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Chapter 6

Clustering Images

This chapter introduces several clustering methods and shows how to use them for
clustering images for finding groups of similar images. Clustering can be used for
recognition, for dividing data sets of images and for organization and navigation. We
also look at using clustering for visualizing similarity between images.

6.1 K-means Clustering

K-means is a very simple clustering algorithm that tries to partition the input data in
k clusters. K-means works by iteratively refining an initial estimate of class centroids
as follows:

1. Initialize centroids µ
i

, i = 1 . . . k, randomly or with some guess.

2. Assign each data point to the class c
i

of its nearest centroid.

3. Update the centroids as the average of all data points assigned to that class.

4. Repeat 2 & 3 until convergence.

K-means tries to minimize the total within-class variance
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where x

j

are the data vectors. The algorithm above is a heuristic refinement algorithm
that works fine for most cases but does not guarantee that the best solution is found.
To avoid the effects of choosing a bad centroid initialization, the algorithm is often
run several times with different initialization centroids. Then the solution with lowest
variance V is selected.
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The main drawback of this algorithm is that the number of clusters needs to be
decided beforehand and an inappropriate choice will give poor clustering results. The
benefits are that it is simple to implement, it is parallelizable and works well for a
large range of problems without any need for tuning.

The SciPy clustering package

Although simple to implement, there is no need to. The SciPy vector quantization
package scipy.cluster.vq comes with a k-means implementation. Here’s how to use
it.

Let’s start with creating some sample 2D data to illustrate.

from scipy.cluster.vq import *

class1 = 1.5 * randn(100,2)
class2 = randn(100,2) + array([5,5])
features = vstack((class1,class2))

This generates two normally distributed classes in two dimensions. To try to cluster
the points, run k-means with k = 2 like this.

centroids,variance = kmeans(features,2)

The variance is returned but we don’t really need it since the SciPy implementation
computes several runs (default is 20) and selects the one with smallest variance for us.
Now you can check where each data point is assigned using the vector quantization
function in the SciPy package.

code,distance = vq(features,centroids)

By checking the value of code we can see if there are any incorrect assignments. To
visualize, we can plot the points and the final centroids.

figure()
ndx = where(code==0)[0]
plot(features[ndx,0],features[ndx,1],’*’)
ndx = where(code==1)[0]
plot(features[ndx,0],features[ndx,1],’r.’)
plot(centroids[:,0],centroids[:,1],’go’)
axis(’off’)
show()

Here the function where() gives the indices for each class. This should give a plot like
the one in Figure 6.1.
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Figure 6.1: An example of k-means clustering of 2D points. Class centroids are marked
as green rings and the predicted classes are blue stars and red dots respectively.

Clustering images

Let’s try k-means on the font images described on page 28. The file selectedfontim-
ages.zip contains 66 images from this font data set (these are selected for easy overview
when illustrating the clusters). As descriptor vector for each image we will use the
projection coefficients after projecting on the 40 first principal components computed
earlier. Loading the model file using pickle, projecting the images on the principal
components and clustering is then done like this.

import imtools
import pickle
from scipy.cluster.vq import *

# get list of images
imlist = imtools.get_imlist(’selected_fontimages/’)
imnbr = len(imlist)

# load model file
with open(’a_pca_modes.pkl’,’rb’) as f:
immean = pickle.load(f)
V = pickle.load(f)

# create matrix to store all flattened images
immatrix = array([array(Image.open(im)).flatten()

for im in imlist],’f’)
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# project on the 40 first PCs
immean = immean.flatten()
projected = array([dot(V[:40],immatrix[i]-immean) for i in range(imnbr)])

# k-means
projected = whiten(projected)
centroids,distortion = kmeans(projected,4)

code,distance = vq(projected,centroids)

Same as before, code contains the cluster assignment for each image. In this case we
tried k = 4. We also chose to "whiten" the data using SciPy’s whiten(), normalizing
so that each feature has unit variance. Try to vary parameters like the number of
principal components used and the value of k to see how the clustering results change.
The clusters can be visualized like this:

# plot clusters
for k in range(4):

ind = where(code==k)[0]
figure()
gray()
for i in range(minimum(len(ind),40)):

subplot(4,10,i+1)
imshow(immatrix[ind[i]].reshape((25,25)))
axis(’off’)

show()

Here we show each cluster in a separate figure window in a grid with maximum 40
images from the cluster shown. We use the PyLab function subplot() to define the
grid. A sample cluster result can look like the one in Figure 6.2.

For more details on the k-means SciPy implementation and the scipy.cluster.vq

package see the reference guide http://docs.scipy.org/doc/scipy/reference/cluster.
vq.html.

Visualizing the images on principal components

To see how the clustering using just a few principal components as above can work,
we can visualize the images on their coordinates in a pair of principal component
directions. One way is to project on two components by changing the projection to

projected = array([dot(V[[0,2]],immatrix[i]-immean) for i in range(imnbr)])

to only get the relevant coordinates (in this case V [[0, 2]] gives the first and third).
Alternatively, project on all components and afterwards just pick out the columns you
need.
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Figure 6.2: An example of k-means clustering with k = 4 of the font images using 40
principal components.

For the visualization we will use the ImageDraw module in PIL. Assuming that you
have the projected images and image list as above, the following short script will
generate a plot like the one in Figure 6.3

from PIL import Image, ImageDraw

# height and width
h,w = 1200,1200

# create a new image with a white background
img = Image.new(’RGB’,(w,h),(255,255,255))
draw = ImageDraw.Draw(img)

# draw axis
draw.line((0,h/2,w,h/2),fill=(255,0,0))
draw.line((w/2,0,w/2,h),fill=(255,0,0))

# scale coordinates to fit
scale = abs(projected).max(0)
scaled = floor(array([ (p / scale) * (w/2-20,h/2-20) +

(w/2,h/2) for p in projected]))

# paste thumbnail of each image
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Figure 6.3: The projection of the font images on pairs of principal components. (left)
the first and second principal components. (right) the second and third.

for i in range(imnbr):
nodeim = Image.open(imlist[i])
nodeim.thumbnail((25,25))
ns = nodeim.size
img.paste(nodeim,(scaled[i][0]-ns[0]//2,scaled[i][1]-

ns[1]//2,scaled[i][0]+ns[0]//2+1,scaled[i][1]+ns[1]//2+1))

img.save(’pca_font.jpg’)

Here we used the integer or floor division operator // which returns an integer pixel
position by removing any values after the decimal point.

Plots like these illustrate how the images are distributed in the 40 dimensions
and can be very useful for choosing a good descriptor. Already in just these two-
dimensional projections the closeness of similar font images is clearly visible.

Clustering pixels

Before closing this section we will take a look at an example of clustering individual
pixels instead of entire images. Grouping image regions (and pixels) into "meaningful"
components is called image segmentation and will be the topic of chapter 9. Naively
applying k-means on the pixel values will not give anything meaningful except in very
simple images. More sophisticated class models (than average pixel color) or spatial
consistency is needed to produce useful results. For now, let’s just apply k-means to
the RGB values and worry about solving segmentation problems later (Section 9.2 has
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the details).
The following code sample takes an image, reduces it to a lower resolution version

with pixels as mean values of the original image regions (taken over a square grid of
size steps ⇥ steps) and clustering the regions using k-means.

from scipy.cluster.vq import *
from scipy.misc import imresize

steps = 50 #image is divided in steps*steps region
im = array(Image.open(’empire.jpg’))

dx = im.shape[0] / steps
dy = im.shape[1] / steps

# compute color features for each region
features = []
for x in range(steps):
for y in range(steps):
R = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,0])
G = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,1])
B = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,2])
features.append([R,G,B])

features = array(features,’f’) # make into array

# cluster
centroids,variance = kmeans(features,3)
code,distance = vq(features,centroids)

# create image with cluster labels
codeim = code.reshape(steps,steps)
codeim = imresize(codeim,im.shape[:2],interp=’nearest’)

figure()
imshow(codeim)
show()

The input to k-means is an array with steps*steps rows, each containing the R, G and
B mean values. To visualize the result we use SciPy’s imresize() function to show the
steps*steps image at the original image coordinates. The parameter interp specifies
what type of interpolation to use, here we use nearest neighbor so we don’t introduce
new pixel values at the transitions between classes.

Figure 6.4 shows results using 50 ⇥ 50 and 100 ⇥ 100 regions for two relatively
simple example images. Note the ordering of the k-means labels (in this case the
colors in the result images) is arbitrary. As you can see, the result is noisy despite
down-sampling to only use a few regions. There is no spatial consistency and it is
hard to separate regions, like the boy and the grass in the lower example. Spatial
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Figure 6.4: Clustering of pixels based on their color value using k-means. (left) original
image. (center) cluster result with k = 3 and 50 ⇥ 50 resolution. (right) cluster result
with k = 3 and 100⇥ 100 resolution.
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consistency and better separation will be dealt with later, together with other image
segmentation algorithms. Now let’s move on to the next basic clustering algorithm.

6.2 Hierarchical Clustering

Hierarchical clustering (or agglomerative clustering) is another simple but powerful
clustering algorithm. The idea is to build a similarity tree based on pairwise distances.
The algorithm starts with grouping the two closest objects (based on the distance
between feature vectors) and creates an "average" node in a tree with the two objects
as children. Then the next closest pair is found among the remaining objects but
also including any average nodes, and so on. At each node the distance between the
two children is also stored. Clusters can then be extracted by traversing this tree
and stopping at nodes with distance smaller some threshold that then determines the
cluster size.

Hierarchical clustering has several benefits. For example, the tree structure can
be used to visualize relationships and show how clusters are related. A good feature
vector will give a nice separation in the tree. Another benefit is that the tree can be
reused with different cluster thresholds without having to recompute the tree. The
drawback is that one needs to choose a threshold if the actual clusters are needed.

Let’s see what this looks like in code1. Create a file hcluster.py and add the follow-
ing code (inspired by the hierarchical clustering example in [31]).

from itertools import combinations

class ClusterNode(object):
def __init__(self,vec,left,right,distance=0.0,count=1):
self.left = left
self.right = right
self.vec = vec
self.distance = distance
self.count = count # only used for weighted average

def extract_clusters(self,dist):
""" Extract list of sub-tree clusters from
hcluster tree with distance<dist. """

if self.distance < dist:
return [self]

return self.left.extract_clusters(dist) + self.right.extract_clusters(dist)

1There is also a version of hierarchical clustering in the SciPy clustering package that you can look
at if you like. We will not use that here as parts of the implementation below (creating trees, visualizing
dendrograms) is interesting and will be useful later.
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def get_cluster_elements(self):
""" Return ids for elements in a cluster sub-tree. """
return self.left.get_cluster_elements() + self.right.get_cluster_elements()

def get_height(self):
""" Return the height of a node,
height is sum of each branch. """

return self.left.get_height() + self.right.get_height()

def get_depth(self):
""" Return the depth of a node, depth is
max of each child plus own distance. """

return max(self.left.get_depth(), self.right.get_depth()) + self.distance

class ClusterLeafNode(object):
def __init__(self,vec,id):
self.vec = vec
self.id = id

def extract_clusters(self,dist):
return [self]

def get_cluster_elements(self):
return [self.id]

def get_height(self):
return 1

def get_depth(self):
return 0

def L2dist(v1,v2):
return sqrt(sum((v1-v2)**2))

def L1dist(v1,v2):
return sum(abs(v1-v2))

def hcluster(features,distfcn=L2dist):
""" Cluster the rows of features using
hierarchical clustering. """

# cache of distance calculations
distances = {}
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# initialize with each row as a cluster
node = [ClusterLeafNode(array(f),id=i) for i,f in enumerate(features)]

while len(node)>1:
closest = float(’Inf’)

# loop through every pair looking for the smallest distance
for ni,nj in combinations(node,2):
if (ni,nj) not in distances:
distances[ni,nj] = distfcn(ni.vec,nj.vec)

d = distances[ni,nj]
if d<closest:
closest = d
lowestpair = (ni,nj)

ni,nj = lowestpair

# average the two clusters
new_vec = (ni.vec + nj.vec) / 2.0

# create new node
new_node = ClusterNode(new_vec,left=ni,right=nj,distance=closest)
node.remove(ni)
node.remove(nj)
node.append(new_node)

return node[0]

We created two classes for tree nodes, ClusterNode and ClusterLeafNode, to be used
to create the cluster tree. The function hcluster() builds the tree. First a list of leaf
nodes is created, then the closest pairs are iteratively grouped together based on the
distance measure chosen. Returning the final node will give you the root of the tree.
Running hcluster() on a matrix with feature vectors as rows will create and return
the cluster tree.

The choice of distance measure depends on the actual feature vectors, here we
used the Euclidean (L2) distance (a function for L1 distance is also provided) but you
can create any function and use that as parameter to hcluster(). We also used the
average feature vector of all nodes in a sub-tree as a new feature vector to represent
the sub-tree and treat each sub-tree as objects. There are other choices for decid-
ing which two nodes to merge next, such as using single linking (use the minimum
distance between objects in two sub-trees) and complete linking (use the maximum
distance between objects in two sub-trees). The choice of linking will affect the type
of clusters produced.

To extract the clusters from the tree you need to traverse the tree from the top until
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a node with distance value smaller than some threshold is found. This is easiest done
recursively. The ClusterNode method extract_clusters() handles this by returning
a list with the node itself if below the distance threshold, otherwise call the child
nodes (leaf nodes always returns themselves). Calling this function will return a list
of sub-trees containing the clusters. To get the leaf nodes for each cluster sub-tree
that contain the object ids, traverse each sub-tree and return a list of leaves using the
method get_cluster_elements().

Let’s try this on a simple example to see it all in action. First create some 2D data
points (same as for k-means above).

class1 = 1.5 * randn(100,2)
class2 = randn(100,2) + array([5,5])
features = vstack((class1,class2))

Cluster the points and extract the clusters from the list using some threshold (here we
used 5) and print the clusters in the console.

import hcluster

tree = hcluster.hcluster(features)

clusters = tree.extract_clusters(5)

print len(clusters)
for c in clusters:
print c.get_cluster_elements()

This should give a printout similar to this:
number of clusters 2
[184, 187, 196, 137, 174, 102, 147, 145, 185, 109, 166, 152, 173, 180, 128, 163, 141, 178, 151, 158, 108,
182, 112, 199, 100, 119, 132, 195, 105, 159, 140, 171, 191, 164, 130, 149, 150, 157, 176, 135, 123, 131,
118, 170, 143, 125, 127, 139, 179, 126, 160, 162, 114, 122, 103, 146, 115, 120, 142, 111, 154, 116, 129,
136, 144, 167, 106, 107, 198, 186, 153, 156, 134, 101, 110, 133, 189, 168, 183, 148, 165, 172, 188, 138,
192, 104, 124, 113, 194, 190, 161, 175, 121, 197, 177, 193, 169, 117, 155]

[56, 4, 47, 18, 51, 95, 29, 91, 23, 80, 83, 3, 54, 68, 69, 5, 21, 1, 44, 57, 17, 90, 30, 22, 63, 41, 7, 14, 59,

96, 20, 26, 71, 88, 86, 40, 27, 38, 50, 55, 67, 8, 28, 79, 64, 66, 94, 33, 53, 70, 31, 81, 9, 75, 15, 32, 89, 6,

11, 48, 58, 2, 39, 61, 45, 65, 82, 93, 97, 52, 62, 16, 43, 84, 24, 19, 74, 36, 37, 60, 87, 92, 181, 99, 10, 49,

12, 76, 98, 46, 72, 34, 35, 13, 73, 78, 25, 42, 77, 85]

Ideally you should get two clusters but depending on the actual data you might get
three or even more. In this simple example of clustering 2D points, one cluster should
contain values lower than 100 and the other values 100 and above.
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Clustering images

Let’s look at an example of clustering images based on their color content. The file
sunsets.zip contains 100 images downloaded from Flickr using the tag "sunset" or
"sunsets". For this example we will use a color histogram of each image as feature
vector. This is a bit crude and simple but good enough for illustrating what hierarchical
clustering does. Try running the following code in a folder containing the sunset
images.

import os
import hcluster

# create a list of images
path = ’flickr-sunsets/’
imlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]

# extract feature vector (8 bins per color channel)
features = zeros([len(imlist), 512])
for i,f in enumerate(imlist):
im = array(Image.open(f))

# multi-dimensional histogram
h,edges = histogramdd(im.reshape(-1,3),8,normed=True,range=[(0,255),(0,255),(0,255)])
features[i] = h.flatten()

tree = hcluster.hcluster(features)

Here we take the R,G and B color channels as vectors and feed them into NumPy’s
histogramdd() which computes multi-dimensional histograms (in this case three di-
mensions). We chose 8 bins in each color dimension (8 ⇤ 8 ⇤ 8) which after flattening
gives 512 bins in the feature vector. We use the "normed=True" option to normalize
the histograms in case the images are of different size and set the range to 0 . . . 255 for
each color channel. The use of reshape() with one dimension set to �1 will automat-
ically determine the correct size and thereby create an input array to the histogram
computation consisting of the RGB color values as rows.

To visualize the cluster tree, we can draw a dendrogram. A dendrogram is a dia-
gram that shows the tree layout. This often gives useful information on how good a
given descriptor vector is and what is considered similar in a particular case. Add the
following code to hcluster.py.

from PIL import Image,ImageDraw

def draw_dendrogram(node,imlist,filename=’clusters.jpg’):
""" Draw a cluster dendrogram and save to a file. """
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# height and width
rows = node.get_height()*20
cols = 1200

# scale factor for distances to fit image width
s = float(cols-150)/node.get_depth()

# create image and draw object
im = Image.new(’RGB’,(cols,rows),(255,255,255))
draw = ImageDraw.Draw(im)

# initial line for start of tree
draw.line((0,rows/2,20,rows/2),fill=(0,0,0))

# draw the nodes recursively
node.draw(draw,20,(rows/2),s,imlist,im)
im.save(filename)
im.show()

Here the dendrogram drawing uses a draw() method for each node. Add this method
to the ClusterNode class:

def draw(self,draw,x,y,s,imlist,im):
""" Draw nodes recursively with image
thumbnails for leaf nodes. """

h1 = int(self.left.get_height()*20 / 2)
h2 = int(self.right.get_height()*20 /2)
top = y-(h1+h2)
bottom = y+(h1+h2)

# vertical line to children
draw.line((x,top+h1,x,bottom-h2),fill=(0,0,0))

# horizontal lines
ll = self.distance*s
draw.line((x,top+h1,x+ll,top+h1),fill=(0,0,0))
draw.line((x,bottom-h2,x+ll,bottom-h2),fill=(0,0,0))

# draw left and right child nodes recursively
self.left.draw(draw,x+ll,top+h1,s,imlist,im)
self.right.draw(draw,x+ll,bottom-h2,s,imlist,im)

The leaf nodes have their own special method to draw thumbnails of the actual images.
Add this to the ClusterLeafNode class:

def draw(self,draw,x,y,s,imlist,im):
nodeim = Image.open(imlist[self.id])

174 6.2. Hierarchical Clustering



nodeim.thumbnail([20,20])
ns = nodeim.size
im.paste(nodeim,[int(x),int(y-ns[1]//2),int(x+ns[0]),int(y+ns[1]-ns[1]//2)])

The height of a dendrogram (and the sub parts) is determined by the distance values.
These need to be scaled to fit inside the chosen image resolution. The nodes are drawn
recursively with the coordinates passed down to the level below. Leaf nodes are drawn
with small thumbnail images of 20⇥ 20 pixels. Two helper methods are used to get the
height and width of the tree, get_height() and get_depth()

The dendrogram is drawn like this:

hcluster.draw_dendrogram(tree,imlist,filename=’sunset.pdf’)

The cluster dendrogram for the sunset images is shown in Figure 6.5. As can be
seen, images with similar color are close in the tree. Three example clusters are shown
in Figure 6.6. The clusters are in this example extracted as follows.

# visualize clusters with some (arbitrary) threshold
clusters = tree.extract_clusters(0.23*tree.distance)

# plot images for clusters with more than 3 elements
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>3:
figure()
for p in range(minimum(nbr_elements,20)):
subplot(4,5,p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis(’off’)

show()

As a final example we can create a dendrogram for the font images

tree = hcluster.hcluster(projected)
hcluster.draw_dendrogram(tree,imlist,filename=’fonts.jpg’)

where projected and imlist refer to the variables used in the k-means example in
Section 6.1. The resulting font images dendrogram is shown in Figure 6.7.

6.3 Spectral Clustering

An interesting type of clustering algorithms are spectral clustering methods which
have a different approach compared to k-means and hierarchical clustering.
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Figure 6.5: An example of hierarchical clustering of 100 images of sunsets using a 512
bin histogram in RGB coordinates as feature vector. Images close together in the tree
have similar color distribution.
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Figure 6.6: Example clusters from the 100 images of sunsets obtained with hierar-
chical clustering using a threshold set to 23% of the maximum node distance in the
tree.

A similarity matrix (or affinity matrix, or sometimes distance matrix) for n elements
(for example images) is an n ⇥ n matrix with pair-wise similarity scores. Spectral
clustering gets its name from the use of the spectrum of a matrix constructed from a
similarity matrix. The eigenvectors of this matrix are used for dimensionality reduction
and then clustering.

One of the benefits of spectral clustering methods is that the only input needed
is this matrix and it can be constructed from any measure of similarity you can think
of. Methods like k-means and hierarchical clustering compute mean of feature vectors
and this restricts the features (or descriptors) to vectors (in order to be able to com-
pute the mean). With spectral methods, there is no need to have feature vectors of
any kind, just a notion of "distance" or "similarity".

Here’s how it works. Given a n⇥n similarity matrix S with similarity scores s
ij

, we
can create a matrix, called the Laplacian matrix2,

L = I �D�1/2SD�1/2 ,

where I is the identity matrix and D is the diagonal matrix containing the row sums

2Sometimes L = D�1/2SD�1/2 is used as the Laplacian matrix instead but the choice doesn’t really
matter since it only changes the eigenvalues, not the eigenvectors.
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Figure 6.7: An example of hierarchical clustering of 66 selected font images using 40
principal components as feature vector.
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of S, D = diag(d
i

), d
i

=

P
j

s
ij

. The matrix D�1/2 used in the construction of the
Laplacian matrix is then

D�1/2
=

2

66664

1p
d1

1p
d2

. . .
1p
dn

3

77775
.

In order to make the presentation clearer, let’s use low values of s
ij

for similar ele-
ments and require s

ij

� 0 (the term distance matrix is perhaps more fitting in this
case).

The clusters are found by computing the eigenvectors of L and using the k eigen-
vectors corresponding to the k largest eigenvalues to construct a set of feature vectors
(remember that we may not have had any to start with!). Create a matrix with the k

eigenvectors as columns, the rows will then be treated as new feature vectors (of
length k). These new feature vectors can then be clustered using for example k-means
to produce the final clusters. In essence, what the algorithm does is to transform the
original data into new feature vectors that can be more easily clustered (and in some
cases using cluster algorithms that could not be used in the first place).

Enough about the theory, let’s see what it looks like in code when applied to a real
example. Again, we take the font images used in the k-means example above (and
introduced on page 28).

from scipy.cluster.vq import *

n = len(projected)

# compute distance matrix
S = array([[ sqrt(sum((projected[i]-projected[j])**2))

for i in range(n) ] for j in range(n)], ’f’)

# create Laplacian matrix
rowsum = sum(S,axis=0)
D = diag(1 / sqrt(rowsum))
I = identity(n)
L = I - dot(D,dot(S,D))

# compute eigenvectors of L
U,sigma,V = linalg.svd(L)

k = 5
# create feature vector from k first eigenvectors
# by stacking eigenvectors as columns
features = array(V[:k]).T
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Figure 6.8: Spectral clustering of font images using the eigenvectors of the Laplacian
matrix.

# k-means
features = whiten(features)
centroids,distortion = kmeans(features,k)
code,distance = vq(features,centroids)

# plot clusters
for c in range(k):

ind = where(code==c)[0]
figure()
for i in range(minimum(len(ind),39)):

im = Image.open(path+imlist[ind[i]])
subplot(4,10,i+1)
imshow(array(im))
axis(’equal’)
axis(’off’)

show()

In this case we just create S using pair-wise Euclidean distances and compute a stan-
dard k-means clustering on the k eigenvectors (k = 5 in this particular case). Remem-
ber that the matrix V contains the eigenvectors sorted with respect to the eigenvalues.
Finally, the clusters are plotted. Figure 6.8 shows the clusters for an example run (re-
member that the k-means step might give different results each run).

We can also try this on an example where we don’t have any feature vectors or any
strict definition of similarity. The geotagged Panoramio images on page 63 were linked
based on how many matching local descriptors were found between them. The matrix
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on page 67 is a similarity matrix with scores equal to the number of matching features
(without any normalization). With imlist containing the filenames of the images and
the similarity matrix saved to a file using NumPy’s savetxt() we only need to modify
the first rows of the code above to:

n = len(imlist)

# load the similarity matrix and reformat
S = loadtxt(’panoramio_matches.txt’)
S = 1 / (S + 1e-6)

where we invert the scores to have low values for similar images (so we don’t have to
modify the code above). We add a small number to avoid division with zero. The rest
of the code you can leave as is.

Choosing k is a bit tricky in this case. Most people would consider there to be only
two classes (the two sides of the White House) and then some junk images. With k = 2,
you get something like Figure 6.9, with one large cluster of images of one side and the
other cluster containing the other side plus all the junk images. Picking a larger value
of k like k = 10 gives several clusters with only one image (hopefully the junk images)
and some real clusters. An example run is shown in Figure 6.10. In this case there
were only two actual clusters, each containing images of one side of the White House.

There are many different versions and alternatives to the algorithm presented here.
Each of them with its own idea of how to construct the matrix L and what to do with
the eigenvectors. For further reading on spectral clustering and the details of some
common algorithms see for example the review paper [37].

Exercises

1. Hierarchical k-means is a clustering method that applies k-means recursively to
the clusters to create a tree of incrementally refined clusters. In this case, each
node in the tree will branch to k child nodes. Implement this and try it on the
font images.

2. Using the hierarchical k-means from the previous exercise, make a tree visu-
alization (similar to the dendrogram for hierarchical clustering) that shows the
average image for each cluster node. Tip: you can take the average PCA coef-
ficients feature vector and use the PCA basis to synthesize an image for each
feature vector.

3. By modifying the class used for hierarchical clustering to include the number of
images below the node you have a simple and fast way of finding similar (tight)
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Figure 6.9: Spectral clustering of geotagged images of the White House with k = 2

and the similarity scores as the number of matching local descriptors.
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Figure 6.10: Spectral clustering of geotagged images of the White House with k =

10 and the similarity scores as the number of matching local descriptors. Only the
clusters with more than one image shown.

groups of a given size. Implement this small change and try it out on some real
data. How does it perform?

4. Experiment with using single and complete linking for building the hierarchical
cluster tree. How do the resulting clusters differ?

5. In some spectral clustering algorithms the matrix D�1S is used instead of L. Try
replacing the Laplacian matrix with this and apply this on a few different data
sets.

6. Download some image collections from Flickr searches with different tags. Ex-
tract the RGB histogram like you did for the sunset images. Cluster the images
using one of the methods from this chapter. Can you separate the classes with
the clusters?
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Chapter 7

Searching Images

This chapter shows how to use text mining techniques to search for images based
on their visual content. The basic ideas of using visual words are presented and the
details of a complete setup are explained and tested on an example image data set.

7.1 Content-based Image Retrieval

Content-based image retrieval (CBIR ) deals with the problem of retrieving visually
similar images from a (large) database of images. This can be images with similar
color, similar textures or similar objects or scenes, basically any information contained
in the images themselves.

For high-level queries, like finding similar objects, it is not feasible to do a full com-
parison (for example using feature matching) between a query image and all images in
the database. It would simply take too much time to return any results if the database
is large. In the last couple of years, researchers have successfully introduced tech-
niques from the world of text mining for CBIR problems making it possible to search
millions of images for similar content.

Inspiration from text mining - the vector space model

The vector space model is a model for representing and searching text documents. As
we will see, it can be applied to essentially any kind of objects, including images. The
name comes from the fact that text documents are represented with vectors that are
histograms of the word frequencies in the text1. In other words, the vector will contain
the number of occurrences of every word (at the position corresponding to that word)

1Often you see "term" used instead of "word", the meaning is the same.
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and zeros everywhere else. This model is also called a bag-of-word representation
since order and location of words is ignored.

Documents are indexed by doing a word count to construct the document his-
togram vector v, usually with common words like "the", "and", "is" etc. ignored. These
common words are called stop words. To compensate for document length, the vec-
tors can be normalized to unit length by dividing with the total histogram sum. The
individual components of the histogram vector are usually weighted according to the
importance of each word. Usually, the importance of a word increases proportional
to how often it appears in the document but decreases if the word is common in all
documents in a data set (or "corpus").

The most common weighting is tf-idf weighting (term frequency - inverse document
frequency) where the term frequency of a word w in document d, is

tf

w,d

=

n
wP
j

n
j

,

where n
w

is the number of occurrences of w in d. To normalize, this is divided by the
total number of occurrences of all words in the document.

The inverse document frequency is

idf

w,d

= log

|D|
|{d : w 2 d}| ,

where |D| is the number of documents in the corpus D and the denominator the num-
ber of documents d inD containing w. Multiplying the two gives the tf-idf weight which
is then the elements in v. You can read more about tf-idf at http://en.wikipedia.
org/wiki/Tf-idf.

This is really all we need at the moment. Let’s see how to carry this model over to
indexing and searching images based on their visual content.

7.2 Visual Words

To apply text mining techniques to images, we first need to create the visual equiva-
lent of words. This is usually done using local descriptors like the SIFT descriptor in
Section 2.2. The idea is to quantize the descriptor space into a number of typical exam-
ples and assign each descriptor in the image to one of those examples. These typical
examples are determined by analyzing a training set of images and can be considered
as visual words and the set of all words is then a visual vocabulary (sometimes called
a visual codebook ). This vocabulary can be created specifically for a given problem or
type of images or just try to represent visual content in general.
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The visual words are constructed using some clustering algorithm applied to the
feature descriptors extracted from a (large) training set of images. The most common
choice is k-means2, which is what we will use here. Visual words are nothing but a
collection of vectors in the given feature descriptor space, in the case of k-means they
are the cluster centroids. Representing an image with a histogram of visual words is
then called a bag of visual words model.

Let’s introduce an example data set and use that to illustrate the concept. The file
first1000.zip contains the first 1000 images from the University of Kentucky object
recognition benchmark set (also known as "ukbench"). The full set, reported bench-
marks and some supporting code can be found at http://www.vis.uky.edu/~stewe/
ukbench/. The ukbench set contains many sets of four images, each of the same scene
or object (stored consecutively so that 0 . . . 3, 4 . . . 7, etc. belong together). Figure 7.1
shows some examples from the data set. The appendix has the details on the set and
how to get the data.

Creating a vocabulary

To create a vocabulary of visual words we first need to extract descriptors. Here we
will use the SIFT descriptor. Running the following lines of code, with imlist, as usual,
containing the filenames of the images,

nbr_images = len(imlist)
featlist = [ imlist[i][:-3]+’sift’ for i in range(nbr_images)]

for i in range(nbr_images):
sift.process_image(imlist[i],featlist[i])

will give you descriptor files for each image. Create a file vocabulary.py and add the
following code for a vocabulary class and a method for training a vocabulary on some
training image data.

from scipy.cluster.vq import *
import vlfeat as sift

class Vocabulary(object):

def __init__(self,name):
self.name = name
self.voc = []
self.idf = []
self.trainingdata = []

2Or in the more advanced cases hierarchical k-means.
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Figure 7.1: Some examples of images from the ukbench (University of Kentucky object
recognition benchmark) data set.
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self.nbr_words = 0

def train(self,featurefiles,k=100,subsampling=10):
""" Train a vocabulary from features in files listed
in featurefiles using k-means with k number of words.
Subsampling of training data can be used for speedup. """

nbr_images = len(featurefiles)
# read the features from file
descr = []
descr.append(sift.read_features_from_file(featurefiles[0])[1])
descriptors = descr[0] #stack all features for k-means
for i in arange(1,nbr_images):
descr.append(sift.read_features_from_file(featurefiles[i])[1])
descriptors = vstack((descriptors,descr[i]))

# k-means: last number determines number of runs
self.voc,distortion = kmeans(descriptors[::subsampling,:],k,1)
self.nbr_words = self.voc.shape[0]

# go through all training images and project on vocabulary
imwords = zeros((nbr_images,self.nbr_words))
for i in range( nbr_images ):
imwords[i] = self.project(descr[i])

nbr_occurences = sum( (imwords > 0)*1 ,axis=0)

self.idf = log( (1.0*nbr_images) / (1.0*nbr_occurences+1) )
self.trainingdata = featurefiles

def project(self,descriptors):
""" Project descriptors on the vocabulary
to create a histogram of words. """

# histogram of image words
imhist = zeros((self.nbr_words))
words,distance = vq(descriptors,self.voc)
for w in words:
imhist[w] += 1

return imhist

The class Vocabulary contains a vector of word cluster centers voc together with the
idf values for each word. To train the vocabulary on some set of images, the method
train() takes a list of .sift descriptor files and k, the desired number of words for the
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vocabulary. There is also an option of subsampling the training data for the k-means
step which (will take a long time if too many features are used).

With the images and the feature files in a folder on your computer, the following
code will create a vocabulary of length k ⇡ 1000 (again assuming that imlist contains
a list of filenames for the images).

import pickle
import vocabulary

nbr_images = len(imlist)
featlist = [ imlist[i][:-3]+’sift’ for i in range(nbr_images) ]

voc = vocabulary.Vocabulary(’ukbenchtest’)
voc.train(featlist,1000,10)

# saving vocabulary
with open(’vocabulary.pkl’, ’wb’) as f:
pickle.dump(voc,f)

print ’vocabulary is:’, voc.name, voc.nbr_words

The last part also saves the entire vocabulary object for later use using the pickle

module.

7.3 Indexing Images

Setting up the database

To start indexing images we first need to set up a database. Indexing images in
this context means extracting descriptors from the images, converting them to vi-
sual words using a vocabulary and storing the visual words and word histograms with
information about which image they belong to. This will make it possible to query the
database using an image and get the most similar images back as search result.

Here we will use SQLite as database. SQLite is a database which stores everything
in a single file and is very easy to set up and use. We are using it here since it is
the easiest way to get started without having to go into database and server config-
urations and other details way outside the scope of this book. The Python version,
pysqlite, is available from http://code.google.com/p/pysqlite/ (and also through
many package repositories on Mac and Linux). SQLite uses the SQL query language
so the transition should be easy if you want to use another database.

To get started we need to create tables and indexes and an indexer class to write
image data to the database. First, create a file imagesearch.py and add the following
code:
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imlist

rowid
filename

imwords

imid
wordid
vocname

imhistograms

imid
histogram
vocname

Table 7.1: A simple database schema for storing images and visual words.

import pickle
from pysqlite2 import dbapi2 as sqlite

class Indexer(object):

def __init__(self,db,voc):
""" Initialize with the name of the database
and a vocabulary object. """

self.con = sqlite.connect(db)
self.voc = voc

def __del__(self):
self.con.close()

def db_commit(self):
self.con.commit()

First of all, we need pickle for encoding and decoding these arrays to and from
strings. SQLite is imported from the pysqlite2 module (see appendix for installa-
tion details). The Indexer class connects to to a database and stores a vocabulary
object upon creation (where the __init__() method is called). The __del__() method
makes sure to close the database connection and db_commit() writes the changes to
the database file.

We only need a very simple database schema of three tables. The table imlist

contains the filenames of all indexed images, imwords contains a word index of the
words, which vocabulary was used, and which images the words appear in. Finally,
imhistograms contains the full word histograms for each image. We need those to
compare images according to our vector space model. The schema is shown in Ta-
ble 7.1.

The following method for the Indexer class creates the tables and some useful
indexes to make searching faster.
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def create_tables(self):
""" Create the database tables. """

self.con.execute(’create table imlist(filename)’)
self.con.execute(’create table imwords(imid,wordid,vocname)’)
self.con.execute(’create table imhistograms(imid,histogram,vocname)’)
self.con.execute(’create index im_idx on imlist(filename)’)
self.con.execute(’create index wordid_idx on imwords(wordid)’)
self.con.execute(’create index imid_idx on imwords(imid)’)
self.con.execute(’create index imidhist_idx on imhistograms(imid)’)
self.db_commit()

Adding images

With the database tables in place, we can start adding images to the index. To do
this, we need a method add_to_index() for our Indexer class. Add this method to
imagesearch.py.

def add_to_index(self,imname,descr):
""" Take an image with feature descriptors,
project on vocabulary and add to database. """

if self.is_indexed(imname): return
print ’indexing’, imname

# get the imid
imid = self.get_id(imname)

# get the words
imwords = self.voc.project(descr)
nbr_words = imwords.shape[0]

# link each word to image
for i in range(nbr_words):
word = imwords[i]
# wordid is the word number itself
self.con.execute("insert into imwords(imid,wordid,vocname)

values (?,?,?)", (imid,word,self.voc.name))

# store word histogram for image
# use pickle to encode NumPy arrays as strings
self.con.execute("insert into imhistograms(imid,histogram,vocname)

values (?,?,?)", (imid,pickle.dumps(imwords),self.voc.name))

This method takes the image filename and a NumPy array with the descriptors found in
the image. The descriptors are projected on the vocabulary and inserted in imwords
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(word by word) and imhistograms. We used two helper functions, is_indexed() which
checks if the image has been indexed already, and get_id() which gives the image id
for an image filename. Add these to imagesearch.py.

def is_indexed(self,imname):
""" Returns True if imname has been indexed. """

im = self.con.execute("select rowid from imlist where
filename=’%s’" % imname).fetchone()

return im != None

def get_id(self,imname):
""" Get an entry id and add if not present. """

cur = self.con.execute(
"select rowid from imlist where filename=’%s’" % imname)
res=cur.fetchone()
if res==None:
cur = self.con.execute(
"insert into imlist(filename) values (’%s’)" % imname)
return cur.lastrowid

else:
return res[0]

Did you notice that we used pickle in add_to_index()? Databases like SQLite do
not have a standard type for storing objects or arrays. Instead, we can create a string
representation using Pickle’s dumps() function and write the string to the database.
Consequently, we need to un-pickle the string when reading from the database. More
on that in the next section.

The following code example will go through the ukbench sample images and add
them to our index. Here we assume that the lists imlist and featlist contain the file-
names of the images and the descriptor files and that the vocabulary you trained ear-
lier was pickled to a file vocabulary.pkl.

import pickle
import sift
import imagesearch

nbr_images = len(imlist)

# load vocabulary
with open(’vocabulary.pkl’, ’rb’) as f:
voc = pickle.load(f)

# create indexer
indx = imagesearch.Indexer(’test.db’,voc)
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indx.create_tables()

# go through all images, project features on vocabulary and insert
for i in range(nbr_images)[:100]:
locs,descr = sift.read_features_from_file(featlist[i])
indx.add_to_index(imlist[i],descr)

# commit to database
indx.db_commit()

We can now inspect the contents of our database:

from pysqlite2 import dbapi2 as sqlite
con = sqlite.connect(’test.db’)
print con.execute(’select count (filename) from imlist’).fetchone()
(1000,)
print con.execute(’select * from imlist’).fetchone()
(u’ukbench00000.jpg’,)

If you try fetchall() instead of fetchone() in the last line you will get a long list of all
the filenames.

7.4 Searching the Database for Images

With a set of images indexed we can search the database for similar images. Here
we have used a bag-of-word representation for the whole image but the procedure
explained here is generic and can be used to find similar objects, similar faces, similar
colors etc. It all depends on the images and descriptors used.

To handle searches we introduce a Searcher class to imagesearch.py.

class Searcher(object):

def __init__(self,db,voc):
""" Initialize with the name of the database. """
self.con = sqlite.connect(db)
self.voc = voc

def __del__(self):
self.con.close()

A new Searcher object connects to the database and closes the connection upon dele-
tion, same as for the Indexer class before.

If the number of images is large, it is not feasible to do a full histogram comparison
across all images in the database. We need a way to find a reasonably sized set of
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candidates (where "reasonable" can be determined by search response time, memory
requirements etc.). This is where the word index comes into play. Using the index we
can get a set of candidates and then do the full comparison against that set.

Using the index to get candidates

We can use our index to find all images that contain a particular word. This is just
a simple query to the database. Add candidates_from_word() as a method for the
Searcher class.

def candidates_from_word(self,imword):
""" Get list of images containing imword. """

im_ids = self.con.execute(
"select distinct imid from imwords where wordid=%d" % imword).fetchall()

return [i[0] for i in im_ids]

This gives the image ids for all images containing the word. To get candidates for more
than one word, for example all the nonzero entries in a word histogram, we can loop
over each word, get images with that word and aggregate the lists3. Here we should
also keep track of how many times each image id appears in the aggregate list since
this shows how many words that matches the ones in the word histogram. This can be
done with the following Searcher method:

def candidates_from_histogram(self,imwords):
""" Get list of images with similar words. """

# get the word ids
words = imwords.nonzero()[0]

# find candidates
candidates = []
for word in words:
c = self.candidates_from_word(word)
candidates+=c

# take all unique words and reverse sort on occurrence
tmp = [(w,candidates.count(w)) for w in set(candidates)]
tmp.sort(cmp=lambda x,y:cmp(x[1],y[1]))
tmp.reverse()

# return sorted list, best matches first
return [w[0] for w in tmp]

3If you don’t want to use all words, try ranking them according to their idf weight and use the ones
with highest weights.
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This method creates a list of word ids from the nonzero entries in a word histogram
of an image. Candidates for each word are retrieved and aggregated in the list candi-
dates. Then we create a list of tuples (word id, count) with the number of occurrences
of each word in the candidate list and sort this list (in place for efficiency) using sort()

with a custom comparison function that compares the second element in the tuple.
The comparison function is declared inline using lambda functions, convenient one-
line function declarations. The result is returned as a list of image ids with the best
matching image first.

Consider the example

src = imagesearch.Searcher(’test.db’)
locs,descr = sift.read_features_from_file(featlist[0])
iw = voc.project(descr)

print ’ask using a histogram...’
print src.candidates_from_histogram(iw)[:10]

which prints the first 10 lookups from the index and gives the output (this will vary
depending on your vocabulary):

ask using a histogram...
[655, 656, 654, 44, 9, 653, 42, 43, 41, 12]

None of the top 10 candidates are correct. Don’t worry, we can now take any number
of elements from this list and compare histograms. As you will see, this improves
things considerably.

Querying with an image

There is not much more needed to do a full search using an image as query. To do
word histogram comparisons a Searcher object needs to be able to read the image
word histograms from the database. Add this method to the Searcher class.

def get_imhistogram(self,imname):
""" Return the word histogram for an image. """

im_id = self.con.execute(
"select rowid from imlist where filename=’%s’" % imname).fetchone()

s = self.con.execute(
"select histogram from imhistograms where rowid=’%d’" % im_id).fetchone()

# use pickle to decode NumPy arrays from string
return pickle.loads(str(s[0]))

Again we use pickle to convert between string and NumPy arrays, this time with loads().
Now we can combine everything into a query method:
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def query(self,imname):
""" Find a list of matching images for imname"""

h = self.get_imhistogram(imname)
candidates = self.candidates_from_histogram(h)

matchscores = []
for imid in candidates:

# get the name
cand_name = self.con.execute(

"select filename from imlist where rowid=%d" % imid).fetchone()
cand_h = self.get_imhistogram(cand_name)
cand_dist = sqrt( sum( (h-cand_h)**2 ) ) #use L2 distance
matchscores.append( (cand_dist,imid) )

# return a sorted list of distances and database ids
matchscores.sort()
return matchscores

This Searcher method takes the filename of an image, retrieves the word histogram
and a list of candidates (which should be limited to some maximum number if you
have a large data set). For each candidate, we compare histograms using standard
Euclidean distance and return a sorted list of tuples containing distance and image id.

Let’s try a query for the same image as in the previous section:

src = imagesearch.Searcher(’test.db’)
print ’try a query...’
print src.query(imlist[0])[:10]

This will again print the top 10 results, including the distance, and should look some-
thing like this:
try a query...
[(0.0, 1), (100.03999200319841, 2), (105.45141061171255, 3), (129.47200469599596, 708),
(129.73819792181484, 707), (132.68006632497588, 4), (139.89639023220005, 10),
(142.31654858097141, 706), (148.1924424523734, 716), (148.22955170950223, 663)]

Much better. The image has distance zero to itself and two out of the three images of
the same scene are on the first two positions. The third image coming in on position
five.

Benchmarking and plotting the results

To get a feel for how good the search results are, we can compute the number of
correct images on the top four positions. This is the measure used to report perfor-
mance for the ukbench image set. Here’s a function that computes this score. Add it
to imagesearch.py and you can start optimizing your queries.
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def compute_ukbench_score(src,imlist):
""" Returns the average number of correct

images on the top four results of queries."""

nbr_images = len(imlist)
pos = zeros((nbr_images,4))
# get first four results for each image
for i in range(nbr_images):

pos[i] = [w[1]-1 for w in src.query(imlist[i])[:4]]

# compute score and return average
score = array([ (pos[i]//4)==(i//4) for i in range(nbr_images)])*1.0
return sum(score) / (nbr_images)

This function gets the top four results and subtracts one from the index returned by
query() since the database index starts at one and the list of images at zero. Then we
compute the score using integer division, using the fact that the correct images are
consecutive in groups of four. A perfect result gives a score of 4, nothing right gives
a score of 0 and only retrieving the identical images gives a score of 1. Finding the
identical image together with two of the three other images gives a score of 3.

Try it out like this:

imagesearch.compute_ukbench_score(src,imlist)

or if you don’t want to wait (it will take some time to do 1000 queries), just use a
subset of the images

imagesearch.compute_ukbench_score(src,imlist[:100])

We can consider a score close to 3 as pretty good in this case. The state-of-the-art
results reported on the ukbench website are just over 3 (note that they are using more
images and your score will decrease with a larger set).

Finally, a function for showing the actual search results will be useful. Add this
function,

def plot_results(src,res):
""" Show images in result list ’res’."""

figure()
nbr_results = len(res)
for i in range(nbr_results):

imname = src.get_filename(res[i])
subplot(1,nbr_results,i+1)
imshow(array(Image.open(imname)))
axis(’off’)

show()
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which can be called with any number of search results in the list res. For example like
this:

nbr_results = 6
res = [w[1] for w in src.query(imlist[0])[:nbr_results]]
imagesearch.plot_results(src,res)

The helper function

def get_filename(self,imid):
""" Return the filename for an image id"""

s = self.con.execute(
"select filename from imlist where rowid=’%d’" % imid).fetchone()

return s[0]

translates image id to filenames which we need for loading the images when plotting.
Some example queries on our data set are shown using plot_results() in Figure 7.2.

7.5 Ranking Results using Geometry

Let’s briefly look at a common way of improving results obtained using a bag of visual
words model. One of the drawbacks if the model is that the visual words representa-
tion of an image does not contain the positions of the image features. This was the
price paid to get speed and scalability.

One way to have the feature points improve results is to re-rank the top results
using some criteria that takes the features geometric relationships into account. The
most common approach is to fit homographies between the feature locations in the
query image and the top result images.

To make this efficient the feature locations can be stored in the database and cor-
respondences determined by the word id of the features (this only works if the vocab-
ulary is large enough so that the word id matches contain mostly correct matches).
This would require a major rewrite of our database and code above and complicate
the presentation. To illustrate we will just reload the features for the top images and
match them.

Here is what a complete example of loading all the model files and re-ranking the
top results using homographies looks like.

import pickle
import sift
import imagesearch
import homography

# load image list and vocabulary
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Figure 7.2: Some example search results on the ukbench data set. The query image is
shown on the far left followed by the top five retrieved images.

200 7.5. Ranking Results using Geometry



with open(’ukbench_imlist.pkl’,’rb’) as f:
imlist = pickle.load(f)
featlist = pickle.load(f)

nbr_images = len(imlist)

with open(’vocabulary.pkl’, ’rb’) as f:
voc = pickle.load(f)

src = imagesearch.Searcher(’test.db’,voc)

# index of query image and number of results to return
q_ind = 50
nbr_results = 20

# regular query
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]]
print ’top matches (regular):’, res_reg

# load image features for query image
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)

# RANSAC model for homography fitting
model = homography.RansacModel()

rank = {}
# load image features for result
for ndx in res_reg[1:]:
locs,descr = sift.read_features_from_file(featlist[ndx])

# get matches
matches = sift.match(q_descr,descr)
ind = matches.nonzero()[0]
ind2 = matches[ind]
tp = homography.make_homog(locs[:,:2].T)

# compute homography, count inliers. if not enough matches return empty list
try:
H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)

except:
inliers = []

# store inlier count
rank[ndx] = len(inliers)
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# sort dictionary to get the most inliers first
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ’top matches (homography):’, res_geom

# plot the top results
imagesearch.plot_results(src,res_reg[:8])
imagesearch.plot_results(src,res_geom[:8])

First the image list, feature list (containing the filenames of the images and SIFT
feature files respectively) and the vocabulary is loaded. Then a Searcher object is
created and a regular query is performed and stored in the list res_reg. The features
for the query image are loaded. Then for each image in the result list, the features
are loaded and matched against the query image. Homographies are computed from
the matches and the number of inliers counted. If the homography fitting fails we set
the inlier list to an empty list. Finally we sort the dictionary rank that contains image
index and inlier count according to decreasing number of inliers. The result lists are
printed to the console and the top images visualized.

The output looks like this:

top matches (regular): [39, 22, 74, 82, 50, 37, 38, 17, 29, 68, 52, 91, 15, 90, 31, ... ]
top matches (homography): [39, 38, 37, 45, 67, 68, 74, 82, 15, 17, 50, 52, 85, 22, 87, ... ]

Figure 7.3 shows some sample results with the regular and re-ranked top images.

7.6 Building Demos and Web Applications

In this last section on searching we’ll take a look at a simple way of building demos and
web applications with Python. By making demos as web pages, you automatically get
cross platform support and an easy way to show and share your project with minimal
requirements. In the sections below we will go through an example of a simple image
search engine.

Creating web applications with CherryPy

To build these demos we will use the CherryPy package, available at http://www.
cherrypy.org/. CherryPy is a pure Python lightweight web server that uses an object
oriented model. See the appendix for more details on how to install and configure
CherryPy. Assuming that you have studied the tutorial examples enough to have an
initial idea of how CherryPy works, let’s build an image search web demo on top of the
image searcher you created earlier in this chapter.
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Figure 7.3: Some example search results with re-ranking based on geometric consis-
tency using homographies. For each example, the top row is the regular result and
the bottom row the re-ranked result.

7.6. Building Demos and Web Applications 203



Image search demo

First we need to initialize with a few html tags and load the data using Pickle. We need
the vocabulary for the Searcher object that interfaces with the database. Create a file
searchdemo.py and add the following class with two methods.

import cherrypy, os, urllib, pickle
import imagesearch

class SearchDemo(object):

def __init__(self):
# load list of images
with open(’webimlist.txt’) as f:
self.imlist = f.readlines()

self.nbr_images = len(self.imlist)
self.ndx = range(self.nbr_images)

# load vocabulary
with open(’vocabulary.pkl’, ’rb’) as f:
self.voc = pickle.load(f)

# set max number of results to show
self.maxres = 15

# header and footer html
self.header = """
<!doctype html>
<head>
<title>Image search example</title>
</head>
<body>
"""

self.footer = """
</body>
</html>
"""

def index(self,query=None):
self.src = imagesearch.Searcher(’web.db’,self.voc)

html = self.header
html += """
<br />
Click an image to search. <a href=’?query=’>Random selection</a> of images.
<br /><br />
"""
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if query:
# query the database and get top images
res = self.src.query(query)[:self.maxres]
for dist,ndx in res:
imname = self.src.get_filename(ndx)
html += "<a href=’?query="+imname+"’>"
html += "<img src=’"+imname+"’ width=’100’ />"
html += "</a>"

else:
# show random selection if no query
random.shuffle(self.ndx)
for i in self.ndx[:self.maxres]:
imname = self.imlist[i]
html += "<a href=’?query="+imname+"’>"
html += "<img src=’"+imname+"’ width=’100’ />"
html += "</a>"

html += self.footer
return html

index.exposed = True

cherrypy.quickstart(SearchDemo(), ’/’,
config=os.path.join(os.path.dirname(__file__), ’service.conf’))

As you can see, this simple demo consists of a single class with one method for ini-
tialization and one for the "index" page (the only page in this case). Methods are
automatically mapped to URLs and arguments to the methods can be passed directly
in the URL. The index method has a query parameter which in this case is the query
image to sort the others agains. If it is empty, a random selection of images is shown
instead. The line

index.exposed = True

makes the index URL accessible and the last line starts the CherryPy web server with
configurations read from service.conf. Our configuration file for this example has the
following lines

[global]
server.socket_host = "127.0.0.1"
server.socket_port = 8080
server.thread_pool = 50
tools.sessions.on = True

[/]
tools.staticdir.root = "tmp/"
tools.staticdir.on = True
tools.staticdir.dir = ""
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The first part specifies which IP address and port to use. The second part enables a
local folder for reading (in this case "tmp/"). This should be set to the folder containing
your images.

Note: Don’t put anything secret in that folder if you plan to show this to people. The
content of the folder will be accessible through CherryPy.

Start you web server with

$ python searchdemo.py

from the command line. Opening your browser and pointing it at the right URL (in this
case http://127.0.0.1:8080/) should show the initial screen with a random selection
of images. This should look like Figure 7.4a. Clicking an image starts a query and
shows the top results. Clicking an image in the results starts a new query with that
image, and so on. There is a link to get back to the starting state of a random selection
(by passing an empty query). Some examples are shown in Figure 7.4.

This example shows a full integration from webpage to database queries and pre-
sentation of results. Naturally, we kept the styling and options to a minimum and there
are many possibilities for improvement. For example, adding a stylesheet to make it
prettier or upload files to use as queries.

Exercises

1. Try to speed up queries by only using part of the words in the query image to
construct the list of candidates. Use the idf weight as a criteria for which words
to use.

2. Implement a visual stop word list of the most common visual words in your vo-
cabulary (say the top 10%) and ignore these words. How does this change the
search quality?

3. Visualize a visual word by saving all image features that are mapped to a given
word id. Crop image patches around the feature locations (at the given scale)
and plot them in a figure. Do the patches for a given word look the same?

4. Experiment with using different distance measures and weighting in the query()

method. Use the score from compute_ukbench_score() to measure your progress.

5. Throughout this chapter we only used SIFT features in our vocabulary. This
completely disregards the color information as you can see in the example results
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Figure 7.4: Some example search results on the ukbench data set. (top) The starting
page which shows a random selection of the images. (bottom) Sample queries. The
query image is shown on the top left corner followed by the top image results shown
row-wise.
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in Figure 7.2. Try to add color descriptors and see if you can improve the search
results.

6. For large vocabularies using arrays to represent the visual word frequencies is
inefficient since most of the entries will be zero (think of the case with a few hun-
dred thousand words and images with typically a thousand features). One way
to overcome this inefficiency is to use dictionaries as sparse array representa-
tions. Replace the arrays with a sparse class of your own and add the necessary
methods. Alternatively, try to use the scipy.sparse module.

7. As you try to increase the size of the vocabulary the clustering time will take too
long and the projection of features to words also becomes slower. Implement a
hierarchical vocabulary using hierarchical k-mean clustering and see how this
improves scaling. See the paper [23] for details and inspiration.
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Chapter 8

Classifying Image Content

This chapter introduces algorithms for classifying images and image content. We look
at some simple but effective methods as well as state of the art classifiers and apply
them to two-class and multi-class problems. We show examples with applications in
gesture recognition and object recognition.

8.1 K-Nearest Neighbors

One of the simplest and most used methods for classification is the k-nearest neigh-
bor classifier (kNN ). The algorithm simply compares an object (for example a feature
vector) to be classified with all objects in a training set with known class labels and
lets the k nearest vote for which class to assign. This method often performs well
but has a number of drawbacks. Same as with the k-means clustering algorithm, the
number k needs to be chosen and the value will affect performance. Furthermore, the
method requires the entire training set to be stored and if this set is large it will be
slow to search. For large training sets some form of binning is usually used to reduce
the number of comparisons needed1. On the positive side, there are no restrictions on
what distance measure to use, practically anything you can think of will work (which
is not the same as saying that it will perform well). The algorithm is also trivially
parallelizable.

Implementing kNN in a basic form is pretty straightforward. Given a set of training
examples and a list of associated labels, the code below does the job. The training
examples and labels can be rows in an array or just in a list. They can be numbers,
strings, whatever you like. Add this class to a file called knn.py.

class KnnClassifier(object):

1Another option is to only keep a selected subset of the training set. This can however impact accuracy.
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def __init__(self,labels,samples):
""" Initialize classifier with training data. """

self.labels = labels
self.samples = samples

def classify(self,point,k=3):
""" Classify a point against k nearest
in the training data, return label. """

# compute distance to all training points
dist = array([L2dist(point,s) for s in self.samples])

# sort them
ndx = dist.argsort()

# use dictionary to store the k nearest
votes = {}
for i in range(k):
label = self.labels[ndx[i]]
votes.setdefault(label,0)
votes[label] += 1

return max(votes)

def L2dist(p1,p2):
return sqrt( sum( (p1-p2)**2) )

It is easiest to define a class and initialize with the training data. That way we don’t
have to store and pass the training data as arguments every time we want to classify
something. Using a dictionary for storing the k nearest labels makes it possible to
have labels as text strings or numbers. In this example we used the Euclidean (L2)
distance measure, if you have other measures, just add them as functions.

A simple 2D example

Let’s first create some simple 2D example data sets to illustrate and visualize how this
classifier works. The following script will create two different 2D point sets, each with
two classes, and save the data using Pickle.

from numpy.random import randn
import pickle

# create sample data of 2D points
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n = 200

# two normal distributions
class_1 = 0.6 * randn(n,2)
class_2 = 1.2 * randn(n,2) + array([5,1])
labels = hstack((ones(n),-ones(n)))

# save with Pickle
with open(’points_normal.pkl’, ’w’) as f:
pickle.dump(class_1,f)
pickle.dump(class_2,f)
pickle.dump(labels,f)

# normal distribution and ring around it
class_1 = 0.6 * randn(n,2)
r = 0.8 * randn(n,1) + 5
angle = 2*pi * randn(n,1)
class_2 = hstack((r*cos(angle),r*sin(angle)))
labels = hstack((ones(n),-ones(n)))

# save with Pickle
with open(’points_ring.pkl’, ’w’) as f:
pickle.dump(class_1,f)
pickle.dump(class_2,f)
pickle.dump(labels,f)

Run the script twice with different filenames, for example points_normal_test.pkl and
points_ring_test.pkl the second time. You will now have four files with 2D data sets,
two files for each of the distributions. We can use one for training and the other for
testing.

Let’s see how to do that with the kNN classifier. Create a script with the following
commands.

import pickle
import knn
import imtools

# load 2D points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

model = knn.KnnClassifier(labels,vstack((class_1,class_2)))
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This will create a kNN classifier model using the data in the Pickle file. Now add the
following:

# load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

# test on the first point
print model.classify(class_1[0])

This loads the other data set (the test set) and prints the estimated class label of the
first point to your console.

To visualize the classification of all the test points and show how well the classifier
separates the two classes we can add these lines.

# define function for plotting
def classify(x,y,model=model):
return array([model.classify([xx,yy]) for (xx,yy) in zip(x,y)])

# plot the classification boundary
imtools.plot_2D_boundary([-6,6,-6,6],[class_1,class_2],classify,[1,-1])
show()

Here we created a small helper function that takes arrays of 2D coordinates x and y
and the classifier and returns an array of estimated class labels. Now we can pass this
function as an argument to the actual plotting function. Add the following function to
your file imtools.

def plot_2D_boundary(plot_range,points,decisionfcn,labels,values=[0]):
""" Plot_range is (xmin,xmax,ymin,ymax), points is a list
of class points, decisionfcn is a funtion to evaluate,
labels is a list of labels that decisionfcn returns for each class,
values is a list of decision contours to show. """

clist = [’b’,’r’,’g’,’k’,’m’,’y’] # colors for the classes

# evaluate on a grid and plot contour of decision function
x = arange(plot_range[0],plot_range[1],.1)
y = arange(plot_range[2],plot_range[3],.1)
xx,yy = meshgrid(x,y)
xxx,yyy = xx.flatten(),yy.flatten() # lists of x,y in grid
zz = array(decisionfcn(xxx,yyy))
zz = zz.reshape(xx.shape)
# plot contour(s) at values
contour(xx,yy,zz,values)

212 8.1. K-Nearest Neighbors



Figure 8.1: Classifying 2D data using a k nearest neighbor classifier. For each example
the color shows the class label (blue and red). Correctly classified points are shown
with stars and misclassified points with circles. The curve is the classifier decision
boundary.

# for each class, plot the points with ’*’ for correct, ’o’ for incorrect
for i in range(len(points)):
d = decisionfcn(points[i][:,0],points[i][:,1])
correct_ndx = labels[i]==d
incorrect_ndx = labels[i]!=d
plot(points[i][correct_ndx,0],points[i][correct_ndx,1],’*’,color=clist[i])
plot(points[i][incorrect_ndx,0],points[i][incorrect_ndx,1],’o’,color=clist[i])

axis(’equal’)

This function takes a decision function (the classifier) and evaluates it on a grid using
meshgrid(). The contours of the decision function can be plotted to show where the
boundaries are. The default is the zero contour. The resulting plots look like the ones
in Figure 8.1. As you can see the kNN decision boundary can adapt to the distribution
of the classes without any explicit modeling.

Dense SIFT as image feature

Let’s look at classifying some images. To do so we need a feature vector for the image.
We saw feature vectors with average RGB and PCA coefficients as examples in the
clustering chapter. Here we will introduce another representation, the dense SIFT
feature vector.

A dense SIFT representation is created by applying the descriptor part of SIFT
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to a regular grid across the whole image2. We can use the same executables as in
Section 2.2 and get dense SIFT features by adding some extra parameters. Create a
file dsift.py as a place-holder for the dense SIFT computation and add the following
function:

import sift

def process_image_dsift(imagename,resultname,size=20,steps=10,
force_orientation=False,resize=None):

""" Process an image with densely sampled SIFT descriptors
and save the results in a file. Optional input: size of features,
steps between locations, forcing computation of descriptor orientation
(False means all are oriented upwards), tuple for resizing the image."""

im = Image.open(imagename).convert(’L’)
if resize!=None:
im = im.resize(resize)

m,n = im.size

if imagename[-3:] != ’pgm’:
# create a pgm file
im.save(’tmp.pgm’)
imagename = ’tmp.pgm’

# create frames and save to temporary file
scale = size/3.0
x,y = meshgrid(range(steps,m,steps),range(steps,n,steps))
xx,yy = x.flatten(),y.flatten()
frame = array([xx,yy,scale*ones(xx.shape[0]),zeros(xx.shape[0])])
savetxt(’tmp.frame’,frame.T,fmt=’%03.3f’)

if force_orientation:
cmmd = str("sift "+imagename+" --output="+resultname+

" --read-frames=tmp.frame --orientations")
else:
cmmd = str("sift "+imagename+" --output="+resultname+

" --read-frames=tmp.frame")
os.system(cmmd)
print ’processed’, imagename, ’to’, resultname

Compare this to the function process_image() in Section 2.2. We use the function
savetxt() to store the frame array in a text file for command line processing. The
last parameter of this function can be used to resize the image before extracting the
descriptors. For example, passing imsize=(100,100) will resize to square images 100⇥
100 pixels. Lastly, if force_orientation is true the descriptors will be normalized based

2Another common name is Histogram of Oriented Gradients (HOG ).
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Figure 8.2: An example of applying dense SIFT descriptors over an image.

on the local dominant gradient direction, if it is false all descriptors are simply oriented
upwards.

Use it like this to compute the dense SIFT descriptors and visualize the locations:

import dsift,sift

dsift.process_image_dsift(’empire.jpg’,’empire.sift’,90,40,True)
l,d = sift.read_features_from_file(’empire.sift’)

im = array(Image.open(’empire.jpg’))
sift.plot_features(im,l,True)
show()

This will compute SIFT features densely across the image with the local gradient ori-
entation used to orient the descriptors (by setting force_orientation to true). The
locations are shown in Figure 8.2.

Classifying images - hand gesture recognition

In this application, we will look at applying the dense SIFT descriptor to images of
hand gestures to build a simple hand gesture recognition system. We will use some
images from the Static Hand Posture Database (available at http://www.idiap.ch/
resource/gestures/) to illustrate. Download the smaller test set ("test set 16.3Mb"
on the webpage) and take all the images in the "uniform" folders and split each class
evenly into two folders called "train" and "test".

Process the images with the dense SIFT function above to get feature vectors for
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"A" "B" "C"

"Five" "Point" "V"

Figure 8.3: Dense SIFT descriptors on sample images from the six categories of hand
gesture images. (images from the Static Hand Posture Database)

all images. Again, assuming the filenames are in a list imlist, this is done like this.

import dsift

# process images at fixed size (50,50)
for filename in imlist:
featfile = filename[:-3]+’dsift’
dsift.process_image_dsift(filename,featfile,10,5,resize=(50,50))

This creates feature files for each image with the extension ".dsift". Note the resizing
of the images to some common fixed size. This is very important, otherwise your
images will have varying number of descriptors and therefore varying length of the
feature vectors. This will cause errors when comparing them later. Plotting the images
with the descriptors looks like in Figure 8.3.

Define a helper function for reading the dense SIFT descriptor files as this

import os, sift

def read_gesture_features_labels(path):
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# create list of all files ending in .dsift
featlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.dsift’)]

# read the features
features = []
for featfile in featlist:
l,d = sift.read_features_from_file(featfile)
features.append(d.flatten())

features = array(features)

# create labels
labels = [featfile.split(’/’)[-1][0] for featfile in featlist]

return features,array(labels)

Then we can read the features and labels for our test and training sets using the
following commands.

features,labels = read_gesture_features_labels(’train/’)

test_features,test_labels = read_gesture_features_labels(’test/’)

classnames = unique(labels)

Here we used the first letter in the filename to create class labels. Using the NumPy
function unique() we get a sorted list of unique class names.

Now we can try our nearest neighbor code on this data:

# test kNN
k = 1
knn_classifier = knn.KnnClassifier(labels,features)
res = array([knn_classifier.classify(test_features[i],k) for i in

range(len(test_labels))])

# accuracy
acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

First the classifier object is created with the training data and labels as input. Then
we iterate over the test set and classify each image using the classify() method. The
accuracy is computed by multiplying the boolean array with one and summing. In this
case the true values are 1 so it is a simple thing to count the correct classifications.
This gives a printout like this

Accuracy: 0.811518324607

which means that 81% were correctly classified in this case. The value will vary with
the choice of k and the parameters for the dense SIFT image descriptor.
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The accuracy above shows how many correct classifications there are for a given
test set but does not tell us which signs are hard to classify or which mistakes are
typically made. A confusion matrix is a matrix that shows how many samples of each
class is classified as each of the classes. It shows how the errors are distributed and
what classes are often "confused" for each other.

The following function will print the labels and the corresponding confusion matrix.

def print_confusion(res,labels,classnames):

n = len(classnames)

# confusion matrix
class_ind = dict([(classnames[i],i) for i in range(n)])

confuse = zeros((n,n))
for i in range(len(test_labels)):
confuse[class_ind[res[i]],class_ind[test_labels[i]]] += 1

print ’Confusion matrix for’
print classnames
print confuse

The printout of running

print_confusion(res,test_labels,classnames)

looks like this:

Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[ 26. 0. 2. 0. 1. 1.]
[ 0. 26. 0. 1. 1. 1.]
[ 0. 0. 25. 0. 0. 1.]
[ 0. 3. 0. 37. 0. 0.]
[ 0. 1. 2. 0. 17. 1.]
[ 3. 1. 3. 0. 14. 24.]]

This shows that, for example, in this case "P" ("Point") is often misclassified as "V".

8.2 Bayes Classifier

Another simple but powerful classifier is the Bayes classifier3 (or naive Bayes classi-
fier). A Bayes classifier is a probabilistic classifier based on applying Bayes’ theorem
for conditional probabilities. The assumption is that all features are independent and
unrelated to each other (this is the "naive" part). Bayes classifiers can be trained very

3After Thomas Bayes, an 18th century English mathematician and minister.
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efficiently since the model chosen is applied to each feature independently. Despite
their simplistic assumptions, Bayes classifiers have been very successful in practical
applications, in particular for email spam filtering. Another benefit of this classifier is
that once the model is learned, no training data needs to be stored. Only the model
parameters are needed.

The classifier is constructed by multiplying the individual conditional probabilities
from each feature to get the total probability of a class. Then the class with highest
probability is selected.

Let’s look at a basic implementation of a Bayes classifier using Gaussian probability
distribution models. This means that each feature is individually modeled using the
feature mean and variance, computed from a set of training data. Add the following
classifier class to a file called bayes.py.

class BayesClassifier(object):

def __init__(self):
""" Initialize classifier with training data. """

self.labels = [] # class labels
self.mean = [] # class mean
self.var = [] # class variances
self.n = 0 # nbr of classes

def train(self,data,labels=None):
""" Train on data (list of arrays n*dim).
Labels are optional, default is 0...n-1. """

if labels==None:
labels = range(len(data))

self.labels = labels
self.n = len(labels)

for c in data:
self.mean.append(mean(c,axis=0))
self.var.append(var(c,axis=0))

def classify(self,points):
""" Classify the points by computing probabilities
for each class and return most probable label. """

# compute probabilities for each class
est_prob = array([gauss(m,v,points) for m,v in zip(self.mean,self.var)])

# get index of highest probability, this gives class label
ndx = est_prob.argmax(axis=0)
est_labels = array([self.labels[n] for n in ndx])
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return est_labels, est_prob

The model has two variables per class, the class mean and covariance. The train()

method takes a lists of feature arrays (one per class) and computes mean and covari-
ance for each. The method classify() computes the class probabilities for an array of
data points and selects the class with highest probability. The estimated class labels
and probabilities are returned. The helper function for the actual Gaussian function is
also needed:

def gauss(m,v,x):
""" Evaluate Gaussian in d-dimensions with independent
mean m and variance v at the points in (the rows of) x. """

if len(x.shape)==1:
n,d = 1,x.shape[0]

else:
n,d = x.shape

# covariance matrix, subtract mean
S = diag(1/v)
x = x-m
# product of probabilities
y = exp(-0.5*diag(dot(x,dot(S,x.T))))

# normalize and return
return y * (2*pi)**(-d/2.0) / ( sqrt(prod(v)) + 1e-6)

This function computes the product of the individual Gaussian distributions and re-
turns the probability for a given pair of model parametersm,v. For more details on this
function see for example http://en.wikipedia.org/wiki/Multivariate_normal_distribution.

Try this Bayes classifier on the 2D data from the previous section. This script will
load the exact same point sets and train a classifier.

import pickle
import bayes
import imtools

# load 2D example points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

# train Bayes classifier
bc = bayes.BayesClassifier()
bc.train([class_1,class_2],[1,-1])
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Figure 8.4: Classifying 2D data using a Bayes classifier. For each example the color
shows the class label (blue and red). Correctly classified points are shown with stars
and misclassified points with circles. The curve is the classifier decision boundary.

Now, we can load the other one and test the classifier.

# load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

# test on some points
print bc.classify(class_1[:10])[0]

# plot points and decision boundary
def classify(x,y,bc=bc):
points = vstack((x,y))
return bc.classify(points.T)[0]

imtools.plot_2D_boundary([-6,6,-6,6],[class_1,class_2],classify,[1,-1])
show()

This prints the classification result for the first 10 points to the console. It might look
like this:

[1 1 1 1 1 1 1 1 1 1]

Again, we used a helper function classify() to pass to the plotting function for visu-
alizing the classification results by evaluating the function on a grid. The plots for the
two sets look like Figure 8.4. The decision boundary in this case will be the ellipse-like
level curves of a 2D Gaussian function.
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Using PCA to reduce dimensions

Now, let’s try the gesture recognition problem. Since the feature vectors are very
large for the dense SIFT descriptor (more than 10000 for the parameter choices in the
example above) it is a good idea to do dimensionality reduction before fitting models
to the data. Principal Component Analysis, PCA, (see Section 1.3) usually does a good
job. Try the following script that uses PCA from the file pca.py (page 28):

import pca

V,S,m = pca.pca(features)

# keep most important dimensions
V = V[:50]
features = array([dot(V,f-m) for f in features])
test_features = array([dot(V,f-m) for f in test_features])

Here features and test_features are the same arrays that we loaded for the kNN exam-
ple. In this case we apply PCA on the training data and keep the 50 dimensions with
most variance. This is done by subtracting the mean m (computed on the training
data) and multiplying with the basis vectors V . The same transformation is applied to
the test data.

Train and test the Bayes classifier like this:

# test Bayes
bc = bayes.BayesClassifier()
blist = [features[where(labels==c)[0]] for c in classnames]

bc.train(blist,classnames)
res = bc.classify(test_features)[0]

Since BayesClassifier takes a list of arrays (one array for each class) we transform
the data before passing it to the train()method. Since we don’t need the probabilities
for now we chose to return only the labels of the classification.

Checking the accuracy

acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

gives something like this

Accuracy: 0.717277486911

and checking the confusion matrix

print_confusion(res,test_labels,classnames)

gives a print out like this:
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Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[ 20. 0. 0. 4. 0. 0.]
[ 0. 26. 1. 7. 2. 2.]
[ 1. 0. 27. 5. 1. 0.]
[ 0. 2. 0. 17. 0. 0.]
[ 0. 1. 0. 4. 22. 1.]
[ 8. 2. 4. 1. 8. 25.]]

Not as good as the kNN classifier but with the Bayes classifier we don’t need to keep
any training data, just the model parameters for each of the classes. The result will
vary greatly with the choice of dimensions after PCA.

8.3 Support Vector Machines

Support Vector Machines (SVM ) are a powerful type of classifiers that often give state-
of-the-art results for many classification problems. In its simplest form an SVM finds
a linear separating hyperplane (a plane in higher dimensional spaces) with the best
possible separation between two classes. The decision function for a feature vector x
is

f(x) = w · x� b ,

where w is the hyperplane normal and b an offset constant. The zero level of this
function then ideally separates the two classes so that one class has positive values
and the other negative. The parameters w and b are found by solving an optimization
problem on a training set of labelled feature vectors x

i

with labels y
i

2 {�1, 1} so
that the hyperplane has maximal separation between the two classes. The normal is a
linear combination of some of the training feature vectors
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so that the decision function can be written
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· x� b .

Here i runs over a selection of the training vectors, the selected vectors x

i

are called
support vectors since they help define the classification boundary.

One of the strengths of SVM is that by using kernel functions, that is functions
that map the feature vectors to a different (higher) dimensional space, non-linear or
very difficult classification problems can be effectively solved while still keeping some
control over the decision function. Kernel functions replace the inner product of the
classification function, x

i

· x, with a function K(x

i

,x).
Some of the most common kernel functions are:
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• linear, a hyperplane in feature space, the simplest case, K(x

i

,x) = x

i

· x.

• polynomial, features are mapped with polynomials of a defined degree d,K(x

i

,x) =

(�x
i

· x+ r)d, � > 0.

• radial basis functions, exponential functions, usually a very effective choice,
K(x

i

,x) = e(��||xi�x||2), � > 0.

• sigmoid, a smoother alternative to hyperplane, K(x

i

,x) = tanh(�x
i

· x+ r).

The parameters of each kernel are also determined during training.
For multi-class problems, the usual procedure is to train multiple SVMs that each

separates one class from the rest (also known as "one-versus-all" classifiers). For
more details on SVMs see for example the book [9] and the online references at http:
//www.support-vector.net/references.html.

Using LibSVM

We will use one of the best and most commonly used implementation available, Lib-
SVM [7]. LibSVM comes with a nice Python interface (there are also interfaces for
many other programming languages). For installation instructions, see Appendix A.4.

Let’s use LibSVM on the sample 2D point data to see how it works. This script will
load the same points and train a SVM classifier using radial basis functions.

import pickle
from svmutil import *
import imtools

# load 2D example points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

# convert to lists for libsvm
class_1 = map(list,class_1)
class_2 = map(list,class_2)
labels = list(labels)
samples = class_1+class_2 # concatenate the two lists

# create SVM
prob = svm_problem(labels,samples)
param = svm_parameter(’-t 2’)
# train SVM on data
m = svm_train(prob,param)
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# how did the training do?
res = svm_predict(labels,samples,m)

Loading the data set is the same as before but this time we have to convert the arrays
to lists since LibSVM does not support array objects as input. Here we used Python’s
built in map() function that applies the conversion function list() to each element. The
next lines create a SVM problem object and sets some parameters. The svm_train()
call solves the optimization problem for determining the model parameters. The model
can then be used in a predictions. The last call to svm_predict() will classify the
training data with the model m and shows how successful the training was. The print
out looks something like this:

Accuracy = 100% (400/400) (classification)

This means that the classifier completely separates the training data and correctly
classifies all 400 data points.

Note that we added a string of parameter choices in the call to train the classifier.
These parameters are used to control the kernel type, degree and other choices for
the classifier. Most of them are outside the scope of this book but the important ones
to know are "t" and "k". The parameter "t" determines the type of kernel used. The
options are:

"-t" kernel
0 linear
1 polynomial
2 radial basis function (default)
3 sigmoid

The parameter "k" determines the degree of the polynomial (default is 3).
Now, load the other point set and test the classifier:

# load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

# convert to lists for libsvm
class_1 = map(list,class_1)
class_2 = map(list,class_2)

# define function for plotting
def predict(x,y,model=m):
return array(svm_predict([0]*len(x),zip(x,y),model)[0])
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Figure 8.5: Classifying 2D data using a Support Vector Machine classifier. For each
example the color shows the class label (blue and red). Correctly classified points
are shown with stars and misclassified points with circles. The curve is the classifier
decision boundary.

# plot the classification boundary
imtools.plot_2D_boundary([-6,6,-6,6],[array(class_1),array(class_2)],predict,[-1,1])
show()

Again we have to convert the data to lists for LibSVM. As before, we also define a
helper function predict() for plotting the classification boundary. Note the use of a list
of zeros [0]*len(x) as a replacement for the label list if true labels are unavailable.
You can use any list as long as it has the correct length. The 2D plots for the two
different point data sets are shown in Figure 8.5.

Hand gesture recognition again

Using LibSVM on our multi-class hand gesture recognition problem is fairly straight
forward. Multiple classes are automatically handled, we only need to format the data
so that the input and output matches the requirements of LibSVM.

With training and testing data features and test_features as in the previous exam-
ples, the following will load the data and train a linear SVM classifier.

features = map(list,features)
test_features = map(list,test_features)

# create conversion function for the labels
transl = {}
for i,c in enumerate(classnames):
transl[c],transl[i] = i,c
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# create SVM
prob = svm_problem(convert_labels(labels,transl),features)
param = svm_parameter(’-t 0’)

# train SVM on data
m = svm_train(prob,param)

# how did the training do?
res = svm_predict(convert_labels(labels,transl),features,m)

# test the SVM
res = svm_predict(convert_labels(test_labels,transl),test_features,m)[0]
res = convert_labels(res,transl)

Same as before, we convert the data to lists using a map() call. Then the labels need
to be converted since LibSVM does not handle string labels. The dictionary transl will
contain a conversion between string and integer labels. Try to print it to your console
to see what happens. The parameter "-t 0" makes it a linear classifier and the decision
boundary will be a hyperplane in the original feature space of some 10000 dimensions.

Now compare the labels, just like before

acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

print_confusion(res,test_labels,classnames)

The output using this linear kernel should look like this:

Accuracy: 0.916230366492
Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[ 26. 0. 1. 0. 2. 0.]
[ 0. 28. 0. 0. 1. 0.]
[ 0. 0. 29. 0. 0. 0.]
[ 0. 2. 0. 38. 0. 0.]
[ 0. 1. 0. 0. 27. 1.]
[ 3. 0. 2. 0. 3. 27.]]

Now if we apply PCA to reduce the dimensions to 50, as we did in Section 8.2, this
changes the accuracy to

Accuracy: 0.890052356021

Not bad seeing that the feature vectors are about 200 times smaller than the original
data (and the space to store the support vectors then also 200 times less).
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Figure 8.6: Sample training images for the 10 classes of the sudoku OCR classifier.

8.4 Optical Character Recognition

As an example of a multi-class problem, let’s look at interpreting images of sudokus.
Optical character recognition (OCR ) is the process of interpreting images of hand- or
machine written text. A common example is text extraction from scanned documents
such as zip codes on letters or book pages as the library volumes in Google Books
(http://books.google.com/). Here we will look at a simple OCR problem of recog-
nizing numbers in images of printed sudokus. Sudokus are a form of logic puzzles
where the goal is to fill a 9⇥ 9 grid with the numbers 1 . . . 9 so that each column, each
row, and each 3 ⇥ 3 sub-grid contains all nine digits4. In this example we are just in-
terested in reading the puzzle and interpreting it correctly, actually solving the puzzle
we leave to you.

Training a classifier

For this classification problem we have ten classes, the numbers 1 . . . 9 and the empty
cells. Let’s give the empty cells the label 0 so that our class labels are 0 . . . 9. To
train this ten-class classifier, we will use a dataset of images of cropped sudoku cells5.
In the file sudoku_images.zip are two folders, "ocr_data" and "sudokus". The latter
contains images of sudokus under varying conditions. We will save those for later. For
now, take a look at the folder "ocr_data". It contains two sub-folders with images one
for training and one for testing. The images are named with the first character equal
to the class (0 . . . 9). Figure 8.6 shows some samples from the training set. The images
are grayscale and roughly 80⇥ 80 pixels (with some variation).

4See http://en.wikipedia.org/wiki/Sudoku for more details if you are unfamiliar with the concept.
5Images courtesy of Martin Byröd [4], http://www.maths.lth.se/matematiklth/personal/byrod/,

collected and cropped from photos of actual sudokus.
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Selecting features

We need to decide on what feature vector to use for representing each cell image.
There are many good choices, here we’ll try something simple but still effective.
The following function takes an image and returns a feature vector of the flattened
grayscale values.

def compute_feature(im):
""" Returns a feature vector for an
ocr image patch. """

# resize and remove border
norm_im = imresize(im,(30,30))
norm_im = norm_im[3:-3,3:-3]

return norm_im.flatten()

This function uses the resizing function imresize() from imtools to reduce the length
of the feature vector. We also crop away about 10% border pixels since the crops often
get parts of the grid lines on the edges as you can see in Figure 8.6.

Now we can read the training data using a function like this.

def load_ocr_data(path):
""" Return labels and ocr features for all images
in path. """

# create list of all files ending in .jpg
imlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]
# create labels
labels = [int(imfile.split(’/’)[-1][0]) for imfile in imlist]

# create features from the images
features = []
for imname in imlist:
im = array(Image.open(imname).convert(’L’))
features.append(compute_feature(im))

return array(features),labels

The labels are extracted as the first character of the filename of each of the JPEG files
and stored in the labels list as integers. The feature vectors are computed using the
function above and stored in an array.

Multi-class SVM

With the training data in place, we are ready to learn a classifier. Here we’ll use a
multi-class support vector machine. The code looks just like in the previous section.
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from svmutil import *

# TRAINING DATA
features,labels = load_ocr_data(’training/’)

# TESTING DATA
test_features,test_labels = load_ocr_data(’testing/’)

# train a linear SVM classifier
features = map(list,features)
test_features = map(list,test_features)

prob = svm_problem(labels,features)
param = svm_parameter(’-t 0’)

m = svm_train(prob,param)

# how did the training do?
res = svm_predict(labels,features,m)

# how does it perform on the test set?
res = svm_predict(test_labels,test_features,m)

This trains a linear SVM classifier and tests the performance on the unseen images
in the test set. You should get the following printout from the last two svm_predict()
calls.

Accuracy = 100% (1409/1409) (classification)
Accuracy = 99.2979% (990/997) (classification)

Great news. The 1409 images of the training set are perfectly separated in the ten
classes and the recognition performance on the test set is around 99%. We can now
use this classifier on crops from new sudoku images.

Extracting cells and recognizing characters

With a classifier that recognizes cell contents, the next step is to automatically find
the cells. Once we solve that, we can crop them and pass the crops to the classifier.
Let’s for now assume that the image of the sudoku is aligned so that the horizontal
and vertical lines of the grid are parallel to the image sides (like the left image of
Figure 8.8). Under these conditions, we can threshold the image and sum up the pixel
values horizontally and vertically. Since the edges will have values of one and the
other parts values of zeros, this should give strong response at the edges and tells us
where to crop.
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The following function takes a grayscale image and a direction and returns the ten
edges for that direction.

from scipy.ndimage import measurements

def find_sudoku_edges(im,axis=0):
""" Finds the cell edges for an aligned sudoku image. """

# threshold and sum rows and columns
trim = 1*(im<128)
s = trim.sum(axis=axis)

# find center of strongest lines
s_labels,s_nbr = measurements.label(s>(0.5*max(s)))
m = measurements.center_of_mass(s,s_labels,range(1,s_nbr+1))
x = [int(x[0]) for x in m]

# if only the strong lines are detected add lines in between
if len(x)==4:
dx = diff(x)
x = [x[0],x[0]+dx[0]/3,x[0]+2*dx[0]/3,

x[1],x[1]+dx[1]/3,x[1]+2*dx[1]/3,
x[2],x[2]+dx[2]/3,x[2]+2*dx[2]/3,x[3]]

if len(x)==10:
return x

else:
raise RuntimeError(’Edges not detected.’)

First the image is thresholded at the midpoint to give ones on the dark areas. Then
these are added up in the specified direction (axis=0 or 1). The scipy.ndimage pack-
age contains a module, measurements, that is very useful for counting and measur-
ing regions in binary or label arrays. First labels() finds the connected compo-
nents of a binary array computed by thresholding the sum at the midpoint. Then
the center_of_mass() function computes the center point of each independent compo-
nent. Depending on the graphic design of the sudoku (all lines equally strong or the
sub-grid lines stronger than the other) you might get four or ten points. In the case of
four, the intermediary lines are interpolated at even intervals. If the end result does
not have ten lines, an exception is raised.

In the "sudokus" folder are a collection of sudoku images of varying difficulty. There
is also a file for each image containing the true values of the sudoku so that we can
check our results. Some of the images are aligned with the image sides. Picking one
of them, you can check the performance of the cropping and classification like this.

imname = ’sudokus/sudoku18.jpg’
vername = ’sudokus/sudoku18.sud’
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im = array(Image.open(imname).convert(’L’))

# find the cell edges
x = find_sudoku_edges(im,axis=0)
y = find_sudoku_edges(im,axis=1)

# crop cells and classify
crops = []
for col in range(9):
for row in range(9):
crop = im[y[col]:y[col+1],x[row]:x[row+1]]
crops.append(compute_feature(crop))

res = svm_predict(loadtxt(vername),map(list,crops),m)[0]
res_im = array(res).reshape(9,9)

print ’Result:’
print res_im

The edges are found and then crops are extracted for each cell. The crops are passed
to the same feature extraction function used for the training and stored in an array.
These feature vectors are classified using svm_predict() with the true labels read us-
ing loadtxt(). The result in your console should be:

Accuracy = 100% (81/81) (classification)
Result:
[[ 0. 0. 0. 0. 1. 7. 0. 5. 0.]
[ 9. 0. 3. 0. 0. 5. 2. 0. 7.]
[ 0. 0. 0. 0. 0. 0. 4. 0. 0.]
[ 0. 1. 6. 0. 0. 4. 0. 0. 2.]
[ 0. 0. 0. 8. 0. 1. 0. 0. 0.]
[ 8. 0. 0. 5. 0. 0. 6. 4. 0.]
[ 0. 0. 9. 0. 0. 0. 0. 0. 0.]
[ 7. 0. 2. 1. 0. 0. 8. 0. 9.]
[ 0. 5. 0. 2. 3. 0. 0. 0. 0.]]

Now, this was one of the easier images. Try some of the others and see what the errors
look like and where the classifier makes mistakes.

If you plot the crops using a 9⇥ 9 subplot, they should look like the right image of
Figure 8.7.

Rectifying images

If you are happy with the performance of your classifier, the next challenge is to apply
it to non-aligned images. We will end our sudoku example with a simple way of rectify-
ing an image given that the four outer corner points of the grid have been detected or
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Figure 8.7: An example of detecting and cropping the fields of a sudoku grid. (left)
image of a sudoku grid. (right) the 9 ⇥ 9 cropped images of the individual cells to be
sent to the OCR classifier.

marked manually. The left image in Figure 8.8 shows an example of a sudoku image
with strong perspective effects.

A homography can map the grid to align the edges as in the examples above, all we
need to do is estimate the transform. The example below shows the case of manually
marking the four corner points and then warping the image to a square target image
of 1000⇥ 1000 pixels.

from scipy import ndimage
import homography

imname = ’sudoku8.jpg’
im = array(Image.open(imname).convert(’L’))

# mark corners
figure()
imshow(im)
gray()
x = ginput(4)

# top left, top right, bottom right, bottom left
fp = array([array([p[1],p[0],1]) for p in x]).T
tp = array([[0,0,1],[0,1000,1],[1000,1000,1],[1000,0,1]]).T

# estimate the homography
H = homography.H_from_points(tp,fp)
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Figure 8.8: An example of rectifying an image using a full perspective transform. (left)
the original image with the four corners of the sudoku marked. (right) rectified image
warped to a square image of 1000⇥ 1000 pixels.

# helper function for geometric_transform
def warpfcn(x):
x = array([x[0],x[1],1])
xt = dot(H,x)
xt = xt/xt[2]
return xt[0],xt[1]

# warp image with full perspective transform
im_g = ndimage.geometric_transform(im,warpfcn,(1000,1000))

In most of these sample images an affine transform, as we used in Chapter 3, is not
enough. Here we instead used the more general transform function geometric_transform()
from scipy.ndimage. This function takes a 2D to 2D mapping instead of a transform
matrix so we need to use a helper function (using a piece-wise affine warp on trian-
gles will introduce artifacts in this case). The warped image is shown to the right in
Figure 8.8.

This concludes our sudoku OCR example. There are many improvements to be
made and alternatives to investigate. Some are mentioned in the following exercises,
the rest we leave to you.
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Exercises

1. The performance of the kNN classifier depends on the value of k. Try to vary this
number and see how the accuracy changes. Plot the decision boundaries of the
2D point sets to see how they change.

2. The hand gesture data set in Figure 8.3 also contains images with more complex
background (in the "complex/" folders). Try to train and test a classifier on these
images. What is the difference in performance? Can you suggest improvements
to the image descriptor?

3. Try to vary the number of dimensions after PCA projection of the gesture recog-
nition features for the Bayes classifier. What is a good choice? Plot the singular
values S, they should give a typical "knee" shaped curve as the one below. A good
compromise between ability to generate the variability of the training data and
keeping the number of dimensions low is usually found at a number before the
curve flattens out.

4. Modify the Bayes classifier to use a different probability model than Gaussian
distributions. For example, try using the frequency counts of each feature in
the training set. Compare the results to using a Gaussian distribution for some
different datasets.

5. Experiment with using non-linear SVMs for the gesture recognition problem. Try
polynomial kernels and increase the degree (using the "-d" parameter) incremen-
tally. What happens to the classification performance on the training set and the
test set. With a non-linear classifier there is a risk of training and optimizing
it for a specific set so that performance is close to perfect on the training set
but the classifier has poor performance on other test sets. This phenomenon of
breaking the generalization capabilities of a classifier is called overfitting and
should be avoided.
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6. Try some more advanced feature vectors for the sudoku character recognition
problem. If you need inspiration, look at [4].

7. Implement a method for automatically aligning the sudoku grid. Try for exam-
ple feature detection with RANSAC, line detection or detecting the cells using
morphological and measurement operations from scipy.ndimage (http://docs.
scipy.org/doc/scipy/reference/ndimage.html). Bonus task, solve the rota-
tion ambiguity of finding the "up" direction. For example, you could try rotating
the rectified grid and let the OCR classifier’s accuracy vote for the best orienta-
tion.

8. For a more challenging classification problem than the sudoku digits, take a look
at the MNIST database of handwritten digits http://yann.lecun.com/exdb/
mnist/. Try to extract some features and apply SVM to that set. Check where
your performance ends up on the ranking of best methods (some are insanely
good).

9. If you want to dive deeper in classifiers and machine learning algorithms, take a
look at the scikit.learn package (http://scikit-learn.org/) and try some of
the algorithms on the data in this chapter.
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Chapter 9

Image Segmentation

Image segmentation is the process of partitioning an image into meaningful regions.
Regions can be foreground versus background or individual objects in the image. The
regions are constructed using some feature such as color, edges or neighbor similarity.
In this chapter we will look at some different techniques for segmentation.

9.1 Graph Cuts

A graph is a set of nodes (sometimes called vertices) with edges between them. See
Figure 9.1 for an example1. The edges can be directed (as illustrated with arrows in
Figure 9.1) or undirected and may have weights associated with them.

A graph cut is the partitioning of a directed graph into two disjoint sets. Graph cuts
can be used for solving many different computer vision problems like stereo depth
reconstruction, image stitching and image segmentation. By creating a graph from
image pixels and their neighbors and introducing an energy or a "cost" it is possible
to use a graph cut process to segment an image in two or more regions. The basic
idea is that similar pixels that are also close to each other should belong to the same
partition.

The cost of a graph cut C (where C is a set of edges) is defined as the sum of the
edge weights of the cuts

E
cut

=

X

(i,j)2C

w
ij

, (9.1)

where w
ij

is the weight of the edge (i, j) from node i to node j in the graph and the
sum is taken over all edges in the cut C.

1You also saw graphs in action in Section 2.3, this time we are going to use them to partition images.

237



The idea behind graph cut segmentation is to partition a graph representation of
the image such that the cut cost E

cut

is minimized. In this graph representation, two
additional nodes, a source and a sink node, are added to the graph and only cuts that
separate the source and sink are considered.

Finding the minimum cut (or min cut) is equivalent to finding the maximum flow
(or max flow) between the source and the sink (see [2] for details). There are efficient
algorithms for solving these max flow / min cut problems.

For our graph cut examples we will use the python� graph package. This pack-
age contains many useful graph algorithms. The website with downloads and docu-
mentation is http://code.google.com/p/python-graph/. We will need the function
maximum_flow() which computes the max flow / min cut using the Edmonds-Karp al-
gorithm http://en.wikipedia.org/wiki/Edmonds-Karp_algorithm. The good thing
about using a package written fully in Python is ease of installation and compatibility,
the downside is speed. Performance is adequate for our purposes but for anything but
small images, a faster implementation is needed.

Here’s a simple example of using python� graph to compute the max flow / min
cut of a small graph2.

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

gr = digraph()
gr.add_nodes([0,1,2,3])

gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)

flows,cuts = maximum_flow(gr,0,3)
print ’flow is:’, flows
print ’cut is:’, cuts

First a directed graph is created with four nodes with index 0 . . . 3. Then the edges
are added using add_edge() with an edge weight specified. This will be used as the
maximum flow capacity of the edge. The maximum flow is computed with node 0 as
source and node 3 as sink. The flow and the cuts are printed and should look like this:

flow is: {(0, 1): 4, (1, 2): 0, (1, 3): 4, (2, 3): 3, (0, 2): 3}
cut is: {0: 0, 1: 1, 2: 1, 3: 1}

2Same graph as the example at http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem.
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Figure 9.1: A simple directed graph created using python� graph.

These two python dictionaries contain the flow through each edge and the label for
each node, 0 for the part of the graph containing the source, 1 for the nodes connected
to the sink. You can verify manually that the cut is indeed the minimum. The graph is
shown in Figure 9.1.

Graphs from images

Given a neighborhood structure, we can define a graph using the image pixels as
nodes. Here we will focus on the simplest case of 4-neighborhood of pixels and two
image regions (which we can call foreground and background). A 4-neighborhood is
where a pixel is connected to the pixels directly above, below, left, and right3.

In addition to the pixel nodes, we will also need two special nodes a "source" node
and a "sink" node, representing the foreground and background respectively. We will
use a simple model where all pixels are connected to the source and the sink.

Here’s how to build the graph:

• Every pixel node has an incoming edge from the source node.

• Every pixel node has an outgoing edge to the sink node.

3Another common option is 8-neighborhood where the diagonal pixels are also connected
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• Every pixel node has one incoming and one outgoing edge to each of its neigh-
bors.

To determine the weights on these edges, you need a segmentation model that de-
termines the edge weights (representing the maximum flow allowed for that edge)
between pixels and between pixels and the source and sink. As before we call the
edge weight between pixel i and pixel j, w

ij

. Let’s call the weight from the source to
pixel i, w

si

, and from pixel i to the sink, w
it

.
Let’s look at using a naive Bayesian classifier from Section 8.2 on the color val-

ues of the pixels. Given that we have trained a Bayes classifier on foreground and
background pixels (from the same image or from other images), we can compute the
probabilities p

F

(I
i

) and p
B

(I
i

) for the foreground and background. Here I
i

is the color
vector of pixel i.

We can now create a model for the edge weights as follows:

w
si

=

p
F

(I
i

)

p
F

(I
i

) + p
B

(I
i

)

w
it

=

p
B

(I
i

)

p
F

(I
i

) + p
B

(I
i

)

w
ij

=  e�|Ii�Ij |2/� .

With this model, each pixel is connected to the foreground and background (source
and sink) with weights equal to a normalized probability of belonging to that class.
The w

ij

describe the pixel similarity between neighbors, similar pixels have weight
close to , dissimilar close to 0. The parameter � determines how fast the values
decay towards zero with increasing dissimilarity.

Create a file graphcut.py and add the following function that creates this graph
from an image.

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

import bayes

def build_bayes_graph(im,labels,sigma=1e2,kappa=2):
""" Build a graph from 4-neighborhood of pixels.
Foreground and background is determined from
labels (1 for foreground, -1 for background, 0 otherwise)
and is modeled with naive Bayes classifiers."""

m,n = im.shape[:2]
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# RGB vector version (one pixel per row)
vim = im.reshape((-1,3))

# RGB for foreground and background
foreground = im[labels==1].reshape((-1,3))
background = im[labels==-1].reshape((-1,3))
train_data = [foreground,background]

# train naive Bayes classifier
bc = bayes.BayesClassifier()
bc.train(train_data)

# get probabilities for all pixels
bc_lables,prob = bc.classify(vim)
prob_fg = prob[0]
prob_bg = prob[1]

# create graph with m*n+2 nodes
gr = digraph()
gr.add_nodes(range(m*n+2))

source = m*n # second to last is source
sink = m*n+1 # last node is sink

# normalize
for i in range(vim.shape[0]):
vim[i] = vim[i] / linalg.norm(vim[i])

# go through all nodes and add edges
for i in range(m*n):
# add edge from source
gr.add_edge((source,i), wt=(prob_fg[i]/(prob_fg[i]+prob_bg[i])))

# add edge to sink
gr.add_edge((i,sink), wt=(prob_bg[i]/(prob_fg[i]+prob_bg[i])))

# add edges to neighbors
if i%n != 0: # left exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i-1])**2)/sigma)
gr.add_edge((i,i-1), wt=edge_wt)

if (i+1)%n != 0: # right exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i+1])**2)/sigma)
gr.add_edge((i,i+1), wt=edge_wt)

if i//n != 0: # up exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i-n])**2)/sigma)
gr.add_edge((i,i-n), wt=edge_wt)

if i//n != m-1: # down exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i+n])**2)/sigma)
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gr.add_edge((i,i+n), wt=edge_wt)

return gr

Here we used a label image with values 1 for foreground training data and -1 for
background training data. Based on this labeling, a Bayes classifier is trained on the
RGB values. Then classification probabilities are computed for each pixel. These are
then used as edge weights for the edges going from the source and to the sink. A
graph with n ⇤ m + 2 nodes is created. Note the index of the source and sink, we
choose them as the last two to simplify the indexing of the pixels.

To visualize the labeling overlaid on the image we can use the function contourf()

which fills the regions between contour levels of an image (in this case the label im-
age). The alpha variable sets the transparency. Add the following function to graph-
cut.py.

def show_labeling(im,labels):
""" Show image with foreground and background areas.
labels = 1 for foreground, -1 for background, 0 otherwise."""

imshow(im)
contour(labels,[-0.5,0.5])
contourf(labels,[-1,-0.5],colors=’b’,alpha=0.25)
contourf(labels,[0.5,1],colors=’r’,alpha=0.25)
axis(’off’)

Once the graph is built it needs to be cut at the optimal location. The following
function computes the min cut and reformats the output to a binary image of pixel
labels.

def cut_graph(gr,imsize):
""" Solve max flow of graph gr and return binary
labels of the resulting segmentation."""

m,n = imsize
source = m*n # second to last is source
sink = m*n+1 # last is sink

# cut the graph
flows,cuts = maximum_flow(gr,source,sink)

# convert graph to image with labels
res = zeros(m*n)
for pos,label in cuts.items()[:-2]: #don’t add source/sink
res[pos] = label

return res.reshape((m,n))

242 9.1. Graph Cuts



Again, note the indices for the source and sink. We need to take the size of the image
as input to compute these indices and to reshape the output before returning the
segmentation. The cut is returned as a dictionary which needs to be copied to an
image of segmentation labels. This is done using the .items() method that returns a
list of (key, value) pairs. Again we skip the last two elements of that list.

Let’s see how to use these functions for segmenting an image. The following is a
complete example of reading an image and creating a graph with class probabilities
estimated from two rectangular image regions.

from scipy.misc import imresize
import graphcut

im = array(Image.open(’empire.jpg’))
im = imresize(im,0.07,interp=’bilinear’)
size = im.shape[:2]

# add two rectangular training regions
labels = zeros(size)
labels[3:18,3:18] = -1
labels[-18:-3,-18:-3] = 1

# create graph
g = graphcut.build_bayes_graph(im,labels,kappa=1)

# cut the graph
res = graphcut.cut_graph(g,size)

figure()
graphcut.show_labeling(im,labels)

figure()
imshow(res)
gray()
axis(’off’)

show()

We use the imresize() function to make the image small enough for our Python graph
library, in this case uniform scaling to 7% of the original size. The graph is cut and the
result plotted together with an image showing the training regions. Figure 9.2 shows
the training regions overlaid on the image and the final segmentation result.

The variable kappa ( in the equations) determines the relative weight of the edges
between neighboring pixels. The effect of changing kappa can be seen in Figure 9.3.
With increasing value, the segmentation boundary will be smoother and details will
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Figure 9.2: An example of graph cut segmentation using a Bayesian probability model.
Image is downsampled to size 54 ⇥ 38. (left) label image for model training. (center)
training regions shown on the image. (right) segmentation.

be lost. Choosing the right value is up to you, the right value will depend on your
application and the type of result you desire.

Segmentation with user input

Graph cut segmentation can be combined with user input in a number of ways. For
example, a user can supply markers for foreground and background by drawing on an
image. Another way is to select a region that contains the foreground with a bounding
box or using a "lasso" tool.

Let’s look at this last example using some images from the Grab Cut dataset from
Microsoft Research Cambridge, see [27] and Appendix B.5 for details.

These images come with ground truth labels for measuring segmentation perfor-
mance. They also come with annotations simulating a user selecting a rectangular
image region or drawing on the image with a "lasso" type tool to mark foreground and
background. We can use these user inputs to get training data and apply graph cuts
to segment the image guided by the user input.

The user input is encoded in bitmap images with the following meaning.
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(a) (b) (c) (d)

Figure 9.3: The effect of changing the relative weighting between pixel similarity and
class probability. The same segmentation as in Figure 9.2 with: (a)  = 1, (b)  = 2,
(c)  = 5 and (d)  = 10.

pixel value meaning

0, 64 background
128 unknown
255 foreground

Here’s a complete code example of loading an image and annotations and passing
that to our graph cut segmentation routine.

from scipy.misc import imresize
import graphcut

def create_msr_labels(m,lasso=False):
""" Create label matrix for training from
user annotations. """

labels = zeros(im.shape[:2])

# background
labels[m==0] = -1
labels[m==64] = -1

# foreground
if lasso:
labels[m==255] = 1

else:
labels[m==128] = 1

return labels
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# load image and annotation map
im = array(Image.open(’376043.jpg’))
m = array(Image.open(’376043.bmp’))

# resize
scale = 0.1
im = imresize(im,scale,interp=’bilinear’)
m = imresize(m,scale,interp=’nearest’)

# create training labels
labels = create_msr_labels(m,False)

# build graph using annotations
g = graphcut.build_bayes_graph(im,labels,kappa=2)

# cut graph
res = graphcut.cut_graph(g,im.shape[:2])

# remove parts in background
res[m==0] = 1
res[m==64] = 1

# plot the result
figure()
imshow(res)
gray()
xticks([])
yticks([])
savefig(’labelplot.pdf’)

First we define a helper function to read the annotation images and format them so
we can pass them to our function for training background and foreground models.
The bounding rectangles contain only background labels. In this case we set the fore-
ground training region to the whole "unknown" region (the inside of the rectangle).
Next we build the graph and cut it. Since we have user input we remove results that
have any foreground in the marked background area. Last, we plot the resulting seg-
mentation and remove the tick markers by setting them to an empty list. That way we
get a nice bounding box (otherwise the boundaries of the image will be hard to see in
this black and white plot).

Figure 9.4 shows some results using RGB vector as feature with the original image,
a downsampled mask and downsampled resulting segmentation. The image on the
right is the plot generated by the script above.
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Figure 9.4: Sample graph cut segmentation results using images from the Grab Cut
data set. (left) original image, downsampled. (middle) mask used for training. (right)
resulting segmentation using RGB values as feature vectors.
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9.2 Segmentation using Clustering

The graph cut formulation in the previous section solves the segmentation problem
by finding a discrete solution using max flow / min cut over an image graph. In this
section we will look at an alternative way to cut the image graph. The normalized
cut algorithm, based on spectral graph theory, combines pixel similarities with spatial
proximity to segment the image.

The idea comes from defining a cut cost that takes into account the size of the
groups and "normalizes" the cost with the size of the partitions. The normalized cut
formulation modifies the cut cost of equation (9.1) to

E
ncut

=

E
cutP

i2Aw
ix

+

E
cutP

j2B w
jx

,

where A and B indicate the two sets of the cut and the sums add the weights from
A and B respectively to all other nodes in the graph (which is pixels in the image in
this case). This sum is called the association and for images where pixels have the
same number of connections to other pixels it is a rough measure of the size of the
partitions. In the paper [32] the cost function above was introduced together with an
algorithm for finding a minimizer. The algorithm is derived for two-class segmentation
and will be described next.

DefineW as the edge weight matrix with elements w
ij

containing the weight of the
edge connecting pixel i with pixel j. LetD be the diagonal matrix of the row sums of S,
D = diag(d

i

), d
i

=

P
j

w
ij

(same as in Section 6.3). The normalized cut segmentation
is obtained as the minimum of the following optimization problem

min

y

y

T

(D �W )y

y

TDy

,

where the vector y contains the discrete labels that satisfy the constraints y
i

2 {1,�b}
for some constant b (meaning that y only takes two discrete values) and y

TD sum to
zero. Because of these constraints, this is not easily solvable4.

However, by relaxing the constraints and letting y take any real value, the problem
becomes an eigenvalue problem that is easily solved. The drawback is that you need
to threshold or cluster the output to make it a discrete segmentation again.

Relaxing the problem results in solving for eigenvectors of a Laplacian matrix

L = D�1/2WD�1/2 ,

just like the spectral clustering case. The only remaining difficulty is now to define the
between-pixel edge weights w

ij

. Normalized cuts have many similarities to spectral

4In fact this problem is NP-hard.
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clustering and the underlying theory overlaps somewhat, see [32] for an explanation
and the details.

Let’s use the edge weights from the original normalized cuts paper [32]. The edge
weight connecting two pixels i and j is given by

w
ij

= e�|Ii�Ij |2/�g e�|xi�xj |2/�d .

The first part measures the pixel similarity between the pixels with I
i

and I
j

denoting
either the RGB vectors or the grayscale values. The second part measures the prox-
imity between the pixels in the image with x

i

and x

j

denoting the coordinate vector of
each pixel. The scaling factors �

g

and �
d

determine the relative scales and how fast
each component approaches zero.

Let’s see what this looks like in code. Add the following function to a file ncut.py.

def ncut_graph_matrix(im,sigma_d=1e2,sigma_g=1e-2):
""" Create matrix for normalized cut. The parameters are
the weights for pixel distance and pixel similarity. """

m,n = im.shape[:2]
N = m*n

# normalize and create feature vector of RGB or grayscale
if len(im.shape)==3:
for i in range(3):
im[:,:,i] = im[:,:,i] / im[:,:,i].max()

vim = im.reshape((-1,3))
else:
im = im / im.max()
vim = im.flatten()

# x,y coordinates for distance computation
xx,yy = meshgrid(range(n),range(m))
x,y = xx.flatten(),yy.flatten()

# create matrix with edge weights
W = zeros((N,N),’f’)
for i in range(N):
for j in range(i,N):
d = (x[i]-x[j])**2 + (y[i]-y[j])**2
W[i,j] = W[j,i] = exp(-1.0*sum((vim[i]-vim[j])**2)/sigma_g) * exp(-d/sigma_d)

return W

This function takes an image array and creates a feature vector using either RGB
values or grayscale values depending on the input image. Since the edge weights
contain a distance component we use meshgrid() to get the x and y values for each
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pixel feature vector. Then the function loops over all N pixels and fills out the values
in the N ⇥N normalized cut matrix W .

We can compute the segmentation either by sequentially cutting each eigenvector
or by taking a number of eigenvectors and apply clustering. We chose the second
approach which also works without modification for any number of segments. We take
the top ndim eigenvectors of the Laplacian matrix corresponding to W and cluster the
pixels. The following function implements the clustering, as you can see it is almost
the same as the spectral clustering example in Section 6.3.

from scipy.cluster.vq import *

def cluster(S,k,ndim):
""" Spectral clustering from a similarity matrix."""

# check for symmetry
if sum(abs(S-S.T)) > 1e-10:
print ’not symmetric’

# create Laplacian matrix
rowsum = sum(abs(S),axis=0)
D = diag(1 / sqrt(rowsum + 1e-6))
L = dot(D,dot(S,D))

# compute eigenvectors of L
U,sigma,V = linalg.svd(L)

# create feature vector from ndim first eigenvectors
# by stacking eigenvectors as columns
features = array(V[:ndim]).T

# k-means
features = whiten(features)
centroids,distortion = kmeans(features,k)
code,distance = vq(features,centroids)

return code,V

Here we used the k-means clustering algorithm (see Section 6.1 for details) to group
the pixels based on the values in the eigenvector images. You could try any clustering
algorithm or grouping criteria if you feel like experimenting with the results.

Now we are ready to try this on some sample images. The following script shows a
complete example:

import ncut
from scipy.misc import imresize
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im = array(Image.open(’C-uniform03.ppm’))
m,n = im.shape[:2]

# resize image to (wid,wid)
wid = 50
rim = imresize(im,(wid,wid),interp=’bilinear’)
rim = array(rim,’f’)

# create normalized cut matrix
A = ncut.ncut_graph_matrix(rim,sigma_d=1,sigma_g=1e-2)

# cluster
code,V = ncut.cluster(A,k=3,ndim=3)

# reshape to original image size
codeim = imresize(code.reshape(wid,wid),(m,n),interp=’nearest’)

# plot result
figure()
imshow(codeim)
gray()
show()

Here we resize the image to a fixed size (50 ⇥ 50 in this example) in order to make
the eigenvector computation fast enough. The NumPy linalg.svd() function is not
fast enough to handle large matrices (and sometimes gives inaccurate results for too
large matrices). We use bilinear interpolation when resizing the image but nearest
neighbor interpolation when resizing the resulting segmentation label image since we
don’t want to interpolate the class labels. Note the use of first reshaping the one-
dimensional array to (wid,wid ) followed by resizing to the original image size.

In the example we used one of the hand gesture images from the Static Hand
Posture Database (see Section 8.1 for more details) with k = 3. The resulting segmen-
tation is shown in Figure 9.5 together with the first four eigenvectors.

The eigenvectors are returned as the array V in the example and can be visualized
as images like this:

imshow(imresize(V[i].reshape(wid,wid),(m,n),interp=’bilinear’))

This will show eigenvector i as an image at the original image size.
Figure 9.6 shows some more examples using the same script above. The airplane

image is from the "airplane" category in the Caltech 101 dataset. For these examples
we kept the parameters �

d

and �
g

to the same values as above. Changing them can
give you smoother more regularized results and quite different eigenvector images.
We leave the experimentation to you.
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Figure 9.5: Image segmentation using the normalized cuts algorithm. (top) the orig-
inal image and the resulting three-class segmentation. (bottom) the first four eigen-
vectors of the graph similarity matrix.

It is worth noting that even for these fairly simple examples a thresholding of the
image would not have given the same result, neither would clustering the RGB or
graylevel values. This is because neither of these take the pixel neighborhoods into
account.

9.3 Variational Methods

In this book you have seen a number of examples of minimizing a cost or energy to
solve computer vision problems. In the previous sections it was minimizing the cut
in a graph but we also saw examples like the ROF de-noising, k-means and support
vector machines. These are examples of optimization problems.

When the optimization is taken over functions, the problems are called variational
problems and algorithms for solving such problems are called variational methods.
Let’s look at a simple and effective variational model.

The Chan-Vese segmentation model [6] assumes a piece-wise constant image model
for the image regions to be segmented. Here we will focus on the case of two regions,
for example foreground and background, but the model extends to multiple regions as
well, see for example [38]. The model can be described as follows.

If we let a collection of curves � separate the image into two regions ⌦1 and ⌦2 as
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Figure 9.6: Examples of two-class image segmentation using the normalized cuts al-
gorithm. (left) original image. (right) segmentation result.
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Figure 9.7: The piece-wise constant Chan-Vese segmentation model.

in Figure 9.7 the segmentation is given by minima of the Chan-Vese model energy

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx+

Z

⌦2

(I � c2)
2dx ,

which measures the deviation from the constant graylevels in each region, c1 and c2.
Here the integrals are taken over each region and the length of the separating curves
are there to prefer smoother solutions.

With a piece-wise constant image U = �1c1 + �2c2 this can we re-written as

E(�) = �
|c1 � c2|

2

Z
|rU |dx+ ||I � U ||2 ,

where �1 and �2 are characteristic (indicator) functions for the two regions5. This
transformation is non-trivial and requires some heavy mathematics that are not needed
for understanding and are well outside the scope of this book.

The point is that this equation is now the same as the ROF equation (1.1) with �

replaced by �|c1� c2|. The only difference is that in the Chan-Vese case we are looking
for an image U which is piece-wise constant. It can be shown that thresholding the
ROF solution will give a good minimizer. The interested reader can check [8] for the
details.

Minimizing the Chan-Vese model now becomes a ROF de-noising followed by thresh-
olding.

5Characteristic functions are 1 in the region and 0 outside.
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(a) (b) (c)

Figure 9.8: Examples image segmentation by minimizing the Chan-Vese model using
ROF de-noising. (a) original image, (b) image after ROF de-noising. (c) final segmen-
tation.

import rof

im = array(Image.open(’ceramic-houses_t0.png’).convert("L"))
U,T = rof.denoise(im,im,tolerance=0.001)
t = 0.4 #threshold

import scipy.misc
scipy.misc.imsave(’result.pdf’,U < t*U.max())

In this case we turn down the tolerance threshold for stopping the ROF iterations to
make sure we get enough iterations. Figure 9.8 shows the result on two rather difficult
images.

Exercises

1. It is possible to speed up computation for the graph cut optimization by reducing
the number of edges. This graph construction is described in Section 4.2 of [16].
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Try this out and measure the difference graph size and in segmentation time
compared to the simpler construction we used.

2. Create a user interface or simulate a user selecting regions for graph cut seg-
mentation. Then try "hard coding" background and foreground by setting weights
to some large value.

3. Change the feature vector in the graph cut segmentation from a RGB vector to
some other descriptor. Can you improve on the segmentation results?

4. Implement an iterative segmentation approach using graph cut where a current
segmentation is used to train new foreground and background models for the
next. Does it improve segmentation quality?

5. The Microsoft Research Grab Cut dataset contains ground truth segmentation
maps. Implement a function that measures the segmentation error and evaluate
different settings and some of the ideas in the exercises above.

6. Try to vary the parameters of the normalized cuts edge weight and see how they
affect the eigenvector images and the segmentation result.

7. Compute image gradients on the first normalized cuts eigenvectors. Combine
these gradient images to detect image contours of objects.

8. Implement a linear search over the threshold value for the de-noised image in
Chan-Vese segmentation. For each threshold, store the energy E(�) and pick the
segmentation with the lowest value.
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Chapter 10

OpenCV

This chapter gives a brief overview of how to use the popular computer vision library
OpenCV through the Python interface. OpenCV is a C++ library for real time computer
vision initially developed by Intel, now maintained by Willow Garage. OpenCV is open
source and released under a BSD license, meaning it is free for both academic and
commercial use. As of version 2.0, Python support has been greatly improved. We will
go through some basic examples and look deeper into tracking and video.

10.1 The OpenCV Python Interface

OpenCV is a C++ library with modules that cover many areas of computer vision. Be-
sides C++ (and C) there is growing support for Python as a simpler scripting language
through a Python interface on top of the C++ code base. The Python interface is still
under development and not all parts of OpenCV are exposed and many functions are
undocumented. This is likely to change as there is an active community behind this
interface. The Python interface is documented at http://opencv.willowgarage.com/
documentation/python/index.html. See the appendix for installation instructions.

The current OpenCV version (2.3.1) actually comes with two Python interfaces.
The old cv module uses internal OpenCV datatypes and can be a little tricky to use
from NumPy. The new cv2 module uses NumPy arrays and is much more intuitive to
use1. The module is available as

import cv2

and the old module can be accessed as

1The names and location of these two modules are likely to change over time, check the online docu-
mentation for changes.
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import cv2.cv

We will focus on the cv2 module in this chapter. Look out for future name changes, as
well as changes in function names and definitions in future versions. OpenCV and the
Python interface is under rapid development.

10.2 OpenCV Basics

OpenCV comes with functions for reading and writing images as well as matrix oper-
ations and math libraries. For the details on OpenCV, there is an excellent book [3]
(C++ only). Let’s look at some of the basic components and how to use them.

Reading and writing images

This short example will load an image, print the size and convert and save the image
in .png format.

import cv2

# read image
im = cv2.imread(’empire.jpg’)
h,w = im.shape[:2]
print h,w

# save image
cv2.imwrite(’result.png’,im)

The function imread() returns the image as a standard NumPy array and can handle
a wide range of image formats. You can use this function as an alternative to the
PIL image reading if you like. The function imwrite() automatically takes care of any
conversion based on the file ending.

Color spaces

In OpenCV images are not stored using the conventional RGB color channels, they are
stored in BGR order (the reverse order). When reading an image the default is BGR,
however there are several conversions available. Color space conversion are done
using the function cvtColor(). For example, converting to grayscale is done like this.

im = cv2.imread(’empire.jpg’)
# create a grayscale version
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
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After the source image there is an OpenCV color conversion code. Some of the most
useful conversion codes are:

• cv2.COLOR_BGR2GRAY

• cv2.COLOR_BGR2RGB

• cv2.COLOR_GRAY2BGR

In each of these, the number of color channels for resulting images will match the
conversion code (single channel for gray and three channels for RGB and BGR). The
last version converts grayscale images to BGR and is useful if you want to plot or
overlay colored objects on the images. We will use this in the examples.

Displaying images and results

Let’s look at some examples of using OpenCV for image processing and how to show
results with OpenCV plotting and window management.

The first example reads an image from file and creates an integral image represen-
tation.

import cv2

# read image
im = cv2.imread(’fisherman.jpg’)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

# compute integral image
intim = cv2.integral(gray)

# normalize and save
intim = (255.0*intim) / intim.max()
cv2.imwrite(’result.jpg’,intim)

After reading the image and converting to grayscale the function integral() creates
an image where the value at each pixel is the sum of the intensities above and to the
left. This is a very useful trick for quickly evaluating features. Integral images are
used in OpenCV’s CascadeClassifier which is based on a framework introduced by
Viola and Jones [39]. Before saving the resulting image, we normalize the values to
0 . . . 255 by dividing with the largest value. Figure 10.1 shows the result for an example
image.

The second example applies flood filling starting from a seed pixel.

import cv2
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Figure 10.1: Example of computing an integral image using OpenCV’s integral()

function.

# read image
filename = ’fisherman.jpg’
im = cv2.imread(filename)
h,w = im.shape[:2]

# flood fill example
diff = (6,6,6)
mask = zeros((h+2,w+2),uint8)
cv2.floodFill(im,mask,(10,10), (255,255,0),diff,diff)

# show the result in an OpenCV window
cv2.imshow(’flood fill’,im)
cv2.waitKey()

# save the result
cv2.imwrite(’result.jpg’,im)

This example applies flood fill to the image and shows the result in an OpenCV window.
The function waitKey() pauses until a key is pressed and the window is automatically
closed. Here the function floodFill() takes the image (grayscale or color), a mask
with non-zero pixels indicating areas not to be filled, a seed pixel, the new color value
to replace the flooded pixels together with lower and upper difference thresholds to
accept new pixels. The flood fill starts at the seed pixel and keeps expanding as long as
new pixels can be added within the difference thresholds. The difference thresholds
are given as tuples (R,G,B). The result looks like Figure 10.2.

As a third and final example, we look at extracting SURF features, a faster version
of SIFT introduced by [1]. Here we also show how to use some basic OpenCV plotting
commands.

260 10.2. OpenCV Basics



Figure 10.2: Flood fill of a color image. The cyan area marks all pixels filled using a
single seed in the upper left corner.

import cv2

# read image
im = cv2.imread(’empire.jpg’)

# down sample
im_lowres = cv2.pyrDown(im)

# convert to grayscale
gray = cv2.cvtColor(im_lowres,cv2.COLOR_RGB2GRAY)

# detect feature points
s = cv2.SURF()
mask = uint8(ones(gray.shape))
keypoints = s.detect(gray,mask)

# show image and points
vis = cv2.cvtColor(gray,cv2.COLOR_GRAY2BGR)

for k in keypoints[::10]:
cv2.circle(vis,(int(k.pt[0]),int(k.pt[1])),2,(0,255,0),-1)
cv2.circle(vis,(int(k.pt[0]),int(k.pt[1])),int(k.size),(0,255,0),2)

cv2.imshow(’local descriptors’,vis)
cv2.waitKey()

After reading the image it is down sampled using the function pyrDown() which if no
new size is given, creates a new image half the size of the original. Then the image
is converted to grayscale and passed to a SURF keypoint detection object. The mask
determines what areas to apply the keypoint detector. When it comes to plotting we
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Figure 10.3: Sample SURF features extracted and plotted using OpenCV.

convert the grayscale image to a color image and use the green channel for plotting.
We loop over every tenth keypoint and plot a circle at the center and one circle showing
the scale (size) of the keypoint. The plotting function circle() takes an image, a tuple
with image coordinates (integer only), a radius, a tuple with plot color and finally the
line thickness (-1 gives a solid circle). Figure 10.3 shows the result.

10.3 Processing Video

Video with pure Python is hard. There is speed, codecs, cameras, operating systems
and file formats to consider. There is currently no video library for Python. OpenCV
with its Python interface is the only good option. In this section we’ll look at some
basic examples using video.

Video input

Reading video from a camera is very well supported in OpenCV. A basic complete
example that captures frames and shows them in an OpenCV window looks like this.

import cv2
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# setup video capture
cap = cv2.VideoCapture(0)

while True:
ret,im = cap.read()
cv2.imshow(’video test’,im)
key = cv2.waitKey(10)
if key == 27:
break

if key == ord(’ ’):
cv2.imwrite(’vid_result.jpg’,im)

The capture object VideoCapture captures video from cameras or files. Here we pass
an integer at initialization. This is the id of the video device, with a single camera
connected this is 0. The method read() decodes and returns the next video frame.
The first value is a success flag and the second the actual image array. The waitKey()

function waits for a key to be pressed and quit the application if the ’esc’ key (Ascii
number 27) is pressed or saves the frame if the ’space’ key is pressed.

Let’s extend this example with some simple processing by taking the camera input
and show a blurred (color) version of the input in an OpenCV window. This is only a
slight modification to the base example above:

import cv2

# setup video capture
cap = cv2.VideoCapture(0)

# get frame, apply Gaussian smoothing, show result
while True:
ret,im = cap.read()
blur = cv2.GaussianBlur(im,(0,0),5)
cv2.imshow(’camera blur’,blur)
if cv2.waitKey(10) == 27:
break

Each frame is passed to the function GaussianBlur() which applies a Gaussian filter to
the image. In this case we are passing a color image so each color channel is blurred
separately. The function takes a tuple for filter size and the standard deviation for the
Gaussian function (in this case 5). If the filter size is set to zero, it will automatically
be determined from the standard deviation. The result looks like Figure 10.4.

Reading video from files works the same way but with the call to VideoCapture()

taking the video filename as input.

capture = cv2.VideoCapture(’filename’)
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Figure 10.4: Screenshot of a blurred video of the author as he’s writing this chapter.

Reading video to NumPy arrays

Using OpenCV it is possible to read video frames from a file and convert them to NumPy
arrays. Here is an example of capturing video from a camera and storing the frames
in a NumPy array.

import cv2

# setup video capture
cap = cv2.VideoCapture(0)

frames = []
# get frame, store in array
while True:
ret,im = cap.read()
cv2.imshow(’video’,im)
frames.append(im)
if cv2.waitKey(10) == 27:
break

frames = array(frames)

# check the sizes
print im.shape
print frames.shape

Each frame array is added to the end of a list until the capturing is stopped. The
resulting array will have size (number of frames,height,width,3). The printout confirms
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this:

(480, 640, 3)
(40, 480, 640, 3)

In this case there were 40 frames recorded. Arrays with video data like this are useful
for video processing such as computing frame differences and tracking.

10.4 Tracking

Optical flow

Optical flow (sometimes called optic flow) is the image motion of objects as the objects,
scene or camera moves between two consecutive images. It is a 2D vector field of
within-image translation. Is is a classic and well studied field in computer vision with
many successful applications in for example video compression, motion estimation,
object tracking and image segmentation.

Optical flow relies on three major assumptions.

1. Brightness constancy: The pixel intensities of an object in an image does not
change between consecutive images.

2. Temporal regularity: The between-frame time is short enough to consider the
motion change between images using differentials (used to derive the central
equation below).

3. Spatial consistency: Neighboring pixels have similar motion.

In many cases these assumptions break down, but for small motions and short time
steps between images it is a good model. Assuming that an object pixel I(x, y, t) at
time t has the same intensity at time t+ �t after motion [�x, �y]) means that I(x, y, t) =
I(x+ �x, y + �y, t+ �t). Differentiating this constraint gives the optical flow equation:

rITv = �I
t

,

where v = [u, v] is the motion vector and I
t

the time derivative. For individual points
in the image, this equation is under-determined and cannot be solved (one equation
with two unknowns in v). By enforcing some spatial consistency, it is possible to
obtain solutions though. In the Lucas-Kanade algorithm below we will see how that
assumption is used.

OpenCV contains several optical flow implementations, CalcOpticalFlowBM()which
uses block matching, CalcOpticalFlowHS() which uses [15] (both of these currently
only in the old cvmodule), the pyramidal Lucas-Kanade algorithm [19] calcOpticalFlowPyrLK()

10.4. Tracking 265



and finally calcOpticalFlowFarneback() based on [10]. The last one is considered one
of the best methods for obtaining dense flow fields. Let’s look at an example of using
this to find motion vectors in video (the Lucas-Kanade version is the subject of the next
section).

Try running the following script.

import cv2

def draw_flow(im,flow,step=16):
""" Plot optical flow at sample points
spaced step pixels apart. """

h,w = im.shape[:2]
y,x = mgrid[step/2:h:step,step/2:w:step].reshape(2,-1)
fx,fy = flow[y,x].T

# create line endpoints
lines = vstack([x,y,x+fx,y+fy]).T.reshape(-1,2,2)
lines = int32(lines)

# create image and draw
vis = cv2.cvtColor(im,cv2.COLOR_GRAY2BGR)
for (x1,y1),(x2,y2) in lines:
cv2.line(vis,(x1,y1),(x2,y2),(0,255,0),1)
cv2.circle(vis,(x1,y1),1,(0,255,0), -1)

return vis

# setup video capture
cap = cv2.VideoCapture(0)

ret,im = cap.read()
prev_gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

while True:
# get grayscale image
ret,im = cap.read()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

# compute flow
flow = cv2.calcOpticalFlowFarneback(prev_gray,gray,None,0.5,3,15,3,5,1.2,0)
prev_gray = gray

# plot the flow vectors
cv2.imshow(’Optical flow’,draw_flow(gray,flow))
if cv2.waitKey(10) == 27:
break
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Figure 10.5: Optical flow vectors (sampled at every 16th pixel) shown on video of a
translating book and a turning head.

This example will capture images from a webcam and call the optical flow estimation
on every consecutive pair of images. The motion flow vectors are stored in the two-
channel image flow returned by calcOpticalFlowFarneback(). Besides the previous
frame and the current frame, this function takes a sequence of parameters. Look
them up in the documentation if you are interested. The helper function draw_flow()
plots the motion vectors at regularly sample points in the image. It uses the OpenCV
drawing functions line() and circle() and the variable step controls the spacing of
the flow samples. The result can look like the screenshots in Figure 10.5. Here the
positions of the flow samples are shown as a grid of green circles and the flow vectors
with lines show how each sample point moves.

The Lucas-Kanade algorithm

Tracking is the process of following objects through a sequence of images or video.
The most basic form of tracking is to follow interest points such as corners. A popular
algorithm for this is the Lucas-Kanade tracking algorithm which uses a sparse optical
flow algorithm.

Lucas-Kanade tracking can be applied to any type of features but usually makes
use of corner points similar to the Harris corner points in Section 2.1. The function
goodFeaturesToTrack() detects corners according to an algorithm by Shi and Tomasi
[33] where corners are points with two large eigenvalues of the structure tensor (Har-
ris matrix) equation (2.2) and where the smaller eigenvalue is above a threshold.

The optical flow equation is under-determined (meaning that there are too many
unknowns per equation) if considered on a per-pixel basis. Using the assumption that
neighboring pixels have the same motion it is possible to stack many of these equations
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into one system of equations like this
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for some neighborhood of n pixels. This has the advantage that the system now has
more equations than unknowns and can be solved with least square methods. Typi-
cally, the contribution from the surrounding pixels is weighted so that pixels farther
away have less influence. A Gaussian weighting is the most common choice. This turns
the matrix above into the structure tensor in equation (2.2) and we have the relation
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This over-determined equation system can be solved in a least square sense and the
motion vector is given by

v = (ATA)

�1AT

b .

This is solvable only when ATA is invertible, which it is by construction if applied at
Harris corner points or the "good features to track" of Shi-Tomasi. This is how the
motion vectors are computed in the Lucas-Kanade tracking algorithms.

Standard Lucas-Kanade tracking works for small displacements. To handle larger
displacements a hierarchical approach is used. In this case the optical flow is com-
puted at coarse to fine versions of the image. This is what the OpenCV function
calcOpticalFlowPyrLK() does.

The Lucas-Kanade functions are included in OpenCV. Let’s look at how to use those
to build a Python tracker class. Create a file lktrack.py and add the following class
and constructor.

import cv2

# some constants and default parameters
lk_params = dict(winSize=(15,15),maxLevel=2,

criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,10,0.03))

subpix_params = dict(zeroZone=(-1,-1),winSize=(10,10),
criteria = (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS,20,0.03))

feature_params = dict(maxCorners=500,qualityLevel=0.01,minDistance=10)
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class LKTracker(object):
""" Class for Lucas-Kanade tracking with
pyramidal optical flow."""

def __init__(self,imnames):
""" Initialize with a list of image names. """

self.imnames = imnames
self.features = []
self.tracks = []
self.current_frame = 0

The tracker object is initialized with a list of filenames. The variables features and
tracks will hold the corner points and their tracked positions. We also use a variable
to keep track of the current frame. We define three dictionaries with parameters for
the feature extraction, the tracking, and the subpixel feature point refinement.

Now, to start detecting points, we need to load the actual image, create grayscale
version and extract the "good features to track" points. The OpenCV function doing
the main work is goodFeaturesToTrack(). Add this detect_points() method to the
class.

def detect_points(self):
""" Detect ’good features to track’ (corners) in the current frame
using sub-pixel accuracy. """

# load the image and create grayscale
self.image = cv2.imread(self.imnames[self.current_frame])
self.gray = cv2.cvtColor(self.image,cv2.COLOR_BGR2GRAY)

# search for good points
features = cv2.goodFeaturesToTrack(self.gray, **feature_params)

# refine the corner locations
cv2.cornerSubPix(self.gray,features, **subpix_params)

self.features = features
self.tracks = [[p] for p in features.reshape((-1,2))]

self.prev_gray = self.gray

The point locations are refined using cornerSubPix() and stored in the member vari-
ables features and tracks. Note that running this function clears the track history.

Now that we can detect the points, we also need to track them. First we need
to get the next frame, then apply the OpenCV function calcOpticalFlowPyrLK() that
finds out where the points moved and remove and clean the lists of tracked points.
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The method track_points() below does this.

def track_points(self):
""" Track the detected features. """

if self.features != []:
self.step() # move to the next frame

# load the image and create grayscale
self.image = cv2.imread(self.imnames[self.current_frame])
self.gray = cv2.cvtColor(self.image,cv2.COLOR_BGR2GRAY)

# reshape to fit input format
tmp = float32(self.features).reshape(-1, 1, 2)

# calculate optical flow
features,status,track_error = cv2.calcOpticalFlowPyrLK(self.prev_gray,

self.gray,tmp,None,**lk_params)

# remove points lost
self.features = [p for (st,p) in zip(status,features) if st]

# clean tracks from lost points
features = array(features).reshape((-1,2))
for i,f in enumerate(features):
self.tracks[i].append(f)

ndx = [i for (i,st) in enumerate(status) if not st]
ndx.reverse() #remove from back
for i in ndx:
self.tracks.pop(i)

self.prev_gray = self.gray

This makes use of a simple helper method step() that moves to the next available
frame.

def step(self,framenbr=None):
""" Step to another frame. If no argument is
given, step to the next frame. """

if framenbr is None:
self.current_frame = (self.current_frame + 1) % len(self.imnames)

else:
self.current_frame = framenbr % len(self.imnames)

This method jumps to a given frame or just to the next if no argument is given.
Finally, we also want to be able to draw the result using OpenCV windows and

drawing functions. Add this draw() method to the LKTracker class.
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def draw(self):
""" Draw the current image with points using
OpenCV’s own drawing functions.
Press ant key to close window."""

# draw points as green circles
for point in self.features:
cv2.circle(self.image,(int(point[0][0]),int(point[0][1])),3,(0,255,0),-1)

cv2.imshow(’LKtrack’,self.image)
cv2.waitKey()

Now we have a complete self-contained tracking system using OpenCV functions.

Using the tracker Let’s tie it all together by using this tracker class on a real track-
ing scenario. The following script will initialize a tracker object, detect and track
points through the sequence and draw the result.

import lktrack

imnames = [’bt.003.pgm’, ’bt.002.pgm’, ’bt.001.pgm’, ’bt.000.pgm’]

# create tracker object
lkt = lktrack.LKTracker(imnames)

# detect in first frame, track in the remaining
lkt.detect_points()
lkt.draw()
for i in range(len(imnames)-1):
lkt.track_points()
lkt.draw()

The drawing is one frame at a time and show the points currently tracked. Pressing
any key will move to the next image in the sequence. The resulting figure windows
for the first four images of the Oxford corridor sequence (one of the Oxford multi-view
datasets available at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html) looks
like Figure 10.6.

Using generators Add the following method to the LKTracker class.

def track(self):
""" Generator for stepping through a sequence."""

for i in range(len(self.imnames)):
if self.features == []:
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Figure 10.6: Tracking using the Lucas-Kanade algorithm through the LKTrack class.
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self.detect_points()
else:
self.track_points()

# create a copy in RGB
f = array(self.features).reshape(-1,2)
im = cv2.cvtColor(self.image,cv2.COLOR_BGR2RGB)
yield im,f

This creates a generator which makes it easy to step through a sequence and get
tracks and the images as RGB arrays so that it is easy to plot the result. To use it on
the classic Oxford "dinosaur" sequence (from the same multi-view dataset page as the
corridor above) and plot the points and their tracks, the code looks like this:

import lktrack

imnames = [’viff.000.ppm’, ’viff.001.ppm’,
’viff.002.ppm’, ’viff.003.ppm’, ’viff.004.ppm’]

# track using the LKTracker generator
lkt = lktrack.LKTracker(imnames)
for im,ft in lkt.track():
print ’tracking %d features’ % len(ft)

# plot the tracks
figure()
imshow(im)
for p in ft:
plot(p[0],p[1],’bo’)

for t in lkt.tracks:
plot([p[0] for p in t],[p[1] for p in t])

axis(’off’)
show()

This generator makes it really easy to use the tracker class and completely hides the
OpenCV functions from the user. The example generates a plot like the one shown in
Figure 10.7 and the bottom right of Figure 10.6.

10.5 More Examples

With OpenCV comes a number of useful sample examples of how to use the python
interface. These are in the sub-directory samples/python2/ and are a good way to
get familiar with OpenCV. Here are a few selected examples to illustrate some other
capabilities of OpenCV.
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Figure 10.7: An example of using Lucas-Kanade tracking on a turntable sequence and
plotting the tracks of points.

Inpainting

The reconstruction of lost or deteriorated parts of images is called inpainting. This
covers both algorithms to recover lost or corrupted parts of image data for restoration
purposes as well as removing red-eyes or objects in photo editing applications. Typi-
cally a region of the image is marked as "corrupt" and needs to be filled using the data
from the rest of the image.

Try the following command:

$ python inpaint.py empire.jpg

This will open an interactive window where you can draw regions to be inpainted. The
results are shown in a separate window. An example is shown in Figure 10.8.

Segmentation with the watershed transform

Watershed is an image processing technique that can be used for segmentation. A
(graylevel) image is treated as a topological landscape that is "flooded" from a number
of seed regions. Usually a gradient magnitude image is used since this has ridges at
strong edges and will make the segmentation stop at image edges.

274 10.5. More Examples



Figure 10.8: An example of inpainting with OpenCV. The left image shows areas
marked by a user as "corrupt". The right image shows the result after inpainting.

The implementation in OpenCV uses an algorithm by Meyer [22]. Try it using the
command:

$ python watershed.py empire.jpg

This will open an interactive window where you can draw the seed regions you want
the algorithm to use as input. The results are shown in a second window with colors
representing regions overlaid on a grayscale version of the input image.

Line detection with a Hough transform

TheHough transform (http://en.wikipedia.org/wiki/Hough_transform) is a method
for finding shapes in images. It works by using a voting procedure in the parameter
space of the shapes. The most common use is to find line structures in images. In that
case edges and line segments can be grouped together by them voting for the same
line parameters in the 2D parameter space of lines.

The OpenCV sample detects lines using this approach2. Try the following com-
mand:

$ python houghlines.py empire.jpg

2This sample is currently in the /samples/python folder.
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Figure 10.9: An example of segmenting an image using a watershed transform. The
left image is the input image with seed regions drawn. The right image shows the
resulting segmentation starting.

This gives two windows like the ones shown in Figure 10.10. One window shows the
source image in grayscale, the other shows the edge map used together with lines
detected as those with most votes in parameter space. Note that the lines are always
infinite, if you want to find the endpoints of line segments in the image you can use
the edge map to try to find them.

Exercises

1. Use optical flow to build a simple gesture recognition system. For example, you
could sample the flow as in the plotting function and use these sample vectors as
input.

2. There are two warp functions available in OpenCV, cv2.warpAffine() and cv2.warpPerspective().
Try to use them on some of the examples from Chapter 3.

3. Use the flood fill function to do background subtraction on the Oxford "dinosaur"
images used in Figure 10.7. Create new images with the dinosaur placed on a
different color background or on a different image.
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Figure 10.10: An example of detecting lines using a Hough transform. The left image
is the source in grayscale. The right image shows an edge map with detected lines in
red.

4. OpenCV has a function ccv2.findChessboardCorners() which automatically finds
the corners of a chessboard pattern. Use this function to get correspondences
for calibrating a camera with the function cv2.calibrateCamera().

5. If you have two cameras, mount them in a stereo rig setting and capture stereo
image pairs using cv2.VideoCapture() with different video device ids. Try 0 and
1 for starters. Compute depth maps for some varying scenes.

6. Use Hu moments with cv2.HuMoments() as features for the sudoku OCR classifi-
cation problem in Section 8.4 and check the performance.

7. OpenCV has an implementation of the Grab Cut segmentation algorithm. Use
the function cv2.grabCut() on the Microsoft Research Grab Cut dataset (see Sec-
tion 9.1). Hopefully you will get better results that the low resolution segmenta-
tion in our examples.

8. Modify the Lucas-Kanade tracker class to take a video file as input and write a
script that tracks points between frames and detects new points every k frames.
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Appendix A

Installing Packages

Here are short installation instructions for the packages used in the book. They are
written based on the latest versions as of writing of this book. Things change (urls
change!), so if the instructions become outdated, check the individual project websites
for help.

In addition to the specific instructions, an option that often works on most plat-
forms is Python’s easy_install. If you run into problems with the installation instruc-
tions given here, easy_install is worth a try. Find out more on the package website
http://packages.python.org/distribute/easy_install.html.

A.1 NumPy and SciPy

Installing NumPy and SciPy is a little different depending on your operating system.
Follow the applicable instructions below. The current versions are 2.0 (NumPy) and
0.11 (SciPy) on most platforms. A package that currently works on all major platforms
is the Enthought EPD Free bundle, a free light version of the commercial Enthought
distribution, available for free at http://enthought.com/products/epd_free.php.

Windows

The easiest way to install NumPy and SciPy is to download and install the binary distri-
butions from http://www.scipy.org/Download.

Mac OS X

Later versions of Mac OS X (10.7.0 (Lion) and up) comes with NumPy pre-installed.
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An easy way to install NumPy and SciPy for Mac OS X is with the "superpack" from
https://github.com/fonnesbeck/ScipySuperpack. This also gives you Matplotlib.

Another alternative is to use the package systemMacPorts (http://www.macports.
org/). This also works for Matplotlib instead of the instructions below.

If none of those work, the project webpage has other alternatives listed (http:
//scipy.org/).

Linux

Installation requires that you have administrator rights on your computer. On some
distributions NumPy comes pre-installed, on others not. Both NumPy and SciPy is easiest
installed with the built in package handler (for example Synaptic on Ubuntu). You can
also use the package handler for Matplotlib instead of the instructions below.

A.2 Matplotlib

Here are instructions for installing Matplotlib in case your NumPy/SciPy installation
did not also install Matplotlib. Matplotlib is freely available at http://matplotlib.
sourceforge.net/. Click the "download" link and download the installer for the latest
version for your system and Python version. Currently the latest version is 1.1.0.

Alternatively, just download the source and unpack. Run

$ python setup.py install

from the command line and everything should work. General tips on installing for dif-
ferent systems can be found at http://matplotlib.sourceforge.net/users/installing.
html but the process above should work for most platforms and Python versions.

A.3 PIL

PIL, the Python Imaging Library is available at http://www.pythonware.com/products/
pil/. The latest free version is 1.1.7. Download the source kit and unpack the folder.
In the downloaded folder run

$ python setup.py install

from the command line.
You need to have JPEG (libjpeg) and PNG (zlib) supported if you want to save im-

ages using PIL. See the README file or the PIL website if you encounter any problems.
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A.4 LibSVM

The current release is version 3.1 (released April 2011). Download the zip file from
the LibSVM website http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Unzip the file
(a directory "libsvm-3.1" will be created). In a terminal window go to this directory
and type "make".

$ cd libsvm-3.0
$ make

Then go to the "python" directory and do the same:

$ cd python/
$ make

This should be all you need to do. To test your installation, start python from the
command line and try

import svm

The authors wrote a practical guide for using LivSVM [7]. This is a good starting point.

A.5 OpenCV

Installing OpenCV is a bit different depending on your operating system. Follow the
applicable instructions below.

To check your installation, start python and try the cookbook examples http://
opencv.willowgarage.com/documentation/python/cookbook.html. The online OpenCV
Python reference guide gives more examples and details http://opencv.willowgarage.
com/documentation/python/index.html on how to use OpenCV with Python.

Windows and Unix

There are installers for Windows and Unix available at the SourceForge repository
http://sourceforge.net/projects/opencvlibrary/.

Mac OS X

Mac OS X support has been lacking but is on the rise. There are several ways to
install from source as described on the OpenCV wiki http://opencv.willowgarage.
com/wiki/InstallGuide. MacPorts is one option that works well if you are using
Python/Numpy/Scipy/Matplotlib also from MacPorts. Building OpenCV from source
can be done like this:
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$ svn co https://code.ros.org/svn/opencv/trunk/opencv
$ cd opencv/
$ sudo cmake -G "Unix Makefiles" .
$ sudo make -j8
$ sudo make install

If you have all the dependencies in place, everything should build and install properly.
If you get an error like

import cv2
Traceback (most recent call last):
File "", line 1, in

ImportError: No module named cv2

then you need to add the directory containing cv2.so to PYTHONPATH. For example:

$ export PYTHONPATH=/usr/local/lib/python2.7/site-packages/

Linux

Linux users could try the package installer for the distribution (the package is usually
called "opencv") or install from source as described in the Mac OS X section.

A.6 VLFeat

To install VLFeat, download and unpack the latest binary package from http://vlfeat.
org/download.html (currently the latest version is 0.9.14). Add the paths to your en-
vironment or copy the binaries to a directory in your path. The binaries are in the bin/
directory, just pick the sub-directory for your platform.

The use of the VLFeat command line binaries is described in the src/ sub-directory.
Alternatively you can find the documentation online at http://vlfeat.org/man/man.
html.

A.7 PyGame

PyGame can be downloaded from http://www.pygame.org/download.shtml. The lat-
est version is 1.9.1. The easiest way is to get the binary install package for your system
and Python version.

Alternatively, you can download the source and in the downloaded folder do:

$ python setup.py install

from the command line.
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A.8 PyOpenGL

Installing PyOpenGL is easiest done by downloading the package from http://pypi.
python.org/pypi/PyOpenGL as suggested on the PyOpenGL webpage http://pyopengl.
sourceforge.net/. Get the latest version, currently 3.0.1.

In the downloaded folder do the usual:

$ python setup.py install

from the command line. If you get stuck or need information on dependencies etc,
more documentation can be found at http://pyopengl.sourceforge.net/documentation/
installation.html. Some good demo scripts for getting started are available at
http://pypi.python.org/pypi/PyOpenGL-Demo.

A.9 Pydot

Begin by installing the dependencies, GraphViz and Pyparsing. Go to http://www.
graphviz.org/ and download the latest GraphViz binary for your platform. The install
files should install GraphViz automatically.

Then, go to the Pyparsing project page http://pyparsing.wikispaces.com/. The
download page is at http://sourceforge.net/projects/pyparsing/. Get the latest
version (currently 1.5.5) and unzip the file to a directory. Type

$ python setup.py install

from the command line.
Finally, go to the project page http://code.google.com/p/pydot/ and click "down-

load". From the download page, download the latest version (currently 1.0.4). Unzip
and again type

$ python setup.py install

from the command line. Now you should be able to import pydot in your python
sessions.

A.10 Python-graph

Python-graph is a python module for working with graphs and contains lots of useful
algorithms like traversals, shortest path, pagerank and maximum flow. The latest
version is 1.8.1 and can be found on the project website http://code.google.com/
p/python-graph/. If you have easy_install on your system, the simplest way to get
python-graph is:
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$ easy_install python-graph-core

Alternatively, download the source code from http://code.google.com/p/python-graph/
downloads/list and run

$ python setup.py install

To write and visualize the graphs (using the DOT language) you need python-graph-dot
which comes with the download or through easy_install:

$ easy_install python-graph-dot

Python-graph-dot depends on pydot, see above. The documentation (in html) is in the
"docs/" folder.

A.11 Simplejson

Simplejson is the independently maintained version of the JSON module that comes
with later versions of python (2.6 or later). The syntax is the same for both modules
but simplejson is more optimized and will give better performance.

To install, go to the project page https://github.com/simplejson/simplejson
and click the Download button. Then select the latest version from the "Download
Packages" section (currently this is 2.1.3). Unzip the folder and type

$ python setup.py install

from the command line. This should be all you need.

A.12 PySQLite

PySQLite is an SQLite binding for python. SQLite is a lightweight disk-based database
that can be queried with SQL and is easy to install and use. The latest version is 2.6.3,
see the project website http://code.google.com/p/pysqlite/ for more details.

To install, download from http://code.google.com/p/pysqlite/downloads/list
and unzip to a folder. Run

$ python setup.py install

from the command line.
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A.13 CherryPy

CherryPy (http://www.cherrypy.org/) is a fast, stable and lightweight web server
built on python using an object oriented model. CherryPy is easy to install, just down-
load the latest version from http://www.cherrypy.org/wiki/CherryPyInstall. The
latest stable release is 3.2.0. Unpack and run

$ python setup.py install

from the command line. After installing, look at the ten tiny tutorial examples that
come with CherryPy in the cherrypy/tutorial/ folder. These examples show you how
to pass GET/POST variables, inheritance of page properties, file upload and download
etc.
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Appendix B

Image Datasets

B.1 Flickr

The immensely popular photo sharing site Flickr (http://flickr.com/) is a gold mine
for computer vision researchers and hobbyists. With hundreds of millions of images,
many of them tagged by users, it is a great resource to get training data or for do-
ing experiments on real data. Flickr has an API for interfacing with the service that
makes it possible to upload, download and annotate images (and much more). A full
description of the API is available here http://flickr.com/services/api/ and there
are kits for many programming languages, including Python.

Let’s look at using a library called flickrpy available freely at http://code.google.
com/p/flickrpy/. Download the file flickr.py. You will need an API Key from Flickr
to get this to work. Keys are free for non-commercial use and can be requested for
commercial use. Just click the link "Apply for a new API Key" on the Flickr API page
and follow the instructions. Once you have an API key, open flickr.py and replace the
empty string on the line

API_KEY = ’’

with your key. It should look something like this:

API_KEY = ’123fbbb81441231123cgg5b123d92123’

Let’s create a simple command line tool that downloads images tagged with a par-
ticular tag. Add the following code to a new file called tagdownload.py.

import flickr
import urllib, urlparse
import os
import sys
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if len(sys.argv)>1:
tag = sys.argv[1]

else:
print ’no tag specified’

# downloading image data
f = flickr.photos_search(tags=tag)
urllist = [] #store a list of what was downloaded

# downloading images
for k in f:

url = k.getURL(size=’Medium’, urlType=’source’)
urllist.append(url)
image = urllib.URLopener()
image.retrieve(url, os.path.basename(urlparse.urlparse(url).path))
print ’downloading:’, url

If you also want to write the list of urls to a text file, add the following lines at the end.

# write the list of urls to file
fl = open(’urllist.txt’, ’w’)
for url in urllist:

fl.write(url+’\n’)
fl.close()

From the command line, just type

$ python tagdownload.py goldengatebridge

and you will get the 100 latest images tagged with "goldengatebridge". As you can
see, we chose to take the "Medium" size. If you want thumbnails or full size originals
or something else, there are many sizes available, check the documentation on the
Flickr website http://flickr.com/api/.

Here we were just interested in downloading images, for API calls that require
authentication the process is slightly more complicated. See the API documentation
for more information on how to set up authenticated sessions.

B.2 Panoramio

A good source of geotagged images is Google’s photo-sharing service Panoramio (http:
//www.panoramio.com/). This web service has an API to access content programmat-
ically. The API is described at http://www.panoramio.com/api/. You can get website
widgets and access the data using JavaScript objects. To download images, the sim-
plest way is to use a GET call. For example:
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http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium

whereminx, miny, maxx, maxy define the geographic area to select photos from (mini-
mum longitude, latitude, maximum longitude and latitude, respectively). The response
will be in JSON and look like this:

{"count": 3152, "photos":
[{"upload_date": "02 February 2006", "owner_name": "***", "photo_id": 9439, "longitude":
-151.75, "height": 375, "width": 500, "photo_title": "***", "latitude": -16.5, "owner_url":
"http://www.panoramio.com/user/1600", "owner_id": 1600, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/9439.jpg", "photo_url": "http://www.panoramio.com/photo/9439"},
{"upload_date": "18 January 2011", "owner_name": "***", "photo_id": 46752123, "longitude":
120.52718600000003, "height": 370, "width": 500, "photo_title": "***", "latitude": 23.327833999999999, "owner_url":
"http://www.panoramio.com/user/2780232", "owner_id": 2780232, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/46752123.jpg", "photo_url": "http://www.panoramio.com/photo/46752123"},
{"upload_date": "20 January 2011", "owner_name": "***", "photo_id": 46817885, "longitude":
-178.13709299999999, "height": 330, "width": 500, "photo_title": "***", "latitude": -14.310613, "owner_url":
"http://www.panoramio.com/user/919358", "owner_id": 919358, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/46817885.jpg", "photo_url": "http://www.panoramio.com/photo/46817885"},
...
...
], "has_more": true}

Using a JSON package you can get the "photo_file_url" field of the result, see Sec-
tion 2.3 for an example.

B.3 Oxford Visual Geometry Group

The Visual Geometry research group at Oxford University has many datasets avail-
able at http://www.robots.ox.ac.uk/~vgg/data/. We used some of the multi-view
datasets in this book, for example the "Merton1", "Model House", "dinosaur" and "cor-
ridor" sequences. The data is available for download (some with camera matrices and
point tracks) at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.

B.4 University of Kentucky Recognition Benchmark Im-
ages

The UK Benchmark image set, also called the "ukbench" set, is a set with 2550 groups
of images. Each group has four images of an object or scene from varying viewpoints.
This is a good set to test object recognition and image retrieval algorithms. The data
set is available for download (the full set is around 1.5GB) at http://www.vis.uky.
edu/~stewe/ukbench/. It is described in detail in the paper [23].

In this book we used a smaller subset using only the first 1000 images.
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B.5 Other

Prague Texture Segmentation Datagenerator and Benchmark

This set used in the segmentation chapter can generate many different types of texture
segmentation images. Available at http://mosaic.utia.cas.cz/index.php.

MSR Cambridge Grab Cut Dataset

Originaly used in the Grab Cut paper [27], this set provides segmentation images with
user annotations. The data set and some papers are available from http://research.
microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/
grabcut.htm. The original images in the data set are from a data set that now is part
of the Berkeley Segmentation Dataset http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/.

Caltech 101

This is a classic dataset that contains pictures of objects from 101 different categories
and can be used to test object recognition algorithms. The data set is available at
http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

Static Hand Posture Database

This dataset from Sebastien Marcel is available at http://www.idiap.ch/resource/
gestures/ together with a few other sets with hands and gestures.

Middlebury Stereo Datasets

These are datasets used to benchmark stereo algorithms. They are available for down-
load at http://vision.middlebury.edu/stereo/data/. Every stereo pair comes with
ground truth depth images to compare results against.
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Appendix C

Image Credits

Throughout this book we have made use of publicly available datasets and images
available from web services, these were listed in Appendix B. The contributions of the
researchers behind these datasets are greatly appreciated.

Some of the reoccurring example images are the author’s own. You are free to use
these images under a Creative Commons Attribution 3.0 (CC BY 3.0) license http:
//creativecommons.org/licenses/by/3.0/, for example by citing this book.

These images are:

• The Empire State building image used in almost every example throughout the
book.

• The low contrast image in Figure 1.7.

• The feature matching examples used in Figures 2.2, 2.5, 2.6, and 2.7.

• The Fisherman’s Wharf sign used in Figures 9.6, 10.1, and 10.2.

• The little boy on top of a hill used in Figures 6.4, 9.6.

• The book image for calibration used in Figures 4.3.

• The two images of the O’Reilly open source book used in Figures 4.4, 4.5, and
4.6.

Images from Flickr

We used some images from Flickr available with a Creative Commons Attribution 2.0
Generic (CC BY 2.0) license http://creativecommons.org/licenses/by/2.0/deed.
en. The contributions from these photographers is greatly appreciated.
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The images used from Flickr are (names are the ones used in the examples, not the
original filenames):

• billboard_for_rent.jpg by @striatic http://flickr.com/photos/striatic/21671910/
used in Figures 3.2.

• blank_billboard.jpg by @mediaboytodd http://flickr.com/photos/23883605@
N06/2317982570/ used in Figures 3.3.

• beatles.jpg by @oddsock http://flickr.com/photos/oddsock/82535061/ used
in Figures 3.2, 3.3.

• turningtorso1.jpg by @rutgerblom http://www.flickr.com/photos/rutgerblom/
2873185336/ used in Figure 3.5.

• sunset_tree.jpg by @jpck http://www.flickr.com/photos/jpck/3344929385/
used in Figure 3.5.

Other images

• The face images used in Figures 3.6, 3.7, and 3.8 are courtesy of JK Keller. The
eye and mouth annotations are the author’s.

• The Lund University building images used in Figures 3.9, 3.11, and 3.12 are from
a dataset used at the Mathematical Imaging Group, Lund University. Photogra-
pher was probably Magnus Oskarsson.

• The toy plane 3D model used in Figure 4.6 is from Gilles Tran (Creative Commons
License By Attribution).

• The Alcatraz images in Figures 5.7 and 5.8 are courtesy of Carl Olsson.

• The font data set used in Figures 1.8, 6.2, 6.3 6.7, and 6.8 is courtesy of Martin
Solli.

• The sudoku images in Figures 8.6, 8.7, and 8.8 are courtesy of Martin Byröd.

Illustrations

The epipolar geometry illustration in Figure 5.1 is based on an illustration by Klas
Josephson and adapted for this book.
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K-means, 215
3D plotting, 175
3D reconstruction, 197
4-neighborhood, 324

affine transformation, 95
affine warping, 100
affinity matrix, 235
agglomerative clustering, 224
alpha map, 102
AR, 153
array, 25
array slicing, 26
aspect ratio, 137
association, 336
Augmented reality, 153

bag of visual words, 250
bag-of-word representation, 248
baseline, 205
Bayes classifier, 294
binary image, 44
blurring, 39
bundle adustment, 203

calibration matrix, 137
camera calibration, 143
camera center, 136
camera matrix, 136
camera model, 135
camera resectioning, 186
CBIR, 247

Chan-Vese segmentation, 344
Characteristic functions, 345
CherryPy, 273, 275
class centroids, 215
classifying images, 281
clustering images, 215, 231
complete linking, 230
confusion matrix, 293
Content-based image retrieval, 247
convex combination, 106
corner detection, 57
correlation, 63
corresponding points, 63
cpickle, 37
cross correlation, 63
cumulative distribution function, 29
cv, 350, 361
cv2, 350

de-noising, 49
Delaunay triangulation, 108
dendrogram, 232
dense depth reconstruction, 205
dense image features, 287
dense SIFT, 287
descriptor, 63
difference-of-Gaussian, 69
digit classification, 308
direct linear transformation, 96
directed graph, 321
distance matrix, 235
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Edmonds-Karp algorithm, 322
eight point algorithm, 177
epipolar constraint, 171
epipolar geometry, 170
epipolar line, 172
epipole, 172
essential matrix, 192

factorization, 141
feature matches, 66
feature matching, 75
flood fill, 354
focal length, 137
fundamental matrix, 171

Gaussian blurring, 39
Gaussian derivative filters, 43
Gaussian distributions, 297
Geotagged images, 80
gesture recognition, 290
GL_MODELVIEW, 155
GL_PROJECTION, 155
Grab Cut dataset, 331
gradient angle, 41
gradient magnitude, 41
graph, 321
graph cut, 321
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graylevel transforms, 26
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Harris matrix, 58
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Homogeneous coordinates, 94
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Hough transform, 374

Image, 15
image contours, 22
image gradient, 41
image graph, 324
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image patch, 63
image plane, 136
Image registration, 113
image retrieval, 247
image search demo, 273
image segmentation, 222, 321
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ImageDraw, 221
inliers, 120
inpainting, 373
integral image, 352
interest point descriptor, 63
interest points, 57
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JSON, 81
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Laplacian matrix, 239
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local descriptors, 57
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maximum flow, 322
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Rudin-Osher-Fatemi de-noising model, 49

Scale-Invariant Feature Transform, 69
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Stereo reconstruction, 205
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structuring element, 46
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sum of squared differences, 63
Support Vector Machines, 301

support vectors, 302
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term frequency, 248
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248
text mining, 248
tf-idf weighting, 248
total variation, 50
total within-class variance, 216
tracking, 360
triangulation, 183

unpickling, 37
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urllib, 83

variational methods, 344
variational problems, 344
vector quantization, 216
vector space model, 248
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video, 356
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