
Programming Computer Vision
with Python

Jan Erik Solem

Programming Computer Vision with Python

Copyright ©2012 Jan Erik Solem.

This version of the work is a pre-production draft made available under the terms
of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United
States License.
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

2

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Contents

Preface 7
Prerequisites and Overview . 8
Introduction to Computer Vision . 9
Python and NumPy . 10
Notation and Conventions . 10
Acknowledgments . 11

1 Basic Image Handling and Processing 13
1.1 PIL – the Python Imaging Library . 13
1.2 Matplotlib . 16
1.3 NumPy . 20
1.4 SciPy . 31
1.5 Advanced example: Image de-noising . 39

2 Local Image Descriptors 45
2.1 Harris corner detector . 45
2.2 SIFT - Scale-Invariant Feature Transform 52
2.3 Matching Geotagged Images . 63

3 Image to Image Mappings 73
3.1 Homographies . 73
3.2 Warping images . 78
3.3 Creating Panoramas . 91

4 Camera Models and Augmented Reality 103
4.1 The Pin-hole Camera Model . 103
4.2 Camera Calibration . 109
4.3 Pose Estimation from Planes and Markers 110
4.4 Augmented Reality . 114

3

5 Multiple View Geometry 127
5.1 Epipolar Geometry . 127
5.2 Computing with Cameras and 3D Structure 136
5.3 Multiple View Reconstruction . 144
5.4 Stereo Images . 152

6 Clustering Images 161
6.1 K-means Clustering . 161
6.2 Hierarchical Clustering . 169
6.3 Spectral Clustering . 175

7 Searching Images 185
7.1 Content-based Image Retrieval . 185
7.2 Visual Words . 186
7.3 Indexing Images . 190
7.4 Searching the Database for Images . 194
7.5 Ranking Results using Geometry . 199
7.6 Building Demos and Web Applications . 202

8 Classifying Image Content 209
8.1 K-Nearest Neighbors . 209
8.2 Bayes Classifier . 218
8.3 Support Vector Machines . 223
8.4 Optical Character Recognition . 228

9 Image Segmentation 237
9.1 Graph Cuts . 237
9.2 Segmentation using Clustering . 248
9.3 Variational Methods . 252

10OpenCV 257
10.1The OpenCV Python Interface . 257
10.2OpenCV Basics . 258
10.3Processing Video . 262
10.4Tracking . 265
10.5More Examples . 273

A Installing Packages 279
A.1 NumPy and SciPy . 279
A.2 Matplotlib . 280
A.3 PIL . 280

4 CONTENTS

A.4 LibSVM . 281
A.5 OpenCV . 281
A.6 VLFeat . 282
A.7 PyGame . 282
A.8 PyOpenGL . 283
A.9 Pydot . 283
A.10Python-graph . 283
A.11Simplejson . 284
A.12PySQLite . 284
A.13CherryPy . 285

B Image Datasets 287
B.1 Flickr . 287
B.2 Panoramio . 288
B.3 Oxford Visual Geometry Group . 289
B.4 University of Kentucky Recognition Benchmark Images 289
B.5 Other . 290

C Image Credits 291

CONTENTS 5

Preface

Today, images and video are everywhere. Online photo sharing sites and social net-
works have them in the billions. Search engines will produce images of just about any
conceivable query. Practically all phones and computers come with built in cameras.
It is not uncommon for people to have many gigabytes of photos and videos on their
devices.

Programming a computer and designing algorithms for understanding what is in
these images is the field of computer vision. Computer vision powers applications like
image search, robot navigation, medical image analysis, photo management and many
more.

The idea behind this book is to give an easily accessible entry point to hands-on
computer vision with enough understanding of the underlying theory and algorithms
to be a foundation for students, researchers and enthusiasts. The Python programming
language, the language choice of this book, comes with many freely available powerful
modules for handling images, mathematical computing and data mining.

When writing this book I have had the following principles as a guideline. The book
should:

• be written in an exploratory style. Encourage readers to follow the examples on
their computers as they are reading the text.

• promote and use free and open software with a low learning threshold. Python
was the obvious choice.

• be complete and self-contained. Not complete as in covering all of computer vi-
sion (this book is far from that!) but rather complete in that all code is presented
and explained. The reader should be able to reproduce the examples and build
upon them directly.

• be broad rather than detailed, inspiring and motivational rather than theoretical.

In short: act as a source of inspiration for those interested in programming computer
vision applications.

7

Prerequisites and Overview

What you need to know

• Basic programming experience. You need to know how to use an editor and run
scripts, how to structure code as well as basic data types. Familiarity with Python
or other scripting style languages like Ruby or Matlab will help.

• Basic mathematics. To make full use of the examples it helps if you know about
matrices, vectors, matrix multiplication, the standard mathematical functions
and concepts like derivatives and gradients. Some of the more advanced mathe-
matical examples can be easily skipped.

What you will learn

• Hands-on programming with images using Python.

• Computer vision techniques behind a wide variety of real-world applications.

• Many of the fundamental algorithms and how to implement and apply them your-
self.

The code examples in this book will show you object recognition, content-based
image retrieval, image search, optical character recognition, optical flow, tracking,
3D reconstruction, stereo imaging, augmented reality, pose estimation, panorama cre-
ation, image segmentation, de-noising, image grouping and more.

Chapter Overview

Chapter 1 Introduces the basic tools for working with images and the central Python
modules used in the book. This chapter also covers many fundamental examples
needed for the remaining chapters.

Chapter 2 Explains methods for detecting interest points in images and how to use
them to find corresponding points and regions between images.

Chapter 3 Describes basic transformations between images and methods for com-
puting them. Examples range from image warping to creating panoramas.

Chapter 4 Introduces how to model cameras, generate image projections from 3D
space to image features and estimate the camera viewpoint.

8 CONTENTS

Chapter 5 Explains how to work with several images of the same scene, the fun-
damentals of multiple-view geometry and how to compute 3D reconstructions from
images.

Chapter 6 Introduces a number of clustering methods and shows how to use them
for grouping and organizing images based on similarity or content.

Chapter 7 Shows how to build efficient image retrieval techniques that can store
image representations and search for images based on their visual content.

Chapter 8 Describes algorithms for classifying image content and how to use them
recognizing objects in images.

Chapter 9 Introduces different techniques for dividing an image into meaningful
regions using clustering, user interactions or image models.

Chapter 10 Shows how to use the Python interface for the commonly used OpenCV
computer vision library and how to work with video and camera input.

Introduction to Computer Vision

Computer vision is the automated extraction of information from images. Information
can mean anything from 3D models, camera position, object detection and recognition
to grouping and searching image content. In this book we take a wide definition of
computer vision and include things like image warping, de-noising and augmented
reality1.

Sometimes computer vision tries to mimic human vision, sometimes uses a data
and statistical approach, sometimes geometry is the key to solving problems. We will
try to cover all of these angles in this book.

Practical computer vision contains a mix of programming, modeling, and mathe-
matics and is sometimes difficult to grasp. I have deliberately tried to present the ma-
terial with a minimum of theory in the spirit of "as simple as possible but no simpler".
The mathematical parts of the presentation are there to help readers understand the
algorithms. Some chapters are by nature very math heavy (chapters 4 and 5 mainly).
Readers can skip the math if they like and still use the example code.

1These examples produce new images and are more image processing than actually extracting infor-
mation from images.

CONTENTS 9

Python and NumPy

Python is the programming language used in the code examples throughout this book.
Python is a clear and concise language with good support for input/output, numerics,
images and plotting. The language has some peculiarities such as indentation and
compact syntax that takes getting used to. The code examples assume you have Python
2.6 or later as most packages are only available for these versions. The upcoming
Python 3.x version has many language differences and is not backward compatible
with Python 2.x or compatible with the ecosystem of packages we need (yet).

Some familiarity with basic Python will make the material more accessible for read-
ers. For beginners to Python, Mark Lutz’ book [20] and the online documentation at
http://www.python.org/ are good starting points.

When programming computer vision we need representations of vectors and ma-
trices and operations on them. This is handled by Python’s NumPy module where both
vectors and matrices are represented by the array type. This is also the represen-
tation we will use for images. A good NumPy reference is Travis Oliphant’s free book
[24]. The documentation at http://numpy.scipy.org/ is also a good starting point if
you are new to NumPy. For visualizing results we will use the Matplotlib module and
for more advanced mathematics, we will use SciPy. These are the central packages
you will need and will be explained and introduced in Chapter 1.

Besides these central packages there will be many other free Python packages used
for specific purposes like reading JSON or XML, loading and saving data, generating
graphs, graphics programming, web demos, classifiers and many more. These are
usually only needed for specific applications or demos and can be skipped if you are
not interested in that particular application.

It is worth mentioning IPython, an interactive Python shell that makes debug-
ging and experimentation easier. Documentation and download available at http:
//ipython.org/.

Notation and Conventions

Code is given in a special boxed environment with color highlighting (in the electronic
version) and looks like this:

some points
x = [100,100,400,400]
y = [200,500,200,500]

plot the points
plot(x,y)

10 CONTENTS

http://www.python.org/
http://numpy.scipy.org/
http://ipython.org/
http://ipython.org/

Text is typeset according to these conventions:

Italic is used for definitions, filenames and variable names.

Typewriter is used for functions and Python modules.

Small constant width is used for console printout and results from calls and APIs.

Hyperlink is used for URLs (clickable in the electronic version).

Plain text is used for everything else.

Mathematical formulas are given inline like this f(x) = w

T

x+ b or centered indepen-
dently

f(x) =
X

i

w
i

x
i

+ b ,

and are only numbered when a reference is needed.
In the mathematical sections we will use lowercase (s, r �, ✓, . . .) for scalars,

uppercase (A, V , H, . . .) for matrices (including I for the image as an array) and
lowercase bold (t, c, . . .) for vectors. We will use x = [x, y] and X = [X,Y, Z] to mean
points in 2D (images) and 3D respectively.

Acknowledgments

I’d like to express my gratitude to everyone involved in the development and produc-
tion of this book. The whole O’Reilly team has been helpful. Special thanks to Andy
Oram (O’Reilly) for editing, and Paul Anagnostopoulos (Windfall) for efficient produc-
tion work.

Many people commented on the various drafts of this book as I shared them on-
line. Klas Josephson and Håkan Ardö deserves lots of praise for thorough comments
and feedback. Fredrik Kahl and Pau Gargallo helped with fact checks. Thank you
all readers for encouraging words and for making the text and code examples bet-
ter. Receiving emails from strangers sharing their thoughts on the drafts was a great
motivator.

Finally, I’d like to thank my friends and family for support and understanding when
I spend nights and weekends on writing. Most thanks of all to my wife Sara, my long
time supporter.

CONTENTS 11

Hyperlink

Chapter 1

Basic Image Handling and
Processing

This chapter is an introduction to handling and processing images. With extensive ex-
amples, it explains the central Python packages you will need for working with images.
This chapter introduces the basic tools for reading images, converting and scaling im-
ages, computing derivatives, plotting or saving results, and so on. We will use these
throughout the remainder of the book.

1.1 PIL – the Python Imaging Library

The Python Imaging Library (PIL) provides general image handling and lots of useful
basic image operations like resizing, cropping, rotating, color conversion and much
more. PIL is free and available from http://www.pythonware.com/products/pil/.

With PIL you can read images from most formats and write to the most common
ones. The most important module is the Image module. To read an image use

from PIL import Image

pil_im = Image.open(’empire.jpg’)

The return value, pil_im, is a PIL image object.
Color conversions are done using the convert() method. To read an image and

convert it to grayscale, just add convert(0L0) like this:

pil_im = Image.open(’empire.jpg’).convert(’L’)

Here are some examples taken from the PIL documentation, available at http://
www.pythonware.com/library/pil/handbook/index.htm. Output from the examples

13

http://www.pythonware.com/products/pil/
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Figure 1.1: Examples of processing images with PIL.

is shown in Figure 1.1.

Convert images to another format

Using the save() method, PIL can save images in most image file formats. Here’s
an example that takes all image files in a list of filenames (filelist) and converts the
images to JPEG files.

from PIL import Image
import os

for infile in filelist:
outfile = os.path.splitext(infile)[0] + ".jpg"
if infile != outfile:
try:
Image.open(infile).save(outfile)

except IOError:
print "cannot convert", infile

The PIL function open() creates a PIL image object and the save() method saves the
image to a file with the given filename. The new filename will be the same as the
original with the file ending ".jpg" instead. PIL is smart enough to determine the image
format from the file extension. There is a simple check that the file is not already a
JPEG file and a message is printed to the console if the conversion fails.

Throughout this book we are going to need lists of images to process. Here’s how
you could create a list of filenames of all images in a folder. Create a file imtools.py to
store some of these generally useful routines and add the following function.

import os

def get_imlist(path):

14 1.1. PIL – the Python Imaging Library

""" Returns a list of filenames for
all jpg images in a directory. """

return [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]

Now, back to PIL.

Create thumbnails

Using PIL to create thumbnails is very simple. The thumbnail() method takes a tuple
specifying the new size and converts the image to a thumbnail image with size that fits
within the tuple. To create a thumbnail with longest side 128 pixels, use the method
like this:

pil_im.thumbnail((128,128))

Copy and paste regions

Cropping a region from an image is done using the crop() method.

box = (100,100,400,400)
region = pil_im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower).
PIL uses a coordinate system with (0, 0) in the upper left corner. The extracted region
can for example be rotated and then put back using the paste() method like this:

region = region.transpose(Image.ROTATE_180)
pil_im.paste(region,box)

Resize and rotate

To resize an image, call resize() with a tuple giving the new size.

out = pil_im.resize((128,128))

To rotate an image, use counter clockwise angles and rotate() like this:

out = pil_im.rotate(45)

Some examples are shown in Figure 1.1. The leftmost image is the original, followed
by a grayscale version, a rotated crop pasted in, and a thumbnail image.

1.1. PIL – the Python Imaging Library 15

1.2 Matplotlib

When working with mathematics and plotting graphs or drawing points, lines and
curves on images, Matplotlib is a good graphics library with much more powerful
features than the plotting available in PIL. Matplotlib produces high quality figures
like many of the illustrations used in this book. Matplotlib’s PyLab interface is the set
of functions that allow the user to create plots. Matplotlib is open source and avail-
able freely from http://matplotlib.sourceforge.net/ where detailed documenta-
tion and tutorials are available. Here are some examples showing most of the functions
we will need in this book.

Plotting images, points and lines

Although it is possible to create nice bar plots, pie charts, scatter plots, etc., only a few
commands are needed for most computer vision purposes. Most importantly, we want
to be able to show things like interest points, correspondences and detected objects
using points and lines. Here is an example of plotting an image with a few points and
a line.

from PIL import Image
from pylab import *

read image to array
im = array(Image.open(’empire.jpg’))

plot the image
imshow(im)

some points
x = [100,100,400,400]
y = [200,500,200,500]

plot the points with red star-markers
plot(x,y,’r*’)

line plot connecting the first two points
plot(x[:2],y[:2])

add title and show the plot
title(’Plotting: "empire.jpg"’)
show()

This plots the image, then four points with red star markers at the x and y coordinates
given by the x and y lists, and finally draws a line (blue by default) between the two

16 1.2. Matplotlib

http://matplotlib.sourceforge.net/

Figure 1.2: Examples of plotting with Matplotlib. An image with points and a line
with and without showing the axes.

first points in these lists. Figure 1.2 shows the result. The show() command starts the
figure GUI and raises the figure windows. This GUI loop blocks your scripts and they
are paused until the last figure window is closed. You should call show() only once
per script, usually at the end. Note that PyLab uses a coordinate origin at the top left
corner as is common for images. The axes are useful for debugging, but if you want a
prettier plot, add:

axis(’off’)

This will give a plot like the one on the right in Figure 1.2 instead.
There are many options for formatting color and styles when plotting. The most

useful are the short commands shown in Tables 1.1, 1.2 and 1.3. Use them like this.

plot(x,y) # default blue solid line

plot(x,y,’r*’) # red star-markers

plot(x,y,’go-’) # green line with circle-markers

plot(x,y,’ks:’) # black dotted line with square-markers

Image contours and histograms

Let’s look at two examples of special plots: image contours and image histograms. Vi-
sualizing image iso-contours (or iso-contours of other 2D functions) can be very useful.
This needs grayscale images, because the contours need to be taken on a single value
for every coordinate [x, y]. Here’s how to do it.

1.2. Matplotlib 17

color

’b’ blue
’g’ green
’r’ red
’c’ cyan
’m’ magenta
’y’ yellow
’k’ black
’w’ white

Table 1.1: Basic color formatting commands for plotting with PyLab.

line style

’-’ solid
’- -’ dashed
’:’ dotted

Table 1.2: Basic line style formatting commands for plotting with PyLab.

marker

’.’ point
’o’ circle
’s’ square
’*’ star
’+’ plus
’x’ x

Table 1.3: Basic plot marker formatting commands for plotting with PyLab.

18 1.2. Matplotlib

from PIL import Image
from pylab import *

read image to array
im = array(Image.open(’images/empire.jpg’).convert(’L’))

create a new figure
figure()
don’t use colors
gray()
show contours with origin upper left corner
contour(im, origin=’image’)
axis(’equal’)
axis(’off’)

As before, the PIL method convert() does conversion to grayscale.
An image histogram is a plot showing the distribution of pixel values. A number of

bins is specified for the span of values and each bin gets a count of how many pixels
have values in the bin’s range. The visualization of the (graylevel) image histogram is
done using the hist() function.

figure()
hist(im.flatten(),128)
show()

The second argument specifies the number of bins to use. Note that the image needs to
be flattened first, because hist() takes a one-dimensional array as input. The method
flatten() converts any array to a one-dimensional array with values taken row-wise.
Figure 1.3 shows the contour and histogram plot.

Interactive annotation

Sometimes users need to interact with an application, for example by marking points
in an image, or you need to annotate some training data. PyLab comes with a simple
function, ginput(), that let’s you do just that. Here’s a short example.

from PIL import Image
from pylab import *

im = array(Image.open(’empire.jpg’))
imshow(im)
print ’Please click 3 points’
x = ginput(3)
print ’you clicked:’,x
show()

1.2. Matplotlib 19

Figure 1.3: Examples of visualizing image contours and plotting image histograms
with Matplotlib.

This plots an image and waits for the user to click three times in the image region of
the figure window. The coordinates [x, y] of the clicks are saved in a list x.

1.3 NumPy

NumPy (http://www.scipy.org/NumPy/) is a package popularly used for scientific com-
puting with Python. NumPy contains a number of useful concepts such as array objects
(for representing vectors, matrices, images and much more) and linear algebra func-
tions. The NumPy array object will be used in almost all examples throughout this
book1. The array object let’s you do important operations such as matrix multiplica-
tion, transposition, solving equation systems, vector multiplication, and normalization,
which are needed to do things like aligning images, warping images, modeling varia-
tions, classifying images, grouping images, and so on.

NumPy is freely available from http://www.scipy.org/Download and the online
documentation (http://docs.scipy.org/doc/numpy/) contains answers to most ques-
tions. For more details on NumPy, the freely available book [24] is a good reference.

Array image representation

When we loaded images in the previous examples, we converted them to NumPy array
objects with the array() call but didn’t mention what that means. Arrays in NumPy are
multi-dimensional and can represent vectors, matrices, and images. An array is much

1PyLab actually includes some components of NumPy, like the array type. That’s why we could use it in
the examples in Section 1.2.

20 1.3. NumPy

http://www.scipy.org/NumPy/
http://www.scipy.org/Download
http://docs.scipy.org/doc/numpy/

like a list (or list of lists) but restricted to having all elements of the same type. Unless
specified on creation, the type will automatically be set depending on the data.

The following example illustrates this for images

im = array(Image.open(’empire.jpg’))
print im.shape, im.dtype

im = array(Image.open(’empire.jpg’).convert(’L’),’f’)
print im.shape, im.dtype

The printout in your console will look like

(800, 569, 3) uint8
(800, 569) float32

The first tuple on each line is the shape of the image array (rows, columns, color
channels), and the following string is the data type of the array elements. Images
are usually encoded with unsigned 8-bit integers (uint8), so loading this image and
converting to an array gives the type "uint8" in the first case. The second case does
grayscale conversion and creates the array with the extra argument "f". This is a short
command for setting the type to floating point. For more data type options, see [24].
Note that the grayscale image has only two values in the shape tuple; obviously it has
no color information.

Elements in the array are accessed with indexes. The value at coordinates i,j and
color channel k are accessed like this:

value = im[i,j,k]

Multiple elements can be accessed using array slicing. Slicing returns a view into the
array specified by intervals. Here are some examples for a grayscale image:

im[i,:] = im[j,:] # set the values of row i with values from row j
im[:,i] = 100 # set all values in column i to 100
im[:100,:50].sum() # the sum of the values of the first 100 rows and 50 columns
im[50:100,50:100] # rows 50-100, columns 50-100 (100th not included)
im[i].mean() # average of row i
im[:,-1] # last column
im[-2,:] (or im[-2]) # second to last row

Note the example with only one index. If you only use one index it is interpreted as the
row index. Note also the last examples. Negative indices count from the last element
backwards. We will frequently use slicing to access pixel values, and it is an important
concept to understand.

There are many operations and ways to use arrays. We will introduce them as they
are needed throughout this book. See the online documentation or the book [24] for
more explanations.

1.3. NumPy 21

Graylevel transforms

After reading images to NumPy arrays, we can perform any mathematical operation we
like on them. A simple example of this is to transform the graylevels of an image. Take
any function f that maps the interval 0 . . . 255 (or if you like 0 . . . 1) to itself (meaning
that the output has the same range as the input). Here are some examples.

from PIL import Image
from numpy import *

im = array(Image.open(’empire.jpg’).convert(’L’))

im2 = 255 - im #invert image

im3 = (100.0/255) * im + 100 #clamp to interval 100...200

im4 = 255.0 * (im/255.0)**2 #squared

The first example inverts the graylevels of the image, the second one clamps the in-
tensities to the interval 100 . . . 200 and the third applies a quadratic function, which
lowers the values of the darker pixels. Figure 1.4 shows the functions and Figure 1.5
the resulting images. You can check the minimum and maximum values of each image
using

print int(im.min()), int(im.max())

If you try that for each of the examples above, you should get the following output:

2 255
0 253
100 200
0 255

The reverse of the array() transformation can be done using the PIL function fromarray()

as:

pil_im = Image.fromarray(im)

If you did some operation to change the type from "uint8" to another data type, for
example as im3 or im4 in the example above, you need to convert back before creating
the PIL image.

pil_im = Image.fromarray(uint8(im))

If you are not absolutely sure of the type of the input, you should do this as it is the
safe choice. Note that NumPy will always change the array type to the "lowest" type
that can represent the data. Multiplication or division with floating point numbers will
change an integer type array to float.

22 1.3. NumPy

Figure 1.4: Example graylevel transforms. Three example functions together with the
identity transform showed as a dashed line.

Figure 1.5: Graylevel transforms. Applying the functions in Figure 1.4. (left) Inverting
the image with f(x) = 255 � x, (center) clamping the image with f(x) = (100/255)x +

100, (right) quadratic transformation with f(x) = 255(x/255)2.

1.3. NumPy 23

Image resizing

NumPy arrays will be our main tool for working with images and data. There is no
simple way to resize arrays, which you will want to do for images. We can use the PIL
image object conversion shown earlier to make a simple image resizing function. Add
the following to imtools.py.

def imresize(im,sz):
""" Resize an image array using PIL. """
pil_im = Image.fromarray(uint8(im))

return array(pil_im.resize(sz))

This function will come in handy later.

Histogram equalization

A very useful example of a graylevel transform is histogram equalization. This trans-
form flattens the graylevel histogram of an image so that all intensities are as equally
common as possible. This is often a good way to normalize image intensity before
further processing and also a way to increase image contrast.

The transform function is in this case a cumulative distribution function (cdf) of the
pixel values in the image (normalized to map the range of pixel values to the desired
range).

Here’s how to do it. Add this function to the file imtools.py.

def histeq(im,nbr_bins=256):
""" Histogram equalization of a grayscale image. """

get image histogram
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() # cumulative distribution function
cdf = 255 * cdf / cdf[-1] # normalize

use linear interpolation of cdf to find new pixel values
im2 = interp(im.flatten(),bins[:-1],cdf)

return im2.reshape(im.shape), cdf

The function takes a grayscale image and the number of bins to use in the histogram
as input and returns an image with equalized histogram together with the cumulative
distribution function used to do the mapping of pixel values. Note the use of the last
element (index -1) of the cdf to normalize it between 0 . . . 1. Try this on an image like
this:

24 1.3. NumPy

before transform after

Figure 1.6: Example of histogram equalization. On the left is the original image and
histogram. The middle plot is the graylevel transform function. On the right is the
image and histogram after histogram equalization.

from PIL import Image
from numpy import *

im = array(Image.open(’AquaTermi_lowcontrast.jpg’).convert(’L’))
im2,cdf = imtools.histeq(im)

Figure 1.6 and 1.7 show examples of histogram equalization. The top row shows the
graylevel histogram before and after equalization together with the cdf mapping. As
you can see, the contrast increases and the details of the dark regions now appear
clearly.

Averaging images

Averaging images is a simple way of reducing image noise and is also often used for
artistic effects. Computing an average image from a list of images is not difficult.

1.3. NumPy 25

before transform after

Figure 1.7: Example of histogram equalization. On the left is the original image and
histogram. The middle plot is the graylevel transform function. On the right is the
image and histogram after histogram equalization.

Assuming the images all have the same size, we can compute the average of all those
images by simply summing them up and dividing with the number of images. Add the
following function to imtools.py.

def compute_average(imlist):
""" Compute the average of a list of images. """

open first image and make into array of type float
averageim = array(Image.open(imlist[0]), ’f’)

for imname in imlist[1:]:
try:
averageim += array(Image.open(imname))

except:
print imname + ’...skipped’

averageim /= len(imlist)

return average as uint8
return array(averageim, ’uint8’)

This includes some basic exception handling to skip images that can’t be opened.
There is another way to compute average images using the mean() function. This
requires all images to be stacked into an array (and will use lots of memory if there

26 1.3. NumPy

are many images). We will use this function in the next section.

PCA of images

Principal Component Analysis (PCA) is a useful technique for dimensionality reduction
and is optimal in the sense that it represents the variability of the training data with
as few dimensions as possible. Even a tiny 100⇥ 100 pixel grayscale image has 10,000
dimensions, and can be considered a point in a 10,000 dimensional space. A megapixel
image has dimensions in the millions. With such high dimensionality, it is no surprise
that dimensionality reduction comes handy in many computer vision applications. The
projection matrix resulting from PCA can be seen as a change of coordinates to a
coordinate system where the coordinates are in descending order of importance.

To apply PCA on image data, the images need to be converted to a one-dimensional
vector representation, for example using NumPy’s flatten() method.

The flattened images are collected in a single matrix by stacking them, one row
for each image. The rows are then centered relative to the mean image before the
computation of the dominant directions. To find the principal components, singular
value decomposition (SVD) is usually used, but if the dimensionality is high, there is a
useful trick that can be used instead since the SVD computation will be very slow in
that case. Here is what it looks like in code.

from PIL import Image
from numpy import *

def pca(X):
""" Principal Component Analysis
input: X, matrix with training data stored as flattened arrays in rows
return: projection matrix (with important dimensions first), variance and mean.

"""

get dimensions
num_data,dim = X.shape

center data
mean_X = X.mean(axis=0)
X = X - mean_X

if dim>num_data:
PCA - compact trick used
M = dot(X,X.T) # covariance matrix
e,EV = linalg.eigh(M) # eigenvalues and eigenvectors
tmp = dot(X.T,EV).T # this is the compact trick
V = tmp[::-1] # reverse since last eigenvectors are the ones we want
S = sqrt(e)[::-1] # reverse since eigenvalues are in increasing order

1.3. NumPy 27

for i in range(V.shape[1]):
V[:,i] /= S

else:
PCA - SVD used
U,S,V = linalg.svd(X)
V = V[:num_data] # only makes sense to return the first num_data

return the projection matrix, the variance and the mean
return V,S,mean_X

This function first centers the data by subtracting the mean in each dimension. Then
the eigenvectors corresponding to the largest eigenvalues of the covariance matrix
are computed, either using a compact trick or using SVD. Here we used the function
range() which takes an integer n and returns a list of integers 0 . . . (n� 1). Feel free to
use the alternative arange() which gives an array or xrange() which gives a generator
(and might give speed improvements). We will stick with range() throughout the book.

We switch from SVD to use a trick with computing eigenvectors of the (smaller)
covariance matrix XXT if the number of data points is less than the dimension of the
vectors. There are also ways of only computing the eigenvectors corresponding to
the k largest eigenvalues (k being the number of desired dimensions) making it even
faster. We leave this to the interested reader to explore since it is really outside the
scope of this book. The rows of the matrix V are orthogonal and contain the coordinate
directions in order of descending variance of the training data.

Let’s try this on an example of font images. The file fontimages.zip contains small
thumbnail images of the character "a" printed in different fonts and then scanned. The
2359 fonts are from a collection of freely available fonts2. Assuming that the filenames
of these images are stored in a list, imlist, along with the previous code, in a file pca.py,
the principal components can be computed and shown like this:

from PIL import Image
from numpy import *
from pylab import *
import pca

im = array(Image.open(imlist[0])) # open one image to get size
m,n = im.shape[0:2] # get the size of the images
imnbr = len(imlist) # get the number of images

create matrix to store all flattened images
immatrix = array([array(Image.open(im)).flatten()

for im in imlist],’f’)

2Images courtesy of Martin Solli, http://webstaff.itn.liu.se/~marso/, collected and rendered
from publicly available free fonts.

28 1.3. NumPy

http://webstaff.itn.liu.se/~marso/

Figure 1.8: The mean image (top left) and the first seven modes, i.e. the directions
with most variation.

perform PCA
V,S,immean = pca.pca(immatrix)

show some images (mean and 7 first modes)
figure()
gray()
subplot(2,4,1)
imshow(immean.reshape(m,n))
for i in range(7):
subplot(2,4,i+2)
imshow(V[i].reshape(m,n))

show()

Note that the images need to be converted back from the one-dimensional represen-
tation using reshape(). Running the example should give eight images in one figure
window like the ones in Figure 1.8. Here we used the PyLab function subplot() to
place multiple plots in one window.

Using the Pickle module

If you want to save some results or data for later use, the picklemodule, which comes
with Python, is very useful. Pickle can take almost any Python object and convert it to a
string representation. This process is called pickling. Reconstructing the object from
the string representation is conversely called unpickling. This string representation
can then be easily stored or transmitted.

Let’s illustrate this with an example. Suppose we want to save the image mean and
principal components of the font images in the previous section. This is done like this:

1.3. NumPy 29

save mean and principal components
f = open(’font_pca_modes.pkl’, ’wb’)
pickle.dump(immean,f)
pickle.dump(V,f)
f.close()

As you can see, several objects can be pickled to the same file. There are several
different protocols available for the .pkl files, and if unsure it is best to read and write
binary files. To load the data in some other Python session, just use the load() method
like this:

load mean and principal components
f = open(’font_pca_modes.pkl’, ’rb’)
immean = pickle.load(f)
V = pickle.load(f)
f.close()

Note that the order of the objects should be the same! There is also an optimized
version written in C called cpickle that is fully compatible with the standard pickle
module. More details can be found on the pickle module documentation page http:
//docs.python.org/library/pickle.html#module-pickle.

For the remainder of this book we will use the with statement to handle file reading
and writing. This is a construct that was introduced in Python 2.5 that automatically
handles opening and closing of files (even if errors occur while the files are open).
Here is what the saving and loading above looks like using with().

open file and save
with open(’font_pca_modes.pkl’, ’wb’) as f:
pickle.dump(immean,f)
pickle.dump(V,f)

and

open file and load
with open(’font_pca_modes.pkl’, ’rb’) as f:
immean = pickle.load(f)
V = pickle.load(f)

This might look strange the first time you see it but it is a very useful construct. If you
don’t like it, just use the open and close functions as above.

As an alternative to using pickle, NumPy also has simple functions for reading and
writing text files that can be useful if your data does not contain complicated struc-
tures, for example a list of points clicked in an image. To save an array x to file use

savetxt(’test.txt’,x,’%i’)

30 1.3. NumPy

http://docs.python.org/library/pickle.html#module-pickle
http://docs.python.org/library/pickle.html#module-pickle

The last parameter indicates that integer format should be used. Similarly, reading is
done like this:

x = loadtxt(’test.txt’)

You can find out more from the online documentation http://docs.scipy.org/doc/
numpy/reference/generated/numpy.loadtxt.html.

Lastly, NumPy has dedicated functions for saving and loading arrays. Look for save()
and load() in the online documentation for the details.

1.4 SciPy

SciPy (http://scipy.org/) is an open-source package for mathematics that builds on
NumPy and provides efficient routines for a number of operations, including numerical
integration, optimization, statistics, signal processing, and most importantly for us,
image processing. As the following will show, there are many useful modules in SciPy.
SciPy is free and available at http://scipy.org/Download.

Blurring images

A classic and very useful example of image convolution is Gaussian blurring of images.
In essence, the (grayscale) image I is convolved with a Gaussian kernel to create a
blurred version

I
�

= I ⇤G
�

,

where ⇤ indicates convolution and G
�

is a Gaussian 2D-kernel with standard deviation
� defined as

G
�

=

1

2⇡�
e�(x2+y

2)/2�2
.

Gaussian blurring is used to define an image scale to work in, for interpolation, for
computing interest points, and in many more applications.

SciPy comes with a module for filtering called scipy.ndimage.filters that can be
used to compute these convolutions using a fast 1D separation. All you need to do is:

from PIL import Image
from numpy import *
from scipy.ndimage import filters

im = array(Image.open(’empire.jpg’).convert(’L’))
im2 = filters.gaussian_filter(im,5)

Here the last parameter of gaussian_filter() is the standard deviation.

1.4. SciPy 31

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://scipy.org/
http://scipy.org/Download

(a) (b) (c) (d)

Figure 1.9: An example of Gaussian blurring using the scipy.ndimage.filtersmodule.
(a) original image in grayscale, (b) Gaussian filter with � = 2, (c) with � = 5, (d) with
� = 10.

Figure 1.9 shows examples of an image blurred with increasing �. Larger values
gives less details. To blur color images, simply apply Gaussian blurring to each color
channel.

im = array(Image.open(’empire.jpg’))
im2 = zeros(im.shape)
for i in range(3):
im2[:,:,i] = filters.gaussian_filter(im[:,:,i],5)

im2 = uint8(im2)

Here the last conversion to "uint8" is not always needed but forces the pixel values to
be in 8-bit representation. We could also have used

im2 = array(im2,’uint8’)

for the conversion.
For more information on using this module and the different parameter choices,

check out the SciPy documentation of scipy.ndimage at http://docs.scipy.org/
doc/scipy/reference/ndimage.html.

Image derivatives

How the image intensity changes over the image is important information, used for
many applications as we will see throughout this book. The intensity change is de-
scribed with the x and y derivatives I

x

and I
y

of the graylevel image I (for color images,
derivatives are usually taken for each color channel).

32 1.4. SciPy

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/ndimage.html

The image gradient is the vector rI = [I
x

I
y

]

T . The gradient has two important
properties, the gradient magnitude

|rI| =
q
I2
x

+ I2
y

,

which describes how strong the image intensity change is, and the gradient angle

↵ = arctan2(I
y

, I
x

) ,

which indicates the direction of largest intensity change at each point (pixel) in the im-
age. The NumPy function arctan2() returns the signed angle in radians, in the interval
�⇡ . . .⇡.

Computing the image derivatives can be done using discrete approximations. These
are most easily implemented as convolutions

I
x

= I ⇤D
x

and I
y

= I ⇤D
y

.

Two common choices for D
x

and D
y

are the Prewitt filters

D
x

=

2

4
�1 0 1

�1 0 1

�1 0 1

3

5
and D

y

=

2

4
�1 �1 �1

0 0 0

1 1 1

3

5 .

and Sobel filters

D
x

=

2

4
�1 0 1

�2 0 2

�1 0 1

3

5
and D

y

=

2

4
�1 �2 �1

0 0 0

1 2 1

3

5 .

These derivative filters are easy to implement using the standard convolution avail-
able in the scipy.ndimage.filters module. For example:

from PIL import Image
from numpy import *
from scipy.ndimage import filters

im = array(Image.open(’empire.jpg’).convert(’L’))

#Sobel derivative filters
imx = zeros(im.shape)
filters.sobel(im,1,imx)

imy = zeros(im.shape)
filters.sobel(im,0,imy)

magnitude = sqrt(imx**2+imy**2)

1.4. SciPy 33

(a) (b) (c) (d)

Figure 1.10: An example of computing image derivatives using Sobel derivative fil-
ters. (a) original image in grayscale, (b) x-derivative, (c) y-derivative, (d) gradient
magnitude.

This computes x and y derivatives and gradient magnitude using the Sobel filter. The
second argument selects the x or y derivative, and the third stores the output. Fig-
ure 1.10 shows an image with derivatives computed using the Sobel filter. In the
two derivative images, positive derivatives are shown with bright pixels and negative
derivatives are dark. Gray areas have values close to zero.

Using this approach has the drawback that derivatives are taken on the scale de-
termined by the image resolution. To be more robust to image noise and to compute
derivatives at any scale, Gaussian derivative filters can be used,

I
x

= I ⇤G
�x

and I
y

= I ⇤G
�y

,

whereG
�x

andG
�y

are the x and y derivatives ofG
�

, a Gaussian function with standard
deviation �.

The filters.gaussian_filter() function we used for blurring earlier can also take
extra arguments to compute Gaussian derivatives instead. To try this on an image,
simply do:

sigma = 5 #standard deviation

imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)

imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)

The third argument specifies which order of derivatives to use in each direction using
the standard deviation determined by the second argument. See the documentation

34 1.4. SciPy

for the details. Figure 1.11 shows the derivatives and gradient magnitude for different
scales. Compare this to the blurring at the same scales in Figure 1.9.

Morphology - counting objects

Morphology (or mathematical morphology) is a framework and a collection of image
processing methods for measuring and analyzing basic shapes. Morphology is usually
applied to binary images but can be used with grayscale also. A binary image is an
image in which each pixel takes only two values, usually 0 and 1. Binary images are
often the result of thresholding an image, for example with the intention of counting
objects or measuring their size. A good summary of morphology and how it works is
in http://en.wikipedia.org/wiki/Mathematical_morphology.

Morphological operations are included in the scipy.ndimage module morphology.
Counting and measurement functions for binary images are in the scipy.ndimagemod-
ule measurements. Let’s look at a simple example of how to use them.

Consider the binary image in Figure 1.12a3. Counting the objects in that image
can be done using

from scipy.ndimage import measurements,morphology

load image and threshold to make sure it is binary
im = array(Image.open(’houses.png’).convert(’L’))
im = 1*(im<128)

labels, nbr_objects = measurements.label(im)
print "Number of objects:", nbr_objects

This loads the image and makes sure it is binary by thresholding. Multiplying with
1 converts the boolean array to a binary one. Then the function label() finds the
individual objects and assigns integer labels to pixels according to which object they
belong to. Figure 1.12b shows the labels array. The graylevel values indicate object
index. As you can see, there are small connections between some of the objects. Using
an operation called binary opening, we can remove them.

morphology - opening to separate objects better
im_open = morphology.binary_opening(im,ones((9,5)),iterations=2)

labels_open, nbr_objects_open = measurements.label(im_open)
print "Number of objects:", nbr_objects_open

3This image is actually the result of image "segmentation". Take a look at Section 9.3 if you want to
see how this image was created.

1.4. SciPy 35

http://en.wikipedia.org/wiki/Mathematical_morphology

(a) (b) (c) (d)

Figure 1.11: An example of computing image derivatives using Gaussian derivatives.
(top) x-derivative, (middle) y-derivative and (bottom) gradient magnitude. (a) original
image in grayscale, (b) Gaussian derivative filter with � = 2, (c) with � = 5, (d) with
� = 10.

36 1.4. SciPy

The second argument of binary_opening() specifies the structuring element , an array
that indicates what neighbors to use when centered around a pixel. In this case we
used 9 pixels (4 above, the pixel itself, and 4 below) in the y direction and 5 in the
x direction. You can specify any array as structuring element, the non-zero elements
will determine the neighbors. The parameter iterations determines how many times
to apply the operation. Try this and see how the number of objects changed. The
image after opening and the corresponding label image are shown in Figure 1.12c-
d. As you might expect, there is a function named binary_closing() that does the
reverse. We leave that and the other functions in morphology and measurements to
the exercises. You can learn more about them from the scipy.ndimage documentation
http://docs.scipy.org/doc/scipy/reference/ndimage.html.

Useful SciPy modules

SciPy comes with some useful modules for input and output. Two of them are io and
misc.

Reading and writing .mat files If you have some data, or find some interesting
data set online, stored in Matlab’s .mat file format, it is possible to read this using the
scipy.io module. This is how to do it:

data = scipy.io.loadmat(’test.mat’)

The object data now contains a dictionary with keys corresponding to the variable
names saved in the original .mat file. The variables are in array format. Saving to
.mat files is equally simple. Just create a dictionary with all variables you want to save
and use savemat().

data = {}
data[’x’] = x
scipy.io.savemat(’test.mat’,data)

This saves the array x so that it has the name "x" when read into Matlab. More infor-
mation on scipy.io can be found in the online documentation, http://docs.scipy.
org/doc/scipy/reference/io.html.

Saving arrays as images Since we are manipulating images and doing computa-
tions using array objects, it is useful to be able to save them directly as image files.4

Many images in this book are created just like this.

4All PyLab figures can be saved in a multitude of image formats by clicking the "save" button in the
figure window.

1.4. SciPy 37

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/io.html
http://docs.scipy.org/doc/scipy/reference/io.html

(a) (b)

(c) (d)

Figure 1.12: An example of morphology. Binary opening to separate objects followed
by counting them. (a) original binary image, (b) label image corresponding to the
original, grayvalues indicate object index, (c) binary image after opening, (d) label
image corresponding to the opened image.

38 1.4. SciPy

The imsave() function is available through the scipy.miscmodule. To save an array
im to file just do:

import scipy.misc
scipy.misc.imsave(’test.jpg’,im)

The scipy.misc module also contains the famous "Lena" test image.

lena = scipy.misc.lena()

This will give you a 512⇥ 512 grayscale array version of the image.

1.5 Advanced example: Image de-noising

We conclude this chapter with a very useful example, de-noising of images. Image
de-noising is the process of removing image noise while at the same time trying to
preserve details and structures. We will use the Rudin-Osher-Fatemi de-noising model
(ROF) originally introduced in [28]. Removing noise from images is important for
many applications, from making your holiday photos look better to improving the qual-
ity of satellite images. The ROF model has the interesting property that it finds a
smoother version of the image while preserving edges and structures.

The underlying mathematics of the ROF model and the solution techniques are
quite advanced and outside the scope of this book. We’ll give a brief (simplified) in-
troduction before showing how to implement a ROF solver based on an algorithm by
Chambolle [5].

The total variation (TV) of a (grayscale) image I is defined as the sum of the gradi-
ent norm. In a continuous representation this is

J(I) =

Z
|rI|dx . (1.1)

In a discrete setting, the total variation becomes

J(I) =
X

x

|rI| ,

where the sum is taken over all image coordinates x = [x, y].
In the (Chambolle) version of ROF, the goal is to find a de-noised image U that

minimizes
min

U

||I � U ||2 + 2�J(U),

where the norm ||I �U || measures the difference between U and the original image I.
What this means is in essence that the model looks for images that are "flat" but allow
"jumps" at edges between regions.

Following the recipe in the paper, here’s the code.

1.5. Advanced example: Image de-noising 39

from numpy import *

def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100):
""" An implementation of the Rudin-Osher-Fatemi (ROF) denoising model
using the numerical procedure presented in eq (11) A. Chambolle (2005).

Input: noisy input image (grayscale), initial guess for U, weight of
the TV-regularizing term, steplength, tolerance for stop criterion.

Output: denoised and detextured image, texture residual. """

m,n = im.shape #size of noisy image

initialize
U = U_init
Px = im #x-component to the dual field
Py = im #y-component of the dual field
error = 1

while (error > tolerance):
Uold = U

gradient of primal variable
GradUx = roll(U,-1,axis=1)-U # x-component of U’s gradient
GradUy = roll(U,-1,axis=0)-U # y-component of U’s gradient

update the dual varible
PxNew = Px + (tau/tv_weight)*GradUx
PyNew = Py + (tau/tv_weight)*GradUy
NormNew = maximum(1,sqrt(PxNew**2+PyNew**2))

Px = PxNew/NormNew # update of x-component (dual)
Py = PyNew/NormNew # update of y-component (dual)

update the primal variable
RxPx = roll(Px,1,axis=1) # right x-translation of x-component
RyPy = roll(Py,1,axis=0) # right y-translation of y-component

DivP = (Px-RxPx)+(Py-RyPy) # divergence of the dual field.
U = im + tv_weight*DivP # update of the primal variable

update of error
error = linalg.norm(U-Uold)/sqrt(n*m);

return U,im-U # denoised image and texture residual

In this example, we used the function roll(), which as the name suggests, "rolls" the

40 1.5. Advanced example: Image de-noising

(a) (b) (c)

Figure 1.13: An example of ROF de-noising of a synthetic example. (a) original noisy
image, (b) image after Gaussian blurring (� = 10). (c) image after ROF de-noising.

values of an array cyclically around an axis. This is very convenient for computing
neighbor differences, in this case for derivatives. We also used linalg.norm() which
measures the difference between two arrays (in this case the image matrices U and
Uold). Save the function denoise() in a file rof.py.

Let’s start with a synthetic example of a noisy image:

from numpy import *
from numpy import random
from scipy.ndimage import filters
import rof

create synthetic image with noise
im = zeros((500,500))
im[100:400,100:400] = 128
im[200:300,200:300] = 255
im = im + 30*random.standard_normal((500,500))

U,T = rof.denoise(im,im)
G = filters.gaussian_filter(im,10)

save the result
import scipy.misc
scipy.misc.imsave(’synth_rof.pdf’,U)
scipy.misc.imsave(’synth_gaussian.pdf’,G)

The resulting images are shown in Figure 1.13 together with the original. As you can
see, the ROF version preserves the edges nicely.

Now, let’s see what happens with a real image:

from PIL import Image

1.5. Advanced example: Image de-noising 41

(a) (b) (c)

Figure 1.14: An example of ROF de-noising of a grayscale image. (a) original image,
(b) image after Gaussian blurring (� = 5). (c) image after ROF de-noising.

from pylab import *
import rof

im = array(Image.open(’empire.jpg’).convert(’L’))
U,T = rof.denoise(im,im)

figure()
gray()
imshow(U)
axis(’equal’)
axis(’off’)
show()

The result should look something like Figure 1.14c, which also shows a blurred version
of the same image for comparison. As you can see, ROF de-noising preserves edges
and image structures while at the same time blurring out the "noise".

Exercises

1. Take an image and apply Gaussian blur like in Figure 1.9. Plot the image contours
for increasing values of �. What happens? Can you explain why?

2. Implement an unsharp masking operation (http://en.wikipedia.org/wiki/Unsharp_

masking) by blurring an image and then subtracting the blurred version from the

42 1.5. Advanced example: Image de-noising

http://en.wikipedia.org/wiki/Unsharp_masking
http://en.wikipedia.org/wiki/Unsharp_masking

original. This gives a sharpening effect to the image. Try this on both color and
grayscale images.

3. An alternative image normalization to histogram equalization is a quotient im-
age. A quotient image is obtained by dividing the image with a blurred version
I/(I ⇤G

�

). Implement this and try it on some sample images.

4. Write a function that finds the outline of simple objects in images (for example a
square against white background) using image gradients.

5. Use gradient direction and magnitude to detect lines in an image. Estimate the
extent of the lines and their parameters. Plot the lines overlaid on the image.

6. Apply the label() function to a thresholded image of your choice. Use histograms
and the resulting label image to plot the distribution of object sizes in the image.

7. Experiment with successive morphological operations on a thresholded image of
your choice. When you have found some settings that produce good results, try
the function center_of_mass in morphology to find the center coordinates of each
object and plot them in the image.

From Chapter 2 and onwards we assume PIL, NumPy and Matplotlib
to be included at the top of every file you create and in every code
example as

from PIL import Image
from numpy import *
from pylab import *

This makes the example code cleaner and the presentation easier to
follow. In the cases when we use SciPy modules, we will explicitly
declare that in the examples.

Purists will object to this type of blanket imports and insist on something like

import numpy as np
import matplotlib.pyplot as plt

1.5. Advanced example: Image de-noising 43

so that namespaces can be kept (to know where each function comes from) and only
import the pyplot part of Matplotlib since the NumPy parts imported with PyLab
are not needed. Purists and experienced programmers know the difference and can
choose whichever option they prefer. In the interest of making the content and exam-
ples in this book easily accessible to readers, I have chosen not to do this.
Caveat emptor.

44 1.5. Advanced example: Image de-noising

Chapter 2

Local Image Descriptors

This chapter is about finding corresponding points and regions between images. Two
different types of local descriptors are introduced with methods for matching these be-
tween images. These local features will be used in many different contexts throughout
this book and are an important building block in many applications such as creating
panoramas, augmented reality, and computing 3D reconstructions.

2.1 Harris corner detector

The Harris corner detection algorithm (or sometimes the Harris & Stephens corner
detector) is one of the simplest corner indicators available. The general idea is to
locate interest points where the surrounding neighborhood shows edges in more than
one direction, these are then image corners.

We define a matrix M

I

= M

I

(x), on the points x in the image domain, as the
positive semi-definite, symmetric matrix

M

I

= rI rIT =

I
x

I
y

� ⇥
I
x

I
y

⇤
=

I2
x

I
x

I
y

I
x

I
y

I2
y

�
, (2.1)

where as before rI is the image gradient containing the derivatives I
x

and I
y

(we
defined the derivatives and the gradient on page 32). Because of this construction,
M

I

has rank one with eigenvalues �1 = |rI|2 and �2 = 0. We now have one matrix for
each pixel in the image.

Let W be a weight matrix (typically a Gaussian filter G
�

), the component-wise
convolution

M

I

= W ⇤M
I

, (2.2)

gives a local averaging of M
I

over the neighboring pixels. The resulting matrix M

I

is sometimes called a Harris matrix. The width of W determines a region of interest

45

around x. The idea of averaging the matrix M

I

over a region like this is that the
eigenvalues will change depending on the local image properties. If the gradients vary
in the region, the second eigenvalue of M

I

will no longer be zero. If the gradients are
the same, the eigenvalues will be the same as for M

I

.
Depending on the values of rI in the region, there are three cases for the eigen-

values of the Harris matrix, M
I

:

• If �1 and �2 are both large positive values, then there is a corner at x.

• If �1 is large and �2 ⇡ 0, then there is an edge and the averaging of M
I

over the
region doesn’t change the eigenvalues that much.

• If �1 ⇡ �2 ⇡ 0 then there is nothing.

To distinguish the important case from the others without actually having to com-
pute the eigenvalues, Harris and Stephens [12] introduced an indicator function

det(M

I

)� trace(M
I

)

2 .

To get rid of the weighting constant , it is often easier to use the quotient

det(M

I

)

trace(M

I

)

2

as an indicator.
Let’s see what this looks like in code. For this we need the scipy.ndimage.filters

module for computing derivatives using Gaussian derivative filters as described on
page 33. The reason is again that we would like to suppress noise sensitivity in the
corner detection process.

First add the corner response function to a file harris.py which will make use of
the Gaussian derivatives. Again the parameter � defines the scale of the Gaussian
filters used. You can also modify this function to take different scales in the x and y

directions as well as a different scale for the averaging to compute the Harris matrix.

from scipy.ndimage import filters

def compute_harris_response(im,sigma=3):
""" Compute the Harris corner detector response function
for each pixel in a graylevel image. """

derivatives
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)

46 2.1. Harris corner detector

filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)

compute components of the Harris matrix
Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma)

determinant and trace
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy

return Wdet / Wtr

This gives an image with each pixel containing the value of the Harris response func-
tion. Now it is just a matter of picking out the information needed from this image.
Taking all points with values above a threshold with the additional constraint that cor-
ners must be separated with a minimum distance is an approach that often gives good
results. To do this, take all candidate pixels, sort them in descending order of corner
response values and mark off regions too close to positions already marked as corners.
Add the following function to harris.py.

def get_harris_points(harrisim,min_dist=10,threshold=0.1):
""" Return corners from a Harris response image
min_dist is the minimum number of pixels separating
corners and image boundary. """

find top corner candidates above a threshold
corner_threshold = harrisim.max() * threshold
harrisim_t = (harrisim > corner_threshold) * 1

get coordinates of candidates
coords = array(harrisim_t.nonzero()).T

...and their values
candidate_values = [harrisim[c[0],c[1]] for c in coords]

sort candidates
index = argsort(candidate_values)

store allowed point locations in array
allowed_locations = zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1

select the best points taking min_distance into account
filtered_coords = []
for i in index:
if allowed_locations[coords[i,0],coords[i,1]] == 1:

2.1. Harris corner detector 47

filtered_coords.append(coords[i])
allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),

(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0

return filtered_coords

Now you have all you need to detect corner points in images. To show the corner
points in the image you can add a plotting function to harris.py using Matplotlib as
follows.

def plot_harris_points(image,filtered_coords):
""" Plots corners found in image. """

figure()
gray()
imshow(image)
plot([p[1] for p in filtered_coords],[p[0] for p in filtered_coords],’*’)
axis(’off’)
show()

Try running the following commands:

im = array(Image.open(’empire.jpg’).convert(’L’))
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim,6)
harris.plot_harris_points(im, filtered_coords)

The image is opened and converted to grayscale. Then the response function is com-
puted and points selected based on the response values. Finally, the points are plotted
overlaid on the original image. This should give you a plot like the images in Fig-
ure 2.1.

For an overview of different approaches to corner detection, including improve-
ments on the Harris detector and further developments, see for example http://en.
wikipedia.org/wiki/Corner_detection.

Finding corresponding points between images

The Harris corner detector gives interest points in images but does not contain an
inherent way of comparing these interest points across images to find matching cor-
ners. What we need is to add a descriptor to each point and a way to compare such
descriptors.

An interest point descriptor is a vector assigned to an interest point that describes
the image appearance around the point. The better the descriptor, the better your cor-
respondences will be. With point correspondence or corresponding points we mean
points in different images that refer to the same object or scene point.

48 2.1. Harris corner detector

http://en.wikipedia.org/wiki/Corner_detection
http://en.wikipedia.org/wiki/Corner_detection

(a) (b) (c) (d)

Figure 2.1: An example of corner detection with the Harris corner detector. (a) the
Harris response function, (b), (c) and (d) corners detected with threshold 0.01, 0.05,
and 0.1 respectively.

Harris corner points are usually combined with a descriptor consisting of the graylevel
values in a neighboring image patch together with normalized cross correlation for
comparison. An image patch is almost always a rectangular portion of the image cen-
tered around the point in question.

In general, correlation between two (equally sized) image patches I1(x) and I2(x)

is defined as
c(I1, I2) =

X

x

f(I1(x), I2(x)) ,

where the function f varies depending on the correlation method. The sum is taken
over all positions x in the image patches. For cross correlation f(I1, I2) = I1 I2, and
then c(I1, I2) = I1 · I2 with · denoting the scalar product (of the row- or column-stacked
patches). The larger the value of c(I1, I2), the more similar the patches I1 and I2 are1.

Normalized cross correlation is a variant of cross correlation defined as

ncc(I1, I2) =
1

n� 1

X

x

(I1(x)� µ1)

�1
· (I2(x)� µ2)

�2
, (2.3)

where n is the number of pixels in a patch, µ1 and µ2 are the mean intensities, and
�1 and �2 are the standard deviations in each patch respectively. By subtracting the
mean and scaling with the standard deviation, the method becomes robust to changes
in image brightness.

To extract image patches and compare them using normalized cross correlation,
you need two more functions in harris.py. Add these:

1Another popular function is f(I1, I2) = (I1 � I2)
2 which gives sum of squared differences (SSD).

2.1. Harris corner detector 49

def get_descriptors(image,filtered_coords,wid=5):
""" For each point return pixel values around the point
using a neighbourhood of width 2*wid+1. (Assume points are
extracted with min_distance > wid). """

desc = []
for coords in filtered_coords:
patch = image[coords[0]-wid:coords[0]+wid+1,

coords[1]-wid:coords[1]+wid+1].flatten()
desc.append(patch)

return desc

def match(desc1,desc2,threshold=0.5):
""" For each corner point descriptor in the first image,
select its match to second image using
normalized cross correlation. """

n = len(desc1[0])

pair-wise distances
d = -ones((len(desc1),len(desc2)))
for i in range(len(desc1)):
for j in range(len(desc2)):
d1 = (desc1[i] - mean(desc1[i])) / std(desc1[i])
d2 = (desc2[j] - mean(desc2[j])) / std(desc2[j])
ncc_value = sum(d1 * d2) / (n-1)
if ncc_value > threshold:
d[i,j] = ncc_value

ndx = argsort(-d)
matchscores = ndx[:,0]

return matchscores

The first function takes a square grayscale patch of odd side length centered around
the point, flattens it and adds to a list of descriptors. The second function matches each
descriptor to its best candidate in the other image using normalized cross correlation.
Note that the distances are negated before sorting since a high value means better
match. To further stabilize the matches, we can match from the second image to the
first and filter out the matches that are not the best both ways. The following function
does just that.

def match_twosided(desc1,desc2,threshold=0.5):
""" Two-sided symmetric version of match(). """

50 2.1. Harris corner detector

matches_12 = match(desc1,desc2,threshold)
matches_21 = match(desc2,desc1,threshold)

ndx_12 = where(matches_12 >= 0)[0]

remove matches that are not symmetric
for n in ndx_12:
if matches_21[matches_12[n]] != n:
matches_12[n] = -1

return matches_12

The matches can be visualized by showing the images side-by-side and connect-
ing matched points with lines using the following code. Add these two functions to
harris.py:

def appendimages(im1,im2):
""" Return a new image that appends the two images side-by-side. """

select the image with the fewest rows and fill in enough empty rows
rows1 = im1.shape[0]
rows2 = im2.shape[0]

if rows1 < rows2:
im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0)

elif rows1 > rows2:
im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0)

if none of these cases they are equal, no filling needed.

return concatenate((im1,im2), axis=1)

def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
""" Show a figure with lines joining the accepted matches
input: im1,im2 (images as arrays), locs1,locs2 (feature locations),
matchscores (as output from ’match()’),
show_below (if images should be shown below matches). """

im3 = appendimages(im1,im2)
if show_below:
im3 = vstack((im3,im3))

imshow(im3)

cols1 = im1.shape[1]
for i,m in enumerate(matchscores):
if m>0:
plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],’c’)

2.1. Harris corner detector 51

axis(’off’)

Figure 2.2 shows an example of finding such corresponding points using normal-
ized cross correlation (in this case with 11⇥ 11 pixels in a patch) using the commands:

wid = 5
harrisim = harris.compute_harris_response(im1,5)
filtered_coords1 = harris.get_harris_points(harrisim,wid+1)
d1 = harris.get_descriptors(im1,filtered_coords1,wid)

harrisim = harris.compute_harris_response(im2,5)
filtered_coords2 = harris.get_harris_points(harrisim,wid+1)
d2 = harris.get_descriptors(im2,filtered_coords2,wid)

print ’starting matching’
matches = harris.match_twosided(d1,d2)

figure()
gray()
harris.plot_matches(im1,im2,filtered_coords1,filtered_coords2,matches)
show()

If you only want to plot a subset of the matches to make the visualization clearer,
substitute matches with for example matches[:100] or a random set of indices.

As you can see in Figure 2.2, there are quite a lot of incorrect matches. This
is because cross correlation on image patches is not as descriptive as more modern
approaches. As a consequence, it is important to use robust methods for handling
these correspondences in an application. Another problem is that these descriptors
are not invariant to scale or rotation and the choice of patch sizes affect the results.

In recent years there has been a lot of development in improving feature point
detection and description. Let’s take a look at one of the best algorithms in the next
section.

2.2 SIFT - Scale-Invariant Feature Transform

One of the most successful local image descriptors in the last decade is the Scale-
Invariant Feature Transform (SIFT), introduced by David Lowe in [17]. SIFT was later
refined and described in detail in the paper [18] and has stood the test of time. SIFT
includes both an interest point detector and a descriptor. The descriptor is very robust
and is largely the reason behind the success and popularity of SIFT. Since its introduc-
tion many alternatives have been proposed with essentially the same type of descrip-
tor. The descriptor is nowadays often combined with many different interest point
detectors (and region detectors for that matter) and sometimes even applied densely

52 2.2. SIFT - Scale-Invariant Feature Transform

Figure 2.2: Example of matches resulting from applying normalized cross correlation
to patches around Harris corner points.

2.2. SIFT - Scale-Invariant Feature Transform 53

across the whole image. SIFT features are invariant to scale, rotation and intensity and
can be matched reliably across 3D viewpoint and noise. A brief overview is available
online at http://en.wikipedia.org/wiki/Scale-invariant_feature_transform.

Interest points

SIFT interest point locations are found using difference-of-Gaussian functions

D(x,�) = [G
k�

(x)�G
�

(x)] ⇤ I(x) = [G
k�

�G
�

] ⇤ I = I
k�

� I
�

,

where G
�

is the Gaussian 2D kernel described on page 31, I
�

the G
�

-blurred grayscale
image and k a constant factor determining the separation in scale. Interest points
are the maxima and minima of D(x,�) across both image location and scale. These
candidate locations are filtered to remove unstable points. Points are dismissed based
on a number of criteria like low contrast and points on edges. The details are in the
paper.

Descriptor

The interest point (keypoint) locator above gives position and scale. To achieve invari-
ance to rotation, a reference direction is chosen based on the direction and magnitude
of the image gradient around each point. The dominant direction is used as reference
and determined using an orientation histogram (weighted with the magnitude).

The next step is to compute a descriptor based on the position, scale and rotation.
To obtain robustness against image intensity, the SIFT descriptor uses image gradients
(compare that to normalized cross correlation above that uses the image intensities).
The descriptor takes a grid of subregions around the point and for each subregion
computes an image gradient orientation histogram. The histograms are concatenated
to form a descriptor vector. The standard setting uses 4 ⇥ 4 subregions with 8 bin
orientation histograms resulting in a 128 bin histogram (4 ⇤ 4 ⇤ 8 = 128). Figure 2.3
illustrates the construction of the descriptor. The interested reader should look at
[18] for the details or http://en.wikipedia.org/wiki/Scale-invariant_feature_

transform for an overview.

Detecting interest points

To compute SIFT features for images we will use the binaries available with the open
source package VLFeat [36]. A full Python implementation of all the steps in the
algorithm would not be very efficient and really is outside the scope of this book.
VLFeat is available at http://www.vlfeat.org/, with binaries for all major platforms.

54 2.2. SIFT - Scale-Invariant Feature Transform

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://www.vlfeat.org/

(a) (b) (c)

(d)

Figure 2.3: An illustration of the construction of the feature vector for the SIFT de-
scriptor. (a) a frame around an interest point, oriented according to the dominant
gradient direction. (b) an 8 bin histogram over the direction of the gradient in a part
of the grid. (c) histograms are extracted in each grid location. (d) the histograms are
concatenated to form one long feature vector.

The library is written in C but has a command line interface that we can use. There is
also a Matlab interface and a Python wrapper http://github.com/mmmikael/vlfeat/
if you prefer that to the binaries used here. The Python wrapper can be a little tricky
to install on some platforms due to its dependencies so we will focus on the binaries
instead. There is also an alternative SIFT implementation available at Lowe’s website
http://www.cs.ubc.ca/~lowe/keypoints/ (Windows and Linux only).

Create a file sift.py and add the following function that calls the executable.

def process_image(imagename,resultname,params="--edge-thresh 10 --peak-thresh 5"):
""" Process an image and save the results in a file. """

if imagename[-3:] != ’pgm’:
create a pgm file
im = Image.open(imagename).convert(’L’)
im.save(’tmp.pgm’)
imagename = ’tmp.pgm’

cmmd = str("sift "+imagename+" --output="+resultname+
" "+params)

os.system(cmmd)
print ’processed’, imagename, ’to’, resultname

2.2. SIFT - Scale-Invariant Feature Transform 55

http://github.com/mmmikael/vlfeat/
http://www.cs.ubc.ca/~lowe/keypoints/

The binaries need the image in grayscale .pgm format, so if another image format is
used we first convert to a temporary .pgm file. The result is stored in a text file in an
easy to read format. The files look something like this

318.861 7.48227 1.12001 1.68523 0 0 0 1 0 0 0 0 0 11 16 0 ...
318.861 7.48227 1.12001 2.99965 11 2 0 0 1 0 0 0 173 67 0 0 ...
54.2821 14.8586 0.895827 4.29821 60 46 0 0 0 0 0 0 99 42 0 0 ...
155.714 23.0575 1.10741 1.54095 6 0 0 0 150 11 0 0 150 18 2 1 ...
42.9729 24.2012 0.969313 4.68892 90 29 0 0 0 1 2 10 79 45 5 11 ...
229.037 23.7603 0.921754 1.48754 3 0 0 0 141 31 0 0 141 45 0 0 ...
232.362 24.0091 1.0578 1.65089 11 1 0 16 134 0 0 0 106 21 16 33 ...
201.256 25.5857 1.04879 2.01664 10 4 1 8 14 2 1 9 88 13 0 0 ...
...
...

where each row contains the coordinates, scale and rotation angle for each interest
point as the first four values, followed by the 128 values of the corresponding descrip-
tor. The descriptor is represented with the raw integer values and is not normalized.
This is something you will want to do when comparing descriptors. More on that later.

The example above shows the first part of the first eight features found in an image.
Note that the two first rows have the same coordinates but different rotation. This can
happen if several strong directions are found at the same interest point.

Here’s how to read the features to NumPy arrays from an output file like the one
above. Add this function to sift.py,

def read_features_from_file(filename):
""" Read feature properties and return in matrix form. """

f = loadtxt(filename)
return f[:,:4],f[:,4:] # feature locations, descriptors

Here we used the NumPy function loadtxt() to do all the work for us.
If you modify the descriptors in your Python session writing the result back to fea-

ture files can be useful. The function below does this for you using NumPy’s savetxt().

def write_features_to_file(filename,locs,desc):
""" Save feature location and descriptor to file. """
savetxt(filename,hstack((locs,desc)))

This uses the function hstack() that horizontally stacks the two arrays by concatenat-
ing the rows so that the descriptor part comes after the locations on each row.

Having read the features, visualizing them by plotting their locations in the image
is a simple task. Just add plot_features() as below to your file sift.py.

def plot_features(im,locs,circle=False):
""" Show image with features. input: im (image as array),
locs (row, col, scale, orientation of each feature). """

56 2.2. SIFT - Scale-Invariant Feature Transform

def draw_circle(c,r):
t = arange(0,1.01,.01)*2*pi
x = r*cos(t) + c[0]
y = r*sin(t) + c[1]
plot(x,y,’b’,linewidth=2)

imshow(im)
if circle:
for p in locs:
draw_circle(p[:2],p[2])

else:
plot(locs[:,0],locs[:,1],’ob’)

axis(’off’)

This will plot the location of the SIFT points as blue dots overlaid on the image. If the
optional parameter circle is set to "True", circles with radius equal to the scale of the
feature will be drawn instead using the helper function draw_circle().

The following commands

import sift

imname = ’empire.jpg’
im1 = array(Image.open(imname).convert(’L’))
sift.process_image(imname,’empire.sift’)
l1,d1 = sift.read_features_from_file(’empire.sift’)

figure()
gray()
sift.plot_features(im1,l1,circle=True)
show()

will create a plot like the one in Figure 2.4b with the SIFT feature locations shown. To
see the difference compared to Harris corners, the Harris corners for the same image
is shown to the right (Figure 2.4c). As you can see the two algorithms select different
locations.

Matching descriptors

A robust criteria (also introduced by Lowe) for matching a feature in one image to a
feature in another image is to use the ratio of the distance to the two closest matching
features. This ensures that only features that are distinct enough compared to the
other features in the image are used. As a consequence, the number of false matches
is lowered. Here’s what this matching function looks like in code. Add match() to
sift.py.

2.2. SIFT - Scale-Invariant Feature Transform 57

(a) (b) (c)

Figure 2.4: An example of extracting SIFT features for an image. (a) SIFT features (b)
SIFT features shown with circle indicating the scale of the feature (c) Harris points for
the same image for comparison.

def match(desc1,desc2):
""" For each descriptor in the first image,
select its match in the second image.
input: desc1 (descriptors for the first image),
desc2 (same for second image). """

desc1 = array([d/linalg.norm(d) for d in desc1])
desc2 = array([d/linalg.norm(d) for d in desc2])

dist_ratio = 0.6
desc1_size = desc1.shape

matchscores = zeros((desc1_size[0],1),’int’)
desc2t = desc2.T # precompute matrix transpose
for i in range(desc1_size[0]):
dotprods = dot(desc1[i,:],desc2t) # vector of dot products
dotprods = 0.9999*dotprods
inverse cosine and sort, return index for features in second image
indx = argsort(arccos(dotprods))

check if nearest neighbor has angle less than dist_ratio times 2nd
if arccos(dotprods)[indx[0]] < dist_ratio * arccos(dotprods)[indx[1]]:
matchscores[i] = int(indx[0])

return matchscores

58 2.2. SIFT - Scale-Invariant Feature Transform

This function uses the angle between descriptor vectors as distance measure. This
makes sense only after we have normalized the vectors to unit length2. Since the
matching is one-sided, meaning that we are matching each feature to all features
in the other image, we can pre-compute the transpose of the matrix containing the
descriptor vectors containing the points in the second image so that we don’t have to
repeat this exact same operation for each feature.

To further increase the robustness of the matches, we can reverse the procedure
and match the other way (from the features in the second image to features in the
first) and only keep the correspondences that satisfy the matching criteria both ways
(same as what we did for the Harris points). The function match_twosided() does just
this:

def match_twosided(desc1,desc2):
""" Two-sided symmetric version of match(). """

matches_12 = match(desc1,desc2)
matches_21 = match(desc2,desc1)

ndx_12 = matches_12.nonzero()[0]

remove matches that are not symmetric
for n in ndx_12:
if matches_21[int(matches_12[n])] != n:
matches_12[n] = 0

return matches_12

To plot the matches we can use the same functions used in harris.py. Just copy the
functions appendimages() and plot_matches() and add them to sift.py for convenience
(you could also import harris.py and use them from there if you like).

Figures 2.5 and 2.6 shows some examples of SIFT feature points detected in image
pairs together with pair-wise matches returned from the function match_twosided().

Figure 2.7 shows another example of matching features found in two images us-
ing match() and match_twosided(). As you can see, using the symmetric (two-sided)
matching condition removes the incorrect matches and keeps the good ones (some
correct matches are also removed).

With detection and matching of feature points we have everything needed to apply
these local descriptors to a number of applications. The coming two chapters will add
geometric constraints on correspondences in order to robustly filter out the incorrect

2In the case of unit length vectors the scalar product (without the arccos()) is equivalent to the stan-
dard Euclidean distance.

2.2. SIFT - Scale-Invariant Feature Transform 59

Figure 2.5: An example of detecting and matching SIFT features between two images.

60 2.2. SIFT - Scale-Invariant Feature Transform

Figure 2.6: An example of detecting and matching SIFT features between two images.

2.2. SIFT - Scale-Invariant Feature Transform 61

(a) (b)

Figure 2.7: An example of matching SIFT features between two images. (a) matches
from features in the left image without using the two-sided match function (b) the
remaining matches after using the two-sided version.

62 2.2. SIFT - Scale-Invariant Feature Transform

ones and apply local descriptors to examples such as automatic panorama creation,
camera pose estimation, and 3D structure computation.

2.3 Matching Geotagged Images

Let’s end this chapter by looking at an example application of using local descriptors
for matching images with geotags. Geotagged images are images with GPS coordi-
nates either added manually by the photographer or automatically by the camera.

Downloading geotagged images from Panoramio

One source of geotagged images is the photo-sharing service Panoramio (http://www.
panoramio.com/), owned by Google. Like many web services, Panoramio has an API
to access content programmatically. Their API is simple and straight-forward and is
described at http://www.panoramio.com/api/. By making a HTTP GET call to a url
like this

http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium

where minx, miny, maxx, maxy define the geographic area to select photos from (min-
imum longitude, latitude, maximum longitude and latitude, respectively). You will get
the response in easy-to-parse JSON format. JSON is a common format for data transfer
between web services and is more lightweight than XML and other alternatives. You
can read more about JSON at http://en.wikipedia.org/wiki/JSON.

An interesting location with two distinct views is the White house in Washington
D.C. which is usually photographed from Pennsylvania Avenue from the south side or
from the north. The coordinates (latitude, longitude) are:

lt=38.897661
ln=-77.036564

To convert to the format needed for the API call, subtract and add a number from
these coordinates to get all images within a square centered around the White house.
The call

http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-77.037564&miny=38.896662&maxx=-77.035564&maxy=38.898662&size=medium

returns the first 20 images within the coordinate bounds (±0.001), ordered according
to popularity. The response looks something like this

2.3. Matching Geotagged Images 63

http://www.panoramio.com/
http://www.panoramio.com/
http://www.panoramio.com/api/
http://en.wikipedia.org/wiki/JSON

{ "count": 349,
"photos": [{"photo_id": 7715073, "photo_title": "White House", "photo_url":
"http://www.panoramio.com/photo/7715073", "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/7715073.jpg", "longitude":
-77.036583, "latitude": 38.897488, "width": 500, "height": 375, "upload_date":
"10 February 2008", "owner_id": 1213603, "owner_name": "***", "owner_url":
"http://www.panoramio.com/user/1213603"}
,
{"photo_id": 1303971, "photo_title": "ÃĄÃt’Îl’ÃĆÃĘÂt’Ã́LÃöâL’ěÃĆÃĺấLd̄", "photo_url":
"http://www.panoramio.com/photo/1303971", "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/1303971.jpg", "longitude":
-77.036353, "latitude": 38.897471, "width": 500, "height": 336, "upload_date":
"13 March 2007", "owner_id": 195000, "owner_name": "***", "owner_url":
"http://www.panoramio.com/user/195000"}
...
...
]}

To parse this JSON response we can use the simplejson package. Simplejson is avail-
able at http://github.com/simplejson/simplejson and there is online documenta-
tion available on the project page.

If you are running Python 2.6 or later there is no need to use simplejson as there
is a JSON library included with these later versions of Python. To use the built in one,
just import like this

import json

If you want to use simplejson where available (it is faster and could contain newer
features than the built in one) a good idea is to import with a fallback, like this

try: import simplejson as json
except ImportError: import json

The following code will use the urllib package that comes with Python to handle
the requests and then parse the result using simplejson.

import os
import urllib, urlparse
import simplejson as json

query for images
url = ’http://www.panoramio.com/map/get_panoramas.php?order=popularity&\

set=public&from=0&to=20&minx=-77.037564&miny=38.896662&\
maxx=-77.035564&maxy=38.898662&size=medium’

c = urllib.urlopen(url)

get the urls of individual images from JSON
j = json.loads(c.read())
imurls = []
for im in j[’photos’]:

64 2.3. Matching Geotagged Images

http://github.com/simplejson/simplejson

Figure 2.8: Images taken at the same geographic location (square region centered
around the White house) downloaded from panoramio.com.

imurls.append(im[’photo_file_url’])

download images
for url in imurls:
image = urllib.URLopener()
image.retrieve(url, os.path.basename(urlparse.urlparse(url).path))
print ’downloading:’, url

As you can easily see by looking at the JSON output, it is the "photo_file_url" field we
are after. Running the code above, you should see something like this in your console.

downloading: http://mw2.google.com/mw-panoramio/photos/medium/7715073.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/1303971.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/270077.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/15502.jpg
...
...

Figure 2.8 shows the 20 images returned for this example. Now we just need to find
and match features between pairs of images.

2.3. Matching Geotagged Images 65

Matching using local descriptors

Having downloaded the images, we now need to extract local descriptors. In this case
we will use SIFT descriptors as described in the previous section. Let’s assume that
the images have been processed with the SIFT extraction code and the features are
stored in files with the same name as the images (but with file ending ".sift" instead of
".jpg"). The lists imlist and featlist are assumed to contain the filenames. We can do a
pairwise matching between all combinations as follows.

import sift

nbr_images = len(imlist)

matchscores = zeros((nbr_images,nbr_images))
for i in range(nbr_images):
for j in range(i,nbr_images): # only compute upper triangle
print ’comparing ’, imlist[i], imlist[j]

l1,d1 = sift.read_features_from_file(featlist[i])
l2,d2 = sift.read_features_from_file(featlist[j])

matches = sift.match_twosided(d1,d2)

nbr_matches = sum(matches > 0)
print ’number of matches = ’, nbr_matches
matchscores[i,j] = nbr_matches

copy values
for i in range(nbr_images):
for j in range(i+1,nbr_images): # no need to copy diagonal
matchscores[j,i] = matchscores[i,j]

We store the number of matching features between each pair in matchscores. The
last part of copying the values to fill the matrix completely is not necessary since this
"distance measure" is symmetric, it just looks better that way. Thematchscores matrix
for these particular images looks like this:

662 0 0 2 0 0 0 0 1 0 0 1 2 0 3 0 19 1 0 2
0 901 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 2
0 0 266 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 1 0 1481 0 0 2 2 0 0 0 2 2 0 0 0 2 3 2 0
0 0 0 0 1748 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 1747 0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 2 0 0 555 0 0 0 1 4 4 0 2 0 0 5 1 0
0 1 0 2 1 0 0 2206 0 0 0 1 0 0 1 0 2 0 1 1
1 1 0 0 0 1 0 0 629 0 0 0 0 0 0 0 1 0 0 20
0 0 0 0 0 0 0 0 0 829 0 0 1 0 0 0 0 0 0 2
0 0 0 0 0 0 1 0 0 0 1025 0 0 0 0 0 1 1 1 0
1 1 0 2 0 0 4 1 0 0 0 528 5 2 15 0 3 6 0 0

66 2.3. Matching Geotagged Images

2 0 0 2 0 0 4 0 0 1 0 5 736 1 4 0 3 37 1 0
0 0 1 0 2 0 0 0 0 0 0 2 1 620 1 0 0 1 0 0
3 0 0 0 0 0 2 1 0 0 0 15 4 1 553 0 6 9 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2273 0 1 0 0
19 0 0 2 0 0 0 2 1 0 1 3 3 0 6 0 542 0 0 0
1 0 0 3 0 1 5 0 0 0 1 6 37 1 9 1 0 527 3 0
0 1 0 2 0 1 1 1 0 0 1 0 1 0 1 0 0 3 1139 0
2 2 0 0 1 0 0 1 20 2 0 0 0 0 0 0 0 0 0 499

Using this as a simple distance measure between images (images with similar content
have higher number of matching features), we can now connect images with similar
visual content.

Visualizing connected images

Let’s visualize the connections between images defined by them having matching
local descriptors. To do this we can show the images in a graph with edges in-
dicating connections. We will use the pydot package (http://code.google.com/p/
pydot/) which is a Python interface to the powerful GraphViz graphing library. Pydot
uses Pyparsing (http://pyparsing.wikispaces.com/) and GraphViz (http://www.
graphviz.org/) but don’t worry, all of them are easy to install in just a few minutes.

Pydot is very easy to use. The following code snippet illustrates this nicely by
creating a graph illustrating a tree with depth two and branching factor five adding
numbering to the nodes. The graph is shown in Figure 2.9. There are many ways to
customize the graph layout and appearance. For more details, see the Pydot docu-
mentation or the description of the DOT language used by GraphViz at http://www.
graphviz.org/Documentation.php.

import pydot

g = pydot.Dot(graph_type=’graph’)

g.add_node(pydot.Node(str(0),fontcolor=’transparent’))
for i in range(5):
g.add_node(pydot.Node(str(i+1)))
g.add_edge(pydot.Edge(str(0),str(i+1)))
for j in range(5):
g.add_node(pydot.Node(str(j+1)+’-’+str(i+1)))
g.add_edge(pydot.Edge(str(j+1)+’-’+str(i+1),str(j+1)))

g.write_png(’graph.jpg’,prog=’neato’)

Let’s get back to our example with the geotagged images. To create a graph show-
ing potential groups of images, we create an edge between nodes if the number of
matches is above a threshold. To get the images in the graph you need to use the
full path of each image (represented by the variable path in the example below). To

2.3. Matching Geotagged Images 67

http://code.google.com/p/pydot/
http://code.google.com/p/pydot/
http://pyparsing.wikispaces.com/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

Figure 2.9: An example of using pydot to create graphs.

make it look nice we also scale each image to a thumbnail with largest side 100 pixels.
Here’s how to do it:

import pydot

threshold = 2 # min number of matches needed to create link

g = pydot.Dot(graph_type=’graph’) # don’t want the default directed graph
for i in range(nbr_images):
for j in range(i+1,nbr_images):
if matchscores[i,j] > threshold:
#first image in pair
im = Image.open(imlist[i])
im.thumbnail((100,100))
filename = str(i)+’.png’
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(i),fontcolor=’transparent’,

shape=’rectangle’,image=path+filename))

second image in pair
im = Image.open(imlist[j])
im.thumbnail((100,100))
filename = str(j)+’.png’
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(j),fontcolor=’transparent’,

shape=’rectangle’,image=path+filename))

g.add_edge(pydot.Edge(str(i),str(j)))

68 2.3. Matching Geotagged Images

g.write_png(’whitehouse.png’)

The result should look something like Figure 2.10 depending on which images you
download. For this particular set, we see two groups of images, one from each side of
the White house.

This application was a very simple example of using local descriptors for matching
regions between images. For example, we did not use any verification on the matches.
This can be done (in a very robust way) using concepts that we will define in the
coming two chapters.

Exercises

1. Modify the function for matching Harris corner points to also take a maximum
pixel distance between points for them to be considered as correspondences in
order to make matching more robust.

2. Incrementally apply stronger blur (or ROF de-noising) to an image and extract
Harris corners. What happens?

3. An alternative corner detector to Harris is the FAST corner detector. There
are a number of implementations including a pure Python version available at
http://www.edwardrosten.com/work/fast.html. Try this detector, play with
the sensitivity threshold, and compare the corners with the ones from our Harris
implementation.

4. Create copies of an image with different resolutions (for example by halving the
size a few times). Extract SIFT features for each image. Plot and match features
to get a feel for how and when the scale independence breaks down.

5. The VLFeat command line tools also contain an implementation of Maximally
Stable Extremal Regions (MSER), http://en.wikipedia.org/wiki/Maximally_

stable_extremal_regions, a region detector that finds blob like regions. Create
a function for extracting MSER regions and pass them to the descriptor part of
SIFT using the "--read-frames" option and one function for plotting the ellipse
regions.

6. Write a function that matches features between a pair of images and estimates
the scale difference and in-plane rotation of the scene based on the correspon-
dences.

2.3. Matching Geotagged Images 69

http://www.edwardrosten.com/work/fast.html
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions

Figure 2.10: An example of grouping images taken at the same geographic location
using local descriptors.

70 2.3. Matching Geotagged Images

7. Download images for a location of your choice and match them as in the White
house example. Can you find a better criteria for linking images? How could you
use the graph to choose representative images for geographic locations?

2.3. Matching Geotagged Images 71

Chapter 3

Image to Image Mappings

This chapter describes transformations between images and some practical methods
for computing them. These transformations are used for warping, image registration
and finally we look at an example of automatically creating panoramas.

3.1 Homographies

A homography is a 2D projective transformation that maps points in one plane to an-
other. In our case the planes are images or planar surfaces in 3D. Homographies have
many practical uses such as registering images, rectifying images, texture warping
and creating panoramas. We will make frequent use of them. In essence a homogra-
phy H maps 2D points (in homogeneous coordinates) according to

2

4
x0

y0

w0

3

5
=

2

4
h1 h2 h3
h4 h5 h6
h7 h8 h9

3

5

2

4
x

y

w

3

5
or x

0
= Hx .

Homogeneous coordinates is a useful representation for points in image planes
(and in 3D as we will see later). Points in homogeneous coordinates are only defined
up to scale so that x = [x, y, w] = [↵x,↵y,↵w] = [x/w, y/w, 1] all refer to the same 2D
point. As a consequence, the homography H is also only defined up to scale and has
eight independent degrees of freedom. Often points are normalized with w = 1 to
have a unique identification of the image coordinates x,y. The extra coordinate makes
is easy to represent transformations with a single matrix.

Create a file homography.py and add the following functions to normalize and con-
vert to homogeneous coordinates.

def normalize(points):

73

""" Normalize a collection of points in
homogeneous coordinates so that last row = 1. """

for row in points:
row /= points[-1]

return points

def make_homog(points):
""" Convert a set of points (dim*n array) to
homogeneous coordinates. """

return vstack((points,ones((1,points.shape[1]))))

When working with points and transformations we will store the points column-wise so
that a set of n points in 2 dimensions will be a 3⇥n array in homogeneous coordinates.
This format makes matrix multiplications and point transforms easier. For all other
cases we will typically use rows to store data, for example features for clustering and
classification.

There are some important special cases of these projective transformations. An
affine transformation

2

4
x0

y0

1

3

5
=

2

4
a1 a2 t

x

a3 a4 t
y

0 0 1

3

5

2

4
x

y

1

3

5
or x

0
=

A t

0 1

�
x ,

preserves w = 1 and can not represent as strong deformations as a full projective
transformation. The affine transformation contains an invertible matrix A and a trans-
lation vector t = [t

x

, t
y

]. Affine transformations are used for example in warping.

A similarity transformation

2

4
x0

y0

1

3

5
=

2

4
s cos(✓) �s sin(✓) t

x

s sin(✓) s cos(✓) t
y

0 0 1

3

5

2

4
x

y

1

3

5
or x

0
=

sR t

0 1

�
x ,

is a rigid 2D transformation that also includes scale changes. The scalar s specifies
scaling, R is a rotation of an angle ✓ and t = [t

x

, t
y

] is again a translation. With s = 1

distances are preserved and it is then a rigid transformation. Similarity transforma-
tions are used for example in image registration.

Let’s look at algorithms for estimating homographies and then go into examples
of using affine transformations for warping, similarity transformations for registration
and finally full projective transformations for creating panoramas.

74 3.1. Homographies

The direct linear transformation algorithm

Homographies can be computed directly from corresponding points in two images (or
planes). As mentioned earlier, a full projective transformation has eight degrees of
freedom. Each point correspondence gives two equations, one each for the x and y

coordinates, and therefore four point correspondences are needed to compute H.
The direct linear transformation (DLT) is an algorithm for computing H given four

or more correspondences. By rewriting the equation for mapping points using H for
several correspondences we get an equation like

2

666664

�x1 �y1 �1 0 0 0 x1x
0
1 y1x

0
1 x01

0 0 0 �x1 �y1 �1 x1y
0
1 y1y

0
1 y01

�x2 �y2 �1 0 0 0 x2x
0
2 y2x

0
2 x02

0 0 0 �x2 �y2 �1 x2y
0
2 y2y

0
2 y02

...
...

...
...

3

777775

2

66666666666664

h1
h2
h3
h4
h5
h6
h7
h8
h9

3

77777777777775

= 0 ,

or Ah = 0 where A is a matrix with twice as many rows as correspondences. By
stacking all corresponding points a least squares solution for H can be found using
singular value decomposition (SVD). Here’s what it looks like in code. Add the function
below to homography.py.

def H_from_points(fp,tp):
""" Find homography H, such that fp is mapped to tp
using the linear DLT method. Points are conditioned
automatically. """

if fp.shape != tp.shape:
raise RuntimeError(’number of points do not match’)

condition points (important for numerical reasons)
--from points--
m = mean(fp[:2], axis=1)
maxstd = max(std(fp[:2], axis=1)) + 1e-9
C1 = diag([1/maxstd, 1/maxstd, 1])
C1[0][2] = -m[0]/maxstd
C1[1][2] = -m[1]/maxstd
fp = dot(C1,fp)

--to points--
m = mean(tp[:2], axis=1)
maxstd = max(std(tp[:2], axis=1)) + 1e-9

3.1. Homographies 75

C2 = diag([1/maxstd, 1/maxstd, 1])
C2[0][2] = -m[0]/maxstd
C2[1][2] = -m[1]/maxstd
tp = dot(C2,tp)

create matrix for linear method, 2 rows for each correspondence pair
nbr_correspondences = fp.shape[1]
A = zeros((2*nbr_correspondences,9))
for i in range(nbr_correspondences):
A[2*i] = [-fp[0][i],-fp[1][i],-1,0,0,0,

tp[0][i]*fp[0][i],tp[0][i]*fp[1][i],tp[0][i]]
A[2*i+1] = [0,0,0,-fp[0][i],-fp[1][i],-1,

tp[1][i]*fp[0][i],tp[1][i]*fp[1][i],tp[1][i]]

U,S,V = linalg.svd(A)
H = V[8].reshape((3,3))

decondition
H = dot(linalg.inv(C2),dot(H,C1))

normalize and return
return H / H[2,2]

The first thing that happens in this function is a check that the number of points
are equal. If not an exception is thrown. This is useful for writing robust code but
we will only use exceptions in very few cases in this book to make the code samples
simpler and easier to follow. You can read more about exception types at http://
docs.python.org/library/exceptions.html and how to use them at http://docs.
python.org/tutorial/errors.html.

The points are conditioned by normalizing so that they have zero mean and unit
standard deviation. This is very important for numerical reasons since the stability
of the algorithm is dependent of the coordinate representation. Then the matrix A is
created using the point correspondences. The least squares solution is found as the
last row of the matrix V of the SVD. The row is reshaped to create H. This matrix is
then de-conditioned and normalized before returned.

Affine transformations

An affine transformation has six degrees of freedom and therefore three point corre-
spondences are needed to estimate H. Affine transforms can be estimated using the
DLT algorithm above by setting the last two elements equal to zero, h7 = h8 = 0.

Here we will use a different approach, described in detail in [13] (page 130). Add
the following function to homography.py, which computes the affine transformation
matrix from point correspondences.

76 3.1. Homographies

http://docs.python.org/library/exceptions.html
http://docs.python.org/library/exceptions.html
http://docs.python.org/tutorial/errors.html
http://docs.python.org/tutorial/errors.html

def Haffine_from_points(fp,tp):
""" Find H, affine transformation, such that
tp is affine transf of fp. """

if fp.shape != tp.shape:
raise RuntimeError(’number of points do not match’)

condition points
--from points--
m = mean(fp[:2], axis=1)
maxstd = max(std(fp[:2], axis=1)) + 1e-9
C1 = diag([1/maxstd, 1/maxstd, 1])
C1[0][2] = -m[0]/maxstd
C1[1][2] = -m[1]/maxstd
fp_cond = dot(C1,fp)

--to points--
m = mean(tp[:2], axis=1)
C2 = C1.copy() #must use same scaling for both point sets
C2[0][2] = -m[0]/maxstd
C2[1][2] = -m[1]/maxstd
tp_cond = dot(C2,tp)

conditioned points have mean zero, so translation is zero
A = concatenate((fp_cond[:2],tp_cond[:2]), axis=0)
U,S,V = linalg.svd(A.T)

create B and C matrices as Hartley-Zisserman (2:nd ed) p 130.
tmp = V[:2].T
B = tmp[:2]
C = tmp[2:4]

tmp2 = concatenate((dot(C,linalg.pinv(B)),zeros((2,1))), axis=1)
H = vstack((tmp2,[0,0,1]))

decondition
H = dot(linalg.inv(C2),dot(H,C1))

return H / H[2,2]

Again the points are conditioned and de-conditioned as in the DLT algorithm. Let’s see
what these affine transformations can do with images in the next section.

3.1. Homographies 77

3.2 Warping images

Applying an affine transformation matrix H on image patches is called warping (or
affine warping) and is frequently used in computer graphics but also in several com-
puter vision algorithms. A warp can easily be performed with SciPy using the ndimage

package. The command

transformed_im = ndimage.affine_transform(im,A,b,size)

transforms the image patch im with A a linear transformation and b a translation
vector as above. The optional argument size can be used to specify the size of the
output image. The default is an image with the same size as the original. To see how
this works, try running the following commands:

from scipy import ndimage

im = array(Image.open(’empire.jpg’).convert(’L’))
H = array([[1.4,0.05,-100],[0.05,1.5,-100],[0,0,1]])
im2 = ndimage.affine_transform(im,H[:2,:2],(H[0,2],H[1,2]))

figure()
gray()
imshow(im2)
show()

This gives a result like the image to the right in Figure 3.1. As you can see, missing
pixel values in the result image are filled with zeros.

Image in image

A simple example of affine warping is to place images, or parts of images, inside
another image so that they line up with specific areas or landmarks.

Add the function image_in_image() to warp.py. This function takes two images and
the corner coordinates of where to put the first image in the second.

def image_in_image(im1,im2,tp):
""" Put im1 in im2 with an affine transformation
such that corners are as close to tp as possible.
tp are homogeneous and counter-clockwise from top left. """

points to warp from
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])

compute affine transform and apply
H = homography.Haffine_from_points(tp,fp)

78 3.2. Warping images

Figure 3.1: An example of warping an image using an affine transform, (left) original,
(right) image after warping with ndimage.affine_transform().

im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])

alpha = (im1_t > 0)

return (1-alpha)*im2 + alpha*im1_t

As you can see, there is not much needed to do this. When blending together the
warped image and the second image we create an alpha map which defines how much
of each pixel to take from each image. Here we use the fact that the warped image is
filled with zeros outside the borders of the warped area to create a binary alpha map.
To be really strict we could have added a small number to the potential zero pixels of
the first image, or done it properly, see exercises at the end of the chapter. Note that
the image coordinates are in homogeneous form.

To try this function, let’s insert an image on a billboard in another image. The
following lines of code will put the leftmost image of Figure 3.2 into the second image.
The coordinates were determined manually by looking at a plot of the image (in PyLab
figures the mouse coordinates are shown near the bottom). PyLab’s ginput() could of
course also have been used.

import warp

example of affine warp of im1 onto im2
im1 = array(Image.open(’beatles.jpg’).convert(’L’))
im2 = array(Image.open(’billboard_for_rent.jpg’).convert(’L’))

set to points

3.2. Warping images 79

Figure 3.2: An example of placing an image inside another image using an affine
transformation.

tp = array([[264,538,540,264],[40,36,605,605],[1,1,1,1]])

im3 = warp.image_in_image(im1,im2,tp)

figure()
gray()
imshow(im3)
axis(’equal’)
axis(’off’)
show()

This puts the image on the upper part of the billboard. Note again that the landmark
coordinates tp are in homogeneous coordinates. Changing the coordinates to

tp = array([[675,826,826,677],[55,52,281,277],[1,1,1,1]])

will put the image on the lower left "for rent" part.
The function Haffine_from_points() gives the best affine transform for the given

point correspondences. In the example above those were the image corners and the
corners of the billboard. If the perspective effects are small, this will give good results.
The top row of Figure 3.3 shows what happens if we try to use an affine transformation
to a billboard image with more perspective. It is not possible to transform all four
corner points to their target locations with the same affine transform (a full projective
transform would have been able to do this though). If you want to use an affine warp
so that all corner points match, there is a useful trick.

For three points an affine transform can warp an image so that the three corre-
spondences match perfectly. This is because an affine transform has six degrees of

80 3.2. Warping images

freedom and three correspondences give exactly six constraints (x and y coordinates
must match for all three). So if you really want the image to fit the billboard using
affine transforms, you can divide the image into two triangles and warp them sepa-
rately. Here’s how to do it.

set from points to corners of im1
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])

first triangle
tp2 = tp[:,:3]
fp2 = fp[:,:3]

compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],

(H[0,2],H[1,2]),im2.shape[:2])

alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im3 = (1-alpha)*im2 + alpha*im1_t

second triangle
tp2 = tp[:,[0,2,3]]
fp2 = fp[:,[0,2,3]]

compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],

(H[0,2],H[1,2]),im2.shape[:2])

alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im4 = (1-alpha)*im3 + alpha*im1_t

figure()
gray()
imshow(im4)
axis(’equal’)
axis(’off’)
show()

Here we simply create the alpha map for each triangle and then merge all images
together. The alpha map for a triangle can be computed by simply checking for each
pixel if that pixel’s coordinates has a convex combination of the triangle’s corner points

3.2. Warping images 81

that have all coefficients positive1. That means the pixel is inside the triangle. Add
the following function alpha_for_triangle(), which was used in the example above,
to warp.py.

def alpha_for_triangle(points,m,n):
""" Creates alpha map of size (m,n)
for a triangle with corners defined by points
(given in normalized homogeneous coordinates). """

alpha = zeros((m,n))
for i in range(min(points[0]),max(points[0])):
for j in range(min(points[1]),max(points[1])):
x = linalg.solve(points,[i,j,1])
if min(x) > 0: #all coefficients positive
alpha[i,j] = 1

return alpha

This is an operation your graphics card can do extremely fast. Python is a lot slower
than your graphics card (or a C/C++ implementation for that matter) but it works just
fine for our purposes. As you can see at the bottom of Figure 3.3, the corners now
match.

Piecewise affine warping

As we saw in the example above, affine warping of triangle patches can be done to
exactly match the corner points. Let’s look at the most common form of warping
between a set of corresponding points, piecewise affine warping. Given any image
with landmark points we can warp that image to corresponding landmarks in another
image by triangulating the points into a triangle mesh and then warping each triangle
with an affine transform. These are standard operations for any graphics and image
processing library. Here we show how to do this using PyLab and SciPy.

To triangulate points, Delaunay triangulation is often used. An implementation of
Delaunay triangulation comes included in Matplotlib (but outside the PyLab part) and
can be used like this:

import matplotlib.delaunay as md

x,y = array(random.standard_normal((2,100)))
centers,edges,tri,neighbors = md.delaunay(x,y)

figure()
for t in tri:

1A convex combination is a linear combination
P

j ↵jxi (in this case of the triangle points) such that
all coefficients ↵j are non-negative and sum to 1.

82 3.2. Warping images

Figure 3.3: Comparing an affine warp of the full image with an affine warp using two
triangles. The image is placed on a billboard with some perspective effects. (top) using
an affine transform for the whole image results in a bad fit. The two right hand corners
are enlarged for clarity. (bottom) using an affine warp consisting of two triangles gives
an exact fit.

3.2. Warping images 83

Figure 3.4: An example of Delaunay triangulation of a set of random 2D points.

t_ext = [t[0], t[1], t[2], t[0]] # add first point to end
plot(x[t_ext],y[t_ext],’r’)

plot(x,y,’*’)
axis(’off’)
show()

Figure 3.4 shows some example points and the resulting triangulation. Delaunay tri-
angulation chooses the triangles so that the minimum angle of all the angles of the
triangles in the triangulation is maximized2. There are four outputs of delaunay() of
which we only need the list of triangles (the third of the outputs). Create a function in
warp.py for the triangulation.

import matplotlib.delaunay as md

def triangulate_points(x,y):
""" Delaunay triangulation of 2D points. """

centers,edges,tri,neighbors = md.delaunay(x,y)
return tri

The output is an array with each row containing the indices in the arrays x and y for
the three points of each triangle.

Let’s now apply this to an example of warping an image to a non-flat object in
another image using 30 control points in a 5 by 6 grid. Figure 3.5 shows an image
to be warped to the facade of the "turning torso". The target points were manually
selected using ginput() and stored in the file turningtorso_points.txt.

2The edges are actually the dual graph of a Voronoi diagram, see http://en.wikipedia.org/wiki/
Delaunay_triangulation.

84 3.2. Warping images

http://en.wikipedia.org/wiki/Delaunay_triangulation
http://en.wikipedia.org/wiki/Delaunay_triangulation

First we need a general warp function for piecewise affine image warping. The
code below does the trick, where we also take the opportunity to show how to warp
color images (you simply warp each color channel).

def pw_affine(fromim,toim,fp,tp,tri):
""" Warp triangular patches from an image.
fromim = image to warp
toim = destination image
fp = from points in hom. coordinates
tp = to points in hom. coordinates
tri = triangulation. """

im = toim.copy()

check if image is grayscale or color
is_color = len(fromim.shape) == 3

create image to warp to (needed if iterate colors)
im_t = zeros(im.shape, ’uint8’)

for t in tri:
compute affine transformation
H = homography.Haffine_from_points(tp[:,t],fp[:,t])

if is_color:
for col in range(fromim.shape[2]):
im_t[:,:,col] = ndimage.affine_transform(
fromim[:,:,col],H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])

else:
im_t = ndimage.affine_transform(

fromim,H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])

alpha for triangle
alpha = alpha_for_triangle(tp[:,t],im.shape[0],im.shape[1])

add triangle to image
im[alpha>0] = im_t[alpha>0]

return im

Here we first check if the image is grayscale or color and in the case of colors, we warp
each color channel. The affine transform for each triangle is uniquely determined so
we use Haffine_from_points(). Add this function to the file warp.py.

To use this function on the current example, the following short script puts it all
together:

import homography

3.2. Warping images 85

import warp

open image to warp
fromim = array(Image.open(’sunset_tree.jpg’))
x,y = meshgrid(range(5),range(6))
x = (fromim.shape[1]/4) * x.flatten()
y = (fromim.shape[0]/5) * y.flatten()

triangulate
tri = warp.triangulate_points(x,y)

open image and destination points
im = array(Image.open(’turningtorso1.jpg’))
tp = loadtxt(’turningtorso1_points.txt’) # destination points

convert points to hom. coordinates
fp = vstack((y,x,ones((1,len(x)))))
tp = vstack((tp[:,1],tp[:,0],ones((1,len(tp)))))

warp triangles
im = warp.pw_affine(fromim,im,fp,tp,tri)

plot
figure()
imshow(im)
warp.plot_mesh(tp[1],tp[0],tri)
axis(’off’)
show()

The resulting image is shown in Figure 3.5. The triangles are plotted with the following
helper function (add this to warp.py):

def plot_mesh(x,y,tri):
""" Plot triangles. """

for t in tri:
t_ext = [t[0], t[1], t[2], t[0]] # add first point to end
plot(x[t_ext],y[t_ext],’r’)

This example should give you all you need to apply piece-wise affine warping of images
to your own applications. There are many improvements that can be made to the
functions used, let’s leave some to the exercises and the rest to you.

Registering images

Image registration is the process of transferring images so that they are aligned in
a common coordinate frame. Registration can be rigid or non-rigid and and is an

86 3.2. Warping images

(a) (b) (c) (d)

Figure 3.5: An example of piecewise affine warping using Delaunay triangulated land-
mark points. (a) the target image with landmarks. (b) image with triangulation. (c)
with warped image. (d) with warped image and triangulation.

important step in order to be able to do image comparisons and more sophisticated
analysis.

Let’s look at an example of rigidly registering a set of face images so that we can
compute the mean face and face appearance variations in a meaningful way. In this
type of registration we are actually looking for a similarity transform (rigid with scale)
to map correspondences. This is because the faces are not all at the same size, position
and rotation in the images.

In the file jkfaces.zip are 366 images of a single person (one for each day in 2008)3.
The images are annotated with eye and mouth coordinates in the file jkfaces.xml. Us-
ing the points, a similarity transformation can be computed and the images warped
to a normalized coordinate frame using this transformation (which as mentioned, in-
cludes scaling). To read XML files we will use minidom that comes with Python’s built
in xml.dom module.

The XML file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<faces>

<face file="jk-002.jpg" xf="46" xm="56" xs="67" yf="38" ym="65" ys="39"/>
<face file="jk-006.jpg" xf="38" xm="48" xs="59" yf="38" ym="65" ys="38"/>
<face file="jk-004.jpg" xf="40" xm="50" xs="61" yf="38" ym="66" ys="39"/>
<face file="jk-010.jpg" xf="33" xm="44" xs="55" yf="38" ym="65" ys="38"/>

...

...
</faces>

3Images are courtesy of JK Keller (with permission), see http://jk-keller.com/daily-photo/ for
more details.

3.2. Warping images 87

http://jk-keller.com/daily-photo/

To read the coordinates from the file, add the following function that uses minidom to
a new file imregistration.py.

from xml.dom import minidom

def read_points_from_xml(xmlFileName):
""" Reads control points for face alignment. """

xmldoc = minidom.parse(xmlFileName)
facelist = xmldoc.getElementsByTagName(’face’)
faces = {}
for xmlFace in facelist:
fileName = xmlFace.attributes[’file’].value
xf = int(xmlFace.attributes[’xf’].value)
yf = int(xmlFace.attributes[’yf’].value)
xs = int(xmlFace.attributes[’xs’].value)
ys = int(xmlFace.attributes[’ys’].value)
xm = int(xmlFace.attributes[’xm’].value)
ym = int(xmlFace.attributes[’ym’].value)
faces[fileName] = array([xf, yf, xs, ys, xm, ym])

return faces

The landmark points are returned in a Python dictionary with the filename of the
image as key. The format is; xf,yf coordinates of the leftmost eye in the image (the
person’s right), xs,ys coordinates of the rightmost eye and xm,ym mouth coordinates.
To compute the parameters of the similarity transformation we can use a least squares
solution. For each point x

i

= [x
i

, y
i

] (in this case there are three of them), the point
should be mapped to the target location [x̂

i

, ŷ
i

] as

x̂
i

ŷ
i

�
=

a �b

b a

�
x
i

y
i

�
+

t
x

t
y

�
.

Taking all three points, we can rewrite this as a system of equations with the unknowns
a, b, t

x

, t
y

like this 2

66666664

x̂1
ŷ1
x̂2
ŷ2
x̂3
ŷ3

3

77777775

=

2

66666664

x1 �y1 1 0

y1 x1 0 1

x2 �y2 1 0

y2 x2 0 1

x3 �y3 1 0

y3 x3 0 1

3

77777775

2

664

a

b

t
x

t
y

3

775 .

Here we used the parameterization of similarity matrices

a �b

b a

�
= s

cos(✓) � sin(✓)

sin(✓) cos(✓)

�
= sR ,

88 3.2. Warping images

with scale s =
p
a2 + b2 and rotation matrix R.

More point correspondences would work the same way and only add extra rows
to the matrix. The least squares solution is found using linalg.lstsq(). This idea of
using least squares solutions is a standard trick that will be used many times in this
book. Actually this is the same as used in the DLT algorithm earlier.

The code looks like this (add to imregistration.py):

from scipy import linalg

def compute_rigid_transform(refpoints,points):
""" Computes rotation, scale and translation for
aligning points to refpoints. """

A = array([[points[0], -points[1], 1, 0],
[points[1], points[0], 0, 1],
[points[2], -points[3], 1, 0],
[points[3], points[2], 0, 1],
[points[4], -points[5], 1, 0],
[points[5], points[4], 0, 1]])

y = array([refpoints[0],
refpoints[1],
refpoints[2],
refpoints[3],
refpoints[4],
refpoints[5]])

least sq solution to mimimize ||Ax - y||
a,b,tx,ty = linalg.lstsq(A,y)[0]
R = array([[a, -b], [b, a]]) # rotation matrix incl scale

return R,tx,ty

The function returns a rotation matrix with scale as well as translation in the x and y di-
rections. To warp the images and store new aligned images we can apply ndimage.affine_transform()
to each color channel (these are color images). As reference frame, any three point
coordinates could be used. Here we will use the landmark locations in the first image
for simplicity.

from scipy import ndimage
from scipy.misc import imsave
import os

def rigid_alignment(faces,path,plotflag=False):
""" Align images rigidly and save as new images.
path determines where the aligned images are saved
set plotflag=True to plot the images. """

3.2. Warping images 89

take the points in the first image as reference points
refpoints = faces.values()[0]

warp each image using affine transform
for face in faces:
points = faces[face]

R,tx,ty = compute_rigid_transform(refpoints, points)
T = array([[R[1][1], R[1][0]], [R[0][1], R[0][0]]])

im = array(Image.open(os.path.join(path,face)))
im2 = zeros(im.shape, ’uint8’)

warp each color channel
for i in range(len(im.shape)):
im2[:,:,i] = ndimage.affine_transform(im[:,:,i],linalg.inv(T),offset=[-ty,-tx])

if plotflag:
imshow(im2)
show()

crop away border and save aligned images
h,w = im2.shape[:2]
border = (w+h)/20

crop away border
imsave(os.path.join(path, ’aligned/’+face),im2[border:h-border,border:w-border,:])

Here we use the imsave() function to save the aligned images to a sub-directory
"aligned".

The following short script will read the XML file containing filenames as keys and
points as values and then register all the images to align them with the first one.

import imregistration

load the location of control points
xmlFileName = ’jkfaces2008_small/jkfaces.xml’
points = imregistration.read_points_from_xml(xmlFileName)

register
imregistration.rigid_alignment(points,’jkfaces2008_small/’)

If you run this you should get aligned face images in a sub-directory. Figure 3.6 shows
six sample images before and after registration. The registered images are cropped
slightly to remove the undesired black fill pixels that may appear at the borders of the
images.

90 3.2. Warping images

Figure 3.6: Sample images before (top) and after rigid registration (bottom).

Now let’s see how this affects the mean image. Figure 3.7 shows the mean image
for the unaligned face images next to the mean image of the aligned images (note
the size difference due to cropping the borders of the aligned images). Although the
original images show very little variation in size of the face, rotation and position, the
effects on the mean computation is drastic.

Not surprisingly, using badly registered images also has a drastic impact on the
computation of principal components. Figure 3.8 shows the result of PCA on the first
150 images from this set without and with registration. Just as with the mean image,
the PCA-modes are blurry. When computing the principal components we used a mask
consisting of an ellipse centered around the mean face position. By multiplying the
images with this mask before stacking them we can avoid bringing background vari-
ations into the PCA-modes. Just replace the line that creates the matrix in the PCA
example in Section 1.3 (page 29) with:

immatrix = array([mask*array(Image.open(imlist[i]).convert(’L’)).flatten()
for i in range(150)],’f’)

where mask is a binary image of the same size, already flattened.

3.3 Creating Panoramas

Two (or more) images that are taken at the same location (that is, the camera position
is the same for the images) are homographically related. This is frequently used for
creating panoramic images where several images are stitched together into one big
mosaic. In this section we will explore how this is done.

3.3. Creating Panoramas 91

Figure 3.7: Comparing mean images. (left) without alignment. (right) with three-point
rigid alignment.

RANSAC

RANSAC , short for "RANdom SAmple Consensus", is an iterative method to fit models
to data that can contain outliers. Given a model, for example a homography between
sets of points, the basic idea is that the data contains inliers, the data points that can
be described by the model, and outliers, those that do not fit the model.

The standard example is the case of fitting a line to a set of points that contains
outliers. Simple least squares fitting will fail but RANSAC can hopefully single out
the inliers and obtain the correct fit. Let’s look at using ransac.py from http://
www.scipy.org/Cookbook/RANSAC which contains this particular example as test case.
Figure 3.10 shows an example of running ransac.test(). As you can see, the algorithm
selects only points consistent with a line model and correctly finds the right solution.

RANSAC is a very useful algorithm which we will use in the next section for homog-
raphy estimation and again for other examples. For more information, see the original
paper by Fischler and Bolles [11], Wikipedia http://en.wikipedia.org/wiki/RANSAC
or the report [40].

Robust homography estimation

We can use this RANSAC module for any model. All that is needed is a Python class
with fit() and get_error() methods, the rest is taken care of by ransac.py. Here we
are interested in automatically finding a homography for the panorama images using
a set of possible correspondences. Figure 3.11 shows the matching correspondences
found automatically using SIFT features by running the following commands:

92 3.3. Creating Panoramas

http://www.scipy.org/Cookbook/RANSAC
http://www.scipy.org/Cookbook/RANSAC
http://en.wikipedia.org/wiki/RANSAC

Figure 3.8: Comparing PCA-modes of unregistered and registered images. (top) the
mean image and the first nine principal components without registering the images
beforehand. (bottom) the same with the registered images.

3.3. Creating Panoramas 93

Figure 3.9: Five images of the main university building in Lund, Sweden. The images
are all taken from the same viewpoint.

Figure 3.10: An example of using RANSAC to fit a line to points with outliers.

94 3.3. Creating Panoramas

Figure 3.11: Matching correspondences found between consecutive image pairs using
SIFT features.

import sift

featname = [’Univ’+str(i+1)+’.sift’ for i in range(5)]
imname = [’Univ’+str(i+1)+’.jpg’ for i in range(5)]
l = {}
d = {}
for i in range(5):
sift.process_image(imname[i],featname[i])
l[i],d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
matches[i] = sift.match(d[i+1],d[i])

It is clear from the images that not all correspondences are correct. SIFT is actually
a very robust descriptor and gives fewer false matches than for example Harris points
with patch correlation, but still it is far from perfect.

3.3. Creating Panoramas 95

To fit a homography using RANSAC we first need to add the following model class
to homography.py.

class RansacModel(object):
""" Class for testing homography fit with ransac.py from
http://www.scipy.org/Cookbook/RANSAC"""

def __init__(self,debug=False):
self.debug = debug

def fit(self, data):
""" Fit homography to four selected correspondences. """

transpose to fit H_from_points()
data = data.T

from points
fp = data[:3,:4]
target points
tp = data[3:,:4]

fit homography and return
return H_from_points(fp,tp)

def get_error(self, data, H):
""" Apply homography to all correspondences,
return error for each transformed point. """

data = data.T

from points
fp = data[:3]
target points
tp = data[3:]

transform fp
fp_transformed = dot(H,fp)

normalize hom. coordinates
for i in range(3):
fp_transformed[i] /= fp_transformed[2]

return error per point
return sqrt(sum((tp-fp_transformed)**2,axis=0))

As you can see, this class contains a fit() method which just takes the four corre-
spondences selected by ransac.py (they are the first four in data) and fits a homogra-

96 3.3. Creating Panoramas

phy. Remember, four points are the minimal number to compute a homography. The
method get_error() applies the homography and returns the sum of squared distance
for each correspondence pair so that RANSAC can chose which points to keep as in-
liers and outliers. This is done with a threshold on this distance. For ease of use, add
the following function to homography.py.

def H_from_ransac(fp,tp,model,maxiter=1000,match_theshold=10):
""" Robust estimation of homography H from point
correspondences using RANSAC (ransac.py from
http://www.scipy.org/Cookbook/RANSAC).

input: fp,tp (3*n arrays) points in hom. coordinates. """

import ransac

group corresponding points
data = vstack((fp,tp))

compute H and return
H,ransac_data = ransac.ransac(data.T,model,4,maxiter,match_theshold,10,return_all=True)
return H,ransac_data[’inliers’]

The function also lets you supply the threshold and the minimum number of points
desired. The most important parameter is the maximum number of iterations, exiting
too early might give a worse solution, too many iterations will take more time. The
resulting homography is returned together with the inlier points.

Apply RANSAC to the correspondences like this.

function to convert the matches to hom. points
def convert_points(j):
ndx = matches[j].nonzero()[0]
fp = homography.make_homog(l[j+1][ndx,:2].T)
ndx2 = [int(matches[j][i]) for i in ndx]
tp = homography.make_homog(l[j][ndx2,:2].T)
return fp,tp

estimate the homographies
model = homography.RansacModel()

fp,tp = convert_points(1)
H_12 = homography.H_from_ransac(fp,tp,model)[0] #im 1 to 2

fp,tp = convert_points(0)
H_01 = homography.H_from_ransac(fp,tp,model)[0] #im 0 to 1

tp,fp = convert_points(2) #NB: reverse order
H_32 = homography.H_from_ransac(fp,tp,model)[0] #im 3 to 2

3.3. Creating Panoramas 97

tp,fp = convert_points(3) #NB: reverse order
H_43 = homography.H_from_ransac(fp,tp,model)[0] #im 4 to 3

In this example image number 2 is the central image and the one we want to warp the
others to. Image 0 and 1 should be warped from the right and image 3 and 4 from
the left. The matches were computed from the rightmost image in each pair, therefore
we reverse the order of the correspondences for the images warped from the left. We
also take only the first output (the homography) as we are not interested in the inlier
points for this warping case.

Stitching the images together

With the homographies between the images estimated (using RANSAC) we now need
to warp all images to a common image plane. It makes most sense to use the plane
of the center image (otherwise the distortions will be huge). One way to do this is to
create a very large image, for example filled with zeros, parallel to the central image
and warp all the images to it. Since all our images are taken with a horizontal rotation
of the camera we can use a simpler procedure, we just pad the central image with
zeros to the left or right to make room for the warped images. Add the following
function which handles this to warp.py.

def panorama(H,fromim,toim,padding=2400,delta=2400):
""" Create horizontal panorama by blending two images
using a homography H (preferably estimated using RANSAC).
The result is an image with the same height as toim. ’padding’
specifies number of fill pixels and ’delta’ additional translation. """

check if images are grayscale or color
is_color = len(fromim.shape) == 3

homography transformation for geometric_transform()
def transf(p):
p2 = dot(H,[p[0],p[1],1])
return (p2[0]/p2[2],p2[1]/p2[2])

if H[1,2]<0: # fromim is to the right
print ’warp - right’
transform fromim
if is_color:
pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding,3))))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],

98 3.3. Creating Panoramas

transf,(toim.shape[0],toim.shape[1]+padding))
else:
pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding))))
fromim_t = ndimage.geometric_transform(fromim,transf,

(toim.shape[0],toim.shape[1]+padding))
else:
print ’warp - left’
add translation to compensate for padding to the left
H_delta = array([[1,0,0],[0,1,-delta],[0,0,1]])
H = dot(H,H_delta)
transform fromim
if is_color:
pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding,3)),toim))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],

transf,(toim.shape[0],toim.shape[1]+padding))
else:
pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding)),toim))
fromim_t = ndimage.geometric_transform(fromim,

transf,(toim.shape[0],toim.shape[1]+padding))

blend and return (put fromim above toim)
if is_color:
all non black pixels
alpha = ((fromim_t[:,:,0] * fromim_t[:,:,1] * fromim_t[:,:,2]) > 0)
for col in range(3):
toim_t[:,:,col] = fromim_t[:,:,col]*alpha + toim_t[:,:,col]*(1-alpha)

else:
alpha = (fromim_t > 0)
toim_t = fromim_t*alpha + toim_t*(1-alpha)

return toim_t

For a general geometric_transform() a function, describing the pixel to pixel map,
needs to be specified. In this case transf() does this by multiplying with H and nor-
malizing the homogeneous coordinates. By checking the translation value in H we
can decide if the image should be padded to the left or the right. When the image is
padded to the left, the coordinates of the points in the target image changes so in the
"left" case a translation is added to the homography. For simplicity we also still use
the trick of zero pixels for finding the alpha map.

Now use this function on the images as follows

#warp the images

3.3. Creating Panoramas 99

Figure 3.12: Horizontal panorama automatically created from SIFT correspondences.
(top) the full panorama. (bottom) a crop of the central part.

delta = 2000 #for padding and translation

im1 = array(Image.open(imname[1]))
im2 = array(Image.open(imname[2]))
im_12 = warp.panorama(H_12,im1,im2,delta,delta)

im1 = array(Image.open(imname[0]))
im_02 = warp.panorama(dot(H_12,H_01),im1,im_12,delta,delta)

im1 = array(Image.open(imname[3]))
im_32 = warp.panorama(H_32,im1,im_02,delta,delta)

im1 = array(Image.open(imname[j+1]))
im_42 = warp.panorama(dot(H_32,H_43),im1,im_32,delta,2*delta)

Note that, in the last line, im_32 is already translated once. The resulting panorama
image is shown in Figure 3.12. As you can see there are effects of different exposure
and edge effects at the boundaries between individual images. Commercial panorama
software has extra processing to normalize intensity and smooth transitions to make
the result look even better.

100 3.3. Creating Panoramas

Exercises

1. Create a function that takes the image coordinates of a square (or rectangular)
object, for example a book, a poster or a 2D bar code, and estimates the trans-
form that takes the rectangle to a full on frontal view in a normalized coordinate
system. Use ginput() or the strongest Harris corners to find the points.

2. Write a function that correctly determines the alpha map for a warp like the one
in Figure 3.1.

3. Find a data set of your own that contains three common landmark points (like in
the face example or using a famous object like the Eiffel tower). Create aligned
images where the landmarks are in the same position. Compute mean and me-
dian images and visualize them.

4. Implement intensity normalization and a better way to blend the images in the
panorama example to remove the edge effects in Figure 3.12.

5. Instead of warping to a central image, panoramas can be created by warping on
to a cylinder. Try this for the example in Figure 3.12.

6. Use RANSAC to find several dominant homography inlier sets. An easy way to
do this is to first make one run of RANSAC, find the homograohy with the largest
consistent subset, then remove the inliers from the set of matches, then run
RANSAC again to get the next biggest set, and so on.

7. Modify the homography RANSAC estimation to instead estimate affine transfor-
mations using three point correspondences. Use this to determine if a pair of
images contains a planar scene, for example using the inlier count. A planar
scene will have a high inlier count for an affine transformation.

8. Build a panograph (http://en.wikipedia.org/wiki/Panography) from a col-
lection (for example from Flickr) by matching local features and using least-
squares rigid registration.

3.3. Creating Panoramas 101

http://en.wikipedia.org/wiki/Panography

Chapter 4

Camera Models and Augmented
Reality

In this chapter we will look at modeling cameras and how to effectively use such mod-
els. In the previous chapter we covered image to image mappings and transforms. To
handle mappings between 3D and images the projection properties of the camera gen-
erating the image needs to be part of the mapping. Here we show how to determine
camera properties and how to use image projections for applications like augmented
reality. In the next chapter, we will use the camera model to look at applications with
multiple views and mappings between them.

4.1 The Pin-hole Camera Model

The pin-hole camera model (or sometimes projective camera model) is a widely used
camera model in computer vision. It is simple and accurate enough for most applica-
tions. The name comes from the type of camera, like a camera obscura, that collects
light through a small hole to the inside of a dark box or room. In the pin-hole camera
model, light passes through a single point, the camera center, C, before it is projected
onto an image plane. Figure 4.1 shows an illustration where the image plane is drawn
in front of the camera center. The image plane in an actual camera would be upside
down behind the camera center but the model is the same.

The projection properties of a pin-hole camera can be derived from this illustration
and the assumption that the image axis are aligned with the x and y axis of a 3D
coordinate system. The optical axis of the camera then coincides with the z axis and
the projection follows from similar triangles. By adding rotation and translation to
put a 3D point in this coordinate system before projecting, the complete projection

103

transform follows. The interested reader can find the details in [13] and [25, 26].
With a pin-hole camera, a 3D point X is projected to an image point x (both ex-

pressed in homogeneous coordinates) as

�x = PX . (4.1)

Here the 3 ⇥ 4 matrix P is called the camera matrix (or projection matrix). Note that
the 3D point X has four elements in homogeneous coordinates, X = [X,Y, Z,W]. The
scalar � is the inverse depth of the 3D point and is needed if we want all coordinates
to be homogeneous with the last value normalized to one.

The camera matrix

The camera matrix can be decomposed as

P = K [R | t] , (4.2)

where R is a rotation matrix describing the orientation of the camera, t a 3D transla-
tion vector describing the position of the camera center, and the intrinsic calibration
matrix K describing the projection properties of the camera.

The calibration matrix depends only on the camera properties and is in a general
form written as

K =

2

4
↵f s c

x

0 f c
y

0 0 1

3

5 .

The focal length , f , is the distance between the image plane and the camera center.
The skew, s, is only used if the pixel array in the sensor is skewed and can in most
cases safely be set to zero. This gives

K =

2

4
f
x

0 c
x

0 f
y

c
y

0 0 1

3

5 , (4.3)

where we used the alternative notation f
x

and f
y

, with f
x

= ↵f
y

.
The aspect ratio, ↵ is used for non-square pixel elements. It is often safe to assume

↵ = 1. With this assumption the matrix becomes

K =

2

4
f 0 c

x

0 f c
y

0 0 1

3

5 .

Besides the focal length, the only remaining parameters are the coordinates of the
optical center (sometimes called the principal point), the image point c = [c

x

, c
y

]where

104 4.1. The Pin-hole Camera Model

X

x

C

c

f

Figure 4.1: The pin-hole camera model. The image point x is at the intersection of the
image plane and the line joining the 3D point X and the camera center C. The dashed
line is the optical axis of the camera.

the optical axis intersects the image plane. Since this is usually in the center of the
image and image coordinates are measured from the top left corner, these values are
often well approximated with half the width and height of the image. It is worth noting
that in this last case the only unknown variable is the focal length f .

Projecting 3D points

Let’s create a camera class to handle all operations we need for modeling cameras
and projections.

from scipy import linalg

class Camera(object):
""" Class for representing pin-hole cameras. """

def __init__(self,P):
""" Initialize P = K[R|t] camera model. """
self.P = P
self.K = None # calibration matrix
self.R = None # rotation
self.t = None # translation
self.c = None # camera center

4.1. The Pin-hole Camera Model 105

def project(self,X):
""" Project points in X (4*n array) and normalize coordinates. """

x = dot(self.P,X)
for i in range(3):
x[i] /= x[2]

return x

The example below shows how to project 3D points into an image view. In this
example we will use one of the Oxford multi-view datasets, the "Model House" data set,
available at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html. Download
the 3D geometry file and copy the "house.p3d" file to your working directory.

import camera

load points
points = loadtxt(’house.p3d’).T
points = vstack((points,ones(points.shape[1])))

setup camera
P = hstack((eye(3),array([[0],[0],[-10]])))
cam = camera.Camera(P)
x = cam.project(points)

plot projection
figure()
plot(x[0],x[1],’k.’)
show()

First we make the points into homogeneous coordinates and create a Camera object
with a projection matrix before projection the 3D points and plotting them. The result
looks like the middle plot in Figure 4.2.

To see how moving the camera changes the projection, try the following piece of
code that incrementally rotates the camera around a random 3D axis.

create transformation
r = 0.05*random.rand(3)
rot = camera.rotation_matrix(r)

rotate camera and project
figure()
for t in range(20):
cam.P = dot(cam.P,rot)
x = cam.project(points)
plot(x[0],x[1],’k.’)

show()

106 4.1. The Pin-hole Camera Model

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Figure 4.2: An example of projecting 3D points. (left) sample image. (middle) pro-
jected points into a view. (right) trajectory of projected points under camera rotation.
Data from the Oxford "Model House" dataset.

Here we used the helper function rotation_matrix() which creates a rotation matrix
for 3D rotations around a vector (add this to camera.py).

def rotation_matrix(a):
""" Creates a 3D rotation matrix for rotation
around the axis of the vector a. """

R = eye(4)
R[:3,:3] = linalg.expm([[0,-a[2],a[1]],[a[2],0,-a[0]],[-a[1],a[0],0]])
return R

Figure 4.2 shows one of the images from the sequence, a projection of the 3D points
and the projected 3D point tracks after the points have been rotated around a random
vector. Try this example a few times with different random rotations and you will get
a feel for how the points rotate from the projections.

Factoring the camera matrix

If we are given a camera matrix P of the form in equation (4.2), we need to be able
to recover the internal parameters K and the camera position and pose t and R. Par-
titioning the matrix is called factorization. In this case we will use a type of matrix
factorization called RQ-factorization.

Add the following method to the Camera class.

def factor(self):
""" Factorize the camera matrix into K,R,t as P = K[R|t]. """

factor first 3*3 part
K,R = linalg.rq(self.P[:,:3])

make diagonal of K positive

4.1. The Pin-hole Camera Model 107

T = diag(sign(diag(K)))
if linalg.det(T) < 0:
T[1,1] *= -1

self.K = dot(K,T)
self.R = dot(T,R) # T is its own inverse
self.t = dot(linalg.inv(self.K),self.P[:,3])

return self.K, self.R, self.t

RQ-factorization is not unique, there is a sign ambiguity in the factorization. Since
we need the rotation matrix R to have positive determinant (otherwise coordinate axis
can get flipped) we can add a transform T to change the sign when needed.

Try this on a sample camera to see that it works:

import camera

K = array([[1000,0,500],[0,1000,300],[0,0,1]])
tmp = camera.rotation_matrix([0,0,1])[:3,:3]
Rt = hstack((tmp,array([[50],[40],[30]])))
cam = camera.Camera(dot(K,Rt))

print K,Rt
print cam.factor()

You should get the same printout in the console.

Computing the camera center

Given a camera projection matrix, P , it is useful to be able to compute the camera’s
position in space. The camera center, C is a 3D point with the property PC = 0. For a
camera with P = K [R | t] this gives

K[R | t]C = KRC+Kt = 0 ,

and the camera center can be computed as

C = �RT

t .

Note that the camera center is independent of the intrinsic calibrationK, as expected.
Add the following method for computing the camera center according to the for-

mula above and/or returning the camera center to the Camera class.

def center(self):
""" Compute and return the camera center. """

108 4.1. The Pin-hole Camera Model

if self.c is not None:
return self.c

else:
compute c by factoring
self.factor()
self.c = -dot(self.R.T,self.t)
return self.c

This concludes the basic functions of our Camera class. Now, let’s see how to work
with this pin-hole camera model.

4.2 Camera Calibration

Calibrating a camera means determining the internal camera parameters, in our case
the matrix K. It is possible to extend this camera model to include radial distortion
and other artifacts if your application needs precise measurements. For most appli-
cations however, the simple model in equation (4.3) is good enough. The standard
way to calibrate cameras is to take lots of pictures of a flat checkerboard pattern. For
example, the calibration tools in OpenCV use this approach, see [3] for details.

A simple calibration method

Here we will look at a simple calibration method. Since most of the parameters can be
set using basic assumptions (square straight pixels, optical center at the center of the
image) the tricky part is getting the focal length right. For this calibration method you
need a flat rectangular calibration object (a book will do), measuring tape or a ruler
and preferable a flat surface. Here’s what to do:

• Measure the sides of your rectangular calibration object. Let’s call these dX and
dY .

• Place the camera and the calibration object on a flat surface so that the camera
back and calibration object are parallel and the object is roughly in the center
of the camera’s view. You might have to raise the camera or object to get a nice
alignment.

• Measure the distance from the camera to the calibration object. Let’s call this
dZ.

• Take a picture and check that the setup is straight, meaning that the sides of the
calibration object align with the rows and columns of the image.

4.2. Camera Calibration 109

• Measure the width and height of the object in pixels. Let’s call these dx and dy.

See Figure 4.3 for an example of a setup. Now, using similar triangles (look at Fig-
ure 4.1 to convince yourself that) the following relation gives the focal lengths:

f
x

=

dx

dX
dZ , f

y

=

dy

dY
dZ .

For the particular setup in Figure 4.3, the object was measured to be 130 by 185
mm, so dX = 130 and dY = 185. The distance from camera to object was 460 mm,
so dZ = 460. You can use any unit of measurement, it doesn’t matter, only the ratios
of the measurements matter. Using ginput() to select four points in the image, the
width and height in pixels was 722 and 1040. This means that dx = 722 and dy = 1040.
Putting these values in the relationship above gives

f
x

= 2555 , f
y

= 2586 .

Now, it is important to note that this is for a particular image resolution. In this case
the image was 2592⇥ 1936 pixels. Remember that the focal length and the optical cen-
ter are measured in pixels and scale with the image resolution. If you take other image
resolutions (for example a thumbnail image) the values will change. It is convenient
to add the constants of your camera to a helper function like this

def my_calibration(sz):
row,col = sz
fx = 2555*col/2592
fy = 2586*row/1936
K = diag([fx,fy,1])
K[0,2] = 0.5*col
K[1,2] = 0.5*row
return K

This function then takes a size tuple and returns the calibration matrix. Here we
assume the optical center to be the center of the image. Go ahead and replace the focal
lengths with their mean if you like, for most consumer type cameras this is fine. Note
that the calibration is for images in landscape orientation. For portrait orientation,
you need to interchange the constants. Let’s keep this function and make use of it in
the next section.

4.3 Pose Estimation from Planes and Markers

In Chapter 3 we saw how to estimate homographies between planes. Combining this
with a calibrated camera makes it possible to compute the camera’s pose (rotation and

110 4.3. Pose Estimation from Planes and Markers

Figure 4.3: A simple camera calibration setup. (left) an image of the setup used.
(right) the image used for the calibration. Measuring the width and height of the
calibration object in the image and the physical dimensions of the setup is enough to
determine the focal length.

translation) if the image contains a planar marker object. This is marker object can be
almost any flat object.

Let’s illustrate with an example. Consider the two top images in Figure 4.4, the
following code will extract SIFT features in both images and robustly estimate a ho-
mography using RANSAC.

import homography
import camera
import sift

compute features
sift.process_image(’book_frontal.JPG’,’im0.sift’)
l0,d0 = sift.read_features_from_file(’im0.sift’)

sift.process_image(’book_perspective.JPG’,’im1.sift’)
l1,d1 = sift.read_features_from_file(’im1.sift’)

match features and estimate homography
matches = sift.match_twosided(d0,d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx,:2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2,:2].T)

model = homography.RansacModel()
H = homography.H_from_ransac(fp,tp,model)

Now we have a homography that maps points on the marker (in this case the book)

4.3. Pose Estimation from Planes and Markers 111

in one image to their corresponding locations in the other image. Let’s define our
3D coordinate system so that the marker lies in the X-Y plane (Z = 0) with the origin
somewhere on the marker.

To check our results we will need some simple 3D object placed on the marker.
Here we will use a cube and generate the cube points using the function:

def cube_points(c,wid):
""" Creates a list of points for plotting
a cube with plot. (the first 5 points are
the bottom square, some sides repeated). """

p = []
#bottom
p.append([c[0]-wid,c[1]-wid,c[2]-wid])
p.append([c[0]-wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]-wid,c[2]-wid])
p.append([c[0]-wid,c[1]-wid,c[2]-wid]) #same as first to close plot

#top
p.append([c[0]-wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]-wid,c[2]+wid]) #same as first to close plot

#vertical sides
p.append([c[0]-wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]-wid])

return array(p).T

Some points are reoccurring so that plot() will generate a nice looking cube.
With a homography and a camera calibration matrix, we can now determine the

relative transformation between the two views.

camera calibration
K = my_calibration((747,1000))

3D points at plane z=0 with sides of length 0.2
box = cube_points([0,0,0.1],0.1)

project bottom square in first image

112 4.3. Pose Estimation from Planes and Markers

cam1 = camera.Camera(hstack((K,dot(K,array([[0],[0],[-1]])))))
first points are the bottom square
box_cam1 = cam1.project(homography.make_homog(box[:,:5]))

use H to transfer points to the second image
box_trans = homography.normalize(dot(H,box_cam1))

compute second camera matrix from cam1 and H
cam2 = camera.Camera(dot(H,cam1.P))
A = dot(linalg.inv(K),cam2.P[:,:3])
A = array([A[:,0],A[:,1],cross(A[:,0],A[:,1])]).T
cam2.P[:,:3] = dot(K,A)

project with the second camera
box_cam2 = cam2.project(homography.make_homog(box))

test: projecting point on z=0 should give the same
point = array([1,1,0,1]).T
print homography.normalize(dot(dot(H,cam1.P),point))
print cam2.project(point)

Here we use a version of the image with resolution 747 ⇥ 1000 and first generate the
calibration matrix for that image size. Next points for a cube at the origin is created.
The first five points generated by cube_points() correspond to the bottom, which in
this case will lie on the plane defined by Z = 0, the plane of the marker. The first
image (top left in Figure 4.4) is roughly a straight frontal view of the book and will be
used as our template image. Since the scale of the scene coordinates is arbitrary, we
create a first camera with matrix

P1 = K

2

4
1 0 0 0

0 1 0 0

0 0 1 �1

3

5 ,

which has coordinate axis aligned with the camera and placed above the marker. The
first five 3D points are projected onto the image. With the estimated homography we
can transform these to the second image. Plotting them should show the corners at
the same marker locations (see top right in Figure 4.4).

Now, composing P1 with H as a camera matrix for the second image,

P2 = HP1 ,

will transform points on the marker plane Z = 0 correctly. This means that the first
two columns and the fourth column of P2 are correct. Since we know that the first
3⇥ 3 block should be KR and R is a rotation matrix, we can recover the third column

4.3. Pose Estimation from Planes and Markers 113

by multiplying P2 with the inverse of the calibration matrix and replacing the third
column with the cross product of the first two.

As a sanity check we can project a point on the marker plane with the new matrix
and check that it gives the same as the same point transformed with the first camera
and the homography. You should get the same printout in your console.

Visualizing the projected points can be done like this.

im0 = array(Image.open(’book_frontal.JPG’))
im1 = array(Image.open(’book_perspective.JPG’))

2D projection of bottom square
figure()
imshow(im0)
plot(box_cam1[0,:],box_cam1[1,:],linewidth=3)

2D projection transferred with H
figure()
imshow(im1)
plot(box_trans[0,:],box_trans[1,:],linewidth=3)

3D cube
figure()
imshow(im1)
plot(box_cam2[0,:],box_cam2[1,:],linewidth=3)

show()

This should give three figures like the images in Figure 4.4. To be able to reuse these
computations for future examples, we can save the camera matrices using Pickle.

import pickle

with open(’ar_camera.pkl’,’w’) as f:
pickle.dump(K,f)
pickle.dump(dot(linalg.inv(K),cam2.P),f)

Now we have seen how to compute the camera matrix given a planar scene object.
We combined feature matching with homographies and camera calibration to produce
a simple example of placing a cube in an image. With camera pose estimation, we now
have the building blocks in place for creating simple augmented reality applications.

4.4 Augmented Reality

Augmented reality (AR) is a collective term for placing objects and information on top
of image data. The classic example is placing a 3D computer graphics model so that

114 4.4. Augmented Reality

Figure 4.4: Example of computing the projection matrix for a new view using a planar
object as marker. Matching image features to an aligned marker gives a homography
that can be used to compute the pose of the camera. (top left) template image with
a blue square. (top right) an image taken from an unknown viewpoint with the same
square transformed with the estimated homography. (bottom) a cube transformed
using the estimated camera matrix.

4.4. Augmented Reality 115

it looks like it belongs in the scene, and moves naturally with the camera motion in
the case of video. Given an image with a marker plane as in the section above, we
can compute the camera’s position and pose and use that to place computer graphics
models so that they are rendered correctly. In this last section of our camera chapter
we will show how to build a simple AR example. We will use two tools for this, PyGame
and PyOpenGL.

PyGame and PyOpenGL

PyGame is a popular package for game development that easily handles display win-
dows, input devices, events and much more. PyGame is open source and available
from http://www.pygame.org/. It is actually a Python binding for the SDL game en-
gine. For installation instructions, see the Appendix. For more details on programming
with PyGame, see for example [21].

PyOpenGL is the Python binding to the OpenGL graphics programming interface.
OpenGL comes pre-installed on almost all systems and is a crucial part for graph-
ics performance. OpenGL is cross platform and works the same across operating
systems. Take a look at http://www.opengl.org/ for more information on OpenGL.
The getting started page (http://www.opengl.org/wiki/Getting_started) has re-
sources for beginners. PyOpenGL is open source and easy to install, see the Ap-
pendix for details. More information can be found on the project website http:
//pyopengl.sourceforge.net/.

There is no way we can cover any significant portion of OpenGL programming,
we will instead just show the important parts, for example how to use camera ma-
trices in OpenGL and setting up a basic 3D model. Some good examples and de-
mos are available in the PyOpenGL-Demo package (http://pypi.python.org/pypi/
PyOpenGL-Demo). This is a good place to start if you are new to PyOpenGL.

We want to place a 3D model in a scene using OpenGL. To use PyGame and Py-
OpenGL for this application we need to import the following at the top of our scripts:

from OpenGL.GL import *
from OpenGL.GLU import *
import pygame, pygame.image
from pygame.locals import *

As you can see we need two main parts from OpenGL. The GL part contains all func-
tions stating with "gl", which you will see are most of the ones we need. The GLU
part is the OpenGL Utility library and contains some higher-level functionality. We will
mainly use it to set up the camera projection. The pygame part sets up the window
and event controls, and pygame.image is used for loading image and creating OpenGL
textures. The pygame.locals is needed for setting up the display area for OpenGL.

116 4.4. Augmented Reality

http://www.pygame.org/
http://www.opengl.org/
http://www.opengl.org/wiki/Getting_started
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pypi.python.org/pypi/PyOpenGL-Demo
http://pypi.python.org/pypi/PyOpenGL-Demo

The two main components of setting up an OpenGL scene are the projection and
model view matrices. Let’s get started and see how to create these matrices from our
pin-hole cameras.

From camera matrix to OpenGL format

OpenGL uses 4 ⇥ 4 matrices to represent transforms (both 3D transforms and projec-
tions). This is only slightly different from our use of 3 ⇥ 4 camera matrices. However,
the camera-scene transformations are separated in two matrices, the GL_PROJECTION
matrix and the GL_MODELVIEW matrix. GL_PROJECTION handles the image forma-
tion properties and is the equivalent of our internal calibration matrixK. GL_MODELVIEW
handles the 3D transformation of the relation between the objects and the camera.
This corresponds roughly to the R and t part of our camera matrix. One differ-
ence is that the coordinate system is assumed to be centered at the camera so the
GL_MODELVIEW matrix actually contains the transformation that places the objects
in front of the camera. There are many peculiarities with working in OpenGL, we will
comment on them as they are encountered in the examples below.

Given that we have a camera calibrated so that the calibration matrix K is known,
the following function translates the camera properties to an OpenGL projection ma-
trix.

def set_projection_from_camera(K):
""" Set view from a camera calibration matrix. """

glMatrixMode(GL_PROJECTION)
glLoadIdentity()

fx = K[0,0]
fy = K[1,1]
fovy = 2*arctan(0.5*height/fy)*180/pi
aspect = (width*fy)/(height*fx)

define the near and far clipping planes
near = 0.1
far = 100.0

set perspective
gluPerspective(fovy,aspect,near,far)
glViewport(0,0,width,height)

We assume the calibration to be of the simpler form in (4.3) with the optical cen-
ter at the image center. The first function glMatrixMode() sets the working ma-

4.4. Augmented Reality 117

trix to GL_PROJECTION and subsequent commands will modify this matrix1. Then
glLoadIdentity() sets the matrix to the identity matrix, basically reseting any prior
changes. We then calculate the vertical field of view in degrees with the help of the
image height and the camera’s focal length as well as the aspect ratio. An OpenGL
projection also has a near and far clipping plane to limit the depth range of what is ren-
dered. We just set the near depth to be small enough to contain the nearest object and
the far depth to some large number. We use the GLU utility function gluPerspective()

to set the projection matrix and define the whole image to be the view port (essen-
tially what is to be shown). There is also an option to load a full projection matrix
with glLoadMatrixf() similar to the model view function below. This is useful when
the simple version of the calibration matrix is not good enough.

The model view matrix should encode the relative rotation and translation that
brings the object in front of the camera (as if the camera was at the origin). It is a 4⇥4

matrix that typically looks like this

R t

0 1

�
,

whereR is a rotation matrix with columns equal to the direction of the three coordinate
axis and t is a translation vector. When creating a model view matrix the rotation part
will need to hold all rotations (object and coordinate system) by multiplying together
the individual components.

The following function shows how to take a 3 ⇥ 4 pin-hole camera matrix with the
calibration removed (multiply P with K�1) and create a model view.

def set_modelview_from_camera(Rt):
""" Set the model view matrix from camera pose. """

glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

rotate teapot 90 deg around x-axis so that z-axis is up
Rx = array([[1,0,0],[0,0,-1],[0,1,0]])

set rotation to best approximation
R = Rt[:,:3]
U,S,V = linalg.svd(R)
R = dot(U,V)
R[0,:] = -R[0,:] # change sign of x-axis

set translation

1This is an odd way to handle things, but there are only two matrices to switch between,
GL_PROJECTION and GL_MODELVIEW, so it is manageable.

118 4.4. Augmented Reality

t = Rt[:,3]

setup 4*4 model view matrix
M = eye(4)
M[:3,:3] = dot(R,Rx)
M[:3,3] = t

transpose and flatten to get column order
M = M.T
m = M.flatten()

replace model view with the new matrix
glLoadMatrixf(m)

First we switch to work on the GL_MODELVIEW matrix and reset it. Then we create
a 90 degree rotation matrix since the object we want to place needs to be rotated
(you will see below). Then we make sure that the rotation part of the camera matrix
is indeed a rotation matrix in case there are errors or noise when we estimated the
camera matrix. This is done with SVD and the best rotation matrix approximation is
given by R = UV T . The OpenGL coordinate system is a little different so we flip the
x-axis around. Then we set the model view matrix M by multiplying the rotations.
The function glLoadMatrixf() sets the model view matrix and takes an array of the 16
values of the matrix taken column-wise. Transposing and then flattening accomplishes
this.

Placing virtual objects in the image

The first thing we need to do is to add the image (the one we want to place virtual
objects in) as a background. In OpenGL this is done by creating a quadrilateral, a
quad , that fills the whole view. The easiest way to do this is to draw the quad with
the projection and model view matrices reset so that the coordinates go from -1 to 1
in each dimension.

This function loads an image, converts it to an OpenGL texture and places that
texture on the quad.

def draw_background(imname):
""" Draw background image using a quad. """

load background image (should be .bmp) to OpenGL texture
bg_image = pygame.image.load(imname).convert()
bg_data = pygame.image.tostring(bg_image,"RGBX",1)

glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

4.4. Augmented Reality 119

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

bind the texture
glEnable(GL_TEXTURE_2D)
glBindTexture(GL_TEXTURE_2D,glGenTextures(1))
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,bg_data)
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST)
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST)

create quad to fill the whole window
glBegin(GL_QUADS)
glTexCoord2f(0.0,0.0); glVertex3f(-1.0,-1.0,-1.0)
glTexCoord2f(1.0,0.0); glVertex3f(1.0,-1.0,-1.0)
glTexCoord2f(1.0,1.0); glVertex3f(1.0, 1.0,-1.0)
glTexCoord2f(0.0,1.0); glVertex3f(-1.0, 1.0,-1.0)
glEnd()

clear the texture
glDeleteTextures(1)

This function first uses some PyGame functions to load an image and serialize it to a
raw string representation that can be used by PyOpenGL. Then we reset the model
view and clear the color and depth buffer. Next we bind the texture so that we can use
it for the quad and specify interpolation. The quad is defined with corners at -1 and 1
in both dimensions. Note that the coordinates in the texture image goes from 0 to 1.
Finally, we clear the texture so it doesn’t interfere with what we want to draw later.

Now we are ready to place objects in the scene. We will use the "hello world"
computer graphics example, the Utah teapot http://en.wikipedia.org/wiki/Utah_

teapot. This teapot has a rich history and is available as one of the standard shapes
in GLUT:

from OpenGL.GLUT import *
glutSolidTeapot(size)

This generates a solid teapot model of relative size size.
The following function will set up the color and properties to make a pretty red

teapot.

def draw_teapot(size):
""" Draw a red teapot at the origin. """
glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)
glEnable(GL_DEPTH_TEST)
glClear(GL_DEPTH_BUFFER_BIT)

draw red teapot

120 4.4. Augmented Reality

http://en.wikipedia.org/wiki/Utah_teapot
http://en.wikipedia.org/wiki/Utah_teapot

glMaterialfv(GL_FRONT,GL_AMBIENT,[0,0,0,0])
glMaterialfv(GL_FRONT,GL_DIFFUSE,[0.5,0.0,0.0,0.0])
glMaterialfv(GL_FRONT,GL_SPECULAR,[0.7,0.6,0.6,0.0])
glMaterialf(GL_FRONT,GL_SHININESS,0.25*128.0)
glutSolidTeapot(size)

The first two lines enable lighting and a light. Lights are numbered as GL_LIGHT0,
GL_LIGHT1, etc. We will only use one light in this example. The glEnable() function
is used to turn on OpenGL features. These are defined with uppercase constants.
Turning off a feature is done with the corresponding function glDisable(). Next depth
testing is turned on so that objects are rendered according to their depth (so that far
away objects are not drawn in front of near objects) and the depth buffer is cleared.
Next the material properties of the object, such as the diffuse and specular colors, are
specified. The last line adds a solid Utah teapot with the specified material properties.

Tying it all together

The full script for generating an image like the one in Figure 4.5 looks like this (as-
suming that you also have the functions introduced above in the same file).

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import pygame, pygame.image
from pygame.locals import *
import pickle

width,height = 1000,747

def setup():
""" Setup window and pygame environment. """
pygame.init()
pygame.display.set_mode((width,height),OPENGL | DOUBLEBUF)
pygame.display.set_caption(’OpenGL AR demo’)

load camera data
with open(’ar_camera.pkl’,’r’) as f:
K = pickle.load(f)
Rt = pickle.load(f)

setup()
draw_background(’book_perspective.bmp’)
set_projection_from_camera(K)
set_modelview_from_camera(Rt)
draw_teapot(0.02)

4.4. Augmented Reality 121

while True:
event = pygame.event.poll()
if event.type in (QUIT,KEYDOWN):
break

pygame.display.flip()

First this script loads the camera calibration matrix and the rotation and translation
part of the camera matrix using Pickle. This assumes that you saved them as described
on page 114. The setup() function initializes PyGame, sets the window to the size of
the image and makes the drawing area a double buffer OpenGL window. Next the
background image is loaded and placed to fit the window. The camera and model view
matrices are set and finally the teapot is drawn at the correct position.

Events in PyGame are handled using infinite loops with regular polling for any
changes. These can be keyboard, mouse or other events. In this case we check if
the application was quit or if a key was pressed and exit the loop. The command
pygame.display.flip() draws the objects on the screen.

The result should look like Figure 4.5. As you can see, the orientation is correct
(the teapot is aligned with the sides of the cube in Figure 4.4). To check that the
placement is correct, you can try to make the teapot really small by passing a smaller
value for the size variable. The teapot should be placed close to the [0, 0, 0] corner of
the cube in Figure 4.4. An example is shown in Figure 4.5.

Loading models

Before we end this chapter, we will touch upon one last detail; loading 3D models and
displaying them. The PyGame cookbook has a script for loading models in .obj format
available at http://www.pygame.org/wiki/OBJFileLoader. You can learn more about
the .obj format and the corresponding material file format at http://en.wikipedia.
org/wiki/Wavefront_.obj_file.

Let’s see how to use that with a basic example. We will use a freely available
toy plane model from http://www.oyonale.com/modeles.php2. Download the .obj
version and save it as toyplane.obj. You can of course replace this model with any
model of your choice, the code below will be the same.

Assuming that you downloaded the file as objloader.py, add the following function
to the file you used for the teapot example above.

def load_and_draw_model(filename):
""" Loads a model from an .obj file using objloader.py.
Assumes there is a .mtl material file with the same name. """

glEnable(GL_LIGHTING)

2Models courtesy of Gilles Tran (Creative Commons License By Attribution).

122 4.4. Augmented Reality

http://www.pygame.org/wiki/OBJFileLoader
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.oyonale.com/modeles.php

Figure 4.5: Augmented reality. Placing a computer graphics model an a book in a
scene using camera parameters computed from feature matches. (top) the Utah teapot
rendered in place aligned with the coordinate axis. (bottom) sanity check to see the
position of the origin.

4.4. Augmented Reality 123

glEnable(GL_LIGHT0)
glEnable(GL_DEPTH_TEST)
glClear(GL_DEPTH_BUFFER_BIT)

set model color
glMaterialfv(GL_FRONT,GL_AMBIENT,[0,0,0,0])
glMaterialfv(GL_FRONT,GL_DIFFUSE,[0.5,0.75,1.0,0.0])
glMaterialf(GL_FRONT,GL_SHININESS,0.25*128.0)

load from a file
import objloader
obj = objloader.OBJ(filename,swapyz=True)
glCallList(obj.gl_list)

Same as before, we set the lighting and the color properties of the model. Next we
load a model file into an OBJ object and execute the OpenGL calls from the file.

You can set the texture and material properties in a corresponding .mtl file. The
objloader module actually requires a material file. Rather than modifying the loading
script, we take the pragmatic approach of just creating a tiny material file. In this case
we’ll just specify the color.

Create a file toyplane.mtl with the following lines.

newmtl lightblue
Kd 0.5 0.75 1.0
illum 1

This sets the diffuse color of the object to a light grayish blue. Now, make sure to
replace the "usemtl" tag in your .obj file to

usemtl lightblue

Adding textures we leave to the exercises. Replacing the call to draw_teapot() in the
example above with

load_and_draw_model(’toyplane.obj’)

should generate a window like the one shown in Figure 4.6.

This is as deep as we will go into augmented reality and OpenGL in this book. With
the recipe for calibrating cameras, computing camera pose, translating the cameras
into OpenGL format and rendering models in the scene, the groundwork is laid for you
to continue exploring augmented reality. In the next chapter we will continue with the
camera model and compute 3D structure and camera pose without the use of markers.

124 4.4. Augmented Reality

Figure 4.6: Loading a 3D model from an .obj file and placing it on a book in a scene
using camera parameters computed from feature matches.

Exercises

1. Modify the example code for the motion in Figure 4.2 to transform the points
instead of the camera. You should get the same plot. Experiment with different
transformations and plot the results.

2. Some of the Oxford multi-view datasets have camera matrices given. Compute
the camera positions for one of the sets an plot the camera path. Does it match
with what you are seeing in the images?

3. Take some images of a scene with a planar marker or object. Match features to a
full frontal image to compute the pose of each image’s camera location. Plot the
camera trajectory and the plane of the marker. Add the feature points if you like.

4. In our augmented reality example we assumed the object to be placed at the
origin and applied only the cameras position to the model view matrix. Modify
the example to place several objects at different locations by adding the object
transformation to the matrix. For example, place a grid of teapots on the marker.

5. Take a look at the online documentation for .obj model files and see how to use
textured models. Find a model (or create your own) and add it to the scene.

4.4. Augmented Reality 125

Chapter 5

Multiple View Geometry

This chapter will show you how to handle multiple views and how to use the geometric
relationships between them to recover camera positions and 3D structure. With im-
ages taken at different view points it is possible to compute 3D scene points as well as
camera locations from feature matches. We introduce the necessary tools and show
a complete 3D reconstruction example. The last part of the chapter shows how to
compute dense depth reconstructions from stereo images.

5.1 Epipolar Geometry

Multiple view geometry is the field studying the relationship between cameras and
features when there are correspondences between many images that are taken from
varying viewpoints. The image features are usually interest points and we will focus
on that case throughout this chapter. The most important constellation is two-view
geometry.

With two views of a scene and corresponding points in these views there are ge-
ometric constraints on the image points as a result of the relative orientation of the
cameras, the properties of the cameras, and the position of the 3D points. These ge-
ometric relationships are described by what is called epipolar geometry. This section
will give a very short description of the basic components we need. For more details
on the subject see [13].

Without any prior knowledge of the cameras, there is an inherent ambiguity in that
a 3D point,X, transformed with an arbitrary (4⇥4) homographyH asHX will have the
same image point in a camera PH�1 as the original point in the camera P . Expressed
with the camera equation, this is

�x = PX = PH�1HX =

ˆP ˆ

X .

127

Because of this ambiguity, when analyzing two view geometry we can always transform
the cameras with a homography to simplify matters. Often this homography is just a
rigid transformation to change the coordinate system. A good choice is to set the
origin and coordinate axis to align with the first camera so that

P1 = K1[I | 0] and P2 = K2[R | t] .

Here we use the same notation as in Chapter 4;K1 andK2 are the calibration matrices,
R is the rotation of the second camera, and t is the translation of the second camera.
Using these camera matrices one can derive a condition for the projection of a pointX
to image points x1 and x2 (with P1 and P2 respectively). This condition is what makes
it possible to recover the camera matrices from corresponding image points.

The following equation must be satisfied

x

T

2 F x1 = 0 , (5.1)

where
F = K�T

2 S
t

R K�1
1

and the matrix S
t

is the skew symmetric matrix

S
t

=

2

4
0 �t3 t2
t3 0 �t1
�t2 t1 0

3

5 . (5.2)

Equation (5.1) is called the epipolar constraint . The matrix F in the epipolar constraint
is called the fundamental matrix and as you can see, it is expressed in components of
the two camera matrices (their relative rotation R and translation t). The fundamental
matrix has rank 2 and det(F) = 0. This will be used in algorithms for estimating F .
The fundamental matrix makes it possible to compute the camera matrices and then a
3D reconstruction.

The equations above mean that the camera matrices can be recovered from F ,
which in turn can be computed from point correspondences as we will see later. With-
out knowing the internal calibration (K1 andK2) the camera matrices are only recover-
able up to a projective transformation. With known calibration, the reconstruction will
be metric. A metric reconstruction is a 3D reconstruction that correctly represents
distances and angles1.

There is one final piece of geometry needed before we can proceed to actually
using this theory on some image data. Given a point in one of the images, for example
x2 in the second view, equation (5.1) defines a line in the first image since

x

T

2 F x1 = l

T

1 x1 = 0 .

1The absolute scale of the reconstruction cannot be recovered but that is rarely a problem.

128 5.1. Epipolar Geometry

C1 C2
e1 e2

x2
x1

l1 l2

X

Figure 5.1: An illustration of epipolar geometry. A 3D point X is projected to x1 and
x2, in the two views respectively. The baseline between the two camera centers, C1

and C2, intersect the image planes in the epipoles, e1 and e2. The lines l1 and l2 are
called epipolar lines.

The equation l

T

1 x1 = 0 determines a line with all points x1 in the first image satisfying
the equation belonging to the line. This line is called an epipolar line corresponding
to the point x2. This means that a corresponding point to x2 must lie on this line. The
fundamental matrix can therefore help the search for correspondences by restricting
the search to this line.

The epipolar lines all meet in a point, e, called the epipole. The epipole is actually
the image point corresponding to the projection of the other camera center. This point
can be outside the actual image, depending on the relative orientation of the cameras.
Since the epipole lies on all epipolar lines it must satisfy Fe1 = 0. It can therefore
be computed as the null vector of F as we will see later. The other epipole can be
computed from the relation e

T

2 F = 0.

A sample data set

In the coming sections we will need a data set with image points, 3D points and camera
matrices to experiment with and illustrate the algorithms. We will use one of the sets
from the Oxford multi-view datasets available at http://www.robots.ox.ac.uk/~vgg/
data/data-mview.html. Download the zipped file for the Merton1 data. The following
script will load all the data for you.

import camera

load some images
im1 = array(Image.open(’images/001.jpg’))
im2 = array(Image.open(’images/002.jpg’))

5.1. Epipolar Geometry 129

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

load 2D points for each view to a list
points2D = [loadtxt(’2D/00’+str(i+1)+’.corners’).T for i in range(3)]

load 3D points
points3D = loadtxt(’3D/p3d’).T

load correspondences
corr = genfromtxt(’2D/nview-corners’,dtype=’int’,missing=’*’)

load cameras to a list of Camera objects
P = [camera.Camera(loadtxt(’2D/00’+str(i+1)+’.P’)) for i in range(3)]

This will load the first two images (out of three), all the image feature points2 for the
three views, the reconstructed 3D points corresponding to the image points, which
points correspond across views and finally the camera matrices (where we used the
Camera class from the previous chapter). Here we used loadtxt() to read the text files
to NumPy arrays. The correspondences contain missing data since not all points are
visible or successfully matched in all views. The correspondences need to be loaded
with this taken into account. The function genfromtxt() solves this by replacing the
missing values (denoted with ’*’ in this file) with -1.

A convenient way of running this script and getting all the data is to save the code
above in a file, for example load_vggdata.py, and use the command execfile() like
this

execfile(’load_vggdata.py’)

at the beginning of your scripts or experiments.
Let’s see what this data looks like. Try to project the 3D points into one view and

compare the results with the observed image points.

make 3D points homogeneous and project
X = vstack((points3D,ones(points3D.shape[1])))
x = P[0].project(X)

plotting the points in view 1
figure()
imshow(im1)
plot(points2D[0][0],points2D[0][1],’*’)
axis(’off’)

figure()
imshow(im1)
plot(x[0],x[1],’r.’)
axis(’off’)

2Actually Harris corner points, see Section 2.1.

130 5.1. Epipolar Geometry

Figure 5.2: The Merton1 data set from the Oxford multi-view datasets. (left) view 1
with image points shown. (right) view 1 with projected 3D points.

show()

This creates a plot with the first view and image points in that view, for comparison
the projected points are shown in a separate figure. Figure 5.2 shows the resulting
plots. If you look closely, you will see that the second plot with the projected 3D points
contains more points than the first. These are image feature points reconstructed from
view 2 and 3 but not detected in view 1.

Plotting 3D data with Matplotlib

To visualize our 3D reconstructions, we need to be able to plot in 3D. The mplot3d

toolkit in Matplotlib provides 3D plotting of points, lines, contours, surfaces and most
other basic plotting components as well as 3D rotation and scaling from the controls
of the figure window.

Making a plot in 3D is done by adding the projection="3d" keyword to the axes
object like this:

from mpl_toolkits.mplot3d import axes3d

fig = figure()
ax = fig.gca(projection="3d")

generate 3D sample data
X,Y,Z = axes3d.get_test_data(0.25)

plot the points in 3D
ax.plot(X.flatten(),Y.flatten(),Z.flatten(),’o’)

5.1. Epipolar Geometry 131

Figure 5.3: The 3D points of the Merton1 data set from the Oxford multi-view datasets
shown using Matplotlib. (left) view from above and to the side. (middle) view from
the top showing the building walls and points on the roof. (right) side view showing
the profile of one of the walls and a frontal view of points on the other wall.

show()

The function get_test_data() generates sample points on a regular x, y grid with the
parameter determining the spacing. Flattening these grids gives three lists of points
that can be sent to plot(). This should plot 3D points on what looks like a surface. Try
it out and see for yourself.

Now we can plot the Merton sample data to see what the 3D points look like.

plotting 3D points
from mpl_toolkits.mplot3d import axes3d
fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(points3D[0],points3D[1],points3D[2],’k.’)

Figure 5.3 shows the 3D points from three different views. The figure window and
controls look like the standard plot windows for images and 2D data with an additional
3D rotation tool.

Computing F - The eight point algorithm

The eight point algorithm is an algorithm for computing the fundamental matrix from
point correspondences. Here’s a brief description, the details can be found in [14] and
[13].

132 5.1. Epipolar Geometry

The epipolar constraint (5.1) can be written as a linear system like

2

6664

x12x
1
1 x12y

1
1 x12w

1
1 . . . w1

2w
1
1

x22x
2
1 x22y

2
1 x22w

2
1 . . . w2

2w
2
1

...
...

...
...

...
xn2x

n

1 xn2y
n

1 xn2w
n

1 . . . wn

2w
n

1

3

7775

2

666664

F11

F12

F13
...

F33

3

777775
= Af = 0 ,

where f contains the elements of F , xi

1 = [xi1, y
i

1, w
i

1] and x

i

2 = [xi2, y
i

2, w
i

2] is a correspon-
dence pair and there are n point correspondences in total. The fundamental matrix
has nine elements but since the scale is arbitrary, only eight equations are needed.
Eight point correspondences are therefore needed to compute F , hence the name of
the algorithm.

Create a file sfm.py, and add the following function for the eight point algorithm
that minimizes ||Af ||.

def compute_fundamental(x1,x2):
""" Computes the fundamental matrix from corresponding points
(x1,x2 3*n arrays) using the normalized 8 point algorithm.
each row is constructed as
[x’*x, x’*y, x’, y’*x, y’*y, y’, x, y, 1] """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

build matrix for equations
A = zeros((n,9))
for i in range(n):
A[i] = [x1[0,i]*x2[0,i], x1[0,i]*x2[1,i], x1[0,i]*x2[2,i],

x1[1,i]*x2[0,i], x1[1,i]*x2[1,i], x1[1,i]*x2[2,i],
x1[2,i]*x2[0,i], x1[2,i]*x2[1,i], x1[2,i]*x2[2,i]]

compute linear least square solution
U,S,V = linalg.svd(A)
F = V[-1].reshape(3,3)

constrain F
make rank 2 by zeroing out last singular value
U,S,V = linalg.svd(F)
S[2] = 0
F = dot(U,dot(diag(S),V))

return F

5.1. Epipolar Geometry 133

As usual we compute the least squares solution using SVD. Since the resulting solution
might not have rank 2 as a proper fundamental matrix should, we replace the result
with the closest rank 2 approximation by zeroing out the last singular value. This is
a standard trick and a useful one to know. The function ignores the important step
of normalizing the image coordinates. Ignoring normalization could give numerical
problems. Let’s leave that for later.

The epipole and epipolar lines

As mentioned at the start of this section, the epipole satisfies Fe1 = 0 and can be
computed from the null space of F. Add this function to sfm.py.

def compute_epipole(F):
""" Computes the (right) epipole from a
fundamental matrix F.
(Use with F.T for left epipole.) """

return null space of F (Fx=0)
U,S,V = linalg.svd(F)
e = V[-1]
return e/e[2]

If you want the epipole corresponding to the left null vector (corresponding to the
epipole in the other image), just transpose F before passing it as input.

We can try these two functions on the first two views of our sample data set like
this:

import sfm

index for points in first two views
ndx = (corr[:,0]>=0) & (corr[:,1]>=0)

get coordinates and make homogeneous
x1 = points2D[0][:,corr[ndx,0]]
x1 = vstack((x1,ones(x1.shape[1])))
x2 = points2D[1][:,corr[ndx,1]]
x2 = vstack((x2,ones(x2.shape[1])))

compute F
F = sfm.compute_fundamental(x1,x2)

compute the epipole
e = sfm.compute_epipole(F)

plotting
figure()

134 5.1. Epipolar Geometry

imshow(im1)
plot each line individually, this gives nice colors
for i in range(5):
sfm.plot_epipolar_line(im1,F,x2[:,i],e,False)

axis(’off’)

figure()
imshow(im2)
plot each point individually, this gives same colors as the lines
for i in range(5):
plot(x2[0,i],x2[1,i],’o’)

axis(’off’)

show()

First the points that are in correspondence between the two images are selected and
made into homogeneous coordinates. Here we just read them from a text file, in reality
these would be the result of extracting features and matching them like we did in
Chapter 2. The missing values in the correspondence list corr are -1 so picking indices
greater or equal to zero gives the points visible in each view. The two conditions are
combined with the array operator &.

Lastly, the first five of the epipolar lines are shown in the first view and the corre-
sponding matching points in view 2. Here we used the helper plot function.

def plot_epipolar_line(im,F,x,epipole=None,show_epipole=True):
""" Plot the epipole and epipolar line F*x=0
in an image. F is the fundamental matrix
and x a point in the other image."""

m,n = im.shape[:2]
line = dot(F,x)

epipolar line parameter and values
t = linspace(0,n,100)
lt = array([(line[2]+line[0]*tt)/(-line[1]) for tt in t])

take only line points inside the image
ndx = (lt>=0) & (lt<m)
plot(t[ndx],lt[ndx],linewidth=2)

if show_epipole:
if epipole is None:
epipole = compute_epipole(F)

plot(epipole[0]/epipole[2],epipole[1]/epipole[2],’r*’)

This function parameterizes the line with the range of the x axis and removes parts of
lines above and below the image border. If the last parameter show_epipole is true,

5.1. Epipolar Geometry 135

Figure 5.4: Epipolar lines in view 1 shown for five points in view 2 of the Merton1
data. The bottom row shows a close up of the area around the points. The lines can be
seen to converge on a point outside the image to the left. The lines show where point
correspondences can be found in the other image (the color coding matches between
lines and points).

the epipole will be plotted as well (and computed if not passed as input). The plots are
shown in Figure 5.4. The color coding matches between the plots so you can see that
the corresponding point in one image lies somewhere along the same-color line as a
point in the other image.

5.2 Computing with Cameras and 3D Structure

The previous section covered relationships between views and how to compute the
fundamental matrix and epipolar lines. Here we briefly explain the tools we need for
computing with cameras and 3D structure.

Triangulation

Given known camera matrices, a set of point correspondences can be triangulated to
recover the 3D positions of these points. The basic algorithm is fairly simple.

136 5.2. Computing with Cameras and 3D Structure

For two views with camera matrices P1 and P2, each with a projection x1 and x2

of the same 3D point X (all in homogeneous coordinates), the camera equation (4.1)
gives the following relation

P1 �x1 0

P2 0 �x2

�2

4
X

�1

�2

3

5
= 0 .

There might not be an exact solution to these equations due to image noise, errors in
the camera matrices or other sources of errors. Using SVD, we can get a least squares
estimate of the 3D point.

Add the following function that computes the least squares triangulation of a point
pair to sfm.py.

def triangulate_point(x1,x2,P1,P2):
""" Point pair triangulation from
least squares solution. """

M = zeros((6,6))
M[:3,:4] = P1
M[3:,:4] = P2
M[:3,4] = -x1
M[3:,5] = -x2

U,S,V = linalg.svd(M)
X = V[-1,:4]

return X / X[3]

The first four values in the last eigenvector are the 3D coordinates in homogeneous
coordinates. To triangulate many points, we can add the following convenience func-
tion.

def triangulate(x1,x2,P1,P2):
""" Two-view triangulation of points in
x1,x2 (3*n homog. coordinates). """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

X = [triangulate_point(x1[:,i],x2[:,i],P1,P2) for i in range(n)]
return array(X).T

This function takes two arrays of points and returns an array of 3D coordinates.
Try the triangulation on the Merton1 data like this.

5.2. Computing with Cameras and 3D Structure 137

import sfm

index for points in first two views
ndx = (corr[:,0]>=0) & (corr[:,1]>=0)

get coordinates and make homogeneous
x1 = points2D[0][:,corr[ndx,0]]
x1 = vstack((x1,ones(x1.shape[1])))
x2 = points2D[1][:,corr[ndx,1]]
x2 = vstack((x2,ones(x2.shape[1])))

Xtrue = points3D[:,ndx]
Xtrue = vstack((Xtrue,ones(Xtrue.shape[1])))

check first 3 points
Xest = sfm.triangulate(x1,x2,P[0].P,P[1].P)
print Xest[:,:3]
print Xtrue[:,:3]

plotting
from mpl_toolkits.mplot3d import axes3d
fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(Xest[0],Xest[1],Xest[2],’ko’)
ax.plot(Xtrue[0],Xtrue[1],Xtrue[2],’r.’)
axis(’equal’)

show()

This will triangulate the points in correspondence from the first two views and print
out the coordinates of the first three points to the console before plotting the recovered
3D points next to the true values. The printout looks like this:

[[1.03743725 1.56125273 1.40720017]
[-0.57574987 -0.55504127 -0.46523952]
[3.44173797 3.44249282 7.53176488]
[1. 1. 1.]]
[[1.0378863 1.5606923 1.4071907]
[-0.54627892 -0.5211711 -0.46371818]
[3.4601538 3.4636809 7.5323397]
[1. 1. 1.]]

The estimated points are close enough. The plot looks like Figure 5.5, as you can see
the points match fairly well.

138 5.2. Computing with Cameras and 3D Structure

Figure 5.5: Triangulated points using camera matrices and point correspondences.
The estimated points are shown with black circles and the true points with red dots.
(left) view from above and to the side. (right) close up of the points from one of the
building walls.

Computing the camera matrix from 3D points

With known 3D points and their image projections, the camera matrix, P , can be
computed using a direct linear transform approach. This is essentially the inverse
problem to triangulation and is sometimes called camera resectioning. This way to
recover the camera matrix is again a least squares approach.

From the camera equation (4.1), each visible 3D point X
i

(in homogeneous coordi-
nates) is projected to an image point x

i

= [x
i

, y
i

, 1] as �
i

x

i

= PX

i

and the correspond-
ing points satisfy the relation

2

66666666664

X

T

1 0 0 �x1 0 0 . . .

0 X

T

1 0 �y1 0 0 . . .

0 0 X

T

1 �1 0 0 . . .

X

T

2 0 0 0 �x2 0 . . .

0 X

T

2 0 0 �y2 0 . . .

0 0 X

T

2 0 �1 0 . . .
...

...
...

...
...

...

3

77777777775

2

666666664

p

T

1

p

T

2

p

T

3

�1

�2
...

3

777777775

= 0 ,

where p1, p2 and p3 are the three rows of P . This can be written more compactly as

Mv = 0 .

The estimation of the camera matrix is then obtained using SVD. With the matrices
described above, the code is straight-forward. Add the function below to sfm.py.

5.2. Computing with Cameras and 3D Structure 139

def compute_P(x,X):
""" Compute camera matrix from pairs of
2D-3D correspondences (in homog. coordinates). """

n = x.shape[1]
if X.shape[1] != n:
raise ValueError("Number of points don’t match.")

create matrix for DLT solution
M = zeros((3*n,12+n))
for i in range(n):
M[3*i,0:4] = X[:,i]
M[3*i+1,4:8] = X[:,i]
M[3*i+2,8:12] = X[:,i]
M[3*i:3*i+3,i+12] = -x[:,i]

U,S,V = linalg.svd(M)

return V[-1,:12].reshape((3,4))

This function takes the image points and 3D points and builds up the matrix M above.
The first 12 values of the last eigenvector are the elements of the camera matrix and
are returned after a reshaping operation.

Again, let’s try this on our sample data set. The following script will pick out
the points that are visible in the first view (using the missing values from the corre-
spondence list), make them into homogeneous coordinates and estimate the camera
matrix.

import sfm, camera

corr = corr[:,0] # view 1
ndx3D = where(corr>=0)[0] # missing values are -1
ndx2D = corr[ndx3D]

select visible points and make homogeneous
x = points2D[0][:,ndx2D] # view 1
x = vstack((x,ones(x.shape[1])))
X = points3D[:,ndx3D]
X = vstack((X,ones(X.shape[1])))

estimate P
Pest = camera.Camera(sfm.compute_P(x,X))

compare!
print Pest.P / Pest.P[2,3]
print P[0].P / P[0].P[2,3]

140 5.2. Computing with Cameras and 3D Structure

Figure 5.6: Projected points in view 1 computed using an estimated camera matrix.

xest = Pest.project(X)

plotting
figure()
imshow(im1)
plot(x[0],x[1],’b.’)
plot(xest[0],xest[1],’r.’)
axis(’off’)

show()

To check the camera matrices they are printed to the console in normalized form (by
dividing with the last element). The printout looks like this.

[[1.06520794e+00 -5.23431275e+01 2.06902749e+01 5.08729305e+02]
[-5.05773115e+01 -1.33243276e+01 -1.47388537e+01 4.79178838e+02]
[3.05121915e-03 -3.19264684e-02 -3.43703738e-02 1.00000000e+00]]
[[1.06774679e+00 -5.23448212e+01 2.06926980e+01 5.08764487e+02]
[-5.05834364e+01 -1.33201976e+01 -1.47406641e+01 4.79228998e+02]
[3.06792659e-03 -3.19008054e-02 -3.43665129e-02 1.00000000e+00]]

The top is the estimated camera matrix and below the one computed by the creators
of the data set. As you can see, they are almost identical. Lastly, the 3D points are
projected using the estimated camera and plotted. The result looks like Figure 5.6
with the true points in blue and the estimated camera projection in red.

Computing the camera matrix from a fundamental matrix

In a two view scenario, the camera matrices can be recovered from the fundamental
matrix. Assuming the first camera matrix is normalized to P1 = [I | 0], the problem is

5.2. Computing with Cameras and 3D Structure 141

to find the second camera matrix P2. There are two different cases, the uncalibrated
case and the calibrated case.

The uncalibrated case - projective reconstruction Without any knowledge of the
camera’s intrinsic parameters the camera matrix can only be retrieved up to a pro-
jective transformation. This means that if the camera pair is used to reconstruct 3D
points, the reconstruction is only accurate up to a projective transformation (you can
get any solution out of the whole range of projective scene distortions). This means
that angles and distances are not respected.

This means that in the uncalibrated case the second camera matrix can be chosen
up to a (3⇥ 3) projective transformation. A simple choice is

P2 = [S
e

F | e] ,

where e is the left epipole, eTF = 0 and S
e

a skew matrix as in equation (5.2). Re-
member, a triangulation with this matrix will most likely give distortions, for example
in the form of skewed reconstructions.

Here is what it looks like in code:

def compute_P_from_fundamental(F):
""" Computes the second camera matrix (assuming P1 = [I 0])
from a fundamental matrix. """

e = compute_epipole(F.T) # left epipole
Te = skew(e)
return vstack((dot(Te,F.T).T,e)).T

We used the helper function skew() defined as.

def skew(a):
""" Skew matrix A such that a x v = Av for any v. """

return array([[0,-a[2],a[1]],[a[2],0,-a[0]],[-a[1],a[0],0]])

Add both these functions to the file sfm.py.

The calibrated case - metric reconstruction With known calibration the recon-
struction will be metric and preserve properties of Euclidean space (except for a global
scale parameter). In terms of reconstructing a 3D scene, this calibrated case is the
interesting one.

With known calibration K, we can apply its inverse K�1 to the image points x

K

=

K�1
x so that the camera equation becomes

x

K

= K�1K[R | t]X = [R | t]X ,

142 5.2. Computing with Cameras and 3D Structure

in the new image coordinates. The points in these new image coordinates satisfy the
same fundamental equation as before

x

T

K2
Fx

K1 = 0 .

The fundamental matrix for calibration normalized coordinates is called the essential
matrix and is usually denoted E instead of F to make it clear that this is the calibrated
case and the image coordinates are normalized.

The camera matrices recovered from an essential matrix respect metric relation-
ships but there are four possible solutions. Only one of them has the scene in front of
both cameras so it is easy to pick the right one.

Here is an algorithm for computing the four solutions (see [13] for the details). Add
this function to sfm.py.

def compute_P_from_essential(E):
""" Computes the second camera matrix (assuming P1 = [I 0])
from an essential matrix. Output is a list of four
possible camera matrices. """

make sure E is rank 2
U,S,V = svd(E)
if det(dot(U,V))<0:
V = -V

E = dot(U,dot(diag([1,1,0]),V))

create matrices (Hartley p 258)
Z = skew([0,0,-1])
W = array([[0,-1,0],[1,0,0],[0,0,1]])

return all four solutions
P2 = [vstack((dot(U,dot(W,V)).T,U[:,2])).T,

vstack((dot(U,dot(W,V)).T,-U[:,2])).T,
vstack((dot(U,dot(W.T,V)).T,U[:,2])).T,
vstack((dot(U,dot(W.T,V)).T,-U[:,2])).T]

return P2

First this function makes sure the essential matrix is rank 2 (with two equal non-zero
singular values), then the four solutions are created according to the recipe in [13]. A
list with four camera matrices is returned. How to pick the right one, we leave to the
example later.

This concludes all the theory needed to compute 3D reconstructions from a collec-
tion of images.

5.2. Computing with Cameras and 3D Structure 143

5.3 Multiple View Reconstruction

Let’s look at how to use the concepts above to compute an actual 3D reconstruction
from a pair of images. Computing a 3D reconstruction like this is usually referred to
as structure from motion (SfM) since the motion of a camera (or cameras) give you
3D structure.

Assuming the camera has been calibrated, the steps are as follows:

1. Detect feature points and match them between the two images.

2. Compute the fundamental matrix from the matches.

3. Compute the camera matrices from the fundamental matrix.

4. Triangulate the 3D points.

We have all the tools to do this but we need a robust way to compute a fundamental ma-
trix when the point correspondences between the images contain incorrect matches.

Robust fundamental matrix estimation

Similar to when we needed a robust way to compute homographies (Section 3.3),
we also need to be able to estimate a fundamental matrix when there is noise and
incorrect matches. As before we will use RANSAC, this time combined with the eight
point algorithm. It should be mentioned that the eight point algorithm breaks down
for planar scenes so you cannot use it for scenes where the scene points are all on a
plane.

Add this class to sfm.py.

class RansacModel(object):
""" Class for fundmental matrix fit with ransac.py from
http://www.scipy.org/Cookbook/RANSAC"""

def __init__(self,debug=False):
self.debug = debug

def fit(self,data):
""" Estimate fundamental matrix using eight
selected correspondences. """

transpose and split data into the two point sets
data = data.T
x1 = data[:3,:8]
x2 = data[3:,:8]

144 5.3. Multiple View Reconstruction

estimate fundamental matrix and return
F = compute_fundamental_normalized(x1,x2)
return F

def get_error(self,data,F):
""" Compute x^T F x for all correspondences,
return error for each transformed point. """

transpose and split data into the two point
data = data.T
x1 = data[:3]
x2 = data[3:]

Sampson distance as error measure
Fx1 = dot(F,x1)
Fx2 = dot(F,x2)
denom = Fx1[0]**2 + Fx1[1]**2 + Fx2[0]**2 + Fx2[1]**2
err = (diag(dot(x1.T,dot(F,x2))))**2 / denom

return error per point
return err

As before, we need fit() and get_error() methods. The error measure chosen here is
the Sampson distance (see [13]). The fit() method now selects eight points and uses
a normalized version of the eight point algorithm.

def compute_fundamental_normalized(x1,x2):
""" Computes the fundamental matrix from corresponding points
(x1,x2 3*n arrays) using the normalized 8 point algorithm. """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

normalize image coordinates
x1 = x1 / x1[2]
mean_1 = mean(x1[:2],axis=1)
S1 = sqrt(2) / std(x1[:2])
T1 = array([[S1,0,-S1*mean_1[0]],[0,S1,-S1*mean_1[1]],[0,0,1]])
x1 = dot(T1,x1)

x2 = x2 / x2[2]
mean_2 = mean(x2[:2],axis=1)
S2 = sqrt(2) / std(x2[:2])
T2 = array([[S2,0,-S2*mean_2[0]],[0,S2,-S2*mean_2[1]],[0,0,1]])
x2 = dot(T2,x2)

compute F with the normalized coordinates

5.3. Multiple View Reconstruction 145

F = compute_fundamental(x1,x2)

reverse normalization
F = dot(T1.T,dot(F,T2))

return F/F[2,2]

This function normalizes the image points to zero mean and fixed variance.
Now we can use this class in a function. Add the following function to sfm.py.

def F_from_ransac(x1,x2,model,maxiter=5000,match_theshold=1e-6):
""" Robust estimation of a fundamental matrix F from point
correspondences using RANSAC (ransac.py from
http://www.scipy.org/Cookbook/RANSAC).

input: x1,x2 (3*n arrays) points in hom. coordinates. """

import ransac

data = vstack((x1,x2))

compute F and return with inlier index
F,ransac_data = ransac.ransac(data.T,model,8,maxiter,match_theshold,20,return_all=True)
return F, ransac_data[’inliers’]

Here we return the best fundamental matrix F together with the inlier index (so that
we know what matches were consistent with F). Compared to the homography esti-
mation, we increased the default max iterations and changed the matching threshold
which was in pixels before and is in Sampson distance now.

3D reconstruction example

In this section we will see a complete example of reconstructing a 3D scene from start
to finish. We will use two images taken with a camera with known calibration. The
images are of the famous Alcatraz prison and are shown in Figure 5.73.

Let’s split the code up in a few chunks so that it is easier to follow. First we extract
features, match them and estimate a fundamental matrix and camera matrices.

import homography
import sfm
import sift

calibration
K = array([[2394,0,932],[0,2398,628],[0,0,1]])

3Images courtesy of Carl Olsson http://www.maths.lth.se/matematiklth/personal/calle/.

146 5.3. Multiple View Reconstruction

http://www.maths.lth.se/matematiklth/personal/calle/

Figure 5.7: Example image pair of a scene where the images are taken at different
viewpoints.

load images and compute features
im1 = array(Image.open(’alcatraz1.jpg’))
sift.process_image(’alcatraz1.jpg’,’im1.sift’)
l1,d1 = sift.read_features_from_file(’im1.sift’)

im2 = array(Image.open(’alcatraz2.jpg’))
sift.process_image(’alcatraz2.jpg’,’im2.sift’)
l2,d2 = sift.read_features_from_file(’im2.sift’)

match features
matches = sift.match_twosided(d1,d2)
ndx = matches.nonzero()[0]

make homogeneous and normalize with inv(K)
x1 = homography.make_homog(l1[ndx,:2].T)
ndx2 = [int(matches[i]) for i in ndx]
x2 = homography.make_homog(l2[ndx2,:2].T)

x1n = dot(inv(K),x1)
x2n = dot(inv(K),x2)

estimate E with RANSAC
model = sfm.RansacModel()
E,inliers = sfm.F_from_ransac(x1n,x2n,model)

compute camera matrices (P2 will be list of four solutions)
P1 = array([[1,0,0,0],[0,1,0,0],[0,0,1,0]])
P2 = sfm.compute_P_from_essential(E)

5.3. Multiple View Reconstruction 147

The calibration is known so here we just hardcode the K matrix at the beginning.
As in earlier examples, we pick out the points that belong to matches. After that we
normalize them with K�1 and run the RANSAC estimation with the normalized eight
point algorithm. Since the points are normalized, this gives us an essential matrix.
We make sure to keep the index of the inliers, we will need them. From the essential
matrix we compute the four possible solutions of the second camera matrix.

From the list of camera matrices, we pick the one that has the most scene points
in front of both cameras after triangulation.

pick the solution with points in front of cameras
ind = 0
maxres = 0
for i in range(4):
triangulate inliers and compute depth for each camera
X = sfm.triangulate(x1n[:,inliers],x2n[:,inliers],P1,P2[i])
d1 = dot(P1,X)[2]
d2 = dot(P2[i],X)[2]
if sum(d1>0)+sum(d2>0) > maxres:
maxres = sum(d1>0)+sum(d2>0)
ind = i
infront = (d1>0) & (d2>0)

triangulate inliers and remove points not in front of both cameras
X = sfm.triangulate(x1n[:,inliers],x2n[:,inliers],P1,P2[ind])
X = X[:,infront]

We loop through the four solutions and each time triangulate the 3D points corre-
sponding to the inliers. The sign of the depth is given by the third value of each image
point after projecting the triangulated X back to the images. We keep the index with
the most positive depths and also store a boolean for each point in the best solution
so that we can pick only the ones that actually are in front. Due to noise and errors
in all of the estimations done, there is a risk that some points still are behind one
camera, even with the correct camera matrices. Once we have the right solution, we
triangulate the inliers and keep the points in front of the cameras.

Now we can plot the reconstruction.

3D plot
from mpl_toolkits.mplot3d import axes3d

fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(-X[0],X[1],X[2],’k.’)
axis(’off’)

148 5.3. Multiple View Reconstruction

The 3D plots with mplot3d have the first axis reversed compared to our coordinate
system so we change the sign.

We can then plot the reprojection in each view.

plot the projection of X
import camera

project 3D points
cam1 = camera.Camera(P1)
cam2 = camera.Camera(P2[ind])
x1p = cam1.project(X)
x2p = cam2.project(X)

reverse K normalization
x1p = dot(K,x1p)
x2p = dot(K,x2p)

figure()
imshow(im1)
gray()
plot(x1p[0],x1p[1],’o’)
plot(x1[0],x1[1],’r.’)
axis(’off’)

figure()
imshow(im2)
gray()
plot(x2p[0],x2p[1],’o’)
plot(x2[0],x2[1],’r.’)
axis(’off’)
show()

After projecting the 3D points we need to reverse the initial normalization by multiply-
ing with the calibration matrix.

The result looks like Figure 5.8. As you can see, the reprojected points (blue) don’t
exactly match the original feature locations (red) but they are reasonably close. It
is possible to further refine the camera matrices to improve the reconstruction and
reprojection but that is outside the scope of this simple example.

Extensions and more than two views

There are some steps and further extensions to multiple view reconstructions that we
cannot cover in a book like this. Here are some of them with references for further

5.3. Multiple View Reconstruction 149

Figure 5.8: Example of computing a 3D reconstruction from a pair of images using
image matches. (top) the two images with feature points shown in red and reprojected
reconstructed 3D points shown in blue. (bottom) the 3D reconstruction.

150 5.3. Multiple View Reconstruction

reading.

More views With more than two views of the same scene the 3D reconstruction
will usually be more accurate and more detailed. Since the fundamental matrix only
relates a pair of views, the process is a little different with many images.

For video sequences, one can use the temporal aspect and match features in con-
secutive frame pairs. The relative orientation needs to be added incrementally from
each pair to the next (similar to how we added homographies in the panorama example
in Figure 3.12). This approach usually works well and tracking can be used to effec-
tively find correspondences (see Section 10.4 for more on tracking). One problem is
that errors will accumulate the more views are added. This can be fixed with a final
optimization step, see below.

With still images, one approach is to find a central reference view and compute all
the other camera matrices relative to that one. Another method is to compute camera
matrices and a 3D reconstruction for one image pair and then incrementally add new
images and 3D points, see for example [34]. As a side note, there are ways to compute
3D and camera positions from three views at the same time (see for example [13]) but
beyond that an incremental approach is needed.

Bundle adjustment From our simple 3D reconstruction example in Figure 5.8 it is
clear that there will be errors in the position of the recovered points and the camera
matrices computed from the estimated fundamental matrix. With more views the er-
rors will accumulate. A final step in multiple view reconstructions is therefore often
to try to minimize the reprojection errors by optimizing the position of the 3D points
and the camera parameters. This process is called bundle adustment . Details can
be found in [13] and [35] and a short overview at http://en.wikipedia.org/wiki/
Bundle_adjustment.

Self calibration In the case of uncalibrated cameras, it is sometimes possible to
compute the calibration from image features. This process is called self-calibration.
There are many different algorithms depending on what assumptions can be made on
parameters of the camera calibration matrix and depending on what types of image
data is available (feature matches, parallel lines, planes etc.). The interested reader
can take a look at [13] and [26] (Chapter 6).

As a side note to calibration, there is a useful script extract_focal.pl as part of the
Bundler SfM system http://phototour.cs.washington.edu/bundler/. This uses a
lookup table for common cameras and estimates the focal length based on the image
EXIF data.

5.3. Multiple View Reconstruction 151

http://en.wikipedia.org/wiki/Bundle_adjustment
http://en.wikipedia.org/wiki/Bundle_adjustment
http://phototour.cs.washington.edu/bundler/

5.4 Stereo Images

A special case of multi-view imaging is stereo vision (or stereo imaging) where two
cameras are observing the same scene with only a horizontal (sideways) displacement
between the cameras. When the cameras are configured so that the two images have
the same image plane with the image rows vertically aligned, the image pair is said to
be rectified . This is common in robotics and such a setup is often called a stereo rig.

Any stereo camera setup can be rectified by warping the images to a common plane
so that the epipolar lines are image rows (a stereo rig is usually constructed to give
such rectified image pairs). This is outside the scope of this section but the interested
reader can find the details in [13] (page 303) or [3] (page 430).

Assuming that the two images are rectified, finding correspondences is constrained
to searching along image rows. Once a corresponding point is found, its depth (Z co-
ordinate) can be computed directly from the horizontal displacement as it is inversely
proportional to the displacement,

Z =

fb

x
l

� x
r

,

where f is the rectified image focal length, b the distance between the camera cen-
ters, and x

l

and x
r

the x-coordinate of the corresponding point in the left and right
image. The distance separating the camera centers is called the baseline. Figure 5.9
illustrates a rectified stereo camera setup.

Stereo reconstruction (sometimes called dense depth reconstruction) is the prob-
lem of recovering a depth map (or inversely a disparity map) where the depth (or dis-
parity) for each pixel in the image is estimated. This is a classic problem in computer
vision and there are many algorithms for solving it. The Middlebury Stereo Vision
Page (http://vision.middlebury.edu/stereo/) contains a constantly updated eval-
uation of the best algorithms with code and descriptions of many implementations. In
the next section we will implement a stereo reconstruction algorithm based on nor-
malized cross correlation.

Computing disparity maps

In this stereo reconstruction algorithm we will try a range of displacements and record
the best displacement for each pixel by selecting the one with the best score according
to normalized cross correlation of the local image neighborhood. This is sometimes
called plane sweeping since each displacement step corresponds to a plane at some
depth. While not exactly state of the art in stereo reconstruction, this is a simple
method that usually gives decent results.

152 5.4. Stereo Images

http://vision.middlebury.edu/stereo/

x

l

x

r

b

X

Figure 5.9: An illustration of a rectified stereo image setup where corresponding
points are on the same rows in both images. (Images from the Middlebury Stereo
Vision set "cones".)

5.4. Stereo Images 153

Normalized cross correlation can be efficiently computed when applied densely
across images. This is different from when we applied it between sparse point corre-
spondences in Chapter 2. We want to evaluate normalized cross correlation on a patch
(basically a local neighborhood) around each pixel. For this case we can rewrite the
NCC around a pixel, equation (2.3), as

ncc(I1, I2) =

P
x

(I1(x)� µ1)(I2(x)� µ2)pP
x

(I1(x)� µ1)
2
P

x

(I2(x)� µ2)
2

where we skip the normalizing constant in front (it is not needed here) and the sums
are taken over the pixels of a local patch around the pixel.

Now, we want this for every pixel in the image. The three sums are over a local
patch region and can be computed efficiently using image filters, just like we did for
blur and derivatives. The function uniform_filter() in the ndimage.filters module
will compute the sums over a rectangular patch.

Here’s the function that does the plane sweep and returns the best disparity for
each pixel. Create a file stereo.py and add the following.

def plane_sweep_ncc(im_l,im_r,start,steps,wid):
""" Find disparity image using normalized cross-correlation. """

m,n = im_l.shape

arrays to hold the different sums
mean_l = zeros((m,n))
mean_r = zeros((m,n))
s = zeros((m,n))
s_l = zeros((m,n))
s_r = zeros((m,n))

array to hold depth planes
dmaps = zeros((m,n,steps))

compute mean of patch
filters.uniform_filter(im_l,wid,mean_l)
filters.uniform_filter(im_r,wid,mean_r)

normalized images
norm_l = im_l - mean_l
norm_r = im_r - mean_r

try different disparities
for displ in range(steps):
move left image to the right, compute sums
filters.uniform_filter(roll(norm_l,-displ-start)*norm_r,wid,s) # sum nominator
filters.uniform_filter(roll(norm_l,-displ-start)*roll(norm_l,-displ-start),wid,s_l)

154 5.4. Stereo Images

filters.uniform_filter(norm_r*norm_r,wid,s_r) # sum denominator

store ncc scores
dmaps[:,:,displ] = s/sqrt(s_l*s_r)

pick best depth for each pixel
return argmax(dmaps,axis=2)

First we need to create some arrays to hold the filtering results as uniform_filter()
takes them as input arguments. Then we create an array to hold each of the planes
so that we can apply argmax() along the last dimension to find the best depth for each
pixel. The function iterates over all steps displacements from start. One image is
shifted using the roll() function and the three sums of the NCC are computed using
filtering.

Here is a full example of loading images and computing the displacement map
using this function.

import stereo

im_l = array(Image.open(’scene1.row3.col3.ppm’).convert(’L’),’f’)
im_r = array(Image.open(’scene1.row3.col4.ppm’).convert(’L’),’f’)

starting displacement and steps
steps = 12
start = 4

width for ncc
wid = 9

res = stereo.plane_sweep_ncc(im_l,im_r,start,steps,wid)

import scipy.misc
scipy.misc.imsave(’depth.png’,res)

Here we first load a pair of images from the classic "tsukuba" set and convert them
to grayscale. Next we set the parameters needed for the plane sweep function, the
number of displacements to try, the starting value and the width of the NCC patch.
You will notice that this method is fairly fast, at least compared to matching features
with NCC. This is because everything is computed using filters.

This approach also works for other filters. The uniform filter gives all pixels in a
square patch equal weight but in some cases other filters for the NCC computation
might be preferred. Here is one alternative using a Gaussian filter that produces
smoother disparity maps, add this to stereo.py.

def plane_sweep_gauss(im_l,im_r,start,steps,wid):

5.4. Stereo Images 155

""" Find disparity image using normalized cross-correlation
with Gaussian weighted neigborhoods. """

m,n = im_l.shape

arrays to hold the different sums
mean_l = zeros((m,n))
mean_r = zeros((m,n))
s = zeros((m,n))
s_l = zeros((m,n))
s_r = zeros((m,n))

array to hold depth planes
dmaps = zeros((m,n,steps))

compute mean
filters.gaussian_filter(im_l,wid,0,mean_l)
filters.gaussian_filter(im_r,wid,0,mean_r)

normalized images
norm_l = im_l - mean_l
norm_r = im_r - mean_r

try different disparities
for displ in range(steps):
move left image to the right, compute sums
filters.gaussian_filter(roll(norm_l,-displ-start)*norm_r,wid,0,s) # sum nominator
filters.gaussian_filter(roll(norm_l,-displ-start)*roll(norm_l,-displ-start),wid,0,s_l)
filters.gaussian_filter(norm_r*norm_r,wid,0,s_r) # sum denominator

store ncc scores
dmaps[:,:,displ] = s/sqrt(s_l*s_r)

pick best depth for each pixel
return argmax(dmaps,axis=2)

The code is the same as for the uniform filter with the exception of the extra argument
in the filtering. We need to pass a zero to gaussian_filter() to indicate that we want
a standard Gaussian and not any derivatives (see page 1.4 for details).

Use this function the same way as the previous plane sweep function. Figures 5.10
and fig-stereo-cones show some results of these two plane sweep implementations on
some standard stereo benchmark images. The images are from [29] and [30] and
are available at http://vision.middlebury.edu/stereo/data/. Here we used the
"tsukuba" and "cones" images and set wid to 9 in the standard version and 3 for the
Gaussian version. The top row shows the image pair, bottom left is the standard NCC
plane sweep, and bottom right is the Gaussian version. As you can see, the Gaussian

156 5.4. Stereo Images

http://vision.middlebury.edu/stereo/data/

Figure 5.10: Example of computing disparity maps from a stereo image pair with
normalized cross-correlation.

version is less noisy but also has less detail than the standard version.

Exercises

1. Use the techniques introduced in this chapter to verify matches in the White
house example on page 66 (or even better, an example of your own) and see if
you can improve on the results.

2. Compute feature matches for an image pair and estimate the fundamental ma-
trix. Use the epipolar lines to do a second pass to find more matches by searching
for the best match along the epipolar line for each feature.

3. Take a set with three or more images. Pick one pair and compute 3D points
and camera matrices. Match features to the remaining images to get correspon-
dences. Then take the 3D points for the correspondences and compute camera
matrices for the other images using resection. Plot the 3D points and the camera
positions. Use a set of your own or one of the Oxford multi-view sets.

4. Implement a stereo version that uses sum of squared differences (SSD) instead
of NCC using filtering the same way as in the NCC example.

5.4. Stereo Images 157

Figure 5.11: Example of computing disparity maps from a stereo image pair with
normalized cross-correlation.

158 5.4. Stereo Images

5. Try smoothing the stereo depth maps using the ROF de-noising from Section 1.5.
Experiment with the size of the cross-correlation patches to get sharp edges with
noise levels that can be removed with smoothing.

6. One way to improve the quality of the disparity maps is to compare the disparities
from moving the left image to the right and the right image to the left and only
keep the parts that are consistent. This will for example clean up the parts
where there is occlusion. Implement this idea and compare the results to the
one-directional plane sweeping.

7. The New York Public Library has many old historic stereo photographs. Browse
the gallery at http://stereo.nypl.org/gallery and download some images
you like (you can right click and save JPEGs). The images should be rectified
already. Cut the image in two parts and try the dense depth reconstruction code.

5.4. Stereo Images 159

http://stereo.nypl.org/gallery

	Preface
	Prerequisites and Overview
	Introduction to Computer Vision
	Python and NumPy
	Notation and Conventions
	Acknowledgments

	Basic Image Handling and Processing
	PIL – the Python Imaging Library
	Matplotlib
	NumPy
	SciPy
	Advanced example: Image de-noising

	Local Image Descriptors
	Harris corner detector
	SIFT - Scale-Invariant Feature Transform
	Matching Geotagged Images

	Image to Image Mappings
	Homographies
	Warping images
	Creating Panoramas

	Camera Models and Augmented Reality
	The Pin-hole Camera Model
	Camera Calibration
	Pose Estimation from Planes and Markers
	Augmented Reality

	Multiple View Geometry
	Epipolar Geometry
	Computing with Cameras and 3D Structure
	Multiple View Reconstruction
	Stereo Images

	Clustering Images
	K-means Clustering
	Hierarchical Clustering
	Spectral Clustering

	Searching Images
	Content-based Image Retrieval
	Visual Words
	Indexing Images
	Searching the Database for Images
	Ranking Results using Geometry
	Building Demos and Web Applications

	Classifying Image Content
	K-Nearest Neighbors
	Bayes Classifier
	Support Vector Machines
	Optical Character Recognition

	Image Segmentation
	Graph Cuts
	Segmentation using Clustering
	Variational Methods

	OpenCV
	The OpenCV Python Interface
	OpenCV Basics
	Processing Video
	Tracking
	More Examples

	Installing Packages
	NumPy and SciPy
	Matplotlib
	PIL
	LibSVM
	OpenCV
	VLFeat
	PyGame
	PyOpenGL
	Pydot
	Python-graph
	Simplejson
	PySQLite
	CherryPy

	Image Datasets
	Flickr
	Panoramio
	Oxford Visual Geometry Group
	University of Kentucky Recognition Benchmark Images
	Other

	Image Credits

