
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

171,000 190M

TOP 1%154

6,300



Chapter

Decision Support Models
for the Selection of Production
Strategies in the Paradigm
of Digital Manufacturing, Based
on Technologies, Costs and
Productivity Levels
Joaquim Minguella-Canela and Irene Buj Corral

Abstract

Digital manufacturing has opened a new window in the way to approach the
manufacture of parts. The possible switch frommanufacturing and holding physical
stock to manoeuvring with a fully-digital one is promising but still has not been
undertaken‑or only in a small proportion‑by the majority of the manufacturing
companies. What are the cost and productivity frontiers that halt the transforma-
tion taking place so far? When does it make sense, in terms of production volume
and costs, to undertake this transformation? What level of savings could be
achieved and what investments would be favourable? The base line of the present
chapter is to depict quantitative tools to address the potential impact of
endeavouring digital transformation in manufacturing environments, considering
costing and production variables, as well as technological decision-making parame-
ters. Keeping the modelling of the demand very basic, some exploration on the
degree of postponement of the production is discussed. Also, decision support
systems (DSSs) for manufacturing selection are reviewed. Finally, a case study
serves to apply the mathematical framework presented and to quantify the results
in a realistic industrial case. Using this case, the chapter outlines and describes how
to apply artificial intelligence (AI) techniques to implement the DSSs.

Keywords: productivity, digital transformation, digital manufacturing, costs,
decision support systems, decision support models, 3D printing, machining,
injection moulding

1. Introduction

The industrial reality nowadays is as open that, in order to manufacture a certain
part, there are usually many different alternative processes. However, the different
viable alternatives may imply different cost schemes, and so, the decision on which
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process should be selected may not be such straightforward but linked to the values
of several parameters of both the processes and the demanded part(s).

Building on this basis, in most cases, there is not a single solution of manufactur-
ing that is optimal in all cases, and the objective of the present chapter is to provide
the necessary guidelines to facilitate the decision-taking when selecting from
different manufacturing processes.

Starting with the depiction of a general cost scheme, the chapter provides a
useful modelling artefact to be able to tackle questions such as the following:

• What process should be used to manufacture a certain batch of a specific part?

• What process should be used to manufacture a certain series of a specific part?

• What manufacturing costs will be incurred if a certain manufacturing process
is selected?

• When will it be economically favourable to undertake a certain investment to
optimise an existing manufacturing process to obtain a specific product?

• When will it be economically favourable to undertake a certain investment in a
new manufacturing process in order to start the manufacturing to obtain a
specific product?

Having defined what is optimal concerning the costs’ modelling, the present
chapter also wants to bring some attention to the effect of manufacturing strategies
imposed from the demand side. More and more frequently, the variability and
uncertainty in the demand tend to force the production paces, for example,
switching from manufacturing-to-stock (MTS) to engineering-to-order (ETO) par-
adigms. This is approached in the literature as the level of postponement of the
manufacturing operation and has an effect in the manufacturing and stocking costs,
which is also addressed in the present chapter.

Postponement in manufacturing has an important double-edged consequence.
On one end, in order to be able to defer some (or all of the) production stages, it is
important to embrace the digital stocking of the parts. On the other end, tooling
should be avoided, bearing in mind that flexibility is key to achieve a fast response
capability.

Following these considerations, the present chapter also reviews and
comments on some artificial intelligence approaches in the form of decision
support systems (DSS) in order to fulfil the decision-taking when aiming at
selecting the most favourable manufacturing processes for a certain part. Indeed,
the final decision on the manufacturing strategy to be embarked will have to be
taken based on (i) technology capabilities, (ii) production organisation constraints
and (iii) market-demand orientation. For this reason, to achieve the best
decision-taking, the entire mathematical framework presented will have to be
combined with in-depth technological knowledge and the most appropriate
market approach.

Finally, the chapter illustrates the decision-taking and results in a case study that
serves to illustrate the opportunity to shift to digital manufacturing technologies.
The case study starts analysing the cost levels and equilibrium point for shifting
from a very rigid (traditional) manufacturing technology to a more flexible one (3D
printing). Finally, the case study deals with the limits on the possible benefits
yielded by the product optimisation in a digital perspective, looking at what results
could enhance for further improved production results.
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2. Modelling framework: costing levels per technology

Modelling the cost framework of a specific process is crucial in order to take
proper decisions on which process to select among the several available choices.
However, by the same token, it is important to utilise the most well-fitting models
in order to be able to take accurate decisions. It is also important to handle models
as simplest as possible in order to avoid being stuck in a process parameter-
evaluation stage.

One of the most applicable cost structures that can be found in literature is
the model formulated by Hopkinson and Dickens [1]. This model was elaborated
to be applied to 3D printing manufacturing technologies but, in particular, can be
applied to any manufacturing technology in which the energy consumption
costs of the machines are negligible in comparison to the rest of the costs in the
model (i.e., if the energy-associated costs account for less than 1% of the final
total cost).

In this chapter, the cost framework presented as a general cost model will be a
very broad (traditional) one. The idea is to elaborate a simple and incremental
costing model that can be further complicated by the reader, but that, at the
same time, can be kept simple to facilitate its use with little parameterisation
information.

In addition, the assumptions and simplifications will be made inside the
model‑and so they could be reverted by the reader if necessary.

2.1 General model

One general cost model, simple and broad enough to model the total costs in
monetary units per year (m.u./year) incurred by the operations associated to
manufacturing and keeping the manufactured parts in stock, is the one presented
in Eq. (1):

Ct
m:u:

year

� �

¼ Cpþ Csþ Ciþ Cr (1)

where Ct is the total annual cost of manufacturing and keeping in stock the
number of annual desired units (m.u./year); Cp is the total annual cost of the
preparation of the production of batches in order to manufacture the desired num-
ber of units (m.u./year); Cs is the total annual cost to keep in stock the necessary
parts to properly serve the desired number of units (m.u./year); Ci is the total
annual cost of investments needed in the specific manufacturing system
(m.u./year); Cr is the total annual cost caused by the rest of the factors
independent from the lot or series size in order to manufacture the number of
desired parts (m.u./year).

At this point, it is important to mention that this general model does not address
additional costs generated in the entire product value chain than those strictly
concerning the manufacturing and stocking in the production premises. For exam-
ple, the costs of shipping the products across the globe as well as some costs
associated to the inventory in the long term (obsolescence, spoilage, etc.) are not to
be included within the factors declared in Eq. (1). Concerning this, some specific
comments will be added when introducing the issues of production postponement
in upcoming sections.

Then, starting from this very general model, it is possible to make some
assumptions that are ordinary and that, at the same time, facilitate the evaluation of
the associated costs. Specifically, the following is assumed:
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• The demand stays constant throughout the year.

• The stock of parts is emptied linearly.

• The production is synchronised with the demand, so that the warehouse is
filled again just when the corresponding stock is finished.

These assumptions regarding stocks can be summarised graphically as shown in
Figure 1. As it can be seen, the average level of stocks throughout the year corre-
sponds to B/2 (B being the size of the batches to be manufactured) and the number
of annual preparations is equal to D/B (D being the annual demand of parts to be
manufactured).

Accepting these assumptions, the cost of the preparations for the production
process Cp can be calculated as indicated in Eq. (2):

Cp
m:u:

year

� �

¼
D
B
� Tp � Chp (2)

where Cp is the total annual cost of the preparations of the production batches in
order to manufacture the desired number of parts (m.u./year); D is the annual
demand of parts to be manufactured (number of parts); B is the batch size to make
(number of parts); Tp is the preparation time of the corresponding process (h); Chp
is the cost of the time of preparing the corresponding process (m.u./h).

And the cost of the stocks Cs can be calculated as indicated in Eq. (3):

Cs
m:u:

year

� �

¼
B
2
� Csp (3)

where Cs is the total annual cost incurred to keep the necessary pieces in stock in
order to properly serve the desired number of pieces (m.u./year); B is the batch size
to manufacture (number of parts); and Csp is the cost of keeping a part in stock for
a year (m.u./part_year).

On the other hand, assuming that investments are amortised in a number of
years y, the costs of annual investment Ci can be calculated as indicated in Eq. (4):

Ci
m:u:

year

� �

¼
Cet
y

(4)

Figure 1.
Evolution of stock levels taking into account the considerations set on the inventory policy. B is the size of the
batches to be manufactured and D is the total annual demand, both expressed in number of parts.
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where Ci is the total annual cost incurred in investments for the manufacturing
system (m.u./year); Cet is the total cost incurred in equipment and tooling for the
manufacturing system (m.u.); and y is the timespan in which it is decided to
amortise the tooling and equipment required (years).

Finally, there are other manufacturing costs, which are associated, among
others, with the costs of raw materials and the costs derived strictly from
manufacturing cycle times. Assuming that those costs are all proportional to the
number of parts manufactured, the rest of the costs Cr can be calculated as indicated
in Eq. (5):

Cr
m:u:

year

� �

¼ D � Cd (5)

Where Cr is the total annual cost caused by the rest of the factors independent of
the size of lot or series to make the number of desired pieces (m.u./year); D is the
annual demand for parts to be manufactured (number of parts); and Cd is the direct
cost per part caused by the rest of the factors independent of the size of lot or series
(m.u./year).

In this way, the general model of production costs presented in Eq. (1) can be
further detailed as the one described in Eq. (6):

Ct
m:u:

year

� �

¼
D
B
� Tp � Chpþ

B
2
� Cspþ

Cet
y

þD � Cd (6)

Concerning the scope of this model, again, it is worth mentioning that the
general model deployed in Eq. (6) does not approach the entire product value chain,
but only the manufacturing and holding in the production premises.

Concerning the level of detail of the fundamental factors, it is also interesting to
visit some other models in the literature, which introduce more parameters in the
calculation of such factors. For example, the addition of a parameter for accounting
an additional amount of money to ensure a proper treatment of perishable goods
can be found. Moreover, the costs of warehousing management or even the cost of
capital is usually considered within the stock cost calculation, although some
authors advocate maintaining it as a separate cost factor [2]. Indeed, the costs
generated by the stocks and their management have a huge effect on the
manufacturing decision-taking and are at the grounds of the lean manufacturing
approaches.

Because of this, other authors incorporate a special treatment to the demand,
modelling it as a probability distribution function [3], which leads to results that
are more accurate and opens the door to multi-scenario analysis, yet implying a
much more complicated decision models than the general model discussed in
the present chapter.

2.2 Determination of the optimal batch and its associated manufacturing costs

2.2.1 Size of the optimum manufacturing batch B*

Starting from a cost model such as the one presented in the previous section
(Eq. (6)), which takes into account the costs of preparation, manufacturing,
amortisation of investments and also holding parts in the factory stock, it can be
determined which batch size will minimise the total cost (i.e., the optimal batch B*)
as follows (Eqs. (7), (8) and (9)).
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dCt
dB

¼
0 � B� 1 �D � Tp � Chp

B2 þ
1

2
� Csþ 0þ 0 ¼ 0 (7)

D � Tp � Chp

B2 ¼
Cs
2
⇔ (8)

B ∗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Tp � Chp �D
Cs

r

(9)

Eq. (9) is coherent with the experience in manufacturing. The number of parts
in an optimal batch B* holds direct relation with the preparation time Tp, the
preparation cost Cp and the total number of units to make D. The higher the values
of these parameters, the bigger the value of the optimal batch size associated with
its manufacture. On the other hand, the optimal batch size B* has a reverse propor-
tionality ratio with the cost Cs of keeping a part in the stock. Indeed, the more
expensive it is to have a part in stock, the more favourable it will be to adopt
manufacturing strategies based on small batches.

In fact, it is interesting to note that, based on the second derivative of the cost
scheme presented in Eq. (6), it can be stated that this optimum point will always be
a minimum for the total costs. This is because the values of D,Tp and B will always
be positive numbers and, therefore, the value of the second derivative (Eq. (10))
will always be positive for any value of these variables.

d2Ct

dB2 ¼
0 � B2 � 2B � �D � Tp � Chpð Þð Þ

B4 þ 0 ¼
2 �D � Tp � Chp

B3 >0⩝D,Tp,B (10)

2.2.2 Costs in the optimum manufacturing batch C*

Starting from a cost model such as that obtained in Eq. (6), using the expression
corresponding to the optimal batch B* calculated in the previous section, the fol-
lowing is obtained:

Ct if B¼B ∗ð Þ
m:u:

year

� �

¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Tp�Chp�D
Cs

q � Tp � Chpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Tp�Chp�D
Cs

q

2
� Csþ

Cet
y

þD � Cd (11)

which, grouping terms, can be formulated as:

Ct if B¼B ∗ð Þ
m:u:

year

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 �D � Tp � Chp � Cs
p

þ
Cet
y

þD � Cd (12)

In some cases, it is not necessary to use specific tooling or take into account the
amortisation costs of the equipment. For example, this can happen in case a
manufacturing process without specific tooling (a flexible process) is used, and, at
the same time, it has a very low cost of equipment in relation to its repayment
period. If this is the case, the calculation of the total costs is further simplified, as it
is presented in Eq. (13):

Ct if B¼B ∗ , Cet¼0ð Þ
m:u:

year

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 �D � Tp � Chp � Cs
p

þD � Cd (13)

In any of these cost descriptions, it can be seen that, when working on the
production of different parts requiring continuous production changes, reducing
the preparation time will have a much greater effect on the total costs than it could
seem at the very first glance.

6

New Trends in the Use of Artificial Intelligence for the Industry 4.0



2.3 Specific models for specific manufacturing technologies: 3D printing,
machining and injection moulding

Disregarding the general costing model presented in the previous sections,
which is powerful because of its generality, the manufacturing cost levels for spe-
cific manufacturing technologies can also be determined in an approximate manner
by means of the most relevant cost factors in that certain technology.

For example, in 3D printing technologies, the cost factors that are the most
important descriptors and that can be characterised relating to them are [4]: (i) part
weight, (ii) part dimensions and (iii) construction time. In some works (e.g., see
[5]), the cost modelling in the case of 3D printing technologies has been formulated
as the function of the following factors: machinery costs, materials costs, energy
consumption costs and labour costs. In any case, digging again in the method to
obtain those terms, it is possible to find that the fundamental factors of mass z
dimension and construction times correlate with the indicated (i) part weight,
(ii) part dimensions and (iii) construction time.

Taking the simplification modelling to a further stage, there have been some
recent attempts to construct and validate useful specific and simplified cost models,
for example for 3D Printing, machining and injection moulding manufacturing
technologies [6]. In this case, the results were found of relevance for 3D printing
and machining, while the fit was not appropriate for the injection moulding
technologies.

3. Manufacturing context: critical batches and critical series vs.
ultrapostponement strategies

3.1 Critical batch

Given two processes A and B that allow to obtain the same part P, A being a
process that requires the use of specific tooling and B a process that does not require
them, the critical batch Bc is the one that implies the same productivity in time per
manufactured part (that is,TA = TB).

Indeed, the manufacturing time per part in the case of a tooling process (TA),
assuming that it involves a process preparation time different than zero minutes
(TpA 6¼ 0), can be determined as presented in Eq. (14):

TA
min
part

� �

¼
TpA
BA

þ TfA ¼
TpA þ TfA � BA

BA
(14)

where TA is the manufacturing time per part in the case of an A process with
tooling (min/part); TpA is the machine preparation time of the A process (min); TfA
is the time of individual forming of a part using the process A (min/part); and BA

is the size of the batch to be manufactured using the A process (number of parts).
On the other hand, the manufacturing time per part in the case of a process

without tooling (TB), in which it is considered that the machine preparation time
is null (TpB = 0), results as follows (Eq. (15)):

TB
min
part

� �

¼
TpB
BB

þ Tf B ¼ Tf B (15)

where TB is the manufacturing time per part in the case of a B process without
tooling (min/part); TfB is the machine preparation time of the B process (min); TcB
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is the time of individual forming of a part using the B process (min/part); and LB is
the size of the batch to be manufactured using the B process (min).

As can be seen, the fundamental reason for varying the cost schemes of two
manufacturing processes such as the ones presented here is the effect of the prepa-
ration time Tp of the process (sometimes also called machine preparation time) on
the manufacturing time TB. In case this is not equal to zero, its impact will have to
be taken into account in the determination of manufacturing time per unit pro-
duced. In this sense, the existence of non-zero machine preparation time will
especially penalise the production of parts in small batches, accounting for a most
diluted effect in the case of large batches.

In this way, regarding the determination of the critical batch Bc, it is important
to emphasise that what will have effect is not the existence of some or other
specific tooling, but the temporary impact of the preparation. Once the part is
finished, such preparation is required to switch all the necessary and start making
a different part.

Graphically, this behaviour is illustrated in Figure 2. The individual forming
times of the A process (with tooling) are affected by the machine preparation time.
As the batch size increases, manufacturing costs per part produced are reduced
asymptotically with a horizontal limit TfA. Since the individual conformation times
for the B process are constant and always equal to TfB, whenever TfA is less than
TfB, there will be a cut-off point between TA and TB, which is called equilibrium
point. The equilibrium point marks the critical batch (Bc) between processes A
and B.

In the case referred here, for batches with number of units lower than the
number of parts corresponding to Bc, it will be more productive to use the process
without specific tooling B, since TfB will be equal to TB. Instead, for cases where the
number of units to be used as the working batch B is greater than Bc, the process
with specific tooling A will be more productive.

As a practical detail, it should be noted that, given the way in which it is
obtained, the equilibrium point can be any positive number, in particular, not
necessarily a whole number. In the case of manufacturing in discrete processes,
however, it should be noted that it is necessary to work with natural numbers of
parts, as it would make no physical sense to manufacture decimal parts of products.

Figure 2.
Forming time per part as function of the batch size for different processes (A process with tooling‑rigid
process‑and B process not requiring a specific tooling‑more flexible process.)
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For these cases, the immediately lower integer will be set as the upper limit of the
number of units that make the B process more productive. Also, the immediately
superior integer number will be set as the lower limit of the number of units which
makes the process A more productive to obtain the product.

In case the size of the critical batch is a natural number, this number will be set
as the upper limit of the number of units that make the B process more productive,
since it will always be easier to work without the need for specific tooling.

3.2 Critical series

Suppose once again two processes A and B that allow obtaining the same part P.
Given the two processes, it is called critical series Sc‑the one that implies the same
level of total costs for both processes (i.e., CA = CB).

In some cases, it will be possible to maintain the assumptions made in the
previous section; namely supposing A a process that requires the use of specific
tooling (a rigid process) and B a process that does not require it (a fully flexible
process). However, many times these assumptions will not be straightforward when
a process is assessed in the long run. This is due to the fact that all processes require
some tooling and equipment, which can have a negligible impact on a very short
batch manufacturing. Nevertheless, its amortisation cost has to be necessarily
taken into account when setting its cost scheme and comparing it with other
possible options.

On the other hand, many different discrete manufacturing processes, which are
batch processes that obtain parts, work discontinuously with a maximum number
of parts that can be manufactured in a single run and that cannot be exceeded. For
example, this occurs in processes where parts are manufactured in green but require
a subsequent thermal treatment in which the whole lot enters a non-continuous
furnace at a time. It would also be a sample of this case: the manufacture of parts by
means of 3D printing in a bed or in a building platform. These types of 3D printing
manufacturing processes determine the maximum size of the batch to be
manufactured from the available contact surface with the bed or the maximum
mass volume available on the platform. Therefore, the selection of the manufactur-
ing working batch cannot be done minimising the costs of a single function but will
have separate cost functions depending on the number of production runs to be set
in a demanded batch.

For this reason, in a general case, it is advised to determine the critical series Sc
using the general cost model presented in Eq. (1) and replacing the demand D by
the critical series Sc. In this way, as shown below, the expressions given are
Eqs. (16)–(20):

CtA ¼ CtB() (16)

CpA þ CsA þ CiA þ CrA ¼ CpB þ CsB þ CiB þ CrB; (17)

Sc
BA

� TpA � ChpA þ
BA

2
� CsA þ

CetA
yA

þ Sc � CdA

¼
Sc
BB

� TpB � ChpB þ
BB

2
� CsB þ

CetB
yB

þ Sc � CdB; (18)

Sc �
TpA � ChpA

BA
þ CdA

� �

þ
BA

2
� CsA þ

CetA
yA

¼ Sc �
TpB � ChpB

BB
þ CdB

� �

þ
BB

2
� CsB þ

CetB
yB

; (19)
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Sc ¼
B
2 � CsB þ

CetB
yB

� �

� BA
2 � CsA þ CetA

yA

� �

TpA�ChpA
BA

þ CdA
� �

�
TpB�ChpB

BB
þ CdB

� � (20)

Depending on the values that the corresponding parameters included in Eq. (20)
can take, there might be a cut-off point in the positive range of the number of parts
to be produced. If this is the case, the crossing point between the two processes
compared will be again referred as the equilibrium point and will determine the size
of the critical series Sc.

This situation is described in Figure 3, which shows the total manufacturing
costs as function of the size of the manufactured series for two different processes A
and B. As assumed along this section, the use of tooling and equipment cannot be
neglected in the cost calculation of neither process and has to be incorporated into
the model. As it can be inferred from Figure 3, in the presented case, process B is
contemplated to be more flexible than process A‑B having lower equipment and
tooling costs. Also, A presents lower costs per single forming, thus leading to the
existence of an equilibrium point (Sc).

3.3 Ultrapostponement strategies

Nowadays, a large stake of the products that are sold to the general public is very
complex combinations of parts that normally have numerous production stages.
Regardless of what the specific technological aspects dictate to the optimal‑e-
conomical or less time consuming‑organisation of manufacturing, there is always a
market effect that intervenes in the production strategies. Serving the demand
where and when it is produced is even more complicated in the cases in which the
demand is unstable and when the products sold are frequently customised to the
specific customer demanding them.

Again, having a look at previous works, it is established as customer order
decoupling point (CODP), the moment when the customer acquires the product
[7]. The CODP marks just a moment in time, notwithstanding the product sold is
finished, in an intermediate manufacturing stage or when its production process has
not even started. However, the position of the CODP in the product value chain is
important, as it is the milestone in which the product is effectively wanted by the

Figure 3.
Total manufacturing costs as function of the size of the series for two different processes A and B. In this case,
the use of tooling and equipment is assessed in both processes, although process B is contemplated to be more
flexible than process A.
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customer, and it fixes the place in the product value chain where the so-called
postponement effect occurs. The place where the postponement happens along the
product value chain is referred as the degree of postponement of the production
process.

Taking the postponement effect to one of its possible extreme positions, there is
the possibility to operate in pure-speculative markets. These are, for example, the
typical markets of regular alimentation products (i.e., yogurts, bread, bottles of
water, etc.), which are goods that are produced and taken to the shops without any
intervention of the customer in the production chain. In these production strategies,
the selling side produces all the products in the quantities that match the selling
expectations and just hopes that the demand will consume all the produced goods.
Of course, these sorts of strategies are only adopted in markets with a very stable
demand and with relatively low product costs. These strategies are also referred as
make-to-stock (MTS) paradigms, as with them the production process works
against the action of filling the product warehouse.

Moving then to the other possible extreme position, in some products, there
exists the possibility of not even starting the design stage before the customer has
effectively placed the order. These are considered the strategies of engineering-to-
order (ETO) and are associated to products that must be completely customised to
the customer, for example, a specific prosthesis for a health treatment or a bridge to
be installed in a river. These sorts of strategies are common in markets with a very
unstable demand (sometimes a demand that will only happen once in life) and with
relatively high product costs.

Discussing a general case, as formulated by Yang et al. [8], moving upstream the
CODP enhances the effectiveness and flexibility of the product supply chain. In
effect, the ideal production process should only produce parts that it is sure that
some customers will buy. However, in order to be capable of serving the demand in

Figure 4.
Schematic representation of the CODP position in different situations along the value chain. Presented in [5]
and elaborated from the findings of the study of Yang et al. [8].
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the point and moment it is produced (where and when), some production processes
may need to start earlier the manufacturing, as the product would not be ready if
approached in a different manner.

The final strategy adopted, therefore, will have to be restricted due to many
factors that could be grouped in: (i) technology capabilities, (ii) production organi-
sation constraints and (iii) market-demand orientation. With all those constraints,
it will be of interest to defer all the possible manufacturing stages. Some different
levels of postponement that can be established as a product manufacturing policy
are make-to-forecast, ship-to-order, final customisation-to-order, manufacturing-to-
order, supply-to-order and engineering-to-order [5].

At this point, it will be key to be able to adopt digital manufacturing processes,
more flexible than the traditional ones, which will imply lower manufacturing costs
per part when addressing the forming of small batches of production. Having access
to more and more flexible processes will make it viable to work economically and
timely with nearly unitary batches of parts, thus allowing triggering the production
only when the costumer has proceeded to pay for it.

Concerning to all this, Figure 4 synthesises the many different possibilities on
placing the CODP along the product value chain, and so the degree of postpone-
ment that could be associated to it: pure-postponement (ultrapostponement), purchase
postponement, manufacturing postponement, customisation postponement, distribution
postponement and pure speculation (zero postponement).

4. AI approaches for decision-taking: decision support systems (DSS)

The theoretical dissertation of computer systems to help in the decision-taking
processes date as far as the late 1950s and early 1960s, probably being in the decade
of the 1980s when it gained the most of its intensity. Regarding the interests in the
present chapter, a decision support system (DSS) can be described in a general
manner as a system capable of aiding the user to select the best option given the
prospective results of the analysis of several scenarios. Curiously, it is interesting to
know that the main authors have not agreed on a single definition of DSS and that,
therefore, the their prescription may vary.

The common characteristics that described a DSS were enunciated by Alter [9].
Based on this description, DSS are specifically designed to facilitate the decision-
making process but not on replacing the decision-taking role of the user. In addi-
tion, the DSS have to be fast in incorporating changes in the parameters and in
producing new solutions in the new scenarios considered.

Some other authors stressed that the focus should be put on having systems
containing both data and decision models [10]. In this sense, for a DSS, it is more
important to optimise the effectiveness than the efficiency of the system.

Concerning taxonomy, Power [11] provided a classification of the DSS in 5
different categories depending on the assistance mode utilised by the system:

• Document-driven (DD-DSS): consisting of DSS based on the search and
finding of the information in documentation

• Communication-driven (CD-DSS): consisting of DSS based on the
communication between different users

• Data-driven or data-oriented (DO-DSS): consisting of DSS based on the
utilisation of temporal data series
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• Model-driven (MD-DSS): consisting of DSS based on statistical, financial
models, being empirical, analytical or theoretical

• Knowledge-driven (KD-DSS): consisting of DSS based on the experience and
knowledge in a particular area

Apart from the definition and categorisation, what is commonly agreed in the
literature is what are the fundamental components of a DSS, namely: (i) the
database or knowledge base, (ii) the model utilised‑decision context and criteria
rules‑ and (iii) the user-interface. Assuming that the decision-taking role is
performed by the users, many authors agree that the users themselves are also
a very important part in the system.

Concerning the level of interaction with the user, the DSS can be classified as
passive, active or cooperative systems. Concerning the capability of interaction with
the users, the DSS can be classified as single-user DSS and multi-user DSS.

4.1 Formal models and trends of DSS applied to manufacturing
process selection

From the categorisation presented in the previous section, the majority of the
DSS applied to manufacturing processes that can be found in the literature are KD-
DSS. This may probably be since the decision taken in manufacturing technologies
relies strongly on the experience and knowledge in the corresponding domain, and
so the most ambitious experiences have been constructed over a nurtured
manufacturing know-how database.

The selection of processes and process parameters encountered a research igni-
tion with the emergence of the additive manufacturing technologies that took place
during the late half of the 1980s. Following that, many research teams embarked on
researching about consolidating the best possible advice for switching from one
technology (normally a traditional manufacturing one) to a rapid (later considered
additive) manufacturing technique.

In the 1990s, some authors completed a first model for yielding information
about the election of additive manufacturing processes for applications of rapid
prototyping (e.g., see [12, 13]). Since then, many AI-based advisory systems have
focused on the manufacturing topics of rapid prototyping, rapid tooling and rapid
manufacturing (e.g., see [14, 15]). Two outstanding achievements produced in the
last 10 years at Universitat Politècnica de Catalunya-BarcelonaTECH are the Rapid
Manufacturing Advise System (RMADS) proposed by Munguía in 2009 [16] and the
Design for Additive Manufacturing (DFAM) for parts with high variability in the
demand proposed by Morales in 2019 [17].

The RMADS software utilised a combination of several artificial intelligence
(AI) techniques in order to deliver a concurrent and comprehensive concurrent
engineering methodology to estimate the manufacturing costs and times comparing
two different machines for selective laser sintering (SLS) technology. In Munguía’s
RMADS, expert systems were used, but also fuzzy logic, relational databases as well
as neural networks. In comparison, the approach in Morales’ DFAM system also
utilised an expert system commanded by five layers of ‘if-then’ rules and a knowl-
edge base. The system is prepared with information of the multi jet fusion (MJF)
process and it also yields data on manufacturing costs that can be compared with
injection moulding processes. However, the focus in this case is on assisting the
‘non-expert’ user on being able to redesign the parts‑if needed‑to better utilise the
additive manufacturing (AM) capabilities.
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Opening to the broad manufacturing advice, some solutions‑the more
specialised ones‑ focus only in providing technological advice on the process, mate-
rial or even machine selection [18]. Some other solutions‑much broader in
content‑take into consideration multiple manufacturing plants [19] or even the
entire product value chain [20].

Concerning their architecture, most of the DSS incorporate expert systems based
on rules for assessing the situations presented [21–23]. Some of the most recent ones
also incorporate or assisted [17, 24, 25] machine learning procedures to enlarge its
knowledge base during its operation. These later ones can be approached not only
by a regular user but also by an expert that can feed the system with new knowledge
on a continuous basis [26]. Some include fuzzy-logic learning features [15, 27].

As commented, some systems are intended to be proactive in the extension of its
knowledge base. When not relying on the information directly provided by an
external expert, the most utilised source of information reported by the academia is
the link and download of on-line data that is finally incorporated in the knowledge
base of the DSS [28–29].

Different to what is found in the literature for systems that manage and improve
the performance of production lines, the self-learning capabilities that could be
provided by the AI techniques have not been fully deployed in systems for decision-
taking among different processes. In this sense, currently, the common use widely
seen is the so-called hybrid intelligence learning use: the DSS is capable to produce a
ranking or a statement on costs or other attributes [30]. However, the final
decision-taking on the process and the follow-up and accumulation of new experi-
ences still rely heavily on human operators.

The variables of study underlying the decision-taking are also diverse. Most of
models use as parameters variables that evaluate economic and time aspects (i.e.,
costs and times), which are included at some point in almost every system devel-
oped. Many models incorporate technological rules and advise on manufacturing
best practices [17, 23]. Finally, the newest models usually incorporate additional
variables related to energy use [20], sustainability of the technology [31] and/or
user-friendliness in order to build a balanced scorecard for decision-making.

Also, another trend that has been identified is the interest on providing advice
on product design alternatives in the cases the system cannot derive a specific
solution from the manufacturing processes database. Some recent contributions also
give indications on complementary processes, such as those for post-processing and
finishing the parts [32].

Being capable of yielding fully autonomous self-learning decision support sys-
tems is a paradigm that will only be able to be developed once advanced sensors
would be fully deployed along the production means. Indeed, the deployment of
self-learning sensor capabilities is currently in the strategic agendas and attracts the
focus of research and development [33]. This achievement would lead to the
materialisation of the so-called intelligent manufacturing systems (IMS) [34]. In
this scenario, being in the Industry 4.0 era, the end users could gain access to
collaborative services, having a more integrated human-machine interaction eco-
system, and the organisational, technical and decision-making levels could be
synthesised at a unique level.

5. Case study application in an industrial product

Following what has been presented so far, most cases of application (products)
will have the possibility to be manufactured by several (at least two) different
production processes. Some of the processes will be more rigid and will usually lead
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to shorter forming times per unit (a priori) yet will imply higher costs in terms of
tooling and batch preparation times that will have to be added to the forming times
per unit.

Some other processes will be more flexible and will sometimes not require
specific tooling, yielding smaller costs per produced part. However, the individual
forming times per produced part will probably be higher than those in a more rigid
production process, thus implying shorter production rates when the system
achieves the stationary functioning.

With these two dissimilar choices (more rigid versus more flexible possible
processes), the following application case tries to be useful to deploy the decision-
taking framework that has been described along the chapter. The first part of the
section concentrates on the characterisation of the available possibilities to manu-
facture the studied product and on determining the critical batches, total costs,
costs per part and critical series for each of them. In this first part, the models
presented are deployed as it must be done in a real application case, to compare cost
levels and to quantify the outcomes of different levels of investment. Following
that, the section recaps on how the DSS could be applied to this case and what
structure could have to facilitate the user’s decision.

5.1 Manufacturing of an accessory for an established product

A pharmaceutical company ordered to a workshop specialised on plastic the
manufacture of a series of clip-type tweezers to add to one of its products:
glucometers. With the incorporation of those tweezers, the product increases
its added value a lot, yet the long run is not ensured with this first
manufacturing order.

The initial planned manufacturing process is the injection of the plastic parts
using steel moulds‑an in-house technology already available in the production
facility. The estimation of units, the preparation time and the different costs for the
parts under initially planned process A is summarised in Table 1.

5.1.1 Size of the optimum manufacturing batch BA* and total costs of process A (CtA)

The starting point about the manufacturing process to be adopted is to
characterise the optimal manufacturing batch B* and the total manufacturing costs
CtA yielded by process A.

Assuming that in a year of production all the specific tooling has to be fully
amortised and adopting the standard manufacturing cost model presented in the
previous sections, BA* and CtA can be calculated according to Eqs. (21) and (22):

Order size Machine

preparation

time of

process A

Timely cost of

preparing the

corresponding

process A

Cost of

keeping a

part in stock

for a year

Cost caused by the

rest of the factors

independent of the

series or batch size

Total cost

incurred in

new tooling

for process A

D

(parts/year)

TpA

(h/batch)

ChpA (m.u./h) CsA (m.u./

part_year)

CdA (m.u./part) CiA (m.u.)

6000 2 30 2 0.15 6500

Table 1.
Size of the demand for the initial year, machine preparation time and different costs for the parts under
initially planned process A.
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BA
∗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � TpA � Chp �D
Cs

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 2h � 30 m:u:

h � 6000 parts
year

2 m:u:

year

v

u

u

t ¼ 600 parts (21)

CtA ¼
D
BA

� TpA � Chpþ
BA

2
� Csþ CiþD � CdA

¼
6000 parts
600 parts

� 2 h � 30
m:u:

h
þ
600 parts

2
� 2

€

year

þ 6000 parts � 0, 15
m:u:

part
þ 6500 m:u: ¼ 8600 m:u:

(22)

Regarding the total cost of process A, it is important to stress that the injection
moulding machine is considered an in-house technology with a very long period of
amortisation. Therefore, the amortisation cost incurred for a very short run of
production can be neglected in front of the other costs considered. In this regard, in
case it should be taken into account, the costs of investment should be modified
accordingly.

Within this context, the workshop has just introduced a new 3D printing tech-
nology, with which it is possible to manufacture the required parts without specific
tooling. However, in this case, the parts must be manufactured in batches of
400 units. This technology is characterised by the time and costs summarised in
Table 2, while the annual demand is considered to be the same.

5.1.2 Unit costs per part using each of the processes (A: injection, B: 3D printing)

In order to calculate the cost per part CA for process A (injection moulding), it is
possible to divide the result obtained in the previous section by the total number of
parts to be manufactured:

CA ¼
CtA
D

¼
8600 m:u:

6000 parts
¼ 1:43

m:u:

part
(23)

For process B (3D printing), using the general expression and taking into
account that there is no specific tooling needed to be quantified, CB can be obtained
using the general costing model as follows (Eqs. (24) and (25)):

CtB ¼
6000 ud
400 ud

� 1 h � 30
€

h
þ
400 ud

2
� 2

€

a ̃no
þ 6000 ud � 2

€

ud
þ 0 ¼ 12850€ (24)

Machine

preparation

time of

process B

Timely cost of

preparing

corresponding

process B

Batch size

imposed by

process B

Cost of

keeping a part

in stock for a

year

Cost caused by the rest of

the factors independent of

the series or batch size

TpB (h/batch) ChpB (m.u./h) BB (parts) CsB (m.u./

part_year)

CdB (m.u./part)

1 30 400 2 2

Table 2.
Machine preparation time and different costs for the parts under possible alternative process B.
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And with this result, the cost per manufactured part equals to:

CB ¼
CtB
D

¼
12850 m:u:

6000 parts
¼ 2:14

m:u:

part
(25)

Again, in the calculation of the total costs for process B, it is assumed that the
amortisation cost of the overall equipment can be neglected in front of the other
costs considered. In case it should be taken into account, the costs of investment
should be modified accordingly.

5.1.3 Critical series per part taking into account the two options
(A: injection, B: 3D printing)

To calculate the critical series of the two possible processes, it is important to
take into account that the working batches set are different. In process A, it is
possible to work in the situation of the optimal manufacturing batch BA* calculated
in Section 5.1.1. However, in process B, the manufacturing batch is fixed to 400
parts in every run.

In this situation, the size of the critical series can be determined by simply
defining as equal the two general cost models (Eq. (26)):

CtA ¼ CtB (26)

And, since process B has no additional tooling to be considered, Eqs. (27)–(29)
can be applied:

D
BA

� TpA � ChpA þ
BA

2
� CsA þD � CdA þ CiA ¼

D
BB

� TpB � ChpB þ
BB

2
� CsB þD � CdB;

(27)

D
600

� 2 h � 30
m:u:

h
þ
600 parts

2
� 2

m:u:

year
þD � 0, 15

m:u:

part
þ 6500€

¼
D
400

� 1 h � 30
m:u:

h
þ
400 m:u:

2
� 2

m:u:

year
þD � 2

m:u:

part
; (28)

D ¼
6700

1:825
¼ 3671:23 ud (29)

Therefore, if the total demand were to be 3671 parts or less, it would be better to
implement process B (3D printing). On the contrary, in a scenario with a demand
starting from 3672 parts and more, it would be better to use the A (injection)
process.

As the current situation is that the annual demand is of 6000 parts to be
produced, the advice for process undertaking is to manufacture the parts using
process A, which will require a specific tooling, but will also yield a smaller cost per
produced part.

5.1.4 Product optimisation with process B: 3D printing

Given the opportunity offered by 3D printing technologies to make better
designs, and in view that the demand for parts can grow, it is interesting to study a
scenario of product optimization through weight reduction and modification of
non-critical geometries. This is a very common procedure in the product design
iteration for 3D printing and it is commonly retrieved in the literature as design for
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additive manufacturing (DFAM). In the present case study, it would be assumed
that the envelope dimensions of the part to be manufactured do not change during
this process; and so that the manufacturing batch size remain constant as in the
previous case (BB = 400 parts).

By undertaking those steps, it would be easy to decrease the cost per part yielded
by process B. However, how much should the cost per part manufactured by
process B be reduced to achieve a situation in which the critical series is 10,000
parts per year?

To determine the maximum costs of process B in the case of a critical series equal
to 10,000 units, the same expression as in the previous section can be utilised.
Nevertheless, this time it is necessary to isolate the costs independently of the
batch size for the “CC” process (being C the process of 3D printing the optimised
product), as it is done in Eqs. (30)–(32).

D
BA

� TpA � ChpA þ
BA

2
� CsA þD � CA þ CiA ¼

D
BB

� TpB � ChpB þ
BB

2
� CsB þD � CC;

(30)

10000

600
� 2 h � 30

m:u:

h
þ
600 parts

2
� 2

m:u:

year
þ 10 000 parts � 0, 15

m:u:

part
þ 6 500 m:u:

¼
10 000

400
� 1 h � 30

m:u:

h
þ
400 parts

2
� 2

m:u:

year
þ 10 000 parts � CC

m:u:

part
;

(31)

CC ¼
8450

10000
¼ 0, 845

m:u:

part
(32)

In order to interpret the results, it is interesting to represent graphically the unit
cost per part versus the number of units manufactured using the three options
proposed (A: injection moulding, B: 3D printing and C: 3D printing of optimised
product).

To do so, Eqs. (33)–(35) can be used to obtain the figures presented in Table 3.

CA ¼

X parts
600 parts � 2 h � 30

m:u:

h þ 600 parts
2 � 2 m:u:

year þ X parts � 0, 15 m:u:

part þ 6500 m:u:

� �

X parts
(33)

CB ¼

X parts
400 parts � 1 h � 30

m:u:

h þ
400 parts

2 � 2 m:u:

year þ X parts � 2 m:u:

part þ 0 m:u:

� �

X parts
(34)

X (parts) CA (m.u.) CB (m.u.) CC (m.u.)

1000 7.35 2.48 1.32

2000 3.80 2.28 1.12

3671.23 2.18 2.18 1.03

5000 1.67 2.16 1.00

10,000 0.96 2.12 0.96

15,000 0.72 2.10 0.95

The table contains the calculation of the costs for number of parts X = 3671.23 and X = 10,000 in order to see how the
costs CA and CB as well as CA and CC are levelled in the equilibrium points.

Table 3.
Costs of manufacturing per part produced for different demands by processes A, B and C.
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CC ¼

X parts
400 parts � 1 h � 30

m:u:

h þ
400 parts

2 � 2 m:u:

year þ X parts � 0, 825m:u:

part þ 0 €

� �

X parts
(35)

As a summary of the entire case study, Figure 5 shows graphically the three cost
models that follow the three alternative processes.

In particular, process A is the more rigid one, requiring specific tooling that has a
non-negligible impact in the manufacturing costs of small series of products.

Processes B and C are more flexible, yielding a more constant cost per
manufactured unit along the entire study range (from 1000 to 15,000 parts).
Process C derives from an optimisation of the product from the original case, and so
the cost values remain all times below the ones in process B. Indeed, the evolution of
the costs in processes B and C follow an evolution almost parallel throughout
Figure 5.

The costs of process A experiment a strong decrease along the range represented
in Figure 5. This causes the cost model of process A to cross the cost models for
processes B and C, thus determining two equilibrium points marking the sizes of
their associated critical series.

5.2 Application of the DSS to the process of decision-making

The application of DSS to compare and extract information from different
processes in order to decide which one would be more favourable has usually a
similar structure, based on three stages (e.g., see [35]): (i) identification of product
requirements, (ii) proposition of feasible alternative processes and (iii) assessment
of the outcomes obtained by each of the proposed processes, if possible, adding best
practices information.

Within this scheme, the DSS configuration normally starts with the preparation
of a knowledge base with the information of the processes that will be taken into
consideration during the assessment. Manufacturing times, cost levels, limitations
on the number of parts in a batch and in general all the information like the one
contained in Tables 1 and 2 are usually stored and managed in relational databases.
In this way, the knowledge is easy to access, filter, select and represent graphically.

Stages (i) and (ii) are usually undertaken by expert systems (ESs), in which the
inference engine launches queries to the knowledge base. The most typical use of
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Figure 5.
Costs of manufacturing per part produced as function of the number of manufactured parts by processes A, B
and C.
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these techniques is by using the ‘If-Then-Else’ queries supported on a rule-base
knowledge (rule-based diagnosis). Sometimes, if the process complexity is high, it
could be useful to implement the knowledge on cases (case-based diagnosis) or
even models (model-based diagnosis). This screening technique is useful for the
DSS during the first steps to understand the nature of the products that require to
be manufactured and so to define the processes that should be shortlisted for in-
detail analysis. In the case study discussed in the present chapter, the expert system
could have prescribed either injection moulding (process A) or additive
manufacturing (process B) as feasible alternatives.

Once the shortlist of two or three processes has been configured, it is time to
provide qualitative and quantitative outputs (iii). In effect, the expert system can
provide information on which features of the part can be manufactured straight-
forward and which cannot. In extreme impracticable cases, the ES would discard
the processes that would not be feasible. However, for the processes shortlisted,
some small tuning could be necessary or advisable to be performed before produc-
ing the part. At this stage, there is a general need to increase the system response in
quantitative and qualitative aspects.

Concerning the quantitative aspects, further results can be achieved using arti-
ficial neural networks (ANNs). ANNs can be used, for example, to simulate the
manufacturing process of the same part with the same technology in two different
units of equipment‑for example, two machines in different production sites‑that
yield different process variables‑for example, because one is bigger than the other,
or because they are placed in different regions with different cost schemes. Also,
the ANNs could be used to assess the consequences of undertaking product modifi-
cations like the optimisation simulated in the case study to achieve the part as
process C [16].

In addition, many times the qualitative analysis can be further deployed with
fuzzy logic (FL) techniques. In this sense, the application of fuzzy ontologies can be
helpful to translate linguistic terms and qualitative values into numerical properties
and specific states. For example, it is common to receive the customer need of a
product to have ‘good mechanical behaviour’ and/or ‘low permeability of liquid
through its walls’. In these cases, fuzzy can help in quantifying this information.
The quantification could be good to help configure a balanced scorecard for
decision-taking [17].

Finally, the user interface in the DSS should present the user the conclusions of
the analysis. It is preferable to have it in a mix of quantitative and qualitative
description. The numerical report is recommended to be as the one presented in
Table 3 and Figure 5, where the economical cost schemes and levels are clear. Also,
other related information such as a scenario analysis for different batch sizes or the
study of the different manufacturing delivery times would be highly acknowledged
by the users. The qualitative report should include information on the best practices
and some part improvement counselling. It would be highly recommendable to be
presented in the form of a colour scale‑for example, for which each assessed vari-
able ranked from 0 to 5‑and if possibly displayed in a visual mode (in a dot plot or a
spider diagram form).

This ‘vectors’ of information could finally be compared by the user, probably
assisted by the numerical optimisation of some objective function in order to finish
with a multi-criteria decision support information, capable of being run by non-
expert users.

A further refinement of the DSS could deploy the use of AI techniques to
increase autonomously the information contained in the knowledge base. The cur-
rent systems installed frequently utilise on-line information as a procedure for data
mining for the processes taken into consideration, while the most common practice
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is to incorporate it from human experts through specific expert user gates in the
system. However, there is still a big opportunity to deploy systems that could
incorporate information on the obtained results directly from the manufacturing
facilities, or even better from the customer use point, once the part is performing
the task for which it was originally acquired.

6. Conclusions

In the current paradigm of Industry 4.0, it is more than ever more necessary to
be able to take the best decisions when it comes to manufacturing. Indeed, the
industrial means available nowadays postulate that many different possibilities of
processes and strategies can be viable in order to produce a specific part.

In this context, Section 2 of the present chapter has formalised a general model
for evaluating costs in manufacturing process, which also considers the contribution
to the costs of stocking the parts in the manufacturing premises.

Following that, Section 3 has formalised the necessary rules to determine the
critical batch Bc between two different possible manufacturing processes for a part,
serving as a decision-taking criterion for selecting the most productive scenario. In
addition, Section 3 has also addressed the evaluation of the size of a critical series Sc
for taking decisions based on the manufacturing long run. Complementary to the
critical batch launch, Section 3 has also discussed the so-called degree of postpone-
ment, in order to give additional insight into how to raise the efficiency and effec-
tiveness of the production processes.

Section 4 has drawn a concise review of the literature on decision support
systems (DSS) used to tackle production strategies decision-taking. At this point,
it is clear that the groups of factors affecting the decisions can be categorised
into (i) technology capabilities, (ii) production organisation constraints and
(iii) market-demand orientation.

Finally, Section 5 has illustrated the decision-taking processes and results with a
simple yet realistic industrial case study in which it is possible to utilise two differ-
ent existing in-house processes A or B for obtaining the same part P. In the case
study, the cost models of both processes have been analysed and the determination
of the critical batches, critical series as well as the total costs per process has been
targeted. In addition, it has been numerically determined and the possibility to
undertake some process optimisation to reduce the cost level of one of the technol-
ogies envisaged has been studied. Based on this case study, the possible application
of a DSS to the decision-making framework has also been outlined and the different
AI techniques that could be developed at each stage have been described.

Acknowledgements

The authors would like to acknowledge the programme ‘Accenture Research
Grants to Leading Universities to Promote Greater R&D Collaboration’, for supporting
the project ‘Studying the advantages of ultra-postponement with 3D printing by using
analytical tools and mathematical optimization models and algorithms’ as well as the
inputs of the companies participating in the study as the catalyst for the achieve-
ments yielded. The development of the project has been crucial for studying,
understanding and modelling the impact of the postponement strategies on the
decision-taking at a manufacturing level for highly customised products.

Additionally, the authors would like to acknowledge the Spanish Ministry of
Economy and Competitiveness for the financial support of the research projects

21

Decision Support Models for the Selection of Production Strategies in the Paradigm of Digital…
DOI: http://dx.doi.org/10.5772/intechopen.89535



Nhibrid32D: RTC-2015-3497-7 (MINECO/FEDER, UE) and Net3D+:
DPI2016-80119-C3-1-R (MINECO/FEDER, UE). The possibility to develop new
processes and hybrid (3D printing) manufacturing machinery in collaboration with
leading manufacturing companies, as well as to be able to assess and compare the
results obtained with other available technologies, has been eye-opening for raising
awareness on what may be of interest from an industrial point of view.

Additionally, the authors would like to acknowledge the Generalitat de Catalu-
nya and the Agència per a la Gestió d’Ajuts Universitaris i de Recerca (AGAUR) for the
financial support of the research project 2015 DI 029. The possibility to have the
framework for raising questions on decision-taking and discussing them with Prof.
Dr. JR Gomà and Dr. S Morales at an academic/industrial level has been of much
interest in shaping the contents of the present chapter.

Conflict of interest

The authors declare that they have no conflict of interest on this publication.

Author details

Joaquim Minguella-Canela1,2* and Irene Buj Corral1

1 Mechanical Engineering Department, Universitat Politècnica de
Catalunya – BarcelonaTECH (UPC), Barcelona, Spain

2 Fundació Privada Centre CIM, (CIM UPC), Barcelona, Spain

*Address all correspondence to: joaquim.minguella@upc.edu

©2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

22

New Trends in the Use of Artificial Intelligence for the Industry 4.0



References

[1]Hopkinson N, Dickens P. Analysis of
rapid manufacturing—Using layer
manufacturing processes for
production. Proceedings of the
Institution of Mechanical Engineers,
Part C: Journal of Mechanical
Engineering Science. 2003;217:31-39.
DOI: 10.1243/095440603762554596

[2] Berling P. The capital cost of holding
inventory with stochastically mean-
reverting purchase price. European
Journal of Operational Research. 2008;
186:620-636. DOI: 10.1016/j.
ejor.2007.02.022

[3] Lesmono D. Limansyah T. a multi
item probabilistic inventory model. IOP
Conf. Ser. Journal of Physics Conference
Series. 2017;893:012024. DOI: 10.1088/
1742-6596/893/1/012024

[4]Minguella-Canela J, Morales S,
Gomà JR, De los Santos MA. Assessment
of the potential economic impact of the
use of am technologies in the cost levels
of manufacturing and stocking of spare
part products. Materials. 2018;11:1429.
DOI: 10.3390/ma11081429

[5]Minguella-Canela J, Muguruza A,
Lumbierres DR, Heredia FJ, Gimeno R,
Guo P, et al. Comparison of production
strategies and degree of postponement
when incorporating additive
manufacturing to product supply
chains. Procedia Manufacturing. 2017;
13:754-761. DOI: 10.1016/j.
promfg.2017.09.181

[6]Minguella-Canela J, Morales
Planas S, Gomà Ayats JR, De los Santos
López MA. Study and comparison of the
different costs’ schema associated to
geometry, material and processing
between 3D printing, injection molding
and machining manufacturing
technologies. In: Book of Abstracts of
the 8th Manufacturing International
Society International Conference

(MESIC '19); 19–21 June 2019; Madrid.
Spain: SIF; 2019. p. 48

[7]Wikner J, Rudberg M. Introducing a
customer order decoupling zone in
logistics decision-making. International
Journal of Logistics Research and
Applications. 2005;8:211-224. DOI:
10.1080/13675560500282595

[8] Yang B, Burns N. Implications of
postponement for the supply chain.
International Journal of Production
Research. 2003;41:75-90. DOI: 10.1080/
00207544031000077284

[9] Alter SL. Decision Support Systems:
Current Practice and Continuing
Challenges. Reading, Mass: Addison-
Wesley Pub; 1980. 316 p. ISBN 0-201-
00193-4. DOI: 10.1002/bs.3830270109

[10] Turban E, Aronson JE, Liang TP.
Decision Support Systems and
Intelligent Systems. 7th ed. Prentice
Hall: Upper Saddle River, NJ; 2004.
960 p. ISBN: 978-0130461063

[11] Power DJ. Decision Support
Systems: Concepts and Resources for
Managers. Westport, CT: Greenwood/
Quorum Books; 2002. 251 p. ISBN:
156720497X

[12]Hornberger LE. Rapid prototyping
program [thesis]. Santa Clara: California
Santa Clara University; 1993

[13] Campbell RI, Bernie MRN. Creating
a database of rapid prototyping system
capabilities. Journal of Materials
Processing Technology. 1996;61(1–2):
163-167. DOI: 10.1016/0924-0136(96)
02481-8

[14] Xu F, Wong YS, Loh HT. Toward
generic models for comparative
evaluation and process selection in rapid
prototyping and manufacturing. Journal
of Manufacturing Systems. 2001;15(5):

23

Decision Support Models for the Selection of Production Strategies in the Paradigm of Digital…
DOI: http://dx.doi.org/10.5772/intechopen.89535



283-286. DOI: 10.1016/S0278-6125(01)
89001-4

[15] Byun HS, Lee KH. A decision
support system for the selection of a
rapid prototyping process using the
modified TOPSIS method. International
Journal of Advanced Manufacturing
Technology. 2005;26:1338-1347. DOI:
10.1007/s00170-004-2099-2

[16]Munguía J. RMADS: Development
of a concurrent rapid manufacturing
advice system [thesis]. Barcelona, Spain:
Universitat Politècnica de Catalunya-
Barcelona TECH; 2009

[17]Morales S. Contribución al
Desarrollo de una metodología de diseño
para la fabricación con tecnologías
aditivas de piezas con alta variabilidad
de demanda [thesis]. Barcelona: Spain.
Universitat Politècnica de Catalunya-
Barcelona TECH; 2019

[18] Taha Z, Rostam S. A hybrid fuzzy
AHP-PROMETHEE decision support
system for machine tool selection in
flexible manufacturing cell. Journal of
Intelligent Manufacturing. 2012;23:
2137-2149. DOI: 10.1007/s10845-011-
0560-2

[19] Yu VF, Hu K-J. An integrated fuzzy
multi-criteria approach for the
performance evaluation of multiple
manufacturing plants. Computers and
Industrial Engineering. 2010;58(2):
269-277. DOI: 10.1016/j.cie.2009.10.005

[20]Watson JK, Taminger KMB. A
decision support model for selecting
additive manufacturing versus
subtractive manufacturing based on
energy consumption. Journal of Cleaner
Production. 2018;176:1316-1322. DOI:
10.1016/j.jclepro.2015.12.009

[21] Kaschka U, Auerbach P. Selection
and evaluation of rapid tooling process
chains with Protool. Rapid Prototyping
Journal. 2000;6(1):60-66. DOI: 10.1108/
13552540010309886

[22] Panda BN, Biswal BB,
Deepak BBLV. Integrated AHP and
fuzzy TOPSIS approach for the selection
of a rapid prototyping process under
multi-criteria perspective. In:
Proceedings of the 5th International and
26th all India Manufacturing
Technology, Design and Research
Conference (AIMTDR ‘14), 12–14
December 2014. Guwahati, India: IIT;
2014. pp. 1-6

[23] Park H-S. Tran N-H. a decision
support system for selecting additive
manufacturing technologies. In:
Proceedings of the International
Conference on Information System and
Data Mining (ICISDM ‘17); 2017.
Charleston, SC, USA: ACM; 2017.
pp. 151-155

[24] Zhang Y, Xu Y, Bernard A. A new
decision support method for the
selection of RP process: Knowledge
value measuring. International Journal
of Computer Integrated Manufacturing.
2014;27(8):747-758. DOI: 10.1080/
0951192X.2013.834474

[25]Masood SH, Al-Alawi M. The IRIS
rapid prototyping system selector for
educational and manufacturing users.
International Journal of Engineering
Education. 2002;18(1):66-77

[26] Arjona-Montes J, Minguella-Canela
J, Vivancos Calvet J. SelecTool: Software
tool for the search and comparison of
cutting tools depending on standard,
geometric and cutting properties and
user's criteria. In: Proceedings of 37th
International MATADOR Conference
(MATADOR ‘12); 2012. Manchester,
UK: Springer; 2012. pp. 157-161

[27]Mahesh M, Fuh JYH, Wong YS,
Loh HT. Benchmarking for decision
making in rapid prototyping systems.
In: Proceedings of the 2005 IEEE
Conference on Automation Science and
Engineering (IEEE-CASE ‘05); 2005.
Edmonton, Alberta, Canada: IEEE;
2005. pp. 19-24

24

New Trends in the Use of Artificial Intelligence for the Industry 4.0



[28] Gibson I, Rosen DW, Stucker B.
Guidelines for process selection. In:
Gibson I, Rosen DW, Stucker B, editors.
Additive Manufacturing Technologies.
Rapid Prototyping to Direct Digital
Manufacturing. Springer; 2015.
pp. 333-356. ISBN 978-1-4939-2113-3

[29] Krais S, Al-Hawari T, Al-Araidah O.
A fuzzy logic application for selecting
layered manufacturing techniques.
Expert Systems with Applications. 2011;
38(8):10286-10291. DOI: 10.1016/j.
eswa.2011.02.061

[30]Hagemann S, Sünnetcioglu A,
Stark R. Hybrid artificial intelligence
system for the design of highly
automated production systems.
Procedia Manufacturing. 2019;28:
160-166. DOI: 10.1016/j.
promfg.2018.12.026

[31] Vimal KEK, Vinodh S, Brajesh P,
Muralidharan R. Rapid prototyping
process selection using multi criteria
decision making considering
environmental criteria and its decision
support system. Rapid Prototyping
Journal. 2016;22(2):225-250. DOI:
10.1108/RPJ-03-2014-0040

[32] Ghazy MMSA. Development of an
additive manufacturing decision
support system (AMDSS) [thesis].
Newcastle, UK: University of
Newcastle; 2012

[33] European Factories of the Future
Research Association (EFFRA).
Factories 4.0 and Beyond.
Recommendations for the work
programme 18-19-20 of the FoF PPP
under Horizon 2020 [Internet]. 2016.
Available from: https://www.effra.eu/site
s/default/files/factories40_beyond_v31_
public.pdf [Accessed: 29 August 2019]

[34] Zhong RY, Xu X, Klotz E,
Newman ST. Intelligent manufacturing
in the context of industry 4.0: A review.
Engineering. 2017;3(5):616-630. DOI:
10.1016/J.ENG.2017.05.015

[35] Shende V, Kulkarni P. Decision
support system for rapid prototyping
process selection. International Journal
of Scientific and Research Publications.
2014;4(1):2250-3153

25

Decision Support Models for the Selection of Production Strategies in the Paradigm of Digital…
DOI: http://dx.doi.org/10.5772/intechopen.89535



Chapter

Developing Cognitive Advisor
Agents for Operators in
Industry 4.0
Alejandro Chacón, Cecilio Angulo and Pere Ponsa

Abstract

Human cyber-physical systems (CPS) are an important component in the
development of Industry 4.0. The paradigm shift of doing to thinking has allowed
the emergence of cognition as a new perspective for intelligent systems. Currently,
different platforms offer several cognitive solutions. Within this space, user assis-
tance systems become increasingly necessary not as a tool but as a function that
amplifies the capabilities of the operator in the work environment. There exist
different perspectives of cognition. In this study cognition is introduced from the
point of view of joint cognitive systems (JCSs); the synergistic combination of
different technologies such as artificial intelligence (AI), the Internet of Things
(IoT) and multi-agent systems (MAS) allows the operator and the process to
provide the necessary conditions to do their work effectively and efficiently.

Keywords: cognition, multi-agent system, advisor, operator

1. Introduction

The continuous introduction of technology in the industrial environment is a
main generator of changes in architectures, models and work styles in the industry.
Currently, Industry 4.0 signifies a great opportunity for operators to become a part
of the new manufacturing systems [1]. On the one hand, operators generate infor-
mation and data to programme machines and robots and optimise process flows; on
the other hand, they receive useful support for their work as well as effective
cooperation with intelligent systems [2]. This bidirectional dialogue allows new
types of powerful interactions between operators and machines. Hence, a new kind
of workforce should be trained in order to obtain a significant impact on the
development of the industry [3].

The use of artificial intelligence (AI) techniques to enhance the lifelong learning
experience of humans has evolved in literature from the early works on intelligent
tutor systems, where AI is used as a tool to monitor and facilitate the user learning
process, to the creation of human-computer collaborative learning systems (HCCL)
[4], where AI entities become members of a group of mixed human and artificial
learners. Through HCCL systems, humans acquire problem-solving or decision-
making capabilities in a particular domain in simulated or real situations.

In the Industry 4.0 scenario, AI entities can be endowed as cognitive advisor
agents implemented in the form of either voice assistants or embodied agents, in
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order to propose collaborative working behaviours between machines and humans.
The implementation of these systems in manufacturing pushes towards factories
characterised by the symbiosis of human automation [5], where machines
cooperate with humans, both parts having the opportunity to lead the cooperative
task at hands.

The challenge motivating this research is to define a human-centred architecture
to design, implement and evaluate cognitive advisor agents in the framework of a
human cyber-physical production system (H-CPPS) [2, 6] which supports the
operator in Industry 4.0 to accomplish their job into an automation system [7] in a
more efficient and effective form. The proposed overall H-CPPS architecture will be
evaluated through a proof of concept based on a multi-agent system (MAS)
implementing a cognitive robot (embodied agent) to assist the operator (operator
4.0) in a collaborative work with a cobot. A scheme of the operator—cobot—
assistant robot symbiotic system is shown in Figure 1.

This chapter is structured as follows. Firstly, the current Industry 4.0 paradigm
is introduced, and the role of human operator in this domain is shown. Next, the
proposed human cyber-physical production system architecture is introduced.
Moreover, the approach of this architecture to cognitive tasks is presented. The
cognitive advisor vision to be endowed into the previous architecture is finally
introduced. Conclusions and future research lines are closing the chapter.

2. The operator’s workspace in Industry 4.0

The operator 4.0 concept is defined in [2, 8] in a general form as an operator in
an industrial setting assisted by technological tools. Although the increase in the
degree of automation in factories reduces costs and improves productivity, in the
Industry 4.0 vision, differently of computer-integrated manufacturing (CIM),

Figure 1.
Proof of concept. The operator 4.0 is assisted by the embodied agent to collaborate with the cobot in the process.
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human operators are yet key elements in the manufacturing systems. In fact, the
increasing degree of automation ‘per se’ does not necessarily lead to enhanced
operator performance.

The continuous innovations in the technological areas of cyber-physical systems
(CPS), the Internet of Things (IoT), the Internet of Services (IoS), robotics, big
data, cloud and cognitive computing and augmented reality (AR) result in a signif-
icant change in production systems [9, 10]. Empowered with these new skills,
cyber-physical systems can take part, for instance, in tasks of planning and disposi-
tion, eventually to manage them. Machines take care of the adequate supply of
material, change the production method to the optimal one for the real product or
devise a new plan themselves [11]. This technological evolution generates, among
others, the following impacts on the operator:

• The qualification of manual tasks decreases.

• The operator can access all the necessary information in real-time to take
decisions.

• Intelligent assistance systems allow decisions to be taken more quickly and in a
short space of time.

• Co-working in the workspace between machines and people requires less effort
and attention.

• Human implementation and monitoring are more relevant than ever.

The emerging technologies in Industry 4.0 [12] as well as current development
of AI technologies are allowing that cyber-physical systems oriented to human-
machine interaction be moving from only a physical interaction vision paradigm to
also a cognitive one (see Table 1). The operator should be able to take the control
and supervise the automated production system. However, the increasing informa-
tion and communication power of these systems leads to a complexity that is not
understandable by the current standard user interfaces employed in the industry.
Consequently, the operator would need support to keep the system under stable
requirements. Moreover, the operator could get the system work plan (factory, not
shift supervisor), and therefore the operator would need additional information
during field operation, which requires access to location-independent information
as well as a situation-oriented and task-oriented information offer [13].

As a result of this paradigm shift, new forms of interaction appear in the field of
human-machine interface (HMI), in the form of intelligent user interfaces, such as
operator support systems (OSS), assistance systems, decision support systems and
intelligent personal assistants (IPAs) [7]. In the context of smart, people-centred
service systems, cognitive systems can potentially progress from tools to assistants
to collaborators to coaches and be perceived differently depending on the role they
play in a service system.

Physical Cognitive

Routine Traditional automation Automated learning techniques

Nonroutine Collaborative robots Intelligent assistants (IA)

Table 1.
Vision of physical and cognitive automation.
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Assistance systems support the operator as follows [14]:

• From a human-centred design approach, it expressly considers the
identification of user context, the specification of user requirements, the
creation of design solutions, and the evaluation of design solutions. Moreover,
it provides an appropriate amount of information in a clear way.

• As a decision-maker in production control, with information acquisition, data
aggregation/analysis of information and operation choice.

However, it should be clarified that the final decision always remains in the
human operator side, thus maintaining the principle of human centrality.

Regarding the tasks and the role of the operator, an increase in the proportion of
complex cognitive tasks is expected, hence increasing the needs for coordination or
organisation of production resources, as well as the control and monitoring of
complex production systems.

The literature shows that a significant change in this relationship from purely
physical to cognitive refers to the human-machine interface, which encompasses
the interaction between operators and a set of new forms of collaborative work. The
interaction between humans and CPS is produced by either direct manipulation or
with the help of a mediating user interface. Such a close interaction between
humans and CPS also raises socio-technological issues regarding autonomy and
decision-making power. Cybernetics provides an answer on how a system that
controls another system can compensate for more errors in the control process by
having more operational variety. As the most flexible entity in the cyber-physical
structure, the human will assume the role of a higher-level control instance [10].
Through technological support, it is guaranteed that operators can develop their full
potential and adopt the role of strategic decision-makers and flexible problem
solvers, thus managing the increasing technical complexity.

3. Human cyber-physical production systems

Cyber-physical systems are one of the fundamental pillars of Industry 4.0
[10, 15, 16]. According to the National Institute of Standards and Technology
(NIST), cyber-physical systems are intelligent systems, including interactive net-
works, designed of physical and computational components. These systems inte-
grate computing, communication, detection and performance with physical
systems to fulfil time-sensitive functions with varying degrees of interaction with
the environment, including human interaction (see Figure 2). These systems are
conceived as components in the production system able of executing physical pro-
cesses in cooperation with other entities. Systems can adapt independently to
changing circumstances, by learning from the additional information coming from
the sensors [6].

Usually, each component of the CPS takes the necessary control decisions
related to the physical aspects of the underlying production system and
communicates control decisions, system states and behaviour patterns. Currently,
the possibility to combine existing technologies such as multi-agent systems,
service-oriented architectures (SOA), the Internet of things, cloud
communication, augmented reality, big data or machine-to-machine
communication (M2M) [9] has empowered the features and functions of these
systems so that levels of cognition in the cooperation, beyond physical interaction,
can be also considered.
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In the approach with humans in the interaction, new models of CPS have
emerged which focused on improving the capabilities of operators, such as cyber-
physical human system (CPHS) [17] and human cyber-physical production system
[2]. CPHS is defined as “a class of sociotechnical systems critical for security in
which the interactions between the physical system and the cybernetic elements
that control its operation are influenced by human agents.” Our research, however,
focuses on H-CPPS, defined as “a work system that improves the capabilities of
operators thanks to a dynamic interaction between humans and machines in the
cyber and physical worlds through intelligent human-machine interfaces.” The
objectives for H-CPPS are achieved through the interactions between the physical
system (or process) to be controlled, cybernetic elements (i.e. communication links
and software modules) and human agents that monitor and influence the function-
ing of the cyber-physical elements.

In both definitions we can highlight the role of the operator within the control
loop. In human-oriented architectures, there is the ability to feedback the informa-
tion (see Figure 3) at each level, because inherent intelligence of human operators
can be used naturally for self-adaptation, corrective and preventive actions. For the
H-CPPS approach, its levels’ configuration acts as a supervisory control to ensure
that decisions made at the cognitive level are implemented and that corrective or
adaptive actions are carried out by the human worker [18].

H-CPPS are very dynamic and complex systems being subject to a certain degree
of unpredictable behaviour of both the environment and the user. These conditions
generate several challenges related to the administration of H-CPPS that require
run-time capabilities allowing the system to detect, monitor, understand, plan and
act on those not predicted changes while minimising (and potentially eliminating)
system downtime. In order to develop our cognitive advisor agent for operators, we
start by defining three dimensions of H-CPPS: cybernetic, physical and human. Each

Figure 2.
CPS conceptual model [17].
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dimension is connected to the other ones through intelligent interactions (see
Figure 4).

The physical dimension includes all the resources connected to the production
system through sensors and actuators. The cybernetic dimension describes all com-
puting, network and cloud infrastructures that communicate data, processes and
software resources. Finally, the human dimension describes human elements, as
well as their situations based on their objectives and context. The human dimension
is especially relevant for this research, focused in aligning the objectives of H-CPPS
with the achievement of the personal goals of the users.

3.1 Agent-based approach to H-CPPS

The applications of artificial intelligence techniques related to humans in the
work environment are guided by four possible paths in human cyber-physical
systems (see Table 2). As the ‘human in the loop’ is considered in H-CPPS, intelli-
gent assistance systems are the approach to be developed in our research.

Nowadays, different architecture patterns and implementation technologies
have been developed and applied to process and exchange information allowing H-
CPPS components to make their decisions. They range from service-oriented archi-
tectures that exploit technologies such as web services to agent-based architectures
that exploit solutions compatible with Foundation for Intelligent Physical Agents
(FIPA) [19]. However, they also come with their own set of challenges.

Figure 3.
CPS vs. H-CPPS model.

Figure 4.
Three dimensions of H-CPPS.
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Multi-agent systems [20] are an example of architecture applicable to the
implementation of H-CPPS. More specifically, industrial agents [21, 22] address
industry requirements in productive systems. MAS expose system characteristics
such as autonomy, cooperation, intelligence, reactivity and proactivity, which
allows intelligence to be distributed among a network of control nodes and, conse-
quently, adapts effectively to distributed control systems, that is, by implementing
H-CPPS solutions [21]. While the use of MAS for control process can be considered
as a mature architecture pattern, its application in the industry is still limited [23].

In order to define our agent-based approach to H-CPPS systems, two types of
interactions should be identified (see Figure 4):

• Interaction between agents (only considering the cyber dimension)

• Interaction between agents (cyber dimension) and hardware automation
control devices (physical dimension)

For the first type of interaction, FIPA has established guidelines to regulate the
development of agent-based systems. It is a collection of standards that are grouped
into different categories, that is, applications, summary architecture, agent com-
munication, agent management and message transport agent. For the second type
of interaction, related to the interconnection of the agent and the physical automa-
tion control device [24], standardised practices are not yet defined, allowing to
simplify and make transparent the process of integration of physical and cybernetic
counterparts.

Finally, it should be noticed that agents, as an enabling technology to manage
smart approaches, endow inherent characteristics (including autonomy, negotia-
tion, mobility) which could be more beneficial when combined with distributed
intelligence approaches and lead to better services and applications at the edge [16].

3.2 Human roles in H-CPPS

For the moment, the cyber and the physical dimension have been considered in
our agent-based approach. However, while in a human-centred architecture, the
roles of humans in cyber-physical human systems (H-CPPS) must be also defined.

In the models of human-automation interaction, attention is paid to whether
human assumes control of the system [25]. In H-CPPS systems, however, human
intervention is focused in more aspects: the dialogue with other agents, decision-
making and information supply. In this sense, one research line is about the defini-
tion of a human model as a part of the full H-CPPS model. However, human models
defined as a transfer function leads to a poor approach. Some researchers expand

Human in the loop No human in the loop

Hardwired
specific
systems

Assisted intelligence: AI system that assist
human in making decisions or taking
actions, hardwired systems that do not learn
from their interactions

Automation: Automation of manual and
cognitive tasks that are either routine or
nonroutine. This does not involve new
ways of doing things—automates existing
task

Adaptative
systems

Assisted intelligence: AI systems that augment
human decision-making and continuously
learn from their interactions with humans
and the environment

Autonomous intelligence: AI systems that
can adapt to different situations and can
act autonomously without assistance

Table 2.
Path AI in human cyber-physical systems.
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this approach by developing analytic human models that reflect cognitive abilities in
the interaction with cyber-physical systems [17]. On the other hand, a H-CPPS
requires flexibility. An adaptive H-CPPS responds to unexpected or novel situations
(replanning, setting new goals, learn from experience), and the definition of the
role of human (passive or active performer) is required [17]. Human roles examples
in H-CPPS are, for instance:

• Supervisor (human on the loop): Approve CPS decisions; reallocate tasks
between human and CPS.

• Controller (human in the loop, operator 4.0): Interact with sensors and
actuators; use of augmented reality technology; collaborative task with a cobot.

Merging human roles with CPS roles in order to define the functional architec-
ture of a H-CPPS leads our research to the definition of a joint cognitive system (JCS),
its basic aim being to achieve a high level of successful performance managing the
human cognitive load in the process.

4. Joint cognitive system

The current development of technology allows us to reach the level of cognition
in H-CPPS (see Figure 3) [18]. However, the understanding of cognition generates
debates because it can be approached from several domains, mainly from psychol-
ogy through mental models, and from cognitive systems engineering (CSE) to
applications in practice.

A joint cognitive system acknowledges that cognition emerges as goal-oriented
interactions of people and artefacts in order to produce work in a specific context
and at the level of the work being conducted. It does not produce models of
cognition but models of coagency that corresponds to the required variety of
performance and thereby emphasises the functional aspects [26].

In this situation, complexity emerges because neither goals nor resources nor
constraints remain constant, creating dynamic couplings between artefacts, opera-
tors and organisations. The CSE approach focuses on analysing how people
manage complexity, understanding how artefacts are used and understanding how
people and artefacts work together to create and organise joint cognitive systems
which constitutes a basic unit of analysis in CSE. Human and machine need to be
considered together, rather than separate entities linked by human-machine
interactions [27].

In the domain of CSE, focus is on the mission that the joint cognitive system
shall perform, avoiding vagaries into its human resemblances. It performs cognitive
work via cognitive functions such as communicating, deciding, planning, and
problem-solving (Figure 5). These sorts of cognitive functions are supported by
cognitive processes such as perceiving, analysing, exchanging information and
manipulating.

The importance of cognition, regardless of how it is defined, as a necessary part
of the work has grown after the industrial revolution:

• Cognition is distributed rather than isolated in the human operator’s mind.

• Operator does not passively accept technological artefacts or the original
conditions of their work.
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• Technological development is rampant; this entails the development of work
with inevitably greater operational complexity.

• Technology is often used in ways that are not well adapted to the needs of the
operator.

There is no turning back, the evolution of information technology, digital trans-
formation and the Fourth Industrial Revolution requires that processes be more
cognitive, automatic and efficient.

4.1 The cognitive design problem: the FRAM tool

As the automation of complex processes becomes more achievable, the need for
engineering procedures that help decide what and how to automate becomes more
important to the safety, flexibility and performance of automation use. The imple-
mentation must satisfy general criteria such as minimising workload, maximising
awareness of what is going on and reducing the number of errors. The basic problem
therefore is to reduce the cognitive demands of the tasks being performed by the
operators involved in the system while maintaining fully their ability to function
within their given roles [28].

JCSs are characterised by three principles [27]: (a) goal orientation, (b) control
to minimise entropy (i.e. disorder in the system) and (c) coagency at the service of
objectives.

In order to understand the sociotechnical system, the functional resonance anal-
ysis method (FRAM) [29] can be used, which allows to have a model generated by
the application itself. The FRAM can be described as a method that is used to
produce a model, instead of a method that is derived from a model. It proposes that
everyday events and activities can be described in terms of functions involved
without predefined specific relations, levels or structures. Instead, the FRAM
assumes that the behaviour of functions, hence the outcomes of an activity or

Figure 5.
Cognitive work functions and cognitive processes.

9

Developing Cognitive Advisor Agents for Operators in Industry 4.0
DOI: http://dx.doi.org/10.5772/intechopen.90211



process, can be understood in terms of four basic principles described in the follow-
ing statements. Moreover, the not predefined functions are described using six
aspects.

The principles of FRAM are:

1.The equivalence of successes and failures: acceptable outcomes as well as
unacceptable outcomes are due to the ability of organisations, groups and
individuals successfully to adjust to expected and unexpected situations.

2.Approximate adjustments: things predominantly go well, but also they
occasionally go wrong.

3.Emergent outcomes: the variability of two or more functions can be combined
in unexpected ways that can lead to results that are unpredictable and
disproportionate in magnitude, both negative and positive.

4.Functional resonance: the variability of one function may in this way come to
affect the variability of other functions in analogy with the phenomenon of
resonance.

In FRAM a function represents acts or activities—simple or composite—needed
to produce a certain result. Examples of simple human functions are to triage a
patient or to fill a glass with water. The organisational function of the emergency
room in a hospital, for example, is to treat incoming patients, while the function of a
restaurant is to serve food. Finally, composite functions include, for instance, a
flight management system.

In the description of functions, an important distinction can be made between
tasks and activities, corresponding to the distinction between work-as-imagined
(WAI) and work-as-done (WAD). A task describes work as designed or as imag-
ined by managers. An activity describes work as it is actually performed or done.
FRAM primarily focuses on activities as they are done or WAD but can of course
also be used to model WAI.

To basically illustrate the use of FRAM, a pick and place system with a robot is
shown in Figure 6. The system is based on filling boxes with cylinders. The cylinder
supplier is in position Warehouse and the destination box in position Box. The
FRAM model should describe functions and their potential couplings for a typical

Figure 6.
Example of a H-CPPS.
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situation but not for a specific one. Hence, it is not possible to certainly determine
whether a function always will be performed before or after another function. It can
only be determined when the model is instantiated. At the start, functions are
identified in a first-independent version about execution (see Figure 7).

The development of the model can continue in several ways—none of them
being preferable over the others. One way is to look at the other functions in the
same way and try to define as many of their aspects as seems reasonable and
possible. Another way is try to define aspects that are incompletely described in the
current version of the model. The basis of the FRAM is the description of the
functions that make up an activity or a process. The functions of different tasks
have been assigned depending on who does it, (human, cobot, process) in the H-
CPPS (see Figure 8). The relationships are not specified nor described directly, and
the FRAM Model Visualiser (FMV) in fact does not allow lines or connectors to be
drawn between functions. The relationships are instead specified indirectly via the
descriptions of the aspects of functions. The common technical term for such
relations is couplings.

Couplings described in a FRAM model through dependencies are called potential
couplings. This is because a FRAM model describes the potential or possible rela-
tionships or dependencies between functions without referring to any particular
situation. In an instantiating of a FRAM model, only a subset of the potential
couplings can be realised; these represent the actual couplings or dependencies that
have occurred or are expected to occur in a particular situation or a particular
scenario [29].

Figure 7.
The FRAM model for a pick and place function ver1.0.

Figure 8.
The FRAM model for a pick and place function/assignation functions.
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Hence, basically we can highlight the following useful features for our study:

• Purpose: A FRAM analysis aims to identify how the system works (or should
work) for everything to succeed (i.e. everyday performance) and to
understand how the variability of functions alone or in combination may affect
overall performance.

• Model: A FRAM model describes a system’s functions and the potential
couplings among them. The model does not describe or depict an actual
sequence of events, such as an accident or a future scenario.

• Instantiation: A concrete scenario is the result of an instantiation of the model.
The instantiation is a ‘map’ about functions coupling or how they may become
coupled, under given—favourable or unfavourable—conditions.

The use of FRAM as a tool for the analysis of cognitive tasks would allow us to
understand about JCS works, identify its critical points and the propagation of the
relationships between functions and understand the distributed cognition and
coagency between the human and the machine.

5. Cognitive advisor agents

Cognitive systems are capable of humanlike actions such as perception, learning,
planning, reasoning, self- and context-awareness, interaction and performing
actions in unstructured environments. The functionality of the cognitive system
includes enabling perception and awareness, understanding and interpreting situa-
tions, reasoning, decision-making and autonomous acting.

Due to their cognitive capabilities, humans are superior to fully automated mass
production systems in adapting to flexible, customised manufacturing processes.
Yet, the increasing specialisation is creating more and more complex production
processes that require elaborate assistance in task execution. Furthermore,
machines are much better at performing repetitive, heavy-load tasks with high
precision and reliability.

The cognitive system provides the best possible assistance with the least neces-
sary disruption. In this context, a cognitive system enables the realisation of an
adaptive, sensitive assistance system that provides guidance only if needed and
based on operator skill (e.g. a 1-day 1 trainee versus a worker who has been with the
company for 30 years), cognitive load and perception capability—in other words, it
provides the best possible assistance with the least necessary disruption. The adap-
tivity of the feedback design enables the education of novices in on-the-job training
scenarios, integrating novices directly into the production process during their 1-
month training period without the need for specialists [30].

At present, H-CPPS can be endowed with powerful intelligence by leveraging
next-generation AI, which allows three main technological features: the first, most
critical, characteristic is that the cyber systems have the ability to solve uncertain
and complex problems; furthermore, problem-solving methods shift from the tra-
ditional model of emphasising causality to an innovative model of emphasising
correlation and further towards an advanced model of deeply integrating correla-
tion with causality. This shift will lead to fundamental improvements in the model-
ling and optimization of manufacturing systems.

The second most important feature is that cyber systems have capabilities such
as learning, cognitive skills and the generation and better use of knowledge; this will
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lead to revolutionary changes in the efficiency of the generation, use, importation
and accumulation of knowledge and to the significant promotion of the marginal
productivity of knowledge as a central productive element.

The third feature is the formation of augmented human-machine hybrid intelli-
gence, which provides full scope and synergistically integrates the advantages of
human intelligence and artificial intelligence. This will result in the innovation
potential of humans being completely released, and the innovation capabilities of
the manufacturing industry greatly increase. With these technological advances and
the advances in the Internet of Things and cloud computing, cognitive solutions are
available that will allow the operator to develop their work in an efficient, effective
and, above all, empowered position. Figure 9 introduces an architecture with cog-
nition for the Industry 4.0. Two characteristics are important to highlight, the first
the Internet of Things and its solutions in the cloud which allow to reach levels of
cognition for all operator functions and the second the cognitive capacity of H-
CPPS systems.

6. Conclusions

The development of emerging technologies around Industry 4.0 is changing the
paradigm of the intelligent industry to the cognitive industry, where it seeks to
harness the cognitive capabilities of the systems to meet the new demands of the
industry. Challenges presented by technological development that focused on
industry require the integration of different areas of science, engineering and tech-
nology. Today, synergy combinations are required to support the development of
intelligent and cognitive solutions. Understanding of sociotechnical systems from
the perspective of joint cognitive systems shows in the first place the current ability
to provide the operator with functions and tools that allow him to amplify his
abilities, in particular the cognitive ones for which it can be seen that there are
different cognitive tools, thanks to which cognitive solutions are capable of being
applied.

Figure 9.
H-CPPS for Industry 4.0.
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Abstract

The evolution of communication technology and the reduction of its costs have 
driven several advances in measurement systems. Points that could not be measured 
before can now be monitored. Points with difficulty to reach or with major security 
restrictions can begin to have their quantities measured and informed to control 
centers. This chapter presents one of these evolutions showing a current transducer 
(CT), which can measure this magnitude, make an initial treatment of the signal, 
and transmit it to a panel or control center. Besides, this current transducer does not 
require an energy source to operate, being self-powered by the current it is measuring. 
Because it is inexpensive, it can be spread through the facilities, supplying the current 
at various points of the observed electrical network. With signal treatment, useful 
information can be inserted in this device so that it informs already preprocessed 
elements to reading devices, becoming part of the world of IoT. This article presents 
its use in motor condition monitoring at the Pimental hydroelectric power plant.

Keywords: measurement, current transducer, IoT, IIoT, energy monitoring, 
condition-based maintenance

1. Introduction

In recent times, new scenarios, many of them futuristic and revolutionary, have 
emerged based on technological advances in two areas, the development of proces-
sors with high processing power and high energy efficiency [1] and the development 
of communication protocols with high transfer rates and low consumption [2].

On the one hand, these advances have stimulated a revolution in the world of 
sensors that has been called the “Industrial Internet of Things” (IIOT) [3–5], where 
it is seen that all devices will present, shortly, some kind of intelligence and inter-
connection through the Internet. On the other hand, in the industrial environment, 
another revolution related to these technological advances has been establishing, 
the so-called fourth Industrial Revolution, or Industry 4.0 [6, 7], where the physical 
systems of the factory floor will have their parameters monitored and digital models 
of your operative and maintenance condition will be updated for decision-making 
and optimization purposes.

And more, another equally strong trend, due to concerns about the environ-
mental impact generated by all this diffusion of consumer electronics and indus-
trial electronics, is the energy collection from the environment, named “energy 



New Trends in the Use of Artificial Intelligence for the Industry 4.0

2

harvesting.” This tendency is based on the energy collection from the environment 
to drive highly efficient electronics, avoiding the dependence of the electrical 
system and eliminating the use of batteries or significantly reducing it. Another 
advantageous aspect of devices with power collection is related to the ease of instal-
lation, since power sources and cables connected to power outlets are not required, 
configuring a wireless power supply.

In accordance with those recent trends, this chapter proposes a wireless self-
supplied current transducer (CT) as an IIOT application for induction motor 
monitoring. Section 2 presents an overview of the proposed current transducer and 
the modeling considerations about the measurement and power extraction CTs. In 
Section 3, the basic components used in the implementation of the proposed cur-
rent transducer are presented. Section 4 considers the available wireless interface 
standards and details the chosen one. The final assembly of the resulting prototype 
is presented in Section 5. In Section 6, test results are presented attesting the proto-
type performance. And Section 7 presents the conclusions.

2. Overview of the current transducer

Figure 1 presents the general overview of the developed current transducer, 
where there are two current transducers, one for measurement and the other for 
energy extraction. The system is complete with a wireless communication module, 
IEEE 802.11 Standard (Wi-Fi) [8]. The device presented in this chapter can be 
applied widely throughout the industrial sector, regardless of its specificity, since 
the need of current measurement for energy monitoring or monitoring of the 
condition of machinery is widespread enough.

2.1 Measuring CT modeling

For monitoring large-scale equipment, the measurement units can be considered 
ideal transformers in the frequency range of interest between ~ 5 and ~ 3 kHz. The 
only concern is the input impedance of the AD converter which is in parallel with 
the “shunt” resistor in a direct connection or the input impedance of the amplifier 
making the buffer function to protect the AD converter in an indirect connection. 
However, in both cases, the input impedance tends to be much higher than 50 Ω. 
For a direct connection to the AD converter, the input impedance for the high-
resolution mode is 16.4 kΩ. For a connection through a buffer, for example, the 
suggested configuration on the ADS1271EVM rating board, the 50 Ω shunt will 

Figure 1. 
Concept of application of the wireless and self-powered current transducer.
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be in parallel with the 100 kΩ/2 kΩ arrangement which is about 40 times greater. 
Figure 2 presents this arrangement. There are arrangements with a better input 
impedance, but it is worth remembering that any minor transformation relation-
ship errors arising from the interaction between shunt resistor and input impedance 
can be compensated by a software in the microcontroller.

2.2 Modeling and simulation of the power extraction CT

An extraction CT can be modeled by the scheme and equation shown in 
Figure 3. As can be perceived, the power in the load, RL, depends on the current 
in the secondary of the CT, Is, and the current splitter formed by the inductance 
of magnetization, Lm, and the own load, RL. The higher the Lm, the higher is the 
portion of the current of the secondary that will pass through the load, IL, and the 
higher is the power extracted.

In Figure 3, by the equation of the magnetization inductance referred to the sec-
ondary, Lm,s, it is perceived that it is proportional to the effective area of its section, 
Ae, and is inversely proportional to its average length, D. On the other hand, the 
magnetization inductance is also proportional to the square of the number of turns 
of the secondary, N2. However, the increase in N causes the decrease of the current 
of the secondary and therefore of the power in the load so that there is an optimum 
value of N for a given configuration. For modeling, a common CT with a bipartite 

Figure 2. 
ADS1271EVM evaluation board input buffer.

Figure 3. 
CT modeling of power extraction, schematic, and equations (toroidal core).
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silicon steel core is used, presenting an original transformation ratio of 250A:1A, a 
mass of 411 g (including the original winding), and a nominal area of 128 mm2.

Figure 5. 
Behavior of CT magnetization impedance.

Figure 6. 
Model for computational simulation.

Figure 4. 
CT magnetization curve.
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Figure 4 presents the magnetization curve of the core, separately and together. 
The tendency of CT with double core saturated with a higher current in the primary 
is perceived. In any case, according to the estimated currents and measurements in 
the cable, the CT works far from the core saturation point. It should also be noted 
that the saturation of the core plays an important role in the aid to the protection 
of the extractor electronics. Figure 5 presents the behavior of the magnetization 
impedance of the test core.

Figure 6 presents the model for computational simulation of the power extrac-
tion CT. The transformer block uses the magnetization curve shown above. In this 
model a CT self-inductance compensation capacitor, a complete wave rectifier 
to produce a continuous voltage in the load, and a capacitor for voltage “ripple” 
filtration are included. The resistor has been chosen to be equivalent to the load 
of the application. It was estimated, previously, that the final prototype would be 
equivalent to a maximum load of 1.1 W, operating at 5 VDC. This power equates to a 
resistive load of 22.72 Ω, which was approximated to a load of 25 Ω, for availability, 
with three 75 Ω resistors in parallel being used.

3. Implementation of the current measurement module

The current measuring module digitalizes the output of the measuring CT and 
makes it available for processing and transmission. The digital-to-analog conversion 
is performed by the ADS1271 converter, and its control is performed by the CC3200 
microcontroller. The interconnection of the two modules, ADS1271 and CC3200, is pre-
sented in the figure below. The set is powered by 5 VDC, and communication between 
modules is done by the serial peripheral interface (SPI) communication interface.

The CC3200 microcontroller is the master device, and the ADS1271 is the slave 
device in the SPI communication scheme. The master device provides the clock 
signal for the SPI interface of the slave device, which sends the data signal (PIN 
slave out-master in) to the master device. The slave device also sends the data-ready 
signal to an interrupt line of the master device, interrupting the microcontroller 
and stating that a valid data is ready for reading and processing.

The power metering module is composed of the magnetic field power extraction 
CT and the power conditioning circuit. The extraction CT is composed of the core 
and the winding of the secondary, whose main parameter is the number of turns, 
which is determined, to extract the estimated power for the application with the 
minimum current in the primary.

The power conditioning circuit consists of compensating capacitors, a full-wave 
rectifying bridge, and a DC-DC converter with buck topology, whose main param-
eter is the output voltage, defined by the power supply voltage of the electronics 
of the application, in this case 5 VDC. In the buck topology, the output voltage is 

Figure 7. 
DC-CC converter with buck topology: (a) overall topology scheme and (b) real circuit with integrated circuit 
LM2575-5.0.
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less than the input voltage and was chosen according to the voltages obtained at the 
output of the extraction CT in the range of possible currents for the application.

Figure 7 presents the general schematic of the topology and the schematic of the 
actual circuit implemented with integrated circuit LM2575-5.0.

Figure 8 introduces the protoboard implementation of the buck converter. In 
this figure, the rectifier with the ripple filtering capacitors, the buck converter itself, 
and a resistive load equivalent to the estimated load of the application are shown.

4. Wireless interface specifications

There are a large number of wireless communication technologies for the most 
diverse purposes. Among these, we can cite three well-known: IEEE 802.15.4 
known as Zigbee [9], IEEE 802.11 known as Wi-Fi [8], and IEEE 802.15.1 known as 
Bluetooth [10].

The IEEE 802.15.4 Standard, Zigbee, is an open standard designed exclusively for 
use in device networks. It is a technology that does not require much processing or 
power, being suitable for devices with batteries. The standardization is not yet total 
so that a device with interface said Zigbee would not necessarily be able to com-
municate with another device with interface. Since the standard is oriented to device 
networks, “streaming” applications, which require the continuous submission of data 
at relatively high rates, are not well attended because the maximum baud rate is 250 
Kbps. The range can also be a limiting factor for applications based on this standard.

The IEEE 802.11 Standard, Wi-Fi, is best known and commonly used for con-
necting devices such as notebooks, tablets, and smartphones to Internet routers. 
The standard uses radio bands in the range of 2, 4, and 5GHz. It is possible to obtain 
a “Wi-Fi Certified” certification for a device to ensure its full compatibility with the 
standard and ensure its interoperability with other devices as well as certificates. 
This standard is quite suitable for “streaming” applications, being used commonly 
for audio and video streaming applications, much more demanding, in terms of 
speed, than the transducer proposed in this project. Data transmission rates of 
10 Mbps or larger are common. Another positive point is the long range usually 
obtained with interfaces of this standard, which can reach 100 m or more.

Figure 8. 
Protoboard assembly of the buck CC-CC converter circuit, including the rectifier and equivalent resistive load.
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The IEEE 802.15.1 Standard, Bluetooth and Bluetooth Low Energy (BLE), 
establishes an interface geared to the transmission of data in short distance, 
2–10 m. Streaming applications are serviced very well as long as the distance limi-
tation does not adversely affect the application. The data throughput is between 
1 and 3 Mbps. Another limiting factor is the limit of seven devices on a Bluetooth 
network. The Bluetooth standard is well controlled, and every device needs to be 
certified to use the name.

Thus, considering the general characteristics of these three wireless interface 
standards, the IEEE 802.11 Standard, Wi-Fi, shows the most indicated, taking into 
account the general requirements of this application, which are range, greater than 
10 m; data transmission rate, in the order of Mbps; and practicality and integration 
facilitated with the communication network of the plant.

The two most common and known transport layer protocols are transmission 
control protocol (TCP) and user datagram protocol (UDP). The CTP is one of the 
main protocols of the Internet protocol set. It enables reliable, orderly, and error-
checking packet transmission. The UDP uses a simpler, connectionless communica-
tion model. UDP checks the integrity of the data with “checksum” and uses a system 
of several ports for different functions, both in the target and in the source. There 
are no handshake dialogs between the source and the destination because there is 
no established connection. Therefore, there is no guarantee of delivery of packages. 
Thus, the UDP is suitable for applications where the integrity and correctness of the 
data are not necessary or can be done in the application itself, avoiding the cost of 
this processing in the protocol stack. In general, real-time applications that privilege 
speed use UDP, as it is preferable to lose a package waiting for a delayed package. In 
the “streaming” data-type applications, the first transport protocol option is UDP.

The application of this device is related to the monitoring of engine condition, 
and the condition of a motor changes slowly, at least in the parameters of interest. 
Therefore, if there is a loss of a package compromising a measurement, another 
measurement can be requested without prejudice to the monitoring. Besides, it is 
more appropriate for data integrity checking to be done on the target computer, 
which probably has more processing capacity than the application microcontroller.

The hardware of the prototype Wi-Fi communication interface module consists 
of the CC3200-LaunchXL card. This board is composed of circuits for the use of 
external peripherals of the CC3200 microcontroller, circuits for debugging func-
tionalities, and the antenna of the wireless communication system itself.

The CC3200 is a single-chip microcontroller with integrated Wi-Fi connectivity 
for the Internet of Things applications. Its core consists of an ARM Cortex-M4 pro-
cessor that allows the implementation of applications with processing and wireless 
communication interface with a single integrated circuit.

Provisioning on Wi-Fi-type wireless networks is the process of connecting a new 
Wi-Fi device (called a station) to a Wi-Fi network (called a hotspot). The provi-
sioning process involves loading the station with the network name (called SSID) 
and the security credentials. The Wi-Fi security standard distinguishes between 
personal security, for home and business use, and business security, for use in large 
offices and large networks. In the case of the enterprise security standard, certifi-
cates are installed that are used to verify the health of the station and the network 
by interacting with a secure server managed by the IT department. In the case of the 
personal security standard, only the use of a password is required.

In the case of CC3200 devices with the SimpleLink application programming 
interface (API), there are three provisioning methods: SmarConfig, AP mode, and 
Wi-Fi protected setup (WPS).

The SmarConfig Technology owns the Texas Instruments and consists of a 
provisioning method for non-peripheral input/output devices (keyboards, mice, 
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monitors, and CT), as is the case with the application of this project. This method 
uses an application to broadcast network credentials through a smartphone, tablet, 
or PC to a Wi-Fi device that has not yet been provisioned.

When the unprovisioned device uses the SmartConfig mode, it enters a special 
scanning mode, hoping to collect the network information being broadcast by the 
SmartConfig application on a smartphone, for example. The smartphone needs to 
be connected to a Wi-Fi network to broadcast its credentials.

The access point (AP) method is the most widespread method for provision-
ing non-peripheral input/output devices over Wi-Fi networks. In this method, the 
unprovisioned device starts in access point mode, creating its network with SSIDs 
and credentials set by the application’s manufacturer, so a smartphone or PC can 
connect directly to the unprovisioned device and configure your provisioning on 
the desired network. These elements are the provisioning method adopted in the 
final version of the CT.

The Wi-Fi protected setup (WPS) method is the only industry standard avail-
able for provisioning non-peripheral input/output devices. It was introduced by 
the Wi-Fi Alliance in 2006 and is a safe and easy method of provisioning devices 
without knowing the SSID of the network or long typing passwords. The default 
defines two mandatory methods for access points with WPS: using personal identi-
fication number (PIN) and using a push-button-connect (PBC).

Once the SSID and the access credentials have been established, the code, shown 
in Figure 9, makes the connection to the chosen network using the SimpleLink 
application programming interface (API) in C code.

The basic flow of connecting, transmitting, and receiving data with a UDP socket 
from the SimpleLink application programming interface (API) of the CC3200 
microcontroller in C language is presented next to the client and server side.

On the client side, you first create a socket of the IPv4 type and select a UDP 
connection, as follows:

In the code above, the first parameter, SL_AF_INET, indicates the selection of an 
IPv4 socket; the second parameter, SL_SOCK_DGRAM, selects the UDP protocol; 
the third parameter, 0, selects the protocol default mode; and the SockID variable 

Figure 9. 
C code using the SimpleLinkK API to connect to the provisioned Wi-Fi network.
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is the handler for the socket that will be used in all subsequent operations. The 
parameters used above and others are established in the header file “socket. h.”

Because UDP is a connectionless protocol, the client can begin sending data to 
a specific address without verifying that the device is active or not. The following 
code is an example of how to do this:

In the code above, IP_ADDR is the IP address in hexadecimal format, PORT_NUM 
is the port number used, and Addr is a structure that gathers all the necessary infor-
mation (user-specified information and other standard information) to the operation.

Finally, to close the socket, you use the following function:

On the server side, the creation of the socket is identical to the client side:

The socket then needs to be bound to the local IP address through the sl_Bind 
function:

From this point, you can try to receive data by the socket of the source specified 
by Addr, the fifth parameter of sl_RecvFrom:

If the “nonblocking” option was not specified, the command is locked until the 
amount of data specified in BUF_SIZE is received.

To close the socket, use the sl_Close function as before:
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5. Assembly of the current transducer

The produced prototype boards are presented in Figures 10 and 11.
An enclosure was designed with a more rounded and nicer shape visually. The 

3D design can be seen in Figure 12.
The enclosure design was executed in Delrin® Resin, conferring resistance 

and robustness to the prototype. Figures 13–15 show the prototype in its final 
enclosure.

Figure 16 below presents the operation flow chart for the prototype device. Once 
the wireless self-supplied module is installed around the motor cable and there is 
enough current to drive the power conditioning circuit, a timer starts to count. 
After a stabilization time, the available power is supplied to the main application 
modules: microprocessor, wireless interface, and analog-to-digital converter. After 
that, a Wi-Fi network is created for provisioning, as described in Section 4, or direct 
connection, if desired. Once the device is connected to the desired Wi-Fi network, it 
can receive commands from the main software or execute operations according to a 
setup schedule.

Figure 11. 
Board of the device mounted with the SBC and ADS1271-EVM board: (a) front view and (b) rear view.

Figure 10. 
Device board: (a) top view and (b) bottom view.
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Figure 13. 
The open device enclosure exposing (a) the electronics and (b) the CTs for measuring and extracting power.

Figure 12. 
3D design of the device enclosure.

Figure 14. 
Front view of the device.
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6. Results of tests

6.1 Tests in the laboratory

The objective of these tests was to simulate the actual operating conditions 
that the device will face when installing on the electric motors in the field. For 
example, in the case of off-road vehicle (ORV) motors (speed regulator), the 
prototype must:

• Support the starting condition offered by the “soft-starter” system.

• Work, most of the time, with the current in “no load” (30–60 A).

• Withstand the operating current of the motor (about 162 A), which lasts about 
1 min.

Also, for the case of motors without soft starter, the condition of direct starting 
with currents of the order of six times the nominal current has been tested. For this, 
a motor of 2.1 A was used, and the cable was passed through one of the phases by 
the prototype 18 times, producing a motive magnet force of about 36 At in normal 

Figure 15. 
Device operating in a test setup with 34 a current.

Figure 16. 
Operation flowchart for the wireless self-supplied current transducer.
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condition and 243 At in the starting condition. The assembly for the simulation of 
the starting situation is presented in Figure 17; meanwhile, the starting curve of the 
motor is displayed in Figure 18.

The main points verified were:

• Prototype stability for operation and communication in the presence of avail-
able minimum currents

• Stability of overvoltage protection in the presence of maximum available currents

Figure 17. 
Assembly of the starter test for motor without soft starter.
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During the tests, the main subsystem verified was the protection circuit of 
the buck converter, which prevents the input voltage from being greater than 
the allowable limit, 40 VDC. In this case, the protection is specified to reap the 
voltage at about 36 Vcc, keeping the application running and dissipating surplus 
energy in the protection transistor buffer. The temperature of the transistor/
heat sink assembly was monitored with the extractor operating with a current 
of 170 A (greater than the operation of about 162 A) over 4 min that is four 

Figure 19. 
About 79°C at the hottest point (set operating above the nominal for 4 min).

Figure 18. 
Engine starting test indicating that the starting current reached about 344 to peak (243 Arms)—the ratio of the 
current transducer equal to 1 MV/a.
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times longer than the operating period reported in this condition, as shown in 
Figure 19. The system operated normally, and the maximum temperature in the 
set reached 79°C.

6.2 Operation at the Pimental hydraulic power plant

Figure 20 presents the device installed and operating in the motor BB-ORV101, 
at Pimental hydraulic power plant, in Altamira, north of Brazil.

The prototype proved to be stable from a minimum current of about 34 A, as 
presented in Figure 21.

According to field measurements, the BB-ORV motors operate for about 1 min 
in current slightly higher than the nominal board. This condition was measured and 
presented in Figure 22.

Figure 20. 
Device installed at Pimental hydraulic power plant in Brazil.

Figure 21. 
Waveform presented by the oscilloscope in the current condition of minimum, 34 A.
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Figure 24. 
Thermal image of the transistor/protection sink of the buck converter, in the condition of starting current, 602 
A, after about 60 s of operation.

Figure 23. 
Saturated and distorted waveform presented by the prototype in the condition of starting current, 602 A.

Figure 22. 
Waveform presented by the oscilloscope in the current condition near the nominal, 149 A.
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In the field measurements, it was found that in the BB-ORV motors, which 
have a soft-starter device, the starting condition takes about 4 s and reaches a 
current of 400 A. To introduce a safety factor, the prototype was subjected to 
currents of 600 A for more than 60 s. The objective is not that the prototype can 
measure these currents, as they are far above the nominal CT, which is 200 A but 
can withstand them without fail. Therefore, it is normal, in this condition, that 
the prototype displays saturated or distorted currents, as shown in Figure 23. 
Figure 24 shows the thermal image of the transistor/protection sink of the 
buck converter, in the condition of starting current, 602 A, after about 60 s of 
operation.

6.3 Considerations about the power harvesting capability of the prototype

The power harvesting capability of the prototype reaches 2.5 W in the condition 
of a minimum current of 34 A in the measured cable. This power suffices to drive a 
single-board computer based on an ARM microprocessor with 64 bit architecture, 
1 GHz clock, 512 Mb RAM, Linux operating system, and many peripherals. Such 
a system is able to perform many digital signal processing (DSP) techniques in 
the electric current signals acquired from the monitored electric motor, for motor 
monitoring applications do not require a real-time processing, since a few signals 
a day suffice for a condition diagnostics of the slow developing faults that can be 
monitored by the current spectral analysis technique.

7. Conclusions

This chapter aims to show the development and implementation of an innova-
tive current transducer inserted in the context exposed above, i.e., dynamic current 
measurement (waveform) or its RMS value, for the purpose of monitoring the 
energy and/or monitoring the condition of assets; wireless interface with remote 
viewing and/or recording device, self-powered by the magnetic field of the current 
measure, without connection to the electrical system through external sources and 
power cords; and ability to synchronize with other gauges or use a real-time base, 
allowing the correlation of the measurements of various transducers in the same 
time base.

The main objective of this chapter was to present the development of a current 
transducer with wireless data transmission self-supplied by the magnetic field 
of the transduced current. The proposed measuring device involves the cable, 
whose current is intended to be measured, extracting power from the magnetic 
field around the conductor to feed the current transducer itself and the data flow 
generator circuit of the measured current (“streaming”) through a wireless trans-
mission protocol. The measured current can be viewed on a handheld device such 
as a “smartphone” or data collector, for example. The extracted signal was used 
to monitor the condition of the cooling system motors of the Pimental hydraulic 
power plant through the analysis of the electrical signature analysis.

The main advantages of the proposed system are:

• Ease of installation: the device involves the cable whose current is to be 
measured.

• Easy access to data: wireless and remote interface with data collectors or 
“smartphones.”
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• Nonintrusive: the only interface with the system to be measured is the mag-
netic field, and there will be no sources or cables interfering with the electrical 
panels of the plant.

• Record of the data in the “cloud” if desirable.

• Ease of implementation of energy monitoring and condition-based mainte-
nance applications.
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Chapter

How the Data Provided by 
IIoT Are Utilized in Enterprise 
Resource Planning: A  
Multiple-Case Study of Three 
Change Projects
Jyri Rajamäki and Petra Tuppela

Abstract

An extreme increase in data production has taken place over the past few 
decades with a large number of sensor and smart devices acquired from distributed 
data sources. Industrial Internet of Things (IIoT) enables seamless processing of 
information by integrating physical and digital world devices that can be used 
ubiquitously. This multiple-case study analyzes how the data generated by the IIoT 
benefit enterprise resource planning. In the analyzed cases, IIoT has been produced 
using and integrating various digital services and software in the enterprise. Data 
produced by IIoT might be raw data or pre-analyzed by the IIoT service provider 
according to the enterprise’s needs. Services based on IIoT solutions ensure com-
petitiveness within the enterprise since IIoT is flexible and easy to apply on future 
demands. IIoT generates increased amount of data and enterprises can utilize 
it to provide significant benefits to their operations. The cross-case conclusions 
emphasize that improving operational processes with data does not provide maxi-
mal benefit to the enterprise. Data-driven procedure and the entire change project 
(digital transformation) together with new procedures will provide most benefits to 
the enterprise.

Keywords: multiple-case study, digital transformations, change project, industrial 
internet of things, enterprise resource planning

1. Introduction

An emergent number of enterprises are deploying new solutions utilizing 
Industrial Internet of Things (IIoT). IIoT solutions provide many benefits to an 
enterprise, but they also drive the enterprise to redesign its operations to data-
driven processes. On the other hand, the solution adjusts the enterprise’s services 
to make them more profitable and precise. This requires the enterprise to make 
strategic but also organizational changes in order to succeed in the change [1]. 
During the development process, enterprises brainstorm, generate ideas, compare 
and test IIoT solutions for later changing the business model. The services pro-
vided by IIoT require not only an IT competence developer but also competence in 
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business activity insight and expertise. IIoT solutions also affect sales, marketing, 
and mostly development of service concepts. In some cases, IIoT can be the base of 
a new service concept or a total digital transformation process.

Change, derived from IIoT solution, requires time in every organization. 
Change includes planning, deployment, and implementation of current solution. 
In some cases, the Industrial Internet can affect the enterprise’s whole strategy by 
remodeling or modifying its operations. IIoT solution may even influence value 
proposition since data drive the operations and accurate data provide new possibili-
ties in daily business. Due to technical solution that collects data, new information 
is created. Therefore data can even have an impact on enterprise management tools; 
using of data driven management tools to assess processes [1].

This chapter presents a multiple-case study research (MCSR) of three change 
projects in which new IIoT solutions have been put into operations in three different 
Finnish enterprises. The research questions are:

• How and when the enterprise recognizes the changes required by applying the 
new IIoT solution?

• How the enterprise applies the new data provided by the IIoT solution?

• Why the change is crucial, and how the whole organization succeeded in 
implementing the change?

The chapter follows a linear-analytic structure of the sequence of subtopics 
involving the issue being studied, the methods used, a review of the relevant 
literature, the findings from the collected and analyzed data, and conclusions and 
implications from the findings. After the introduction, Section 2 proposes a used 
methodology of the deliverable. Section 3 handles the theory and how it has been 
built. Section 4 presents the individual case study analysis. Section 5 includes cross-
case study conclusions and concludes the chapter.

2. Research approach

Figure 1 shows how the MCSR approach is applied in this research. The initial 
step in designing a MCSR consists of theory development (see Section 3), and the 
next steps are case selection and definition of specific measures in the design and 
data collection process. Each individual case study consists of a whole study, and 

Figure 1. 
Applied multiple-case study approach.
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then conclusions of each case are considered to be the replication by other indi-
vidual cases. Both the individual case and the multiple result should be the focus 
of a summary report. For each individual case, the report should indicate how and 
why a particular result is demonstrated. Across cases, the report should present the 
extent of replication logic, including certain and contrasting results [2].

Any use of multiple-case design should follow a replication, not a sampling 
logic, and choosing of each case should be made carefully [2]. In Figure 1, the 
dashed-line feedback represents a discovery situation, where one of the cases does 
not suit the original multiple-case study design. Such a discovery implies a need to 
reconsider the original theoretical propositions. At this point, redesign should take 
place before proceeding further, and in this view, the replication approach repre-
sents a way of generalizing that uses a type of test called falsification or refutation, 
which is the possibility that a theory or hypothesis may be proven wrong or falsified 
[3]. This MCSR consists of three individual case studies presented in Section 4. The 
sources of evidence used in the individual case studies consist of documentation, 
archival records, interviews of enterprises’ top management and IIoT solutions 
suppliers, direct observations, participant-observation, and physical artifacts. The 
data are retrieved in a specific time period (cross-sectional), the largest part of 
the data is qualitative (empirical) and involves purposive sampling and a specific 
selection of a phenomenon (case studies). Every individual case study was reported 
separately to the top management of the enterprise in question. Cross-case conclu-
sions were carried out via a document analysis exercise.

3. Industrial Internet of Things in service business

The Internet of Things (IoT) refers to a system of smart devices connected to 
each other through the Internet [4]. These things include technology that enables 
them to communicate, sense and interaction with internal space as well as external 
environment. In other words, physical things can collect data, be connected to other 
things, and share data. These things can be sensors, smartphones, smartwatches, 
computers, and home and industrial appliances—anything that can collect, 
handle, and send data for forward treatment and analyses. First, IoT systems were 
consumer-centric, but the disruptive nature of this technology has enabled the 
adoption of IoT technology in a gamut of industrial settings, thus leading to the 
development of Industrial Internet of Things (IIoT) technology [5]. Technology 
enables new success stories in every business industry. The true success factors, 
in order to succeed in IIoT solution implementations, are people in enterprises, 
processes, and context.

Data alone that are provided by IIoT solutions are not of any value. The col-
lected data connected to business unit’s context or other sources of data provide the 
valuable benefits. Data can be used to understand challenges better or to enhance 
processes. Collected data may even support management in decision-making 
process.

By purchasing IIoT solutions, enterprises maintain their competitive advantage. 
The solution would respond quickly for future spontaneous and accurate demands 
since things are connected to network and therefore can be updated online. Services 
can be adjusted both due to competition, commercial, and also to legislation 
requirements. IIoT solutions mostly include technology, network, and software. In 
addition, they are always designed for enterprises’ needs and desires. IIoT solu-
tions are custom-made and they are to be integrated into the enterprise’s existing 
systems. Data can be provided as raw data, pre-analyzed, or expressed in visual 
dashboards.
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Since the experimental period of IIoT solutions has been exceeded in the past 
few years, companies are today seeking sustainable solutions to support their opera-
tional processes and bringing real value to the company. The technology behind the 
solution has been proved to operate as it should which means that the expected data 
can be provided by it and it is accurate. The price of sensors and detectors has been 
decreasing, which means that enterprises’ investment of the technology solutions 
covers only project and implementation costs. In addition, data storage and several 
cloud services are available at reasonable price. Low maintenance costs encourage 
companies to store data for further need.

There are several data strategies that companies can apply data provided by 
IIoT solutions. Companies can collect data in order to use it to support and enhance 
their own operational process and business activity. Data can be used not only to 
guide operations but also show real-time data. These are valuable in enterprises’ 
daily operations. Data can be used to prevent unnecessary actions, the so-called fire 
situations. In optimal conditions, the data are used to forecast and control actions 
before they turn into these fire tasks.

For creating business model around Industrial Internet fundamental, there are 
five key elements:

1. Value creation in service network

2. Building and developing global service network

3. Customer-centric and cost-efficient service process planning

4. Creating positive customer experience

5. Inventing profitable revenue generation logic

When designing a new business model that is based on IIoT, enterprises can use 
these elements to base it on. This encourages enterprises to place customers and 
services in the center in order to not only gain higher customer satisfaction but also 
increase sales in service. These elements can also be applied to develop business 
activities and generate profitable core or supporting functions.

Because the amount of data grows at an unprecedented scale and depth with the 
proliferation of smart and sensor devices, big data analytics has emerged as a key 
initiative in the IIoT field [6–8]. Recently, artificial intelligence (AI) has become a 
key factor in big data analytics in industrial applications [9].

4. Empirical cases

This section briefly describes the three empirical cases that belong to this 
multiple-case study analysis. The individual case reports were published earlier, but 
this section summarizes their main research results with regard to this MCSR.

4.1 Case I: OnniBus.com

OnniBus.com (later OnniBus) started their transportation business at 2012. 
Within few years, they have managed to grow their business to one of the largest 
brands in Finland. OnniBus has disrupted mass transportation with competitive, 
rather low, pricing. Today, they move customers frequently in the most popular 
routes and also daily all around Finland with their 128 buses. About 28 million 
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kilometers are bring customers from one city to another. With Telia Connected 
Vehicle solution, OnniBus primarily seeks savings in costs.

OnniBus among others is the first transportation company that applied the Telia 
Connected Vehicle solution. This solution monitors ground vehicles in action and it 
optimizes the operation of hardware by using real-time data installed in the vehicles. 
In addition, the solution enables combining different services that beforehand were 
provided to OnniBus from different service providers. When considering the bus 
driver, it also takes much less effort to follow only one screen rather than several.

In the early phase, Telia’s solution was installed in all 68 double-decker buses 
and later in the 60 single-storey buses. The service requires that the driver of the 
bus logs into the vehicle system with an identifying digital card, which is a very 
secure way to log in. In the past, drivers did not always remember to sign in and no 
data could be obtained at that time. OnniBus uses Telia’s solution to remotely read 
digital plotters and cards. They are able to monitor remotely that driving times are 
being realized and digital cards are always being used by drivers. This kind of data 
is a very powerful management tool. The CEO of OnniBus Lauri Helke sums up 
“what you don’t measure, you can’t lead.” In order to motivate drivers to drive more 
ecologically, OnniBus started to publish driver-specific results to the staff every 
month. Such transparent information encourages everyone in the company to see 
what kind of data can be achieved with financial driving.

In order for OnniBus to achieve savings in costs, the most important thing 
about implementing this service is to report about OnniBus driver habits and 
fuel consumption per driver. Only the fuel savings from the data generated by 
Connected Vehicle-solution will be 1–5% annually. In double-decker buses alone, 
OnniBus consumes approximately 5.5 million liters of fuel per year, which means a 
fuel cost of EUR 6 million. This saving as such is significant. Since Telia’s solution 
also monitors the vehicles, there are savings directly on tire costs and other vehicle 
operating costs. In addition, it provides an ecofriendly approach to bus transporta-
tion business.

4.2 Case II: Pohjolan liikenne

Transportation industries are under critical inspection since the  environmental 
cause. In order to utilize different sources of data and manage with data, companies can 
achieve massive advancements by how they optimize their actions. Focusing on fuel 
economy and improving effective fuel consumption are significant ecologically friendly 
approaches in the transportation industry and furthermore companies reserve in costs.

Oy Pohjolan Liikenne Ab (later Pohjolan Liikenne) has been serving in the 
transportation industry since 1949. They offer transportation services in commuter 
traffic, country traffic, local transportation, metropolitan area, order and contract 
driving as well as Finnair CityBus traffic driving.

Telia’s solution means that bus vehicle’s actions are being monitored and opti-
mized according to real-time data. Cost-efficient driving and measurement have 
been challenging before but since the new solution provides data real time, informa-
tion can be used proactively. Despite that, the savings in fuel are concrete. With that 
said, data from consumption of fuel are precise and therefore the company has been 
able to seek the best-practice driving mode for drivers. With Telia’s solution, Pohjolan 
Liikenne can react to drivers’ driving habits in real time. Along with the service, 
Pohjolan Liikenne is able to measure driver’s driving index and thereby develop 
better driving performances. In addition, the company can get an insight into driv-
ers’ driving period, breaks, and working hours. In addition, the solution saves data 
from certain periods and uses data to analyze it according to critical aspects that are 
relevant for the company. Data can be analyzed for instance with weather.
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The other remarkable feature is that Telia’s solution monitors the coach vehicles’ 
condition real time. The solution is integrated to the CAN bus which all the coaches 
include and from there data is collected real time and the output in a readable way. 
No extra sensors are needed to be installed. The information that already exists can 
be now used to resolve problems. By adding weather information or how people 
move, solution can bring data bases together and analyze big data.

4.3 Case III: Delete

Delete Finland Oy (later Delete) is one of the leading providers of full-service 
environmental services in the Nordic countries. The company was established in 
2010. Delete provides business-critical services that require specialized expertise 
and specialized equipment in three business areas: cleaning services, demolition 
services, and recycling services.

Delete’s priority is to optimize maintenance processes and furthermore to 
improve their customers’ business. Unpredictable demand of maintenance or drain-
age are usually unpleasant and rarely expensive for customers. Customers’ daily 
actions are being paused during the time needed to manage these kinds of sudden 
drainages. Delete tested Narrow Band IoT (NB-IoT) solution as a pilot in order to 
obtain how NB-IoT will help to anticipate maintenance. Delete wants to experiment 
with technology on how to avoid unexpected service disruption in restaurants and 
car wash lines and enable proactive maintenance and planning. Today, Delete drains 
hundreds of wells monthly and most of them at short notice. With the experiment, 
they aim to create new stable processes that decrease unnecessary visits, develop 
processes according to better planning, save in costs, and, due to all these, enhance 
customers’ daily business. “The wastewater from restaurants and service stations 
carries sediment that accumulates in sewer wells built for this purpose. The sensors 
installed in the wells allow us to monitor the amount of grease and sand accumu-
lated in the wells in real time, while also anticipating the need for emptying the,” 
says Markku Salminen, Director of Development and HSEQ.

Telia generates the pilot with a NB-IoT communications network, cloud data 
solution and a service interface. For the first time in Finland, NB-IoT remotely 
read sensors that are used to determine the drainage needs of a restaurant’s grease 
separator wells and a service station’s car wash line. NB-IoT technology can be 
used to track up to thousands of IoT devices. In the pilot, NB-IoT sensors are being 
installed to anticipate the maintenance and drainage needs of the sand separator 
wells at Stockmann’s restaurant in Helsinki and the Neste K Hatanpää and Neste K 
Kekkosentie car wash line in Tampere. Pilot’s NB-IoT takes advantage of existing 4G 
networks, but is also compatible with future 5G networks.

Narrowband IoT (NB-IoT) is a global standardized network technology that 
leverages existing 4G and 5G networks. With NB-IoT, one can connect many 
devices to network cheaply and reliably. The data sent by the devices can be used 
to monitor real-time operational and production processes. The battery of the 
NB-IoT sensor that collects and transmits data can last up to 10 years. It is activated 
and transmits data only when the programmed measurement limit is exceeded. 
Hundreds of thousands of devices can be connected to a single access point.

5. Cross-case conclusions

When an enterprise acquires an IIoT solution as a part of the business opera-
tions, a change in the organization is always required. The change has a direct 
impact on the operational process, resource planning, and people that are operating 
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within the solution in the context. The change also affects employees who are 
working to provide the service. Every IIoT project with its implementation and 
accustoming phase in the organization requires time in which the enterprise should 
be prepared. In order to succeed, the change always requires identifying the change 
objects early enough and defining the relevant process points. However, the essen-
tial prerequisite for the success is the commitment of the uppermost management.

In one analyzed case, the enterprise outlines its new operating process by com-
pletely redesigning it based on digitalization and data. In another case, the enter-
prise adapts new operating processes to apply its own operating environment. Using 
data to streamline business processes does not bring all the potential benefits to the 
enterprise. The case study result reveals that when the project as a whole is success-
ful, it will provide the company with benefits in terms of productivity, efficiency, 
and competitiveness. The change project itself includes, among other things, a clear 
definition of the cause and goals of the change, communication, staff engagement, 
and evaluation.

The data provided by IIoT are a valuable asset compared to the competitors of 
the case enterprises. By analyzing data properly and applying it to the enterprise’s 
own business environment and processes, one is possible to gain business benefits 
in financial as well as international market aspects.

The study cases showed that enterprises that have strong support and contribu-
tion from management team are able to implement IIoT solution within the enter-
prise. The management team or the CEO of the company drives change projects 
other than this and they are open-minded of new technical possibilities in their 
industry. They believe that if they do not take advantage of technical innovation 
solutions, someone else in the same industry will.

In addition, the individual case studies showed that motivation for each orga-
nization level is essential in order to succeed in the implementation of the change 
project. The new IIoT solution needs to serve motivation for each department: CEO, 
financial, resource planning, logistics, service and driver’s perspective.

In the future, AI will be a fundamental part of business in most sectors. The 
data-driven digital transformation creates new and modifies existing business 
processes, culture, and customer experiences to meet changing business and market 
requirements. Today, the lack of good-quality data in enterprises is the biggest 
barrier for fully exploiting AI. With good planning, new IIoT solutions can bring 
good-quality data, but they should be integrated into existing systems not always 
containing good-quality data. When the amount of good-quality data grows, pos-
sibilities to exploit AI improve. However, the success factor of data-driven digital 
transformation depends on the business strategy and the commitment of the top 
management, who should put the business strategy into practice.
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Chapter

Big Data Analytics and Its 
Applications in Supply Chain 
Management
Saeid Sadeghi Darvazeh, Iman Raeesi Vanani  

and Farzaneh Mansouri Musolu

Abstract

In today’s competitive marketplace, development of information technology, 
rising customer expectations, economic globalization, and the other modern 
competitive priorities have forced organizations to change. Therefore, competition 
among enterprises is replaced by competition among enterprises and their supply 
chains. In current competitive environment, supply chain professionals are strug-
gling in handling the huge data in order to reach integrated, efficient, effective, and 
agile supply chain. Hence, explosive growth in volume and different types of data 
throughout the supply chain has created the need to develop technologies that can 
intelligently and rapidly analyze large volume of data. Big data analytics capability 
(BDA) is one of the best techniques, which can help organizations to overcome their 
problem. BDA provides a tool for extracting valuable patterns and information in 
large volume of data. So, the main purpose of this book chapter is to explore the 
application of BDA in supply chain management (SCM).

Keywords: big data, analytics, supply chain analytics, manufacturing, finance, 
healthcare, demand planning, procurement management, customized production, 
inventory management

1. Introduction

Big data are characterized as the gigantic or complex sets of data, which usually 
encompass extend of more than exabyte. It outstrips the traditional systems with 
limited capability in storing, handling, overseeing, deciphering, and visualizing [1]. 
Nowadays, data are expanding exponentially and are anticipated to reach zettabyte 
per year [2]. The scholarly world and professionals concur that this surge of data 
makes modern opportunities; subsequently, numerous organization attempted 
to create and upgrade its big data analytics capabilities (BDA) to reveal and gain a 
higher and deeper understanding from their big data values. The study of big data 
is persistently advanced and extended, and the most properties of big data are 
presently extended into “5 V” concept containing variety, verification/veracity, 
velocity, volume, and value [3, 4]. Akter et al. recommended BDA as one of the 
most important factors affecting organizational performance [5]. By progressing 
BDA, organizations could make better understanding from their customer’s needs, 
provide suitable service to satisfy their needs, improve sales and income, and 
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penetrate into new markets. Several research studies indicated the big data applica-
tions in various sectors such as financial services sector, marketing, bank industry, 
insurance industry, logistics, and manufacturing [6]. However, the present book 
chapter indicates the benefits of big data application in extracting new insights and 
creating new forms of value in ways that have influenced supply chain relationships. 
Regarding this purpose, first, the authors defined the key concepts of BDA and 
its role in predicting the future. Second, the authors paid to the role of statistical 
analysis, simulation, and optimization in supply chain analytics. Third, the authors 
had a review on application of BDA in supply chain management areas. Forth, the 
authors provided a brief information about application of BDA in different types of 
supply chain. Fifth, the authors presented some insight into future application of 
BDA in supply chain, and lastly, the book chapter ends with the conclusion, some 
managerial implications, and recommendations for future research.

2. BDA capabilities

To fully understand the impact and application of BDA, we first need to have a 
clear understanding of what it actually is. As a simple definition, big data refer to 
large quantity of data. Big data specifically refer to large data sets whose size is so 
large that the quantity can no longer fit into the memory. These data can be captured, 
stored, communicated, aggregated, and analyzed. As the volume of data has grown, 
the need to revamp the tools has used for analyzing it. These data do not ought to 
be set in neat columns and rows as traditional data sets to be analyzed by today’s 
technology, not at all like within the past. Big data appear completely in different 
kinds of data. They incorporate all types of data from every possible source. They 
can be structured, semi-structured, or fully unstructured. As another categoriza-
tion, big data consist of numerical data, image data, voice, text, and discourse. They 
can come in the form of radio-frequency identification (RFID), global positioning 
system (GPS), point-of-sale (POS), or they can be in the frame of Twitter feeds, 
Instagram, Facebook, call centers, or customer blogs. Today’s progressed analytical 
technologies empower us to extract knowledge from all kinds of data. Analytics is a 
mix of math and statistics to large quantities of data. BDA mean using statistics and 
math in order to analyze big data. Big data without analytics are just lots of data. The 
authors have been accumulating a lot of data for years. Analytics without big data is 
simply mathematical and statistical tools and applications. Companies can extract 
intelligence out of these huge amounts of data. This is made possible through today’s 
massive computing power available at a lower cost than ever before. However, com-
bining the big data and analytics makes the different tools that help decision makers 
to get valuable meaningful insights and turn information into business intelligence.

3. Supply chain analytics

The supply chain is the number of firms from raw material suppliers to pro-
ducer/central organization, wholesalers, retailers, customers, and end users. The 
supply chain not only includes physical flows involving the transfer of materials 
and products but also consists of information and financial flows. Supply chain 
analytics (SCA) means using BDA techniques in order to extracting hidden valuable 
knowledge from supply chain [7]. This analytics can be categorized into descrip-
tive, predictive, and prescriptive analytics [7, 8]. Well-planned and implemented 
decisions contribute directly to the bottom line by lowering sourcing, transporta-
tion, storage, stock out, and disposal costs. Hence, using BDA techniques in order 
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to solve supply chain management problems has a positive and significant effect on 
supply chain performance. For a long time, managers and researchers have used sta-
tistical and operational research techniques in order to solving supply and demand 
balancing problems [8, 9]. However, recent progress in the use of analytics has 
opened new horizons for managers and researchers. The summary of the challenges 
and features of the three types of analytics is shown in Table 1. Also, the relation-
ships among descriptive, predictive, and prescriptive analytics to make decisions or 
take actions are shown in Figure 1.

The different potential advantages that can be achieved utilizing data-supported 
decision making have incited academicians and researchers to pay attention to the 
possible integration of big data in SCM. This has resulted in the number of scholarly 
articles on this topic, which has risen precipitously in recent years. The importance of 
using BDA techniques in SCM is true to an extent that organizations will not stand a 
chance of success in today’s competitive markets. Since 2010, numerous articles have 
been published, which emphasized on the application of BDA in SCM and their major 
achievements [2, 3, 10–13]. Since 2011 to 2015, Mishra et al. identify the influential 
and prominent researchers and articles with most citations carried out a bibliographic 
analysis of big data. The results indicated that the number of articles in the field of 
BDA has increased [14]. Barbosa et al. conducted a systematic literature review to 
investigate the application of BDA in SCM areas. The results indicated that BDA 

Category Features

• Foundational

• Filters big data into useful nuggets and interpretable information

• Provides a historical summary of what happened in the past

• Focus on minimizing bias

Example: providing historical insights regarding the company’s production, 

financials, operations, sales, finance, inventory, and customers.

• Insightful

• What-if analysis

• Forecasting supply chain requirements

• Focus on minimizing the combined bias and variance

Example: Analyzing past trends to estimate future needs, supply and demand, 

set accurate delivery time and etc.

• Strategic

• Scenario and knowledge based

• Optimization and automation of decisions

Example: optimizing production, scheduling and inventory.

Table 1. 
Features of descriptive, predictive and prescriptive analytics.

Figure 1. 
Using descriptive, predictive and prescriptive analytics to make decisions and take actions.
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techniques usually use the predictive and prescriptive approaches rather than descrip-
tive approach [10]. Dubey et al. carried out a research in order to identify the effects 
of big data and predictive analysis on two aspects of sustainability, including environ-
mental and social aspects. Data were collected from 205 manufacturing companies, 
and using structural equation modeling based on partial least square was analyzed. 
The results indicated that big data have a positive and significant effect on social and 
environmental components of sustainability [15]. Gupta et al. carried out a systematic 
literature review based on 28 journal articles to investigate the impact of using BDA 
techniques on humanitarian SCM [16]. Gupta et al. investigated the applications of big 
data in the context of humanitarian SCM based on 28 journal articles. They proposed 
some important future research directions based on key organization theories such as 
complexity theory, transaction cost economics, resource dependence theory, resource-
based view, social network theory, institutional theory stakeholder theory, and 
ecological modernization theory. Zhao et al. proposed a multiobjective optimization 
model for green SCM using BDA approach. They considered three different scenarios 
for optimizing the inherent risk associated with hazardous materials, carbon emission, 
and overall costs. They utilized a big data approach to acquire data and manage their 
quality [17]. Song et al. studied the problems and challenges arising due to big data in 
the context of environmental performance evaluation along with summarizing latest 
developments in environmental management based on big data technologies [18].

• In descriptive analysis, the following questions are answered:

What has happened, What is happening, and Why, In this process, visualization 
tools and online analytical processing (OLAP) system are used and supported by 
reporting technology (e.g. RFID, GPS, and transaction bar-code) and real-time 
information to identify new opportunities and problems. Descriptive statistics 
are used to collect, describe, and analyze the raw data of past events. It analyzes 
and describes the past events and makes it something that is interpretable and 
understandable by humans. Descriptive analytics enables organizations to learn 
from their past and understand the relationship between variables and how it can 
influence future outcomes. For example, it can be used to illustrate average money, 
stock in inventory, and annual sale changes. Descriptive analytics is also useful to an 
organization’s financials, sales, operations, and production reports.

• Predictive analytics techniques are used to answer the question of what will 
happen in the future or likely to happen, by examining past data trends using 
statistical, programming and simulation techniques. These techniques seek to 
discover the causes of events and phenomena as well as to predict the future 
accurately or to fill in the data or information that already does not exist. 
Statistical techniques cannot be used to predict the future with 100% accuracy. 
Predictive analytics is used to predict purchasing patterns, customer behavior 
and purchase patterns to identifying and predicting the future trend of sales 
activities. These techniques are also used to predict customer demands, inven-
tory records and operations.

• Prescriptive analytics deals with the question of what should be happening and 
how to influence it. Prescriptive analytics guides alternative decision based on 
predictive and descriptive analytics using descriptive and predictive analytics, 
simulation, mathematical optimization, or multicriteria decision-making tech-
niques. The application of prescriptive analytics is relatively complex in practice, 
and most companies are still unable to apply it in their daily activities of business. 
Correct application of prescriptive analytics techniques can lead to optimal and 
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efficient decision making. A number of large companies have used data analytics 
to optimize production and inventory. Some of the crucial scenarios that pre-
scriptive analytics allows companies to answer include in the following:

a. What kind of an offer should make to each end-user?

b. What should be the shipment strategy for each retail location?

c. Which product should launch and when?

Statistical analysis, simulation, optimization, and techniques are used to supply 
chain decision making [19].

3.1 Statistical analysis

Statistical analysis basically consists of two types of analysis: descriptive and 
inferential. In descriptive statistics, past data are used to describe or summarize the 
feature of a phenomenon; it uses either graphs or tables or numerical calculations. 
Inferential statistics are used to deduce the properties of phenomena and predict 
their behavior based on a sample of past data. Table 2 shows differences between 
descriptive and inferential analyses. Both quantitative and qualitative methods can 
be used simultaneously to take the advantage of both the methods and the right 
decisions. Statistical analysis is used when faced with uncertainty, such as in distribu-
tion, inventory, and risk analysis. Statistical multivariate techniques are also used for 
supply chain monitoring to effectively manage the flow of materials and minimize the 
risk of unintended situation [20]. Given the volume, variety, veracity, and velocity of 
big data, the supply chain needs robust and easy techniques for analysis. Traditional 
statistical methods are no longer responsive because the massive data lead to noise 
accumulation, heterogeneity, and so on. Therefore, proposing and applying effective 
statistical methods are very important, and major attention has been paid to this issue 
recently. For example, in a research, a parallel statistical algorithm is presented to do 
a sophisticated statistical analysis of big data. This algorithm uses specific methods 
such as Mann-Whitney U testing, conjugate gradient, and ordinary least squares to 
model and compare the densities and big data distribution squares [2].

3.2 Simulation

Manufacturers need simulation tools to optimize the product development process 
and increase the creativity, speed the time-to-market product, reduce the produc-
tion costs, and create the innovation. Simulation provides many proven benefits for 

Basis for 

comparison

Descriptive statistics Inferential statistics

What it does? Organizing, analyzing, and 

presenting data in meaningful way

Comparing, testing, and predicting data

Form of final 

result

Charts, Graphs, and Tables Probability

Usage To describe the current situation To explain the chances of occurrence of an event

Function It explains the data that are already 

known to summarize

It attempts to reach the conclusion to learn about the 

population that extends beyond the data availability

Table 2. 
Comparing descriptive and inferential analyses.
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each stage of the product design and manufacturing process, for example, producing 
more innovative products with greater efficiency for the customer and creating a 
better experience for them [21]. For example, when consumer goods giant Proctor & 
Gamble develops new dishwashing liquids, they use predictive analytics and model-
ing to predict how moisture will excite certain fragrance molecules, so that the right 
scents are released at the right time during the dishwashing process. Modeling and 
simulation techniques should be used to develop the application of large data, for 
example, simulation-driven product design. In today’s competitive environment, the 
use of simulators to produce innovative products is considered a challenge. Because 
manufacturers have to continually drive their operational efficiencies, meet the cost, 
require the time-to-market product, and predict the customer preferences.

Modeling and simulation help developer to run the “what-if” analysis under 
different system configuration and complexity [22]. Shao et al. developed a simula-
tion model to analyze the huge data collected from the surrounding and shop floor 
environment of a smart manufacturing system. This model improved the decision 
making in this production system [23]. For example, as a predictive tool, simulation 
can help the manufacturers to predict the need for machines and additional equip-
ment based on customer order forecast and learning from other historical data such 
as cycle time, throughput, and delivery performance. LLamasoft [24] outlined some 
examples of where supply chain simulation can be used as follows: predicting the 
service, testing the inventory policy, analyzing the production capacity, determin-
ing the asset utilization, and validating the optimization result. SCA provides new 
methods for the simulation problem with a large amount of data. Nowadays, there 
are several simulation software that allow to evaluate the performance of a system 
before its creation. Enterprise dynamics (ED) is one of the strongest and most used 
software that researchers and practitioners use it to simulate SCM issues.

3.3 Optimization

The optimization technique is a powerful tool for supply chain data analytics 
[25]. Optimization techniques by extracting the insights and knowledge of the 
enormous data generated by complex systems that include multiple factors and con-
straints such as capacity and route can analyze multiple objectives such as demand 
fulfillment and cost reduction. Finally, using supply chain optimization techniques 
along with multiuser collaboration, performance tracker, and scenario management 
enables organizations to achieve their different goals. The use of optimization tech-
niques supports supply chain planning and also increases the accuracy of planning 
but presents the large-scale optimization challenge [7]. Slavakis et al. [26] have used 
several signal processing and statistical learning techniques to analytic optimiza-
tion, principal component analysis, dictionary learning, compressive sampling, 
and subspace clustering. Based on SCOR supply chain model, Souza explored the 
opportunities for applying BDA in SCM [8]. BDA play a critical role at all opera-
tional, tactical, and strategic levels of the supply chain; for example, in the strategic 
level, SCA is used for product design, network design, and sourcing; in the tactical 
and operational levels, SCA can also be used for procurement, demand planning, 
logistics, and inventory.

4. Application of BDA in SCM areas

In the production department, a large amount of data is generated by external 
channels and also by internal networks that contain sensor networks or instrumen-
tation on the production floor. Using big data to tighter analysis and integration of 
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these databases, it can improve the efficiency of the distribution and sales process 
and the continuous monitoring of process and devices. Manufacturing companies 
need to use big data and analytics techniques to grow their manufacturing sector. 
Predictive maintenance of equipment is an immediate segment in this sector ripe 
for growth. Due to the large number of vendors, as well as the variety of their evalu-
ation and selection indicators, the process of selecting the right and optimal vendor 
for the supply chain is difficult. Applying Cloud Technologies to selecting vendors 
is making a big impact. With new systems, access and exposure to data are more 
intuitive and customer focused with the power of APIs and integration to modern 
big data applications and analytic packages. A review in the literature indicates that 
BDA can be used in several areas of SCM. In the following sections, an overview of 
BDA applications in different areas of supply chain is provided [27].

4.1 BDA and supplier relationship management

Supplier relationship management involves establishing discipline in strategic 
planning and managing all interactions with organizations’ suppliers in order to 
reduce the risk of failure and maximize the value of these interactions. Establishing 
close relationships with key suppliers and enhancing collaboration with them are 
an important factor in discovering and creating new value and reducing the risk of 
failure in SRM. Strategic resources and supplier relationship management (SRM) 
are the success factors of organizations, which focus on relationship management 
and collaboration. Using BDA techniques can provide accurate information on 
organizational spending patterns that help manage supplier relationships [28]. For 
example, big data can provide accurate information on the return on investment 
(ROI) of any investment and in-depth analysis of potential supplier. In a study, 
fuzzy synthetic evaluation and analytical hierarchy process (AHP) were used to 
supplier evaluation and selection, given the high capacity of big data processing 
as one of the evaluated factors has been used [29]. The objective is to select supply 
partner that can adapt to the future challenges from big data.

4.2 BDA and supply chain network design

Supply chain design is a strategic decision, which includes all decisions regard-
ing the selection of partners of the supply chain and defines company policies 
and programs to achieve long-term strategic targets. Supply chain network design 
project involves determining supply chain physical configuration that affects most 
business units or functional areas within a company. In designing the supply chain 
network, it is important to determine the customer satisfaction and supply chain 
efficiency. The purpose of supply chain design is to design a network of members 
that can meet the long-term strategic targets of the company. When designing 
a supply chain, the following steps must be followed: (1) define the long-term 
strategic targets; (2) define the project scope; (3) determine the form of analyses to 
be done; (4) the tools that will be used must be determined; and (5) finally, project 
completion, the best design.

Selecting the optimal supply chain design and appropriate planning, the com-
pany will achieve a significant competitive advantage. Wang et al. (2016b) proposed 
a mixed-integer nonlinear model for locating the distribution centers, utilized big 
data in this model, and randomly generated big datasets applied for warehouse 
operation, customer demand, and transportation. They assumed that the behav-
ioral dataset has been analyzed using marketing intelligence tools. Their findings 
show that big data could provide all the necessary information about penalty cost 
data and service level; therefore, it is a very powerful tool for complex distribution 



New Trends in the Use of Artificial Intelligence for the Industry 4.0

8

Figure 2. 
Design process from data science view [32].

network design [30]. A study investigates the application of BDA in design inter-
vention such as healthcare, disaster relief, and education in supply chain [31]. Since 
humanitarian data have the characteristics of high volume, high diversity, accuracy, 
and speed, BDA can be used in the humanitarian supply chain.

4.3 BDA and product design and development

One of the major concerns of adaptable product manufacturers is ensuring that 
these products conform to their customers’ preferences. As customers’ preferences 
and expectations change throughout the product lifetime, designers need tools to 
predict and measure those preferences and expectations. Lack of enough informa-
tion about customers’ preferences and expectations is an important issue in the 
product design process. If designers continuously monitor customer behavior and 
access up-to-date information on customer preferences, they can design products 
that meet customer preferences and expectations. Continuous monitoring of 
customer behavior, product design, and manufacturing process generated huge 
data that are considered as big data. Collecting, managing such huge data, and 
applying new analytical methods to gain insights and useful information and then 
apply them to decisions can reduce uncertainty [32]. Engineering design is defined 
as a process of transforming customer needs into design specifications [33]. Data 
science (DS) is defined as a process of transforming observed world reality data 
into comprehensible information for decision making [34]. Although different 
approaches are available for product design [35, 36], all of these methods are com-
mon in DS perspective. A schematic view of the design process is shown in Figure 2.

Big data are going to impact many industries, and product design is no exception. 
That is in part because engineers will increasingly design sensors and communica-
tion technology into their products. Therefore, in the process of supply chain design, 
the product specificities of the company must be considered, and all partners and 
constraints of the supply chain must be integrated at the design stage [37]. Supply 
chain design according to product design creates competitive advantage and flex-
ibility in the supply chain [38]. Recently, BDA techniques have been used for product 
design and development, which lead to the production of new products according 
to customer preferences. Applying BDA to product design enables the designer to 
be constantly aware of customer preferences and expectations that lead to produce 
a product according to their needs and preferences [32]. Designers can use online 
behavior and customer purchase record data to predict and understand the customer 
needs [39]. Designers can identify product features and predict future product trends 
by continually monitoring the customer behavior and informing the customers’ opin-
ions and needs. In the automotive industry, the importance of big data is derived from 
the vehicle that shows huge performance data and customer needs [40]. The ultimate 
goal of companies producing consumer durables is to maintain their competitiveness 
over the longest possible period [41]. Nowadays, this is facilitated the implementation 
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of the concept of (run-time) data-driven design. The recent developments of data 
analytics and application of data analytics tools have opened up a new path for gener-
ating knowledge for product enhancement and achieving their objectives [42]. As one 
doctrine, product developers can achieve a perpetual enhancement of their products 
and services based on real-life use, work, and failure data. Though numerous data 
analytic (software) tools and packages have been developed for extracting product-
associated data, exploiting data analytic methods and tools in product enhancement is 
still in a rather premature stage [43]. Designers still face many challenges and should 
consider many limitations. Reportedly, choosing the most relevant data analytic tools 
(DATs) and using them in design projects are not trivial for designers [44].

Here are some other ways the design engineering might change as a result of big 
data it enables:

• Better-informed product development: How would the way organizations 
design product’s change if they could learn not only how customers are using 
them, but also where they are having trouble with them and what features 
they are ignoring altogether? That information is going to be available to 
organizations soon. Mechanical engineers have the opportunity for product 
insights that were never possible before. With an Internet of Things (IoT)-
enabled device, products can stream usage data back to engineers. Imagine, for 
example, a bike fork that captures force measurements or a utility cabinet that 
transmits internal temperature readings.

• More empowered engineering: Traditionally, engineers rely on marketers, 
customer visits, or their own best guesses to design the competitive products. 
However, big data could provide volumes of reliable feedback that none of 
those channels offer. Products are generating a lot of information during their 
lifecycle, and new trends for Internet of Things will bring even more infor-
mation to manufacturing companies. A tremendous amount of data will be 
collected from connected devices, and this can be transformed into consum-
able information assets. Because products will be able to talk back to engineers, 
engineers will be empowered like never before to have a direct impact on the 
competitiveness of their products.

• Faster product development: As much more data reside on the cloud, more 
people can securely reach information faster (and at a lower cost) compared to 
working within corporate networks and specific platforms. That may lead to 
more participants and disciplines involved in the product development cycle 
early on. The IT infrastructure of cloud computing will enable new approaches 
for concurrent CAD design and system engineering principles combining 
mechanical, electrical, and software in product development.

Concluding with all these different disciplines in product design connected 
and accessing the big data throughout the various phases of the design cycle, the 
engineers will be confronted with many surprises and few unpleasant shocks as 
well. The real challenge will lie in solving these minute hassles and in developing 
better products reaching a new level in the product design as a whole.

4.4 BDA and demand planning

Many supply chain executives are keen to improve demand forecasting and 
production planning with big data [45]. Accurate demand forecast has always been a 
major puzzle in SCM [46]. Trace consumer loyalty, demand signal, and optimal price 
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data can be determined by BDA. However, one of the challenges the organizations 
face is the ability to apply advanced hardware and software and algorithm architec-
ture [47]. BDA allow to identify new market trends and determine root causes of 
issues, failures, and defects. Data analytics can predict customers’ preferences and 
needs by examining customer behavior, which can drive creativity and innovation 
in business services [48]. In one study, a model was presented to predict the electric 
vehicle charging demand that used weather data and historical real-world traffic 
data. This model enables operators to plan the generation profiles and operation by 
determining the charging demand [49]. Another study presents a model for predict-
ing demand for air passenger demand, which uses big data to estimate air passenger 
demand. The results of this study show a 5.3% prediction error [50].

4.5 BDA and procurement management

As tactical and operational decisions, procurement consists of a series of action 
mechanism and contracting [8]. Logistic organizations, given the high volume of 
widely dispersed data generated across different operations, systems, and geo-
graphic regions, need advanced systems to manage these enormous data, as well as 
skilled professionals who can analyze these data, and extract valuable insights and 
knowledge into them in order to apply them in their planning and decisions. In 
the past, organizations faced laborious processes that took several weeks to gather 
internal and structural data from the operations and transactions of the company 
and its partners. But today, at a significant speed, in real time, in many cases, all of 
the diverse structural, nonstructural, internal, and external data generated from 
automated processes are made available to these organizations. SCA can be used 
to manage suppliers’ performance and supply chain risk [7]. In one study, external 
and internal big data have been used to quickly identify and manage the supply 
chain risk [51]. For example, informing the social media and news about exchange 
rate movement and disasters affects the supply chain. Applying this framework 
to identify supply chain risk enables real-time risk management monitoring, 
decision support, and emergency planning. Schlegel [52] also provided a big data 
predictive analytic framework to identify, evaluate, mitigate, and manage the 
supply chain risk.

4.6 BDA and customized production

With BDA, manufacturers can discover new information and identify pat-
terns that enable them to improve processes, increase supply chain efficiency, and 
identify variables that affect production.

In today’s global and interconnected environment, the supply chains and 
manufacturing processes involve long and complex processes; it should be pos-
sible to examine all components of each process and link supply chain in granular 
detail to simplify the processes and optimize the supply chain. Data analytics 
enables manufacturers to accurately determine each person’s activities and tasks 
through timely and accurate data analysis of each part of the production process 
and examine entire supply chain in detail. This ability enables manufacturers to 
identify bottlenecks and reveal poorly performing processes and components. In 
the past, centralized production and production at scale were not rational because 
they focused only on the ordering of a small group of customers, while today’s 
BDA have made it possible to accurately predict customer demands and tastes for 
customized products. Some studies have investigated the applied techniques of BDA 
in the production area. For example, Zhong et al. applied RFID-enabled big data 
to support shop floor logistic planning and scheduling [53]. He then implemented 
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the Physical Internet concept by using the Internet of Things, wireless technology, 
and BDA to create an RFID-enabled intelligent shop floor environment [54]. Stich 
et al. have used BDA techniques to predict demand and production levels in manu-
facturing companies [55]. On the other hand, early additive manufacturing (also 
called 3D printing) was developed in the 1980s. This new technologies and trends 
are emerging that will change the rules of supply chain design and management 
[56]. 3D printing is any of various processes in which material is joined or solidified 
under computer control to create a three-dimensional object [57]. 3D printing is an 
innovative technology that makes possible to create a physical object from a digital 
model. Understanding the uses and implications of big data and predictive analytics 
will be urgent as additive manufacturing makes traditional models of production, 
distribution, and demand obsolete in some product areas [58].

4.7 BDA and inventory management

Inventory control is the system that involves requisition process, inventory 
management, purchase, and physical inventory reconciliation. The following key 
objectives define the design of inventory control:

• informing the quantity of goods in warehouse and also the amount of goods 
needed in the warehouse;

• facilitating the requisition process to finish in time;

• automatic recording and backorder serving;

• minimizing the inventory by analyzing previous purchasing and consumption 
patterns of the organization;

• using the automated tools to facilitate management of the inventory, servicing, 
and purchasing; and

• improving the financial control of the inventory through a timely and regular 
checkup of the inventory balances with the physical counts.

Big data by integrating business systems in distribution of nonperishable prod-
ucts improve operational efficiency on a broad scale while also delivering greater 
profitability. The benefits of using BDA in supply chains are listed below. Below 
are some ways the big data are changing the way companies manage inventory. 
Following are a few examples of ways big data manage inventory.

Improved operational efficiency: Due to the possibility of continuous monitor-
ing and analysis of operational data by operational managers and better access to 
metrics, efficiency has improved, and bottlenecks have been removed. Big data 
increase efficiency and performance in whole supply chain.

Maximized sales and profits: Using the real-time data, financial managers can 
continuously monitor and analyze these data and manage the profit margins with 
greater insights to ensure maximum profitability from their investment.

Increased customer service satisfaction: The access to real-time data and the 
ability to timely analyze these data provide operational managers with the ability 
to match their inventory levels with customer orders and tastes, which will increase 
customer satisfaction. Data analysis techniques can also be used to predict spikes 
or depressions in customer demand and seasonal trends to accurately inventory 
planning at different times.
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Reduced costs by migrating to the cloud: A Software-as-a-Service (SaaS) 
approach to IT management means that the cloud-based nature of big data reduces 
hardware and maintenance costs. It can also be seamlessly integrated to existing 
systems with a minimum of expense.

There are only two publications in the field of BDA applications in the inventory 
management in Perish or Publish Software. Big data create significant competitive 
advantage by connecting and integrating internal production system with external 
partners (customers and suppliers) in inventory management [59]. With the help of 
big data, an automated inventory control system can be designed [60]. Data analysis 
techniques can be used to analyze the data, extract the relationships between them, 
and predict the optimal rate of inventory ordering [7].

4.8 BDA and logistics

The logistic industry has undergone a fundamental transformation due to the 
emergence of large volumes of data and devices, emission concerns, complex regula-
tory laws, changing industry models, talent limitations, infrastructure, and rise of new 
technology. In this industry, the standardization of structure and the content of data 
interchanges must be given great importance to improve and facilitate communica-
tion and collaboration between different sectors, including shippers, manufacturers, 
logistic companies, distributors, and retailers, as well as to the creation of new com-
mon business processes. However, reducing costs by driving down excessive inventory, 
both staged and in-transit, proactively responding to inbound and outbound events 
and sharing assets has become critical in today’s supply chain environment.

Today, due to the high volume of data generated from various sources such 
as sensors, scanners, GPS, and RFID tags, as well as due to integrating business 
judgment and fusing multiple data sources, powerful techniques are needed to 
quickly and timely analyze these data and provide real-time insights for a timely 
and accurate decision making. Given the high volume of orders and massive flow, 
huge data sets and methods for timely analysis are needed to manage and maintain 
them. Since high volumes of data such as size, weight, origin, and destination are 
being generated daily for millions of shipments, there is a huge potential for new 
business creation and operational efficiency and customer experience improve-
ment. Organizations need data platforms and data analytic processes to pervade 
their insights into organizations, which are not easy, and it is a new challenge for 
organizations. Infosys offerings are designed to help logistic companies rethink, 
evolve, and achieve their vision through a three-pronged strategy:

• Boundary-less information: A strategic alliance has been created among 
customers, logistics enterprises, and suppliers in the logistic industry, and the 
huge data set produced by the industry is placed on logistic technologies such 
as Warehouse Management Solutions (WMS), Transport Management System 
(TMS), supply chain execution systems, and IOT devices to share and access all 
members. A platform in the supply chain manages and integrates a huge vari-
ety of data created from different internal and external systems and provides 
the right validations and governance to improve the trustworthiness of the 
data and make right data available to business users in a self-service manner for 
exploratory analysis and insight generation.

• Pervasive analytics: An open and adaptive framework is needed to integrate 
seamlessly the different insights into an organization and to apply them 
effectively.
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• Progressive organization: The dynamic changes in markets and the emergence 
of advanced data management and analysis technologies as well as “boundary-
less” paradigm make organizations to abandon traditional BI analytic methods 
and governance structures and use new advanced techniques. Organizations 
will become knowledge-based organizations that utilize powerful horizontal 
platform and supportive tools that are in line with associated security, next-gen 
data sets, and business semantic policies.

Many research studies pointed to the application of BDA in the areas of trans-
portation, and logistics. BDA have been used to gain competitive advantage and 
provide new services in logistics [61]. Maritime companies have also used prescrip-
tive and predictive BDA to solve their planning problems [62]. In another study, we 
have used big data to share transportation capacity in order to improve the effi-
ciency of urban healthcare services [63]. It is an obvious fact that BDA can support 
all supply chain activities and processes and create a supply chain strategies/agiler 
logistics.

4.9 BDA and agile supply chain

The most successful organizations create supply chains that can respond to 
unexpected changes in the market [64]. Choi et al. argue that big data have signifi-
cant effects on operation management practices [65]. Gunasekaran et al. further 
argue that supply chain disruptions have negative effects, and agile supply chain 
enablers were progressively used with the aid of big data and business analytics 
to achieve better competitive results [66, 67]. Srinivasan and Swink further argue 
that although BDA have been using to understand customer intentions/behaviors, 
the use of analytics for supply chain operational decisions is less understood [68]. 
Gunasekaran et al. [66] and [67] argue that big data and predictive analytics have 
positive effects on supply chain performance and organizational performance 
[67, 68]. Swafford et al. found that IT capability has positive effect on SCA [69]. 
Srinivasan and Swink noted that supply chain visibility is a prerequisite for build-
ing data analytic capability and vice versa [68]. Supply chain visibility and BDA 
are complementary in the sense that each supports the other [66, 67]. Supply chain 
visibility is a desired organizational capability to mitigate risk resulting from supply 
chain disruptions [70]. Following Srinivasan and Swink’s arguments that organiza-
tions investing in building supply chain visibility capability are likely to invest in 
BDA [68], Dubey et al. found a positive impact of supply chain visibility on SCA 
[15]. By accurately anticipating consumer trends based on historical data, real-time 
data, and future predictions, organizations can put that knowledge to work to 
become more agile, efficient, and responsive.

Some other studies have been done to examine BDA that support the advanced 
supply chain agility [71]. Many parts and processes of the supply chain BDA have 
been widely used; however, publications regarding data analysis applications in the 
supply chain remain limited. Many parts and processes of the supply chain BDA 
have been widely used; however, publications regarding data analysis applications 
in strategic sourcing and inventory management are still limited. People working 
in this area should be able to extract knowledge and insight into the enormous data 
available and use it in their planning and decisions, and this is a challenge for them. 
Big chain analytics will help optimize decision making by aligning organization’s 
strategy to the sourcing strategies and providing proper insights [7]. BDA also 
improve inventory decision through a better understanding of uncertain customer 
demand [72].



New Trends in the Use of Artificial Intelligence for the Industry 4.0

14

4.10 BDA and sustainable supply chain

Although sustainable SCM has been discussed in corporate offices for some 
time, actually implementing the sustainability phenomenon in the extended supply 
chain has proved difficult [73]. Nevertheless, large corporations perceive sustain-
ability efforts as long-term investments aimed toward building strategic resources 
[74]. Corporations are increasingly interested in using BDA in their sustainable 
efforts, which in turn give them a strategic edge [75]. According to a Mckinsey 
survey report, companies using BDA are able to predict the 65% of customers that 
make repeated purchases through shop alerts and 75% of those customers reported 
that they are likely to use the service again [76].

Several scholars acknowledge sustainability (environmental, social, and finan-
cial) as an emerging area for BDA applications in business [77, 78]. Therefore, BDA 
techniques should be applied throughout the supply chain in order to achieve full 
benefits [79]. As decision making in organizations has been based on data, organi-
zations must change their strategic capabilities, which affect sustainability. Given 
the growing importance of sustainability and BDA, organizations must integrate 
these two areas to achieve sustainable competitive advantage [78, 80]. Despite 
the pressing need to integrate data analysis with sustainability and supply chain 
measures, little progress has been made so far [81]. Few scholars have addressed this 
issue that to achieve strategic and competitive advantages, BDA and sustainability 
must be integrated [78, 80]. Today’s organizations must use methods to analyze 
high volumes of data to gain insights and knowledge in order to achieve the three 
dimensions of environmental, social, and economic sustainability [82].

Some studies have used big data analysis to predict natural disasters to take 
preventive action against them, and simulation has been used reduce the effects of 
these environmental hazards [83]. Big data are also collected for melting glaciers, 
deforestation, and extreme weather through satellite images, weather radar, and 
terrestrial monitoring devices. Such data are used to comprehensively study global 
climate change and assign specific causality [21]. Big data have also been used for 
community health and welfare. For example, BDA have been used in Europe and 
USA to identifying and predicting prostate cancer biomarkers to take preven-
tive measures at the right time [84, 85]. Another study applied policy-driven big 
data to support and improve sustainability measures in various operations. For 
instance, to protect the environment and take the sustainable measures, computer 
platforms are used to collect and share environmental data (i.e., big data), and 
such data have used for government-led publication of data on medical records 
for risk mitigation and research, among the other applications [86]. However, 
literature on the application of BDA for supply chain sustainability has been much 
less explored. Thus, scholars acknowledge the need for further exploration in 
this domain [75, 77, 87, 88]. Furthermore, for the supply chain to be sustainable, 
the potential risks disrupting operations must be identified and predicted. In 
the next section, the authors explore the literature related to supply chain risk 
management.

5. Application of BDA in different types of supply chain

In the current years, BDA practices have been extensively reported. One of the 
main reasons is to make full usage of the data to improve productivity, by providing 
“the valuable right information, for the right user, at the right time.” In this section, 
an overview of BDA applications in different companies including manufacturing, 
finance, and healthcare is provided.
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5.1 Application of BDA in manufacturing

Despite the importance of big data in today’s world, many organizations 
overlook the importance of using big data for their organizational performance. 
Proper application of BDA techniques can be used to track, analyze, and also share 
employee performance metrics. BDA techniques also are used to identify employees 
with poor or excellent performance, as well as struggling or unhappy employees. 
These techniques allow organizations to monitor and analyze continuously real-
time data, rather than just annual investigations based on human memory. In 
today’s world, the manufacturing industry must use advanced data analytic tech-
nologies to gain competitive advantage and improve productivity in design, produc-
tion, sales, and timely product delivery processes. Approximately, manufacturing 
industry stores 2 exabytes of new data in 2010 [89]. Since in production lines and 
factories, various electronic devices, digital machineries, and sensors are used, and 
a huge amount of data is generated. Therefore, BDA can be used to build intelligent 
shop floor logistic system in factories [54, 90]. A huge amount of data also creates 
from design and manufacturing engineering process in the form of CAM and CAE 
models, CAD, process performance data, product failure data, internet transaction, 
and so on. Data analysis techniques can be applied to defect tracking and product 
quality and to improve activities of the product manufacturing process in manufac-
turing [91].

Data analysis techniques can also be used to predict customer demands and 
tastes. Raytheon Corp manufacturing company has develop smart factories through 
the powerful capacity of handling huge data that collect from various sources 
including instruments, sensors, CAD models, Internet transactions, digital records, 
and simulations that enable the company in real-time control of multiple activities 
of the production process [92]. General electric creates innovative and efficient 
servicing strategies by continuous observation and analysis of huge data obtained 
from various sensors in manufactured products including in GE’s case, jet engines, 
locomotives, medical imaging devices, and gas turbines [93]. Schmitz Cargobull, 
a German truck body and trailer maker, uses sensor data, telecommunication, and 
BDA to monitor cargo weight and temperatures, routes, and maintenance of its trail-
ers to minimize their usage breakdown [94]. Toyota Motor Corporation to dramati-
cally improve its data management capabilities launches Toyota Connected as their 
Big Data Business Unit. Toyota also uses vehicle big data collected from connected 
car platform to create new business and service such as adding security and safety 
service and to create mobility service, traffic information service, and feedback to 
design [95]. The integration of BDA into manufacturing system design should move 
from a descriptive to a predictive system performance model over a period of time, 
such as using what-if analysis, cause-effect model, and simulation [96].

5.2 Application of BDA in finance

Maintaining the sustainable competitive advantage and enhancing the effi-
ciency are important goals of financial institutions. In order to achieve sustainable 
competitive advantage and stay afloat in the industry, these institutions must 
continually use big data and appropriate analytic techniques into their business 
strategy. In recent years, there has been a great deal of improvement in big data 
and analytic techniques, and there has been a lot of investment in them. Banks and 
financial service organizations using big data and analytical techniques gain valu-
able knowledge and insights that can be used in continuous monitoring of client 
behavior in real time, predict their wants and needs, and provide the exact resource 
and service according to customer’s requests and needs. Using the findings of this 
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real-time data analysis and evaluation result in turn, it enhances overall profitability 
and performance. After the 2008 global financial crisis, financial institutions need 
to use big data and analytic techniques to gain competitive advantage [2]. Due to 
the high volume of financial transactions and activities, the application of big data 
and analytic techniques is very necessary and important in most of the financial 
organizations such as asset management, insurance companies, banks, and capital 
market. Organizations need to be able to manage their huge data and extract the 
knowledge and insight contained in these data and then use them in all their busi-
ness processes and decision making. Bean reported that 70% of global financial 
service organization thought BDA was important and 63% has applied big data in 
their organizations [97]. According to Technavio, costs of big data technology in 
the global financial industry will grow by 26% from 2015 to 2019, which suggests 
the importance of big data in this industry [98]. BDA techniques provide important 
insights through continuous monitoring of customer behaviors and data analysis, 
which improve customer intelligence such as customer risk analysis, customer cen-
tricity, and customer retention. BDA is applied to all transactions and activities of 
the financial service industry, including forecasting and creating new services and 
products, algorithmic trading and analytics, organizational intelligence (such as 
employee collaboration), and algorithmic trading and analytics. BDA is also used to 
support risk management and regulatory reporting activities [99]. Chief Financial 
Officer (CFO) should use analytic techniques to analyze data of big data and extract 
knowledge and insights into them and then use information and knowledge in their 
strategic decision making. Therefore, Chief Financial Officer (CFO) can apply 
a business analytics and intelligence tool to improve data accuracy, make better 
decisions, and provide greater value [100]. Data analysis techniques can also be 
used in financial markets to examine the market volatility and calculate VPIN [101]. 
Financial institutions can use real-time decision making and predictive modeling to 
gain a competitive advantage in the dynamic financial markets [102]. The Barclays 
Finance Company has widely used big data to support its operations and create and 
maintain primary competitive advantage. They apply big data in many areas such 
as financial crime, treasury, financial crime, risk, intelligence, and finance [103]. 
Deutsche Bank also has applied the big data in their businesses. Deutsche Bank has 
set up a Data Lab that provides internal data, analytics consultancy, test-out busi-
ness idea, and technology support to other division and business function [104].

5.3 Application of BDA in healthcare

In the health industry, a large amount of data is generated to control and moni-
tor the various processes of treatment, protection, and management of patients’ 
medical records, regulatory requirements, and compliance. Big data in healthcare 
are critical due to the various types of data that have been emerging in modern 
biomedical including omics, electronic health records, sensor data and text, and 
imaging, which are complex, heterogeneous, high-dimensional, generally unstruc-
tured, and poorly annotated. Modern and strong techniques are needed to quickly 
manage and analyze these data. “Big data” in the healthcare industry include all 
data related to well-being and patient healthcare. According to the report of US 
Congress in August 2012, big data are defined as “large volumes of high velocity, 
complex, and variable data that require advanced techniques and technologies to 
enable the capture, storage, distribution, management, and analysis of the informa-
tion.” Big data in healthcare encompass such characteristics as high-dimensional, 
variety, heterogeneous, velocity, generally unstructured, poorly annotated, and, 
with respect specifically to healthcare, veracity. Big data in the healthcare industry 
include these characteristics of high-dimensional, variety, heterogeneous, velocity, 
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generally unstructured, poorly annotated, and, with respect specifically to health-
care, veracity. Application of analytical techniques in Medical Healthcare System 
includes image detection, lesion detection, speech recognition, visual recognition, 
and so on. Existing analytical techniques can be applied to the vast amount of exist-
ing (but currently unanalyzed) patient-related health and medical data to reach a 
deeper understanding of outcomes, which then can be applied at the point of care. 
A large amount of diverse healthcare data from personal medical records to radiol-
ogy images, laboratory instrument reading, and population data is, and human 
genetics currently being created, requiring robust, modern systems for protection 
and maintenance. Big data reduce healthcare costs and also improve the accuracy, 
speed, quality, and effectiveness of healthcare systems. Bort reported on combating 
influenza based on flu report by providing near real-time view [105]. Other big data 
initiatives were to monitor inhaler usage and reduce the risk of the asthma attack 
and cancer [106]. BDA can also help health insurance companies to identify fraud 
and anomaly in a claim, which is difficult to detect by the common transaction 
processing system [107]. Big data application has many values in healthcare includ-
ing right care, right living, right innovation, right provider, and right value [108]. 
Big data can be used to population health management and preventive care as a new 
application of Huge Data in the future [106]. Despite the high potential of using 
massive data in healthcare, there are many challenges, for example, improving the 
available platform to better support the easy friendly package, a menu driven, data 
processing, and more real times. There are also other challenges in using big data in 
the healthcare industry including data acquisition continuity, ownership, standard-
ized data, and data cleansing [109].

6. Analytics in supply chain

Big data create different capabilities in the supply chain that provides networks 
with greater data accuracy, insights, and clarity and also create a greater e-contex-
tual intelligence shared across the supply chains. Big data are a powerful tool for 
solving supply chain issues and driving supply chains ahead. For example, currently, 
BDA techniques have applied in the retail supply chains to observe customer behav-
iors by accurately predicting the customer tastes and preferences. Supply chain 
decision makers to succeed in today’s competitive markets must always seek ways to 
effectively integrate and manage big data sources to gain more values and competi-
tive advantage. The effective and appropriate use of big data sources and techniques 
resulted in enormous improvements in processes of supply chain:

• Building agile or responsive supply chains through predicting and gaining a 
better understanding of the market trends and customer expectations and 
preferences. BDA can facilitate the real-time monitoring of supply chain and 
managing of data that enhance the speed, quality, accuracy, and flexibility of 
supply chain decision. Utilize a wide range of data from news, social media, 
weather data (SNEW), and events as well as direct data inputs from multiple 
static and dynamic data points provide the capability to predict and proactively 
plan all supply chain activities.

• Building reliable and intelligent supply chains through the application of 
Internet of Things (IoT), machine learning, and deep learning techniques in 
each supply chain activities. For instance, IoT can provide real-time telem-
etry data by the real-time monitoring of supply chain to reveal the details of 
production processes. Machine learning algorithms that are trained to analyze 



New Trends in the Use of Artificial Intelligence for the Industry 4.0

18

the data can accurately predict imminent machine failures. Deep learning 
techniques can also be used to accurately predict customers’ demand and their 
preferences and expectations.

• Supporting the creation of sustainability in SCM. BDA undoubtedly will 
enhance social, environmental, and financial performance measures. For 
example, detailed planning for timely delivery of the product can be done by 
analyzing the real-time traffic data provided by the GPS that reduces produc-
tion of carbon emission and the cost of fuel consumption.

• Enabling global supply chains to adopt a preventive rather than a reactive 
measures to supply chain risks (e.g., supply failures due to natural hazards or 
fabricated, contextual and operational disruptions). In a more complex global 
supply chain, BDA techniques can help supply chain managers to predict 
external future events and adopt a proactive against them.

BDA can also be applied across the end-to-end supply chain. For instance, the 
points of sales (POS) data on retailers provide real-time demand data with price 
information. It gives the signal for replenishment such as in the vendor managed 
inventory system. RFID data provide automated replenishment signal, automated 
receiving and storing information, and automated checkout data, which inform the 
real-time inventory status. Supplier data provide important data about suppliers and 
ordering processes that can help the supplier risk management and better coordina-
tion with supplier processes. Manufacturing sensor data provide real-time monitor-
ing of manufacturing equipment and identify an inevitable problem. During the 
delivery process, GPS data provide real-time inventory location data and help in 
finding optimal routes and reducing inventory lead times and fulfillment [110].

Despite the potential use of big data, many supply chains are unable to harness 
the power of BDA techniques to generate useful knowledge and insights into avail-
able data for their businesses. The underlying reasons are due to the lack of ability 
to apply appropriate techniques for big data analysis, which result in significant cost 
reduction [110]. Therefore, the efforts to strengthen the BDA capabilities in supply 
chain are considered as an important factor for the success of all supply chains [2].

7. Conclusion and managerial implications

BDA have become an important practical issue in many areas such as SCM. There 
are many scopes for advancement in the application of appropriate analytic tech-
niques in this area. As stated in previous literature [7–9], there are a variety of tech-
niques and fundamental applications in the SCM (e.g., predictive, descriptive, and 
prescriptive). This chapter tries to demonstrate some of the most fundamental and 
recent applications of BDA within the SCM and also notice some of these techniques 
in SCM that are critical for managers. BDA have important applications across the 
end-to-end supply chain. BDA have many important applications across the end-
to-end supply chain. For example, this is applied in various areas of SCM including 
the demand data at the sales department, retailer data, delivery data, manufacturing 
data, and until supplier data. BDA are also used in various supply chain activities and 
support them, including supplier relationship management, product design, devel-
opment, demand planning, inventory, network design, production, procurement, 
until logistics and distribution, as well as the reverse. Applying big data sources 
and analytics techniques have led to many improvements in supply chain processes. 
Furthermore, BDA can support the development and improvement of responsive, 
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reliable, and/or sustainable supply chain. BDA can able to manage and integrate huge 
sets of diverse data in a complex global supply chain. Many researchers have applied 
various techniques of BDA across different industries including the healthcare 
finance/banking and manufacturing. Other industries such as hospitality, technol-
ogy, energy, and other service industry will also take advantage of BDA techniques. 
Depending on the contexts used and the strategic requirements of organizations, 
different techniques of BDA are applied. The culture, politics, environment, and 
the management team within the organization are very critical factors in decision 
making. Since, sufficient resources with analytic capabilities become the biggest 
challenges for many today’s supply chain. Supply chain has to establish close and 
continuous links between data experts and their business function and also apply 
appropriate BDA techniques according to the context of their application in their 
decision making, processes, and activities to answer the question of how data can 
help drive supply chain result. Hence, mutual coordination and cooperation between 
different supply chain units must be established, use BDA techniques to link these 
units, and exist an ability to share and access data and information throughout the 
entire supply chain.
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