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Chapter

Introductory Chapter: Production 
Engineering
Majid Tolouei-Rad

1. Introduction

Production engineering is a broad term covering many activities involved in the 
production life cycle of industrial products. The term itself is interchangeably used 
with manufacturing engineering as manufacturing is the backbone of production 
engineering.

There have been many developments in the domain of production engineering 
in recent years as reported in the literature. These include developments of new 
methods in production methods and systems and optimization for improving pro-
ductivity or maximizing profit. For example, drilling as the most used production 
process is still the subject of study for improvement by contemporary researchers, 
and many of these works can be found in the literature [1–8]. There are also reports 
on the improvements of conventional and nonconventional production processes 
[9–11], optimization of processes [6, 12, 13], and enhancement of properties [14]. In 
addition, there are many reports in the literature on the development of production 
systems including quality control, process planning, and production planning and 
control systems [15–23].

2. Production processes

As shown in Figure 1, production engineering is broadly covering production 
processes and production systems, and each of these includes various operations. 
Production processes alter the shape, geometry, and properties of the workpiece 
enabling it to perform its function. Processing operations may include the enhance-
ment of properties of the workpiece by means of heat treatment operations and 
improving the quality of the workpiece surfaces using surface processing operations. 
There is a variety of manufacturing operations including conventional and noncon-
ventional methods. Generally, conventional manufacturing processes are preferred 
as these are often more economical and the equipment needed is readily available. 
However, in some cases, the use of nonconventional manufacturing processes is 
inevitable despite imposing higher costs. For example, Figure 2 shows a flat metal 
part with a complex external shape and many internal cut geometries. This part is cut 
from an 8 mm thickness AISI 304 L stainless steel plate. It is a relatively thick plate of 
hard-to-machine stainless steel material, making its production problematic using 
conventional methods. The use of a nonconventional method such as Abrasive Water 
Jet Machining (AWJM) makes this a relatively easy operation. This part is taken from a 
research work studying the optimization of AWJM process parameters for improving 



Production Engineering and Robust Control

2

productivity [24]. Another example is shown in Figure 3 where a complex lattice 
structure is formed by connecting multiple curved surfaces with thin wall thick-
nesses. The material of this part is 316 stainless steel which is hard to machine, and 

Figure 1. 
Classification of activities in production engineering.

Figure 2. 
Map of Australia with embedded geometrical shapes cut from an 8 mm thickness AISI 304 L stainless steel plate 
using abrasive water jet machining (AWJM). (a) Side view. (b) Top view.
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its complex geometry and small wall thickness make its production impossible with 
conventional methods. It is produced by additive manufacturing (AM) also known 
as 3D printing from a powder-like material. This part is printed layer by layer using a 
layer thickness of 25 micrometers where powder-like metal particles are melted using 
a powerful laser beam in a process known as selective laser melting (SLM). The pro-
cess is costly, and the rate of production is low; however, making it possible to produce 
some complex geometries that would have not been impossible otherwise.

Cutlery items such as spoons and forks are examples of single-part products where 
no joining or assembly operations are needed after the single-part product is manufac-
tured. However, most products consist of more than one part and there is a need for 
joining or assembling of these parts. The number of parts in a product where assembly 
or joining processes are needed can go from two to millions. A screwdriver has 2, a 
typical car has about 20,000, and the largest passenger aircraft has over 4 million parts 
that are individually manufactured and assembled to form a complex product with 
many assemblies and subassemblies. Many types of joining, and assembly operations 
are used in production plants. Some are permanent joining methods such as welding, 
brazing, soldering, riveting, and adhesives; and some provide the possibility of disas-
sembly where mechanical fasters such as bolts and nuts or screws are used.

Quality control is often considered the last step of the production cycle although 
modern manufacturing strategies state that quality must be built into the product and 
must be incorporated during manufacturing and assembly operations. In either case, the 
quality of the product must be tested and verified before it leaves the production plant.

3. Production systems

In general, production processes are referred to those operations where there is a 
need for physical contact of the product with processing equipment, or the worker; 

Figure 3. 
A lattice structure printed from 316 stainless steel power using the selected laser melting (SLM) technique.
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and a physical contact is not needed when the product is processed by production 
systems. Although some noncontact quality control methods are used, in most quality 
control activities there is a need for measuring the dimensional accuracy of the prod-
uct or its properties requiring physical contact. Yet the quality control information is 
widely used in production systems for analysis of production where there is no need 
for physical contact. The assessment of product quality does not end in the produc-
tion plant and it is still under quality assessment after delivering to the customer and 
beginning its service life. This is possible by receiving feedback from the customer 
and also by providing after-sales services. Accordingly, as shown in Figure 1, quality 
control is an activity that relates itself to both production processes and production 
systems.

In the literature, the production systems are also referred to as manufacturing 
support systems as processing operations cannot be accomplished without these 
activities. In addition to quality control, production systems include process planning 
and production planning and control systems. When a product is to be produced, one 
of the first steps is to design the product such that it meets the intended specifica-
tions. The number of parts, assemblies and subassemblies, processing operations, and 
equipment should all be identified in an activity known as process planning. Various 
methods of process planning and the level of detailed information provided on the 
process sheet varies in different production plants.

Production planning and control (PPC) takes into consideration the logistics 
problems such as how many products are to be produced in a day or in a year, how 
long the production line will continue producing the part or product considering mar-
ket demands, what are the raw material and equipment requirements for responding 
to production needs, and so on. When production begins there is a need for produc-
tion control to ensure that production is running smoothly, will be meeting the 
planned completion dates, and any potential problems that could disrupt a smooth 
production are identified and tackled.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter

Multi-objective Optimisation in
Abrasive Waterjet Contour Cutting
of AISI 304L
Jennifer Milaor Llanto, Ana Vafadar and Majid Tolouei-Rad

Abstract

The optimum waterjet machining parameters were found for maximising material
removal rate and minimising surface roughness and kerf taper angle where three
levels of traverse speed, abrasive flow rate, and waterjet pressure are used. The multi-
linear regression equations were obtained to investigate the relationships between
variables and responses, and the statistical significance of contour cutting parameters
was analysed using the analysis of variance (ANOVA). Further, the response surface
methodology (desirability function approach) was utilised for multi-objective optimi-
sation. The optimum traverse speeds were 95 mm/min for 4 mm thickness and
90 mm/min for both 8 and 12 mm thicknesses. For all material thicknesses, the
abrasive mass flow rate and waterjet pressure were 500 g/min and 200 MPa, respec-
tively. The minimum values of surface roughness, kerf taper angle, and maximum
material removal rate for 4-, 8- and 12-mm material thicknesses were respectively
0.799º, 1.283 μm and 297.98 mm3/min; 1.068º, 1.694 μm and 514.97 mm3/min; and
1.448º, 1.975 μm and 667.07 mm3/min. In this study, surface roughness and kerf taper
angle decreased as the waterjet pressure and abrasive mass flow rate increased; and
this is showing a direct proportional relationship with traverse speed, abrasive mass
flow rate and waterjet pressure.

Keywords: abrasive water jet, contour cutting, surface roughness, kerf taper angle,
material removal rate, response surface methodology, multi-objective optimisation

1. Introduction

Contour cutting is one of the processes applied in metal fabrication industries.
There are several non-traditional technologies employed for contour cutting, such as
electro discharge machining, laser beam machining and electrochemical discharge
machining, that have been noted to provide exemplary performance [1]. Accordingly,
Abrasive Water Jet Machining (AWJM) is an advanced manufacturing techniques
that demonstrated advantages to non-traditional machining technology owing to: its
capability in cutting complex geometries, its absence of tool wear, its absence of
thermal distortion, and it being environmentally friendly [2, 3]. The cutting process in
AWJM is based on removing materials from a target workpiece via erosion [4].
Within this process, contour profiles in various types of programs are downloaded in a

1



computer-based controller, where subsequently a high-pressure pump releases
pressurised water in the nozzle system. The pressurised water, moving with a high
velocity, is released from the orifice in a very thin stream structure [5]. The high-
speed water jet that contains abrasive particles is then accelerated to generate an
abrasive waterjet. Finally, the focusing tube drives the abrasive waterjet to its target
point for cutting the material [4, 6]. The compounded granular abrasive and high-
pressure waterjet stream makes the abrasive waterjet capable of machining various
workpieces, such as metals.

The performance of AWJM is influenced by several process parameters, which can
be varied constantly within a period. In general, the primary goal of the metal fabri-
cation industry is to manufacture high quality products in a shortened period. To
attain productivity and economy objectives, it is imperative to select an optimum
combination of process parameters within the abrasive waterjet cutting processes.
Conventionally, the identification of the most suitable values of process parameters is
accomplished by the execution of many experiments. Hence, to establish the optimum
combination of process parameters in the absence of extensive experimental exertion,
researchers have utilised advanced modelling techniques and optimisation in
progressing the performance of abrasive waterjet cutting. For instance, Rao et al. [7]
have investigated the impacts of traverse speed, standoff distance and abrasive mass
flow rate in AWJM of AA631-T6. They have considered single-objective and multi-
objective optimisation attributes to achieve optimum solutions by utilising Jaya and
MO-Jaya algorithms, which were a posterior optimisation used to solve constrained
and unconstrained conditions. The objectives of maximising material removal and
minimising kerf taper angle and surface roughness were achieved by lower traverse
speed and standoff distance and higher abrasive mass flow rate. Moreover, they
determined that multi-objective Jaya algorithm achieved better results as compared
with other algorithms, such as simulated annealing (SA), particle swam optimization
(PSO), firefly algorithm (FA), cuckoo search (CS) algorithm, blackhole (BH) algo-
rithm, bio-geography-based optimization (BBO) algorithm, non-dominated sorting
genetic algorithm (NSGA), non-dominated sorting teaching-learning-based optimi-
zation (NSTLBO) algorithm and sequential approximation optimization (SAQ). Nair
and Kumanan [8] have similarly applied weighted principal components analysis
(WPCA) for optimising AWJM process parameters in machining Inconel 617. These
authors evaluated the impacts of abrasive mass flow rate, standoff distance, table feed
and waterjet pressure against material removal rate and geometric accuracy. The
WPCA method uses internal tests and training samples to calculate the ‘weighted’
covariance matrix, establishing that an increase in standoff distance enhances the
abrasive flow volume, leading to less geometric errors and a higher rate of material
removal. Equivalently, Chakraborty and Mitra [9] have applied the grey wolf
optimiser (GWO) technique for AWJM cutting of AL6061to maximise material
removal rate and minimise surface roughness, simultaneously considering the
constrained values of input parameters i.e., nozzle diameter and titled angle, jet feed
speed, surface speed, waterjet pressure and abrasive mass flow rate. This algorithm
demonstrated a faster hunting of prey (discovering the optimum parameter settings),
due to the existence of a social hierarchy of grey wolves. They achieved maximum
MRR via higher rate of nozzle titled angle, surface speed, waterjet pressure and
abrasive mass flow rate. In the case of surface roughness, it attained its minimum
value at lower rate of waterjet pressure, jet feed and surface speed and higher rate of
abrasive mass flow. Trivedi et al. [10] have examined the impacts of process parame-
ters such as pressure, traverse rate and standoff distance on surface integrity in AWJM
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of AISI 316 L. Analysis of variance was employed to develop an empirical model by
regression analysis for surface roughness. These authors concluded traverse speed to
be the most significant parameter influencing surface roughness, whereby increasing
pressure improved the surface quality of the target workpiece. Additionally, they
established standoff distances, as the least contributing parameter. Research focused
on optimisation of cutting operations is being continuously undertaken by
researchers, where varied methods have been employed to solve different single and
multi-objective optimisation problems [11–14]. Whereas single-objective optimisation
problems have conventionally been applied, the performance of AWJM has mainly
been measured based on multiple responses. In accordance, a multi-objective
approach is required in order to optimise several categories of objective functions
simultaneously. Several methods have been developed to date, and are continuously
being progressed, in order to solve single-objective problems. Advances in optimisa-
tion techniques, such as: genetic algorithms (GA), simulated annealing (SA), artificial
bee colony (ABC), ant colony optimization (ACO), particle swarm optimization
(PSO) and teaching-learning-based optimization (TLBO), and others, have been
demonstrated to be remarkably efficient in defining the optimum value of AWJM
process parameters [15].

In abrasive waterjet contour-cutting, it has been realised that the impacts of most
influencing factors, such as waterjet pressure, abrasive mass flow rate, standoff dis-
tance and traverse speed in straight-slit cutting, are similar with contour cutting.
These research studies have shown the application of computational approaches for
optimising process parameters in abrasive waterjet contour cutting requires further
investigation. Therefore, this research considers the optimisation of relevant process
parameters, including traverse speed, abrasive mass flow rate, and waterjet pressure
on surface roughness, material removal rate and kerf taper angle in abrasive waterjet
contour cutting of AISI 304L of varied thicknesses.

In this work, the experiment was designed using Taguchi orthogonal array, where
a regression model has been developed to formulate the optimisation fitness function.
This modelling technique has been applied to predict the response and determine
optimum process parameters. In addition, response surface methodology (RSM) has
been employed for multi-objective optimization, in order to obtain optimum values of
input process parameters and to investigate the impacts and interactions against
response parameters.

2. Methodology

In this study, three major steps were employed, consisting of abrasive waterjet
contour cutting experiments, regression modelling and optimisation. The experiment,
modelling and optimisation procedures are presented in Figure 1. The experiment was
conducted using the Taguchi L9 orthogonal array to analyse the impacts of input
parameters, i.e., traverse speed, abrasive mass flow rate and waterjet pressure. Desir-
ability analysis using response surface methodology is employed for the experimental
results of material AISI 304L. In this desirability analysis, multi-responses are consid-
ered. It establishes the optimum set of the selected process parameters on the perfor-
mance characteristics.

A regression model was developed using the machining process parameters from
the experimental execution to extract mathematical models. A linear stepwise regres-
sion analysis was performed to predict the surface roughness, material removal rate
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and kerf taper angle value. The reliability of the models generated was assessed based
on coefficient of determination (R2, R2adj & R2pred). However, supposing that
regression models are not within the acceptable range or do not provide preferable
values of coefficients of determination set by the decision-maker, it is anticipated that
these models will not provide precise prediction. Therefore, the selected parameter
setting conflicts with the response variables, denoting the necessity for modification
of independent variables or experimental design [16].

Figure 1.
Multi-objective optimisation process flow chart.
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Referring to Figure 1, after achieving the fittest models, a multi-objective optimi-
sation was performed by using response surface methodology with the objectives of
maximising material removal, whilst minimising surface roughness and kerf taper
angle. The number of solutions and iterations (i = 1 to n) may vary, depending on the
machining process requirements to establish the best alternative or solution. Hence, if
the composite desirability is not within the tolerable array, several iterations repeating
the response surface optimisation were executed. Subsequently, if these repetitions
reached the maximum number of iterations and the composite desirability is not
attaining adequate values, modifying the design of experiments and the
corresponding independent variables or its values is necessary [16]. Moreover, in
some cases, other soft computing techniques should be considered [17].

2.1 Material and experimental design

In this work, the material machined in the experiments was AISI 304L with varied
thicknesses of 4, 8 and 12 mm. The assigned material thicknesses with differing
uniform gaps were used to gain a better yield of variations in AWJM cutting behav-
iour. Stainless steel, such as AISI 304L, is widely used in fabrication industries, where
it is recognised for its high strength and corrosion and heat resistance. This results
from its high alloying content of Cr and Ni [18]. The chemical and mechanical
composition of this material is detailed in Table 1.

The setup consisted of an OMAX MAXIEM 1515 abrasive waterjet machine,
possessing a direct drive pump and dynamic cutting head with maximum pressure of
413.7 MPa and cutting area of 2235 mm length and 1727 mm width. The cutting head is
comprised of a mixing chamber for abrasive and waterjet, along with a nozzle diameter
of 0.56 mm and a jet impact angle of 90°. An abrasive garnet with a mesh size of #80
was utilised for abrasive waterjet cutting experiments. The unit is inclusive of IntelliMax
software, where the experiment setup conditions were uploaded and entered. The
cutting head can move in the Z-axis over a distance of 305 mm, with a maximum
traverse speed of 12,700 mm/min. Standoff distance was designated to 1.5 mm in
agreement with recommended range for abrasive waterjet machining in previous works
[20, 21]. The AWJM setup and process parameters are demonstrated in Figure 2.

Chemical composition in wt.% Mechanical properties

C 0.03 Hardness, Rockwell B 82

Mn 2 Tensile Strength, Ultimate, MPa 564

Si 0.75 Tensile Strength, Yield, MPa 210

Cr 18.00–20.00 Elongation at Break 58%

Ni 8.00–12.00 Modulus of Elasticity, GPa 193–200

P 0.045

S 0.03

Ni 0.1

Fe Remaining

Table 1.
Chemical and mechanical composition of AISI 304L [19].
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Upon completion of the experiments, the roughness of the machined surfaces was
quantified by a surface roughness tester (TR200 model). Figure 2 presents the cut
surface captured by LEICA M80, which indicates the measurement area for the
roughness. The kerf top and bottom width were measured using a LEICA M80 optical
microscope model. Moreover, rate of material removal and kerf taper angle were
calculated using Eqs. (1) and (2), respectively [11]. The roughness of the cut surface
determined according to the ISO/TC 44 N 1770 standard, (μm);W t is width of the cut
surface at the jet inlet, (mm]; Wb is the width of the cut surface at the jet outlet,
(mm); u is the angularity or perpendicular deviation, (mm); α°- inclination angle of
the cut surface, (°); MRR is the Material Removal Rate, (mm3/min); t is the thickness
of the material (mm) [22].

MRR ¼ ht
W t þWb

2

� �
V f (1)

KTA ¼ Arctan
W t þWb

2ht

� �
(2)

The input parameters considered in abrasive waterjet contour cutting in this
experiment included traverse rate (Vf ), abrasive flow rate (ma) and water pressure

(P), as these parameters have been demonstrated in previous studies as having signif-
icant impacts in AWJM applications [10, 12, 23, 24]. Surface integrity, kerf geometries

Figure 2.
AWJM setup and process parameters.
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and low material removal rate evidence has been reported in machining of AISI 304L,
requiring further improvement [4, 25]. Furthermore, taper angles formed in AWJM
demonstrate different inclinations as contour curvature radius differs [26]. Hence,
quality and productivity are an intensified demand in various manufacturing fields
and are significant performance indicators for machining processes. Therefore, in this
study, material removal rates (MRR), surface roughness (Ra) and kerf taper angle
(KTA) have been chosen as process parameter characteristics for abrasive waterjet
contour cutting investigations, due to their influence against the selected input
parameters. The levels of the considered independent variables, responses and coding
assignment have been detailed in Tables 2 and 3.

Abrasive waterjet cutting was executed for three different profiles, representing
straight-line, inner arcs and outer arcs, as part of the completed twelve profiles, as
demonstrated in Figure 2. The abovementioned profiles were selected to confirm a
broad array of complicated machining profiling applications. The levels of profiles
employed showed occurrences of surface roughness, low machining rate and inaccu-
racies of cut geometries in regard to previous works [27, 28], recommending further
studies, predominantly for difficult-to-cut materials, such as AISI 304L (Figure 3).

The design of experimentation (DOE) was carried out using the Taguchi approach
in MINITAB 19 software. The Taguchi method is useful in determining the best
combination of factors under desired experimental conditions, reducing the large
number of experiments which would be required in traditional experiments as the
number of process parameter increases [29, 30].

In Taguchi’s approach, selection of the appropriate orthogonal array depends on
aspects such as: the number of input and response factors along with the interactions
that are of key significance; number of levels of data for input factors; and required
resolution of experiment and limitations cited on cost and performance [29, 31]. With
this specific advantage, this method is suitable in conducting experiments with an
appropriate number of tests to determine the optimal combination and significance of
the selected factors [32]. The relevant variation in thicknesses dictates different
material responses. Therefore, Taguchi L9 orthogonal array was executed for three

Independent variables Codes Levels

1 2 3

Traverse speed, Vf = mm/min X1 90 120 150

Abrasive mass flow rate, ma = g/min X2 300 400 500

Waterjet pressure, P = MPa X3 200 250 300

Table 2.
Levels of input process parameters.

Profiles Surface roughness, μm Material removal rate, mm3/min Kerf taper angle, 0

Straight-line, 20 mm Ra1 MRR1 KTA1

Inner arc, R10 Ra2 MRR2 KTA2

Outer arc, R20 Ra3 MRR3 KTA3

Table 3.
Output parameters for varied profiles.
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levels of material thicknesses (t), i.e., 4, 8 and 12 mm, as presented in Table 4. The
AWJM performances were analysed accordingly by the applied material thickness.

2.2 Modelling and multi-objective optimisation

A mathematical model was developed to associate the input process parameters to
the response’s characteristics. To achieve this, a linear regression was employed to
develop models for the prediction of responses. The empirical model for the predic-
tion of the responses in regard to controlling parameters was established by linear
regression analysis. Regression analysis was then applied to obtain the interactions
between independent and dependent variables [33]. Multi-linear regression involves
regression analysis of dependent and independent variables exhibiting a linear rela-
tionship [34]. It stipulates the relationship between two or more variables and a
response variable by fitting a linear equation to examine data. The value of the
independent variable x or process parameter is correlated with a value of the
dependent variable, y, which is the output parameter. In general, this analysis is
applied to investigate the degree of relationship between multiple variables fitted by a
straight line [33].

Figure 3.
Abrasive waterjet contour cutting profiles.

Exp. No. Input Parameters

Vf ma P

(mm/min) (g/min) (MPa)

1 90 300 200

2 90 400 250

3 90 500 300

4 120 300 250

5 120 400 300

6 120 500 200

7 150 300 300

8 150 400 200

9 150 500 250

Table 4.
Taguchi L9 orthogonal array.
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In general, regression model is expressed by Eq. (3) [33].

y ¼ ∝þ β1x1 þ e (3)

Wherein : e ¼ y1 � by1 (4)

where, y = dependent variable, α = constant, x1 = Independent variable, β1=
coefficient of independent variablex1, e = error, y1= regression line values and by1 =
actual observation.

If this involves more than one variables, then it is categorised as multi-regression
as shown in Eq. (5) [33].

y ¼ ∝þ β1x1 þ β2x2 þ β3x3 þ … … … βnxn þ en (5)

A multi-linear regression analysis can be employed to fit a predictive model to an
observed data set of values of output and input variables. The obtained results of surface
roughness, material removal rate and kerf taper angle were expressed in terms of the
input parameters such as traverse speed (X1) abrasive mass flow rate (X2) and
waterjet pressure (X3).

The predicted values are functional for optimising the parameters by providing an
adequate comprehension of the significant parameters. The percentage of error
between the experimental data and acquired predicted values has been calculated
based on Eq. (6) [33]. The relative percentage of error was acceptable at <20%
[35].

Error ¼
1

n

X1

n

Response experimentð Þ � Response predictedð Þ

Response experimentð Þ

" #

% (6)

The performance of the established regression model was assessed by statistical
approaches to confirm the goodness-of-fit of the model and the impact of the
predicted variables. Following this, the significance and effectiveness of the developed
models were validated by analysis of variance. Analysis of variance (ANOVA) is a
statistical method that facilitates the evaluation of comparative influences for each control
parameter [36, 37]. The significance of input parameters including traverse speed,
abrasive mass flow rate and waterjet pressure were investigated using p- values and
determination of coefficient (R2). In this work, a confidence interval of 95% (p
< 0.05) has been applied that is in alignment with previous works [29, 38, 39]. A 95%
confidence interval means that there is only a 5% chance of being the wrong estima-
tion; therefore, the influence of each process parameter or other interactions on the
responses is considered insignificant if their p-values were estimated at more than
0.05 [37].

The determination of coefficient (R2, R2adj and R2pred) refers to the percentage
variation of responses ranging from 0–100%. These indicators determine the ade-
quacy of the model against obtained experimental data and predicted observation.
This R2, R2adj and R2pred value of ≥80%, proved a better model fits of the obtained
data [35].

Response surface methodology (RSM) can be utilised for multi-objective optimi-
sation. This multi-desirability is based on multi-response optimisation using an objec-
tive function D(X), denoted as desirability function [40]. This method translates each
response (yi) into a desirability function (di), differing in the array of 0 ≤ di ≤ 1,

9

Multi-objective Optimisation in Abrasive Waterjet Contour Cutting of AISI 304L
DOI: http://dx.doi.org/10.5772/intechopen.106817



where desirability function =0 indicates an undesirable response and desirability
function =1 represents a fully desired response [41]. The objective function D is
specified by Eq. (7) [40].

D ¼ d1Xd2X… … dnð Þ
1=n ¼

Yn

i¼1

di

 !1=n

(7)

The effectiveness of multi-objective optimisation is anticipated based on the
method used for establishing priority weights for each response characteristics [42].
Generally, equal importance is set for selected responses; hence, weights may differ
depending on the machining process requirements in order to establish the most
suitable solution [43].

A simultaneous optimisation process was employed to determine the levels of
resulting to the maximum overall desirability. The responses namely Ra, MRR and
KTA were optimised concurrently to assess the set of input process parameters with
the objectives of maximising MRR and minimising Ra and KTA.

3. Results and discussion

3.1 Regression models and analysis for surface roughness

The multi-linear regression coefficients are summarised in Table 5, exhibiting the
correlation between the input parameters and the output surface roughness for
straight-line, inner and outer arc profiles for material thicknesses of 4, 8 and 12 mm.
The values of coefficients for all profiles and thicknesses demonstrate a similar trend,
showing that constant and variable X1 is positive and variables X2 and X3 are negative.
The coefficient indicates the change in the mean response relating in the variation of
the specific term, whilst the other term in the model remains constant. The relation-
ship between a term and response is denoted by the sign of the coefficient [44]. The
negative correlation coefficient denotes an inverse relationship between variables and
responses; and therefore, if it is positive as the coefficient increases, the response
mean value also increases. Therefore, an increasing rate of traverse speed (X1) results
in an incremental value of surface roughness. Moreover, an increasing rate of abrasive
mass flow and waterjet pressure indicates/obtains a decreasing value of surface
roughness. The values of R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.33–
99.08%, 90.94–98.52% and 88.66–96.17%, respectively. This indicates that regression
models denote an acceptable confirmation of the relationship between the indepen-
dent variables and Ra response, which denotes a high significance of the model.
Therefore, the multi-linear model is reliable and can be utilised in the optimisation of
process parameters. It can be observed that the R2, R2adj and R2pred obtained from
straight-line, inner and outer arcs profiles have a uniform gap of at least 2%, which is
comparable for all material thicknesses. Hence, this minimal gap denotes an insignif-
icant difference between the surface roughness achieved from straight and curvature
profiles [36].

The results detailed in Table 5 show that the highest value of R2, R2adj and R2pred
for 4 and 8 mm material thickness are achieved in Ra3 with the values of 97.26, 94.84
and 92.45%; 98.64, 97.82 and 95.06%; 99.08, 98.52 and 96.17% respectively. Thus, Ra2
achieved the highest percentage of R2, R2adj and R2pred for 12 mm material thickness
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Term t = 4 mm t = 8 mm t = 12 mm

Ra1 Ra2 Ra3 Ra1 Ra2 Ra3 Ra1 Ra2 Ra3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 1.418 1.5394 1.4256 2.097 1.8107 1.76 2.542 2.3854 2.272

β1 0.003522 0.002944 0.003222 0.009814 0.003483 0.008869 0.005389 0.004276 0.003090

β2 - 0.000310 - 0.000300 - 0.000217 - 0.001464 - 0.000422 - 0.000577 - 0.000450 - 0.000446 - 0.000515

β3 - 0.001500 - 0.001300 - 0.001133 - 0.001955 - 0.000977 - 0.001920 - 0.002567 - 0.001924 - 0.001081

Model Summary

R2 95.26% 96.77% 97.26% 98.01% 98.16% 98.64% 97.73% 99.08% 94.33%

R2 (adj) 92.41% 92.41% 94.84% 96.82% 97.05% 97.82% 96.37% 98.52% 90.94%

R2 (pred) 90.58% 90.58% 92.45% 93.84% 93.77% 95.06% 93.33% 96.17% 88.66%

Table 5.
Summary of multi-linear regression coefficients for Ra.
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with the values of 99.08%, 98.52% and 96.17% accordingly. Therefore, the most fitted
and predominant models were Ra3 for both 4 and 8 mm, and Ra2 for 12 mm material
thickness. The predicted Ra values of regression models applied for straight-line,
inner and outer arcs profiles of three levels of material thicknesses are detailed in
Tables 6-8. The percentage error obtained for 4, 8 and 12 mm AISI 304L thicknesses
ranged from �4.22 to 3.44%, 3.30 to 6.71% and � 5.75 to 2.49%, respectively. The
errors determined for Ra between the predicted value and experimental results are less
than 20%, denoting that these models are reliable for predicting Ra values.

Figure 4 presents the residual plot for Ra, consisting of normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values
for the most fitted regression models for 4, 8 and 12 mm, at Ra3, Ra3 and Ra2,
respectively. Similarly, the normal probability plots for all the material thicknesses
demonstrated a close fit to a line in a normal probability graph. The points forming an

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.35 1.34 0.81 1.43 1.42 0.61 1.46 1.45 0.56

2 90 400 250 1.25 1.24 1.41 1.33 1.35 �1.56 1.37 1.36 1.06

3 90 500 300 1.09 1.13 �3.99 1.25 1.27 �1.72 1.24 1.26 �2.44

4 120 300 250 1.36 1.37 �1.26 1.46 1.46 �0.39 1.48 1.48 0.22

5 120 400 300 1.29 1.27 2.35 1.42 1.39 3.44 1.40 1.38 1.72

6 120 500 200 1.41 1.39 2.45 1.50 1.48 2.28 1.48 1.48 �0.28

7 150 300 300 1.41 1.40 0.68 1.50 1.50 �0.39 1.49 1.50 �1.11

8 150 400 200 1.48 1.52 �4.22 1.58 1.60 �1.56 1.58 1.60 �2.11

9 150 500 250 1.43 1.42 1.77 1.51 1.52 �0.72 1.53 1.51 2.39

Table 6.
Predicted Ra values of regression models for t = 4 mm.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.12 2.15 �3.30 1.81 1.80 1.06 2.01 2.00 0.47

2 90 400 250 1.88 1.91 �2.73 1.72 1.71 0.86 1.86 1.85 0.98

3 90 500 300 1.64 1.66 �2.16 1.60 1.62 �2.04 1.65 1.69 �4.40

4 120 300 250 2.41 2.35 6.71 1.84 1.86 �1.81 2.16 2.17 �1.14

5 120 400 300 2.14 2.10 3.38 1.78 1.77 1.29 2.08 2.02 6.23

6 120 500 200 2.22 2.15 6.30 1.83 1.82 0.74 2.16 2.15 0.79

7 150 300 300 2.52 2.54 �1.89 1.92 1.91 0.63 2.32 2.34 �2.15

8 150 400 200 2.56 2.59 �3.68 1.95 1.97 �1.92 2.46 2.48 �1.58

9 150 500 250 2.32 2.35 �2.62 1.89 1.88 1.18 2.33 2.32 0.79

Table 7.
Predicted Ra values of regression models for t = 8 mm.
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approximately straight-line and falling along the fitted line denotes that the data is
normally distributed and there is a good relation between measured and estimated
response values [45]. In general, the residuals versus fits and observation graph for
each material thickness display that the points are distributed randomly and near both
sides of 0, with no distinguished pattern denoting a minimal deviation within resid-
uals and estimated values. This graph plots the difference between the experimental
data as predicted on the y-axis and the fitted or predicted values on the x-axis, to
validate the assumption that the residuals have constant variance [46].

Figure 4 also exhibits the histogram graph for Ra, illustrating the distribution or
frequency of the residuals for all observations. The data shows the frequency of Ra for
4, 8 and 12 mm material thicknesses to range from �0.02 to 0.03, �0.05 to 0.05
and � 0.02 to 0.02, respectively. The histogram presents distribution of the surface
roughness obtained from varying material thicknesses. Figure 4 histogram of resid-
uals denotes that the residuals are normally distributed. These results reveal a minimal
interval of inequalities of the experimental data, indicating that the Ra models meet
their assumptions and are well fitted for the accuracy of prediction [46]. The effects of
process parameters were established by ANOVA, where surface roughness results are
given in Tables A1-A3 in the Appendix section.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.39 2.38 1.17 2.26 2.25 0.42 2.18 2.18 �0.09

2 90 400 250 2.20 2.21 �0.50 2.12 2.11 0.60 2.09 2.07 1.20

3 90 500 300 2.00 2.03 �3.17 1.95 1.97 �1.98 1.99 1.97 2.49

4 120 300 250 2.42 2.41 0.83 2.29 2.28 0.30 2.22 2.22 0.69

5 120 400 300 2.25 2.24 1.17 2.16 2.14 2.03 2.05 2.11 �5.75

6 120 500 200 2.48 2.45 3.00 2.29 2.29 �0.39 2.15 2.17 �2.15

7 150 300 300 2.45 2.45 0.50 2.30 2.32 �1.36 2.27 2.26 1.46

8 150 400 200 2.60 2.66 �5.67 2.45 2.46 �1.34 2.32 2.31 0.43

9 150 500 250 2.51 2.48 2.67 2.34 2.32 1.74 2.22 2.21 1.72

Table 8.
Predicted Ra values of regression models for t = 12 mm.

Figure 4.
Residual plots for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm (c) Ra2 (μm) for
t = 12 mm.
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The impacts of the parameters for all profiles across the three levels of material
thicknesses demonstrated a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05, as detailed in
Tables A1-A3. Accordingly, this work has established that abrasive mass flow rate is
an insignificant input parameter for obtaining p-Values >0.05, ranging from 0.002 to
0.067. Figure 5 represents the percentage contribution of variables for Ra of the most
fitted regression models for 4, 8 and 12 mmmaterial thickness. Overall, traverse speed
features as the most influencing parameter, followed by waterjet pressure and abra-
sive mass flow rate. It can be observed here that the influence of traverse speed
decreases, ranging from 69.39 to 58.85%, as the material thickness increases. In
AWJM, an increasing traverse speed reduces the number of abrasive particles, leading
to higher occurrences of surface roughness [47]. Figure 5 shows that as the material
thickness increases, the percentage contribution of waterjet pressure and abrasive
mass flow rate also increases, ranging from 24.09 to 33.1% and 3.77 to 5.31%, respec-
tively. The increasing value of waterjet pressure denotes higher energy, reinforcing a
larger amount of abrasive particles obtaining lower surface roughness [48]. Further,
an increasing rate of abrasive mass flow breaks down abrasive particles into smaller
sizes, resulting in more sharp edges that reduce surface roughness [15]. The percent-
age errors obtained were less than 20%, indicating acceptable reliability of the models,
as described in Eq. (6).

3.2 Regression model and analysis for material removal rate

Table 9 displays multi-linear regression coefficients of models developed for
material removal rate against input parameters i.e., traverse speed (X1), abrasive
mass flow rate (X2) and waterjet pressure (X3) for 4, 8 and 12 mm material
thicknesses of AISI 304L. Regardless of material thickness and cutting profile
category, the input parameter coefficients acquired a positive sign whilst the constant
coefficients had a negative sign. The sign of the coefficient denotes the trend of
relationship between variables and response [44]. As a result, an increasing rate of
traverse speed, abrasive mass flow rate and waterjet pressure, generates a higher rate
of material removal. Overall, the coefficient of determination R2 ranged from 97.79 to
97.92%, with R2adj ranging from 96.46 to 96.67% and R2pred ranging from 92.53 to
94.35%, confirming that all generated regression models were significant. The
models were established to be sufficient for accurate forecasting of material removal
rate within the assigned levels of input parameters for AWJM of straight and arcs
profiles. Furthermore, Table 9 demonstrated that MRR1 (straight-line), MRR2 (inner

Figure 5.
Percentage contribution of variables for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm
(c) Ra2 (μm) for t = 12 mm.
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arcs) and MRR3 (outer arcs) attained a uniform gap of at least 2% for R2, R2adj and
R2pred values. This nominal disparity of the coefficient of determination indicates
that AWJM performance for straight and curvature profiles are not significantly
different from one another [36]. The results detailed in Table 9 confirm that the
highest values of R2, R2adj and R2pred for all material thicknesses was attained in
MRR1 (straight-line profile) with values of 97.92, 96.67 and 94.35%; 98.86, 98.18
and 95.73%; 98.70, 97.92 and 95.19% respectively. This statistical measurement
evaluates the relationship between the model and response variables, indicating that a
value nearest to 100% denotes a more reliable model [49]. Therefore, MRR1 regres-
sion models are considered as the most fitted model for 4, 8 and 12 mm material
thicknesses.

Tables 10-12 present the predicted MRR values using the generated regression
models of 4, 8 and 12 mm thickness of AISI 304L for three varied contour profiles. The
percentage error acquired for 4, 8 and 12 mm AISI 304L thicknesses ranged from
�5.35 to 5.15%, �6.59 to 4.77% and � 5.05 to 6.62%, respectively. The errors deter-
mined for Ra between the predicted value and experimental results were less than
20%, indicating models to be well fitted for predicting MRR values.

Plots of all residuals of the best material removal rate (MRR1) for all material
thicknesses are represented in Figure 6. Overall, the normal probability plots for all
the material thicknesses illustrate that the adjacency of the points are linear indicating
there is no deviation from the assumptions, because they are normally and indepen-
dently distributed [46]. Residuals versus fits and observation for MRR1 of straight-
line, inner and outer arc profiles confirm that there is no skewness or outlier pattern,
revealing that individual deviated assumptions have no conflicts or contradictions.
Figure 6 also presents the histogram graph for MRR1, obtaining frequency ranging
from �10 to 15 for 4 mm, �15 to 15 for 8 mm and � 18 to 20 for 12 mm material
thicknesses. These results signify that the distribution or frequency of residuals for all
observations fell in minimal interval or inequalities of the experimental data, justify-
ing the adequacy of the suggested MRR1 models [46].

According to the results presented in Tables A4-A6 in the Appendix section,
detailing ANOVA for material removal rate, the effects of the input parameters for

Term t = 4 mm t = 8 mm t = 12 mm

MRR1 MRR2 MRR3 MRR1 MRR2 MRR3 MRR1 MRR2 MRR3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ �84.2 �33 �22.8 �119 �45 �60.6 �158.8 �43.3 �73.5

β1 1.752 1.562 1.440 2.941 2.658 2.708 3.867 4.476 3.416

β2 0.1260 0.0833 0.0901 0.2723 0.1738 0.0333 0.3960 0.205 0.2437

β3 0.5103 0.3430 0.4101 0.7770 0.775 0.950 0.917 0.511 1.080

Model Summary

R2 97.92% 97.56% 97.54% 98.86% 97.71% 94.73% 98.70% 96.37% 97.79%

R2 (adj) 96.67% 96.09% 96.06% 98.18% 96.33% 91.56% 97.92% 94.20% 96.46%

R2 (pred) 94.35% 90.74% 91.12% 95.73% 91.90% 82.30% 95.19% 89.41% 92.53%

Table 9.
Summary of linear regression coefficients for MRR.
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straight and arc profiles at 4, 8 and 12 mm AISI 304L thicknesses display compa-
rable results. Further, the results reveal that traverse speed and waterjet pressure
are statistically and physically significant factors for obtaining p-Values<0.05.
Hence, the abrasive mass flow rate features as a low impacting input parameter
for obtaining p-Values greater than the acceptable value of 0.05, ranging from
0.002 to 0.751.

The percentage contribution of variables for the most fitted regression models
MRR for 4, 8 and 12 mm material thicknesses are illustrated in Figure 6. In general,
traverse speed is indicated as the most impacting variable, followed by waterjet
pressure and abrasive mass flow rate, with a percent contribution ranging from 71.14–
78.94%, 12.11–24.09% and 2.65–9.03% respectively for all profiles and material thick-
nesses. It is apparent here that the percentage contribution of traverse speed increases

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 216.2 213.3 1.36 212.1 201.2 5.15 217.7 215.9 0.83

2 90 400 250 248.6 251.4 �1.10 223.1 226.7 �1.60 242.4 245.5 �1.27

3 90 500 300 284.2 289.5 �1.86 250.6 252.1 �0.62 267.8 275.0 �2.68

4 120 300 250 280.6 291.3 �3.82 251.7 265.2 �5.35 283.0 279.6 1.19

5 120 400 300 342.5 329.4 3.82 293.7 290.7 1.03 313.7 309.2 1.44

6 120 500 200 298.8 291.0 2.61 263.5 264.7 �0.45 286.2 277.2 3.14

7 150 300 300 372.1 369.4 0.73 333.8 329.2 1.38 343.9 343.4 0.16

8 150 400 200 330.7 330.9 �0.07 299.6 303.2 �1.21 298.5 311.4 �4.32

9 150 500 250 361.5 369.1 �2.09 333.5 328.7 1.44 344.8 340.9 1.14

Table 10.
Predicted MRR values of regression model for t = 4 mm.

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 367.9 382.8 �4.05 405.0 401.4 0.88 399.0 383.0 4.00

2 90 400 250 456.9 448.9 1.75 450.8 457.6 �1.50 427.2 433.8 �1.56

3 90 500 300 511.2 515.0 �0.74 501.8 513.7 �2.37 493.1 484.7 1.71

4 120 300 250 526.9 509.9 3.23 526.4 519.9 1.23 488.1 511.7 �4.84

5 120 400 300 572.9 576.0 �0.54 583.5 576.1 1.27 579.8 562.6 2.97

6 120 500 200 532.9 525.5 1.39 532.2 515.9 3.06 441.8 470.9 �6.59

7 150 300 300 633.7 637.0 �0.52 639.7 638.4 0.19 629.1 640.5 �1.81

8 150 400 200 583.9 586.5 �0.45 555.1 578.3 �4.17 576.3 548.8 4.77

9 150 500 250 647.8 652.6 �0.74 641.3 634.5 1.07 601.3 599.6 0.28

Table 11.
Predicted MRR values of regression model for t = 8 mm.
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in range from 71.4 to 77.55% as the material thickness increases. An increasing traverse
speed reinforces the contact time of the waterjet with the abrasive on the material,
producing a higher volume rate of material to the machine [9]. Contrastingly, the
percentage contribution of waterjet pressure and abrasive mass flow rate decreased as
the material thickness and traverse speed increased, ranging from 22.42–12.11% and
4.35–9.03%, respectively. The increasing traverse speed and depth or thickness of the
material to cut, results in a more prolonged machining process, which gradually leads
to subsiding kinetic energy and loss of large of abrasive particles, resulting in reduced
effectiveness of abrasive mass flow rate and waterjet pressure during the erosion
process (Figure 7) [9, 47].

3.3 Regression model and analysis for kerf taper angle

The summary of the multi-linear regression coefficients for kerf taper angle of
straight-line, inner and outer arc profiles using 4, 8 and 12 mm material thicknesses
are detailed in Table 13. The results provide a similar trend, showing the constant sign

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 472.0 491.5 �4.13 506.3 523.4 �3.37 528.9 523.1 1.10

2 90 400 250 586.2 576.9 1.58 542.1 569.5 �5.05 588.7 601.5 �2.17

3 90 500 300 655.9 662.4 �0.99 625.7 615.6 1.62 665.4 679.9 �2.18

4 120 300 250 676.0 653.4 3.35 731.7 683.2 6.62 687.5 679.6 1.15

5 120 400 300 735.0 738.8 �0.51 735.8 729.3 0.88 772.3 758.0 1.85

6 120 500 200 701.2 686.7 2.07 712.3 698.7 1.90 695.1 674.4 2.98

7 150 300 300 813.0 815.2 �0.27 822.4 843.1 �2.51 835.4 836.1 �0.09

8 150 400 200 755.6 763.1 �1.00 811.9 812.5 �0.07 725.0 752.5 �3.79

9 150 500 250 841.6 848.6 �0.83 845.6 858.6 �1.54 837.6 830.9 0.80

Table 12.
Predicted MRR values of regression model for t = 12 mm.

Figure 6.
Residual plots for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1 (mm3/min) for
t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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as positive, with variables X1, X2 and X3 as negative for all profiles and thicknesses. If
the coefficient sign is negative, as the variable increases, the response decreases,
whereas if the coefficient is positive, the relationship between variables and responses
is directly proportional [44]. Therefore, an increasing rate of traverse speed (X1)
results in an increasing angle of the kerf taper. Thus, an increasing rate of abrasive
mass flow and waterjet pressure reduces the value of kerf taper angle. The values of
R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.74–99.37%, 91.59–98.99%
and 80.11–97.66%, respectively. This confirms that regression models are reliable in
representing correlation between variables and responses and can be used in the
optimisation of process parameters.

The coefficient of determination (R2, R2adj and R2pred) obtained from straight-
line, inner and outer arc profiles for all material thicknesses had a similar and consis-
tent gap of at least 2%. The AWJM provides comparable behaviour in processing both
straight and curvature profiles [36]. The highest values of R2, R2adj and R2pred for 4
and 8 mm material thicknesses were attained in KTA1 with values of 97.56, 96.09 and
90.57%; 98.02, 96.82 and 92.01%; 99.37, 98.99 and 97.66%, respectively. These are the
most fitted model, to be utilised in the optimisation of the process parameters of this
study.

The predicted KTA values using the regression models applied for straight-line,
inner and outer arc profiles of the three levels of material thicknesses are detailed in
Tables 14-16. The percentage error obtained for 4, 8 and 12 mm AISI 304L thick-
nesses ranged between �2.55 to 1.72%, �2.67 to 3.74% and � 3.14 to 2.43%, respec-
tively. The errors calculated for KTA between the predicted value and experimental
results were less than the acceptable maximum limit of 20%, indicating the reliability
of the models in predicting KTA values.

Figure 8 illustrates the residual plot for KTA including normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values.
The results showed that the most fitted regression model is achieved from KTA1 for all
material thicknesses. Correspondingly, the normal probability plots for all material
thicknesses present a near fit to a line in a normal probability graph. The points
constructing an approximate straight-line and plotted along the fitted line signifies
that the data is normally distributed and there is a good relation between experimental
data and predicted values [45]. Predominantly, the residuals versus fits and observa-
tion graph for each material thickness exhibit that the points are plotted randomly and
near both sides of 0 with no identified pattern denoting a minimal deviation within
residuals and estimated values. Figure 8 also presents the histogram graph for KTA

Figure 7.
Percentage contribution of variables for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1
(mm3/min) for t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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Term t = 4 mm t = 8 mm t = 12 mm

KTA1 KTA2 KTA3 KTA1 KTA2 KTA3 KTA1 KTA2 KTA3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 0.9674 1.0469 1.064 1.386 1.483 1.544 1.5981 1.971 1.998

β1 0.002414 0.002155 0.001501 0.006143 0.003594 0.004333 0.006568 0.004556 0.004736

β2 - 0.000235 - 0.000220 - 0.000136 �0.00052 �0.000525 �0.00035 - 0.000107 - 0.000400 - 0.000436

β3 - 0.000932 - 0.000952 - 0.000668 �0.002039 �0.001346 - 0.001867 - 0.002319 - 0.002320 - 0.002286

Model Summary

R2 97.56% 97.26% 94.74% 98.02% 94.76% 96.79% 99.37% 96.30% 96.95%

R2 (adj) 96.09% 95.61% 91.59% 96.82% 91.61% 94.87% 98.99% 94.08% 95.12%

R2 (pred) 90.57% 88.61% 84.48% 92.01% 80.11% 88.29% 97.66% 86.50% 88.70%

Table 13.
Summary of linear regression coefficients for KTA.
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illustrating the distribution or frequency of the residuals for all observations. The
results show that the frequency of KTA for 4, 8 and 12 mm material thicknesses range
from�0.002 to 0.015, �0.05 to 0.05 for 8 mm and� 0.02 to 0.03, respectively. These
graphs reveal a minimal interval or inequalities of the experimental data indicating
that the KTA regression models are highly fitted to concrete prediction [46].

Tables A7-A9 in the Appendix section detail the results of ANOVA, where it can
be observed that the impacts of parameters for all profiles and three levels of material
thicknesses demonstrate a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05. Thus, the abra-
sive mass flow rate was found insignificant for achieving p-Values >0.05, ranging
from 0.002 to 0.245 for all profiles and material thicknesses.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.38 1.38 0.04 1.40 1.38 1.42 1.43 1.46 �1.83

2 90 400 250 1.22 1.22 �0.12 1.27 1.26 0.76 1.34 1.33 0.91

3 90 500 300 1.04 1.07 �2.65 1.13 1.14 �0.94 1.21 1.20 0.87

4 120 300 250 1.48 1.46 1.50 1.43 1.42 0.43 1.54 1.49 3.07

5 120 400 300 1.35 1.30 3.42 1.30 1.30 �0.07 1.35 1.36 �1.07

6 120 500 200 1.44 1.46 �0.81 1.34 1.38 �3.20 1.49 1.52 �1.75

7 150 300 300 1.50 1.54 �2.67 1.44 1.46 �1.67 1.50 1.53 �1.96

8 150 400 200 1.68 1.69 �0.61 1.53 1.54 �0.81 1.70 1.68 1.11

9 150 500 250 1.56 1.54 1.41 1.48 1.42 3.74 1.56 1.55 0.46

Table 15.
Predicted KTA values of regression model for t = 8 mm.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 0.93 0.93 0.23 0.99 0.98 0.41 1.02 1.02 �0.19

2 90 400 250 0.86 0.86 0.26 0.92 0.92 0.84 0.98 0.98 0.15

3 90 500 300 0.77 0.79 �2.30 0.83 0.85 �2.16 0.94 0.93 0.53

4 120 300 250 0.95 0.95 �0.60 1.00 1.00 0.16 1.04 1.04 0.78

5 120 400 300 0.90 0.88 1.74 0.94 0.93 1.33 0.96 0.99 �2.55

6 120 500 200 0.97 0.95 1.72 1.00 1.01 �0.20 1.05 1.04 0.70

7 150 300 300 0.98 0.98 0.34 1.01 1.02 �0.80 1.06 1.05 1.13

8 150 400 200 1.03 1.05 �1.70 1.08 1.09 �1.44 1.09 1.10 �1.21

9 150 500 250 0.98 0.98 0.09 1.04 1.02 1.68 1.06 1.05 0.54

Table 14.
Predicted KTA values of regression model for t = 4 mm.
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Figure 9 exhibits the percentage contribution of variables for KTA for the
most fitted regression models for 4, 8 and 12 mm material thickness. Traverse
speed was the most influencing parameter, followed by waterjet pressure and
abrasive mass flow rate, in agreement with previous studies [14, 37]. The obtained

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.70 1.69 0.39 1.80 1.80 0.18 1.85 1.84 0.49

2 90 400 250 1.57 1.57 0.07 1.63 1.64 �0.48 1.67 1.68 �0.26

3 90 500 300 1.43 1.44 �0.70 1.45 1.49 �2.20 1.49 1.52 �2.08

4 120 300 250 1.79 1.77 0.87 1.83 1.82 0.92 1.88 1.86 0.88

5 120 400 300 1.65 1.65 0.14 1.67 1.66 0.60 1.71 1.71 0.43

6 120 500 200 1.86 1.87 �0.72 1.90 1.85 2.43 1.92 1.89 1.51

7 150 300 300 1.84 1.86 �0.85 1.85 1.84 0.52 1.89 1.89 0.13

8 150 400 200 2.06 2.08 �0.81 1.97 2.03 �3.14 2.02 2.08 �2.93

9 150 500 250 1.98 1.95 1.51 1.89 1.87 0.82 1.95 1.92 1.55

Table 16.
Predicted KTA values of regression model for t = 12 mm.

Figure 8.
Residual plots for kerf taper angle. (a) KTA1 (°) for t = 4 mm (b) KTA1 (°) for t = 8 mm (c) KTA1 (°) for
t = 12 mm.

Figure 9.
Percentage contribution of variables for kerf taper angle. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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results have shown that the influence of traverse speed decreases in range from
64.21 to 53.33% as the material thickness increases. An increasing value traverse
speed results in the loss of a large number of abrasive particles, continuously
dropping as the material thickness also increases, leading to a higher angle of kerf
taper [50]. Figure 9 shows increases of material thickness, the percentage contri-
bution of waterjet pressure and abrasive mass flow rate, ranging from 26.60 to
33.40% and 6.75 to 12.65%, respectively. This increasing value of waterjet pressure
resulted in higher energy, generating a larger amount of abrasive particles that
result in a lower kerf taper [51]. Moreover, a rising rate of abrasive mass flow
breaks down abrasive particles into a smaller scale, generating more sharp points
that results in reduction of kerf taper angle [51].

4. Response surface methodology multi-objective optimisation

In this research, multi-objective optimisation was performed using RSM to deter-
mine the optimum process parameters of abrasive waterjet contour cutting of AISI
304L with varied thicknesses using MINITAB 19 software. The following optimisation
objectives were stated as follows:

f 1 ¼ Min Rað Þ (8)

f 2 ¼ Min KTAð Þ (9)

f 3 ¼ Max MRRð Þ (10)

RSM optimisation was performed using the models with the highest determination
of coefficients, i.e., R2, R2adj and R2pred. Accordingly, the regression models utilised
to minimise surface roughness were Ra3 for 4 and 8 mm and Ra2 for 12 mm. MRR1 and
KTA 1 models were used for all material thicknesses.

The Regression models utilised in multi-objective optimisation for varied thick-
nesses of AISI 304L were expressed by Eqs. (8)-(16).

Ra4mm ¼ 1:4256þ 0:003222 X1 � 0:000217 X2 � 0:001133 X3 (11)

KTA4mm ¼ 0:9674þ 0:002414 X1 � 0:000235 X2 � 0:000932 X3 (12)

MRR4mm ¼ �84:2þ 1:752 X1 þ 0:126 X2 þ 0:5103 X3 (13)

Ra8mm ¼ 1:76þ 0:008869 X1 � 0:000577 X2 � 0:001920 X3 (14)

KTA8mm ¼ 1:386þ 0:006143 X1 � 000520 X2 � 0:002039 X3 (15)

MRR8mm ¼ �119þ 2:941X1 þ 0:2723 X2 þ 0:777X3 (16)

Ra4mm ¼ 2:3854þ 0:004276 X1 � 0:000446 X2 � 0:001924 X3 (17)

KTA4mm ¼ 1:5981þ 0:006568 X1 � 0:000107 X2 � 0:002319 X3 (18)

MRR8mm ¼ �158:8þ 3:867X1 þ 0:396 X2 þ 0:917 X3 (19)

In simultaneous optimisation, goals and boundaries must be defined for each
process parameter. Targets are based on the experimental data obtained, referring to
the set highest value of responses for maximising MRR and lowest value of responses
for minimising Ra and KTA. In this optimisation, process parameters and defined
objectives were assigned to be equally significant. Therefore, the equal weights
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(wt. = 1) were assigned in order to achieve an equal importance to the process
parameters and objectives. The constraints referring to range and limits of the process
parameters are detailed below.

Constraints:
90 ≤Vf ≤ 150 mm/min

300 ≤ ma ≤ 500 g/min
200 ≤ P ≤ 300 g/min

Limits:
KTA4mm ≤ 1:03°,KTA8mm ≤ 1:68°,KTA12mm ≤ 2:06°

Ra4mm mm1:58 μm,Ra8mm mm2:45 μm,Ra12mm 2m2:46 μm

MRR4mm ≥ 216:20 mm3=min ,MRR8mm ≥ 367:90 mm3=min ,

MRR12mm ≥472:00 mm3=min

Table 17 shows the solutions for multi-objective optimisation performed for 4, 8
and 12 mm thickness of AISI 304L. The solution that provides the value of com-
posite desirability nearest to 1 can be considered as the best solution [40]. Table 17
reveals that solution 1 is the best for 4, 8 and 12 mm material thicknesses, achieving
composite desirability values of 0.748448, 0.780587 and 0.786800, respectively.
There are three solutions generated from MINITAB application, providing the set-
tings of input variables, achieved values of responses and composite desirability.
Solution 1 provides the optimum settings of input parameters i.e., V f for 4, 8 and

12 mm material thicknesses, at the speeds of 95, 90 and 91 mm/min, respectively.
The obtained optimum setting for ma and P were found to be the same value for all
material thicknesses, at 500 g/min and 200 MPa, respectively. Table 17 presents
the minimum achieved values of KTA and Ra and maximum MRR for 4, 8 and
12 mm material thicknesses, featuring at 0.7990, 1.283 μm and 297.98 mm3/min;
1.0680, 1.694 μm and 514.97 mm3/min and 1.4480, 1.975 μm and 667.07 mm3/min,
respectively.

An optimisation plot presenting how the variables affected the predicted
responses is shown in Figure 10, detailing the composite desirability for multi-
objective (D) and single-objective optimisation (d). Current variable settings for
the input parameters are presented in the figure, alongside with lower and upper
limits. Figure 10 shows a three-sectioned line graph representing the correlation of
KTA, Ra and MRR against traverse speed (X1), abrasive mass flow rate (X2) and
waterjet pressure (X3).

From the figure, it can be observed that abrasive waterjet contour cutting
responses demonstrate a comparable behaviour against input parameters for all mate-
rial thicknesses. The highest rate of material removal and lowest value of surface
roughness and Kerf taper angle were achieved by employing a rate of 150 mm/min
speed, 500 g/min abrasive mass flow rate, and 300 MPa of waterjet pressure. Increas-
ing water pressure, alongside high velocity abrasive mass flow rate, produces a greater
collision of abrasive particles, generating higher rate of material removal and reducing
surface roughness and kerf taper angle [52].

The surface roughness displayed an incrementing value that ranged from 4–13% as
the rate of traverse speed increased from 90 to 150 mm/min. As the speed increases
per unit of area over time, the kinetic energy containing abrasives gradually decreases,
resulting in greater evidences of rough surfaces [52]. Consequently, RSM optimisation
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Parameters 4 mm 8 mm 12 mm

Solutions

1 2 3 1 2 3 1 2 3

X1 =Vf

(mm/min

95 97 97 90 90 116 91 90 90

X2=ma

(g/min)

500 500 500 500 500 301.737 500 500 500

X3=P

(MPa)

300 300 300 300 300 300 300 300 300

KTA (°) 0.799 0.805 0.805 1.068 1.068 1.330 1.448 1.441 1.441

MRR (mm3/min) 297.98 302.17 302.17 514.97 514.97 537.49 667.07 662.78 662.78

Ra (μm) 1.283 1.291 1.291 1.694 1.694 2.039 1.975 1.970 1.970

Composite Desirability 0.748448 0.748075 0.748075 0.780587 0.780587 0.556566 0.786800 0.786677 0.786677

Table 17.
Solutions for RSM multi-objective optimisation.
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has shown that a lower level of traverse speed can produce a better quality of cut
surface. Additionally, surface roughness in this study shows an increasing value rang-
ing 2–5%, as the waterjet pressure increases and the abrasive mass flow rate from 200
to 300 MPa and 300 to 500 g/min, respectively. In this study, it is confirmed that
augmenting abrasive flow rate and waterjet pressure, up to a specific range, lowers the
value of surface roughness. When higher values of traverse speed are employed, the
material removal exhibits an increasing rate that ranges from 16–20%. In addition,
increasing rate of material removal was achieved with a range of 5–9%, as the rate of
abrasive mass flow and waterjet pressure increased from 200 to 300 MPa and 300 to
500 g/min, respectively. AWJM produces a high level of kinetic energy, driving a
higher level of speed and waterjet pressure alongside with abrasive mass flow rate,
which in turn generates higher cutting area per unit of time and generates a larger
amount of eroded material [53]. Therefore, the rate of material removal is directly
proportional to traverse speed, abrasive mass flow rate and waterjet pressure.
Figure 10 shows that kerf taper angle values increase as the rate of traverse speed
increases from 90 to 150 mm/min. With continuous reduction in the number of
abrasive particles, as the traverse speed increases, the cohesion on metal material
decreases, generating a higher tapering angle [52]. The kerf taper angle in this study
was reduced by 2–7%, as the abrasive mass flow and waterjet pressure were increased
from 200 to 300 MPa and 300 to 500 g/min, respectively. A higher waterjet pressure
alongside with abrasive mass flow rate reinforces the collision of abrasive particles on
the target material, causing the reduction of kerf taper angle [51].

Figure 10.
Response optimisation plot. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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5. Conclusions

This study focuses on modelling and establishing optimum abrasive waterjet con-
tour cutting parameters that lead to minimum surface roughness, kerf taper angle and
maximum productivity (material removal rate). On the basis of the results achieved
and discussed, the following conclusions are accomplished:

1.The experimental results indicate that abrasive waterjet contour cutting
responses demonstrate similar behaviour against input parameters for straight-
line and curvature profiles. The correlation coefficients of the predictive models
of R2, R2adj and R2pred for surface roughness, kerf taper angle and material
removal rate were found to be in the range of 88.66–99.08%, 82.3–98.86% and
82.3–98.86% respectively. Therefore, the developed multi-linear regression
models are reliable and effective for predicting output responses, where the
percentage errors are at minimum values ranging from �6.59 to 6.71%

2.The results of the ANOVA for Ra. MRR and KTA demonstrate that traverse speed
is the most influencing factor, with percentage contributions ranging from 55.67
to 78.94%. Surface roughness and kerf taper angle decrease as waterjet pressure
and abrasive mass flow rate increase, resulting in reductions ranging from 2–5%
and 2–7%, respectively. Increasing values of traverse speed, waterjet pressure
and abrasive mass flow rate lead to increased rates of material removal, ranging
from 16–20% and 5–9%, respectively.

3.The multi-objective optimization was performed using RSM for optimising
abrasive waterjet contour cutting process parameters applied for 4, 8 and 12 mm
material thicknesses, achieving the highest composite desirability values of
0.748448, 0.780587 and 0.786800, respectively. The optimum settings of
input parameters i.e., Vf for 4, 8 and 12 mm material thickness are 95, 90 and

91 mm/min, respectively. The obtained optimum settings for ma and P were
found to be the same value for all material thicknesses, at 500 g/min and
200 MPa, respectively. The minimum achieved values of KTA and Ra and
maximumMRR for 4, 8 and 12 mmmaterial thickness were 0.7990, 1.283 μm and
297.98 mm3/min; 1.0680, 1.694 μm and 514.97 mm3/min; and 1.4480, 1.975 μm
and 667.07 mm3/min, respectively.

Abbreviations and nomenclature

ht depth of cut (mm)
ma abrasive mass flow rate (g/min)
P water pressure (MPa)
Ra surface roughness (μm)
Vf traverse speed (mm/min)

W kerf width (mm)
W t kerf top width (mm)
Wb kerf bottom width (mm)
t thickness of the material (mm)
AISI austenitic stainless steel
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ANOVA analysis of variance
AWJM abrasive waterjet machining
KTA kerf taper angle (0)
MRR material removal rate (mm3/min)

A. Appendix

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 72.21 0.000 71.07 0.000 64.06 0.000

X2 7.96 0.007 11.57 0.003 3.94 0.013

X3 17.84 0.001 15.52 0.001 30.64 0.001

Error 1.99 1.84 1.36

Total 100.00 100.00 100.00

Table A2.
ANOVA of Ra for t = 8 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 57.23 0.000 58.85 0.000 57.21 0.001

X2 3.44 0.026 5.31 0.002 17.66 0.011

X3 34.59 0.000 33.1 0.000 19.47 0.009

Error 4.74 2.74 3.23 3.23

Total 100.00 100.00 100.00

Table A3.
ANOVA of Ra for t = 12 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.90 0.001 69.43 0.000 69.39 0.000

X2 5.16 0.067 3.49 0.068 3.77 0.017

X3 30.19 0.002 23.86 0.002 24.09 0.001

Error 4.74 3.23 2.74

Total 100.00 100 100

Table A1.
ANOVA of Ra for t = 4 mm.
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Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 71.14 0.000 70.98 0 75.503 0

X2 4.35 0.023 2.65 0.067 3.345 0.048

X3 22.42 0.002 23.93 0.001 18.688 0.002

Error 2.08 2.44 2.464

Total 100.00 100.00 100.00

Table A4.
ANOVA of MRR for t = 4 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 76.69 0.000 76.12 0.000 70.51 0.000

X2 7.13 0.002 3.62 0.038 0.12 0.751

X3 15.05 0.000 17.98 0.002 24.09 0.005

Error 1.14 2.29 5.27

Total 100.00 100.00 100.00

Table A5.
ANOVA of MRR for t = 8 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 77.55 0.000 78.94 0.000 73.29 0.000

X2 9.03 0.002 4.13 0.04 4.15 0.028

X3 12.11 0.001 13.3 0.001 20.35 0.001

Error 1.31 3.63 2.21

Total 100.00 100.00 100.00

Table A6.
ANOVA of MRR for t = 12 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 64.21 0.000 58.7 0.000 56.74 0.000

X2 6.75 0.014 6.77 0.017 5.27 0.075

X3 26.6 0.001 31.78 0.001 32.74 0.001

Error 2.45 2.74 5.26

Total 100.00 100.00 100.00

Table A7.
ANOVA of KTA for t = 4 mm.
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Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.49 0.001 67.49 0.000 60.95 0.000

X2 11.84 0.015 5.63 0.013 4.42 0.047

X3 26.69 0.002 21.65 0.001 31.42 0.001

Error 1.98 5.24 3.21

Total 100.00 100.00 100.00

Table A8.
ANOVA of KTA for t = 8 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 53.33 0.000 70.59 0.000 55.67 0.000

X2 12.65 0.055 0.22 0.245 5.24 0.033

X3 31.40 0.001 25.50 0.000 36.04 0.001

Error 0.63 3.70 3.05

Total 100.00 100.00 100.00

Table A9.
ANOVA of KTA for t = 12 mm.
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Chapter

Multi-objective Optimisation in
Abrasive Waterjet Contour Cutting
of AISI 304L
Jennifer Milaor Llanto, Ana Vafadar and Majid Tolouei-Rad

Abstract

The optimum waterjet machining parameters were found for maximising material
removal rate and minimising surface roughness and kerf taper angle where three
levels of traverse speed, abrasive flow rate, and waterjet pressure are used. The multi-
linear regression equations were obtained to investigate the relationships between
variables and responses, and the statistical significance of contour cutting parameters
was analysed using the analysis of variance (ANOVA). Further, the response surface
methodology (desirability function approach) was utilised for multi-objective optimi-
sation. The optimum traverse speeds were 95 mm/min for 4 mm thickness and
90 mm/min for both 8 and 12 mm thicknesses. For all material thicknesses, the
abrasive mass flow rate and waterjet pressure were 500 g/min and 200 MPa, respec-
tively. The minimum values of surface roughness, kerf taper angle, and maximum
material removal rate for 4-, 8- and 12-mm material thicknesses were respectively
0.799º, 1.283 μm and 297.98 mm3/min; 1.068º, 1.694 μm and 514.97 mm3/min; and
1.448º, 1.975 μm and 667.07 mm3/min. In this study, surface roughness and kerf taper
angle decreased as the waterjet pressure and abrasive mass flow rate increased; and
this is showing a direct proportional relationship with traverse speed, abrasive mass
flow rate and waterjet pressure.

Keywords: abrasive water jet, contour cutting, surface roughness, kerf taper angle,
material removal rate, response surface methodology, multi-objective optimisation

1. Introduction

Contour cutting is one of the processes applied in metal fabrication industries.
There are several non-traditional technologies employed for contour cutting, such as
electro discharge machining, laser beam machining and electrochemical discharge
machining, that have been noted to provide exemplary performance [1]. Accordingly,
Abrasive Water Jet Machining (AWJM) is an advanced manufacturing techniques
that demonstrated advantages to non-traditional machining technology owing to: its
capability in cutting complex geometries, its absence of tool wear, its absence of
thermal distortion, and it being environmentally friendly [2, 3]. The cutting process in
AWJM is based on removing materials from a target workpiece via erosion [4].
Within this process, contour profiles in various types of programs are downloaded in a
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computer-based controller, where subsequently a high-pressure pump releases
pressurised water in the nozzle system. The pressurised water, moving with a high
velocity, is released from the orifice in a very thin stream structure [5]. The high-
speed water jet that contains abrasive particles is then accelerated to generate an
abrasive waterjet. Finally, the focusing tube drives the abrasive waterjet to its target
point for cutting the material [4, 6]. The compounded granular abrasive and high-
pressure waterjet stream makes the abrasive waterjet capable of machining various
workpieces, such as metals.

The performance of AWJM is influenced by several process parameters, which can
be varied constantly within a period. In general, the primary goal of the metal fabri-
cation industry is to manufacture high quality products in a shortened period. To
attain productivity and economy objectives, it is imperative to select an optimum
combination of process parameters within the abrasive waterjet cutting processes.
Conventionally, the identification of the most suitable values of process parameters is
accomplished by the execution of many experiments. Hence, to establish the optimum
combination of process parameters in the absence of extensive experimental exertion,
researchers have utilised advanced modelling techniques and optimisation in
progressing the performance of abrasive waterjet cutting. For instance, Rao et al. [7]
have investigated the impacts of traverse speed, standoff distance and abrasive mass
flow rate in AWJM of AA631-T6. They have considered single-objective and multi-
objective optimisation attributes to achieve optimum solutions by utilising Jaya and
MO-Jaya algorithms, which were a posterior optimisation used to solve constrained
and unconstrained conditions. The objectives of maximising material removal and
minimising kerf taper angle and surface roughness were achieved by lower traverse
speed and standoff distance and higher abrasive mass flow rate. Moreover, they
determined that multi-objective Jaya algorithm achieved better results as compared
with other algorithms, such as simulated annealing (SA), particle swam optimization
(PSO), firefly algorithm (FA), cuckoo search (CS) algorithm, blackhole (BH) algo-
rithm, bio-geography-based optimization (BBO) algorithm, non-dominated sorting
genetic algorithm (NSGA), non-dominated sorting teaching-learning-based optimi-
zation (NSTLBO) algorithm and sequential approximation optimization (SAQ). Nair
and Kumanan [8] have similarly applied weighted principal components analysis
(WPCA) for optimising AWJM process parameters in machining Inconel 617. These
authors evaluated the impacts of abrasive mass flow rate, standoff distance, table feed
and waterjet pressure against material removal rate and geometric accuracy. The
WPCA method uses internal tests and training samples to calculate the ‘weighted’
covariance matrix, establishing that an increase in standoff distance enhances the
abrasive flow volume, leading to less geometric errors and a higher rate of material
removal. Equivalently, Chakraborty and Mitra [9] have applied the grey wolf
optimiser (GWO) technique for AWJM cutting of AL6061to maximise material
removal rate and minimise surface roughness, simultaneously considering the
constrained values of input parameters i.e., nozzle diameter and titled angle, jet feed
speed, surface speed, waterjet pressure and abrasive mass flow rate. This algorithm
demonstrated a faster hunting of prey (discovering the optimum parameter settings),
due to the existence of a social hierarchy of grey wolves. They achieved maximum
MRR via higher rate of nozzle titled angle, surface speed, waterjet pressure and
abrasive mass flow rate. In the case of surface roughness, it attained its minimum
value at lower rate of waterjet pressure, jet feed and surface speed and higher rate of
abrasive mass flow. Trivedi et al. [10] have examined the impacts of process parame-
ters such as pressure, traverse rate and standoff distance on surface integrity in AWJM

2

Production Engineering and Robust Control



of AISI 316 L. Analysis of variance was employed to develop an empirical model by
regression analysis for surface roughness. These authors concluded traverse speed to
be the most significant parameter influencing surface roughness, whereby increasing
pressure improved the surface quality of the target workpiece. Additionally, they
established standoff distances, as the least contributing parameter. Research focused
on optimisation of cutting operations is being continuously undertaken by
researchers, where varied methods have been employed to solve different single and
multi-objective optimisation problems [11–14]. Whereas single-objective optimisation
problems have conventionally been applied, the performance of AWJM has mainly
been measured based on multiple responses. In accordance, a multi-objective
approach is required in order to optimise several categories of objective functions
simultaneously. Several methods have been developed to date, and are continuously
being progressed, in order to solve single-objective problems. Advances in optimisa-
tion techniques, such as: genetic algorithms (GA), simulated annealing (SA), artificial
bee colony (ABC), ant colony optimization (ACO), particle swarm optimization
(PSO) and teaching-learning-based optimization (TLBO), and others, have been
demonstrated to be remarkably efficient in defining the optimum value of AWJM
process parameters [15].

In abrasive waterjet contour-cutting, it has been realised that the impacts of most
influencing factors, such as waterjet pressure, abrasive mass flow rate, standoff dis-
tance and traverse speed in straight-slit cutting, are similar with contour cutting.
These research studies have shown the application of computational approaches for
optimising process parameters in abrasive waterjet contour cutting requires further
investigation. Therefore, this research considers the optimisation of relevant process
parameters, including traverse speed, abrasive mass flow rate, and waterjet pressure
on surface roughness, material removal rate and kerf taper angle in abrasive waterjet
contour cutting of AISI 304L of varied thicknesses.

In this work, the experiment was designed using Taguchi orthogonal array, where
a regression model has been developed to formulate the optimisation fitness function.
This modelling technique has been applied to predict the response and determine
optimum process parameters. In addition, response surface methodology (RSM) has
been employed for multi-objective optimization, in order to obtain optimum values of
input process parameters and to investigate the impacts and interactions against
response parameters.

2. Methodology

In this study, three major steps were employed, consisting of abrasive waterjet
contour cutting experiments, regression modelling and optimisation. The experiment,
modelling and optimisation procedures are presented in Figure 1. The experiment was
conducted using the Taguchi L9 orthogonal array to analyse the impacts of input
parameters, i.e., traverse speed, abrasive mass flow rate and waterjet pressure. Desir-
ability analysis using response surface methodology is employed for the experimental
results of material AISI 304L. In this desirability analysis, multi-responses are consid-
ered. It establishes the optimum set of the selected process parameters on the perfor-
mance characteristics.

A regression model was developed using the machining process parameters from
the experimental execution to extract mathematical models. A linear stepwise regres-
sion analysis was performed to predict the surface roughness, material removal rate
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and kerf taper angle value. The reliability of the models generated was assessed based
on coefficient of determination (R2, R2adj & R2pred). However, supposing that
regression models are not within the acceptable range or do not provide preferable
values of coefficients of determination set by the decision-maker, it is anticipated that
these models will not provide precise prediction. Therefore, the selected parameter
setting conflicts with the response variables, denoting the necessity for modification
of independent variables or experimental design [16].

Figure 1.
Multi-objective optimisation process flow chart.
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Referring to Figure 1, after achieving the fittest models, a multi-objective optimi-
sation was performed by using response surface methodology with the objectives of
maximising material removal, whilst minimising surface roughness and kerf taper
angle. The number of solutions and iterations (i = 1 to n) may vary, depending on the
machining process requirements to establish the best alternative or solution. Hence, if
the composite desirability is not within the tolerable array, several iterations repeating
the response surface optimisation were executed. Subsequently, if these repetitions
reached the maximum number of iterations and the composite desirability is not
attaining adequate values, modifying the design of experiments and the
corresponding independent variables or its values is necessary [16]. Moreover, in
some cases, other soft computing techniques should be considered [17].

2.1 Material and experimental design

In this work, the material machined in the experiments was AISI 304L with varied
thicknesses of 4, 8 and 12 mm. The assigned material thicknesses with differing
uniform gaps were used to gain a better yield of variations in AWJM cutting behav-
iour. Stainless steel, such as AISI 304L, is widely used in fabrication industries, where
it is recognised for its high strength and corrosion and heat resistance. This results
from its high alloying content of Cr and Ni [18]. The chemical and mechanical
composition of this material is detailed in Table 1.

The setup consisted of an OMAX MAXIEM 1515 abrasive waterjet machine,
possessing a direct drive pump and dynamic cutting head with maximum pressure of
413.7 MPa and cutting area of 2235 mm length and 1727 mm width. The cutting head is
comprised of a mixing chamber for abrasive and waterjet, along with a nozzle diameter
of 0.56 mm and a jet impact angle of 90°. An abrasive garnet with a mesh size of #80
was utilised for abrasive waterjet cutting experiments. The unit is inclusive of IntelliMax
software, where the experiment setup conditions were uploaded and entered. The
cutting head can move in the Z-axis over a distance of 305 mm, with a maximum
traverse speed of 12,700 mm/min. Standoff distance was designated to 1.5 mm in
agreement with recommended range for abrasive waterjet machining in previous works
[20, 21]. The AWJM setup and process parameters are demonstrated in Figure 2.

Chemical composition in wt.% Mechanical properties

C 0.03 Hardness, Rockwell B 82

Mn 2 Tensile Strength, Ultimate, MPa 564

Si 0.75 Tensile Strength, Yield, MPa 210

Cr 18.00–20.00 Elongation at Break 58%

Ni 8.00–12.00 Modulus of Elasticity, GPa 193–200

P 0.045

S 0.03

Ni 0.1

Fe Remaining

Table 1.
Chemical and mechanical composition of AISI 304L [19].
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Upon completion of the experiments, the roughness of the machined surfaces was
quantified by a surface roughness tester (TR200 model). Figure 2 presents the cut
surface captured by LEICA M80, which indicates the measurement area for the
roughness. The kerf top and bottom width were measured using a LEICA M80 optical
microscope model. Moreover, rate of material removal and kerf taper angle were
calculated using Eqs. (1) and (2), respectively [11]. The roughness of the cut surface
determined according to the ISO/TC 44 N 1770 standard, (μm);W t is width of the cut
surface at the jet inlet, (mm]; Wb is the width of the cut surface at the jet outlet,
(mm); u is the angularity or perpendicular deviation, (mm); α°- inclination angle of
the cut surface, (°); MRR is the Material Removal Rate, (mm3/min); t is the thickness
of the material (mm) [22].

MRR ¼ ht
W t þWb

2

� �
V f (1)

KTA ¼ Arctan
W t þWb

2ht

� �
(2)

The input parameters considered in abrasive waterjet contour cutting in this
experiment included traverse rate (Vf ), abrasive flow rate (ma) and water pressure

(P), as these parameters have been demonstrated in previous studies as having signif-
icant impacts in AWJM applications [10, 12, 23, 24]. Surface integrity, kerf geometries

Figure 2.
AWJM setup and process parameters.
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and low material removal rate evidence has been reported in machining of AISI 304L,
requiring further improvement [4, 25]. Furthermore, taper angles formed in AWJM
demonstrate different inclinations as contour curvature radius differs [26]. Hence,
quality and productivity are an intensified demand in various manufacturing fields
and are significant performance indicators for machining processes. Therefore, in this
study, material removal rates (MRR), surface roughness (Ra) and kerf taper angle
(KTA) have been chosen as process parameter characteristics for abrasive waterjet
contour cutting investigations, due to their influence against the selected input
parameters. The levels of the considered independent variables, responses and coding
assignment have been detailed in Tables 2 and 3.

Abrasive waterjet cutting was executed for three different profiles, representing
straight-line, inner arcs and outer arcs, as part of the completed twelve profiles, as
demonstrated in Figure 2. The abovementioned profiles were selected to confirm a
broad array of complicated machining profiling applications. The levels of profiles
employed showed occurrences of surface roughness, low machining rate and inaccu-
racies of cut geometries in regard to previous works [27, 28], recommending further
studies, predominantly for difficult-to-cut materials, such as AISI 304L (Figure 3).

The design of experimentation (DOE) was carried out using the Taguchi approach
in MINITAB 19 software. The Taguchi method is useful in determining the best
combination of factors under desired experimental conditions, reducing the large
number of experiments which would be required in traditional experiments as the
number of process parameter increases [29, 30].

In Taguchi’s approach, selection of the appropriate orthogonal array depends on
aspects such as: the number of input and response factors along with the interactions
that are of key significance; number of levels of data for input factors; and required
resolution of experiment and limitations cited on cost and performance [29, 31]. With
this specific advantage, this method is suitable in conducting experiments with an
appropriate number of tests to determine the optimal combination and significance of
the selected factors [32]. The relevant variation in thicknesses dictates different
material responses. Therefore, Taguchi L9 orthogonal array was executed for three

Independent variables Codes Levels

1 2 3

Traverse speed, Vf = mm/min X1 90 120 150

Abrasive mass flow rate, ma = g/min X2 300 400 500

Waterjet pressure, P = MPa X3 200 250 300

Table 2.
Levels of input process parameters.

Profiles Surface roughness, μm Material removal rate, mm3/min Kerf taper angle, 0

Straight-line, 20 mm Ra1 MRR1 KTA1

Inner arc, R10 Ra2 MRR2 KTA2

Outer arc, R20 Ra3 MRR3 KTA3

Table 3.
Output parameters for varied profiles.

7

Multi-objective Optimisation in Abrasive Waterjet Contour Cutting of AISI 304L
DOI: http://dx.doi.org/10.5772/intechopen.106817



levels of material thicknesses (t), i.e., 4, 8 and 12 mm, as presented in Table 4. The
AWJM performances were analysed accordingly by the applied material thickness.

2.2 Modelling and multi-objective optimisation

A mathematical model was developed to associate the input process parameters to
the response’s characteristics. To achieve this, a linear regression was employed to
develop models for the prediction of responses. The empirical model for the predic-
tion of the responses in regard to controlling parameters was established by linear
regression analysis. Regression analysis was then applied to obtain the interactions
between independent and dependent variables [33]. Multi-linear regression involves
regression analysis of dependent and independent variables exhibiting a linear rela-
tionship [34]. It stipulates the relationship between two or more variables and a
response variable by fitting a linear equation to examine data. The value of the
independent variable x or process parameter is correlated with a value of the
dependent variable, y, which is the output parameter. In general, this analysis is
applied to investigate the degree of relationship between multiple variables fitted by a
straight line [33].

Figure 3.
Abrasive waterjet contour cutting profiles.

Exp. No. Input Parameters

Vf ma P

(mm/min) (g/min) (MPa)

1 90 300 200

2 90 400 250

3 90 500 300

4 120 300 250

5 120 400 300

6 120 500 200

7 150 300 300

8 150 400 200

9 150 500 250

Table 4.
Taguchi L9 orthogonal array.
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In general, regression model is expressed by Eq. (3) [33].

y ¼ ∝þ β1x1 þ e (3)

Wherein : e ¼ y1 � by1 (4)

where, y = dependent variable, α = constant, x1 = Independent variable, β1=
coefficient of independent variablex1, e = error, y1= regression line values and by1 =
actual observation.

If this involves more than one variables, then it is categorised as multi-regression
as shown in Eq. (5) [33].

y ¼ ∝þ β1x1 þ β2x2 þ β3x3 þ … … … βnxn þ en (5)

A multi-linear regression analysis can be employed to fit a predictive model to an
observed data set of values of output and input variables. The obtained results of surface
roughness, material removal rate and kerf taper angle were expressed in terms of the
input parameters such as traverse speed (X1) abrasive mass flow rate (X2) and
waterjet pressure (X3).

The predicted values are functional for optimising the parameters by providing an
adequate comprehension of the significant parameters. The percentage of error
between the experimental data and acquired predicted values has been calculated
based on Eq. (6) [33]. The relative percentage of error was acceptable at <20%
[35].

Error ¼
1

n

X1

n

Response experimentð Þ � Response predictedð Þ

Response experimentð Þ

" #

% (6)

The performance of the established regression model was assessed by statistical
approaches to confirm the goodness-of-fit of the model and the impact of the
predicted variables. Following this, the significance and effectiveness of the developed
models were validated by analysis of variance. Analysis of variance (ANOVA) is a
statistical method that facilitates the evaluation of comparative influences for each control
parameter [36, 37]. The significance of input parameters including traverse speed,
abrasive mass flow rate and waterjet pressure were investigated using p- values and
determination of coefficient (R2). In this work, a confidence interval of 95% (p
< 0.05) has been applied that is in alignment with previous works [29, 38, 39]. A 95%
confidence interval means that there is only a 5% chance of being the wrong estima-
tion; therefore, the influence of each process parameter or other interactions on the
responses is considered insignificant if their p-values were estimated at more than
0.05 [37].

The determination of coefficient (R2, R2adj and R2pred) refers to the percentage
variation of responses ranging from 0–100%. These indicators determine the ade-
quacy of the model against obtained experimental data and predicted observation.
This R2, R2adj and R2pred value of ≥80%, proved a better model fits of the obtained
data [35].

Response surface methodology (RSM) can be utilised for multi-objective optimi-
sation. This multi-desirability is based on multi-response optimisation using an objec-
tive function D(X), denoted as desirability function [40]. This method translates each
response (yi) into a desirability function (di), differing in the array of 0 ≤ di ≤ 1,
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where desirability function =0 indicates an undesirable response and desirability
function =1 represents a fully desired response [41]. The objective function D is
specified by Eq. (7) [40].

D ¼ d1Xd2X… … dnð Þ
1=n ¼

Yn

i¼1

di

 !1=n

(7)

The effectiveness of multi-objective optimisation is anticipated based on the
method used for establishing priority weights for each response characteristics [42].
Generally, equal importance is set for selected responses; hence, weights may differ
depending on the machining process requirements in order to establish the most
suitable solution [43].

A simultaneous optimisation process was employed to determine the levels of
resulting to the maximum overall desirability. The responses namely Ra, MRR and
KTA were optimised concurrently to assess the set of input process parameters with
the objectives of maximising MRR and minimising Ra and KTA.

3. Results and discussion

3.1 Regression models and analysis for surface roughness

The multi-linear regression coefficients are summarised in Table 5, exhibiting the
correlation between the input parameters and the output surface roughness for
straight-line, inner and outer arc profiles for material thicknesses of 4, 8 and 12 mm.
The values of coefficients for all profiles and thicknesses demonstrate a similar trend,
showing that constant and variable X1 is positive and variables X2 and X3 are negative.
The coefficient indicates the change in the mean response relating in the variation of
the specific term, whilst the other term in the model remains constant. The relation-
ship between a term and response is denoted by the sign of the coefficient [44]. The
negative correlation coefficient denotes an inverse relationship between variables and
responses; and therefore, if it is positive as the coefficient increases, the response
mean value also increases. Therefore, an increasing rate of traverse speed (X1) results
in an incremental value of surface roughness. Moreover, an increasing rate of abrasive
mass flow and waterjet pressure indicates/obtains a decreasing value of surface
roughness. The values of R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.33–
99.08%, 90.94–98.52% and 88.66–96.17%, respectively. This indicates that regression
models denote an acceptable confirmation of the relationship between the indepen-
dent variables and Ra response, which denotes a high significance of the model.
Therefore, the multi-linear model is reliable and can be utilised in the optimisation of
process parameters. It can be observed that the R2, R2adj and R2pred obtained from
straight-line, inner and outer arcs profiles have a uniform gap of at least 2%, which is
comparable for all material thicknesses. Hence, this minimal gap denotes an insignif-
icant difference between the surface roughness achieved from straight and curvature
profiles [36].

The results detailed in Table 5 show that the highest value of R2, R2adj and R2pred
for 4 and 8 mm material thickness are achieved in Ra3 with the values of 97.26, 94.84
and 92.45%; 98.64, 97.82 and 95.06%; 99.08, 98.52 and 96.17% respectively. Thus, Ra2
achieved the highest percentage of R2, R2adj and R2pred for 12 mm material thickness
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Term t = 4 mm t = 8 mm t = 12 mm

Ra1 Ra2 Ra3 Ra1 Ra2 Ra3 Ra1 Ra2 Ra3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 1.418 1.5394 1.4256 2.097 1.8107 1.76 2.542 2.3854 2.272

β1 0.003522 0.002944 0.003222 0.009814 0.003483 0.008869 0.005389 0.004276 0.003090

β2 - 0.000310 - 0.000300 - 0.000217 - 0.001464 - 0.000422 - 0.000577 - 0.000450 - 0.000446 - 0.000515

β3 - 0.001500 - 0.001300 - 0.001133 - 0.001955 - 0.000977 - 0.001920 - 0.002567 - 0.001924 - 0.001081

Model Summary

R2 95.26% 96.77% 97.26% 98.01% 98.16% 98.64% 97.73% 99.08% 94.33%

R2 (adj) 92.41% 92.41% 94.84% 96.82% 97.05% 97.82% 96.37% 98.52% 90.94%

R2 (pred) 90.58% 90.58% 92.45% 93.84% 93.77% 95.06% 93.33% 96.17% 88.66%

Table 5.
Summary of multi-linear regression coefficients for Ra.

11 M
u
lti-ob

jective
O
p
tim

isa
tion

in
A
b
ra
sive

W
a
terjet

C
on
tou

r
C
u
ttin

g
of

A
ISI

3
0
4
L

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.106817



with the values of 99.08%, 98.52% and 96.17% accordingly. Therefore, the most fitted
and predominant models were Ra3 for both 4 and 8 mm, and Ra2 for 12 mm material
thickness. The predicted Ra values of regression models applied for straight-line,
inner and outer arcs profiles of three levels of material thicknesses are detailed in
Tables 6-8. The percentage error obtained for 4, 8 and 12 mm AISI 304L thicknesses
ranged from �4.22 to 3.44%, 3.30 to 6.71% and � 5.75 to 2.49%, respectively. The
errors determined for Ra between the predicted value and experimental results are less
than 20%, denoting that these models are reliable for predicting Ra values.

Figure 4 presents the residual plot for Ra, consisting of normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values
for the most fitted regression models for 4, 8 and 12 mm, at Ra3, Ra3 and Ra2,
respectively. Similarly, the normal probability plots for all the material thicknesses
demonstrated a close fit to a line in a normal probability graph. The points forming an

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.35 1.34 0.81 1.43 1.42 0.61 1.46 1.45 0.56

2 90 400 250 1.25 1.24 1.41 1.33 1.35 �1.56 1.37 1.36 1.06

3 90 500 300 1.09 1.13 �3.99 1.25 1.27 �1.72 1.24 1.26 �2.44

4 120 300 250 1.36 1.37 �1.26 1.46 1.46 �0.39 1.48 1.48 0.22

5 120 400 300 1.29 1.27 2.35 1.42 1.39 3.44 1.40 1.38 1.72

6 120 500 200 1.41 1.39 2.45 1.50 1.48 2.28 1.48 1.48 �0.28

7 150 300 300 1.41 1.40 0.68 1.50 1.50 �0.39 1.49 1.50 �1.11

8 150 400 200 1.48 1.52 �4.22 1.58 1.60 �1.56 1.58 1.60 �2.11

9 150 500 250 1.43 1.42 1.77 1.51 1.52 �0.72 1.53 1.51 2.39

Table 6.
Predicted Ra values of regression models for t = 4 mm.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.12 2.15 �3.30 1.81 1.80 1.06 2.01 2.00 0.47

2 90 400 250 1.88 1.91 �2.73 1.72 1.71 0.86 1.86 1.85 0.98

3 90 500 300 1.64 1.66 �2.16 1.60 1.62 �2.04 1.65 1.69 �4.40

4 120 300 250 2.41 2.35 6.71 1.84 1.86 �1.81 2.16 2.17 �1.14

5 120 400 300 2.14 2.10 3.38 1.78 1.77 1.29 2.08 2.02 6.23

6 120 500 200 2.22 2.15 6.30 1.83 1.82 0.74 2.16 2.15 0.79

7 150 300 300 2.52 2.54 �1.89 1.92 1.91 0.63 2.32 2.34 �2.15

8 150 400 200 2.56 2.59 �3.68 1.95 1.97 �1.92 2.46 2.48 �1.58

9 150 500 250 2.32 2.35 �2.62 1.89 1.88 1.18 2.33 2.32 0.79

Table 7.
Predicted Ra values of regression models for t = 8 mm.
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approximately straight-line and falling along the fitted line denotes that the data is
normally distributed and there is a good relation between measured and estimated
response values [45]. In general, the residuals versus fits and observation graph for
each material thickness display that the points are distributed randomly and near both
sides of 0, with no distinguished pattern denoting a minimal deviation within resid-
uals and estimated values. This graph plots the difference between the experimental
data as predicted on the y-axis and the fitted or predicted values on the x-axis, to
validate the assumption that the residuals have constant variance [46].

Figure 4 also exhibits the histogram graph for Ra, illustrating the distribution or
frequency of the residuals for all observations. The data shows the frequency of Ra for
4, 8 and 12 mm material thicknesses to range from �0.02 to 0.03, �0.05 to 0.05
and � 0.02 to 0.02, respectively. The histogram presents distribution of the surface
roughness obtained from varying material thicknesses. Figure 4 histogram of resid-
uals denotes that the residuals are normally distributed. These results reveal a minimal
interval of inequalities of the experimental data, indicating that the Ra models meet
their assumptions and are well fitted for the accuracy of prediction [46]. The effects of
process parameters were established by ANOVA, where surface roughness results are
given in Tables A1-A3 in the Appendix section.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.39 2.38 1.17 2.26 2.25 0.42 2.18 2.18 �0.09

2 90 400 250 2.20 2.21 �0.50 2.12 2.11 0.60 2.09 2.07 1.20

3 90 500 300 2.00 2.03 �3.17 1.95 1.97 �1.98 1.99 1.97 2.49

4 120 300 250 2.42 2.41 0.83 2.29 2.28 0.30 2.22 2.22 0.69

5 120 400 300 2.25 2.24 1.17 2.16 2.14 2.03 2.05 2.11 �5.75

6 120 500 200 2.48 2.45 3.00 2.29 2.29 �0.39 2.15 2.17 �2.15

7 150 300 300 2.45 2.45 0.50 2.30 2.32 �1.36 2.27 2.26 1.46

8 150 400 200 2.60 2.66 �5.67 2.45 2.46 �1.34 2.32 2.31 0.43

9 150 500 250 2.51 2.48 2.67 2.34 2.32 1.74 2.22 2.21 1.72

Table 8.
Predicted Ra values of regression models for t = 12 mm.

Figure 4.
Residual plots for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm (c) Ra2 (μm) for
t = 12 mm.
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The impacts of the parameters for all profiles across the three levels of material
thicknesses demonstrated a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05, as detailed in
Tables A1-A3. Accordingly, this work has established that abrasive mass flow rate is
an insignificant input parameter for obtaining p-Values >0.05, ranging from 0.002 to
0.067. Figure 5 represents the percentage contribution of variables for Ra of the most
fitted regression models for 4, 8 and 12 mmmaterial thickness. Overall, traverse speed
features as the most influencing parameter, followed by waterjet pressure and abra-
sive mass flow rate. It can be observed here that the influence of traverse speed
decreases, ranging from 69.39 to 58.85%, as the material thickness increases. In
AWJM, an increasing traverse speed reduces the number of abrasive particles, leading
to higher occurrences of surface roughness [47]. Figure 5 shows that as the material
thickness increases, the percentage contribution of waterjet pressure and abrasive
mass flow rate also increases, ranging from 24.09 to 33.1% and 3.77 to 5.31%, respec-
tively. The increasing value of waterjet pressure denotes higher energy, reinforcing a
larger amount of abrasive particles obtaining lower surface roughness [48]. Further,
an increasing rate of abrasive mass flow breaks down abrasive particles into smaller
sizes, resulting in more sharp edges that reduce surface roughness [15]. The percent-
age errors obtained were less than 20%, indicating acceptable reliability of the models,
as described in Eq. (6).

3.2 Regression model and analysis for material removal rate

Table 9 displays multi-linear regression coefficients of models developed for
material removal rate against input parameters i.e., traverse speed (X1), abrasive
mass flow rate (X2) and waterjet pressure (X3) for 4, 8 and 12 mm material
thicknesses of AISI 304L. Regardless of material thickness and cutting profile
category, the input parameter coefficients acquired a positive sign whilst the constant
coefficients had a negative sign. The sign of the coefficient denotes the trend of
relationship between variables and response [44]. As a result, an increasing rate of
traverse speed, abrasive mass flow rate and waterjet pressure, generates a higher rate
of material removal. Overall, the coefficient of determination R2 ranged from 97.79 to
97.92%, with R2adj ranging from 96.46 to 96.67% and R2pred ranging from 92.53 to
94.35%, confirming that all generated regression models were significant. The
models were established to be sufficient for accurate forecasting of material removal
rate within the assigned levels of input parameters for AWJM of straight and arcs
profiles. Furthermore, Table 9 demonstrated that MRR1 (straight-line), MRR2 (inner

Figure 5.
Percentage contribution of variables for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm
(c) Ra2 (μm) for t = 12 mm.
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arcs) and MRR3 (outer arcs) attained a uniform gap of at least 2% for R2, R2adj and
R2pred values. This nominal disparity of the coefficient of determination indicates
that AWJM performance for straight and curvature profiles are not significantly
different from one another [36]. The results detailed in Table 9 confirm that the
highest values of R2, R2adj and R2pred for all material thicknesses was attained in
MRR1 (straight-line profile) with values of 97.92, 96.67 and 94.35%; 98.86, 98.18
and 95.73%; 98.70, 97.92 and 95.19% respectively. This statistical measurement
evaluates the relationship between the model and response variables, indicating that a
value nearest to 100% denotes a more reliable model [49]. Therefore, MRR1 regres-
sion models are considered as the most fitted model for 4, 8 and 12 mm material
thicknesses.

Tables 10-12 present the predicted MRR values using the generated regression
models of 4, 8 and 12 mm thickness of AISI 304L for three varied contour profiles. The
percentage error acquired for 4, 8 and 12 mm AISI 304L thicknesses ranged from
�5.35 to 5.15%, �6.59 to 4.77% and � 5.05 to 6.62%, respectively. The errors deter-
mined for Ra between the predicted value and experimental results were less than
20%, indicating models to be well fitted for predicting MRR values.

Plots of all residuals of the best material removal rate (MRR1) for all material
thicknesses are represented in Figure 6. Overall, the normal probability plots for all
the material thicknesses illustrate that the adjacency of the points are linear indicating
there is no deviation from the assumptions, because they are normally and indepen-
dently distributed [46]. Residuals versus fits and observation for MRR1 of straight-
line, inner and outer arc profiles confirm that there is no skewness or outlier pattern,
revealing that individual deviated assumptions have no conflicts or contradictions.
Figure 6 also presents the histogram graph for MRR1, obtaining frequency ranging
from �10 to 15 for 4 mm, �15 to 15 for 8 mm and � 18 to 20 for 12 mm material
thicknesses. These results signify that the distribution or frequency of residuals for all
observations fell in minimal interval or inequalities of the experimental data, justify-
ing the adequacy of the suggested MRR1 models [46].

According to the results presented in Tables A4-A6 in the Appendix section,
detailing ANOVA for material removal rate, the effects of the input parameters for

Term t = 4 mm t = 8 mm t = 12 mm

MRR1 MRR2 MRR3 MRR1 MRR2 MRR3 MRR1 MRR2 MRR3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ �84.2 �33 �22.8 �119 �45 �60.6 �158.8 �43.3 �73.5

β1 1.752 1.562 1.440 2.941 2.658 2.708 3.867 4.476 3.416

β2 0.1260 0.0833 0.0901 0.2723 0.1738 0.0333 0.3960 0.205 0.2437

β3 0.5103 0.3430 0.4101 0.7770 0.775 0.950 0.917 0.511 1.080

Model Summary

R2 97.92% 97.56% 97.54% 98.86% 97.71% 94.73% 98.70% 96.37% 97.79%

R2 (adj) 96.67% 96.09% 96.06% 98.18% 96.33% 91.56% 97.92% 94.20% 96.46%

R2 (pred) 94.35% 90.74% 91.12% 95.73% 91.90% 82.30% 95.19% 89.41% 92.53%

Table 9.
Summary of linear regression coefficients for MRR.
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straight and arc profiles at 4, 8 and 12 mm AISI 304L thicknesses display compa-
rable results. Further, the results reveal that traverse speed and waterjet pressure
are statistically and physically significant factors for obtaining p-Values<0.05.
Hence, the abrasive mass flow rate features as a low impacting input parameter
for obtaining p-Values greater than the acceptable value of 0.05, ranging from
0.002 to 0.751.

The percentage contribution of variables for the most fitted regression models
MRR for 4, 8 and 12 mm material thicknesses are illustrated in Figure 6. In general,
traverse speed is indicated as the most impacting variable, followed by waterjet
pressure and abrasive mass flow rate, with a percent contribution ranging from 71.14–
78.94%, 12.11–24.09% and 2.65–9.03% respectively for all profiles and material thick-
nesses. It is apparent here that the percentage contribution of traverse speed increases

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 216.2 213.3 1.36 212.1 201.2 5.15 217.7 215.9 0.83

2 90 400 250 248.6 251.4 �1.10 223.1 226.7 �1.60 242.4 245.5 �1.27

3 90 500 300 284.2 289.5 �1.86 250.6 252.1 �0.62 267.8 275.0 �2.68

4 120 300 250 280.6 291.3 �3.82 251.7 265.2 �5.35 283.0 279.6 1.19

5 120 400 300 342.5 329.4 3.82 293.7 290.7 1.03 313.7 309.2 1.44

6 120 500 200 298.8 291.0 2.61 263.5 264.7 �0.45 286.2 277.2 3.14

7 150 300 300 372.1 369.4 0.73 333.8 329.2 1.38 343.9 343.4 0.16

8 150 400 200 330.7 330.9 �0.07 299.6 303.2 �1.21 298.5 311.4 �4.32

9 150 500 250 361.5 369.1 �2.09 333.5 328.7 1.44 344.8 340.9 1.14

Table 10.
Predicted MRR values of regression model for t = 4 mm.

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 367.9 382.8 �4.05 405.0 401.4 0.88 399.0 383.0 4.00

2 90 400 250 456.9 448.9 1.75 450.8 457.6 �1.50 427.2 433.8 �1.56

3 90 500 300 511.2 515.0 �0.74 501.8 513.7 �2.37 493.1 484.7 1.71

4 120 300 250 526.9 509.9 3.23 526.4 519.9 1.23 488.1 511.7 �4.84

5 120 400 300 572.9 576.0 �0.54 583.5 576.1 1.27 579.8 562.6 2.97

6 120 500 200 532.9 525.5 1.39 532.2 515.9 3.06 441.8 470.9 �6.59

7 150 300 300 633.7 637.0 �0.52 639.7 638.4 0.19 629.1 640.5 �1.81

8 150 400 200 583.9 586.5 �0.45 555.1 578.3 �4.17 576.3 548.8 4.77

9 150 500 250 647.8 652.6 �0.74 641.3 634.5 1.07 601.3 599.6 0.28

Table 11.
Predicted MRR values of regression model for t = 8 mm.
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in range from 71.4 to 77.55% as the material thickness increases. An increasing traverse
speed reinforces the contact time of the waterjet with the abrasive on the material,
producing a higher volume rate of material to the machine [9]. Contrastingly, the
percentage contribution of waterjet pressure and abrasive mass flow rate decreased as
the material thickness and traverse speed increased, ranging from 22.42–12.11% and
4.35–9.03%, respectively. The increasing traverse speed and depth or thickness of the
material to cut, results in a more prolonged machining process, which gradually leads
to subsiding kinetic energy and loss of large of abrasive particles, resulting in reduced
effectiveness of abrasive mass flow rate and waterjet pressure during the erosion
process (Figure 7) [9, 47].

3.3 Regression model and analysis for kerf taper angle

The summary of the multi-linear regression coefficients for kerf taper angle of
straight-line, inner and outer arc profiles using 4, 8 and 12 mm material thicknesses
are detailed in Table 13. The results provide a similar trend, showing the constant sign

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 472.0 491.5 �4.13 506.3 523.4 �3.37 528.9 523.1 1.10

2 90 400 250 586.2 576.9 1.58 542.1 569.5 �5.05 588.7 601.5 �2.17

3 90 500 300 655.9 662.4 �0.99 625.7 615.6 1.62 665.4 679.9 �2.18

4 120 300 250 676.0 653.4 3.35 731.7 683.2 6.62 687.5 679.6 1.15

5 120 400 300 735.0 738.8 �0.51 735.8 729.3 0.88 772.3 758.0 1.85

6 120 500 200 701.2 686.7 2.07 712.3 698.7 1.90 695.1 674.4 2.98

7 150 300 300 813.0 815.2 �0.27 822.4 843.1 �2.51 835.4 836.1 �0.09

8 150 400 200 755.6 763.1 �1.00 811.9 812.5 �0.07 725.0 752.5 �3.79

9 150 500 250 841.6 848.6 �0.83 845.6 858.6 �1.54 837.6 830.9 0.80

Table 12.
Predicted MRR values of regression model for t = 12 mm.

Figure 6.
Residual plots for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1 (mm3/min) for
t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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as positive, with variables X1, X2 and X3 as negative for all profiles and thicknesses. If
the coefficient sign is negative, as the variable increases, the response decreases,
whereas if the coefficient is positive, the relationship between variables and responses
is directly proportional [44]. Therefore, an increasing rate of traverse speed (X1)
results in an increasing angle of the kerf taper. Thus, an increasing rate of abrasive
mass flow and waterjet pressure reduces the value of kerf taper angle. The values of
R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.74–99.37%, 91.59–98.99%
and 80.11–97.66%, respectively. This confirms that regression models are reliable in
representing correlation between variables and responses and can be used in the
optimisation of process parameters.

The coefficient of determination (R2, R2adj and R2pred) obtained from straight-
line, inner and outer arc profiles for all material thicknesses had a similar and consis-
tent gap of at least 2%. The AWJM provides comparable behaviour in processing both
straight and curvature profiles [36]. The highest values of R2, R2adj and R2pred for 4
and 8 mm material thicknesses were attained in KTA1 with values of 97.56, 96.09 and
90.57%; 98.02, 96.82 and 92.01%; 99.37, 98.99 and 97.66%, respectively. These are the
most fitted model, to be utilised in the optimisation of the process parameters of this
study.

The predicted KTA values using the regression models applied for straight-line,
inner and outer arc profiles of the three levels of material thicknesses are detailed in
Tables 14-16. The percentage error obtained for 4, 8 and 12 mm AISI 304L thick-
nesses ranged between �2.55 to 1.72%, �2.67 to 3.74% and � 3.14 to 2.43%, respec-
tively. The errors calculated for KTA between the predicted value and experimental
results were less than the acceptable maximum limit of 20%, indicating the reliability
of the models in predicting KTA values.

Figure 8 illustrates the residual plot for KTA including normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values.
The results showed that the most fitted regression model is achieved from KTA1 for all
material thicknesses. Correspondingly, the normal probability plots for all material
thicknesses present a near fit to a line in a normal probability graph. The points
constructing an approximate straight-line and plotted along the fitted line signifies
that the data is normally distributed and there is a good relation between experimental
data and predicted values [45]. Predominantly, the residuals versus fits and observa-
tion graph for each material thickness exhibit that the points are plotted randomly and
near both sides of 0 with no identified pattern denoting a minimal deviation within
residuals and estimated values. Figure 8 also presents the histogram graph for KTA

Figure 7.
Percentage contribution of variables for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1
(mm3/min) for t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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Term t = 4 mm t = 8 mm t = 12 mm

KTA1 KTA2 KTA3 KTA1 KTA2 KTA3 KTA1 KTA2 KTA3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 0.9674 1.0469 1.064 1.386 1.483 1.544 1.5981 1.971 1.998

β1 0.002414 0.002155 0.001501 0.006143 0.003594 0.004333 0.006568 0.004556 0.004736

β2 - 0.000235 - 0.000220 - 0.000136 �0.00052 �0.000525 �0.00035 - 0.000107 - 0.000400 - 0.000436

β3 - 0.000932 - 0.000952 - 0.000668 �0.002039 �0.001346 - 0.001867 - 0.002319 - 0.002320 - 0.002286

Model Summary

R2 97.56% 97.26% 94.74% 98.02% 94.76% 96.79% 99.37% 96.30% 96.95%

R2 (adj) 96.09% 95.61% 91.59% 96.82% 91.61% 94.87% 98.99% 94.08% 95.12%

R2 (pred) 90.57% 88.61% 84.48% 92.01% 80.11% 88.29% 97.66% 86.50% 88.70%

Table 13.
Summary of linear regression coefficients for KTA.
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illustrating the distribution or frequency of the residuals for all observations. The
results show that the frequency of KTA for 4, 8 and 12 mm material thicknesses range
from�0.002 to 0.015, �0.05 to 0.05 for 8 mm and� 0.02 to 0.03, respectively. These
graphs reveal a minimal interval or inequalities of the experimental data indicating
that the KTA regression models are highly fitted to concrete prediction [46].

Tables A7-A9 in the Appendix section detail the results of ANOVA, where it can
be observed that the impacts of parameters for all profiles and three levels of material
thicknesses demonstrate a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05. Thus, the abra-
sive mass flow rate was found insignificant for achieving p-Values >0.05, ranging
from 0.002 to 0.245 for all profiles and material thicknesses.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.38 1.38 0.04 1.40 1.38 1.42 1.43 1.46 �1.83

2 90 400 250 1.22 1.22 �0.12 1.27 1.26 0.76 1.34 1.33 0.91

3 90 500 300 1.04 1.07 �2.65 1.13 1.14 �0.94 1.21 1.20 0.87

4 120 300 250 1.48 1.46 1.50 1.43 1.42 0.43 1.54 1.49 3.07

5 120 400 300 1.35 1.30 3.42 1.30 1.30 �0.07 1.35 1.36 �1.07

6 120 500 200 1.44 1.46 �0.81 1.34 1.38 �3.20 1.49 1.52 �1.75

7 150 300 300 1.50 1.54 �2.67 1.44 1.46 �1.67 1.50 1.53 �1.96

8 150 400 200 1.68 1.69 �0.61 1.53 1.54 �0.81 1.70 1.68 1.11

9 150 500 250 1.56 1.54 1.41 1.48 1.42 3.74 1.56 1.55 0.46

Table 15.
Predicted KTA values of regression model for t = 8 mm.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 0.93 0.93 0.23 0.99 0.98 0.41 1.02 1.02 �0.19

2 90 400 250 0.86 0.86 0.26 0.92 0.92 0.84 0.98 0.98 0.15

3 90 500 300 0.77 0.79 �2.30 0.83 0.85 �2.16 0.94 0.93 0.53

4 120 300 250 0.95 0.95 �0.60 1.00 1.00 0.16 1.04 1.04 0.78

5 120 400 300 0.90 0.88 1.74 0.94 0.93 1.33 0.96 0.99 �2.55

6 120 500 200 0.97 0.95 1.72 1.00 1.01 �0.20 1.05 1.04 0.70

7 150 300 300 0.98 0.98 0.34 1.01 1.02 �0.80 1.06 1.05 1.13

8 150 400 200 1.03 1.05 �1.70 1.08 1.09 �1.44 1.09 1.10 �1.21

9 150 500 250 0.98 0.98 0.09 1.04 1.02 1.68 1.06 1.05 0.54

Table 14.
Predicted KTA values of regression model for t = 4 mm.
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Figure 9 exhibits the percentage contribution of variables for KTA for the
most fitted regression models for 4, 8 and 12 mm material thickness. Traverse
speed was the most influencing parameter, followed by waterjet pressure and
abrasive mass flow rate, in agreement with previous studies [14, 37]. The obtained

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.70 1.69 0.39 1.80 1.80 0.18 1.85 1.84 0.49

2 90 400 250 1.57 1.57 0.07 1.63 1.64 �0.48 1.67 1.68 �0.26

3 90 500 300 1.43 1.44 �0.70 1.45 1.49 �2.20 1.49 1.52 �2.08

4 120 300 250 1.79 1.77 0.87 1.83 1.82 0.92 1.88 1.86 0.88

5 120 400 300 1.65 1.65 0.14 1.67 1.66 0.60 1.71 1.71 0.43

6 120 500 200 1.86 1.87 �0.72 1.90 1.85 2.43 1.92 1.89 1.51

7 150 300 300 1.84 1.86 �0.85 1.85 1.84 0.52 1.89 1.89 0.13

8 150 400 200 2.06 2.08 �0.81 1.97 2.03 �3.14 2.02 2.08 �2.93

9 150 500 250 1.98 1.95 1.51 1.89 1.87 0.82 1.95 1.92 1.55

Table 16.
Predicted KTA values of regression model for t = 12 mm.

Figure 8.
Residual plots for kerf taper angle. (a) KTA1 (°) for t = 4 mm (b) KTA1 (°) for t = 8 mm (c) KTA1 (°) for
t = 12 mm.

Figure 9.
Percentage contribution of variables for kerf taper angle. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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results have shown that the influence of traverse speed decreases in range from
64.21 to 53.33% as the material thickness increases. An increasing value traverse
speed results in the loss of a large number of abrasive particles, continuously
dropping as the material thickness also increases, leading to a higher angle of kerf
taper [50]. Figure 9 shows increases of material thickness, the percentage contri-
bution of waterjet pressure and abrasive mass flow rate, ranging from 26.60 to
33.40% and 6.75 to 12.65%, respectively. This increasing value of waterjet pressure
resulted in higher energy, generating a larger amount of abrasive particles that
result in a lower kerf taper [51]. Moreover, a rising rate of abrasive mass flow
breaks down abrasive particles into a smaller scale, generating more sharp points
that results in reduction of kerf taper angle [51].

4. Response surface methodology multi-objective optimisation

In this research, multi-objective optimisation was performed using RSM to deter-
mine the optimum process parameters of abrasive waterjet contour cutting of AISI
304L with varied thicknesses using MINITAB 19 software. The following optimisation
objectives were stated as follows:

f 1 ¼ Min Rað Þ (8)

f 2 ¼ Min KTAð Þ (9)

f 3 ¼ Max MRRð Þ (10)

RSM optimisation was performed using the models with the highest determination
of coefficients, i.e., R2, R2adj and R2pred. Accordingly, the regression models utilised
to minimise surface roughness were Ra3 for 4 and 8 mm and Ra2 for 12 mm. MRR1 and
KTA 1 models were used for all material thicknesses.

The Regression models utilised in multi-objective optimisation for varied thick-
nesses of AISI 304L were expressed by Eqs. (8)-(16).

Ra4mm ¼ 1:4256þ 0:003222 X1 � 0:000217 X2 � 0:001133 X3 (11)

KTA4mm ¼ 0:9674þ 0:002414 X1 � 0:000235 X2 � 0:000932 X3 (12)

MRR4mm ¼ �84:2þ 1:752 X1 þ 0:126 X2 þ 0:5103 X3 (13)

Ra8mm ¼ 1:76þ 0:008869 X1 � 0:000577 X2 � 0:001920 X3 (14)

KTA8mm ¼ 1:386þ 0:006143 X1 � 000520 X2 � 0:002039 X3 (15)

MRR8mm ¼ �119þ 2:941X1 þ 0:2723 X2 þ 0:777X3 (16)

Ra4mm ¼ 2:3854þ 0:004276 X1 � 0:000446 X2 � 0:001924 X3 (17)

KTA4mm ¼ 1:5981þ 0:006568 X1 � 0:000107 X2 � 0:002319 X3 (18)

MRR8mm ¼ �158:8þ 3:867X1 þ 0:396 X2 þ 0:917 X3 (19)

In simultaneous optimisation, goals and boundaries must be defined for each
process parameter. Targets are based on the experimental data obtained, referring to
the set highest value of responses for maximising MRR and lowest value of responses
for minimising Ra and KTA. In this optimisation, process parameters and defined
objectives were assigned to be equally significant. Therefore, the equal weights

22

Production Engineering and Robust Control



(wt. = 1) were assigned in order to achieve an equal importance to the process
parameters and objectives. The constraints referring to range and limits of the process
parameters are detailed below.

Constraints:
90 ≤Vf ≤ 150 mm/min

300 ≤ ma ≤ 500 g/min
200 ≤ P ≤ 300 g/min

Limits:
KTA4mm ≤ 1:03°,KTA8mm ≤ 1:68°,KTA12mm ≤ 2:06°

Ra4mm mm1:58 μm,Ra8mm mm2:45 μm,Ra12mm 2m2:46 μm

MRR4mm ≥ 216:20 mm3=min ,MRR8mm ≥ 367:90 mm3=min ,

MRR12mm ≥472:00 mm3=min

Table 17 shows the solutions for multi-objective optimisation performed for 4, 8
and 12 mm thickness of AISI 304L. The solution that provides the value of com-
posite desirability nearest to 1 can be considered as the best solution [40]. Table 17
reveals that solution 1 is the best for 4, 8 and 12 mm material thicknesses, achieving
composite desirability values of 0.748448, 0.780587 and 0.786800, respectively.
There are three solutions generated from MINITAB application, providing the set-
tings of input variables, achieved values of responses and composite desirability.
Solution 1 provides the optimum settings of input parameters i.e., V f for 4, 8 and

12 mm material thicknesses, at the speeds of 95, 90 and 91 mm/min, respectively.
The obtained optimum setting for ma and P were found to be the same value for all
material thicknesses, at 500 g/min and 200 MPa, respectively. Table 17 presents
the minimum achieved values of KTA and Ra and maximum MRR for 4, 8 and
12 mm material thicknesses, featuring at 0.7990, 1.283 μm and 297.98 mm3/min;
1.0680, 1.694 μm and 514.97 mm3/min and 1.4480, 1.975 μm and 667.07 mm3/min,
respectively.

An optimisation plot presenting how the variables affected the predicted
responses is shown in Figure 10, detailing the composite desirability for multi-
objective (D) and single-objective optimisation (d). Current variable settings for
the input parameters are presented in the figure, alongside with lower and upper
limits. Figure 10 shows a three-sectioned line graph representing the correlation of
KTA, Ra and MRR against traverse speed (X1), abrasive mass flow rate (X2) and
waterjet pressure (X3).

From the figure, it can be observed that abrasive waterjet contour cutting
responses demonstrate a comparable behaviour against input parameters for all mate-
rial thicknesses. The highest rate of material removal and lowest value of surface
roughness and Kerf taper angle were achieved by employing a rate of 150 mm/min
speed, 500 g/min abrasive mass flow rate, and 300 MPa of waterjet pressure. Increas-
ing water pressure, alongside high velocity abrasive mass flow rate, produces a greater
collision of abrasive particles, generating higher rate of material removal and reducing
surface roughness and kerf taper angle [52].

The surface roughness displayed an incrementing value that ranged from 4–13% as
the rate of traverse speed increased from 90 to 150 mm/min. As the speed increases
per unit of area over time, the kinetic energy containing abrasives gradually decreases,
resulting in greater evidences of rough surfaces [52]. Consequently, RSM optimisation
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Parameters 4 mm 8 mm 12 mm

Solutions

1 2 3 1 2 3 1 2 3

X1 =Vf

(mm/min

95 97 97 90 90 116 91 90 90

X2=ma

(g/min)

500 500 500 500 500 301.737 500 500 500

X3=P

(MPa)

300 300 300 300 300 300 300 300 300

KTA (°) 0.799 0.805 0.805 1.068 1.068 1.330 1.448 1.441 1.441

MRR (mm3/min) 297.98 302.17 302.17 514.97 514.97 537.49 667.07 662.78 662.78

Ra (μm) 1.283 1.291 1.291 1.694 1.694 2.039 1.975 1.970 1.970

Composite Desirability 0.748448 0.748075 0.748075 0.780587 0.780587 0.556566 0.786800 0.786677 0.786677

Table 17.
Solutions for RSM multi-objective optimisation.
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has shown that a lower level of traverse speed can produce a better quality of cut
surface. Additionally, surface roughness in this study shows an increasing value rang-
ing 2–5%, as the waterjet pressure increases and the abrasive mass flow rate from 200
to 300 MPa and 300 to 500 g/min, respectively. In this study, it is confirmed that
augmenting abrasive flow rate and waterjet pressure, up to a specific range, lowers the
value of surface roughness. When higher values of traverse speed are employed, the
material removal exhibits an increasing rate that ranges from 16–20%. In addition,
increasing rate of material removal was achieved with a range of 5–9%, as the rate of
abrasive mass flow and waterjet pressure increased from 200 to 300 MPa and 300 to
500 g/min, respectively. AWJM produces a high level of kinetic energy, driving a
higher level of speed and waterjet pressure alongside with abrasive mass flow rate,
which in turn generates higher cutting area per unit of time and generates a larger
amount of eroded material [53]. Therefore, the rate of material removal is directly
proportional to traverse speed, abrasive mass flow rate and waterjet pressure.
Figure 10 shows that kerf taper angle values increase as the rate of traverse speed
increases from 90 to 150 mm/min. With continuous reduction in the number of
abrasive particles, as the traverse speed increases, the cohesion on metal material
decreases, generating a higher tapering angle [52]. The kerf taper angle in this study
was reduced by 2–7%, as the abrasive mass flow and waterjet pressure were increased
from 200 to 300 MPa and 300 to 500 g/min, respectively. A higher waterjet pressure
alongside with abrasive mass flow rate reinforces the collision of abrasive particles on
the target material, causing the reduction of kerf taper angle [51].

Figure 10.
Response optimisation plot. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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5. Conclusions

This study focuses on modelling and establishing optimum abrasive waterjet con-
tour cutting parameters that lead to minimum surface roughness, kerf taper angle and
maximum productivity (material removal rate). On the basis of the results achieved
and discussed, the following conclusions are accomplished:

1.The experimental results indicate that abrasive waterjet contour cutting
responses demonstrate similar behaviour against input parameters for straight-
line and curvature profiles. The correlation coefficients of the predictive models
of R2, R2adj and R2pred for surface roughness, kerf taper angle and material
removal rate were found to be in the range of 88.66–99.08%, 82.3–98.86% and
82.3–98.86% respectively. Therefore, the developed multi-linear regression
models are reliable and effective for predicting output responses, where the
percentage errors are at minimum values ranging from �6.59 to 6.71%

2.The results of the ANOVA for Ra. MRR and KTA demonstrate that traverse speed
is the most influencing factor, with percentage contributions ranging from 55.67
to 78.94%. Surface roughness and kerf taper angle decrease as waterjet pressure
and abrasive mass flow rate increase, resulting in reductions ranging from 2–5%
and 2–7%, respectively. Increasing values of traverse speed, waterjet pressure
and abrasive mass flow rate lead to increased rates of material removal, ranging
from 16–20% and 5–9%, respectively.

3.The multi-objective optimization was performed using RSM for optimising
abrasive waterjet contour cutting process parameters applied for 4, 8 and 12 mm
material thicknesses, achieving the highest composite desirability values of
0.748448, 0.780587 and 0.786800, respectively. The optimum settings of
input parameters i.e., Vf for 4, 8 and 12 mm material thickness are 95, 90 and

91 mm/min, respectively. The obtained optimum settings for ma and P were
found to be the same value for all material thicknesses, at 500 g/min and
200 MPa, respectively. The minimum achieved values of KTA and Ra and
maximumMRR for 4, 8 and 12 mmmaterial thickness were 0.7990, 1.283 μm and
297.98 mm3/min; 1.0680, 1.694 μm and 514.97 mm3/min; and 1.4480, 1.975 μm
and 667.07 mm3/min, respectively.

Abbreviations and nomenclature

ht depth of cut (mm)
ma abrasive mass flow rate (g/min)
P water pressure (MPa)
Ra surface roughness (μm)
Vf traverse speed (mm/min)

W kerf width (mm)
W t kerf top width (mm)
Wb kerf bottom width (mm)
t thickness of the material (mm)
AISI austenitic stainless steel
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ANOVA analysis of variance
AWJM abrasive waterjet machining
KTA kerf taper angle (0)
MRR material removal rate (mm3/min)

A. Appendix

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 72.21 0.000 71.07 0.000 64.06 0.000

X2 7.96 0.007 11.57 0.003 3.94 0.013

X3 17.84 0.001 15.52 0.001 30.64 0.001

Error 1.99 1.84 1.36

Total 100.00 100.00 100.00

Table A2.
ANOVA of Ra for t = 8 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 57.23 0.000 58.85 0.000 57.21 0.001

X2 3.44 0.026 5.31 0.002 17.66 0.011

X3 34.59 0.000 33.1 0.000 19.47 0.009

Error 4.74 2.74 3.23 3.23

Total 100.00 100.00 100.00

Table A3.
ANOVA of Ra for t = 12 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.90 0.001 69.43 0.000 69.39 0.000

X2 5.16 0.067 3.49 0.068 3.77 0.017

X3 30.19 0.002 23.86 0.002 24.09 0.001

Error 4.74 3.23 2.74

Total 100.00 100 100

Table A1.
ANOVA of Ra for t = 4 mm.
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Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 71.14 0.000 70.98 0 75.503 0

X2 4.35 0.023 2.65 0.067 3.345 0.048

X3 22.42 0.002 23.93 0.001 18.688 0.002

Error 2.08 2.44 2.464

Total 100.00 100.00 100.00

Table A4.
ANOVA of MRR for t = 4 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 76.69 0.000 76.12 0.000 70.51 0.000

X2 7.13 0.002 3.62 0.038 0.12 0.751

X3 15.05 0.000 17.98 0.002 24.09 0.005

Error 1.14 2.29 5.27

Total 100.00 100.00 100.00

Table A5.
ANOVA of MRR for t = 8 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 77.55 0.000 78.94 0.000 73.29 0.000

X2 9.03 0.002 4.13 0.04 4.15 0.028

X3 12.11 0.001 13.3 0.001 20.35 0.001

Error 1.31 3.63 2.21

Total 100.00 100.00 100.00

Table A6.
ANOVA of MRR for t = 12 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 64.21 0.000 58.7 0.000 56.74 0.000

X2 6.75 0.014 6.77 0.017 5.27 0.075

X3 26.6 0.001 31.78 0.001 32.74 0.001

Error 2.45 2.74 5.26

Total 100.00 100.00 100.00

Table A7.
ANOVA of KTA for t = 4 mm.
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Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.49 0.001 67.49 0.000 60.95 0.000

X2 11.84 0.015 5.63 0.013 4.42 0.047

X3 26.69 0.002 21.65 0.001 31.42 0.001

Error 1.98 5.24 3.21

Total 100.00 100.00 100.00

Table A8.
ANOVA of KTA for t = 8 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 53.33 0.000 70.59 0.000 55.67 0.000

X2 12.65 0.055 0.22 0.245 5.24 0.033

X3 31.40 0.001 25.50 0.000 36.04 0.001

Error 0.63 3.70 3.05

Total 100.00 100.00 100.00

Table A9.
ANOVA of KTA for t = 12 mm.
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Chapter

Inkjet Printing of Functional Inks 
for Smart Products
Cláudia Buga and Júlio C. Viana

Abstract

Inkjet printing is a recent promising technology for direct patterning of  
solution-based materials over different substrates. It is particularly interesting for 
applications in the flexible electronics field and smart products manufacturing, as 
it allows for rapid prototyping, design freedom, and is compatible with conductive, 
semiconductive, and dielectric inks that can be cured at low temperatures over several 
types of substrates. Moreover, the inkjet process allows for ink economization, since 
great electrical conductivity can be achieved despite the deposition of small volumes 
of ink. This chapter describes the overall process, the main inks and their features, the 
critical process variables, and its limitations. Applications related to inkjet printing of 
functional materials and smart products are highlighted. New technology advance-
ments and trends are finally addressed.

Keywords: inkjet printing, functional inks, process parameters, printing process 
optimization, inkjet printed devices, smart products

1. Introduction

Inkjet printing (IJP) is a widespread technology used in personal and industrial 
printers. Recently, it has started to gain traction as a new promising technology for the 
direct patterning of solution-based functional materials. IJP relies on a non-impact 
dot-matrix printing technology in which droplets of ink are flown from small open-
ings, called nozzles, directly to a designated position on a media to produce an image. 
The printed patterns are digitally defined and directly transferred to the printer. The 
nozzles or the substrate holder move accordingly to a pre-programmed pattern, which 
allows the printing of virtually any pattern [1, 2].

IJP technique is particularly interesting for applications in the printed electronics 
field as it allows for rapid prototyping and is compatible with various substrates, and 
conductive, semiconductive, and dielectric inks that can be cured at low temperatures. 
As a result, several application examples of this technology have already been advanced 
in the literature [3–9]. IJP methods are widely employed in the manufacture of sensors 
and actuators, and many electrically conductive inks are already commercially available 
and optimized according to specific characteristics that make them suitable for IJP [10]. 
Since IJP relies on the use of computer software, it allows for rapid prototyping and 
freedom of design combined with tunable resolution [11]. Throughout the literature, 
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some examples include IJP temperature sensors [12–14], humidity sensors [15–17], and 
pressure and strain sensors, that can be capacitive [18, 19], piezoresistive [20, 21], and 
piezoelectric [22–24]. These sensors and actuators can be integrated into novel smart 
products.

According to recent technical reports, printed electronics (PE), particularly IJP and 
its enabling technologies (functional printing and inks) show an increased market inter-
est and growth. Table 1 presents the market expectations related to these technologies.

PE market will continue to expand over the coming years, with a strong emphasis 
on energy harvesting and storage for electronic cars, gadgets, equipment, com-
ponents, and other industries that rely on PE to reduce total energy usage. The PE 
market will be driven by low production costs, environmentally friendly technologies, 
a diverse choice of substrates, and a rising demand for flexible electronics applica-
tions. PE has allowed printing of electronic and electrical components on lightweight, 
cost-efficient and flexible materials (like cloth, paper, or polymeric films) in conven-
tional electrical circuits. This PE market will continue to expand mainly driven by 
[29]: (a) the increasing development of smart and connected devices, as demanded 
by Internet of Things (IoT); (b) the rising demand for energy-effective, thin, and 
flexible consumer electronics; (c) the substantial costs reduction provided by PE; and 
(d) the importance of environmentally sustainable technologies.

The increased demand for low-cost and high-volume production of electronics 
will boost the functional printing market. This is supported by the increased avail-
ability of a wide range of substrates, high-throughput manufacturing technologies 
(e.g., R2R for large-area electronics processing), and a reduced environmental impact 
(e.g., thin and flexible electronics) [30]. This will be fostered by the development of 
new products/applications, the introduction of added functionalities into multiple 
products, and the emergent widespread of digital manufacturing techniques.

After a huge pace of growth, the IJP market is becoming mature, and high-speed 
inkjet printing devices with enhanced quality and higher productivity are already 
available. Notwithstanding, the initial costs of equipment are still rather high. Major 
applications of IJP have been related to graphic communication and packaging label-
ing, but functional substrates and objects driven by PE and functional printing appli-
cations are fostering IJP market. Principal drivers for the adoption of IJP technologies 

Printed electronics 

[25]

Functional printing 

[26]

Inkjet Printing 

[27]

Functional inks [28]

2020 market 
value, B$

7.9 8.9 40.8 0.87

2027 market 
value, B$

22.7 23.9 49.2 1.3

CAGR, % 21.5 15.1 3.11 5.3

Typical 
applications

Batteries, sensors, 
sign boards, labels, 
PCB, touch panels, 
LED panels, solar 

cells

Sensors, displays, 
batteries, RFID 
tags, lighting, 
photovoltaic, 

electronic 
components

Flexible OLED 
displays, wearables, 

photovoltaic, 
sensors, PCB

PCB, MEMS, security 
printing, smart 

textiles, displays, smart 
packaging, RFID tags, 
photovoltaics, biochips

Table 1. 
Market values and growth rates for different related technologies: Printed electronics, functional printing, inkjet 
printing, functional inks, and smart products.
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are OLED displays, products/processes digitalization, IoT, Cyber-physical systems 
(CPS), and Big Data.

Functional inks can be electrically conductive, resistive, dielectric, semi-
conductive, or have other special functions, such as thermal conductivity, electrolu-
minescence, light-diffusing, or piezoelectric. Functional inks are key enablers for PE 
applications. They must combine their functionality with being flexible, processable 
at low temperature, adhere to a wide range of substrates, in some cases transparent, 
and straightforward to manufacture. Novel functional inks include suspensions of 
organic or inorganic nanomaterials, or particle-free solutions of organic materials, 
which are inherently stretchable, and suitable for applications in e-textiles and  
in-mold electronics [31].

Smart products are physical objects equipped with sensors, embedded artificial 
intelligence, communication ability, and information technology. They bridge the 
physical and digital worlds, sharing information about themselves, their environ-
ment, and their use, being supported by emergent technologies of CPS, IoT, and 
artificial intelligence (AI). Furthermore, smart products are now connected and able 
of forming product eco-systems; they interact with the user, adding a social layer to 
these eco-systems. This allows a paradigm shift in the business world: from selling 
products to offering services, to the “servitization” of products (Figure 1). This trans-
formation towards novel smart products is enabled by the development of emergent 
technologies simultaneously in both the physical (hardware) and digital (software) 
worlds, and their interfaces. This chapter focuses attention on product manufacturing 
(hardware) technologies for smart products, namely those based on PE and func-
tional printing, and more specifically on inkjet printing of functional inks.

2. Inkjet printing of functional inks

2.1 Inkjet printing process

IPJ is an additive manufacturing technique that encompasses an ink reservoir 
that is connected to a print head device and responsible for jetting ink droplets 
over a pre-determined substrate. IJP allows for high-resolution 2D patterning, ink 

Figure 1. 
System of smart products.
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economization, and non-contact deposition via a micrometer-sized inkjet nozzle 
head [32, 33]. Inkjet can be divided into two main distinct processes (Figure 2): 
Continuous inkjet (CIJ) printing and Drop-on-demand (DoD) printing technologies 
[35]. As the name suggests, in CIJ printing the droplets are continuously generated 
and deposited when subjected to an electrostatic field, caused by a charging electrode. 
DoD printing, on the other hand, relies on the selective activation of the print-head 
through impulses that can be acoustic, electrostatic, thermal, and piezoelectric (the 
latter two are the most reported cases) [35].

The CIJ process is mainly used in industrial printers, mostly for packaging and 
graphical applications. In this case, the ink droplets are continuously expelled due 
to the effect of an electric field that actuates the piezoelectric crystal of the print-
head. Although this process can be used for PE it is majorly directed at continuously 
printing large volumes of nonfunctional inks [36]. Concerning DoD inkjet printing, 
several sub-methods can be identified. The most disseminated ones are piezoelectric 
and thermal inkjet printing, nonetheless, there are other methods whose popularity 
is increasing and can also grant high-quality printing of functional inks [36]. Among 
those, electrohydrodynamic (EHD)-IJP [37–39], aerosol jet printing [40], drop impact 
printing [41], and acoustic printing [42], can be highlighted.

In the piezoelectric IJP method, the ink reservoir is coupled with piezoelectric 
constrictors that load and expel the ink (print head). In this process, the dimen-
sions of the ink droplet can be controlled, so the ink consumption is very low. 
To avoid clogging the nozzles, the functional inks must be produced taking into 
account specific properties, such as particle size, ink viscosity, surface tension, 
and density [35]. The nozzle is designed to be resistant to organic solvents and is 
therefore compatible with a wide range of solvents for ink formulation [2]. Table 2 
summarizes the main characteristics of the inks that are compatible with each one 
of the inkjet printing methods and sub-methods. Comparing the different printing 
sub-methods, it is clear that the thermal and the piezoelectric ones are much more 
limited in terms of suitable ink viscosity range. Nonetheless, they are still currently 
the most approachable methods in terms of affordability and widespread commer-
cial availability of the equipment.

Except for the jetting method, the overall process of printing is common to all CIJ 
and DoD IJP techniques. The printed patterns are digitally generated (CAD software) 

Figure 2. 
IJP methods: (a) CIJ, and DOD inkjet printing with (b) piezoelectric and (c) thermal head [34].
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and can be easily changed, which makes this printing technique an ideal choice for 
prototyping and design optimization. Figure 3 depicts the main stages in IJP:

1. Digital pattern—A CAD software (or other graphic software) is used to digitally 
generate the printed pattern.

2. Substrate surface preparation—the substrate surface is cleaned with an appro-
priate cleaning agent; a surface treatment can be selected for better ink adhesion.

3. Ink preparation—ink can be filtered to remove impurities; ink viscosity can 
be changed by using an adequate solvent; a surface treatment technique can be 
applied (e.g., plasma, corona discharge); the ink must be stirred for better 
particle suspension dispersion.

4. Inkjet printing—the file is uploaded in the printer software; the reservoir is filled 
with the ink; the ink can be preheated before printing; the printing parameters 
are defined, mainly for controlling the printing head (see next section); then, 
printing takes place.

5. Post printing—after printing the printed pattern must be sintered/cured  
(by temperature, photonic, UV light, plasma); a protective layer can be applied 
(e.g., by lamination, spray coating)

The IJP technology for PE applications and its technical-scientific develop-
ments have been reviewed over the last decades. Hue P. Le [44], 1999, reported the 

Printing Method Sub-method Particle size (nm) Viscosity (cP) Surface Tension 

(dynes/cm)

Resolution (μm)

CIJ — <1000 1–10 25–70

DoD Thermal <1000 5–30 35–70 2–100

Piezoelectric <300 1–30 35–70 2–100

EHD 3–300 1–4000 35–70 0.2–1

Aerosol 10–30 0.5–2500 20–70 5–20

Acoustic <100 0.5–25,000 15–650 10–20

Drop impact <20,000 0.5–33 32–70 40–960

Table 2. 
CIJ and DoD printing characteristics [2, 35, 37–43].

Figure 3. 
Inkjet printing steps.
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developments in the various IJP technologies, noting the significant growth rate 
of inkjet printers market. New ink formulations and new printhead designs were 
recognized as relevant for new applications. In 2010, the state-of-the-art of IJP 
of functional materials was reviewed by Raje and Murmu [45]. Improvements in 
process throughput remained the major challenge. In the same year, Derby reviewed 
the current understanding of the mechanisms of drop formation and the interac-
tions between drops and the substrate, with a focus on the fabrication of structures 
for structural or functional materials applications [46]. Two years later, in 2012, 
Cummins and Desmulliez conducted a review in IJP of conductive materials [47]. 
IJP process, substrate properties, and types of conductive inks are the various fac-
tors that affect the quality of inkjet-printed products and their increasing relevance 
to the fields of electronics manufacturing, packaging, and assembly. In 2019, Nayak 
et al. reviewed the IJP of electronic devices, mainly addressing the fluid dynamics of 
inks and main properties (e.g., viscosity, surface tension, Weber number, Reynolds 
number, and Ohnesorge number) and their effects on defects appearance (coffee 
ring formation) [48]. The use of functional inks in sensors, thin-film transistors, 
and energy storage devices is presented. Ke Yan et al. revised the state-of-the-art 
related IJP strategies and functional inks for wearable electronic devices (e.g., sensors, 
displays, transistors, and energy storage devices) [49]. They highlighted the need of 
having available more intrinsically flexible and stretchable inks for avoiding, crack-
ing, and delamination on highly flexible/stretchable substrates. Also, IJP technology 
development shall solve nozzle clogging issues for a more stable printing process. 
Kye-Si Kwon et al. reviewed piezo-driven IJP for PE. Other printing methods for high 
viscosity ink are also considered and compared (e.g., electrohydrodynamic jet, aero-
sol jet, and micro-plotter printing) [50]. There is a high demand for high-resolution 
printing of high viscosity inks for PE. In this case, the functionality of the device is 
more important than graphism perception, and the development of suitable inks 
for IJP remains one of the key issues. More recently, Muhammad Ali Shah reviewed 
the classifications and applications (textile, displays, and wearable devices) of IJP 
with more attention paid to piezoelectric IJP due to its higher relevance [36]. Various 
driving-voltage waveforms approaches are compared. Recently published studies 
on applications of IJP are summarized. Again, high high-viscosity IJP technologies 
are revised. The performance of IJP shall be improved by the development of new 
printheads with ink-recirculation and new techniques for printing high viscosity inks.

2.2 Functional inks for IJP

The use of inks has been around for almost as long as there is human life. It 
empowered evolution and was responsible for cultural and sociological developments 
whose footprints can be traced from the Paleolithic to this day [51]. The methods to 
dispense inks have also evolved with them and the first inkjet-type apparatus was 
patented in 1858 by William Thomson and Abbe Nollet [52]. The concept of printing 
functional conducive inks emerged some years later, in the 20th century, and was pat-
ented by Albert Hanson [53]. Nonetheless, research in IJP of functional inks exploded 
only nearly 100 years later, at the turn of the 21stcentury, thanks to the break-
through development of organic conducting polymers by Heeger, MacDiarmid, and 
Shirakawa, which rendered them the 2000 Chemistry Nobel Prize [54, 55]. This led to 
several advancements in the field of PE, including the development of the first high-
resolution printed all-polymer transistor circuits [56–58]. The fact that polymeric inks 
are more stable, easier to formulate, manipulate, and print was mostly responsible for 
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this paradigm shift [43]. Nonetheless, with the technical developments experienced 
in this field, metallic-based inks started to be printed shortly after, thanks to the use 
of stable solvent systems and other additives that allowed to stabilize the metallic 
particles into homogeneously dispersed formulations with tunable surface tension 
and viscosity. Thereby, nowadays several base materials can be selected, depending 
on the final device desired functionality.

Functional inks for inkjet printing can be divided into, conductive, semi-
conductive, and dielectric. Conductive inks are usually applied in the development 
of conductive tracks, vias, and electrodes. They generally rely on the dispersion of 
metallic nanoparticles, namely Ag [59], Cu [60], and Au [61], on organic or water-
based solvents. To aid in the dispersion and grant long-term stability of these inks, 
surfactants, stabilizers, humectants, and other additive compounds are demanded 
[32]. To further tune the ink properties conductive nanofillers such as CNT can also 
be added. Although less conductive than metals, some polymers, metal-oxides, liquid-
metal alloys, MXenes, perovskites, quantum-dots, and metal–organic-decomposition 
inks can also be used in the development of conductive inks. Currently, indium tin 
oxide (ITO) is still the most used material to produce transparent electrodes for 
thin-film devices (organic light-emitting diodes, OLED; field-effect transistors, 
OFET; photovoltaic devices, OPV) [62, 63]. However, the deposition o ITO is usually 
done by resorting to physical vapor deposition (PVD) which is much more expensive 
and energy-demanding than printing technologies. Moreover, its over-exploitation 
is damaging to the environment, and it is only recyclable through energy-consuming 
processes [64]. MXenes, quantum dots, and perovskites are examples of alternative 
base materials that can be used to develop inks for inkjet printing transparent elec-
trodes for the above-mentioned applications. As a result, even though they have lower 
power conversion efficiency, their popularity is increasing [65, 66]. Despite being 
known for their higher electrical conductivity most inorganic inks are expensive, 
become brittle after curing, have limited flexibility, and might experience oxidation 
and loss of performance, if not properly encapsulated. As a result, organic conduc-
tive polymers such as poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) 
(PEDOT:PSS) [10, 67, 68], poly(3-hexylthiophene-2,5-diyl) (P3HT) [69, 70], and 
oxidized polyaniline (PANI) [71] are also being used as alternative materials for print-
ing electrodes and conductive tracks. Other highly conductive inks can be developed 
using carbon allotropes, such as single-walled and multi-walled carbon nanotubes 
(SWCNT and MWCNT) [72–76], graphene [77, 78], and fullerenes [79].

Semiconductors have an electrical conductivity that can vary between the con-
ductor and the dielectric. They can be n-type or p-type, depending on the doping 
atomic impurities added to the structure of the semiconductor. These impurities 
define the electrical properties, with highly doped semiconductors presenting 
conductivity values similar to metals. When the semiconducting material is less 
doped, its conductivity departs further from the conductive range. These semicon-
ductors are crucial for the performance of the final device since their characteristics 
usually change with environmental physical, or chemical conditions [43, 72]. Less 
doped inorganic semiconductors include zinc-oxide (ZnO), zinc tin oxide (ZTO), 
and indium-zinc-oxide (IZO). Another interesting material for the development of 
semiconductor inkjet inks is the amorphous indium-gallium-zinc-oxide (a-IGZO), 
as it is processable at low temperatures, being vastly used in thin-film-transistors 
and solar cells [80]. On the other hand, organic semiconductors can be PEDOT: 
PSS, rubrene, pentacene, poly(diketopyrrolopyrrole-terthiophene) (PDPP3T), 
diphenylanthracene (DPA) [43]. PEDOT: PSS and CNT-based composites are vastly 
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used as pressure sensors (piezorresistive materials) [81, 82], and temperature  
sensors (thermoresistive materials) [83, 84].

Finally, dielectrics exist in the less conductive boundary of the conductivity 
spectrum. They are used in electrical applications that demand high capacitance and 
insulation. Some dielectrics inks can be made from metal–organic materials such 
as aluminum oxide (Al2O3), zirconium oxide (ZrO2), hafnium oxide (HfO2), and 
yttrium oxide (YO2). Nevertheless, organic dielectric inks can also be formulated 
from polyvinylpyrrolidone (PVP), Polyvinyl alcohol (PVA), and Polymethyl methac-
rylate (PMMA), polydimethylsiloxane (PDMS), Polyvinylidene fluoride (PVDF) and 
its copolymer, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE). PVDF-based 
inks are of extreme importance since they are ferroelectric and enable piezoelectric 
applications. Another inkjet ink is the electrostrictive P(VDF-TrFE-CTFE) terpoly-
mer, which can be used for energy harvesting applications [85–87]. Table 3 summa-
rizes the different types of printable inks.

2.3 Inkjet printing process variables

Both CIJ and DoD printing demand the use of inks with particle size under 1 μm 
(ideally <300 nm). In the particular case of the piezoelectric DoD method, their 
viscosity should be in the range of 1-20 cP, and their surface tension between 35 and 
70 mN.m−1 [35]. IJP requires no mask, has a low ink waste rate, and typical linewidth 
resolution of 30-50 μm [88]. DoD has established itself as the main IJP technology, 
with piezoelectric method being the most widely employed when it comes to IJP 
printing of functional inks, as it allows less ink consumption [49]. Hence, inks are 
specifically formulated to meet the requirements of the printing process [49].

To achieve the best possible printing quality, several factors need to be taken into 
account and studied from an optimization-driven perspective. For instance, the 
rheological properties of the ink (viscosity, surface tension, and density) interplay 
with each other and cannot be individually assessed. Similarly, the parameters of the 
printing process themselves cannot be individually studied. Thus, the printing resolu-
tion, printhead speed, printhead height, waveform profile, droplet size, and printhead 
temperature also influence one another and, as a result, before high-quality printing 

Ink Description Examples

Conductive Composed of highly conductive materials, mostly 
metals, metal-based composites, metal oxides, metallic 
alloys, highly doped conductive organic polymers in 
solvents, metal-oxide particles suspended in binders or 
organic-metallic blends

Metallic nanoparticle-based inks; 
Conductive polymers; Graphene 
inks; Perovskites; Mxenes; 
Quantum dots; Metal oxide-
based inks; Eutectic liquid metals

Semi-
conductive

Composed of semiconducting organic polyme*rs 
in solvents, inorganic nanoparticles (Group III-V, 
II-VI and IV semiconductors and carbon nanotubes) 
suspended in carrier fluids, or organic–inorganic 
blends; Also composed of less doped polymers that can 
be reinforced with carbon nanotubes or wires.

Metal-oxide inks; Semi-
conductive polymers; Carbon-
based inks

Dielectric Organic polymers in solvents, organic polymer 
thermosets or ceramic-filled organic polymers

Ceramics; Metal–organic 
materials; Dielectric polymers; 
Piezoelectric polymers

Table 3. 
Summary of ink types, their description, and some examples.
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can be attained, a series of optimization studies need to be conducted for each combi-
nation of ink/substrate. Other variables include the pre and post-treatment of the ink, 
substrate, and printed outputs. The operator experience and the environmental condi-
tions will ultimately also influence the printing process. In Figure 4. the main print 
quality affecting parameters are summarized in a Fishbone diagram. Since several fac-
tors need to be simultaneously studied, a design of experiments approach is frequently 
performed by researchers aiming to rapidly optimize the process [59, 89–91].

Even after all parameters are optimized, some issues can still occur during the 
printing process namely nozzle clogging, printing deficiencies (coffee-ring effect, 
satellite drops, random electrical interference that causes droplet jetting oddness, 
missing droplets), loss of ink dispersibility, presence of dirt or dust particles in the 
ink system or substrate, among other issues [92]. As a result, to use IJP to develop 
electronic devices in industrial settings in-line quality control methods should be 
performed as a way of assuring functionality. To prevent the effect of environmental 
variables, which are often uncontrollable, the printing process should be performed 
in a controlled clean-room area.

2.3.1 Inks properties

Inks intended for inkjet printing should have linear Newtonian behavior and low 
viscosity, within a specific range. The drop formation and dynamics of the ink are 
ruled by three dimensionless numbers, that are related to the ink rheological and 
physical properties, namely the Reynolds number (Re), the Weber number (We), and 
the Ohnesorge number (Oh) [49]:
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Figure 4. 
Potential cause-effect factors influencing printing quality and conductivity.
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where, υ  is the velocity, ρ  is the density, η  is the dynamic viscosity, γ  the surface 
tension, and d  the characteristic length. To assure the ink is printable, its characteristics 
must obey some critical parameters and fall within certain limits. Most reports indicate 
that the optimum range to print a stable droplet is 1 < Z < 10, as represented in Figure 5 
[49]. Z values above 10 relate to fluids with insufficient energy for drop formation, 
whereas Z values below 1 generally belong to fluids that are too viscous for printing, 
because the capillary force at the nozzle prevents its ejection. Also, to avoid the formation 
of satellite drops, the Weber number should be in the range of 2 < We <25. Nonetheless, 
these boundaries are not universal laws, with some authors reporting slightly broader 
ranges for ink printability [93, 94]. When the overall properties of the ink do not fall 
within these boundaries, the jetted fluid will not be able to form stable and consistent 
drops with adequate velocity to overcome the surface tension barrier at the tip of the 
nozzle, caused by the fluid/air interface. In this case, several break-up regimes can be 
identified from the Rayleigh break-up (insufficient velocity to form jets of ink) to the 
complete atomization (disintegration of the ink jets due to exaggerated velocity) [95].

2.3.2 Adhesion between inks and substrates

Another parameter that demands the previous study when planning inkjet print-
ing is the adhesion between ink and substrate. This may affect the final printing 
result and additional procedures might be needed to assure compatibility. For ink 
to adhere well to a substrate, it must present appropriate wettability and adhesive 
bondability [96], meaning the surface tension of the ink must be lower than the 
wetting tension of the substrate (surface energy). To test this parameter, the substrate 
must be completely dry and free of any contaminants to start with. If after cleaning 
the substrate it still presents low wettability, surface pre-treatments may be needed. 
Such treatments include surface modification resorting to chemical modification, 

Figure 5. 
Ohnesorge diagram, evidencing the fundamental characteristics of the printable fluid and the different drop 
break-up regimes responsible for printing errors, and requirements summary for developing a printable fluid.
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coating with hydrophilic moieties (such as PVP and PVA solutions) [97, 98], plasma 
activation [98–100], mechanical abrasion, or superficial integration of nanoparticles 
or nanoclays [101], which increase surface roughness. Plasma activation is usually 
done by resorting to corona discharge plasma treatment and relies on the production 
of a high voltage electrical discharge that ionizes the molecules of the treated surface, 
positively changing its polarity (or oxidizing it) [99, 102, 103].

2.3.3 Pre- and post-treatments

To improve the printability of the ink some actions can be taken. Re-dispersion 
followed by filtration of the ink before use is effective in removing impurities and 
potential particle agglomerates that could clog the microscopic nozzles. The presence 
of trapped air bubbles in the ink is also damaging to the printing process. To prevent 
trapped bubbles, the ink should be degassed after filtering and left to rest for at least 
30 minutes after filling the cartridge with it.

After printing, the ink must dry to become functional. When printing over paper 
and textiles, the ink is easily absorbed, and drying is not usually necessary, however, 
when using polymeric substrates it is preferable to promote the drying of the ink by 
thermal or UV curing [104]. In the case of thermal curing, heat is applied to facilitate the 
evaporation of the liquid ink carrier, which can be water or organic solvent. To render 
high printing quality and good electrical conductivity the curing temperature needs to 
be carefully chosen to prevent deformation, melting, or degradation of the substrate, as 
well as preserve the ink properties and avoid cracking [89]. To assure the homogeneous 
heating of the final printed patterns, an oven or an environmental chamber is usually 
used. Alternatively, cross-linkable inks are instantaneously cured using UV irradiation.

Regarding the drying of the ink itself, residual tensions might cause the ink not to 
dry homogeneously, leading to a phenomenon known as the coffee ring effect, which 
impairs the quality of the final print and is pictured in Figure 6. The coffee ring effect 

Figure 6. 
Ring formation in colloidal droplets dried at room temperature versus uniform particle deposition of evaporating 
the same colloidal system in an environmental chamber at an elevated temperature. Reproduced with permission 
from refs. [105, 106]. Copyright © 2019 ACS.
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is characterized by a ring-like morphology formed during ink evaporation, resulting 
from the solute segregation and accumulation along the drop periphery due to capil-
lary flow. This issue occurs frequently when using nanoparticle inks and is caused 
by the convective macroscopic flow (Marangori flow) that occurs during the drying 
process and pushes the particles to the borders of the printed fluid [107], causing 
irregularities in thickness or coalescence between printed droplets.

Factors that influence the coffee ring effect are the evaporation rate and the particle 
concentration in the ink. A lower evaporation rate promotes ink homogeneity and can 
be reduced by lowering substrate temperature. Thus, the drying temperature and time 
also need to be optimized. Moreover, superficial cleaning, treatment, and heating must 
be performed homogeneously throughout the entire surface of interest. Since the ink 
starts its drying process as soon as it hits the substrate, the final curing step in the oven 
might not be sufficient to grant homogeneous drying. As a result, some printers encom-
pass an integrated substrate heating feature, which can facilitate the bonding of the ink 
to the substrate and in between layers (when more than one layer of ink is printed). 
Using a solvent with a high boiling point, adding additives, reducing drop volume, and 
increasing the particle diameter can also help reduce the coffee ring effect.

2.3.4 Process and apparatus related parameters

Printhead model. Different inkjet printing systems demand different printhead 
models. The model of printhead also varies depending on the final application. 
Printheads for industrial IJP applications are more expensive, display a larger number 
of nozzles and allow for higher printing resolution. On the other hand, printheads 
intended for research and laboratory use are cheaper, have fewer nozzles, and print in 
lower resolution, as displayed in Table 4 [50]. Regarding laboratory printing setups 
the most frequently used thorough the literature is the Dimatix Materials Printer, 
DMP series [50, 92, 108–112].

The general inkjet printer setup can be seen in Figure 7a. A 3-degree of freedom 
(DOF) system is the most frequently adopted and allows for efficient printing. Usually, 
the printhead only prints in one of the directions x-y directions (left-to-right).

In an inkjet printer the following parameters can be adjusted:
Resolution. The resolution should be chosen in accordance with the desired printed 

pattern, selected ink, and substrate material [109]. In multi-nozzle inkjet printers, 
the resolution is often controlled by the rotation of the printhead in predefined angles 

Features

System Type Examples Max. 

Jetting 

Frequency 

(kHz)

Print 

Width 

(mm)

Dropplet 

Volume 

(pL)

Resolution 

(dpi)

Number 

of nozzles

Printheads 
for industrial 
applications

Xaar, Hitachi Ricoh, Konica 
Minolta, Kyocera

45–100 72–116 1.5–21 360–400 1024–5680

Laboratory 
and research 
systems

Microdrop,Microfab, 
Fujifilm Dimatix

30 64.96 12–33 1200 1024

Table 4. 
Available inkjet printing systems [34, 50].
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(saber angles). To increase resolution, the printhead is rotated towards the move-
ment direction axis. While the printhead is perpendicular to the printing direction, 
the resolution equals the native distance of the nozzles (lowest resolution). When 
the angular displacement is decreased, the distance between nozzles is diminished 
and the printed patterns achieve higher resolution (Figure 7b) [113]. In cases where 
the printhead is manually rotated, operator errors may occur, especially when deal-
ing with small patterns with high resolution, which are more prone to displacement 
errors. For example, as seen in Figure 7b, many patterns demand more than one pass 
of the printhead be concluded and, if the direction is not perfectly aligned, the pat-
tern will experience displacement between the two passes.

In practice, higher resolution is associated with a higher density of drops per area, 
which in turn, provides higher conductivity when printing conductive inks. Nonetheless, 
some issues might arise when the drops are too distanced (low resolution) or too over-
lapped (high resolution) and printing errors such as flooding, lack of superficial homo-
geneity, and loss of conductivity can occur, as illustrated in Figure 8. Moreover, if several 
passes are demanded additional attention must be given to assure correct angle alignment 
[109]. Some designs can also be prone to variability and errors, particularly if the image has 
sharp right-angle corners or lines whose width does not obey critical spacing rules [108].

Since inkjet printers usually print exclusively when moving in the left–right direc-
tion, different orientations of the same patterns may experience differences in the 
quality output, especially when higher resolutions are involved (> native resolution). 
This is particularly noticeable if the manual setting of the saber angle is not perfectly 
aligned. Considering this, to print the correct resolution in the precise position, the 
inkjet printer software is programmed to compensate for the angular displacement of 
the head. When this happens, even a slight imprecision during the printhead assem-
bly can propagate printing errors across several printing passes (In Table 5, the major 
figures of merit that allow to identify the quality of printing are summarized, along 
with their description and observational examples).

Printhead Height. The height of the printhead, i.e., the distance between the 
nozzle and the substrate (the stand-off distance) can influence the splatter pattern 

Figure 7. 
(a) Illustration of the XYZ cartesian inkjet printing system with mounted printhead. (b) Depiction of the 
Printhead in its native position and rotated at a 30-degree angle [113].
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of the drops and their displacing accuracy. Because of this, higher printhead height 
is correlated with lower printing accuracy (higher prevalence of ink spraying and 
splatter). An optimum height should be found taking into consideration the type of 
ink used and the morphology the drops develop during the ejection phase. Some inks, 
especially metallic nanoparticle-based ones also demand heating of the printhead, 
as a way of helping the flow of the ink, as this promotes nanoparticle distancing and 
decreased viscosity, which avoids nozzle clogging [108, 109]. During printing, it 
is also essential to make sure the distance between the printhead and the substrate 
remains stable which in some printer models is assured through a vacuum-assisted 
bed that prevents substrate vibration and displacement [50].

Voltage Waveform. The waveform is the parameter that causes the piezoelectric 
crystal to deform, generating negative pressure at the printhead nozzles, and causing 
the ink drops to be jetted. To complete the drop ejection process, a bipolar voltage 
waveform is responsible for the fill/fire pulses (Figure 9a). The higher the voltage, 
the higher the speed of the generated droplet. This occurs because the pressure 

Figure 8. 
Illustration evidencing the relationship between dot spacing and morphology of printed lines. (a) Large dot 
spacing caused drops to be isolated from each other. (b) Less drop spacing merges drops but their round edges are 
still visible. (c) Ideally merged drops forming a homogeneously printed line. (d and e) low drop spacing causing 
localized bleeding and coffee ring effect at the edges of the printed line, respectively. Reprinted with permission 
from [97]. Copyright (2022) ACS.
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created inside the chamber is consequently superior [116]. To recreate the desired 
image, the inkjet printer is connected to adequate computer software that supports 
the upload of the image and allows for the printing settings to be defined. In the 
case of the piezoelectric DoD method, a voltage is applied across a piezoelectric 
crystal under a pre-defined time and amplitude pattern, which generates the voltage 

Figures of merit Description Observations

Uniformity and 
homogeneity

Uniformity relates to 
ink thickness and width 
irregularities (e.g., line 
width, raggedness, 
blurriness). Homogeneity 
is linked to distribution of 
ink in the printed pattern 
area.

Coffee ring effect is an ink inhomogeneity feature. 
The size of a printed line depends on drop volume and 
droplet-substrate interactions. Typically, printed line 
width is higher that the design value. Ink thickness is 
measured by profilometry or confocal microscopy. Its 
morphology by optical or SEM. Image analyzer are 
used for quantitative characterization. Inconsistency 
due to misfiring, nozzle-plate flooding and satellite 
drop formation (related to the ink rheology and 
surface tension)

Consistency Consistency of ink flow 
guaranteeing a constant 
process (drop volume, full 
dot drop)

Resolution Capacity to reproduce 
printed pattern details

Addressability (dpi, lpi of a inkjet printer or npi of a 
printhead); dot spacing; sharpness and contrast;

Drop placement 
error

Difference between 
the target and impact 
locations, related to 
printing accuracy and 
precision.

Error influenced by the precision of the nozzle 
manufacturing and the nozzle-substrate distance.

Repeatability Agreement between 
successive measurements 
of drop placement

Can be tested through observation or electrical 
conductivity measurements (consistent for the same 
patterns over different prints)

Wettability Preference of a fluid to 
maximize the surface 
contact with the substrate 
and spread over it

Weber number, Z number, contact angle, surface 
tension

Adhesion Adhesion of the ink to the 
substrate and cohesion 
between layers

Surface tension, surface energy of the substrate, 
topography of substrate

Electrical 
resistivity

Can be measured as 
surface or volume 
resistivities

Two-point probes method or Van der Paw method (for 
better accuracy)

Electromechanical 
behavior

Deformability of the 
printed pattern

Gauge factor; geometrical layout of printed pattern

Ink fracture Crackling of the deposited 
ink

Optical analysis

Flexibility/
stretchability

How much the ink is able 
to deform and return to its 
native state without losing 
its properties

Intrinsically flexible/stretchable inks; Flexible/
stretchable substrates; design of patterns to withstand 
repetitive stress loading

Table 5. 
Summary of figures of merit used to classify the quality of the inkjet printing process.
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waveform [114]. As depicted in Figure 9a, the waveform has four main phases – the 
damping and relaxation period that prepares the chamber to start the cycle (phase 
I, or techo), then, the pressurization (phase II) causes the ink chamber and nozzles 
to fill and defines the volume that will be ejected. During the next phase (phase III, 
or dwell time) there is a slight pause for stabilization of the ink inside the chamber. 
The cycle ends in phase IV, with the ejection of the ink droplets due to the pushing 
pressure caused by the piezoelectric crystal. Depending on the characteristics of the 
ink, the waveform can be optimized, and the best jetting performance is associated 
with fast, round, and stable droplets without tails [114]. To achieve this, the total 
waveform duration, number of phases, and the individual phase amplitude, dura-
tions, and slew rates (slopes), can be manually adjusted [114]. Recent inkjet printers 
are already equipped with waveform tuning ability, and in some cases encompass 
real-time drop-watcher high-speed cameras that capture images such as the ones in 
Figure 9c [108, 109]. This allows for simultaneous tracking and optimization of the 
profile of the jetted ink drops.

Jetting Frequency and Printhead Speed. The frequency in which the piezoelectric 
crystal is actuated is intimately related to the waveform and the printhead speed, 
which can be varied, affecting the rate at which droplets are jetted. If the printhead 
moves at a low speed the printhead nozzles will be actuated at a lower frequency. 
By generating waveforms with longer echo and dwell times, the jetting frequency 
will also be stalled, and vice-versa. As a result, this parameter can be simultane-
ously studied with the voltage and printhead speed to obtain higher quality 
printing. As seen in Figure 10, the shape of the jetted drops is dependent upon 
the jetting frequency and varies with the ink characteristic (viscosity, rheology, 
surface tension).

Number of printed layers. It is also a frequently studied parameter, particularly in 
what concerns its influence on electrical conductivity. To illustrate this, Rihen et al. 
studied the effects of the number of printed layers (1–5 layers), drop spacing (1016 
DPI – 1693 DPI), and curing temperature (75–120°C) in the final conductivity of an 
Ag ink [89]. In this study, they found that the best conductivity was obtained for 3 
printed layers, 1270 DPI, and a curing temperature of 120°C. It was also found that 
the number of printed layers strongly affected the final conductivity and that when 
too many layers were printed, excessive ink ejection ended up causing bleeding of the 
ink during printing and cracks after the heat-treatment was conducted. Hence, when 
possible, the number of printed layers should be limited to an “optimum minimum” 

Figure 9. 
(a) Simple depiction of a waveform. (I) Negative pulse that eliminates residual oscillations after each drop 
ejection; (II) and (III) are the pressurization and ejection phase, respectively; (b) nozzle pressure chamber as the 
piezoelectric crystal (darker blue) deforms due to step (III) [114, 115]; (c) jet straightness images obtained from a 
high-speed camera. Reprinted from [50].
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as it can end up affecting conductivity and printing quality in a negative manner. 
Moreover, by finding a compromise between resolution and number of layers the 
printing process can become more economical in terms of ink used.

Design-related variables. The layout of the circuit designs to be printed needs to 
obey specific rules that depend upon the type of circuit, inkjet printer, printhead, 
and ink. The process of developing a certain circuit to be printed starts by defin-
ing the schematic circuit design in CAD, and after making sure it obeys the rules 
it is converted to bitmap for printing (Figure 11a) [118]. Design-related variables 
include the minimum resolution, horizontal/vertical line drop spacing, horizontal/
vertical line width, horizontal/vertical line thickness, orientation of the design, 
and the angles of the line connections and design borders [118]. As depicted in 
Figure 11c, different line spacing between two consecutive lines can cause the lines 
to overlap. Hence, by managing the way the design is created, different results can 
be obtained depending on the final objective. Moreover, by anticipating the prob-
ability of flooding or coffee ring effect of the ink in specific areas, the design can be 
manipulated to prevent them through pattern compensation methods, as advanced 
by Vila et al. [119].

2.3.5 Inkjet printing quality indicators

Fabrication of PE devices using IJP faces a series of challenges for enhancing the 
technology merit indicators, which are application dependent. These relate mainly to 
printing quality indicators (printed pattern homogeneity, resolution, consistency), 
electrical conductivity, mechanical durability, and device flexibility/stretchability. 
In IJP, the printing quality involves complicated interactions between many factors 
including the printer, the printhead, the substrate, and the ink [49].

Figure 10. 
Jetting behavior with increasing frequency. Reprinted from [117] with permission of AIP publishing.
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Printed pattern resolution and uniformity are determined by droplet-substrate 
interactions, ink solvent evaporation rate, and capillary flow inside the ink droplet. 
The printed lines’ dimensions, namely their width, depend upon the drop spacing 
and coalescing time. There is a relationship between drop spacing, line width, and 
electrical resistance. The electrical resistance is directly proportional to the drop spac-
ing and inversely proportional to the line width.

3. Inkjet printing of smart products

IJP is already ubiquitously employed for printing decorative layers of products. In 
addition to this, during the past decade, it has also started to establish itself as a low-
cost manufacturing process for large-area electronics applied to smart devices [43, 
50]. As previously stated, potential markets include the development of electrodes 
and charge transport layers for thin-film devices, energy storage devices, electronic 
textiles, wearables, and smart tags and sensors for remote monitoring and logistics of 
marketable goods. In some of these cases, technological advancements have already 
allowed products to emerge and enter the market [120, 121].

Figure 11. 
(a) IJP metal track generation along the x-axis (mask-less): From a CAD layout drawing (a vector file) to a binary 
plane (a bmp file) and from the binary plane to a physical substrate surface. (b) a unidirectional IJP system. (c) 
Microscopic images of the two printed lines with varying vector spacings from 190 to 450 μm (scale bar is 500 μm).
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3.1 Flexible OLED and QLED

Many devices nowadays encompass screens made from transparent electrodes. 
These are usually obtained using metal oxides (such as ITO) and employed in 
light-emitting diodes (LED) devices. As stated above, however, ITO is brittle,  
and its exploitation and end-of-life cycle processing damaging to the environment. 
Hence, organic and hybrid alternatives, such as OLED and quantum-dot  
light-emitting diode (QLED) displays are starting to dominate the markets  
[122]. Thanks to the characteristics of the employed materials, inkjet printing 
is often a great manufacturing pathway to develop these devices [123]. As seen 
in Figure 12, ITO-free OLED can be obtained using inkjet-printed and low-
temperature plasma-sintered Ag electrodes. A MOD ink was used to optimize the 
reduction effect of the plasma treatment, and the emissive layer of Super yellow 
was spin-coated.

Regarding organic printable materials capable of replacing the ITO electrodes, 
PEDOT:PSS is the favored organic semiconductor. Jürgensen et al. studied the 
tuning of a PEDOT:PSS solution with surfactants, as a way of inkjet printing green 
electrodes in OLED with reduced surface tension [124]. Moreover, Cinquino et al. 
concluded that by granting a surface tension value of28 – 40 mN/m and adding 
40 vol.% of a low-boiling-point co-solvent proper substrate wetting was granted 
[125]. As for inorganic materials, perovskite nanocrystal (PeNC) solutions have 
also been investigated as inkjet printable color conversion layers (CCL) in PeNC/
OLED hybrid displays [126]. These displays are used universally in entertainment 
devices, including augmented and virtual reality devices with enhanced perfor-
mance. Another field of application of these displays respects healthcare devices 
and photomedicine, in particular, in the development of displays for photodynamic 
therapy (PDT), which vows to attack cancer cells using specific light-emitting 
wavelengths [127].

3.2 Organic photovoltaic (OPV) cells

Similarly, regarding OPV cells, the tendency is also to replace metal-oxide 
alloys with more environmentally friendly and easy to process materials. As an 
example, Alamri et al. developed fully-inkjet-printed hybrid perovskite photode-
tectors using Graphene/Perovskite/Graphene [128]. Schackmar and co-workers 
also came up with an approach to develop all-inkjet-printed absorbers and change 
transport layers [129]. As seen in Figure 13a), a p–i–n-perovskite solar cell archi-
tecture was created. The triple-cation perovskite absorber layer (TCP, brown) and 

Figure 12. 
Overview of the device fabrication. Reproduced from [123].
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the double layer ETL made of PCBM and BCP (pink and purple, respectively) were 
deposited by inkjet printing. Bihar et al. also developed a fully-inkjet printed alter-
native to develop OPV in which PEDOT:PSS was used to develop the electrodes 
(Figure 13b) [69].

3.3 Energy storage applications

Inkjet printing technology is being vastly employed in the development of super-
capacitors (SC), triboelectric nanogenerators, and batteries. Even though many chal-
lenges still have to be overcome for these devices to reach competitive performance, 
promising alternatives already exist [130]. For example, graphene-based solutions 
are vastly studied throughout the literature for IJP of supercapacitors  
[131, 132]. Li et al. inkjet printed disposable micro-supercapacitors (MSC) on paper 
using conductive inks based on the ternary composite of PEDOT:PSS, graphene 
quantum dots, and graphene [133]. In Figure 14, the resulting MSC are pictured in 
different array dispositions.

Giannakou and colleagues developed 3D conformable supercapacitors intended 
for epidermal energy storage. To achieve this, they inkjet-printed nickel (II) oxide 
active electrodes over PVA substrate. As a proof-of-concept, the SC was used on the 
skin of test subjects, and energy from their movements was successfully harvested 
to light a LED [134]. Energy harvesters can also be printed over textiles as a way of 
obtaining self-powered garments with sensing and monitoring abilities [135].

Figure 14. 
(a) Microsupercapacitor (MSC) printed on photo paper for flexibility performance test, (b) fully-printed MSC 
array with 4 MSC connected in series on carton paper, (c) fully-printed MSC array with 4 MSC connected in 
parallel on carton paper. The bus lines were printed with 17 passes. Reprinted from [133].

Figure 13. 
(a) Schematic of the p–i–n-perovskite solar cell architecture with printed absorber and extraction layers. 
Reprinted from [129]; (b) schematic of the layer-by-layer composition of the solar cells made from PEDOT:PSS 
inkjet-printed electrodes. Reprinted from [69].
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VARTA company has recently started to apply inkjet printing to the development 
of batteries to power sensors, and smart tags for intelligent packaging applications. 
Different electrochemical systems and electrodes can be printed in a stacked or co-
planar manner depending on the envisioned design of the battery [136].

3.4 Sensors, e-textiles, and biomonitoring devices

Sensors are vital to transduce physical changes into readable data. Several inkjet-
able materials can be used as the functional part of sensors, whose electrical conduc-
tivity varies according to those changes and is later processed into digital outputs for 
monitoring. The most frequently developed physical sensors measure mechanical 
(pressure, force, strain), temperature, and humidity changes. Metal nanowires 
[137], metallic nanoparticles [138], polymer micro/nanostructures [139], CNT, and 
graphene have been applied to the design of piezoresistive flexible tactile sensors 
[140–142]. To work efficiently, the latter ones must be homogeneously dispersed in 
an elastomeric matrix, in concentrations above the electrical conductivity percolation 
threshold [143]. To produce piezoelectric pressure sensors the most used materials are 
piezoelectric ceramics, ceramic/polymer composites, and single crystals [144, 145]. 
As for capacitive sensing applications, SWNT/PDMS electrodes are effective options 
[145, 146]. Inkjet printing has also been extensively used to produce temperature, 
and humidity sensors that can be applied in standalone settings or, thanks to the 
development of the IoT can work as scattered sensor networks for remote and con-
nected monitoring applications. Thanks to their inherent conformability, low-cost, 
biocompatibility, tunability, accuracy, and adequate sensing range, the pressure, 
temperature, and humidity printable sensors, have started to be applied in e-textiles 
and biomonitoring applications. As an example, Farooqui et al. successfully devel-
oped a smart bandage to remotely monitor chronic wounds through inkjet printing of 
a resistive sensor sensitive to pH [147].

Wearables and electronic textiles can be used for applications ranging from 
human-machine interaction (HMI), fashion, haptics, and biomonitoring. Regarding 
biomonitoring, different sensors can be inkjet-printed over textiles or conformable 
polymeric substrates (PDMS, PET, PEN, PEEK) and retrieve accurate biological data, 
thanks to the close proximity to the body. Pressure, strain [67], temperature [148], 
and humidity sensors [17], are the most frequently printed, nonetheless, photople-
thysmography (PPG), electrocardiography (ECG), and electroencephalogram (EEG) 

Figure 15. 
(a) Inkjet-printed glucose biosensors; (b) fully printed biosensor and identification of the different printed layers, 
namely the electrode (PEDOT:PSS), the dielectric, the biological coating containing the enzyme and the mediator, 
and the encapsulation layer. Reprinted from [156].
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sensors can be inkjet-printed as well [49, 135, 149–152]. Electroluminescent devices 
can also be printed over textiles to enhance their functionality [153].

Flexible printed and biocompatible sensors placed in direct contact with the 
human body are also valuable for sensing specific biomarkers. This can be achieved 
by IJP of enzyme-functionalized inks [154]. Mass et al. enzyme-functionalized 
silica nanoparticles and mixed them with SWCNT to create a bio-ink with cata-
lytic activity [154]. Biocompatible graphene-based biosensors can be printed as 
well to monitor the effect of antiviral drugs through impedance analysis [155]. 
Bihar and colleagues also developed a disposable glucose sensor by inkjet printing 
PEDOT:PSS as electrodes, and a glucose oxidase solution as the sensing material 
[156]. A dielectric ink was printed to isolate the electrode interconnects as depicted 
in Figure 15.

3.5 Smart tags and logistics

Inkjet printing can be used in the development of antennas, radio frequency 
identifier (RFID) chips, and near-field communication (NFC) chips, which can work 
as smart labels and sensor tags. Temperature, humidity, and strain sensors are usually 
paired with these labels to develop intelligent packaging and/or tracking applications 
[157, 158]. For this purpose, paper is one of the most used substrates [159]. Another 
important application for smart tags is food quality monitoring. By combining 
humidity, ammonia, temperature, and volatile organic compounds (VOC) sensors 
the state of perishable goods can be evaluated and the food supply chain optimized 
accordingly [160]. For this purpose, Quintero et al. developed a multi-sensing 
platform where an RFID chip was integrated with inkjet-printed sensors (ammonia, 
humidity, and temperature) over a PEN substrate [160]. Baubauer and co-workers 
also studied the printing of different types of passive tags over flexible substrates, 
when integrated with a rigid RFID chip, as illustrated in Figure 16 [161]. In this case, 
the purpose of the tags was to serve as user-interactive touch sensors. One interest-
ing asset of these types of labels is the fact that they can be reset and reprogrammed. 

Figure 16. 
Three types of printed, passive tags on a flexible substrate for operation in the UHF RFID band (902–928 MHz). 
Reprinted from [161].
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Since packaging is meant to be disposable, by recovering and reprogramming the tags 
they can be reused in other applications before being ultimately recycled [162].

4. Advanced inkjet printing techniques

IJP is a mature technology and recently has been used to print functional inks for 
PE devices. This novel use demanded developments in terms of new printing equip-
ment and inks. As a result, advanced IJP technologies have emerged, responding to 
the requirements of novel applications. These advanced technologies are focused on 
increasing printing resolution and speed, printing of high viscosity inks (with higher 
electrical conductivity), printing over non-planar substrates, and enlarging the range 
of materials that can be printed.

A novel double-shot IJP technique has been developed, which allows for the 
deposition of two types of inks at the same position [163]. In this way, conductive 
and dielectric inks can be printed at the same position, allowing the construction of 
devices. Reactive inkjet printing, which also uses two nozzles, combines the processes 
of material deposition and chemical reaction to print over a substrate material, 
enlarging the type of ink materials.

EHD-IJP allowed high-resolution printing, paving its use in micro/nano manufac-
turing of electronic devices [45]. EHD-IJP is a direct patterning technique that can 
also be used as a thin film deposition technique (e.g., electrospraying, electrospin-
ning). Furthermore, multi-nozzle implementation has been proposed, but nozzle 
density is still low [50]. EHD-IJP also allows printing of high viscosity inks and 
consequently has huge potential for fabricating 3D patterns [163].

Needle-based printing is a recent technology to dispense relatively high viscosity 
ink through a fine nozzle [50]. Droplets are ejected from the nozzle exit by the motion 
of the needle, which can be operated by air pressure or piezoelectric actuator. This 
technique can handle high viscosity inks.

Micro-plotter is a technology that also allows dispensing of relatively high 
viscosity ink through a fine nozzle [50]. The dispensing mechanism is based on the 
ultrasonic pumping action at the core of the micro-plotter head, a micropipette. 
The mechanism is capable of depositing ink droplets with dot size of less than 2 μm, 
which is smaller than an inkjet system, even when using relatively high viscosity 
inks (up to 450 cP).

Other droplet-based techniques have been developed, mainly for printing on non-
planar substrates, such as aerosol jet printing, surpassing the limitations of both inkjet and 
EHD-IJP techniques. Aerosol jet printing uses high-speed ejection of aerosols instead of 
liquid droplets [164, 165]. The aerosol is produced by atomization of ink, which produces 
very small droplets with diameters in the range of 1 to 5 μm. Due to the aerodynamic effect, 
it also allows higher resolution for fabricating micro- and nanoscale devices. Furthermore, 
aerosol jetting allows different inks to be conformably printed onto the substrate.

High-resolution 3D patterning combines IJP with 3D printing technologies [166]. 
High-resolution insulating and conductive layers can be printed using multiple print-
heads in the same printing system. However, this requires a high degree of deposition 
precision that can be achieved by the use of phase-change inks (activated by chemical 
or thermal triggers) with no solvents. 3D structures can also be produced by IJP, by 
deposition of layer-by-layer of two reactive components, followed by polymerization. 
This is a technology of current intense research and fast growth.
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5. Concluding remarks and future trends

In this chapter, the main topics concerning the IJP manufacturing of printed 
electronics have been discussed. Being an additive manufacturing technology, some 
of its advantages concern lower associated costs, material economization, and design 
freedom. Since its establishment as an alternative for electronics manufacturing, 
different variations of this technology have emerged, nonetheless, piezoelectric IJP is 
the most widespread method. Many functional inks have already been optimized for 
IJP and are commercially available. Despite this, several factors linked to the printing 
process can still negatively influence the printing output in terms of both printing 
quality and electrical conductivity and demand optimization.

As for IJP application in the current PE market, there is an undeniable growing 
tendency. However, it is still early to anticipate the potential of IJP technology in the 
long run because of all the other options currently being developed. Because of the 
drawbacks associated with piezoelectric IJP, namely the tendency for nozzles to clog, 
the limited ink viscosity range (and consequently limited electrical conductivity), 
and the elevated number of factors that influence the printing process, it is possible 
that IJP gets to be used in specific niche applications, whereas needle-based and EHD-
IJP might ultimately transcend piezoelectric IJP in terms of applicability.
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