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Chapter

Introductory Chapter: An 
Overview to the Internet of Things
Manuel Domínguez-Morales, Ángel Varela-Vaca  
and Lourdes Miró-Amarante

1. Introduction

The Internet of Things (IoT) refers to the process of connecting everyday physical 
objects to the internet, from common household objects (lighting, appliances, etc.) 
to healthcare assets (such as medical devices), as well as wearables, smart devices and 
even smart cities.

These IoT-connected physical objects are visible within the created network itself, 
allowing them to be consulted and/or acted upon.

The great advantage of the IoT, which leads to its enormous importance today, 
centres on the ease of connecting new objects to this network. The interest in this 
technology is being increased year by year, as shown in Figure 1.

A few years ago, in order to connect a device to the network, it was necessary to deploy 
a multi-layered infrastructure to access its information. Nowadays, however, there are 
open-access projects that present a free and extensive network where end users can 
directly connect their objects (only needing a connection modem in the object itself).

With multiple connected objects over a large area, there is great potential for proj-
ects that focus on the population’s well-being when applied to smart cities. This opens 
up endless possibilities, but not without challenges and concerns. Many of the latter 
focus on the devices and network’s security and devices and how a malicious user can 
alter the information or undermine privacy.

All these issues and possibilities are addressed in the various chapters of this book, 
which attempt to cover all areas of the IoT.

So, the main aim of this introductory chapter is to serve as a justification for the 
book itself, presenting hard facts and data that prove the evolution of the use and 
deployment of IoT systems in society. To this end, a literature review will be carried 
out to show the increase in publications related to the subject in recent years.

2. Trend analysis

The methodology used corresponds to the classical systematic review process. The 
keywords used for the search process are “Internet of Things” and “IoT”, including 
the operand “OR” between both. In order to observe the trend, the last 20 complete 
years are taken into account (from 2001 to 2021). Finally, the search engines used for 
it are Google Scholar, IEEE Xplore and Scopus. With the information obtained, the 
criteria used to analyse the works is mainly the applied field.
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All the works found are used to obtain the distribution per year and observe the 
tendency. However, not all these works are analysed deeply to find their topic because 
of the great number of works found. Instead, we analyse only a subset of the most-
cited works from each year.

The search results show a total of 339.804 works published between 1 January 2001 
and 31 December 2021. The evolution of these publications for each year can be seen 
in Figure 2. It can be seen that the number of publications between 2001 and 2008 is 
not more than 100. The increase was maintained in subsequent years, but it was not 
until 2016 that a breakpoint was observed, with the number of papers doubling that 
of the previous year. This point coincides with the annotation observed in Figure 1.

From 2016, there was an exponential increase until 2020, when stagnation is 
observed (presumably due to the pandemic) with a subsequent upturn in 2021.

As a result, it can be theorised that the trend in interest and use of IoT technologies 
has passed its exponential growth stage and is in the maintenance stage. It is at this point 
where it can be theorised that the research linked to this field is in its maturity stage, and 
therefore, we are in an ideal position to be able to publish a book of these characteristics.

In order to analyse the topic distribution, the most cited works from each year are 
extracted using the next criteria:

• From 2001 to 2008: in this period, there were less than 100 works per year (92 in 
2008), so we extract the 10% most cited works for each year. In total, we obtain 
25 works in this period.

• From 2009 to 2011: in this period, the number of works per year varied between 
100 and 1000. As there is a big variation between these years, we extract the 

Figure 2. 
Number of works published each year from 2001 to 2021 using the search phrase “IoT” OR “Internet of Things”.

Figure 1. 
Interest over time in the terms “IoT” and “Internet of Things” from 1st January 2004 to date (obtained from 
Google Trends). A strong increase can be observed in 2016 and in the beginning of 2022.
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3% most cited works for each year with a minimum of 10. In total, we obtain 50 
works in this period.

• From 2012 to 2015: in this period, the number of works per year varied between 
1000 and 5000. For this case, we extract the 1% most cited works per year with a 
maximum of 40. In total, we obtain 102 works in this period.

• From 2016 to 2021: this is the period with the biggest number of published works 
(from 13 to 31 K works), so we need to reduce the number of analysed works in 
order to simplify the evaluation stage. So, we extract the 0.5% most cited works 
per year during this period. In total, we obtain 636 works in this period.

Finally, we obtained 813 works to be analysed. This amount of work is consider-
able and needs to be reduced. By discarding those works not published in interna-
tional journals, the number of works is reduced to 391. Finally, discarding those 
published in non-JCR journals, the total amount of works is almost halved, obtaining 
a final number of 192 works.

With this final amount of work, the main topic distribution will be analysed. We 
will start by including the selected papers for the entire period (from 2001 to 2021).

If we look at the distribution of papers by each of the areas of interest (see Figure 3), 
we can see a high percentage of papers related with the field of computing (including 
those related with communications and security), which seems logical given the nature of 
the technology. In the second position is the field of Engineering, with 27% of the refer-
ences observed. This is followed by pure sciences and health sciences with 16 and 15%, 
respectively. Lastly, the area least related with the subject of this book (social sciences) 
obtained 6%.

Secondly, only the selected set of works within the period from 2016 to 2021 (the 
period of exponential increase and stabilisation) will be analysed (see Figure 4). 
Analysing the results obtained, a very similar distribution to that obtained for the whole 
period can be observed. The only difference is that the first two branches (computer 

Figure 3. 
Number of works published between 2001 and 2021 divided thematically.
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science and engineering) slightly reduce their number in favour of health sciences 
(which increases from 15–17%).

In summary, therefore, it can be seen that we are currently in a period of techno-
logical maturity after a few years of exponential growth in the number of jobs. And, 

Year # Work/s

2004 1 [1]

2005 1 [2]

2006 2 [3, 4]

2007 2 [5, 6]

2008 3 [7–9]

2009 4 [10–13]

2010 4 [14–17]

2011 9 [18–26]

2012 6 [27–33]

2013 6 [34–39]

2014 8 [40–47]

2015 10 [48–57]

2016 9 [58–66]

2017 12 [67–78]

2018 20 [79–98]

2019 24 [99–122]

2020 30 [107, 123–150]

2021 40 [151–188]

Table 1. 
Selected works evaluated year by year.

Figure 4. 
Number of works published between 2016 and 2021 divided thematically.
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with respect to the areas, a similar distribution is maintained throughout the period, 
although a continuous growth is observed in the field of health sciences.

These results have highlighted the importance and evolution of the Internet of 
Things in recent years. A significant increase in the number of publications has been 
observed since 2016, coinciding with the search trends provided by Google Trends.

This upward trend continues to increase exponentially until it stagnates in 2020, 
something that can also be seen in the search trends.

The summary of the most-representative works evaluated is presented in Table 1.
These data are directly related to the latest Gartner Hype Cycle of Internet of 

Things (published in 2020). It can be seen in Figure 5 how the initial themes linked 
to the Internet of Things (including IoT Edge and IoT Platform) have already passed 
the crest of the wave and are in decline: these technologies were the fruit of the first 
upturn in 2016 (when both were at the crest of the wave). However, it can be seen that 
the technologies currently at their peak include those related with IoT in healthcare 
and smart homes, which may justify the increase in the proportion of publications in 
the health sciences in recent years.

Therefore, IoT systems and technologies have passed their initial curve of novelty 
and technology evolution and are now mature enough to be able to find innova-
tive and useful work already implemented in society. It is therefore an ideal time to 
produce this book.

Figure 5. 
Gartner’s Hype Cycle of “Internet of Things”.
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Abstract

Undeniably, the Internet of Things (IoT) ecosystem keeps on advancing at a fast
speed, far above all predictions for growth and ubiquity. From sensor to cloud, this
massive network continues to break technical limits in a variety of ways, and wireless
sensor nodes are likely to become more prevalent as the number of Internet of Things
devices increases into the trillions to connect the world and unconnected objects.
However, their future in the IoT ecosystem remains uncertain, as various difficulties
as with device connectivity, edge artificial intelligence (AI), security and privacy
concerns, increased energy demands, the right technologies to use, and continue to
attract opposite forces. This chapter provides a brief, forward-looking overview of
recent trends, difficulties, and cutting-edge solutions for low-end IoT devices that use
reconfigurable computing technologies like FPGA SoC and next-generation 5/6G
networks. Tomorrow’s IoT devices will play a critical role. At the end of this chapter,
an edge FPGA SoC computing-based IoT application is proposed, to be a novel edge
computing for IoT solution with low power consumption and accelerated processing
capability in data exchange.

Keywords: IoT, challenges, AI, 5/6G networks, FPGA SoC

1. Introduction

Lately, the whole field of networks has undergone a significant technical revolu-
tion. Network automation is a trendy issue that has been discussed for a long time. IoT
technology complements it, which paves the way for the provision of this aspect. The
Internet of Things [1] is a cross-device environment created by gadgets that focus on
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three key tasks: data transmission, data reception, and data processing. Initially, local
physical devices connected to the Internet for real-time data analysis were considered
the IoT network. The size of IoT has grown over time, from local workstations to
industrial IoT frameworks [2]. IoT research describes the proliferation of IoT in
healthcare [3], industry setup [4], business analytics, education, area networks, and
more. Therefore has the associated risks are due to the expected increase in IoT
devices in a diverse environment.

The Internet of Things is one of the most critical and revolutionary trends of the
twenty-first century. The Internet of Things (IoT) is a global network of billions of
interconnected “things” that can detect, act, and communicate with one another and/
or the Internet [1, 2]. Current forecasts exceed initial forecasts for IoT growth: While
Gartner predicts 14.2 billion interconnected things in 2019 (which might rise to 25
billion by 2021 [3]), Arm predicts one trillion additional devices will be manufactured
between 2017 and 2035 [4]. This tendency is generating exponential increase in the
number of chances for businesses and service providers by affecting all sectors of
technology, allowing today’s organizations, large and small, to gather data on basically
everything, from anywhere, at any time. The rise of IoT would be inextricably
connected to the wireless trend, which began with Radio Frequency Identification
(RFID), also benefiting from the continued development of other conventional tech-
nologies naming Wi-Fi, Bluetooth and devices based on IEEE 802.15.4., extensively
utilized in traditional wireless sensors [5]. Those kind of systems are typically ad hoc
wireless networks made up of a massive number of nodes, i.e. nodes, with limited
resources, which work unitedly to reach a common goal (e.g., environmental moni-
toring and intelligent traffic control, industrial, surveillance systems, etc.) which is
capable of transforming physical phenomena into digital data and move them to the
Internet.

In the last few years, Motes have been used in a variety of sectors feedback
systems, process control, counting monitoring, automotive and automation. Never-
theless, while developing these devices with limited resources, the requirements of
small size, weight, low power consumption, and low cost (SWaP-C) are always
sought. Physical constraints would continue and be increased by the demands of
recent trends as technologies around the IoT edge expand rapidly and boost their
potential, namely: (i) Data transfer over the Internet to specific online services in
a standardized manner is enabled by connectivity and subsequent interoperability
[6–8]; (ii) the need for higher intelligence at the network’s edge, allowing systems to
make choices faster while consuming less energy [9, 10]; (iii) devices developed for
security, mitigating risks from a large number of massive attack surfaces present in
the IoT network [11, 12]; and (iv) new energy-saving techniques, allowing autono-
mous and durable devices [13, 14].

Recent advances in reconfigurable computer technology, specifically Field Pro-
grammable Gate Arrays (FPGAs), continue to support the IoT field [3]. Even with
low-end IoT endpoints, programmable hardware may give performance advance-
ment, flexibility, scalability [15], hardware-enhanced security, and improved power
ratios, making it a suitable choice to handle a wide range of difficulties. Using modern
FPGAs in IoT allows for a combination of scalable and flexible resources that are
aligned with the SWaP-C premises while also allowing the technology to migrate from
the cloud to the edge.

This forward-looking chapter presents a concise and forward-looking assessment
of the usage of reconfigurable technology on upcoming low-end IoT motes. This
chapter is organized in six section. Section refsec1 focuses into the key trends and

2

Internet of Things - New Trends, Challenges and Hurdles



issues confronting current low-end IoT devices. The section provides a full review and
up-to-date explanation of the application of reconfigurable computing technology to
solve such trends and difficulties, as well as a comparative examination of current
FPGA SoC-based low-end IoT motes. 2. Section 3 presents the connectivity evolution
beyond the 5G revolution. In section 4 we present a real QoS-QoR aware CNN FPGA
accelerator co-design approach for future IoT word. Finally, we conclude this chapter
in Section 5.

2. IoT edge: trends and challenges

There are four primary trends and problems in the design of IoT devices at the
network’s edge currently: The presence of high levels of attack vectors and security
vulnerabilities necessitates the consideration of scalable security primitives early in
the process, and there is a growing trend to deploy intelligence at the edge as data
collection increases and even more, meaningful decisions are required. There is con-
stant compression of an already low power envelope due to device design.

2.1 Basis for connectivity and interoperability

Myriads of smart devices might now be linked to the internet as IoT becomes more
prevalent. A genuinely standard and lightweight communication stack is necessary to
provide connection and compatibility among all existing heterogeneous wireless tech-
nologies. A variety of wireless technologies have already been used, causing huge
communication heterogeneity and interoperability problems when developing linked
IoT devices [16, 17]. The IoT infrastructure’s variability makes standardization
exceedingly challenging. With the presence of many strong competitors competing
for the market dominance, “wars of standards” are unavoidable. In addition, no single
technology is capable to provide a single solution that fully and simultaneously meets
all the requirements of the IoT network, including power consumption, endpoint cost,
bandwidth, connection density, latency, quality of service, operational expenses, and
range. Normalization, on the other hand, is critical because it lowers barriers and
promotes interoperability across different vendors and devices, permitting new goods
and services to coexist with long-standing support. Guideline would be critical in the
development and diffusion of IoT, since any communication stack must use
methodical algorithms and lightweight protocols to save processing power and save
energy [18].

The Internet, as known, links billions of devices using Internet Protocol (IP),
specifically IP version 4 (IPv4) [8]. Nevertheless, because of the underlying 32-bit
addressing method, IPv4 had major scaling issues, that were solved with the develop-
ment of IPv6. This edition includes a distinctive 128-bit address for every connected
device, as well as an updated protocol architecture to support a wide range of
IoT-based heterogeneous devices [19]. concerns, numerous standards bodies, includ-
ing the Institute of the Internet Engineering Task Force (IETF) and Electrical and
Electronics Engineers Standards Association (IEEE-SA), have outlined a foundation
for developing communication protocols and wireless technologies that will be
implemented using the IoT market [6]. The IEEE 802.x family of standards was one of
these organizations’ most popular achievements. The IEEE 802.15.4 standard, that
specifies a short-range radio frequency transmission protocol for low-power lossy
(LLN) networks, low-power, low-rate, has aided in the seamless transition of wireless
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systems, existing wireless sensors to Internet-connected low-end devices [8]. In addi-
tion to its physical (PHY) and medium access control (MAC) layers, additional pro-
tocols (e.g., ZigBee, Thread, ISA100.11a, WirelessHART, and so on) have arisen,
expanding the heterogeneity of the IoT domain. For the present, the IETF IPv6 over
Low Power WPAN (6LoWPAN) working group committed to the definition of the
6LoWPAN adaption layer, that allows IPv6 datagrams to be sent across IEEE 802.15.4
networks. The collaboration of IEEE 802.15.4 compliant radios with the 6LoWPAN
protocol allows for easy integration of limited devices with the Internet, which seems
to be an important factor in interoperability and communication between low-end IP
devices [6, 8, 18, 19].

2.2 Edge intelligence

Massive volumes of data are created, processed, communicated, saved, and ana-
lyzed when connection and internet technologies are implemented on in-vehicle
devices and the IoT. According to the International Data Corporation (IDC), by 2025,
the volume of data generated globally would be predominantly from the edge and
would exceed 163 zettabytes (over 1000 billion gigabytes), a tenfold increase over
data produced in 2016 [4, 9]. This ideal change would force designers, engineers and
technology providers to reconsider how they construct new hardware solutions that
go beyond the norm and cope with artificial intelligence (AI) workloads at the edge.
Cloud service enterpriser have been at the front line of introducing AI to develop and
improve their workloads and services over the last decade. Cloud services will be
essential for the next generation of smart industries, smart cities, and smart house-
holds. Nonetheless, decreased latency requirements, growing privacy concerns, com-
munication bandwidth constraints, and restricted power budgets have fueled the
deployment of intelligence at the edge [10, 20]. Cloud-based decisions should be
avoided in safety-critical applications such as autonomous driving since the time it
takes to conduct a query/decision might compromise the vehicle’s safety, for example,
collision avoidance. As a result, local and real-time choices have to take precedence.
On top of that, with the end of Moore’s Law, we could never rely on the rising and
heavy processing power of cloud core technologies to handle the quantity of data
created by next-generation IoT systems [21]. Cloud services will be critical for doing
high-level analytics, yet AI deployment at the edge is also increasingly critical.
Deploying and utilizing intelligence at the edge has inherent dangers as well as a set of
needs, both in terms of security and SWaP-C. In terms of security, the increasing
complexity of the edge exponentially widens the security flaws, bringing up new
attack routes in an infrastructure that is already striving to give increased protection.
Advanced computing techniques, such as machine learning, can greatly increase the
processing capabilities of wireless sensor nodes while also lowering total network
power consumption through decreased wireless transmissions [22]. Pushing these
tasks (data analysis and decision inference) as far as feasible would eventually opti-
mize resource efficiency and responsiveness, leading to more autonomous and
intelligent systems [23].

2.3 Security

Security in the Internet of Things era is not voluntary, and it should be a funda-
mental layout priority from the start and throughout the device’s lifecycle. As IoT
grows deep inside important enterprise infrastructures, the value of the assets
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contained within such devices rises, making them attractive targets for attackers and
hackers. Therefore, ignoring device safety as an initial design issue may endanger the
whole supply chain, resulting in revenue and brand reputation risks, as well as grave
life-threatening circumstances in some cases. The success of the Internet’s next phase
is highly reliant on the inherent trust and security of billions of linked heterogeneous
network devices [6, 11, 12].

A flexible, multi-layered strategy capable of providing end-to-end security
from device to cloud and everything in between is necessary to deliver a security
architecture solution that completely covers an IoT platform. While the majority of
the initial architectural proposals involves a three-layer design (perception, network,
and application layers) [11], a common dominating choice has yet to be determined.
In subsequent versions, more abstraction has been incorporated, culminating in a
five-layer structure (service management, object abstraction, application layer,
objects and business layer [24]. Each layer’s technologies are distinct, with their own
set of goals, needs, constraints, and tradeoffs. Nonetheless, the IoT’s diverse set of
security challenges and vulnerabilities has an inherent impact on all layers of the
architecture.

Info concerning the IoT architecture was transmitted across all levels and entities,
i.e., users, service providers, and devices, to ensure full compatibility between ser-
vices and devices. This, however, considerably expands the entire attack surface. The
four primary categories of attacks include hardware-based attacks (e.g., changing
techniques or channel violent attacks), communication attacks (e.g., weak random
number generators, man-in-the-middle), life cycle attacks (e.g., degradation code,
oversupply at the factory) and software attacks (e.g., return oriented programming
approaches, malware). Countermeasures must be implemented for each form of
attack because a single weakness may split the entire device and span the whole
network. A list of technologies and mitigation methods can be chosen based on the
offered assets of an IoT-based product to fulfill the essential security standards that
must be enforced. Meeting these standards is essential in establishing a reliable and
secure IoT infrastructure that provides rigorous guarantees on security primitives.
Among these security primitives are the following:

• Authentication is an essential aid in ensuring the security of communications
between different parties [25]. The first barrier of protection against intrusion is
access control management. These mechanisms are essential in order to identify
and classify objects and manage their identities, establish a mutual trust relations
between various objects, users, or systems by verifying and distinguishes their
identities, and grant, deny, or limit entities’ access to data, resources, or
applications (i.e., authorization) [26].

• Resource availability is one of the fundamentals of IoT security which may be
maintained through strict hardware maintenance and safe software/hardware
resources. Additional security measures, for example software firewalls and
intrusion detection systems, could be deployed to prevent malicious behaviors
like denial of service (DoS) attacks.

• Information authenticity is linked to the source of the data [27]. End-to-end
security methods are required to guarantee that data is coming from valid
sources. Globally notable identifiers and hierarchical identification methods are
fundamental to assuring IoT authenticity [28].
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• Integrity is about maintaining the consistency of data, ensuring that
unauthorized entities, or even unidentified causes cannot modify it undetected
[29]. Cryptography is commonly used to verify data integrity.

• Privacy aims to prevent important information from reaching the hands of
unauthorized people or devices. This is usually accomplished by establishing
several degrees of access for the wanted asset (user/password), biometric
verification, two-factor authentication, robust data encryption technologies,
security tokens, and other methods.

Since no security primitive by itself provides a standardized solution, it is essential
to take a relevant layered approach to give the complex foundation to copiously
defend the entire IoT device architecture, infrastructure, commonly known as defense
in depth [30]. Figure 1 shows a high-level overview of the various types of security
solutions [31]. All of the layers lead to strengthen the safety of the IoT system, and
every one addresses a distinct security issue.

• The Foundation Functions layer provides core modules that service the layers
above it, such as cryptographic algorithms/engines-backed true random number
generator (TRNG) modules [31]. The following cryptographic schemes stand out
from the rest: (i) the Advanced Encryption Standard (AES) symmetric key

Figure 1.
A layered overview of the main security technologies used in IoT (adapted from [31]).
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protocol for mass information encryption, (ii) the Secure Hash Algorithm (SHA)
cryptographic functions, and (iii) the Elliptical Curve Cryptography (ECC) or
RSA asymmetric key algorithms for authentication and secure session key
transactions. This layer offers a system that provides a special device
identification, that is silicon bound, to enable various cryptographic algorithms
(root key) [31]. A root key is usually held in a single-use programmable memory,
which is configurated during platform manufacturing, or in physically
unclonable function (PUF) mechanisms. It gives a strong method for encrypting,
additional keys and data.

• The system security layer is concerned with a system-wide approach to platform
security, integrating device and memory access management. Memory protection
units (MPUs) are commonly utilized for this purpose. ARM, on the other hand,
has lately moved its TrustZone technology, which was previously limited to its
microprocessors (Cortex-A), to the level of microcontrollers (Cortex-M). The
latter helps to divide applications that handle sensitive peripherals or memory
sections of the operating system as well as other hardware modules on the
platform. Arm TrustZone-M advocates hardware as the first root of trust and
allows any system resource (e.g., CPU, memory, and peripherals) to be trusted.
The security layer of the platform is also in charge of verifying the integrity and
authenticity of the software executing in the IoT device. Secure boot is the key
technology in this regard [31].

• The advanced protection layer contains a collection of technologies that defend
physical tampering threats that might compromise the system’s integrity,
availability or confidentiality. As a result, this layer includes technologies to stop:
unauthorized access to the IP code, data, or keys (confidentiality), unauthorized
changes to the code, data, or keys stocked in the apparatus for trying to take
control of the system (integrity), and methods for interrupting the system’s
normal operation, rendering it not available or operating in safe mode
(availability). Also physical sabotage attacks, whether or not they involve
physical attacks, can be classed as invasive or non-invasive. Infiltration or
damage to the device’s packaging, respectively [32]. While detecting invasive
attacks is simple with an on/off switch connected to a treatment system’s GPIO
pins, detecting non-invasive attacks is significantly more costly.

Non-invasive attacks are often classified into three categories: side-channel
attacks, fault injection attacks, and software attacks [32]. Side-channel attacks con-
centrate on monitoring the system’s behavior in terms of time (temporal attack),
electromagnetism, and power consumption, simple power analysis (SPA), and differ-
ential power analysis (DPA), while ‘it executes secure operations (e.g. cryptography)
to extract the keys. The most effective technique to prevent synchronization attacks is
to ensure that all operations inside a security function spend the same amount of time.
Intel has solved this issue by developing a fully dedicated Advanced Encryption
Standard (AES) instruction set that operates data-independent. Kocher [33] presented
a platform-independent method for updating the secret key for each executive session
of a cryptographic scheme, causing the synchronization patterns. Rambus [34]
suggested a set of software libraries and hardware cores that are immune to secondary
channel attacks such as temporal, electromagnetic, SPA, and DPA attacks. In fact,
their methods are based on strategies that reduce the signal-to-noise ratio on side
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channels and introduce randomization into cryptographic operations. They even
implement protocol-level countermeasures, changing cryptographic protocols to
include key update methods.

2.4 Energy awareness

Recent technical advancements in the information and communication technolo-
gies (ICT) industry have come at a cost, which is now associated with a 2% increase in
the average carbon footprint. Nonetheless, because of the increasing of ICT scenarios
and their requirements (including a massive and promising IoT ecosystem), it is
predicted that by 2020, ICT improvement would be in the range of 6–8% [13]. The
rapid spread of IoT technologies and their broad acceptance will require further
sensory, communication, and performance add-ons, putting even more pressure on
these devices’ energy budgets. On the other hand, while IoT infrastructure will boost
carbon footprint over the next few years, it also has the potential to be explored to
minimize the environmental footprint of several major sectors of society: habitat
monitoring, energy, smart cities and transportation systems (e.g., smart grid, smart
traffic jam, etc.).A smart grid anchored by IoT nodes, for example, may improve total
energy consumption. From a macro and “green” standpoint, IoT devices require a
more efficient and sustainable use of resources, with the problem of energy con-
sumption at the heart of any IoT system’s design and development [13, 14].

IoT devices should use minimal power as possible. Because these devices require
continuoual technique indefinitely, stable and reliable power sources are important
enablers: repair and replacement of the battery or device are not cost-effective
methods. Recent advancements in energy harvesting systems provide fundamental
approaches for increasing battery life, mobility, and range [35, 36]. Furthermore,
system designers must rely on existing and next-generation power management
strategies (e.g., low-leak processing technologies, low-power flash memory and non-
volatile memory technologies, low-power clock and operational diagrams, protocols)
to minimize the total energy budget. The effective and sustainable use of power
resources is critical since energy consumption determines the life of a particular
battery capacity [37], which necessitates the implementation of a set of control
methods and intelligent energy management. As a general rule, Motes often function
cyclically, periodically alternating phases of active and low power operation to reduce
their average power consumption and hence lengthen their longevity [36]. When a
device is in active operation, it often demands wireless communications, that is
commonly needs the most power state of a node. In brief, as the IoT’s backbone,
wireless sensors would address rising energy demands and problems by introducing
new energy- functional primitives.

3. Roles of reconfigurable platforms

Over the past years, the semiconductor enterprise has consistently reduced the size
of its devices while increasing their power and efficiency. Moore’s Law drove down
the cost per transistor dramatically each time the total number of transistors created
was duplicated (approximately 45%) [36]. The pace with the fast demand for quicker
and smaller goods has driven this technology to its limitations, making it increasingly
hard to rise the density of transistors on a chip also its operating frequency, that
appears to be nearly saturated [21]. This Moore’s Law deceleration raises several
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challenges for system designers, who expected better performance-to-energy ratios
from each new generation of devices. This technical deadlock has prepared the way
for the introduction of reprogramed platforms (i.e., FPGA-based platforms) as a novel
hardware method to addressing these difficulties across a wide range of on-board use
areas [5, 15].

Figure 2 illustrates the various software and hardware architectures that are now
available on the market and commonly employed in the creation of embedded
systems [21]. Microcontrollers (MCUs) provide the most flexibility, whereas ASICs
(application-specific integrated circuits) offer the maximum performance.
FPGA-based solutions, on the other hand, could offer the best of both worlds by
providing high crippled processing abilities, leading in greater performance raise than
MCUs and the ability to be reprogrammed at any moment. In comparison to ASICs,
over time execution via partial or dynamic reconfiguration techniques provides
greater flexibility. However, because MCUs are software devices, they offer best
flexibility, making them useful in basic, low-cost embedded systems [38].

FPGA manufacturers have begun to integrate embedded processors (soft or hard)
into their gadgets in recent years, leading to so-called Field Programmable Chip
Systems (FPGA SoC), which have emerged as the world’s greatest option for
balancing flexibility with efficient computing power. FPGA SoCs have progressed
from a single or dual-core processor-only platform to a far more powerful platform
with graphics processing units (GPUs), real-time processors, multi-core processors,
real-time processors and specialized hardware blocks such as digital signal processors
(DSPs) and video compression components. With this varied array of resources rang-
ing from systems that are efficient intended at high-end applications to a better
resource-constrained platform, these heterogeneous reprogrammed technologies are
better technical options for dealing with the ever-increasing diversity of Low-end IoT
applications. Nevertheless, depending on the target context and uses situation, each
IoT deployment may use a distinct network data and transmission architecture, tech-
nology and design processes that are widely used, based on the general requirements
imposed by the environment’s natural evolution the IoT ecosystem.

3.1 Connectivity and interoperability

Hardware-assisted technologies that can speed widely recognized protocols and
standards at the network edge are steadily resolving connectivity and interoperability
problems in reconfigurable systems. For example, some data privacy-related

Figure 2.
Performance versus flexibility of different processing platforms.
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communication operations (e.g., authentication, data encryption/decryption) take
quite a long time and cost a lot of power. Offloading such activities to hardware (e.g.,
cryptographic protocols and algorithms) can result in improved performance-to-
power tradeoffs. Gomes et al. [39] suggested a 6LoWPAN accelerator that can analyze
and filter packets received by a radio transceiver. When compared to software filter-
ing, the findings demonstrated a nearly 13.24% reduction in performance overhead. In
addition to speeding up these computing operations, reconfigurable systems can help
to reduce the obsolescence of cryptographic primitives through dynamic partial
reconfiguration (DPR) [40]. Furthermore, some IoT-based applications have consis-
tently employed FPGAs for networking reasons and obtained promising results in
recent years, fostering the growth of different solutions in the industry. In [38],
Andina et al. discussed many research that demonstrate the benefits of employing
FPGAs to tackle connectivity challenges on IoT systems.

The growth of software-defined radio systems has coincided with the evolution of
radio communications (SDR). An SDR is a radio communication system in which
standard FPGA hardware components (e.g., mixers, filters, amplifiers, modulators/
demodulators, detectors) are integrated in software. Indeed, this method facilitates
the generation of smart communication strategies with great usefulness in a variety of
sectors (e.g., mobile phones or military applications), where protocols and radio
settings (e.g., new modulation designs, filters) may be modified in real time. The
benefits of reprogrammable platforms paired with the SDR paradigm give up a new
pair of possibilities in which new hardware modules (specified in software but
speeded in hardware) may be developed and dynamically installed on reconfigurable
systems using DPR [41, 42].

3.2 Intelligence

The current trend to solve the problems of excess information created at the edge
and latencies engendered by its transmission through the network has given rise to the
concept of edge computing, in which the edge node uses AI, specifically deep learning
methodologies, to properly accomplish data analysis at the source. Because of their
inherent parallel compilation ability and performance per watt benefits, FPGA-based
platforms are well suited to address AI needs in this situation. By offering hardware-
accelerated inference techniques, these systems can fulfill the strict effectiveness and
power restrictions of edge devices.

The latest generation low density FPGAs, such as the Xilinx 7000 family, can speed
neural networks in the 1 W to 1 mW region. Each FPGA series has a convolutional
neural network (CNN) accelerator that may be configured for accuracy or power
consumption [20]. In comparison to previous platforms, Intel’s new FPGA SoC com-
bine DSP blocks with unique floating point capabilities into the FPGA fabric, consid-
erably reducing logic resources consumption and improving overall performance [9].
To be fair, the high computational storage and power capacities requirement of classic
neural network designs continue to confront even the newest FPGA-based platforms.

While the market has recently lauded FPGAs’ capabilities for AI acceleration,
academia has as well thoroughly researched this subject, presenting many accelerators
and demonstrating interesting results. In [43] the authors developed a low-precision
CNN accelerator that delivered about the precision of a standard CNN while
outperforming other tasks by up to 6 times. The authors of [43] developed a CNN-
based image classifier accelerated on a high-end FPGA SoC that investigates both the
integrated hardcore and the FPGA fabric holistically. When compared to standard
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hardware platforms, the solution achieves outstanding performance/power consump-
tion ratios (e.g., CPU, GPU). Other similar papers offer techniques based on hardware
accelerated AI as well. In the works cited in [44], the results presented make it
possible to accelerate the performance of 4x compared to other solutions while
reducing energy consumption. Although the Deep Learning Accelerator written in
OpenCL is capable of accelerating AlexNet up to 10 times quicker than the different
leading edge approaches. From another point of view, the authors of [45] have pro-
posed a series of efficient design techniques (p. To meet the limitations of devices
with limited resources. A common element in all these works is that solutions based on
FPGA strike a true balance between compute performance and energy efficiency.
Furthermore, these platforms are the only option capable of continuously adapting to
the high speed of development in AI frameworks, both in terms of algorithm imple-
mentation and performance/power needs for future generation workloads.

3.3 Security

IoT system security is a critical necessity. The attack vector spectrum is expanding,
and IoT system developers want solid and very secure countermeasures to efficiently
protect the upcoming devices generation. Faced with today’s security demands, new
reconfigurable systems include a variety of security blocks ranging from core hard-
ware encryption engines.

The basic functions include numerous techniques that support greater security
standards, as aa example we mention data encryption/decryption before performing
data transmission. The latest generation of FPGAs provide a diverse set of integrated,
hardware-accelerated blocks and cryptographic resources (e.g., ECC, AES, SHA, and
HMAC). Microsemi’s SmartFusion, SmartFusion2, and IGLOO2 devices, for example,
provide hardware accelerators for AES-128/256 and SHA-256, that may be utilized for
performing design also data security (e.g., to validate the integrity and authenticity of
a bit stream). In addition, the advantages of employing FPGA-based cryptographic
accelerators have been extensively discussed in the literature; Piedra et al. [46]
compared the performance and power consumption of cryptographic primitives in
commercial IoT nodes to an FPGA-based cryptographic accelerator. The outcomes
shown that the latter technique may significantly improve the execution time of
sophisticated cryptographic algorithms, and hence power consumption. Another
feature of FPGA-based cryptographic systems is their inherent reconfigurability, that
may be used to simply upgrade limited or obsolete cryptographic algorithms and
protocols.

A TRNG block is necessary to support cryptographic engines. It generates random
cryptographic keys from a statistically independent source of random values. While
exhibiting many physical sources of entropy (e.g., clock jitter, thermal noise, shot
noise, etc), FPGA-based TRNGs may as well attain ideal high-speed ratios and func-
tion as a source of truly random numbers [47]. Newer FPGA-based applications, such
as Microsemi’s FPGA SoC, are also equipped with a non-deterministic TRNG that is
certified to handle cryptographic applications. The protected root keys, which must be
uniquely tied to the device, are another important feature of the basic function class
[31]. Today’s cutting-edge implementation depends on PUF technology, which, due to
unavoidable differences in the nanoscale manufacturing process, makes PUFs a viable
physical device attribute for generating a peculiar silicon fingerprint [48]. Root keys
created from PUFs are fetched from the chip rather than kept on it. PUFs are now
present in a wide range of devices, from small sensors and microcontrollers to FPGA-
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based systems. PUF-based applications in [49] serve as a means for security software
on an MCU as well as a basis for authenticating IoT devices in the cloud. On contrast
[50], proposes a secure protocol based on PUF to secure a DPR compliant IoT design
deployed in FPGA.

The wide system solutions that provide secure primitives at the CPU level provide
platform security as well as access control to system components (e.g., FPGA blocks,
peripherals, memory). Arm, the dominating architecture in the mobile and in-vehicle
categories (with 50 billion devices deployed), launched the most powerful current
platform security mechanism, Arm TrustZone, in 2014. Arm TrustZone is a hardware
security system that covers both low and high-end Arm CPUs. The later provides a
compartmentalized method to security by giving two hardware-reinforced regions of
protection: secure and regular worlds. The different worlds are totally separated from
hardware and have uneven privileges, preventing insecure software from immedi-
ately accessing secure global components. The Trust Zone bit is not contained within
the CPU; it extends from the processor to the bus to the hardware’s internal circuitry,
Zynq-based FPGA SoC are a great example. This technology has been widely
employed in academia and business as a significant enabler for the use of Trusted
Execution Contexts (TEEs) and to offer strict isolation (security by separation) in
critical environments.

3.4 Energy

Users would expect tinier, smarter, and longer-lasting IoT items offered by ultra-
low power IT-optimized solutions. FPGAs have lowered power consumption per
operation by more than a factor of 1000 since their introduction [51]. These advance-
ments have been driven mostly by process technology and the desire to reach new
markets, particularly the consumer sector. Power concerns are now at the forefront of
FPGA architecture considerations, and newly FPGA categories are all geared towards
low-cost, high-volume applications. The majority of FPGAs are based on SRAM tech-
nology, which necessitates extra non-volatile memory to keep their configuration
pattern, increasing power consumption. Nonetheless, these platforms have changed
significantly over time, and newer devices are more energy effective. For example,
Lattice’s iCE40 family of FPGAs can operate at 10 mA in active mode and up to 35 μA
in standby mode. Due to the uncertain initial state of the SRAM cells, Lattice systems
are prone to spikes in starting current (inrush current) like SRAM-based FPGAs. iCE
FPGAs, on the other hand, have a maximum inrush current of 1.2 mA, which is a very
high efficient number for battery-powered uses.

Flash FPGAs have always fallen behind SRAM-based devices in regards of perfor-
mance, density, and on-chip IP. Although, new developments in flash technology
(e.g., flash memory cell reduction, flash memory integration into advanced logic
operations) have dramatically increased these platforms. This technique has a very
low static energy consumption as well as minimal inrush and setup power. Microsemi
FPGAs investigate flash memory. The IGLOO series, specifically developed for today’s
portable and energy efficient devices, may deliver standby power consumption rates
as low as 2 μW in their FPGA portfolio. Furthermore, Microsemi’s FPGA SoC have
Flash * Freeze technology, that places the FPGA design in a low-power sleep mode
while maintaining the prior state of memory, enabling for quick FPGA shutdown and
restart. Sensor arrays, which are invariably turned on and off on a regular basis, might
benefit immensely from this feature. Furthermore, a system designer may take use of
the extra combination of such technology with other low power modes provided by
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the integrated hard-core MCU to fulfill the rigorous energy requirements of numerous
IoT applications.

To improve energy efficiency, some solutions incorporate a dynamic power
management (DPM) module in their reconfigurable hardware, that permits
individual resources to be totally turn off in standby or low power mode, as well as a
reset function. The voltage and frequency dynamic scales used to govern the
digital processing component. The later function is a power management approach
that allows the voltage and speed of the MCU to be altered and decreased to
lower levels when not in use to reduce power consumption. Furthermore,
reconfigurable solutions appear to be an excellent option for heterogeneous grains of
low power by studying low consumption operating partners with extremely low
static power consumption also employing a DPM system paired with DVFS
approaches [52].

3.5 Combination of reconfigurable platforms and IoT Motes

The platforms based on FPGA are quite diverse, extending from compact form
dimensions, ultra-low power consumption, and production-priced solutions to fully
SoC-enabled platforms with considerable hardware resources to fulfill customer
nominations this days. This technology, which has a high level of maturity, is a good
option for designing personalized solutions for wireless detecting uses. The authors of
[53] have published a complete survey addressing a wide range of hardware devices
available for low-end IoT mobiles. By providing numerous solutions based on stand-
alone FPGA platforms or heterogeneous designs that integrate an MCU and an FPGA,
this paper focuses on the rising focus in researching reprogrammed architectures used
in this industry. FPGA-based designs have permit the optimization of numerous
components of wireless sensors in aspects of performance and power consumption,
while some work has also boosted device security.

Several methods aimed at wireless sensor systems have previously been presented,
including PowWow [54], CookiesWSN [37], HaLoMote, and CUTE mote [55]. In
these references, the recent state of the art, are well highlighted, on low-end IoT
motes which leverage reprogrammable technology on their design, describing their
variations from previously recognized CGUs, in addition their most essential qualities
and attributes: network accelerators available, radio device used, SoC adopted, MCU
design, local security related hardware/software, application specific accelerators, and
maturity level. PowWow and CookiesWSN are the first low-end motes
implementations that integrate a low-power MCU (TIMSP430) with a tiny low-power
Flash FPGA as well as a radio transceiver. The first solution looks into using the FPGA
to build low-level network-bound accelerators such forward error correction (FEC)
methods. PowWow investigates energy management approaches to manage the digi-
tal processing element in order to enhance energy efficiency. While both feature an
Elliptical Curve Cryptography Accelerator (ECC), CookiesWSN adds an application-
specific Sensor Data Processing Accelerator (SDP) as well as a reprogrammed Kalman
filter to reduce noisy samples in the process of data acquisition processing. Despite the
major accomplishments of PowWow and CookiesWSN, the utilization of discrete
MCU and radio frequency (RF) components resulted in slower communications and
worse power efficiency.

Recent alternatives, such as HaLoMote and CUTE mote, have solved some of the
previous methods’ limitations. HaLoMote, a hardware-accelerated low-power mote
aimed at IoT, combines an RF-SoC transceiver (ATmega256RFR2) with a Microsemi
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IGLOO M1AGL1000 crawled to speed up massive computation tasks mentioning
sensor data aggregation in an SDP. Furthermore, the system offers a DPM accelerator,
which enables low power standby modes with extremely low static power consump-
tion, resulting in decreased power consumption. The CUTE mote, on the opposite, is
described as a programmable and dependable terminal device that is specifically built
for low power IoT applications. The design is implemented on an FPGA SoC
(Microsemi martFusion2) platform, which combines an Arm Cortex-M3 hardcore
MCU closely linked with a Flash-based FPGA and an externally connected IEEE
802.15.4 radio transceiver. Offloaded hardware accelerators are provided as hardware
devices to the MCU and are accessed using a standard on-chip communication proto-
col, which simplifies design and minimizes access time. The contribution in [55]
used a micro-positioning measurement system to evaluate and install their platform.
A specific application SDP, a root mean square (RMS) statistical procedure for
information evaluation and analysis a Fast Fourier Transform (FFT) method for
digital differential signal processing, a finite impulse response (FIR) filter for signal
processing, and other signal and image compression techniques have been used.
Other relevant contributions in this field [56], despite being at a low maturity level,
analyze significant improvements in reprogrammed systems dedicated for
FPGA-based wireless sensing uses and conforming to standards, Low-end IoT, where
it is still suggested to deploy specific, network, and security related tasks in the FPGA.
Although they contribute to a common vision, some contributions are still in the
design phase.

Despite variations on multiple levels, all of the prior studies referenced have a
common point of view, that we defend through the following chapter: Indeed, in the
future of IoT-enabled devices reconfigurable platforms will make a crucial role, where
essential problems like as connection and interoperability, cutting-edge AI, hardware
and energy efficiency and data security, will surely keep being the top trends and
difficulties for future low-end IoT Words.

4. Connected the unconnected world and things: an evolution in
connectivity beyond the 5G revolution

The future of the connected world is not only about the latest cutting-edge tech-
nologies, such as the constellations of high-speed 5G and low earth orbit satellites.
Much will be defined by the advancement and development of current advanced
connectivity technologies, such as fiber, low to medium band 5G, 6G, and different
other long and short-range solutions. The modern connectivity architecture also
includes cloud and edge computing which is accessible with less expensive and more
efficient devices and platforms as well as the FPGA SoC (discussed in the above
section), as depicted in Figure 3. Computing power, storage, and sensors are all
getting more robust and reasonable. With the converges of these trends, the connec-
tivity ecosystem will be dominated with more technologies, services, and vendors
more than before.

The new and improved networks will enable and complement other critical
technologies such as cloud computing and FPGA SoC-based edge computing. These
developments, when combined, will allow some of the most data-intensive
applications of the future. Cloud computing will keep to serve as a processing
backbone for use cases that need a high level of computing power, storage capacity,
and complex data analysis capabilities. This computing is required for a variety of
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tasks ranging from storing films to training artificial intelligence systems. Users’
devices may not be able to run the most complex applications without a boost from
cloud computing, or they may have to be considerably more expensive. On numerous
fronts, FPGA SoC-based edge computing tries to alleviate some of the constraints
of cloud computing. Instead of sending data to central cloud servers that may be
hundreds or even thousands of miles away from the end user, FPGA edge computing
delivers computing power, storage, and networking closer to where data is created
or consumed. Actual computing could then take place in smaller-scale data centers
on the outskirts of major cities (the metro periphery), at the base of radio access
network base stations (the micro-periphery), in wiring closets at end-user premises
(the Edge Gateway), or even on the device that generates data itself (the Edge
device).

A number of factors are driving the urge to bring processing and storage closer to
the end-user. The first is the proliferation of linked devices, particularly as the
Internet of Things is implemented in an increasing number of locations. According
to a recent IDC [57], prediction, there may be up to 42 billion linked IoT devices by
2025. These technologies are also growing more complicated, progressing from
simple smart devices to intelligent linked systems and processes. As the number of
increasingly complicated devices grows, so does the volume of data created, which
may surpass what a centralized cloud can handle, especially as IoT applications rely
more on video processing and ultra-high-definition audio. As a result, there is an
increased demand for efficient storage that assures data protection. Another impor-
tant driver of edge computing growth is the desire for real-time analytics, decision
making, and changes. These features are critical for applications such as augmented
and virtual reality, linked vehicles, drones, video surveillance, and industrial
machinery remote control. This requirement for low latencies reduces transmission
time to the cloud.

Figure 3.
The future trend of the connected world and things.
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Also, application development is moving towards new solutions such as container-
centric architecture, micro-services architecture, and server-less computing plat-
forms. These solutions provide lightweight, portable alternatives for running
applications at the edge, allowing developers to perform testing and maintenance
faster and more efficiently. Finally, edge computing addresses a fundamental
requirement for industrial operators managing transportation and logistics networks
or remote facilities. They may now connect to compute, storage, and analytics
resources in contexts with sporadic or restricted connection, as well as in extremely
remote locations.

All those different factors point to the upgrading adoption of edge computing
around the world. While it took 10–15 years for cloud computing to mature, edge
computing is on a faster trajectory. The cloud ushered in a paradigm shift that shifted
software and computing power from owned products to delivered services. Edge
computing could be seen as an extension of this move towards a more decentralized
model. The emphasis today is on defining the architecture (especially emerging
industry standards for application development and maintenance, and for interoper-
ability between edge, device, and cloud). Its acceptance may pick in speed once it
becomes available.

5. Proposed QoS-QoR aware CNN FPGA accelerator Co-design approach
for feature IoT world

5.1 QoS-QoR CNN accelerator for IoT devices

Motivated by the idea and challenges discussed above, we propose a QoS-QoR
aware CNN FPGA Accelerator co-design process that includes a hardware-oriented
CNN topology and an accelerator design that takes into consideration CNN-specific
properties. CNNs and accelerators are created in tandem to find the greatest balance
among both QoS and QoR. Targeted QoS, QoR, and hardware resource limitations
are inputs to this procedure, while the resulting CNN model and its related
accelerator architecture are outputs. The entire process is broken down into
three steps:

• Step One: The bundle is created, and the QoS is assessed. We pick CNN
components at random out from the pool layer and create bundles (the basic
building blocks of the created CNNs) with various layer combinations.
Analytical models are used to analyze each of the assemblies in order to capture
hardware parameters (e.g., latency, compute and memory needs, resource
utilization), allowing a quality of service estimate to be made at the CNN
exploration start.

• Step Two: Selection of bundles based on QoR and QoS. To find the far more
potential beams, we first analyze each beam’s QoR potential by reproducing it
n times to create a CNN prototype. For exact results, all CNN prototypes
are trained quickly (20 epochs) on the selected dataset. We classify the
CNN prototypes with homogeneous QoS to the input targets based on
the QoS predicted in step one, and choose the best bundle candidates from each
class.
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• Step Three: Exploration and exploitation of CNN that is hardware-dependent.
We begin exploring CNNs with the first level technique by stacking the selected
packet and utilizing stochastic coordinate descent to explore CNNs under
provided QoS and QoR restrictions (SCD). The QoS of SCD’s CNN outputs is
precisely assessed before being sent to SCD for updating the CNN model. To
increase QoR, produced CNNs that match QoS criteria are presented in the
purpose of training and tuning.

Based on this, we propose an accelerator-based selected CNN design that provides
a pipeline architecture for efficient CNN implementation with a maximum resource
sharing technique. It contains a foldable structure that uses the same hardware com-
ponents to calculate CNN sets sequentially, saving resources when targeting tiny IoT
devices. To improve QoS, it also uses an unfolded structure for computing operations
inside bundles in a pipeline manner. The proposed design can benefit from both
recurring and pipeline structures by combining the two levels of design. The acceler-
ation phases, on the other hand, are carried out using Xilinx vivado high level synthe-
sis (HLS).

5.2 Proposed architecture: Acceleration and designing tools

HLS approaches have increased the development quality of FPGA-based hardware
design in recent years by enabling FPGAs to be programmed in high-level languages
(e.g., C/C++) [58]. Designing an FPGA-based CNN accelerator with high-
performances, on the other hand, is far from simple, as it necessitates specific hard-
ware development, repeated hardware/software testing to assure operational accu-
racy, and efficient design space exploration for advanced throttle settings. We’ve seen
a rising interest in expanding automation frameworks for developing CNN accelera-
tors from a higher level of abstraction, using particular algorithmic descriptions to
CNN and top quality predefined hardware models for rapid design and prototyping,
in order to increase the effectiveness of accelerator design. However, there are still
design issues, as new development patterns in cloud and embedded FPGAs create
fundamentally distinct challenges in satisfying the diverse demands of CNN applica-
tions. For example, many arrays are frequently employed in the newest versions of
cloud FPGAs to double available resources and give better throughput. When accel-
erator architectures struggle to grow up/down to meet chip size, cross-routing and
distributed on-chip memory can simply create timing violations and reduce possible
performance. On the other hand, on-board FPGAs combine heterogeneous compo-
nents (such as a CPU and a GPU) to efficiently handle various aspects of the targeted
activities. It is very difficult to fully use on-chip resources and reap the benefits of
specific hardware without the need for an extremely flexible task partitioning scheme.
Meanwhile, many researchers are experimenting with fast CONV algorithms to see if
they can improve the program [59]. While these accelerators deliver superior perfor-
mance than classic designs, they are constrained by use cases and necessitate more
complicated design approaches. As shown in Figure 4, the proposed QoS-QoR aware
CNN FPGA accelerator co-design is consisted of Zynq Processor that is used in all
tasks management, like predictions, GPIO management, and automatically mapping
the CNN accelerator with the right parameters. The Axi DMA is used to speed up
the data and communication exchange between DDR and CNN accelerator. This
co-design aims to test the created CNN accelerators on an edge object detection
application.
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6. Results and discussion

Considering the work in the literature [60] and in order to test the proposed co-
design, we used the same accelerated CNNs (CNN_A, CNN_B) with different layers
and configuration summarized in Table 1. Th parameters are summarized in different
data precision for weights and feature maps. We test then the proposed QoS-QoR
aware CNN co-design on an object detection. The suggested co-design schemes finds
the most promising CNN topology example for the intended hardware system and
application as a bundle containing depth-wise Cnv3 (DW-Cnv3), point-wise Conv1
(PW-Cnv3), and max-pooling layers. Depending on this data, the co-design investi-
gates 3 CNN configurations, each with a distinct normalization strategy, in order to
meet the QoR and QoS requirements. Table 1 shows the different result of the
proposed scheme. Using the FPGA Pynq Z1 and the proposed architecture achieved a
best results when used different CNNs (CNN_A, CNN_B). According to these results,
CNN_A occupies 27% FFs, 78% BRAMs, 84% DSPs, and 76% LUTs with a working
frequency of 150 MHz. In addition it reached a 23 FPS with a maximum latency of
44 ms, a maximum power of about 2.6 W and an energy efficiency of about 0.114 J/
image. On the other hand, the CNN_B with the configuration of W16 & F8 occupies a
38% FFs, 96% BRAMs, 91% DSPs, and 83% LUTs with a working frequency of
150 MHz. According to this highest hardware cost compared to the first topology,
CNN_B cannot surpass the first one considering its energy efficiency factor which is
of about 0.16 J/image.

7. Conclusion

This forward-looking chapter provides an outlook on low-end motes in the age of
IoT. It illustrates how current reprogrammable platforms are the best choice to adapt
to the ever-changing IoT environment after a full assessment of the trends and prob-
lems offered by the IoT paradigm to low-end devices. Obviously, the ever-increasing
volume of data created by IoT motes, along with the end of Moore’s Law, necessitates

Figure 4.
QoS-QoR aware DNN/CNN FPGA accelerator Co-design.
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the development of new IoT system designs that are decentralized from the cloud,
where the majority of data processing operations are now handled. This tendency is
much more visible in security-critical contexts, where IoT motes must make real-time
judgments that cannot be transferred to cloud services because to the infrastructure
network’s interminable data transmission delays. Although microcontrollers provide
the most programming freedom, their technology has reached its limits and cannot
manage the increased computational power required by the upcoming generation of
IoT devices. ASICs could satisfy this criterion, but they lack the programming/design
flexibility that IoT systems demand. In this aspect, it is clear that reconfigurable
platforms are an excellent implementation option for the upcoming generation of low-
end IoT motes, as they provide unique competitive advantages such as flexibility
through reconfigurable logic, versatility of hardware resources, high performance
thanks to parallelism, and low power consumption with high security.

CNN Topologies CNN_A (W16 & F16) CNN_B (W16 & F8)

Input Layer Input RGB Image (160*160) Input RGB Image (160*160)

Layer 1 DW-Cnv3 (3) DW-Cnv3 (3)

Layer 2 PW-Cnv1 (48) PW-Cnv1 (48)

Layer 3 Max-Pool (2*2) Max-Pool (2*2)

Layer 4 DW-Cnv3 (48) DW-Cnv3 (48)

Layer 5 PW-Cnv1 (96) PW-Cnv1 (96)

Layer 6 Max-Pool (2*2) Max-Pool (2*2)

Layer 7 DW-Cnv3 (96) DW-Cnv3 (96)

Layer 8 PW-Cnv1 (192) PW-Cnv1 (192)

Layer 9 Max-Pool (2*2) Max-Pool (2*2)

Layer 10 DW-Cnv3 (192) DW-Cnv3 (192)

Layer 11 PW-Cnv1 (384) PW-Cnv1 (384)

Layer 12 PW-Cnv1 (10) PW-Cnv1 (10)

Hardware Cost

FFs(%) 27 38

BRAMs(%) 78 96

DSPs(%) 84 91

LUTs(%) 76 83

Performances

Frequency (MHz) 150 150

FPS 23 18

Latency (ms) 44 63.1

Power (W) 2.6 2.55

Energy Efficiency (J/image) 0.114 0.160

Table 1.
Results analysis.
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Acronyms and abbreviations

Nomenclature

FFs Flip Flops
BRAMs Block RAMs
DSPs Digital Signal Processors
LUTs Look Up Tables
FPS Frame Per Seconds

Abbreviations

5/6G Five and Six Generation Networks
IoT Internet of Things
AI Artificial Intelligence
FPGA Field Programmable Gate Array
SoC System on Chip
RFID Radio Frequency Identification
IPV4 Internet Protocol version 4
LLN Low-Power and Lossy Network
MAC Medium Access Control
IDC International Data Corporation
TRNG True Random Number Generator
AES Advanced Encryption Standard
SHA Secure Hash Algorithm
ECC Elliptical Curve Cryptography
MPU Memory Protection Units
ASICs Application-specific Integrated Circuits
DPR Dynamic partial reconfiguration
SDR Software-Defined Radio
FEC Forward Error Correction
QoS Quality of Service
QoR Quality of Result
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Perspective Chapter: Internet of
Things in Healthcare – New
Trends, Challenges and Hurdles
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Abstract

Applied to health field, Internet of Things (IoT) systems provides continuous and
ubiquitous monitoring and assistance, allowing the creation of valuable tools for diag-
nosis, health empowerment, and personalized treatment, among others. Advances in
these systems follow different approaches, such as the integration of new protocols and
standards, combination with artificial intelligence algorithms, application of big data
processing methodologies, among others. These new systems and applications also
should face different challenges when applying this kind of technology into health
areas, such as the management of personal data sensed, integration with electronic
health records, make sensing devices comfortable to wear, and achieve an accurate
acquisition of the sensed data. The objective of this chapter is to present the state of the
art, indicating the most current IoT trends applied to the health field, their contribu-
tions, technologies applied, and challenges faced.

Keywords: IoT systems, healthcare, eHealth, telehealth, medical support

1. Introduction

In recent years, the set of technologies encompassed under the name of the Internet
of Things has experienced its greatest evolution and is currently approaching the slope
of enlightenment of the hype cycle according to Gartner [1]. It has been applied in
numerous areas, notably changing and improving the way in which different tasks and
activities, both business and personal, are approached in daily life. Devices such as home
assistants, home automation devices, and activity monitors are used more and more
widely, providing information and functionalities that can be used quickly and easily.

One of the fields where there is more expectation about the application of this set
of technologies is that related to healthcare and telehealth. Currently, there are several
problems inherent in the health field that can be addressed thanks to the remote
communication offered by the IoT. Advances in telehealth allow medical consulta-
tions and follow-up of patients in remote and isolated places, or with the limited
mobility [2]. On the other hand, they enable the interconnection between health
centers and remote systems that monitor elderly or disabled people who live alone or
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spend part of the time without company at all times, controlling vital signs or possible
events such as falls that could endanger their lives [3].

Likewise, health services can be improved and optimized when health centers are
provided with the capacity to integrate and interconnect devices that collect biomed-
ical information with electronic health records [4]. Diagnosis, treatment, and follow-
up in recovery from illnesses can be benefited in many cases by the continuous
collection of these data [5], which complements the information obtained with spe-
cific observations that the medical professional can make during consultations, often
limited in time. In addition, the data collected are a valuable source of information
that can be used by Big Data and Artificial Intelligence applications to make new
discoveries.

Although the advantages of these technologies applied to healthcare are clearly
beneficial in many areas, there are also many aspects that make their implementation
a challenging task. Due to the sensitive nature of the information, the technologies
that must be implemented are those with characteristics that allow compliance with
data privacy and security policies and standards [6]. On the other hand, they require
health systems to have an appropriate infrastructure to accommodate these new
technologies, as well as the adaptation of their protocols [7]. The training of health
technicians, professionals, and patients to adapt them to these new systems is another
relevant factor, and one that is related to usability and user experience [8].

Our purpose with this work is to analyze the evolution of IoT applied to healthcare
and telehealth in recent years, the trends in application and what challenges currently
exist. To address this objective, we will analyze the most relevant works in the recent
years to draw conclusions about the global evolution of these technologies, check in
more detail the problems they face, and identify whether there are standards, norms,
or common complementary technologies to give a solution.

The rest of the article is divided as follows: In section two, the methodology of
collection and analysis carried out are presented, detailing the aspects and character-
istics on which we focus, in section three the results obtained are presented, and
finally, the last section presents the conclusions.

2. Methodology

2.1 Search approach

The criteria established for the inclusion of studies in the analysis were that they
had to be published in journals that appeared in the Journal Citation Reports (JCR) or
in conferences included in prestigious journal editorials and digital libraries. The
search engine used for the search engine was Google Scholar. The search was limited
considering articles published in the last 5 completed years, that is, from January 2017
to December 2021 inclusive. The queries created to be used in the search engine
consisted of the combinations of the term “IoT” with “healthcare,” “ehealth,” and
“telehealth.” The search for these terms was established to be carried out on the full
text of each work, not only on the title and abstract. Since the purpose is to collect
current advances and trends, we exclude from the analysis those articles with a
scoping review nature. Similarly, we exclude studies that were written in a language
other than English.

Regarding the results obtained after carrying out the search, the first three hun-
dred were taken for each year in order of relevance, and one hundred for each of the
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three keywords considered in combination with “IoT,” that is, “healthcare,”
“telehealth,” and “ehealth.” It was established to do a sequential filtering on the set,
checking on each result that it meets each of the established inclusion requirements;
otherwise, it will be discarded from the final set of results to be considered in the
analysis. In the first place, the character of a high-impact journal paper or publication
presented at a conference contemplated in prestigious digital libraries was verified, for
which those results that were books or book chapters were also discarded. Next, the
discarding of articles that were not written in English was applied. We considered
that, to have a meaningful sample of current trends, a sample of 25 results would be
taken for each combination of keyword and year. The most cited articles were used as
a selection criterion. On this sample, studies consisting of bibliographic reviews were
discarded. This last-filtering process was carried out firstly by analyzing the title of
each publication and secondly by analyzing the abstract. Additionally, it was observed
whether any study was replicated in the set or belonged to the same authors and the
purpose was the same, in which case the study with the latest publication date was
discarded.

For the initial purpose of filtering, basic information about these works was col-
lected, specifically the title of the article, abstract, authors, access link to the publica-
tion, the number of citations, and character of the document according to Google
Scholar. All the analyses of the information and filtering process were carried out
jointly by the authors and verified between them.

2.2 Extracted information

Once the filtering process was carried out, the next step was to extract the
relevant information for the analysis of the current situation, limitations, challenges,
solutions, and current trends of IoT applied to healthcare and telemedicine. Mainly,
we focus on extracting the most used communication technologies to provide
solutions or address current problems in this area of research. Other relevant
characteristics extracted were the scope of application from the point of view of what
aspect of healthcare is intended to address or what characteristics of the infrastructure
are intended to be addressed in the study. Related to the field, we also extract
information on the technological aspects of the solution provided. Additionally, the
country of the institution that supports each investigation was taken, in order to
identify those countries that have the greatest impact worldwide in IoT for ehealth
and telehealth fields.

3. Results and discussion

3.1 Results obtained after filtering process

After the filtering process, 186 [9–194] results were obtained, 69 with healthcare
and another 69 with ehealth. The article analysis screening process resulted in a
greater elimination of works related to telehealth, obtaining 48 results. This is mainly
associated with the fact that after analyzing the title and abstract, it was detected that
several articles did not fit in the field of healthcare using IoT. However, the cause of
the greatest impact on the screening of results was the nature of the scoping review of
several studies. Around eight publications per keyword and year on average were
removed for this reason. Analyzing by year, the appearance of reviews was greater in
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the most recent years, discarding approximately 35 of 75 results of the year 2021. This
reveals the progress of previous years and the current trend in analyzing the actual
scope of IoT and limitations, which is consistent with the status of this area on hype-
cycle curve.

3.2 Countries with contribution with higher impact

Figure 1 illustrates the percentage of publications according to the country of the
institution of the corresponding author. In those cases in which the corresponding
author was not reflected, the institution of the main author was taken as reference.
The graph shows that the institutions with the greatest impact in recent years are
India (19.3%) and China (13.4%). The rest of Asian countries (including those located
in the Persian Gulf and Russia) contribute 25.8% to this statistic. Approximately 21%
corresponds to institutions in European countries, approximately 6% to entities in
Africa (mainly Egypt and Tunisia), and 4% to countries in Central and South America.
The United States and Canada add 7.5% and Australia and New Zealand approxi-
mately 4.8%.

3.2.1 Analysis of scopes of higher impact

With the term “scope,” we refer to the topics on which each study focuses on
contributing to the area of IoT systems applied to ehealth and telemedicine. After the
analysis, we have found studies whose scope is related to the provision of a health
service, proposing models, system designs, and/or implementations of a complete
system or a component of an IoT system. On the other hand, scopes focused on
improving some characteristic of IoT systems that are relevant when applied to
healthcare have also been identified.

Figure 2 illustrates the scopes in the analysis. It can be seen that the majority of
studies focus on providing solutions for the field of monitoring. The reader should
know that a division has been made in this scope, distinguishing between studies that
explicitly indicated or from which the character of real-time monitoring could be
clearly inferred. The total number of studies that fit this domain was 83. These data

Figure 1.
Publications with more impact per country (N = 186).
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show that the main purpose of the application of IoT to healthcare is to monitor
patients, ubiquitously or integrated into rooms, for better control of vital signs or
physiological parameters. This result is consistent with the main use for which IoT
systems are used. Continuing with the analysis focused on areas of application, the
next most common are those related to diagnosis. The creation of models that help the
medical professional to give a diagnosis stands out mainly Machine Learning models
that can be integrated into the system, sometimes complemented with architectures
equipped with resources to apply Fog computing, as well as with the decentralization
of processing with computing at the edge, trend that is currently increasing with the
optimization of hardware and AI frameworks for model integration and consumption
reduction [195]. Additionally, the applications are not restricted to the field of
healthcare in the personal context, but also in the workplace [196]. To a lesser extent,
we also find the use of IoT to facilitate the remote diagnosis of the patient. This last
result may be related to the existing limitations to provide appropriate resources to
remote centers or isolated areas that allow establishing reliable connections with
sufficient transmission quality. The least relevant areas currently are self-care and
remote rehabilitation. The first of these two areas mentioned was the one that had the
greatest impact at the beginning of the use of IoT for healthcare, currently being on
the slope of enlightenment or plateau of productivity in the hype-cycle curve. The low
frequency of appearance of rehabilitation as a field of study may be due to the
difficulty in carrying out rehabilitation tasks remotely.

Focusing on areas related to the improvement of system features, studies focused
on maintaining the security of the IoT system are more frequent, that is, on avoiding
transmission failures, network hacks, or data corruption. Additionally, we find studies
focused on providing encryption protocols to ensure the authenticity and privacy of
the patient. These last two scopes are often intrinsically related to system security.
These results reveal the great challenges that exist in the integration of IoT systems in
the Electronic Health Records of health systems: to be able to relate the data to the
patient without compromising their privacy, as well as to manage the enormous
amount of information collected avoiding losses, falsification information, and other
security breaches. Very close in relevance we find the improvement of the perfor-
mance of the system, that is, looking for better response times in the transmission and
processing of information. Again, it is a challenging topic, especially in combination
with equipping the system with authentication, privacy, and security protocols, which
slows down IoT systems, which must be addressed for this type of system to be useful
in terms of practicality.

Figure 2.
Scope of the studies considered in the analysis.
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In the results, we also observe that the studies related to the study of interopera-
bility and the analysis of usability, user experience, and degree of acceptance have
very little impact. These types of studies are not frequent, and yet, they address
determining aspects in the adequacy of IoT systems to the health environment; its
correct application depends on the fact that the implemented system is practical and
perceived as useful. The little research on these issues may be the greatest limitation of
these systems in the future.

Figure 3 shows the trend of these areas in the years considered for the analysis.
Although a drop in the number of papers is perceived in 2021, this may be due to the
fact that there has not yet been a stabilization in the number of citations on studies
that contribute novelties to the field of research. Both graphs show how in recent
years there has been a decrease in the impact of research aimed at providing
solutions with IoT systems, and instead, there has been an increase in interest in
research that focuses on improving some characteristics of the system architecture,
mainly in security and privacy. This result again reveals indications of the situation
of these systems in the hype-cycle curve, seeing reduced interest in deepen for
new applications and consolidating their use by focusing on the greatest
limitations that this set of technologies has, that is, aspects of security, privacy, and
performance.

3.2.2 Interest in applied technologies

Paying attention to communication technologies, the charts in Figure 4 reveal a
varied set of alternatives. In these graphs, only those studies that have used and
revealed the technologies applied in the implementation of IoT systems are taken into
consideration. As a result, 87 articles were considered. The charts highlight the use of
Bluetooth technology, in both its older versions and BLE, and Wi-Fi. Despite being a
technology adapted to IoT, the use of LoRa is not frequent. GSM and GPRS technolo-
gies continue to be used, mainly because they have a greater network infrastructure
for these technologies and because they are more in line with the user profile that

Figure 3.
Scope trends. At top, classification grouped by year analyzed in the study. At left, scopes related to the system’s
application approach. On the right, scopes focused on improving the characteristics of the IoT system.
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these systems are aimed at, mainly older people or those who are not familiar with
new technologies.

Among the studies that reveal the communication technologies used, only 36 focus
on the use of systems with exclusively wearable devices for data acquisition. In these
studies, a lower use of MQTT is revealed in favor of the use of technologies such as
Zigbee. Wi-Fi technology is still the most frequently used; however, there is a
remarkable decrease.

The most frequent technologies identified in the analyzed studies include Machine
Learning and Deep Learning for the fields of monitoring and diagnostic support. In
the fields of security, privacy, and authentication, the use of Blockchain stands out.
On the other hand, Fog computing and edge computing are the technologies for which
the greatest interest is shown in the field of performance improvement. This is one of
the most current trends, driven by systems equipped with more specialized hardware
processing units [197].

4. Conclusions

The results obtained from the analysis of impact studies in recent years regarding
IoT in healthcare show that Asian and Middle Eastern countries contribute to this area
to a greater extent, especially India and China. With regard to the areas with the
greatest impact today, we find the application to monitoring as the greatest represen-
tative. However, this type of study has reduced its relevance in recent years and
instead has grown interest in the integration of security, privacy, and authentication
measures to IoT systems, which gives indications of the stabilization of IoT technolo-
gies, and there is a tendency to investigate the improvement of the most important
weaknesses. Infrequent and low-impact study topics are the analysis of the perceived
usefulness of these systems, as well as interoperability, which may imply limitations
and obstacles in the future in the implementation and use of these systems. The most
used communication technologies are Bluetooth and Wi-Fi, with a smaller represen-
tation of technologies such as LoRa, Zigbee, and mobile data transfer technologies.
The design and implementation of systems exclusively equipped with wearable
acquisition devices is reduced. Machine Learning, Blockchain as well as edge and fog
computing are the most trending technologies.

Figure 4.
Most common communication technologies in studies that carry out an implementation of an IoT system (N = 87).
Top-right chart considers only those studies whose sensing acquisition devices are wearable (N = 36).
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Chapter

An Effective Method for Secure
Data Delivery in IoT
Mnar Alnaghes, Nickolas Falkner and Hong Shen

Abstract

The Internet of Things (IoT) has become very popular recently due to its
important features that contribute to many aspects of our lives such as health and
transportation. It consists of a vast number of different projects such as sensors, tags,
actuators, and mobile devices, which can communicate and collaborate without
human interactions. These devices carry small memory and low-energy battery,
which affects their performance and lead to many issues. In this work, we are going to
focus on the efficiency and security issues. We will propose a secure and efficient
routing protocol for data delivery in order to improve its performance. The proposed
technique will be evaluated in an implemented platform with appropriate case study.
The expected outcome of this study will be a reference design and its practical
implementation to support efficiency and security in IoT.

Keywords: IoT, data delivery, routing protocols, security efficiency

1. Introduction

Nowadays, many research efforts have been concentrated on the efficiency and
security of IoT devices to raise the performance and the level of protection for IoT
data and detect possible attacks. It is significant to understand the types of data
delivery challenges in IoT. The challenges related to wireless sensor networks (WSN),
cyber-physical systems (CPS), and machine-to-machine (M2M) continue to appear
within the context of IoT since the basic components of IoT networks include WSNs,
CPS, and M2M. One of the challenges is the difficulty in providing communications
using infrastructure-based wireless systems because of the high cost of deploying and
maintaining this infrastructure with the rapid growth of IoT users and devices [1].
Furthermore, the IoT system is mobile and dynamic; thus, its perimeters are not
well-defined. It is also robustly heterogeneous concerning the devices, protocols, and
communication medium.

The other concern is that IoT system is vulnerable to malicious cyber-attacks. One of
these aggressive attacks is a distributed DoS (DDoS) attack, which intends to bring
down a victim system by preventing legitimate devices of service from accessing it.
DDoS attackers may also aim to gain unlimited access to the victim machines and cause
more damage consequently. These attacks are made not to be significantly distinct from
the usual behavior practiced by the system. One of the techniques that can be used to
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detect cyber-attacks is intrusion detection (ID). Yet, the advanced ID schemes utilizing
machine learning techniques struggle to detect some of the cyber-attacks. These attacks
are made not to be significantly distinct from the usual behavior practiced by the
system. Therefore, there is a need for an anomaly-based IDS combined with artificial
intelligence and machine learning due to its ability to classify and identify earlier hidden
attacks. This kind of IDS will help in detecting multi-stage DDoS attacks. Current
schemes in the development of ID investigate artificial intelligence and machine learn-
ing in academia and industry, such as artificial neural networks and fuzzy logic.

IoT advanced systems can achieve high performance with a human being’s
supervision for defining how to perform their duties. They also can automatically
detect unusual patterns of web traffic with malicious activities and learn the patterns
by themselves over time. Previous studies in the wireless network security area
focused on ID based on a single hidden Markov model (HMM) and multi-class system
classifier (MCSC) [2, 3]. Here, we study the potential applicability of the hierarchical
hidden Markov model (HHMM) for intrusion detection in IoT systems in which the
problem space can be several magnitudes higher than in wireless networks. And, we
propose a probabilistic hierarchical hidden Markov model that reduces the high
state-space without compromising classification accuracy. The proposed scheme
shows better outcomes for detecting the DoS and DDoS attack patterns compared to
the state-of-the-artwork.

The main contributions of the work are:

1.We propose a PHHMM model that translates high-dimensional IoT data to a
discrete set of reliable data to be securely delivered with the ability to detect
DDoS attacks.

2.We propose a method that learns and efficiently analyzes large amounts of data
for classifying DDoS patterns in IoT traffic.

3.We conducted a performance comparison of our PHHMM with the baseline
HHMM, Neural Network, and Naive Bayes models on the benchmark dataset
from the CICIDS2019 database that contains 11 types of DoS and DDoS attacks
collected over real-time for validating the proposed model.

The rest of this paper is organized as follows. Section II investigates the state of the
art of some IoT data delivery used methods and presents the related work, followed by
the background in Section III. Then, the model details are demonstrated in section IV
and section V. Next, we show and discuss the experiments and simulation results in
sections VI and VII. Finally, section V ends the paper, outlining some suggestions for
future work.

2. Related work

2.1 Routing protocols in IoT

To design an efficient protocol in IoT networks is a risky task due to their
characteristics. The efficient routing protocol has to respond to the changes that may
happen in the topology as same as the bandwidth constraint. Most of the proposed
protocols are only sub-optimal. Forster et al. [4] discuss three popular machine
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learning techniques on the communication layers in the WSNs. These algorithms are
used in distributed environments to solve different problems such as ad hoc routing.
They are categorized into three groups; reinforcement learning, supervised, and
unsupervised. The aim is to find out a convergent mapping function that helps in
prophesying the output results for any new input. Routing in IoT environments, as
mentioned earlier, is associated with protocols in wireless sensors and ad hoc networks.
One existing routing protocol for IoT networks is IP6 overpower personal area net-
works (6LoWPAN), which are used to route the data among non-IP sensors through
networks with high processing capabilities. Its topology consists of a set of reduced
function sensors that are linked to full function sensors [5]. It helps to support low cost,
different length addresses, low bandwidth, different topologies, energy consumption,
and lengthy sleep time. This protocol supports the multi-hop data delivery and reduces
transmission overhead by providing header compression enclosing IPv6 long headers
in the IEEE802.15.4 small packets [6]. Many of the real-world machine learning algo-
rithms use both supervised and unsupervised learning as hybrid learning or semi-
supervised learning to take advantage of the strengths of these main categories and
minimize their cons [7]. Another standard protocol in IoT is the Routing Protocol for
Low-Power and Lossy Networks (RPL) [8], which is a distance-vector protocol based
on IPV6 that can prop lots of data-link protocols. It builds a destination-oriented
directed acyclic graph (DODAG). It has only one path from each node to the root, and
all the communications will be through that root. All nodes advertise themselves as the
root by broadcasting a DODAG information object (DIO), and then the DODAG is
gradually built. For the cognitive networks, as an extension of RPL, which is the
Cognitive RPL Protocol (CORPL) is designed. It uses the DODAG topology generation.
Constrained Application Protocol (CoAP) [6] is another IoT protocol that produces a
lightweight RESTful (HTTP) interface to reduce overhead and power consumption.
The next protocol is the Message Queue Telemetry Transport (MQTT), which was
introduced for providing embedded connectivity between the party of middlewares
and applications and the party of networks and communications. It is a publish/sub-
scribe design that includes three parts: publishers, which are the sensors that connect to
the broker to send their data, subscribers, which are the sensory data or applications,
and the broker, which sends the data to the subscribers after classifying them in topics.
Secure MQTT (SMQTT) [6] is an extension of MQTT to enhance its security features.
It is encryption-based, where each message is encrypted and delivered to multiple
nodes, which is common in IoT applications. For supporting a large range of IoT
applications, ZigBee smart energy [6] is used. It has a wide star topology, peer-to-peer
topology, or cluster-tree network topology. It also allows implementations with low
memory and processing power. In addition, the Advanced Message Queuing Protocol
(AMQP) [9] is designed for the financial industry. It is a publish/subscribe design built
over TCP, but the broker here is divided into two main components: exchange and
queues. The exchange receives publisher messages and distributes them to
queues based on pre-defined conditions. Moreover, the long-term evolution advanced
protocol (LTE-A) [9] is used for IoT applications in wireless networks. LTE-A
design has a core network (CN) to control mobile devices, a radio access network
(RAN) to establish data planes and control the wireless connections, and mobile nodes.

2.2 Intrusion detection systems in IoT

Because of the lack of training datasets, the current IoT intrusion detection systems
are incapable of detecting the latest DoS and DDoS attacks [10], such as Network Time
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Protocol (NTP) attack, Network BIOS (NetBIOS) attack, UDP lag (delay). The authors
in [11] proposed a hidden Markov model for predicting and detecting multi-stage
attacks. Their work is not applicable for IoT systems as it fails on the high dimension
state space since the incoming network traffic in IoT will have largely hidden states. The
approach developed by [12] has a high detection rate as it identified most of the
occurred attacks. However, they did not consider DDoS attacks. Authors in [2] pro-
posed an anomaly detection module that uses Long Short-term memory for detecting
both known and unknown attacks with a low false-positive rate. Their work shows high
recognition rates. In [3], researchers discussed the multi-stage attack and its prediction.
They proposed a multi-stage Naive Bayes model that can predict each stage of the multi-
stage attack scenarios. However, schemes in [2, 3] are not suitable for predicting multi-
ple attack intents in heteroecious environments. Besides, the authors in [13] propose a
Hierarchical Hidden Markov Model (HHMM), which is an extension of the hidden
Markov model (HMM), as the method for activity recognition. They analyzed the
accuracy rate of their model with the Naive Bayes and HMM schemes. The comparison
showed that the HHMM has the highest accuracy rate among others. However, they did
not take into consideration the nature of IoT systems. The authors in [14] described
routing-specific attacks in the IoT systems and concentrated on identifying the mali-
cious node’s location and neighborhood to inform the network administrator. In [15],
the researchers proposed an ID scheme to detect flood attacks in IoT networks. Their
proposed model identifies the attacks through the back-propagation neural network
model. Table 1 summarizes the properties of the major types of existing ID schemes.

3. Preliminaries

This section provides definitions for the used terms in this paper:

3.1 Distributed denial of service attacks (DDoS)

DDoS is one of the potential attacks in IoT where attackers coordinate the utility
of many machines connected to the network to send an overwhelming amount of
unwanted requests to a targeted server [16]. They try to disrupt the traffic of the
server with a flood of unwanted requests. Besides, DDoS reaches effectiveness by
using various compromised devices as the roots of attack traffic. The more hacked
devices, the more damage is caused to the servers. Thus, the attacker examines

Paper HHMM HMM DDoS detection Up-to-date dataset Applicable for IoT

[1] No Yes Yes No No

[2] No Yes No N/A No

[3] No Yes No Yes No

[4] No Yes Yes Yes No

[5] Yes Yes Yes Yes No

[6] No No Yes N/A Yes

[7] No No Yes N/A Yes

Table 1.
Intrusion detection schemes.
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remote machines for security gaps using some tools such as worms to find their
vulnerabilities and inject them with the attack code. Then, these compromised
machines become zombies, which the attacker uses to send malicious packets to the
targeted victim. DDoS may yet cause a long-term memory consumption of the
relaying nodes in IoT environments due to nodes’ restricted resources. There are
various DDoS attack types used to degrade the performance or availability of targeted
services on the Internet. Some of these attacks are Botnet attacks, Spoof-packet flood
attacks, Multi-Vector Attacks, and Misused Application Attacks. Besides, there are
various schemes used to defend against DDoS attacks, which are under three catego-
ries; policy-based schemes, application-based schemes, and machine learning–based
schemes. The policy-based defense scheme is placed in the switch to define the traffic
that is allowed to be forwarded and the other ones are defined as malicious. It
requires analyzing collected data samples of the network to classify malicious traffic.
Numerous policy algorithms use different measurements such as standard deviation
or measure the chi-square statistic of the sample to classify the packets as malicious
or legitimate. Secondly, the application-based schemes handle and control packets in
the network by the user interface layer. Finally, the machine Learning-based defense
schemes deploy machine learning algorithms to investigate and classify the traffic to
detect the DDoS attack.

3.2 Hierarchical hidden Markov model (HHMM)

The Hierarchical hidden Markov model (HHMM) is a multi-level stochastic pro-
cess derived from the Hidden Markov model (HMM) by making each of the hidden
states a self-contained autonomous probabilistic model. It is a statistical framework
for modeling a sequence of observations. Each observation is emitted from a hidden
state within the system by recursive activation. The basic idea of HHMM is that the
upper-level states produce sequence states called “abstract” states [17]. And, the
lower-level states produce single observations called “concrete” states [17]. The
observations are governed by each of the sub-states (sub-HMMs). The process of
recursive activations ends when reaching a state that produces output symbols like
an HMM [17].

For estimating HHMM parameters, we define the generalized forward (α) and
backward (β) probabilities as follows:

α ið Þ ¼ P O;qli|λ
� �

P O|λð Þ ¼
X

αT ið Þ

where qli is the number of sub-states of an abstract state.

β jð Þ ¼ P Ojqlj, λ
� �

We also define the generalized horizontal (ξ) and vertical transitions (χ) as
follows:

ξ T, qlj, q
l�1

� �

¼ P it ¼ qliitþ1 ¼ qlj |O;λ
� �

χ T, qli, q
l�1

� �

¼ P it ¼ ql�1
i , itþ1 ¼ ql O, λj Þ

�
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The model is represented as λPHHMM = <Aql ,Bql , πq
l
> . And, the states of an

HHMM are denoted by Q l ¼ qli, where l∈ 1, 2, :…L, i is the state indexing, L is
the output state, and l is the hierarchy indexing. It performs the following
computation:

• A probability transition matrix (Aql ¼ a
ql

ij ) is generated as the conditional

probability of future traffic state is independent of the past states given the
present state:

a
ql

ij ¼ P qlþ1
tþ1 ¼ Sj|q

lþ1
t ¼ Si

� �

, 1⩽ i, j⩽N

a
ql

ij ⩾0
X

a
ql

ij ¼ 1

where aij is a horizontal transition probability from state i to state j and all are

sub-states of ql.

N is hidden states.

• An emission matrix (Bql ¼ b
ql

jh) for observation probabilities given the hidden

traffic state is generated by:

b
ql

jh ¼ P Oh tð Þ|q
l
t ¼ Sj

� �

, 1⩽ i, j⩽N

1⩽ h⩽M

where bjh is observed probability in state j.

M is observable states.

• An initial state distribution (πq
l
) is generated by:

πq
l

¼ πq
l

qlþ1
i

� �

¼ P qt
� �

¼ s1

4. Framework of the proposed model

In this section, we first explain the structure of the traditional HHMM model then
we illustrate the framework of our proposed model.

4.1 Framework of the HHMM

Learning, decoding, and evaluating are the three principal HHMM objectives as
described in [18]. Briefly, the techniques applied to achieve these objectives are as
follows:

• Learning: Baum-Welch algorithm is used to create the object of the learning
machine.
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• Decoding: Viterbi algorithm is applied to define the most probable state path of
hidden states that can be transitioned given an observation sequence (O) and the
model parameters (λ).

• Evaluation: The forward and backward algorithms are used to determine the
probability of an observed sequence.

This probabilistic hierarchical hidden Markov model should overcome the problem
of the heterogeneity of IoT data. However, it suffers from high computational costs as
the data increases in an exponential manner due to its used algorithms. Applying this
scheme to IoT data undeviatingly will contribute to a problem of high state space. We,
therefore, need to find a way to reduce the high state space without compromising the
classification quality.

4.2 Framework of PHHMM

Our proposed model uses clustering and dimension reduction techniques to parti-
tion the massive incoming network traffic to overcome the problem of largely hidden
states, before applying HHMM for classification. It follows the framework described
in Figure 1 and achieves the objectives [18] and techniques are applied as follows:

Figure 1.
The PHHMM detection model.
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• Estimate the model parameters: Find the most probable parameter λ ∗ of the
model by applying the Baum-Welch algorithm [19]: given the PHHMM structure
and one or more observation sequences λ ¼ argmaxλ ∗ P Otjλð Þ.

• Learning: Calculate the probability of a sequence: Derive the maximum
likelihood estimate of the parameters of PHHMM given the set of output sequences
by applying the Baum-Welch algorithm: given a PHHMM and its parameters,
determine the likelihood P Ojλð Þ of a sequence O to be generated by the model.

• Decoding: Calculate the most probable state sequence: Find the state
sequences that best explain the observations by applying the Viterbi algorithm:
given a PHHMM, its parameters, and an observation sequence, determine the
single state sequence that is most likely to generate the observation sequence.

• Evaluation: Detect DDoS attacks: Evaluate the probability of the observed
sequence and solve the detection problem to compute the probability of alert
observations by applying the DDoS detection algorithm: given the probability of an
observed attack alert sequence (O), detect DDoS attacks and predict future trails.

In our PHHMM model, applying dimension reduction techniques is a challenging
step due to the lack of a standard approach for reducing the dimensionality of the
observed IoT network traffic. It requires identifying the principal components and
linear combinations of variables that describe the highest contrast in the massive data
without compromising this data. Determining the principal components given a
covariance matrix is computationally expensive as it claims the eigenvalue decompo-
sition that requires the calculation of the covariance matrix. To overcome this chal-
lenge, we present an approach that avoids the direct computation of the covariance
matrices but delivers the efficient subspace dimension. Our model applies the singular
value decomposition (SVD) for calculating PCA to circumvent this expensive opera-
tion. The participating nodes in the algorithm use the PCA with the SVD learning
mechanism to estimate principal components of the data traffic.

This work contributes to improving and resolving the common flaws in the appli-
cation of HHMM in massive data by reducing the data dimensions based on traffic
from both of the two streams being compared instead of depending only on some
training data of normal traffic. Using only the most significant principal components,
we could avoid the computation of the entire subspace. We can estimate a reduced
number of principal components that are sufficiently effective in detecting malicious
traffic. Our model allows the subsequent use of only the number of dimensions
necessary at any given time.

5. Proposed model

This section explains the methods and techniques that we apply to the tasks in the
tasks of the proposed model in Figure 1.

5.1 Data pre-processing

Collecting a large amount of attack traffic and normal traffic in a large real-time
network is time and money-consuming. It needs significant resources, a diversity of
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normal IoT traffic, and a diversity of attack traffic. Instead, there are publicly avail-
able network traffic datasets, which can be used for this task. We analyze some of the
available datasets based on the following:

• Real-time network traffic

• The most advanced DoS and DDoS attacks

The CICIDS2019 includes inbound and outbound traffic of the most advanced DoS
and DDoS attacks. It contains lots of network flow-related characteristics and different
types of current DoS and DDoS IoT attacks traffic collected over real-time networks.

5.2 Feature selection

The CICISD dataset has a huge number of attributes, selecting a subset of them is
necessary for eliminating redundant and irrelevant ones. This helps in improving
detection accuracy for DDoS attack detection. To better train our model for detecting
the attack patterns, we have selected packet features that indicate DDoS attacks,
which are useful for classification to distinguish between normal IoT traffic and DDoS
IoT traffic:

• Destination IP: According to the research in [20], the IoT device communicates
with several numbers of expected destinations that rarely get modified over time.
Thus, if the device communicates with many separate destinations in a short
time-stamp, it is considered an attack.

• Packet size: In [21], the authors declared that the size of a normal IoT packet size
differs from 42 to 1434 bytes, while the size of a DDoS packet is smaller than 100
bytes. Thus, a sudden jump in the traffic with a fixed packet size of around 100
bytes represents a DDoS attack.

• Packet Size Variance: DDoS attack packets share the same size frequently
whereas IoT packets’ size differs from one to another.

• Packet Time Interval: The time interval between DDoS packets is close to zero
while IoT packets travel in a regular time interval.

5.3 Data clustering

The k-means clustering is a method of vector quantization that aims to partition n
observations into k clusters in which each observation belongs to the cluster with the
nearest mean based on a similarity metric [20].

Let S ¼ f 1, f 2, ::… f n and K ¼ C1,C2, :…Cn then Ci 6¼ ϕ, Ci ∩Cj ¼ ϕ, and ∪K
i¼1Ci ¼

S, where i, j ¼ 1, 2, …K, and i 6¼ j.
The clustering method works as follows:

• Input: N features f 1, f 2, … , f n
� �

• Initialization: Finding cluster centers μ1, … μk:
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Randomly initialize K:

• Select K features as the primary cluster centers.

• Reiteration:

• Allocate each feature f n to its closest cluster center Ck ¼ n : k ¼ min kf n � μk
2

� �

.

• Determine the new center μk of the cluster Ck : μk ¼
1

∣Ck∣

P

f n.

• Repeat until the cluster centers do not move anymore.

When deploying k-mean to cluster IoT traffic, we reduce the dimension data to
quantize the data into single-dimensional data. We classify the traffic flow depending on
similar characteristics and identify clusters of homogeneous traffic flows and define their
borders. It needs to have high intra-cluster homogeneity and inter-cluster heterogeneity.

For determining the optimal (fitting) value of K, we use the elbow algorithm
repeatedly applying different values of K and plotting their heterogeneity. When the
curve begins to flatten, it reaches the optimal value of K.

5.4 Dimensionality reduction

After clustering the data, initially, we have n states S1, S2, … , Snð Þ, applying the
dimension reduction technique results in a new set of m states s1, s2, … , smð Þ where
m< nð Þ, si ¼ f i S1, S2, … , Snð Þ and f i represents a mapping function. Thus, its idea is
to transform the massive data from a high-dimensional space, like IoT data, into a
k-dimensional sub-space by partitioning the data-space into fully connected states.
The low-dimensional form holds the top eigenvector v which has the meaningful
features of the real data ideally close to its natural dimension [22]. The new set of
features is extracted by some functional mapping. In this model, we considered the
principal component analysis (PCA) and calculated it using the singular value
decomposition (SVD) as the PCA presents a structure for reducing data dimensional-
ity by outlining the maximum variation in the data.

To achieve dimension reduction by applying PCA, it requires placing the eigen-
values from the highest to lowest by their value. This ordering stores the elements in
order of weight to the variance of the initial data matrix. This will allow us to drop the
less important elements. Thus, we keep most of the information and lose a little noise.
We can reduce the dimension of the original data. For instance, for any data of d
dimensions, we only take the first r eigenvectors:

P

αr
P

αd
¼

α1 þ α2 þ :… þ αr

α1 þ α2 þ :… þ αd
(1)

¼ α1, α2, :… , αr (2)

Definition 1 [23]: For any matrix Y ¼ y1, y2, … , yn of the size K � d can be

re-written as Y ¼ USVT where, U is an orthonormal matrix of size K � r, S is a
diagonal matrix of size r� r, V is a matrix of eigenvectors of size r� d (a column is an
eigenvector) (see Figure 2).
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Assume that the data matrix Y is centered, i.e., the column means have been
subtracted to be equal to zero. The covariance matrix (C) is calculated by:

C ¼
XTX

K � 1
(3)

Because the covariance matrix is symmetric, it can be diagonalized by:

C ¼ VLVT (4)

where V is an eigenvectors matrix and L is a diagonal matrix with eigenvalues λi.
The eigenvectors are called principal axes of the data, and, the data projections on the
principal axes are called principal components [24]. After obtaining the singular value
decomposition, C is defined by:

C ¼
VSUTUSVT

K � 1
(5)

¼ V
S2

K � 1
VT (6)

As the result, the eigenvectors of C are the same as the matrix V (the right singular
vectors of Y) and the eigenvalues of C can be defined from the singular values λi.

λi ¼
s2i

K � 1ð Þ
λi (7)

The principal components are defined by:

YV ¼ USVTV ¼ US (8)

In short, the PCA is calculated as follows:

• Obtain the maximum covariance in the data.

• Keep meaningful information only to reduce data size.

Figure 2.
Singular value decomposition of Y [23].
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• Simplify the representation of the data:

• The variance of the data is maximized.

• Analyze the construction of the features and observations.

Based on Oja’s algorithm for stochastic PCA optimization [25], the primary concept
of our algorithm is to implement stochastic m updates by uniformly sampling the
columns yi at random, and reduce the variance of these updates.

X0
t ¼ Xt�1 þ ηyity

T
it
Xt�1 (9)

Xt ¼
1

kX0
tk
Xt (10)

We use the variance-reduced stochastic schemes for convex optimization [23] to

reduce the stochastic variance. Let B ¼ 1
nXX

T; then the updates in each iteration can

be rewritten of our algorithm as

X0 ¼ I þ ηBð ÞXt�1 þ η yity
T
it
� B

� �

Xt�1 � Xf�1

� �

(11)

Xt ¼
1

kX0
tk
Xt (12)

The algorithm is burst into periods f = 1, 2, 3,. .., wherein all period we do a single

exact power iteration by computing U. The steps to solve the problem are explained
by the pseudo-code in Algorithm 1.

Algorithm 1: Dimensionality Reduction Algorithm.

Input Matrix Y ¼ y1, … , yn
� �

.

Output Matrix Xf .

1: Initialize Orthonormal Matrix Xk�d.
2: For f ¼ 1, 2, 3…K Do

3: U ¼ 1
n

P

yi yi
TXf�1

� �

4: X0 ¼ Xf�1

5: For t ¼ 1, 2, 3, :…m Do

6: Bt�1 ¼ VUT, where

USVT is an decomposition of XT
t�1Xf�1

7: Set it ∈ 1, 2, 3, … n uniformaly at random

8: X0
t ¼ Xt�1 þ η yit yTitXt�1 � yTitXf�1Bt�1

� �

þ UBt�1

� �

9: Xt ¼ X0
t X0T

tX
0
t

� �1=2

This is to ensure that W t has orthonormal columns
10: end for

11: Xf ¼ Xm

12: end for
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5.5 Hierarchical hidden Markov classification

Similar to HHMM [17], the PHHMM model uses the Baum-Welch algorithm to
calculate the likelihood-maximizing parameters of the model given the observed data.
It comprises four phases: the initial phase where the λ is randomly assumed if there is
no prior knowledge, the forward phase where the forward variable is calculated
recursively, the backward phase where the backward variable is calculated, and the
update phase to update the parameters. Then, the model uses the Viterbi algorithm to
find the most likely sequence of the hidden states given the observed data and the
parameters. Finally, it uses the DDoS detection algorithm to detect the multistage
attack based on the observed alert sequence, where, the standard HHMM focuses on a
single category with a limited amount of features thus it is difficult to detect attack
traffic that appears to be normal traffic.

The traditional HHMM constitutes multi-single states that are considered as self-
contained probabilistic models [18]. However, due to the heterogeneity of IoT traffic,
we design each state to have multiple separate lower HMM layers and one upper
HMM layer, each lower state constitutes three levels:

• Learning: The observations of the first level train the L1LHMMi by the
Baum-Welch algorithm to determine model parameters.

• Decoding: The observations of the second level trains the L2LHMMi by Viterbi
algorithm to find the most likely sequence of hidden states using model
parameters by the Viterbi algorithm.

• Evaluation: The observations of the third level trains the L3LHMMi and find the
DDoS attacks sequence using the most probable sequence.

The model has one upper HMM state for predicting DDoS attacks that use the
attack sequence from the lower states to learn new patterns of DDoS attacks by the
DDoS detection algorithm. Thus, we can detect the multistage DDoS attacks in this
extended mode, unlike the standard HHMM.

Model Training (Baum-Welch algorithm) Baum-Welch algorithm [19] is a recur-
sive Expectation–Maximization method for estimating un-observed hidden parame-
ters in an HHMM model. This algorithm facilitates the complex challenges of
analytically applying maximum likelihood estimation. It trains the HHMMs to find the
optimal λ. Starting with initialized values, the algorithm iteratively adjusts the param-
eters based on a set of observed feature vectors.

By this algorithm, for HHMM models (λ
ql

1 , λ
ql

2 , … , λq
l

n ) and a given sequence of

observations Oql ¼ O
ql

1 ,O
ql

2 , … ,O
ql

t

� �

, we choose λq
l

¼ Aql ,Bql , πq
l

� �

such that

P Ojλ
ql

i

� �

, i ¼ 1, n½ � is locally maximized.

Algorithm 2: The Baum–Welch algorithm.

Input Observation sequence Oql .
Output Re-estimated model parameters:

• The state transition matrix a0
ql

ij , and.

• The Observation likelihood sequence b0
ql

jh.
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1: Initialize Observations (M), States (qi), Threshold (Th).

2: Estimate a
ql

ij , b
ql

jh using initialization techniques.

3: Calculate the expected probability P Ojλð Þ.
4: reiterate.

5: Calculate forward variable α qlj

� �

:

αltþ1 qlj

� �

¼ b
ql�1

j Otþ1ð Þ
P

αt qlþ1
j

� �

α
qli
ij

6: Calculate backward variable β qli
� �

:

βlt qli
� �

¼
P

b
ql�1

j Otþ1ð Þ α
ql�1
i

ij βdtþ1 qlj

� �

7: Calculate downward and upward variable ε qli, q
l
j

� �

:

ε ¼
αt qlið Þaq

l�1

ij
βtþ1 qlj

� �

P Ojλð Þ

8: Estimate the state probability γh qli
� �

and γf qli
� �

:

γht qli
� �

¼
αt qlið Þβt qlj

� �

P Ojλð Þ γf t
qli
� �

¼
αt qlið Þβt qlið Þ

P Ojλð Þ

9: Compute the optimal state sequence X i, jð Þ:

X i, jð Þ ¼
αlt ið Þa

l
ijβ

l
tþ1 jð Þblj Otþ1ð Þ

PP

αlt ið Þa
l
ij
βltþ1 jð Þblj Otþ1ð Þ

10: Estimate a0
ql

ij and b0
ql

jh:

a0
ql

ij ¼

P

ε qlþ1
i , qlþ1

j

� �

P

γht qlþ1
i

� �

b0
ql

jh ¼

P

γf qli
� �

þ
P

γh qli
� �

P

γf qli
� �

þ
P

γh qli
� �

11: Calculate P Ojλð Þ through the estimated parameters:

ε ¼ P O λ0
ql

�

�

�

�

� P Ojλq
l

� �

P O λq
l

�

�

�

�

¼ P Ojλ0
ql

� �

a
ql

ij ¼ a0
ql

ij b
ql

jh ¼ b0
ql

jh

��

12: until ε<Th.

13: return a0
ql

ij , b
0q

l

jh.

Model Decoding (Viterbi algorithm) Viterbi decoding algorithm [26] predicts the
hidden traffic states. This algorithm only uses state-optimized joint likelihood for
observation data and the underlying Markovian state sequence as the objective func-
tion for estimation. Opposed to the BW algorithm, it does not update all likely paths
for all states in the HHMM.

Algorithm 3: Viterbi algorithm [26].

Input Re-estimated model parameters a0
ql

ij , b
0q

l

jh from BA algorithm,

Output Re-estimated state transition matrix a0
ql

ij , and Alert observation likelihood

sequence b0
ql

jh.

1: Initialize Observations (M), States (qi), Threshold (Th), aij, bj vkð Þ.
2: Obtain the model (λ) through expected probability P Ojλð Þ.
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3: reiterate.

4: Split Oql into N states through Viterbi decoding.

5: a0
ql

ij ¼
no:of  states transitions fromitoj
total no:of  states transition fromi

6: b0
ql

j vkð Þ ¼
no:ofoccurrencesofobservationkinstatej

totalno:ofobservationsinstatej

where, blj vkð Þ ¼ P O
ql

t ¼ vkjq
ql

t ¼ Sj
� �

.

7: Normalize row sums of a0
ql

ij and b0
ql

jð vkÞ to unity so that all elements ∈ [0,1].

8: Estimate λ0
l
from Oql , a0

ql

ij and b0
ql

j vkð Þ.

9: λd ¼ λ0
ql
, a

ql

ij ¼ a0
ql

ij , b
ql

jvk
¼ b0

ql

j vkð Þ.

10: until ∣λ0
l
� λl∣>Th.

11: return a0lij, b
0l
jvk
.

Model Detection algorithm This algorithm uses prior knowledge to learn about the
previous attack behavior and track the attack alerts. It gets the likelihood probability

of the observation sequence O
qd

i then predicts the DDoS attack behavior based on the
occurrence of the attack observation sequence in the previous algorithm.

Algorithm 4: Detection algorithm.

Input Alert observation sequence O
ql

i , no. of iterations G, λ
l
i ¼ Aql ,Bql , πq

l
� �

.

Output Attack alerts observation sequence O0q
l

i .

1: Initialize α
ql1
0 jð Þ ¼ π

ql1
j b

ql1
j O0ð Þ.

2: Calculate the probability of O
ql

1 :

α
ql

j 1ð Þ ¼ π
ql

j b
ql

j O1ð Þ

3: Calculate the probability of observation sequence (Oql):

α
ql

tþ1 jð Þ ¼ ∣
P

α
ql

t ið Þa
ql

ij ∣b
ql

j Otþ1ð Þ

4: Calculate the likelihood sequence of the observable sequence (O) obtained by
the model:

P Ojλq
l
i

� �

¼
P

α
qli
t jð Þ

5: If (logP Ojλq
l
i

� �

< � Th).

alerti ¼ alerti þ 1
6: until G is reached.
7: return alert.

6. Experimental setup

6.1 Datasets

In this section, the performance of the PHHMM based anomaly detection approach
was tested on traffic combining DDoS attack data with normal data from the prepared
dataset. We place the prepared dataset into our PHHMM model to identify DDoS
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attack intentions and predict the possible attacks. The performance of implementing
our proposed model is obtained through MATLAB R2020b simulations. To remove
duplicate alerts, we wrote a script for extracting necessary fields such as IP Addresses,
Alert ID, Destination Port, Source Port, and timestamp from Snort IDS alerts.

6.2 Evaluation metrics

We analyze and evaluate the performance on the common metrics for IDS perfor-
mance evaluation; Accuracy (the rate of true results including true negatives and true
positives), Precision (positive predictive value), Sensitivity (true positive rate), Spec-
ificity (false positive rate), and False Negative Rate (error rate) [27], all in an average
sense (see Table 2).

After generating the likely state sequences, we compare them to the known state
sequences to define true positive (TP), false positive (FP), true negative (TN), and
false-negative (FN) parameters [27]. The accuracy (ACC) is obtained by the following
equation:

ACC ¼
TPþ TN

TPþ TN þ FPþ FN
(13)

The precision (PR), the fraction of the total number of positive cases that are
correctly identified as attacks to the total number of attacks, is obtained by the
following equation:

PR ¼
TP

TPþ FP
(14)

Sensitivity (SN) or the true positive rate, the fraction of the total number of
classified true positive that are accurately identified as attacks to the total number of
positive cases, is calculated by the following equation:

SN ¼
TP

TPþ FN
(15)

We use Fmeasure to evaluate the model’s overall accuracy considering both precision
and sensitivity. Having a good F-measure value indicates that the model has low false
positives and false negatives, which means that it correctly identifies attacks. It is
calculated by the following equation:

Fmeasure ¼ 2�
PR� SN

PRþ SN
(16)

Predicted class

Attack Non-attack

Actual class Attack TP FN

Non-attack FP TN

Table 2.
Two-Class Case Confusion Matrix.
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The following equation is used to identify the error rate (ER) for false negative
predictions:

ER ¼
FPþ FN

TPþ TN þ FPþ FN
(17)

7. Evaluation results

Compared to the original system, our model constructs an equivalent system with
a minimal number of constraints over real-valued variables consisting of bounds on
variations. This helps in reducing the high state space and improving the classification
accuracy and time complexity as well.

Figure 3.
Roc curves of models performance.

Models (Training 80%/ Testing 20%) ACC PR SN FMeasure ER

Neural network 0.92 0.90 0.94 0.92 0.05

Naive Bayes 0.45 0.68 0.56 0.61 0.06

HHMM 0.975 0.92 0.979 0.94 0.03

PHHMM 0.989 0.979 0.99 0.985 0.02

Table 3.
Experiment results summary I.
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7.1 Classification accuracy

The above results show that our proposed model obtains satisfactory results with
regard to attack detection rate. The proposed model has 98.9% accuracy and 97.9%
precision. Table 3 reviews the results of the performance of our model compared to
the neural network (NN), Naive Bayes (NB), and HHMM classification algorithms.

We perform the tests using different window sizes to understand their influence
on the detection. It shows that increasing the size of the window results in better
accuracy.

Figure 3 shows the ROC curves for the performance of our proposed model,
compared to the HHMM, NN, and NB models. ROC curves help identify the balance
between the true-positive rate and the false-positive rate for all possible thresholds. It
illustrates the model’s strength to differentiate between attack and non-attack classes
(see Figure 4).

7.2 Efficiency

Computation time is not associated instantly with classification; however, it
describes the training time taken by the model. Table 4 shows that our model has a
lower computation time compared to the HHMM. In [28], The time complexity of
calculating the probability of a sequence and estimating the HHMM parameters as the

model depends on the length of the observation equals O ST3
� �

, where S is the number

of states, and, T is the granted transactions number at each level. Meanwhile, the
PHHMM time complexity equals O S log Sð Þð Þ based on our calculations. Figure 5
shows the time complexity of HHMM vs. PHHMM.

Figure 4.
Comparison of average models performance.

Models Computation time (sec)

HHMM 8.3

PHHMM 5.6

Table 4.
Comparison of computation time.
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8. Conclusion

In this work, we propose a probabilistic hierarchical hidden Markov model
(PHHMM) applied for IoT intrusion detection which is more efficient than the
existing HHMM without compromising classification accuracy. The main idea of our
model is to reduce the huge problem state space of IoT traffic through dimensionality
reduction by PCA and SVD. The proposed model is tested on the CICISD2019 dataset
to detect and predict DDoS attacks. We evaluated our model on major performance
metrics including Accuracy, Precision, Sensitivity, and False Negative Rate, Specific-
ity and shows that our scheme has better detection accuracy and low error rates
compared to Naive Bayes and neural network classification algorithms. It shows that
PHHMM achieves a comparable accuracy as HHMM, better than NB and NN, and
better efficiency than HHMM.
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Chapter

Autonomous Update of a Dataset
for Anomaly Detection Services
in Elderly Care Smart House
Linos Nchena and Martin Tomášek

Abstract

This work proposes a smart system that could be useful in the delivery of elderly
care services. Elderly care is a set of services that are provided to senior citizens to help
them have a more comfortable and independent life which would not be possible
without these services. This proposed system is unique in that it combines the detec-
tion algorithm with the automatic update of the dataset. It also uses a heuristic
mechanism to reduce false detections. This is on the premise that the AI effort is good,
but it could be made better with the inclusion of heuristics. Fall detection accuracy is
initially solved by the first classifier, then another classifier evaluates the result with
inferences before evoking an alarm. It checks the location of the subject to use in its
inferences. Hence the smart house design consists of two machine learning systems.
One system performs human activity classification while the other performs fall
occurrence detection. Of the eight different classification methods utilized, XGBoost
was most accurate with an average of 97.65% during training. A customized dataset is
then generated with newly labeled data hence improving system performance.

Keywords: artificial intelligence, machine learning, human activity recognition,
activity of daily living, fall detection, fall prevention

1. Introduction

According to the United Nations [1], in 2025, there would be a total of about 1.2
billion people over the age of 60. By 2050 this number would increase to 2 billion with
80% of them living in developing countries. The population growth has increased for
older persons than for the rest of the population. In 1950 the total number of people
over 60 years old was 8 percent. By 2007, this percentage had grown to 11 percent. By
2050, this number is projected to be at 22 percent. This kind of population growth
comes with various challenges of its own [2].

This increase in the elderly population means more people would require assistive
living care than they were before. Thus, Smart houses could play a key role in attend-
ing to this huge elderly population that needs assistive living care. A smart house is a
special type of house that has automated services delivered by that house. Smart
houses are of diverse types based on their purpose. Some of the common types of
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smart houses include (a) healthcare-oriented, (b) entertainment-oriented (c)
security-oriented, and (d) energy-efficiency-oriented smart houses. In this research,
we present a smart house model that is based on specific requirements for elderly
citizens. With an emphasis on the needs of assistive technologies (AT), we shall
recommend a smart house design. The design shall satisfy three major requirements
which are vital for senior citizens. These three requirements are; (a) ATs services, (a)
privacy requirements, and (c) security services. We are aiming to develop a smart
house system which consists of several monitoring services This system should also
enable modularization and allow easier replacement of components.

With the vast improvements in medicine and quality of living, many people are
now living longer lives than previously was possible. This has been a result of vast
investment in research that will improve quality of life. In trying to improve the
quality of life, several researchers have attempted to provide a solution to care for
senior citizens [3]. These solutions need enhancement to build completely novel
solutions to deal with the growing demand for senior citizen care soon. The purpose of
this work is to explore how this problem can be controlled using assistive technologies.
To help assist with this issue we shall have to perform three experiments. We need to
create a system that can be able to tell when an anomaly has occurred in the senior’s
smart house. This requires knowing what is and what is not an anomaly. We have data
that is recorded from the activity in the smart house using a conventional sensor such
as those in mobile phone sensors or smartwatches. We shall require label data to
determine if the data tread is normal or abnormal. This can be achieved by using the
labeling used in the previous experiment dataset. Several publicly available datasets
exist. Among the common dataset include Sisfall, MobiAct, Ucihar, Unifall, and
Unimab datasets [4–6]. These datasets provide acceptable benchmarks to determine
the classification of ADLs and falls. These could be used in the classification of data, or
to assess a system’s accuracy.

In a smart house, assistive technologies are installed to detect abnormalities in
human activity or environmental parameters. This is achieved using several methods.
Three of the common methods are threshold, heuristics, and machine learning [7].
Threshold systems used specified rules in which a dataset is evaluated on those rules.
Based on these rules a censored dataset can be labeled as a fall or not a fall. Using
machine learning a different approach is used. A network is created which has node
relationships that can be able to determine whether an activity is a fall or not has
occurred. ML works similarly to a Blackbox solution as the rules are not logically
deductible easily in the network c. Several machine learning classification algorithms
exist in the labeling of subject data. Nine of the common classical ML algorithms are k-
Means, Linear discriminant analysis (LDA), Naïve-Bayes, K-nearest neighbor (KNN),
Vector support machine (SVM), Artificial neural network (ANN), Random Forest,
and Decision trees [8].

Moreover, when collecting personal data, security and privacy should be
considered. For example, cameras might capture more private information than
smartwatches, some of this information can violate privacy. When using the toilet, the
activity is not appropriate to record on camera while a smartwatch record of toilet
activity might be more acceptable. Hence the choice of sensor method is especially
important in developing this system. However, take note that it may be easy for
detecting activity with a camera than with smartwatches. Therefore, a compromise
needs to be considered in such cases.

The rest of this article is organized as follows; In Section 2, we describe some of the
previous works related to ours by other researchers. In Section 3 we describe the
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methodology of what would be performed and how it would be performed. The
section describes the flow of the algorithm and the dataset used. We then discuss the
results of the experimental works in Section 4. In Section 5 we discuss issues that are
related to our results and the future directions of this research. In Section 6 we present
our findings and conclusion from this research and what is next.

2. Related research

Several people have attempted to solve this problem. The following are the
most interesting of the research works which are of interest to this article’s
research aims.

According to the article [3], a solution is proposed where a group of agents work
together to sense communicate and interpret sensor data. The agents are seven types
which consist of communication, sensor, refining, reconstruction, interpretation,
prevention, and cognitive agents. The agents are separated into two groups. The group
of agents each processes the sensor data and then aggregates the result to form a
concrete decision. The first group of agents was prediction activities in the smart
house. The performance was tabulated as 72.00% for machine learning, 88.00% for
expert-knowledge agents, and 91.33% for meta-prediction agents. The last group of
agents was prevention agents. This was a simulation and achieved 100% accuracy.
However, the last group was not real-life but simulative experiment.

The researcher in the article [9] presents a monitoring system for senior citizens. If
an anomaly is identified, then the system will send an alarm to a caregiver. Some
activities monitored include waking up in the morning, preparing food, having
breakfast, reading, working on a computer, having lunch, napping, or reading. An
example of an anomaly is where the system detects that she woke up and starts
walking around the house at 2 pm. This is an anomaly because this time is an awkward
time for walking around the house. An alarm is evoked as this is not part of the normal
schedule. A mock apartment was designed for use in this experiment.

The study in the article [10], graphical presents a comparison and heuristic tech-
nique was utilized in detecting falls. A publicly available suit GBAD test suite was
defined. It selects the best subgraph or pattern and then compares it with the sensor
data. Each graph is compared to the full graph using the formula. An abnormality can
be identified from the graph in the suit presented.

2.1 Datasets with classification labels

In article [11] a dataset (Sisfall), and a fall detection algorithm are presented. The
algorithms have five stages which are included in this order; sensor data, pre-process
data feature extraction fall detection, and finally, call for help when a fall is detected.
Four algorithms were used, and these are decision tree (DT), Logistic regression, k-
nearest neighbor (KNN), and support vector machine. The dataset that was used is
called Sisfall. Sisfall contains 15 types of falls and 19 types of ADL. These were
performed by 23 young people aged 19 to 30 years old and 15 elderly people aged 60 to
75 years old. The recording frequency was 200 HZ for sampling. The sensors used
were two accelerometers and one gyroscope. The accuracy was derived from the
relationship between true positive (TP), true negatives (TN), false positive (FP), and
false negatives (FN). Accuracy is defined as in Eq. (1) below.
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Accuracy ¼
TPþ TN

TPþ FN þ TN þ FP
x100 (1)

The accuracies recorded were DT at 99.02%, LR at 99.38%, KNN at 99.91%, and
SVM at 99.98%. The most accurate results are the SVM classifier. SVM was found to
have performed not only better in this experiment but also better than selected
previous benchmark works of previous performances.

In article [12], a dataset (MobiFall) is presented. An experiment was conducted to
standardize a dataset that can be used to determine if there is or no fall in a sensor.
Datasets are used in machine learning to benchmark and identify specified activities.
They compared two fall detection systems. One threshold-based system and another
machine learning-based system. The machine learning system had a higher accuracy
level. In this dataset, four kinds of falls were studied. Forward-lying, front-knees-
lying, sideward-lying, and back-sitting-chair. Apart from fall detections, ADLs were
also studied. These were nine which include standing, walking, jogging, jumping,
starting up, stair down, sitting in a chair, car-step in, car step out. The sensor data
used was from three types of sensors, the accelerometer, gyroscope, and orientation
signals. The Size of displacement defined by the slope (SL) was measured using the
formula SL given as in Eq. (2) below.

SL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max x � min xð Þ2 þ max y � min y

� �2
þ max z � min zð Þ2

q

(2)

Where the X stands for X-axis displacement, Y is the Y-axis displacement and Z is
the Z-axis displacement.

Accuracy in fall detection was at 98% and in fall classification was at 68% using the
10-fold cross-validation. However, in another method where two-thirds are for train-
ing and one-third for testing, the accuracy was fall detection at 98.74 and fall classifi-
cation at 68%. The dataset used is called MobiFall. This dataset is publicly available at
Hellenic Mediterranean University (HMU) in Crete, Greece.

In article [13] a dataset (Ucihar) and six classifiers are used to detect falls. These
involve distinguishing falls from ADLs. The six classifiers are the k-nearest neighbor (k-
NN), least squares method (LSM), support vector machines (SVM), Bayesian decision
making (BDM), artificial neural networks (ANNs), and dynamic time warping (DTW),
Fourteen people performed the experiment for data acquisition. The trial had 20 falls and
16 ADLs. The formula used to determine the total acceleration is given in Eq. (3) below.

AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Axð Þ2 þ Ay

� �2
þ Azð Þ2

q

(3)

where Ax is acceleration in the x-axis, Ay is in the y-axis, and Ax is in the z-axis.
A database was created containing fall activities and ADLs. All the six algorithms

performed at around 95% with K-NN and LSM being the most accurate. The
researcher suggests using these two algorithms for live data stream detections. This
dataset is accessible at the University of Irvine Machine Learning Repository.

2.2 Types and placement of sensors

For the recording and collection of data, specific sensors are acquired. Several
types of sensors exist. Wearable sensors are sensors that can be placed on the body of
interest. Environmental sensors are sensors that are not embedded in a body of
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interest. Data collection should be done at a regular frequency. However, we shall
assume that the sensors wherever they would be placed would collect the same type of
data at the same frequency. This is on the pretext that, if the location of the sensor is
changed the frequency and the quality of data might as well change.

In article [14], two types of sensors are defined. Vision-based and sensor-based.
The vision sensors use cameras of diverse types. These sensors however are not very
much acceptable to the intended beneficiaries of the system. Another type is sensor-
based, which includes wearables ambient sensors, and sensors on an object. This is the
most used type as it is considered less intrusive and is more acceptable by potential
beneficiaries. An accelerometer and gyroscope are two examples of wearable sensors.
In article [15] three sensory systems are defined. These are wearables, vision, and
ambient sensors which are a combination of visual with sound and location sensors.
The visual sensors become more data accessing with the addition of location sensors
and sound sensors. The human voice can also be used as input. A representation of the
three types of sensors is shown below in Figure 1.

In article [16] a system of sensors is proposed. Environmental and wearables
sensors are combined to identify the location and the motion of the subject person.
Each of these has achieved a significant level of activity classification accuracy. It is
declared that using only an accelerometer the accuracy is 54.19%, while if you com-
bined an accelerometer with environmental sensors the accuracy is 97.42%.

In research [17] the authors say the approach is intrusive as it requires active
dressing, and it could be monitoring specific categories and not extensive categories of
activities. It also might require the continuous wearing of the sensors throughout the
day to enable data sensing. Therefore, researchers argue that environmental sensors
are much better than wearable sensors. They provide experiments using a vision-
based sensor. The activities involved include sitting, standing, walking, sleeping,
getting assistance, and using the bedside commode and background. The camera has
two kinds of data frames. A thermal defame and depth frame. They adjust each frame
to its best resolution for better results. Although the authors acknowledge the intru-
sive and costly nature of vision sensors, they insist that more can be done with visual
sensors to be used in the detection of activities in houses of seniors.

In article [18] a voice is used as input for a smart house. The smart house must
interpret this voice according to the training and evoke some devices to perform a
particular action. The purpose of the article was to provide voice input with a secure
connection to a smart house with IoT Network. In article [19] the author mentions
that training is a difficult part of a detection system. This is because the training
dataset can become obsolete when the individual trained on it changes their usual
pattern. The mentioned in cases when senior develops diabetics or drift concept. With
advanced age, this leads to body deterioration which results in changes in gait

Figure 1.
Types of sensors in the system design.
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characteristics of seniors [20]. A summary of sensors and classifiers from related
works is shown below in Table 1.

3. Research methodology

In this section, we shall describe the tools and the methods we shall use. We shall
discuss the sensors used, the datasets used, the algorithms utilized and the floor plan
of the apartment that will be used for the senior’s smart house.

3.1 Implementation procedure, software, and hardware

Since the research is about seniors, the dataset had to be slashed to only utilize data
that applies to seniors. The age of participants was the main factor used to extract
records. Some activities were removed as we considered them not necessary for

No Cited Type of sensors used in

experiment

Classifications models utilized Dataset Accuracy

1 3 Accelerometers Random Forest, Hidden Markov
Model, Support vector machine,

Decision Tree (C45)

Lab
Simulated

72.00%

2 9 Wearable sensors, Vicon
system (PIR), camera

Dynamic Bayesian Network Lab
Simulated

99.00%

3 10 Infrared sensors,
thermometers, object
identifies, burning

sensors, door sensors

Graph-Based Anomaly Detection
(GBAD tool)

Kyoto dataset
(CASAS-
400)

n/a

4 11 Accelerometers, and a
Gyroscope

Support vector machine, Decision
Tree, Logistic Regression, K-Nearest

Neighbor

Sisfall 99.98%

5 12 Accelerometer,
Gyroscope and

Orientation signal

K-Nearest Neighbor, Naïve Bayes,
Decision tree-J48, Random Forest,

Support vector machine

MobilFall 98.41%

6 13 Accelerometer,
gyroscope, and

magnetometer/campus

K-Nearest Neighbor, Support vector
machine, BDM, Decision Tree, ANN

University of
Irvine

Machine

95.00%

7 15 Accelerometers and a
Gyroscope

CNN-Long short-term memory
(LSTM)

UMA Dataset 86.63%

8 16 Thermometer, Humidity
sensor, Light sensors,
Orientation and Motion

sensors

Random Forest, Naive Bayes, Bayes
Net, Logistic Regression, MLP,
Radial basis function (RBF),

Decision Table, Decision Trees(J48),
Random Tree

CREST
testbed,

99.13%

9 17 Depth sensor Camera,
thermal sensor camera

Convolutional Neural Network -
(ResNet-34 architecture)

Experimental
testbed

95.80%

10 19 3D Accelerometer and
Gyroscope

Multi-layer perceptron (MLP) MobiAct 98.75%

Table 1.
Listing of sensors and classifier methods in selected previous research.
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seniors. Based on this In the Sisfall of 56,786 records, only 14,000 have seniors. In the
MobiFall dataset on the 62,259 records, only 16,598 have seniors. In the Ucihar dataset
on the 7352 records, only 2018 has seniors. After extracting these records, seven
classifier algorithms were used to train the model on all three datasets and then
validate the models.

The classification was for two separate tasks. The first task was fall detection. The
MobiAct and Sisfall were used in this task. Each dataset has its subsection used in the
experiment. The performances of the algorithms were compared to the dataset sub-
class from these two datasets. The best algorithm was identified. The second task was
to identify if the ADLs were Laying or not. In this task, only the Ucihar dataset was
used. The eight classifiers were again used to detect if Laying was the activity
performed or not. This task was then linked to some other external tasks that tell the
location where Laying was occurring if Laying was identified as the current ADLs.

The experiment was conducted using Python 3 software package. The computer
system had the following specification: Processor: Intel(R) Core (TM) i7-4510U, CPU:
2.00GHz, 2 cores, RAM Memory: 4 GB DDR3 1600 MHz, OS: Windows 64 bits.

3.2 Sensors

The sensors we shall use in collecting data are a gyroscope and accelerometer for
the XYZ plane. Nowadays These are readily available in mobile phones and
smartwatch devices, which are usable for human activity recognition. The sensor
using cameras and environment sensors has the advantage that they do not require
excessive preparation and arrangement for senior citizens. However, the sense that
the senior is under surveillance might be a discomforting feeling for most seniors.
Therefore, this discomfort has made us decide to use an accelerometer and gyroscope
other than cameras. Therefore, in this work gyroscope and accelerometer which are
embedded in smart are utilized. This sensor data can be analyzed and processed in
separate locations. The data we collected from the sensors is not labeled. Therefore, to
enable labeling we have mapped our data to the data labeled by previous researchers.
The labeled data will be obtained from publicly available data sets.

3.3 Datasets

Several datasets exist for human activity recognition (HAR) and fall classification.
These can be used to classify test data as either a fall or an ADL. In our research, we
shall use the publicly available datasets; SisFall, MobiAct, and Ucihar dataset.

In research [11, 21] the Sisfall dataset is generated in which most of the subjects are
between the ages of 20 and 47 years. The primary research was to create a prototype
dataset for fall detection. The second dataset is MobiAct in research [12, 22]. In the
MobiAct dataset, the subjects’ ages are from 40 to 47 also doing both the falls and the
ADL. This Sisfall and the MobiAct dataset are used primarily for the exploration of fall
detection. The third dataset is the Ucihar [13, 23]. This dataset does explore the
identification of ADL. There is no fall detection in Ucihar. We shall use this in ADL
identification where appropriate as shall require a labeled dataset that could define
ADL. In our research we focus on senior citizens hence we prefer data for people
about 60-year-old and above. However, this data is not readily available hence shall
show infer it in various datasets. Below is Table 2 which shows the composition of the
dataset to be used in the experiment.
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The experimental devices must be held compatible with mobile devices that were
sensing the data. For fall detection we shall classify falls as dangerous activities.
Therefore, we should need to send a warning message if a fall occurs unlike when an
ADL occurs. The data has been labeled by the above public libraries (Sisfall, MobiAct,
and Ucihar). We shall use the accelerometer, which records the speed of objects. And
using this speed we could tell the presence or absence of a fall. The gyroscope would
be used for rotational movements which is another parameter in the detection of a fall
by the senior citizen. The accuracy is the efficiency of the system. We shall use
selected sections from the three sample datasets, which are more appropriate per our
requirements.

After preprocessing the raw data, a training and test dataset is derived which has a
smaller number of records. The total data fields are nine both in MobiAct and Sisfall as
shown in Figures 2 and 3 respectively.

Ucihar is for the activity classification classifier. Unlike the above dataset, the
original dataset has a total of 548 columns. While Figure 4 below shows only 14
columns that have the largest value in importance for classifier purposes.

In the sample datasets, there are various scenarios of the data record. However, in
this research, only the scenarios that are best suited to our purpose were used. The

No. Dataset Human activity recognition

samples

Fall detection

samples

Total number of data

samples

1 Sisfall 44,795 11,991 56,786

79% 21% 100%

2 MobiAct 50,188 12,071 62,259

81% 19% 100%

3 UCIHAR 7352 0 7352

100% 0% 100%

4 Total 102,335 24,062 126,397

81% 19% 100%

Table 2.
Composition of the selected datasets used in the experiment.

Figure 2.
Sample contents of the Sisfall dataset.
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human activities include that were studied include, Standing, Sitting, Laying, walking
fast, walking slow, walking downstairs, and walking upstairs [24]. We divided these
activities into two groups per dataset. Group 1 contains ADLs and group 0 contains
falls. There are four types of fall activities and six types of ADLs. For data
preprocessing, an operation is performed to divide records into two groups. In the fall
detection procedure, MobiAct and Sisfall datasets will groups ADLs as zeros and all
the several types of falls as ones. In the activity recognition procedure, the data in the
Ucihar dataset’s group consisting of Laying activity (sleeping) is labeled as 1, and all
other activities are grouped under label 0. By creating these two groups we can thus
use a simpler classifier, binary classification, instead of multiple classifications.

3.4 Algorithms selection from common algorithms

Several algorithms exist for anomaly detection systems. For the execution of
detection falls, we shall utilize eight different machine learning algorithms [25]. These
algorithms would be compared, and the best should be used in the application of the
smart house. Eight algorithms are selected for this experiment as follows. Logistic

Figure 3.
Sample contents of the MobiAct dataset.

Figure 4.
Sample contents of the Ucihar dataset.

9

Autonomous Update of a Dataset for Anomaly Detection Services in Elderly Care Smart House
DOI: http://dx.doi.org/10.5772/intechopen.103953



regression, Linear discriminate analysis (LAD), k-nearest neighbors (k-NN), decision
tree classifier, Gaussian naive Bayes, Support Vector Machine (SVM), Random Forest,
and xgboost algorithms. The best performing among these algorithms is to be utilized.
The algorithm’s performance would have to be weighed by the following parameters.

a. Optimization—eliminate the worst performing algorithms

b. Completeness—eliminate some other solution where a result is returned

c. Accuracy and precision—the degree of accuracy attained and required

d. Execution time—period of performance the classification

e. Resource consumption—memory and processor usage

The combination of human activity detection and the fall detection algorithm is
detected based on these above four factors utilized.

3.5 Design of the floor plan of the smart house

Figure 5 below which shows the simulated floor plan of the smart house. The
sample house has the following floor plan. A1 and A2 are bedrooms for sleeping. B1
and B2 are corridors. C is the toilet; D is the Bathroom and E is the kitchen for cooking.

3.6 Remainder alarm for medicine taking routine and camera/pressure mat

There would be a remainder device. This becomes the third Component of the
system. The first is fall detection, the second is activity classification and the third is
alarm detection and camera. Given the apartment above, we must use the fall data and
the human activity recognition. We should make these assumptions.

1.Non-serious fall is considered a fall. No alarm but warning recorded

2.Sleeping occurs in room A1 or A2. Send alarm if sleeping anywhere else.

3.Laying outside of rooms A1 and A2 should trigger a warning

Figure 5.
An illustration of the sample smart house floor plan design.
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4.Activity should not switch abruptly. For example, sleep to walk to walk

5.Being in the toilet for a lengthy period indicates a problem, hence alarm is evoked,

6.A medical dispensary is kept in the room (E). A pressure sensor sends a photo
when a pill is removed from the dispensary. After 5 minutes after the scheduled
time for taking the pill passes, then an alert is sent out to the caregiver.

These six points are used as the heuristic when identified. Once it is identified then
an alarm or warning is evoked. We need to conduct two tests before we send an alarm
as a way of avoiding false alarms. Identify the activity and then identify the room and
the applicable algorithm’s location also establish that Laying is not in an inappropriate
room. Furthermore, a delay in the bathroom should trigger a warning. The second
algorithm verifies that a fall is not a Laying, and a Laying is not a fall. Once this is
established only then can an alarm to send. This could reduce false alarms and increase
confidence levels unlike having one algorithm.

3.7 Description of the three algorithms

Three algorithms are derived to execute the above procedures. Below is the
description of the three algorithms pseudocode.

Algorithm 1: Update datasets, test, and use them in future training.

01: Retrieve sample records from the datasets #1, #2, and #3.
02: train model using standard algorithms and records of the subject person.
03: If the time elapses sent collected data for analysis by the selected algorithms.
04: end if.
05: if the algorithm accuracy is top two use the best and then discard the rest.
06: end if.
07: process and identify the chances of ADL.
08: process and identify the chances of a FALL.
09: if ADL is sleeping but the room is not sleeping quarters send an alert signal.
10: endif.
11: if a Fall is detected sent an alert signal.
12. else save the data and then move into the waiting stage.
13: endif.
14. Repeat the strategy starting from point 01.

Algorithm 2: Sleeping area locator for logical heuristic missed fall prediction.

01: Retrieve sample records from the datasets #1, #2, and #3.
02: train model using standard algorithms and records of the subject person.
03: if the HAR is laying or napping find out which room is activity occurring.
04. If the room is not appropriate for Sleeping quarters, send a warning alarm.
05. If sleep is in the sleeping quarter’s location, then move to the waiting stage.
06: end if.
07. Repeat the strategy starting from point 01.
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Algorithm 3: Medical remainder algorithm, to predict skipping of medicine
routine.

01: Retrieve from schedule records on times required for taking medication.
02: At each required time check the weight of the medicine pressure.
03: If the weight has been adjusted then its confirmed medicine has been taken.
04: If the weight is still the same then send a warning signal to inform caretaker.
05. else save the data and get a new data sample.
06: endif.
07. Repeat the strategy starting from point 01.

Based on the above algorithms, the alarm is triggered as a response. These
responses will differentiate possible similar activities (such as laying and falling)
before evoking the alarm. As shown in Table 3, when the results of the algorithm are
as provided in Answer (I) then the Alarm is evoked. If the answers are as in Answer
(II) then a warning is logged in a database. Three warnings in a sequence also trigger
an alarm.

3.8 Updating training dataset

The data collected from the senior citizen’s sensor is originally not labeled. When a
detection process is completed the sensor data would then be assigned a label. Once
labeled, then the system would save this information with its given label. After the
label is authenticated, this record is then moved to the created dataset for extension of
the original dataset. At this point, the system would save the labeled data into a new
dataset which is the original dataset plus the new record. The record can then be used
in training sessions. This new dataset would have an extra record that more closely
represent the person involved. In this case, the training would reflect the subject
senior citizen. Below is Figure 6 showing the systems’ flow chart.

In Article [3] similar research is presented. The authors make a comparison of
three datasets and look at the performances of different algorithms. In this work, we
have compared results from two datasets for the human activity detection algorithms.
The results would be fused to reduce the probability of false positive or false negative.

4. Results

Eight algorithms had their performance studies as indicated in Figure 7 below. Of
these eight, some would be discarded in preference for the best-performing algorithm.

Algorithms Tests before triggering an alarm Answer(I) Answer (II)

1 Falling has been detected or not? Yes No

2 Laying has been detected or not? No Yes

3 Laying occurring in an appropriate room? No Yes

Result Send alarm to Caregiver Yes No

Table 3.
Question to answer before invoking a particular algorithm.
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During the experiment, algorithm ranking was established. The lower-ranked as less
effective algorithms are to be eliminated. This reduced number of options increases
the efficiency as unfavorable options are not computed. The extra computation would
be the worst of resources. The selecting of the best option thus avoids unnecessary use
of computing power in analyzing some irrelevant options. The less likely algorithm
options are removed immediately when identified. Below is Figure 7 which is a
snapshot of the accuracies of various investigated methods.

In Figure 7, Algorithm KNN is more accurate for the Sisfall dataset, and XGBoost
is more accurate for both MobiAct and Ucihar datasets. A selection of three of the
graphs of the accuracy with the best performance is presented below. The next two
graphs are for fall classification and the second is for human activity classification.

The detection accuracy for the Sisfall dataset is indicated as 98.08% for the training
session and 97.92% for the testing session as shown below in Figure 8. This is the best
accuracy from the list of classifiers in the experiment.

The detection accuracy for MobiAct dataset accuracy is indicated in Figure 9 at
99.23% for the training session and 98.84% for the testing session. This is the best
accuracy from the list of classifiers in the experiment.

The detection accuracy for Ucihar dataset accuracy is indicated at 96.85% for the
training session and 95.21% for the testing session as shown below in Figure 10. The
Ucihar accuracy at 96.85% is the worst accuracy of the usages of XGBoost classifiers.

The Sisfall test dataset has 14,783 ADLs cases and 3775 fall cases; Figure 11 shows
the confusion matrix for the Sisfall test dataset during the training session.

Figure 6.
Flow chart of creation of custom datasets.

Figure 7.
Comparison of algorithm performance per dataset.
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The MobiAct test dataset has 16,562 ADLs cases and 3984 fall cases; Figure 12
shows the confusion matrix for the MobiAct test dataset.

The Ucihar test dataset has 1963 ADLs cases and 464 Laying cases; Figure 13
shows the confusion matrix for the Ucihar test dataset.

From the confusion matrix, we can extract the accuracy, sensitivity, and specificity
of our classifier. The higher each of these parameters the better the performance of the
classifier. However, accuracy must be considered in conjunction with specificity and
sensitivity. A classifier must have a high sensitivity and specificity, to be defined as
having superior performance. As seen in Table 4 below, both sensitivity and speci-
ficity are above 78% which is high performing case. This shows that the one selected
option from the eight models performs quite well and can be used to develop the
proposed system. As indicated in Figure 10, the MobiAct dataset accuracy is recorded
at 98% for the training and at 99% for the testing which is the best accuracy of our

Figure 8.
Results for accuracy simulation using the Sisfall dataset.

Figure 9.
Results for accuracy simulation using MobiAct dataset.
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possible classifiers. Below is Table 4 which indicates the performance of the most
effective classier(XGboost) in the experiment.

The high accuracy indicates that the models were efficient and can be used in
detections. However, when executing these algorithms speed and accuracy are a
factor in optimization. If given more time an algorithm can perform better. However,
this has to be considered with efficiency on time when an anomaly is reported. If it
takes too much time to compute a high accuracy decision, it could be that by the time
the decision is taken it’s too late for the damage already done. Below is Figure 14
which indicates the time it took for each algorithm to complete a single task.

Moreover, these eight machine learning methods were compared with deep learn-
ing. Deep learning has multiple models chained together to enhance performance.
However, the computation costs were more than for the machine learning method.

Figure 10.
Results for the accuracy simulation using the Ucihar dataset.

Figure 11.
Confusion matrix for XGBoost classifier on Sisfall dataset.
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The accuracy deep learning method on the Sisfall dataset Sisfall selection dataset
accuracy is recorded at 96.84% for the training session and at 93.55% for the validation
session as indicated below in Figure 15.

Deep learning accuracy on the MobiAct dataset selection dataset accuracy is
recorded at 96.97% for the training session and at 100.0% for the validation session as
indicated below in Figure 16.

Figure 12.
Confusion matrix for XGBoost classifiers on MobiAct dataset.

Figure 13.
Confusion matrix for XGBoost classifier for Ucihar dataset.
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Figure 14.
Recorded time consumed per tested algorithm.

Dataset

Extracts

True /

False

False /

True

Class

Total

Final

Total

Accuracy Sensitivity Specificity

ADL(Sisfall) 14,719 64 14,783 18,739 98.69% 95.42% 99.57%

Fall (Sisfall) 181 3775 3956

ADL(MobiAct) 16,547 15 16,562 20,546 99.73% 98.97% 99.91%

Fall (MobiAct) 41 3943 3984

ADL(Ucihar) 1921 42 1963 2427 94.19% 78.66% 97.86%

Laying(ucih..) 99 365 464 2427

Table 4.
Indicators of classifier efficiency.

Figure 15.
Deep learning accuracy on the Sisfall dataset.
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Deep learning accuracy on the Ucihar dataset Sisfall selection dataset accuracy is
recorded at 98.96% for the training session and at 100.0% for validation as indicated
below in Figure 17.

5. Discussions and future works

The results show that the fall detection and activity recognition algorithms are
competitive. The fall detection was at 96% minimum accuracy, which is above aver-
age for the cited other researchers’ works which had an average rate of 89% as shown
in Table 1. We have used cross verification with other dataset records. This is with the
hope that the subject senior citizens’ data would have to be recorded and then
observed to make the correct adjustments. The activity recognition was the most
accurate. It performed at 98.96% for training and 100.0% for the validation session.
The general accuracy for the xgboost algorithm was above 96% on each of the three
datasets. However, the deep learning method was the most accurate. After a

Figure 16.
Deep learning accuracy on the MobiAct dataset.

Figure 17.
Deep learning accuracy on the Ucihar dataset.
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successful classification, we can add the new record and its classification label to the
dataset. This thus extends and improves the dataset. We could also include one
heuristic to improve accuracy and reduce computational costs. For instance, we
should be able to tell that sleeping must have zero chance of occurring in the toilet,
hence not consider it a possibility when computing. This allows resources to be
concentrated on viable options when performing classification. Eliminating such
computation decision cost can fine-turn the system, as it allows only options with high
likelihood. The low likelihood options are removed from the allocation of computation
resources. This allocation of energy to the option improves efficiency. In the case that
one class is larger than another the dataset is unbalanced. In usual cases this system
works on unbalanced datasets, hence it was important to have good characteristics in
its sensitivity and specificity.

5.1 Edge processing and security

In this work, the data sensing was performed using non-protruding methods which
are a mobile phone and a smartwatch data sensor. However, this method is replace-
able in the structure of the system. The data can also be collected by using a camera. A
labeled dataset is then used to label extracted images. Mobile collects data and then
this data is not processed on the phone but sent to some processing point due to
limitations of the processing capability of the phone [26]. The training and testing set
labels the images. However, in our project, we use an accelerometer and gyroscope as
input sensors. The rest of the system would be the same. A systems camera sensor is
an advantage in that it would be easier to label.

5.2 Replacement of training and testing dataset

When data is collected from the subject because seniors change rapidly for deteri-
orate help, the trend of that senior would change. Hence the dataset must be properly
monitored and adjusted to match the rate of changes in the trend of the senior.
Otherwise maintaining the same training data for an extended period would result in
an obsolete detection system [20]. Aging can change the gait pattern of an individual
hence the importance to update the dataset constantly. Having been limited by the
current covid-19 situation we are having difficulty arranging our data collection
activities. However, we believe the public datasets, SisFall, MobiAct, and Ucihar have
provided good insights into the record we could have managed to collect. We believe
these datasets have an unobstructed view of the results we could have obtained. After
collecting sensor data and labeling it, the dataset component from Sisfall, MobiAct,
and Ucihar databases would be gently removed and replaced with these records. This
is a continuous process until the dataset remains pure containing the new record of the
senior citizens without the legacy dataset. Erroneous labeled data would continuously
be removed to have a robust and current training dataset.

5.3 The medicine routine remainder service

The medicine remainder is a time-based scheduler. The schedule must be executed
correctly and if not, then an alarm is sent. The alarm is triggered based on the failure
of sending confirmation of executing the medicine schedule by the senior. The senior
must send a confirmation once prompted to do so. However, there is a risk that the
subject might be able to falsely confirm they took the medicine when in fact they did
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not take it. This system currently cannot help when the senior is specifically not
providing the correct state of medicine routine. It is meant to help in cases where
participants are willing to take the medicine. An alert will be sent to caregivers
allowing them to prompt the senior on the state of their medicine routine.

6. Conclusion

We commend this system can evaluate and monitor the situation and status of the
senior citizen in their apartment. This system has been designed using three main
algorithms. First algorithm tests if a fall has occurred or not. Eight different common
algorithms are evaluated to see which one is most effective. If a fall is detected, then
the caregiver is alerted. The second algorithm is to identify what activity is the senior
citizen doing. This algorithm has the purpose of detecting the location where activity
is occurring. If an activity such as sleeping or laying is taking place in the wrong
location an alert is evoked. The last algorithm is detecting whether the medicine
routine prescribed is been executed or not. The system utilizes a dispenser that can
record if a pill was extracted from the pill dispenser or not. This is checked at a
specified period as scheduled. When there is no change in the medical container after
the expected pill dispensation time elapsed, then an alert warning message is sent to
caregivers. The medical remainder also enables caregivers to prompt subject seniors to
implement the medicine routine, when medicine taking has been skipped.

These three algorithms are the primary functions of this smart house design. The
system utilizes the executed algorithms to effect detection. The system must use few
resources and utilize the improved performance algorithm. The design would be
updated with specific data when training for a specific client. The sample, data is also
to be replaced with the change in the pattern of the senior citizen trends. The final
efficiency in the algorithms improves from 96–98% in the training session and the
validation is at 85–100% for the testing session. Since the customized records are
generated from the citizen, the training and validation are guaranteed to improve at
every iteration. With a sensitivity minimum of 78.66% and a specificity minimum of
97.86%, the model is performing well as the dataset used is not balanced.

This prototype would allow using the most effective classifier and dynamically
determine the most effective classifier. Dynamic evaluation of algorithm efficiency
should be integrated, as the accuracy would not always be the best since training data
is updated periodically. Using the location variable may also reduce the computing
resources needed if integrated into the classifier algorithm. Without a logic heuristic,
the computation process would require more resources.
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Chapter

FAIME: A Framework for 
AI-Assisted Musical Devices
Miguel Civit, Luis Muñoz-Saavedra, Francisco Cuadrado, 

Charles Tijus and María José Escalona

Abstract

In this paper, we present a novel framework for the study and design of AI-assisted 
musical devices (AIMEs). Initially, we present taxonomy of these devices and illustrate 
it with a set of scenarios and personas. Later, we propose a generic architecture for the 
implementation of AIMEs and present some examples from the scenarios. We show that 
the proposed framework and architecture are a valid tool for the study of intelligent 
musical devices.

Keywords: artificial intelligence, musical devices, internet of musical things

1. Introduction

Advances in technology and computer science have greatly enhanced the possibility of 
designing, developing, and deploying intelligent musical devices. A typical well-studied 
subset of these intelligent devices are IoMusTs (Internet of Musical Things). According 
to [1], an IoMusT is a “computing device capable of sensing and exchanging data to serve 
a musical purpose.” An IoMusT does not need to be able to produce, select, or modify 
music, but it can be any device that is “music aware” in the sense that its behavior is 
directly related to music. As an example, PixMob devices [2] have been widely used 
in musical performances. These devices that can be either worn (smartband), thrown 
(balls), or attached to the audience seats and are able to produce light patterns synchro-
nized with life performances.

Not all intelligent musical devices are IoMusts. We can design intelligent devices 
where the intelligence is embedded in the device, and thus, we may say that we gave an 
Intelligent Musical dEvice (IME) but not as a part of the Internet of Musical Things. In 
[3], the evolution of the design of intelligent musical instruments is studied. In most 
cases, these instruments use artificial intelligence as a tool for user interaction without 
requiring any connection to public networks or cloud-based services. It is important to 
consider that machine learning ML, in most of these cases, cannot be considered as an 
independent agent but mainly as one of the possible alternatives for designing layers 
of a complete system. These types of devices can also be considered as cyber-physical 
systems, as they clearly require intelligent software systems and dedicated hardware.

In this work, we will create a framework that covers all, or at least a very wide part, 
of intelligent musical devices and helps design, understand, and study them.
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The rest of the paper is divided as follows: First, in the Materials and Methods 
section, the taxonomy is and published works are detailed, as well as the analysis 
methodology used to test the different systems. The results obtained for the differ-
ent systems are then detailed and explained in the Results and Discussion sections. 
Finally, conclusions are presented.

2. Materials and methods

Artificial-intelligence-assisted musical devices come in a wide variety of forms 
and potentially have a very wide spectrum of uses. In order to create a framework that 
will cover most of these possibilities, we will start by introducing taxonomy of the 
different usages of the said devices. It should be clear that it is possible for a device to 
fall into several categories. As an example, most musical instruments could also be 
considered educational aids, some of them being used predominantly for this pur-
pose. The monochord was used through the Middle Ages for educational and scien-
tific purposes [4], and similarly, we can design intelligent instruments that, although 
being able to be used for performing, are meant with an educational intent.

2.1 Taxonomy

We propose a classification for AI-assisted musical devices (AIMEs). It is clear that 
this is not the only possible taxonomy, but it is complete, easy to apply, and useful. 
The classification is shown in Table 1.

In a first level, we divide our AIMEs into:

• Devices that are played by musicians: Musical instruments.

• Devices designed to modify music: Music Processors.

• Devices that compose music: Music Generators.

• Devices that select music: Music Recommenders.

• Devices that send to the user or the environment information extracted from the 
music: Feedback systems.

• Devices designed to be used in an educational process: educational devices.

A real device may be included in several categories. As an example, a device could 
generate a set of music scores and then recommend some of them to a student. In this 
way, this device could be considered as a generator, a recommender, and an educa-
tional system.

This main AIME division can then be divided into subcategories. As an example, 
a Music Generator can either be instrumental, vocal, or combined. An instrumental 
music generator usually produces music in symbolic format. The most common 
symbolic format is the Musical Instrument Digital Interface (MIDI), which contains 
information that indicates the pitch, start time, stop time, and other properties of 
each individual note, rather than the resulting sound. Combined and voice generators 
have to use a raw audio format and are much more difficult to implement, although 
their quality has improved significantly in the present decade [5].
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As a further example, recommendation devices can recommend music as a func-
tion of the environment or as a function of the user state. The environment-based 
recommendation is mostly used in social scenarios, e.g., if the system selects music 
for a shopping mall or an elevator. Personal Music recommendation devices are used 
mostly when recommending for a single user. As an example, we could estimate the 
user’s emotional state from the data of the wearable device [6] and select the music 
accordingly. It is also possible to use the acquired data of an AIME personal recom-
mender to try to modify some aspects of user behavior. An interesting possibility 
would be to train the user, through music, to reduce his or her stress level. In this way, 
the device could also be considered as part of the Internet of Behavior (IOB) [7].

2.2 Intelligent instrument scenarios

The area of intelligent musical instruments [8] includes an important subset of musical 
devices and has a wide range of applications that we will present in four example scenarios.

2.2.1 Able instrument scenario

Mike had an accident that led to a problem that prevents him from playing with his 
right hand. However, he would like to continue playing the bass in a small blues band. 
Mike thought he would not be able to play again as a bass player, as most instruments 
require significant ability with both hands. There are several alternatives to adapt the 
instrument to his physical capabilities [9], but finally he settled on a small robotic 
mechanism that can detect which string is he fretting with his left hand and pluck it. 
This device can hear what other members of the band are playing and dynamically 
adapt to the tempo and genre of the song by varying the rhythms and patterns it plays.

1. Musical instruments a. AI assisted instruments

b. Augmented instruments

2. Music processors a. Instrumental modifiers

b. Voice modifiers

c. General sound processors

3. Music generators a. Instrumental

b. Voice

c. Combined

4. Music recommendation devices a. Ambient aware recommendation

b. User aware recommendation

c. Combined

5. Music-related feedback systems a. Personal Feedback.

b. Ambient Feedback.

c. Combined

6. Educational Aids a. Music Education

b. General educational support

c. Rehabilitation

Table 1. 
AI-assisted musical device (AIME) taxonomy.
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Although the results do not match his earlier performances, Mike is still able to 
play well enough and have fun with his friends’ band.

2.2.2 Drum stroke scenario

Toby recently had a stroke that left him with reduced mobility in his right hand. In 
his rehabilitation clinic, they proposed that he should follow complementary music-
supported therapy (MST) in which he controls a set of midi drums through his hand 
gestures [10], which are detected through electromyography signals (EMG). The 
drums can play almost autonomously at the beginning of therapy and allow control of 
an increased number of variables as Toby progresses in his recovery.

The rehabilitation device keeps track of Toby’s progress and periodically sends 
reports to his therapist. When Toby goes to the clinic for an in-person session, the 
therapist will discuss his progress and adapt the MST accordingly.

2.2.3 Teach and play scenario

Mary wants to start playing the concertina and is following a well-known book 
and taking some lessons online. However, she does not like the sound that she is pro-
ducing with the instrument currently and refuses to play it anywhere. A friend tells 
her about Inteltina, an intelligent didactical concertina that augments Mary’s abilities 
and helps her produce a nice sound. The instrument assistance dynamically decreases 
as Mary’s playing capabilities improve.

Although Mary plays reasonably well with Inteltina, her online teacher warns her 
that this type of instrument sometimes backfires as the student becomes lazy and her 
abilities stagnate [8].

2.2.4 TherAImin

Sara is a computer scientist who plays piano as a hobby. Recently, she has become fas-
cinated by the discovery of the Theremin [11]. Figure 1 shows an early implementation 
of Theremin. Being an AI specialist, she believes that the design can be clearly improved 
with the help of AI. Thus, she decides to become a “digital luthier” and to create a new 
instrument that is faithful to the original Theremin concept. The TherAImin keeps the 
pitch and volume antennas of the original instrument but includes an AI-based gesture 
recognizer to change the timbre of the instrument [12] according to hand gestures.

This scenario reflects the creation of new digital AI-supported musical instru-
ments. Several interesting reflections on this topic can be found in [3].

This type of instrument is fun to build and play, but it can be difficult to create a 
community of users around them.

2.3 Audio processing scenarios

This area includes instrument processors, voice processors, and generic audio 
processors.

2.3.1 Boogie boogie scenario

Saul is a professional guitar player. He would love to have a Mesa Boogie Mark V 
amplifier, but the price is too high for him. Saul knows that there are emulations for 
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this amp for several Digital Audio Workstations (DAWs) including Cubase, which 
he regularly uses. However, Saul would like to have the emulation as a pedal he 
can easily carry. He has several friends who work in a small start-up company that 
designs embedded deep learning devices and learns from them that the boogie can 
be emulated by an AI system [13] that can be implemented using a Coral Edge TPU 
accelerator [14].

In a few months, Saul has tested the device and the company is starting to sell the 
BoogieBoogie Pedal.

2.3.2 DeepTuner Scenario

Sara is a singer who regularly uses a pitch-correction voice processor for her 
performances. Currently, she uses an AI enhanced version of Antares Auto-Tune 
[15] on an Avid Carbon Device. She is satisfied with the natural feeling, and virtually 
unnoticeable delay that this hardware/software implementation brings to her perfor-
mances. Nevertheless, she would love a similar pitch correction implementation in a 
smaller and cheaper device [16].

2.3.3 DeepAFx scenario

Kyra is a production Engineer. Since she discovered the Deep-Learning-based LV2 
DeepAFx plug-in framework [17] she regularly uses it to control her DAW and to 
introduce several effects. Although she always fine-tunes the work manually, the use 
of the framework has clearly improved her schedule. Kyra would love to have a device 
with an embedded version of these plug-ins for live performances.

Figure 1. 
Alexandra Stepanoff playing the theremin, 1930.
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2.4 Music generator scenarios

In this subsection, we present two scenarios that rely on the use of different 
AI-based music generators.

2.4.1 On hold scenario

Peter has a small online seller business with a telephone customer service line. He 
wants some copyright-free music to keep the costumer on hold while an agent can 
handle their call. He wants the music to change according to the expected waiting 
time, the time of the day, and other circumstances.

Peter has heard about AI-based music generation technology [5] and after search-
ing online decides to select some compositions made using AIVA and computoser 
[18]. Peter consults with his guitar player friend Saul to help him decide which param-
eters would be best for the different music fragments that he wants for the customer 
service line. An automated controller dynamically changes the generator parameters 
to create the desired result.

Peter would like to be able to estimate the emotional state of the client [6] and 
change the music accordingly; however, this is not possible in a standard phone call. 
When clients use the customer service app, the music changes according to their com-
ments [19]. All the generators in this scenario produce symbolic music in midi format. 
This format is suitable for instrumental music and produces results of a quality that 
can be adequate for the proposed scenario.

2.4.2 Singing elevator scenario

Mia is a Design Engineer for a large elevator company. In their latest models, the 
elevators are fitted with a screen that mainly provides news and weather information. 
Mia wants to have copyright-free background songs while the elevator is in use.

After studying several alternatives, Mia decides to generate the songs dynamically 
based on the characteristics of the building (residential, commercial, neighborhood, etc.). 
To generate the songs, she uses the OpenAi Jukebox generator [20] and updates the sons 
on a regular basis. The entire selection of songs according to the different situations is 
performed by the elevator media controller, which can also be considered a musical thing.

This scenario uses a nonsymbolic direct audio music generator. This type of 
generator is much less common than the symbolic alternatives, but the results are 
becoming acceptable by final users in the last years.

2.5 Music recommendation device scenarios

2.5.1 Emotiwatch scenario

Sam is a sports and music fan. Every morning he runs for an hour. While running, 
Sam likes to listen to music. His musical choices clearly depend on his mood. For 
years, Sam has selected his songs directly, but he would prefer, at least sometimes, 
that his smartwatch would do the selection for him. It is well known [21, 22] that 
emotional states and stress can be predicted using AI technology from physiological 
indicators. These are mainly electro-dermal activity (EDA), heart rate variability 
(HRV), and to a smaller extent, peripheral oxygen saturation (Spo2). Several 
wearable devices, including smartwatches such as Fitbit charge 2 or Sense [22] or 
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research-oriented Empatica E4 wristband, are capable of measuring at least a subset 
of these parameters.

Sam finds an app for his watch [23] that selects music based on his mood. The 
watch, which was already a musical thing, becomes an AI-assisted musical device and 
lets Sam keep his mind on running.

2.5.2 iClock scenario

Jane, like a great part of the population in many countries, has been having lack of 
sleep problems for a long time. The relationships between sleep disorders and anxiety, 
depression, overweight, and diabetes are well known by the medical community 
[24]. As part of her treatment, her psychologist tells Jane that some new devices could 
possibly help restore her sleep quality. Among these devices, Jane finds iClock, a new 
device that monitors her sleep, using Jane’s smartwatch, and modifies her wake up 
routines taking into account her schedule needs, the sleep monitoring data, and an 
estimation of her emotional state. Among the different aspects that iClock controls 
is the selection and modification of the melodies according to the selected waking up 
routine. Thus, iClock is, among other things, an AI-assisted musical device,

Following her therapist recommendations, including the use of iClock, Jane’s 
sleep patterns improve, which in turn is clearly reflected in an improvement of her 
quality of life.

2.6 Feedback device scenarios

2.6.1 RumbleRumble scenario

Gina has a moderate hearing problem. She likes to go to concerts with friends. 
However, she feels that she is losing an important part of the information. Recently, 
she learned about the existence of the Subpac backpack [25] that uses haptics, intero-
ception, and bone conduction to deliver bass sensation to even profoundly deaf users. 
Although the current version of the device requires an external computer to run the 
software, Gina is using an experimental version that runs in an embedded controller, 
thus making the Subpac a personal feedback AIME.

2.6.2 MagicShoes scenario

Peter has a problem with his weigh. He has tried several solutions, but none seem 
to work well for him. He has even tried game-based approaches [26] with little suc-
cess. Peter is very fond of music, and he hears from a musician friend of the existence 
of a wearable device that uses sounds to promote sport activity and to change your 
own body perception. He starts using MagicShoes [27] and finally finds a way to help 
him reduce weight in a fun way that adequately fits his tastes and habits. A future 
update includes machine learning capabilities so that the device selects music based 
on the user preferences.

2.6.3 Let there be light scenario

Nico really likes to go to rock music performances. He especially loves when 
people start following music with their lighters. In some recent concerts, this has even 
improved due to new musical device technology. When Nico went to his last concert, 
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he was given a PixMob-led wristband. These devices have a set of preprogramed 
effects that are triggered usually by a human operator. Nevertheless, the possibility 
of an AI-based controller that decides which effect to apply according to both the 
concert and the carrier circumstances is currently perfectly feasible. In this way, the 
wristband will become an AIME (Figure 2).

2.7 Educational scenarios

2.7.1 Teach and play scenario: again

The Teach and Play Scenario presented in Subsection 1.2 is also clearly an educa-
tional Musical Device scenario and could have been presented in this subsection as well.

2.7.2 The magiFlute Scenario

John is 13 years old and has a moderate learning disability. His music teacher 
recommends that he use a new accessible digital musical instrument (ADMI) [28] 
known as the MagiFlute. This instrument is an Electronic Wind Instrument [EWI] 
[26], which is similar to a recorder, but does not produce sound directly. It has sensors 
for wind and touch pressure and controls a synthesizer through an embedded deep 
learning system. It also uses John’s iPad to help him remember what to play and how to 
play. It even has the possibility of automatically correcting what John is playing when 
configured in this way. With the magiFlute, John participates in the school band and 
is becoming a better standard recorder player every day (Figure 3).

2.7.3 Magic flute scenario

In our last scenario, we use the term magiFlute for our proposed instrument, as its 
housemate, the “Magic Flute,” is a completely different existing ADMI, which is an 

Figure 2. 
MagicShoes prototype.
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EWI that is controlled by very small head movements [27]. This instrument is played 
by Ellen, who has a spinal cord injury as a result of a motorcycle accident.

2.8 Processing architecture

In this work, we propose a generic architecture for the design of musical devices. 
This architecture is based on a multilayered approach. The proposed layers are 
structured as follows:

• User stimuli capture and processing layer.

• Embedded learning Layer

• Music adaptation layer

• Music production layer

• User feedback layer

The block diagram for this proposed architecture is shown in Figure 4.

Figure 3. 
Magic Flute and typical EW.

Figure 4. 
Generic AIME Block diagram.
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After presenting the methodology used to test the theories discussed in the 
Introduction, the results will be detailed in the next section.

3. Results

In this section, we present a possible implementation for some of the devices 
proposed in the scenarios. In this way, we will verify the suitability of the proposed 
generic architecture and, thus, the usefulness of the framework presented.

4. Scenario implementation

We will briefly describe possible implementations of TherAImin. This implemen-
tation is presented to show that the proposed framework provides a usable foundation 
for building AI-assisted devices and describing them in a systematic manner.

We think that even though we do not present a device for each of the possible 
categories, the difference between the selected AIMEs is wide enough to show that, in 
principle, any AIME can be implemented using the framework.

4.1 TherAImin

As discussed in Section 1.2, the Theremin is an instrument with two antennas 
that is controlled by the player without touch interaction. The block diagram of the 
Theremin is shown in Figure 5. The TherAIMin is an AI-assisted variation of the 
original instrument, where hand gestures are used to control the timbre.

Although we could have implemented TherAImin without antennas using, e.g., 
Mediapipe Handpose [29], we have decided to be more faithful to the original instru-
ment and thus use the [30], which provides a versatile Theremin implementation with 
Pitch and Volume outputs.

Thus, openTheremin antennas act as part of the user-stimulus capture layer. The 
other part of this layer is a camera that is used to capture the user’s hand gesture.

We will interface openTheramin using a Raspberry Pi board with an RPI-GP90 
pulse signal IO hat. This is part of the stimulus adaptation layer. The other part of this 
layer is made up of the video interface already available in the raspberry pi.

The embedded learning layer is built using Google’s Teachable Machine [31] accel-
erated with a Coral Edge TPU accelerator. The approach is very similar to [32] where 
a machine that can be trained is used to recognize objects. With this approach, the 
accelerated embedded system classifies the gestures in the number of trained classes. 
It is important to keep the gesture classes different, and it is also essential to train a 
wide class of gestures and other images that the camera may see in the background 
class [33]. An advantage of the TherAImin is that when the AI system makes a wrong 
decision, this will affect the timbre and the effects, but not the volume and the pitch.

The sound production layer is implemented on raspberry pi using sonic PI [34]. 
The selection of sound pitch and volume is done by a small Processing program 
that produces OSC [35]. Open Sound Control (OSC) is a protocol to connect sound 
synthesizers, computers, and other multimedia devices for purposes such as musical 
performance or show control. Many music-related software tools, including sonic PI, 
support the OSC protocol. The OSC protocol uses UDP (or TCP) packets and thus can 
run either in a single embedded system or be distributed over a network.
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The selection of timbre and effects is done by the learning layer as a function 
of the gestures and sent to the generation layer using OSC. In this way, TherAImin 
produces audio as a function of the hand positions captured by the antennas and the 
gestures captured by the camera and recognized by the teachable machine.

The TherAImin, as an extension of the Theremin, can be considered in the aug-
mented musical instrument class in the FAIME taxonomy.

5. Discussion

The approach used to implement TherAImin could be used for simpler and more 
complex devices. As an example, the “Singing Elevator” can use the presence, tem-
perature, humidity and noise sensors and additional information from the Internet 
as user stimuli. Using aggregation of estimators this process can be further improved 
[36]. Using a simple learning layer (local or not), it will decide from which category 
it should retrieve the generated music. The production layer would be a simple player 
with possible adaptations to handle noise in the cabin or other issues.

As a further example, the emotiWatch uses the wearable device sensors as a stimuli 
layer, preprocesses them in the stimuli adaptation layer, estimates the user’s emotional 
state, and selects the music in the learning layer and outputs the music through a player 
in the production layer. The same approach can be used to start the design of any AIME.

Figure 5. 
Block diagram of the Theremin ad the TherAImin.
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It is clear that many other approaches could have been proposed, but FAIME is 
simple and gives clear insights into the musical device design process.

6. Conclusions

In this work, we have presented a useful framework for the classification, under-
standing, and design of AI-assisted musical devices.

We have shown a very wide range of devices that can fall into this category includ-
ing such different things as accessible instruments for disabled musicians or alarm 
clocks to help people with sleeping disorders.

We have presented a quite detailed implementation of a variation of a successful 
musical instrument designed in the 1920s, the Theremin. Our augmentation allows the 
player to select timbre and effects in real time through hand gestures but also helps to 
keep the look and feel of the original instrument if it is played with open hands.

We also included a short description of the design of other AIMEs to show the 
usefulness of the framework.

In future work, we will evaluate the user experience of TherAImin with musicians 
and study possible modifications for performers with disabilities using the powerful 
embedded intelligent system.

Acknowledgements

This work was supported by the NICO project (PID2019-105455GB-C31) from 
Ministerio de Ciencia, Innovación y Universidades (Spanish Government) and by 
DAFNE (US-1381619) Consejería de Economía y Conocimiento (Junta de Andalucia).

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



FAIME: A Framework for AI-Assisted Musical Devices
DOI: http://dx.doi.org/10.5772/intechopen.108898

13

References

[1] Turchet L, Fischione C, Essl G, 
Keller D, Barthet M. Internet of musical 
things: Vision and challenges. IEEE 
Access. 2018;6:61994-62017

[2] Clark D, Westin F, Girouard A. iSNoW: 
User perceptions of an interactive social 
novelty wearable. In: Adjunct Proceedings 
of the 2019 ACM International Joint 
Conference on Pervasive and Ubiquitous 
Computing and Proceedings of the 
2019 ACM International Symposium on 
Wearable Computers. 2019. pp. 268-271

[3] Fiebrink R, Sonami L. Reflections 
on Eight Years of Instrument Creation 
with Machine Learning. Goldsmiths, 
University of London; 2020

[4] Buehler-McWilliams K, Murray RE. 
The monochord in the medieval and 
modern classrooms. Journal of Music 
History Pedagogy. 2013;3:151-172

[5] Briot JP, Hadjeres G, Pachet FD. 
Deep Learning Techniques for Music 
Generation. Springer; 2020

[6] Muñoz-Saavedra L, Luna-Perejón F, 
Civit-Masot J, Miró-Amarante L, Civit A, 
Domı́nguez-Morales M. Affective state 
assistant for helping users with cognition 
disabilities using neural networks. 
Electronics. 2020;9:1843

[7] Rahaman T. Smart things are getting 
smarter: An introduction to the internet 
of behavior. Medical Reference Services 
Quarterly. 2022;41:110-116

[8] Jordà S. Instruments and players: 
Some thoughts on digital lutherie. 
Journal of New Music Research. 
2004;33:321-341

[9] Harrison J. Instruments and Access: 
The Role of Instruments in Music and 
Disability [Ph.D. dissertation]. Queen 
Mary University of London; 2020

[10] Dieckmann M. EMG/Motion 
Capture-Based Accessible Music 
Interfaces for Rehabilitation. 2020

[11] Theremin LS, Petrishev O. The 
design of a musical instrument based on 
cathode relays. Leonardo Music Journal. 
1996;6:49-50

[12] McAdams S, Giordano BL. The 
perception of musical timbre. In: The 
Oxford Handbook of Music Psychology. 
Oxford Academic; 2009. pp. 72-80

[13] Wright A, Damskägg EP, Juvela L, 
Välimäki V. Real-time guitar amplifier 
emulation with deep learning. Applied 
Sciences. 2020;10:766

[14] Civit-Masot J, Luna-Perejón F, 
Corral JMR, Domínguez-Morales M, 
Morgado-Estévez A, Civit A. A study on 
the use of Edge TPUs for eye fundus image 
segmentation. Engineering Applications 
of Artificial Intelligence. 2021;104:104384

[15] Mårtensson B. The Timbral and 
Quality Affect from Pitch Correction 
Software on a Recorded Vocal 
Performance [Dissertation]. 2022. 
Retrieved from: http://urn.kb.se/resolve?
urn=urn:nbn:se:ltu:diva-90744

[16] Wager S, Tzanetakis G, CI W, Kim M. 
Deep autotuner: A pitch correcting 
network for singing performances. In: 
ICASSP 2020-2020 IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP). 2020. 
pp. 246-250

[17] Martinez Ramirez MA, Wang O, 
Smaragdis P, Bryan NJ. Differentiable 
signal processing with black-box 
audio effects. In: IEEE International 
Conference on Acoustics, Speech and 
Signal Processing (ICASSP). IEEE; 2021



Internet of Things - New Trends, Challenges and Hurdles

14

[18] Bozhanov B. Computoser-Rule-
Based, Probability-Driven Algorithmic 
Music Composition. arXiv preprint 
arXiv:1412.3079. 2014

[19] Salas J. Generating music from 
literature using topic extraction and 
sentiment analysis. IEEE Potentials. 
2018;37:15-18

[20] Dhariwal P, Jun H, Payne C, Kim JW, 
Radford A, Sutskever I. Jukebox: A 
Generative Model for Music. arXiv 
preprint arXiv:2005.00341. 2020

[21] Assabumrungrat R et al. Ubiquitous 
affective computing: A review. IEEE 
Sensors Journal. 1 Feb 2022;22(3):1867-
1881. DOI: 10.1109/JSEN.2021.3138269

[22] Williams SH. A Validation Study: 
Fitbit Charge 2 Heart Rate Measurement 
at Rest and During Cognitive-Emotional 
Stressors. 2021

[23] Linger O. Designing a User-Centered 
Music Experience for the Smartwatch 
[Dissertation]. 2018. Retrieved from: 
http://urn.kb.se/resolve?urn=urn:nbn:se:
kth:diva-231061

[24] Staner L. Sleep and anxiety disorders. 
Dialogues in Clinical Neuroscience. 
2003;5(3):249-258. DOI: 10.31887/
DCNS.2003.5.3/lstaner

[25] Schmitz A, Holloway C, Cho Y. Hearing 
through vibrations: Perception of musical 
emotions by profoundly deaf people. arXiv 
preprint arXiv:2012.13265. 2020 

[26] Snyder J. The birl: Adventures in 
the development of an electronic wind 
instrument. In: Musical Instruments in the 
21st Century. Springer; 2017. pp. 181-205

[27] Davanzo N, Avanzini F. Experimental 
evaluation of three interaction channels 
for accessible digital musical instruments. 
In: International Conference on 
Computers Helping People with Special 
Needs. 2020. pp. 437-445

[28] Frid E. Accessible digital musical 
instruments—a review of musical 
interfaces in inclusive music practice. 
Multimodal Technologies and Interaction 
(MDPI). 2019;3

[29] Sung G, Sokal K, Uboweja E, 
Bazarevsky V, Baccash J, Bazavan EG, 
et al. On-device Real-time Hand 
Gesture Recognition. arXiv preprint 
arXiv:2111.00038. 2021

[30] GaudiLabs. Open Theremin - Open 
Source Hardware Project. 2022. Available 
from: https://github.com/GaudiLabs/
OpenTheremin_V3

[31] Carney M, Webster B, Alvarado I, 
Phillips K, Howell N, Griffith J, et al. 
Teachable machine: Approachable 
Web-based tool for exploring machine 
learning classification. In: Extended 
Abstracts of the 2020 CHI Conference on 
Human Factors in Computing Systems. 
2020. pp. 1-8

[32] Tyka M. Embedded Teachable 
Machine. April 2019. Available from: 
https://teachablemachine.withgoogle.com/

[33] Muñoz-Saavedra L, Civit-Masot J, 
Luna-Perejón F, Domı́nguez-Morales M, 
Civit A. Does two-class training extract 
real features? a COVID-19 case study. 
Applied Sciences. 2021;11:1424

[34] Aaron S, Blackwell AF, Burnard P. 
The development of Sonic Pi and its use 
in educational partnerships: Co-creating 
pedagogies for learning computer 
programming. Journal of Music, 
Technology & Education. 2016;9:75-94

[35] Wright M. OpenSound Control 
Specification. UC Berkeley: Center for 
New Music and Audio Technologies; 2002

[36] El Ghali K, El Ghali A, Tijus C. 
Multimodal Automatic Tagging of Music 
Titles using Aggregation of Estimators. 
MediaEval; 2012


