.

3.4 Example

Consider actors Andy, Bart and Catalin, and steps from Fig. 3.

Initial State. Let ω be a newly allocated object. As it is only accessible to its
owning actor, Andy, there is no entry for it in any RC.

Sharing ω. When Andy shares ω with Bart, ω is placed on Bart’s message queue,
meaning that AMC(ω) = 1. This is reflected by setting RCAndy(ω) to 1. This
preserves I4 and the other invariants. When Bart takes the message with ω
from his queue, AMC(ω) becomes zero, and Bart sets his foreign reference count
for ω to 1, that is, RCBart(ω) = 1. When Bart shares ω with Catalin, we get
AMC(ω) = 1. To preserve I4, Bart could set RCBart(ω) to 0, but this would
break I3. Instead, Bart sends an ORCA-level message to Andy, asking him to
increment his (local) reference count by some n, and sets his own RCBart(ω) to
n.2 This preserves I4 and the other invariants. When Catalin receives the message
later on, she will behave similarly to Bart in step 2, and set RCCatalin(ω)=1.

The general rule is that when an actor sends one of its objects, it increments
the corresponding (local) RC by 1 (reflecting the increasing number of foreign
references) but when it sends a non-owned object, it decrements the correspond-
ing (foreign) RC (reflecting a transfer of some of its stake in the object). Special
care needs to be taken when the sender’s RC is 1.
2 This step can be understood as if Bart “borrowed” n units from Andy, added n − 1

to his own RC, and gave 1 to the AMC, to reach Catalin eventually.
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Further note that if Andy, the owner of ω, received ω, he would decrease
his counter for ω rather than increase it, as his reference count denotes foreign
references to ω. When an actor receives one of its owned objects, it decrements
the corresponding (local) RC by 1 but when it receives a non-owned object, it
increments the corresponding (foreign) RC by 1.

Dropping References to ω. Subsequent to sharing ω with Catalin, Bart performs
GC, and traces his heap without reaching ω (maybe because it did not store ω
in a field). This means that Bart has given up his stake in ω. This is reflected
by sending a message to Andy to decrease his RC for ω by n, and setting Bart’s
RC for ω to 0. Andy’s local count of the foreign references to ω are decreased
piecemeal like this, until LRC(ω) reaches zero. At this point, tracing Andy’s local
heap can determine if ω should be collected.

Further Aspects. We briefly outline further aspects which play a role in ORCA.

Concurrency. Actors execute concurrently. For example, sharing of ω by Bart
and Catalin can happen in parallel. As long as Bart and Catalin have foreign
references to ω, they may separately, and in parallel cause manipulation of the
global number of references to ω. These manipulations will be captured locally
at each site through FRC, and through increment and decrement messages
to Andy (OMC).

Causality. Increment and decrement messages may arrive in any order. Andy’s
queue will serialise them, i.e. concurrent asynchronous reference count manip-
ulations will be ordered and executed sequentially. Causality is key here, as it
prevents ORCA-level messages to be overtaken by application messages which
cause RCs to be decremented; thus causality keeps counters non-negative.

Composite Objects. Objects message must be traced to find the transitive
closure of accessible data. For example, when passing ω1 in a message in
Fig. 1(c), objects accessible through it, e.g., ω4 will be traced. This is man-
dated by I3 and I4.

Finally, we reflect on the nature of reference counts: they are distributed, in the
sense that an object’s owner and every actor referencing it keep separate counts;
weighted, in that they do not reflect the number of aliases; and deferred, in that
they are not manipulated immediately on alias creation or destruction, and that
non-local increments/decrements are handled asynchronously.

4 The ORCA Protocol

We assume enumerable, disjoint sets ActorAddr and ObjAddr, for addresses of
actors and objects. The union of the two is the set of addresses including null.
We require a mapping Class that gives the name of the class of each actor in a
given configuration, and a mapping O that returns the owner of an address

Addr = ActorAddr � ObjAddr � {null}
Class : Config × ActorAddr → ClassId

O : Addr → ActorAddr
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such that the owner of an actor is the actor itself, i.e., ∀α∈ActorAddr. O(α) = α.
Definition 1 describes run-time configurations, C. They consist of a heap, χ,

which maps addresses and field identifiers to addresses,3 and an actor map, as,
from actor addresses to actors. Actors consist of a frame, a queue, a reference
count table, a state, a working set, marks, and a program counter. Frames are
either empty, or consist of the identifier for the currently executing behaviour,
and a mapping from variables to addresses. Queues are sequences of messages.
A message is either an application message of the form app(φ) denoting a high-
level language message with the frame φ, or an ORCA message, of the form
orca(ι : z), denoting an in-flight request for a reference count change for ι by z.
The state distinguishes whether the actor is idle, or executing some behaviour,
or performing garbage collection. We discuss states, working sets, marks, and
program counters in Sect. 4.3. We use naming conventions: α ∈ ActorAddr; ω ∈
ObjAddr; ι ∈ Addr; z ∈ Z; n ∈ N; b ∈ BId; x ∈ VarId; A ∈ ClassId; and ιs for a
sequence of addresses ι1...ιn. We write C.heap for C’s heap; and α.quC , or α.rcC ,
or α.frameC , or α.stC for the queue, reference count table, frame or state of actor
α in configuration C, respectively.

Definition 1 (Runtime entities and notation)

C ∈Config = Heap × Actors
χ∈Heap = (Addr \ {null}) × FId → Addr

as ∈Actors = ActorAddr → Actor
a∈Actor = Frame × Queue × ReferenceCounts

× State × Workset × Marks × PC
φ∈Frame = ∅ ∪ (BId × LocalMap)

ψ∈LocalMap = VarId → Addr
q ∈Queue = Message�

m∈Message ::= orca(ι : z) | app(φ)
rc∈ReferenceCounts = Addr → N

State, Workset, Marks, and PC described in Definition 7.

Example: Figure 4 shows C0, our running example for a runtime configuration.
It has three actors: α1–α3, represented by light grey boxes, and eight objects,
ω1–ω8, represented by circles. We show ownership by placing the objects in
square boxes, e.g. O(ω7) = α1. We show references through arrows, e.g. ω6

references ω8 through field f7, that is, C0.heap(ω6, f7) = ω8. The frame of α2

contains behaviour identifier b′, and maps x′ to ω8. All other frames are empty.
The message queue of α1 contains an application message for behaviour b and
argument ω5 for x, the queue of α2 is empty, and the queue of α3 an ORCA
message for ω7. The bottom part shows reference count tables: α1.rcC0(α1) = 21,

3 Note that we omitted the class of objects. As our model is parametric with the type
system, we can abstract from classes, and simplify our model.
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and α1.rcC0(ω7) = 50. Entries of owned addresses are shaded. Since α2 owns α2

and ω2, the entries for α2.rcC0(α2) and α2.rcC0(ω2) are shaded. Note that α1 has
a non-zero entry for ω7, even though there is no path from α1 to ω7. There is
no entry for ω1; no such entry is needed, because no actor except for its owner
has a path to it. The 0 values indicate potentially non-existent entries in the
corresponding tables; for example, the reference count table for actor α3 needs
only to contain entries for α1, α3, ω3, and ω4. Ownership does not restrict access
to an address: e.g. actor α1 does not own object ω3, yet may access it through the
path this.f1.f2.f3, may read its field through this.f1.f2.f3.f4, and may mutate
it, e.g. by this.f1.f2.f3 = this.f1.

Lookup of fields in a configuration is defined in the obvious way, i.e.

Definition 2. C(ι.f) ≡ C.heap(ι, f), and C(ι.f .f ′) ≡ C.heap(C(ι.f , f ′))

4.1 Capabilities and Accessibility

ORCA considers three capabilities:

κ ∈ Capability = {read,write, tag},

where read allows reading, write allows reading and writing, and tag forbids
both read and write, but allows the use of an object’s address. To describe the
capability at which objects are visible from actors we use the concepts of static
and dynamic paths.

Static paths consist of the keyword this (indicating a path starting at the current
actor), or the name of a behaviour, b, and a variable, x, (indicating a path
starting at local variable x from a frame of b), followed by any number of fields, f .

sp ::= this | b.x | sp.f

Fig. 4. Configuration C0. ω1 is absent in the ref. counts, it has not been shared.
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The host language must assign these capabilities to static paths. Thus, we
assume it provides a static judgement of the form

A 	 sp : κ where A ∈ ClassId

meaning that a static path sp has capability capability when “seen” from a class A.
We highlight static judgments, i.e., those provided by the type system in blue.

We expect the type system to guarantee that read and write access rights are
“deep”, meaning that all paths to a read capability must go through other read
or write capabilities (A1), and all paths to a write capability must go through
write capabilities (A2).

Axiom 1 For class identifier A, static path sp, field f , capability κ, we
assume:
A1 A 	 sp.f : κ −→ ∃κ′ �= tag. A 	 sp : κ′.
A2 A 	 sp.f : write −→ A 	 sp : write.

Such requirements are satisfied by many type systems with read-only refer-
ences or immutability (e.g. [7,11,18,23,29,33,37,41]). An implication of A1 and
A2 is that capabilities degrade with growing paths, i.e., the prefix of a path has
more rights than its extensions. More precisely: A 	 sp : κ and A 	 sp.f : κ′

imply that κ ≤ κ′, where we define write < read < tag, and κ ≤ κ′ iff κ = κ′ or
κ < κ′.

Example: Table 1 shows capabilities for some paths from Fig. 4. Thus, A1 	
this.f1 : write, and A2 	 b′.x′ : write, and A2 	 this.f8 : tag. The latter, together
with A1 gives that A2 �	 this.f8.f : κ for all κ and f .

As we shall see later, the existence of a path does not imply that the path
may be navigated. For example, C0(α2.f8.f4) = ω4, but actor α2 cannot access
ω4 because of A2 	 this.f8 : tag.

Moreover, it is possible for a path to have a capability, while not being
defined. For example, Table 1 shows A1 	 this.f1.f2 : write and it would be
possible to have Ci(α1.f1) = null, for some configuration Ci that derives from C0.

Table 1. Capabilities for paths, where A1 = Class(α1) and A2 = Class(α2).
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Dynamic paths (in short paths p) start at the actor’s fields, or frame, or at some
pending message in an actor’s queue (the latter cannot be navigated yet, but
will be able to be navigated later on when the message is taken off the queue).
Dynamic paths may be local paths (lp) or message paths. Local paths consist of
this or a variable x followed by any number of fields f . In such paths, this is the
current actor, and x is a local variable from the current frame. Message paths
consist of k.x followed by a sequence of fields. If k ≥ 0, then k.x indicates the
local variable x from the k-th message from the queue; k = −1 indicates variables
from either (a) a message that has been popped from the queue, but whose frame
has not yet been pushed onto the stack, or (b) a message whose frame has been
created but not yet been pushed onto the queue. Thus, k = −1 indicates that
either (a) a frame will be pushed onto the stack, during message receiving, or
(b) a message will be pushed onto the queue during message sending.

p ∈ Path ::= lp | mp lp ::= this | x | lp.f mp ::= k.x | mp.f

We define accessibility as the lookup of a path provided that the capability for
this path is defined. The partial function A returns a pair: the address accessible
from actor α following path p, and the capability of α on p. A path of the form
p.owner returns the owner of the object accessible though p and capability tag.

Definition 3 (accessibility). The partial function
A : Config × ActorAddr × Path → (Addr × Capability)

is defined as

AC(α, this.f) = (ι, κ) iff C(α.f) = ι ∧ Class(α) 	 this.f : κ

AC(α, x.f) = (ι, κ) iff ∃b.ψ. [ α.frameC = (b, ψ) ∧ C(ψ(x).f) = ι

∧ Class(α) 	 b.x.f : κ ]
AC(α, k.x.f) = (ι, κ) iff k ≥ 0 ∧ ∃b.ψ. [ α.quC [k] = app(b, ψ) ∧

C(ψ(x).f) = ι ∧ Class(α) 	 b.x.f : κ ]
AC(α,−1.x.f) = (ι, κ) iff α is executing Sending or Receiving, and ...

continued in Definition 9.
AC(α, p.owner) = (α′, tag) iff ∃ι.[AC(α, p)=(ι, ) ∧ O(ι)=α′ ]

We use AC(α, p) = ι as shorthand for ∃κ.AC(α, p)=(ι, κ). The second and third
case above ensure that the capability of a message path is the same as when the
message has been taken off the queue and placed on the frame.

Example: We obtain that AC0(α1, this.f1.f2.f3) = (ω3,write), from the fact
that Fig. 4 says that C0(α1.f1.f2.f3) = ω3 and from the fact that Table 1
says that A1 	 this.f1.f2.f3 : write. Similarly, AC0(α2, this.f8) = (ω3, tag), and
AC0(α2, x

′) = (ω8,write), and AC0(α1, 0.x.f5.f7) = (ω8, tag).
Both AC0(α1, this.f1.f2.f3), and AC0(α2, this.f8) describe paths from actors’

fields, while AC0(α2, x
′) describes a path from the actor’s frame, and finally

AC0(α1, 0.x.f5.f7) is a path from the message queue.
Accessibility describes what may be read or written to: AC0(α1, this.f1.f2.f3) =

(ω3,write), therefore actor α1 may mutate object ω3. However, this mutation is not
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visible by α2, even though C0(α2.f8) = ω3, because AC0(α2, this.f8) = (ω3, tag),
which means that actor α2 has only opaque access to ω3.

Accessibility plays a role in collection: If the reference f3 were to be dropped it
would be safe to collect ω4; even though there exists a path from α2 to ω4; object
ω4 is not accessible to α2: the path this.f8.f4 leads to ω4 but will never be nav-
igated (AC0(α2, this.f8.f4) is undefined). Also, AC(α2, this.f8.owner) = (α3, tag);
thus, as long as ω4 is accessible from some actor, e.g. through C(α2.f8) = ω4,
actor α3 will not be collected.

Because the class of an actor as well as the capability attached to a static path
are constant throughout program execution, the capabilities of paths starting
from an actor’s fields or from the same frame are also constant.

Lemma 1. For actor α, fields f , behaviour b, variable x , fields f , capabilities
κ, κ′, configurations C and C′, such that C reduces to C’ in one or more steps:

– AC(α, this.f) = (ι, κ) ∧ AC′(α, this.f) = (ι′, κ′) −→ κ = κ′

– AC(α, x.f) = (ι, κ) ∧ AC′(α, x.f) = (ι′, κ′) ∧
α.frameC = (b, ) ∧ α.frameC′ = (b, ) −→ κ = κ′

4.2 Well-Formed Configurations

We characterise data-race free configurations (� C ♦):

Definition 4 (Data-race freedom). � C ♦ iff
∀α, α′, p, p′, κ, κ′.

α �= α′ ∧ AC(α, p) = (ι, κ) ∧ AC(α′, p′) = (ι, κ′)
−→
κ ∼ κ′

where we define
κ ∼ κ′ iff [ (κ=write −→ κ′ = tag) ∧ (κ′ = write −→ κ= tag) ]

This definition captures invariant I1. The remaining invariants depend on
the four derived counters introduced in Sect. 3. Here we define LRC and FRC,
and give a preliminary definition of AMC and OMC.

Definition 5 (Derived counters—preliminary for AMC andss OMC)

LRCC(ι) ≡ O(ι).rcC(ι)

FRCC(ι) ≡
∑

α�=O(ι)

α.rcC(ι)

OMCC(ι) ≡ ∑
j

{
z if O(ι).quC [j] = orca(ι : z)
0 otherwise

+ ... c.f.Definition 12

AMCC(ι) ≡ #{ (α, k) | k>0 ∧ ∃x.f.AC(α, k.x.f) = ι } + ... c.f.Definition 12

where # denotes cardinality.
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For the time being, we will be reading this preliminary definition as if ... stood
for 0. This works under the assumption the procedures are atomic. However
Sect. 5.3, when we consider fine-grained concurrency, will refine the definition
of AMC and OMC so as to also consider whether an actor is currently in the
process of sending or receiving a message from which the address is accessible.
For the time being, we continue with the preliminary reading.

Example: Assuming that in C0 none of the actors is sending or receiving, we
have LRCC0(ω3) = 160, and FRCC0(ω3) = 160, and OMCC0(ω3) = 0, and
AMCC0(ω3) = 0. Moreover, AMCC0(ω6) = AMCC0(α2) = 1: neither ω6 nor α2

are arguments in application messages, but they are indirectly reachable through
the first message on α1’s queue.

A well-formed configuration requires: I1–I4: introduced in Sect. 3; I5: the
RC’s are non-negative; I6: accessible paths are not dangling; I7: processing mes-
sage queues will not turn RC’s negative; I8: actors’ contents is in accordance
with their state. The latter two will be described in Definition 14.

Definition 6 (Well-formed configurations—preliminary). � C, iff for all
α, αo, ι, ι′, p, lp, and mp, such that αo = O(ι) �= α:

I1 � C ♦
I2 [ AC(α, p)= ι ∨ AC(αo,mp)= ι ] −→ LRCC(ι)>0
I3 AC(α, lp) = ι −→ α.rcC(ι) > 0
I4 LRCC(ι) + OMCC(ι) = FRCC(ι) + AMCC(ι)
I5 α.rcC(ι′) ≥ 0
I6 AC(α, p)= ι −→ C.heap(ι) �=⊥
I7, I8 description in Definition 14.

For ease of notation, we take I5 to mean that if α.rcC(ι′) is defined, then it
is positive. And we take any undefined entry of α.rcC(ι) to be 0.

4.3 Actor States

We now complete the definition of runtime entities (Definition 1), and describe
the states of an actor, the worksets, the marks, and program counters. (Defini-
tion 7). We distinguish the following states: idle (IDLE), collecting (COLLECT),
receiving (RECEIVE), sending a message (SEND), or executing the synchronous
part of a behaviour (EXECUTE). We discuss these states in more detail next.

Except for the idle state, IDLE, all states use auxiliary data structures: work-
sets, denoted by ws, which stores a set of addresses; marks maps, denoted by
ms, from addresses to R (reachable) or U (unreachable), and program coun-
ters. Frames are relevant when in states EXECUTE, or SEND, and otherwise
are assumed to be empty. Worksets are used to store all addresses traced from
a message or from the actor itself, and are relevant when in states SEND, or
RECEIVE, or COLLECT, and otherwise are empty. Marks are used to calculate
reachability and are used in state COLLECT, and are ignored otherwise. The
program counters record the instruction an actor will execute next; they range
between 4 and 27 and are ghost state, i.e. only used in the proofs.
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Fig. 5. State transitions diagram for an actor.

Definition 7 (Actor States, Working sets, and Marks)

st∈State ::= IDLE | EXECUTE | SEND | RECEIVE | COLLECT
ws∈Workset = P(Addr)

ms∈Marks = Addr → {R, U}
pc ∈ PC = [ 4..27 ]

We write α.stC , or α.wsC , or α.msC , or α.pcC for the state, working set, marks,
or the program counter of α in C, respectively.

Actors may transition between states. The state transitions are depicted in
Fig. 5. For example, an actor in the idle state (IDLE) may receive an orca message
(remaining in the same state), receive an app message (moving to the RECEIVE

state), or start garbage collection (moving to the COLLECT state).
In the following sections we describe the actions an actor may perform. Fol-

lowing the style of [17,26,27] we describe actors’ actions through pseudo-code
procedures, which have the form:

procedure name〈α〉:
condition→

{ instructions }
We let α denote the executing actor, and the left-hand side of the arrow

describes the condition that must be satisfied in order to execute the instructions
on the arrow’s right-hand side. Any actor may execute concurrently with other
actors. To simplify notation, we assume an implicit, globally accessible config-
uration C. Thus, instruction α.state:=EXECUTE is short for updating the state
of α in C to be EXECUTE. We elide configurations when obvious, e.g. α.frame =
φ is short for requiring that in C the frame of α is φ, but we mention them when
necessary—e.g. � C[ι1, f �→ ι2] ♦ expresses that the configuration that results
from updating field f in ι1 is data-race free.

Tracing Function. Both garbage collection, and application message sending/re-
ceiving need to find all objects accessible from the current actor and/or from the
message arguments. We define two functions: trace this finds all addresses which
are accessible from the current actor, and trace frame finds all addresses which
are accessible through a stack frame (but not from the current actor, this).
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Fig. 6. Pseudo-code for garbage collection.

Definition 8 (Tracing). We define the functions
trace this : Config×ActorAddr → P(Addr)
trace frame : Config×ActorAddr× Frame → P(Addr)

as follows
trace thisC(α) ≡{ι | ∃f. AC(α, this.f)= ι}
trace frameC(α, φ) ≡{ι | ∃x ∈ dom(φ), f .AC(α, x.f)= ι}

4.4 Garbage Collection

We describe garbage collection in Fig. 6. An idle, or an executing actor (pre-
condition on line 2) may start collecting at any time. Then, it sets its state to
COLLECT (line 5), and initialises the marks, ms, to empty (line 6).

The main idea of ORCA collection is that the requirement for global unreacha-
bility of owned objects can be weakened to the local requirement to local unreach-
ability and a LRC = 0. Therefore, the actor marks all owned objects, and all
addresses with a RC > 0 as U (line 9). After that, it traces the actor’s fields,
and also the actor’s frame if it happens not to be empty (as we shall see later,
idle actors have empty frames) and marks all accessible addresses as R (line 12).
Then, the actor marks all owned objects with RC > 0 as R (line 15). Thus we
expect that: (*) Any ι with ms(ι)=U is locally unreachable, and if owned by the
current actor, then its LRCis 0. For each address with ms(ι) = U, if the actor
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owns ι, then it collects it (line 20)—this is sound because of I2, I3, I4 and (*). If
the actor does not own ι, then it asks ι’s owner to decrement its reference count
by the current actor’s reference count, and deletes its own reference count to it
(thus becoming 0) (line 24)—this preserves I2, I3 and I4.

There is no need for special provision for cycles across actor boundaries.
Rather, the corresponding objects will be collected by each actor separately,
when it is the particular actor’s turn to perform GC.

Example: Look at the cycle ω5–ω6, and assume that the message app(b, ω5)
had finished execution without any heap mutation, and that α1.rcC(ω5) =
α1.rcC(ω6) = 1 = α2.rcC(ω5) = α2.rcC(ω6)—this will be the outcome of the exam-
ple in Sect. 4.5. Now, the objects ω5 and ω6 are globally unreachable. Assume
that α1 performs GC: it will not be able to collect any of these objects, but it will
send a orca(ω6 :−1) to α2. Some time later, α2 will pop this message, and some
time later it will enter a GC cycle: it will collect ω6, and send a orca(ω5 :−1) to
α1. When, later on, α1 pops this message, and later enters a GC cycle, it will
collect ω5.

At the end of the GC cycle, the actor sets is state back to what it was before
(line 26). If the frame is empty, then the actor had been IDLE, otherwise it had
been in state EXECUTE.

4.5 Receiving and Sending Messages

Through message send or receive, actors share addresses with other actors. This
changes accessibility. Therefore, action is needed to re-establish I3 and I4 for all
the objects accessible from the message’s arguments.

Receiving application messages is described by Receiving in Fig. 7. It requires
that the actor α is in the IDLE state and has an application message on top of
its queue. The actor sets its state to RECEIVE (line 5), traces from the message
arguments and stores all accessible addresses into ws (line 7). Since accessibility
is not affected by other actors’ actions, c.f., last paragraph in Sect. 4.6 it is
legitimate to consider the calculation of trace frame as one single step. It then
pops the message from its queue (line 8), and thus the AMC for all the addresses
in ws will decrease by 1. To preserve I4, for each ι in its ws, the actor:

– if it is ι’s owner, then it decrements its reference count for ι by 1, thus decreas-
ing LRCC(ι) (line 12).

– if it is not ι’s owner, then it increments its reference count for ι by 1, thus
increasing FRCC(ι) (line 14).

After that, the actor sets its frame to that from the message (line 17), and goes
to the EXECUTE state (line 18).

Example: Actor α1 has an application message in its queue. Assuming that
it is IDLE, it may execute Receiving: It will trace ω5 and as a result store
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Fig. 7. Receiving application and ORCA messages.

{ω5, ω6, ω8, α1, α2} in its ws. It will then decrement its reference count for ω5 and
α1 (the owned addresses) and increment it for the others. It will then pop the
message from its queue, create the appropriate frame, and go to state EXECUTE.

Receiving ORCA messages is described in Fig. 7. An actor in the IDLE state
with an ORCA message at the top, pops the message from its queue, and adds
the value z to the reference count for ι, and stays in the IDLE state.

Sending application messages is described in Fig. 8. The actor must be in the
EXECUTE state for some behaviour b and must have local variables which can
be split into ψ and ψ′—the latter will form part of the message to be sent. As
the AMC for all the addresses reachable through the message increases by 1, in
order to preserve I4 for each address ι in ws, the actor:

– increments its reference count for ι by 1, if it owns it (line 14);
– decrements its reference count for ι if it does not own it (line 16). But special

care is needed if the actor’s (foreign) reference count for ι is 1, because then
a simple decrement would break I5. Instead, the actor set its reference count
for ι by 256 (line 18) and sends an ORCA message to ι’s owner with 256 as
argument.

After this, it removes ψ′ from its frame (line 22), pushes the message
app(b′, ψ′) onto α′’s queue, and transitions to the EXECUTE state.
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Fig. 8. Pseudo-code for message sending.

We now discuss the preconditions. These ensure that sending the message
app(b, ψ′) will not introduce data races: Line 4 ensures that there are no data
races between paths starting at ψ and paths starting at ψ′, while Line 5 ensures
that the sender, α, and the receiver, α′ see all the paths sent, i.e. those starting
from (b′, ψ′), at the same capability. We express our expectation that the source
language compiler produces code only if it satisfies this property by adding this
static requirement as a precondition. These static requirements imply that after
the message has been sent, there will be no races between paths starting at the
sender’s frame and those starting at the last message in the receiver’s queue. In
more detail, after the sender’s frame has been reduced to (b, ψ), and app(b′, ψ′)
has been added to the receiver’s queue (at location k), we will have a new con-
figuration C′=C[α, frame �→ (b, ψ)][α′, queue �→ α′.queueC :: (b′, ψ′)]. In this new
configuration lines 4 and 5 ensure that AC′(α, x.f) = (ι, κ) ∧ AC′(α′, k.x′.f ′) =
(ι, κ′) −→ κ′ ∼ κ, which means that if there were no data races in C, there will
be no data races in C′ either. Formally: � C ♦ −→ � C′ ♦.

We can now complete Definition 3 for the receiving and the sending cases,
to take into account paths that do not exist yet, but which will exist when the
message receipt or message sending has been completed.
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Definition 9 (accessibility—receiving and sending). Completing Defini-
tion 3: AC(α,−1.x.f) = (ι, κ) iff
α.stC = Receiving ∧ 9 ≤ α.pcC < 18 ∧ C(ψ(x).f) = ι ∧ Class(α) 	 b.x.f : κ

where (b, ψ)is the frame popped at line 8,
or
α.stC = Sending ∧ α.pcC = 23 ∧ C(ψ′(x).f) = ι ∧ Class(α′) 	 b′.x.f : κ

where α′ is the actor to receive the app-message, and
(b′, ψ′) is the frame to be sent in line 23.

Example: When actor α1 executes Receiving, and its program counter is
between 9 and 18, then AC0(α1,−1.x.f5) = (ω6,write), even though x is
not yet on the stack frame. As soon as the frame is pushed on the stack,
and we reach program counter 20, then t AC0(α1,−1.x.f5) is undefined, but
AC0(α1, x.f5) = (ω6,write).

4.6 Actor Behaviour

As our model is parametric with the host language, we do not aim to describe
any of the actions performed while executing behaviours, such as synchronous
method calls and pushing frames onto stacks, conditionnals, loops etc. Instead,
we concentrate on how behaviour execution may affect GC; this happens only
when the heap is mutated either by object creation or by mutation of objects’
fields (since this affects accessibility). In particular, our model does not accom-
modate for recursive calls; we claim that the result from the current model
would easily be extended to a model with recursion in synchronous behaviour,
but would require a considerable notation overhead.

Figure 9 shows the actions of an actor α while in the EXECUTE state, i.e.
while it executes behaviours synchronously. The description is nondeterministic:
the procedures GoIdle, or Create, or MutateHeap, may execute when the corre-
sponding preconditions hold. Thus, we do not describe the execution of a given
program, rather we describe all possible executions for any program. In GoIdle,
the actor α simply passes from the execution state to the idle state; the only
condition is that its state is EXECUTE (line 2). It deletes the frame, and sets the
actor’s state to IDLE (line 4). Create creates a new object, initialises its fields to
null, and stores its address into local variable x.

The most interesting procedure is field assignment, MutateHeap. line 8
modifies the object at address ι1, reachable through local path lp1, and
stores in its field f the address ι2 which was reachable through local path
lp2. We require that the type system makes the following two guaran-
tees: line 2, second conjunct, requires that lp1 should be writable, while line
3 requires that lp2 should be accessible. Line 4 and line 5 requite that
capabilities of objects do not increase through heap mutation: any address that
is accessible with a capability κ after the field update was accessible with
the same or more permissive capability κ′ before the field update. This
requirment guarantees preservation of data race freedom, i.e. that � C ♦ implies
� C[ι1, f �→ ι2] ♦.
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Fig. 9. Pseudo-code for synchronous operations.

Heap Mutation Does not Affect Accessibility in Other Actors. Heap mutation
either creates new objects, which will not be accessible to other actors, or modi-
fies objects to which the current actor has write access. By � C ♦ all other actors
have only tag access to the modified object. Therefore, because of capabilities’
degradation with growing paths (as in A1 and A2), no other actor will be able
to access objects reachable through paths that go through the modified object.

5 Soundness and Completeness

In this section we show soundness and completeness of ORCA.

5.1 I1 and I2 Support Safe Local GC

As we said earlier, I1 and I2 support safe local GC. Namely, I1 guarantees that as
long as GC only traces objects to which the actor has read or write access, there
will be no data races with other actors’ behaviour or GC. And I2 guarantees
that collection can take place based on local information only:

Definition 10. For a configuration C, and object address ω we say that

– ω is globally inaccessible in C, iff ∀α, p.AC(α, p) �= ω
– ω is collectable, iff LRCC(ω) = 0, and ∀lp. AC(O(ω), lp) �= ω.

Lemma 2. If I2 holds, then every collectable object is globally inaccessible.
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5.2 Completeness

In [16] we show that globally inaccessible objects remain so, and that for any
globally inaccessible object there exists a sequence of steps which will collect it.

Theorem 1 (Inaccessibility is monotonic). For any configurations C, and
C′, if C′ is the outcome of the execution of any single line of code from any of
the procedures from Figs. 6, 7, 8 and 9, and ω is globally inaccessible in C, then
ω is globally inaccessible in C′.

Theorem 2 (Completeness of ORCA). For any configuration C, and object
address ω which is globally inaccessible in C, there exists a finite sequence of
steps which lead to C′ in which ω /∈ dom(C′).

5.3 Dealing with Fine-Grained Concurrency

So far, we have discussed actions under an assumption atomicity. However, ORCA
needs to work under fine-grained concurrency, whereby several actors may be exe-
cuting concurrently, each of them executing a behaviour, or sending or receiving
a message, or collecting garbage. With fine-grained concurrency, and with the
preliminary definitions of AMC and OMC, the invariants are no longer preserved.
In fact, they need never hold!

Example: Consider Fig. 4, and assume that actor α1 was executing Receiving.
Then, at line 7 and before popping the message off the queue, we have
LRC(ω5) = 2, FRC(ω5) = 1, AMCp(ω5) = 1, where AMCp( ) stands for the
preliminary definition of AMC; thus I4 holds. After popping and before updat-
ing the RC for ω5, i.e. between lines 9 and 11, we have AMCp(ω5) = 0—thus I4
is broken. At first sight, this might not seem a big problem, because the update
of RC at line 12 will set LRC(ω5) = 1, and thus restore I4. However, if there was
another message containing ω5 in α2’s queue, and consider a snapshot where α2

had just finished line 8 and α1 had just finished line 12, then the update of α1’s
RC will not restore I4.

The reason for this problem is, that with the preliminary definition AMCp( ),
upon popping at line 8, the AMC is decremented in one atomic step for all objects
accessible from the message, while the RC is updated later on (at line 12 or line
14), and one object at a time. In other words, the updates to AMC and LRC are
not in sync. Instead, we give the full definition of AMC so, that AMC is in sync
LRC; namely it is not affected by popping the message, and is reduced one object
at a time once we reach program counter line 15. Similarly, because updating
the RC’s takes place in a separate step from the removal of the ORCA-message
from its queue, we refine the definition of OMC:

Definition 11 (Auxiliary Counters for AMC, and OMC)

AMCrcv
C (ι) ≡ #{α | α.stC =RECEIVE ∧ 9 ≤ α.pcC ∧

ι ∈ α.ws\CurrAddrRcvC(α)}

CurrAddrRcvC(α) ≡
{

{ι10} if α.pcC = 15
∅ otherwise
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In the above α.ws refers to the contents of the variable ws while the actor α is
executing the pseudocode from Receiving, and ι10 refers to the contents of the
variable ι arbitrarily chosen in line 10 of the code.

We define AMCsnd
C (ι), OMCrcv

C (ι), and OMCsnd
C (ι) similarly in [16].

The counters AMCrcv and AMCsnd are zero except for actors which are
in the process of receiving or sending application messages. Also, the counters
OMCrcv and AMCsnd are zero except for actors which are in the process of
receiving or sending ORCA-messages. All these counters are always ≥ 0. We can
now complete the definition of AMC and OMC:

Definition 12 (AMC and OMC – full definition)

OMCC(ι) ≡ ∑
j

{
z if O(ι).quC [j] = orca(ι : z)
0 otherwise

+ OMCsnd
C (ι) − OMCrcv

C (ι)

AMCC(ι) ≡ #{ (α, k) | k>0 ∧ ∃x.f.AC(α, k.x.f) = ι } + AMCsnd
C (ι) + AMCrcv

C (ι)

where # denotes cardinality.

Example: Let us again consider that α1 was executing Receiving. Then, at line
10 we have ws = {ι5, ι6} and AMC(ω5) = 1 = AMC(ω6). Assume at the first
iteration, at line 10 we chose ι5, then right before reaching line 15 we have
AMC(ω5) = 0 and AMC(ω6) = 1. At the second iteration, at line 10 we will
chose ι6, and then right before reaching 15 we have AMC(ω6) = 0.

5.4 Soundness

To complete the definition of well-formed configurations, we need to define what
it means for an actor or a queue to be well-formed.

Well-Formed Queues - I7. The owner’s reference count for any live address
(i.e. any address reachable from a message path, or foreign actor, or in an ORCA
message) should be greater than 0 at the current configuration, as well as, at all
configurations which arise from receiving pending, but no new, messages from
the owner’s queue. Thus, in order to ensure that ORCA decrement messages do
not make the local reference count negative, I7 requires that the effect of any
prefix of the message queue leaves the reference count for any object positive.
To formulate I7 we use the concept of QueueEffectC(α, ι, n), which describes
the contents of LRC after the actor α has consumed and reacted to the first n
messages in its queue—i.e. is about “looking into the future”. Thus, for actor α,
address ι, and number n we define the effect of the n-prefix of the queue on the
reference count as follows:

QueueEffectC(α, ι, n) ≡ LRCC(ι) − z +
∑n

j=0 WeightC(α, ι, j)

where z = k, if α is in the process of executing ReceiveORCA, and α.pcC = 6,
and α.qu.top = orca (ι : k), and otherwise z = 0.
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And where,

WeightC(α, ι, j) ≡

⎧
⎪⎨

⎪⎩

z′ if α.quC [j] = orca(ι : z′)
−1 if ∃x.∃f. AC(α, k.x.f) = ι ∧ O(ι) = α

0 otherwise

I7 makes the following four guarantees: [a] The effect of any prefix of the
message queue leaves the LRC non-negative. [b] If ι is accessible from the j-
th message in its owner’s queue, then the LRC for ι will remain >0 during
execution of the current message queue up to, and including, the j-th message.
[c] If ι is accessible from an ORCA-message, then the LRC will remain >0 during
execution of the current message queue, up to and excluding execution of the
ORCA-message itself. [d] If ι is globally accessible (i.e. reachable from a local
path or from a message in a non-owning actor) then LRC(ι) is currently >0,
and will remain so after during popping of all the entries in the current queue.

Definition 13 (I7). |=Queues C, iff for all j ∈ N, for all addresses ι, actors α,
α′, where O(ι) = α �= α′, the following conditions hold:

a ∀n. QueueEffectC(α, ι, n) ≥ 0
b ∃x. ∃f. AC(α, j.x.f) = ι −→ ∀k ≤ j. QueueEffectC(α, ι, k) > 0.
c α.quC [j] = orca(ι : z) −→ ∀k < j. QueueEffectC(α, ι, k) > 0.
d ∃p.AC(α′, p) = ι −→ ∀k ∈ N. QueueEffectC(α, ι, k) > 0.

For example, in a configuration with LRC(ι) = 2, and a queue with orca(ι :
−2) :: orca(ι : −1) :: orca(ι : 256) is illegal by I7.[a]. Similarly, in a configuration
with LRC(ι) = 2, and a queue with orca(ι : −2) :: orca(ι : 256), the owning actor
could collect ι before popping the message orca(ι : 256) from its queue. Such a
configuration is also deemed illegal by I7.[c].

I8-Well-Formed Actor. In [16] we define well-formedness of an actor α through
the judgement C, α 	 st. This judgement depends on α’s current state st, and
requires, among other things, that the contents of the local variables ws, ms are
consistent with the contents of the pc and RC. Remember also, that because
Receiving and Sending modify the ws or send ORCA-messages before updating
the frame or sending the application message, in the definition of AMC and OMC
we took into account the internal state of actors executing such procedures.

Well-Formed Configuration. The following completes Definition 6 from
Sect. 4.2.

Definition 14 (Well-formed configurations—full). A configuration C is
well-formed, � C, iff I1–I6 (Definition 6) for C, if its queues are well-formed
(|=Queues C, I7), as well as, all its actors (C, α 	 α.stC, I8).

In [16] we consider the execution of each line in the codes from Sect. 4, and
prove:

Theorem 3 (Soundness of ORCA). For any configurations C and C′: If � C,
and C′ is the outcome of the execution of any single line of code from any of the
procedures from Figs. 6, 7, 8 and 9, then � C′.
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This theorem together with I6 implies that ORCA never leaves accessible paths
dangling. Note that the theorem is stated so as to be applicable for a fine inter-
leaving of the execution. Even though we expressed ORCA through procedures,
in our proof we cater for an execution where one line of any of these procedures
is executed interleaved with any other procedures in the other actors.

6 Related Work

The challenges faced when developing and debugging concurrent garbage col-
lectors have motivated the development of formal models and proofs of correct-
ness [6,13,19,30,35]. However, most work considers a global heap where mutator
and collector threads race for objects and relies on synchronisation mechanisms
(or atomic reduction steps), such as read or write barriers, in contrast to ORCA
which considers many local heaps, no atomicity or synchronization, and relies on
the properties of the type system. McCreight et al. [25] introduced a framework
to reason about and build certified garbage collectors, verifying independently
both mutator and collector threads. Their work focuses mainly on garbage collec-
tors similar to those that run on Java programs, such as STW mark-and-sweep,
STW copying and incremental copying. Vechev et al. [39] specified concurrent
mark-and-sweep collectors with write barriers for synchronisation. The authors
also present a parametric garbage collector from which other collectors can be
derived. Hawblitzel and Petrank [22] mechanized proofs of two real-world collec-
tors (copying and mark-and-sweep) and their respective allocators. The assembly
code was instrumented with pre- and post-conditions, invariants and assertions,
which were then verified using Z3 and Boogie. Ugawa et al. [38] extended a
copying, on-the-fly, concurrent garbage collector to process reference types. The
authors model-checked their algorithm using a model that limited the number
of objects and threads. Gamie et al. [17] machine-checked a state-of-the-art, on-
the-fly, concurrent, mark-and-sweep garbage collector [32]. They modelled one
collector thread and many mutator threads. ORCA does not limit the number of
actors running concurrently.

Local heaps have been used in the context of garbage collection to reduce the
amount of synchronisation required before [1–3,13,15,24,31,34], where different
threads have their own heap and share a global heap. However, only two of these
have been proved correct. Doligez and Gonthier [13] proved a collector [14] which
splits the heap into many local heaps and one global heap, and uses mark-and-
sweep for individual collection of local heaps. The algorithm imposes restrictions
on the object graph, that is, a thread cannot access objects in other threads’
local heaps. ORCA allows for references across heaps. Raghunathan et al. [34]
proved correct a hierarchical model of local heaps for functional programming
languages. The work restricted objects graphs and prevented mutation.

As for collectors that rely on message passing, Moreau et al. [26] revisited the
Birrell’s reference listing algorithm, which also uses message passing to update
reference counts in a distributed system, and presented its formalisation and
proofs or soundness and completeness. Moreover, Clebsch and Drossopoulou [10]
proved correct MAC, a concurrent collector for actors.
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7 Conclusions

We have shown the soundness and completeness of the ORCA actor memory
reclamation protocol. The ORCA model is not tied to a particular programming
language and is parametric in the host language. Instead it relies on a number
of invariants and properties which can be met by a combination of language and
static checks. The central property that is required is the absence of data races
on objects shared between actors.

We developed a formal model of ORCA and identified requirements for the
host language, its type system, or associated tooling. We described ORCA at a
language-agnostic level and identified eight invariants that capture how global
consistency is obtained in the absence of synchronisation. We proved that ORCA
will not prematurely collect objects (soundness) and that all garbage will be
identified as such (completeness).
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Abstract. Lamport’s Paxos algorithm is a classic consensus protocol
for state machine replication in environments that admit crash failures.
Many versions of Paxos exploit the protocol’s intrinsic properties for
the sake of gaining better run-time performance, thus widening the gap
between the original description of the algorithm, which was proven cor-
rect, and its real-world implementations. In this work, we address the
challenge of specifying and verifying complex Paxos-based systems by (a)
devising composable specifications for implementations of Paxos’s single-
decree version, and (b) engineering disciplines to reason about protocol-
aware, semantics-preserving optimisations to single-decree Paxos. In a
nutshell, our approach elaborates on the deconstruction of single-decree
Paxos by Boichat et al. We provide novel non-deterministic specifications
for each module in the deconstruction and prove that the implementa-
tions refine the corresponding specifications, such that the proofs of the
modules that remain unchanged can be reused across different implemen-
tations. We further reuse this result and show how to obtain a verified
implementation of Multi-Paxos from a verified implementation of single-
decree Paxos, by a series of novel protocol-aware transformations of the
network semantics, which we prove to be behaviour-preserving.

1 Introduction

Consensus algorithms are an essential component of the modern fault-tolerant
deterministic services implemented as message-passing distributed systems. In
such systems, each of the distributed nodes contains a replica of the system’s
state (e.g., a database to be accessed by the system’s clients), and certain nodes
may propose values for the next state of the system (e.g., requesting an update
in the database). Since any node can crash at any moment, all the replicas have
to keep copies of the state that are consistent with each other. To achieve this,
at each update to the system, all the non-crashed nodes run an instance of a
consensus protocol, uniformly deciding on its outcome. The safety requirements
for consensus can be thus stated as follows: “only a single value is decided uni-
formly by all non-crashed nodes, it never changes in the future, and the decided
value has been proposed by some node participating in the protocol” [16].
c© The Author(s) 2018
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The Paxos algorithm [15,16] is the classic consensus protocol, and its single-
decree version (SD-Paxos for short) allows a set of distributed nodes to reach an
agreement on the outcome of a single update. Optimisations and modifications
to SD-Paxos are common. For instance, the multi-decree version, often called
Multi-Paxos [15,27], considers multiple slots (i.e., multiple positioned updates)
and decides upon a result for each slot, by running a slot-specific instance of an
SD-Paxos. Even though it is customary to think of Multi-Paxos as of a series of
independent SD-Paxos instances, in reality the implementation features multi-
ple protocol-aware optimisations, exploiting intrinsic dependencies between sep-
arate single-decree consensus instances to achieve better throughput. To a great
extent, these and other optimisations to the algorithm are pervasive, and veri-
fying a modified version usually requires to devise a new protocol definition and
a proof from scratch. New versions are constantly springing (cf. Sect. 5 of [27]
for a comprehensive survey) widening the gap between the description of the
algorithms and their real-world implementations.

We tackle the challenge of specifying and verifying these distributed algo-
rithms by contributing two verification techniques for consensus protocols.

Our first contribution is a family of composable specifications for Paxos’
core subroutines. Our starting point is the deconstruction of SD-Paxos by
Boichat et al. [2,3], allowing one to consider a distributed consensus instance
as a shared-memory concurrent program. We introduce novel specifications for
Boichat et al.’s modules, and let them be non-deterministic. This might seem
as an unorthodox design choice, as it weakens the specification. To show that
our specifications are still strong enough, we restore the top-level deterministic
abstract specification of the consensus, which is convenient for client-side rea-
soning. The weakness introduced by the non-determinism in the specifications
has been impelled by the need to prove that the implementations of Paxos’
components refine the specifications we have ascribed [9]. We prove the refine-
ments modularly via the Rely/Guarantee reasoning with prophecy variables and
explicit linearisation points [11,26]. On the other hand, this weakness becomes a
virtue when better understanding the volatile nature of Boichat et al.’s abstrac-
tions and of the Paxos algorithm, which may lead to newer modifications and
optimisations.

Our second contribution is a methodology for verifying composite consensus
protocols by reusing the proofs of their constituents, targeting specifically Multi-
Paxos. We distill protocol-aware system optimisations into a separate semantic
layer and show how to obtain the realistic Multi-Paxos implementation from SD-
Paxos by a series of transformations to the network semantics of the system,
as long as these transformations preserve the behaviour observed by clients. We
then provide a family of such transformations along with the formal conditions
allowing one to compose them in a behaviour-preserving way.

We validate our approach for construction of modularly verified consensus
protocols by providing an executable proof-of-concept implementation of Multi-
Paxos with a high-level shared memory-like interface, obtained via a series of
behaviour-preserving network transformations. The full proofs of lemmas and
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N1:
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P2B(ok)

Fig. 1. A run of SD-Paxos.

theorems from our development, as well as some boilerplate definitions, are given
in the appendices of the supplementary extended version of this paper.1

2 The Single-Decree Paxos Algorithm

We start with explaining SD-Paxos through an intuitive scenario. In SD-Paxos,
each node in the system can adopt the roles of proposer or acceptor, or both. A
value is decided when a quorum (i.e., a majority of acceptors) accepts the value
proposed by some proposer. Now consider a system with three nodes N1, N2 and
N3, where N1 and N3 are both proposers and acceptors, and N2 is an acceptor,
and assume N1 and N3 propose values v1 and v3, respectively.

The algorithm works in two phases. In Phase 1, a proposer polls every accep-
tor in the system and tries to convince a quorum to promise that they will later
accept its value. If the proposer succeeds in Phase 1 then it moves to Phase 2,
where it requests the acceptors to fulfil their promises in order to get its value
decided. In our example, it would seem in principle possible that N1 and N3 could
respectively convince two different quorums—one consisting of N1 and N2, and
the other consisting of N2 and N3—to go through both phases and to respec-
tively accept their values. This would happen if the communication between N1
and N3 gets lost and if N2 successively grants the promise and accepts the value
of N1, and then does the same with N3. This scenario breaks the safety require-
ments for consensus because both v1 and v3—which can be different—would get
decided. However, this cannot happen. Let us explain why.

The way SD-Paxos enforces the safety requirements is by distinguishing each
attempt to decide a value with a unique round, where the rounds are totally
ordered. Each acceptor stores its current round, initially the least one, and only
grants a promise to proposers with a round greater or equal than its current
round, at which moment the acceptor switches to the proposer’s round. Figure 1
depicts a possible run of the algorithm. Assume that rounds are natural numbers,
that the acceptors’ current rounds are initially 0, and that the nodes N1 and
N3 attempt to decide their values with rounds 1 and 3 respectively. In Phase 1,
N1 tries to convince a quorum to switch their current round to 1 (messages
P1A(1)). The message to N3 gets lost and the quorum consisting of N1 and
N2 switches round and promises to only accept values at a round greater or

1 Find the extended version online at https://arxiv.org/abs/1802.05969.
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Paxos

Round-Based Consensus

Round-Based Register

1 val vP := undef;

2 proposeP(val v0) {

3 〈 assume(!(v0 = undef));

4 if (vP = undef) {

5 vP := v0;

6 } return vP; 〉 }

Fig. 2. Deconstruction of SD-Paxos (left) and specification of module Paxos (right).

equal than 1. Each acceptor that switches to the proposer’s round sends back to
the proposer its stored value and the round at which this value was accepted,
or an undefined value if the acceptor never accepted any value yet (messages
P1B(ok,⊥, 0), where ⊥ denotes a default undefined value). After Phase 1, N1
picks as a candidate value the one accepted at the greatest round from those
returned by the acceptors in the quorum, or its proposed value if all acceptors
returned an undefined value. In our case, N1 picks its value v1. In Phase 2,
N1 requests the acceptors to accept the candidate value v1 at round 1 (messages
P2A(v1, 1)). The message to N3 gets lost, and N1 and N2 accept value v1, which
gets decided (messages P2B(ok)).

Now N3 goes through Phase 1 with round 3 (messages P1A(3)). Both N2
and N3 switch to round 3. N2 answers N3 with its stored value v1 and with the
round 1 at which v1 was accepted (message P1B(ok, v1, 1)), and N3 answers
itself with an undefined value, as it has never accepted any value yet (message
P1B(ok,⊥, 0)). This way, if some value has been already decided upon, any pro-
poser that convinces a quorum to switch to its round would receive the decided
value from some of the acceptors in the quorum (recall that two quorums have
a non-empty intersection). That is, N3 picks the v1 returned by N2 as the can-
didate value, and in Phase 2 it manages that the quorum N2 and N3 accepts
v1 at round 3 (messages P2A(v1, 3) and P2B(ok)). N3 succeeds in making a
new decision, but the decided value remains the same, and, therefore, the safety
requirements of a consensus protocol are satisfied.

3 The Faithful Deconstruction of SD-Paxos

We now recall the faithfull deconstruction of SD-Paxos in [2,3], which we take
as the reference architecture for the implementations that we aim to verify. We
later show how each module of the deconstruction can be verified separately.

The deconstruction is depicted on the left of Fig. 2, which consists of modules
Paxos, Round-Based Consensus and Round-Based Register. These modules cor-
respond to the ones in Fig. 4 of [2], with the exception of Weak Leader Election.
We assume that a correct process that is trusted by every other correct process
always exists, and omit the details of the leader election. Leaders take the role
of proposers and invoke the interface of Paxos. Each module uses the interface
provided by the module below it.
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1 read(int k) {

2 int j; val v; int kW; val maxV;

3 int maxKW; set of int Q; msg m;

4 for (j := 1, j <= n, j++)

5 { send(j, [RE, k]); }

6 maxKW := 0; maxV := undef; Q := {};

7 do { (j, m) := receive();

8 switch (m) {

9 case [ackRE, @k, v, kW]:

10 Q := Q ∪ {j};

11 if (kW >= maxKW)

12 { maxKW := kW; maxV := v; }

13 case [nackRE, @k]:

14 return (false, _);

15 } if (|Q| = �(n+1)/2�)
16 { return (true, maxV); } }

17 while (true); }

18 write(int k, val vW) {

19 int j; set of int Q; msg m;

20 for (j := 1, j <= n, j++)

21 { send(j, [WR, k, vW]); }

22 Q := {};

23 do { (j, m) := receive();

24 switch (m) {

25 case [ackWR, @k]:

26 Q := Q ∪ {j};

27 case [nackWR, @k]:

28 return false;

29 } if (|Q| = �(n+1)/2�)
30 { return true; } }

31 while (true); }

Fig. 3. Implementation of Round-Based Register (read and write).

The entry module Paxos implements SD-Paxos. Its specification (right of
Fig. 2) keeps a variable vP that stores the decided value (initially undefined) and
provides the operation proposeP that takes a proposed value v0 and returns vP
if some value was already decided, or otherwise it returns v0. The code of the
operation runs atomically, which we emphasise via angle brackets 〈. . .〉. We define
this specification so it meets the safety requirements of a consensus, therefore,
any implementation whose entry point refines this specification will have to meet
the same safety requirements.

In this work we present both specifications and implementations in pseudo-
code for an imperative WHILE-like language with basic arithmetic and primitive
types, where val is some user-defined type for the values decided by Paxos, and
undef is a literal that denotes an undefined value. The pseudo-code is self-
explanatory and we restraint ourselves from giving formal semantics to it, which
could be done in standard fashion if so wished [30]. At any rate, the pseudo-code
is ultimately a vehicle for illustration and we stick to this informal presentation.

The implementation of the modules is depicted in Figs. 3, 4 and 5. We
describe the modules following a bottom-up approach, which better fits the pur-
pose of conveying the connection between the deconstruction and SD-Paxos.
We start with module Round-Based Register, which offers operations read and
write (Fig. 3) and implements the replicated processes that adopt the role of
acceptors (Fig. 4). We adapt the wait-free, crash-stop implementation of Round-
Based Register in Fig. 5 of [2] by adding loops for the explicit reception of each
individual message and by counting acknowledgement messages one by one. Pro-
cesses are identified by integers from 1 to n, where n is the number of processes
in the system. Proposers and acceptors exchange read and write requests, and
their corresponding acknowledgements and non/acknowledgements. We assume
a type msg for messages and let the message vocabulary to be as follows.
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k; send(i, [ackRE, k, v, w]); 〉 }

10 case [WR, k, vW]:

11 if (k < r) { send(i, [nackWR, k]); }

12 else { 〈 r := k; w := k; v := vW; send(i, [ackWR, k]); 〉 }

13 } }

14 while (true); } }

Fig. 4. Implementation of Round-Based Register (acceptor).

Read requests [RE, k] carry the proposer’s round k. Write requests [WR, k, v]
carry the proposer’s round k and the proposed value v. Read acknowledge-
ments [ackRE, k, v, k’] carry the proposer’s round k, the acceptor’s value
v, and the round k’ at which v was accepted. Read non-acknowledgements
[nackRE, k] carry the proposer’s round k, and so do carry write acknowledge-
ments [ackWR, k] and write non/acknowledgements [nackWR, K].

In the pseudo-code, we use _ for a wildcard that could take any literal value.
In the pattern-matching primitives, the literals specify the pattern against which
an expression is being matched, and operator @ turns a variable into a literal
with the variable’s value. Compare the case [ackRE, @k, v, kW]: in Fig. 3, where
the value of k specifies the pattern and v and kW get some values assigned, with
the case [RE, k]: in Fig. 4, where k gets some value assigned.

We assume the network ensures that messages are neither created, modified,
deleted, nor duplicated, and that they are always delivered but with an arbi-
trarily large transmission delay.2 Primitive send takes the destination j and the
message m, and its effect is to send m from the current process to the process j.
Primitive receive takes no arguments, and its effect is to receive at the cur-
rent process a message m from origin i, after which it delivers the pair (i, m) of
identifier and message. We assume that send is non-blocking and that receive
blocks and suspends the process until a message is available, in which case the
process awakens and resumes execution.

Each acceptor (Fig. 4) keeps a value v, a current round r (called the read
round), and the round w at which the acceptor’s value was last accepted (called
the write round). Initially, v is undef and both r and w are 0.

Phase 1 of SD-Paxos is implemented by operation read on the left of Fig. 3.
When a proposer issues a read, the operation requests each acceptor’s promise
to only accept values at a round greater or equal than k by sending [RE, k]

2 We allow creation and duplication of [RE, k] messages in Sect. 5, where we obtain
Multi-Paxos from SD-Paxos by a series of transformations of the network semantics.
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1 proposeRC(int k, val v0) {

2 bool res; val v;

3 (res, v) := read(k);

4 if (res) {

5 if (v = undef) { v := v0; }

6 res := write(k, v);

7 if (res) { return (true, v); } }

8 return (false, _); }

1 proposeP(val v0) {

2 int k; bool res; val v;

3 k := pid();

4 do { (res, v) :=

5 proposeRC(k, v0);

6 k := k + n;
7 } while (!res);

8 return v; }

Fig. 5. Implementation of Round-Based Consensus (left) and Paxos (right)

(lines 4–5). When an acceptor receives a [RE, k] (lines 5–7 of Fig. 4) it acknowl-
edges the promise depending on its read round. If k is strictly less than r
then the acceptor has already made a promise to another proposer with greater
round and it sends [nackRE, k] back (line 8). Otherwise, the acceptor updates
r to k and acknowledges by sending [ackRE, k, v, w] (line 9). When the pro-
poser receives an acknowledgement (lines 8–10 of Fig. 3) it counts acknowl-
edgements up (line 10) and calculates the greatest write round at which the
acceptors acknowledging so far accepted a value, and stores this value in maxV
(lines 11–12). If a majority of acceptors acknowledged, the operation succeeds
and returns (true, maxV) (lines 15–16). Otherwise, if the proposer received some
[nackRE, k] the operation fails, returning (false, _) (lines 13–14).

Phase 2 of SD-Paxos is implemented by operation write on the right of
Fig. 3. After having collected promises from a majority of acceptors, the pro-
poser picks the candidate value vW and issues a write. The operation requests
each acceptor to accept the candidate value by sending [WR, k, vW] (lines 20–
21). When an acceptor receives [WR, k, vW] (line 10 of Fig. 4) it accepts the
value depending on its read round. If k is strictly less than r, then the acceptor
never promised to accept at such round and it sends [nackWR, k] back (line 11).
Otherwise, the acceptor fullfils its promise and updates both w and r to k and
assigns vW to its value v, and acknowledges by sending [ackWR, k] (line 12).
Finally, when the proposer receives an acknowledgement (lines 23–25 of Fig. 3)
it counts acknowledgements up (line 26) and checks whether a majority of accep-
tors acknowledged, in which case vW is decided and the operation succeeds and
returns true (lines 29–30). Otherwise, if the proposer received some [nackWR, k]
the operation fails and returns false (lines 27–28).3

Next, we describe module Round-Based Consensus on the left of Fig. 5. The
module offers an operation proposeRC that takes a round k and a proposed
value v0, and returns a pair (res, v) of Boolean and value, where res informs
of the success of the operation and v is the decided value in case res is true.
We have taken the implementation from Fig. 6 in [2] but adapted to our pseudo-
code conventions. Round-Based Consensus carries out Phase 1 and Phase 2 of

3 For the implementation to be correct with our shared-memory-concurrency app-
roach, the update of the data in acceptors must happen atomically with the sending
of acknowledgements in lines 9 and 12 of Fig. 4.
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N1:

N2:

N3:

read(1)

⊥ read(2)

v1read(3)

⊥

write(3,v3)

write(1,v1)

write(2,v1)

N1:

N2:

N3:

read(1)

⊥

write(1,v1)

read(2)

v1 read(3)

⊥

write(3,v3)

write(2,v1)

Fig. 6. Two histories in which a failing write contaminates some acceptor.

SD-Paxos as explained in Sect. 2. The operation proposeRC calls read (line 3)
and if it succeeds then chooses a candidate value between the proposed value
v0 or the value v returned by read (line 5). Then, the operation calls write
with the candidate value and returns (true, v) if write succeeds, or fails and
returns (false, _) (line 8) if either the read or the write fails.

Finally, the entry module Paxos on the right of Fig. 5 offers an operation
proposeP that takes a proposed value v0 and returns the decided value. We
assume that the system primitive pid() returns the process identifier of the
current process. We have come up with this straightforward implementation of
operation proposeP, which calls proposeRC with increasing round until the call
succeeds, starting at a round equal to the process identifier pid() and increasing
it by the number of processes n in each iteration. This guarantees that the round
used in each invocation to proposeRC is unique.

The Challenge of Verifying the Deconstruction of Paxos. Verifying
each module of the deconstruction separately is cumbersome because of the
distributed character of the algorithm and the nature of a linearisation proof. A
process may not be aware of the information that will flow from itself to other
processes, but this future information flow may dictate whether some operation
has to be linearised at the present. Figure 6 illustrates this challenge.

Let N1, N2 and N3 adopt both the roles of acceptors and proposers, which
propose values v1, v2 and v3 with rounds 1, 2 and 3 respectively. Consider the
history on the top of the figure. N2 issues a read with round 2 and gets acknowl-
edgements from all but one acceptors in a quorum. (Let us call this one acceptor
A.) None of these acceptors have accepted anything yet and they all return
⊥ as the last accepted value at round 0. In parallel, N3 issues a read with
round 3 (third line in the figure) and gets acknowledgements from a quorum in
which A does not occur. This read succeeds as well and returns (true, undef).
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1 (bool × val) ptp[1..n] := undef;

2 val abs_vP := undef; single bool abs_resP[1..n] := undef;

3 proposeP(val v0) {

4 int k; bool res; val v; assume(!(v0 = undef));

5 k := pid(); ptp[pid()] := (true, v0);

6 do { 〈 (res, v) := proposeRC(k, v0);

7 if (res) {

8 for (i := 1, i <= n, i++) {

9 if (ptp[i] = (true, v)) { lin(i); ptp[i] := (false, v); } }

10 if (!(v = v0)) { lin(pid()); ptp[pid()] := (false, v0); } } 〉
11 k := k + n; }

12 while (!res); return v; }

Fig. 7. Instrumented implementation of Paxos.

Then N3 issues a write with round 3 and value v3. Again, it gets acknowledge-
ments from a quorum in which A does not occur, and the write succeeds deciding
value v3 and returns true. Later on, and in real time order with the write by
N3 but in parallel with the read by N2, node N1 issues a write with round 1
and value v1 (first line in the figure). This write is to fail because the value v3

was already decided with round 3. However, the write manages to “contami-
nate” acceptor A with value v1, which now acknowledges N2 and sends v1 as
its last accepted value at round 1. Now N2 has gotten acknowledgements from
a quorum, and since the other acceptors in the quorum returned 0 as the round
of their last accepted value, the read will catch value v1 accepted at round 1,
and the operation succeeds and returns (true, v1). This history linearises by
moving N2’s read after N1’s write, and by respecting the real time order for the
rest of the operations. (The linearisation ought to respect the information flow
order between N1 and N2 as well, i.e., N1 contaminates A with value v1, which
is read by N2.)

In the figure, a segment ending in an × indicates that the operation fails. The
value returned by a successful read operation is depicted below the end of the
segment. The linearisation points are depicted with a thick vertical line, and the
dashed arrow indicates that two operations are in the information flow order.

The variation of this scenario on the bottom of Fig. 6 is also possible, where
N1’s write and N2’s read happen concurrently, but where N2’s read is shifted
backwards to happen before in real time order with N3’s read and write. Since
N1’s write happens before N2’s read in the information flow order, then N1’s
write has to inexorably linearise before N3’s operations, which are the ones that
will “steal” N1’s valid round.

These examples give us three important hints for designing the specifications
of the modules. First, after a decision is committed it is not enough to store only
the decided value, since a posterior write may contaminate some acceptor with a
value different from the decided one. Second, a read operation may succeed with
some round even if by that time other operation has already succeeded with a
higher round. And third, a write with a valid round may fail if its round will
be “stolen” by a concurrent operation. The non-deterministic specifications that
we introduce next allow one to model execution histories as the ones in Fig. 6.
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4 Modularly Verifying SD-Paxos

In this section, we provide non-deterministic specifications for Round-Based Con-
sensus and Round-Based Register and show that each implementation refines its
specification [9]. To do so, we instrument the implementations of all the modules
with linearisation-point annotations and use Rely/Guarantee reasoning [26].

This time we follow a top-down order and start with the entry module Paxos.

Module Paxos. In order to prove that the implementation on the right of
Fig. 5 refines its specification on the right of Fig. 2, we introduce the instru-
mented implementation in Fig. 7, which uses the helping mechanism for external
linearisation points of [18]. We assume that each proposer invokes proposeP with
a unique proposed value. The auxiliary pending thread pool ptp[n] is an array
of pairs of Booleans and values of length n, where n is the number of processes
in the system. A cell ptp[i] containing a pair (true, v) signals that the process
i proposed value v and the invocation proposeP(v) by process i awaits to be
linearised. Once this invocation is linearised, the cell ptp[i] is updated to the
pair (false, v). A cell ptp[i] containing undef signals that the process i never
proposed any value yet. The array abs_resP[n] of Boolean single-assignment
variables stores the abstract result of each proposer’s invocation. A linearisation-
point annotation lin(i) takes a process identifier i and performs atomically the
abstract operation invoked by proposer i and assigns its result to abs_resP[i].
The abstract state is modelled by variable abs_vP, which corresponds to variable
vP in the specification on the right of Fig. 2. One invocation of proposeP may
help linearise other invocations as follows. The linearisation point is together
with the invocation to proposeRC (line 6). If proposeRC committed with some
value v, the instrumented implementation traverses ptp and linearises all the
proposers which were proposing value v (the proposer may linearise itself in this
traversal) (lines 8–9). Then, the current proposer linearises itself if its proposed
value v0 is different from v (line 10), and the operation returns v (line 12). All
the annotations and code in lines 6–10 are executed inside an atomic block,
together with the invocation to proposeRC(k, v0).

Theorem 1. The implementation of Paxos on the right of Fig. 5 linearises with
respect to its specification on the right of Fig. 2.

Module Round-Based Consensus. The top of Fig. 8 shows the non-
deterministic module’s specification. Global variable vRC is the decided value,
initially undef. Global variable roundRC is the highest round at which some
value was decided, initially 0; a global set of values valsRC (initially empty)
contains values that may have been proposed by proposers. The specification is
non-deterministic in that local value vD and Boolean b are unspecified, which we
model by assigning random values to them. We assume that the current process
identifier is ((k−1)modn)+1, which is consistent with how rounds are assigned
to each process and incremented in the code of proposeP on the right of Fig. 5.
If the unspecified value vD is neither in the set valsRC nor equal to v0 then
the operation returns (false, _) (line 11). This models that the operation fails
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1 val vRC := undef; int roundRC := 0; set of val valsRC := {};

2 proposeRC(int k, val v0) {

3 〈 val vD := random(); bool b := random();

4 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

5 if (vD ∈ (valsRC ∪ {v0})) {

6 valsRC := valsRC ∪ {vD};

7 if (b && (k >= roundRC)) { roundRC := k;

8 if (vRC = undef) { vRC := vD; }

9 return (true, vRC); }

10 else { return (false, _); } }

11 else { return (false, _); } 〉 }

1 val abs_vRC := undef; int abs_roundRC := 0;

2 set of val abs_valsRC := {};

3 proposeRC(int k, val v0) {

4 single (bool × val) abs_resRC := undef; bool res; val v;

5 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

6 〈 (res, v) := read(k); if (res = false) { linRC(undef, _); } 〉
7 if (res) { if (v = undef) { v := v0; }

8 〈 res := write(k, v); if (res) { linRC(v, true); }

9 else { linRC(v, false); } 〉
10 if (res) { return (true, v); } }

11 return (false, _); }

Fig. 8. Specification (top) and instrumented implementation (bottom) of Round-Based
Consensus.

without contaminating any acceptor. Otherwise, the operation may contaminate
some acceptor and the value vD is added to the set valsRC (line 6). Now, if the
unspecified Boolean b is false, then the operation returns (false, _) (lines 7
and 10), which models that the round will be stolen by a posterior operation.
Finally, the operation succeeds if k is greater or equal than roundRC (line 7), and
roundRC and vRC are updated and the operation returns (true, vRC) (lines 7–9).

In order to prove that the implementation in Fig. 5 linearises with respect
to the specification on the top of Fig. 8, we use the instrumented implementa-
tion on the bottom of the same figure, where the abstract state is modelled by
variables abs_vRC, abs_roundRC and abs_valsRC in lines 1–2, the local single-
assignment variable abs_resRC stores the result of the abstract operation, and
the linearisation-point annotations linRC(vD, b) take a value and a Boolean
parameters and invoke the non-deterministic abstract operation and disam-
biguate it by assigning the parameters to the unspecified vD and b of the specifi-
cation. There are two linearisation points together with the invocations of read
(line 6) and write (line 8). If read fails, then we linearise forcing the unspecified
vD to be undef (line 6), which ensures that the abstract operation fails without
adding any value to abs_valsRC nor updating the round abs_roundRC. Other-
wise, if write succeeds with value v, then we linearise forcing the unspecified
value vD and Boolean b to be v and true respectively (line 8). This ensures that
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1 read(int k) {

2 〈 val vD := random();

3 bool b := random(); val v;

4 assume(vD ∈ valsRR);

5 assume(pid() =

6 ((k - 1) mod n) + 1);

7 if (b) {

8 if (k >= roundRR) {

9 roundRR := k;

10 if (!(vRR = undef)) {

11 v := vRR; }

12 else { v := vD; } }

13 else { v := vD; }

14 return (true, v); }

15 else { return (false, _); } 〉 }

16 val vRR := undef;

17 int roundRR := 0;

18 set of val valsRR := {undef};

19
20 write(int k, val vW) {

21 〈 bool b := random();

22 assume(!(vW = undef));

23 assume(pid() =

24 ((k - 1) mod n) + 1);

25 valsRR := valsRR ∪ {vW};

26 if (b && (k >= roundRR)) {

27 roundRR := k;

28 vRR := vW;

29 return true; }

30 else { return false; } 〉 }

Fig. 9. Specification of Round-Based Register.

the abstract operation succeeds and updates the round abs_roundRC to k and
assigns v to the decided value abs_vRC. If write fails then we linearise forcing
the unspecified vD and b to be v and false respectively (line 9). This ensures
that the abstract operation fails.

Theorem 2. The implementation of Round-Based Consensus in Fig. 5 lin-
earises with respect to its specification on the top of Fig. 8.

Module Round-Based Register . Figure 9 shows the module’s non-
deterministic specification. Global variable vRR represents the decided value,
initially undef. Global variable roundRR represents the current round, initially
0, and global set of values valsRR, initially containing undef, stores values that
may have been proposed by some proposer. The specification is non-deterministic
in that method read has unspecified local Boolean b and local value vD (we
assume that vD is valsRR), and method write has unspecified local Boolean b.
We assume the current process identifier is ((k − 1) mod n) + 1.

Let us explain the specification of the read operation. The operation can
succeed regardless of the proposer’s round k, depending on the value of the
unspecified Boolean b. If b is true and the proposer’s round k is valid (line 8),
then the read round is updated to k (line 9) and the operation returns (true, v)
(line 14), where v is the read value, which coincides with the decided value if some
decision was committed already or with vD otherwise. Now to the specification of
operation write. The value vW is always added to the set valsRR (line 25). If the
unspecified Boolean b is false (the round will be stolen by a posterior operation)
or if the round k is non-valid, then the operation returns false (lines 26 and
30). Otherwise, the current round is updated to k, and the decided value vRR is
updated to vW and the operation returns true (lines 27–29).

In order to prove that the implementation in Figs. 3 and 4 linearises with
respect to the specification in Fig. 9, we use the instrumented implementation in
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Figs. 10 and 11, which uses prophecy variables [1,26] that “guess” whether the
execution of the method will reach a particular program location or not. The
instrumented implementation also uses external linearisation points. In partic-
ular, the code of the acceptors may help to linearise some of the invocations to
read and write, based on the prophecies and on auxiliary variables that count
the number of acknowledgements sent by acceptors after each invocation of a
read or a write. The next paragraphs elaborate on our use of prophecy variables
and on our helping mechanism.

Variables abs_vRR, abs_roundRR and abs_valsRR in Fig. 10 model the
abstract state. They are initially set to undef, 0 and the set containing undef
respectively. Variable abs_res_r[k] is an infinite array of single-assignment
pairs of Boolean and value that model the abstract results of the invocations
to read. (Think of an infinite array as a map from integers to some type; we
use the array notation for convenience.) Similarly, variable abs_res_w[k] is an
infinite array of single-assignment Booleans that models the abstract results of
the invocations to write. All the cells in both arrays are initially undef (e.g.
the initial maps are empty). Variables count_r[k] and count_w[k] are infinite
arrays of integers that model the number of acknowledgements sent (but not
necessarily received yet) from acceptors in response to respectively read or write
requests. All cells in both arrays are initially 0. The variable proph_r[k] is an
infinite array of single-assignment pairs bool× val, modelling the prophecy for
the invocations of read, and variable proph_w[k] is an infinite array of single-
assignment Booleans modelling the prophecy for the invocations of write.

The linearisation-point annotations linRE(k, vD, b) for read take the pro-
poser’s round k, a value vD and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameters to the unspecified vD
and b of the specification on the left of Fig. 9. At the beginning of a read(k)
(lines 11–14 of Fig. 10), the prophecy proph_r[k] is set to (true, v) if the invo-
cation reaches PL: RE_SUCC in line 26. The v is defined to coincide with maxV at
the time when that location is reached. That is, v is the value accepted at the
greatest round by the acceptors acknowledging so far, or undefined if no accep-
tor ever accepted any value. If the operation reaches PL: RE_FAIL in line 24
instead, the prophecy is set to (false, _). (If the method never returns, the
prophecy is left undef since it will never linearise.) A successful read(k) lin-
earises in the code of the acceptor in Fig. 11, when the �(n + 1)/2�th acceptor
sends [ackRE, k, v, w], and only if the prophecy is (true, v) and the operation
was not linearised before (lines 10–14). We force the unspecified vD and b to
be v and true respectively, which ensures that the abstract operation succeeds
and returns (true, v). A failing read(k) linearises at the return in the code
of read (lines 23–24 of Fig. 10), after the reception of [nackRE, k] from one
acceptor. We force the unspecified vD and b to be undef and false respectively,
which ensures that the abstract operation fails.

The linearisation-point annotations linWR(k, vW, b) for write take the pro-
poser’s round k and value vW, and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameter to the unspecified b
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1 val abs_vRR := undef; int abs_roundRR := 0;

2 set of val abs_valsRR := {undef};

3 single val abs_res_r[1..∞] := undef;

4 single val abs_res_w[1..∞] := undef;

5 int count_r[1..∞] := 0; int count_w[1..∞] := 0;

6 single (bool × val) proph_r[1..∞] := undef;

7 single bool proph_w[i..∞] := undef;

8 read(int k) {

9 int j; val v; set of int Q; int maxKW; val maxV; msg m;

10 assume(pid() = ((k - 1) mod n) + 1);

11 〈 if (operation reaches PL: RE_SUCC and define v = maxV at that time) {

12 proph_r[k] := (true, v); }

13 else { if (operation reaches PL: RE_FAIL) {

14 proph_r[k] := (false, _); } } 〉
15 for (j := 1, j <= n, j++) { send(j, [RE, k]); }

16 maxKW := 0; maxV := undef; Q := {};

17 do { (j, m) := receive();

18 switch (m) {

19 case [ackRE, @k, v, kW]:

20 Q := Q ∪ {j};

21 if (kW >= maxKW) { maxKW := kW; maxV := v; }

22 case [nackRE, @k]:

23 〈 linRE(k, undef, false); proph_r[k] := undef;

24 return (false, _); 〉 // PL: RE_FAIL

25 } if (|Q| = �(n+1)/2�) {

26 return (true, maxV); } } // PL: RE_SUCC

27 while (true); }

28 write(int k, val vW) {

29 int j; set of int Q; msg m;

30 assume(!(vW = undef)); assume(pid() = ((k - 1) mod n) + 1);

31 〈 if (operation reaches PL: WR_SUCC) { proph_w[k] := true; }

32 else { if (operation reaches PL: WR_FAIL) {

33 proph_w[k] := false; } } 〉
34 for (j := 1, j <= n, j++) { send(j, [WR, k, vW]); }

35 Q := {};

36 do { (j, m) := receive();

37 switch (m) {

38 case [ackWR, @k]:

39 Q := Q ∪ {j};

40 case [nackWR, @k]:

41 〈 if (count_w[k] = 0) {

42 linWR(k, vW, false); proph_w[k] := undef; }

43 return false; 〉 // PL: WR_FAIL

44 } if (|Q| = �(n+1)/2�) {

45 return true; } } // PL: WR_SUCC

46 while (true); }

Fig. 10. Instrumented implementation of read and write methods.
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k;

10 if (abs_res_r[k] = undef) {

11 if (proph_r[k] = (true, v)) {

12 if (count_r[k] = �(n+1)/2� - 1) {

13 linRE(k, v, true); } } }

14 count_r[k]++; send(i, [ackRE, k, v, w]); 〉 }

15 case [WR, k, vW]:

16 if (k < r) { send(j, i, [nackWR, k]); }

17 else { 〈 r := k; w := k; v := vW;

18 if (abs_res_w[k] = undef) {

19 if (!(proph_w[k] = undef)) {

20 if (proph_w[k]) {

21 if (count_w[k] = �(n+1)/2� - 1) {

22 linWR(k, vW, true); } }

23 else { linWR(k, vW, false); } } }

24 count_w[k]++; send(j, i, [ackWR, k]); 〉 }

25 } }

26 while (true); } }

Fig. 11. Instrumented implementation of acceptor processes.

of the specification on the right of Fig. 9. At the beginning of a write(k, vW)
(lines 31–33 of Fig. 10), the prophecy proph_r[k] is set to true if the invocation
reaches PL: WR_SUCC in line 45, or to false if it reaches PL: WR_FAIL in line 43
(or it is left undef if the method never returns). A successfully write(k, vW)
linearises in the code of the acceptor in Fig. 11, when the �(n+1)/2�th acceptor
sends [ackWR, k], and only if the prophecy is true and the operation was not
linearised before (lines 17–24). We force the unspecified b to be true, which
ensures that the abstract operation succeeds deciding value vW and updates
roundRR to k. A failing write(k, vW) may linearise either at the return in its
own code (lines 41–43 of Fig. 10) if the proposer received one [nackWR, k] and no
acceptor sent any [ackWR, k] yet, or at the code of the acceptor, when the first
acceptor sends [ackWR, k], and only if the prophecy is false and the operation
was not linearised before. In both cases, we force the unspecified b to be false,
which ensures that the abstract operation fails.

Theorem 3. The implementation of Round-Based Register in Figs. 10 and 11
linearises with respect to its specification in Fig. 9.
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5 Multi-Paxos via Network Transformations

We now turn to more complicated distributed protocols that build upon the idea
of Paxos consensus. Our ultimate goal is to reuse the verification result from the
Sects. 3 and 4, as well as the high-level round-based register interface. In this
section, we will demonstrate how to reason about an implementation of Multi-
Paxos as of an array of independent instances of the Paxos module defined pre-
viously, despite the subtle dependencies between its sub-components, as present
in Multi-Paxos’s “canonical” implementations [5,15,27]. While an abstraction of
Multi-Paxos to an array of independent shared “single-shot” registers is almost
folklore, what appears to be inherently difficult is to verify a Multi-Paxos-based
consensus (wrt. to the array-based abstraction) by means of reusing the proof of
a SD-Paxos. All proofs of Multi-Paxos we are aware of are, thus, non-modular
with respect to underlying SD-Paxos instances [5,22,24], i.e., they require one
to redesign the invariants of the entire consensus protocol.

This proof modularity challenge stems from the optimised nature of a classical
Multi-Paxos protocol, as well as its real-world implementations [6]. In this part
of our work is to distil such protocol-aware optimisations into a separate network
semantics layer, and show that each of them refines the semantics of a Cartesian
product-based view, i.e., exhibits the very same client-observable behaviours. To
do so, we will establishing the refinement between the optimised implementations
of Multi-Paxos and a simple Cartesian product abstraction, which will allow to
extend the register-based abstraction, explored before in this paper, to what is
considered to be a canonical amortised Multi-Paxos implementation.

5.1 Abstract Distributed Protocols

We start by presenting the formal definitions of encoding distributed protocols
(including Paxos), their message vocabularies, protocol-based network seman-
tics, and the notion of an observable behaviours.

Protocols P 
 p � 〈Δ, M, S〉
Configurations Σ 
 σ � Nodes ⇀ Δ
Internal steps Sint ∈ Δ × Δ
Receive-steps Srcv ∈ Δ × M × Δ
Send-steps Ssnd ∈ Δ × Δ × ℘(M)

Fig. 12. States and transitions.

Protocols and Messages. Figure 12
provides basic definitions of the dis-
tributed protocols and their compo-
nents. Each protocol p is a tuple
〈Δ,M,Sint,Srcv,Ssnd〉. Δ is a set of
local states, which can be assigned to
each of the participating nodes, also
determining the node’s role via an addi-
tional tag,4 if necessary (e.g., an acceptor and a proposer states in Paxos are
different). M is a “message vocabulary”, determining the set of messages that
can be used for communication between the nodes.

4 We leave out implicit the consistency laws for the state, that are protocol-specific.
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StepInt
n ∈ dom(σ) δ = σ(n)

〈δ, δ′〉 ∈ p.Sint σ′ = σ[n �→ δ′]

〈σ, M〉 p
==⇒

int
〈σ′, M〉

StepSend
n ∈ dom(σ) δ = σ(n) 〈δ, δ′, ms〉 ∈ p.Ssnd

σ′ = σ[n �→ δ′] M ′ = M ∪ ms

〈σ, M〉 p
===⇒

snd
〈σ′, M ′〉

StepReceive
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to) 〈δ, m, δ′〉 ∈ p.Srcv

m′ = m[active �→ False] σ′ = σ[n �→ δ′] M ′ = M \ {m} ∪ {
m′}

〈σ, M〉 p
===⇒

rcv
〈σ′, M ′〉

Fig. 13. Transition rules of the simple protocol-aware network semantics

Messages can be thought of as JavaScript-like dictionaries, pairing unique
fields (isomorphic to strings) with their values. For the sake of a uniform treat-
ment, we assume that each message m ∈ M has at least two fields, from and to
that point to the source and the destination node of a message, correspondingly.
In addition to that, for simplicity we will assume that each message carries a
Boolean field active, which is set to True when the message is sent and is set to
False when the message is received by its destination node. This flag is required
to keep history information about messages sent in the past, which is customary
in frameworks for reasoning about distributed protocols [10,23,28]. We assume
that a “message soup” M is a multiset of messages (i.e. a set with zero or more
copies of each message) and we consider that each copy of the same message in
the multiset has its own “identity”, and we write m �= m′ to represent that m
and m′ are not the same copy of a particular message.

Finally, S{int,rcv,snd} are step-relations that correspond to the internal
changes in the local state of a node (Sint), as well as changes associated with
sending (Ssnd) and receiving (Srcv) messages by a node, as allowed by the pro-
tocol. Specifically, Sint relates a local node state before and after the allowed
internal change; Srcv relates the initial state and an incoming message m ∈ M
with the resulting state; Ssnd relates the internal state, the output state and the
set of atomically sent messages. For simplicity we will assume that id ⊆ Sint.

In addition, we consider Δ0 ⊆ Δ—the set of the allowed initial states, in
which the system can be present at the very beginning of its execution. The
global state of the network σ ∈ Σ is a map from node identifiers (n ∈ Nodes) to
local states from the set of states Δ, defined by the protocol.

Simple Network Semantics. The simple initial operational semantics of the
network (

p
=⇒ ⊆ (Σ×℘(M))×(Σ×℘(M))) is parametrised by a protocol p and

relates the initial configuration (i.e., the global state and the set of messages)
with the resulting configuration. It is defined via as a reflexive closure of the
union of three relations

p
==⇒

int
∪ p

===⇒
rcv

∪ p
===⇒

snd
, their rules are given in Fig. 13.
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The rule StepInt corresponds to a node n picked non-deterministically from
the domain of a global state σ, executing an internal transition, thus chang-
ing its local state from δ to δ′. The rule StepReceive non-deterministically
picks a m message from a message soup M ⊆ M, changes the state using the
protocol’s receive-step relation p.Srcv at the corresponding host node to, and
updates its local state accordingly in the common mapping (σ[to �→ δ′]). Finally,
the rule StepSend, non-deterministically picks a node n, executes a send-step,
which results in updating its local state emission of a set of messages ms, which
is added to the resulting soup. In order to “bootstrap” the execution, the initial
states from the set Δ0 ⊆ Δ are assigned to the nodes.

We next define the observable protocol behaviours wrt. the simple network
semantics as the prefix-closed set of all system’s configuration traces.

Definition 1. (Protocol behaviours)

Bp =
⋃

m∈N

{
〈〈σ0, M0〉, . . . , 〈σm, Mm〉〉

∣∣∣∣∣
∃δn∈N

0 ∈ Δ0, σ0 =
⊎

n∈N [n �→ δn
0 ] ∧

〈σ0, M0〉 p
=⇒ . . .

p
=⇒ 〈σm, Mm〉

}

That is, the set of behaviours captures all possible configurations of initial states
for a fixed set of nodes N ⊆ Nodes. In this case, the set of nodes N is an implicit
parameter of the definition, which we fix in the remainder of this section.

Example 1 (Encoding SD-Paxos). An abstract distributed protocol for SD-Paxos
can be extracted from the pseudo-code of Sect. 3 by providing a suitable small-step
operational semantics à la Winskel [30]. We restraint ourselves from giving such
formal semantics, but in Appendix D of the extended version of the paper we out-
line how the distributed protocol would be obtained from the given operational
semantics and from the code in Figs. 3, 4 and 5.

5.2 Out-of-Thin-Air Semantics

We now introduce an intermediate version of a simple protocol-aware semantics
that generates messages “out of thin air” according to a certain predicate P ⊆
Δ × M, which determines whether the network generates a certain message
without exercising the corresponding send-transition. The rule is as follows:

OTASend
n ∈ dom(σ) δ = σ(n) P(δ, m) M ′ = M ∪ {m}

〈σ, M〉 p,P
===⇒

ota
〈σ, M ′〉

That is, a random message m can be sent at any moment in the semantics
described by

p
=⇒ ∪ p,P

===⇒
ota

, given that the node n, “on behalf of which” the

message is sent is in a state δ, such that P(δ,m) holds.
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Example 2. In the context of Single-Decree Paxos, we can define P as follows:

P(δ,m) � m.content = [RE, k] ∧ δ.pid = n ∧ δ.role = Proposer ∧ k ≤ δ.kP

In other words, if a node n is a Proposer currently operating with a round
δ.kP, the network semantics can always send another request “on its behalf”,
thus generating the message “out-of-thin-air”. Importantly, the last conjunct in
the definition of P is in terms of ≤, rather than equality. This means that the
predicate is intentionally loose, allowing for sending even “stale” messages, with
expired rounds that are smaller than what n currently holds (no harm in that!).

By definition of single-decree Paxos protocol, the following lemma holds:

Lemma 1 (OTA refinement). B p=⇒∪ p,P===⇒
ota

⊆ Bp, where p is an instance of

the module Paxos, as defined in Sect. 3 and in Example 1.

5.3 Slot-Replicating Network Semantics

With the basic definitions at hand, we now proceed to describing alternative net-
work behaviours that make use of a specific protocol p = 〈Δ,M,Sint,Srcv,Ssnd〉,
which we will consider to be fixed for the remainder of this section, so we will
be at times referring to its components (e.g., Sint, Srcv, etc.) without a qualifier.

SRStepInt
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′〉 ∈ p.Sint

σ′ = σ[n[i] �→ δ′]

〈σ, M〉 ×==⇒
int

〈σ′, M〉

SRStepSend
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′, ms〉 ∈ p.Ssnd

σ′ = σ[n[i] �→ δ′] M ′ = M ∪ ms[slot �→ i]

〈σ, M〉 ×===⇒
snd

〈σ′, M ′〉

SRStepReceive
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ] 〈δ, m, δ′〉 ∈ p.Srcv

m′ = m[active �→ False] σ′ = σ(n)[m.slot �→ δ′] M ′ = M \ {m} ∪ {
m′}

〈σ, M〉 ×===⇒
rcv

〈σ′, M ′〉

Fig. 14. Transition rules of the slot-replicating network semantics.

Figure 14 describes a semantics of a slot-replicating (SR) network that exer-
cises multiple copies of the same protocol instance pi for i ∈ I, some, possibly
infinite, set of indices, to which we will be also referring as slots. Multiple copies
of the protocol are incorporated by enhancing the messages from p’s vocabulary
M with the corresponding indices, and implementing the on-site dispatch of the
indexed messages to corresponding protocol instances at each node. The local
protocol state of each node is, thus, no longer a single element being updated,
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but rather an array, mapping i ∈ I into δi—the corresponding local state com-
ponent. The small-step relation for SR semantics is denoted by ×=⇒. The rule
SRStepInt is similar to StepInt of the simple semantics, with the difference
that it picks not only a node but also an index i, thus referring to a specific
component σ(n)[i] as δ and updating it correspondingly (σ(n)[i] �→ δ′). For the
remaining transitions, we postulate that the messages from p’s vocabulary p.M
are enhanced to have a dedicated field slot , which indicates a protocol copy at
a node, to which the message is directed. The receive-rule SRStepReceive is
similar to StepReceive but takes into the account the value of m.slot in the
received message m, thus redirecting it to the corresponding protocol instance
and updating the local state appropriately. Finally, the rule SRStepSend can
be now executed for any slot i ∈ I, reusing most of the logic of the initial protocol
and otherwise mimicking its simple network semantic counterpart StepSend.

Importantly, in this semantics, for two different slots i, j, such that i �= j,
the corresponding “projections” of the state behave independently from each
other. Therefore, transitions and messages in the protocol instances indexed by
i at different nodes do not interfere with those indexed by j. This observation
can be stated formally. In order to do so we first defined the behaviours of
slot-replicating networks and their projections as follows:

Definition 2 (Slot-replicating protocol behaviours).

B× =
⋃

m∈N

⎧
⎪⎨

⎪⎩
〈〈σ0, M0〉, . . . , 〈σm, Mm〉〉

∣∣∣∣∣∣∣

∃δn∈N
0 ∈ Δ0,

σ0 =
⊎

n∈N [n �→ {i �→ δn
0 | i ∈ I}] ∧

〈σ0, M0〉 p
=⇒ . . .

p
=⇒ 〈σm, Mm〉

⎫
⎪⎬

⎪⎭

That is, the slot-replicated behaviours are merely behaviours with respect to
networks, whose nodes hold multiple instances of the same protocol, indexed by
slots i ∈ I. For a slot i ∈ I, we define projection B×|i as a set of global state
traces, where each node’s local states is restricted only to its ith component.
The following simulation lemma holds naturally, connecting the state-replicating
network semantics and simple network semantics.

Lemma 2 (Slot-replicating simulation). For all I, i ∈ I, B×|i = Bp.

Example 3 (Slot-replicating semantics and Paxos). Given our representation of
Paxos using roles (acceptors/proposers) encoded via the corresponding parts of
the local state δ, we can construct a “näıve” version of Multi-Paxos by using the
SR semantics for the protocol. In such, every slot will correspond to a SD-Paxos
instance, not interacting with any other slots. From the practical perspective,
such an implementation is rather non-optimal, as it does not exploit dependen-
cies between rounds accepted at different slots.



932 Á. Garćıa-Pérez et al.

5.4 Widening Network Semantics

We next consider a version of the SR semantics, extended with a new rule for
handling received messages. In the new semantics, dubbed widening, a node,
upon receiving a message m ∈ T , where T ⊆ p.M, for a slot i, replicates it for
all slots from the index set I, for the very same node. The new rule is as follows:

WStepReceiveT
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ]

〈δ, m, δ′〉 ∈ p.Srcv m′ = m[active �→ False] σ′ = σ(n)[m.slot �→ δ′]
ms = if (m ∈ T ) then

{
m′ | m′ = m[slot �→ j], j ∈ I

}
else ∅

〈σ, M〉 ∇
===⇒

rcv
〈σ′, (M \ {m}) ∪ {

m′} ∪ ms〉

At first, this semantics seems rather unreasonable: it might create more messages
than the system can “consume”. However, it is possible to prove that, under
certain conditions on the protocol p, the set of behaviours observed under this
semantics (i.e., with SRStepReceive replaced by WStepReceiveT) is not
larger than B× as given by Definition 2. To state this formally we first relate the
set of “triggering” messages T from WStepReceiveT to a specific predicate P.

Definition 3 (OTA-compliant message sets). The set of messages T ⊆
p.M is OTA-compliant with the predicate P iff for any b ∈ Bp and 〈σ,M〉 ∈ b,
if m ∈ M , then P(σ(m.from),m).

In other words, the protocol p is relaxed enough to “justify” the presence of m in
the soup at any execution, by providing the predicate P, relating the message to
the corresponding sender’s state. Next, we use this definition to slot-replicating
and widening semantics via the following definition.

Definition 4 (P-monotone protocols). A protocol p is P-monotone iff for
any, b ∈ B×, 〈σ,M〉 ∈ b, m, i = m.slot , and j �= i, if P(σ(m.from)[i], �m) then
we have that P(σ(m.from)[j], �m), where �m “removes” the slot field from m.

Less formally, Definition 4 ensures that in a slot-replicated product × of a pro-
tocol p, different components cannot perform “out of sync” wrt. P. Specifically,
if a node in ith projection is related to a certain message �m via P, then any
other projection j of the same node will be P-related to this message, as well.

Example 4. This is a “non-example”. A version of slot-replicated SD-Paxos,
where we allow for arbitrary increments of the round per-slot at a same pro-
poser node (i.e., out of sync), would not be monotone wrt. P from Example 2.
In contrast, a slot-replicated product of SD-Paxos instances with fixed rounds is
monotone wrt. the same P.

Lemma 3. If T from WStepReceiveT is OTA-compliant with predicate P,
such that B p=⇒∪ p,P===⇒

ota

⊆ B p=⇒ and p is P-monotone, then B ∇=⇒ ⊆ B ×=⇒.

Example 5 (Widening semantics and Paxos). The SD-Paxos instance as
described in Sect. 3 satisfies the refinement condition from Lemma 3. By tak-
ing T = {m | m = {content = [RE, k]; . . .}} and using Lemma 3, we obtain the
refinement between widened semantics and SR semantics of Paxos.
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5.5 Optimised Widening Semantics

Our next step towards a realistic implementation of Multi-Paxos out of SD-
Paxos instances is enabled by an observation that in the widening semantics,
the replicated messages are always targeting the same node, to which the initial
message m ∈ T was addressed. This means that we can optimise the receive-step,
making it possible to execute multiple receive-transitions of the core protocol in
batch. The following rule OWStepReceiveT captures this intuition formally:

OWStepReceiveT
m ∈ M m.active m.to ∈ dom(σ) 〈σ′, ms〉 = receiveAndAct(σ, n, m)

〈σ, M〉 ∇∗
===⇒

rcv
〈σ′, M \ {m} ∪ {m[active �→ False]} ∪ ms〉

where receiveAndAct(σ, n, m) � 〈σ′, ms〉, such that ms =
⋃

j {m[slot �→ j] | m ∈ msj} ,

∀j ∈ I, δ= σ(m.to)[j] ∧ 〈δj , �m, δ1
j 〉 ∈ p.Srcv ∧ 〈δ1

j , δ2
j 〉 ∈ p.S∗

int ∧ 〈δ2
j , δ3

j , msj〉 ∈ p.Ssnd,

∀j ∈ I, σ′(m.to)[j] = δ3
j .

In essence, the rule OWStepReceiveT blends several steps of the widening
semantics together for a single message: (a) it first receives the message and
replicates it for all slots at a destination node; (b) performs receive-steps for
the message’s replicas at each slot; (c) takes a number of internal steps, allowed
by the protocol’s Sint; and (d) takes a send-transition, eventually sending all
emitted message, instrumented with the corresponding slots.

Example 6. Continuing Example 5, with the same parameters, the optimising
semantics will execute the transitions of an acceptor, for all slots, triggered by
receiving a single [RE, k] message for a particular slot, sending back all the
results for all the slots, which might either agree to accept the value or reject it.

The following lemma relates the optimising and the widening semantics.

Lemma 4 (Refinement for OW semantics). For any b ∈ B ∇∗
=⇒ there exists

b′ ∈ B ∇=⇒, such that b can be obtained from b′ by replacing sequences of configu-

rations [〈σk,Mk〉, . . . , 〈σk+m,Mk+m〉] that have just a single node n, whose local
state is affected in σk, . . . , σk+m, by [〈σk,Mk〉, 〈σk+m,Mk+m〉].
That is, behaviours in the optimised semantics are the same as in the widening
semantics, modulo some sequences of locally taken steps that are being “com-
pressed” to just the initial and the final configurations.

5.6 Bunching Semantics

As the last step towards Multi-Paxos, we introduce the final network seman-
tics that optimises executions according to ∇∗

=⇒ described in previous section
even further by making a simple addition to the message vocabulary of a slot-
replicated SD-Paxos—bunched messages. A bunched message simply packages
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BStepRecvB
m ∈ M m.active m.to ∈ dom(σ)
〈σ′, ms〉 = receiveAndAct(σ, n, m)

M ′ = M \ {m} ∪ {m[active �→ False]}
m′ = bunch(ms, m.to, m.from)

〈σ, M〉 B===⇒
rcv

〈σ′, M ′ ∪ {
m′}〉

BStepRecvU
m ∈ M m.active m.to ∈ dom(σ)
m.msgs = ms M ′ = M \ {m} ∪ ms

〈σ, M〉 B===⇒
rcv

〈σ, M ′〉

where bunch(ms, n1, n2) = {msgs = ms; from = n1; to = n2; active = True} .

Fig. 15. Added rules of the Bunching Semantics

together several messages, obtained typically as a result of a “compressed” exe-
cution via the optimised semantics from Sect. 5.5. We define two new rules for
packaging and “unpackaging” certain messages in Fig. 15. The two new rules
can be added to enhance either of the versions of the slot-replicating semantics
shown before. In essence, the only effect they have is to combine the messages
resulting in the execution of the corresponding steps of an optimised widen-
ing (via BStepRecvB), and to unpackage the messages ms from a bunching
message, adding them back to the soup (BStepRecvU). The following natural
refinement result holds:

Lemma 5. For any b ∈ B B=⇒ there exists b′ ∈ B ∇∗
=⇒, such that b′ can be obtained

from b by replacing all bunched messages in b by their msgs-component.

The rule BStepRecvU enables effective local caching of the bunched messages,
so they are processed on demand on the recipient side (i.e., by the per-slot
proposers), allowing the implementation to skip an entire round of Phase 1.

( B=⇒) (
p

===⇒
ota

) via Lm 1 refines (
p

=⇒)

via Lm 5 refines sim. via Lm 2 sim. via Lm 2

( ∇∗
==⇒) via Lm 4 refines ( ∇=⇒) via Lm 3 refines ( ×=⇒)

Fig. 16. Refinement between different network semantics.

1 proposeM(val^ v, val v0) {

2 〈 assume(!(v0 = undef));

3 if (*v = undef) { *v := v0; }

4 return *v; 〉 }

5 val vM[1..∞] := undef;

6 getR(int s) { return &(vM[s]); }

7 proposeM(getR(1), v);

8 proposeM(getR(2), v);

Fig. 17. Specification of Multi-Paxos and interaction via a register provider.
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5.7 The Big Picture

What exactly have we achieved by introducing the described above family of
semantics? As illustrated in Fig. 16, all behaviours of the leftmost-topmost,
bunching semantics, which corresponds precisely to an implementation of Multi-
Paxos with an “amortised” Phase 1, can be transitively related to the corre-
sponding behaviours in the rightmost, vanilla slot-replicated version of a simple
semantics (via the correspondence from Lemma 1) by constructing the corre-
sponding refinement mappings [1], delivered by the proofs of Lemmas 3–5.

From the perspective of Rely/Guarantee reasoning, which was employed in
Sect. 4, the refinement result from Fig. 16 justifies the replacement of a semantics
on the right of the diagram by one to the left of it, as all program-level assertions
will remain substantiated by the corresponding system configurations, as long
as they are stable (i.e., resilient wrt. transitions taken by nodes different from
the one being verified), which they are in our case.

6 Putting It All Together

We culminate our story of faithfully deconstructing and abstracting Paxos via
a round-based register, as well as recasting Multi-Paxos via a series of network
transformations, by showing how to implement the register-based abstraction
from Sect. 3 in tandem with the network semantics from Sect. 5 in order to
deliver provably correct, yet efficient, implementation of Multi-Paxos.

The crux of the composition of the two results—a register-based abstraction
of SD-Paxos and a family of semantics-preserving network transformations—is
a convenient interface for the end client, so she could interact with a consensus
instance via the proposeM method in lines 1–4 of Fig. 17, no matter with which
particular slot of a Multi-Paxos implementation she is interacting. To do so,
we propose to introduce a register provider—a service that would give a client a
“reference” to the consensus object to interact with. Lines 6–7 of Fig. 17 illustrate
the interaction with the service provider, where the client requests two specific
slots, 1 and 2, of Multi-Paxos by invoking getR and providing a slot parameter.
In both cases the client proposes the very same value v in the two instances that
run the same machinery. (Notice that, except for the reference to the consensus
object, proposeM is identical to the proposeP on the right of Fig. 2, which we
have verified wrt. linearisability in Sect. 3.)

The implementation of Multi-Paxos that we have in mind resembles the one
in Figs. 3, 4 and 5 of Sect. 3, but where all the global data is provided by the
register provider and passed by reference. What differs in this implementation
with respect to the one in Sect. 3 and is hidden from the client is the semantics of
the network layer used by the bottom layer (cf. left part of Fig. 2) of the register-
based implementation. The Multi-Paxos instances run (without changing the
register’s code) over this network layer, which “overloads” the meaning of the
send/receive primitives from Figs. 3 and 4 to follow the bunching network
semantics, described in Sect. 5.6.
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Theorem 4. The implementation of Multi-Paxos that uses a register provider
and bunching network semantics refines the specification in Fig. 17.

We implemented the register/network semantics in a proof-of-concept pro-
totype written in Scala/Akka.5 We relied on the abstraction mechanisms of
Scala, allowing us to implement the register logic, verified in Sect. 4, separately
from the network middle-ware, which has provided a family of Semantics from
Sect. 5. Together, they provide a family of provably correct, modularly verified
distributed implementations, coming with a simple shared memory-like interface.

7 Related Work

Proofs of Linearisability via Rely/Guarantee. Our work builds on the
results of Boichat et al. [3], who were first to propose to a systematic deconstruc-
tion of Paxos into read/write operations of a round-based register abstraction.
We extend and harness those abstractions, by intentionally introducing more
non-determinism into them, which allows us to provide the first modular (i.e.,
mutually independent) proofs of Proposer and Acceptor using Rely/Guarantee
with linearisation points and prophecies. While several logics have been proposed
recently to prove linearisability of concurrent implementations using Rely/Guar-
antee reasoning [14,18,19,26], none of them considers message-passing dis-
tributed systems or consensus protocols.

Verification of Paxos-Family Algorithms. Formal verification of different
versions of Paxos-family protocols wrt. inductive invariants and liveness has been
a focus of multiple verification efforts in the past fifteen years. To name just a
few, Lamport has specified and verified Fast Paxos [17] using TLA+ and its
accompanying model checker [32]. Chand et al. used TLA+ to specify and verify
Multi-Paxos implementation, similar to the one we considered in this work [5].
A version of SD-Paxos has been verified by Kellomaki using the PVS theorem
prover [13]. Jaskelioff and Merz have verified Disk Paxos in Isabelle/HOL [12].
More recently, Rahli et al. formalised an executable version of Multi-Paxos in
EventML [24], a dialect of NuPRL. Dragoi et al. [8] implemented and verified
SD-Paxos in the PSync framework, which implements a partially synchronised
model [7], supporting automated proofs of system invariants. Padon et al. have
proved the system invariants and the consensus property of both simple Paxos
and Multi-Paxos using the verification tool Ivy [22,23].

Unlike all those verification efforts that consider (Multi-/Disk/Fast/. . .)Paxos
as a single monolithic protocol, our approach provides the first modular verifica-
tion of single-decree Paxos using Rely/Guarantee framework, as well as the first
verification of Multi-Paxos that directly reuses the proof of SD-Paxos.

5 The code is available at https://github.com/certichain/protocol-combinators.
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Compositional Reasoning about Distributed Systems. Several recent
works have partially addressed modular formal verification of distributed sys-
tems. The IronFleet framework by Hawblitzel et al. has been used to verify both
safety and liveness of a real-world implementation of a Paxos-based replicated
state machine library and a lease-based shared key-value store [10]. While the
proof is structured in a modular way by composing specifications in a way similar
to our decomposition in Sects. 3 and 4, that work does not address the linearis-
ability and does not provide composition of proofs about complex protocols (e.g.,
Multi-Paxos) from proofs about its subparts

The Verdi framework for deductive verification of distributed systems [29,31]
suggests the idea of Verified System Transformers (VSTs), as a way to provide
vertical composition of distributed system implementation. While Verdi’s VSTs
are similar in its purpose and idea to our network transformations, they do not
exploit the properties of the protocol, which was crucial for us to verify Multi-
Paxos’s implementation.

The Disel framework [25,28] addresses the problem of horizontal composition
of distributed protocols and their client applications. While we do not compose
Paxos with any clients in this work, we believe its register-based specification
could be directly employed for verifying applications that use Paxos as its sub-
component, which is what is demonstrated by our prototype implementation.

8 Conclusion and Future Work

We have proposed and explored two complementary mechanisms for modu-
lar verification of Paxos-family consensus protocols [15]: (a) non-deterministic
register-based specifications in the style of Boichat et al. [3], which allow one to
decompose the proof of protocol’s linearisability into separate independent “lay-
ers”, and (b) a family of protocol-aware transformations of network semantics,
making it possible to reuse the verification efforts. We believe that the applica-
bility of these mechanisms spreads beyond reasoning about Paxos and its vari-
ants and that they can be used for verifying other consensus protocols, such as
Raft [21] and PBFT [4]. We are also going to employ network transformations to
verify implementations of Mencius [20], and accommodate more protocol-specific
optimisations, such as implementation of master leases and epoch numbering [6].

Acknowledgements. We thank the ESOP 2018 reviewers for their feedback. This
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Abstract. Parallel snapshot isolation (PSI) is a standard transactional
consistency model used in databases and distributed systems. We argue
that PSI is also a useful formal model for software transactional mem-
ory (STM) as it has certain advantages over other consistency models.
However, the formal PSI definition is given declaratively by acyclicity
axioms, which most programmers find hard to understand and reason
about.

To address this, we develop a simple lock-based reference implemen-
tation for PSI built on top of the release-acquire memory model, a well-
behaved subset of the C/C++11 memory model. We prove that our
implementation is sound and complete against its higher-level declara-
tive specification.

We further consider an extension of PSI allowing transactional and
non-transactional code to interact, and provide a sound and complete
reference implementation for the more general setting. Supporting this
interaction is necessary for adopting a transactional model in program-
ming languages.

1 Introduction

Following the widespread use of transactions in databases, software transactional
memory (STM) [19,35] has been proposed as a programming language abstrac-
tion that can radically simplify the task of writing correct and efficient concurrent
programs. It provides the illusion of blocks of code, called transactions, executing
atomically and in isolation from any other such concurrent blocks.

In theory, STM is great for programmers as it allows them to concentrate
on the high-level algorithmic steps of solving a problem and relieves them of
such concerns as the low-level details of enforcing mutual exclusion. In practice,
however, the situation is far from ideal as the semantics of transactions in the
context of non-transactional code is not at all settled. Recent years have seen
a plethora of different STM implementations [1–3,6,17,20], each providing a
slightly different—and often unspecified—semantics to the programmer.

Simple models in the literature are lock-based, such as global lock atomicity
(GLA) [28] (where a transaction must acquire a global lock prior to execution and
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 940–967, 2018.
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release it afterwards) and disjoint lock atomicity (DLA) [28] (where a transaction
must acquire all locks associated with the locations it accesses prior to execution
and release them afterwards), which provide serialisable transactions. That is,
all transactions appear to have executed atomically one after another in some
total order. The problem with these models is largely their implementation cost,
as they impose too much synchronisation between transactions.

The database community has long recognised this performance problem and
has developed weaker transactional models that do not guarantee serialisability.
The most widely used such model is snapshot isolation (SI) [10], implemented
by major databases, both centralised (e.g. Oracle and MS SQL Server) and
distributed [16,30,33], as well as in STM [1,11,25,26]. In this article, we focus
on a closely related model, parallel snapshot isolation (PSI) [36], which is known
to provide better scalability and availability in large-scale geo-replicated systems.
SI and PSI allow conflicting transactions to execute concurrently and to commit
successfully, so long as they do not have a write-write conflict. This in effect
allows reads of SI/PSI transactions to read from an earlier memory snapshot
than the one affected by their writes, and permits outcomes such as the following:

Initially, x = y = 0

T1:

[
x := 1;
a := y; //reads 0 T2:

[
y := 1;
b := x; //reads 0

(SB+txs)

The above is also known as the write skew anomaly in the database
literature [14]. Such outcomes are analogous to those allowed by weak memory
models, such as x86-TSO [29,34] and C11 [9], for non-transactional programs.
In this article, we consider—to the best of our knowledge for the first time—PSI
as a possible model for STM, especially in the context of a concurrent language
such as C/C++ with a weak memory model. In such contexts, programmers are
already familiar with weak behaviours such as that exhibited by SB+txs above.

A key reason why PSI is more suitable for a programming language than
SI (or other stronger models) is performance. This is analogous to why C/C++
adopted non-multi-copy-atomicity (allowing two different threads to observe a
write by a third thread at different times) as part of their concurrency model.
Consider the following “IRIW” (independent reads of independent writes) litmus
test:

Initially, x = y = 0

T1:[
x := 1;

T2:[
a := x; //reads 0
b := y; //reads 0

T3:[
c := y; //reads 0
d := x; //reads 0

T4:[
y := 1;

(IRIW+txs)

In the annotated behaviour, transactions T2 and T3 disagree on the relative
order of transactions T1 and T4. Under PSI, this behaviour (called the long fork
anomaly) is allowed, as T1 and T4 are not ordered—they commit in parallel—
but it is disallowed under SI. This intuitively means that SI must impose ordering
guarantees even on transactions that do not access a common location, and can
be rather costly in the context of a weakly consistent system.
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A second reason why PSI is much more suitable than SI is that it has better
properties. A key intuitive property a programmer might expect of transactions
is monotonicity. Suppose, in the (SB+txs) program we split the two transactions
into four smaller ones as follows:

Initially, x = y = 0
T1:

[
x := 1;

T3:
[
a := y; //reads 0

T2:
[
y := 1;

T4:
[
b := x; //reads 0

(SB+txs+chop)

One might expect that if the annotated behaviour is allowed in (SB+txs), it
should also be allowed in (SB+txs+chop). This indeed is the case for PSI, but
not for SI! In fact, in the extreme case where every transaction contains a single
access, SI provides serialisability. Nevertheless, PSI currently has two significant
drawbacks, preventing its widespread adoption. We aim to address these here.

The first PSI drawback is that its formal semantics can be rather daunting
for the uninitiated as it is defined declaratively in terms of acyclicity constraints.
What is missing is perhaps a simple lock-based reference implementation of PSI,
similar to the lock-based implementations of GLA and DLA, that the program-
mers can readily understand and reason about. As an added benefit, such an
implementation can be viewed as an operational model, forming the basis for
developing program logics for reasoning about PSI programs.

Although Cerone et al. [15] proved their declarative PSI specification equiva-
lent to an implementation strategy of PSI in a distributed system with replicated
storage over causal consistency, their implementation is not suitable for reasoning
about shared-memory programs. In particular, it cannot help the programmers
determine how transactional and non-transactional accesses may interact.

As our first contribution, in Sect. 4 we address this PSI drawback by providing
a simple lock-based reference implementation that we prove equivalent to its
declarative specification. Typically, one proves that an implementation is sound
with respect to a declarative specification—i.e. every behaviour observable in the
implementation is accounted for in the declarative specification. Here, we also
want the other direction, known as completeness, namely that every behaviour
allowed by the specification is actually possible in the implementation. Having
a (simple) complete implementation is very useful for programmers, as it may
be easier to understand and experiment with than the declarative specification.

Our reference implementation is built in the release-acquire fragment of the
C/C++ memory model [8,9,21], using sequence locks [13,18,23,32] to achieve
the correct transactional semantics.

The second PSI drawback is that its study so far has not accounted for the
subtle effects of non-transactional accesses and how they interact with trans-
actional accesses. While this scenario does not arise in ‘closed world’ systems
such as databases, it is crucially important in languages such as C/C++ and
Java, where one cannot afford the implementation cost of making every access
transactional so that it is “strongly isolated” from other concurrent transactions.

Therefore, as our second contribution, in Sect. 5 we extend our basic refer-
ence implementation to make it robust under uninstrumented non-transactional
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accesses, and characterise declaratively the semantics we obtain. We call this
extended model RPSI (for “robust PSI”) and show that it gives reason-
able semantics even under scenarios where transactional and non-transactional
accesses are mixed.

Outline. The remainder of this article is organised as follows. In Sect. 2 we
present an overview of our contributions and the necessary background informa-
tion. In Sect. 3 we provide the formal model of the C11 release/acquire fragment
and describe how we extend it to specify the behaviour of STM programs. In
Sect. 4 we present our PSI reference implementation (without non-transactional
accesses), demonstrating its soundness and completeness against the declarative
PSI specification. In Sect. 5 we formulate a declarative specification for RPSI as
an extension of PSI accounting for non-transactional accesses. We then present
our RPSI reference implementation, demonstrating its soundness and complete-
ness against our proposed declarative specification. We conclude and discuss
future work in Sect. 6.

2 Background and Main Ideas

One of the main differences between the specification of database transactions
and those of STM is that STM specifications must additionally account for
the interactions between mixed-mode (both transactional and non-transactional)
accesses to the same locations. To characterise such interactions, Blundell
et al. [12,27] proposed the notions of weak and strong atomicity, often referred to
as weak and strong isolation. Weak isolation guarantees isolation only amongst
transactions: the intermediate state of a transaction cannot affect or be affected
by other transactions, but no such isolation is guaranteed with respect to non-
transactional code (e.g. the accesses of a transaction may be interleaved by those
of non-transactional code.). By contrast, strong isolation additionally guarantees
full isolation from non-transactional code. Informally, each non-transactional
access is considered as a transaction with a single access. In what follows, we
explore the design choices for implementing STMs under each isolation model
(Sect. 2.1), provide an intuitive account of the PSI model (Sect. 2.2), and describe
the key requirements for implementing PSI and how we meet them (Sect. 2.3).

2.1 Implementing Software Transactional Memory

Implementing STMs under either strong or weak isolation models comes with a
number of challenges. Implementing strongly isolated STMs requires a conflict
detection/avoidance mechanism between transactional and non-transactional
code. That is, unless non-transactional accesses are instrumented to adhere to
the same access policies, conflicts involving non-transactional code cannot be
detected. For instance, in order to guarantee strong isolation under the GLA
model [28] discussed earlier, non-transactional code must be modified to acquire
the global lock prior to each shared access and release it afterwards.
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Implementing weakly-isolated STMs requires a careful handling of aborting
transactions as their intermediate state may be observed by non-transactional
code. Ideally, the STM implementation must ensure that the intermediate state
of aborting transactions is not leaked to non-transactional code. A transaction
may abort either because it failed to commit (e.g. due to a conflict), or because
it encountered an explicit abort instruction in the transactional code. In the
former case, leaks to non-transactional code can be avoided by pessimistic con-
currency control (e.g. locks), pre-empting conflicts. In the latter case, leaks can
be prevented either by lazy version management (where transactional updates
are stored locally and propagated to memory only upon committing), or by disal-
lowing explicit abort instructions altogether – an approach taken by the (weakly
isolated) relaxed transactions of the C++ memory model [6].

As mentioned earlier, our aim in this work is to build an STM with PSI
guarantees in the RA fragment of C11. As such, instrumenting non-transactional
accesses is not feasible and thus our STM guarantees weak isolation. For sim-
plicity, throughout our development we make a few simplifying assumptions: (i)
transactions are not nested; (ii) the transactional code is without explicit abort
instructions (as with the weakly-isolated transactions of C++ [6]); and (iii) the
locations accessed by a transaction can be statically determined. For the latter,
of course, a static over-approximation of the locations accessed suffices for the
soundness of our implementations.

2.2 Parallel Snapshot Isolation (PSI)

The initial model of PSI introduced in [36] is described informally in terms of
a multi-version concurrent algorithm as follows. A transaction T at a replica r
proceeds by taking an initial snapshot S of the shared objects in r. The execution
of T is then carried out locally: read operations query S and write operations
similarly update S. Once the execution of T is completed, it attempts to commit
its changes to r and it succeeds only if it is not write-conflicted. Transaction T is
write-conflicted if another committed transaction T′ has written to a location in
r also written to by T, since it recorded its snapshot S. If T fails the conflict check
it aborts and may restart the transaction; otherwise, it commits its changes to
r, at which point its changes become visible to all other transactions that take a
snapshot of replica r thereafter. These committed changes are later propagated
to other replicas asynchronously.

The main difference between SI and PSI is in the way the committed changes
at a replica r are propagated to other sites in the system. Under the SI model,
committed transactions are globally ordered and the changes at each replica
are propagated to others in this global order. This ensures that all concurrent
transactions are observed in the same order by all replicas. By contrast, PSI
does not enforce a global order on committed transactions: transactional effects
are propagated between replicas in causal order. This ensures that, if replica r1

commits a message m which is later read at replica r2, and r2 posts a response
m′, no replica can see m′ without having seen the original message m. However,
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causal propagation allows two replicas to observe concurrent events as if occur-
ring in different orders: if r1 and r2 concurrently commit messages m and m′,
then replica r3 may initially see m but not m′, and r4 may see m′ but not m.
This is best illustrated by the (IRIW+txs) example in Sect. 1.

2.3 Towards a Lock-Based Reference Implementation for PSI

While the description of PSI above is suitable for understanding PSI, it is not
very useful for integrating the PSI model in languages such as C, C++ or Java.
From a programmer’s perspective, in such languages the various threads directly
access the shared memory; they do not access their own replicas, which are
loosely related to the replicas of other threads. What we would therefore like
is an equivalent description of PSI in terms of unreplicated accesses to shared
memory and a synchronisation mechanism such as locks.

In effect, we want a definition similar in spirit to global lock atomicity
(GLA) [28], which is arguably the simplest TM model, and models commit-
ted transactions as acquiring a global mutual exclusion lock, then accessing and
updating the data in place, and finally releasing the global lock. Naturally, how-
ever, the implementation of PSI cannot be that simple.

A first observation is that PSI cannot be simply implemented over sequen-
tially consistent (SC) shared memory.1 To see this, consider the IRIW+txs pro-
gram from the introduction. Although PSI allows the annotated behaviour, SC
forbids it for the corresponding program without transactions. The point is that
under SC, either the x := 1 or the y := 1 write first reaches memory. Suppose,
without loss of generality, that x := 1 is written to memory before y := 1. Then,
the possible atomic snapshots of memory are x = y = 0, x = 1 ∧ y = 0, and
x = y = 1. In particular, the snapshot read by T3 is impossible.

To implement PSI we therefore resort to a weaker memory model. Among
weak memory models, the “multi-copy-atomic” ones, such as x86-TSO [29,34],
SPARC PSO [37,38] and ARMv8-Flat [31], also forbid the weak outcome of
(IRIW+txs) in the same way as SC, and so are unsuitable for our purpose.
We thus consider release-acquire consistency (RA) [8,9,21], a simple and well-
behaved non-multi-copy-atomic model. It is readily available as a subset of the
C/C++11 memory model [9] with verified compilation schemes to all major
architectures.

RA provides a crucial property that is relied upon in the earlier description
of PSI, namely causality. In terms of RA, this means that if thread A observes
a write w of thread B, then it also observes all the previous writes of thread B
as well as any other writes B observed before performing w.

A second observation is that using a single lock to enforce mutual exclusion
does not work as we need to allow transactions that access disjoint sets of loca-
tions to complete in parallel. An obvious solution is to use multiple locks—one

1 Sequential consistency (SC) [24] is the standard model for shared memory concur-
rency and defines the behaviours of a multi-threaded program as those arising by
executing sequentially some interleaving of the accesses of its constituent threads.
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per location—as in the disjoint lock atomicity (DLA) model [28]. The ques-
tion remaining is how to implement taking a snapshot at the beginning of a
transaction.

A naive attempt is to use reader/writer locks, which allow multiple readers
(taking the snapshots) to run in parallel, as long as no writer has acquired the
lock. In more detail, the idea is to acquire reader locks for all locations read
by a transaction, read the locations and store their values locally, and then
release the reader locks. However, as we describe shortly, this approach does not
work. Consider the (IRIW+txs) example in Sect. 1. For T2 to get the annotated
outcome, it must release its reader lock for y before T4 acquires it. Likewise,
since T3 observes y = 1, it must acquire its reader lock for y after T4 releases
it. By this point, however, it is transitively after the release of the y lock by T2,
and so, because of causality, it must have observed all the writes observed by T2
by that point—namely, the x := 1 write. In essence, the problem is that reader-
writer locks over-synchronise. When two threads acquire the same reader lock,
they synchronise, whereas two read-only transactions should never synchronise
in PSI.

To resolve this problem, we use sequence locks [13,18,23,32]. Under the
sequence locking protocol, each location x is associated with a sequence (ver-
sion) number vx, initialised to zero. Each write to x increments vx before
and after its update, provided that vx is even upon the first increment.
Each read from x checks vx before and after reading x. If both values are
the same and even, then there cannot have been any concurrent increments,
and the reader must have seen a consistent value. That is, read(x) �
do{v:=vx; s:=x} while(is-odd(v) || vx!=v). Under SC, sequence locks are
equivalent to reader-writer locks; however, under RA, they are weaker exactly
because readers do not synchronise.

Handling Non-transactional Accesses. Let us consider what happens if
some of the data accessed by a transaction is modified concurrently by an
atomic non-transactional write. Since non-transactional accesses do not acquire
any locks, the snapshots taken can include values written by non-transactional
accesses. The result of the snapshot then depends on the order in which the
variables are read. Consider for example the following litmus test:

x := 1;
y := 1; T:

[
a := y; //reads 1
b := x; //reads 0

In our implementation, if the transaction’s snapshot reads y before x, then the
annotated weak behaviour is not possible, because the underlying model (RA)
disallows the weak “message passing” behaviour. If, however, x is read before
y by the snapshot, then the weak behaviour is possible. In essence, this means
that the PSI implementation described so far is of little use, when there are races
between transactional and non-transactional code.

Another problem is the lack of monotonicity. A programmer might expect
that wrapping some code in a transaction block will never yield additional
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behaviours not possible in the program without transactions. Yet, in this exam-
ple, removing the T block and unwrapping its code gets rid of the annotated
weak behaviour!

To get monotonicity, it seems that snapshots must read the variables in the
same order they are accessed by the transactions. How can this be achieved
for transactions that say read x, then y, and then x again? Or transactions
that depending on some complex condition, access first x and then y or vice
versa? The key to solving this conundrum is surprisingly simple: read each vari-
able twice. In more detail, one takes two snapshots of the locations read by the
transaction, and checks that both snapshots return the same values for each
location. This ensures that every location is read both before and after every
other location in the transaction, and hence all the high-level happens-before
orderings in executions of the transactional program are also respected by its
implementation.

There is however one caveat: since equality of values is used to determine
whether the two snapshots are the same, we will miss cases where different
non-transactional writes to a variable write the same value. In our formal devel-
opment (see Sect. 5), we thus assume that if multiple non-transactional writes
write the same value to the same location, they cannot race with the same trans-
action. This assumption is necessary for the soundness of our implementation
and cannot be lifted without instrumenting non-transactional accesses.

3 The Release-Acquire Memory Model for STM

We present the notational conventions used in the remainder of this article and
proceed with the declarative model of the release-acquire (RA) fragment [21]
of the C11 memory model [9], in which we implement our STM. In Sect. 3.1
we describe how we extend this formal model to specify the behaviour of STM
programs.

Notation. Given a relation r on a set A, we write r?, r+ and r∗ for the reflexive,
transitive and reflexive-transitive closure of r, respectively. We write r−1 for the
inverse of r; r|A for r ∩A2; [A] for the identity relation on A, i.e.

{
(a, a) a ∈ A

}
;

irreflexive(r) for ¬∃a. (a, a) ∈ r; and acyclic(r) for irreflexive(r+). Given two
relations r1 and r2, we write r1; r2 for their (left) relational composition,
i.e.

{
(a, b) ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2

}
. Lastly, when r is a strict partial order, we

write r|imm for the immediate edges in r:
{
(a, b) ∈ r ¬∃c. (a, c) ∈ r ∧ (c, b) ∈ r

}
.

The RA model is given by the fragment of the C11 memory model, where
all read accesses are acquire (acq) reads, all writes are release (rel) writes,
and all atomic updates (i.e. RMWs) are acquire-release (acqrel) updates. The
semantics of a program under RA is defined as a set of consistent executions.

Definition 1 (Executions in RA). Assume a finite set of locations Loc; a
finite set of values Val; and a finite set of thread identifiers TId. Let x, y, z
range over locations, v over values and τ over thread identifiers. An RA execution
graph of an STM implementation, G , is a tuple of the form (E , po, rf,mo) with
its nodes given by E and its edges given by the po, rf and mo relations such that:
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• E ⊂ N is a finite set of events, and is accompanied with the functions
tid(.) : E → TId and lab(.) : E → Label, returning the thread identifier
and the label of an event, respectively. We typically use a, b, and e to
range over events. The label of an event is a tuple of one of the following
three forms: (i) R(x, v) for read events; (ii) W(x, v) for write events; or
(iii) U(x, v, v′) for update events. The lab(.) function induces the functions
typ(.), loc(.), valr(.) and valw(.) that respectively project the type (R, W
or U), location, and read/written values of an event, where applicable. The
set of read events is denoted by R �

{
e ∈ E typ(e) ∈ {R, U}

}
; similarly,

the set of write events is denoted by W �
{
e ∈ E typ(e) ∈ {W, U}

}
and

the set of update events is denoted by U � R ∩ W.
We further assume that E always contains a set E 0 of initialisation events
consisting of a write event with label W(x, 0) for every x ∈ Loc.

• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint
union of strict total orders, each orders the events of one thread, together
with E 0 × (E \ E 0) that places the initialisation events before any other
event.

• rf ⊆ W×R denotes the ‘reads-from’ relation, defined as a relation between
write and read events of the same location and value; it is total and func-
tional on reads, i.e. every read event is related to exactly one write event;

• mo ⊆ W×W denotes the ‘modification-order’ relation, defined as a disjoint
union of strict orders, each of which totally orders the write events to one
location.

We often use “G .” as a prefix to project the various components of G (e.g. G .E ).
Given a relation r ⊆ E ×E , we write rloc for r∩

{
(a, b) loc(a) = loc(b)

}
. Anal-

ogously, given a set A ⊆ E , we write Ax for A ∩
{
a loc(a) = x

}
. Lastly, given

the rf and mo relations, we define the ‘reads-before’ relation rb � rf−1;mo \ [E].

W(x, 0) W(y, 0)

W(x, 1) R(x, 1)

R(y, 0)

R(y, 1)

R(x, 0)

W(y, 1)
po

mo mo

rf rfrf

Fig. 1. An RA-consistent execution of a transaction-
free variant of (IRIW+txs) in Sect. 1, with program
outcome a = c = 1 and b = d = 0.

Executions of a given
program represent traces
of shared memory accesses
generated by the program.
We only consider “parti-
tioned” programs of the
form ‖τ∈TId cτ , where ‖
denotes parallel composi-
tion, and each ci is a sequen-
tial program. The set of exe-
cutions associated with a
given program is then defined by induction over the structure of sequential pro-
grams. We do not define this construction formally as it depends on the syntax
of the implementation programming language. Each execution of a program P
has a particular program outcome, prescribing the final values of local variables
in each thread (see example in Fig. 1).
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In this initial stage, the execution outcomes are unrestricted in that there
are no constraints on the rf and mo relations. These restrictions and thus
the permitted outcomes of a program are determined by the set of consistent
executions:

Definition 2 (RA-consistency). A program execution G is RA-consistent,
written RA-consistent(G), if acyclic(hbloc ∪mo∪ rb) holds, where hb � (po∪ rf)+

denotes the ‘RA-happens-before’ relation.

Among all executions of a given program P , only the RA-consistent ones define
the allowed outcomes of P .

3.1 Software Transactional Memory in RA: Specification

Our goal in this section is to develop a declarative framework that allows us to
specify the behaviour of mixed-mode STM programs under weak isolation guar-
antees. Whilst the behaviour of transactional code is dictated by the particular
isolation model considered (e.g. PSI), the behaviour of non-transactional code
and its interaction with transactions is guided by the underlying memory model.
As we build our STM in the RA fragment of C11, we assume the behaviour of
non-transactional code to conform to the RA memory model. More concretely,
we build our specification of a program P such that (i) in the absence of transac-
tional code, the behaviour of P is as defined by the RA model; (ii) in the absence
of non-transactional code, the behaviour of P is as defined by the PSI model.

Definition 3 (Specification Executions). Assume a finite set of transaction
identifiers TXId. An execution graph of an STM specification, Γ , is a tuple of
the form (E , po, rf,mo, T ) where:

• E � R ∪ W ∪ B ∪ E , denotes the set of events with R and W defined
as the sets of read and write events as described above; and the B and
E respectively denote the set of events marking the beginning and end of
transactions. For each event a ∈ B ∪ E , the lab(.) function is extended to
return B when a ∈ B, and E when a ∈ E . The typ(.) function is accordingly
extended to return a type in

{
R, W, U, B, E

}
, whilst the remaining functions

are extended to return default (dummy) values for events in B ∪ E .
• po, rf and mo denote the ‘program-order’, ‘reads-from’ and ‘modification-

order’ relations as described above;
• T ⊆ E denotes the set of transactional events with B∪E ⊆ T . For transac-

tional events in T , event labels are extended to carry an additional compo-
nent, namely the associated transaction identifier. As such, a specification
graph is additionally accompanied with the function tx(.) : T → TXId,
returning the transaction identifier of transactional events. The derived
‘same-transaction’ relation, st ∈ T × T , is the equivalence relation given
by st �

{
(a, b) ∈ T × T tx(a) = tx(b)

}
.

We write T /st for the set of equivalence classes of T induced by st; [a]st for the
equivalence class that contains a; and Tξ for the equivalence class of transaction
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ξ ∈ TXId: Tξ �
{
a tx(a)=ξ

}
. We write NT for non-transactional events: NT �

E \ T . We often use “Γ.” as a prefix to project the Γ components.

Specification Consistency. The consistency of specification graphs is model-
specific in that it is dictated by the guarantees provided by the underlying model.
In the upcoming sections, we present two consistency definitions of PSI in terms
of our specification graphs that lack cycles of certain shapes. In doing so, we often
write rT for lifting a relation r ⊆ E ×E to transaction classes: rT � st; (r \ st); st.
Analogously, we write rI to restrict r to the internal events of a transaction: r∩st.

Comparison to Dependency Graphs. Adya et al. proposed dependency
graphs for declarative specification of transactional consistency models [5,7].
Dependency graphs are similar to our specification graphs in that they are con-
structed from a set of nodes and a set of edges (relations) capturing certain
dependencies. However, unlike our specification graphs, the nodes in dependency
graphs denote entire transactions and not individual events. In particular, Adya
et al. propose three types of dependency edges: (i) a read dependency edge,
T1

WR→ T2, denotes that transaction T2 reads a value written by T1; (ii) a write
dependency edge T1

WW→ T2 denotes that T2 overwrites a value written by T1; and
(iii) an anti-dependency edge T1

RW→ T2 denotes that T2 overwrites a value read by
T1. Adya’s formalism does not allow for non-transactional accesses and it thus
suffices to define the dependencies of an execution as edges between transac-
tional classes. In our specification graphs however, we account for both transac-
tional and non-transactional accesses and thus define our relational dependencies
between individual events of an execution. However, when we need to relate an
entire transaction to another with relation r, we use the transactional lift (rT)
defined above. In particular, Adya’s dependency edges correspond to ours as
follows. Informally, the WR corresponds to our rfT; the WW corresponds to our
moT; and the RW corresponds to our rbT. Adya’s dependency graphs have been
used to develop declarative specifications of the PSI consistency model [14]. In
Sect. 4, we revisit this model, redefine it as specification graphs in our setting,
and develop a reference lock-based implementation that is sound and complete
with respect to this abstract specification. The model in [14] does not account for
non-transactional accesses. To remedy this, later in Sect. 5, we develop a declara-
tive specification of PSI that allows for both transactional and non-transactional
accesses. We then develop a reference lock-based implementation that is sound
and complete with respect to our proposed model.

4 Parallel Snapshot Isolation (PSI)

We present a declarative specification of PSI (Sect. 4.1), and develop a lock-
based reference implementation of PSI in the RA fragment (Sect. 4.2). We then
demonstrate that our implementation is both sound (Sect. 4.3) and complete
(Sect. 4.4) with respect to the PSI specification. Note that the PSI model in this
section accounts for transactional code only; that is, throughout this section we
assume that Γ.E = Γ.T . We lift this assumption later in Sect. 5.
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4.1 A Declarative Specification of PSI STMs in RA

In order to formally characterise the weak behaviour and anomalies admitted by
PSI, Cerone and Gotsman [14,15] formulated a declarative PSI specification. (In
fact, they provide two equivalent specifications: one using dependency graphs
proposed by Adya et al. [5,7]; and the other using abstract executions.) As is
standard, they characterise the set of executions admitted under PSI as graphs
that lack certain cycles. We present an equivalent declarative formulation of PSI,
adapted to use our notation as discussed in Sect. 3. It is straightforward to verify
that our definition coincides with the dependency graph specification in [15]. As
with [14,15], throughout this section, we take PSI execution graphs to be those
in which E = T ⊆ (R ∪ W) \ U . That is, the PSI model handles transactional
code only, consisting solely of read and write events (excluding updates).
PSI Consistency. A PSI execution graph Γ=(E , po, rf,mo, T ) is consistent,
written psi-consistent(Γ ), if the following hold:

• rfI ∪ moI ∪ rbI ⊆ po (int)
• irreflexive((poT ∪ rfT ∪ moT)+; rbT

?) (ext)
Informally, int ensures the consistency of each transaction internally, while

ext provides the synchronisation guarantees among transactions. In particu-
lar, we note that the two conditions together ensure that if two read events in
the same transaction read from the same location x, and no write to x is po-
between them, then they must read from the same write (known as ‘internal read
consistency’).

Next, we provide an alternative formulation of PSI-consistency that is closer
in form to RA-consistency. This formulation is the basis of our extension in
Sect. 5 with non-transactional accesses.

Lemma 1. A PSI execution graph Γ = (E , po, rf,mo, T ) is consistent if and
only if acyclic(psi-hbloc ∪ mo ∪ rb) holds, where psi-hb denotes the ‘PSI-happens-
before’ relation, defined as psi-hb � (po ∪ rf ∪ rfT ∪ moT)+.

Proof. The full proof is provided in the technical appendix [4].

Note that this acyclicity condition is rather close to that of RA-consistency
definition presented in Sect. 3, with the sole difference being the definition of
‘happens-before’ relation by replacing hb with psi-hb. The relation psi-hb is a
strict extension of hb with rfT ∪ moT, which captures additional synchronisa-
tion guarantees resulting from transaction orderings, as described shortly. As in
RA-consistency, the po and rf are included in the ‘PSI-happens-before’ relation
psi-hb. Additionally, the rfT and moT also contribute to psi-hb.

Intuitively, the rfT corresponds to synchronisation due to causality between
transactions. A transaction T1 is causally-ordered before transaction T2, if T1

writes to x and T2 later (in ‘happens-before’ order) reads x. The inclusion of
rfT ensures that T2 cannot read from T1 without observing its entire effect. This
in turn ensures that transactions exhibit an atomic ‘all-or-nothing’ behaviour.
In particular, transactions cannot mix-and-match the values they read.
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0. for (x∈ WS) lock vx;

1. for (x∈ RS) {
2. a := vx;

3. if (is-odd(a) && x �∈ WS) continue;

4. if (x �∈ WS) v[x]:= a;

5. s[x]:= x; }
6. for (x∈ RS)

7. if (¬valid(x)) goto line 1;

8. �T�;

9. for (x∈ WS) unlock vx;

lock vx �
retry: v[x]:= vx;

if (is-odd(v[x]))
goto retry;

if (!CAS(vx,v[x],v[x]+1))
goto retry;

unlock vx � vx:= v[x]+ 2

valid(x) � vx == v[x]
validRPSI(x) � vx == v[x] && x == s[x]

�a:= x� � a:= s[x]
�x:= a� � x:=a; s[x]:= a

�S1;S2� � �S1�;�S2�

while(e)S � while(e) S
... and so on ...

Fig. 2. PSI implementation of transaction T given RS, WS; the RPSI implementation
(Sect. 5) is obtained by replacing valid on line 7 with validRPSI.

For instance, if T1 writes to both x and y, transaction T2 may not read the
value of x from T1 but read the value of y from an earlier (in ‘happens-before’
order) transaction T0.

The moT corresponds to synchronisation due to conflicts between transac-
tions. Its inclusion enforces the write-conflict-freedom of PSI transactions. In
other words, if two transactions T1 and T2 both write to the same location x via
events w1 and w2 such that w1

mo→ w2, then T1 must commit before T2, and thus
the entire effect of T1 must be visible to T2.

4.2 A Lock-Based PSI Implementation in RA

We present an operational model of PSI that is both sound and complete
with respect to the declarative semantics in Sect. 4.1. To this end, in Fig. 2
we develop a pessimistic (lock-based) reference implementation of PSI using
sequence locks [13,18,23,32], referred to as version locks in our implementation.
In order to avoid taking a snapshot of the entire memory and thus decrease the
locking overhead, we assume that a transaction T is supplied with its read set,
RS, containing those locations that are read by T. Similarly, we assume T to be
supplied with its write set, WS, containing the locations updated by T.2

The implementation of T proceeds by exclusively acquiring the version locks
on all locations in its write set (line 0). It then obtains a snapshot of the loca-
tions in its read set by inspecting their version locks, as described shortly, and
subsequently recording their values in a thread-local array s (lines 1–7). Once a
snapshot is recorded, the execution of T proceeds locally (via �T� on line 8) as

2 A conservative estimate of RS and WS can be obtained by simple syntactic analysis.
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follows. Each read operation consults the local snapshot in s; each write opera-
tion updates the memory eagerly (in-place) and subsequently updates its local
snapshot to ensure correct lookup for future reads. Once the execution of T is
concluded, the version locks on the write set are released (line 9). Observe that
as the writer locks are acquired pessimistically, we do not need to check for
write-conflicts in the implementation.

To facilitate our locking implementation, we assume that each location x is
associated with a version lock at address x+1, written vx. The value held by a
version lock vx may be in one of two categories: (i) an even number, denoting
that the lock is free; or (ii) an odd number, denoting that the lock is exclusively
held by a writer. For a transaction to write to a location x in its write set
WS, the x version lock (vx) must be acquired exclusively by calling lock vx.
Each call to lock vx reads the value of vx and stores it in v[x], where v is
a thread-local array. It then checks if the value read is even (vx is free) and
if so it atomically increments it by 1 (with a ‘compare-and-swap’ operation),
thus changing the value of vx to an odd number and acquiring it exclusively;
otherwise it repeats this process until the version lock is successfully acquired.
Conversely, each call to unlock vx updates the value of vx to v[x]+2, restoring
the value of vx to an even number and thus releasing it. Note that deadlocks
can be avoided by imposing an ordering on locks and ensuring their in-order
acquisition by all transactions. For simplicity however, we have elided this step
as we are not concerned with progress or performance issues here and our main
objective is a reference implementation of PSI in RA.

Analogously, for a transaction to read from the locations in its read set RS,
it must record a snapshot of their values (lines 1–7). To obtain a snapshot of
location x, the transaction must ensure that x is not currently being written to
by another transaction. It thus proceeds by reading the value of vx and recording
it in v[x]. If vx is free (the value read is even) or x is in its write set WS, the value
of x can be freely read and tentatively stored in s[x]. In the latter case, the
transaction has already acquired the exclusive lock on vx and is thus safe in the
knowledge that no other transaction is currently updating x. Once a tentative
snapshot of all locations is obtained (lines 1–5), the transaction must validate it
by ensuring that it reflects the values of the read set at a single point in time
(lines 6–7). To do this, it revisits the version locks, inspecting whether their
values have changed (by checking them against v) since it recorded its snapshot.
If so, then an intermediate update has intervened, potentially invalidating the
obtained snapshot; the transaction thus restarts the snapshot process. Otherwise,
the snapshot is successfully validated and returned in s.

4.3 Implementation Soundness

The PSI implementation in Fig. 2 is sound : for each RA-consistent implemen-
tation graph G , a corresponding specification graph Γ can be constructed such
that psi-consistent(Γ ) holds. In what follows we state our soundness theorem and
briefly describe our construction of consistent specification graphs. We refer the
reader to the technical appendix [4] for the full soundness proof.
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Theorem 1 (Soundness). For all RA-consistent implementation graphs G of
the implementation in Fig. 2, there exists a PSI-consistent specification graph Γ
of the corresponding transactional program that has the same program outcome.

Constructing Consistent Specification Graphs. Observe that given an exe-
cution of our implementation with t transactions, the trace of each transaction
i ∈ {1 · · · t} is of the form θi = Lsi

po→ FS i
po→ Si

po→ Tsi
po→ Usi, where Lsi, FS i,

Si, Tsi and Usi respectively denote the sequence of events acquiring the version
locks, attempting but failing to obtain a valid snapshot, recording a valid snap-
shot, performing the transactional operations, and releasing the version locks.
For each transactional trace θi of our implementation, we thus construct a cor-
responding trace of the specification as θ′

i = Bi
po→ Ts ′

i
po→ Ei, where Bi and Ei

denote the transaction begin and end events (lab(Bi)=B and lab(Ei)=E). When
Tsi is of the form t1

po→ · · · po→ tn, we construct Ts ′
i as t′1

po→ · · · po→ t′n with each t′j
defined either as t′j � R(x, v) when tj = R(s[x], v) (i.e. the corresponding imple-
mentation event is a read event); or as t′j � W(x, v) when tj=W(x, v)

po→ W(s[x], v).
For each specification trace θ′

i we construct the ‘reads-from’ relation as:

RFi �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(w, t′j)

t′j ∈ Ts ′
i ∧ ∃x, v. t′j=R(x, v) ∧ w=W(x, v)

∧(w ∈ Ts ′
i ⇒ w

po→ t′j ∧
(∀e ∈ Ts ′

i. w
po→ e

po→ t′j ⇒ (loc(e)=x ∨ e∈W)))
∧(w ∈ Ts ′

i ⇒ (∀e∈Ts ′
i. (e

po→ t′j ⇒ (loc(e) = x ∨ e ∈ W))
∧∃r′ ∈ Si. loc(r′)=x ∧ (w, r′) ∈ G .rf)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

That is, we construct our graph such that each read event t′j from location x in
Ts ′

i either (i) is preceded by a write event w to x in Ts ′
i without an intermediate

write in between them and thus ‘reads-from’ w (lines two and three); or (ii) is
not preceded by a write event in Ts ′

i and thus ‘reads-from’ the write event w
from which the initial snapshot read r′ in Si obtained the value of x (last two
lines).

Given a consistent implementation graph G = (E , po, rf,mo), we construct a
consistent specification graph Γ = (E , po, rf,mo, T ) such that:

• Γ.E �
⋃

i∈{1···t} θ′
i.E – the events of Γ.E is the union of events in each

transaction trace θ′
i of the specification constructed as above;

• Γ.po � G .po|Γ.E – the Γ.po is that of G .po limited to the events in Γ.E ;
• Γ.rf �

⋃
i∈{1···t} RFi – the Γ.rf is the union of RFi relations defined above;

• Γ.mo � G .mo|Γ.E – the Γ.mo is that of G .mo limited to the events in Γ.E ;
• Γ.T � Γ.E , where for each e ∈ Γ.T , we define tx(e) = i when e ∈ θ′

i.

4.4 Implementation Completeness

The PSI implementation in Fig. 2 is complete: for each consistent specification
graph Γ a corresponding implementation graph G can be constructed such that
RA-consistent(G) holds. We next state our completeness theorem and describe
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our construction of consistent implementation graphs. We refer the reader to the
technical appendix [4] for the full completeness proof.

Theorem 2 (Completeness). For all PSI-consistent specification graphs Γ of
a transactional program, there exists an RA-consistent execution graph G of the
implementation in Fig. 2 that has the same program outcome.

Constructing Consistent Implementation Graphs. In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the soundness construction, in reverse order. More
concretely, given each trace θ′

i of the specification, we construct an analogous
trace of the implementation by inserting the appropriate events for acquiring and
inspecting the version locks, as well as obtaining a snapshot. For each transaction
class Ti ∈ T /st, we must first determine its read and write sets and subsequently
decide the order in which the version locks are acquired (for locations in the
write set) and inspected (for locations in the read set). This then enables us
to construct the ‘reads-from’ and ‘modification-order’ relations for the events
associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),
and a transaction class Ti ∈ Γ.T /st, we write WSTi

for the set of locations written
to by Ti. That is, WSTi

�
⋃

e∈Ti∩W loc(e). Similarly, we write RSTi
for the set of

locations read from by Ti, prior to being written to by Ti. For each location x
read from by Ti, we additionally record the first read event in Ti that retrieved
the value of x. That is,

RSTi
�

{
(x, r) r ∈ Ti ∩ Rx ∧ ¬∃e ∈ Ti ∩ E x. e

po→ r
}

Note that transaction Ti may contain several read events reading from x, prior
to subsequently updating it. However, the internal-read-consistency property
ensures that all such read events read from the same write event. As such, as
part of the read set of Ti we record the first such read event (in program-order).

Determining the ordering of lock events hinges on the following observation.
Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),

let for each location x the total order mo be given as: w1
mo|imm→ · · · mo|imm→ wnx

.
Observe that this order can be broken into adjacent segments where the events
of each segment belong to the same transaction. That is, given the transaction
classes Γ.T /st, the order above is of the following form where T1, · · · , Tm ∈
Γ.T /st and for each such Ti we have x ∈ WSTi

and w(i,1) · · · w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Tm

Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj = Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting

the assumption that Γ is consistent. Given the above order, let us then define
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Γ.MOx = [T1 · · · Tm]. We write Γ.MOx|i for the ith item of Γ.MOx. As we describe
shortly, we use Γ.MOx to determine the order of lock events.

Note that the execution trace for each transaction Ti ∈ Γ.T /st is of the
form θ′

i = Bi
po→ Ts ′

i
po→ Ei, where Bi is a transaction-begin (B) event, Ei is a

transaction-end (E) event, and Ts ′
i = t ′

1
po→ · · · po→ t ′

n for some n, where each t ′
j is

either a read or a write event. As such, we have Γ.E = Γ.T =
⋃

Ti∈Γ.T /st Ti =
θ′

i.E .
For each trace θ′

i of the specification, we construct a corresponding trace of
our implementation θi as follows. Let RSTi

= {(x1, r1) · · · (xp, rp)} and WSTi
=

{y1 · · · yq}. We then construct θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where

• Lsi = Ly1
i

po→ · · · po→ L
yq

i and Usi = U y1
i

po→ · · · po→ U
yq

i denote the sequence
of events acquiring and releasing the version locks, respectively. Each L

yj

i

and U
yj

i are defined as follows, the first event L
y1
i has the same identifier

as that of Bi, the last event U
yq

i has the same identifier as that of Ei, and
the identifiers of the remaining events are picked fresh:

L
yj

i =U(vyj , 2a, 2a+1) U
yj

i =W(vyj , 2a+2) where MOyj

∣∣∣
a
=Ti

We then define the mo relation for version locks such that if transaction
Ti writes to y immediately after Tj (i.e. Ti is MOy-ordered immediately
after Tj), then Ti acquires the vy version lock immediately after Tj has
released it. On the other hand, if Ti is the first transaction to write to
y, then it acquires vy immediately after the event initialising the value
of vy, written initvy. Moreover, each vy release event of Ti is mo-ordered
immediately after the corresponding vy acquisition event in Ti:

IMOi �
⋃

y∈WSTi

⎧⎨
⎩

(Ly
i , U

y
i ),

(w,Ly
i )

(Γ.MOx|0 =Ti ⇒ w=initvy)∧
(∃Tj , a > 0. Γ.MOy

∣∣
a
=Ti ∧ Γ.MOy

∣∣
a−1

=Tj

⇒ w=U
y
j )

⎫⎬
⎭

This partial mo order on lock events of Ti also determines the rf relation
for its lock acquisition events: IRF1

i �
⋃

y∈WSTi

{
(w,Ly

i ) (w,Ly
i ) ∈ IMOi

}
.

• Si = trx1i

po→ · · · po→ trxp

i

po→ vrx1i

po→ · · · po→ vrxp

i denotes the sequence of
events obtaining a tentative snapshot (trxj

i ) and subsequently validating
it (vrxj

i ). Each trxj

i sequence is defined as irxj

i

po→ r
xj

i

po→ s
xj

i (reading the
version lock vxj , reading xj and recoding it in s), with irxj

i , r
xj

i , s
xj

i and
vrxj

i events defined as follows (with fresh identifiers). We then define the
rf relation for each of these read events in Si. For each (x, r) ∈ RSTi

, when
r (i.e. the read event in the specification class Ti that reads the value of
x) reads from an event w in the specification graph ((w, r) ∈ Γ.rf), we add
(w, rxi ) to the rf relation of G (the first line of IRF2

i below). For version
locks, if transaction Ti also writes to xj , then irxj

i and vrxj

i events (reading
and validating the value of version lock vxj), read from the lock event in Ti

that acquired vxj , namely L
xj

i . On the other hand, if transaction Ti does
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not write to xj and it reads the value of xj written by Tj , then irxj

i and
vrxj

i read the value written to vxj by Tj when releasing it (U x
j ). Lastly, if

Ti does not write to xj and it reads the value of xj written by the initial
write, initx, then irxj

i and vrxj

i read the value written to vxj by the initial
write to vx, initvx.

IRF2
i �

⋃
(x,r)∈RSTi

⎧⎪⎪⎨
⎪⎪⎩

(w, rxi ),
(w′, irxi ),
(w′, vrxi )

(w, r) ∈ Γ.rf
∧ (x ∈ WSTi

⇒ w′=Lx
i )

∧ (x ∈ WSTi
∧ ∃Tj . w ∈ Tj ⇒ w′=Ux

j )
∧ (x ∈ WSTi

∧ w=initx ⇒ w′=initvx)

⎫⎪⎪⎬
⎪⎪⎭

r
xj

i =R(xj , v) s
xj

i =W(s[xj], v) s.t. ∃w. (w, r
xj

i ) ∈ IRF2
i ∧ valw(w)=v

irxj

i =vrxj

i =R(vxj , v) s.t. ∃w. (w, irxj

i ) ∈ IRF2
i ∧ valw(w)=v

• Tsi = t1
po→ · · · po→ tn (when Ts ′

i = t ′
1

po→ · · · po→ t ′
n), with tj defined as

follows:

tj = R(s[x], v) when t ′
j = R(x, v)

tj = W(x, v)
po|imm→ W(s[x], v) when t ′

j = W(x, v)

When t ′
j is a read event, the tj has the same identifier as that of t ′

j . When
t ′
j is a write event, the first event in tj has the same identifier as that of tj

and the identifier of the second event is picked fresh.
We are now in a position to construct our implementation graph. Given a

consistent execution graph Γ of the specification, we construct an execution
graph G = (E , po, rf,mo) of the implementation as follows.

• G .E =
⋃

Ti∈Γ.T /st

θi.E – note that G .E is an extension of Γ.E : Γ.E ⊆ G .E .

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above.

• G .rf =
⋃

Ti∈Γ.T /st

(IRF1
i ∪ IRF2

i )

• G .mo = Γ.mo ∪
( ⋃

Ti∈Γ.T /st

IMOi

)+

5 Robust Parallel Snapshot Isolation (RPSI)

In the previous section we adapted the PSI semantics in [14] to STM settings,
in the absence of non-transactional code. However, a reasonable STM should
account for mixed-mode code where shared data is accessed by both transactional
and non-transactional code. To remedy this, we explore the semantics of PSI
STMs in the presence of non-transactional code with weak isolation guarantees
(see Sect. 2.1). We refer to the weakly isolated behaviour of such PSI STMs
as robust parallel snapshot isolation (RPSI), due to its ability to provide PSI
guarantees between transactions even in the presence of non-transactional code.



958 A. Raad et al.

T1

W(x, 0) W(y, 0)

r1 : R(y, 0)

r2 : R(x, 1)

w1 : W(y, 1)

w2 : W(x, 1)

mo

rf

rb

rf

(a)

T1 T2

W(x, 0) W(y, 0)

w1 : W(x, 1)

w2 : W(y, 1)

r1 : R(x, 1)

w3 : W(x, 2)

r2 : R(x, 2)

r3 : R(y, 0)
rf

rf

rb

(b)

Fig. 3. RPSI-inconsistent executions due to nt-rf (a); and t-rf (b)

In Sect. 5.1 we propose the first declarative specification of RPSI STM pro-
grams. Later in Sect. 5.2 we develop a lock-based reference implementation of our
RPSI specification in the RA fragment. We then demonstrate that our imple-
mentation is both sound (Sect. 5.3) and complete (Sect. 5.4) with respect to our
proposed specification.

5.1 A Declarative Specification of RPSI STMs in RA

We formulate a declarative specification of RPSI semantics by adapting the PSI
semantics presented in Sect. 4.1 to account for non-transactional accesses. As
with the PSI specification in Sect. 4.1, throughout this section, we take RPSI
execution graphs to be those in which T ⊆ (R ∪ W) \ U . That is, RPSI transac-
tions consist solely of read and write events (excluding updates). As before, we
characterise the set of executions admitted by RPSI as graphs that lack cycles
of certain shapes. More concretely, as with the PSI specification, we consider
an RPSI execution graph to be consistent if acyclic(rpsi-hbloc ∪ mo ∪ rb) holds,
where rpsi-hb denotes the ‘RPSI-happens-before’ relation, extended from that of
PSI psi-hb.

Definition 4 (RPSI consistency). An RPSI execution graph Γ =
(E , po, rf, ,mo, T ) is consistent, written rpsi-consistent(Γ ), if acyclic(rpsi-hbloc ∪
mo∪rb) holds, where rpsi-hb denotes the ‘RPSI-happens-before’ relation, defined
as the smallest relation that satisfies the following conditions:

rpsi-hb; rpsi-hb ⊆ rpsi-hb (trans)
po ∪ rf ∪ moT ⊆ rpsi-hb (psi-hb)
[E \ T ]; rf; st ⊆ rpsi-hb (nt-rf)

st; ([W]; st; (rpsi-hb \ st); st; [R])loc ; st ⊆ rpsi-hb (t-rf)

The trans and psi-hb ensure that rpsi-hb is transitive and that it includes
po, rf and moT as with its PSI counterpart. The nt-rf ensures that if a value
written by a non-transactional write w is observed (read from) by a read event
r in a transaction T, then its effect is observed by all events in T. That is, the w
happens-before all events in T and not just r. This allows us to rule out executions
such as the one depicted in Fig. 3a, which we argue must be disallowed by RPSI.
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Consider the execution graph of Fig. 3a, where transaction T1 is denoted by
the dashed box labelled T1, comprising the read events r1 and r2. Note that
as r1 and r2 are transactional reads without prior writes by the transaction,
they constitute a snapshot of the memory at the time T1 started. That is, the
values read by r1 and r2 must reflect a valid snapshot of the memory at the
time it was taken. As such, since we have (w2, r2) ∈ rf, any event preceding w2

by the ‘happens-before’ relation must also be observed by (synchronise with)
T1. In particular, as w1 happens-before w2 ((w1, w2) ∈ po), the w1 write must
also be observed by T1. The nt-rf thus ensures that a non-transactional write
read from by a transaction (i.e. a snapshot read) synchronises with the entire
transaction.

Recall from Sect. 4.1 that the PSI psi-hb relation includes rfT which has not
yet been included in rpsi-hb through the first three conditions described. As
we describe shortly, the t-rf is indeed a strengthening of rfT to account for
the presence of non-transactional events. In particular, note that rfT is included
in the left-hand side of t-rf: when rpsi-hb in ([W]; st; (rpsi-hb \ st); st; [R]) is
replaced with rf ⊆ rpsi-hb, the left-hand side yields rfT. As such, in the absence
of non-transactional events, the definitions of psi-hb and rpsi-hb coincide.

Recall that inclusion of rfT in psi-hb ensured transactional synchronisation
due to causal ordering: if T1 writes to x and T2 later (in psi-hb order) reads
x, then T1 must synchronise with T2. This was achieved in PSI because either
(i) T2 reads x directly from T1 in which case T1 synchronises with T2 via rfT;
or (ii) T2 reads x from another later (mo-ordered) transactional write in T3, in
which case T1 synchronises with T3 via moT, T3 synchronises with T2 via rfT, and
thus T1 synchronises with T2 via moT; rfT. How are we then to extend rpsi-hb to
guarantee transactional synchronisation due to causal ordering in the presence
of non-transactional events?

To justify t-rf, we present an execution graph that does not guarantee
synchronisation between causally ordered transactions and is nonetheless deemed
RPSI-consistent without the t-rf condition on rpsi-hb. We thus argue that this
execution must be precluded by RPSI, justifying the need for t-rf. Consider
the execution in Fig. 3b. Observe that as transaction T1 writes to x via w1,
transaction T2 reads x via r2, and (w1, r2) ∈ rpsi-hb (w1

rf→ r1
po→ w3

rf→ r2),
T1 is causally ordered before T2 and hence T1 must synchronise with T2. As
such, the r3 in T2 must observe w2 in T1: we must have (w2, r3) ∈ rpsi-hb,
rendering the above execution RPSI-inconsistent. To enforce the rpsi-hb relation
between such causally ordered transactions with intermediate non-transactional
events, t-rf stipulates that if a transaction T1 writes to a location (e.g. x via w1

above), another transaction T2 reads from the same location (r2), and the two
events are related by ‘RPSI-happens-before’ ((w1, r2) ∈ rpsi-hb), then T1 must
synchronise with T2. That is, all events in T1 must ‘RPSI-happen-before’ those
in T2. Effectively, this allows us to transitively close the causal ordering between
transactions, spanning transactional and non-transactional events in between.
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Initially, x = y = z = 0

T:⎡
⎣

a := x; //reads 0
b := y; //reads 0
c := z; //reads 1

y := 1;
z := 1;
x := 1;
z := 1;
y := 0;

W(x, 0) W(y, 0) W(z, 0)

rx : R(x, 0)

ry : R(y, 0)

rz : R(z, 1)

rx′ : R(x, 0)

ry′ : R(y, 0)

rz′ : R(z, 1)

W(y, 1)

W(z, 1)

W(x, 1)

W(z, 1)

W(y, 0)

rf

rf

rf

rf

rf
rf

Fig. 4. A mixed-mode program with its annotated behaviour disallowed by RPSI (left);
an RA-consistent execution graph of its RPSI implementation (right)

5.2 A Lock-Based RPSI Implementation in RA

We present a lock-based reference implementation of RPSI in the RA fragment
(Fig. 2) by using sequence locks [13,18,23,32]. Our implementation is both sound
and complete with respect to our declarative RPSI specification in Sect. 5.1.

The RPSI implementation in Fig. 2 is rather similar to its PSI counterpart.
The main difference between the two is in how they validate the tentative snap-
shot recorded in s. As before, in order to ensure that no intermediate transac-
tional writes have intervened since s was recorded, for each location x in RS,
the validation phase revisits vx, inspecting whether its value has changed from
that recorded in v[x]. If this is the case, the snapshot is deemed invalid and the
process is restarted. However, checking against intermediate transactional writes
alone is not sufficient as it does not preclude the intervention of non-transactional
writes. This is because unlike transactional writes, non-transactional writes do
not update the version locks and as such their updates may go unnoticed. In
order to rule out the possibility of intermediate non-transactional writes, for
each location x the implementation checks the value of x against that recorded
in s[x]. If the values do not agree, an intermediate non-transactional write
has been detected: the snapshot fails validation and the process is restarted.
Otherwise, the snapshot is successfully validated and returned in s. Observe
that checking the value of x against s[x] does not entirely preclude the pres-
ence of non-transactional writes, in cases where the same value is written (non-
transactionally) to x twice.

To understand this, consider the mixed-mode program on the left of Fig. 4
comprising a transaction in the left-hand thread and a non-transactional pro-
gram in the right-hand thread writing the same value (1) to z twice. Note that
the annotated behaviour is disallowed under RPSI: all execution graphs of the
program with the annotated behaviour yield RPSI-inconsistent execution graphs.
Intuitively, this is because the values read by the transaction (x : 0, y : 0, z : 1)
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do not constitute a valid snapshot : at no point during the execution of this
program, are the values of x, y and z as annotated.

Nevertheless, it is possible to find an RA-consistent execution of the RPSI
implementation in Fig. 2 that reads the annotated values as its snapshot. Con-
sider the execution graph on the right-hand side of Fig. 4, depicting a particular
execution of the RPSI implementation (Fig. 2) of the program on the left. The
rx, ry and rz denote the events reading the initial snapshot of x, y and z and
recording them in s (line 5), respectively. Similarly, the rx′, ry′ and rz′ denote
the events validating the snapshots recorded in s (line 7). As T is the only trans-
action in the program, the version numbers vx, vy and vz remain unchanged
throughout the execution and we have thus omitted the events reading (line 2)
and validating (line 7) their values from the execution graph. Note that this
execution graph is RA-consistent even though we cannot find a corresponding
RPSI-consistent execution with the same outcome. To ensure the soundness of
our implementation, we must thus rule out such scenarios.

To do this, we assume that if multiple non-transactional writes write the
same value to the same location, they cannot race with the same transaction.
More concretely, we assume that every RPSI-consistent execution graph of a
given program satisfies the following condition:

∀x. ∀r ∈ T ∩ Rx. ∀w,w′ ∈ NT ∩ Wx.
w = w′ ∧ valw(w) = valw(w′) ∧ (r, w) ∈ rpsi-hb ∧ (r, w′) ∈ rpsi-hb

⇒ (w, r) ∈ rpsi-hb ∧ (w′, r) ∈ rpsi-hb
(∗)

That is, given a transactional read r from location x, and any two distinct
non-transactional writes w, w′ of the same value to x, either (i) at least one of
the writes RPSI-happen-after r; or (ii) they both RPSI-happen-before r.

Observe that this does not hold of the program in Fig. 2. Note that this stip-
ulation does not prevent two transactions to write the same value to a location
x. As such, in the absence of non-transactional writes, our RPSI implementation
is equivalent to that of PSI in Sect. 4.2.

5.3 Implementation Soundness

The RPSI implementation in Fig. 2 is sound : for each consistent implementation
graph G , a corresponding specification graph Γ can be constructed such that
rpsi-consistent(Γ ) holds. In what follows we state our soundness theorem and
briefly describe our construction of consistent specification graphs. We refer the
reader to the technical appendix [4] for the full soundness proof.

Theorem 3 (Soundness). Let P be a program that possibly mixes transac-
tional and non-transactional code. If every RPSI-consistent execution graph of P
satisfies the condition in (∗), then for all RA-consistent implementation graphs
G of the implementation in Fig. 2, there exists an RPSI-consistent specifica-
tion graph Γ of the corresponding transactional program with the same program
outcome.
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Constructing Consistent Specification Graphs. Constructing an RPSI-
consistent specification graph from the implementation graph is similar to the
corresponding PSI construction described in Sect. 4.3. More concretely, the
events associated with non-transactional events remain unchanged and are sim-
ply added to the specification graph. On the other hand, the events associated
with transactional events are adapted in a similar way to those of PSI in Sect. 4.3.
In particular, observe that given an execution of the RPSI implementation with
t transactions, as with the PSI implementation, the trace of each transaction
i ∈ {1 · · · t} is of the form θi = Lsi

po→ FS i
po→ Si

po→ Tsi
po→ Usi, with Lsi, FS i,

Si, Tsi and Usi denoting analogous sequences of events to those of PSI. The dif-
ference between an RPSI trace θi and a PSI one is in the FS i and Si sequences,
obtaining the snapshot. In particular, the validation phases of FS i and Si in
RPSI include an additional read for each location to rule out intermediate non-
transactional writes. As in the PSI construction, for each transactional trace θi

of our implementation, we construct a corresponding trace of the specification
as θ′

i = Bi
po→ Ts ′

i
po→ Ei, with Bi, Ei and Ts ′

i as defined in Sect. 4.3.
Given a consistent RPSI implementation graph G = (E , po, rf,mo), let

G .NT � G .E \
⋃

i∈{1···t} θ.E denote the non-transactional events of G . We
construct a consistent RPSI specification graph Γ = (E , po, rf,mo, T ) such that:

• Γ.E � G .NT ∪
⋃

i∈{1···t} θ′
i.E – the Γ.E events comprise the non-

transactional events in G and the events in each transactional trace θ′
i

of the specification;
• Γ.po � G .po|Γ.E – the Γ.po is that of G .po restricted to the events in Γ.E ;
• Γ.rf �

⋃
i∈{1···t} RFi ∪ G .rf; [G .NT ] – the Γ.rf is the union of RFi rela-

tions for transactional reads as defined in Sect. 4.3, together with the G .rf
relation for non-transactional reads;

• Γ.mo � G .mo|Γ.E – the Γ.mo is that of G .mo restricted to the events in
Γ.E ;

• Γ.T �
⋃

i∈{1···t} θ′
i.E , where for each e ∈ θ′

i.E , we define tx(e) = i.

We refer the reader to the technical appendix [4] for the full proof demonstrating
that the above construction of Γ yields a consistent specification graph.

5.4 Implementation Completeness

The RPSI implementation in Fig. 2 is complete: for each consistent specification
graph Γ a corresponding implementation graph G can be constructed such that
RA-consistent(G) holds. We next state our completeness theorem and describe
our construction of consistent implementation graphs. We refer the reader to the
technical appendix [4] for the full completeness proof.

Theorem 4 (Completeness). For all RPSI-consistent specification graphs Γ
of a program, there exists an RA-consistent execution graph G of the implemen-
tation in Fig. 2 that has the same program outcome.
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Constructing Consistent Implementation Graphs. In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the corresponding PSI construction in Sect. 4.4. More
concretely, the events associated with non-transactional events are unchanged
and simply added to the implementation graph. For transactional events, given
each trace θ′

i of a transaction in the specification, as before we construct an anal-
ogous trace of the implementation by inserting the appropriate events for acquir-
ing and inspecting the version locks, as well as obtaining a snapshot. For each
transaction class Ti ∈ T /st, we first determine its read and write sets as before
and subsequently decide the order in which the version locks are acquired and
inspected. This then enables us to construct the ‘reads-from’ and ‘modification-
order’ relations for the events associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),
and a transaction class Ti ∈ Γ.T /st, we define WSTi

and RSTi
as described in

Sect. 4.4. Determining the ordering of lock events hinges on a similar observa-
tion as that in the PSI construction. Given a consistent execution graph of the
specification Γ = (E , po, rf,mo, T ), let for each location x the total order mo

be given as: w1
mo|imm→ · · · mo|imm→ wnx

. This order can be broken into adjacent
segments where the events of each segment are either non-transactional writes
or belong to the same transaction. That is, given the transaction classes Γ.T /st,
the order above is of the following form where T1, · · · , Tm ∈ Γ.T /st and for each
such Ti we have x ∈ WSTi

and w(i,1) · · · w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

Γ.NT ∪T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Γ.NT ∪Tm

Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj = Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting the

assumption that Γ is consistent. We thus define Γ.MOx = [T1 · · · Tm].
Note that each transactional execution trace of the specification is of the

form θ′
i = Bi

po→ Ts ′
i

po→ Ei, with Bi, Ei and Ts ′
i as described in Sect. 4.4.

For each such θ′
i, we construct a corresponding trace of our implementation

as θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where Lsi, Tsi and Usi are as defined in

Sect. 4.4, and Si = trx1i

po→ · · · po→ trxp

i

po→ vrx1i

po→ · · · po→ vrxp

i denotes the sequence
of events obtaining a tentative snapshot (trxj

i ) and subsequently validating it
(vrxj

i ). Each trxj

i sequence is of the form ivrxj

i

po→ irxj

i

po→ s
xj

i , with ivrxj

i , irxj

i and
s
xj

i defined below (with fresh identifiers). Similarly, each vrxj

i sequence is of the
form frxj

i

po→ fvrxj

i , with frxj

i and fvrxj

i defined as follows (with fresh identifiers).
We then define the rf relation for each of these read events in Si in a similar way.

For each (x, r) ∈ RSTi
, when r (the event in the specification class Ti that

reads the value of x) reads from w in the specification graph ((w, r) ∈ Γ.rf), we
add (w, irxi ) and (w, frxi ) to the rf of G (the first line of IRF2

i below). For version
locks, as before if transaction Ti also writes to xj , then ivrxj

i and fvrxj

i events
(reading and validating vxj), read from the lock event in Ti that acquired vxj ,
namely L

xj

i . Similarly, if Ti does not write to xj and it reads the value of xj
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written by the initial write, initx, then ivrxj

i and fvrxj

i read the value written to
vxj by the initial write to vx, initvx. Lastly, if transaction Ti does not write to
xj and it reads xj from a write other than initx, then irxj

i and vrxj

i read from
the unlock event of a transaction Tj (i.e. Ux

j ), who has x in its write set and
whose write to x, wx, maximally ‘RPSI-happens-before’ r. That is, for all other
such writes that ‘RPSI-happen-before’ r, then wx ‘RPSI-happens-after’ them.

IRF2
i �

⋃

(x,r)∈RSTi

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(w, ir x
i),

(w, fr x
i),

(w′, ivr x
i),

(w′, fvr x
i)

(w, r) ∈ Γ.rf ∧ (x ∈ WSTi ⇒ w′=Lx
i)

∧ (x �∈ WSTi ∧ w=initx ⇒ w′=initvx)
∧ (x �∈ WSTi ∧ w �=initx ⇒

∃wx, Tj . wx ∈ Tj ∩ Wx ∧ wx
rpsi-hb→ r ∧ w′=U x

j

∧[∀w′
x, Tk. w′

x∈Tk ∩ Wx ∧ w′
x

rpsi-hb→ r ⇒ w′
x

rpsi-hb→ wx])

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

ir
xj

i =fr
xj

i =R(xj ,v) s
xj

i =W(s[xj],v) s.t. ∃w. (w, ir
xj

i ) ∈ IRF2
i ∧ valw(w)=v

ivr
xj

i =fvr
xj

i =R(vxj , v) s.t. ∃w. (w, ivr
xj

i ) ∈ IRF2
i ∧ valw(w)=v

We are now in a position to construct our implementation graph. Given a
consistent execution graph Γ of the specification, we construct an execution
graph of the implementation, G = (E , po, rf,mo), such that:

• G .E =
⋃

Ti∈Γ.T /st

θi.E ∪ Γ.NT ;

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above;

• G .rf =
⋃

Ti∈Γ.T /st

(IRF1
i ∪ IRF2

i ), with IRF1
i as in Sect. 4.4 and IRF2

i defined

above;

• G .mo = Γ.mo ∪
( ⋃

Ti∈Γ.T /st

IMOi

)+

, with IMOi as defined in Sect. 4.4.

6 Conclusions and Future Work

We studied PSI, for the first time to our knowledge, as a consistency model
for STMs as it has several advantages over other consistency models, thanks to
its performance and monotonic behaviour. We addressed two significant draw-
backs of PSI which prevent its widespread adoption. First, the absence of a
simple lock-based reference implementation to allow the programmers to readily
understand and reason about PSI programs. To address this, we developed a
lock-based reference implementation of PSI in the RA fragment of C11 (using
sequence locks), that is both sound and complete with respect to its declara-
tive specification. Second, the absence of a formal PSI model in the presence
of mixed-mode accesses. To this end, we formulated a declarative specification
of RPSI (robust PSI) accounting for both transactional and non-transactional
accesses. Our RPSI specification is an extension of PSI in that in the absence
of non-transactional accesses it coincides with PSI. To provide a more intuitive
account of RPSI, we developed a simple lock-based RPSI reference implemen-
tation by adjusting our PSI implementation. We established the soundness and
completeness of our RPSI implementation against its declarative specification.
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As directions of future work, we plan to build on top of the work presented
here in three ways. First, we plan to explore possible lock-based reference imple-
mentations for PSI and RPSI in the context of other weak memory models, such
as the full C11 memory models [9]. Second, we plan to study other weak trans-
actional consistency models, such as SI [10], ALA (asymmetric lock atomicity),
ELA (encounter-time lock atomicity) [28], and those of ANSI SQL, including
RU (read-uncommitted), RC (read-committed) and RR (repeatable reads), in
the STM context. We aim to investigate possible lock-based reference implemen-
tations for these models that would allow the programmers to understand and
reason about STM programs with such weak guarantees. Third, taking advan-
tage of the operational models provided by our simple lock-based reference imple-
mentations (those presented in this article as well as those in future work), we
plan to develop reasoning techniques that would allow us to verify properties
of STM programs. This can be achieved by either extending existing program
logics for weak memory, or developing new program logics for currently unsup-
ported models. In particular, we can reason about the PSI models presented
here by developing custom proof rules in the existing program logics for RA
such as [22,39].
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Abstract. We address the problem of validity in eventually consistent
(EC) systems: In what sense does an EC data structure satisfy the
sequential specification of that data structure? Because EC is a very
weak criterion, our definition does not describe every EC system; how-
ever it is expressive enough to describe any Convergent or Commutative
Replicated Data Type (CRDT).

1 Introduction

In a replicated implementation of a data structure, there are two impediments
to requiring that all replicas achieve consensus on a global total order of the
operations performed on the data structure (Lamport 1978): (a) the associated
serialization bottleneck negatively affects performance and scalability (e.g. see
(Ellis and Gibbs 1989)), and (b) the cap theorem imposes a tradeoff between
consistency and partition-tolerance (Gilbert and Lynch 2002).

In systems based on optimistic replication (Vogels 2009; Saito and Shapiro
2005), a replica may execute an operation without synchronizing with other
replicas. If the operation is a mutator, the other replicas are updated asyn-
chronously. Due to the vagaries of the network, the replicas could receive and
apply the updates in possibly different orders.

For sequential systems, the correctness problem is typically divided into
two tasks: proving termination and proving partial correctness. Termination
requires that the program eventually halt on all inputs, whereas partial cor-
rectness requires that the program only returns results that are allowed by the
specification.

For replicated systems, the analogous goals are convergence and validity.
Convergence requires that all replicas eventually agree. Validity requires that
they agree on something sensible. In a replicated list, for example, if the only
value put into the list is 1, then convergence ensures that all replicas eventually
see the same value for the head of the list; validity requires that the value be 1.

Convergence has been well-understood since the earliest work on replicated
systems. Convergence is typically defined as eventual consistency, which requires
that once all messages are delivered, all replicas have the same state. Strong
eventual consistency (sec) additionally requires convergence for all subsets of
messages: replicas that have seen the same messages must have the same state.
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Perhaps surprisingly, finding an appropriate definition of validity for repli-
cated systems remains an open problem. There are solutions which use concur-
rent specifications, discussed below. But, as Shavit (2011) noted:

“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential setting, where there are no
interleavings. Thus, the standard approach to arguing the safety proper-
ties of a concurrent data structure is to specify the structure’s properties
sequentially, and find a way to map its concurrent executions to these
‘correct’ sequential ones.”

In this paper we give the first definition of validity that is both (1) derived from
standard sequential specifications and (2) validates the examples of interest.

We take the “examples of interest” to be Convergent/Commutative Replicated
Data Types (crdts). These are replicated structures that obey certain mono-
tonicity or commutativity properties. As an example of a crdt, consider the
add-wins set, also called an “observed remove” set in Shapiro et al. (2011a). The
add-wins set behaves like a sequential set if add and remove operations on the
same element are ordered. The concurrent execution of an add and remove result
in the element being added to the set; thus the remove is ignored and the “add
wins.” This concurrent specification is very simple, but as we will see in the next
section, it is quite difficult to pin down the relationship between the crdt and
the sequential specification used in the crdt’s definition. This paper is the first
to successfully capture this relationship.

Many replicated data types are crdts, but not all (Shapiro et al. 2011a).
Notably, Amazon’s Dynamo (DeCandia et al. 2007) is not a crdt. Indeed,
interest in crdts is motivated by a desire to avoid the well-know concurrency
anomalies suffered by Dynamo and other ad hoc systems (Bieniusa et al. 2012).

Shapiro et al. (2011b) introduced the notion of crdt and proved that every
crdt has an sec implementation. Their definition of sec includes convergence,
but not validity.

The validity requirement can be broken into two components. We describe
these below using the example of a list data type that supports only two
operations: the mutator put, which adds an element to the end of the
list, and the query q, which returns the state of the list. This structure
can be specified as a set of strings such as “put(1); put(3); q=[1,3]” and
“put(1); put(2); put(3); q=[1,2,3]”.

– Linearization requires that a response be consistent with some specification
string. A state that received put(1) and put(3), may report q=[1,3] or
q=[3,1], but not q=[2,1,3], since 2 has not been put into the list.

– Monotonicity requires that states evolve in a sensible way. We might permit
the state q=[1,3] to evolve into q=[1,2,3], due to the arrival of action
put(2). But we would not expect that q=[1,3] could evolve into q=[3,1],
since the data type does not support deletion or reordering.

Burckhardt et al. (2012) provide a formal definition of validity using partial
orders over events: linearizations respect the partial order on events; monotonicity
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is ensured by requiring that evolution extends the partial order. Similar definitions
can be found in Jagadeesan and Riely (2015) and Perrin et al. (2015). Replicated
data structures that are soundwith respect to this definition enjoymanygoodprop-
erties, which we discuss throughout this paper. However, this notion of correctness
is not general enough to capture common crdts, such as the add-wins set.

This lack of expressivity lead Burckhardt et al. (2014) to abandon notions of
validity that appeal directly to a sequential specification. Instead they work
directly with concurrent specifications, formalizing the style of specification
found informally in Shapiro et al. (2011b). This has been a fruitful line of work,
leading to proof rules (Gotsman et al. 2016) and extensions (Bouajjani et al.
2014). See (Burckhardt 2014; Viotti and Vukolic 2016) for a detailed treatment.

Positively, concurrent specifications can be used to validate any replicated
structure, including crdts as well as anomalous structures such as Dynamo.
Negatively, concurrent specifications have no the clear connection to their
sequential counterparts. In this paper, we restore this connection. We arrive
at a definition of sec that admits crdts, but rejects Dynamo.

The following “corner cases” are a useful sanity-check for any proposed notion
of validity.

– The principle of single threaded semantics (psts) (Haas et al. 2015) states
that if an execution uses only a single replica, it should behave according to
the sequential semantics.

– The principle of single master (psm) (Budhiraja et al. 1993) states that if all
mutators in an execution are initiated at a single replica, then the execution
should be linearizable (Herlihy and Wing 1990).

– The principle of permutation equivalence (ppe) (Bieniusa et al. 2012) states
that “if all sequential permutations of updates lead to equivalent states, then
it should also hold that concurrent executions of the updates lead to equiv-
alent states.”

psts and psm say that a replicated structure should behave sequentially when
replication is not used. ppe says that the order of independent operations
should not matter. Our definition implies all three conditions. Dynamo fails ppe
(Bieniusa et al. 2012), and thus fails to pass our definition of sec.

In the next section, we describe the validity problem and our solution in
detail, using the example of a binary set. The formal definitions follow in Sect. 3.
We state some consequences of the definition and prove that the add-wins set
satisfies our definition. In Sect. 4, we describe a collaborative text editor and
prove that it is sec. In Sect. 5 we characterize the programmer’s view of a crdt
by defining the most general crdt that satisfies a given sequential specification.
We show that any program that is correct using the most general crdt will be
correct using a more restricted crdt. We also show that our validity criterion
for sec is local in the sense of Herlihy and Wing (1990): independent structures
can be verified independently. In Sect. 6, we apply these results to prove the
correctness of a graph that is implemented using two sec sets.
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Our work is inspired by the study of relaxed memory, such as (Alglave 2012).
In particular, we have drawn insight from the rmo model of Higham and Kawash
(2000).

2 Understanding Replicated Sets

In this section, we motivate the definition of sec using replicated sets as an
example. The final definition is quite simple, but requires a fresh view of both
executions and specifications. We develop the definition in stages, each of which
requires a subtle shift in perspective. Each subsection begins with an example
and ends with a summary.

2.1 Mutators and Non-mutators

An implementation is a set of executions. We model executions abstractly as
labelled partial orders (lpos). The ordering of the lpo captures the history that
precedes an event, which we refer to as visibility.

+0
a

✓0
b

✗1
c

✓0
d

✓1
e

+1
f

✗0
g

✓1
h

✓0
i

✓1
j

(1)

Here the events are a through j, with labels +0, +1, etc., and order represented
by arrows. The lpo describes an execution with two replicas, shown horizontally,
with time passing from left to right. Initially, the top replica receives a request
to add 0 to the set (+0a). Concurrently, the bottom replica receives a request to
add 1 (+1b). Then each replica is twice asked to report on the items contained
in the set. At first, the top replica replies that 0 is present and 1 is absent
(✓0b✗1c), whereas the bottom replica answers with the reverse (✗0g✓1h). Once
the add operations are visible at all replicas, however, the replicas give the same
responses (✓0d✓1e and ✓0i✓1j).

lpos with non-interacting replicas can be denoted compactly using sequential
and parallel composition. For example, the prefix of (1) that only includes the
first three events at each replica can be written (+0a; ✓0b; ✗1c) ‖ (+1f ; ✗0g; ✓1h).

A specification is a set of strings. Let set be the specification of a sequential
set with elements 0 and 1. Then we expect that set includes the string “+0✓0✗1”,
but not “+0✗0✓1”. Indeed, each specification string can uniquely be extended
with either ✓0 or ✗0 and either ✓1 or ✗1.

There is an isomorphism between strings and labelled total orders. Thus,
specification strings correspond to the restricted class of lpos where the visibility
relation provides a total order.

Linearizability (Herlihy and Wing 1990) is the gold standard for concurrent
correctness in tightly coupled systems. Under linearizability, an execution is valid
if there exists a linearization τ of the events in the execution such that for every
event e, the prefix of e in τ is a valid specification string.
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Execution (1) is not linearizable. The failure can already be seen in the sub-
lpo (+0a; ✗1c) ‖ (+1f ; ✗0g). Any linearization must have either +1f before ✗1c

or +0a before ✗0g. In either case, the linearization is invalid for set.
Although it is not linearizable, execution (1) is admitted by every crdt set

in Shapiro et al. (2011a). To validate such examples, Burckhardt et al. (2012)
develop a weaker notion of validity by dividing labels into mutators and accessors
(also known as non-mutators). Similar definitions appear in Jagadeesan and
Riely (2015) and Perrin et al. (2015). Mutators change the state of a replica,
and accessors report on the state without changing it. For set, the mutators M
and non-mutators M are as follows.

M = {+0, -0, +1, -1}, representing addition and removal of bits 0 and 1.

M = {✗0, ✓0, ✗1, ✓1}, representing membership tests returning false or true.

Define the mutator prefix of an event e to include e and the mutators visible to
e. An execution is valid if there exists a linearization of the execution, τ , such
that for every event e, the mutator prefix of e in τ is a valid specification string.

It is straightforward to see that execution (1) satisfies this weaker criterion.
For both ✓0b and ✗1c, the mutator prefix is +0a. This includes +0a but not +1f ,
and thus their answers are validated. Symmetrically, the mutator prefixes of ✗0g

and ✓1h only include +1f . The mutator prefixes for the final four events include
both +0a and +1f , but none of the prior accessors.
Summary: Convergent states must agree on the final order of mutators, but inter-
mediate states may see incompatible subsequences of this order. By restricting
attention to mutator prefixes, the later states need not linearize these incompat-
ible views of the partial past.

This relaxation is analogous to the treatment of non-mutators in update
serializability (Hansdah and Patnaik 1986; Garcia-Molina and Wiederhold 1982),
which requires a global serialization order for mutators, ignoring non-mutators.

2.2 Dependency

The following lpo is admitted by the add-wins set discussed in the introduction.

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

✓0
g

✓1
h

(2)

In any crdt implementation, the effect of +1b is negated by the subsequent -1c

The same reasoning holds for +0e and -0f . In an add-wins set, however, the
concurrent adds, +0a and +1d, win over the deletions. Thus, in the final state
both 0 and 1 are present.

This lpo is not valid under the definition of the previous subsection: Since
✓0g and ✓1h see the same mutators, they must agree on a linearization of (+0a;
+1b; -1c) ‖ (+1d; +0e; -0f ). Any linearization must end in either -1c or -0f ; thus
it is not possible for both ✓0g and ✓1h to be valid.
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Similar issues arise in relaxed memory models, where program order is often
relaxed between uses of independent variables (Alglave et al. 2014). Generalizing,
we write m # n to indicate that labels m and n are dependent. Dependency is
a property of a specification, not an implementation. Our results only apply to
specifications that support a suitable notion of dependency, as detailed in Sect. 3.
For set, # is an equivalence relation with two equivalence classes, corresponding
to actions on the independent values 0 and 1.

# = {+0, -0, ✗0, ✓0}2 ∪ {+1, -1, ✗1, ✓1}2, where D2 = D × D.

While the dependency relation for set is an equivalence, this is not required: In
Sect. 4 we establish the correctness of collaborative text editing protocol with an
intransitive dependency relation.

The dependent restriction of (2) is as follows.

+0
a

+0
e

-0
f

✓0
g

+1
d

+1
b

-1
c

✓1
h

(3)

In the previous subsection, we defined validity using the mutator prefix of an
event. We arrive at a weaker definition by restricting attention to the mutator
prefix of the dependent restriction.

Under this definition, execution (2) is validated: Any interleaving of the
strings +0e-0f+0a✓0g and +1b-1c+1d✓1h linearizes the dependent restriction of
(2) given in (3).
Summary: crdts allow independent mutators to commute. We formalize this
intuition by restricting attention to mutator prefixes of the dependent restriction.
The crdt must respect program order between dependent operations, but is free
to reorder independent operations.

This relaxation is analogous to the distinction between program order and
preserved program order (ppo) in relaxed memory models (Higham and Kawash
2000; Alglave 2012). Informally, ppo is the suborder of program order that
removes order between independent memory actions, such as successive reads
on different locations without an intervening memory barrier.

2.3 Puns

The following lpo is admitted by the add-wins set.

+0
a

-0
b

✓0
c

✗0
d

+0
e

-0
f

✓0
g

✗0
h

(4)

As in execution (2), the add +0a is undone by the following remove -0b, but the
concurrent add +0e wins over -0b, allowing ✓0c. In effect, ✓0c sees the order of
the mutators as +0a -0b +0e. Symmetrically, ✓0g sees the order as +0e -0f +0a.
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While this is very natural from the viewpoint of a crdt, there is no linearization
of the events that includes both +0a -0b +0e and +0e -0f +0a, since +0a and +0e

must appear in different orders.
Indeed, this lpo is not valid under the definition of the previous subsection.

First note that all events are mutually dependent. To prove validity we must
find a linearization that satisfies the given requirements. Any linearization of
the mutators must end in either -0b or -0f . Suppose we choose +0a -0b +0e -0f

and look for a mutator prefix to satisfy ✓0g. (All other choices lead to similar
problems.) Since -0f precedes ✓0g and is the last mutator in our chosen lin-
earization, every possible witness for ✓0g must end with mutator -0f . Indeed
the only possible witness is +0a +0e -0f ✓0g. However, this is not a valid specifi-
cation string.

The problem is that we are linearizing events, rather than labels. If we shift
to linearizing labels, then execution (4) is allowed. Fix the final order for the
mutators to be +0 -0 +0 -0. The execution is allowed if we can find a subsequence
that linearizes the labels visible at each event. It suffices to choose the witnesses
as follows. In the table, we group events with a common linearization together.

+0a, +0e: +0
-0b, -0f : +0-0

✓0c, ✓0g : +0-0+0✓0
✗0d, ✗0h: +0-0+0-0✗0

Each of these is a valid specification string. In addition, looking only at mutators,
each is a subsequence of +0 -0 +0 -0.

In execution (4), each of the witnesses is actually a prefix of the final mutator
order, but, in general, it is necessary to allow subsequences.

+0
a

✓0
b

-0
c

✓0
d

(5)

Execution (5) is admitted by the add-wins set. It is validated by the final
mutator sequence -0 +0. The mutator prefix +0 of b is a subsequence of -0
+0, but not a prefix.
Summary: While dependent events at a single replica must be linearized in order,
concurrent events may slip anywhere into the linearization. A crdt may pun on
concurrent events with same label, using them in different positions at different
replicas. Thus a crdt may establish a final total over the labels of an execution
even when there is no linearization of the events.

2.4 Frontiers

In the introduction, we mentioned that the validity problem can be decomposed
into the separate concerns of linearizability and monotonicity. The discussion
thus far has centered on the appropriate meaning of linearizability for crdts. In
this subsection and the next, we look at the constraints imposed by monotonicity.
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Consider the prefix {+0a, -0b, +0e, ✓0c, -0f} of execution (4), extended with
action ✗0x, with visibility order as follows.

+0
a

-0
b

+0
e

-0
f

✓0
c

✗0
x

(6)

This execution is not strong ec, since ✓0c and ✗0x see exactly the same mutators,
yet provide incompatible answers.

Unfortunately, execution (6) is valid by the definition given in the previous
section: The witnesses for a–f are as before. In particular, the witness for ✓0c is
“+0-0+0✓0”. The witness for ✗0x is “+0+0-0✗0”. In each case, the mutator prefix
is a subsequence of the global mutator order “+0-0+0-0”.

It is well known that punning can lead to bad jokes. In this case, the problem
is that ✗0x is punning on a concurrent -0 that cannot be matched by a visible
-0 in its history: the execution -0 that is visible to ✗0x must appear between the
two +0 operations; the specification -0 that is used by ✗0x must appear after.
The final states of execution (4) have seen both remove operations, therefore the
pun is harmless there. But ✓0c and ✗0x have seen only one remove. They must
agree on how it is used.

Up to now, we have discussed the linearization of each event in isolation. We
must also consider the relationship between these linearizations. When working
with linearizations of events, it is sufficient to require that the linearization cho-
sen for each event be a subsequence for the linearization chosen for each visible
predecessor; since events are unique, there can be no confusion in the lineariza-
tion about which event is which. Execution (6) shows that when working with
linearizations of labels, it is insufficient to consider the relationship between indi-
vidual events. The linearization “+0+0-0✗0” chosen for ✗0x is a supersequence of
those chosen for its predecessors: “+0” for +0e and “+0-0” for -0b. The lineariza-
tion “+0-0+0✓0” chosen for ✓0c is also a supersequence for the same predecessors.
And yet, ✓0c and ✗0x are incompatible states.

Sequential systems have a single state, which evolves over time. In distributed
systems, each replica has its own state, and it is this set of states that evolves.
Such a set of states is called a (consistent) cut (Chandy and Lamport 1985).

A cut of an lpo is a sub-lpo that is down-closed with respect to visibility. The
frontier of cut is the set of maximal elements. For example, there are 14 frontiers
of execution (6): the singletons {+0a}, {-0b}, {✓0c}, {+0e}, {-0f}, {✗0x}, the
pairs {+0a, +0e}, {+0a, -0f}, {-0b, +0e}, {-0b, -0f}, {✓0c, -0f}, {✓0c, ✗0x},
{✗0x, -0f}, and the triple {✓0c, ✗0x, -0f}. As we explain below, we consider
non-mutators in isolation. Thus we do not consider the last four cuts, which
include a non-mutator with other events. That leaves 10 frontiers. The definition
of the previous section only considered the 6 singletons. Singleton frontiers are
generated by pointed cuts, with a single maximal element.

When applied to frontiers, the monotonicity requirement invalidates execu-
tion (6). Monotonicity requires that the linearization chosen for a frontier be a
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subsequence of the linearization chosen for any extension of that frontier. If we
are to satisfy state ✓0c in execution (6), the frontier {-0b, +0e} must linearize to
“+0-0+0”. If we are to satisfy state ✗0x, the frontier {-0b, +0e} must linearize to
“+0+0-0”. Since we require a unique linearization for each frontier, the execution
is disallowed.

Since crdts execute non-mutators locally, it is important that we ignore
frontiers with multiple non-mutators. Recall execution (4):

+0
a

-0
b

✓0
c

✗0
d

+0
e

-0
f

✓0
g

✗0
h

There is no specification string that linearizes the cut with frontier {✓0c, ✓0g},
since we cannot have ✓0 immediately after -0. If we consider only pointed cuts
for non-mutators, then the execution is sec, with witnesses as follows.

{+0a}, {+0e} : +0
{+0a, +0e} : +0+0
{-0b}, {-0f} : +0-0
{-0b, +0e}, {+0a, -0f}: +0-0+0

{✓0c}, {✓0g}: +0-0+0✓0
{-0b, -0f} : +0-0+0-0
{✗0d}, {✗0h}: +0-0+0-0✗0

In order to validate non-mutators, we must consider singleton non-mutator
frontiers. The example shows that we must not consider frontiers with multi-
ple non-mutators. There is some freedom in the choices otherwise. For set, we
can “saturate” an execution with accessors by augmenting the execution with
accessors that witness each cut of the mutators. In a saturated execution, it is
sufficient to consider only the pointed accessor cuts, which end in a maximal
accessor. For non-saturated executions, we are forced to examine each mutator
cut: it is possible that a future accessor extension may witness that cut. The
status of “mixed” frontiers, which include mutators with a single maximal non-
mutator, is open for debate. We choose to ignore them, but the definition does
not change if they are included.
Summary: A crdt must have a strategy for linearizing all mutator labels, even in
the face of partitions. In order to ensure strong ec, the definition must consider
sets of events across multiple replicas. Because non-mutators are resolved locally,
sec must ignore frontiers with multiple non-mutators.

Cuts and frontiers are well-known concepts in the literature of distributed
systems (Chandy and Lamport 1985). It is natural to consider frontiers when
discussing the evolving correctness of a crdt.

2.5 Stuttering

Consider the following execution.

+0
a

-0
b

+0
c

-0
d

-0
e

+0
x

-0
y

-0
z

(7)
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This lpo represents a partitioned system with events a–e in one partition and
x–z in the other. As the partition heals, we must be able to account for the
intermediate states. Because of the large number of events in this example, we
have elided all accessors. We will present the example using the semantics of the
add-wins set. Recall that the add-wins set validates ✓0 if and only if there is
a maximal +0 beforehand. Thus, a replica that has seen the cut with frontier
{+0a, -0y, -0z} must answer ✓0, whereas a replica that has seen {-0b, -0y, -0z}
must answer ✗0.

Any linearization of {+0a, -0y, -0z} must end in +0, since the add-win set
must reply ✓0: the only possibility is “+0-0-0+0”. The linearization of {-0b,
-0y, -0z} must end in -0. If it must be a supersequence, the only possibility is
“+0-0-0+0-0”. Taking one more step on the left, {+0c, -0y, -0z} must linearize to
“+0-0-0+0-0+0”. Thus the final state {-0d, -0e, -0y, -0z} must linearize to “+0
-0-0+0-0+0-0-0”. Reasoning symmetrically, the linearization of {-0d, -0e, +0x}
must be “+0-0+0-0-0+0”, and thus the final {-0d, -0e, -0y, -0z} must linearize to
“+0-0+0-0-0+0-0-0”. The constraints on the final state are incompatible. Each
of these states can be verified in isolation; it is the relation between them that
is not satisfiable.

Recall that monotonicity requires that the linearization chosen for a frontier
be a subsequence of the linearization chosen for any extension of that frontier.
The difficulty here is that subsequence relation ignores the similarity between “+0
-0-0+0-0+0-0-0” and “+0-0+0-0-0+0-0-0”. Neither of these is a subsequence
of the other, yet they capture exactly the same sequence of states, each with six
alternations between ✗0 and ✓0. The canonical state-based representative for
these sequences is “+0-0+0-0+0-0”.

crdts are defined in terms of states. In order to relate crdts to sequential
specifications, it is necessary to extract information about states from the speci-
fication itself. Adapting Brookes (1996), we define strings as stuttering equivalent
(notation σ ∼ τ) if they pass through the same states. So +0+1+0 ∼ +0+1 but
+0-0+0 �∼ +0. If we consider subsequences up to stuttering, then execution (7)
is sec, with witnesses as follow:

{a}, {x}, {a, x} : +0
{b}, {y}, {y, z}, {z} : +0-0
{a, y}, {a, y, z}, {a, z}, {b, x} : +0-0+0
{b, y}, {b, y, z}, {b, z}, {d}, {d, e}, {e} : +0-0+0-0
{c, y}, {c, y, z}, {c, z}, {d, x}, {d, e, x}, {e, x} : +0-0+0-0+0
{d, y}, {d, y, z}, {d, z},
{e, y}, {e, y, z}, {e, z}, {d, e, y}, {d, e, y, z}, {d, e, z}: +0-0+0-0+0-0

Recall that without stuttering, we deduced that {+0c, -0y, -0z} must linearize to
“+0-0-0+0-0+0” and {-0d, -0e, +0x} must linearize to “+0-0+0-0-0+0”. Under
stuttering equivalence, these are the same, with canonical representative “+0
-0+0-0+0”. Thus, monotonicity under stuttering allows both linearizations to
be extended to satisfy the final state {-0d, -0e, -0y, -0z}, which has canonical
representative “+0-0+0-0+0-0”.
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Summary: crdts are described in terms of convergent states, whereas specifi-
cations are described as strings of actions. Actions correspond to labels in the
lpo of an execution. Many strings of actions may lead to equivalent states. For
example, idempotent actions can be applied repeatedly without modifying the
state.

The stuttering equivalence of Brookes (1996) addresses this mismatch. In
order to capture the validity of crdts, the definition of subsequence must change
from a definition over individual specification strings to a definition over equiv-
alence classes of strings up to stuttering.

3 Eventual Consistency for CRDTs

This section formalizes the intuitions developed in Sect. 2. We define executions,
specifications and strong eventual consistency (sec). We discuss properties of
eventual consistency and prove that the add-wins set is sec.

3.1 Executions

An execution realizes causal delivery if, whenever an event is received at a replica,
all predecessors of the event are also received. Most of the crdts in Shapiro et al.
(2011a) assume causal delivery, and we assumed it throughout the introductory
section. There are costs to maintaining causality, however, and not all crdts
assume that executions incur these costs. In the formal development, we allow
non-causal executions.

Shapiro et al. (2011a) draw executions as timelines, explicitly showing the
delivery of remote mutators. Below left, we give an example of such a timeline.

+0 +1

✓1 ✗0 ✓0

+0 +1

✓1 ✗0 ✓0

This is a non-causal execution: at the bottom replica, +1 is received before +0,
even though +0 precedes +1 at the top replica.

Causal executions are naturally described as Labelled Partial Orders (lpos),
which are transitive and antisymmetric. Section 2 presented several examples
of lpos. To capture non-causal systems, we move to Labelled Visibility Orders
(lvos), which are merely acyclic. Acyclicity ensures that the transitive closure
of an lvo is an lpo. The right picture above shows the lvo corresponding to the
timeline on the left. The zigzag arrow represents an intransitive communication.
When drawing executions, we use straight lines for “transitive” edges, with the
intuitive reading that “this and all preceding actions are delivered”.

lvos arise directly due to non-causal implementations. As we will see in
Sect. 4, they also arise via projection from an lpo.

lvos are unusual in the literature. To make this paper self-contained, we
define the obvious generalizations of concepts familiar from lpos, including iso-
morphism, suborder, restriction, maximality, downclosure and cut.
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Fix a set L of labels. A Labelled Visibility Order (lvo, also known as an
execution) is a triple u = 〈Eu, λu, �u〉 where Eu is a finite set of events, λu ∈
(Eu 	→ L) and �u ⊆ (Eu × Eu) is reflexive and acyclic.

Let u, v range over lvos. Many concepts extend smoothly from lpos to lvos.

– Isomorphism: Write u =iso v when u and v differ only in the carrier set. We
are often interested in the isomorphism class of an lvo.

– Pomset: We refer to the isomorphism class of an lvo as a pomset. Pomset
abbreviates Partially Ordered Multiset (Plotkin and Pratt 1997). We stick
with the name “pomset” here, since “vomset” is not particularly catchy.

– Suborder: Write u ⊆ v when Eu ⊆ Ev, λu ⊆ λv, ρu ⊆ ρv, and (�v) ⊆ (�u).
– Restriction:1 When D ⊆ Ev, define v � D = 〈D, λv � D, �v � D〉. Restriction

lifts subsets to suborders: v �D denotes the sub-lvo derived from a subset D
of events. See Sect. 2.2 for an example of restriction.

– Maximal elements: max(v) = {d ∈ Ev | � ∃e ∈ (Ev \ {d}). d �v e}.
We say that d is maximal for v when if d ∈ max(v).

– Non-maximal suborder: max(v) = v � (Ev \ max(v)).
max(v) is the suborder with the maximal elements removed.

– Downclosure: D is downclosed for v if D ⊆ {e ∈ Ev | ∃d ∈ D. d �v e}.
– Cut: u is a cut of v if u ⊆ v and Eu is downclosed for v.

Let cuts(v) be the set of all cuts of v. A cut is the sub-lvo corresponding
to a downclosed set. Cuts are also known as prefixes. See Sect. 2.4 for an
example. A cut is determined by its maximal elements: if u ∈ cuts(v) then
u = v � {d ∈ Ev | ∃e ∈ max(v). d �v e}.

– Linearization: For ai ∈ L, we say that a1 . . . an is a linearization of E ⊆ Ev

if there exists a bijection α : E → [1, n] such that ∀e ∈ E. λv(e) = aα(e) and
∀d, e ∈ E. d �v e implies α(d) ≤ α(e).

Replica-Specific Properties. In the literature on replicated data types, some prop-
erties of interest (such as “read your writes” (Tanenbaum and Steen 2007))
require the concept of “session” or a distinction between local and remote
events. These can be accommodated by augmenting lvos with a replica labelling
ρu ∈ (Eu 	→ R), which maps events to a set R of replica identifiers.

Executions can be generated operationally as follows: Replicas receive muta-
tor and accessor events from the local client; they also receive mutator events
that are forwarded from other replicas. Each replica maintains a set of seen
events: an event that is received is added to this set. When an event is received
from the local client, the event is additionally added to the execution, with the
predecessors in the visibility relation corresponding to the current seen set. If
we wish to restrict attention to causal executions, then we require that replicas
forward all the mutators in their seen sets, rather than individual events, and,
thus, the visibility relation is transitive over mutators.

All executions that are operationally generated satisfy the additional prop-
erty that �u is per-replica total: if ρ(d) = ρ(e) then either d �u e or e �u d.
1 We use the standard definitions for restriction on functions and relations. Given a

function f : E → X, R: E × E and D ⊆ E, define f � D = {〈d, f(d)〉 | d ∈ D} and
R �D = {〈d1, d2〉 | d1, d2 ∈ D and d1 R d2}.
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We do not demand per-replica totality because our results do not rely on replica-
specific information.

3.2 Specifications and Stuttering Equivalence

Specifications are sets of strings, equipped with a distinguished set of mutators
and a dependency relation between labels. Specifications are subject to some
constraints to ensure that the mutator set and dependency relations are sensible;
these are inspired by the conditions on Mazurkiewicz executions (Diekert and
Rozenberg 1995). Every specification set yields a derived notion of stuttering
equivalence. This leads to the definition of observational subsequence (≤obs ).

We use standard notation for strings: Let σ and τ range over strings. Then
στ denotes concatenation, σ∗ denotes Kleene star, σ � τ denotes the set of
interleavings, ε denotes the empty string and σi denotes the ith element of σ.
These notations lift to sets of strings via set union.

A specification is a quadruple 〈L, M, #, Σ〉 where

– L is a set of actions (also known as labels),
– M ⊆ L is a distinguished set of mutator actions,
– # ⊆ (L × L) is a symmetric and reflexive dependency relation, and
– Σ ⊆ L∗ is a set of valid strings.

Let M = L \ M be the sets of non-mutators.
A specification must satisfy the following properties:

(a) prefix closed: στ ∈ Σ implies σ ∈ Σ
(b) non-mutators are closed under stuttering, and commutation:

∀a ∈ M . σaτ ∈ Σ implies σa∗τ ⊆ Σ
∀a, b ∈ M . {σa, σb} ⊆ Σ implies {σab, σba} ⊆ Σ

(c) independent actions commute:
∀a, b ∈ L. ¬(a # b) implies (σabτ ∈ Σ iff σbaτ ∈ Σ)

Property (b) ensures that non-mutators do not affect the state of the data struc-
ture. Property (c) ensures that commuting of independent actions does not affect
the state of the data structure.

Recall that the set specification takes M = {+0, -0, +1, -1}, representing
addition and removal of bits 0 and 1, and M = {✗0, ✓0, ✗1, ✓1}, representing
membership tests returning false or true. The dependency relation is # = {+0,
-0, ✗0, ✓0}2 ∪ {+1, -1, ✗1, ✓1}2, where D2 = D × D.

The dependency relation for set is an equivalence, but this need not hold
generally. We will see an example in Sect. 4.

The definitions in the rest of the paper assume that we have fixed a specifi-
cation 〈L, M, #, Σ〉. In the examples of this section, we use set.
State and Stuttering Equivalence. Specification strings σ and τ are state equiva-
lence (notation σ ≈ τ) if every valid extension of σ is also a valid extension of τ ,
and vice versa. For example, +0+1+0 ≈ +0+1 and +0-0+0 ≈ +0, but +0-0 �≈ +0.
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In particular, state equivalent strings agree on the valid accessors that can imme-
diately follow them: either ✓0 or ✗0 and either ✓1 or ✗1. Formally, we define
state equivalence, ≈ ⊆ L∗ × L∗, as follows2.

(σ ≈ σ′) �= (σ = σ′) or ({σ, σ′} ⊆ Σ and ∀τ ∈ L∗. στ ∈ Σ iff σ′τ ∈ Σ).

From specification property (b), we know that non-mutators do not affect the
state. Thus we have that ua ≈ u whenever a ∈ M and ua ∈ Σ. From specification
property (c), we know that independent actions commute. Thus we have that
σab ≈ σba whenever ¬(a # b) and {σab, σba} ⊆ Σ.

Two strings are stuttering equivalent3 if they only differ in operations that
have no effect on the state of the data structure, as given by Σ. Adapting Brookes
(1996) to our notion of state equivalence, we define stuttering equivalence, ∼ ⊆
L∗ × L∗, to be the least equivalence relation generated by the following rules,
where a ranges over L.

ε ∼ ε

σ ∼ σ′

σa ∼ σ′a
σ ≈ σa

σ ∼ σa

σb ∼ σ ¬(a # b)
σab ∼ σa

The first rule above handles the empty string. The second rule allows stuttering
in any context. The third rule motivates the name stuttering equivalence, for
example, allowing +0+0 ∼ +0. The last case captures the equivalence generated
by independent labels, for example, allowing +0+1+0 ∼ +0+1 but not +0-0+0 ∼
+0-0. Using the properties of ≈ discussed above, we can conclude, for example,
that +0✓0✓0+0-0✗0 ∼ +0-0.

Consider specification strings for a unary set over value 0. Since stuttering
equivalence allows us to remove both accessors and adjacent mutators with the
same label we deduce that the canonical representatives of the equivalence classes
induced by ∼ are generated by the regular expression (+0)?(-0+0)∗(-0)?.
Observational Subsequence. Recall that ac is a subsequence of abc, although it
is not a prefix. We write ≤seq for subsequence and ≤obs for observational subse-
quence, defined as follows.

σ1 ··· σn ≤seq τ0σ1τ1 ··· σnτn σ ≤obs τ if ∃σ′ ∼ σ. ∃τ ′ ∼ τ. σ′ ≤seq τ ′

Note that observational subsequence includes both subsequence and stuttering
equivalence (≤obs ) ⊆ (≤seq ) ∪ (∼).

≤seq can be understood in isolation, whereas ≤obs can only be understood
with respect to a given specification. In the remainder of the paper, the implied
specification will be clear from context. ≤seq is a partial order, whereas ≤obs is
only a preorder, since it is not antisymmetric.

Let σ and τ be strings over the unary set with canonical representatives aσ′

and bτ ′. Then we have that σ ≤obs τ exactly when either a = b and
∣
∣σ′∣∣ ≤ ∣

∣τ ′∣∣

2 To extend the definition to non-specification strings, we allow σ ≈ σ′ when σ = σ′.
3 Readers of Brookes (1996) should note that mumbling is not relevant here, since all

mutators are visible.
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or a �= b and
∣
∣σ′∣∣ <

∣
∣τ ′∣∣. Thus, observational subsequence order is determined

by the number of alternations between the mutators.
Specification strings for the binary set, then, are stuttering equivalent

exactly when they yield the same canonical representatives when restricted to 0
and to 1. Thus, observational subsequence order is determined by the number
of alternations between the mutators, when restricted to each dependent sub-
sequence. (The final rule in the definition of stuttering, which allows stuttering
across independent labels, is crucial to establishing this canonical form.)

3.3 Eventual Consistency

Eventual consistency is defined using the cuts of an execution and the observa-
tional subsequence order of the specification. As noted in Sects. 2.2 and 2.4, it
is important that we not consider all cuts. Thus, before we define sec, we must
define dependent cuts.

The dependent restriction of an execution is defined: v � # = 〈Ev, λv,
#�v〉,

where d
#�v e when λv(d) # λv(e) and d �v e. See Sect. 2.2 for an example of

dependent restriction.
The dependent cuts of v are cuts of the dependent restriction. As discussed

in Sect. 2.4, we only consider pointed cuts (with a single maximal element) for
non-mutators. See Sect. 2.4 for an example.

cuts#(v) =
{

u ∈ cuts(v � #)
∣
∣ ∀e ∈ Eu. if λu(e) ∈ M then max(u) = {e}}

An execution v is Eventually Consistent (sec) for specification 〈L, M, #,
Σ〉 iff there exists a function τ : cuts#(v) → Σ that satisfies the following.

Linearization: ∀p ∈ cuts#(v). p linearizes to τ(p), and
Monotonicity: ∀p, q ∈ cuts#(v). p ⊆ q implies τ(p) ≤obs τ(q).

A data structure implementation is sec if all of its executions are sec.
In Sect. 2, we gave several examples that are sec. See Sects. 2.4 and 2.5 for

examples where τ is given explicitly. Section 2.4 also includes an example that
is not sec.

The concerns raised in Sect. 2 are reflected in the definition.

– Non-mutators are ignored by the dependent restriction of other non-
mutators. As discussed in Sect. 2.1, this relaxation is similar that of update-
serializability (Hansdah and Patnaik 1986; Garcia-Molina and Wiederhold
1982).

– Independent events are ignored by the dependent restriction of an event. As
discussed in Sect. 2.2, this relaxation is similar to preserved program order
in relaxed memory models (Higham and Kawash 2000; Alglave 2012).

– As discussed in Sect. 2.3, punning is allowed: each cut p is linearized sepa-
rately to a specification string τ(p).

– As discussed in Sect. 2.4, we constrain the power puns by considering cuts of
the distributed system (Chandy and Lamport 1985).
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– Monotonicity ensures that the system evolves in a sensible way: new order
may be introduced, but old order cannot be forgotten. As discussed in
Sect. 2.5, the preserved order is captured in the observational subsequence
relation, which allows stuttering (Brookes 1996).

3.4 Properties of Eventual Consistency

We discuss some basic properties of sec. For further analysis, see Sect. 5.
An important property of crdts is prefix closure: If an execution is valid,

then every prefix of the execution should also be valid. Prefix closure follows
immediately from the definition, since whenever u is a prefix of v we have that
cuts#(u) ⊆ cuts#(v).

Prefix closure looks back in time. It is also possible to look forward: A system
satisfies eventual delivery if every valid execution can be extended to a valid
execution with a maximal element that sees every mutator. If one assumes that
every specification string can be extended to a longer specification string by
adding non-mutators, then eventual delivery is immediate.

The properties psts, psm and ppe are discussed in the introduction. An
sec implementation must satisfies ppe since every dependent set of mutators is
linearized: sec enforces the stronger property that there are no new intermediate
states, even when executing all mutators in parallel. For causal systems, where
�u is transitive, psts and psm follow by observing that if there is a total order
on the mutators of u then any linearization of u is a specification string.

Burckhardt (2014, Sect. 5) provides a taxonomy of correctness criteria
for replicated data types. Our definition implies NoCircularCausality
and CausalArbitration, but does not imply either ConsistentPrefix or
CausalVisibility. For lpos, which model causal systems, our definition implies
CausalVisibility. ReadMyWrites and MonotonicReads require a dis-
tinction between local and remote events. If one assumes the replica-specific
constraints given in Sect. 3.1, then our definition satisfies these properties; with-
out them, our definition is too abstract.

3.5 Correctness of the Add-Wins Set

The add-wins set is defined to answer ✓k for a cut u exactly when

∃d ∈ u. λu(d) = +k ∧ (� ∃e ∈ u. λu(e) = -k ∧ d �u e).

It answers ✗k otherwise. The add-wins set is called the “observed-remove” set.
We show that any lpo that meets this specification is sec with respect to

set. We restrict attention to lpos since causal delivery is assumed for the add-
wins set in (Shapiro et al. 2011a).

For set, the dependency relation is an equivalence. For an equivalence rela-
tion R, let L/R ⊆ 2L denote the set of (disjoint) equivalence classes for R.
For set, L/# = {{+0, -0, ✗0, ✓0}, {+1, -1, ✗1, ✓1}}. When dependency is an
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equivalence, then every interleaving of independent actions is valid if any inter-
leaving is valid. Formally, we have the following, where � denotes interleaving.

∀D ∈ (L/#). ∀σ ∈ D∗. ∀τ ∈ (L \ D)∗. (σ � τ) ∩ Σ �= ∅ implies (σ � τ) ⊆ Σ

Using the forthcoming composition result (Theorem 2), it suffices for us to
address the case when u only involves operations on a single element, say 0.
For any such lvo u, we choose a linearization τ(u) ∈ (-0|+0)∗ that has a maxi-
mum number of alternations between -0 and +0. If there is a linearization that
begins with -0, then we choose one of these. Below, we summarize some of the
key properties of such a linearization.

– τ(u) ends with +0 iff there is an +0 that is not followed by any -0 in u.
– For any lpo v ⊆ u, τ(v) has at most as many alternations as τ(u).

The first property above ensures that the accessors are validated correctly, i.e.,
0 is deemed to be present iff there is an +0 that is not followed by any -0.

We are left with proving monotonicity, i.e., if u ⊆ v, then τ(u) ≤obs τ(v).
Consider τ(u) = aσ and τ(v) = bρ.

– If b = a, the second property above ensures that τ(u) ≤obs τ(v).
– In the case that b �= a, we deduce by construction that b = -0 and a = +0. In

this case, ρ starts with +0 and has at least as many alternations as τ(u). So,
we deduce that τ(u) ≤obs ρ. The required result follows since ρ ≤obs τ(v).

4 A Collaborative Text Editing Protocol

In this section we consider a variant of the collaborative text editing protocol
defined by Attiya et al. (2016). After stating the sequential specification, text,
we sketch a correctness proof with respect to our definition of eventual consis-
tency. This example is interesting formally: the dependency relation is not an
equivalence, and therefore the dependent projection does not preserve transitiv-
ity. The generality of intransitive lvos is necessary to understand text, even
assuming a causal implementation.

Specification. Let a, b range over nodes, which contain some text, a unique iden-
tifier, and perhaps other information. Labels have the following forms:

– Mutator !a initializes the text to node a.
– Mutator +a<b adds node a immediately before node b.
– Mutator +a>b adds node a immediately after node b.
– Mutator -b removes node b.
– Non-mutator query ?b1 ··· bn returns the current state of the document.

We demonstrate the correct answers to queries by example. Initially, the docu-
ment is empty, whereas after initialization, the document contains a single node;
thus the specification contains strings such as “?ε !c ?c”, where ε represents the
empty document. Nodes can be added either before or after other nodes; thus
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“!c +b<c +d>c” results in the document ?bcd. Nodes are always added adjacent
to the target; thus, order matters in “!c +e>c +d>c” which results in ?cde rather
than ?ced. Removal does what one expects; thus “!c +e>c +d>c -c” results in
?de.

Attiya et al. (2016) define the interface for text using integer indices as
targets, rather than nodes. Using the unique correspondence between the nodes
and it indices (since node are unique), one can easily adapt an implementation
that satisfies our specification to their interface.

We say that node a is a added in the actions !a, +a<b and +a>b. Node b is a
target in +a<b and +a>b. In addition to correctly answering queries, specifications
must satisfy the following constraints:

– Initialization may occur at most once,
– each node may be added at most once,
– a node may be removed only after it is added, and
– a node may be used as a target only if it has been added and not removed.

These constraints forbid adding to a target that has been removed; thus
“!c +d>c -c” is a valid string, but “!c -c +d>c” is not. It also follows that ini-
tialization must precede any other mutators.

Because add operations use unique identifiers, punning and stuttering play
little role in this example. In order to show the implementation correct, we need
only choose an appropriate notion of dependency. As we will see, it is necessary
that removes be independent of adds with disjoint label sets, but otherwise all
actions may be dependent. Let L!+? be the set of add and query labels, and let
nodes return the set of nodes that appear in a label. Then we define dependency
as follows.

	 # k iff {	, k} ⊆ L!+? or nodes(	) ∩ nodes(k) �= ∅

Implementation. We consider executions that satisfy the same four conditions
above imposed on specifications. We refer the reader to the algorithm of Attiya
et al. (2016) that provides timestamps for insertions that are monotone with
respect to causality.

As an example, Attiya et al. (2016) allow the execution given on the left
below. In this case, the dependent restriction is an intransitive lvo, even though
the underlying execution is an lpo: in particular, !b does not precede -d in the
dependent restriction. We give the order considered by dependent cuts on the
right—this is a restriction of the dependent restriction: since we only consider
pointed accessor cuts, we can safely ignore order out of non-mutators.
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!b

+c>b

+d>b

?bcd

-d

-b

?bc

?cd

+a<b

+e>d

?ace !b

+c>b

+d>b

?bcd

-d

-b

?bc

?cd

+a<b

+e>d

?ace

This execution is not linearizable, but it is sec, choosing witnesses to be
subsequences of the mutator string “!b +d>b +c>b +a<b +e>d -b -d”. Here, the
document is initialized to b, then c and d are added after b, resulting in ?bcd. The
order of c and d is determined by their timestamps. Afterwards, the top replica
removes d and adds a; the bottom replica removes b and adds e, resulting in
the final state ?ace. In the right execution, the removal of order out of the non-
mutators shows the “update serializability” effect; the removal of order between
-b and +e>d (and between -d and +a<b) shows the “preserved program order”
effect.

Correctness. Given an execution, we can find a specification string s1s2 that
linearizes the mutators in the dependent restriction of the execution such that
s1 contains only adds and s2 contains only removes. Such a specification string
exists because by the conditions on executions, deletes do not have any outgoing
edges to other mutators in the dependent restriction; so, they can be moved to
the end in the matching specification string. In order to find s1 that linearizes
the add events, any linearization that respects causality and timestamps (yielded
by the algorithm of Attiya et al. (2016)) suffices for our purposes. The conditions
required by sec follow immediately.

5 Compositional Reasoning

The aim of this section is to establish compositional methods to reason about
replicated data structures. We do so using Labelled Transition Systems (ltss),
where the transitions are labelled by dependent cuts. We show how to derive
an lts from an execution, lts(u). We also define an lts for the most general
crdt that validates a specification, lts(Σ). We show that u is sec for Σ exactly
when lts(u) is a refinement of lts(Σ). We use this alternative characterization to
establish composition and abstraction results.

LTSs. An lts is a triple consisting of a set a states, an initial state and a labelled
transition function between states. We first define the ltss for executions and
specifications, then provide examples and discussion.

For both executions and specifications, the labels of the lts are dependent
cuts: for executions, these are dependent cuts of the execution itself; for specifi-
cations, they are drawn from the set L# =

⋃

v∈L cuts#(v) of all possible depen-
dent cuts. We compare lts labels up to isomorphism, rather than identity. Thus
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it is safe to think of lts labels as (potentially intransitive) pomsets (Plotkin and
Pratt 1997).

The states of the lts are different for the execution and specification. For
executions, the states are cuts of the execution u itself, cuts(u); these are general
cuts, not just dependent cuts. For specifications, the states are the stuttering
equivalence classes of strings allowed by the specification, Σ/∼.

There is an isomorphism between strings and total orders. We make use of
this in the definition, treating strings as totally-ordered lvos.

Define lts(u) = 〈cuts(u), ∅, 	−→i〉, where p
v	−→i q if v ∈ cuts#(q) and

p ⊆ q Emax(v) ∪ Ep = Eq max(v) ⊆ p

v ⊆ q Emax(v) ∩ Ep = ∅ Emax(v) ⊆ Emax(q)

Define lts(Σ) = 〈Σ/∼, ε, 	−→s〉, where [σ] v	−→s [ρ] if v ∈ L# and

σ ⊆ ρ Emax(v) ∪ Eσ = Eρ max(v) ⊆ σ

v ⊆ ρ Emax(v) ∩ Eσ = ∅
We explain the definitions using examples from set, first for executions, then

for specifications. Consider the execution on the left below. The derived lts is
given on the right.

+0

-0

✓0

+1

✓0

ε

+0

-0

-0‖+0

(-0‖+0); ✓0

(-0‖+0); +1

(-0‖+0); (✓0‖+1)

(-0‖+0); (✓0‖+1); ✓0

+0

-0

-0

+0

-0‖+0
(-0‖+0);✓

0

+1

+1

(-0‖+0);✓0
(-0‖+0);✓0

The states of the lts are cuts of the execution. The labels on transitions are
dependent cuts. The requirements for execution transitions relate the source
p, target q and label v. The leftmost requirements state that the target state
must extend both the source and the label; thus the target state must be a
combination of events and order from source and label. The middle requirements
state that the maximal elements of the label must be new in the target; only the
maximal elements of the label are added when moving from source to target. The
upper right requirement states that the non-maximal order of the label must be
respected by the source; thus the causal history reported by the label cannot
contradict the causal history of the source. The lower right requirement ensures
that maximal elements of the label are also maximal in the target. The restriction
to dependent cuts explains the labels on transitions (-0‖+0) +1	−→i (-0‖+0); +1 and
(-0‖+0); (✓0‖+1); ✓0

(-0‖+0);✓0	−−−−−−→i (-0‖+0); (✓0‖+1). By definition, there is a self-
transition labelled with the empty lvo at every state; we elide these transitions
in drawings.

The specification lts for set is infinite, of course. To illustrate, below we give
two sub-ltss with limitations on mutators. On the left, we only allow +0 and
+1. On the right, we only allow +0 and -0 and only consider the case in which
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there is at most one alternation between them. The states are shown using their
canonical representatives. Because of the number of transitions, we show all
dependent accessors as a single transition, with labels separated by commas.

+0+1

+0

+1

ε

+0
+1

+1
+0

+0‖+1

✗0
, +
0✓
0

✗1

✗1, +1✓1

✗0, +0
✓0

✗0
✗1, +1✓1

✗1 ✗0

+1+0

+1

+0

+0‖+1✗1,
+1✓

1

✗0, +0✓0

ε

+0

-0

+0-0-0+0

+0

-0

-0‖+0-0‖+0

+0-0

-0

-0

-0+0+0

+0

✗0

✗0, +0✓0

✗0, -0✗0

✗0
, -
0✗
0,
-0
+0

✓0
, (
-0

‖+
0)

✓0

✗0, +0✓0, +0-0✗0, (-0‖+0)✗0

The requirements for specification transitions are similar to those for implemen-
tations, but the states are equivalence classes over specification strings: with
source [σ] and target [τ ]. There is a transition between the states if there are
members of the equivalence classes, σ and τ , that satisfy the requirements. Since
these are total orders, the leftmost requirements state that there must be lin-
earizations of the source and label that are subsequences of the target. Similarly,
the upper right requirement states that the non-maximal order of the label must
be respected by the source; thus we have +0

+0-0	−−→s +0-0 but not +0 -0+0	−−→s σ, for
any σ. The use of sub-order rather than subsequence allows +0-0 +0-0	−−→s +0-0-0
but prevents nonsense transitions such as +0-0 +0-0	−−→s -0+0-0. Because the states
are total orders, we drop the implementation lts requirement that maximal
events of the label must be maximal in the target. If we were to impose this
restriction, we would disallow -0

+0	−→s +0-0.
It is worth noting that the specification of the add-wins set removes exactly

three edges from the right lts: ε
-0|+0	−−−→s +0-0, +0

-0	−→s +0-0, and -0
+0	−→s +0-0.

Refinement. Refinement is a functional form of simulation (Hoare 1972; Lamport
1983; Lynch and Vaandrager 1995). Let P = 〈SP , p0, 	−→P 〉 and Q = 〈SQ, q0,
	−→Q〉 be ltss. A function f : SP → SQ is a (strong) refinement if p

v	−→P p′

and f(p) = q imply that there exist w =iso v and q′ ∈ SQ such that q
w	−→Q q′

and f(p′) = q′. Then P refines Q (notation P ∼� Q) if there exists a refinement
f : SP → SQ such that the initial states are related, i.e., f(p0) = q0.

We now prove that sec can be characterized as a refinement. We write p0 	−→∗
P

pn when pn is reachable from p0 via a finite sequence of steps pi
ui	−→P pi+1.

Theorem 1. u is EC for the specification Σ iff lts(u) ∼� lts(Σ).

Proof. For the forward direction, assume u is EC and therefore there exists a func-
tion τ : cuts#(u) → Σ such that ∀E ∈ cuts#(u). τ(E) is a linearization of E.
For each cut p ∈ cuts(u), we start with the dependent restriction, p�#. We further
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restriction attention to mutators, p�#�M. The required refinement maps p to the
equivalence class of the linearization of p�#�M chosen by τ : f(p) �= [τ(p � # � M)].
We abuse notation below by identifying each equivalence class with a canonical ele-
ment of the class.

We show that p
v	−→i q implies f(p) ≤obs f(q). Since p ⊆ q, we deduce

that p � # � M ⊆ q � # � M and by monotonicity, f(p) = τ(p � # � M) ≤obs
τ(q � # � M) = f(q).

We show that p
v	−→i q implies τ(v) ≤obs f(q). Suppose v only contains

mutators. Since v ⊆ q, we deduce that v ⊆ q � # � M and by monotonicity,
τ(v) ≤obs τ(q � # � M) = f(v). On the other hand, suppose v contains the non-
mutator a. Let A = M ∪ {a}. Since v ⊆ q, we deduce that v � M ⊆ q � # � A.
By monotonicity, τ(v � M) ≤obs τ(q � A). Since τ(q � A) = τ(q � M), we have
τ(v � M) ≤obs τ(q � M) = f(q), as required.

Thus f(p) v	−→s f(q), completing this direction of the proof.
For the reverse direction, we are given a refinement f : cuts(u) → Σ/∼. For

any p ∈ cuts#(u), define τ(p) to be a string in the equivalence class f(p) that
includes any non-mutator found in p.

We first prove that τ(p) is a linearization of p. A simple inductive proof
demonstrates that for any p ∈ cuts#(u), there is a transition sequence of the
form ∅ 	−→∗

i
p	−→i p. Thus, we deduce from the label on the final transition into p

that the τ(p) related to p is a linearization of p.
We now establish monotonicity. A simple inductive proof shows that for any

p, q ∈ cuts(u), p ⊆ q implies p 	−→∗
i q. Thus τ(p) ≤obs τ(q), by the properties of

f and the definition of τ .

Composition. Given two non-interacting data structures whose replicated imple-
mentations satisfy their sequential specifications, the implementation that com-
bines them satisfies the interleaving of their specifications. We formalize this as
a composition theorem in the style of Herlihy and Wing (1990).

Given an execution u and L ⊆ L, write u � L for the execution that results
by restricting u to events with labels in L: u �L = u � {e ∈ Eu | λu(e) ∈ L}. This
notation lifts to sets in the standard way: U � L =

⋃

u∈U{u � L}. Write u �sec Σ
to indicate that u is sec for Σ.

Theorem 2 (Composition). Let L1 and L2 be mutually independent subsets
of L. For i ∈ {1, 2}, let Σi be a specification with labels chosen from Li, such
that Σ1 �Σ2 is also a specification. If (U �L1) �sec Σ1 and (U �L2) �sec Σ2 then
U �sec (Σ1 � Σ2) (equivalently lts(Σ1 � Σ2) � lts(Σ1) � lts(Σ2)).

The proof is immediate. Since L1 and L2 are mutually independent, any inter-
leaving of the labels will satisfy the definition.

Abstraction. We describe a process algebra with parallel composition and restric-
tion and establish congruence results. We ignore syntactic details and work
directly with ltss. Replica identities do not play a role in the definition; thus,
we permit implicit mobility of the client amongst replicas with the only con-
straint being that the replica has at least as much history on the current item
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of interaction as the client. This constraint is enforced by the synchronization of
the labels, defined below. While the definition includes the case where the client
itself is replicated, it does not provide for out-of-band interaction between the
clients at different replicas: All interaction is assumed to happen through the
data structure.

The relation |� is defined between ltss so that P |� Q describes the system
that results when client P interacts with data structure Q. For ltss P and Q,
define 	−→× inductively, as follows, where ∅ represents the empty lvo.

q
v	−→Q q′

〈p, q〉 v	−→× 〈p, q′〉
p

v	−→P p′ q
w	−→Q q′

〈p, q〉 ∅	−→× 〈p′, q′〉 ∃v′ =iso v. v′ ⊆ w and max(v′) = max(w)

Let S× = {〈p, q〉 | ∃〈p′, q′〉. 〈p, q〉 	−→∗
× 〈p′, q′〉 and � ∃v, p′′. p′ v	−→P p′′}

P |� Q =

{

{〈S×, 〈p0, q0〉, 	−→×〉} if S× is non-empty
∅ otherwise

The |� operator is asymmetric between the client and data structure in two ways.
First, note that every action of the client must be matched by the data structure.
The condition of client quiescence in the definition of S×, that all of the actions
of the client P must be matched by Q; otherwise P |� Q = ∅. However, the
first rule for 	−→× explicitly permits actions of the data structure that may not
be matched by the client. This asymmetry permits the composition of the data
structure with multiple clients to be described incrementally, one client at a
time. Thus, we expect that (P1 | P2) |� Q � P1 |� (P2 |� Q).

Second, note that right rule for 	−→× interaction permits the data structure Q
to introduce order not found in the clients. This is clearly necessary to ensure that
that the composition of client ✓0|+0 with the set data structure is nonempty. In
this case, the client has no order between +0 and ✓0 whereas the data structure
orders ✓0 after +0. In this paper, we do not permit the client to introduce
order that is not seen in the data structure. For a discussion of this issue, see
(Jagadeesan and Riely 2015).

We can also define restriction for some set A ⊆ L of labels, a lá CCS. P\A =
〈SP , p0, {〈p, v, q〉 | 〈p, v, q〉 ∈ (	−→P ) and labels(v) ∩ A = ∅}〉. The definitions
lift to sets: P |� Q =

⋃

P∈P, Q∈Q P |� Q and P\A = {(P\A) | P ∈ P}.

Lemma 3. If P ∼� P ′ and Q ∼� Q′ then P |� Q ∼� P ′ |� Q′ and P\A ∼� P ′\A. ��
It suffices to show that: P ∼� lts(u) implies P |� lts(u) ∼� P |� lts(Σ). The proof
proceeds in the traditional style of such proofs in process algebra. We illustrate
by sketching the case for client parallel composition. Let f be the witness for
P ∼� lts(u). The proof proceeds by constructing a “product” refinement S relation
of the identity on the states of P with f , i.e.: f(q) = q′ implies 〈p, q〉 S 〈p, q′〉.

Thus, an sec implementation can be replaced by the specification.

Theorem 4 (Abstraction). If u is sec for Σ, then P |� lts(u) ∼� P |� lts(Σ).
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6 A Replicated Graph Algorithm

We describe a graph implemented with sets for vertices and edges, as specified
by Shapiro et al. (2011a). The graph maintains the invariant that the vertices
of an edge are also part of the graph. Thus, an edge may be added only if
the corresponding vertices exist; conversely, a vertex may be removed only if
it supports no edge. In the case of a concurrent addition of an edge with the
deletion of either of its vertices, the deletion takes precedence.

The vertices v, w, . . . are drawn from some universe U . An edge e, e′, . . . is
a pair of vertices. Let vert(e) = {v, w} be the vertices of edge e = (v, w). The
vocabulary of the set specification includes mutators for the addition and removal
of vertices and edges and non-mutators for membership tests.

M = {+v, -v, +(v,w), -(v,w) | v, w ∈ U}
M = {✓v, ✗v, ✓(v,w), ✗(v,w) | v, w ∈ U}
# = {(e, v), (v, e) | v ∈ vert(e)} ∪ {(e, e′) | vert(e) ∩ vert(e′) �= ∅}

Valid graph specification strings answer queries like sets. In addition, we require
the following.

– Vertices and edges added at most once: Each add label is unique.
– Removal of a vertex or edge is preceded by a corresponding add.
– Vertices are added before they are mentioned in any edges: If σj = +(v,w),

or σj = -(v,w) there exists i, i′ < j such that: σi = +v, σi′
= +w.

– Vertices are removed only after they are mentioned in edges: If σj = +(v,w),
or σj = -(v,w), then for all i < j: σi �= -v and σi �= -w.

Graph Implementation. We rewrite the graph program of Shapiro et al. (2011a)
in a more abstract form. Our distributed graph implementation is written as a
client of two replicate set: for vertices (V) and for edges (E). The implementation
uses usets, which require that an element be added at most once and that
each remove causally follow the corresponding add. Here we show the graph
implementation for various methods as client code that runs at each replica. At
each replica, the code accesses its local copy of the usets. All the message passing
needed to propagate the updates is handled by the uset implementations of the
sets V, E. For several methods, we list preconditions, which prescribe the natural
assumptions that need to satisfied when these client methods are invoked. For
example, an edge operation requires the presence of the vertices at the current
replica.

addVertex(v) removeVertex(v) bool ?(v)
Pre: fresh(v) Pre: V.?(v) return V.?(v)
V.add(v) V.remove(v)

addEdge(v,w) removeEdge(v,w) bool ?(v,w)
Pre: V.?(v),V?(w) Pre: V.?(v),V?(w) if V.?(v)
Pre: fresh((v,w)) Pre: E.?((v,w)) then return E.?((v,w))
E.add((v,w)) E.remove((v,w)) else return false
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We assume a causal transition system (as needed in Shapiro et al. (2011a)).

Correctness Using the Set Specification. We first show the correctness of the
graph algorithm, using the set specification for the vertex and edge sets. We
then apply the abstraction and composition theorems to show the correctness of
the algorithm using a set implementation.

Let u be a lvo generated in an execution of the graph implementation. The
preconditions ensure that u has the following properties:

(a) For any v, +v is never ordered after -v, and likewise for e.
(b) -(v,w) or +(v,w) is never ordered after -v or -w.
(c) -(v,w) or +(v,w) is always ordered after some +v and +w.

Define σ1, σ2 and σ3 as follows.

– All elements of σ1 are of the form +v. σ1 exists by (c) above.
– All elements of σ3 are of the form -v. σ3 exists by (b) above.
– For each edge (v, w) that is accessed in u, let σ(v,w) be any interleaving of the

events involving (v, w) in u such that no +(v,w) occurs after any -(v,w) in
σ(v,w). σ(v,w) exists by (a) above. σ2 is any interleaving of all the s(v,w).

Then u is sec with witness σu = σ1σ2σ3.

Full Correctness of the Implementation. We now turn to proving the correctness
of the algorithm when the two sets are replaced by their implementations.

Consider two (distributed implementations of) separate and independent sets
for vertices and edges, i.e. LΣ1 ∩LΣ2 = ∅. Suppose we have two implementations,
each of which is correct individually: lts(Ui) ∼� lts(Σi). By composition, we have
that they are correct when composed together: U1 � U2 ∼� Σ1 � Σ2. Let P be
the graph implementation, which is a client of the two sets. By abstraction, we
know that P |� (Σ1 � Σ2) ∼� T implies P |� (U1 � U2) ∼� T . By congruence, we
deduce:

(P |� (Σ1 � Σ2))\(LΣ1 ∪ LΣ2) ∼� T implies (P |� (U1 � U2))\(LΣ1 ∪ LΣ2) ∼� T.

Thus, in order to validate the full graph implementation, it is sufficient to estab-
lish the correctness of the graph client when interacting with the specification of
the two independent sets for edges and vertices, which we have already done in
the previous treatment of abstract correctness.

7 Conclusions

We have provided a definition of strong eventual consistency that captures valid-
ity with respect to a sequential specification. Our definition reflects an attempt
to resolve the tension between expressivity (cover the extant examples in the
literature) and facilitating reasoning (by retaining a direct relationship with the
sequential specification). The notion of concurrent specification developed by
Burckhardt et al. (2014) has been used to prove the validity of several replicated
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data structure implementations. In future work, we would like to discover suffi-
cient conditions relating concurrent and sequential specifications such that any
implementation that is correct under the concurrent specification (as defined by
Burckhardt et al. (2014)) will also be correct under the sequential counterpart
(as defined here).
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Abstract. Many theorem provers can generate functional programs
from definitions or proofs. However, this code generation needs to be
trusted. Except for the HOL4 system, which has a proof producing
code generator for a subset of ML. We go one step further and provide
a verified compiler from Isabelle/HOL to CakeML. More precisely we
combine a simple proof producing translation of recursion equations in
Isabelle/HOL into a deeply embedded term language with a fully verified
compilation chain to the target language CakeML.

Keywords: Isabelle · CakeML · Compiler
Higher-order term rewriting

1 Introduction

Many theorem provers have the ability to generate executable code in some (typ-
ically functional) programming language from definitions, lemmas and proofs
(e.g. [6,8,9,12,16,27,37]). This makes code generation part of the trusted kernel
of the system. Myreen and Owens [30] closed this gap for the HOL4 system: they
have implemented a tool that translates from HOL4 into CakeML, a subset of
SML, and proves a theorem stating that a result produced by the CakeML code
is correct w.r.t. the HOL functions. They also have a verified implementation of
CakeML [24,40]. We go one step further and provide a once-and-for-all verified
compiler from (deeply embedded) function definitions in Isabelle/HOL [32,33]
into CakeML proving partial correctness of the generated CakeML code w.r.t.
the original functions. This is like the step from dynamic to static type checking.
It also means that preconditions on the input to the compiler are explicitly given
in the correctness theorem rather than implicitly by a failing translation. To the
best of our knowledge this is the first verified (as opposed to certifying) compiler
from function definitions in a logic into a programming language.

Our compiler is composed of multiple phases and in principle applicable to
other languages than Isabelle/HOL or even HOL:

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 999–1026, 2018.
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– We erase types right away. Hence the type system of the source language is
irrelevant.

– We merely assume that the source language has a semantics based on equa-
tional logic.

The compiler operates in three stages:

1. The preprocessing phase eliminates features that are not supported by our
compiler. Most importantly, dictionary construction eliminates occurrences
of type classes in HOL terms. It introduces dictionary datatypes and new
constants and proves the equivalence of old and new constants (Sect. 7).

2. The deep embedding lifts HOL terms into terms of type term, a HOL model
of HOL terms. For each constant c (of arbitrary type) it defines a constant c′

of type term and proves a theorem that expresses equivalence (Sect. 3).
3. There are multiple compiler phases that eliminate certain constructs from

the term type, until we arrive at the CakeML expression type. Most phases
target a different intermediate term type (Sect. 5).

The first two stages are preprocessing, are implemented in ML and produce
certificate theorems. Only these stages are specific to Isabelle. The third (and
main) stage is implemented completely in the logic HOL, without recourse to
ML. Its correctness is verified once and for all.1

2 Related Work

There is existing work in the Coq [2,15] and HOL [30] communities for proof
producing or verified extraction of functions defined in the logic. Anand et al. [2]
present work in progress on a verified compiler from Gallina (Coq’s specification
language) via untyped intermediate languages to CompCert C light. They plan
to connect their extraction routine to the CompCert compiler [26].

Translation of type classes into dictionaries is an important feature of Haskell
compilers. In the setting of Isabelle/HOL, this has been described by Wenzel
[44] and Krauss et al. [23]. Haftmann and Nipkow [17] use this construction to
compile HOL definitions into target languages that do not support type classes,
e.g. Standard ML and OCaml. In this work, we provide a certifying translation
that eliminates type classes inside the logic.

Compilation of pattern matching is well understood in literature [3,36,38].
In this work, we contribute a transformation of sets of equations with pattern
matching on the left-hand side into a single equation with nested pattern match-
ing on the right-hand side. This is implemented and verified inside Isabelle.

Besides CakeML, there are many projects for verified compilers for functional
programming languages of various degrees of sophistication and realism (e.g.

1 All Isabelle definitions and proofs can be found on the paper website: https://
lars.hupel.info/research/codegen/, or archived as https://doi.org/10.5281/zenodo.
1167616.
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[4,11,14]). Particularly modular is the work by Neis et al. [31] on a verified
compiler for an ML-like imperative source language. The main distinguishing
feature of our work is that we start from a set of higher-order recursion equations
with pattern matching on the left-hand side rather than a lambda calculus with
pattern matching on the right-hand side. On the other hand we stand on the
shoulders of CakeML which allows us to bypass all complications of machine
code generation. Note that much of our compiler is not specific to CakeML and
that it would be possible to retarget it to, for example, Pilsner abstract syntax
with moderate effort.

Finally, Fallenstein and Kumar [13] have presented a model of HOL inside
HOL using large cardinals, including a reflection proof principle.

3 Deep Embedding

Starting with a HOL definition, we derive a new, reified definition in a deeply
embedded term language depicted in Fig. 1a. This term language corresponds
closely to the term datatype of Isabelle’s implementation (using de Bruijn indices
[10]), but without types and schematic variables.

To establish a formal connection between the original and the reified defini-
tions, we use a logical relation, a concept that is well-understood in literature
[20] and can be nicely implemented in Isabelle using type classes. Note that the
use of type classes here is restricted to correctness proofs; it is not required for
the execution of the compiler itself. That way, there is no contradiction to the
elimination of type classes occurring in a previous stage.

Notation. We abbreviate App t u to t $ u and Abs t to Λ t. Other term types
introduced later in this paper use the same conventions. We reserve λ for abstrac-
tions in HOL itself. Typing judgments are written with a double colon: t :: τ .

Embedding Operation. Embedding is implemented in ML. We denote this oper-
ation using angle brackets: 〈t〉, where t is an arbitrary HOL expression and the
result 〈t〉 is a HOL value of type term. It is a purely syntactic transformation,
without preliminary evaluation or reduction, and it discards type information.
The following examples illustrate this operation and typographical conventions
concerning variables and constants:

〈x〉 = Free "x" 〈f〉 = Const "f" 〈λx. f x〉 = Λ (〈f〉 $ Bound 0)

Small-Step Semantics. Figure 1b specifies the small-step semantics for term. It is
reminiscent of higher-order term rewriting, and modelled closely after equality in
HOL. The basic idea is that if the proposition t = u can be proved equationally
in HOL (without symmetry), then R � 〈t〉 −→∗ 〈u〉 holds (where R :: (term ×
term) set). We call R the rule set. It is the result of translating a set of defining
equations lhs = rhs into pairs (〈lhs〉 , 〈rhs〉) ∈ R.
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datatype term =
Const string |
Free string |
Abs term |
Bound nat |
App term term

(a) Abstract syntax of
de Bruijn terms

Step
(lhs, rhs) ∈ R match lhs t = Some σ

R � t −→ subst σ rhs

Beta
closed t′

R � (Λt) $ t′ −→ t[t′]
Fun

R � t −→ t′

R � t $ u −→ t′ $ u

Arg
R � u −→ u′

R � t $ u −→ t $ u′

(b) Small-step semantics

Fig. 1. Basic syntax and semantics of the term type

Rule Step performs a rewrite step by picking a rewrite rule from R and
rewriting the term at the root. For that purpose, match and subst are (mostly)
standard first-order matching and substitution (see Sect. 4 for details).

Rule Beta performs β-reduction. Type term represents bound variables by
de Bruijn indices. The notation t[t′] represents the substitution of the outermost
bound variable in t with t′.

Our semantics does not constitute a fully-general higher-order term rewrit-
ing system, because we do not allow substitution under binders. For de Bruijn
terms, this would pose no problem, but as soon as we introduce named bound
variables, substitution under binders requires dealing with capture. To avoid this
altogether, all our semantics expect terms that are substituted into abstractions
to be closed. However, this does not mean that we restrict ourselves to any par-
ticular evaluation order. Both call-by-value and call-by-name can be used in the
small-step semantics. But later on, the target semantics will only use call-by-
value.

Embedding Relation. We denote the concept that an embedded term t corre-
sponds to a HOL term a of type τ w.r.t. rule set R with the syntax R � t ≈ a.
If we want to be explicit about the type, we index the relation: ≈τ .

For ground types, this can be defined easily. For example, the following two
rules define ≈nat:

R � 〈0〉 ≈nat 0
R � 〈t〉 ≈nat n

R � 〈Suc t〉 ≈nat Suc n

Definitions of ≈ for arbitrary datatypes without nested recursion can be derived
mechanically in the same fashion as for nat, where they constitute one-to-
one relations. Note that for ground types, ≈ ignores R. The reason why ≈ is
parametrized on R will become clear in a moment.

For function types, we follow Myreen and Owen’s approach [30]. The state-
ment R � t ≈ f can be interpreted as “t $ 〈a〉 can be rewritten to 〈f a〉 for
all a”. Because this might involve applying a function definition from R, the ≈
relation must be indexed by the rule set. As a notational convenience, we define
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another relation R � t ↓ x to mean that there is a t′ such that R � t −→∗ t′ and
R � t′ ≈ x. Using this notation, we formally define ≈ for functions as follows:

R � t ≈ f ↔ (∀u x. R � u ↓ x → R � t $ u ↓ f x)

Example. As a running example, we will use the map function on lists:

map f [] = []
map f (x # xs) = f x # map f xs

The result of embedding this function is a set of rules map′:

map’ =
{(Const ”List.list.map” $ Free ”f” $ (Const ”List.list.Cons” $ Free ”x21” $ Free ”x22”),

Const ”List.list.Cons” $ (Free ”f” $ Free ”x21”) $ . . .),
(Const ”List.list.map” $ Free ”f” $ Const ”List.list.Nil”,

Const ”List.list.Nil”)}
together with the theorem map′ � Const "List.list.map" ↓ map, which is
proven by simple induction over map. Constant names like "List.list.map"
come from the fully-qualified internal names in HOL.

The induction principle for the proof arises from the use of the fun command
that is used to define recursive functions in HOL [22]. But the user is also allowed
to specify custom equations for functions, in which case we will use heuristics
to generate and prove the appropriate induction theorem. For simplicity, we
will use the term (defining) equation uniformly to refer to any set of equations,
either default ones or ones specified by the user. Embedding partially-specified
functions – in particular, proving the certificate theorem about them – is cur-
rently not supported. In the future, we plan to leverage the domain predicate as
produced by fun to generate conditional theorems.

4 Terms, Matching and Substitution

The compiler transforms the initial term type (Fig. 1a) through various inter-
mediate stages. This section gives an overview and introduces necessary
terminology.

Preliminaries. The function arrow in HOL is ⇒. The cons operator on lists is
the infix #.

Throughout the paper, the concept of mappings is pervasive: We use the
type notation α ⇀ β to denote a function α ⇒ β option. In certain contexts,
a mapping may also be called an environment. We write mapping literals using
brackets: [a ⇒ x, b ⇒ y, . . .]. If it is clear from the context that σ is defined on
a, we often treat the lookup σ a as returning an x ::β.

The functions dom :: (α ⇀ β) ⇒ α set and range :: (α ⇀ β) ⇒ β set return
the domain and range of a mapping, respectively.
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Dropping entries from a mapping is denoted by σ − k, where σ is a mapping
and k is either a single key or a set of keys. We use σ′ ⊆ σ to denote that σ′ is
a sub-mapping of σ, that is, dom σ′ ⊆ dom σ and ∀a ∈ dom σ′. σ′ a = σ a.

Merging two mappings σ and ρ is denoted with σ ++ ρ. It constructs a new
mapping with the union domain of σ and ρ. Entries from ρ override entries from
σ. That is, ρ ⊆ σ ++ ρ holds, but not necessarily σ ⊆ σ ++ ρ.

All mappings and sets are assumed to be finite. In the formalization, this is
enforced by using subtypes of ⇀ and set. Note that one cannot define datatypes
by recursion through sets for cardinality reasons. However, for finite sets, it
is possible. This is required to construct the various term types. We leverage
facilities of Blanchette et al.’s datatype command to define these subtypes [7].

Standard Functions. All type constructors that we use (⇀, set, list, option, . . . )
support the standard operations map and rel. For lists, map is the regular covariant
map. For mappings, the function has the type (β ⇒ γ) ⇒ (α ⇀ β) ⇒ (α ⇀ γ).
It leaves the domain unchanged, but applies a function to the range of the
mapping.

Function relτ lifts a binary predicate P ::α ⇒ α ⇒ bool to the type construc-
tor τ . We call this lifted relation the relator for a particular type.

For datatypes, its definition is structural, for example:

rellist P [] []
rellist P xs ys P x y

rellist P (x # xs) (y # ys)

For sets and mappings, the definition is a little bit more subtle.

Definition 1 (Set relator). For each element a ∈ A, there must be a corre-
sponding element b ∈ B such that P a b, and vice versa. Formally:

relset P A B ↔ (∀x ∈ A. ∃y ∈ B. P x y) ∧ (∀y ∈ B. ∃x ∈ A. P x y)

Definition 2 (Mapping relator). For each a, m a and n a must be related
according to reloption P . Formally:

relmapping P m n ↔ (∀a. reloption P (m a) (n a))

Term Types. There are four distinct term types: term, nterm, pterm, and sterm.
All of them support the notions of free variables, matching and substitution. Free
variables are always a finite set of strings. Matching a term against a pattern
yields an optional mapping of type string ⇀ α from free variable names to terms.

Note that the type of patterns is itself term instead of a dedicated pattern
type. The reason is that we have to subject patterns to a linearity constraint
anyway and may use this constraint to carve out the relevant subset of terms:

Definition 3. A term is linear if there is at most one occurrence of any variable,
it contains no abstractions, and in an application f $ x, f must not be a free
variable. The HOL predicate is called linear :: term ⇒ bool.
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Because of the similarity of operations across the term types, they are all
instances of the term type class. Note that in Isabelle, classes and types live
in different namespaces. The term type and the term type class are separate
entities.

Definition 4. A term type τ supports the operations match :: term ⇒ τ ⇒
(string ⇀ τ), subst :: (string ⇀ τ) ⇒ τ ⇒ τ and frees :: τ ⇒ string set. We
also define the following derived functions:

– matchs matches a list of patterns and terms sequentially, producing a single
mapping

– closed t is an abbreviation for frees t = ∅
– closed σ is an overloading of closed, denoting that all values in a mapping are

closed

Additionally, some (obvious) axioms have to be satisfied. We do not strive to
fully specify an abstract term algebra. Instead, the axioms are chosen according
to the needs of this formalization.

A notable deviation from matching as discussed in term rewriting literature
is that the result of matching is only well-defined if the pattern is linear.

Definition 5. An equation is a pair of a pattern (left-hand side) and a term
(right-hand side). The pattern is of the form f $p1$. . .$pn, where f is a constant
(i.e. of the form Const name). We refer to both f or name interchangeably as
the function symbol of the equation.

Following term rewriting terminology, we sometimes refer to an equation as rule.

4.1 De Bruijn terms (term)

The definition of term is almost an exact copy of Isabelle’s internal term type,
with the notable omissions of type information and schematic variables (Fig. 1a).
The implementation of β-reduction is straightforward via index shifting of bound
variables.

4.2 Named Bound Variables (nterm)

datatype nterm = Nconst string | Nvar string | Nabs string nterm | Napp nterm nterm

The nterm type is similar to term, but removes the distinction between bound
and free variables. Instead, there are only named variables. As mentioned in the
previous section, we forbid substitution of terms that are not closed in order
to avoid capture. This is also reflected in the syntactic side conditions of the
correctness proofs (Sect. 5.1).
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4.3 Explicit Pattern Matching (pterm)

datatype pterm =
Pconst string | Pvar string | Pabs ((term × pterm) set) | Papp pterm pterm

Functions in HOL are usually defined using implicit pattern matching, that is,
the terms pi occurring on the left-hand side 〈f p1 . . . pn〉 of an equation must
be constructor patterns. This is also common among functional programming
languages like Haskell or OCaml. CakeML only supports explicit pattern match-
ing using case expressions. A function definition consisting of multiple defining
equations must hence be translated to the form f = λx. case x of . . .. The
elimination proceeds by iteratively removing the last parameter in the block of
equations until none are left.

In our formalization, we opted to combine the notion of abstraction and case
expression, yielding case abstractions, represented as the Pabs constructor. This
is similar to the fn construct in Standard ML, which denotes an anonymous
function that immediately matches on its argument [28]. The same construct
also exists in Haskell with the LambdaCase language extension. We chose this
representation mainly for two reasons: First, it allows for a simpler language
grammar because there is only one (shared) constructor for abstraction and case
expression. Second, the elimination procedure outlined above does not have to
introduce fresh names in the process. Later, when translating to CakeML syntax,
fresh names are introduced and proved correct in a separate step.

The set of pairs of pattern and right-hand side inside a case abstraction is
referred to as clauses. As a short-hand notation, we use Λ{p1 ⇒ t1, p2 ⇒ t2, . . .}.

4.4 Sequential Clauses (sterm)

datatype sterm =
Sconst string | Svar string | Sabs ((term × sterm) list) | Sapp sterm sterm

In the term rewriting fragment of HOL, the order of rules is not significant. If a
rule matches, it can be applied, regardless when it was defined or proven. This
is reflected by the use of sets in the rule and term types. For CakeML, the rules
need to be applied in a deterministic order, i.e. sequentially. The sterm type only
differs from pterm by using list instead of set. Hence, case abstractions use list
brackets: Λ[p1 ⇒ t1, p2 ⇒ t2, . . .].

4.5 Irreducible Terms (value)

CakeML distinguishes between expressions and values. Whereas expressions may
contain free variables or β-redexes, values are closed and fully evaluated. Both
have a notion of abstraction, but values differ from expressions in that they
contain an environment binding free variables.

Consider the expression (λx.λy.x) (λz.z), which is rewritten (by β-reduction)
to λy.λz.z. Note how the bound variable x disappears, since it is replaced. This
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is contrary to how programming languages are usually implemented: evaluation
does not happen by substituting the argument term t for the bound variable
x, but by recording the binding x �→ t in an environment [24]. A pair of an
abstraction and an environment is usually called a closure [25,41].

In CakeML, this means that evaluation of the above expression results in the
closure

(λy.x, ["x" �→ (λz.z, [])])

Note the nested structure of the closure, whose environment itself contains a
closure.

To reflect this in our formalization, we introduce a type value of values (expla-
nation inline):

datatype value =

(∗ constructor value: a data constructor applied to multiple values ∗)

Vconstr string (value list) |
(∗ closure: clauses combined with an environment mapping variables to values ∗)

Vabs ((term × sterm) list) (string ⇀ value) |
(∗ recursive closures: a group of mutually recursive function bodies with an environment ∗)

Vrecabs (string ⇀ ((term × sterm) list)) string (string ⇀ value)

The above example evaluates to the closure:

Vabs
[ 〈y〉 ⇒ 〈x〉 ] [

"x" �→ Vabs [〈z〉 ⇒ 〈z〉] []
]

The third case for recursive closures only becomes relevant when we conflate
variables and constants. As long as the rule set rs is kept separate, recursive calls
are straightforward: the appropriate definition for the constant can be looked up
there. CakeML knows no such distinction between constants and variables, hence
everything has to reside in a single environment σ.

Consider this example of odd and even:

odd 0 = False even 0 = True

odd (Suc n) = even n even (Suc n) = odd n

When evaluating the term odd k, the definitions of even and odd themselves
must be available in the environment captured in the definition of odd. However,
it would be cumbersome in HOL to construct such a Vabs that refers to itself.
Instead, we capture the expressions used to define odd and even in a recursive
closure. Other encodings might be possible, but since we are targeting CakeML,
we are opting to model it in a similar way as its authors do.

For the above example, this would result in the following global environment:

["odd" �→ Vrecabs css "odd" [], "even" �→ Vrecabs css "even" []]

where css = ["odd" �→ [〈0〉 ⇒ 〈False〉 , 〈Suc n〉 ⇒ 〈even n〉],
"even" �→ [〈0〉 ⇒ 〈True〉 , 〈Suc n〉 ⇒ 〈odd n〉]]
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Note that in the first line, the right-hand sides are values, but in css, they
are expressions. The additional string argument of Vrecabs denotes the selected
function. When evaluating an application of a recursive closure to an argument
(β-reduction), the semantics adds all constituent functions of the closure to the
environment used for recursive evaluation.

5 Intermediate Semantics and Compiler Phases

In this section, we will discuss the progression from de Bruijn based term lan-
guage with its small-step semantics given in Fig. 1a to the final CakeML seman-
tics. The compiler starts out with terms of type term and applies multiple
phases to eliminate features that are not present in the CakeML source language.

de Bruijn
terms

Named bound
variables

Explicit pattern
matching

Sequential
clauses

Evaluation
semantics

§5.2

§5.3

§5.4

§5.6

constructors :: string set (shared by all phases)
R :: (term × term) set, t, t′ :: term
R � t −→ t′ (Figure 1b)

R :: (term × nterm) set, t, t′ :: nterm
R � t −→ t′ (Figure 3)

R :: (string × pterm) set, t, t′ :: pterm
R � t −→ t′ (Figure 4)

rs :: (string × sterm) list, t, t′ :: sterm
rs � t −→ t′ (Figure 5)

rs :: (string × sterm) list, σ :: string ⇀ sterm
t, u :: sterm
rs, σ � t ↓ u (Figure 6)

§5.5

rs :: (string × value) list, σ :: string ⇀ value
t :: sterm, u :: value
rs, σ � t ↓ u (Figure 7)

σ :: string ⇀ value
t :: sterm, u :: value
σ � t ↓ u (Figure 8)

§5.7

Phase/Refinement Types & Semantics

Theorem 1

see §5.3

see §5.4

Theorem 2

Theorem 1

Theorem 4

compiler phase; semantics refinement
semantics belonging to the phase; semantics relation

Fig. 2. Intermediate semantics and compiler phases
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Types term, nterm and pterm each have a small-step semantics only. Type sterm
has a small-step and several intermediate big-step semantics that bridge the gap
to CakeML. An overview of the intermediate semantics and compiler phases is
depicted in Fig. 2. The left-hand column gives an overview of the different phases.
The right-hand column gives the types of the rule set and the semantics for each
phase; you may want to skip it upon first reading.

Step
(lhs, rhs) ∈ R match lhs t = Some σ

R � t −→ subst σ rhs
Beta

closed t′

R � (Λx. t) $ t′ −→ subst
[
x �→ t′] t

Fig. 3. Small-step semantics for nterm with named bound variables

5.1 Side Conditions

All of the following semantics require some side conditions on the rule set. These
conditions are purely syntactic. As an example we list the conditions for the
correctness of the first compiler phase:

– Patterns must be linear, and constructors in patterns must be fully applied.
– Definitions must have at least one parameter on the left-hand side (Sect. 5.6).
– The right-hand side of an equation refers only to free variables occurring in

patterns on the left-hand side and contain no dangling de Bruijn indices.
– There are no two defining equations lhs = rhs1 and lhs = rhs2 such that

rhs1 �= rhs2.
– For each pair of equations that define the same constant, their arity must be

equal and their patterns must be compatible (Sect. 5.3).
– There is at least one equation.
– Variable names occurring in patterns must not overlap with constant names

(Sect. 5.7).
– Any occurring constants must either be defined by an equation or be a con-

structor.

The conditions for the subsequent phases are sufficiently similar that we do not
list them again.

In the formalization, we use named contexts to fix the rules and assump-
tions on them (locales in Isabelle terminology). Each phase has its own locale,
together with a proof that after compilation, the preconditions of the next phase
are satisfied. Correctness proofs assume the above conditions on R and similar
conditions on the term that is reduced. For brevity, this is usually omitted in
our presentation.



1010 L. Hupel and T. Nipkow

5.2 Naming Bound Variables: From term to nterm

Isabelle uses de Bruijn indices in the term language for the following two rea-
sons: For substitution, there is no need to rename bound variables. Additionally,
α-equivalent terms are equal. In implementations of programming languages,
these advantages are not required: Typically, substitutions do not happen inside
abstractions, and there is no notion of equality of functions. Therefore CakeML
uses named variables and in this compilation step, we get rid of de Bruijn indices.

The “named” semantics is based on the nterm type. The rules that are
changed from the original semantics (Fig. 1b) are given in Fig. 3 (Fun and Arg
remain unchanged). Notably, β-reduction reuses the substitution function.

For the correctness proof, we need to establish a correspondence between
terms and nterms. Translation from nterm to term is trivial: Replace bound
variables by the number of abstractions between occurrence and where they
were bound in, and keep free variables as they are. This function is called
nterm to term.

The other direction is not unique and requires introduction of fresh names
for bound variables. In our formalization, we have chosen to use a monad to
produce these names. This function is called term to nterm. We can also prove
the obvious property nterm to term (term to nterm t) = t, where t is a term
without dangling de Bruijn indices.

Generation of fresh names in general can be thought of as picking a string
that is not an element of a (finite) set of already existing names. For Isabelle,
the Nominal framework [42,43] provides support for reasoning over fresh names,
but unfortunately, its definitions are not executable.

Instead, we chose to model generation of fresh names as a monad α fresh
with the following primitive operations in addition to the monad operations:

run:: α fresh ⇒ string set ⇒ α

fresh name:: string fresh

In our implementation, we have chosen to represent α fresh as roughly isomorphic
to the state monad.

Compilation of a rule set proceeds by translation of the right-hand side of all
rules:

compile R = {(p, term to nterm t) | (p, t) ∈ R}
The left-hand side is left unchanged for two reasons: function match expects an
argument of type term (see Sect. 4), and patterns do not contain abstractions or
bound variables.

Theorem 1 (Correctness of compilation). Assuming a step can be taken
with the compiled rule set, it can be reproduced with the original rule set.

compile R � t −→ u closed t

R � nterm to term t −→ nterm to term u

We prove this by induction over the semantics (Fig. 3).

www.dbooks.org

https://www.dbooks.org/


A Verified Compiler from Isabelle/HOL to CakeML 1011

Beta
(pat , rhs) ∈ C match pat t = Some σ closed t

R (Λ C) $ t subst σ rhs

Step’
(name, rhs) ∈ R

R Pconst name rhs

Fig. 4. Small-step semantics for pterm with pattern matching

5.3 Explicit Pattern Matching: From nterm to pterm

Usually, functions in HOL are defined using implicit pattern matching, that is,
the left-hand side of an equation is of the form 〈f p1 . . . pn〉, where the pi are
patterns over datatype constructors. For any given function f, there may be
multiple such equations. In this compilation step, we transform sets of equations
for f defined using implicit pattern matching into a single equation for f of the
form 〈f〉 = Λ C, where C is a set of clauses.

The strategy we employ currently requires successive elimination of a single
parameter from right to left, in a similar fashion as Slind’s pattern matching
compiler [38, Sect. 3.3.1]. Recall our running example (map). It has arity 2. We
omit the brackets 〈 〉 for brevity. First, the list parameter gets eliminated:

map f = λ [] ⇒ []
| x # xs ⇒ f x # map f xs

Finally, the function parameter gets eliminated:

map = λ f ⇒ (
λ [] ⇒ []

| x # xs ⇒ f x # map f xs
)

This has now arity 0 and is defined by a twice-nested abstraction.

Semantics. The target semantics is given in Fig. 4 (the Fun and Arg rules
from previous semantics remain unchanged). We start out with a rule set R that
allows only implicit pattern matching. After elimination, only explicit pattern
matching remains. The modified Step rule merely replaces a constant by its
definition, without taking arguments into account.

Restrictions. For the transformation to work, we need a strong assumption
about the structure of the patterns pi to avoid the following situation:

map f [] = []
map g (x # xs) = g x # map g xs

Through elimination, this would turn into:

map = λ f ⇒ (
λ [] ⇒ []

)

| g ⇒ (
λ x # xs ⇒ f x # map f xs

)
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Step
(name, rhs) ∈ R

R Sconst name rhs
Beta

first match cs t = Some (σ, rhs) closed t

R (Λ cs) $ t subst σ rhs

Fig. 5. Small-step semantics for sterm

Even though the original equations were non-overlapping, we suddenly
obtained an abstraction with two overlapping patterns. Slind observed a similar
problem [38, Sect. 3.3.2] in his algorithm. Therefore, he only permits uniform
equations, as defined by Wadler [36, Sect. 5.5]. Here, we can give a formal char-
acterization of our requirements as a computable function on pairs of patterns:

fun pat compat :: term ⇒ term ⇒ bool where
pat compat (t1 $ t2) (u1 $ u2) ↔ pat compat t1 u1 ∧ (t1 = u1 → pat compat t2 u2)
pat compat t u ↔ (overlapping t u → t = u)

This compatibility constraint ensures that any two overlapping patterns (of the
same column) pi,k and pj,k are equal and are thus appropriately grouped together
in the elimination procedure. We require all defining equations of a constant to be
mutually compatible. Equations violating this constraint will be flagged during
embedding (Sect. 3), whereas the pattern elimination algorithm always succeeds.

While this rules out some theoretically possible pattern combinations (e.g.
the diagonal function [36, Sect. 5.5]), in practice, we have not found this to be a
problem: All of the function definitions we have tried (Sect. 8) satisfied pattern
compatibility (after automatic renaming of pattern variables). As a last resort,
the user can manually instantiate function equations. Although this will always
lead to a pattern compatible definition, it is not done automatically, due to the
potential blow-up.

Discussion. Because this compilation phase is both non-trivial and has some
minor restrictions on the set of function definitions that can be processed, we
may provide an alternative implementation in the future. Instead of eliminat-
ing patterns from right to left, patterns may be grouped in tuples. The above
example would be translated into:

map = λ (f, []) ⇒ []
| (f, x # xs) ⇒ f x # map f xs

We would then leave the compilation of patterns for the CakeML compiler, which
has no pattern compatibility restriction.

The obvious disadvantage however is that this would require the knowledge
of a tuple type in the term language which is otherwise unaware of concrete
datatypes.

5.4 Sequentialization: From pterm to sterm

The semantics of pterm and sterm differ only in rule Step and Beta. Figure 5
shows the modified rules. Instead of any matching clause, the first matching
clause in a case abstraction is picked.
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For the correctness proof, the order of clauses does not matter: we only need
to prove that a step taken in the sequential semantics can be reproduced in the
unordered semantics. As long as no rules are dropped, this is trivially true. For
that reason, the compiler orders the clauses lexicographically. At the same time
the rules are also converted from type (string × pterm) set to (string × sterm) list.
Below, rs will always denote a list of the latter type.

Const
(name, rhs) ∈ rs

rs, σ � Sconst name ↓ rhs
Var

σ name = Some v

rs, σ � Svar name ↓ v

Abs
rs, σ � Λ cs ↓ Λ [(pat , subst (σ − frees pat) t | (pat , t) ← cs]

Comb

rs, σ � t ↓ Λ cs
rs, σ � u ↓ u′ first match cs u′ = Some (σ′, rhs) rs, σ ++ σ′ � rhs ↓ v

rs, σ � t $ u ↓ v

Constr
name ∈ constructors rs, σ � t1 ↓ u1 · · · rs, σ � tn ↓ un

rs, σ Sconst name $ t1 $ . . . $ tn Sconst name $ u1 $ . . . $ un

Fig. 6. Big-step semantics for sterm

5.5 Big-Step Semantics for sterm

This big-step semantics for sterm is not a compiler phase but moves towards
the desired evaluation semantics. In this first step, we reuse the sterm type for
evaluation results, instead of evaluating to the separate type value. This allows
us to ignore environment capture in closures for now.

All previous −→ relations were parametrized by a rule set. Now the big-step
predicate is of the form rs, σ � t ↓ t′ where σ :: string ⇀ sterm is a variable
environment.

This semantics also introduces the distinction between constructors and
defined constants. If C is a constructor, the term 〈C t1 . . . tn〉 is evaluated to
〈C t′1 . . . t′n〉 where the t′i are the results of evaluating the ti.

The full set of rules is shown in Fig. 6. They deserve a short explanation:

Const. Constants are retrieved from the rule set rs.
Var. Variables are retrieved from the environment σ.
Abs. In order to achieve the intended invariant, abstractions are evaluated to

their fully substituted form.
Comb. Function application t $ u first requires evaluation of t into an abstrac-

tion Λ cs and evaluation of u into an arbitrary term u′. Afterwards, we look
for a clause matching u′ in cs, which produces a local variable environment
σ′, possibly overwriting existing variables in σ. Finally, we evaluate the right-
hand side of the clause with the combined global and local variable environ-
ment.

Constr. For a constructor application 〈C t1 . . .〉, evaluate all ti. The set con-
structors is an implicit parameter of the semantics.
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Const
(name, rhs) ∈ rs

rs, σ � Sconst name ↓ rhs
Var

σ name = Some v

rs, σ � Svar name ↓ v

Abs
rs, σ � Λ cs ↓ Vabs cs σ

Comb

rs, σ � t ↓ Vabs cs σ′

rs, σ � u ↓ v first match cs v = Some (σ′′, rhs) rs, σ′ ++ σ′′ � rhs ↓ v′

rs, σ � t $ u ↓ v′

RecComb

rs, σ � t ↓ Vrecabs css name σ′ css name = Some cs rs, σ � u ↓ v
first match cs v = Some (σ′′, rhs) rs, σ′ ++ σ′′ � rhs ↓ v′

rs, σ � t $ u ↓ v′

Constr
name ∈ constructors rs, σ � t1 ↓ v1 · · · rs, σ � tn ↓ vn

rs, σ Sconst name $ t1 $ . . . $ tn Vconstr name [v1, . . . , vn]

Fig. 7. Evaluation semantics from sterm to value

Lemma 1 (Closedness invariant). If σ contains only closed terms, frees t ⊆
dom σ and rs, σ � t ↓ t′, then t′ is closed.

Correctness of the big-step w.r.t. the small-step semantics is proved easily by
induction on the former:

Lemma 2. For any closed environment σ satisfying frees t ⊆ dom σ,

rs, σ � t ↓ u → rs � subst σ t −→∗ u

By setting σ = [], we obtain:

Theorem 2 (Correctness). rs, [] � t ↓ u ∧ closed t → rs � t −→∗ u

5.6 Evaluation Semantics: Refining sterm to value

At this point, we introduce the concept of values into the semantics, while still
keeping the rule set (for constants) and the environment (for variables) separate.
The evaluation rules are specified in Fig. 7 and represent a departure from the
original rewriting semantics: a term does not evaluate to another term but to an
object of a different type, a value. We still use ↓ as notation, because big-step
and evaluation semantics can be disambiguated by their types.

The evaluation model itself is fairly straightforward. As explained in Sect. 4.5,
abstraction terms are evaluated to closures capturing the current variable envi-
ronment. Note that at this point, recursive closures are not treated differently
from non-recursive closures. In a later stage, when rs and σ are merged, this
distinction becomes relevant.
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We will now explain each rule that has changed from the previous semantics:

Abs. Abstraction terms are evaluated to a closure capturing the current
environment.

Comb. As before, in an application t$u, t must evaluate to a closure Vabs cs σ′.
The evaluation result of u is then matched against the clauses cs, producing
an environment σ′′. The right-hand side of the clause is then evaluated using
σ′ ++ σ′′; the original environment σ is effectively discarded.

RecComb. Similar as above. Finding the matching clause is a two-step process:
First, the appropriate clause list is selected by name of the currently active
function. Then, matching is performed.

Constr. As before, for an n-ary application 〈C t1 . . .〉, where C is a data con-
structor, we evaluate all ti. The result is a Vconstr value.

Conversion Between sterm and value. To establish a correspondence between
evaluating a term to an sterm and to a value, we apply the same trick as in
Sect. 5.2. Instead of specifying a complicated relation, we translate value back
to sterm: simply apply the substitutions in the captured environments to the
clauses.

The translation rules for Vabs and Vrecabs are kept similar to the Abs rule
from the big-step semantics (Fig. 6). Roughly speaking, the big-step semantics
always keeps terms fully substituted, whereas the evaluation semantics defers
substitution.

Similarly to Sect. 5.2, we can also define a function sterm to value :: sterm ⇒
value and prove that one function is the inverse of the other.

Matching. The value type, instead of using binary function application as all
other term types, uses n-ary constructor application. This introduces a concep-
tual mismatch between (binary) patterns and values. To make the proofs easier,
we introduce an intermediate type of n-ary patterns. This intermediate type can
be optimized away by fusion.

Correctness. The correctness proof requires a number of interesting lemmas.

Lemma 3 (Substitution before evaluation). Assuming that a term t can
be evaluated to a value u given a closed environment σ, it can be evaluated to
the same value after substitution with a sub-environment σ′. Formally: rs, σ �
t ↓ u ∧ σ′ ⊆ σ → rs, σ � subst σ′ t ↓ u

This justifies the “pre-substitution” exhibited by the Abs rule in the big-step
semantics in contrast to the environment-capturing Abs rule in the evaluation
semantics.

Theorem 3 (Correctness). Let σ be a closed environment and t a term which
only contains free variables in dom σ. Then, an evaluation to a value rs, σ � t ↓ v
can be reproduced in the big-step semantics as rs′,map value to sterm σ � t ↓
value to sterm v, where rs′ = [(name, value to sterm rhs) | (name, rhs) ← rs].
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Instantiating the Correctness Theorem. The correctness theorem states
that, for any given evaluation of a term t with a given environment rs, σ con-
taining values, we can reproduce that evaluation in the big-step semantics using
a derived list of rules rs′ and an environment σ′ containing sterms that are gen-
erated by the value to sterm function. But recall the diagram in Fig. 2. In our
scenario, we start with a given rule set of sterms (that has been compiled from a
rule set of terms). Hence, the correctness theorem only deals with the opposite
direction.

It remains to construct a suitable rs such that applying value to sterm to it
yields the given sterm rule set. We can exploit the side condition (Sect. 5.1) that
all bindings define functions, not constants:

Definition 6 (Global clause set). The mapping global css :: string ⇀ ((term×
sterm) list) is obtained by stripping the Sabs constructors from all definitions and
converting the resulting list to a mapping.

For each definition with name f we define a corresponding term vf = Vrecabs
global css f []. In other words, each function is now represented by a recursive
closure bundling all functions. Applying value to sterm to vf returns the original
definition of f . Let rs denote the original sterm rule set and rsv the environment
mapping all f ’s to the vf ’s.

The variable environments σ and σ′ can safely be set to the empty mapping,
because top-level terms are evaluated without any free variable bindings.

Corollary 1 (Correctness). rsv, [] � t ↓ v → rs, [] � t ↓ value to sterm v

Note that this step was not part of the compiler (although rsv is computable)
but it is a refinement of the semantics to support a more modular correctness
proof.

Example. Recall the odd and even example from Sect. 4.5. After compilation to
sterm, the rule set looks like this:

rs = {("odd",Sabs [〈0〉 ⇒ 〈False〉 , 〈Suc n〉 ⇒ 〈even n〉]),
("even",Sabs [〈0〉 ⇒ 〈True〉 , 〈Suc n〉 ⇒ 〈odd n〉])}

This can be easily transformed into the following global clause set:

global css = ["odd" �→ [〈0〉 ⇒ 〈False〉 , 〈Suc n〉 ⇒ 〈even n〉],
"even" �→ [〈0〉 ⇒ 〈True〉 , 〈Suc n〉 ⇒ 〈odd n〉]]

Finally, rsv is computed by creating a recursive closure for each function:

rsv = ["odd" �→ Vrecabs global css "odd" [],
"even" �→ Vrecabs global css "even" []]
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Const
name /∈ constructors σ name = Some v

σ � Sconst name ↓ v

Var
σ name = Some v

σ � Svar name ↓ v
Abs

σ � Λ cs ↓ Vabs cs σ

Comb

σ � t ↓ Vabs cs σ′

σ � u ↓ v first match cs v = Some (σ′′, rhs) σ′ ++ σ′′ � rhs ↓ v′

σ � t $ u ↓ v′

RecComb

σ � t ↓ Vrecabs css name σ′

css name = Some cs σ � u ↓ v first match cs v = Some (σ′′, rhs)
σ′ ++ mk rec env css σ′ ++ σ′′ � rhs ↓ v′

σ � t $ u ↓ v′

Constr
name ∈ constructors σ � t1 ↓ v1 · · · σ � tn ↓ vn

σ Sconst name $ t1 $ . . . $ tn Vconstr name [v1, . . . , vn]

Fig. 8. ML-style evaluation semantics

5.7 Evaluation with Recursive Closures

CakeML distinguishes between non-recursive and recursive closures [30]. This
distinction is also present in the value type. In this step, we will conflate vari-
ables with constants which necessitates a special treatment of recursive closures.
Therefore we introduce a new predicate σ � t ↓ v in Fig. 8 (in contrast to the
previous rs, σ � t ↓ v). We examine the rules one by one:

Const/Var. Constant definition and variable values are both retrieved from
the same environment σ. We have opted to keep the distinction between
constants and variables in the sterm type to avoid the introduction of another
term type.

Abs. Identical to the previous evaluation semantics. Note that evaluation never
creates recursive closures at run-time (only at compile-time, see Sect. 5.6).
Anonymous functions, e.g. in the term 〈map (λx. x)〉, are evaluated to non-
recursive closures.

Comb. Identical to the previous evaluation semantics.
RecComb. Almost identical to the evaluation semantics. Additionally, for each

function (name, cs) ∈ css, a new recursive closure Vrecabs css name σ′ is
created and inserted into the environment. This ensures that after the first
call to a recursive function, the function itself is present in the environment to
be called recursively, without having to introduce coinductive environments.

Constr. Identical to the evaluation semantics.

Conflating Constants and Variables. By merging the rule set rs with the
variable environment σ, it becomes necessary to discuss possible clashes. Previ-
ously, the syntactic distinction between Svar and Sconst meant that 〈x〉 and 〈x〉
are not ambiguous: all semantics up to the evaluation semantics clearly specify
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where to look for the substitute. This is not the case in functional languages
where functions and variables are not distinguished syntactically.

Instead, we rely on the fact that the initial rule set only defines constants. All
variables are introduced by matching before β-reduction (that is, in the Comb
and RecComb rules). The Abs rule does not change the environment. Hence
it suffices to assume that variables in patterns must not overlap with constant
names (see Sect. 5.1).

Correspondence Relation. Both constant definitions and values of variables
are recorded in a single environment σ. This also applies to the environment
contained in a closure. The correspondence relation thus needs to take a different
sets of bindings in closures into account.

Hence, we define a relation ≈v that is implicitly parametrized on the rule
set rs and compares environments. We call it right-conflating, because in a cor-
respondence v ≈v u, any bound environment in u is thought to contain both
variables and constants, whereas in v, any bound environment contains only
variables.

Definition 7 (Right-conflating correspondence). We define ≈v coinduc-
tively as follows:

v1 ≈v u1 · · · vn ≈v un

Vconstr name [v1, . . . , vn] ≈v Vconstr name [u1, . . . , un]

∀x ∈ frees cs. σ1 x ≈v σ2 x ∀x ∈ consts cs. rs x ≈v σ2 x

Vabs cs σ1 ≈v Vabs cs σ2

∀cs ∈ range css. ∀x ∈ frees cs. σ1 x ≈v σ2 x
∀cs ∈ range css. ∀x ∈ consts cs. σ1 x ≈v (σ2 ++ mk rec env css σ2) x

Vrecabs css name σ1 ≈v Vrecabs css name σ2

Consequently, ≈v is not reflexive.

Correctness. The correctness lemma is straightforward to state:

Theorem 4 (Correctness). Let σ be an environment, t be a closed term and
v a value such that σ � t ↓ v. If for all constants x occurring in t, rs x ≈v σ x
holds, then there is an u such that rs, [] � t ↓ u and u ≈v v.

As usual, the rather technical proof proceeds via induction over the semantics
(Fig. 8). It is important to note that the global clause set construction (Sect. 5.6)
satisfies the preconditions of this theorem:

Lemma 4. If name is the name of a constant in rs, then

Vrecabs global css name [] ≈v Vrecabs global css name []

Because ≈v is defined coinductively, the proof of this precondition proceeds by
coinduction.
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5.8 CakeML

CakeML is a verified implementation of a subset of Standard ML [24,40]. It
comprises a parser, type checker, formal semantics and backend for machine
code. The semantics has been formalized in Lem [29], which allows export to
Isabelle theories.

Our compiler targets CakeML’s abstract syntax tree. However, we do not
make use of certain CakeML features; notably mutable cells, modules, and lit-
erals. We have derived a smaller, executable version of the original CakeML
semantics, called CupCakeML, together with an equivalence proof. The correct-
ness proof of the last compiler phase establishes a correspondence between Cup-
CakeML and the final semantics of our compiler pipeline.

For the correctness proof of the CakeML compiler, its authors have extracted
the Lem specification into HOL4 theories [1]. In our work, we directly target
CakeML abstract syntax trees (thereby bypassing the parser) and use its big-
step semantics, which we have extracted into Isabelle.2

Conversion from sterm to exp. After the series of translations described in the
earlier sections, our terms are syntactically close to CakeML’s terms (Cake.exp).
The only remaining differences are outlined below:

– CakeML does not combine abstraction and pattern matching. For that reason,
we have to translate Λ [p1 ⇒ t1, . . .] into Λx. case x of p1 ⇒ t1 | . . ., where x
is a fresh variable name. We reuse the fresh monad to obtain a bound variable
name. Note that it is not necessary to thread through already created variable
names, only existing names. The reason is simple: a generated variable is
bound and then immediately used in the body. Shadowing it somewhere in
the body is not problematic.

– CakeML has two distinct syntactic categories for identifiers (that can repre-
sent variables or functions) and data constructors. Our term types however
have two distinct syntactic categories for constants (that can represent func-
tions or data constructors) and variables. The necessary prerequisites to deal
with this are already present in the ML-style evaluation semantics (Sect. 5.7)
which conflates constants and variables, but has a dedicated Constr rule for
data constructors.

Types. During embedding (Sect. 3), all type information is erased. Yet, CakeML
performs some limited form of type checking at run-time: constructing and
matching data must always be fully applied. That is, data constructors must
always occur with all arguments supplied on right-hand and left-hand sides.

Fully applied constructors in terms can be easily guaranteed by simple pre-
processing. For patterns however, this must be ensured throughout the com-
pilation pipeline; it is (like other syntactic constraints) another side condition
imposed on the rule set (Sect. 5.1).

2 Based on a repository snapshot from March 27, 2017 (0c48672).
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The shape of datatypes and constructors is managed in CakeML’s environ-
ment. This particular piece of information is allowed to vary in closures, since
ML supports local type definitions. Tracking this would greatly complicate our
proofs. Hence, we fix a global set of constructors and enforce that all values use
exactly that one.

Correspondence Relation. We define two different correspondence relations:
One for values and one for expressions.

Definition 8 (Expression correspondence)

Var
rel e (Svar n) (Cake.Var n)

Const
n /∈ constructors

rel e (Sconst n) (Cake.Var n)

Constr
n ∈ constructors rel e t1 u1 · · ·

rel e (Sconst name $ t1 $ . . . $ tn) (Cake.Con (Some (Cake.Short name) [u1, . . . , un]))

App
rel e t1 u1 rel e t2 u2

rel e t1 $ t2 Cake.App Cake.Opapp [u1, u2]

Fun

n /∈ ids (Λ [p1 ⇒ t1, . . .]) ∪ constructors
q1 = mk ml pat p1 rel e t1 u1 · · ·

rel e (Λ [p1 ⇒ t1, . . .]) (Cake.Fun n (Cake.Mat (Cake.Var n)) [q1 ⇒ u1, . . .])

Mat
rel e t u q1 = mk ml pat p1 rel e t1 u1 · · ·
rel e (Λ [p1 ⇒ t1, . . .] $ t) (Cake.Mat u [q1 ⇒ u1, . . .])

We will explain each of the rules briefly here.

Var. Variables are directly related by identical name.
Const. As described earlier, constructors are treated specially in CakeML. In

order to not confuse functions or variables with data constructors themselves,
we require that the constant name is not a constructor.

Constr. Constructors are directly related by identical name, and recursively
related arguments.

App. CakeML does not just support general function application but also unary
and binary operators. In fact, function application is the binary operator
Opapp. We never generate other operators. Hence the correspondence is
restricted to Opapp.

Fun/Mat. Observe the symmetry between these two cases: In our term lan-
guage, matching and abstraction are combined, which is not the case in
CakeML. This means we relate a case abstraction to a CakeML function con-
taining a match, and a case abstraction applied to a value to just a CakeML
match.

There is no separate relation for patterns, because their translation is simple.
The value correspondence (rel v) is structurally simpler. In the case of con-

structor values (Vconstr and Cake.Conv), arguments are compared recursively.
Closures and recursive closures are compared extensionally, i.e. only bindings
that occur in the body are checked recursively for correspondence.
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Correctness. We use the same trick as in Sect. 5.6 to obtain a suitable envi-
ronment for CakeML evaluation based on the rule set rs.

Theorem 5 (Correctness). If the compiled expression sterm to cake t termi-
nates with a value u in the CakeML semantics, there is a value v such that
rel v v u and rs � t ↓ v.

6 Composition

The complete compiler pipeline consists of multiple phases. Correctness is justi-
fied for each phase between intermediate semantics and correspondence relations,
most of which are rather technical. Whereas the compiler may be complex and
impenetrable, the trustworthiness of the constructions hinges on the obviousness
of those correspondence relations.

Fortunately, under the assumption that terms to be evaluated and the result-
ing values do not contain abstractions – or closures, respectively – all of the
correspondence relations collapse to simple structural equality: two terms are
related if and only if one can be converted to the other by consistent renaming
of term constructors.

The actual compiler can be characterized with two functions. Firstly, the
translation of term to Cake.exp is a simple composition of each term translation
function:

definition term to cake :: term ⇒ Cake.exp where
term to cake = sterm to cake ◦ pterm to sterm ◦ nterm to pterm ◦ term to nterm

Secondly, the function that translates function definitions by composing the
phases as outlined in Fig. 2, including iterated application of pattern elimination:

definition compile :: (term × term) fset ⇒ Cake.dec where
compile = Cake.Dletrec ◦ compile srules to cake ◦ compile prules to srules ◦

compile irules to srules ◦ compile irules iter ◦ compile crules to irules ◦
consts of ◦ compile rules to nrules

Each function compile * corresponds to one compiler phase; the remaining func-
tions are trivial. This produces a CakeML top-level declaration. We prove that
evaluating this declaration in the top-level semantics (evaluate prog) results in an
environment cake sem env. But cake sem env can also be computed via another
instance of the global clause set trick (Sect. 5.6).

Equipped with these functions, we can state the final correctness theorem:

theorem compiled correct:
(∗ If CakeML evaluation of a term succeeds ... ∗)
assumes evaluate False cake sem env s (term to cake t) (s’, Rval ml v)
(∗ ... producing a constructor term without closures ... ∗)
assumes cake abstraction free ml v
(∗ ... and some syntactic properties of the involved terms hold ... ∗)
assumes closed t and ¬ shadows consts (heads rs ∪ constructors) t and

welldefined (heads rs ∪ constructors) t and wellformed t
(∗ ... then this evaluation can be reproduced in the term−rewriting semantics ∗)
shows rs 	 t →∗ cake to term ml v
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class add =
fixes plus :: ’a ⇒ ’a ⇒ ’a

definition f :: (’a::add) ⇒ ’a where
f x = plus x x

(a) Source program

datatype ’a dict add = Dict add (’a ⇒ ’a ⇒ ’a)

fun cert add :: (’a::add) dict add ⇒ bool where
cert add (Dict add pls) = (pls = plus)

fun f’ :: ’a dict add ⇒ ’a ⇒ ’a where
f’ (Dict add pls) x = pls x x

lemma f’ eq: cert add dict → f’ dict = f
<proof>

(b) Result of translation

Fig. 9. Dictionary construction in Isabelle

This theorem directly relates the evaluation of a term t in the full CakeML
(including mutability and exceptions) to the evaluation in the initial higher-order
term rewriting semantics. The evaluation of t happens using the environment
produced from the initial rule set. Hence, the theorem can be interpreted as the
correctness of the pseudo-ML expression let rec rs in t.

Observe that in the assumption, the conversion goes from our terms to
CakeML expressions, whereas in the conclusion, the conversion goes the opposite
direction.

7 Dictionary Construction

Isabelle’s type system supports type classes (or simply classes) [18,44] whereas
CakeML does not. In order to not complicate the correctness proofs, type classes
are not supported by our embedded term language either. Instead, we eliminate
classes and instances by a dictionary construction [19] before embedding into the
term language. Haftmann and Nipkow give a pen-and-paper correctness proof
of this construction [17, Sect. 4.1]. We augmented the dictionary construction
with the generation of a certificate theorem that shows the equivalence of the
two versions of a function, with type classes and with dictionaries. This section
briefly explains our dictionary construction.

Figure 9 shows a simple example of a dictionary construction. Type vari-
ables may carry class constraints (e.g. α :: add). The basic idea is that classes
become dictionaries containing the functions of that class; class instances become
dictionary definitions. Dictionaries are realized as datatypes. Class constraints
become additional dictionary parameters for that class. In the example, class
add becomes dict add; function f is translated into f ′ which takes an additional
parameter of type dict add. In reality our tool does not produce the Isabelle
source code shown in Fig. 9b but performs the constructions internally. The cor-
rectness lemma f′ eq is proved automatically. Its precondition expresses that the
dictionary must contain exactly the function(s) of class add. For any monomor-
phic instance, the precondition can be proved outright based on the certificate
theorems proved for each class instance as explained next.
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Not shown in the example is the translation of class instances. The basic
form of a class instance in Isabelle is τ ::(c1, . . . , cn) c where τ is an n-ary type
constructor. It corresponds to Haskell’s (c1 α1, . . . , cn αn) ⇒ c (τ α1 . . . αn)
and is translated into a function inst c τ ::α1 dict c1 ⇒ · · · ⇒ αn dict cn ⇒
(α1, . . . , αn) τ dict c and the following certificate theorem is proved:

cert c1 dict1 → · · · → cert cn dictn → cert c (inst c τ dict1 . . . dictn)

For a more detailed explanation of how the dictionary construction works, we
refer to the corresponding entry in the Archive of Formal Proofs [21].

8 Evaluation

We have tried out our compiler on examples from existing Isabelle formalizations.
This includes an implementation of Huffman encoding, lists and sorting, string
functions [39], and various data structures from Okasaki’s book [34], including
binary search trees, pairing heaps, and leftist heaps. These definitions can be
processed with slight modifications: functions need to be totalized (see the end
of Sect. 3). However, parts of the tactics required for deep embedding proofs
(Sect. 3) are too slow on some functions and hence still need to be optimized.

9 Conclusion

For this paper we have concentrated on the compiler from Isabelle/HOL to
CakeML abstract syntax trees. Partial correctness is proved w.r.t. the big-step
semantics of CakeML. In the next step we will link our work with the compiler
from CakeML to machine code. Tan et al. [40, Sect. 10] prove a correctness the-
orem that relates their semantics with the execution of the compiled machine
code. In that paper, they use a newer iteration of the CakeML semantics (func-
tional big-step [35]) than we do here. Both semantics are still present in the
CakeML source repository, together with an equivalence proof. Another impor-
tant step consists of targeting CakeML’s native types, e.g. integer numbers and
characters.

Evaluation of our compiled programs is already possible via Isabelle’s pred-
icate compiler [5], which allows us to turn CakeML’s big-step semantics into
an executable function. We have used this execution mechanism to establish for
sample programs that they terminate successfully. We also plan to prove that
our compiled programs terminate, i.e. total correctness.

The total size of this formalization, excluding theories extracted from Lem,
is currently approximately 20000 lines of proof text (90 %) and ML code (10 %).
The ML code itself produces relatively simple theorems, which means that there
are less opportunities for it to go wrong. This constitutes an improvement over
certifying approaches that prove complicated properties in ML.
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Abstract. A valid compiler optimisation transforms a block in a pro-
gram without introducing new observable behaviours to the program as
a whole. Deciding which optimisations are valid can be difficult, and
depends closely on the semantic model of the programming language.
Axiomatic relaxed models, such as C++11, present particular challenges
for determining validity, because such models allow subtle effects of a
block transformation to be observed by the rest of the program. In this
paper we present a denotational theory that captures optimisation valid-
ity on an axiomatic model corresponding to a fragment of C++11. Our
theory allows verifying an optimisation compositionally, by considering
only the block it transforms instead of the whole program. Using this
property, we realise the theory in the first push-button tool that can
verify real-world optimisations under an axiomatic memory model.

1 Introduction

Context and Objectives. Any program defines a collection of observable
behaviours: a sorting algorithm maps unsorted to sorted sequences, and a paint
program responds to mouse clicks by updating a rendering. It is often desirable
to transform a program without introducing new observable behaviours – for
example, in a compiler optimisation or programmer refactoring. Such transfor-
mations are called observational refinements, and they ensure that properties of
the original program will carry over to the transformed version. It is also desir-
able for transformations to be compositional, meaning that they can be applied
to a block of code irrespective of the surrounding program context. Compo-
sitional transformations are particularly useful for automated systems such as
compilers, where they are known as peephole optimisations.

The semantics of the language is highly significant in determining which
transformations are valid, because it determines the ways that a block of code
being transformed can interact with its context and thereby affect the observable
behaviour of the whole program. Our work applies to a relaxed memory concur-
rent setting. Thus, the context of a code-block includes both code sequentially
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 1027–1055, 2018.
https://doi.org/10.1007/978-3-319-89884-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_36&domain=pdf
http://orcid.org/0000-0002-4439-0130


1028 M. Dodds et al.

before and after the block, and code that runs in parallel. Relaxed memory means
that different threads can observe different, apparently contradictory orders of
events – such behaviour is permitted by programming languages to reflect CPU-
level relaxations and to allow compiler optimisations.

We focus on axiomatic memory models of the type used in C/C++ and
Java. In axiomatic models, program executions are represented by structures of
memory actions and relations on them, and program semantics is defined by
a set of axioms constraining these structures. Reasoning about the correctness
of program transformations on such memory models is very challenging, and
indeed, compiler optimisations have been repeatedly shown unsound with respect
to models they were intended to support [23,25]. The fundamental difficulty is
that axiomatic models are defined in a global, non-compositional way, making
it very challenging to reason compositionally about the single code-block being
transformed.

Approach. Suppose we have a code-block B, embedded into an unknown pro-
gram context. We define a denotation for the code-block which summarises its
behaviour in a restricted representative context. The denotation consists of a
set of histories which track interactions across the boundary between the code-
block and its context, but abstract from internal structure of the code-block. We
can then validate a transformation from code-block B to B′ by comparing their
denotations. This approach is compositional: it requires reasoning only about the
code-blocks and representative contexts; the validity of the transformation in an
arbitrary context will follow. It is also fully abstract, meaning that it can verify
any valid transformation: considering only representative contexts and histories
does not lose generality.

We also define a variant of our denotation that is finite at the cost of losing
full abstraction. We achieve this by further restricting the form of contexts one
needs to consider in exchange for tracking more information in histories. For
example, it is unnecessary to consider executions where two context operations
read from the same write.

Using this finite denotation, we implement a prototype verification tool, Stel-
lite. Our tool converts an input transformation into a model in the Alloy lan-
guage [12], and then checks that the transformation is valid using the Alloy*
solver [18]. Our tool can prove or disprove a range of introduction, elimination,
and exchange compiler optimisations. Many of these were verified by hand in
previous work; our tool verifies them automatically.

Contributions. Our contribution is twofold. First, we define the first fully
abstract denotational semantics for an axiomatic relaxed model. Previous pro-
posals in this space targeted either non-relaxed sequential consistency [6] or
much more restrictive operational relaxed models [7,13,21]. Second, we show
it is feasible to automatically verify relaxed-memory program transformations.
Previous techniques required laborious proofs by hand or in a proof assistant [23–
27]. Our target model is derived from the C/C++ 2011 standard [22]. However,
our aim is not to handle C/C++ per se (especially as the model is in flux in
several respects; see Sect. 3.7). Rather we target the simplest axiomatic model
rich enough to demonstrate our approach.
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2 Observation and Transformation

Observational Refinement. The notion of observation is crucial when determin-
ing how different programs are related. For example, observations might be I/O
behaviour or writes to special variables. Given program executions X1 and X2,
we write X1 �ex X2 if the observations in X1 are replicated in X2 (defined for-
mally in the following). Lifting this notion, a program P1 observationally refines
another P2 if every observable behaviour of one could also occur with the other
– we write this P1 �pr P2. More formally, let �−� be the map from programs to
sets of executions. Then we define �pr as:

P1 �pr P2
Δ⇐⇒ ∀X1 ∈ �P1�.∃X2 ∈ �P2�.X1 �ex X2 (1)

Compositional Transformation. Many common program transformations are
compositional: they modify a sequential fragment of the program without exam-
ining the rest of the program. We call the former the code-block and the latter
its context. Contexts can include sequential code before and after the block, and
concurrent code that runs in parallel with it. Code-blocks are sequential, i.e.
they do not feature internal concurrency. A context C and code-block B can be
composed to give a whole program C(B).

A transformation B2 � B1 replaces some instance of the code-block B2

with B1. To validate such a transformation, we must establish whether every
whole program containing B1 observationally refines the same program with B2

substituted. If this holds, we say that B1 observationally refines B2, written
B1 �bl B2, defined by lifting �pr as follows:

B1 �bl B2
Δ⇐⇒ ∀C. C(B1) �pr C(B2) (2)

If B1 �bl B2 holds, then the compiler can replace block B2 with block B1

irrespective of the whole program, i.e. B2 � B1 is a valid transformation. Thus,
deciding B1 �bl B2 is the core problem in validating compositional transforma-
tions.

The language semantics is highly significant in determining observa-
tional refinement. For example, the code blocks B1 : store(x,5) and
B2 : store(x,2); store(x,5) are observationally equivalent in a sequential set-
ting. However, in a concurrent setting the intermediate state, x = 2, can be
observed in B2 but not B1, meaning the code-blocks are no longer observation-
ally equivalent. In a relaxed-memory setting there is no global state seen by all
threads, which further complicates the notion of observation.

Compositional Verification. To establish B1 �bl B2, it is difficult to examine all
possible syntactic contexts. Our approach is to construct a denotation for each
code-block – a simplified, ideally finite, summary of possible interactions between
the block and its context. We then define a refinement relation on denotations
and use it to establish observational refinement. We write B1 � B2 when the
denotation of B1 refines B2.
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Refinement on denotations should be adequate, i.e., it should validly approx-
imate observational refinement: B1 � B2 =⇒ B1 �bl B2. Hence, if B1 � B2,
then B2 � B1 is a valid transformation. It is also desirable for the denotation to
be fully abstract : B1 �bl B2 =⇒ B1 � B2. This means any valid transformation
can be verified by comparing denotations. Below we define several versions of �
with different properties.

3 Target Language and Core Memory Model

Our language’s memory model is derived from the C/C++ 2011 standard (hence-
forth ‘C11 ’), as formalised by [5,22]. However, we simplify our model in several
ways; see the end of section for details. In C11 terms, our model covers release-
acquire and non-atomic operations, and sequentially consistent fences. To sim-
plify the presentation, at first we omit non-atomics, and extend our approach to
cover them in Sect. 7. Thus, all operations in this section correspond to C11’s
release-acquire.

3.1 Relaxed Memory Primer

In a sequentially consistent concurrent system, there is a total temporal order on
loads and stores, and loads take the value of the most recent store; in particular,
they cannot read overwritten values, or values written in the future. A relaxed
(or weak) memory model weakens this total order, allowing behaviours forbidden
under sequential consistency. Two standard examples of relaxed behaviour are
store buffering (SB) and message passing (MP), shown in Fig. 1.

store(x,0); store(y,0);

store(x,1);

v1 := load(y);

store(y,1);

v2 := load(x);

store(f,0); store(x,0);

store(x,1);

store(f,1);

b := load(f);

if (b == 1)

r := load(x);

Fig. 1. Left: store-buffering (SB) example. Right: message-passing (MP) example.

In most relaxed models v1 = v2 = 0 is a possible post-state for SB. This
cannot occur on a sequentially consistent system: if v1 = 0, then store(y,1)
must be ordered after the load of y, which would order store(x,1) before the
load of x, forcing it to assign v2 = 1. In some relaxed models, b = 1 ∧ r = 0 is
a possible post-state for MP. This is undesirable if, for example, x is a complex
data-structure and f is a flag indicating it has been safely created.

3.2 Language Syntax

Programs in the language we consider manipulate thread-local variables
l, l1, l2 . . . ∈ LVar and global variables x, y, . . . ∈ GVar, coming from disjoint sets
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LVar and GVar. Each variable stores a value from a finite set Val and is initialised
to 0 ∈ Val. Constants are encoded by special read-only thread-local variables.
We assume that each thread uses the same set of thread-local variable names
LVar. The syntax of the programming language is as follows:

C :: = l := E | store(x, l) | l := load(x) | l := LL(x) | l′ := SC(x, l) | fence |
C1 ‖ C2 | C1;C2 | if (l) {C1} else {C2} | {−}

E :: = l | l1 = l2 | l1 
= l2 | . . .

Many of the constructs are standard. LL(x) and SC(x, l) are load-link and
store-conditional, which are basic concurrency operations available on many plat-
forms (e.g., Power and ARM). A load-link LL(x) behaves as a standard load of
global variable x. However, if it is followed by a store-conditional SC(x, l), the
store fails and returns false if there are intervening writes to the same location.
Otherwise the store-conditional writes l and returns true. The fence command
is a sequentially consistent fence: interleaving such fences between all statements
in a program guarantees sequentially consistent behaviour. We do not include
compare-and-swap (CAS) command in our language because LL-SC is more gen-
eral [2]. Hardware-level LL-SC is used to implement C11 CAS on Power and
ARM. Our language does not include loops because our model in this paper
does not include infinite computations (see Sect. 3.7 for discussion). As a result,
loops can be represented by their finite unrollings. Our load commands write
into a local variable. In examples, we sometimes use ‘bare’ loads without a vari-
able write.

The construct {−} represents a block-shaped hole in the program. To sim-
plify our presentation, we assume that at most one hole appears in the pro-
gram. Transformations that apply to multiple blocks at once can be simulated
by using the fact our approach is compositional: transformations can be applied
in sequence using different divisions of the program into code-block and context.

The set Prog of whole programs consists of programs without holes, while
the set Contx of contexts consists of programs with a hole. The set Block of
code-blocks are whole programs without parallel composition. We often write
P ∈ Prog for a whole program, B ∈ Block for a code-block, and C ∈ Contx for
a context. Given a context C and a code-block B, the composition C(B) is C
with its hole syntactically replaced by B. For example:

C : load(x); {-}; store(y,l1), B : store(x,2)
−→ C(B) : load(x); store(x,2); store(y,l1)

We restrict Prog, Contx and Block to ensure LL-SC pairs are matched cor-
rectly. Each SC must be preceded in program order by a LL to the same location.
Other types of operations may occur between the LL and SC, but interven-
ing SC operations are forbidden. For example, the program LL(x); SC(x,v1);
SC(x,v2); is forbidden. We also forbid LL-SC pairs from spanning parallel com-
positions, and from spanning the block/context boundary.
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3.3 Memory Model Structure

The semantics of a whole program P is given by a set �P � of executions, which
consist of actions, representing memory events on global variables, and sev-
eral relations on these. Actions are tuples in the set Action

Δ= ActID × Kind ×
Option(GVar) × Val∗. In an action (a, k, z, b) ∈ Action: a ∈ ActID is the unique
action identifier; k ∈ Kind is the kind of action – we use load, store, LL, SC,
and the failed variant SCf in the semantics, and will introduce further kinds as
needed; z ∈ Option(GVar) is an option type consisting of either a single global
variable Just(x) or None; and b ∈ Val∗ is the vector of values (actions with
multiple values are used in Sect. 4).

Given an action v, we use gvar(v) and val(v) as selectors for the different fields.
We often write actions so as to elide action identifiers and the option type. For
example, load(x, 3) stands for ∃i. (i, load, Just(x), [3]). We also sometimes elide
values. We call load and LL actions reads, and store and successful SC actions
writes. Given a set of actions A, we write, e.g., reads(A) to identify read actions
in A. Below, we range over all actions by u, v; read actions by r; write actions
by w; and LL, SC actions by ll and sc respectively.

Fig. 2. Selected clauses of the thread-local semantics. The full semantics is given in
[10, Sect. A]. We write A1 ·∪ A2 for a union that is defined only when actions in A1 and
A2 use disjoint sets of identifiers. We omit identifiers from actions to avoid clutter.

The semantics of a program P ∈ Prog is defined in two stages. First, a thread-
local semantics of P produces a set 〈P 〉 of pre-executions (A, sb) ∈ PreExec. A
pre-execution contains a finite set of memory actions A ⊆ Action that could
be produced by the program. It has a transitive and irreflexive sequence-before
relation sb ⊆ A×A, which defines the sequential order imposed by the program
syntax.

For example two sequential statements in the same thread produce actions
ordered in sb. The thread-local semantics takes into account control flow in P ’s
threads and operations on local variables. However, it does not constrain the
behaviour of global variables: the values threads read from them are chosen
arbitrarily. This is addressed by extending pre-executions with extra relations,
and filtering the resulting executions using validity axioms.
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3.4 Thread-Local Semantics

The thread-local semantics is defined formally in Fig. 2. The semantics of a
program P ∈ Prog is defined using function 〈−,−〉 : Prog×VMap → P(PreExec×
VMap). The values of local variables are tracked by a map σ ∈ VMap

Δ= LVar →
Val. Given a program and an input local variable map, the function produces a
set of pre-executions paired with an output variable map, representing the values
of local variables at the end of the execution. Let σ0 map every local variable to
0. Then 〈P 〉, the thread-local semantics of a program P , is defined as

〈P 〉 Δ= {(A, sb) | ∃σ′. (A, sb, σ′) ∈ 〈P, σ0〉}

The significant property of the thread-local semantics is that it does not
restrict the behaviour of global variables. For this reason, note that the clause
for load in Fig. 2 leaves the value a unrestricted. We follow [16] in encoding the
fence command by a successful LL-SC pair to a distinguished variable fen ∈ GVar
that is not otherwise read or written.

3.5 Execution Structure and Validity Axioms

The semantics of a program P is a set �P � of executions X =
(A, sb, at, rf,mo, hb) ∈ Exec, where (A, sb) is a pre-execution and at, rf,mo, hb ⊆
A × A. Given an execution X we sometimes write A(X), sb(X), . . . as selectors
for the appropriate set or relation. The relations have the following purposes.

– Reads-from (rf) is an injective map from reads to writes at the same location
of the same value. A read and a write actions are related w

rf−→ r if r takes its
value from w.

– Modification order (mo) is an irreflexive, total order on write actions to each
distinct variable. This is a per-variable order in which all threads observe
writes to the variable; two threads cannot observe these writes in different
orders.

– Happens-before (hb) is analogous to global temporal order – but unlike the
sequentially consistent notion of time, it is partial. Happens-before is defined
as (sb∪ rf)+: therefore statements ordered in the program syntax are ordered
in time, as are reads with the writes they observe.

– Atomicity (at ⊆ sb) is an extension to standard C11 which we use to support
LL-SC (see below). It is an injective function from a successful load-link action
to a successful store-conditional, giving a LL-SC pair.

The semantics �P � of a program P is the set of executions X ∈ Exec compat-
ible with the thread-local semantics and the validity axioms, denoted valid(X):

�P �
Δ= {X | (A(X), sb(X)) ∈ 〈P 〉 ∧ valid(X)} (3)

The validity axioms on an execution (A, sb, at, rf,mo, hb) are:
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– HBdef: hb = (sb ∪ rf)+ and hb is acyclic.
This axiom defines hb and enforces the intuitive property that there are no
cycles in the temporal order. It also prevents an action reading from its hb-
future: as rf is included in hb, this would result in a cycle.

– HBvsMO: ¬∃w1, w2. w1

hb ��
w2

mo
��

This axiom requires that the order in which writes to a location become visible
to threads cannot contradict the temporal order. But take note that writes
may be ordered in mo but not hb.

– Coherence: ¬∃w1, w2, r. w1
mo ��

rf

��w2
hb �� r

This axiom generalises the sequentially consistent prohibition on reading over-
written values. If two writes are ordered in mo, then intuitively the second
overwrites the first. A read that follows some write in hb or mo cannot read
from writes earlier in mo – these earlier writes have been overwritten. How-
ever, unlike in sequential consistency, hb is partial, so there may be multiple
writes that an action can legally read.

– RFval: ∀r. (¬∃w′. w′ rf−→ r) =⇒ (val(r) = 0∧
(¬∃w.w

hb−→ r ∧ gvar(w) = gvar(r)))
Most reads must take their value from a write, represented by an rf edge.
However, the RFval axiom allows the rf edge to be omitted if the read
takes the initial value 0 and there is no hb-earlier write to the same location.
Intuitively, an hb-earlier write would supersede the initial value in a similar
way to Coherence.

– Atom: ¬∃w1, w2, ll, sc. w1

rf
��

mo �� w2

mo

��
ll at �� sc

This axiom is adapted from [16]. For an LL-SC pair ll and sc, it ensures that
there is no mo-intervening write w2 that would invalidate the store.

Fig. 3. An invalid execution of MP.

Our model forbids the problematic relaxed
behaviour of the message-passing (MP) pro-
gram in Fig. 1 that yields b = 1 ∧ r = 0.
Figure 3 shows an (invalid) execution that
would exhibit this behaviour. To avoid clut-
ter, here and in the following we omit hb edges
obtained by transitivity and local variable val-
ues. This execution is allowed by the thread-
local semantics of the MP program, but it is
ruled out by the Coherence validity axiom.
As hb is transitively closed, there is a derived
hb edge store(x, 1) hb−→ load(x, 0), which forms
a Coherence violation. Thus, this is not an
execution of the MP program. Indeed, any
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execution ending in load(x, 0) is forbidden for the same reason, meaning that
the MP relaxed behaviour cannot occur.

3.6 Relaxed Observations

Finally, we define a notion of observational refinement suitable for our relaxed
model. We assume a subset of observable global variables, OVar ⊆ GVar, which
can only be accessed by the context and not by the code-block. We consider the
actions and the hb relation on these variables to be the observations. We write
X|OVar for the projection of X’s action set and relations to OVar, and use this
to define �ex for our model:

X �ex Y
Δ⇐⇒ A(X|OVar) = A(Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X|OVar)

This is lifted to programs and blocks as in Sect. 2, def. (1) and (2). Note that
in the more abstract execution, actions on observable variables must be the
same, but hb can be weaker. This is because we interpret hb as a constraint on
time order: two actions that are unordered in hb could have occurred in either
order, or in parallel. Thus, weakening hb allows more observable behaviours (see
Sect. 2).

3.7 Differences from C11

Our language’s memory model is derived from the C11 formalisation in [5], with
a number of simplifications. We chose C11 because it demonstrates most of the
important features of axiomatic language models. However, we do not target the
precise C11 model: rather we target an abstracted model that is rich enough
to demonstrate our approach. Relaxed language semantics is still a very active
topic of research, and several C11 features are known to be significantly flawed,
with multiple competing fixes proposed. Some of our differences from [5] are
intended to avoid such problematic features so that we can cleanly demonstrate
our approach.

In C11 terms, our model covers release-acquire and non-atomic operations
(the latter addressed in Sect. 7), and sequentially consistent fences. We deviate
from C11 in the following ways:

– We omit sequentially consistent accesses because their semantics is known
to be flawed in C11 [17]. We do handle sequentially consistent fences, but
these are stronger than those of C11: we use the semantics proposed in [16].
It has been proved sound under existing compilation strategies to common
multiprocessors.

– We omit relaxed (RLX) accesses to avoid well-known problems with thin-
air values [4]. There are multiple recent competing proposals for fixing these
problems, e.g. [14,15,20].

– Our model does not include infinite computations, because their semantics in
C11-style axiomatic models remains undecided in the literature [4]. However,
our proofs do not depend on the assumption that execution contexts are finite.
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– Our language is based on shared variables, not dynamically allocated address-
able memory, so for example we cannot write y:=*x; z:=*y. This simplifies
our theory by allowing us to fix the variables accessed by a code-block up-
front. We believe our results can be extended to support addressable memory,
because C11-style models grant no special status to pointers; we elaborate on
this in Sect. 4.

– We add LL-SC atomic instructions to our language in addition to C11’s stan-
dard CAS. To do this, we adapt the approach of [16]. This increases the observa-
tional power of a context and is necessary for full abstraction in the presence of
non-atomics; see Sect. 8. LL-SC is available as a hardware instruction on many
platforms supporting C11, such as Power and ARM. However, we do not pro-
pose adding LL-SC to C11: rather, it supports an interesting result in relaxed
memory model theory. Our adequacy results do not depend on LL-SC.

4 Denotations of Code-Blocks

We construct the denotation for a code-block in two steps: (1) generate the
block-local executions under a set of special cut-down contexts; (2) from each
execution, extract a summary of interactions between the code-block and the
context called a history.

4.1 Block-Local Executions

The block-local executions of a block B ∈ Block omit context structure such as
syntax and actions on variables not accessed in the block. Instead the context is
represented by special actions call and ret, a set AB , and relations RB and SB ,
each covering an aspect of the interaction of the block and an arbitrary unre-
stricted context. Together, each choice of call, ret, AB, RB , and SB abstractly
represents a set of possible syntactic contexts. By quantifying over the possible
values of these parameters, we cover the behaviour of all syntactic contexts. The
parameters are defined as follows:

– Local variables. A context can include code that precedes and follows the
block on the same thread, with interaction through local variables, but –
due to syntactic restriction – not through LL/SC atomic regions. We capture
this with special action call(σ) at the start of the block, and ret(σ′) at the
end, where σ, σ′ : LVar → Val record the values of local variables at these
points. Assume that variables in LVar are ordered: l1, l2, . . . , ln. Then call(σ)
is encoded by the action (i, call,None, [σ(l1), . . . σ(ln)]), with fresh identifier
i. We encode ret in the same way.

– Global variable actions. The context can also interact with the block through
concurrent reads and writes to global variables. These interactions are rep-
resented by set AB of context actions added to the ones generated by the
thread-local semantics of the block. This set only contains actions on the
variables VSB that B can access (VSB can be constructed syntactically).
Given an execution X constructed using AB (see below) we write contx(X)
to recover the set AB .
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– Context happens-before. The context can generate hb edges between its
actions, which affect the behaviour of the block. We track these effects with
a relation RB over actions in AB , call and ret:

RB ⊆ (AB × AB) ∪ (AB × {call}) ∪ ({ret} × AB) (4)

The context can generate hb edges between actions directly if they are on the
same thread, or indirectly through inter-thread reads. Likewise call/ret may
be related to context actions on the same or different threads.

– Context atomicity. The context can generate at edges between its actions
that we capture in the relation SB ⊆ AB × AB . We require this relation
to be an injective function from LL to SC actions. We consider only cases
where LL/SC pairs do not cross block boundaries, so we need not consider
boundary-crossing at edges.

Together, call, ret, AB, RB , and SB represent a limited context, stripped
of syntax, relations sb, mo, and rf, and actions on global variables other than
VSB . When constructing block-local executions, we represent all possible inter-
actions by quantifying over all possible choices of σ, σ′, AB , RB and SB. The set
�B,AB , RB , SB� contains all executions of B under this special limited context.
Formally, an execution X = (A, sb, at, rf,mo, hb) is in this set if:

1. AB ⊆ A and there exist variable maps σ, σ′ such that {call(σ), ret(σ′)} ⊆
A. That is, the call, return, and extra context actions are included in the
execution.

2. There exists a set Al and relation sbl such that (i) (Al, sbl, σ
′) ∈ 〈B, σ〉; (ii)

Al = A\ (AB ∪{call, ret}); (iii) sbl = sb \ {(call, u), (u, ret) | u ∈ Al}. That is,
actions from the code-block satisfy the thread-local semantics, beginning with
map σ and deriving map σ′. All actions arising from the block are between
call and ret in sb.

3. X satisfies the validity axioms, but with modified axioms HBdef′ and Atom′.
We define HBdef′ as: hb = (sb∪rf∪RB)+ and hb is acyclic. That is, context
relation RB is added to hb. Atom′ is defined analogously with SB added to
at.

We say that AB, RB and SB are consistent with B if they act over variables
in the set VSB . In the rest of the paper we only consider consistent choices
of AB , RB, SB . The block-local executions of B are then all executions X ∈
�B,AB , RB , SB�.1

1 This definition relies on the fact that our language supports a fixed set of global
variables, not dynamically allocated addressable memory (see Sect. 3.7). We believe
that in the future our results can be extended to support dynamic memory. For
this, the block-local construction would need to quantify over actions on all possible
memory locations, not just the static variable set VSB . The rest of our theory would
remain the same, because C11-style models grant no special status to pointer values.
Cutting down to a finite denotation, as in Sect. 5 below, would require some extra
abstraction over memory – for example, a separation logic domain such as [9].
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hb, RB

hb, RB

mo

sb, hb

rf, hb

rf, hb

store(f,1)

load(f,1)

load(x,1)

call

sb, hb

sb, hb

ret

store(x,2)

store(x,1)

hb, RB

store(f,1)

call

ret

store(x,2)

store(x,1)

G

G

G

Fig. 4. Left: block-local execution. Right: corresponding history.

Example Block-Local Execution. The left of Fig. 4 shows a block-local execution
for the code-block

l1 := load(f); l2 := load(x) (5)

Here the set VSB of accessed global variables is {f, x}, As before, we omit local
variables to avoid clutter. The context action set AB consists of the three stores,
and RB is denoted by dotted edges.

In this execution, both AB and RB affect the behaviour of the code-block.
The following path is generated by RB and the load of f = 1:

store(x, 2) mo−−→ store(x, 1) RB−−→ store(f, 1) rf−→ load(f, 1) sb−→ load(x, 1)

Because hb includes sb, rf, and RB , there is a transitive edge store(x, 1) hb−→
load(x, 1). The edge store(x, 2) mo−−→ store(x, 1) is forced because the HBvsMO
axiom prohibits mo from contradicting hb. Consequently, the Coherence axiom
forces the code-block to read x = 1.

4.2 Histories

From any block-local execution X, its history summarises the interactions
between the code-block and the context. Informally, the history records hb over
context actions, call, and ret. More formally the history, written hist(X), is a pair
(A, G) consisting of an action set A and guarantee relation G ⊆ A × A. Recall
that we use contx(X) to denote the set of context actions in X. Using this, we
define the history as follows:

– The action set A is the projection of X’s action set to call, ret, and contx(X).
– The guarantee relation G is the projection of hb(X) to

(contx(X) × contx(X)) ∪ (contx(X) × {ret}) ∪ ({call} × contx(X)) (6)

The guarantee summarises the code-block’s effect on its context: it suffices to
only track hb and ignore other relations. Note the guarantee definition is similar
to the context relation RB, definition (4). The difference is that call and ret are
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Fig. 5. Executions and histories illustrating the guarantee relation.

switched: this is because the guarantee represents hb edges generated by the
code-block, while RB represents the edges generated by the context. The right
of Fig. 4 shows the history corresponding to the block-local execution on the left.

To see the interactions captured by the guarantee, compare the block given
in def. (5) with the block l2:=load(x). These blocks have differing effects on
the following syntactic context:

store(y,1); store(y,2); store(f,1) || {-}; l3:=load(y)

For the two-load block embedded into this context, l1 = 1 ∧ l3 = 1 is not a
possible post-state. For the single-load block, this post-state is permitted.2

In Fig. 5, we give executions for both blocks embedded into this context. We
draw the context actions that are not included into the history in grey. In these
executions, the code block determines whether the load of y can read value 1
(represented by the edge labelled ‘rf?’). In the first execution, the context load
of y cannot read 1 because there is the path store(y, 1) mo−−→ store(y, 2) hb−→ load(y)
which would contradict the Coherence axiom. In the second execution there
is no such path and the load may read 1.

It is desirable for our denotation to hide the precise operations inside the
block – this lets it relate syntactically distinct blocks. Nonetheless, the history
must record hb effects such as those above that are visible to the context. In
Execution 1, the Coherence violation is still visible if we only consider context
operations, call, ret, and the guarantee G – i.e. the history. In Execution 2, the
fact that the read is permitted is likewise visible from examining the history.
Thus the guarantee, combined with the local variable post-states, capture the
effect of the block on the context without recording the actions inside the block.

2 We choose these post-states for exposition purposes – in fact these blocks are also
distinguishable through local variable l1 alone.



1040 M. Dodds et al.

4.3 Comparing Denotations

The denotation of a code-block B is the set of histories of block-local executions
of B under each possible context, i.e. the set

{hist(X) | ∃AB , RB , SB .X ∈ �B,AB , RB , SB�}
To compare the denotations of two code-blocks, we first define a refinement
relation on histories: (A1, G1) �h (A2, G2) holds iff A1 = A2 ∧ G2 ⊆ G1. The
history (A2, G2) places fewer restrictions on the context than (A1, G1) – a weaker
guarantee corresponds to more observable behaviours. For example in Fig. 5,
History 1 �h History 2 but not vice versa, which reflects the fact that History
1 rules out the read pattern discussed above.

We write B1 �q B2 to state that the denotation of B1 refines that of B2.
The subscript ‘q’ stands for the fact we quantify over both A and RB. We define
�q by lifting �h:

B1 �q B2
Δ⇐⇒ ∀A, R, S.∀X1 ∈ �B1,A, R, S�.

∃X2 ∈ �B2,A, R, S�. hist(X1) �h hist(X2)
(7)

In other words, two code-blocks are related B1 �q B2 if for every block-local
execution of B1, there is a corresponding execution of B2 with a related history.
Note that the corresponding history must be constructed under the same cut-
down context A, R, S.

Theorem 1 (Adequacy of �q). B1 �q B2 =⇒ B1 �bl B2.

Theorem 2 (Full abstraction of �q). B1 �bl B2 =⇒ B1 �q B2.

As a corollary of the above theorems, a program transformation B2 � B1

is valid if and only if B1 �q B2 holds. We prove Theorem 1 in [10, Sect. B]. We
give a proof sketch of Theorem 2 in Sect. 8 and a full proof in [10, Sect. F].

Fig. 6. History comparison for an example program transformation.
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4.4 Example Transformation

We now consider how our approach applies to a simple program transformation:

B2 : store(x,l1); store(x,l1) � B1 : store(x,l1)

To verify this transformation, we must show that B1 �q B2. To do this, we must
consider the unboundedly many block-local executions. Here we just illustrate
the reasoning for a single block-local execution; in Sect. 5 below we define a
context reduction which lets us consider a finite set of such executions.

In Fig. 6, we illustrate the necessary reasoning for an execution X1 ∈
�B1,A, R, S�, with a context action set A consisting of a single load x = 1,
a context relation R relating ret to the load, and an empty S relation. This
choice of R forces the context load to read from the store in the block. We can
exhibit an execution X2 ∈ �B2,A, R, S� with a matching history by making the
context load read from the final store in the block.

5 A Finite Denotation

The approach above simplifies contexts by removing syntax and non-hb struc-
ture, but there are still infinitely many A/R/S contexts for any code-block. To
solve this, we introduce a type of context reduction which allows us to consider
only finitely many block-local executions. This means that we can automatically
check transformations by examining all such executions. However this ‘cut down’
approach is no longer fully abstract. We modify our denotation as follows:

– We remove the quantification over context relation R from definition (7) by
fixing it as ∅. In exchange, we extend the history with an extra component
called a deny.

– We eliminate redundant block-local executions from the denotation, and only
consider a reduced set of executions X that satisfy a predicate cut(X).

These two steps are both necessary to achieve finiteness. Removing the R
relation reduces the amount of structure in the context. This makes it possible
to then remove redundant patterns – for example, duplicate reads from the same
write.

Before defining the two steps in detail, we give the structure of our modified
refinement �c. In the definition, histE(X) stands for the extended history of an
execution X, and �E for refinement on extended histories.

B1 �c B2
Δ⇐⇒ ∀A, S.∀X1 ∈ �B1,A, ∅, S�.

cut(X1) =⇒ ∃X2 ∈ �B2,A, ∅, S�. histE(X1) �E histE(X2)(8)

As with �q above, the refinement �c is adequate. However, it is not fully
abstract (we provide a counterexample in [10, Sect. D]). We prove the following
theorem in [10, Sect. E].

Theorem 3 (Adequacy of �c). B1 �c B2 =⇒ B1 �bl B2.
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5.1 Cutting Predicate

Removing the context relation R in definition (8) removes a large amount of
structure from the context. However, there are still unboundedly many block-
local executions with an empty R – for example, we can have an unbounded
number of reads and writes that do not interact with the block. The cutting
predicate identifies these redundant executions.

We first identify the actions in a block-local execution that are visible, mean-
ing they directly interact with the block. We write code(X) for the set of actions
in X generated by the code-block. Visible actions belong to code(X), read from
code(X), or are read by code(X). In other words,

vis(X) Δ= code(X) ∪ {u | ∃v ∈ code(X). u rf−→ v ∨ v
rf−→ u}

Informally, cutting eliminates three redundant patterns: (i) non-visible con-
text reads, i.e. reads from context writes; (ii) duplicate context reads from the
same write; and (iii) duplicate non-visible writes that are not separated in mo
by a visible write. Formally we define cut′(X), the conjunction of cutR for read,
and cutW for write.

cutR(X) Δ⇐⇒ reads(X) ⊆ vis(X)∧
∀r1, r2 ∈ contx(X). (r1 
= r2 ⇒ ¬∃w.w

rf−→ r1 ∧ w
rf−→ r2)

cutW(X) Δ⇐⇒ ∀w1, w2 ∈ (contx(X) \ vis(X)).
w1

mo−−→ w2 ⇒ ∃w3 ∈ vis(X). w1
mo−−→ w3

mo−−→ w2

cut′(X) Δ⇐⇒ cutR(X) ∧ cutW(X)

The final predicate cut(X) extends this in order to keep LL-SC pairs together: it
requires that, if cut′() permits one half of an LL-SC, the other is also permitted
implicitly (for brevity we omit the formal definition of cut() in terms of cut′).

Fig. 7. Left: block-local execution which includes patterns forbidden by cut(). Right:
key explaining the patterns forbidden or allowed.
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It should be intuitively clear why the first two of the above patterns are
redundant. The main surprise is the third pattern, which preserves some non-
visible writes. This is required by Theorem 3 for technical reasons connected to
per-location coherence. We illustrate the application of cut() to a block-local
execution in Fig. 7.

5.2 Extended History (histE)

In our approach, each block-local execution represents a pattern of interaction
between block and context. In our previous definition of �q, constraints imposed
by the block are captured by the guarantee, while constraints imposed by the
context are captured by the R relation. The definition (8) of �c removes the
context relation R, but these constraints must still be represented. Instead, we
replace R with a history component called a deny. This simplifies the block-local
executions, but compensates by recording more in the denotation.

Fig. 8. A deny edge.

The deny records the hb edges that cannot be
enforced due to the execution structure. For exam-
ple, consider the block-local execution3 of Fig. 8.

This pattern could not occur in a context that
generates the dashed edge D as a hb – to do so would
violate the HBvsMO axiom. In our previous defi-
nition of �q, we explicitly represented the presence
or absence of this edge through the R relation. In
our new formulation, we represent such ‘forbidden’
edges in the history by a deny edge.

The extended history of an execution X, written
histE(X) is a triple (A, G,D), consisting of the familiar notions of action set A
and guarantee G ⊆ A × A, together with deny D ⊆ A × A as defined below:

D
Δ= {(u, v) | HBvsMO-d(u, v)∨ Cohere-d(u, v)∨ RFval-d(u, v)} ∩

(
(contx(X) × contx(X)) ∪ (contx(X) × {call}) ∪ ({ret} × contx(X))

)

Each of the predicates HBvsMO-d, Cohere-d, and RFval-d generates the deny
for one validity axiom. In the diagrammatic definitions below, dashed edges
represent the deny edge, and hb∗ is the reflexive-transitive closure of hb:

HBvsMO-d(u, v): ∃w1, w2. w1
hb∗

�� u
D �� v

hb∗
�� w2

mo

��

Coherence-d(u, v): w1
mo ��

rf

��w2
hb∗

�� u
D �� v

hb∗
�� r

RFval-d(u, v): ∃w, r. gvar(w) = gvar(r)∧
¬∃w′. w′ rf−→ r ∧ w

hb∗
�� u

D �� v
hb∗

�� r

3 We use this execution for illustration, but in fact the cut() predicate would forbid
the load.
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One can think of a deny edge as an ‘almost’ violation of an axiom. For
example, if HBvsMO-d(u, v) holds, then the context cannot generate an extra
hb-edge u

hb−→ v – to do so would violate HBvsMO.
Because deny edges represent constraints on the context, weakening the deny

places fewer constraints, allowing more behaviours, so we compare them with
relational inclusion:

(A2, G2,D2) �E (A2, G2,D2)
Δ⇐⇒ A1 = A2 ∧ G2 ⊆ G1 ∧ D2 ⊆ D1

This refinement on extended histories is used to define our refinement relation
on blocks, �c, def. (8).

5.3 Finiteness

Theorem 4 (Finiteness). If for a block B and state σ the set of thread-local
executions 〈B, σ〉 is finite, then so is the set of resulting block-local executions,
{X | ∃A, S.X ∈ �B,A, ∅, S� ∧ cut(X)}.

Proof (sketch). It is easy to see for a given thread-local execution there are
finitely many possible visible reads and writes. Any two non-visible writes must
be distinguished by at least one visible write, limiting their number. ��

Theorem 4 means that any transformation can be checked automatically if
the two blocks have finite sets of thread-local executions. We assume a finite
data domain, meaning action can only take finitely many distinct values in Val.
Recall also that our language does not include loops. Given these facts, any
transformations written in our language will satisfy finiteness, and can therefore
by automatically checked.

6 Prototype Verification Tool

Stellite is our prototype tool that verifies transformations using the Alloy* model
checker [12,18]. Our tool takes an input transformation B2 � B1 written in a
C-like syntax. It automatically converts the transformation into an Alloy* model
encoding B1 �c B2. If the tool reports success, then the transformation is verified
for unboundedly large syntactic contexts and executions.

An Alloy model consists of a collection of predicates on relations, and an
instance of the model is a set of relations that satisfy the predicates. As pre-
viously noted in [28], there is therefore a natural fit between Alloy models and
axiomatic memory models.
At a high level, our tool works as follows:

1. The two sides of an input transformation B1 and B2 are automatically con-
verted into Alloy predicates expressing their syntactic structure. Intuitively,
these block predicates are built by following the thread-local semantics from
Sect. 3.
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2. The block predicates are linked with a pre-defined Alloy model expressing the
memory model and �c.

3. The Alloy* solver searches (using SAT) for a history of B1 that has no match-
ing history of B2. We use the higher-order Alloy* solver of [18] because the
standard Alloy solver cannot support the existential quantification on histo-
ries in �c.

The Alloy* solver is parameterised by the maximum size of the model it will
examine. However, our finiteness theorem for �c (Theorem 4) means there is a
bound on the size of cut-down context that needs to be considered to verify any
given transformation. If our tool reports that a transformation is correct, it is
verified in all syntactic contexts of unbounded size.

Given a query B1 �c B2, the required context bound grows in proportion to
the number of internal actions on distinct locations in B1. This is because our
cutting predicate permits context actions if they interact with internal actions,
either directly, or by interleaving between internal actions. In our experiments
we run the tool with a model bound of 10, sufficient to give soundness for all the
transformations we consider. Note that most of our example transformations do
not require such a large bound, and execution times improve if it is reduced.

If a counter-example is discovered, the problematic execution and history can
be viewed using the Alloy model visualiser, which has a similar appearance to
the execution diagrams in this paper. The output model generated by our tool
encodes the history of B1 for which no history of B2 could be found. As �c is
not fully abstract, this counter-example could, of course, be spurious.

Stellite currently supports transformations on code-blocks with atomic reads,
writes, and fences. It does not yet support code-blocks with non-atomic accesses
(see Sect. 7), LL-SC, or branching control-flow. We believe supporting the above
features would not present fundamental difficulties, since the structure of the
Alloy encoding would be similar. Despite the above limitations, our prototype
demonstrates that our cut-down denotation can be used for automatic verifica-
tion of important program transformations.

Experimental Results. We have tested our tool on a range of different transfor-
mations. A table of experimental results is given in Fig. 9. Many of our examples
are derived from [23] – we cover all their examples that fit into our tool’s input
language. Transformations of the sort that we check have led to real-world bugs
in GCC [19] and LLVM [8]. Note that some transformations are invalid because
of their effect on local variables, e.g. skip � l := load(x). The closely related
transformation skip � load(x) throws away the result of the read, and is con-
sequently valid.

Our tool takes significant time to verify some of the above examples, and two
of the transformations cause the tool to time out. This is due to the complexity
and non-determinism of the C11 model. In particular, our execution times are
comparable to existing C++ model simulators such as Cppmem when they run
on a few lines of code [3]. However, our tool is a sound transformation verifier,
rather than a simulator, and thus solves a more difficult problem: transformations
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Fig. 9. Results from executing Stellite on a 32 core 2.3 GHz AMD Opteron, with 128GB
RAM, over Linux 3.13.0-88 and Java 1.8.0 91. load/store/fence are abbreviated to
ld/st/fc. � and x denote whether the transformation satisfies �c. ∞ denotes a timeout
after 8 h.

are verified for unboundedly large syntactic contexts and executions, rather than
for a single execution.

7 Transformations with Non-atomics

We now extend our approach to non-atomic (i.e. unsynchronised) accesses. C11
non-atomics are intended to enable sequential compiler optimisations that would
otherwise be unsound in a concurrent context. To achieve this, any concur-
rent read-write or write-write pair of non-atomic actions on the same location
is declared a data race, which causes the whole program to have undefined
behaviour. Therefore, adding non-atomics impacts not just the model, but also
our denotation.

7.1 Memory Model with Non-atomics

Non-atomic loads and stores are added to the model by introducing new com-
mands storeNA(x, l) and l := loadNA(x) and the corresponding kinds of actions:
storeNA, loadNA ∈ Kind. We let NA be the set of all actions of these kinds. We
partition global variables so that they are either only accessed by non-atomics,
or by atomics. We do not permit non-atomic LL-SC operations. Two new valid-
ity axioms ensure that non-atomics read from writes that happen before them,
but not from stale writes:
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Fig. 10. Top left: augmented MP, with non-atomic accesses to x, and a new racy load.
Top right: the same code optimised with B2 � B1. Below each: a valid execution.

– RFHBNA: ∀w, r ∈ NA. w
rf−→ r =⇒ w

hb−→ r

– CoherNA: ¬∃w1, w2, r ∈ NA. w1
hb ��

rf

��w2
hb �� r

Modification order (mo) does not cover non-atomic accesses, and we change
the definition of happens-before (hb), so that non-atomic loads do not add edges
to it:

– HBdef: hb = (sb ∪ (rf ∩ {(w, r) | w, r /∈ NA}))+

Consider the code on the left in Fig. 10: it is similar to MP from Fig. 1, but
we have removed the if-statement, made all accesses to x non-atomic, and we
have added an additional load of x at the start of the right-hand thread. The
valid execution of this code on the left-hand side demonstrates the additions to
the model for non-atomics:

– modification order (mo) relates writes to atomic y, but not non-atomic x;
– the first load of x is forced to read from the initialisation by RFHBNA; and
– the second read of x is forced to read 1 because the hb created by the load of
y obscures the now-stale initialisation write, in accordance with CoherNA.

The most significant change to the model is the introduction of a safety
axiom, data-race freedom (DRF). This forbids non-atomic read-write and write-
write pairs that are unordered in hb:



1048 M. Dodds et al.

DRF:

∀u, v ∈ A.

(∃x. u 
= v ∧ u = (store(x, )) ∧
v ∈ {(load(x, )), (store(x, ))}

)
=⇒

(
u

hb−→ v ∨ v
hb−→ u

∨u, v /∈ NA

)

We write safe(X) if an execution satisfies this axiom. Returning to the left
of Fig. 10, we see that there is a violation of DRF – a race on non-atomics –
between the first load of x and the store of x on the left-hand thread.

Let �P �NA
v be defined same way as �P � is in Sect. 3, def. (3), but with adding

the axioms RFHBNA and CoherNA and substituting the changed axiom
HBdef. Then the semantics �P � of a program with non-atomics is:

�P �
Δ= if ∀X ∈ �P �NA

v . safe(X) then �P �NA
v else �

The undefined behaviour � subsumes all others, so any program observa-
tionally refines a racy program. Hence we modify our notion of observational
refinement on whole programs:

P1 �NA
pr P2

Δ⇐⇒ (safe(P2) =⇒ (safe(P1) ∧ P1 �pr P2))

This always holds when P2 is unsafe; otherwise, it requires P1 to preserve safety
and observations to match. We define observational refinement on blocks, �NA

bl ,
by lifting �NA

pr as per Sect. 2, def. (2).

7.2 Denotation with Non-atomics

We now define our denotation for non-atomics, �NA
q , building on the ‘quantified’

denotation �q defined in Sect. 4. (We have also defined a finite variant of this
denotation using the cutting strategy described in Sect. 5 – we leave this to [10,
Sect. C].)

Non-atomic actions do not participate in happens-before (hb) or coherence
order (mo). For this reason, we need not change the structure of the history.
However, non-atomics introduce undefined behaviour �, which is a special kind
of observable behaviour. If a block races with its context in some execution,
the whole program becomes unsafe, for all executions. Therefore, our denotation
must identify how a block may race with its context. In particular, for the deno-
tation to be adequate, for any context C and two blocks B1 �NA

q B2, we must
have that if C(B1) is racy, then C(B2) is also racy.

To motivate the precise definition of �NA
q , we consider the following (sound)

‘anti-roach-motel’ transformation4, noting that it might be applied to the right-
hand thread of the code in the left of Fig. 10:

B2 : l1 := loadNA(x); l2 := load(y); l3 := loadNA(x)
� B1 : l1 := loadNA(x); l3 := loadNA(x); l2 := load(y)

4 This example was provided to us by Lahav, Giannarakis and Vafeiadis in personal
communication.
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In a standard roach-motel transformation [25], operations are moved into a
synchronised block. This is sound because it only introduces new happens-before
ordering between events, thereby restricting the execution of the program and
preserving data-race freedom. In the above transformation, the second NA load
of x is moved past the atomic load of y, effectively out of the synchronised block,
reducing happens-before ordering, and possibly introducing new races. However,
this is sound, because any data-race generated by B1 must have already occurred
with the first NA load of x, matching a racy execution of B2. Verifying this
transformation requires that we reason about races, so �NA

q must account for
both racy and non-racy behaviour.

The code on the left of Fig. 10 represents a context, composed with B2, and
the execution of Fig. 10 demonstrates that together they are racy. If we were
to apply our transformation to the fragment B2 of the right-hand thread, then
we would produce the code on the right in Fig. 10. On the right in Fig. 10, we
present a similar execution to the one given on the left. The reordering on the
right-hand thread has led to the second load of x taking the value 0 rather than
1, in accordance with RFHBNA. Note that the execution still has a race on the
first load of x, albeit with different following events. As this example illustrates,
when considering racy executions in the definition of �NA

q , we may need to match
executions of the two code-blocks that behave differently after a race. This is
the key subtlety in our definition of �NA

q .
In more detail, for two related blocks B1 �NA

q B2, if B2 generates a race in a
block-local execution under a given (reduced) context, then we require B1 and
B2 to have corresponding histories only up to the point the race occurs. Once the
race has occurred, the following behaviours of B1 and B2 may differ. This still
ensures adequacy: when the blocks B1 and B2 are embedded into a syntactic
context C, this ensures that a race can be reproduced in C(B2), and hence,
C(B1) �NA

pr C(B2).
By default, C11 executions represent a program’s complete behaviour to

termination. To allow us to compare executions up to the point a race occurs,
we use prefixes of executions. We therefore introduce the downclosure X↓, the
set of (hb ∪ rf)+-prefixes of an execution X:

X↓ Δ= {X ′ | ∃A.X ′ = X|A ∧ ∀(u, v) ∈ (hb(X) ∪ rf(X))+. (v ∈ A ⇒ u ∈ A)}
Here X|A is the projection of the execution X to actions in A. We lift the
downclosure to sets of executions in the standard way.

Now we define our refinement relation B1 �NA
q B2 as follows:

B1 �NA
q B2

Δ⇐⇒ ∀A, R, S.∀X1 ∈ �B1,A, R, S�NA
v .∃X2 ∈ �B2,A, R, S�NA

v .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) �h hist(X2)) ∧
(¬safe(X2) =⇒ ∃X ′

2 ∈ (X2)↓.∃X ′
1 ∈ (X1)↓.

¬safe(X ′
2) ∧ hist(X ′

1) �h hist(X ′
2))

In this definition, for each execution X1 of block B1, we witness an execution
X2 of block B2 that is related. The relationship depends on whether X2 is safe
or unsafe.
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Fig. 11. History comparison for an NA-based program transformation

– If X2 is safe, then the situation corresponds to �q – see Sect. 4, def. (7). In
fact, if B2 is certain to be safe, for example because it has no non-atomic
accesses, then the above definition is equivalent to �q.

– If X2 is unsafe then it has a race, and we do not have to relate the whole
executions X1 and X2. We need only show that the race in X2 is feasible
by finding a prefix in X1 that refines the prefix leading to the race in X2. In
other words, X2 will behave consistently with X1 until it becomes unsafe. This
ensures that the race in X2 will in fact occur, and its undefined behaviour will
subsume the behaviour of B1. After X2 becomes unsafe, the two blocks can
behave entirely differently, so we need not show that the complete histories
of X1 and X2 are related.

Recall the transformation B2 � B1 given above. To verify it, we must estab-
lish that B1 �NA

q B2. As before, we illustrate the reasoning for a single block-local
execution – verifying the transformation would require a proof for all block-local
executions.

In Fig. 11 we give an execution X1 ∈ �B1,A, R, S�, with a context action set
A consisting of a non-atomic store of x = 1 and an atomic store of y = 1, and a
context relation R relating the store of x to the store of y. Note that this choice
of context actions matches the left-hand thread in the code listings of Fig. 10,
and there are data races between the loads and the store on x.

To prove the refinement for this execution, we exhibit a corresponding unsafe
execution X2 ∈ �B2,A, R, S�v. The histories of the complete executions X1 and
X2 differ in their return action. In X2 the load of y takes the value of the context
store, so CoherNA forces the second load of x to read from the context store of
x. This changes the values of local variables recorded in ret′. However, because
X2 is unsafe, we can select a prefix X ′

2 which includes the race (we denote in
grey the parts that we do not include). Similarly, we can select a prefix X ′

1 of
X1. We have that hist(X ′

1) = hist(X ′
2) (shown in the figure), even though the

histories hist(X1) and hist(X2) do not correspond.

Theorem 5 (Adequacy of �NA
q ). B1 �NA

q B2 =⇒ B1 �NA
bl B2.

Theorem 6 (Full abstraction of �NA
q ). B1 �NA

bl B2 ⇒ B1 �NA
q B2.
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We prove Theorem 5 in [10, Sect. B] and Theorem 6 in [10, Sect. F]. Note that the
prefixing in our definition of �NA

q is required for full abstraction—but it would
be adequate to always require complete executions with related histories.

8 Full Abstraction

The key idea of our proofs of full abstraction (Theorems 2 and 6, given in full
in [10, Sect. F]) is to construct a special syntactic context that is sensitive to
one particular history. Namely, given an execution X produced from a block B
with context happens-before R, this context CX guarantees: (1) that X is the
block portion of an execution of CX(B); and (2) for any block B′, if CX(B′)
has a different block history from X, then this is visible in different observable
behaviour. Therefore for any blocks that are distinguished by different histories,
CX can produce a program with different observable behaviour, establishing full
abstraction.

Special Context Construction. The precise definition of the special context con-
struction CX is given in [10, Sect. F] – here we sketch its behaviour. CX executes
the context operations from X in parallel with the block. It wraps these oper-
ations in auxiliary wrapper code to enforce context happens-before, R, and to
check the history. If wrapper code fails, it writes to an error variable, which
thereby alters the observable behaviour.

The context must generate edges in R. This is enforced by wrappers that use
watchdog variables to create hb-edges: each edge (u, v) ∈ R is replicated by a
write and read on variable h(u,v). If the read on h(u,v) does not read the write,
then the error variable is written. The shape of a successful read is given on the
left in Fig. 12.

Fig. 12. The execution shapes generated by the special context for, on the left, gener-
ation of R, and on the right, errant history edges.

The context must also prohibit history edges beyond those in the original
guarantee G, and again it uses watchdog variables. For each (u, v) not in G,
the special context writes to watchdog variable g(u,v) before u and a reads g(u,v)

after v. If the read of g(u,v) does read the value written before u, then there is an
errant history edge, and the error location is written. An erroneous execution has
the shape given on the right in Fig. 12 (omitting the write to the error location).
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Full Abstraction and LL-SC. Our proof of full abstraction for the language
with C11 non-atomics requires the language to also include LL-SC, not just
C11’s standard CAS: the former operation increases the observational power of
the context. However, without non-atomics (Sect. 4) CAS would be sufficient to
prove full abstraction.

9 Related Work

Our approach builds on our prior work [3], which generalises linearizability [11] to
the C11 memory model. This work represented interactions between a library and
its clients by sets of histories consisting of a guarantee and a deny; we do the same
for code-block and context. However, our previous work assumed information
hiding, i.e., that the variables used by the library cannot be directly accessed by
clients; we lift this assumption here. We also establish both adequacy and full
abstraction, propose a finite denotation, and build an automated verification
tool.

Our approach is similar in structure to the seminal concurrency semantics of
Brookes [6]: i.e. a code block is represented by a denotation capturing possible
interactions with an abstracted context. In [6], denotations are sets of traces,
consisting of sequences of global program states; context actions are represented
by changes in these states. To handle the more complex axiomatic memory
model, our denotation consists of sets of context actions and relations on them,
with context actions explicitly represented as such. Also, in order to achieve
full abstraction, Brookes assumes a powerful atomic await() instruction which
blocks until the global state satisfies a predicate. Our result does not require this:
all our instructions operate on single locations, and our strongest instruction is
LL-SC, which is commonly available on hardware.

Brookes-like approaches have been applied to several relaxed models: opera-
tional hardware models [7], TSO [13], and SC-DRF [21]. Also, [7,21] define tools
for verifying program transformations. All three approaches are based on traces
rather than partial orders, and are therefore not directly portable to C11-style
axiomatic memory models. All three also target substantially stronger (i.e. more
restrictive) models.

Methods for verifying code transformations, either manually or using proof
assistants, have been proposed for several relaxed models: TSO [24,26,27],
Java [25] and C/C++ [23]. These methods are non-compositional in the sense
that verifying a transformation requires considering the trace set of the entire
program—there is no abstraction of the context. We abstract both the sequen-
tial and concurrent context and thereby support automated verification. The
above methods also model transformations as rewrites on program executions,
whereas we treat them directly as modifications of program syntax; the latter
corresponds more closely to actual compilers. Finally, these methods all require
considerable proof effort; we build an automated verification tool.

Our tool is a sound verification tool – that is, transformations are verified for
all context and all executions of unbounded size. Several tools exist for testing
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(not verifying) program transformations on axiomatic memory models by search-
ing for counter-examples to correctness, e.g., [16] for GCC and [8] for LLVM.
Alloy was used by [28] in a testing tool for comparing memory models – this
includes comparing language-level constructs with their compiled forms.

10 Conclusions

We have proposed the first fully abstract denotational semantics for an axiomatic
relaxed memory model, and using this, we have built the first tool capable of
automatically verifying program transformation on such a model. Our theory
lays the groundwork for further research into the properties of axiomatic models.
In particular, our definition of the denotation as a set of histories and our context
reduction should be portable to other axiomatic models based on happens-before,
such as those for hardware [1].
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25. Ševč́ık, J., Aspinall, D.: On validity of program transformations in the Java memory
model. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5 3
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