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Chapter

Remote Management of 
Autonomous Factory
Yen Kheng Tan and Felix George

Abstract

In today’s mass production era, the world is making things (products and systems) 
so quickly and systematically in huge volume. The demand for these products is very 
high and, at the same time, consumers are still in search for a need for making the 
production very personalized. Hence, the “one mold fits all” approach may not seem 
to be enough. The present approach is facing the lack of networking between the 
automation pyramid levels, that is, especially between enterprise resource planning 
(ERP) and manufacturing execution system (MES) layers and, in turn, communi-
cating directly with the lower layers is not possible. This missing communication 
among the process equipment like machineries and field control systems like PLCs 
at the production shop floors implies that customization at the product layer for the 
consumer is still in progress in classical manufacturing. Mini-MES is a new concept 
being introduced here to solve the existing techniques reported in the literature and is 
followed by industry best practices. The novel mini-MES platform provides an avenue 
for the technology process level (the most bottom layer) to interplay interconnectivity 
and interoperability with its higher levels until the above pain points are addressed 
holistically. The chapter is going to focus mainly on the factory production of digital 
manufacturing and on describing the 3-Cs implementation plan, the enabling 
technology, and the achievable outcome ahead.

Keywords: factory cloud platform (FCP), autonomous factory, edge computing AI

1. Introduction

The smart manufacturing initiative from the industry transformation perspective 
is rapidly emerging in many parts of the world. Few notable smart manufacturing 
transformations leading the globe are the Chinese version of Made in China 2025, 
the German version of Industry 4.0, the United States version of Industrial Internet 
(Made in America), the Singaporean Smart Nation, and the UK/EU version of 
Future of Factory. Clearly, the global trend is pivoting toward the new era from the 
traditional mass (“Ford’s”) factory production, where a consumer-oriented low-
volume, high-mixed demand and supply production would be the smarter way to 
build and make things [1].

In the factory, the manufacturing system is illustrated by the pyramid shown in 
Figure 1. At present, the production shop floor is already highly reconfigurable in 
its process level. This is possible, starting from the enterprise resource planning 
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(ERP) layer, where process planning, operational management, etc. are interlinked. 
The manufacturing execution system (MES) layer is set to handle scheduling, 
dispatching production, etc. in a systematic manner. Monitoring, supervision, and 
control layer takes care of the real-time optimization and the advanced process 
controls. Sensing and actuation layer comprises the sensor readings’ collection and 
manipulation of the production process. The final layer is where the actual produc-
tion process exists.

In the above manufacturing pyramid diagram, few layers are already intercon-
nected, but there are some layers which are independent silos. This is the pain point 
that is addressed through smart manufacturing, that is, introduction of the smart 
connectivity and interoperability throughout the layers. Various aspects need to be 
considered as it could be impossible to replace all the hardware in a manufacturing 
company to enable this. There could be some legacy systems as well which in itself 
would not be ideal to use in such an environment. By introducing the right cyber-
physical tools and network connectivity, this can be achieved.

2. Digital manufacturing transformation

2.1 Mass production era

In today’s mass production era, the world is making things (products and 
systems) so quickly and systematically in huge volume. The demand for these 
products is very high and, at the same time, consumers are still in search for a 
need for making the production very personalized. Hence, the “one mold fits all” 
approach may not seem to be enough. The present approach is facing the lack of 
networking between the automation pyramid levels, that is, especially between ERP 
and MES layers and, in turn, communicating directly with the lower layers is not 
possible. This missing communication among the process equipment like machin-
eries and field control systems like PLCs at the production shop floors implies that 
customization at the product layer for the consumer is still in progress in classical 
manufacturing [3].

Recently, there is a strong pull to shift from the classical manufacturing/
automation pyramid to the horizontal and vertical networking and to achieve the 
cyber-physical production systems (CPPS) as illustrated in Figure 2.

Figure 1. 
The manufacturing pyramid—an overview of the existing production flow [2].
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The hierarchy arrangement of the automation pyramid is helpful for tracking 
the production status and for keeping proper process flow. Chaining the horizontal 
levels together adds value to the coordination and the vertical levels networks for 
more interconnection and cooperation. The full potential is attained when the 
boundaries are open. To reach this CPPS goal, one has to first identify and determine 
the associated pain points in order to enable the smooth transition:

1. Vast proprietary silos platforms/systems out there in the industrial systems.

2. Proper utilization of the available data.

3. Demand for higher response in terms of demand and supply of products in 
between the production line and the supply chain flow.

2.2 Digital manufacturing era

The CPPS is the backbone to the digital manufacturing era. The transition 
process from classical to digital manufacturing transformation requires a holistic 
platform of many Mini-MESs as shown in Figure 3. Mini-MES is a new concept 
being introduced by the authors to solve the existing techniques reported in the 
literature and is followed by industry best practices. The novel mini-MES platform 
provides an avenue for the technology process level (the most bottom layer) to 
interplay interconnectivity and interoperability with its higher levels until the above 
pain points are addressed holistically. There are four main aspects to be looked at 
and addressed, namely product, production, process management, and service 
manufacturing. This platform works hand in hand with the two upper layers to 
form the full CPPS as mentioned before in achieving the autonomous production 
factory. The rest of the chapter is going to focus mainly on the factory production 
of digital manufacturing and on describing the 3-Cs implementation plan, the 
enabling technology, and the achievable outcome ahead.

The 3-Cs implementation plans can be divided into three main parts. First is 
connecting to enable remote monitoring and management [5]. To truly remotely 

Figure 2. 
The new paradigm of the manufacturing pyramid—an overview of the changed production flow.
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manage the factory in real time, 5G technology has to be used since the specifica-
tions of 5G enable us to achieve a near real-time operation. The desired outcome is 
to achieve the large-scale deployment of remote autonomous control systems that 
are to be operated and managed seamlessly.

Second is computing at the edge. To implement as an aggregation point of the 
factory that holistically connects the dots of the individual levels of the automation 
pyramid and seamlessly control the communication protocols of devices and equip-
ment of Siemens, Schneider Electric, ABB, etc. with a single common protocol. By 
doing so, any data point on the factory shop floor is available to the A.I. computa-
tion to develop the desired models and throughputs.

Third is collaborating/codeveloping with the domain experts. To leverage on 
the strong client records of experiences and add on to the implementation of the 
data platform to drive the traditional manufacturing market in a much faster and 
penetrable manner. Through the codevelopment process, the digital transformation 
of factory automation is going to accelerate tremendously while working closely 
back and forth with existing clients and leveraging on the existing manufacturing 
solution and the domain expertise.

3. Toward autonomous factory

As you may already realize, the global manufacturing trend is changing from 
the passive and reliant approach to a more demanding and intelligent way to manu-
facture produces. That is the smart factory (SF), which is rapidly growing and will 
be an anchor component of the digital manufacturing transformation journey. 
According to a financial report, it is expected that the SF market will continue to 
grow at a compound annual growth rate (CAGR) of 9.6% to reach around US$244.8 
billion by 2024. In the case of the autonomous factory, it is projected to be one of the 
key enablers of these SFs for having the ability to be remotely operated and managed 
in the autonomous manner. Thanks to the data-driven platforms that are booming in 
from the digital space, the factory production can turn toward full automation and 

Figure 3. 
Paradigm shift from classical automation toward interconnected smart systems [4].



5

Remote Management of Autonomous Factory
DOI: http://dx.doi.org/10.5772/intechopen.93527

autonomy. It is expected to transform the traditional factory owners that produce in 
mass quantities with lots of manual workers into low-volume, high-mixture produc-
tion with digital manufacturing technique.

The transformation will involve a set of digital technologies, including the 
Internet of Things (IoT), robotic and artificial intelligence (AI), into the implemen-
tation/upgrade for the factory modernization. With this, the new world of making 
things so agile in a flexible way, optimizing and integrating the system approach, 
and the great speed and accuracy are going to benefit and satisfy the fast consuming 
and highly personalized needs of the people (Figure 4).

Remote monitoring is a key aspect for an autonomous factory. For a manu-
facturing company to make money, it ultimately comes down to the number of 
products made. So, if there is an unscheduled downtime, the throughput of the 
production line reduces, and hence the company ends up making fewer products 
and thus loses money. We can overcome this by introducing a remote management 
solution. This would consist of a list of tools such as remote production monitoring, 
remote safety monitoring, machine learning, and artificial intelligence for predic-
tive maintenance, which would address the problem even before they occur. As the 
solution is deployed, the owner will be able to see a reduction in operational costs 
and an increase in the equipment efficiency.

Remote management and monitoring had been available as a technology for the 
past decade or so, but somehow, the breakout year was never seen by the experts 
and observers. However, the situation is poised to change in today’s scenario, with 
the new economic trends, transformed man power needs, and the availability of 
new technologies. During the global financial crisis, a lot of companies turned to 
lean staffing models. There is a certain lack of design and maintenance talents in 
many companies because of this. Coupling together with this is the retirement of 
the baby boomer workforce [6], who are extremely hardworking, which eventually 
led to a change in the demography of a factory floor. The new staff severely lack the 
decades of hands-on experience on the aging legacy equipment. They are also put 
under tremendous pressure to deliver a better throughput and more uptime and 
hence forcing the companies to remote monitoring and management.

Figure 4. 
Autonomous factory flow.
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Another challenge we all know well is that the present manufacturing ecosystem 
is highly dependent on China, where most of the factories are located. China has a 
very strong fire wall, since they need to ensure their cyberspace is well protected, 
which is understandable. There is a great need for an IT platform that is equipped 
with the ability to capture true value creation from opening up the interrelation-
ship between the nations like Singapore and China. The data exchange channel link 
has to be interlinked with minimum latency to empower an autonomous factory to 
interact on a real-time basis with its clients throughout day and night for 365 days 
without fail and to report machine health, process flow rate, and production status 
to the health diagnostic center for close and constant tracking outside China. Take 
for an example, there is this possibility with the use of the newly built Singapore 
and China data connectivity infrastructure of less than 60 ms latency between 
countries to enable online live communicating and producing of productions. 
This powerful data transmission exchange infrastructure will definitely enable an 
autonomous factory to work in a well-protected network environment.

The way things are bought and sold is going to change. It will go, way beyond 
buying from ecommerce platforms to making the products directly for the 
consumers. Take for an example, a production factory based somewhere in the 
middle part of China, in a city called Henan province, where there are a large 
varieties of machining/processing tools on the actual manufacturing shop floor. 
The digital manufacturing technology made by Printed Power (PP) Pvt. Ltd.  
(a company based in Singapore focusing on IoT and smart manufacturing) for 
the plant is an IoT-cloud platform that allows the remote manning, from the other 
parts of China or even from Singapore, of the Henan’s factory production and 
maintenance as well as interconnecting the local resource planning ERP with 
the manufacturing execution system. The power of mini-MES (as illustrated in 
Figure 3) autonomous factory platform is to do away with: (1) restricted remote 
connectivity for the manufacturing solution to provide access to their local factory 
floor within China and (2) limited 24 × 7 real-time domain experts’ monitoring 
and resource planning and managing of the factory production system.

In short, this proposed mini-MES autonomous factory platform is one of 
the first types of deployment in the world that compasses IoT-cloud cum edge 
computing technology to upskill the local manufacturing solution providers in 
serving their end manufacturing factory clients more effectively and efficiently. 
The autonomous factory software platform is performing three key functions: 
(1) to allow the manufacturing solution provider/system integrator to upgrade 
the traditional factory to be remotely access and control and (2) to support the 
manufacturing process/operation with the at-the-edge computers to do data 
compression for fast speed production and for onsite decision and execution for 
real-time factory throughput.

4. Technology enablers for autonomous factory

In this section, we will discuss the key technology enablers of an autonomous 
factory system. The discussion is going to surround on the digitalization tools, 
namely, the Internet of Things (IoT) hardware, the AI machine learning software, 
and the application design thinking/innovation needs. Figure 5 illustrates an 
overview of the various technology enabling modules that apply to the autonomous 
factory context.

Among the many, the middleware or the firmware and operating system 
layers are the most important for the distributed edge computer network with 
AI processing at the cloud edge. As so, the edge computer becomes a crucial 
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technological enabler to the transformation of mass manufacturing into low-
volume, high-mixed production. The discussion will focus on the product and 
system of edge computing and its underlying features as well as its association 
with manufacturing application and solution. As a reference, some of the tools 
used by Printed Power will be discussed.

4.1 Printed Power PowerEdge™

Printed Power has developed an IoT edge gateway product as shown in 
Figure 6, which is a powerful hardware platform with multiple protocol support 
for wired and wireless communication systems. Edge gateway product supports 
Android, Linux, and Ubuntu operating systems out of the box and can run a 
multitude of “apps” for each platform. It is a compact industrial PC combined 
with a powerful IoT gateway.

Figure 5. 
Technology enablers (reference to https://volansys.com/product-engineering-services/).
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The PowerEdge™ product consists of RK3399 SOC, wireless radios, power 
modules, multiple GPIO and USB ports, and camera ports enclosed in a weather-
proof enclosure with the following:

a. Light-weight operating system (OS): quick booting time and selected services 
running to reduce the dynamic memory consumption. The OS is based on the 
trimmed-down version of Android, Linux, or Ubuntu.

b. Embedded device driver development: able to support third party IoT devices 
interfaced over wired or wireless connectivity. Device drivers are dependent on 
the current OS running on the platform.

c. Embedded hardware development: able to install add-on hardware for the 
edge gateway to support IoT devices which operate at different power levels or 
nonstandard protocol.

d. OTA update support: allow updatable library packages inside the edge gateway 
for easier firmware upgrade which is completely wireless based.

On top of that, the Printed Power edge-cloud platform depicted in Figure 7 
allows the edge devices that are distributed throughout the factory shop floor and 
interconnected with the various machineries to gather at one place for monitoring 
and controlling. The cloud runs machine learning algorithm, makes java class image 
for download into the edge devices, and interoperates between the cyber cloud and 
the physical factory seamlessly.

4.2 Digital manufacturing application and solution

Let us first take a look at what a manufacturing production floor looks like and 
the kind of stuffs they do. A factory, manufacturing plant, or a production plant is an 
industrial site usually consisting of buildings and machinery, or more commonly a com-
plex having several buildings, where workers manufacture goods or operate machines 
processing one product into another [4]. The area in a manufacturing facility is where 
the assembly or production is carried out either by an automated system or by workers 
or by a combination of both. The shop floor may include equipment, inventory, and 
storage areas. The basis of manufacturing [7] can be described in the following areas:

1. Assembly line: defines the progression and synchronization of work. The Ford 
example is typical of manufacturing, where there is a specific sequence of 
events which must be followed in order to produce the desired work product in 
a timely manner.

Figure 6. 
Printed power PowerEdge™ hardware specification.
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2. Division of labor: breaks the production process into separate tasks performed 
by specialists or craftsmen. Subdividing the process down into smaller incre-
ments provides the means to employ common workers as opposed to develop-
ing a dependence on highly skilled craftsmen which may add to the cost to the 
work product.

3. Precision tooling: provides mechanical leverage in the assembly line, the need 
for using the most technologically advanced tools, something that requires 
constant monitoring and upgrading.

Machines and the people are both working together in the shop floor and they 
operate with each other simultaneously. The machines are controlled by PLC logic 
and humans are controlled by themselves or by the company process. It is thus 
important that the two systems of their own talk with each other. Figure 8(i) is a 
snapshot of how this has being designed for an autonomous factory and it illustrates 
the architecture of such a platform design.

Referring to Figure 8(ii), the robotic automation system of the autonomous 
factory consists of the arm performing pick and place, the moving robot to convey 
materials and products inside the factory, and the pressing and heating machine 
to treat and mold the made products. In order for the machines to communicate by 
themselves within the horizontal level of the manufacturing pyramid as discussed 
before, one has to first make a common communication language translator that 
allows cross talk among the machine systems. Printed Power PowerEdge™ fits in to 
provide the hardware connectivity as well as the firmware language translation.

Next, some form of intelligence is gathered from the data sets collected from 
the operations and maintenance to derive with the AI learning models for the 
control and automating of the manufacturing process. The AI learning is supported 
by both the online cloud-based engine as well as the offline edge Printed Power 
PowerEdge™ executable controls. GPU is part of this ball game to power up the AI 
engine and speed up the entire manufacturing process.

Figure 7. 
Printed Power edge-cloud platform. (i) Description of platform components. (ii) Application of edge-cloud.



Smart Manufacturing - When Artificial Intelligence Meets the Internet of Things

10

Lastly, the remote manning and controlling of the entire autonomous factory 
platform is achieved via the dashboard at the command and control center. With the 
manufacturing and production status, the business owner is able to make a holistic 
and accurate decision with the sales figures, logistic and supply chain availability, 
demand and supply status, etc. Hence, this is a crucial part of the manufacturing 
application and solution.

The entire platform is undergoing development and installation at the site. It 
is expected to deliver its desired outcomes of being able to remotely access and 
control via the designed mini-MES platform with its backend housed on the AWS 
cloud. The autonomous factory should operate at its highest efficiency with the 
installed PowerEdge™ edge data compression for fast speed production and for 
onsite decision and execution for the real-time factory throughput.

5. Conclusion

Smart manufacturing initiative or movement from the industry transforma-
tion perspective is rapidly emerging in many parts of the world. Today, mass 

Figure 8. 
Autonomous factory platform. (i) Printed Power digital manufacturing architecture. (ii) Robotic automation 
system.
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production is making things (products and systems) in a gigantic way that every-
one is consuming them not at their preferences. The made from the “one mold fits 
all” approach does not seem to work for the consumers. The new world of making 
things is going to be so agile, so optimized and integrated, and so fast in speed and 
precise in accuracy to benefit and satisfy the fast consuming and highly personal-
ized needs of the people.

To address this, the chapter discusses the digital manufacturing technology 
made by a Singaporean company, Printed Power, for the plant to be remotely 
manned and controlled by a press of a button. This autonomous factory software 
platform which is being developed allows for: (1) the remote connectivity for the 
manufacturing solution to access their local factory floor within China and (2) the 
24 × 7 real-time outside China monitoring and managing of the factory produc-
tion system.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 
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Chapter

Optimization of Manufacturing
Production and Process
YinQuan Yu

Abstract

This chapter mainly introduces production processing optimization, especially
for machining processing optimization on CNC. The sensor collects the original
vibration data in time domain and converts them to the main feature vector using
signal processing technologies, such as fast Fourier transform (FFT), short-time
Fourier transform (STFT), and wavelet packet in the 5G AI edge computing. Sub-
sequently, the main feature will be sent for cloud computing using genetic pro-
gramming, Space Vector Machine (SVM), etc. to obtain optimization results. The
optimization parameters in this work include machining spindle rotation velocity,
cutting speed, and cutting depth, while, the result is the optimized main spindle
rotation speed range of CNC, which met machining roughness requirements.
Finally, the relationship between vibration velocity and machining quality is further
studied to optimize the three operational parameters.

Keywords: machining processing optimization, time domain, short time Fourier
transform, wavelet packet, genetic programming, deep learning

1. Introduction

The International Federation of Information Processing (IFIP) defines a numer-
ically controlled (also commonly called CNC) machine tool as a machine tool
equipped with program control. The difference between CNC machine tools and
ordinary machine tools lies in the working sequence of NC machine tools: according
to the requirements of part processing, CNC language is used to write processing
sequences and parameter programs. After the program is analyzed and processed by
the CNC device, the execution instructions are sent to the servo system to actuate
the motion of the machine tool [1]. Programming controlled movement of the main
spindle and worktable completes the processing that does not exist in ordinary
machine tools. As shown in Figure 1, the mechanical aspects of CNC machine tools
mainly include three major parts: the main shaft component [2], followed by the
support component, and the conveying mechanism [3]. The main shaft is partially
driven by a high-precision stepper motor or servo motor instead of a conventional
motor. The transmission part uses a ball lead screw with less resistance and greater
rigidity without backlash instead of the traditional lead screw. The CNC system
controls the movement of the mechanical structure of the CNC machine tool to
complete the processing of parts. The main component is the MCU. The coordina-
tion between its functions is an important index for evaluating the CNC machine
tool and the CNC system [4].

1



The optimization of CNC machine tools mainly includes the following three
aspects:

1.1 Mechanism optimization

Improving machining accuracy of the machine tool must start from the design
stage of the NC machine tool, adopt the drive device with outstanding dynamic
performance, and use advanced control technology to improve anti-interference
ability of the servo system [5–9]. Structural optimization design can calculate the
durability and maintainability of NC machine tools, and design reliability by calcu-
lating the space error model of XYZ CNC machine tools by first-order and second-
order matrices, Monte Carlo method, etc. [10]. By studying the kinematic configu-
ration of CNC machine tools, it is found that it directly affects the nonlinear errors
generated in the process of free-form surface machining [11], and has a direct
impact on processing energy consumption and design of the supporting CNC sys-
tem [12]. The moving parts of CNC machine tools and the mechanism of each feed
axis also have a significant impact on the overall rigidity [13], positioning error
[14], maintainability [15], and other indicators of CNC machine tools, which deter-
mine machining accuracy and work reliability [16]. The spindle of CNC machine
tools can be analyzed and optimized by finite element analysis [17]. The finite
element modeling can appropriately simplify some chamfers, small holes, etc. that
do not affect mechanical properties [18]. The denser and more accurate the finite
element (FEM) mesh division, the longer the optimization calculation time [19].
The method of selecting the appropriate unit division, which is not discussed here,
can be found in ANASYS-related books. In addition to the influence of the spindle
of the CNC machine tool, the deformation of the CNC machine tool due to
insufficient static stiffness [20] causes deviations between the actual position and
the ideal position of the tool and the workpiece, and seriously affects its machining
accuracy. The guide rail has a decisive influence on the accuracy of the machine tool
[21]. The optimized design of the guide rail of the machine tool can significantly
improve the geometric accuracy of the bed rail, thereby significantly enhancing the

Figure 1.
Components of a CNC lathe.
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machining accuracy of the NC machine tool. Furthermore, selecting the right load
rail by speed can optimize the machining quality. In terms of precision machining, a
reasonable milling process should be selected according to different materials [22].
Choosing a suitable processing tool and enhancing the strength of the processing
tool can avoid vibration caused by the high speed of the machine tool spindle during
processing, which will affect processing accuracy [23]. For example, in the process
of boring bar technology processing, strong heat treatment technology can be used
to improve the rigidity and strength of its material. The error of the tool during
manufacturing and machining wear [24] requires us to monitor it in real time to
detect problems in time, check and integrate and summarize these problems, and then
establish an error compensation model through the data system [25]. The influence of
tools and bearings on the accuracy of machine tools is obvious [26]. The machining
process should select the tool based on the cutting degree, depth, and accuracy of the
parts [27], and the bearing selection should use bearings with relatively low friction
resistance and high degree of smoothness and stability. During gear machining, the
accuracy of the machine tool will affect transmission characteristics during gear
machining [28–30]. The machining process can be regarded as the cutter wheel axis
revolving around the center axis of the production wheel. Cogging is processed by 3–7
groups of tools. After each cogging is processed, the workpiece rotates and the next
cogging is processed. Cutting tools installed on the tool turret includes outer blade,
middle-outer blade, middle-inner blade and inner blade. There are three main
methods to check the machining accuracy of CNC machine tools [31]: sample detec-
tion method, indirect detection method [32], and direct detection method.

1.2 Energy consumption optimization

The energy-saving process optimization of CNC machine tools usually divides
the machine tool’s energy consumption into several parts [33]; the auxiliary system,
the main drive system, the feed system, and the process of cutting and load.
Gaussian process regression models are established according to these five parts,
and the differential evolution algorithm is used to optimize the model. According to
the processing requirements, a model of the energy consumption, cost, and time of
the cutting process is established. The dynamic multi-swarm particle swarm opti-
mization algorithm is used for calculation to obtain more diverse and convergent
results [34]. The energy consumption of CNC milling machines can be divided into
three parts, namely fixed energy consumption, no-load energy consumption, and
milling energy consumption [35]. It can analyze the multi-source energy flow of the
machine tool and the energy consumption of the machining process to establish the
power of the machining stage equations and energy consumption estimation
models. The calculation of energy consumption can be carried out from the amount
of cutting, processed gears, cutting tools, cutting fluids of CNC machine tools, etc.
to study carbon emissions [36]. The finished processing time is then established.
The machining surface accuracy and other conditions are based on the reduction of
carbon emissions from the spindle speed and feed rate during machining. A multi-
objective optimization model for optimizing carbon emissions and processing costs
can be established [37], which can be solved by genetic algorithms [38], and the
feasibility of the optimization method of the model is verified by simulation calcu-
lation. On the digital intelligent machine tool, a system for detecting the energy
consumption of the machining process of the CNC machine can be designed based
on the upper computer information interaction unit and the lower computer infor-
mation acquisition element.
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1.3 Process optimization

The process design optimization of CNC machine tools has a significant impact
on their precision performance. The design of the machining process of the machine
tool should determine the processing steps and clamping methods of the workpiece
by analyzing the mechanical drawings of the parts; the geometric elements of the
outline of the part, the accuracy requirements of the dimensional tolerances, the
accuracy requirements of the shape and position tolerances, surface smoothness
requirements, material quality requirements, and the number of processes mode
[33]. The feed route, choice of cutting amount, and choice of tool can then be
determined. In order to prevent the tool from colliding with the workpiece during
the machining process, the optimization of the machining process must be carried
out by interference avoidance research [39, 40]. Based on the algorithm of coordi-
nate extremes, the complex surface should be simplified by taking an arc of the
surface [41], and performing measurement on the bisector. The vibration of the
machine tool gravely affects its machining accuracy [42]. The hardness and thick-
ness of the workpiece during the machining process [43] and the force of the
machine tool are taken into consideration [44]. For the movement path [45], the
movement speed [46] is optimized to achieve the machine vibration damping
control. Another vibration reduction method is passive vibration reduction, which
using materials with strong vibration resistance strengthens the stability of CNC
machine tools [47]. Another factor affecting the machining accuracy of CNC
machine tools is thermal deformation. During the working process of the machine
tool, the moving parts of the machine tool will be affected by thermal deformation,
which will cause relative displacement between the tool and the workpiece [48].
The solution is to strengthen cooling and lubrication during the work process to
reduce the displacement [49]. The thermal characteristics, machining environment,
and specific cutting parameters of the machine tool determine the size of the
thermal error by solving the function of the time-varying temperature field under
given conditions [50]. The purpose of the auxiliary heat source is to balance the
temperature field to reduce heat source interference. In short, the errors caused by
structural deformation, vibration, and high temperature in CNC machine tools can
be compensated with the following methods: single error synthesis compensation
technology [51], geometric error direct compensation technology, geometric error
synthesis compensation technology [14], single-term error synthesis compensation
technology by studying the error produced by a certain CNC machine tool, and
geometric error direct compensation technology by measuring the error data to
directly error compensation on the CNC machine tools. Using geometry error
synthesis compensation technology, the unidirectional error information is
decomposed by obtaining the synthetic error value of the CNC machine tool. It is
particularly important to emphasize the tremendous difficulty in accurately mea-
suring the angular error of the spindle during the general process; however, it can
now be solved by a matrix using a laser interferometer [52]. For complex curved
surface processing, multi-step compensation must be adopted as follows: (1) pre-
compensation; (2) error detection; and (3) reverse compensation. For the deforma-
tion of the tool during machining, mirror image anti-deformation compensation
that mirrors the tool position point and the tool axis vector must be adopted [53].

To sum up, the reliability of CNC machine tools is guaranteed by the processing
quality of each part of the CNC machine tools, and the quality of processed parts is
controlled by the quality of the processing procedures. For the analysis of the
machining process of the machine tool, it is necessary to analyze the machining
process of a key part. The optimization parameters of CNC machine tool machining
process are mainly energy consumption during machining, machining efficiency,
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and machining accuracy. Due to the limited space, this chapter only discusses the
influence of optimization parameters on machining accuracy.

2. CNC common processing optimization approach

The Computer Numerical Control (CNC) machine tools lie in the working
principle of CNC machine tools: according to the requirements of part processing
and using CNC language, the processing sequence is written into parameter pro-
grams, and the program is analyzed by Multipoint Control Unit (MCU). After
processing, the execution instructions are sent to the Driving System of step motors
or Servo motors and the machine tool will start machining the work piece. The
position and velocity signals of the machine tool will then be sent back to the MCU.
The schematic of CNC is shown in Figure 2.

From a mechanical point of view, CNC machine includes three main sub-
systems: the main spindle sub-system, followed by the supporting sub-system and
the conveying mechanism sub-system. From a control point of view, it mainly
includes two sub-systems: Data Processing Unit and Control Loop Unit. The
processing of parts action is completed through the numerical control system by
controlling the mechanical structure of the CNC machine tool. The coordination
between their functions is an important index for evaluating the machine tools
under the CNC system. To fully utilize the merits of CNC for precision machining, a
reasonable milling process should be selected according to different materials.
Vibration caused by excessive rotation speed of the machine tool spindle will affect
machining accuracy. The outer ring can be processed after specific processing.
During the process of boring bar technology, thermal stiffness enhancement
technology can be used to improve the rigidity and strength of the material.

Figure 2.
Schematic diagram of CNC.
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2.1 Cutting force monitoring

To obtain the wear and tear errors in the manufacturing and processing of
cutting tools, we need to monitor them in real time to detect problems in time,
check, integrate, and summarize them, and then establish them through the data
system error compensation model. The deformation of the machine tool due to
insufficient static stiffness, which causes deviations between the actual position and
the ideal position of the tool and the workpiece, seriously affects its machining
accuracy. In Precision Machining process on CNC, the cutting force in tangential
and radial directions needs to be predicted based on monitoring signals and
machining process parameters such as cutting depth, cutting width, rotational
speed of the main spindle, and feed speed of the cutting tool. The experimental data
of the cutting forces are shown in Figure 3.

2.2 Processing path optimization

The kinematic configuration of CNC machine tools directly affects the nonlinear
errors generated in the process of free-form surface machining, and has a direct
impact on processing energy consumption and design of the supporting CNC system.

After determining the motion configuration of the CNC machine tool, the
mechanism of each feed axis has a significant impact on the overall rigidity, posi-
tioning error, maintainability, and other indicators of the CNC machine tool, which
determine its machining accuracy and work reliability. For instance, in order to
machine complex surface S12, it needs to be decoupled into surface S1 and S2.
According to the required feed motion of surface S1 and S2, we can get the feed
motion of combined curved surface S12 as shown in Figure 4.

A heuristic algorithm (HA) is one that is designed to solve a problem in a faster
and more efficient fashion than traditional methods at the expense of optimality,
accuracy, precision, or completeness. Although it has the capability of convergence
and obtaining the optimization result efficiently, it depends heavily on initial result
and may only obtain local optimal solution of non-smooth curve functions. More-
over, it occupies a large amount of computing resources and has a poor real-time
performance, which may be incompatible with Computer Aided Manufacturing
(CAM) on CNC. In order to overcome this issue, a discrete tool planning is pro-
posed as follows:

Path ¼ A,Cð Þ1path1 , A,Cð Þ2path2 , A,Cð Þ3path3 , … A,Cð Þmpathm

n o

: (1)

where, A,Cð Þmpathm represents the positions of two rotary feed axes A and C when
the cutting point is on m.

Figure 3.
The experimental cutting forces in tangential and radial directions.
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One methodology for positioning error compensation of CNC machine tools is
through interpolation. It produces third-order splines from the coordinates of dis-
crete points measured by Laser Doppler velocimetry (LDV). Between [xi�1, xi], the
interpolation function of splines s(x) can be deduced as

s xð Þ ¼
xi � xð Þ3 ∗Mi�1 þ x� xi�1ð Þ3 ∗Mi

h i

6hi
þ yi�1 �

h2i
6

∗Mi�1

 !

xi � x

hi

þ yi �
h2i
6

∗Mi

 !

x� xi�1

hi
, i¼ 1, 2, …n (2)
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>

:

(3)

Since the binomial multi-order derivative is continuous, Mi satisfies N � 1
equations,

uiMi�1 þ 2Mi þ λiMiþ1 ¼ di i ¼ 1, 2, 3… , n� 1 (4)

The first type of boundary conditions is

S0 X0ð Þ ¼ f 00 ¼ m0, S0 Xnð Þ ¼ f 0n ¼ mn (5)

Then, Eq. (4) can be present as
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(6)

Figure 4.
The feed motion of S12 obtained from that of decoupled surface S1 and S2.
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2.3 Processing dynamic profile optimization

To prevent CNC machining in normal condition, the acceleration and velocity of
the moving stages have to be monitored and should be less than the maximum
design range of CNC machine.

With the known coordinates of two adjacent track points xnþ1, znþ1ð Þ, xn, znð Þ
and the velocity of the main spindle, the acceleration and velocity of point n are
approximately.

∆t ¼
∆θ

ω
, vn ¼

xnþ1 � xn
∆t

znþ1 � zn
∆t

2

6

6

4

3

7

7

5

, an ¼

_xnþ1 � _xn
∆t

_znþ1 � _zn
∆t

2

6

6

4

3

7

7

5

: (7)

Figure 5 shows the monitored acceleration in x and z directions respectively.
Their values should be within CNC machine design range. NC machining process
usually faces “over cutting” issue, which can be minimized through the commonly
used method of rotating the tool angle as shown in Figure 6.

The extreme value Stand root mean square value Sq of the machining surface
shape are the two major indicators of the machining accuracy and are calculated by
the following equations:

St ¼ max eð Þ � min eð Þ, Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
e2i=n

q

: (8)

Figure 5.
Discrete point acceleration of machining trajectory. (a) Acceleration of track pint in x axis and (b) acceleration
of track pint in x axis.

Figure 6.
Machining tool overcutting compensation.
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where e represents the shape tolerance of the machining surface, N represents
the number of the measured point.

Figure 7 shows the implementation of cutting tool compensation to reduce the
machining error. It can be seen that tool compensation can effectively solve
machining errors from 0.8 to 0.5 μm due to overcutting of tools through rotating
cutting tool angle ϑ.

To minimize the value of S_(t)and S_(q), the optimized machining profile
should be conducted as shown in Figure 8. In order to make the movement of the
machine tool smooth and the processing more stable, the concept of “jerk” is
introduced and made as constant. Then, the profile of acceleration is trapezoid. It
can be seen that the speed profile of trapezoid acceleration is smoother than that of
constant acceleration. As we know that the reaction force of the worktable and feed
screw becomes infinite if the acceleration is suddenly changed. As a result, it may
damage some motion transmission parts of CNC, such as worktable, lead screw, or
servo motor.

Usually, in order to obtain high quality of the machining parts and extend the
working life of the CNC machining, the speed of CNC is kept as constant as possible
besides start and end stage of the machining processing.

Figure 7.
Cutting tool compensation to reduce machining error. (a) Machining error before tool compensation and
(b) machining error after tool compensation.

Figure 8.
Distance, velocity, acceleration, jerk vs. time profile in acc/dec process of CNC machining.
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3. Processing tools deflection compensation

Any machining process will induce dynamic reaction forces on the cutting tool.
Cutting tool deflection due to improper clamping, tool wear, and error in machine
accuracy may lead to error in the final product. Hence, the current trend in the
industry is to detect such errors and compensate for them in machining to avoid
scraping the material afterward. In this chapter, we attempt to detect the cutting tool
deflection while machining the workpiece and hence predict error on the workpiece.
To detect the deflection during machining, we use either a contact or a non-contact
sensor. One of the major considerations in choosing the right sensor is cost and ability
to measure the error under harsh environments. In this section, compared to capaci-
tive probe, we finally decide to adopt eddy current gap sensors to detect deflection of
the cutting tool during machining of a simple profile and predict error on the work-
piece. The predicted error was then verified using Coordinate Measuring Machine.

3.1 Displacement sensor for tool compensation

To compensate for the cutting tools or work piece deflection, there are two types
of commonly used displacement sensors to monitor: (1) capacitance gap sensors and
(2) Eddy current type gap sensors.

3.1.1 Capacitance gap sensors

The capacitance of a parallel-plate capacitor is given by

C ¼
εrε0A

d
(9)

where, εr represents electric constant of the insulatingmedium (ε r = 1 for air); ε0
represents permittivity of air or vacuum,which is 8.85� 10�12 F/m; A represents
overlapping area in plates; andd represents varyingdistance between thebottomsurface
of the electrode of capacitive probe and the surface ofmeasured object (tool cutting tip).

The working schematic of the capacitive probe is shown in Figure 9(a). It is
evident that changes in the distance between the capacitive probe and the measured
object (cutting tools) change the capacitance, which in turn changes the current
flow in the sensing element. RF oscillator generates 500 kHz and 1 MHz high-
frequency electric field to focus the sensing field on the cutting tool. Figure 9(b)
shows the relationship between distance d and capacitance c. It shows d decreases as
c increases. Based on this principle, the distance between plates can be determined
by calculating the capacitance value.

Figure 9.
The working schematic and principles of capacitive probe. (a) Schematic of capacitive probe and
(b) capacitance vs. distance.
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3.1.2 Eddy current type gap sensors

The working schematic of eddy current gap sensor is shown in Figure 10. When
a nonmagnetic conductive target material is introduced into the coil field, eddy
currents are induced on the target’s surface. These currents generate a secondary
magnetic field, inducing a secondary voltage in the sensor coil. The result is a
decrease in the coil’s inductive reactance (the coil-target interaction is similar to the
field interaction between the windings of a transformer). By calculating the “effec-
tive impedance” of the sensor coil, the distance to the target can be determined.

Nonmagnetic conductive target materials (e.g., aluminum, copper, brass, gold),
with low resistivity and a magnetic permeability of 1, can provide output sensitivity
in terms of impedance change per unit of target displacement.

The capacitive probe is suitable for measuring any metal surface. Its measuring
accuracy can reach up to several nanometers. However, the dusty working envi-
ronment is not suitable for applying capacitive probe to measure the target, as the
gap between probe and the measured target is contaminated by dust, liquids such as
coolant. As a result, the measuring accuracy of the capacitive probe is affected. On
the other hand, the current gap sensor is suitable for measuring conductive material
except steel. However, it cannot measure thin materials because of insufficient eddy
current generated, thus affecting the measuring accuracy of the gap sensor.

3.2 Tool deflection compensation approach

Figure 11 shows 5G AI Edge computing configuration for CNC cutting tool
deflection compensation. The original signal is collected by sensor and sent to 5G AI
computing for preprocessing such as noise reduction with low-pass filter, com-
pressed data etc. The dimension-reduced data is sent for cloud computing through a
5G network router. The cloud computing device uses genetic programming (refer to
Figure 12) to generate the cutting tool deflection compensation algorithm and
sends it back to the 5G AI edge computing local network. 5G AI edge computing
device then calculates the compensation value and sends it to MCU to compensate
for the cutting tool deflection.

3.3 Algorithm adopted in tool deflection compensation

Genetic programming (GP) is adopted in this study to conduct tool deflection
compensation. It evolves from computer programs that are traditionally
represented in memory as tree structures. Trees can be easily evaluated in a recur-
sive manner. Every tree node has an operator function and every terminal node has
an operand, rendering mathematical expressions easy to evolve and evaluate. Thus,
traditionally GP favors the use of programming languages that naturally embody
tree structures.

Figure 10.
The working schematic of eddy current gap sensor.
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GPLAB is a genetic programming toolbox for MATLAB® initially developed by
Sara Silva. The main modules of GBLAB are GENPOP, GENERATION, and
SETVARS. GENPOP module generates the initial population and calculates its
fitness based on default or user defined fitness function. Terminal set:

Terminal set: “X1,” “rand,” and “100”.
Terminal condition: Maximum generation reached.
Function set: plus (+), minus (�), times (*) and other protected function in.
Fitness function: Fitness function is defined as the minimum value between

actual value and predicted value. During the programming calculation process, the
new population should be superior to the previous population. In other words, the
new fitness value will be lower than previous one.

Figure 11.
5G AI edge computing for CNC cutting tool deflection compensation.

Figure 12.
Schematic of genetic programming for tool deflection compensation.
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Fitness ¼ min abs predicted result� expected resultð Þð Þ: (10)

The schematic of genetic programming for tool deflection compensation is
shown in Figure 12. The optimal tool deflection compensation algorithm is obtained
through hundreds of generation selection, crossover, and mutation operation until
set fitness function is reached.

3.4 Tool deflection compensation experiment

The material of cutting tools includes high-speed steel, ELMAX chromium-
molybdenum-vanadium alloy steel, or nickel-chromium alloy steel. However, the
cutting chip will reduce the capacitive probe measurement sensitivity and accuracy
and damage the capacitive probe. Therefore, the eddy current gap sensor will be
adopted in this working environment. The deflection signal is sent to 5G AI edge
computing for signal pre-processing, before sending for computing through genetic
programming. The computing results are sent back to MCU of the CNC to control
the movement of the main spindle and the worktable.

The cutting surface error compensation with and without cutting tool deflection
compensation are shown in Figure 13. It shows that the maximum machining error

Figure 13.
Cutting surface error with/without tool deflection compensation.

Figure 14.
The deviation distribution of the machining with/without tool deflection compensation.
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is reduced from 0.053 to 0.032 mm, which is 40%. The deviation distribution of
machining with/without tool deflection compensation is shown in Figure 14 in
three dimensions. It can be seen that at almost all measured points, the machine
error on a curved surface without tool deflection is larger than that on a machining
curved surface with tool deflection compensation. Moreover, the error is largest at
the bottom area of inflection of the curved surface, reaching 0.053 mm. This may be
due to two reasons. First, the cutting tool suffered the largest reaction force and
induced the largest deflection. Second, the stiffness of the machining tool is smallest
at the tip.

4. Processing error feedback compensation

4.1 Experimental setup of error feedback compensation

In order to further reduce the machining error after cutting tool compensation,
the error feedback compensation strategy is selected as shown in Figure 15. Two
accelerometers are attached to the side of the stator of the main spindle and the side
of the workpiece to measure their vibration signals respectively. The vibration of
the accelerator attached to the main spindle in idle and working conditions is
monitored and feedback to CNC, then, the CNC control the main spindle rotation
speed to obtain minimum vibration signal. The vibration sensor attached to the
workpiece monitored the dynamical performance of the workpiece and the signal is
sent back to the control unit for processing. A servo actuator is attached to the
bottom surface of the workpiece to compensate for the machining error, which is
based on control signal received from control unit. An acoustic emission sensor is
attached near the workpiece to monitor the acoustic noise and the fault processing
condition. The original signal is sent to control main server for processing and
pattern and status recognition. Lastly, the control command is sent from the main
server to CNC machine to minimize the machine error.

Figure 15.
Schematic of error feedback compensation.
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4.2 Signal processing in error feedback compensation

Figure 16 shows error feedback compensation signal noise filter and recon-
struction processing. The original time domain signal is obtained from the vibration
sensor and converted into frequency domain through fast Fourier transform (FFT)
algorithm. The bandpass filter is applied to filter out high frequencies and low-
frequency and DC component. Interesting frequencies that include useful informa-
tion are obtained after applying a signal technology to find peaks of the FFT in the
range. The final step is to reconstruct the signal to control the actuator in order to
compensate for machining error.

4.3 Experimental results of error feedback compensation

Figure 17 shows the cutting surface error without tool deflection compensation,
with tool deflection compensation, and with error feedback compensation. It can be
seen that the maximummachining error is reduced by 35% from 0.032 to 0.021 mm
when the error feedback compensation is applied. Therefore, the total machining
error is reduced by 60% from 0.53 to 0.021 mm. However, the error feedback
strategy does not work at measurement point 40. Moreover, in two ranges (point
20–28, point 45–55), machining error is larger than that with tool deflection com-
pensation strategy only.

The deviation distribution of machining without compensation, with tool
deflection compensation, with error feedback compensation is shown in Figure 18.
It can be seen that the deviation distribution of the machine curved surface with
feedback compensation is minimal. On the other hand, the deviation distribution of
the machine curved surface without tool deflection and error feedback compensa-
tion is largest. In other words, in order to achieve good machining quality product,
the tool deflection compensation and error feedback compensation strategy should
be adopted.

Figure 16.
Error feedback compensation signal noise filter and reconstruction processing.

15

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



5. Processing parameter optimization compensation

An experienced operator can significantly reduce machining error by applying
cutting tool deflection and error feedback compensation when the optimized oper-
ation parameter is known. However, the process obtaining optimized operation
parameter by try and error is time-consuming for new operator. Therefore, this
section will introduce the parameter base optimization operation strategy. 5G AI
edge computing and cloud computing strategy will be applied to obtain optimized
operation parameter automatically.

5.1 Network configuration for processing parameter optimization

Figure 19 shows the cloud-based intelligent manufacturing configuration with
5G AI edge computing, which is also known as smart manufacturing configuration.
The company data center managed by the IT department acts as a data transfer

Figure 17.
The machining surface error without tool deflection compensation, tool deflection compensation, error feedback
compensation.

Figure 18.
The deviation distribution of the machining without compensation, with tool deflection compensation, with
feedback error compensation.
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bridge connecting each department of the company such as CAD center, CAM
center, sales department, supply department, warehouse, maintenance department
etc. It also acts as a data communication buffer linked to cloud computing centering
out of the company. The designer can access the local data center to download the
CAD drawing in order to modify the existing drawing, save the new CAD
drawing, or update drawing to local data center. In the CAM center, every client
computer is connected to a CNCmachine. The CNCmachine processing monitoring
signal and the corresponding machine number information are sent to the company
data center and to the cloud computing data center if necessary. All information
needed for CAM center to produce the machining parts is sent through company
data center as well. For instance, the production manager can download the CAD
drawing from company data center and convert it to CAM file format. The
technical person from the company then sends a file with control command or a
file with the new compensation algorithm trained by cloud computing to the client
PC in the CAM center. Cloud computing center receives request and the training
data set from the company and sends back the proposed processing optimized
parameters or processing control algorithm. In the cloud data center, the data
received from the company will be stored in a database. It utilizes GP, MNNR, or
other deep learning algorithm to obtain the optimized parameters through the
expert system.

Figure 20 shows the cloud-based intelligent manufacturing configuration in the
CAM center. The whole system configuration includes CNC real-time machining
status monitoring, real-time environmental monitoring, CNC cutting tool deflec-
tion compensation, error feedback compensation as well as CNC machining opera-
tion process optimization through a combination of cloud computing and 5G AI
edge computing. Unlike traditional standalone CNC machining, all CNC machines
(refer to Figure 21) are connected through a local network client PC with cable or
wireless in intelligent manufacturing environment. CAD drawing is sent to a local
client instead of programming. The signals from sensors monitoring the CNC
machining status are sent to 5G AI edge computing devices to pre-process.
Processed data and corresponding machine no. are sent to the company data center
through the client PC.

Figure 19.
The cloud-based intelligent manufacturing configuration.
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5.2 Data collection for processing parameter optimization

Figure 22 shows a CNC machine connected to the local network. In order to
obtain vibration signal to train the GP, Neural Networks (NNR), and Support
Vector Machine (SVM) algorithm, two wireless accelerometers, Sensor 1 and
Sensor 2, are attached to the cutting tool. Their signals will be sent to the cloud for
GP, NNR, and SVM base computing. Specimen (Nylon) is clamped into three-jaw
chuck. Vibration signal is sent to cloud server through 5G AI Edge computing
device and 5G router. In order to find optimized operational rotational speed of
main spindle, three groups of specimens (30 pcs) are machined with varied
rotational speed as shown in Tables 1–3.

In order to get reliable data, the three groups of specimens must have the same
experimental condition; the diameter and length of all experimental specimens are
25 and 30 mm respectively.

Figure 20.
The cloud-based intelligent manufacturing configuration in CAM center.

Figure 21.
A group of CNC machines connected through local networks.
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When the rotating speed of themain spindle of CNCmachine is the same, the same
feed rate is selected as well. The feed rate is increased with increasing rotating speed.

Figure 23 shows three groups of specimens labeled as A1–A10, B1–B10, and
C1–C10 respectively. Group A specimens are used as training data set while group B
and C specimens are used as testing data set.

5.3 Signal processing technologies for processing parameter optimization

There are various signal processing technologies for analyzing the monitoring
machine working condition and product processing. The commonly used technolo-
gies are: time domain signal processing; FFT; wavelet technology; and short-time
Fourier transform (STFT). Normally, time domain data are the original data
recorded by the sensor, FFT is the technology developed to convert time domain

Figure 22.
Real-time monitoring of the CNC process in a production environment.

Table 1.
Group A specimens with varied machining parameters.
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data to frequency domain data. The wavelet technology is commonly used to
decompose a complex signal to sleeve sub-level simple signals. STFT is the signal
processing technology developed to overcome the drawbacks of FFT. In most cases,
it is used to monitor the transition signal. In this section, each signal technology will
be discussed based on experimental data. The purpose is to find out the most
suitable signal processing technology to develop process parameter optimization.

Sensor 1 is attached to the tip of the cutter to monitor the cutting dynamic force-
induced vibration. The sensor is a wireless accelerometer and powered by a built-in
battery. As shown in Figures 24 and 25, time domain signal is repeatable with signal
noise. However, we cannot trace enough useful information from the signal in time
domain.

Due to lack of useful information from time domain data, frequency domain
data are converted from time domain data by employing FFT technology. In
machine fault diagnosis application, the fault frequencies can be found when the
machine is under faulty working condition such as bearing wear and tear.

Figures 26 and 27 show the frequency domain data of Sensor 1 in X and Y
directions, respectively. The domain frequency is the 1x order signal frequency,
which is around 31.67 Hz. The second contribution signal is around 263 Hz.
The third and fourth ones are that of 2x order and 3x order signal respectively.

Table 3.
Experimental specimen group C with varied machining parameters.

Table 2.
Group B specimens with varied machining parameters.
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Wavelet technology is originally developed to decompose complex signal. It may
be used in the processing application to trace useful information. Figure 28 shows
wavelet spectrum in sensor 1 in X and Y directions; it can be seen that the signal is
decomposed. However, only first two domain signals can be displayed. Moreover,
the frequency of each signal cannot be recognized, which means this signal tech-
nology may be not suitable for processing optimization application. Other signal
technologies should be further studied to be applied in this application field.

Figure 29 shows short-time Fourier transform spectrum in sensor 1 in X and Y
directions. It can be seen that the dominant signal is the low-frequency component.
However, it cannot provide any useful information for optimizing processing
parameters. In Figures 26 and 27, we know that the dominant frequency is the 1x
order of main spindle rotating frequency. Waterfall technology is used to apply FFT
in several steps of the main spindle’s rotational speed in order to trace any changes
due to change in rotating frequency.

Figure 24.
Time domain signal in Sensor 1 in X direction.

Figure 23.
Experimental specimen groups with varied machining parameters.
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Figure 25.
Time domain signal in Sensor 1 in Y direction.

Figure 26.
Frequency domain signal in Sensor 1 in X direction.

Figure 27.
Frequency domain signal in Sensor 1 in Y direction.
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5.4 Experimental results of processing parameter optimization

The useful information is tracedwhen thewaterfall of speed spectrum is developed.
Sensor 1 is attached to the tip of the cutting tool to monitor the cutting dynamic

force-induced vibration. Figures 30 and 31 show the vibration in X and Y directions

Figure 28.
Wavelet spectrum in Sensor 1 in X and Y directions.

Figure 29.
Short-time Fourier transform spectrum in Sensor 1 in X and Y directions.
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respectively. In Figure 30, it can be seen that the dominant frequency components
are 1x, 2x, and 3x. Moreover, the maximum value is 0.12 mm/s at 31.6 Hz and the
vibration spectrum is increased with increasing rotating speed. The lowest reso-
nance frequency of the CNC machine is 263 Hz. Therefore, the machine rotating
speed has to deviate far away from 15,780 rpm.

In Figure 31, the maximum value is 0.08 mm/s at 31.6 Hz. Under 1900 rpm, the
maximum value is smaller at 31.6 Hz, as the cutter bears bigger cutting force due to
removal of material by cutter in X direction.

Sensor 2 is attached to the base of the cutting tool to monitor the cutting dynamic
force-induced vibration. Figures 32 and 33 show the vibration in x and y direction
respectively. It can be seen that the maximum vibration of Sensor 2 is 0.025 and
0.16 mm/s in x and y direction respectively, both smaller than that of Sensor 1.
Therefore, the vibration signal of Sensor 1 is more sensitive and is a better candidate
than Sensor 2 for monitoring the CNC machine working status. Furthermore, only
the frequency domain dominates frequencies and their amplitudes are selected to be
sent to the cloud in order to reduce data size and increase data transmission rate.

After the speed spectrum is obtained, the frequencies and their peak value can be
obtained by applying data mining methodology. Figure 34 shows the tracing peak

Figure 30.
Vibration signal in X direction of Sensor 1.

Figure 31.
Vibration signal in Y direction of Sensor 1.
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Figure 32.
Vibration signal in X direction of Sensor 2.

Figure 33.
Vibration signal in Y direction of Sensor 2.

Figure 34.
Tracing peak values of group a specimens in frequency domain.
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values of group A specimen in frequency domain with interesting 1x, 2x, and 3x data.
The peak values of specimen A, B, and C are shown in Tables 4–6 respectively.

The experimental parameters such as material, dimensions, temperature, reac-
tion forces, vibration data, and machining quality such as tolerances will be sent to
the Multilayer Artificial Neural Network (MANN) to train the optimized operation
parameters. The MANN is shown in Figure 35.

Figure 36 shows results of MANN training based on training data, the training
correction is about 99%. If more training data are adopted, the trained MANN
should be more accurate.

Figure 37 shows general data classification results based on deep learning; there
are four types of results: (a) The machining result is linearly classified into two

Table 4.
Vibration speed spectrum of group A specimen.

Table 5.
Vibration speed spectrum of group B specimen.

Table 6.
Vibration speed spectrum of group C specimen.
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groups: one that met the quality requirements and one that failed to meet the
quality requirements. (b) The result is linearly classified into three groups as low,
medium, and high rotation speed range. In low and high rang, the machining
quality cannot meet the quality requirement. Sometimes, the machining quality
classification is not linear as shown in (c). The classification quality is not only
based on deep learning technology but also depends on the quantity of parameters
and the machining material. The matching quality can be further classified into
grades of quality such as grade A, B, and C, as shown in Figure 36, based on
machining tolerances.

Figure 35.
Multilayer artificial neural network (MANN).

Figure 36.
Results of multilayer artificial neural network (MANN) training.
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Figure 38 shows classification results of machining Nylon with variable speed of
CNC based on deep learning. If the machining roughness threshold is set as
0.02 mm, the spindle speed of CNC should be more than 900 rpm and less than
1800 rpm.

6. Conclusions

This chapter presents our research studies on a parameter optimization method
of product processing procedure for CNC machine tool with three common sys-
tematic errors compensation approaches.

In Section 1, we introduced mechanism optimization, energy consumption opti-
mization, and processing optimization of a CNC machine tool. Mechanism optimi-
zation is mainly used to optimize the CNC machine tool to reduce machine

Figure 37.
Data classification results based on deep learning. (a) Two classes linear classification, (b) multi-classes
classification, (c) two classes no-linear classification, and (d) multi-classes no-linear classification.

Figure 38.
Classification results of machining nylon with varied speed of CNC.
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systematic errors. On the other hand, due to huge electrical energy consumption of
CNC machine tool under operational mode, energy consumption optimization
should be considered. There are tremendous researches on the first two aspects but
less on the last one. Therefore, in the next section, our studies focus on the
processing optimization approach.

In Section 2, we briefly introduced the working principle of CNC machine tools.
In order to reduce machining error, the cutting force has to be monitored con-
stantly. The machining of the complex surface can be decoupled into simpler ones
for path optimization in order to minimize speed fluctuation-induced machining
error. For the same purpose, machining tool overcutting compensation and two
major indicators St and Sq of the machining accuracy are introduced and an opti-
mized profile is proposed.

In Section 3, we studied tool deflection issue during machining. The merits and
drawback of two commonly used displacement sensors, capacitive probe and eddy
current gap sensor, are compared and recommended for different scenarios. In this
section, 5G AI edge computing technology for signal pre-processing and genetic
programming for control algorithm parameters optimization are proposed. The
experimental results with tool deflection compensation are reduced by 40%.

In Section 4, we studied error feedback compensation approach. The CNC and
servo actuator are in the close loop for error feedback compensation. A bandpass
filter is adopted to reduce the noise in order to reconstruct the control signal. The
experimental result is reduced by 60%.

In Section 5, we studied processing parameter optimization. The cloud-based
intelligent network configuration for processing parameter optimization is pro-
posed. In this section, the method is mainly based on deep learning approach such
as GP, MANN, and SVM to identify the product processing optimized parameters.
Before deep learning approach is employed in cloud computing with expert system
and database, all the information in the train data instance such as raw material type
and dimensions, CNC machine tool systematic parameters, and machining opera-
tional conditions and vibration outputs of the CNC machine tool must be sent to a
cloud-based computing center. The amplitudes and frequencies of the CNC
machine tool outputs are determined by the waterfall of FFT after the signal is pre-
processed through 5G AI edge computation. The functionality and performance of
the proposed technique are verified with simulations as well as with the experi-
mental data and results, which proves the effectiveness of the proposed scheme.
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Chapter

Interlinking Industry 4.0 and 
Academia through Robotics 
and Automation: An Indian 
Perspective
Prajwal Prabhu, Subin Raj and Abhra Roy Chowdhury

Abstract

Robots and automation systems are growing rapidly in the society globally with 
an annual global sales value of 16.5 billion USD in 2018 according to the International 
Federation of Robotics (IFR). They have found a commonplace not only in industries 
and service sector but also in households. This has attracted heavy investment by 
industries globally in the research and development of robotics and its applications. 
Understanding this rising trend in the industry and society, there is an obvious need 
for expertise and future workforce in robotics. According to the IFR report, India has 
recorded a growth of 39% in 2018 compared to the previous year in terms of annual 
robot installations. The annual report of the Confederation of Indian Industry (CII) 
in 2019 recommends robotics and automation as one of the prime areas of focus 
toward the development of national policies on Industry 4.0. One such interlinking 
initiative in robotics research and innovation has started at the Centre for Product 
Design and Manufacturing (CPDM) in the Indian Institute of Science (IISc). The 
project is designated under India’s first Industry 4.0-compliant Smart Factory R&D 
platform in a unique academic set-up. It aligns with the policies of Govt. of India to 
boost vision Industry 4.0 for India’s technological and economic transformation.

Keywords: Industry 4.0, robotics, automation, autonomous systems

1. Introduction

With the advent of industrial development, humans have witnessed its four 
phases starting from mechanized processes, mass production using electricity, 
assembly lines and now finally culminating to Industry 4.0. It is also commonly 
referred as Smart factory where the physical processes of factory are monitored by 
decentralized cyber-physical systems to take autonomous and individual decisions. 
The physical systems i.e. machines are configured with the Internet of Things (IoT), 
communicating in real time to each other and with human operators over the web 
representing another vital component called interoperability. Indian Institute of 
Science (IISc) has been developing a “Smart Factory called I4.0India@IISc” that 
will act as a Common Engineering Facility Centre (CEFC) at the Centre for Product 
Design and Manufacturing (CPDM), under the SAMARTH Udyog Bharat 4.0 
program of the Department of Heavy Industries (DHI), Gol in [1].
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The CEFC builds on the earlier work at IISc that initiated India’s first smart 
factory R&D platform with seed collaboration fund from the various multinational 
and national companies worldwide. The CEFC intends to develop two contrast-
ing factory platforms. One is highly automated, with data-intensive processing 
machines such as 5-axis CNC, metal additive manufacturing, metal laser routers 
etc. that are handled by Industrial robots, collaborative robots, automated guided 
vehicles, etc. The other platform is highly manual, with legacy machines with data 
layer, where handling is also carried out manually. The distinction is that all ele-
ments in both the Platforms (people, process, parts, tools and environment) are 
to be connected via IoT-based communication networks and data are stored and 
analytics carried out using cloud computing. The intent is to use the platforms as 
demonstration centers in which factories of the future will be explored to see their 
potential and challenges, and use the platforms for advancing research, innovation, 
training and support for practice. A major aim of this CEFC is to support Industry 
4.0 in MSMEs of India by developing “advanced yet affordable” technologies and 
solutions for their use. The CEFC is supported by Tata Consultancy Services (TCS), 
Yaskawa, Faurecia, Toyota Kirloskar Motors (TKM) and Ashok Leyland as indus-
trial partners who contribute with fully funded research projects. The CEFC is also 
supported by faculty members drawn from 12 departments of IISc as collaborators. 
A variety of research-intensive technologies are being developed at the CEFC for 
the benefit of industry. The technologies under development include smart resource 
bins for waste tracking, smart inspection systems, AR/VR-based digital twins and 
digital walkthrough systems, 3D printing systems for printing devices with embed-
ded electronics, PCB assembly support systems, multi-modal robots, affordable 
door localization systems, etc. The CEFC is meant to serve the following purposes:

• Use of the factory with its two platforms as demonstrators for Industry 4.0 
(development of platform should be completed in next 6 months)

• Utilization of the platforms for trying out new building blocks, technologies and 
solutions for their potential effects on KPI before committing investment on these.

• Playing with various combinations of the two platforms for creating different 
variants of factories of the future and seeing their impact on KPIs.

• Using the factory as a springboard for supporting development of new innova-
tions and start-ups for Industry 4.0 (1 start-up initiated, 10 existing start-ups 
already supported as planned)

• Creating Indigenous R&D capabilities in the area for India’s Industry 4.0 by 
training researchers and developing deep tech knowledge. (11 PhD students 
and 20 researchers are being trained, over 20 technologies, tools and solutions 
are being developed with industrial significance)

• Providing awareness, training and education, especially high-end training 
to develop future leaders in manufacturing (over 500 people already trained, 
which is 2.5 times more than originally planned; a new MTech and PhD 
program in manufacturing initiated at IISc, an international conference on 
Industry 4.0 and Advanced Manufacturing I-4AM’19 initiated)

In continuation to this we have identified the opportunities and challenges for 
human robot collaboration in Industry 4.0 set-up. This is mentioned in subsequent 
sections.
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2. Human factors in logistics and warehouse industry

A supply chain in a manufacturing environment involves manufacturers, sup-
pliers, and other logistical entities that would entail dealing with the customers’ 
requests. Modern management practices are designed to reduce the inventories; 
thus, warehouses play a crucial role in customer services and product availability. 
Logistical support provided to improve the warehouse order picking scenario would 
entail reduction of time in retrieving of the object and its successful shipment for 
delivery. Customer satisfaction in such a scenario would require for an efficient and 
flexible warehouse order handling processes. However, any small changes in the 
customer end of the supply chain would create a large ripple in the stock levels and 
orders along the supply chain also called as a “Bullwhip Effect.” Increasing demand 
at the nth tier in a supply chain will be over-compensated by an even greater 
increase of the demand at the n+1th tier of the chain in [2]. As a result, the curve 
mapping the stock levels along the time looks similar to a whiplash, hence the name 
“Bullwhip Effect.” Some of the key aspects of the human factors in the logistics 
industry are quantified as Perceptual Factor, Mental Factor, Physical Factor, 
Psychological Factor in [3]:

1. Perceptual Factor: Perception to new things will play a role to changing needs 
of warehousing environment. This will play a very important factor in deter-
mining the overall productivity of the warehouse. This factor will amount to 
24.4% in the order picking process. Some of the key things that will affect in 
this factor would include information technology, ability to read, confusion 
created due to negligence and ability to accept new technology. It is of the 
utmost importance that the laborers are skilled to understand the upcoming 
technology that will reduce the overall burden of their work.

2. Mental factor: The mental factor in any order picking process will be of maxi-
mum importance and will amount to 45.2% in the order picking process. Some 
of the key aspects in this factor would be as follows: cognitive ability, ability to 
learn new technology will be a very important factor to ensure that the order 
picking process can be done in a very efficient way and will amount to 37.3%. 
Some of the other factors include behavior, training. To ensure the productiv-
ity of the warehouse, the laborers should have decent working environment 
where they are more receptive and learn modern technologies and new ideas 
that will improve the efficiency of the system.

3. Physical Factor: The physical factor in order picking process will amount 
to 16.3%. Some of the key aspects that will affect the order picking process 
are: Having an improper workload will lead to musculoskeletal diseases in 
the human beings causing back pain and fatigue. Further improper material 
handling may lead to material damages that will increase the overall cost in 
the production. It is of utmost importance that the workload of all laborers 
should be uniformly distributed, to avoid the breakdown of the warehouse 
machinery.

4. Psychological Factor: Factors like work environment, stress, monetary incen-
tives also play a very important role in ensuring that human beings are moti-
vated to do quality work and ensure that the order handling process runs in 
a very smooth and efficient way. Laborers should have proper incentives and 
can be in the form of monetary or otherwise, to ensure that they are motivated 
throughout to ensure that the productivity of the warehouse is not dropped.
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3.  Indian scenario for the human factors in logistical/warehousing 
industries

Logistical cost in Indian scenario accounts to 13–17% of the overall GDP, which 
is nearly double the GDP of the developed countries like US, France, UK, etc. in 
[4]. Main reasons for such high costs are due to lack of efficient transport systems. 
Further it is seen that there is a limited focus on robotics and automation which 
would reduce the majority of the human works. The main percentage of the logisti-
cal cost in India is borne by the end users. The future trends in warehousing indus-
try would involve companies consolidating large warehouse spaces and developing 
futuristic technologies that would improve the warehousing operations leading to 
better and efficient productivity. A huge amount of flexibility can be incorporated 
by including human operators in the warehousing industry. Human being can 
react quickly to any operational changes or urgent requirements of the orders and 
maneuver in tight spaces that lead to efficiency in the order picking systems. Some 
of the key measures taken by the Indian government to improve the logistical 
scenario in India include the Creation of exclusive Warehousing Promotion Zones. 
Create logistics and warehousing policies separate from industrial promotion 
policies, Allocation of areas exclusively for warehousing within Industrial Parks, 
Setting up of Skill Augmentation Centers in [4]:

1. Creation of exclusive Warehousing Promotion Zones: To create modern ware-
houses and facilitate modern warehousing, need to create exclusive warehous-
ing zones is stressed to develop modern warehousing infrastructures.

2. Create logistics and warehousing policies separate from industrial promotion 
policies: State governments are mandated to form separate policies for develop-
ment of the logistics and warehousing industry so that the industries can grow 
to its full potential.

3. Allocation of areas exclusively for warehousing within Industrial Parks: 
Adequate storage facilities for raw materials and finished goods need to 
be provided in the industrial parks where the manufacturing facilities are 
provided.

4. Setting up of Skill Augmentation Centers: It is of the utmost importance to set 
up a skill augmentation center so that warehouses can be modernized to im-
prove productivity and efficiency. Some of the modern technologies that can 
be included in the warehousing include using of cloud to access the warehouse 
inventories, deployment of drones in the warehousing industry. Using of IoT 
and automation can improve the overall performance of the system.

4. Need for autonomous mobile robot in manufacturing industries

Automation in the manufacturing industry will ensure that the end result will 
be achieved in a more effective way thereby reducing the human effort. Automated 
guided vehicles are the most extensively used robots in the industry; however, these 
lack the self-regulating mobility and need navigation lines along the shop floor. 
Further material handling while using the AGV will require human effort which in 
some cases will reduce the productivity. The need for human operators to undertake 
planning activities and the lack of real time feedback of the shop floor’s inventory 
level will make the efficient flow of materials tough.
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Autonomous mobile robots are machines designed to maneuver itself in an 
obstacle filled environment through the use of sensors and feedback. Due to its 
design it can be used in manufacturing industry thereby reducing wear and tear 
in different industrial components and improve the productivity. AMR’s provide a 
wide range of advantages such as: reduced floor traffic, flexibility, reliability, self-
regulating mobility etc. in [5].

The need for using the autonomous mobile robots in manufacturing environ-
ment is as follows:

1. To increase productivity and efficiency

2. To improve material handling

3. To improve the safety of human operators in high risk, stress environments

4. To perform repetitive tasks so that the human beings can concentrate on cogni-
tive and creative tasks.

5. To enhance overall revenue by delivering order in perfect fulfillment rates and 
better customer satisfaction.

6. To reduce the factory traffic by navigating in tight and complex environments.

5. Human robot interactions in logistics/warehousing industry

Human machine interaction is one of the most crucial aspects of the warehous-
ing industry. Since there is a collaboration between human and machine in the 
warehousing industry, efficient interaction between the two systems would ensure 
that the process runs in a smooth way in [6]. In an HMI system, machines relieve 
human from performing repetitive tasks, and human can focus on working in cre-
ative and cognitive tasks. Thereby such collaborations would improve the efficiency 
and reliability of the overall system. Human beings will not be able handle heavy 
objects in the warehousing industry. Such things will lead to the musculoskeletal 
damage in human beings and factor into improper material handling. The advent 
automation has reduced the burden on the human in the warehousing industries. 
However, there is a reduction of skill in the warehouse workers due to the increased 
workload on the human beings in [6]. Thereby creating a concept of adaptive auto-
mation where there is a continuous interaction between the human and machine 
considering the ever-changing needs of a logistics/warehousing setup.

Figure 1 shows the possible types of interaction in human machine system, 
which is adapted from “Formalizing Human–Machine Interactions for Adaptive 
Automation in Smart Manufacturing” [6].

In general, the possible human interactions that are seen in a warehousing envi-
ronment can be classified as Human machine interaction, Human task interaction, 
Supervisor system interaction in [6].

Typical human machine interaction system would consist of human supervisor, 
several manufacturing cells that and each cell consists of human operator, machine 
and a human machine interface. The whole system can be viewed as a cell layer 
and supervisor layer. The interfaces at the cell layer are associated with the UIs for 
human operators who manipulate the machines to achieve the logistical goals and 
respond to unexpected situations either by reporting unanticipated events to the 
supervisor or performing the exception handling tasks issued by the supervisor. 
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Information about machine state is delivered to the human operator through the 
interface and the operator controls the machine directly through his commands and 
suitably maneuvers the machine. The operator will notify the supervisor about any 
interrupts that may affect the overall performance of the system thereby allowing 
the supervisor to perform exception handling tasks. The interfaces at the supervisor 
layer are for a human supervisor in the human machine system. In normal scenarios 
the supervisor will monitor the key monitoring indices for logistical warehouses 
and maintain the task progress. In cases of exceptions the supervisor has to advice 
the operator to take the corrective actions. Exception handling task supportability 
is associated with responsive management concerning the uncertainty inherent in 
almost every logistical system. Designing of Human machine systems should take 
into account that human machine system has to assist humans or supervisor in cop-
ing with an unforeseen scenario. Due to a high degree of complexity, the problems 
of exceptions only by the means of autonomous robots will be a challenge, thereby 
creating the need for human involvement.

6. Present problems in autonomous navigation in factory set-up

Due to the complex nature of the AMR’s, some of the key limiting factors that 
decide the acceptance of autonomous mobile robots in the manufacturing industry 
are in [4]:

1. Self-efficiency: It decides the ability of the user to adopt to new technology and 
perform given tasks under different circumstances. Some of the sub-factors 
include understanding the usage and application of AMR, ability to use the 
AMR without any assistance. It is highly necessary that human operator is well 
educated about the application of the AMR’s so that upon interrupt, neces-
sity suitable changes can be incorporated to the systems without bringing the 
whole production to a standstill.

2. Performance expectancy: Since the AMR comprises of many sensitive elec-
tronic components, the reliability of the overall system and the performance 

Figure 1. 
Description for a human-machine system based on the type of interaction.
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of the said system will dictate the productivity in the usage of AMR’s in the 
industry. Further due to the lack of regular maintenance schedule will bring 
down the performance expectancy of the robot.

3. Perceived risks: AMR’s are prone to a traffic collision due to hardware failure, 
software failure which will often lead to improper material handling, thereby 
creating a scene of uncertainty towards performance and productivity. Such 
incidents usually end with a financial loss to the manufacturers.

4. Intentions to use: Intention of the use of AMR’s is governed by users and the 
end application. If the technology is used as per the purpose of its creation 
then it will lead to easing out of work, thereby boosting the industries. Due 
to the software functionality of the AMR’s once if the steps involved in the 
manufacturing process is trained, it will retain these steps thereby reducing 
the intensity of the work.

5. Privacy: Breach of private information through hacking of the software used 
will lead to wrong marketing, scrutiny, etc. vehicle to vehicle communication 
will involve transferring of vehicular data in order to have better productivity 
but however leads to breach of privacy. So, privacy of data will be important in 
the autonomous environment to ensure that the data generated by the systems 
will not get into the wrong hands.

6. Reliability: The reliability of the AMR’s will mainly depend on the following 
factors: precision, accuracy, safety, security. Some of the sub-factors include 
getting confused due to extenuating circumstances of the everchanging needs 
of the warehouse, precision and the accuracy with which the system responds 
to the changing needs of a manufacturing industry, mean time between failure.

Further there are other constraints that limit the overall performance of the 
AMR’s in the factory setup in [7]:

1. Getting the software correct so that the robot can navigate the factory setup 
autonomously and do the complex tasks in an efficient way.

2. Gathering enough real-world data so that the robot can accommodate the real-
world changes in the factory setup.

3. Creating precise motion control so that the robot can maneuver in tight spaces 
and material handling is done in an efficient way.

4. Reducing the false positives that may occur by training the robot in enough 
real-world scenarios and distinguishing the data obtained between the actual 
data and the false positive ones.

5. Present Solutions Used for Autonomous Navigation in Factory Set-Up.

One of the evident problems that may be seen while using an AMR is the process 
of motion planning for an unstructured environment like a warehouse where there 
are continuous upgrades of the warehouse technology and thereby will be constant 
updating of the maps. In such a scenario where the start and the finish points are 
fixed, the motion planning will be complex. There are infinite possibilities for 
achieving the trajectory for a given start and finish. The best way would be to use a 
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probabilistic approach to generate the trajectory using the concept of least action. 
The concept of least action will use the simple fact that the best possible path out 
of the infinite possible paths from a start point to the finish point would be the one 
that consumes the least energy in [8]. The principle of least action will generate a 
best possible path out of the infinite possibilities that are available from starting 
point to finish point considering all of the infinite paths that are possible. While 
using the concept of least action all of the possible paths are discretized for a small 
interval that is decided by the user, and the trajectory generated for this discretized 
instant for all the paths will be a straight line as shown in the Figure 2 that is 
selected in [9].

To find the energy of each of the infinite path that is essential in the computa-
tion of the least action, there will be a Lagrangian that is defined for all the paths 
that will be a function of time in [8]. Further an action function is defined, which 
will be an integral of the Lagrangian for the path from start to the finish.as per 
the Eq. 1. The main objective would be to minimize this function, so that the best 
optimal path is generated.

 = ò
tf

ti

S LdT  (1)

where S = the action function that is defined for a given start and finish.
L = Lagrangian that is defined over the path which is the difference of the kinetic 

and the potential energy and is the function of the time.
ti = start time.
tf = finish time.
The Lagrangian for the system is defined as

 ( ) ( ) ( ), = - L x x K x P x  (2)

where ( )k x = overall Kinetic energy for the path.

P(x) = overall Potential energy for the path.
The physical significance of the action function would be that, the function 

would eliminate the infinite path which is not practical and will keep only the paths 
that make sense, from where the optimal path is selected. Further by discretizing 
the path for small instants can be useful for the process of real time obstacle detec-
tion in the environment and generating a trajectory that can be obstacle free. The 
path taken by the system that is generated through the concept of least action will 
give the complete history of the path that is taken to achieve the required goal which 
means that path taken by the robot is dependent on the path that the robot has taken 

Figure 2. 
Infinite possible paths that are possible for a given start and finish.
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previously. The simplicity of this approach makes it more useful in using the pro-
posed method in complex environments. So, the institute looks at incorporating the 
concept of least action for the motion planning of autonomous mobile robots that is 
developed at the common engineering facility center. The technology developed at 
the common engineering facility center is discussed in the paragraphs below.

The present solutions those are developed by the industry keeping in mind the 
different problems like the software complexity, performance, flexibility in the 
harsh conditions of a warehouse environment are as follows in [10, 11]:

1. Goods to person picking robots: companies like IAM, robotics, gray orange and 
blue offer mobile robot solutions that are loaded with modern technology and 
add new efficiency to the tasks done in factory setup. These robots can be pro-
grammed to have flexible routes in the factory set-up and requires less infra-
structure to set up. The computer interface is friendly and easy to understand. 
Thereby the human machine interaction happens in a smooth way.

2. Self-driving forklift: Linde’s new automated forklift consists of navigation 
lasers, 3D camera and visual and acoustic warning indicator that enables to 
move safely around human workers. The company also includes the feature of 
detection of real-time obstacles and adjust suitably. These things can work in 
fleet thereby optimizing the performance of the warehouses. These are being 
used in Kerala, Gujarat, Madhya Pradesh for different industries like electron-
ics, consumer. The system further is mainly used as an artificial intelligence 
solution to the said product and has been installed in the manufacturing setup 
at ITC.

3. Autonomous inventory robots: FETCH’s tag surveyor consists of three RFID 
mounted for optimal coverage and has reliability and consistently detect the 
products up to 25 feet away, thereby reducing the manual inventory count. 
Typically, the initial cost for such robots will be high due to complexity of the 
system. However, the run time costs will be reduced as the labor required to do 
the inventory will be reduced. This technology is in research stages currently 
in India and companies like iFuture robotics are at the forefront to develop a 
cost-effective solution.

4. Amazon air prime: This is the advanced delivery system developed by AMA-
ZON that is used to deliver the products to customers through the means of 
UAV’s. The drones usually make their way through automated tracks and lift 
on to open sky and autonomously deliver to the customers. This was first 
implemented in 2016 in the UK and based on the success the company looks to 
expand the trial on a larger scale.

5. Robomart: It is a self- driving store that focuses on transferring of goods that 
are pre bought online. Robomart is designed to be completely autonomous but 
also has the additional feature of being completely electric.

Some of the current solutions that are incorporated in IISC’s smart manufactur-
ing CEFC facility are shown in the Figures 3–5.

Figure 3 shows the robot arm that is used to distinguish and sort things from the 
conveyor. The robot has an interactive human machine interface through which suit-
able instruction to the robot can be provided. The instructions provided are codes 
that can be suitably uploaded to the interface. Further the stabilizer provided to the 
robot arm will ensure the smooth operation of the robot. Figures 4 and 5 shows the 
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autonomous robot used for material handling process throughout the factory setup. 
There magnetic tapes that are provided along the floor of the smart factory which 
will guide the robot through the different parts of the factory. Further the robot is 
provided with obstacle detection system that will simply stop if the robot senses 
an obstacle along the path of motion. Further to ensure the safety of the human 

Figure 4. 
Autonomous mobile vehicle/Hanhwa Cobot.

Figure 3. 
Yasakawa Robotic arm used for to pick and sort different items from a conveyor.
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operators there are emergency brakes that are provided to the system. The motion 
path for the robot can be suitably programmed according to the requirements and 
can be uploaded to the interactive human machine interface.

7. Conclusion

The growth of any country is dependent on the investments that the country 
makes in the manufacturing and the technological upgrade. This report deals with 
how the technology, the advent of Industry 4.0, and demands of the Indian market 
make India a viable choice. There are many viable entities like China, which act as 
a main competitor by the fact that it spends around 53% of the GDP in the manu-
facturing. There is a high level of foreign direct investment that the government of 
China has encouraged to improve the manufacturing and warehousing scenarios. 
However, there are certain limitations like the lack of good infrastructure for the 
manufacturing industry, IPR violations, etc. that the industries face making China 
not a viable option for companies to look at. In such a scenario, the Indian markets 
emerge as a suitable alternative where the service sector accounts to high amount of 
the overall GDP of the country at around 53% in [12]. Additionally, the affordability 
of the technology, the initiative taken by the Indian government makes it a suitable 
alternative for the companies to look at. Further concept of IOT is looked at as an 
important factor and is expected to capture close to 20% of the overall IOT share 
of the globe. Government of India looks at the initiatives of green corridor, setting 
up of isolated warehousing environments and make in India initiative encourages 
company to setup shops in India. Due to these initiatives India looks at leapfrogging 
the world’s major players like China, Germany, USA as a major technological player 
for the industries to look at. Further for any industry to succeed the labor has to be 
skilled which India has in abundance. This report looks at the different concepts 

Figure 5. 
Autonomous mobile vehicle/Hanhwa Cobot system collaborating with robotic arm for material handling 
process.
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that may affect a typical warehousing scenario and how it affects the overall perfor-
mance. Human machine interaction will play an important factor in determining 
the efficiency of the process. Further as a prospective solution the concept of least 
action is proposed where there is an optimal solution from the infinite paths. The 
proposed theory is simple and can be used for real time obstacle detection for a 
complex environment. The proposed concept can be looked at for a multi-robot 
system and IOT can be used for better control of the proposed robotic system in the 
warehouse.
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