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1. Introduction

Metrology, the science of measurement, is crucial for manufacturing technologies. Since man-

ufacturing has made huge leaps depending on the improvements in metrology, the book 

reflects recent developments in metrology in detail. This book focuses on dimensional and 
geometric measurements as well as technical testing and quality control applications in 

industry. It also intends the fundamentals of metrology concerning the related standards and 

systems of units. In addition, the book considers the calibration of measurement instruments 

and measurement uncertainties as the basic requirements of the related quality standards. 

Furthermore, it mentions the trends in micro and nanometrology and microscopic examina-

tions. Topics covered in this book are of course not limited to them. The readers can find 
chapters about Metrology in a wide frame.

Physical properties such as length, weight, and temperature are determined by comparison 

with known quantities. In addition, measurement techniques are available in all engineer-

ing disciplines and allow for the creation and operation of all other scientific branches. In 
particular, measurement techniques are required at all levels of laboratory works. In fact, 

we practically measure many things: the weight of our body, the volume of our fuel oil, the 

temperature of the house, the noise at the factory, the distance between two points, etc. In 

addition to having an important place in our daily life, the measurement technique is the basis 

of almost all science branches such as Physics, Chemistry, and Biology. Measurement tech-

niques are used to solve technical problems at all science branches. Theoretical hypotheses are 
supported by proving correctness by means of measurement technique by making necessary 

experiments and observations.

Metrology is the science of measurement. It covers all the practical and theoretical topics based 

on measurement, regardless of accuracy level and application area [1]. Measurement pro-

cesses, measurement methods and procedures, instrumentation, calibration, determination of 
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measurement systems, verification, measurement accuracy, measurement precision, measure-

ment error, data acquisition, evaluation of measurement results, the formation of statistical 

evaluations, and quality determinations are the main subjects of metrology.

The recognition that a measurement made by an industrial device is recognized worldwide and 
is the same as any other measurement made possible by achieving the highest precision basic 

measurement standard with a measurement reference chain. By fulfilling this, it is ensured that 
all the measurements carried out are accepted nationally and/or internationally. As a result, the 

calibration and verification processes have gained a great deal of importance. Calibration is a 
process of establishing a link between the values indicated by a measuring instrument or mea-

suring system under certain conditions and the values   obtained by a measuring instrument 

and corresponding values   of corresponding measured values. With calibration, the measure-

ment of a less precise measuring instrument or standard is carried out using an accepted stan-

dard of accuracy [2]. National metrology institutes are operating at the highest level, linked to 

the system by reference chain. These institutions are also linked to the Bureau International des 
Poids et Measure (BIPM) in central Paris in order to ensure that the measurements are inter-

nationally recognizable in a hierarchical structure. In the process of industrialization which 
started with serial production, it has become very important to establish a whole by combining 

the parts produced in different places, initiate specialization forms in the subsidiary industry 
and production, and make the measurements internationally recognizable.

The reliability of measuring instruments has increased at the same rate as the widespread use 
of microelectronics. Nowadays, measurement techniques are required to meet demands for 

faster, more accurate, and more flexible measurements. The documentation of measurement 
results is equally important. The development of precise manufacturing technology brings 
the need for more precise measuring technology. The developments in technology, especially 
in the field of measuring technology, have been the main reason for the increasing demands 
on the accuracy of the measurement. As micro and nanotechnologies have been used, it has 

become inevitable to develop devices and instruments that enable the measurement opera-

tions to be carried out at these accuracies.

New dimensions and research opportunities have been born in many scientific fields such as 
being in the electronics or molecular biology with nanotechnology. All of these disciplines are 

doing nanoscience studies on their own terms, and the opportunity to share all these different 
windows and share tools and techniques that develop independently is attractive to all sci-
ences today. The placement of the atoms in the prescribed positions with the aid of nanotech-

nology is realized in this technology. Today the word “Nano” indicates a technique related to 
length measurements of very small objects in metrology, microtechnology, semiconductors, 

and nanotechnology fields. In nanometrology, the measurement size is typically specified as 
a nanometer. All applied methods are based on microscope technique with nano-position 

systems and position measurements at high accuracy. For instance, in mechanical engineer-

ing, nanotechnology and nanometrology are the necessary technologies to make a crystal 

perfect. The ability to precisely control the alignment of imprints and errors with respect to 
each other and the ability to integrate perfectly inorganic and organic nanostructures will 

lead to the emergence of a whole new generation of advanced composites. The improve-

ments in technology intended to use the term picotechnology is a combination of picometer 
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and  technology, parallel the term nanotechnology. Basic speckle metrology and autonomic 

computing resources are of course the most realistic uses of picotechnology. The ability to 
examine and manipulate resources at this level is quite useful. Of course, it is not difficult to 
imagine the tangible advantages of this type of technology.

2. Standardization in metrology

Standards are considered as measurement references. The basic standards about metrology are 
the basis of the traceability which is defined as a measurement whereby the result can be related 
to a reference through an unbroken chain of calibrations. Using internationally standardized 
systems of units, Vocabulary of Metrology (VIM), Guide to the International Uncertainty 

Measurements (GUM), or Internationally Standardized Measurement Management Systems 
[3] helps to improve the reliability of the results.

2.1. Unit of measurement

The most important condition of each measuring process and the manufacturing technique is 
the presence of units which are exactly defined according to the required quantities, and these 
units must be determined in accordance with internationally established rules. Measurement 

is a process that uses numbers to describe a physical quantity done to be able to compare 

them to each other. The results can be explained by a “unit of measurement,” which is a defi-

nite magnitude of a quantity. The SI, The International System of Units, is the modern form 

of the metric system, and the most widely used system of measurement is made up of 7 base 

units that define the 22 derived units with special names and symbols. Base units provide the 

reference used to define all the measurement units of the system, while the derived units are 
products of base units and are used as measures of derived quantities. Derived units are the 

units obtained by algebraic operations from basic and auxiliary units. Certain derived units 

have special names and symbols like acceleration, meter per second squared, m s−2.

2.2. Uncertainty of measurement

The uncertainty of a measurement is a predicament that characterizes the range of values, 
including the true value of the measure. Measurement uncertainty is an important topic for all 

measurement fields. All measurements have error. The error of a measurement is unknow-

able because one cannot know the error without knowing the true value of the quantity 

being measured. The Evaluation of Measurement Data: Guide to the Expression of Uncertainty 

in Measurement (GUM) provides general rules for evaluating and expressing uncertainty in 

measurement. The uncertainty of measurement generally includes many components. Some 
of these components can be estimated on the basis of the statistical distribution of series 

measurement results and can be characterized by empirical standard deviations. The esti-
mates of the other components are based solely on the main information or experiences. 

The uncertainty of measurements should be evaluated and reported according to the related 
international standards.
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2.3. Calibration

The purpose of calibration is to determine and document how much of the equipment is 
in error with the actual value. The correct value is obtained by considering the amount of 
error in the result. Calibration is the process of determining the relationship between the 

value read in a gauge and the gauge size. Calibration and control of measuring, inspection, 
and control equipments ensure the appropriateness of measurements made during manufac-

turing. The continuity of this safety is ensured by the regular and identifiable calibration of 
the equipment in question. Calibration is performed by comparison with a measurement of 

normality known to the measurement magnitude. To sum up, calibration is explained in the 
related standard: under specified conditions, the series of operations in which the relationship 
between the values indicated by a measuring instrument or device and the values indicated 

by a material measurement or reference material is established [3]. In order to supply trace-

ability in measurements, calibration hierarchy in Figure 1 should be followed up carefully.

3. Data evaluation

Metrology and inspection together serve as the control function of the quality of conformance. 

Inspection helps to evaluate the degree of conformance or nonconformance to specifications, 
provides for reporting of deficiencies early in the production process, and helps to assure that 
desired quality requirements have been met. The field of knowledge concerned with measure-

ment. Metrology includes all aspects of both theoretical and practical with reference to measure-

ments, whatever their level of accuracy, and in whatever fields of science or technology they occur. 
Since quality performance decisions are based on inspection and measurement, undesirable con-

sequences may result if these tasks are not performed properly. Not only incorrect measurements 

lead to wrong decisions, which can have serious consequences, but also improper data evaluations 

can cause undesirable consequences. Since Statistical Process Control is the utilization of statisti-

Figure 1. Hierarchy of calibration/traceability pyramid.
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cal tools and methods to acquisite and to analyze data in order to monitor process capabilities, it 
is widely used in data evaluation. Quality control charts and the other statistical tools are used to 

analyze processes enabling appropriate actions to achieve improved or stabilized processes. They 
help to ensure that the process operates efficiently and allow organizations to understand variation 
in their processes, differentiating common causes from special or assignable causes of variation.

4. Conclusions

Metrology is a crucial science including its standards, systems of units, instruments, cali-

bration procedures, uncertainties, inspection, and quality control topics in many industries 

such as automotive, aerospace, mechanical engineering, surface engineering, etc. and in many 

sciences like natural and applied sciences in different sizes like micro and nanometrology 
serving for sustainable improvements. Like being in today, there will always be valuable 

researches in the field of metrology, with the help of technological developments to support 
the scientific researches in the future. Care taken in the reliability of measurements and their 
traceability will always be crucial. Metrology is such useful for humanity if it is conducted 

according to its rules and international standards.
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Abstract

This chapter presents and explains the most used methodologies for the evaluation of
measurement uncertainty in metrology with practical examples. The main topics are basic
concepts and importance, existing documentation, the harmonized methodology of the
Guide to the Expression of Uncertainty in Measurement, types of uncertainty, modeling of
measurement systems, use of alternative methods (including the GUM supplement 1
Monte Carlo numerical method), evaluation of uncertainty for calibration curves, corre-
lated uncertainties, uncertainties arising from the calibration of instruments, and the main
proposals for the new revised GUM. The chapter also discusses the GUM as a tool for the
technical management of measurement processes.

Keywords: metrology, measurement, uncertainty, GUM, Monte Carlo

1. Introduction

Measurement uncertainty is a quantitative indication of the quality of measurement results,

without which they could not be compared between themselves, with specified reference

values or to a standard. Uncertainty evaluation is essential to guarantee the metrological

traceability of measurement results and to ensure that they are accurate and reliable. In

addition, measurement uncertainty must be considered whenever a decision has to be taken

based on measurement results, such as in accept/reject or pass/fail processes.

Considering the context of globalization of markets, it is necessary to adopt a universal

procedure for evaluating uncertainty of measurements, in view of the need for comparability

of results between nations and for mutual recognition in metrology. As an example, laborato-

ries accredited under the ISO/IEC 17025:2017 standard [1] need to demonstrate their technical

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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competence and the ability to properly operate their management systems, and so they are

required to evaluate the uncertainty for their measurement results.

In addition, the use of uncertainty evaluation methods as a tool for technical management of

measurement processes is extremely important to reduce, for example, the large number of

losses that occurs in the industry, which can be highly significant in relation to the gross

domestic product (GDP) of some countries. One of the probable causes of the waste can be

attributed to instruments whose accuracy is inadequate to the tolerance of a certain measure-

ment process.

In this chapter, detailed steps for uncertainty evaluation are given.

2. Main references for uncertainty evaluation

In order to harmonize the uncertainty evaluation process for every laboratory, the Bureau

International des Poids et Mesures (BIPM) published in 1980 the Recommendation INC-1 [2] on

how to express uncertainty in measurement. This document was further developed and orig-

inated the “Guide to the Expression of Uncertainty in Measurement”—GUM in 1993, which

was revised in 1995 and lastly in 2008. This document provides complete guidance and

references on how to treat common situations on metrology and how to deal with uncertainties

in metrology. Currently, it is published by International Organization for Standardization

(ISO) as the ISO/IEC Guide 98-3 “Uncertainty of measurement—Part 3: Guide to the expres-

sion of uncertainty in measurement” (GUM), and by the Joint Committee for Guides in

Metrology (JCGM) as the JCGM 100:2008 guide [3]. The JCGM was established by BIPM to

maintain and further develop the GUM. They are in fact currently producing a series of

documents and supplements to accompany the GUM, four of which are already published

[4–7].

Evaluation of uncertainty, as presented by the JCGM 100:2008, is based on the law of propaga-

tion of uncertainties (LPU). This methodology has been successfully applied for several years

worldwide for a range of different measurement systems and is currently the most used

procedure for uncertainty evaluation in metrology. However, since its twentieth anniversary

in 2013, JCGM decided to revise it again [8–10]. In this new revision, uncertainty terms and

concepts [11] will be aligned with the current International Vocabulary of Metrology (VIM)

[12] and with the new GUM supplements [5, 6]. Aspects such as a new Bayesian approach, the

redefinition of coverage intervals and the elimination of the Welch-Satterthwaite formula to

evaluate the effective degrees of freedom will be covered [9]. In late 2014, a first draft of the

newly revised version of the GUM was circulated among National Metrology Institutes.

Remarkable changes were made that could affect the way laboratories deal with the measure-

ment uncertainty results. This revision is still being discussed, and some information about it

has also been released elsewhere [10].

In the field of analytical chemistry, there is also another document worth mentioning that is the

“Quantifying Uncertainty in Analytical Measurement” guide [13], produced by a joint

Metrology10



EURACHEM/CITAC Measurement Uncertainty Working Group. This document was first

published in 1995 and further revised in 2000 [14]. This last edition had a widespread imple-

mentation and is among the most highly cited publications in chemical metrology area [14].

Recently, a new revised edition was published in 2012 with improved content and added

information on developments in uncertainty evaluation [14]. This document basically presents

the uncertainty evaluation process following the suggestions of the GUM, but also contains

several examples in the analytical chemistry area.

3. Using the GUM approach on uncertainty evaluation

The following main steps summarize the methodology presented by the GUM.

3.1. Definition of the measurand and of input quantities

It must be clear to the analyst which quantity will be the final object of the measurement in

question. This quantity is known as the measurand. In addition, it is important to identify all

the variables that directly or indirectly influence the measurand. These variables are known as

the input quantities. As an example, Eq. (1) shows a measurand y as a function of three

different input quantities: x1, x2, and x3:

y ¼ f x1; x2; x3ð Þ (1)

3.2. Modeling the measurement process

In this step, the measurement procedure should be modeled in order to have a functional

relationship expressing the measurand as a result of all the input quantities. The measurand y

in Eq. (1) could be modeled, for example, as in Eq. (2)

y ¼
x1x2
x23

(2)

The modeling step is critical for the uncertainty evaluation process as it defines how the input

quantities impact the measurand. The better the model is defined, the better its representation

of reality will be, including all the sources that impact the measurand on the uncertainty

evaluation. The modeling process can be easily visualized by using a cause-effect diagram

(Figure 1).

Example: To illustrate these steps, let us consider a measurement model for a torque test.

Torque is a quantity that represents the tendency of a force to rotate an object about an axis. It

can be mathematically expressed as the product of a force and the lever-arm distance. In

metrology, a practical way to measure it is by loading a known mass to the end of a horizontal

arm while keeping the other end fixed (Figure 2).

Note: This example is also presented, with a few adaptations, in other publications by the same

authors [15].

Methods for Evaluation of Measurement Uncertainty
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A simple model that describes this experiment can be expressed as follows:

T ¼ mgL (3)

where T is the torque (N.m), m is the mass of the applied load (kg), g is the local gravity

acceleration (m/s2), and L is the total length of the arm (m). Thus, m, g, and L are the input

quantities for this model. This example will be further discussed in the subsections ahead.

3.3. Evaluating the uncertainties of the input quantities

This step is also of great importance. Here, uncertainties for all the input quantities are

individually evaluated. The GUM classifies uncertainty sources as being of two main types:

Type A, which usually originates from some statistical analysis, such as the standard deviation

obtained in a repeatability study; and Type B, which is determined from any other source of

information, such as a calibration certificate or deduced from personal experience.

Type A uncertainties from repeatability studies are evaluated by the GUM as the standard

deviation of the mean obtained from the repeated measurements. For example, if a set of n

indications xi about a quantity x are available, the uncertainty ux due to repeatability of the

measurements can be expressed by s xð Þ as follows in Eq. (4):

Figure 1. A cause-effect diagram representing the model from Eq. (2).

Figure 2. A conceptual illustration of the experimental setup for a measurement of torque (T), where F is the applied

force, m is the mass of the load, g is the local gravity acceleration, and L is the length of the arm.

Metrology12



ux ¼ s xð Þ ¼ s xið Þ
ffiffiffi

n
p (4)

where x is the mean value of the repeated measurements, s xið Þ is its standard deviation, and

s xð Þ is the standard deviation of the mean. As such, the statistical distribution associated with

this input source is considered to be normal or Gaussian.

Note: This evaluation is not consistentwith theGUMsupplement 1 [5], where repeated indications

are treated as Student’s t-distributions to account for the lack of degrees of freedom or a low

number of indications. In this way, the new proposal for the draft GUM is to consider repeated

indications as t-distributions, just like in supplement 1. Therefore, its uncertainty would be evalu-

ated as in Eq. (5). This equation takes the degrees of freedom for the indications (n� 1) into account,

raising the uncertainty for a low number of indications. This correction would then be in accor-

dance with the approach suggested by the other GUM supplements for this type of uncertainty

ux ¼
n� 1

n� 3

� �1=2
s xið Þ

ffiffiffi

n
p (5)

It is important to note that the evaluation of uncertainties of Type B input sources must be

based on careful analysis of observations or in an accurate scientific judgment, using all

available information about the measurement procedure. This uncertainty type is generally

used when repeated experiments would not be possible, not available, or would be too costly

or time-consuming. In this case, the GUM also suggests the use of two more types of statistical

distributions: the uniform and the triangular distributions.

The uniform distribution should be used when only a range of values are available, that is, an

interval with the minimum and maximum values, and no detailed information about the

probability of values within this interval is available. The standard uncertainty associated with

such an interval is given by Eq. (6):

ux ¼
b� a
ffiffiffiffiffi

12
p (6)

where b is the maximum and a is the minimum values for the range. For example, if the only

information about the room temperature of a laboratory is known to be 20� 2ð Þ�C, then
b� a ¼ 22� 18 ¼ 4�C and the standard uncertainty associated with the room temperature

would be evaluated as uθ ¼ 4=
ffiffiffiffiffi

12
p �C ¼ 1:15�C.

The triangular distribution can be used when there is a strong evidence that the most probable

value lies in the middle of a given interval, but still without knowing exactly how this

probability behave within the interval. In chemistry, for example, the uncertainty associated

with the volume of a measuring flask could be evaluated by a triangular distribution. The

standard uncertainty for a triangular distribution is given by Eq. (7):

ux ¼
a
ffiffiffi

6
p (7)

where a is the semi-interval for the total range of the triangular distribution.

Methods for Evaluation of Measurement Uncertainty
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Another common Type B source of uncertainty is due to calibration certificates, related to a

standard or to a calibrated instrument. In this case, the standard uncertainty to be used is

normally obtained by dividing the expanded uncertainty U by the coverage factor k, both

provided by the calibration certificate (Eq. (8))

ux ¼
U

k
(8)

Several good examples on how to treat some of the most common uncertainty sources can be

found on the GUM [3], the EURACHEM/CITAC guide [13], and elsewhere [16].

Example: Returning to the example of torque measurement and considering the model defined

in Eq. (3), the following sources of uncertainty are considered:

Mass (m). The mass m was repeatedly measured 10 times in a calibrated balance. The average

mass was 35.7653 kg, with a standard deviation of 0.3 g. This source of uncertainty is purely

statistical and is classified as being of Type A according to the GUM. The standard uncertainty

(umR
) that applies in this case is obtained by Eq. (4), that is, umR

¼ 0:3 g=
ffiffiffiffiffi

10
p

¼ 9:49� 10�5 kg.

In addition, the balance used for the measurement has a certificate stating an expanded

uncertainty for this range of mass of Um = 0.1 g, with a coverage factor k = 2 and a coverage

probability of 95%. The uncertainty of the mass due to the calibration of the balance constitutes

another source of uncertainty involving the same input quantity (mass). In this case, the

standard uncertainty (umC
) is calculated by using Eq. (8), that is, umC

¼ Um=k ¼ 0:1 g=2 ¼
0:00005 kg.

Local gravity acceleration (g). The value for the local gravity acceleration is stated in a

certificate of measurement as 9.80665 m/s2, as well as its expanded uncertainty of Ug =

0.00002 m/s2, for k = 2 and p = 95%. Again, Eq. (8) is used to calculate the standard uncertainty

(ug), that is, ug ¼ Ug=k ¼ 0:00002 m=s2
� �

=2 ¼ 0:00001 m/s2.

Length of the arm (L). Let us suppose that in this hypothetical case, the arm used in the

experiment has no certificate of calibration, indicating its length value and uncertainty, and that

the onlymeasuring method available for the arm’s length is by the use of a ruler with a minimum

division of 1 mm. The use of the ruler leads then to a measurement value of 2000.0 mm for the

length of the arm. However, in this situation, very poor information about the measurement

uncertainty of the arm’s length is available. As the minimum division of the ruler is 1 mm, one

can assume that the reading can be donewith amaximumaccuracy of up to 0.5mm,which can be

thought as an interval of �0.5 mm as limits for the measurement. As no information of probabil-

itieswithin this interval is available, the assumption of a uniformdistribution is the best option, on

which there is equal probability for the values within the whole interval. Thus, Eq. (6) is used to

determine the standard uncertainty (uL), that is, uL ¼ 2000:5� 1999:5ð Þmm=
ffiffiffiffiffi

12
p

¼ 0:000289 m.

In practice, one can imagine several more sources of uncertainty for this experiment, like, for

example, the thermal dilatation of the arm as the room temperature changes. However, the

objective here is not to exhaust all the possibilities, but instead to provide basic notions of how

to implement the methodology of the GUM on a simple model.

Metrology14



3.4. Propagation of uncertainties

3.4.1. The law of propagation of uncertainties

The GUM uncertainty approach is based on the law of propagation of uncertainties (LPU).

This methodology encompasses a set of approximations to simplify the calculations and is

valid for a range of simplistic models.

According to the LPU, the propagation of uncertainties is accomplished by expanding the

measurand model in a Taylor series and simplifying the expression by considering only the

first-order terms. This approximation is viable as uncertainties are very small numbers com-

pared with the values of their corresponding quantities. In this way, the treatment of a model

where the measurand y is expressed as a function of N variables x1,…, xN (Eq. (9)) leads to the

general expression for the propagation of uncertainties shown in Eq. (10)

y ¼ f x1;…; xNð Þ (9)

u2y ¼
XN

i¼1

∂y

∂xi

� �2

u2xi þ 2
XN�1

i¼1

XN

j¼iþ1

∂y

∂xi

� �

∂y

∂xj

� �

COV xi; xj
� �

(10)

where uy is the combined standard uncertainty for the measurand y and uxi is the uncertainty

for the ith input quantity. The second term of Eq. (10) is due to the correlation between the

input quantities. If there is no supposed correlation between them, Eq. (10) can be further

simplified as

u2y ¼
XN

i¼1

∂y

∂xi

� �2

u2xi (11)

The partial derivatives of Eq. (11) are known as sensitivity coefficients and describe how the

output estimate y varies with changes in the values of the input estimates x1, x2,…, xN. It also

converts the units of the inputs to the unit of the measurand.

Another important observation regarding the sensitivity coefficient occurs when the mathe-

matical model that defines the measurand does not contemplate a given quantity, known

as influence quantity. In this case, the determination of the sensitivity coefficient of the

measurand in relation to the input quantity must be done experimentally. For example, bio-

diesel is susceptible to oxidation when exposed to air, and this oxidation process affects fuel

quality. The oxidation time is determined by measuring the conductivity of an oil sample when

inflated with air at a given flow rate. There are a number of influence quantities that impact the

oxidation time of biodiesel such as temperature, air flow, conductivity, sample mass, and so on.

In this case, the sensitivity coefficients for oxidation time with respect to each of these influence

quantities are determined from an interpolation function obtained with experimental data. For

example, Figure 3 presents the table and its resulting graph, which shows the model of the

function that relates the oxidation time to the temperature of a biofuel sample (case study of

the authors).

Methods for Evaluation of Measurement Uncertainty
http://dx.doi.org/10.5772/intechopen.74873

15



Example: On returning to the torque measurement example, assuming that all the input

quantities are independent, the combined standard uncertainty for the torque is calculated by

using the LPU (Eq. (11)). The final expression is then

uT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂T

∂m

� �2

u2mR
þ

∂T

∂m

� �2

u2mC
þ

∂T

∂g

� �2

u2g þ
∂T

∂L

� �2

u2L

s

¼ 0:096 N m (12)

It is important to note that the terms (not squared) of Eq. (12), that is, each sensitivity coeffi-

cient multiplied by its corresponding uncertainty, are known as uncertainty components.

These components can be compared to each other as they are in the same units of the

measurand. Figure 4 shows the comparison between the uncertainty components for the

torque measurement model.

As can be noted, the dominant uncertainty component is due to the uncertainty associated with

the measurement of the arm length, which was taken as the resolution of the non-calibrated

Figure 3. A table and a graph representing the variation of the oxidation time of a biofuel sample as a function of

temperature.

Figure 4. Uncertainty component balance for the input quantities in the torque measurement model.

Metrology16



ruler used in the measurement. This analysis shows to the analyst that, to reduce the final

uncertainty and improve the measurement system, a calibrated ruler, with a better uncertainty,

should be used. This represents the importance of the GUM as a management tool to the

measurement process.

3.4.2. The Kragten method

The Kragten method is an approximation that facilitates the calculation of the combined

uncertainty using finite differences in place of the derivatives [13]. This approximation is valid

when the uncertainties of the inputs are relatively small compared to the respective values of

the input quantities, generating discrepancies in the final result in relation to the LPU that

occur in decimals that can be ignored.

Assuming a measurand y, which is calculated from the input quantities x1, x2 and x3 according

to the mathematical model of Eq. (2), the uncertainties ux1 , ux2 and ux3 for the input quantities

are evaluated normally, according to methodologies already explained previously. From there,

the calculations of the measurand are performed individually for each input magnitude (yx1 ,

yx2 and yx3 ) so that each time their respective values are added with their uncertainties, as

shown in Eqs. (13)–(15)

yx1 ¼
x1 þ ux1ð Þx2

x23
(13)

yx2 ¼
x1 x2 þ ux2ð Þ

x23
(14)

yx3 ¼
x1x2

x3 þ ux3ð Þ2
(15)

The value of the measurand y varies for yxi due to the addition of the uncertainty uxi to the

value of its respective input quantity. Thus, the uncertainty component of each input source in

the unit of the measurand y is defined by the difference yxi � y
�

�

�

�

�

�, according to Eqs. (16)–(18)

uy x1ð Þ ¼ yx1 � y
�

�

�

�

�

� (16)

uy x2ð Þ ¼ yx2 � y
�

�

�

�

�

� (17)

uy x3ð Þ ¼ yx3 � y
�

�

�

�

�

� (18)

Thus, the combined standard uncertainty of y is finally evaluated as

uy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
u2y xið Þ

r

(19)

or by Eq. (20), if there are correlated uncertainties
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uy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
u2y xið Þ þ 2

XN�1

i¼1

XN

j¼iþ1
uy xið Þuy xj

� �

r xi; xj
� �

r

(20)

where r xi; xj
� �

is the correlation coefficient between xi and xj.

3.5. Evaluation of the expanded uncertainty

The result provided by Eqs. (10) and (11) corresponds to an interval that contains only one standard

deviation (or approx. 68.2%of themeasurements for a normaldistribution). In order tohave abetter

coverage probability for the result, the GUM approach expands this interval by assuming that the

measurand follows the behavior of a Student’s t-distribution. An effective degrees of freedom veff

for the t-distribution can be obtained by using theWelch-Satterthwaite formula (Eq. (21))

νeff ¼
u4y

PN
i¼1

∂y
∂xi

� 	4

u4xi

νxi

(21)

where νxi is the degrees of freedom for the ith input quantity.

The effective degrees of freedom is used to obtain a coverage factor k that depends also of a

chosen coverage probability p, which is often 95%. The expanded uncertainty Uy is then

evaluated by multiplying the combined standard uncertainty by the coverage factor k that

finally expands it to a coverage interval delimited by a t-distribution with a coverage probabil-

ity p (Eq. (22))

Uy ¼ kuy (22)

Note: The draft for the new GUM proposal suggests that the final coverage interval cannot be

reliably determined if only an expectation y and a standard deviation uy are known, mainly if

the final distribution deviates significantly from a normal or a t-distribution. Thus, they

propose distribution-free coverage intervals in the form of y�Up, with Up ¼ kpuy: (a) if no

information is known about the final distribution, then a coverage interval for the measurand

Y for coverage probability of at least p is determined using kp ¼ 1= 1� pð Þ1=2. If p ¼ 0:95, a

coverage interval of y� 4:47uy is evaluated. (b) If it is known that the distribution is unimodal

and symmetric about y, then kp ¼ 2= 3 1� pð Þ1=2
h i

and the coverage interval y� 2:98uy would

correspond to a coverage probability of at least p ¼ 0:95.

Example: The effective degrees of freedom for the torque measurement example is calculated

using Eq. (21). As the number of degrees of freedom for Type B uncertainties is considered

infinite, only Type A uncertainties are accounted. In this case,

νeff ¼
u4T

∂T
∂mR

� 	4

u4mR

νmR

¼ 6:5� 107 (23)
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Using t-distribution tables, the coverage factor for this value of υeff and p = 95% is k = 1.96.

Therefore, the expanded uncertainty is calculated as U ¼ kuT ¼ 1:96� 0:096 ¼ 0:2 N m, and

the measurement result is expressed as 668.0 � 0.2 N m. The GUM recommends that the final

uncertainty should be expressed with one or at most two significant digits.

4. Calibration curve and correlated uncertainties

One of the most valuable tools for the metrologist is the calibration curve. It is widely used in

measurement systems on which one cannot directly obtain the property value to be measured

of an object. Instead, a response from the system is measured. In this way, a calibration curve is

used to correlate the response from the system with well-known property values, usually

calibration standards (see Figure 5).

With a calibration curve in hands, the property value for a new unknown sample can be

directly determined by using the equation for the fitted curve, which is usually adjusted by a

linear regression. However, the calibration curve contains errors due to the lack of fit for the

experimental data, causing an uncertainty source to arise. Thus, when evaluating the uncer-

tainty for a predicted property value of xo corresponding to a new observation yo (for a new

unknown sample, for example), the LPU with correlation terms is applied on the linear

regression model in the form of Eq. (24). Eq. (25) represents the model for a predicted value yo
corresponding to a new observed value xo, in the case of the inverse process

x0 ¼
yo � a

b
(24)

yo ¼ aþ bx0 (25)

where a and b are, respectively, the intercept and the slope parameters of the linear regression.

Figure 5. An example of a linear calibration curve for atomic absorption spectroscopy: the absorption signals (instrument

responses) are plotted against the concentrations for a specific analyte.
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The application of the LPU with the correlation term to Eqs. (24) and (25) leads to Eqs. (26) and

(27), respectively, for both cases:

uxo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂xo
∂yo

� �2

u2yo þ
∂xo
∂a

� �2

u2a þ
∂xo
∂b

� �2

u2b þ 2
∂xo
∂a

� �
∂xo
∂b

� �
uaubra,b

s

(26)

uyo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂yo
∂xo

� �2

u2xo þ
∂yo
∂a

� �2

u2a þ
∂yo
∂b

� �2

u2b þ 2
∂yo
∂a

� �
∂yo
∂b

� �
uaubra,b

s

(27)

For Eq. (26), uxo is the combined uncertainty for the predicted value xo and uyo is the uncer-

tainty for the new observed response yo. For Eq. (27), uyo is the combined uncertainty for the

predicted value yo and uxo is the uncertainty for the new observed response xo. In both cases, ua

and ub are, respectively, the uncertainties for the intercept and the slope, and ra,b is the

correlation coefficient between a and b. These last equations can also be found in the ISO/TS

28037 [17], concerning the use of straight-line calibration functions.

The uncertainties for a and b can be obtained by Eqs. (28) and (29), respectively, while the

correlation coefficient ra,b is given by Eq. (30)

ua ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2i

n
P

x2i �
P

xið Þ2

s

(28)

ub ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n
P

x2i �
P

xið Þ2

s
(29)

ra,b ¼ �

P
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2i

q (30)

where n is the number of points used to construct the curve, xi are the values for the indepen-

dent variable of the linear equation for each yi, and S2e is the residual variance of the fitted

curve, obtained by Eq. (31)

S2e ¼

P
yi � byi
� �2

n� 2
(31)

where byi are the interpolated values in the fitted curve for each xi, that is, byi ¼ aþ bxi.

Example: This time, let us consider that the calibration certificate of a thermometer presents

the results shown in Table 1.

For the data shown in Table 1, the calibration curve of the thermometer is expressed by

byo ¼ 1:1484þ 0:9578xo. For a temperature value indicated by the thermometer of xo = 22�C,

applying the equation of the calibration curve yields a reference value of byo = 22.22�C.
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Using Eqs. (28)–(31), it is possible to calculate the values of Table 2 that shows the statistical

data for the thermometer calibration curve.

Considering that there is no uncertainty for the observed point xo = 22�C, that is, uxo = 0, the

uncertainty of yo arising from the interpolation process of the point xo = 22�C can then be

calculated by applying Eq. (27) and the data from Table 2, resulting in the following:

uyo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12∙0:19432 þ 222∙0:00842 þ 2∙1∙22∙0:1943∙0:0084∙ �0:995ð Þ
q

¼ 0:021�C.

Another frequently used expression for the standard uncertainty of the predicted value uxo is

given by Eq. (32) [13, 18]:

uxo ¼
Se
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m
þ 1

n
þ yo � y

� �2

b2
P

xi � xð Þ2

v

u

u

t (32)

where Se is the residual standard deviation of the fitted line,m is the number of observations of

yo, n is the number of points composing the calibration curve, and yo is the average value

obtained from the observations of yo. In this expression, the uncertainty component due to the

observations of yo is evaluated by [19]

uyo ¼
Se
ffiffiffiffi

m
p (33)

However, Hibbert [19] suggests that if the standard deviation of the indications is known from

consistent data, uyo can be better evaluated by

Indication (xi) (
�C) Reference value (yi) (

�C)

20 20.3

21 21.3

22 22.2

23 23.1

24 24.2

25 25.1

27 27.0

Table 1. Values of the calibration certificate of a thermometer.

Data Value Unit

S2e 0.0024 �C2

ua 0.1943 �C

ub 0.0084

ra,b �0.995

Table 2. Statistical data for the calibration curve of a thermometer.
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uyo ¼
Syo
ffiffiffiffi

m
p (34)

where Syo is the standard deviation of the observations of yo, and Eq. (32) is then expressed as

Eq. (35) [18, 19]:

uxo ¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2yo
m

þ S2e
n
þ S2e yo � y

� �2

b2
P

xi � xð Þ2

v

u

u

t (35)

5. Assessment of uncertainty in instrument calibration

The methodology presented in the GUM can also be used to evaluate the uncertainty in the

calibration of a measuring instrument. Following the steps of the GUM, the measurand for the

model used in the calibration must be defined by the quantity that evaluates the systematic

error of an instrument over its entire measurement range. Thus, Eq. (36) can be generally used

for the evaluation of uncertainty in a calibration process:

e ¼ V ind � Vref (36)

where e is the systematic error of the instrument for a fixed range, V ind is the value indicated by

the instrument, and Vref is the reference value corresponding to the indicated value.

From Eq. (36), a basic cause-and-effect diagram can be assembled for the calibration uncer-

tainty assessment of an instrument, as shown in Figure 6.

The sources of uncertainty in this case involve the repeatability of indicated values, the resolu-

tion of the instrument in calibration, and the certificate of calibration of the reference values.

Thus, an evaluation of the uncertainty about the systematic error should be done for each

nominal value of the instrument in calibration. The combined standard uncertainties uei for

each calibrated nominal value are obtained by applying the LPU, as shown in Eq. (37)

Figure 6. A general cause-and-effect diagram for the calibration of an instrument.
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uei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂ei
∂V ind

� �2

u2V indRes
þ

∂ei
∂V ind

� �2

u2V indRep
þ

∂ei
∂Vref

� �2

u2Vref

s

(37)

where uV indRes
, uV indRep

, and uVref
are, respectively, standard uncertainties due to resolution of the

instrument, repeatability of indication values, and certificate of calibration of the reference.

These standard uncertainties are obtained as described in Section 3.

The final calibration result can then be presented according to Table 3. In addition, correction

values or systematic errors can also be reported.

6. Monte Carlo simulation applied to metrology

This section presents the limitations of the GUM and shows an alternative methodology based

on the propagation of distributions that overcome those limitations. For further details, please

refer to the authors’ publication that addresses the use of the Monte Carlo methodology

applied to uncertainty in measurement [15] or to the JCGM 101:2008 guide [5]. Also, in the

field of analytical chemistry, the latest version of EURACHEM/CITAC guide (2012) was

updated with procedures to use Monte Carlo simulations [13].

6.1. Limitations of the GUM approach

As mentioned earlier, the approach to evaluate measurement uncertainties using the LPU as

presented by the GUM is based on some approximations that are not valid for every measure-

ment model [5, 20–22]. These approximations comprise (1) the linearization of the measure-

ment model made by the truncation of the Taylor series, (2) the use of a t-distribution as the

distribution for the measurand, and (3) the calculation of an effective degrees of freedom for

the measurement model based on the Welch-Satterthwaite formula, which is still an unsolved

problem [23]. Moreover, the GUM approach usually presents deviated results when one or

more of the input uncertainties are relatively much larger than others, or when they have the

same order of magnitude than its quantity.

The limitations and approximations of the LPU are overcome when using a methodology that

relies on the propagation of distributions. This methodology carries more information than the

simple propagation of uncertainties and generally provides results closer to reality. It is

Range Indicated value Reference value Expanded uncertainty Coverage factor

Range 1 Vind1 Vref1 U1 k1

Range 2 Vind2 Vref2 U2 k2

… … … … …

Range N VindN VrefN UN kN

Table 3. A typical format for the result of calibration of an instrument.
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described in detail by the JCGM 101:2008 guide (Evaluation of measurement data—Supple-

ment 1 to the “Guide to the expression of uncertainty in measurement”—propagation of

distributions using a Monte Carlo method) [5], providing basic guidelines for using Monte

Carlo numerical simulations for the propagation of distributions in metrology. This method

provides reliable results for a wider range of measurement models as compared to the GUM

approach and is presented as a fast and robust alternative method for cases where the GUM

approach does not present good results.

6.2. Running Monte Carlo simulations

The propagation of distributions as presented by the JCGM 101:2008 involves the convolution

of the probability distributions for the input sources of uncertainty through the measurement

model to generate a distribution for the output (the measurand). In this process, no informa-

tion is lost due to approximations, and the result is much more consistent with reality.

The main steps of this methodology are similar to those presented in the GUM. The measurand

must be defined as a function of the input quantities through a model. Then, for each input, a

probability density function (PDF) must be assigned. In this step, the concept of maximum

entropy used in the Bayesian statistics should be used to assign a PDF that does not contain

more information than that which is known by the analyst. A number of Monte Carlo trials are

then chosen and the simulation can be set to run.

Results are expressed in terms of the average value for the output PDF, its standard deviation,

and the end points that cover a chosen probability p.

Example: Returning once more to the torque measurement example, one can consider the

following PDFs for the input sources:

Mass (m). For repeated indications, the JCGM 101:2008 suggests the use of a scaled and shifted

t-distribution. Thus, the distribution should use 35.7653 kg as its average, a scale value of

s=
ffiffiffi

n
p ¼ 0:3 g=

ffiffiffiffiffi

10
p

¼ 9:49� 10�5 kg, and n� 1 ¼ 9 degrees of freedom.

For the calibration component, the supplement 1 recommends the use of a normal distribution

if the number of degrees of freedom is not available. In this case, the mass value of 35.7653 kg is

taken as the mean and a standard deviation of Um=k ¼ 0:1 g=2 ¼ 0:00005 kg should be used.

However, to facilitate the calculation of the final mean value of the measurand, the mean

should be shifted to zero, since both values for the mass sources will be added together.

Local gravity acceleration (g). This case is similar to the case of the balance certificate,

for which we have values of expanded uncertainty and coverage factor without information

on the number of effective degrees of freedom. Thus, a normal distribution with a mean

of 9.80665 m/s2 and a standard deviation of Ug=k ¼ 0:00002 m=s2ð Þ=2 ¼ 0:00001 m/s2 are

assumed.

Length of the arm (L). In this case, as poor information about the interval is available

(�0.5 mm), an uniform distribution is assumed with a minimum value of 1999.5 mm and a

maximum value of 2000.5 mm.

Metrology24



Table 4 resumes the input information for the simulation, which was executed for

M ¼ 200; 000 trials, generating the output distribution shown in Figure 7.

Table 5 summarizes the statistical data of the output distribution, including the upper and

lower limits of a probabilistically symmetric range for a 95% coverage probability.

Uncertainty source Type PDF PDF parameters

Mass (repeatability) A t-distribution Mean: 35.7653 kg; scale: 9.49 x 10�5 kg; degrees of freedom: 9

Mass (certificate) B Normal Mean: 0 kg; standard deviation: 0.00005 kg

Local gravity B Normal Mean: 9.80665 m/s2; standard deviation: 0.00001 m/s2

Arm length B Uniform Minimum: 1999.5 mm; maximum: 2000.5 mm

Table 4. A summary of sources of uncertainty and their associated distributions for the measurement of torque.

Statistical data Value (N m)

Mean 667.970

Standard deviation 0.096

Lower limit for p = 95% 667.812

Upper limit for p = 95% 668.129

Table 5. A summary of the statistical data for the output distribution for the measurement of torque.

Figure 7. Output distribution resulting from the Monte Carlo simulation for the evaluation of uncertainty of measure-

ment of torque.
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7. Conclusions

Measurement uncertainty and metrological traceability are interdependent concepts. The eval-

uation of uncertainties of measurement results is essential to ensure that they are reliable and

comparable. Moreover, the process that involves the modeling of measurement systems and

evaluation of their uncertainties is of great importance for the metrologist as it constitutes a

tool for the management of the measurement laboratory, since it can indicate exactly where to

invest to get better, more qualified results.

The GUM and the application of the LPU continue to be the most used and widespread

methodology for bottom-up uncertainty evaluation in metrology. It is adopted worldwide

and provides a strong base for comparability of measurement results between laboratories.

On the other hand, a new version for the GUM is currently under revision. This version should

be aligned with its supplements in a more harmonized way, incorporating concepts from

Bayesian statistics and resolving some inconsistencies. As a consequence, if the mentioned

distribution-free coverage intervals are maintained, results for the expanded uncertainty will

be greatly overestimated compared to the current version of the GUM.

In this way, the best alternative for a more realistic and lean uncertainty assessment would be

through a numerical simulation using the Monte Carlo method, which should lead to a smaller

and more reliable uncertainty result.
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Abstract

The approach to the improving the accuracy of the impedance parameter measurements
is described. This approach is based on the well-known variations of the influence of
the disturbing factors on the results of measurement. Using these variations, measure-
ment circuit provides the additional number of measurements, equal to the number of
the disturbing factors. System of equations describes these results of measurements. The
solution of this system eliminates the influence of the appropriate uncertainty sources
on the results of measurement and gets the true result of the measured value. In
addition, the solution of this system also gets the values of the uncertainty components
in every measurement and possibility to monitor the properties of the measurement
circuit. Examples of the realization of this method for improving the accuracy of the
impedance parameter measurements in different bridges are given.

Keywords: impedance, variation calibration, uncertainty, measurement, algorithm,
comparison, quadrature, standard, digital synthesis, frequency range, transfer’s function

1. Introduction

History of the electricity science is the history of the development, in sufficient part, of the new

methods of measurements. These methods are described perfectly well, for example, in [1].

Widely used replacing and substitution methods entered in all handbooks [2]. Bridge methods

are described in many monographs [3, 4]. Monographs [5, 6] describe different methods of

bridges’ accurate balance. Many methods of uncertainty correction are described in [7, 8]. All

these methods have their widely discussed advantages and disadvantages. There exists no

method that could decide all problems, which appears in measuring practice. This chapter

describes the method of the variational calibration [9] in the impedance measurements. This

method is based on the sequential variation of the influence of the disturbing factors on the

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



results of measurement. System of equations describes these results. Solution of this system

eliminates influences of the disturbing factors and gets the accurate results of measurement.

This method significantly simplifies the accurate devices, reducing their weight, dimension

and cost, but increases the time of measurement.

2. The variational calibration

2.1. Theoretical basis of the variational calibration

Every measuring circuit (MC) has the input value, which has to be measured and generates

measured output value. In an ideal case, the results of measurement depend on the input value

and the transfer function k of the MC only.

Formula (1) describes the result of measurement of ideal MC:

Zx ¼ kZ0 (1)

Formula (2) describes the standard uncertainty δid of such measurement:

δid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ
2
0 þ δ

2
s

q

(2)

Here δ0 and δs are the uncertainties, of the standard Z0 and the uncertainty, caused by the

sensitivity of the MC.

In the real MC, the results of measurement Ζx0 also depend on the complex of the disturbing

factors z1…zi…zj as well (for simplicity of the description, these factors on the Figure 1 are

shown being out of MC). These factors create proper complex of the uncertainties of measure-

ments δ1…δi…δj and shift the appropriate result Zx0 of measurement from its ideal value Zx.

Figure 1. Real measuring circuit.
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The much more complicated mathematic model (3) of the real MC now describes the results of

measurement:

Zx0 ¼ γ Zx; δ1…δi…δj; δ0; δs

� �

(3)

Usually the model (3) is well known from preliminary investigations of the MC.

In the simplest case, every disturbing factor z1::zi::zj creates appropriate uncertainty compo-

nents δ1…δi…δj. In more complicated cases, some disturbing factors z1…zi can influence

some complex Zi…Ziþm of the results of measurement. But we know functions δi ¼

f i z1…zi…znð Þ and do not know just the constant coefficients, which enters into these depen-

dences.

Formula (4) describes the standard uncertainty δr of the measurement of the real MC:

δr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ
2
0 þ Σ

j
1δ

2
i þ δ

2
s

q

(4)

To eliminate the influence of the uncertainties δ1…δi…δj on the results of measurement, the

variation method was developed (VM) [9]. Figure 2 illustrates this method. Here, MC contains

n additional variators V1…Vj. Last ones influence the uncertainty sources z1…zj and change

the uncertainty δ1…δj. It creates the output of the proper results of MC measurement Zx1…Zxj.

Variators cannot change the uncertainties δ0 and δs. These uncertainties are supposed to be

known or equal to zero during the VM calibration.

VM consists of the following steps:

1. First, MC measures initial value Zx0 of the input value Zx.

2. Then, MC consequently varies the influence of the disturbing factor zi on the well-known

value αi.

Figure 2. Variational measuring circuit.
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Variations could be provided in any order. To simplify the system of equations, it is prefer-

able to perform variations sequentially and to switch ON the variation αi when all other

variations are switched OFF.

Variations could have any law. To simplify the system of equation, it is preferable to

provide the multiplicative variation (when we multiply the appropriate uncertainty com-

ponent δi on well-known ratio αi (δiv = αiδi)) or additive variation (when we add the

appropriate well-known uncertainty Δv to the uncertainty component Δim (Δiv = Δim + Δv)).

3. After every variation, MC measures the results of the measurement Zx1…Zxi…Zxj.

4. The system of Eqs. (5) describes these measurements:

Zx0 ¼ γ Zx; δ1…δi…δj; δ0; δs
� �

Zx1 ¼ γ Zx; δ1;α1…δi…δj; δ0; δs
� �

Zxj ¼ γ Zx; δ1…δi…δj; aj; δ0; δs
� �

(5)

The system (5) contains j + 1 unknown quantities: Zx and uncertainties of measurement

δ1…δj, and j + 1 results of measurement Zx0…Zxj. Solution (6) of this system gets the true

value of the results of measurement Zx and the values of the uncertainties δ1…δj of the

measurement:

Zx ¼ r0 Ζx0 � Zxj

� �

; α1 � αj

� �

; δ0; δs
� �

δ1 ¼ r1 Ζx0 � Zxj

� �

; α1 � αj

� �

; δ0; δs
� �

δj ¼ rj Ζx0 � Zxj

� �

; α1 � αj

� �

; δ0; δs
� �

(6)

Periodical variation calibration lets us to observe the behavior of every disturbing factor, to

determine their stability, to monitor measuring circuit and to ensure precision of the period of

the variational calibration.

Let the uncertainty caused by the finite sensitivity of the i-measurement be δsi and the uncer-

tainty of the variation αi be δαi. In this case, formula (7) describes the resulting standard

uncertainty δc of the measurement with variation calibration:

δc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ20 þ Σ
j
0 δ2i δα

2
i þ δ2si

� �

q

(7)

Eq. (7) shows that the VM sharply decreases influence of the uncertainty components δi on the

common uncertainty of measurement (on the 1/δαi times).

Let us suppose uncertainty source zi creates uncertainty δi = 10
�3 and we need to decrease it to

the value 10�6. It means that we have to provide appropriate variation with uncertainty better

than 10�3 only. It is a very important result of the VM. This effect is restricted only by the

stability of the uncertainties δ1…δj during the time of measurement.

Let us suppose that time of every measurement is ti. It means that the common time tc of

measurement increases to the value:
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tc ¼ Σ
j
0ti (8)

Let us suppose that δαi = 0 and δ0 = 0. In this case, formula (9) describes the standard uncertainty

of measurement caused by sensitivity of measurements only:

δc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

Σ
j
0 δ

2
si

q

: (9)

Formulas (8) and (9) show that the variation method has two disadvantages:

• Variation method needs n + 1 measurement instead one only. It sufficiently increases the

time of measurement.

• Variation method increases the contribution of measurement sensitivity δsi in the common

uncertainty of measurement.

We can overcome these two disadvantages of the variation method in different ways. Here, we

shortly describe time and space clustering of the thesaurus of the uncertainty sources.

2.1.1. Time clustering

Usually, different uncertainty sources have different typical speeds of drift. We can divide the

thesaurus of j uncertainty sources into clusters, which have congruous time of drift. Figure 3

illustrates this approach. In Figure 3, thesaurus of the j uncertainty components is divided into

three clusters T1, T2 and T3 (j = m + n + k).

The first cluster (T1) joins m of the most stable uncertainty sources. It could be instability of the

internal standards or arms ratios in transformer bridges, and so on. MC provides their calibra-

tion very seldom, for example, one time per year. For this calibration, MC performs sequential

Figure 3. Variation calibration with time clustering.
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variation of all sources of uncertainty and providesm + n + k + 1measurements. The system (5)

of equations describes the results of these measurements. Solution (6) of this system gets us

values of the m uncertainties of the first cluster.

The second cluster (T2) joins the n less stable sources of the uncertainty. It could be the

temperature dependences of the operational amplifiers parameters, and so on. Calibration

of these sources is provided more frequently, for example, one time per hour. During this

calibration, we suppose that them uncertainties of the first clusters are stable. Values of these

uncertainties enter in the system (5) as constants. To find values of the n uncertainties of the

second cluster, MC varies sequentially the uncertainty sources n + k, provides proper mea-

surements and solves the system (5). It needs n + k + 1 measurements.

The third cluster (T3) joins the k uncertainty sources which change most quickly. This cluster

mostly includes the sources, which directly depends on the parameters of the object to be

measured. This calibration is aimed to find the true results of measurement and values of the

last k uncertainties. During this calibration, we suppose that uncertainties of the first and

second clusters are stable. Their appropriate values are entered in system (5) as constants.

Calibration now consists of sequential variation of the k uncertainties of third cluster and

appropriate measurements. Solution of the system (5) gets us the true results of measurement

Zx and last k uncertainties. This calibration needs k + 1 measurements only.

Let us suppose that any measurement needs time ti. Formula (10) describes the weighted

average tc of the measurement with variation calibration:

tc ¼ Σ
k
1ti 1þ

nþ k

mþ nþ k

Tk

Tm
þ

k

mþ nþ k

Tk

Tm

� �

(10)

where Σ
k
1ti is the time of the k cluster calibration and measurement, Tn=Tm is the ratio of the

periods of the second Tn and first Tm clusters calibrations and Tk=Tm is the ratio of the periods

of the third Tk and first Tm cluster calibrations.

Formula (10) shows that the time of measurement decreases only slightly during the time of

calibration of the third cluster. It means sufficient diminution of the time of measurement.

2.1.2. Space clustering

Sometimes, we do not need to separately study every component of the measurement uncer-

tainty. In this case, we use space clustering. During the space clustering, MC is represented as a

complex of the n quadripoles and standards to be compared. Figure 4 shows such decompo-

sition of the measurement circuit.

In Figure 4, K1… Kn are the quadripoles of the MC and the V1…Vn are the variators used to

vary the transfer coefficient of the proper quadripole.

The following formula describes the decomposed MC:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ (11)
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where Zx and Zx0 are the MC input and output values, respectively, ΔΚ1… ΔΚi… ΔΚn are the

uncertainties of the quadripole transfer coefficients K1…Ki…Kn.

The following formula expresses the dependence of the measurement uncertainty δr on the

components of the decomposed MC:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ
2
0 þ δ

2
s þ Σ

n
1ΔK

2
i

q

(12)

where δs is the uncertainty caused by the finite MC sensitivity.

Let us provide n well-known variations ν1…νi…νn of the quadripole transfer coefficients

K1…Ki…Kn. MC provides the new measurements Zx0…Zxi…Zxn of the unknown value Zx after

every variation. The system of Eq. (13) describes these measurements:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ

Zx1 ¼ f Zx;K1;ΔK1; v1…Ki;ΔKi;…Kn;ΔKnð Þ

Zxn ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKn; vnð Þ

(13)

Solution of the system (13) of equations gets accurate results of measurement together with all

uncertainties of the quadripoles.

Formulas (8) and (9) describe the uncertainty and time of measurement when using the space

clustering as well. However, the number of measurements in case of space clustering is much

less. Error accumulation and common time of measurement are much less as well.

We can decompose the measuring circuit in different ways. Optimal decomposition depends

on the structure of the measuring circuit. Here, it is impossible to analyze all these possibilities.

In most cases, we are forced to use time and space clustering together.

Figure 4. Variation correction with space clustering.
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It should be noted that variation method was used earlier in some measurements (e.g., elimination of

the uncertainty caused by self-heating of the resistive thermometer in temperature measurements).

Here, we consider generalization and dissemination of this method in different areas, first in imped-

ance measurements.

2.2. Experimental developments of the VM

VM was used in several developments. It is too complicated to analyze all these possible

applications. Here, we consider only some applications of this method in very important cases

of widely used digibridges and in accurate transformer bridges.

2.2.1. Application of the VM in digibridges

Development of the integral operational amplifiers and microprocessors resulted in the new

class of measuring devices—digibridges [10–12]. Nowadays, digibridges cover most part of

the specific market of the impedance meters. Now many companies manufacture digibridges

(HP, Agilent, TeGam, IetLab, Wine Kerr, etc).

2.2.1.1. Operation and analysis

A usual digibridge consists of two serially coupled impedances Zx and Z0 (see Figure 5) These

impedances are connected between outputs of the generator G and the protecting amplifier A.

Negative input of this amplifier is connected to the common point of the impedances Zx and

Z0. Amplifier A creates in this point the potential, close to zero (virtual ground). The same

current Ix flows through both impedances Zx and Z0 and creates voltages Ux and U0. Differ-

ential vector voltmeter DVV, through switcher S0, measures these voltages and transfers the

Figure 5. Structure of the digibridge with variational calibration.
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results of measurement to microcontroller μC. μC controls the operation of the ΜC, processes

results of the voltages measurements and calculates the ratio of two impedances Zx and Z0.

Display D shows results of measurements.

The amplifier A protects measuring circuit and decreases the influence of the parasitic admit-

tance Yc between the amplifier inputs on the results of measurement.

In case if gain K is infinite, Eq. (14) describes the process of measurement:

Zx=Z0 ¼ Ux=U0 (14)

Let gain K be finite. In this case, admittance Yc between the amplifier inputs cause one

of the biggest sources of the measurement uncertainty. This uncertainty (δΖ) strongly limits

the measurements of the high impedances on high frequencies. δΖ is described by the

equation:

δΖ ¼ YcZ0= 1þ Kð Þ (15)

If K » 1, we can write:

δZ ffi YcZ0=K (16)

Here, the values Yc and K are the disturbing factors. The quotient of the Yc and K can be

considered as the sole source of the uncertainty. Let us provide the multiplicative variation of

the gain K of the amplifier A. To vary K on ratio α1, the divider Dv with transfer coefficient 1 or

α1 (Figure 5) is used. After this variation, MC measures the additional voltage U0v.

The system of three equations describes the measurements of the voltages Ux, Uo and Uov.

Ux ¼ IxZx; U0 1� YcZ0=Kð Þ ¼ IxZ0; U0 1� YcZ0=Kð Þ ¼ IxZ0 (17)

Solution of this system gets the following formula (18):

Zx=Z0 ¼ Ux 1� δU � α1= 1� α1ð Þ½ �=U0 (18)

where δU ¼ 1�U0=U0v

Analysis of the formula (18) shows that the uncertainty of the variation calibration has minimal

if α1=0.5. Then:

Zx=Z0 ¼ Ux 1� δUð Þ=U0 (19)

Formula (19) shows that the ratio Zx/Z0 does not depend on the quotient of the Yc and K.

But here increases component of the uncertainty, caused by the increased number of mea-

surements. VV measures quadrature components a and b of three voltages: Ux, Uo and U0v.

Let us suppose that effective input noise of the VV in all these measurement has the same

value Δ and the results of measurement are not correlated. In this case, the following

formulas are justified:

Variational Calibration
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Ux ¼ ax þ Δð Þ þ j bx þ Δð Þ;U0 ¼ a0 þ Δð Þ þ j b0 þ Δð Þ;U0v ¼ a0v þ Δð Þ þ j bx þ Δð Þ (20)

Let us substitute formula (20) in (14) and (19). It gets the following formulas for two cases:

Without variational calibration:

δm ≈

ffiffiffi

2
p

δn and Δa ≈

ffiffiffi

2
p

δn (21)

With variational calibration:

δm ≈

ffiffiffi

5
p

δn and ∆a ≈

ffiffiffi

2
p

δn (22)

where δm and Δa are the multiplicative and additive uncertainties caused by the relative noise

δn of the VV.

Formulas (21) and (22) show that the additive uncertainty ∆a caused by the relative noise

(δn ¼ Δ=U0) in both cases is the same. But these formulas also show that due to the variational

calibration, the multiplicative random uncertainty δm increases 1.6 times.

Calculation of the uncertainty by the formula (16) has the truncation error δt caused by

inequality K » 1 δt ¼ Z0Yc=Kð Þ. This error sharply increases when K on high frequencies is

low, so that calibration practically does not work when K! 1. If amplifier gain K is so low, we

cannot consider value Yc/K as the sole source of the uncertainty. As a result, we have to provide

two separate variations: multiplicative variation of the gain K and additive variation of the

admittance Yc (using variational admittance Yv and switcher Sv). DVV measures sequentially

voltages Ux, U0 and U
0

0, U
00

0 after multiplicative variation of the gain K and additive variation of

the admittance Yc.

System of three equations describes these four measurements:

Ux=U0 ¼ Zx=Z0 1þ YcZ0= 1þ Kð Þ½ �
Ux=U0 ¼ Zx=Z0 1þ YcZ0= 1þ α1Kð Þ½ �
Ux=U0 ¼ Zx=Z0 1þ Yc þ Yνð ÞZ0= 1þ Kð Þ½ �

(23)

Solution of the system (23) gets following two equations:

YcZ0 ¼ A
0 � 1

	 


α1K þ 1ð Þ K þ 1ð Þ=K 1� α1ð Þ

aK2 þ bK þ c ¼ 0
(24)

here: a ¼ ½ð1þ α1Þ � α1ðA
0 � 1Þ�ðA00 � 1Þ, b ¼ ðYvZo þ A

0ÞA00 � A
0
, c ¼ ðA0 � 1ÞðA00 � 1Þ,

A
0 ¼ U

0

0=U0, A
00 ¼ U

0

0=U0

Solution of the Eqs. (24) and substitution of these results in (15) gets the accurate results of

measurement which absolutely does not depend on the values Yc and K.
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The described approach could be used for the accurate calibration of any amplifier with positive or negative

gain, followers, gyrators, and so on. It could be used for calibration of any control system as well.

3. Experimental results

The earlier described approach was used in digibridge MNS1200. This digibridge was devel-

oped for Siberian Institute of Metrology (Novosibirsk), to be used in working inductance

standard. Its short specification is as follows.

MNS1200 operates in frequency range of DC to 1 MHz.

Frequency set discreteness 2 � 10�5.

Capacitance range of measurement (F) 10�17–105.

Resistance range of measurement (R) 10�6–1014.

Inductance range of measurement (H) 10�12–1010.

Dissipation factor tgδ (tgφ) 10�6–1.0.

Main uncertainty (ppm) 10.

Sensitivity (ppm) 0.5

Inner standard instability (24 hours, ppm) � 2.

Weight (kg) 4

MNS1200 appearance is shown in Figure 6.

Instability of the MNS1200 inner standard can achieve 10�4 in a long period of time. To get

maximal accuracy, MNS1200 can be calibrated by arbitrary R,L,C outer standard. In this case,

Figure 6. Digibridge MNS1200.
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uncertainty of measurement depends on short-time stability of inner standards. Results of the

24-hour 1 Ohm standard measurements are shown in Figure 7.

3.1. Application of the VM in transformer bridge

Accurate comparison and unit dissemination of the impedance parameters are provided using

many different, very complicated manual bridges with numerous different standards. The

main world-renowned laboratories (BIPM, NIST, NML, NPL, PTB, VNIIM, etc.) in developed

countries have their own primary standards, based on the calculable capacitor [13, 14] and the

appropriate transformer bridges [15, 16], on the quantum hall resistance [17] and the appro-

priate bridges [18, 19] and very accurate quadrature transformer bridges for comparison of

different impedance parameters [20, 21], that have original constructions. All these bridges

contain complicated set of devices and have long and intricate handle balancing processes. In

addition, these bridges and standards are of different kinds and are located in various labora-

tories. The process of calibration and traceability is, therefore, complicated and very expensive.

Uncertainty of the measurement of these bridges achieves 10�8–10�9. It makes them an excel-

lent instrument for fundamental investigations.

For practical needs of the metrologic calibration, it is enough to provide measurements with

uncertainty about 10�6. In this case, the equipment have to be universal, to compare arbitrary

standards, to have low cost and weight and to be transportable. The complex of bridges

described later satisfies these demands. Complex consists of autotransformer and quadrature

bridges. Both of them are based on the variational calibration. Autotransformer bridge pro-

vides unit transfers in the whole range of the impedance of the C,L,R standards. Quadrature

bridge provides cross transfers of the units. Last bridge is described in [22, 23].

This chapter describes the part of the results of this project, covering the development of the

transformer bridge-comparators which transfer units of the resistance, inductance, capacitance

Figure 7. Results of the 24-hour 1 Ohm standard measurements.
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and dissipation factor in a whole range of measurements and reciprocal transfer of any units.

Balance and calibration of these bridges are based on the variational method.

3.1.1. Autotransformer bridge: description and analysis

Early autotransformer bridges were described in [24, 25]. These bridges have been widely used

up to now [15, 16]. To eliminate the influence of the cable impedance (yoke) on the results of

measurement, double autotransformer bridges are used [3, 5]. The wide-range double auto-

transformer bridge contains two inductive dividers, simultaneously controlled for bridge

balance. For accurate measurements, these inductive dividers usually are of a two-stage design

at least. Every stage of these inductive dividers [26] consists of a lot of turns and appropriate

complicate switchers. They have to have multidigit capacity (up to seven or eight digits). This

quite complicates the bridge.

Development of the variational bridge has to solve two problems:

• to eliminate the Yoke (Zn) influence on the results of measurement without using the

double autotransformer bridge;

• to decrease sharply the number of the autotransformer divider decades without loss in the

accuracy of measurement.

The simplified measuring circuit of the automatic variational bridge (PICS) [27], which solves

these problems, is shown in Figure 8.

The bridge consists of the supply unit (the generator G connected to the voltage transformer

TV), the main autotransformer AT and the variationally balanced 90� phase shifter [28], which

is calibrated through calibration circuit CC. The vector voltmeter VV (through the preamplifier

PA and switchers S1 and S2) measures the bridge (U1, U2) and the calibration circuit CC (Uc)

Figure 8. Circuit diagram of the autotransformer bridge.
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unbalances the signals. The differential voltage follower 1:1 compensates the voltage drop Un

on the cable impedance Zn. The microcontroller μC transfers the results of the VVmeasurements

to the personal computer PC and controls the bridge balance and calibration of the phase shifter

90�. The autotransformer AT Carries on its core windings m2, m1c and m1k. These windings are

used to balance the bridge by the main (m1c) and secondary (m1k) parameters. The standards to

be compared Z1 and Z2 are connected serially by the cable (yoke) and by their high potential

ports, to voltage transformer TVand to the windings m1c and m2 of the autotransformer AT.

The output of the 90� phase shifter is connected in series with the winding m1c to create the

balance winding m1 ¼ m1c þ jm1k.

The drop of the voltage Un acts on the impedance Zn of the cable which connects Z1 and Z2.

This voltage is applied to the input of the differential voltage follower 1:1.

The two-channel VV has two digital synchronous demodulators, proper LF digital filters and

Σ-Δ ADC. It simultaneously measures two orthogonal components of the bridge unbalance

signals. This voltmeter has high selectivity (equivalent Q-factor is higher than 105). Its integral

nonlinearity is better than 10�4 and relative sensitivity is better than 10�5. The VV is calibrated

automatically and periodically by variational algorithm, described in [29].

On the low impedance ranges, the drop Un of the voltage on the cable impedance increases. This

increases the uncertainty of the bridge unbalancemeasurement. To decrease this effect, the voltage

follower 1:1 is used. This follower places thenameddropof thevoltage between lowpotential pins

of the windings m1 and m2. It decreases the effective cable impedance from Zn to the equivalent

value Zne = Znδ, where δ is the uncertainty of the transfer coefficient of the voltage follower.

To decrease the number of the decades of the autotransformer divider and eliminate the

influence of the Zn on the results of measurement, the bridge operates in a non-fully balance

mode and use twice variational balance [27].

In compliance with developed variational algorithm, VV measures sequentially the bridge

unbalance signals U1 and U2. After that, μC varies the turns of the winding m1 on ∆mv and

VV measures the variational signal U2v.

The system of Eqs. (30) describes these three measurements:

U0 Z1=Zcð Þ �U0 1� Zn 1þ δð Þ=Zc½ �m1= m1 þm2ð Þ �U1 ¼ 0

�U0 1� Zn 1þ δð Þ=Ζc½ �m2= m1 þm2ð Þ þU0Z2=Zc þU2 ¼ 0

�U0 1� Zn 1þ δð Þ=Ζc½ �m2= m1 þm2 þ Δmvð Þ þU0Z2=Zc þU2v ¼ 0

(25)

where Zc = Z1 + Z2 + Zn, and δ is the uncertainty of the voltage follower 1:1, U0 is the supply

voltage.

The formula (26) gives the solution of the system (25):

δZ ¼ �
δv

2

m1 þm2

m2
Cþ

m1 �m2

m1 þm2
D

� �

= 1þ CþDð Þδv½ � (26)

where
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C ¼ U2 þU1ð Þ= U2v �U2ð Þ; D ¼ U2 �U1ð Þ= U2v �U2ð Þ; δv ¼ δm= 1þ δmð Þ; δm ¼ Δmv= m1 þm2ð Þ

μC uses the results of the calculation of the bridge unbalance δZc by described algorithm in

two stages:

• in the first stage, μC makes quick, automatic balance of the bridge on the four high-order

decades (balance stage);

• in the second stage, μC increases the sensitivity of the voltmeter VV on 104 and

decreases the value of the variation ∆mv of the m1 turns in the same ratio. Then, μC

repeats the measurements by described algorithm. Results of these measurements and

calculations by formula (26) determine the balance point coordinates and find the

impedance ratio:

Z1

Z2
¼

m1

m2
� δZ (27)

The final result is given in 8.5 digits.

The bridge balance and data processing by described variational algorithm reduce the number

of the autotransformer dividers to only one and sharply (twice) reduce the number of the digits

of this divider.

The 90� phase shifter and the calibration circuit CC do not contain accurate internal standards

of capacitance or resistance. To get good accuracy, we use the special phase shifter calibration

procedure based on the variational method. Simplified structure of this phase shifter is shown

in Figure 9.

Phase shifter consists of serially connected inverter I and proper phase shifter PS. Firstly,

calibrating circuit (resistors R1 and R2) and switchers S1 and S2 are used to calibrate inverter

I. Secondly, calibrating circuit (resistor R1 and capacitor C1) and switchers S3 and S4 are used

to calibrate the phase shifter PS. Vector voltmeter VV, through switcher S5 measures unbal-

ance signals of the first or second calibration circuits and translates the results of measure-

ments to microcontroller μC. Finally, one controls all calibration procedure and calculates PS

real transfer coefficient.

Calibration procedure consists of two stages.

Figure 9. Structure of the phase shifter.
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4. Calibration of the inverter I

To calibrate the inverter, the VV measures three signals of the calibration circuit R1–R2:

• The initial output signal of the calibration circuit Ui1;

• The signal Ui2 after the variation of the inverter transfer coefficient on the value δiv;

• The signal Ui3 after the inversion of the connection of the calibration circuit between the

input and output of the inverter I by the switchers S1 and S2.

Complex of these signals is described by proper system of equations. Solution of this system

(formula 38) gets the accurate deviation δi of the inverter transfer coefficient from its nominal

value “1.”

δi ¼ δia 1þ δkiað Þ (28)

where.

δia ≈
δiv

2
Ui3þUi1

Ui2�Ui1
; δkia ≈

δiv

2
Ui3�Ui1

Ui2�Ui1
; δia and δkia are the approximate values of the transfer coefficients

of the inverter I and calibration circuit R1-R2.

5. Calibration of the phase shifter PS

To calibrate the phase shifter PS, the VV measures three signals of the calibration circuit R3-C1:

• The initial output signal Up1 of the calibration circuit, when calibration circuit is connected

between input and output of the phase shifter;

• The signal Up2 after the variation of the phase shifter PS transfer coefficient in the value δpv;

• The signal Up3 after the inversion of the calibration circuit and connection of this circuit

between the inputof the inverter I andoutput of thephase shifter PS by the switchers S1 andS2.

Complex of these signals is described by proper system of equations. Solution of this system

(formula (29)) gets the accurate deviation δp of the phase shifter PS transfer coefficient from its

nominal value “j”:

δp ¼ δpa 1þ δkpa

� �

(29)

where:

δpa ≈
δpv

2

jUp3 þUp1

Up2 �Up1
�

δi

2

1

1þ δi
and

δkpa ≈
δpv

2

jUp3 �Up1

Up2 �Up1
�

δi

2

1

1þ δi

δpa and δpka are the approximate values of the transfer coefficients of the inverter PS and calibra-

tion circuit, respectively.
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After the calibration procedure, we know the real value of the phase shifter transfer coefficient

with an uncertainty better than 1–3 ppm. μCmakes this calibration procedure automatically at

least every hour.

Figure 10. Some results of experimental investigations.
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5.1. Experimental results

All results of the theoretical investigations shown earlier were used to develop the comparator

PICS.

PICS very short specification is given as follows.

Short PICS Specification.

PICS operates on frequencies 1.00 and 1.59 kHz.

Frequency set discreteness 5 � 10�5.

Capacitance range of measurement (F) 10�19–10�3.

Resistance range of measurement (R) 10�7–108.

Inductance range of measurement (H) 10�12–103.

Dissipation factor tgδ (tgφ) 10�6–1.0.

Main uncertainty (ppm) 1.0.

Sensitivity (ppm) 0.02–0.05

Weight (kg) 5

PICS was tested in USA (NIST) and Russia (VNIIM), in Germany (PTB) and Poland (GUM), in

Ukraine (Ukrmetrteststandard) and Byalorussia (Center of metrology).

Some results of these tests are shown in Figure 10.

Appearance of the PICS, together with intermediary thermostated standards, is shown in

Figure 11.

Figure 11. Appearance of the PICS.
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6. Conclusion

Variational calibration sharply increases the accuracy of measurement. In case of variation

correction, for precision measurements, we can use simple and cheap measuring circuits with

rather high uncertainty. Variational calibration diminishes the uncertainty of such circuits on

thousands or even more times. It does not need too accurate variational standards. Time and

space clustering in significant measure overcomes disadvantages of this calibration—increas-

ing the time of measurement. Experimental investigations of the comparator PICS have shown

that uncertainty of measurement on main ranges is lower than 10�6 and sensitivity is better

than 10�7–10�8. Variational calibration also decreases the weight and cost of the accurate

equipment.
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Abstract

A new approach is described and discussed to the determination of the Newtonian grav-
itational constant G, which is based on the very powerful measurement of the frequency 
difference between two similar oscillators. The rate of change of time delay between the 
two is equal to their relative frequency difference, and small variations of either one can 
then be detected via delay monitoring with resolution limited only by time resolution 
and frequency stability of the two oscillators. The latter should be highly sensitive to 
gravitational field, to measure G, which triggers the choice of simple pendulums as field 
detectors. Since the relative effect on frequency readily obtainable in the lab by well-
controlled variations of the gravitational field is on the order of 10−7, stabilities on the 
order of 10−12 are needed of the relative frequency difference if measurement of the fifth 
decimal digit of G is the target of the experiment. It is argued that such high stability is 
possible with a pendulum properly designed for being locally isochronous and showing 
an adequately high Q factor. The latter is projected to reach possibly 107 or more with 
the discussed design.

Keywords: Newtonian constant, simple pendulum, pendulum frequency stability,  
time stability, isochronous pendulum

1. Introduction

The presently official value of the Newtonian constant G is listed in the most recent CODATA 
report (2014) as 6.674 08 × 10−11 m3 kg−1 s−2, with a quoted relative uncertainty of 4.7 × 10−5, 

which still makes it the least well known of all constants of nature, despite improvements 

derived from a flurry of efforts undertaken in the last decades.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Several different approaches have been followed in the realization of experiments aimed at its 
determination. A short summary can be found in the introduction of [1], where the experiment 

illustrated in this chapter was proposed, and for a deeper insight, a well-done recent compre-

hensive review [2] can be used for reference and comparison. It makes metrological sense to 
devise different experiments for the purpose, so that the set of possible systematic errors be not 
the same for all and the risk of undetected coherent biases among various G determinations 

be minimized. While refurbished and modernized versions of the original Cavendish torsion 
balance are still the most commonly adopted sensing device and at least one of them has dem-

onstrated extremely high accuracy [3], experiments based on other configurations have also 
been developed, and a few of them have yielded some of the best results to date. The latter 
include a measurement based on a beam balance [4] and one based on a pair of simple pen-

dulums used in the static mode [5]. Both achieved accuracy in the low 10−5 region. These three 
determinations of G agree within their stated uncertainty and are the most influential in the 
2014 CODATA value, which, however, was attributed higher uncertainty due to the excessive 

disagreement of other results. A coordinate effort is being led by the recently established work-

ing group WG13 of UIAP, stimulated by a NIST initiative, aimed at improving the status of G 

metrology. The experiments coordinated in this effort are mainly based on the torsion balance 
approach because of its favorable S/N ratio, hoping to put to fruition the enormous amount of 
information on systematics affecting it, with the target of improving accuracy by possibly an 
order of magnitude. However, other approaches are also encouraged, and experiments based 
differently are monitored or even supported. The free-fall gravimeter [6–8] still appears very 

promising due to its unique absence of difficult-to-evaluate systematics, but results are still 
hard to come by, mainly due to the inherently low S/N ratio of these experiments. The experi-
ment presented in this chapter is supported by NIST through its Precision Measurements Grant 
Program and is based on the adoption of a pair of simple pendulums as a detection device. The 
target is the determination of G with an accuracy of 10−5. The concept of the experiment has 
evolved from a pilot experiment carried on at Politecnico di Torino from 1998 to 2005, which 
used a single pendulum in vacuum and yielded preliminary results at 3% accuracy level [9–11].

2. The dynamic dual simple-pendulum approach

The experiment illustrated here is based on a high-resolution technique, well known in fre-

quency metrology [12], to measure very accurately small frequency differences between two 
almost synchronous sources. In fact, such small differences ∆v produce a variable time delay 

between the two waveforms, which add up to a full cycle in a time interval 1/∆v. The rate of 
change of the time delay yields directly the relative frequency difference.

Simple pendulums appear attractive for a G measurement based on this approach, because 

their small oscillation resonance frequency is directly proportional to the square root of the 

Earth’s gravitational acceleration g, as is well known, which makes them particularly sensi-

tive to a gravitational field variation induced in a controlled way by a displacement of field 
masses. We will call y the relative frequency change produced in this way. Resolution in this 
measurement is limited only by time delay resolution and differential frequency stability of 
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the two sources. For example, if time resolution is 1 ns, a 1000 s run allows to determine the 
relative frequency difference to 10−12, provided its stability is adequate. This means that the 
two frequencies can wander around in parallel by more than that but their difference should 
not. This is important in considering the use of pendulum oscillators, because the gravity 
acceleration g is not constant in time due to a variety of causes, and so will be their frequency, 

which will then show instabilities not much below the 10−7 level [13]. Nevertheless, since such 
instabilities affect in a similar way all pendulum oscillators, particularly if they are in the same 
location, it can be expected to be quite possible that the differential instability of two equal 
pendulums oscillating not far from each other may be adequate for the projected resolution of 
the experiment under discussion.

In Figure 1, a sketch is shown of the expected evolution of time delay as the active field 
mass distribution is shifted back and forth between a geometrical configuration in which it 
increases the frequency of one pendulum and another antisymmetric one in which it increases 

the frequency of the other one. Suppose one pendulum is slightly slower than the other one 
(it always will be the case as two exactly equal lengths are very unlikely and even undesirable 

to avoid coupling). As time goes by, this slower oscillator will show increasing time delay 
with respect to the other, as indicated in Figure 1 by the broken trend line. Now, when its fre-

quency is increased by the field masses, it will get closer to that of the faster one, and its time 
delay rate of change (DROC) will decrease. The opposite will happen when the field masses 
increase the frequency of the other pendulum. The relevant information in this measurement 
is the difference between DROCs in the two configurations.

If vs0 and v
f0 are the undisturbed frequencies of slow and fast pendulums (vf0 − vs0 = ∆v0 > 0), 

their difference will be modified by field masses as in Eq. (1) below, when the latter are next 
to the slow pendulum, and as in Eq. (2) when they are next to the fast one.

  (1)

  (2)

The DROC measurement is performed by measuring the time delay accumulated in n periods 

of the slow pendulum and dividing it by nT
s
, as illustrated in Figure 2.

Therefore, it turns out that the relationship between measured DROC and actual frequencies 
of the two oscillators is.

Figure 1. Time delay slope changes as field masses are moved back and forth between the two pendulums with repetition 
period TR.
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  (3)

and the difference between DROCs in the two configurations is then given by.

  (4)

In Eq. (4), the concept was introduced that relative frequency variations induced on pendu-

lums by the field masses are proportional to the Newtonian constant G through a proportion-

ality factor K. The analysis needed to identify the value of K is sketched in the next section. 
The value of G can be obtained by inverting Eq. (4) and is.

  (5)

Clearly, K must be known with relative uncertainty smaller than the 10−5 target G accuracy of 

this experiment. In fact, this may well be the ultimate accuracy limit of this approach.

As for measurement resolution, it is also shown in the next section that the relative effect on 
pendulum frequency obtainable by a geometrical change in mass distribution around the bob 

can be on the order of 10−7. It appears therefore clear that a target differential frequency stabil-
ity of at least 10−12 should be looked for in designing the two oscillators. Other than that, the 
requirements for time interval measurement resolution are instead benign, both because the 

S/N ratio of pendulum signals is expected to be quite good (more on this in the following) and 
because the DROC type A uncertainty can be expected to improve as the averaging time to the 
power 3/2, much faster than the typical power ½ of averaging on white noise [1]. The intuitive 
explanation for this is in the fact that a linear regression on the scatterplot of delay data versus 
time will in fact yield a statistical uncertainty improving as the square root of the number of 

measurements (which is proportional to time), but then the result is divided by elapsed time 
to get the DROC, which produces the power 3/2 improvement law.

3. Field mass configuration

For the calculation of the gravitational effect on frequency, the relative extra acceleration aM 

given to the bob by the system of field masses is the relevant parameter. In fact, for small 

Figure 2. Measurement scheme of the DROC (time delay rate of change).
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oscillations of the bob along x, its angular frequency is given by the square root of (a
g
 + aM)/x, 

with a
g
 = gx/L. The relative frequency change y induced by field masses will then be (aM/a

g
)/2.  

A peculiarity of the experiment discussed here, with field masses centered on both sides of 
the bob, is that both a

g
 and aM vanish at rest position, but their ratio does not, as both are 

linear in x for small displacements. This fact gives this scheme a great advantage over other 
approaches, because it maximizes the effect exactly where field masses are closest to sensors. 
For example, this is not the case for free-fall experiments, which see the effect vanish along 
with aM where the sensing object spends most of its time, at the apogee of its parabolic flight.

An analysis of the arrangement under discussion, with two equal masses symmetrically cen-

tered on either side of the bob rest position, yields for the effect on pendulum frequency.

  (6)

where L is the pendulum length, R and a are radius and half distance of field masses between 
centers, R

E
 is the Earth’s radius, and shown densities are those of the Earth and field masses. 

Γ(0) is the value at x = 0 of a geometrical shape factor which is discussed below. It is interesting 
to point out in Eq. (6) that only the density of field masses is relevant for the size of the effect 
and not their total mass, other than in the fact that, for a given gap between them, the ratio 

R/a depends slightly on mass size. Also interesting is to notice that, other than hidden in the 
size of the gap that must host it, the test mass (which is the bob) does not appear in Eq. (6). 
This is because neither gravitational acceleration in play, from the Earth or from field masses, 
depends in any way on the mass of the bob.

The shift of Eq. (6) is expected for small oscillations. However, neither acceleration is 
strictly linear, which yields the well-known non-isochronism of the simple pendulum 

plus, relevant for this experiment, a nontrivial tie with the extra gravitational pull. So, 
while it is easy to find frequency and shift for small oscillations, as the relative extra 
acceleration can then be considered constant over the swing, nontrivial calculations are 

necessary for wider swings.

The field masses adopted for the experiment are cylinders of heavy metal positioned, for the 
“near” configuration, at either side of the bob as shown in Figure 3a. The metal could be plati-
num or, more cheaply, tungsten, but copper is chosen for budget reasons in the preliminary 

phases. The reason for adopting a cylindrical shape lies in the much higher uniformity of the 
additional recalling acceleration provided by this shape to a bob displaced from the rest point, 

with respect to the case of a spherical field mass shape. In Figure 3b a plot is given of such 

additional acceleration (relative to a
g
) versus bob displacement in a 1 m pendulum, calculated 

for two tungsten field masses 85 mm in diameter and 117 mm long, spaced by an 8 mm gap 
to host a 5 mm spherical bob in between.

The resulting fractional frequency increase y
near

 can be calculated with a suitable integration, 

which is quite straightforward for oscillation amplitudes not exceeding the uniformity region. 
The expression of Γ(x) used in Figure 3b, written with η = w/a and ξ = x/a, is.

  (7)
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It should be pointed out here that shape factor of the cylindrical field masses was chosen in this 
calculation to optimize the uniformity of the effect, as shown in Figure 3b. The absolute dimen-

sion of the masses, instead, was designed to best fit the chosen geometry of the vacuum chamber, 
whose relevant part of the realization is shown in Figure 4. The chamber is realized with commer-

cial 10 inch ConFlat flanges for the vertical body assembly, which will host both pendulums. Two 
thin steel tubes were welded across it to provide tunnels for the passage of the movable field mass 
system. These tubes are 100 mm in diameter and cannot therefore host cylinders greater than say 
90 mm in diameter, together with their cradle which will be necessary for their management.

While the expression of Eq. (7) is valid for one pendulum in the “near” configuration, the 
effect on the other pendulum of field masses in that position must also be studied because it 

Figure 4. Detail of the lower chamber of the UHV vacuum system, showing the two thin steel tubes that allow 
management of field masses without feedthroughs by keeping them outside the vacuum vessel.

Figure 3. (a) Sketch of the near arrangement of two cylindrical field masses and (b) variations along x, elongation of 
the bob from rest position, of the recall acceleration aM produced by the two field masses divided by the relevant g 

component a
g
.
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gives raise to the relative frequency change y
far

 of the “far” configuration which appears in Eq. 
(4). As a matter of fact, this effect is not so small, given the fact that the two pendulums are 
contained in the same vacuum vessel of Figure 4.

In order to facilitate this calculation, while increasing the signal by a factor of two, the idea 
was conceived to design the field mass system as a periodic structure. In fact, it can easily be 
shown that increasing w, the length of the field mass cylinders, would cause a signal reduc-

tion which would take the signal to vanish if the length is taken to infinity. This happens 
because such a structure would produce no field gradient in the longitudinal direction. Only 
a modulation along x of the mass density can produce a field gradient. The periodic structure 
which is planned, with a density switch between ρM and zero (or the lower density of another 

material) for every length of 2 w, will produce a periodic field gradient along x which van-

ishes at the center of all regions of uniform density. A pendulum centered at such vanishing 
gradient points will experience an increased frequency when positioned in correspondence 

with the higher density material and a symmetrically decreased frequency when positioned 

in correspondence with the lower density one.

By placing the two pendulums inside the vacuum vessel at a distance 2 w from each other, 

within a periodic field mass system so conceived, as shown in Figure 5, the measured DROC 
will be doubled because while one pendulum is pulled up, the other one is pulled down. The 
opposite will then happen after the whole field mass system is displaced by 2 w to invert the 

centering of the two pendulums.

In practice, an infinite length of the field mass system cannot obviously be deployed, and the 
structure must be truncated at some point. In Figure 6, a calculation is shown of the expected 

relative gravitational extra acceleration in the case of a nine-mass-long truncated periodic 

structure. The material of field masses was assumed to be tungsten, dimensions were the 
same of Figure 3, and the density of air in between masses was neglected.

Details of acceleration uniformity around the rest point are given in Figure 7 for both posi-

tions of the two pendulums, at the center of the middle field masses (upper curve) and at the 
center of the first air gap at their right (lower curve). It can be noticed that the latter is asym-

metric. This is because the truncated periodic structure is asymmetric with respect to that 
point, with five masses on one side and only four on the other one. However, the effect on 
frequency of such asymmetry is expected to vanish to first order, as long as the rest point of 
the pendulum is correctly centered. In any case, centering of the pendulums will be important 
for accuracy as much as uniformity of the extra acceleration. Nevertheless, it can be noticed 
that a subtraction of the slanting baseline in the lower curve will make it appear very similar 

Figure 5. Scheme of the periodic field mass principle. Rest positions of the two bobs are shown (black dots). The circle 
in the middle represents the outline of the lower vacuum chamber through whose tunnels, shown in Figure 4, the field 
mass systems go.
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to the upper curve for what concerns uniformity. Since both remain within +/− 10−5 up to 7 mm 
either side of the center, integration of the extra gravitational effect will be straightforward for 
peak pendulum oscillation amplitudes up to 7 mm if the target accuracy is at the 10−5 level.

In any case, all geometrical characteristics of the field mass system affect the proportionality con-

stant K of Eq. (4), including the uniformity of their mass density and their stability in operational 
environmental conditions (like temperature expansion or deformation under mechanical stress). 
Adequate care must then be taken in design, realization, and handling of the field mass system.

To be truthful, in this respect, the experiment presented here is no different from any other 
experiment that was or will be tried to measure G. Revisiting the geometry of the field mass 
system for accuracy optimization will then be necessary after the concept is proven, which 

Figure 6. Calculated relative extra acceleration for a pendulum positioned at x from the center of a periodic field mass 
structure truncated to nine masses.

Figure 7. Relative uniformity of the extra acceleration for a pendulum positioned at the center of the middle masses 
(upper display) and one positioned at the center of the first gap (lower display), as a function of x, distance from the 

center of a nine-mass-long periodic structure. Uniformity was optimized here by trimming η = w/a.
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is the real target of the present work. Such an operation will most likely belong to a national 
metrology institute and not to a university. What this effort wants to prove is that no real 
obstacle exists in this approach on the way to an accuracy of 10−5, other than problems that 

may come from accuracy and stability of the field mass system.

More benign is the requirement on positioning of the bob’s trajectory with respect to active 
masses. In fact, it turns out that both in the horizontal and vertical direction, the extra accel-
eration features an extreme versus trajectory positioning, as shown in Figures 8 and 9, respec-

tively: a minimum in the center for the lateral direction and a maximum a little above masses’ 
gravity centers for the vertical.

The vertical displacement of the maximum is due to the extra vertical pull down that field 
masses exert if they are moved lower than the bob, which adds to Earth’s gravity and hence 

to recall force, until they get too far down to be relevant. Such maximum is (a2 + w2)/3 L above 

the masses’ gravity centers, which turns out to be almost 3 mm for the assumed masses. The 

Figure 8. Relative variation of extra pull for lateral displacement of the bob’s trajectory from the symmetry plane 
between field masses.

Figure 9. Relative variation of the relevant effect for vertical displacements of the bob’s trajectory from the plane of mass 
centers.
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relative shift is below 7∙10−4, which must be evaluated only to 1% for an accuracy contribution 
well below 10−5, and the vertical positioning tolerance is 0.2 mm either side of the maximum, 
just like that of transverse horizontal positioning.

4. Pendulum design and optimization

The pendulums to be used in the experiment should be designed with the double target in 
mind of maximizing both accuracy and differential stability.

For accuracy, they should be “ideal,” meaning that in their behavior they should not differ from 
the description that can be made with a mathematical model, supported by an adequate experi-

mental characterization, in a way that can make G measurements uncertain by more than the 

desired accuracy. To this aim, all non-idealities affecting differential measurements between 
the two configurations of the field mass system should be considered. The main problem in this 
respect seems to be the uncertainty in the position of the center of mass of the pendulum given 

by the nonvanishing mass of the suspension relative to the bob. This shifts high the effective 
center of mass in a different way for the attraction of the Earth and that of the field mass system.

For differential frequency stability, which should exceed 10−12 for a full repetition period TR, 

three main characteristics should be optimized in design and realization. They are:

1. Environmental sensitivity, especially versus temperature

2. Amplitude-to-frequency conversion, which induces frequency variations if the oscillation 

amplitude is not constant

3. Quality factor Q of the resonator, which is relevant in two ways: to obtain a long time con-

stant in case of free decay operation [1] and to maximize stability with a given S/N ratio in 
case of sustained oscillations

Stability against environmental changes may be particularly critical for temperature, if not 
addressed, because at least a few ppm per Kelvin must be assumed for the linear expansion 

coefficient of the suspension, unless some kind of compensation is made. This is a quite com-

mon practice in pendulum clocks, but the demand in this application is severe. Even in the 
case of a successful compensation by a factor of ten of a low-expansion suspension material 

(e.g., tungsten, with its 4.3 ppm/K), the requirement would still be for a temperature differ-

ential between the two pendulums of the order of a few K for the necessary 10−12 differential 
frequency stability. It is true that the two pendulums are contained in the same vacuum vessel, 
which can be temperature stabilized, but an excellent thermalization scheme must certainly be 
devised for the purpose. It is assumed here that gold plating of the inner surface of the vacuum 
vessel or if necessary cylindrical gold-plated mirrors focusing the two suspensions [14] onto 

each other are the best bet to this aim, but a detailed discussion of the problem is out of the 

scope of this paper. What instead can be done at the pendulum design phase is implementa-

tion of a temperature compensation scheme. To this aim, tungsten is used for the suspension of 
the bob, and aluminum is deployed in an expansion compensation structure as shown below.
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Amplitude-to-frequency (or period) conversion is a well-known problem of pendulum clocks, 
because period-to-period instability of the kick turns into frequency instability through such 

connection, and famous in this perspective is the solution proposed by Christiaan Huygens 
in his 1657 patent of making an initial ribbon section of the suspension wrap on cycloidal 
profiles each side as it swings back and forth. However, neither Salomon Coster (who built 
the first such device, still shown in Boerhaave Museum in Leiden) nor anyone later appeared 
to be able to take full advantage of Huygens’ idea, presumably because realizing a faithfully 
cycloidal profile is very difficult, as its curvature diverges in the cusp, where the shape is 
most important for small oscillations, which is where pendulum clocks are operated for wear 

minimization and consequent long-term stability.

In the model chosen for this experiment, pictured in Figure 10a with the bob in between field 
masses, the pendulum suspensions are made of tungsten wires hanging between two cylin-

ders on which they wrap and unwrap. The wires are two for each pendulum, converging on 
the bob, for removal of the degeneracy of the two orthogonal modes, and the wire section 

above the cylinders is dimensioned for temperature compensation in a scheme that includes 

an aluminum structure to fix the length of the upper part of the wires.

Cylinders are technologically very easy to fabricate, contrary to the cycloidal case, and very 

good ones are common in modern machines, which makes them easy to obtain and cheap. In 
this work, dowel pins and specifically wrist pins are employed. The latter are very well recti-
fied and have a hard surface because they must bear high forces with little friction in connect-
ing pistons to rods in ICE power trains. As for amplitude-to-frequency conversion, deploying 
circular profiles does not realize a completely isochronous pendulum like Huygens showed 
true for a cycloidal profile; nevertheless, they produce a period vs. amplitude curve which 
shows a minimum at a certain amplitude value which is related to the diameter D of the cyl-

inders. For that magic amplitude, the pendulum is then locally isochronous, and operation 
exactly at that amplitude shows no amplitude-to-frequency conversion. This means that the 
effect on frequency of amplitude variations vanishes if the amplitude is set correctly and that 
it depends quadratically on the amplitude error from that magic value in a way that makes it 

possible to achieve the necessary stability.

Figure 10. (a) Picture of the pendulum configuration chosen for this work, with the bob hanging between field masses, 
and (b) period versus amplitude curve of such pendulum compared to the one of a mathematical pendulum. Length is 
about 250 mm and D is 22 mm. The experimental points are superimposed on the measured section of the curve.
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The period versus amplitude curve is compared to that of a mathematical pendulum in 
Figure 10b. The shape is still parabolic, but the vertex is moved from the vanishing ampli-
tude point to an amplitude which can be chosen and adapted to the desired pendulum 

energy by suitably designing D, as shown in [15]. Period measurements, compared to the 
theory in Figure 10b, were taken on a 0.25-m-long pendulum with cylinders of 22 mm in 
diameter.

In fact, since at the apex of the parabola the two curves of Figure 10b show the same curva-

ture, their local description is well known to be

  (8)

which means that amplitude deviations Δθ from the minimum period spot must not exceed 4 
μ rad to keep the first term at the 10−12 level. On the other hand, a period-to-period amplitude 
reduction is unavoidable due to energy loss and is related to it by

  (9)

which means that the minimum pendulum quality factor Q
m
 necessary to keep the amplitude 

from decreasing more than the acceptable limit Δθ in one period is

  (10)

For example, if θ
min

 = 0.075 rad, as in the case of Figure 10b, the quality factor must be greater 

than about 104 to keep the period (and the frequency) within 10−12 for one period, and a Q of 

107 will keep the desired frequency stability for less than an hour at most. Luckily, because 
it’s only the differential frequency stability that must be very stable, this requirement applies 
only to the difference of the two pendulum quality factors, provided they are both oscillating 
at the sweet amplitude spot. If it can be assumed that both quality factors are the same within 
say 10%, a Q of 107 would be enough to guarantee that the desired differential stability is kept 
for a full working day. This would be a long enough time for two full cycles of the repetition 
rate of the experiment if the system of field masses is kept in one position for a couple of hours 
and then moved to the other position for another couple of hours. Such is the situation for an 
experiment based on a pair of pendulums operated in free decay mode, and it could possibly 

be improved more if the two quality factors are within 1% of each other, in which case the 
experiment could go on for almost a week. Modeling out the effect may also be possible to 
some extent, as silently assumed in [1], and might further increase the useful duration of the 

experiment between periodic operations of amplitude reset, but this gets more complicated.

Alternatively, at the light of the experimented difficulty in obtaining consistently the extremely 
high Q values which are needed for the discussed reasons if the free decay mode must be 

adopted, a sustained oscillation approach can be tried for the two pendulums. In this per-

spective, a synchronous forcing term must be applied to the pendulum, designed to exactly 

recover the energy lost by friction. The best for stability and most efficient way of doing this 
would be a sine-wave force F applied in phase with the velocity u of the bob. This approach 
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avoids pulse timing and duration problems often encountered in the past by pendulum clock 

makers. The amplitude of such forcing term can be regulated in closed loop, by an auto-

matic gain control (AGC) arrangement, to exactly compensate the dissipated power P
d
 at the 

desired swing amplitude. This requires the average delivered mechanical power < Fu > to be

  (11)

Since the energy e stored in the pendulum swing is proportional to the amplitude squared 

and u is linear with amplitude, it appears that the desired force is proportional to amplitude, 

as it might be intuitively expected. However, this is true only if Q is constant with amplitude, 

which turns out not to be the case for the adopted pendulum design. An analysis of what were 
felt to be the two main dissipation mechanisms for this structure was given in [1] and showed 

that in both cases the Q limitation is proportional to some power κ of the amplitude. In detail, 
periodic stretching of the wires under varying tension and their bending as they wrap and 

unwrap on the cylinders produce Q limitations which are inversely proportional to the square 

of the amplitude for the former (Q
s
 ∝ θ−2, where s stands for stretching) and proportional to the 

amplitude’s three-halves power for the latter (Q
b
 ∝ θ3/2, where b stands for bending). Within 

that simplified theory, cyclic length variations of wires were overlooked, and only stretching 
under varying tension and bending on the cylinders were analyzed for small oscillations. 
Expressions obtained for the corresponding Q limitations (Q

s
 and Q

b
, respectively) were

  (12)

  (13)

which shows that κ
s
 = −2 and κ

b
 = 3/2. Here ε0 is the static strain imposed on wires by the 

weight of the bob, φ is the wires’ diameter, and Q
f
 is the intrinsic Q of the wire material. The 

total Q of the pendulum can then be obtained as

  (14)

and features a maximum Q value at an angular swing amplitude θ
max

 which can both be cal-

culated from Eqs. (12) through (14).

An example of such a Q dependence on amplitude is given in Figure 11a as calculated from 

Eq. (14) for a pendulum which could be suitable for the G experiment (L = 1 m and D = 4 mm), 
built with 4 μm Tungsten wires and a spherical 4.5 mm tungsten bob. The resulting peak 
force that is necessary to keep the bob swinging at the given amplitude according to Eq. (11) 
is shown in Figure 11b, where the strange effect appears that, in the branch before the mini-
mum, weaker forcing terms are needed to maintain greater amplitudes.

A comprehensive campaign to confirm the theory in all conditions has not been completed 
yet as this book is going in press. In particular, Q values in excess of several millions were 
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not observed yet in the limited range of configurations that were staged, which suggests that 
there may be other dissipation mechanisms worth studying, but it seems unlikely that a more 

complete analysis may not confirm the general shape of these curves. In fact, experimental 
results obtained by analyzing free decay ringdown amplitude data clearly show that such Q 

maximum exists. Further experiments are in progress, as well as the analysis of such addi-
tional dissipative phenomena as belt friction, squeeze film energy loss [16], and more trivially 

dissipation in the structure holding the experimental arrangement.

What must be underlined here is that, due to the Q behavior shown in Figure 11, Eq. (11) 
points to a criticality for AGC stability, because amplitude stabilization cannot be reached 
if increasing the amplitude requires a reduction of the forcing term. The derivative of the 
required force with respect to amplitude must be positive for AGC stability, which imposes 

the selection of a swing amplitude in a region where the dominant dissipation mechanism is 

such that κ < 1. If κ > 1 the AGC will be unstable, and if κ = 1 it will not be effective because the 
necessary force does not depend on amplitude. Conversely, given a desired swing amplitude, 
as dictated, for example, by the range of acceptable field uniformity of Figure 7, the design of 

pendulum suspensions should observe the specification of placing the desired amplitude in a 
range where AGC stability is guaranteed.

The best choice in this respect appears to be a design which positions the θ
max

 at the desired 

oscillation amplitude, which is what was tried in the simulation of Figure 11, where the ampli-

tude of maximum Q was made to correspond at 10 mm with a bob peak excursion which can 
be judged desirable from the calculated effect uniformity shown in Figure 7. However, it must 
be pointed out here that this design problem is still open because also the minimum of the 

period, as illustrated in Figure 8, must be placed by design at the same oscillation amplitude, 

which implies a tight restriction on the acceptable values of D, the diameter of suspension 

Figure 11. (a) Q as a function of angular oscillation amplitude and (b) peak force value of the sinusoidal forcing term 
necessary to maintain the corresponding amplitude, calculated for a pendulum with 4-mm-diameter suspending 
cylinders and 1 m length, made with 4 μm Tungsten wires and a spherical 4.5 mm tungsten bob.
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cylinders. These values are much smaller than the one adopted in the simulation of Figure 11  

to force the position of the Q maximum. Clearly, full confirmation of the Q theory must be 

carried out before the pendulum design can be finalized.

Another detail which is obviously relevant to this effect is the material of the suspension 
wires, because both Q

f
 and ε0 in Eqs. (12) and (13) are material dependent, as well as the 

diameter φ of the wires, in its own way. Unfortunately, mechanical characterization of fibers 
is less than complete in the open literature, particularly for what concerns mechanical losses 

summarized by Q
f
. Therefore, tests were carried out in the laboratory with a purposely built 

apparatus [17] on promising candidates, mainly aiming at characterization of mechanical 
losses, creep, and linearity [18]. Para-aramid, SiC, basaltic, and carbon fibers were analyzed 
[19], as well as steel and tungsten metal wires. Glass and fused quartz are still waiting in line. 
No doubt, a final decision on this important item must be integrated with the whole design 
of the pendulum, as both analyzed loss mechanisms depend on ε0, and hence on φ, while the 

bending loss, in particular, depends also explicitly on φ.

Three more very important items must be considered in the design of the pendulum because 
they have an impact on the operation of the device, if not on its effectiveness in detecting the 
gravitational field modulation. They are the mode map of the pendulum, the oscillation detec-

tion system, and the excitation mechanism in case of forced oscillations’ operation mode.

The first one may affect obtainable Q values and introduce fastidious coherent noise in the 

detection signal. In fact, if undesired oscillation modes get excited, albeit weakly, they can 
easily increase the effective total damping by sucking energy into dissipative mechanisms 
which do not belong to the main pendulum mode, lowering its Q as a consequence, and on the 

other hand, they force detection data processing to face spurious coherent signals which may 

reduce S/N ratio and ultimately affect resolution. Getting rid of spurious signals is impossible 
by the Nyquist theorem because of aliasing if the sampling frequency is not at least double the 

highest undesired mode frequency, which forces the handling of a massive amount of data in 

a full sine-wave detection system. The most difficult undesired modes to deal with, however, 
are the ones that are closest in frequency to the pendulum mode [20], because they are the 

ones that are most easily excited. In particular, the transverse mode, whose degeneracy with 
the pendulum mode is removed by the double-wire suspension structure, remains close to it 

in frequency if the angle between wires is not too big.

Other modes that should be focused on are the double pendulum mode and the similar 

balance wheel mode, which are more separated in frequency but are easily excited as 

soon as some imperfection appears in the suspension structure or in the excitation sys-

tem, if present.

Given the boundary conditions emerging from the panorama spelled out here, care must be 

taken in designing and realizing excitation and detection systems for the two pendulums, 
to minimize the risk of getting undesired modes excited and affecting in this way damping 
and measurement resolution. Both optical and electromagnetic methods have been analyzed 
for both. All tested methods have their own advantages and problems, but all can serve the 
purpose if well implemented.
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5. Attitude control

One final problem must be addressed here to give a complete picture of the complexity of 
this apparently very simple experiment: the attitude of the whole apparatus with respect to 
the vertical direction, as defined by the Earth’s local gravity vector, can affect the operation of 
pendulums and must therefore be guaranteed to be adequately accurate and stable in time, if 

necessary by active attitude control. Two different problems must be addressed in this respect 
as both the absolute tilt and its stability are relevant, in different ways.

The absolute verticality is important because the two cylinders must be guaranteed to be 
horizontal for the symmetry of the swing, which in turn guarantees the positioning of the 
minimum period in amplitude space (the curve of Figure 10 was calculated for the case of two 

cylinders at the same level). Because the pendulums are two, this issue is complicated by the 
need to have both pairs of suspension cylinders aligned on the same horizontal plane.

The attitude stability is particularly critical in the case of low sampling-rate detection, like 
simple flyby time stamping at half periods, because of the heavy aliasing of seismic angular 
noise [1] that it produces. In Figure 12, a series of background seismic power spectrums is 

reported, as collected in different locations of the global seismographic network [21]. A peak 
at about 0.2 Hz appears in all of them, which is produced by low damping surface Rayleigh 
waves excited by ocean waves hammering the shores, extended with reduced intensity at 

higher frequencies. Because of their low frequency, it is very difficult to filter out such seismic 
angular noise contributions.

Work done to attack this problem includes passive and active attitude control [22, 23]. However, 
passive filtering was quickly understood to be inadequate for the purpose, not only because of 
its awkwardness at such low frequencies but also because of the need for stiffness of the struc-

ture holding pendulums to prevent detrimental effects of recoil from pendulums on attitude  
stability and damping itself. Active stabilization was then decided to be necessary, and work 

Figure 12. Background seismic power spectrums, as collected in different locations of the global seismographic network. 
High noise at periods above 1s (i.e. Fourier frequencies below 1 Hz) is caused by far travelling Rayleigh surface-waves 
excited by ocean waves.
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was done to realize for the purpose a high-sensitivity tiltmeter [24] with sub-nanoradian res-

olution and special half-pole actuators based on thermoelectric devices [25]. The problem of 
substantial angular stability improvement by active control is not trivial because a tiltmeter 

with the necessary sensitivity was never seen with resonance-limited bandwidth above, say, 

10 Hz, which provides not much more than a decade range in the Fourier frequency domain for 
open-loop gain increase from the zero-dB level of the loop bandwidth allowed by a typical 45° 
phase margin to the desired open-loop gain at the seismic peak sub-Hertz frequency. The half-
pole actuator was developed for this reason, so that a loop-gain roll-off of 30 dB/dec could be 
achieved without resorting to a digital control, allowing in this way a guaranteed-stability servo 

operation with low-frequency open-loop gain in excess of 40 dB.

Nevertheless, the seismic angular noise problem is expected to be much more benign in case 

of acquisition of the whole sine-wave swing signal at a conveniently high sampling rate. For 
this reason, and because acquisition of the full sine wave is necessary anyway for oscillation 

support, unless the free ringdown approach is adopted, the choice was made to develop a 

suitable detection method for this purpose. The latter can be electromagnetic, based on the 
generation of an e.m.f. in a wire swinging through a magnetic field together with the suspend-

ers of the bob, or optical, based on a linear position-sensitive detector deployed to translate 

the bob’s position in an electrical signal.

The first approach has the advantage of measuring the bob’s velocity, with which the forcing 
term should be in phase, and is therefore to be preferred for phase accuracy of the oscillation 

loop but implies the risk of introducing in the experiment undesired electromagnetic forces 

which could be greater than the weak gravitational force that must be measured.

The second approach, on the contrary, is less risky of introducing undesired forces but 
requires the generation of a sine-wave signal in quadrature with the detected position for the 

implementation of the forcing term. This must be performed very accurately to obtain oscilla-

tions at exactly the resonance frequency because any error from quadrature would introduce 

a frequency shift, which in turn may build an error on G if it’s not adequately common moded 

between the two pendulums.

Similar considerations hold for the forcing sine wave, which can be realized with just a 
current-carrying wire attached to the suspenders in a voice coil type of device in the first 
approach and if Q is high enough could be implemented by radiation pressure in the second.

6. Accuracy budget

A tentative accuracy budget for the experiment described here is given in [1]. Because of the 
highly efficient time and frequency metrology approach, only geometrical uncertainties are 
expected to be relevant at the level of 10−5, provided the necessary differential stability of 
10−12 can be achieved. This is clearly a big “if,” as discussed above, because it assumes that 
seismic and mode leakage problems are adequately solved. However, it can be in principle 
obtained if the limitation is electronic noise. It must be noted here for completeness that the 
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best pendulum clocks ever realized [13] were probably not differentially stable better than 
10−9 at the target 104 s averaging time, which means that 60 dB improvement is necessary. 
Although this is granted on paper by projected S/N and Q, actually achieving it is still a big 

challenge. On the positive side, it is worth pointing out here that energy-induced amplitude 
changes [11] do not affect frequency if operation is kept at the minimum period isochronous 
point and that an approach to oscillation support aimed at overcoming pulse stability prob-

lems by moving to a sine-wave excitation system similar to that employed in high-stability 

quartz oscillators will remove one of the worst contributions to instability.

This said, it can be seen in Table 1 that most geometrical contributions to uncertainty impose 

quite loose requirements at the target accuracy level of 10−5, with the sole exception of size and 
positioning of field masses, which must be guaranteed at high accuracy. While other contri-
butions enjoy relaxed specifications granted by parabolic minima which are specific of this 
configuration, the latter do not and must comply with specs which are similar to any other big 
G experiment. However, the expectation that accuracy on G may be limited by control on this 
single geometry contribution ushers the possibility of doing even better than 10−5 if resources 

were to become available to improve the accuracy of field masses. A summary of such uncer-

tainties is reported in Table 1, as listed in Ref. [1], where the reader can find more details and 
a deeper discussion on accuracy.

7. Conclusions

A new experiment was presented for the determination of the Newtonian constant. It is based 
on a time and frequency metrology approach consisting in the measurement of the small 

frequency difference between two freely oscillating pendulums via their time delay rate of 
change. A system of dense field masses is moved back and forth between the two, alternately 
increasing one frequency and reducing the other and vice versa. The increase in resolution by 
averaging is fast in this case because the limiting noise is white delay noise, which yields σ

y
(τ) 

Effect Relative bias Uncertainty Conditions

Shift at bob’s vertical position 6.7∙10−4 <10−6 < 50 μm uncertainty in a, w

Bob’s vertical position 0 2∙10−6 0.2 mm full tolerance

Bob’s lateral position 0 1.7∙10−6 0.2 mm full tolerance

Non-isochronism −1.8∙10−5 < 10−7 Operation at minimum period

Spacing between twin masses 0 6∙10−6 0.4 μm gap uncertainty

Field masses’ dimensions 0 6∙10−6 1 μm uncertainty

Field masses’ density 0 5∙10−6

Table 1. Accuracy budget projection based on 1-m-long 4 μm tungsten fibres, 6-mm-diameter suspension cylindrical 
profiles, a swing amplitude of 0.01 rad, and a 5 mm tungsten bob. The position of field masses’ gravity center is assumed 
known with <300 nm uncertainty.
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proportional to τ−3/2. This fact is unique among experiments for the determination of G and 

offsets the poor signal size problem allowing to focus the design on accuracy rather than S/N 
ratio. It remains to be shown that differential stability in the 10−12 region can be obtained with 

consistency for two similar pendulums of the design which has been sketched here. This seems 
to be a long shot when considering the absolute stability achieved by the best Shortt clock [13], 

because it requires an improvement of more than three orders of magnitude with respect to it, 

at the target few hours (TR) averaging time. However, it is not unreasonable to think that two 
adequately similar pendulums can be realized, and if they are within 100 mm of each other, 
it can be expected that g uniformity may be adequately stable in time to support the assump-

tion. A description of the apparatus and a discussion of pendulum design optimization for 
this experiment were offered in detail, pointing out problems and possible solutions. Work is 
in progress on the preparation of the experiment, considering both a free decay solution and 

pendulum operation with active support of oscillations and amplitude control. It is expected 
that an accuracy of 10−5 may be obtained for G with the proposed approach, limited only by 

the accuracy of field masses’ size and positioning, and that it may be possible in a metrology 
laboratory to reduce limiting geometrical uncertainties enough to push it into the 10−6 range.
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