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Abstract

The new paradigms of Industry 4.0 force all the industrial sectors to face a deep 
digital transformation in order to be on the edge in a competitive and globalized 
scenario. Following this trend, the shipbuilding industry has to establish its own 
path to adapt itself to the digital era. This chapter aims to explore this challenge and 
give an outlook on the multiple transformative technologies that are involved. For 
that reason, a case of study is presented as a starting point, in which the digital tech-
nologies that can be applied are easily recognized. A social network analysis (SNA) 
is developed among these key enabling technologies (KETs), in order to stress their 
correlations and links. As a result, artificial intelligence (AI) can be highlighted as 
a support to the other technologies, such as vertical integration of naval production 
systems (e.g., connectivity, Internet of things, collaborative robotics, etc.), horizon-
tal integration of value networks (e.g., cybersecurity, diversification, etc.), and life 
cycle reengineering (e.g., drones, 3D printing (3DP), virtual and augmented reality, 
remote sensing networks, robotics, etc.).

Keywords: digital transformation, key enabling technologies, shipbuilding 4.0, 
Industry 4.0, artificial intelligence, complex projects

1. Introduction

In the twenty-first century, industrial organizations are expanding their 
business lines to offer maintenance, repair, and checkup services related to their 
products, as well as technical support, and are paying more and more attention to 
these services [1]. In this environment, shipyards nowadays comprise of designing, 
engineering and building, procurement and logistics, assembling and commission-
ing, as well as maintaining and repairing and transforming and advancement of 
vessels and marine equipment, among many others.

Ships, ferries, and offshore platforms are complex products with long service 
lives and high costs of construction, manning, operating, maintaining, and repair-
ing [2]. In addition, these are usually built to order and involve complex production 
processes, with large-scale but short series production, high degree of customiza-
tion, and intensive labor. In return, they provide high value-added but requiring 
large and fixed capital investments although they have long life cycles [3]. However, 
most of them do not always evolve in line with the development of the latest 
technology [4].
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Due to the aforementioned context, productivity in shipbuilding sector is devel-
oping slower than other manufacturing industries. Many factors may be identified 
as the root causes for this lack of timing, as companies are focusing on their short-
term profits, usually ignoring outside benchmarks. This creates a barrier to change, 
in addition of conservative regulations, that makes difficult the entry of disruptive 
innovations, causing a lack in terms of competitiveness [5].

This lack of productivity, which affects project-based industries (as shipbuild-
ing), has been steadily discussed by both academics and practitioners [6–8], which 
have been suggesting and proposing measures to increase their performance. At an 
early stage, innovative working methods from better organization of the processes 
are involved [9], such as the promotion of a more efficient split of work in order to 
improve the coordination within and across companies involved through the supply 
chain [10]. Then, due to the introduction of the Industry 4.0 paradigm, emerging 
technological capacities, to design better products, improve the efficiency of their 
services, and offer new value-added processes, were applied. As a consequence, 
self-managed processes, people, machines, and systems are communicating and 
cooperating [11].

To achieve the Industry 4.0 paradigm, a number of key enabling technologies 
(KETs) are used. These technologies, both from real and virtual world, were first 
described by the Boston Consulting Group [12]. With the aim of transforming the 
current production system, technologies like autonomous robots, additive manufac-
turing, horizontal and vertical integration, Big Data, Internet of things, cybersecu-
rity, cloud, augmented reality, and simulation were included.

In addition to the initial set of KETs, other technologies, such as autonomous 
guided vehicles [13], blockchain (BCH) [14], or artificial intelligence (AI) [15], 
own a great potential to be crucial in the digital transformation of industries. 
Particularly, a European Commission report [16] arises the AI as a transverse 
technology both to be applied in software-based systems (virtual world) and be 
embedded in hardware devices (real world). Using data gathered from the available 
sources, the integration of the AI with the other KETs will improve overall perfor-
mance through better automatic decision-making based on analyzed data.

This chapter is structured as follows: Section 2 presents the objectives of the 
research. Section 3 develops the literature review. Section 4 relates the research 
method. Section 5 describes its implementation in a case study. Section 6 shows its 
findings, discussing the results obtained. Section 7 concludes the chapter, summa-
rizing the contributions and proposing further research.

2. Objectives

The main purpose of this research is to explore the challenge of facing a deep 
digital transformation by the shipbuilding industry, in order to be on the edge in 
a competitive and globalized scenario. This chapter also aims to give an outlook 
on the multiple and transformative technologies that are involved, analyzing the 
importance of the digital transformation (digitalization, automation, exploitation, 
and integration) in complex projects and its application in the context of Industry 
4.0, discussing the results of its potential implantation.

For that reason, a case of study is presented as a starting point, in which digital 
technologies applied are recognized. Afterwards, a social network analysis (SNA) 
is developed, in order to highlight the correlations and links between KETs, aiming 
to confirm the AI as a support to the others. Among those, vertical integration of 
production systems, horizontal integration of value networks, and life cycle reengi-
neering are stressed. The research framework is summarized in Figure 1.
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3. Literature review

The shipbuilding sector is characterized by complex manufacturing processes, 
with a wide range of involved elements, low-volume serial production, and results 
of a high added value [17]. Faced with unpredictable conditions and intense com-
petitors, the sector is forced to restructure its long-term objectives [18], as the most 
dynamic shipyards, which show a greater adaptation to the global market, get better 
results. In order to achieve this, they adopt research, development, and innovation 
(RDI) philosophies, launching bold business initiatives to counter these uncertain-
ties using technology-driven practices that create infrastructure and empowerment, 
preparing them for the upcoming challenges [19].

3.1 Complexity in shipbuilding projects

Complexity is the property of projects that make them difficult to understand, 
foresee, and keep under control their overall behavior, even when given reasonably 
complete information about the system [20]. Every project has a degree of complex-
ity, becoming one of the most important factors of their failure. Furthermore, proj-
ect complexity presents additional challenges to achieve objectives, although some 
significant indicators can be chosen to measure and asses it [21], such as compliance 
and authorization, project organization, targets, resources, change orders, technol-
ogy familiarity, and location, among others.

The two most common types of complexity within projects concern the orga-
nization and the technology [22]. Organizational complexity is caused by the 
engagement of several diverse and separate organizations for a limited period of 
time (both suppliers and consultants as well as temporary structures to manage the 
projects), depending on the hierarchical structures and organizational units [23]. 

Figure 1. 
Research framework.
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In contrast, technological projects depend on the result produced, mainly due to the 
diversity of tasks [24]. Furthermore, although complexity is usually expressed by 
the means of cost, duration, or people involved, these criteria do not correlate well 
with how they are managed [25].

In summary, complex projects consist of ambiguity and uncertainty, interde-
pendency, nonlinearity, unique local conditions, autonomy, emergent behaviors, 
and unfixed boundaries. According to these properties, projects can be classified 
as simple, complicated, chaotic, and complex [26]. On the other hand, complex 
projects are also influenced by significant external changes [27], from misaligned 
stakeholders’ view of success, in which current tools and decision processes are 
unsuitable for analyze it. To respond positively to this complexity, it is necessary to 
imply both organizations and practitioners [28].

It can be noticed that complex projects undertaken by traditional methods, prac-
tices, and frameworks usually result inadequate in terms of scale, rate of change, 
heterogeneity, multiple pathways, and ambiguous objectives [29]. In this context, 
project management decouples and modularizes the complexity, freezing its com-
ponents and controlling the variability associated [30]. In addition, the understand-
ing of project complexity helps to identify problems, develop the business case and 
choice processes, and improve managerial capacities [31].

Increasing competitiveness on product quality, cost, and delivery while main-
taining flexibility during the whole project (including design, engineering, and 
production) are a few of the challenges that many organizations currently encoun-
ter in the shipbuilding industry [32]. In settings of complex projects (as those from 
shipbuilding sector), the ability to make proper decisions when solving problems 
is essential in the production efficiency of the derived operations. In this context, 
shipyards must face these challenges from a combination of constraints, among 
which the technical level of their production facilities and the practices, techniques, 
and tools at the disposal of their staff stand out [33].

3.2 Lean manufacturing in the shipbuilding sector

Lean manufacturing has been the most remarkable methodology for improving 
the operational performance in manufacturing organizations in the last two decades 
[34], increasing their productivity and decreasing their costs [35]. Lean manufac-
turing helps industrial companies to transform themselves in order to add higher 
value, due to the use of a considerable set of tools, methodologies, and procedures 
focused on boost their performance [36], waste reduction, and better communica-
tion. This combination of information acquisition and management with new 
design and manufacturing techniques allows companies to redirect towards new 
trends that respond quickly to market changes [37]. If new features must be intro-
duced to meet these demands, companies cannot compromise their efficiency. In 
fact, they will try to improve it despite these challenges [38].

There are different points of view in the literature related to how lean manu-
facturing and Industry 4.0 interact together to influence the performance of 
processes involved. Some studies suggest that lean manufacturing is a mediator 
of their relationship [39, 40], while other suggests that Industry 4.0 is a modera-
tor [41]. Others investigate their supportive effects without hypothesizing which 
of the two is the moderator [42, 43], and even other studies emphasized the 
interaction between them in many contexts, depending on industry and com-
pany size [44].

If shipbuilding manufacturers want to operate with lean production principles, 
they must establish the shipbuilding project management plan based on optimized 
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production and overall resource balance, decomposing product tasks according to 
zone, stage, and type and clarifying the relationship between tasks and resources 
[45]. In this context, Industry 4.0 opportunities are used as a methodological 
and strategic tool to accelerate the engagement of shipbuilding suppliers. In these 
cases, lean tools mostly aim to introduce and motivate the implementation of these 
concepts into practice through the entire supply chain, whereby the objectives are 
needed to be fully understood and cross-functional teams are expected to be active 
in the value stream creation [46]. However, other requirements are needed, as 
design and assembly building methods [47].

If arbitrariness and uncertainty (affecting quality, production, operation, and 
logistics) are not faced, low productivity and management efficiency are the most 
probable result. To successfully address these challenges, shipbuilding companies 
must enhance their technology and management innovation, as well as actively 
adopt advanced production systems, for improving their efficiency [48].

3.3 Industry 4.0 in the shipbuilding sector

Industry 4.0 is a vital evolution for the survival of any industrial organization. 
Particularly those which target global markets, pursue a strategic distinction that 
supports the necessary excellence in their deliverables [49]. This implies a top-down 
transformation that applies to a wide range of methods, tools, and techniques 
involved in production management, improved processes and workplaces, and 
developing staff ’s skills [50]. Industry 4.0 modernizes the organizational processes 
and makes them more efficient. This involves the entire company, from operational 
to strategic management. In this competitive context, industrial companies need 
to redesign their strategies, enabling not only better resource allocation but also 
infrastructure investment and quality systems [51].

Industrial companies aiming to reach flexible manufacturing, with very low 
waste and high quality in their deliverables, are constantly evolving, in order to set 
them apart from their competitors. In that sense, they try to get higher levels of 
efficiency and productivity, associating new technologies within their processes. 
This use of disruptive methodologies helps them to create value, connecting and 
sharing information between companies and customers [52] and increasing also 
their applied innovation to offer complete solutions [53].

Among the Industry 4.0’s main points of interest for the shipbuilding industry 
are artificial intelligence (pattern recognition, process automation, simulation, 
etc.), compatibility systems and task reassignment (occupational health and safety, 
decision-making, etc.), virtual and augmented reality, additive manufacturing and 
Internet of things, and more, specifically, the automatic generation of timelines, the 
creation of mathematical analysis models and evaluation of production processes, 
the integration of high-quality algorithms with computer-aided design (CAD) and 
with product life cycle management systems (PLM). In this context, the digital 
transformation of the shipbuilding industry optimizes the production and the 
operational efficiency, through the analysis and integration of storing, connecting, 
and organizing the information generated by different sources [17, 54].

This necessary transformation has led the shipbuilding sector to adopt the con-
cept of Industry 4.0. The concept of “Shipyard 4.0” [55] is described as the result 
of the application of the Industry 4.0 to this sector. The Shipyard 4.0 involves deep 
changes in the shipyard production system including facilities, advanced product 
design, management changes, and the implementation of the digital technologies. 
Therefore, the Shipyard 4.0 initiative has to be the response of the shipbuilding 
sector to the digital transformation.
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4. Case study

This research has opted for a case study since there is almost no previous 
research on the topic and the empirical observations are insufficient to turn it into 
a quantitative study. Probably, this is expected mainly due to confidentiality and 
competitive reasons. Companies do not tend to share the information that would be 
required for a more extensive analysis. In fact, when there is only limited theoreti-
cal knowledge, an inductive strategy leads to an emerging theory from a case study 
which can be a good starting point [56].

Building a theory from a case study is a research strategy that involves using the 
case to create theoretical constructions, propositions, and/or empirical evidence of 
midrange theory [57]. If a theoretical sampling of a single case is chosen, they must 
be unusually revelatory and extremely exemplar or represent unique opportunities 
to acquire research insights [58].

The case company is Navantia, a Spanish state-owned (and worldwide as well) 
reference in the design, construction, and integration of high technology military 
and civilian naval platforms [19]. Navantia is an ETO manufacturer that offers 
design, engineering, manufacturing, and project management of products (e.g., 
frigates, aircraft carriers, submarines, patrol vessels, logistic ships, defense systems, 
and wind power) and services (e.g. life support, repairs, maintenance, moderniza-
tion, training, and simulation) [59]. Navantia has facilities in Spain and Australia. It 
also has offices in Brazil, India, Norway, Saudi Arabia, Turkey, and the USA.

The organization model applied by the company is mostly a line organization, 
in which department leaders are part of the project team and allocate tasks to their 
own staff on a periodic basis type with only a few people allocated specifically 
per each project. However, this type of organization is not usually associated with 
engineering to order contexts, where large and complex project environments have 
already been usually adopted [60].

Navantia is immersed in a major transformation process directed towards to 
increase the company sustainability in the twenty-first century market, in which 
technological innovation and digitalization are essential to change, encompassing 
all areas of the organization. The key to transformation lies not only in the imple-
mentation of innovative solutions but also in the transformation of processes and 
people themselves: a more agile organization, an interactive management culture, 
and a renewed talent management, both internally and externally, are funda-
mental to success [61]. Since 2015, Navantia has been striving to shape digitaliza-
tion in the shipbuilding sector. This new concept of the connected Industry 4.0 
emphasizes the exploitation of the potential of new technologies based on product 
and service innovation, client-centric approach, data value, and operational 
excellence.

Navantia’s Shipyard 4.0 concept includes processes and products, which are 
integrated to operate ecologically, efficiently, and flexibly, and has an advantage 
over traditional systems, which are based on [62]:

• Vertical integration of the shipbuilding production processes (connectivity, 
additive manufacturing, Internet of things (IoT), radiofrequency, collaborative 
robotics, etc.), to guarantee production that is safe, fast, and adapted to the 
context, with a better price-performance ratio, operates online, consumes less 
energy, and better protects the environment

• Horizontal integration of value creation networks (cybersecurity, innovation, 
diversification, etc.), to attend to the needs of the interested parties in an 
integrated way, responding individually to them
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• Reengineering of the value chain (drones, 3D/4D printing, artificial intel-
ligence (AI), virtual and augmented reality (VAR), remote sensing networks, 
robotics, etc.), introducing changes that affect the lifecycle

Navantia’s transformation involves an improvement in its tools and processes 
throughout the value chain and renewing its production centers, fully integrating 
them in a new digital ecosystem: the Shipyard 4.0. This change to smart factories is 
carried out focusing on equipment and products, applications, the company itself, 
and people as the main field of action [61]. At the moment, Navantia consider 13 
KETs, as shown in Figure 2. Through these technologies, which are described below, 
the company is facing the digital transformation in different areas of the system and 
manufacturing process, regardless of whether new emerging technologies can also 
be introduced in the future.

4.1 Navantia key enabling technologies

4.1.1 3D printing (3DP)

3D printing is a new manufacturing process which is also known as additive 
manufacturing. It consists on the manufacturing of a part adding material layer 
by layer. This technology is getting a lot of attention nowadays, and it is expected 

Figure 2. 
Key enabling technologies by Navantia. Based on [61].
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to become a major revolution in different industrial sectors. Particularly, in the 
shipbuilding industry, there are recent studies in which they use a polymeric-based 
additive manufacturing technology [63]. This technology is being used to make 
large, nonstructural parts, reducing the overall manufacturing costs, which also 
reduces the manufacturing time.

On the other hand, wire arc additive manufacturing (WAAM) technology is also 
under research. In this case, the polymer is replaced by a metal wire melt due to the 
heat produced by an electric arc [64]. This technology has the potential to replace 
components of the vessels which still needs to be made of metal, reducing the 
manufacturing costs. This assumption leads to the inevitable redesign of the ship to 
evaluate which parts are able to change its manufacturing technology. Therefore, it 
is clear that this technology still needs other changes to have the impact it is sup-
posed to have.

4.1.2 Autonomous guided vehicles (AGV)

Autonomous guided vehicles are used for processing and transporting goods 
inside a factory environment [65]. They are considered smart due to their capability 
onboard of making decentralized decision to avoid collisions and stablish the best 
path planning possible to reach its destination.

Therefore, the technology of the autonomous guided vehicles makes the smart 
factory possible due to the flexible logistic and transport of materials within 
the workshop. Its application mainly affects the internal supply chain, with the 
aim of delivering components just in time, which has implications with the lean 
manufacturing system and a direct impact on the overall performance. The use of 
these technologies, along with simulation and artificial intelligence [13], makes the 
decision-making more reliable.

4.1.3 Big Data analytics (BDA)

The growing expansion of the information available due to the evolution of 
systems, digital products, and the development of the IoT has introduced the 
concept of Big Data. These are technologies which allow the capture, aggregation, 
and processing of the amount of the ever-growing data received by the different 
systems [66]. This volume of data is increasing at higher speed than the previous 
technologies which were capable of processing and getting valuable information of 
it. For that reason, the Big Data analytics is needed.

Big Data analytics is the set of techniques that make the vast amount of infor-
mation generated by the other KETs manageable. At the same time, it models the 
data in order to get knowledge, supporting the decision-making process and even 
generating new solutions [66].

This amount of data, mainly gathered by sensors and the IoT, is usually storage 
and can be analyzed in the cloud (in real time or later) [67], which makes a very 
close relationship between these three technologies. Moreover, Big Data analytics 
has implications with other KETs too, such as additive manufacturing [68], AI 
[69], or simulation [70], which make the Big Data analytics one of the core driver 
technologies of the Industry 4.0, having also connections in the shipbuilding 
industry [71].

4.1.4 Blockchain (BCH)

Blockchain is a technology that can be used in any digital transaction that ends 
up taking place in the future Shipyard 4.0. As it is a decentralized data base in which 
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all data are checked and confirmed by different actors before adding new informa-
tion (“blocks”) to the data chain, this technology improves tracking and reliability 
of the information due to the impossibility to change isolated information [72].

Blockchain has capabilities to promote resilience, scalability, security, autonomy, 
and trustworthiness [14] to every information exchange. Therefore, applications in 
the supply chain operation can take advantage of this technology through the smart 
contracts, increasing the automation and avoiding the use of intermediaries [73].

4.1.5 Cloud

The cloud is essentially a network infrastructure that supports the intercon-
nection of Industry 4.0 through servers and cloud computing technologies [74]. 
It allows large data applications such as storage space, computing capacity, and 
resource sharing, among others. It also provides worldwide access to the informa-
tion accordingly with specific access type and service provided, which can be split 
in different layers, named as infrastructure as a service (IaaS), platform as a service 
(PaaS), and software as a service (SaaS), granting different kinds of access to the 
cloud [75].

As the industry becomes increasingly digital in manufacturing environments, 
the cloud computing concept has evolved into cloud manufacturing, in which users 
can request services during the whole lifecycle of the product. This is a change 
of mind-set for industrial companies as the approach differs from the previous 
production-oriented to the newly service-oriented concept of manufacturing, 
increasing flexibility during the design process [75].

Due to the remote access to the information and the application of cyber-
physical systems in distributed manufacturing systems, the concept of col-
laborative cloud manufacturing is possible. This means that organizations with 
different production units connected through a collaborative network are able to 
synchronize themselves, multiplying the overall capacities without further invest-
ment [76]. According to this, the cloud has a fundamental role in the smart factory 
concept for the shipbuilding industry, in which complex projects that are under-
taken in long-term can reduce the overall production time to meet on-demand 
expectations.

4.1.6 Cybersecurity (CS)

The huge amount of information that is sent from different devices to the cloud 
and backwards creates new opportunities and vulnerabilities to the industrial com-
panies. This scenario compromises confidential information due to the banishment 
of the physical boundaries [77]. For this reason, the evolution of security towards 
the virtual world is needed, giving birth to the cybersecurity, which aims to increase 
the security levels in IoT environments.

The cybersecurity, by definition, is a process consisting three objectives: to 
protect, detect, and respond to cyber-attacks [78]. Particularly, the two main 
objectives are the ones that rely on data protection and are given more attention 
since Internet of things networks have to be built in a safe environment that 
allows a safe interoperability between the facilities. But not only the information 
is at risk. As the manufacturing units are connected to the network, they can also 
be shut down, change its normal behavior, or even modify the product design. 
All of these factors lead to an enormous economic loss and should therefore be 
avoided [79].

In summary, this technology needs to be addressed and takes an important role 
in the context of any enterprise, which aims to carry a deep digital transformation 
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out. To achieve a successful smart factory, the concept of “security by design” 
is mandatory in which both, data and cyber-physical systems, are adequately 
protected [77].

4.1.7 Digital platform (DP)

The digital platform is the answer that Navantia has given to the horizontal and 
vertical integration. Horizontal and vertical integrations involve every stakeholder 
that takes part in the production process, including marketing, supply chain opera-
tions, or engineering, among others. Referring to each integration to the intercom-
pany or intracompany, respectively, the global output is a real-time data sharing 
among every part implied in the process [75].

To make this integration possible, a digital platform, aided by cloud computing, 
is the perfect answer to gather all the agents, both from the supplier or the client, 
as it can be accessed remotely from different geographical areas to collaborate in 
the process, updating the information needed in real time and resulting in a fully 
updated system, which can give further information according to all the data 
received. Therefore, Big Data analytics and cybersecurity are also connected with 
the digital platform.

4.1.8 Internet of things (IoT)

The IoT refers to the connectivity of every device within a network that is able to 
generate data from sensors or embedded electronic devices, which are sent after-
wards to the cloud through a transmission system [80]. As every “thing” is generat-
ing data, the connection between IoT and Big Data analytics is clear. This technology 
also includes the concept of cyber-physical systems, being the gateway to fuse the 
real world with the virtual world, bringing physical objects into the network.

In the industrial sector, the application of the IoT is known as the industrial 
Internet of things, having particular implications and principles that must be 
fulfilled [81]. These principles include, among others, interoperability, wireless 
communication, decentralization, real-time feedback, or system-wide security 
to avoid outsider’s intromission, which can put all the data on risk. In this way, 
cybersecurity technology acquires an important role in protecting the industrial 
environment.

A study on the implications this technology can handle in complex engineering 
projects, namely, the ones carried out in the shipbuilding industry, is also under 
investigation [82]. This research concludes that it is possible to create a “digital 
construction site” for shipbuilding, in which the IoT plays a strategic role as it is 
being used in specific applications.

4.1.9 Modeling and simulation (M&S)

By definition, a simulation is the imitation of the operation of a real-world 
process or system over time. Simulation involves the generation of an artificial his-
tory of the system and the observation of that artificial history to draw inferences 
concerning the operating characteristics of the real system that is represented [83]. 
Therefore, almost any real world can be modeled into the virtual one, in order to 
study and predict its behavior after developing and applying specific events. In 
this way, many kinds of simulations appear, each regarding one different area of 
study [84].

Although Industry 4.0 represents a new paradigm, this can be also accomplished 
by simulation. Due to high levels of digitization and the increased integration of 
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the whole product lifecycle, the traditional stand-alone simulations are not able to 
fulfill those new requirements.

In this challenging scenario, the concept of digital twin appears, which consists 
of the digital representation of an asset that can alter its properties and behavior by 
information and data [85]. This is the result of adopting a system design approach, 
which allows to train on a virtual machine and to identify potential issues with the 
real machine if it is combined with a model predictive analysis, deep learning, and 
AI. Besides, this enables to optimize its own performance, because it will be able to 
predict faults and coordinate with other machines, thanks to machine-to-machine 
interaction.

These technologies are being applied also in the shipbuilding industry, in which 
CAD/CAM/CAE solutions are already in use; meanwhile, discrete event simulation 
as the previous step of the digital twin is under development. Moreover, the applica-
tion of finite element methods for new materials is also a technology with a huge 
potential to advance them.

4.1.10 New materials (NM)

The development of new materials, such as those based on composite carbon 
fiber- and fiber-reinforced plastic, polymers, or new metal alloys [86], facilitates 
to redesign the shipbuilding sector’s product to add or replace several components. 
The use of these materials can offer a weight reduction, leading to a decrease in fuel 
consumption, which would end up making the vessels eco-friendlier.

The advantages of introducing these materials can also strengthen the corrosion 
resistance [87]. This can be achieved thanks to the use of new materials which are 
resistant to the corrosive action of salt water, leading to an increase in the added 
value of the ships provided.

4.1.11 Robotics (robot)

The robotics is one of those technologies from the third industrial revolution 
that holds a paradigm change with this new industrial revolution. In that sense, the 
manufacturing paradigm, from mass production towards customized production, 
makes the robots need to be more flexible and autonomous [75]. On the other hand, 
the use of advanced sensors makes the integration between robot and operator pos-
sible, resulting in collaborative robots or cobots [88].

Despite this technology is mostly used to undertake very easy repetitive actions, 
like in a production line, advanced shipyards have achieved to introduce this 
technology within its manufacturing system, increasing drastically its performance 
[89]. Furthermore, new advances have been managed to develop robots for specific 
shipbuilding tasks, such as pipe inspection or hull cleaning. In the case study, 
Navantia has also researched regarding robotic welding [90].

4.1.12 Virtual and augmented reality (VAR)

The VAR could be englobed within modeling and simulation technologies [84]. 
However, as this technology involves partial or complete human immersion, as well 
as pursues a different aim, the VAR has been treated separately.

On the one hand, the virtual reality implies a full immersion of the human 
being within a virtual world using a special device connected with a simulation. In 
this virtual world, the user can interact with virtual elements in order to train and 
improve the operator knowledge significantly. It has also applications in product 
testing and validation of complex products [91].
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On the other hand, the augmented reality converges the real world with the 
virtual one through a device, adding data from the virtual system (or digital twin), 
exactly where needed. This technology is useful not only in the manufacturing 
processes but also in maintenance tasks. Using augmented reality also offers 
applications in assuring quality control, location of products and tools, warehouse 
management, and support for the visualization of hidden areas [92], among 
others.

In the shipbuilding industry, both technologies are already being used in small 
applications for training and part positioning.

4.1.13 Artificial intelligence (AI)

The AI is one of the Industry 4.0 driver technologies. According to the European 
Commission, AI refers to “systems that display intelligent behavior by analyz-
ing their environment and taking actions (with some degree of autonomy) to 
achieve specific goals” [16]. Its application in the industrial sector has resulted in 
the “intelligent manufacturing” concept [93], which, along with the other recent 
emerging Industry 4.0 KETs, will allow more flexible and efficient operations in the 
smart factory [15]. In order to achieve a good implantation of this technology, the 
industrial AI framework is also proposed with a clear structure, methodology, and 
ecosystem [15].

In the shipbuilding industry, there are already some applications in terms of 
design vessels for optimizing the overall performance [94]. The applications of AI 
are mainly related with the development of other technologies, acting as an enabler 
to impulse the potential of each one of the other KETs [95]. This is shown in the 
interaction between AI and the particular effect it deploys.

4.2 Social network analysis (SNA)

Due to the existing correlation between the KETs selected in this case study, 
it is possible to develop a social network in order to confirm the links among 
them. A social network is defined as a finite set of actors (such as people, orga-
nizations, or technologies) and the relationship among them [96]. The social 
network perspective focuses on these relations as an important addition to the 
standard social research, which is mainly concerned in the attributes of the 
social units. The social network analysis (SNA) is similar to the mind map tech-
nique, which allows to represent the ideas and their relationships. This method 
has already been used to the study the Industry 4.0 enablers [97]. The SNA is an 
innovative technique and research tool that has already been successfully used to 
find the relationship between different technologies and resources relative to the 
Industry 4.0 [80].

The MoSCoW method is used [98] to establish the network of Navantia’s KETs. 
This method stands for “Must, Should, Could and Won’t Have” criteria, and it is 
mainly used to stablish a priority list. In this case, a variant of the method is consid-
ered to weight the different interaction possibilities:

• Must have. Numeric value 3: The technology studied needs the crossed tech-
nology one mandatory.

• Should have. Numeric value 2: The technology studied can have major connec-
tion with the crossed technology.
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• Could have. Numeric value 1: The technology studied can have minor connec-
tion with the crossed technology.

• Won’t have. Numeric value 0: The technology studied does not need the 
crossed technology.

In the first place, a nonsymmetric matrix is created, in which the nonlinear 
dependencies between the KETs are shown. Each row shows the dependency of 
a KET with the others. For example, VAR is dependent of M&S, but it is not the 
same in the other way around. These binary and paired comparison assessments 
were completed by the expert committee of Navantia, as summarized in Table 1. 
Once the data is ready, it is introduced in the software UNICET (version 6.675) 
[99], which will return the analyzed data (from the social network) and graphic 
representation.

5. Results

Once the data is analyzed, the results give information regarding the relationship 
between KETs, as betweenness, centrality, closeness, or density. However, the mea-
sures of centrality and betweenness are the ones to be taken into account. Centrality 
is the grade of each actor which is linked with the others. In a nonsymmetric matrix, 
the difference between ins and outs means the necessity of other technologies 
have of the chosen one (ins) and the necessity of the chosen technologies have of 
the others (outs). In addition, betweenness is the possibility that an actor has to 
intermediate the communications between pairs of actors. These are also known as 
bridge actors. The grade of centrality and betweenness is summarized in Table 2, 
where the main results are shown in bold.

These results show that both the AI and the cloud are the most demanded tech-
nologies among the other KETs (more than 0.55 relatively), while the individual 

3DP AuV BD BCH Cloud CybS AI DP IoT M&S NM Robot VAR

3DP 0 0 1 1 1 1 2 1 1 3 2 1 0

AuV 1 0 1 1 2 2 2 0 2 1 0 0 1

BD 0 0 0 2 3 2 2 1 3 0 0 0 0

BCH 0 0 0 0 1 2 2 0 0 0 0 0 0

Cloud 0 0 1 1 0 2 2 1 1 0 0 0 0

CybS 0 0 1 2 1 0 2 1 0 0 0 0 0

AI 0 0 2 1 2 2 0 1 2 1 0 0 0

DP 0 0 1 1 3 1 1 0 1 0 0 0 0

IoT 0 0 2 1 3 1 2 1 0 1 0 0 0

M&S 0 0 1 0 1 0 2 1 1 0 0 0 1

NM 2 0 2 0 0 0 2 0 0 2 0 0 0

Robot 1 1 2 1 1 1 2 0 2 2 1 0 1

VAR 0 0 2 1 2 1 2 1 1 3 0 0 0

Table 1. 
Relationship among Navantia’s key enabling technologies.
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dependency of each KET on the others is not too high, being robotics the most 
dependent. In terms of betweenness, the AI stands out again, followed closely by 
modeling and simulation. These are the two technologies with more capacity to 
stablish interactions between other technologies, which is an important added value 
to consider. The social network result is drawn in Figure 3, in which the connections 
between the technologies are represented.

The network shows the four main technologies on which the rest of the tech-
nologies revolve: artificial intelligence (AI), cloud, Big Data analytics (BDA), 
and Internet of things (IoT). This is consistent with the principles of the digital 
transformation and with the implications that the use of AI has to achieve a further 
development of the other KETs either due to direct integration or as an enabler 
linker for other technologies. These results also show the importance each of the 

Figure 3. 
Social network among Navantia’s key enabling technologies.

Outdeg Indeg nOutdeg nIndeg Betweenness nBetweenness

3DP 14.000 4.000 0.389 0.111 5.667 4.293

AuV 13.000 1.000 0.361 0.028 0.000 0.000

BDA 13.000 16.000 0.361 0.444 2.250 1.705

BCH 5.000 12.000 0.139 0.333 0.000 0.000

Cloud 8.000 20.000 0.222 0.556 2.000 1.515

CybS 7.000 15.000 0.194 0.417 0.917 0.694

AI 11.000 23.000 0.306 0.639 10.417 7.891

DP 8.000 8.000 0.222 0.222 0.583 0.442

IoT 11.000 14.000 0.306 0.389 3.583 2.715

M&S 7.000 13.000 0.194 0.361 9.500 7.197

NM 8.000 3.000 0.222 0.083 0.000 0.000

Robot 15.000 1.000 0.417 0.028 2.500 1.894

VAR 13.000 3.000 0.361 0.083 0.583 0.442

Table 2. 
Centrality and betweenness grade of Navantia’s KETs.
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technology has in the shipbuilding industry. This could be used to stablish a crite-
rion, in order to support one technology over another.

6. Conclusions

In this book chapter, a state of the art of the shipbuilding industry is carried out. 
This includes a literature review in shipbuilding complex projects, lean manufac-
turing implications in shipbuilding, and the introduction of the fourth industrial 
revolution into this industrial sector, and there is a need to overcome the difficult 
situation that it is currently facing. To go further in this research, a study case is 
presented. The Spanish state-owned shipyard Navantia is chosen to study how 
a shipyard is challenging the digital transformation and introducing KETs in its 
production system. Afterwards, a revision of the advances and the integration of 
these technologies in the shipbuilding industry are presented.

Moreover, due to the relationship that exists among the KETs, a SNA is per-
formed. This analysis has confirmed the main technologies that the Industry 4.0 
has to prioritize during its implementation. From the nine original technologies, 
Big Data analytics, Internet of things, and cloud are highlighted. On top of those, 
artificial intelligence appears to join the cloud as the technology that will have the 
biggest impact in the Industry 4.0, due to its potential to increase the benefits of the 
other key enabling technologies.
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Chapter

Energy Infrastructure of the
Factory as a Virtual Power Plant:
Smart Energy Management
Eva M. Urbano and Víctor Martínez Viol

Abstract

Smart energy factories are crucial for the development of upcoming energy
markets in which emissions, energy use and network congestions are to be
decreased. The virtual power plant (VPP) can be implemented in an industrial site
with the aim of minimizing costs, emissions and total energy usage. A VPP con-
siders the future situation forecasting and the situation of all energy assets, includ-
ing renewable energy generation units and energy storage systems, to optimize the
total cost of the plant, considering the possibility to trade with the energy market.
For a VPP to be constructed, a proper communication system is essential. The
energy management system (EMS) enables the monitoring, management and con-
trol of the different energy devices and permits the transference of the decisions
made by the VPP to the different energy assets. VPP concept is explained together
with the methods used for forecasting the future situation and the energy flow
inside the facility. To reach its benefits, the optimization of the VPP is assessed.
After that, the communication technologies that enable the VPP implementation
are also introduced, and the advantages/disadvantages regarding their deployment
are stated. With the tools introduced, the VPP can face the challenges of energy
markets efficiently.

Keywords: virtual power plant, smart grid, energy hub, ANFIS, communication
technologies, energy management system

1. Introduction

Industry 4.0 is normally understood as smart factories where automation, digi-
talization, Internet of Things (IoT), cognitive computing and others are used.
However, this does not stand without the use of energy. There is a settled relation-
ship between energy consumption, energy prices and economic growth in different
countries. For industries, the access to reliable and affordable energy is crucial to
create greater economic and social prosperity. In the industry that is emerging
nowadays, the physical processes are studied, modeled and monitored, and physical
systems communicate and cooperate in a real-time scenario in order to optimize the
behavior of the plant. The same can be done with energy. To reach the best effi-
ciency of a manufacturing plant, the energy consumption processes have to be
studied, modeled and monitored; the communication of the energy flows between
equipment has to be known, and future situation prediction and real-time decisions
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have to be taken regarding energy purchasing, energy trading, generation and
consumption.

There are several reasons for why the development of energy-smart factories is
interesting. Policy is making an effort in order to achieve a reduction of greenhouse
gas emissions, an increase in the share of renewable energy and an improvement in
the energy efficiency. As an example, in Europe, the energy usage in the industrial
sector accounts for more than 25% of total energy consumption, process heating
having the most significant use with 66% followed by electricity with 26%. If
energy efficiency measures are developed and incorporated in the industrial sector,
the potential savings can be of more than 20% as shown in [1]. Regarding the
increase in the share of renewable energies, it will be possible with the integration of
smart energy systems. Some renewable energy sources such as solar and wind
power generation are characterized by an intermittent nature. One of the funda-
mental properties of the electric grid is that the supply (generation) and the
demand (consumption) must always be balanced. With the increase in the share of
renewable power sources, the energy may not be generated in the best suited
moment and with the exact amount of power dealing to grid instability and not
assuring a security of supply. By defining, integrating and controlling the energy
flow in order to optimize the consumption of energy hubs (EH) and, from there,
exploit it in virtual power plants (VPP), the industrial sector the electricity usage
can be optimized, allowing a greater efficiency and flexibility, improving the
capacity factor of the installed renewable energy sources. Up to date, the EH
concept has been presented by several studies in the industrial field, and its expan-
sion into a VPP is a new research field in which the focus is the possibility of energy
trading with the grid, as can be seen in [2, 3].

The constant monitoring of the energy flow combined with the integration of
different energy generation sources will require management technologies capable of
recognizing, predicting and acting in a way to guarantee quality, sustainability and
efficiency, including costs, in energy consumption. Therefore, modern energy man-
agement systems should be able to monitor and exploit large volumes of data col-
lected by various types of meters transmitted by digital channels mainly based on the
IoT. The application of artificial intelligence techniques related with machine learning
and big data will require thousands of meters collecting data at high resolution and
high frequency (gigabytes per day), and, in order to assure the reliability and quality
of this data, some aspects must be addressed such as the data model, the integration
of information coming from several inputs or the data security.

The optimization of energy use will produce a direct reduction of costs and
pollutants as the total energy consumption will be less. By increasing the share of
renewable energy sources in the grid, the merit order will change. The merit order
ranks the available energy sources from its operational cost, the cheaper ones being
the first to meet the demand. Solar power generation and wind power generation
are of the cheapest energy generation technologies, so if they are able to provide
power, the operational cost of the last active power plant in order to meet demand
will be less, allowing a more economic purchase of energy.

The path to reach a smart energy grid in the Industry 4.0 has already started.
Development has been observed in the area of energy technologies, improving the
efficiency of isolated systems. However, the overall energy efficiency can be greatly
improved if multi-energy assets are analyzed and utilized in a more unified way.
Energy assets can be interconnected physically in a plant, improving the energy
usage in the plant and creating an EH. There is also the possibility to aggregate
different plants physically or virtually, creating a digital entity of active prosumers
that will be presented to the grid as a unique system that will be able to both
consume and generate electricity.
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This chapter is structured as follows. In Section 2, the VPP concept and tools are
explained. First of all, its definition is exposed. This definition broadens the concept
of EH and its functionality, creating a new entity able to perform an optimization
considering internal and external factors. Secondly, the forecasting tools for
predicting the situation at a stated horizon are presented. These tools include the
forecast of renewable energy sources and demand and energy price from the grid.
Third, the EH concept and method are developed for a general industry. Then, the
optimization of the system is assessed, and resolution methods are proposed for
obtaining high-quality results. In Section 3, some aspects related to the automation
pyramid and the communication requirements of its levels are presented. Then
some of the communication technologies and protocols are briefly introduced. Last
of all, conclusions are drawn in Section 4.

2. Industry as a virtual power plant

One of the most important characteristics of the electrical grid is the constant
balance between generation and consumption. With the rise of intermittent renew-
able energies, a degree of uncertainty is introduced. The discontinuity of this type
of generation should not affect the fulfillment of the demand at every instant. With
a proper management of energy assets and energy storage systems, renewable
energy sources can be satisfactorily introduced without compromising the stability
of the system. Once the balance between supply and demand is assured, there is
leeway to generate an economic benefit from the energy transferred and stored
inside a facility, such as a VPP. The VPP would be a power prosumer, meeting the
local demand, and profit its own energy assets to trade energy with the external
grid. Nowadays, the smart microgrid and prosumer concepts are being developed
and tested in the tertiary sector, as can be seen in [4, 5]. Although the advancements
are done, the presented ideas need further investigation. The prosumer smart grid
approach can also be implemented in the industry, creating an energy-smart entity
that will deal with the challenges and demands of the coming energy markets and
will produce a profit from the exploitation of its own equipment against the exter-
nal primary energy grids.

2.1 Virtual power plant concept

A VPP is a network of decentralized, medium-scale power-generating units as
well as flexible power consumers and batteries. A VPP can be implemented in an
industrial site, composed by all the controllable energy assets and the renewable
energy generation units in the factory.

The VPP operates its energy assets efficiently taking into account the forecast of
internal and external factors with the aim of maximizing the efficiency of the
system in economic and environmental terms. As an example, internal factors can
comprise coefficient of performance (COP) and efficiencies of energy equipment,
energy storage capacity, energy generation at a given moment, cost of the different
subsystems and reschedulable loads (both electrical and thermal). External factors
may be constituted by electricity, natural gas and waste prices.

In Figure 1 an example of a VPP is shown. It can be appreciated that the
communication with the electrical grid is bidirectional, allowing to buy and sell
electricity depending on the forecasted conditions. The working behavior lays in an
energetic, economic and environmental evaluation that considers the forecasted
input energy price, the forecast of available energy inside the VPP and the fore-
casted demand.
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The benefits of implementing a VPP affect not only the industrial site itself but
also the electrical grid through demand response (DR). The creation of a VPP out of
an industrial facility will lead to:

• Integration of intermittent renewable energy, not only in the VPP but also in
other points of the grid due to the electricity price response of the VPP. Also,
expensive investments to expand the distribution network can be avoided if
the generation is locally available.

• Integration of small electricity producers into the distribution network. The
VPP itself is seen by the grid as a small electricity producer when the electricity
cost is high, and thus there is a need to increase the generation at that moment.

• Optimization of energy use inside the VPP. The demand is analyzed, modeled
and predicted using artificial intelligence method, and the optimal operation
point of energy providers is computed.

• Optimization of the integration of electric vehicles (EV) for vehicle to grid
(V2G) and grid to vehicle (G2V). The storage systems managing the surplus
energy at the VPP can be combined with the EV batteries, which will work
then as a part of the system. In this way not only the energy storage systems are
improved, but also the EV-grid integration is made easier.

• Reduction of emissions. By integrating renewable energy sources and
increasing the efficiency of the energy used, the emissions are directly reduced.

• Exploitation of energy assets. The systems present in a facility are nowadays
not used in all its potential. With the implementation of a VPP, its working
periods will be optimized according to internal and external factors and allowing
an exploitation and efficient use of all energy carriers present in a system.

• Market opening. There are several facilities that will allow the creation of a
VPP. However, their owners and operators are not aware of the possibilities

Figure 1.
Example schematic of a VPP where renewable energy sources (solar and wind) are present together with
cogeneration system, boilers, absorption cooling and energy storage systems.
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and benefits it will produce. The introduction of a VPP in an industrial site will
lead to a market opening that will encourage other similar facilities to take the
same role, and thus the previous benefits will be amplified to the whole
electrical grid.

• Autonomy and strong position of the owner of the facility in front of the
operators of the electricity market that will allow a greater competitiveness
market.

To implement the VPP features, the future energy status of the system should be
continuously computed, which includes demand, generation of renewable sources
and energy prices. This information leads to VPP operation including energy con-
version and storage, which drives the EH, a crucial part of the VPP as it optimizes
the path from energy input to demand. Once the forecast of the future situation and
the model of the EH is obtained, the VPP is formed. The objective of the VPP is to
fulfill local demand while, at the same time, exploiting its own energy assets to be
able to trade electricity with the grid. During the modeling and the optimization of
the VPP, the electricity exchange with the grid, the energy transfer with the energy
storage system, the dispatch factors between the present transformers and the
destination of power from the PV system are computed to assure an optimal oper-
ation from the economical, energetic and environmental points of view.

2.2 Future situation forecasting

Forecasting is the process of making predictions of the future based on past and
present data analyzing the trends that appear. Forecasting can be qualitative or
quantitative. For the application to a VPP, quantitative methods are more suitable,
as they are based on past data to estimate future states and do not lay on subjective
opinions. This approach extracts patterns of the available data and assumes that
these are expected to continue in the future and are applied usually to short- and
medium-term forecasts. There are several models used for forecast, and its suitabil-
ity depends on the nature of the problem that is being studied. Examples of them
are time series, causal and econometric forecasting and artificial intelligence. The
forecast of several variables is needed to optimize the VPP. The demand, generation
from renewable energy sources and electricity price from the grid are used in order
to compute the optimal operation point of the VPP.

2.2.1 Renewable energy

The prediction of the renewable energy that is generated depends directly on the
climatic conditions and the characteristics of the equipment. The prediction of
weather conditions, i.e. sun irradiation and wind speed, can be obtained from the
meteorology databases. Two types of renewable energy systems will be shown in
this section: photovoltaics (PV) and wind power (WP) generation.

On the one hand, for a PV system, the most important factor in estimating its
performance is solar radiation. The uncertainty in solar radiation is the largest
source of error in the computation of the energy provided, as shown in [6]. The
solar radiation depends on the orientation and the inclination of the area studied.
Once this value is obtained, the theoretical energy output can be computed. How-
ever, the result should be corrected by adding a performance ratio that is influenced
by factors such as shadows, dust, dirt, frost, snow, reflectance of the module
surface, conversion efficiency, sunlight spectrum and temperature. As an example,
in Figure 2, extracted from [7], the performance of different chemistries along
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temperature is shown. The value of the performance ratio (η) can be obtained
statistically, and then the output power of the PV system will be:

P ¼ Pnom
G

1000
η (1)

where G is the received solar irradiance inW=m2 and Pnom the peak power in kW.
On the other hand, for the case of wind turbines, there is a direct relationship

between wind speed and energy output [8]. The extra parameter that has to be
considered is air density, which can be computed using temperature and pressure and
obtained from a meteorological database as with the wind speed. The output power
can be computed with the data specified by using the wind turbine power curves
provided by the manufacturer. These curves are obtained by the manufacturer by
means of theoretical and statistical analysis of the performance of the turbine.

The previous methods are useful for a first assessment of the energy generated by
the renewable sources. However, after the renewable energy sources equipment are
installed and working on an industrial environment, the generation forecast can be
improved by modeling specifically its behavior. A correlation of meteorological data
with PV andWP output should be performed to assure high model accuracy and
obtain the real efficiency and performance of the equipment. According to [9, 10],
artificial neural networks (ANN) and support vector machine (SVM)-based fore-
casting methods are suitable for the modeling and prediction of the behavior of PV
generation systems, while ANN, adaptive neuro-fuzzy inference systems (ANFIS)
and autoregressive moving average (ARMA) perform well for WP generation.

2.2.2 Demand

The demand is the amount of load that the system has and the energy that is
required to be fulfilled. Inside a VPP, this demand can be divided into two types:
manageable and non-manageable. Non-manageable loads are those which run con-
tinuously or that cannot be controlled. Inside a VPP, the owner or end user can

Figure 2.
Performance of PV modules with a solar radiation of 800 W/m2.
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decide which loads are manageable and which are not according to the business
objective criteria. Manageable loads can be further divided into shiftable, inter-
ruptible and heating, ventilation and air conditioning (HVAC) loads. The forecast-
ing of both types of demands follows a different way and will be now assessed.

2.2.2.1 Non-manageable loads

Classically, energy loads can be either electrical or thermal. The behavior of both
types of demand lies in the same principles, so the prediction of them can be done
using the same method. In recent times, the artificial intelligence methods that have
been used for load forecasting (LF) include mainly neural networks, expert systems
and support vector machines. Nowadays, the focus lays in the development of
hybrid methods, combining different forecasting methodologies. For example, in
[11] a LF method based on self-organized map and support vector machine is
developed. The method is tested for prediction of the power consumption of a
whole city. However, its suitability for an industrial site application has not been
proven. In [12] an extreme learning machine with the Levenberg-Marquardt
method is proposed, and in [13] the possibility to use artificial neural network to
create a hybrid method with other techniques such as backpropagation, fuzzy logic,
genetic algorithm and particle swarm optimization is shown. The industry is a
sector where the demand can have an irregular and infrequent behavior depending
on several conditions, and it is constantly under improvement processes. For this
reason, a method that enables periodically auto-adjustment and high accuracy
results is searched. ANFIS aim at mapping input to output for highly nonlinear
processes such as energy management field. ANFIS was first introduced in [14] as a
combination of two soft computing methods: artificial neural network and fuzzy
logic. The ANFIS architecture is an adaptive network that uses supervised learning
on learning algorithm, which has a function similar to the model of Takagi-Sugeno
FIS [15]. This architecture is shown in Figure 3, extracted from [16].

In the first layer, the fuzzification of the inputs takes place. This is done by a
membership function which can be a Gaussian membership function, a generalized
bell membership function or other types of membership function. The parameters
of this layer that define the membership function are called premise parameters. In
the second layer, the fire strength of the rule is calculated. The output is the result of
multiplying the signals coming into the node. In the third layer, a calculation of the
ratio between the ith rule firing strength and the sum of all rules firing strength is

Figure 3.
ANFIS architecture.
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done. The output is named the normalized firing strength. The fourth layer executes
the Takagi-Sugeno fuzzy reasoning method. The parameters that appear here are
the consequent parameters. Finally, in the last layer, the computation of the overall
output as the summation of all incoming signals from previous nodes is done. It can
be seen that the parameters that need to be trained are the premise and consequent
parameters, present in layers 1 and 4. They can be obtained in the learning process
by using the forward path and the backward path. During the forward path, the
premise parameters are specified, while the consequent parameters change using a
recursive least square estimation, and, during the backward path, the consequent
parameters obtained remain fixed, while the error propagates to the first layer
updating the premise parameter in a gradient descent way.

2.2.2.2 Manageable loads

According to [17], manageable loads can be divided into:

• Shiftable: Loads with predefined working cycles and load profiles. These loads
appear between certain time limits which are specified by the end user. In an
industry, these can be formed by noncritical processes with a variant energy
consumption profile which can be rearranged on time depending on the
production goals for the specific time interval.

• Interruptible: These loads are defined by its state, which can be either on or off.
When its state is on the consumption remains constant. An example of a load
of constant consumption is a water heater. The heating of water can be
interrupted and restarted according to the time specification by the end user
and the thermal inertia of the system.

• HVAC: Air conditioning and heating devices. Its consumption depends on
parameters such as ambient conditions and comfort level specified by the end
user.

The consumption of these loads depends on the situation on different factors
regarding the state of the EH, the forecast of renewable energy input, the forecast of
non-manageable demand and the price of energy from the distribution grids. The
consumption of manageable loads is not forecasted but optimized inside a VPP
according to restrictions specified by the end user with the objective of minimizing
a utility function, which will be presented in the energy optimization section.

2.2.3 Energy price from the grid

In a future situation, demand side management (DSM) will be broadly
implemented in the energy grids, specifically in the electrical grid. The price of the
electricity is specified in the wholesale market with an anticipation of 24 h for each
hour of consumption. In a situation where a VPP wants to interact with the market
and obtain benefits from the exploitation of its energy assets, it is important to
predict the price of the electricity in order to be able to optimize its energy carriers
and offer or demand electricity from the grid.

In [18], two methods to predict next-day electricity demand and price daily
curve are proposed given past curves: robust functional principal component anal-
ysis and nonparametric models with functional response and covariate. In [19], a
hybrid methodology is proposed, combining autoregressive integrated moving
average (ARIMA) with adaptive dynamic corrector lazy learning algorithm.
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Although these methods were studied, due to the integration of renewable energies
in the electricity market and the changes in the structure of the pricing that it
supposes, during the last years, ANN have been the focus to forecast electricity
prices. ANN models for short-term electricity modeling perform better than time
series models such as ARIMA models, as shown in [20]. It is also verified that the
performance of ANN depends on appropriate input parameters; clustering and data
selection algorithms of k-nearest neighbor algorithm and mutual information
methods were used. The problem of this model is the need to remove trend and
seasonal components. In the electricity market, there are strong seasonal effects and
other nonlinear patterns that harm ANN forecasting performance. In [21] a robust
method to solve the seasonal problem with ANN is proposed and verified. The
method is seasonal autoregressive neural network (SAR-NN) defined as a dynamic
feedforward artificial neural network. In [16] a hybrid approach based on the
combination of particle swarm optimization and ANFIS is proposed and demon-
strated in a case study in Spain. The study shows that soft computing techniques
such as neural networks can be much more efficient computationally and accurate if
correct inputs are considered. To select the most suitable inputs, several methods
can be used, and genetic algorithm (GA) is one of them. The combination of ANFIS
with GA has been proved to solve market price prediction and other economic
parameters, as shown in [22, 23].

2.3 Energy hub model

The energy conversion equipment of the VPP forms the EH. In order to develop
the model and the optimization of the system to create a VPP, the EH should be
modeled. An EH is a multi-carrier energy system consisting of multiple energy
conversion, storage and/or network technologies and characterized by some degree
of control. In Figure 4 an example of a schematic of an EH can be seen. In the
figure, it is possible to appreciate that the EH in this case is composed by the energy
conversion equipment, excluding the storage system. The EH is nowadays under-
stood as the set of energy drivers that allow energy management. However, with the
implementation of the VPP concept, the energy management possibilities are
expanded and can take place in a level above the EH. Thus, although in most cases
energy storage is included inside the EH, when a VPP is implemented, the trading

Figure 4.
Example schematic of an EH.
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relationships are placed outside the EH, so it becomes coherent to also place the
energy storage system outside the EH but inside the VPP.

In this section the formulation of an EH will be established from a generic
perspective. According to [24], the relationship between input power and output
power inside and EH is:
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where L represents the demand, P the power input and η the coupling matrix.
It has to be observed that according to the example proposed, the energy coming
from the electrical grid and the energy coming from the battery can be placed both
in the demand and in the generation side.

The determination of the coupling matrix needs to be assessed taking into
account the amount, characteristics and interconnections of the energy equipment.
In the following paragraphs, an outline of relationships depending on different
situations is carried out. These basic rules form the information needed to develop
the model for more complex systems. With these, it will be possible to establish the
coupling matrix that represents the EH and which relates the generation side with
the demand side.

2.3.1 Energy converter with one input and one output

In this case an energy converter β with an input energy Pα has one only output:
Lβ. The power relationship between input and output is represented by:

Lβ ¼ Pαηβα (3)

where ηβα is the performance indicator of the converter, which can be the COP

or the efficiency depending on the equipment considered. The COP can be constant
or can be dependent on different parameters such as temperature or operating
point.

2.3.2 Energy converter in series

This case represents the situation where all the output from one energy
converter goes directly to another energy converter. This is called multistage
energy conversion. The power output at the end of the last energy converted is
computed by multiplying all the COPs in the chain. For the case with two energy
converters:

Lθ ¼ Pαηβαηθβ (4)

2.3.3 Available energy in a converter

The power provided by an energy converter or energy source can be supplied to
several energy converter or demand points. Power can be given to these systems
simultaneously as long as there is energy available in the energy converter or
generator. This can be represented mathematically as:
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X

n

i¼1

Pαi ≤Pα (5)

where:

Pαi ¼ Pαivi (6)

vi being the dispatch factor to the different demands connected to the same source.

2.3.4 Upper and lower production limits

Every energy conversion equipment has a range within which it is possible to
generate or convert electricity. It has to be assured that the energy that passes
through the equipment falls between the specified thresholds. Mathematically it is
expressed as:

lbγ ≤Pαηγα ≤ ubγ (7)

where lbγ and ubγ are the lower and upper limits, respectively.
The basic rules for the proper development of the coupling matrix have been

explained. Their logic can be applied to any system composed by interconnected
energy assets to develop the mathematical model of an EH.

2.4 Energy optimization

The optimization is an essential step for the successful implementation of a VPP.
Once the model of the system has been developed, an evaluation of the state of the
plant at a specified number of time instants has to be carried out to achieve all the
benefits mentioned in this chapter. The optimization will allow to reach the best
efficiency in the use of resources from an economical and environmental perspec-
tive as well as facilitate to the grid the integration of active prosumers, demand side
management (DSM) and renewable energy sources.

An optimization is the selection of the best solution for a specified problem. The
simplest optimization problems deal with the maximization or minimization of a
variable. In mathematics, conventional optimization problems are usually stated in
terms of minimization. A general manner to represent one of these is:

Given : f : A!R

Find : x0 ∈A such that f x0ð Þ≤ f xð Þfor all x∈A

For the purpose here assessed, f can be considered as the energy of the system
that is being considered, the operational and maintenance cost, the environmental
impact or any other aspect related to the exploitation of energy assets. The function
f is the objective function that wants to be minimized. A is a subset of the real space
that is understood as a set of constraints that needs to be achieved or fulfilled. It is
represented as group of equalities and inequalities that the solution should meet to
be valid. In the energy frame, these equations deal with factors such as meeting the
demand and comply with the operational bounds of the system. The domain A of f
is called the search space, and the elements x in A are called candidate solutions. There
are several types of optimization problems and possible solutions depending on the
nature of the situation that is being studied. For a system where several energy
assets are present and a time optimization has to be carried out, multi-period
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mixed-integer problems are the ones that represent the most of its operation, as can
be seen in [25].

There are different purposes that lead to the decision of building a VPP, as, for
example, total energy use, energy cost, production scheduling and emissions. All
these factors have to be reflected in the objective function. The most used method
to handle multi-criteria decisions is the weighted global criterion method. This
method allows the interested party to adjust the preferences of the system. The
objective function is obtained as:

f ¼
X

N

j¼1

f transj wj (8)

where f transj is a normalized value of a single objective function and wj the

relative weight assigned to that objective function. f transj is created in order to obtain

the same range for the different objectives contemplated and has to be calculated as:

f transj ¼
f j x; yð Þ � fmin

j

fmax
j � fmin

j

(9)

where fmax
j and fmin

j are maximum and minimum values of the objective func-

tion in question, respectively.
In order to obtain the optimal operation point of the VPP, the optimization

process should be performed in two stages. The first stage deals with the decision of
where to introduce or extract energy from the battery, decision of selling or buying
energy from the electrical grid and the scheduling of manageable loads. The sched-
uling horizon of this optimization is normally one day, as this is the time interval at
which the electricity price from the market is known. The scheduling horizon is
divided into time slots; usually there are 96 time slots per day, one every 15 minutes.
As shown in [17], the objective function in this optimization case is formed by three
terms: energy cost, scheduling preferences and climatic comfort. For the case of the
energy cost, it can be expressed as:

f 11 ¼ B
X

t

PBECBE þ A
X

t

PCBCCB þ 1� Bð Þ
X

t

PSECSE þ 1� Að Þ
X

t

PDBCDB (10)

where A and B are Booleans that designate if the VPP if selling/buying electricity
from the grid and charging/discharging the battery. The other parameters refer to
the following:

• PBE: energy bought from the electrical grid

• CBE: cost of the energy bought from the electrical grid

• PCB: energy inserted in the battery

• CCB: cost for inserting energy in the battery

• PSE: energy sold to the electrical grid

• CSE: cost of energy sold to the electrical grid. It has to be noted that this value is
negative
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• PDB: energy extracted from the battery

• CDB: cost of the energy extracted from the battery

The objective function related to the scheduling is expressed as:

f 12 ¼

P

SL

P

t γ

NSL
(11)

where γ is a scheduling preference parameter and NSL is the number of schedul-
ing loads. Last of all, the objective function for the comfort is:

f 13 ¼ gmax þ

P

SL

P

t gr
RT

(12)

where gmax is the maximum temperature gap allowable, gr is the real tempera-
ture gap, R are the rooms considered and T are the time slots. For this first optimi-
zation stage, the restrictions should contain the fulfillment of non-manageable
loads, the characteristics of manageable load (working cycles, minimum number of
consecutive ON slots, maximum number of consecutive slots OFF, etc.) and power
restriction on the energy input.

Once the energy input and output from the grid, batteries and loads are
obtained, the second stage deals with the optimization of the energy flow inside the
EH. In this case the objective functions are related to maximizing the efficiency and
minimizing the energy cost and the total emissions. The function that represents the
total energy use can be represented as:

f 21 ¼
X

α

X

t

Pα
t (13)

where Pα
t represents the energy generated or converted by α at the time instant t.

It can also represent the energy input to the VPP such as the electricity from the grid
and the natural gas. For the case of the cost of the system, the objective function is:

f 22 ¼
X

α

X

t

Pα
t λ

α (14)

where λα represents the cost of the energy for a converter or energy input α. Last
of all, for considering the emissions of the system:

f 23 ¼
X

α

X

t

Pα
t e

α (15)

where parameter eα represents the emission factor of the energy provided by α.
For this stage, the restrictions should include the fulfillment of the demand and the
power limitation of the different energy converters inside the EH.

3. Communication architecture and data management

As it has been mentioned in the previous section, forecasting techniques based
on data-driven models are widely used when dealing with energy-related variables.
This kind of models usually needs huge amounts of information to properly train or
tune their inner structures, and once the models are generated, the central
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controller must be capable of sending the forecasted schedule decisions to each
system’s local controller. To do so, not only a sensor network has to be deployed in
the facility, but also an efficient data communication system is needed.

Therefore, one of the key elements of the VPP concept is the communication
systems. The existence of reliable, accurate, efficient and safe data exchange is
crucial for a bidirectional, near real-time information flow. In addition, the current
trend in the field is to make use of a service-oriented architecture (SOA), enabling
an easy integration of the plant data in systems that can analyze and optimize not
only the operation of the facility itself but also the global operation of the whole
energy grid. To this extent, the cloud computing platforms such as Amazon Web
Services, Microsoft Azure or Google Cloud.

The cost of implementing a communication system can be high, so it is vital to
select a suitable data communication technology. There are several wired and wire-
less technologies available that can provide the required communication infrastruc-
ture. The selection of one (or more) of these communication technologies will
depend on the quality of service (QoS), data range, reliability, latency, economic
viability, etc. The capabilities offered by these technologies are also strongly related
to the VPP grid structure. Looking it from the prosumer point of view, the main
automation system is the energy management system (EMS) which is responsible
for the management and optimization of the energy assets supervised in the VPP.

3.1 Energy management systems

The term energy management system (EMS) refers to an integrated system that
enables the monitoring, management and control of several devices providing the
necessary support for an effective operation of electrical generation and transmis-
sion facilities.

At a high level, the architecture of an EMS is divided into three layers which are
management, automation and field levels [26] as depicted in Figure 5. The man-
agement (or supervisory) level comprises the human interface with the system by
means of human machine interfaces (HMI) or SCADA-like software systems and
contains most of the system logic and modules related with data analysis. The
automation (or local) level provides the primary control devices connected via
networked controllers and usually operating via BACnet, ZigBee, etc. protocols.
The field (or plant) level represents the physical devices like energy meters, sensors
and actuators installed to the plant equipment. These devices should be connected
to local controllers by means of field-bus communications to allow control
functionalities.

VPP supervision and control systems can be centralized or decentralized [27]. In
the centralized control, all the knowledge about the devices in the VPP and the
energy market is located in the central controller. Although this is a simple solution
in most of the cases, when dealing with a large number of devices, the optimization
of the control strategy can become computationally expensive for the central con-
troller. In a distributed or decentralized control, the complexity is divided vertically
within the VPP. Local controllers supervise and define the control strategy, and a
higher-level controller coordinates their decisions in order to reach a global
optimum state.

3.2 Communication requirements

The architecture defined above is organized in three hierarchical levels. Each of
these communication layers has its requirements in terms of bandwidth, latency or
cyber security. For example, at the field level, to have a large bandwidth is not a
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common requirement, but a short latency is mandatory given the near real-time
control performed at this level.

3.2.1 Field level requirements

The total amount of data sent per node per transmission is typically less than a
hundred bytes. That being the case, the communication bandwidth at this level is
well within 100 kbps [28]. The sampling and transmission frequency are commonly
between a range of 5 and 15 min. A simulation carried out in [29] showed that larger
data collection frequencies fail at detecting short-term voltage anomalies. Besides, a
time synchronization service is required to refer all the data gathered in the plant
with respect to the UTC. A general-purpose time synchronization service like the
network time protocol (NTP) is used given that the accuracy required does not
exceed the order of seconds.

Typically, the sensors manage analogical data that is then is handled to an analog
to digital converter (ADC) followed by an interface to a process control computer.
The sensors can also have a digital communication module and contain embedded
digital electronic processing systems. Actuators work in a reverse sense, converting
electrical signals to the appropriate physical variable. However, as they have to
amplify the energy level to produce the change in the real variables, actuators are
high-power devices, while sensors are not.

3.2.2 Automation level requirements

At the automation level, the data from several local controllers is received;
typically, the order of system it aggregates is in the order of tens. Hence, a

Figure 5.
EMS three-level architecture.
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bandwidth of more or less 1 Mbps is enough to fulfill its requirements [28]. The
time synchronization and latency are also limited like in the field level.

The automation level is in charge of several tasks such as the monitoring of the
variables to check the system or component failure, the management of the set
points for the important process variables and the control reconfiguration and
tuning of the control loops.

3.2.3 Management level requirements

The management level shares a large part of the requirements of the automation
level. Typically, in this layer, the main limits for its requirements are represented by
the capabilities of the already existing communication infrastructure.

Here, the information arrives as time series type of data; this data is character-
ized by having a timestamp associated with each value. In the management level,
this data is collected and analyzed to perform some actions like process scheduling
or maintenance management.

3.3 Communication technologies and protocols

When a message is transmitted onto a bus, it has to contain information like the
identifier of the sending device, the message or data to transmit, the destination
device address and some additional information (e.g. for error checking). After
that, when the message reaches the destination device, this one has to know not
only the message codification but also how to handle its reception using procedures
to avoid collisions and prioritization.

These rules about connectivity and communication are defined by the commu-
nication system protocol. These protocols for VPP system must adhere to several
criteria: efficient and reliable communication, interoperability with other systems
and integration into the power system. For easier integration, it is usually desirable
that the VPP system supports the communication protocols already in use by any
other equipment. In addition to standardized protocols, there are many proprietary
protocols like C-Bus or PROFIBUS.

Both wired and wireless technologies have been specified through standards.
The advantages of wired technologies over wireless ones are the higher data trans-
mission rate, security and reliability but at the expense of high installation cost. On
the other hand, wireless technologies have fewer installation costs and can be easily
deployed, but they exhibit low data transmission rates and signal interference
problems. With the advent of ICT and IoT, more and more sensors and meters are
needed to be integrated, monitored and controlled. In this situation, the lower
deployment cost and better scalability of wireless technologies make them better
candidates. In the below sections, some of the widely used communication technol-
ogies for metering and sensory purpose will be covered.

3.3.1 Power line carriers

In terms of wired technologies, PLC is the most widely used technology [30].
Power line carriers (PLCs) consist of introducing a modulated carrier signal over
the existing electricity grid. No additional wiring is required; therefore, PCL can be
considered as a cost-effective and straightforward solution. PLC can be classified
into two major categories: narrowband PLC and broadband PLC.

The operating rate of the narrowband PLC is in a range of 3–500 kHz. It can be
further classified as low data rate and high data rate narrowband PLC. The former is
a single carrier technology with data rate up to 10 kbps and works on the
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recommendations of standards like LonWorks or KNX. The high data rate narrow-
band is a multi-carrier technology with a data rate below 1 Mbps. The broadband
PLC technology has an operating range of 2–250 MHz with a data rate of hundreds
of Mbps.

PLC technologies have been used since a long time ago for electric energy-
related services in industrial automation like remote meter reading and remote load
management. PCLs can be applied in any point of the VPP environment, and its
main advantage is the low running costs, and that can be installed using current
infrastructure. The security issues are solved like in the ZigBee technology, using
the 128-bit AES encryption.

3.3.2 GSM and GPRS

Global System for Mobile Communications (GSM) is known as the world’s most
deployed cellular technology. It operates on the 1800 MHz and 900 MHz bands,
and its data rate is up to 270 kbps. General Packet Radio Service (GPRS) data rate is
much larger than GSM. Its main drawback is the reliability of Short Message Service
(SMS) in case of network congestion.

The main application of GPRS and GSM is in smart metering solutions for
remote billing and power consumption monitoring, usually applied in smart grids
covering from the generation stage to the consumption one, including both the
transmission and distribution.

3.3.3 WiFi

Wireless sensing technology has been gaining popularity in the last years given
the fact that wireless sensors are easy to install and cheaper in price and, among all
the wireless sensing technologies, WiFi is the most popular. Developed under the
IEEE 802.11 standards family, it provides a robust performance even in noisy
channels and supports a wide range of data rates. The local security issues are
tackled by the WPA2 protocol based on the 128 bit AES encryption technique, and
to ensure secure communication through public Internet access, virtual private
networks (VPNs) are typically used [31].

WiFi is the most dominant wireless technology for the high speed it can offer
but is more expensive than other technologies because of its higher consumption
and device price. WiFi is mostly used for building automation, remote control,
meter reading, etc. in the tertiary sector and has been used as a proxy for human
occupancy in some HVAC actuation models.

3.3.4 Ethernet

Ethernet is a low-cost communication method and is widely used for communi-
cation between PLCs and SCADA systems. Ethernet is available like optical fiber,
shielded twisted pairs or coaxial cables. Among these, optical fiber is more secure
and popular due to the absence of electromagnetic interference and electrical cur-
rent. Ethernet uses carrier-sense multiple access with collision detection (CSMA-
CD) methods for sensing data. Ethernet is not suitable for real-time application
because the a priori estimation of the data packet maximum transmission time is
impossible.

The main disadvantage of Ethernet is its wired nature and the need of deploying
a new cable network. However, it is robust and does not have running costs. The
most common implementation of Ethernet in today’s industrial automation field is
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to use an Ethernet/IP network, applying the capabilities of traditional Ethernet to
connect different facilities in the same network via the Internet.

3.3.5 Modbus

Introduced by Modicon Corporation, it is widely used due to its simplicity and
reliability. It includes a remote terminal unit (RTU), transmission control protocol
(TCP) and ASCII mode of transmission and supports RS-232, R-422, RS-485 and
Ethernet-based equipment. Because of its simplicity and open-source availability, it
is popular for local communication building and also has become the standard for
industrial SCADA systems.

The security issues are not addressed in Modbus. It does not support authenti-
cation nor encryption; thus, it is less secure and more vulnerable to cyberattacks.

3.3.6 OPC UA

The OPC UA is a machine-to-machine communication protocol for industrial
automation developed by the OPC Foundation. It is the next generation of the
original OPC which is applied in different technologies like building automation or
process control. OPC UA was developed to tackle the emerging needs of industrial
automation.

OPC UA was designed to be fully scalable and enable both the horizontal and
vertical communications across all the layers. In addition, it uses a service-oriented
architecture, and two transport protocols are defined: an optimized TCP for high
performance and a HTTP/HTTPS web service with binary or XML-coded messages.

Table 1 shows a summary of the main characteristics of each of the communi-
cation technologies reviewed.

3.4 Selection of sensing solution

According to [32], the factors that influence the selection of sensing and
metering solutions are the following:

• Accuracy: In Europe, the accuracy of meters is defined by directives such as the
Measuring Instruments Directive (MID). A common feature in this kind of
directives is to classify the meters by their percentage accuracy.

• Ease of deployment: The ease of deployment refers to the different installation
and networking challenges that must be tackled. For example, wireless sensors
have reduced installation costs and provide better flexibility than their wired
counterpart. Other factors to consider are the interoperability, installation in
an accessible location or safety regulations.

• Communication protocol: As it has been seen in the previous section, there is a
wide range of communication technologies each with its advantages and
disadvantages.

• Resolution: The resolution determines the possible level of analysis that can be
performed. As aforementioned the typical data collection rate is within a range
between 5 and 15 minutes.

• Cost: The cost of the equipment is always a driver when deciding the metering
equipment. Both initial costs and operating costs must be considered. Usually,
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the number of sensors is limited to the minimum to provide adequate control
and ensure compliance with regulations.

• Availability: The geographical availability of a particular manufacturer’s sensing
solution. It will affect to the delivery time and provisioning of technical support.

4. Conclusions

In this chapter the concept of VPP has been explained as the solution for the
challenges of upcoming energy markets. The forecasting of future energy situation
regarding demand, energy prices and renewable generation has been assessed,
reaching the conclusion that artificial intelligence methods are best suited for the
stated purpose. The internal energy assets have been modeled by means of an EH.
By adding these factors, the VPP is constructed, and its optimization can be carried
out. The optimal operation point is obtained by considering current and future
energy prices from the market, renewable energy generation, manageable and non-
manageable demands and costs and operation constraints of energy equipment. For
it to be possible, the EMS and the communication technologies of the plant have to
be studied and adapted. The high-level structure and requirements of the EMS have
been explained together with the more common communication technologies and
protocols. Its advantages and drawbacks have been presented and the important
factors for the selection of the sensing technologies described. By incorporating
all the exposed factors in an industrial plant, a VPP can be created which will
satisfactorily help the energy grid to evolve and will also produce a benefit for the
exploitation of its own energy equipment.

Technology Type of

technology

Characteristics

PLC Wired • Low installation costs (no additional wiring is required)

• Cost-effective, widely used solution

• Narrowband PLC: up to 500 MHz with a data rate below 1 Mbps

• Broadband PLC: up to 250 MHz with a data rate of hundreds of

Mbps

GSM/GPRS Wireless • World’s most deployed wireless technology

• Operates on 900 and 1800 MHz bands

• Rate up to 270 kbps

• Low reliability in congested networks

WiFi Wireless • Most popular wireless technology

• Robust even in noisy channels

• Security issues tackled by the WPA2 protocol

Ethernet Wired • Low-cost solution

• Not suitable for real-time sensing

• Needs a new cable network

Modbus Comm. protocol • Simple and reliable

• Open-source

• Standard for SCADA systems

• Vulnerable to cyberattacks

OPC UA Comm. protocol • Robustness

• Scalable and platform independent

• Standard transport and encoding protocols (TCP and HTTP)

Table 1.
Summary of characteristics of the technologies and protocols reviewed.
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Chapter

Novel Methods Based on 
Deep Learning Applied to 
Condition Monitoring in Smart 
Manufacturing Processes
Francisco Arellano Espitia and Lucia Ruiz Soto

Abstract

The Industry 4.0 is the recent trend of automation and the rotating machinery 
takes a role of great relevance when it comes to meet the demands and challenges 
of smart manufacturing. Condition-based monitoring (CBM) schemes are the 
most prominent tool to cover the task of predictive diagnosis. With the current 
demand of the industry and the increasing complexity of the systems, it is vital 
to incorporate CBM methodologies that are capable of facing the variability and 
complexity of manufacturing processes. In recent years, various deep learning 
techniques have been applied successfully in different areas of research, such as 
image recognition, robotics, and the detection of abnormalities in clinical studies; 
some of these techniques have been approaching to the diagnosis of the condition in 
rotating machinery, promising great results in the Industry 4.0 era. In this chapter, 
some of the deep learning techniques that promise to make important advances in 
the field of intelligent fault diagnosis in industrial electromechanical systems will 
be addressed.

Keywords: Industry 4.0, condition-based monitoring, deep learning

1. Introduction

In recent years within the industrial sector, there is a trend toward the evolution 
to the Industry 4.0 paradigm, which implies the integration of multiple technolo-
gies for the start-up of intelligent factories capable of adapting to the needs and 
production processes. In these intelligent manufacturing systems, the diagnosis of 
the condition of the machine is of great importance to prevent failures and avoid 
monetary losses caused by work stoppages in production. The condition-based 
monitoring (CBM) schemes are the most accepted to carry out this task. However, 
one of the main challenges within CBM schemes is the construction of models 
capable of adapting to highly complex manufacturing systems, which are also 
subject to high variability of their operating conditions and under the presence of 
high noise.

Meanwhile, deep learning (DL), or also known as deep neural networks (DNN), 
has become an analytical tool that has attracted more and more attention from 
researchers in different areas of research in recent years. The main skill DNN has 
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the ability to learn and extract useful patterns from the data. Therefore, there is cur-
rently a tendency to make use of this ability of DNNs to extract significant features 
from complex manufacturing systems, in order to find the characteristic patterns of 
faults and thus be able to diagnose anomalies in a timely manner.

As a branch of machine learning, the DL appears from the learning capacity of 
the artificial neural networks (ANNs); however, the learning capacity of the ANN 
is limited and presents problems when making the adjustment of weights through 
error correction (backpropagation). Therefore, different DL architectures have been 
developed based on stacking multiple layers of ANN, such as auto-encoders, convo-
lutional neural networks, or restricted Boltzmann machine. These architectures seek 
to obtain hierarchical representations and intrinsic relationships of the data.

The main reason for the application of techniques based on DL in the study of 
the condition of electromechanical systems is due to the limitation presented by the 
basic analysis schemes. A traditional diagnostic scheme consists in the extraction 
and selection of feature engineering from the acquisition data, followed by the 
application of a dimensionality reduction process and the training of a prediction 
model based on machine learning which includes support vector machines (SVM), 
simple neural networks (NN), or regression algorithms.

The main limitation of these traditional diagnostic models is the low capacity to 
adapt to complex electromechanical systems, and therefore, they have difficulties to 
adequately characterize all the variability of operation and the different condition 
states including faults. Unlike traditional schemes based on machine learning, DL 
schemes are not limited to characterizing systems with only a set of pre-established 
features, but, through the construction of structures based on neural networks, 
they are able to extract hierarchical representations of the data. These representa-
tions or extracted features have a greater representative capacity because the 
schemes for their extraction are through non-linear algorithms; with this, a struc-
ture based on deep learning is able to learn the adjacent non-linearities of faults and 
multiple operating conditions of modern manufacturing processes that integrate 
rotary systems among their components.

The purpose of this literature is to review the emerging research papers of DL 
focused on condition monitoring. After the brief summary of the DL tools, the 
main applications of deep learning are about the monitoring of the condition of 
electromechanical systems.

2. Deep neural networks

To solve binary classification problems, one of the algorithms inspired by the learn-
ing process of biological neural networks was called perceptron [1]. The perceptron 
consists of an input unit directly connected to an output node; the pattern learning 
process is performed through an operation called activation function. To solve more 
complex problems, multi-layer perceptron called artificial neural networks (ANN) are 
used. The training process of these ANNs is performed by executing multiple iterations 
each time a new measurement is presented, and the weights and biases are adjusted by 
following a training and error correction algorithm called backpropagation [2].

By adding more hidden layers to the network, it is possible to create a deep 
structure capable of extracting more complex patterns and finding more hid-
den data relationships. These deep architectures with multiple hidden layers are 
known as deep neural networks (DNN). However, a trivial problem, which arises 
in the training of DNN as more hidden layers are added to the network, is that the 
correction of the error does not propagate toward the first layer of the network, 
generating a problem of vanishing of the gradient, hindering the learning process.
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2.1 Convolutional neural network

One of the main DNN-based architectures for feature extraction is convolutional 
neural networks (CNNs). A convolution neural network is a kind artificial neural 
network designed specifically for identifying patterns of the data [3]. This type of 
architecture uses a multi-channel input, such as an image or multiple combined 
signals. The central idea behind CNN is the mathematical operation of convolution, 
which is a specialized type of linear operation. Each CNN layer performs a trans-
form domain, where the parameters to perform the transformation are organized as 
a set of filters that connect to the input and thus produce an output layer. The out-
put of a CNN layer is a 3D tensor, which consists of a stack of arrays called feature 
maps; these features can be used as an input to a next layer of the CNN scheme. A 
simple CNN architecture is shown in Figure 1.

CNN has three main states: convolution, pooling, and fully connected. 
Convolution puts the input signal through a set of convolutional operators or filters, 
each of which activates certain features from the data. Pooling minimizes the 
output through performing a decrease in non-linear sampling, reducing the number 
of parameters that the network needs to learn. The last layer is a fully connected 
layer that produces a vector of N dimensions, where N is the number of classes that 
the network can predict. This vector contains the probabilities for each class any of 
the data considered. Finally, the output of a convolutional network is connected to a 
classification stage, in order to obtain a diagnosis.

2.2 Auto encoders

The auto-encoder is a type of symmetrical neural network that tries to learn 
the features in a semi-supervised manner by minimizing reconstruction error. A 
typically structure of an auto-encoder is show in Figure 2. This has three layers: 
input layer, hidden layer, and output layer. The learning procedure of AE consists 
in two stages: encoder and decoder stages. Input layer and the hidden layer are 
regarded as an encoder, and the hidden layer and the output layer are regarded as 
a decoder.

Figure 1. 
Architecture of a CNN comprising commonly used layers as convolution and pooling.
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The encoder process is described by f{W
1
,b1}(x) = sf(W(1)x + b(1)), and the decoder 

process is g{W
2

,b
2

}(x) = sg(W(2)x + b(2)), where sf and sg are the activation functions of 
the encoder and decoder, respectively, W is the weight vector between these different 
layers, and b is the bias. W and b are the trainable parameters of encoder and decoder 
stages. Furthermore, the sigmoid function is chosen as an activation function to the 
network. For any sample xm from input data set {xm}Mm = 1, where M is the number of 
samples, the encoder stage computing an encode vector am = f{W

1
, b1}(xm). Also, am 

can be regarded as a feature representation that the encoder process learning from the 
input data.

To improve the performance of the traditional auto-encoder, a sparse restric-
tion term is introduced, generating a variant known as sparse auto-encoder 
(SAE) [4–6]. The sparse restriction term works on the hidden layer to control the 
number of “active” neurons. In the network, if the output of a neuron is close 
to 1, the neuron is considered to be “active,” otherwise it is “inactive.” With the 
sparse restriction, SAE can obtain proper parameter sets by minimizing the cost 
function

   J  sparse   (W, b)  =   1 _ 
M

     ∑ 
m=1

  
M

   L ( x   m ,   x ^     m )  + λ ·   | |W| |   2  
2  + β ·  ∑ j=1  

n    KL (ρ ‖    p  j   
^  )   (1)

where   L ( x   m ,   x ^     m )  =  ‖  x −   x ^     m  ‖     is the average sum of squares error term, λ is the weight 
decay parameter, β is the sparsity penalty parameter, and  ρ  is the sparsity parameter.

2.3 Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is a type of neural network formed by 
two layers that consist of two groups of units including visible units v and hidden 
units h with the constraint that there only exists a symmetric connection between 
visible units and hidden units, and there are no connections between nodes with a 
same group, as shown in Figure 3. These networks are modeled by using stochastic 
units, habitually Gaussian.

The learning procedure includes several stages known as Gibbs sampling, which 
gradually modifies the weights to minimize the reconstruction error. These type of 
NNs is commonly used to model probabilistic relationships between variables.

Figure 2. 
Architecture of an auto-encoder.
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The most used algorithm to perform the training of an RBM is the contrastive 
divergence (CD) method [7]. Contrastive divergence is a type of unsupervised 
learning algorithm; it consists of two stages that can be called positive and negative 
stages. During the positive stage, the network parameters are modified to replicate 
the training set, while during the negative stage, it attempts to recreate the data 
based on the current network configuration.

Restricted Boltzmann machines can be used in deep learning networks in order 
to extract characteristic patterns from the data. For example, deep belief networks 
can be designed by stacking various RBM and performing a fine-tuning the result-
ing deep network with gradient descent and backpropagation. Like the CNN 
network, a classification stage is connected to the deep network output.

3. Applications of deep learning in condition-based monitoring

For several years, the best tools for monitoring electromechanical systems 
were data-driven schemes [8]. However, with the increase in the complexity of the 
systems, the increase in case studies, and the need to incorporate new operating 
conditions, traditional machine-based schemes are insufficient to characterize such 
complexity because their discriminative capacity is decreasing. Consequently, the 
study of the condition of the machine has been moving toward the incorporation of 
techniques based on deep learning.

Applications such as feature extraction, dimensionality reduction, novelty 
detection, and transfer learning are some of the tasks that can be carried out 
through the three deep learning techniques mentioned above: CNN, AE, and RBM.

3.1 Feature extraction

The schemes that are able to extract features effectively and have the ability to 
handle large data dimensions are needed. Automation of feature engineering has 
become an emerging topic of research in academia; in recent years, it have emerged 
deep learning (DL) techniques capable of dealing with the complexity presented 

Figure 3. 
Schematic illustration of restricted Boltzmann machine.
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in many cases of study. DL is a branch of machine learning based on multi-layer 
neural networks or deep neural networks (DNNs), where the objective of each layer 
or level is to learn to transform your input data into a non-linear and more abstract 
representation. The transformation learned through DNN can contain informa-
tion that preserves the discriminative features of the data, which helps distinguish 
the different classes. With the application of schemes based on deep learning, it 
has been possible to reduce the dependence on the design of functions and limit 
the manual selection of features; in this way, it is possible to dispense with human 
experience or great prior knowledge of the problem. With the emergence of deep 
learning, many fields of research have made use of these tools to facilitate the pro-
cessing of massive data. In applications such as vision [9], image recognition [10], 
medical analysis [11], and other applications, the use of deep learning has obtained 
valuable results.

An example of application of schemes based on deep learning applied to indus-
trial machines is presented in [12]; in this study, they implemented a structure of 
deep learning known as a stacked denoising auto-encoder to extract data charac-
teristics from five data sets. Another application example is the approach proposed 
in [13]; in this study, they used a fully connected winner-take-all auto-encoder 
for the diagnosis of bearing faults, and the model is applied directly on temporary 
vibration signals without any time-consuming feature engineering process. The 
results indicate that the implemented method can learn from sparse features from 
input signals. In [5], they performed an unsupervised learning procedure for the 
automatic features extraction for the identification of bearing failures. First, they 
performed a non-linear projection to compress the information through a technique 
called compressed sensing, followed by the automatic feature extraction in trans-
form domain using a DNN based on sparse stacked auto-encoders. The proposed 
approach highlights the effectiveness of extracting features automatically through 
the deep neural network, which demonstrate that they contain relevant information 
that helps the diagnostic process and thereby helps to reduce human labor. Another 
investigation in which CNN is applied for the diagnosis of faults in spindle bear-
ings is presented in [14]. In this approach, the image is used as input for CNN to 
learn the complex characteristics of the system. Finally, the output is processed by 
a multi-class classifier. This method demonstrated a good classification efficiency 
regardless of the load fluctuation.

3.2 Dimensionality reduction

Deep learning has attracted attention in several fields of study because it allows 
the extraction of features from complex signals and the processing of large data. 
Although the application of deep learning in the diagnosis of faults in industrial 
machines has concentrated on the automatic extraction of features, the utility of 
these tools goes further; a clear example is the application of DNN structures for the 
compression or reduction of dimensionality of data. As we have seen above, struc-
tures based on DNN are able to learn intrinsic relationships of the data; however, 
during this learning process, it is possible to generate a reduced representation 
of the data. A structure based on DNN capable of learning a coded and reduced 
representation is the so-called auto-encoder. Unlike linear dimensional reduction 
techniques, such as principal component analysis (PCA) and linear discriminant 
analysis (LDA), a structure of stacked auto-encoders can provide a non-linear 
representation that was learned from the data provided. Therefore, a reduction 
of dimensionality based on the auto-encoder can provide a better representation 
that helps to discriminate between the conditions of the machine. An example of 
the difference between the application of a linear technique for the reduction of 
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dimensionality and one based on the auto-encoder is shown in Figure 4(a) and (b), 
correspondingly.

The management of large data dimensions represents a problem and a chal-
lenge in different studies. This is reported in [15], where the generation of big data 
constitutes a challenge in schemes for protection against cyber-attacks. Therefore, 
they propose a methodology based on DNN for dimensionality reduction and 
feature extraction. The method is compared with other dimensionality reduction 
techniques. The results show that this approach is promising in terms of accuracy 
for real-world intrusion detection.

A research applied in monitoring the condition for diagnosis of rolling bearing 
is shown in [16]. In this study, they propose two structures of auto-encoder, a sparse 
auto-encoder (SAE) and denoising auto-encoder (DAE) for the dimensionality 
reduction and for the extraction of characteristics, correspondingly. The results 
show that the applied methodology can effectively improve the performance of 
fault diagnosis of rolling bearings.

3.3 Novelty detection

To avoid the incorrect evaluation of the health of the machinery, it is nec-
essary to incorporate the current CBM schemes, the ability to classify data 
from novel scenarios or in test cases, where there is not enough information to 
describe anomalies. In this regard, research has been carried out to deal with the 
appearance of unknown scenarios in monitoring schemes. Novelty detection is 
the method used to recognize test data that differ in some aspects of the data 
available during training [17]. The study scenarios in which novelty detection 
schemes have been implemented include detection and medical diagnoses, dam-
age detection in structures and buildings, image and video processing, robotics, 
and text data mining.

Recent contributions to novelty detection in CBM schemes have managed to 
combine the classic approaches of multi-faults detection and the ability to detect 
new operating modes [18]. This study has two main aspects; first, a new signal 
measurement is examined by a novelty detection model by one-class support vector 
machine (OC-SVM) method. If the measurement is cataloged as novel, the system 
is considered to be working under a new operation condition or a new fault. If the 
measurement is cataloged as known, the system is working under healthy or faulty 
condition, previously trained.

Figure 4. 
Resulting two-dimensional by applying: (a) linear technique and (b) DNN architecture.
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The task of novelty detection to recognize test data other than the data avail-
able during training depends on the method used. The novelty detection process 
consists of testing the data patterns that were not seen before and comparing 
them with the normality model, and this may result in a novelty score. The 
score, which may or may not be probabilistic, is generally compared to a deci-
sion threshold, and the test data is considered new if the threshold is exceeded. 
In applications that use dimensionality reduction to represent the patterns of 
the data in novelty detection schemes, it is common to find the projections of 
the data of the normal operation mode delimited by a region or frontier. In these 
studies, the samples that are outside that delimitation are considered as abnor-
malities. A representation of a space delimited by two characteristics is shown in 
Figure 5.

Detecting new events is an important need of any data classification scheme. 
Since we can never train a learning system under all conditions and with all pos-
sible objects with the data that the system is likely to find, it is important that it has 
the ability to differentiate between information from known and unknown events 
during testing. Many studies have faced in practice the challenging task involved in 
novelty detection. In this sense, several novelty detection models have been imple-
mented, demonstrating that they work well in different data. Models to novelty 
detection include both Frequentist and Bayesian methods, information theory, 
extreme value statistics, support vector methods, other kernel methods, and neural 
networks.

On the other hand, although the use of DL-based techniques to carry out 
novelty detection tasks related to the study of the condition of electromechanical 
systems has not been reported in the literature, in other fields such as automatic 
driving, it has been proposed to use the reconstruction skills of the AE to carry 
out this task [19]. For this, the ability of the reconstruction of AE of the input 
data is used; if the error measurement is low, it is intuited that the input data 
correspond to known data, whereas if the error loss is high, they are considered 
unknown data and, therefore, they are data with which the system has not been 
trained. It is, therefore, believed that DL-based tools can represent a powerful 
analysis for the study of novelty detection in CBM schemes applied to electrome-
chanical systems.

Figure 5. 
Delimitation of a boundary by a novelty detection model.
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3.4 Transfer learning

Some disadvantages that still prevails in many tasks of classification, regression, 
and grouping is that the approach that addresses this problem is made under the 
assumption that all data must be in the same working conditions and have the same 
distribution of data and space of characteristics to carry out those tasks. However, 
this assumption in the real world does not happen. This problem occurs because 
sometimes only a few training data are available for a domain of interest or work-
ing condition that is different or similar to that of the planned classification task. 
For these cases, knowledge transfer would help to improve the performance of the 
learning process, avoiding strenuous retraining work and the effort of data label-
ing. In this sense, various applications have begun to explore innovative techniques 
to address this problem, resulting in schemes based on transfer learning, domain 
adaptation, and various machine learning techniques.

As seen in the literature, schemes based on deep learning (DL) can learn com-
plex and discriminative relationships from the data. Therefore, it has begun to use 
structures based on DL with the aim of transferring knowledge from a source task 
to a target task.

Traditional machine learning algorithms have made great strides in data-based 
fault diagnosis. They perform the diagnosis on test data using models that are 
trained on previously collected labeled or unlabeled training data. However, most 
of them assume that the data must be in the same working conditions and that the 
distributions of the data for each class considered are the same. The use of transfer 
learning schemes, in contrast, allows domains (operating conditions), tasks (failure 
classification), and distributions (number of samples) used in training and testing 
to be different.

Research on transfer learning has attracted more and more attention; as a result 
of which, one of the first learning techniques related to knowledge transfer is the 
multi-task learning framework, which tries to learn several tasks at the same time, 
even when they are different. In this scheme, transfer learning obtains knowledge 
of one or several source tasks and applies that knowledge to a target task, being the 
source task and target task symmetric in many ways. Unlike the learning of multiple 
tasks, the objective of transfer learning is the target task and not to learn all the 
source tasks and target tasks at the same time. The roles of the tasks of source and 
target are no longer the same, but they are similar in the transfer of knowledge.

Figure 6 shows the difference between the learning processes of traditional 
learning techniques and transfer learning. As we can see, traditional machine 
learning techniques try to learn each task from scratch, whereas transfer learning 
techniques try to transfer the knowledge of some previous tasks to a target task 
when the latter has differences, but also similarities with the source task.

One of the investigations related to transfer learning applied to the diagnosis of 
faults in industrial systems is the one presented in [20]. In this study, they use the 
skills of deep learning schemes to extract features with hierarchical representation 
samples in frequency domain and combine it with a transfer learning process to 
consider a target task different from the source task. The results obtained show a 
considerable performance; however, the proposed scheme still considers that the 
samples of the source domain and the target domain are equal.

Another work related to transfer learning is the one proposed in [21], for the 
diagnosis of bearing failures. Their proposal analyzed different operating condi-
tions for the source task and the target task. The knowledge transfer process is done 
through a structure based on neural network, where it first learns the characteris-
tics of a source task, followed, that structure is partially modified to adapt to a new 



New Trends in the Use of Artificial Intelligence for the Industry 4.0

10

target task; however, it conserves part of the weights with which the homework 
network was trained. The obtained results showed that in some occasions, using a 
method with knowledge transfer improves the diagnostic performance. However, 
this performance is affected when the differences between the source task and 
the target task are increased. With the incorporation of schemes based on transfer 
learning, we can allow us to adapt different structures based on DL to transfer the 
experience learned in a diagnostic task and improve performance in a similar but 
different task.

4. Experimental case of deep learning in CBM

As a case study, the comparison of three different approaches to carry out the 
process of dimensional reduction in a diagnostic analysis of multi-faults in an 
electromechanical system is presented, by applying two linear techniques: principal 
component analysis (PCA) and linear discriminant analysis (LDA), and a technique 
based on deep learning: an auto-encoder.

The proposed case study to evaluate the performance of multiple fault diagnos-
tic detection in an electromechanical system under the three different schemes is 
presented in Figure 7. First, signal conditioning and acquisition is carried out over 
vibration signals. Second, the estimation of the 15 statistical-time-based features, 
such as rms, skewness, mean, kurtosis, impulse factor, etc., is done over each signal. 
Third, the study of three high-dimensional feature reduction methods, that is, prin-
cipal component analysis and linear discriminant analysis and sparse auto-encoder, 
is carried out. Finally, fourth, an NN-based classification structure is performed, 
where the fault diagnosis and corresponding probability value are obtained. The 
resulting performance of the considered scheme is analyzed in terms of classifica-
tion in front to different high-dimensional feature reduction schemes. In addition, 
it is worth mentioning the resulting projections into a two-dimensional space with 
an accumulated variance of 95 between the two axes, in the case of PCA analysis. 
While under an AE study, the effectiveness is measured through the calculation of 
the MSE reconstruction error, which after 1200 epochs for each of the hidden layers 
is approximately 0.06.

The goal of the proposed approach is to evaluate the information extraction 
and dimensionality reduction capabilities of a non-linear technique such as auto-
encoder. For this, a methodology based on the study of the condition using vibra-
tion signals is implemented. For different condition, they have been considered to 
be evaluated in terms of the induction motor: healthy condition (He), bearing fault 

Figure 6. 
Multi-task learning framework process and transfer learning process.
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(BF), demagnetized fault (DF), and eccentricity fault (EF). In order to numerically 
characterize the acquired physical magnitudes, a 1-s segmentation is proposed. For 
each segment, a set of statistical-time features is calculated. To verify the effective-
ness of a non-linear dimensionality reduction technique, the projections resulting 
from the process of reduction of the three techniques are shown in Figure 8.

Finally, the classification stage with the NN-based classifier has been configured 
with five neurons in the hidden layer, besides a logistic sigmoid function has been 
used as output activation function and 100 epochs are considered for training using 
the backpropagation rule. The classification ratios for the test sets are approximately 
95% for PCA, 98% for LDA, and 99% for auto-encoder.

Two important things can be concluded from this study: first, highlight the 
capabilities of an SAE-based approach to automatic learning of the most significant 
characteristics (those that provide more discriminative information) and that this 
translates into an increase in performance. Second, in regard with the dimension-
ality reduction, the auto-encoder-based approach shows better discriminative 
capabilities during the visualization of the results than the linear methods PCA and 
LDA, with it facilitates the task of classification.

5. Conclusion and future challenges

In this chapter, a review of some of the current techniques based on deep learn-
ing and some of the functionalities that they may have within the environment 
of the diagnostic schemes of electromechanical systems is carried out. Having as 
reference the high complexity that is increasingly being found in the manufactur-
ing processes, and the new challenges to face in the Industry 4.0 paradigm, it is 
necessary to improve the diagnostic capabilities of traditional schemes, which is 
why methodologies based on artificial intelligence and deep learning methods have 

Figure 8. 
Evaluation of resulting projections into a two-dimensional space. (a) PCA. (b) LDA. (c) Auto-encoder.

Figure 7. 
Proposed scheme for multiple faults diagnosis.
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increasingly called the attention of researchers. However, it remains to be discov-
ered and identified the patterns that these deep neural networks learn, and specifi-
cally, within the industry environment, and electromechanical systems, what is the 
scope and benefits of applying these novel techniques.
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Smart Monitoring Based on
Novelty Detection and Artificial
Intelligence Applied to the
Condition Assessment of Rotating
Machinery in the Industry 4.0
Saucedo-Dorantes Juan Jose, Jaen-Cuellar Arturo Yosimar

and Elvira-Ortiz David Alejandro

Abstract

The application of condition monitoring strategies for detecting and assessing
unexpected events during the operation of rotating machines is still nowadays the
most important equipment used in industrial processes; thus, their appropriate
working condition must be ensured, aiming to avoid unexpected breakdowns that
could represent important economical loses. In this regard, smart monitoring
approaches are currently playing an important role for the condition assessment of
industrial machinery. Hence, in this work an application is presented based on a
novelty detection approach and artificial intelligence techniques for monitoring and
assessing the working condition of gearbox-based machinery used in processes of
the Industry 4.0. The main contribution of this work lies in modeling the normal
working condition of such gearbox-based industrial process and then identifying
the occurrence of faulty conditions under a novelty detection framework.

Keywords: smart monitoring, condition assessment, novelty detection,
artificial intelligence, Industry 4.0, rotating machinery

1. Introduction

Nowadays industrial applications are straightly involved with intelligent
manufacturing processes, and the importance of this issue is reflected in many
different activities of the human being, for example, in health, economy, and even
comfort. Thus, it is possible to say that most of the daily activities carried out by
humans have a direct relationship with those elements produced in the industry
that facilitate its making. On the other hand, during the last years, industrial sites
have been continuously subjected to several transformations, aiming to improve the
effectiveness of its processes and to increase the production quality. Consequently,
the integration of multiple technologies in the industry has been performed by the
composition of actuators and sensors with cyber-physical systems and Internet of
Things devices. Such integration leads to the Industry 4.0 that is the fourth phase of
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manufacturing and industrial sectors where the automated manufacturing and pro-
cess monitoring have been enhanced [1]. Consequently, under the integration of
such complex systems, it should be highlighted that it is important to ensure its
safety and reliability by the implementation of condition-based monitoring
approaches. Thereby, in order to guarantee the proper operation in manufacturing
processes and aiming to avoid undesirable downtimes, the working condition of the
machine components must be continuously assessed. Commonly, most of the
industrial applications and processes are involved with the use of mechanical and
electrical rotating machines, where electric motors and gearboxes represent the
most used elements to perform specific manufacturing processes [2].

In fact, this statement is validated and justified because electric motors, gear-
boxes, couplings, and shafts represent approximately more than 90% of the ele-
ments that compose any industrial process [3]. Indeed, these elements that integrate
the main operating system of industrial machinery are also considered, and also
known, as the electromechanical machine system. In this sense, electric motors are
considered as the most important element in electromechanical systems since its
performed functions cannot be carried out and replaced by any other element;
additionally, these elements play also an important role in most of the industrial
applications because two-thirds of the total electricity is consumed by them. There-
fore, these issues make suitable the application of condition monitoring approaches
to avoid the occurrence of unexpected breakdowns; even more, it must be noted
that under the appearance of a faulty condition, such damaged element can also
have influence over the proper operation of the whole elements that are linked to
the electromechanical system and crucial damages may be produced [4].

As it has been mentioned, industrial sites have been subjected to several trans-
formations, and through the integration of multiple technologies, a significant
improvement in the production efficiency has been obtained. Accordingly, complex
electromechanical systems compose most of the industrial machinery that is used in
different applications of modern industry. In this regard, several condition
monitoring-based approaches have been developed aiming to guarantee the appro-
priate working condition of industrial machinery. Thus, data-driven condition
monitoring strategies represent the most common and suitable approach for carry-
ing out the condition assessment in electromechanical systems; this approach has
been preferred since it only takes into account the use of information of available
data; therefore, based on known and available information, an accurate diagnosis of
the machine under inspection is obtained [2, 4, 5].

In this sense, most of the data-driven approaches mainly include the continuous
monitoring of different physical magnitudes that contain significant information
related to the machine working condition. Indeed, stator current signals, vibrations,
temperatures, and operational rotating speeds, among others, are some of the most
accepted and reliable magnitudes used in condition monitoring strategies. On the
other hand, aiming to provide the condition assessment, such monitored signals are
then analyzed by different signal processing techniques, where time-domain analy-
sis, frequency-domain analysis, and time-frequency domain analysis have been
commonly implemented in several condition monitoring strategies [5]. However,
although there exist different signal processing, it has been demonstrated that
statistical time-based domain features contain significant information that describes
the behavior related to the rotating machine working condition. Thereby, the cal-
culation of a high-performance set of features is achieved because statistical time
domain-based features have advantages for describing changes and trends of time-
domain signals [6].

On the other side, although other sophisticated techniques such as fast Fourier
transform (FFT) and discrete wavelet transforms (DWT), among others, also lead
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to the calculation of features related to the machine condition, the implementation
of such techniques considers additional knowledge and experience about the proper
usage of the techniques and also complete information of the parameters of the
machine operation. Accordingly, it should be highlighted that it is not totally true
that sophisticated and complex signal processing may always lead to the estimation
of the most representative set of features to describe the machine condition. In this
regard, from a practical application viewpoint and based on practical experience,
the simplest way to evaluate and identify the early occurrence of faults is by means
of analyzing trends of physical magnitudes acquired during the continuous working
operation of the machine. Thus, as aforementioned, the appropriate early detection
of faults may help in the reduction of monetary losses caused by unscheduled
maintenance task.

Certainly, the detection and identification of faulty operating modes involve a
critical procedure in which the signal processing or feature calculation must be
carefully performed. Another important issue to perform and improve the condi-
tion assessment is the consideration of artificial intelligence (AI) for carrying out
the automatic fault diagnosis. Indeed, the use of AI in condition monitoring strate-
gies has been rapidly increased, and its application to identify the occurrence of
faults in rotating machinery is an adequate and coherent option to obtain high-
performance results. Additionally, it has been shown that an appropriated applica-
tion of AI in condition monitoring approaches provides a powerful capacity for
detecting and classifying the appearance of single or multiple faults in electrome-
chanical systems. This potential provided by AI is reached because the limitations of
classical space-transform techniques, when nonlinearities characterize the analyzed
system, are overcome [6].

Hence, several AI techniques have been addressed with the main purpose of
being applied in monitoring tasks of industrial machinery, for instance, artificial
neural networks, genetic algorithms, fuzzy logic, support vector machines, Bayes-
ian networks, self-organizing maps (SOM), and case-based reasoning, among
others, represent some of the most techniques used in condition monitoring
approaches [7]. However, there are still great challenges for developing new condi-
tion monitoring strategies; indeed, the use of AI techniques has increased because
the main challenge of the condition assessment in industrial sites is that nonlinear-
ities are inherent to the working operation [8].

Thereby, the contribution of this chapter lies in the proposal of a condition
monitoring strategy for detecting and assessing unexpected working conditions in
rotating machines. Such proposal performs the condition assessment under a nov-
elty detection approach based on self-organizing maps. Thus, the proposed condi-
tion monitoring method includes the estimation of a statistical time-based set of
features from acquired vibration signals; then, the data modeling is carried out
through SOM and then the evaluation of novelty detection events. Finally, if nov-
elties are detected, a retraining and incremental learning procedure is considered by
including a dimensionality reduction stage by means of the linear discriminant
analysis. This proposal is validated and applied to a real laboratory gearbox-based
electromechanical system.

2. Fault detection and identification

The condition monitoring assessment is involved with the behavior analysis of
the machine working operation; thus, the consideration of stator currents or vibra-
tions as informative physical magnitudes for condition monitoring represents the
most preferred and accepted approaches in the related literature. Also, although
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different information fusion levels are considered, such as signal-level or decision-
level, dealing with electromechanical condition monitoring, the feature-level rep-
resents the most appropriate, since many numerical fault indicators from afore-
mentioned physical magnitudes have been proposed as suitable fault indexes in
multiple studies [9, 10]. In this regard, time-domain, frequency domain, and time-
frequency domain are the three feature estimation approaches widely applied dur-
ing the physical magnitude characterization process. Although techniques based on
frequency and time-frequency domain, such as classical Fourier transform or
wavelet analysis have been widely applied, most of these techniques require a deep
knowledge of the fault effects over the resulting frequency distributions of the
physical magnitudes. Indeed, as stated by Zhang et al. in [11], dealing with complex
electromechanical systems, where the resulting interaction among multiple parts is
reflected in the acquired physical magnitudes, the consideration of statistical time-
domain features represents a performing trade-off between computational simplic-
ity and characterization capabilities of general patterns. Such feature-level fusion
scheme needs to consider the processing of a high-dimensional set of numerical
features estimated during the characterization of the available physical magnitudes
that, although increases the fault detection and identification capabilities, inevitably
contain redundant and nonsignificant information.

Dimensionality reduction procedures are applied in order to avoid low fault
diagnosis performances and overfitting responses of the condition monitoring
schemes. In this regard, classical dimensionality reduction techniques have been
widely applied, as the principal component analysis (PCA). However, PCA aims to
identify orthogonal components that maximize the preservation of the data vari-
ance. That is, PCA seeks for global data representation; thus, considering the
unsupervised operation, a set of non-connected data clusters have a negative impact
over the resulting representation. Other classical approaches, as linear discriminant
analysis, overcome such data topology limitation by means of a supervised
approach, as the LDA, where the resulting set of features is a mathematical combi-
nation of the original ones maximizing distances among classes [12, 13].

Finally, the classification algorithms, play an important role in data-driven
condition monitoring schemes to perform the automatic and final diagnosis out-
come. In this regard, neural networks and fuzzy inferred systems classically repre-
sent the most used classifiers, but also classifiers like decision trees and support
vector machines have been widely applied [14–16]. The use of these techniques,
however, is related with the maximization of the classification ratio by means of the
feature set decomposition following supervised training schemes. According to
Shannon’s rate-distortion theory, mutual dependencies among various sources and
between the input and output spaces contain the actual intrinsic dimension of the
data and allow avoiding over-fitted responses. Thus, unsupervised learning
approaches applied over the available feature space represent the most coherent
processing procedure in order to maintain the underlying physical phenomenon of
the system under monitoring. Concerning this problem, manifold learning methods
have been applied in the last years to preserve the information in a lower dimen-
sional space. Among them, the self-organizing map, SOM, is the most used, which is
based on developing a neural network grid to preserve most of the original distances
between feature vector representations in the original feature space [17]. Indeed,
the SOM allows a high-dimensional input data mapping over a two-dimensional
output layer while preserving as much as possible the structure of the input data.
Although SOM leads to model the original data distribution following an
unsupervised approach, each of the neuron units used during the original space
characterization can be later associated with a class label; thus, through distance
criteria, the diagnosis can be estimated during the assessment of a new
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measurement. Thus, both fault detection and identification tasks can be faced at the
same time and, what is more important, considering the same criteria for both
outcomes, that is, topological aspects of the data distribution.

3. Novelty detection and diagnosis methodology

The proposed condition monitoring strategy that is applied to the condition
assessment of an electromechanical system under a novelty detection framework is
composed of five important stages as depicted in Figure 1.

The first stage is based on the fact that initially the machine condition is known;
in this sense, it is considered as an initial condition that only the available informa-
tion belongs specifically to the behavior of the healthy condition of the electrome-
chanical system under evaluation. This assumption is asserted and taken into
account since all the machinery used in most of the industrial applications starts its
life cycle from an initial healthy condition, which means that all elements work
properly. Therefore, under this assumption, such available information is obtained
from the continuous monitoring of one vibration signal that is monitored during the
working operation of the electromechanical system.

In the second stage, the characterization of the machinery behavior is
performed; thus, the available vibration signal is processed and analyzed, aiming to
carry out a characterization of the machine working condition and also with the aim
of highlighting those representative features that can represent the occurrence of
abnormal operations. Precisely, the calculation of a representative set of eight
statistical time-based domain features is estimated from the acquired vibration
signal; this proposed set of features consists of some well-known statistical features
such as mean, rms, standard deviation, variance, shape factor, crest factor, skew-
ness, and kurtosis. Indeed, and as it has been mentioned, statistical time-based
domain features provide meaningful information leading to the estimation of high-
performance feature characterization due to its capability of describing trends and
changes in signals; additionally, this proposed set of statistical features has been
included in several condition monitoring approaches to perform the assessment of
the operating working condition of electromechanical systems used in industrial
application [3, 11, 16]. The corresponding mathematical equations of such numeri-
cal features are shown in Table 1.

Subsequently, in the third stage, the set of statistical features estimated from
vibrations is modeled through SOM; the data modeling is performed by SOMs since

Figure 1.
Rotating machinery-based electromechanical system used to demonstrate the practical implementation of the
proposed method.
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this approach allows to preserve the data topology. Due to the proposed condition,
monitoring strategy is based under a novelty detection framework, and the initial
and available information is modeled, aiming to represent the initial known condi-
tion which is the healthy condition. As a result, a pre-defined neuron SOM grid
model is first obtained to characterize the healthy condition of the electromechan-
ical system. Then, in case additional conditions appear, the data modeling is also
performed by a specific neuron SOM grid model for each one of the additional
operating condition.

Afterward, the novelty detection is performed in the fourth stage; in this sense,
there exist different approaches for carrying out the detection of novel events.
Classic novelty detection approaches are based on the evaluation of numerical
threshold values, and the definition of such values depends on different criteria.
Thereby, for this proposal, the novelty detection is performed by evaluating the
average quantization error, Eq, obtained during the data modeling through SOMs;
indeed, the novelty detection based on the Eq is a coherent option according to the
data modeling to detect whether the electromechanical system condition is known
or unknown. Certainly, because the healthy condition is initially the unique known
and available condition, the evaluation of any other new measurement that does not
belong to the known condition will exhibit a different Eq value. Thus, any change
presented in the Eq value should be analyzed because this value is an important
measurement related to the occurrence of unexpected and unknown events which
results in the novelty detection. Otherwise, the diagnosis and condition assessment
of the known conditions is carried out if any change is presented in the Eq value.

Finally, the last stage is carried out in case of novelty detection; thus, this stage
considers a retraining process where an incremental learning is performed with the
aim of updating the available information with new data that belongs to new
operating conditions. In this sense, during the detection of a novelty event, the
available information that describes such novel condition is also processed, and
from the acquired vibration signal, the statistical time-domain features are also
estimated. Then, such new available information represented by the estimated
statistical features is modeled through SOMs, and a new neuron SOM grid repre-
sents the new condition. Accordingly, as aforementioned, each new operating con-
dition detected under this novelty detection approach has to be modeled by a
specific neuron SOM model. Finally, when novelty detection occurs, such neuron
SOM grids are subjected to a dimensionality reduction procedure by means of the
linear discriminant analysis in order to obtain a maximum linear separation

Mean x ¼ 1
n �

Pn
k¼1 xkj j (1)

Root mean square
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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k¼1 xkð Þ2

q
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Crest factor CF ¼ x̂
RMS

(6)

Skewness
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E xk�xð Þ3½ �
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3
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Kurtosis
k ¼

E xk�xð Þ4½ �
σ
4

(8)

Table 1.
Set of statistical time-domain features.
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between the considered conditions and also with the aim of obtaining a visual
representation the assessed conditions.

4. Case study

In order to demonstrate the practical implementation of the proposed smart
monitoring based on novelty detection in an industrial application, a case of study is
proposed next.

A rotating machinery-based electromechanical system has been considered;
such electromechanical system includes a three-phase IM of 1492-W (model
WEG00236ET3E145T-W), a gearbox with 4:1 ratio (model BALDOR
GCF4X01AA), and a DC used as a mechanical load (model BALDOR CDP3604).
The IM is coupled shaft to shaft to the gearbox, and the gearbox is also coupled shaft
to shaft to the DC generator, and a VFD (model WEGCFW08) is also used to feed
and control the different operating frequencies of the IM. Besides, the DC generator
is used as a non-controlled mechanical load representing around 20% of the nomi-
nal load. A picture of the second electromechanical system based on a gearbox is
shown in Figure 2.

Aiming to detect and assess the appearance of unexpected conditions, a database
of different experiments is generated. The data acquisition is carried out by means
of a data acquisition system (DAS) that is a proprietary low-cost design based on a
field programmable gate array; such DAS uses two 12-bit 4-channel serial-output
sampling analog-to-digital converters, model ADS7841 from Texas Instruments.
Different physical magnitudes have been acquired during the experiments; that is,

Figure 2.
Rotating machinery-based electromechanical system used to demonstrate the practical implementation of the
proposed method.
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the appearance of mechanical vibrations is acquired by means of a triaxial acceler-
ometer (LIS3L02AS4). In this regard, the accelerometer sensor is fixed on the top of
the gearbox. For this proposed work, the occurrence of vibrations is analyzed
because they are inherent to the rotating condition of the rotating elements that
compose the electromechanical system, i.e., electric motors, gearboxes, and bear-
ings, among others [2].

The accelerometer sensor is individually mounted on a board with its
corresponding signal conditioning and anti-alias filtering. During the acquisition of
vibration signals, the sampling frequency is set to 3 kHz; as a result, 270 kS are
stored during 90 s of continuous sampling of the working condition, in the steady-
state regime, of the electromechanical system are stored. Furthermore, the IM of
the experimental test bench is driven at different operating frequencies during the
experimentations; specifically, the operating frequencies are set at 5, 15, and 50 Hz.

During the experimentation, four different operating conditions are also evalu-
ated: healthy (HLT), 25% of uniform wear in the gearbox (W25), 50% of uniform
wear in the gearbox (W50), and 75% of uniform wear in the gearbox (W75). In this
regard, the gearbox with 4:1 ratio is composed of two gears, the driver gear and the
driven gear which has 18 and 72 teeth, respectively. The wear was artificially
induced uniformly in all teeth of three similar driven gears: from Figure 3a–d, the
set of gears tested in the gearbox-based electromechanical system. The experiments
are performed by replacing iteratively the healthy gear with the damaged ones.

5. Competency of the method/results

The proposed condition monitoring strategy is based on a novelty detection
approach; the implementation of such proposal has been done in Matlab that is a
sophisticated software used in several engineering applications. Indeed, the use of
Matlab facilitates the signal processing for carrying out the condition assessment of
the electromechanical system. Thus, the available vibration signal is first continu-
ously monitored and acquired during the operating condition of the electrome-
chanical systems, and then the statistical set of features is estimated from the
vibration signal.

As aforementioned, the initial condition belongs to the healthy condition; in this
sense, the data modeling is carried out aiming to obtain a neuron SOM grid model
that represents such initial condition. As a result of the data modeling, the first

Figure 3.
Set of the faulty conditions evaluated in the gearbox-based electromechanical system: (a) healthy gear, (b) 25%
of uniform wear, (c) 50% of uniform wear, and (d) 75% of uniform wear.
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SOM1 model obtained and this SOM model only characterize the healthy condition
of the electromechanical system. During the data modeling, an average Eq error of
0.4932 has been obtained during the training procedure, and during the evaluation
the Eq error reaches a value of 19.4419. It should be noted that during the evaluation
different data information has been used; indeed, the evaluated data belong to a
faulty condition tested in the gearbox. In Figure 4, a visual representation of the
novelty detection achieved by the first modeled neuron SOM1 grid is shown.

After the first novelty detection, the process and incremental learning is carried
out; in this regard, the available data that belong to the first faulty condition (25% of
uniform wear) is modeled by a second neuron SOM2 grid. Thus, the data informa-
tion related to the working condition of the machine consist of two known condi-
tions which are healthy and 25% of uniform wear. Indeed, during the training of the
second SOM model, a Eq of 0.8997 is achieved during the training and during the
evaluation with available data, which belongs to another unknown condition; the Eq
error was 7.0773; thus, such significant increase in the Eq error depicts that an
anormal condition is detected by the novelty detection approach. The visual repre-
sentation of the Eq error is shown in Figure 5 where it is possible to appreciate the
abrupt change due to the occurrence of the unexpected faulty condition.

Figure 4.
Novelty detection performed by SOM1 during the evaluation of the first faulty condition tested in the
electromechanical system, 25% of uniform wear in the gearbox.

Figure 5.
Novelty detection performed by SOM2 during the assessment of the second faulty condition, 50% of uniform
wear in the gearbox.
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The data information to the electromechanical system condition is currently
composed of three different conditions, healthy, 25%, and 50% of uniform wear in
the gearbox. Later, available information related to another faulty unknown condi-
tion is evaluated after performing the retraining process and incremental learning.
In this regard, during the training procedure of the third neuron SOM3 grid, the
obtained Eq value was around 0.7077, and during the evaluation of the last faulty
condition the achieved Eq was around 6.4367. Thus, the SOM3 model represents the
available information to the third faulty condition that is 50% of uniform wear. In
Figure 6, the visual representation of the novelty detection performed is shown
during the evaluation of the SOM3 model.

Subsequently, after the last retraining and incremental learning, the available
information related to the faulty condition of 75% of uniform wear is also modeled

Figure 6.
Novelty detection carried out by SOM3 obtained for the evaluation of the third faulty condition, 75% of uniform
wear in the gearbox.

Figure 7.
Resulting two-dimensional projection obtained by considering the four neuron SOM grids modeled for each one
of the detected conditions.
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by a fourth SOM model, such model is the neuron SOM4 model, and the Eq error
achieved during the training was 0.7700. Because four different operating condi-
tions are detected during the operating condition of the electromechanical system,
the final available information stored by the proposed novelty detection approach
consist of information capable of detecting four different operating conditions. In
case of more novelty detections, the retraining process and incremental learning are
again performed, and the information related to the different operating conditions
is updated.

Finally, a visual representation of the operating conditions detected during the
application of the proposed diagnosis methodology is obtained by means of apply-
ing a dimensionality reduction technique, PCA. In this sense, in Figure 7, a visual
representation of the data distribution of all detected conditions is shown; in this
visual representation, it is appreciated that different operating conditions appears.
Indeed, different clusters appear for each detected condition because different
operating frequencies were considered during the experimental evaluation of the
considered conditions.

6. Conclusions

Modern industrial production is characterized by the consideration of machine
learning data-based models to support the main aspects of the manufacturing pro-
cess. In this regard, two main data science challenges related with condition moni-
toring of electromechanical assets in the Industry 4.0 framework are (i) the premise
that only information of the healthy condition is initially available and (ii) the
adaptation of the fault detection and identification scheme in order to incorporate
new operating conditions. Thus, this paper proposes a new methodology for multi-
fault detection and identification based on incremental learning applied to novel
fault detection on electromechanical systems by analyzing vibrations and stator
current signatures of the electric motor drive.

Moreover, the proposed condition monitoring strategy based on a novelty
detection approach is capable of being applied to other electromechanical systems,
and also the consideration of other different physical magnitudes can be also
included in such proposal.
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Chapter

AI for Improving the Overall
Equipment Efficiency in
Manufacturing Industry
Francesc Bonada, Lluís Echeverria, Xavier Domingo

and Gabriel Anzaldi

Abstract

Industry 4.0 has emerged as the perfect scenario for boosting the application of
novel artificial intelligence (AI) and machine learning (ML) solutions to industrial
process monitoring and optimization. One of the key elements on this new indus-
trial revolution is the hatching of massive process monitoring data, enabled by the
cyber-physical systems (CPS) distributed along the manufacturing processes, the
proliferation of hybrid Internet of Things (IoT) architectures supported by polyglot
data repositories, and big (small) data analytics capabilities. Industry 4.0 paradigm
is data-driven, where the smart exploitation of data is providing a large set of
competitive advantages impacting productivity, quality, and efficiency key perfor-
mance indicators (KPIs). Overall equipment efficiency (OEE) has emerged as the
target KPI for most manufacturing industries due to the fact that considers three
key indicators: availability, quality, and performance. This chapter describes how
different AI and ML solutions can enable a big step forward in industrial process
control, focusing on OEE impact illustrated by means of real use cases and
research project results.

Keywords: machine learning, supervised learning, unsupervised learning,
classification, regression, ensembles, artificial intelligence, data mining,
data-driven, industry 4.0, smart manufacturing, cyber-physical systems,
predictive analytics

1. Introduction

Industry 4.0 has emerged as the perfect scenario for boosting the application
of novel artificial intelligence (AI) and machine learning (ML) approaches to
industrial process monitoring and optimization. Artificial intelligence is a set of
techniques and methodologies aimed at allowing machines, especially computer
systems, to simulate human intelligence processes. Machine learning is a subset of
artificial intelligence, which provides a set of methodologies and strategies to allow
systems for improvement. ML relies in automatic learning procedures, which
generate knowledge from previous experiences (data).

One of the key elements on this new industrial revolution, aligned with the
disruptive capabilities that AI and ML provide, is the hatching of massive process
monitoring data, enabled by the cyber-physical systems (CPS) distributed along the
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manufacturing processes, the proliferation of hybrid IoT architectures supported by
polyglot data repositories, and big (small) data analytics capabilities. Industry 4.0
paradigm is data-driven, and the smart exploitation of this data can provide a large
set of competitive advantages impacting productivity, quality, and efficiency key
performance indicators (KPIs), which are of utmost importance in the current
competitive scenario. Moreover, the manufacturing companies are evolving to low
volume with high personalization manufacturing environments [1, 2], where their
competitiveness depends on the industries’ facilities, considering asset and resource
availability, but also in the optimal execution of production processes [3].

Therefore, there is an opportunity on improving the performance of
manufacturing processes taking as input those new streams of information; going
through analytical processes; creating new supporting models, tools, and services;
and benchmarking their recommendations and outcomes against classical
approaches. To that end, the overall equipment effectiveness (OEE) is aimed at
measuring types of production losses and indicating areas of process improvement
[4, 5], ideal to be used as a benchmarking KPI, and one of the main indicators used
in manufacturing execution systems (MES) [6, 7].

In the recent years, research projects are aiming to develop novel stand-alone
solutions covering the entire monitoring and control value chain: from the CPS for
retrieving the data, to wireless communication protocols, big data storage for trace-
ability and advanced artificial intelligence techniques for production control, opti-
mization, and maintenance.

The use of artificial intelligence algorithms is enabling a big step forward in
industrial process control and monitoring: from statistical process control (SPC)
and statistical quality control (SQC) methodologies, which require a high prior
knowledge of the process, to AI optimized process boundaries that provide valuable
insights of the monitored process. Industrial applications of AI have its particular
requirements. Not only prediction and forecasting capabilities are desired but also
increasing the process knowledge with the right selection of AI algorithms, provid-
ing a competitive edge over traditional approaches.

AI provides the right set of tools for automatic quality prediction and full part
traceability, process optimization, and preventive maintenance. These sets of bene-
fits are directly impacting into productivity KPIs such as OEE and breakdowns,
among others.

This chapter will describe the application of different AI and ML algorithms,
including classifiers, regressors, or ensembles such as random forest trees, gradient
boosting, or support vector machines, to some real-case industrial scenarios, such as
quality prediction or process characterization for plastic injection molding or iron
foundry, predictive maintenance for industrial water treatment processes, and
means of leveraging production data (quality control, time series, batch data, etc.)
at different granularity levels and its impact to OEE: from soft real-time to batch
analysis and how this can be translated to valuable production insights.

2. Overall equipment effectiveness as KPI

As introduced before, the current scenario for manufacturing industries can be
summarized as high demanding, very competitive, with dynamic market demand,
and last but not least, hyperconnected and digital. Low-volume and more personal-
ized parts or product work orders are replacing old high-volume ones without
personalization, and this implies that effectiveness may not only focus on specific
process optimization but also, for example, on improving changeover setup times,
reducing scrap, or improving quality. Therefore, there is a clear need on improving
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and optimizing all manufacturing processes to overcome this demanding situation
with effective response, also considering the efficient adaptation and usage of
production lines. Traditional approaches tended to focus on throughput and utili-
zation rate, but nowadays this is insufficient. The main reason relies on the impor-
tance of unconsidered context information, or even small details, which are making
a difference.

The overall equipment effectiveness indicates how good the equipment is being
used. OEE has emerged as the target KPI for most manufacturing industries due to
the fact that considers three key indicators:

• Availability: Percentage of time that an equipment can operate

• Quality: Percentage of good produced parts

• Performance: Percentage of maximum operation speed used

But before going deep into OEE calculation, we must first understand in which
phases of the manufacturing process AI can impact, so that we can relate all
together. To that end, please refer to Figure 1, where OEE components are sum-
marized, and Figure 2, where a standard manufacturing process is compared with
an AI-powered one.

Figure 1.
OEE components and focus.

Figure 2.
OEE optimization using AI.
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Focusing on Figure 2, let us introduce some simple examples of how AI impacts
in the manufacturing process:

• Setup: We can improve the time needed to set up or adapt the environment,
lines, and tools when a new incoming work order arrives, considering results
from previous similar experiences. As we are able to do it in less time, and in
a more effective way, we are impacting to the availability of the assets, and
consequently, improving the OEE.

• Process deviations: In a similar way, AI allows for quality prediction relying
on process parameters, which combined with real-time tuning of execution
parameters, results in better quality outcomes, and scrap reduction, again,
improving OEE.

• Maintenance: Predictive maintenance allows us to plan and provision with the
needed spare parts so that impact in production is minimized. With this
management we improve availability, and therefore, OEE is also improved.

In the text below, we define how the literature calculates the OEE, while in the
following sections, we’ll provide some real examples in which the OEE performance
indicator has improved thanks to AI.

According to [8], the overall equipment effectiveness can be calculated
as follows:

OEE ¼ Availability ∗Performance rate ∗Quality rate: (1)

where

• Availability

Availability ¼
available time� unplanned downtimeð Þ

available time
(2)

Availability time ¼ total available time–planned downtime (3)

Planned downtime: excess capacity, planned breaks, planned maintenance,
communication break, and team meetings

• Unplanned downtime: breakdowns, setup and adjustment, late material
delivery, operator availability

• Quality rate

Quality rate ¼
total produced parts� defective partsð Þ

total produced parts
(4)

• Performance

Performance ¼
total production parts∕operating timeð Þ

idle run rate
(5)

Operating time ¼ Available time� unplanned downtime: (6)

Idle run rate ¼ number of parts per minute: (7)
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Other productivity indicators can also be very helpful when evaluating a
manufacturing process and benchmarking how AI and ML solutions can provide
tangible benefits (Figure 3).

Productivity indicators:

• Good produced parts/operator

• Good produced parts/total produced parts (scrap, setup, testing, etc.)

Consumption indicators:

• Material consumption (MC): weight of material consumed per time unit

MC
kg

h

� �

¼
part weight g

cycle time sec
∗
3600 sec

1 hr
∗

1 kg

1000 g
(8)

• Specific energy consumption

The specific energy consumption (SEC) can be defined in terms of the amount
of power (P) input into the system, divided by the process rate ( _m):

SEC ¼
P

_m
(9)

3. Artificial intelligence for availability

While guarantying high OEE, availability is key. OEE considers availability loss,
which considers any event that stops the production plan for a significant amount of
time, including unplanned and planned stops. An availability of 100% means the
process is always running during planned production time.

There are other considerations which should be included in the availability
computation, such as the changeover times. Changeovers are a source of setup and
adjustment time, which is one of the main time loss reasons, and thus represent a
valuable opportunity for improvement. Changeover times are most commonly
improved (reduced) through the application of single-minute exchange of dies
(SMED), which relies on performing as many changeover steps as possible while
the equipment is running. In fact, these days equipment manufacturers tend to
provide an availability rate in the specifications of their equipment, considering,
among others, these changeovers.

But what can AI do for us? If we think in data processing and analytical capaci-
ties that can be run over information coming from equipment, we rapidly think in
predictive maintenance to anticipate problems or virtual sensors to simulate, when

Figure 3.
Productivity indicators.
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feasible, some defective or malfunctioning sensors. Let us see some examples of
this in the following subsections.

3.1 Virtual sensors

Virtual sensors (VS) are implemented with software to emulate real-world or
even newly artificially defined sensors and are commonly used to (i) compute extra
parameters derived from real sensors that are impossible to be measured, contrib-
uting to a better understanding of the whole environment, and (ii) simulate real
sensor outputs. In the scope of this chapter, the second functionality becomes useful
to mitigate system stops due to equipment failure or even planned maintenance,
increase the availability of complex systems, and therefore improve the OEE.

For example, in a water treatment facility, where a lot of processes are continu-
ously and simultaneously working to improve the quality of water, the decisions
taken to manage the global system depends directly on the observations obtained by
the sensors that are deployed along the premises. When any of those sensors is not
working, the system cannot operate correctly because sometimes those input values
are of utmost importance to determine which decision is correct.

In this case, a VS can be used to simulate and replace that lost sensor during the
downtime. For this purpose, the VS is implemented through machine learning
algorithms and is based on different inputs or sensors that are operating in the
different parts of the water treatment cycle in the system.

Following this procedure, we showcase a VS simulating a measurement of one of
the water quality parameters in a water treatment facility. In this case, this mea-
surement is of utmost importance in the system because, depending on its observa-
tions, the processes adapt their execution parameters to fit the required quality
requirements.

Therefore, we must overcome three main challenges, the combination of which
increases considerably the complexity of the problem to be solved using AI/ML
algorithms:

• The complexity of the processes: In water treatment facilities, physical and
biological processes are combined to clean the water and achieve the expected
levels of quality.

• The delayed responses: The water flow may be slow, so a change in the input
state will not be immediately reflected in the rest of the system.

• The bad quality of the signals: In this kind of environments, where the sensors
are in direct contact with dirty water, the observations usually contain
anomalous values.

We start implementing the needed filters and preprocessing steps to clean and
improve the data, but usually this is not enough, andML algorithms cannot achieve the
desired performance. Consequently, extra efforts are needed to obtain better models.

This example is a regression problem, where the target is a continuous value,
and the predictors are composed of current and past values from other sensors
which are part of the same process.

During the first iterations of the analysis, one of the main tasks was to select the
optimal past values of each observation/sensor to be used as predictors. This process
was done through the analysis of the importance of the variables once a model has
been trained, selecting the N last values with the most importance. Also different
frequencies of lags were tested using the same approach.
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It is important to note that the target variable was not used to make next pre-
dictions, avoiding accumulated errors and allowing an infinite horizon of predic-
tions, since the only requirement was the observations of the other sensors.

Different ML algorithms were tested and compared, and Figure 4 showcases the
three ML models that have better performance:

• XGBoost: Extreme gradient boosting. Optimized distributed gradient boosting
library. Gradient boosting is a ML technique which produces a prediction
model in the form of an ensemble of weak prediction models. It builds the
model in a stage-wise fashion, training the weak models sequentially, each
trying to correct its predecessor, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function [9].

• KNN: K-nearest neighbors. Nonparametric algorithm. Predictions are
computed based on the mean of the labels of its nearest neighbors [10].

• RF: Random forests. Ensemble of decision trees, where each tree is usually built
from a sample drawn with replacement (bagging method) from the training
set. If the sample is obtained without resampling, the method is called pasting.
When splitting each node during the construction of a tree, the best split is
found either from all input features or a random subset of size max_features
(RF algorithm hyperparameter) [11].

In order to compare the performance between model results, we are using the
following metrics:

• Mean squared error (MSE) measures average squared error of our predictions,
calculating the square difference between the predictions and the target and
then the average of those values:

MSE ¼
1

N

X

N

i¼1

yi � ŷi
� �2

(10)

• Mean absolute error (MAE) is calculated as an average of absolute differences
between the target values and the predictions:

Figure 4.
Initial predictions.
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MAE ¼
1

N

X

N

i¼1

yi � ŷi
�

�

�

� (11)

• Explained variance score (EVS) measures the proportion to which a
mathematical model accounts for the variation (represented as σ2, s2, or Var
(X)) of a given data set:

EVS ¼ 1�
Var yi � ŷi

� �

Var yi
� � (12)

The best performance is achieved by random forests followed by KNN (MSE,
0.69; MAE, 0.43; EVS, 0.86) and XGBoost (MSE, 0.81; MAE, 0.85; EVS, 0.98). In
all the cases, grid search [12] has been used to tune the hyperparameters.

The scorings seem to be acceptable, but analyzing one by one the predicted
values (Figure 5), unusual behaviors appear in the predictions. So, in order to try to
improve the outputs, an ensemble model is implemented combining the previous
algorithms and following the stacking methodology (Figure 6, [13]), where a new
ML algorithm (called blender or meta learner), in this case a ridge regressor [14],
takes the previous predictions as inputs and makes the final prediction, usually
better. The blender has been trained following the hold-out set approach.

Basically, the main idea is to, instead of taking the best model and use it to make
predictions, try to combine the predictions of completely different ML algorithms,
which are based on really different approaches and are good to operate in specific
conditions, into a new ensemble which combines the best of each one, is able to
operate in all the cases, and reduces the global error.

This process improves significantly the predictions (Figures 7 and 8), achieving
the following scores, MSE, 0.27; MAE, 0.40; EVS, 0.98, and resulting in a ML model
that is able to simulate the real sensor during downtimes, allowing the system to
continue working normally.

3.2 Maintenance

We define predictive maintenance as the set of techniques used to determine the
condition of equipment, allowing for a better and more personalized maintenance

Figure 5.
Initial predictions detail.
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Figure 6.
Blending predictor schema.

Figure 7.
Final virtual sensor predictions.
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plan. This plan depends on the performance, among other indicators, of the specific
equipment (actual condition), instead of only relying on periodic maintenance
routines, and this enables spare parts optimization, better maintenance actuations
planning, and of course, OEE improvement due to its impact in availability, per-
formance, or even quality.

Continuing on the water treatment facilities case introduced previously, one of
the main problems faced in this environment is related to those sensors that are in
direct contact with dirty water.

Over the time, a continuous and incremental drift appears in the observations of
the sensors, thereby generating incorrect measurements. Since these measurements
are the base of the system which takes operational decisions, the sequent of the
taken actions will be incorrect, resulting in an unnecessary waste of resources or,
even worse, an immediate stop of the system to repair and calibrate the sensors.

This pattern can be easily identified in Figure 9, having an incremental drift
over the time until day 25, when the sensor was stopped during some hours for
maintenance. Once the sensor is turned on again, the real value of the observations
is shown, approximately 0.

Before the proposed approach, trying to prevent these problems, a set of pre-
ventive maintenances was defined, which consisted of manually taking measure-
ments to compare them in the laboratory with the values of the sensors. Despite
this, these actions were not enough, and the drift usually appeared before the
scheduled maintenance, making necessary a better approach: a predictive
maintenance-based approach.

Figure 8.
Final virtual sensor predictions’ detail.

Figure 9.
Drift over the time.
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There are different ways to implement a ML predictive maintenance solution.
For example, it is possible to predict the remaining useful life of an equipment,
which is a regression problem. But in this case, it has been defined as a binary
classification problem, where the goal is to, given an observation (and the previous
values), predict if there will be an anomaly in the following 24 hours (estimated
minimum range of time to define a maintenance).

In the presented problem, the term anomaly refers to a sensor deviation or a
drift in the observations measured by it, due to the contact with dirty water, making
necessary a maintenance action in this specific sensor to clean or even replace it if
it is necessary.

As in other classification problems, the basic requirement is labeled data, in this
case, labeled anomalies. This was the main problem, there was a lot of historical
data, but the anomalies were not labeled so the first step consisted of an anomaly
detection problem.

Through unsupervised anomaly detection algorithms, such as:

• Isolation forest: Isolation forest algorithm isolates observations by randomly
selecting a feature and then randomly selecting a split value between the
maximum and minimum values of the selected feature. Since recursive
partitioning can be represented by a tree structure, the number of splittings
required to isolate a sample is equivalent to the path length from the root node
to the terminating node. This path length, averaged over a forest of such
random trees, is a measure of normality [15].

• Local outlier factor: Local outlier factor algorithm computes a score reflecting
the degree of abnormality of the observations. It measures the local density
deviation of a given data point with respect to its neighbors. The idea is to
detect the samples that have a substantially lower density than their
neighbors [16].

And thanks to an intensive data preprocessing steps such as data segmentation
or feature engineering (which made the task easier to detect this specific anomaly),
the historical dataset was labeled. Finally, a simple clustering algorithm was run to
discard different anomalies.

The result of the anomaly detection analysis is shown in Figure 10, where sensor
1 is measuring a value different than 0 (anomaly), and therefore the system tries to
force a response increasing excessively the resource measured by sensor 2.

Finally, we face the predictive maintenance classification problem, where the
key was the definition of the target variable: a binary column indicating whether in

Figure 10.
Anomaly detection results.
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the next 24 hours an anomaly is detected or not. At this point, different ML
classification algorithms were tested, and the best performance was achieved by
XGBoost, obtaining the following classification results (Figure 11) in a test set.

In order to measure the algorithm performance in the classification task, we are
using confusion matrix and the following metrics:

• Confusion matrix: In a ML classification problem, a confusion matrix is a
specific table that simplifies the analysis of the performance of an algorithm.
Each column of the matrix represents the instances in a predicted class, while
each row represents the instance’s real class (or vice versa) [17].

• Accuracy: Classification metric that computes the fraction of correct
predictions:

accuracy y, y0
� �

¼
1

nsamples

X

nsamples�1

i¼0

1 y0i ¼ yi
� �

(13)

• Precision: Classification metric that computes the fraction of relevant instances
among the retrieved instances. It is also called positive predictive value:

precision ¼
True Positive

True Positiveþ False Positive
(14)

Figure 11.
Confusion matrix.
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• Recall: Classification metric that computes the fraction of relevant instances
that have been retrieved over the total amount of relevant instances. It is also
called positive predictive value:

recall ¼
True Positive

True Positiveþ False Negative
(15)

• F1-score: Classification metric that computes a weighted harmonic mean of the
precision and recall. F1 score reaches its best value at 1 and worst score at 0.

F1 score ¼ 2 ∗
precision ∗ recallð Þ

precisionþ recallð Þ
(16)

As depicted in Figure 11, the final version of the model provides good results
while predicting anomalies with time enough to articulate the needed preventive
actions. Not only the accuracy is important, but we would also like to remark that
the false negative rate is low, that is, the algorithm performs very well in detecting
anomalies, and only a few of them are undetected.

3.3 Process setup

Process setup, especially during changeover operations, can affect the availabil-
ity indicator and thus represents an opportunity for manufacturing AI and ML
based solutions. New production trends based on a high degree of flexibility, cus-
tomization, and small batches require for an extra effort in terms of process setup
and scheduling. For instance, in plastic injection molding quite often due to pro-
duction flexibility and scheduling, a mold needs to be re-installed and set up for
production again in order to deliver a new production batch to the final customer.
This situation requires for a new tuning process involving an important waste of
time, material, and energy. This situation opens the opportunity for developing
supervised ML models to compare past production data with real-time data for
recommending tuning parameters and reach in a shorter time frame the optimal
process operation.

To this end, the real-time evolution of a key process parameter can be used as
training of the manufacturing process setup or configuration. By comparing the
actual real-time evolution within the manufacturing cycle versus the known opti-
mal (acquired from previous production runs), a set of recommendations can be
provided. This strategy can boost the process setup, providing recommendations to
reach the optimal targeted key parameter cycle evolution, following an iterative
method as depicted in Figure 12.

Following the plastic injection molding example, within the PREVIEW
project [18], a set of experimental trials were performed in order to create the
historical database that supports the AI system in charge of providing process
tuning recommendations. Within the AI solution, different algorithms were tested
for comparing new sensor data versus historical data to provide tuning recommen-
dations. Figure 13 shows a PREVIEW project result using random forest trees [19]
to provide tuning recommendations when the injection speed parameter was
changed to different operational points. As can be seen, for lower than optimal
injection speeds, the AI system based on RF recommends increasing the injection
speed, while for higher injection speeds recommends a reduction, driving always
the parameter toward the optimal operational window that leads to optimal cavity
pressure evolution within the manufacturing cycle.
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4. Artificial intelligence for quality

It is a well-known problem that high added-value industrial and manufacturing
processes combining several operations (welding, milling, etc.) and thus heteroge-
neous data sources do not always reach their maximum performance potential due
to the lack of powerful and tailored solutions for data analysis toward the zero
defects manufacturing paradigm. Today’s artificial intelligence and machine learn-
ing based solutions are mature enough to boost production processes by means of
exploiting the process data generated thanks to the in-line sensors, workers’ feed-
back, reports, quality control, etc. Thus, developing a tailored predictive quality
solution based on artificial intelligence and machine learning has become a crucial
key element for impacting OEE to prevent the manufacturing of non-quality parts
and its exportation to the final client. Several research works have been carried out
for different manufacturing processes, including plastic injection molding, foundry,
milling, welding, etc. (e.g., see [20–24]) showing the potential benefits of applying
AI and ML to exploit process data.

Figure 12.
Iterative comparison to optimized production setup comparing known optimal process parameters versus new
acquired ones.

Figure 13.
Process optimization recommendation. The PREVIEW project result.
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Continuous quality estimation at each step of the manufacturing process by
means of machine learning and artificial intelligence, applied on the in-line acquired
data, enables predictive warnings and alarms even before the target quality is
affected and thus quality indicator of OEE is degraded. Two different approaches
can be implemented when developing AI predictive quality tools: supervised versus
unsupervised solutions. Supervised solutions can provide a better accuracy when
predicting undesired quality deviations, but a properly tagged dataset is required.
Unsupervised methods have the benefit of not requiring the tagged dataset and are
typically used for anomaly detection, meaning strong quality deviations. Moreover,
supervised system results can be tracked down and analyzed to provide process
insights which can lead to knowledge discovery [25] solutions that help to address
the root cause of the undesired quality deviation and thus improve quality and,
therefore, OEE.

Focusing on supervised solutions, a proper dataset labeling is a key element. It is
highly recommended to perform a Design of Experiments (DOE) where quality
deviations are forced in order to obtain a more balanced dataset compared to the
typical production dataset where non-quality parts are rare. In the case of qualita-
tive quality labels (e.g., good, bad, type of defect, etc.), a classifier will be preferred,
while for quantitative quality indicators (e.g., weigh, tensile strength, etc.), a
regressor will be implemented.

Let us consider as illustrating example a plastic injection molding quality pre-
diction problem. The four-cavity mold used for the experimental trials can be seen
in Figure 14. Only one cavity was sensorized to obtain the pressure and tempera-
ture evolution of the melt during the production cycle. The machine pressure and
screw position were also acquired for each one of the 199 injected parts of the trial.
The injection cycle was 7.2 seconds and was sampled at 500 Hz. Thus, the dataset is
the time series evolution of the key parameters of the process.

The DOE was designed in order to obtain seven different part qualities: good,
short shot, shrinkage, flash, jetting, over-compaction, and flow lines. The different
qualities were obtained by means of varying the injection machine configuration.
A total of 199 parts were produced (Figure 15).

Depending on the data granularity (continuous, cycle, or batch), different
preprocessing techniques can be implemented to boost the performance of the later
machine learning classifier. For instance, entropy analysis and complexity reduction
algorithms such as principal component analysis (PCA) [27] can provide a substan-
tial advantage as seen in Figure 16, where the PCA projection of the screw position
sensor is plotted.

In order to compare the performance of different machine learning classifiers, a
benchmark based on cross-validation techniques was implemented, using a strati-
fied shuffle split [28] strategy to preserve the percentage of samples of each class

Figure 14.
Mold cavity picture and example of acquired machine pressure. Experimental data provided by EURECAT [26].
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(quality). This test can be run for each sensor or by applying data fusion and
combining all sensors in a single dataset (Figures 17 and 18).

As can be seen in Figure 19, support vector machines [29] with a linear kernel
show a low performance, while ensemble algorithms like random forest trees and
gradient boosting [30] present higher accuracy rates, especially when 50 estimators
or more are used.

When combining all sensor information by means of applying data fusion, the
quality prediction accuracy increases near to 100%, as can be seen in Figure 18.
This result and system allow for an in-cycle quality preventive alarm that can lead
to an important reduction of scrap rate and exported non-quality, which automat-
ically translate to a higher quality rate and a reduction of costs due to wasted raw
material and energy consumption while improving OEE.

Other manufacturing processes can have different sampling rates or even create
batch datasets where for each part a set of relevant values are recorded. Typically,
large batch datasets present a high degree of data heterogeneity, compiling sensor
values, reports, environmental data, etc. Moreover, part traceability may not be

Figure 15.
Supervised approach for quality prediction.

Figure 16.
3D PCA data projection using the raw data or a preprocessed data where the 10 time stamps with higher
entropy are selected. Each color represents a different part quality or defect.
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Figure 17.
Quality prediction mean accuracy for a 20-round cross-validation test using 70% for training and 30% of
samples for test, using only the cavity temperature sensor data.

Figure 18.
Quality prediction mean accuracy for a 20-round cross-validation test using 70% for training and 30% of
samples for test, combining the available cavity and machine sensor data.

Figure 19.
Batch quality prediction with and without feature engineering (FE) for a heterogeneous and class-unbalanced
dataset. Iron foundry case.
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guaranteed, and thus quality rates may refer to the entire batch. In these scenarios,
feature engineering [31] can provide a clear advantage for boosting the perfor-
mance of the ML and AI algorithms. Figure 19 shows the performance of KNN and
SVM classifiers for a foundry dataset with more than 250 different parameters
(chemical composition of the iron, climate, process data, sensor data, etc.) with and
without feature engineering.

The dataset had two main difficulties: the extreme unbalance between classes
(qualities) and the data heterogeneity. By applying feature engineering, the number
of parameters can be reduced, focusing on the relevant ones. Bagging [32] and cost
functions were used to face the class unbalance. Batch quality prediction based on
process data can help in reducing the exported non-quality while providing knowl-
edge discovery insights to find and correct the root causes of the undesired quality
deviation.

5. Artificial intelligence for performance

Performance indicators consider any factor that causes the manufacturing
process to run at lower speed than its maximum possible speed. For instance, slow
cycle time affects performance indicators. For this reason, it is key to know the ideal
cycle time, which is the fastest cycle time that can be achieved in optimal circum-
stances. Moreover, performance is also affected by idling time and minor stops.

Cycle time reduction is one of the main factors for improving productivity. A
cycle time reduction contributes to reaching the optimal production throughputs,
reduction of time to market, better scheduling, and a reduction of associated costs
in terms of labor, energy, and raw material when combined with quality prediction
and assessment. The reduction of cycle time has become a relevant topic both in
research and in practical applications. Neural networks and machine learning algo-
rithms can help to predict and optimize manufacturing cycle time in different
sectors (e.g., see [33, 34]).

Preventive alarms generated by predictive quality systems based on AI and ML
can prevent manufacturing at nonoptimal operation setups and thus prevent minor
stops. Minor stops can also be reduced thanks to preventive maintenance systems.
Case-based reasoning [35] systems can leverage past experiences to help
manufacturing processes run faster. For instance, a CBR system can provide helpful
recommendations for optimizing the cooling time based on the type of material and
the thickness of the part that is being manufactured. The CBR system provides the
most similar cases based on a defined similarity metric, and thus a previous cooling
times of well-known and optimized processes can be taken as reference. Illustrating
this case, the Des-MOLD project [36] developed an AI system based on CBR and
argumentation [37] to help plastic injectors share their experiences and benefit from
mold design and manufacturing process optimization [38].

6. Conclusions

Artificial intelligence and machine learning based solutions can provide a com-
petitive advantage in today’s manufacturing paradigm, redefined by the Industry
4.0 revolution and the massive data available thanks to CPS, virtual sensors, and
IIoT devices. Leveraging this data has become a very relevant topic both in research
and for practical applications due to its massive potential. Data-driven solutions are
becoming more and more popular due to its potential both in terms of prediction

18

New Trends in the Use of Artificial Intelligence for the Industry 4.0



and to its capacity to provide process insights for enhancing process owner’s
expertise.

This chapter has focused on how the leverage of the available process data by
means of AI and ML solutions can impact into one of the most relevant
manufacturing indicators: overall equipment efficiency. OEE has three main com-
ponents: availability, quality, and performance. Each OEE component tackles a
different challenge and thus may require a different approach. Through different
experimental examples, each OEE component and how AI solutions can impact it
have been described. It has been shown how predictive maintenance and virtual
sensor solutions can help in reducing the undesired production breakdowns and
thus increase equipment availability. Predictive quality solutions based on super-
vised algorithms, for either real-time cycle data or batch data, have been described,
showing the importance of feature engineering for boosting prediction accuracy.
And finally, equipment performance focusing on cycle time has been addressed by
CBR for leveraging past experiences and providing process tuning types to run at
the highest throughputs.

OEE will be further improved thanks to the new AI trends and technologies
that are being researched right now, providing even more powerful and tailored
solutions. Availability and performance indicators could be greatly improved when
mature reinforced learning approaches are available at the production level, reduc-
ing setup times and optimizing cycle times thanks to the collaboration between
human expertise and AI systems. Image processing through deep learning and
convolutional neural networks can impact quality, especially for visual defects.
Collaborative human-AI systems are envisaged as key for the next Industry 5.0.
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