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5| INTEGRATION

Figure 5.1 Iceboating is a popular winter sport in parts of the northern United States and Europe. (credit: modification of work
by Carter Brown, Flickr)
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Introduction

Iceboats are a common sight on the lakes of Wisconsin and Minnesota on winter weekends. Iceboats are similar to sailboats,
but they are fitted with runners, or “skates,” and are designed to run over the ice, rather than on water. Iceboats can move
very quickly, and many ice boating enthusiasts are drawn to the sport because of the speed. Top iceboat racers can attain
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speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how
far it travels. We revisit this question later in the chapter (see Example 5.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide
variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use
integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and
integration. We then study some basic integration techniques and briefly examine some applications.

5.1 | Approximating Areas

Learning Objectives

5.1.1 Use sigma (summation) notation to calculate sums and powers of integers.
5.1.2 Use the sum of rectangular areas to approximate the area under a curve.
5.1.3 Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by
the shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes,
the areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations
to the total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area
formulas. These areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis
on a closed interval [a, b]. Like Archimedes, we first approximate the area under the curve using shapes of known area

(namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking
a limit allows us to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when f(x) is continuous
and nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general

cases.

Sigma (Summation) Notation

As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This
process often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at
some new notation here, called sigma notation (also known as summation notation). The Greek capital letter X, sigma,

is used to express long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20
without sigma notation, we have to write

1+24+34+44+5+64+7+8+9+10+114+124+13+144+ 15416+ 17+ 18 + 19 + 20.

We could probably skip writing a couple of terms and write

I14+24+34+4+-+19+20,

which is better, but still cuambersome. With sigma notation, we write this sum as
20
2
i=1
which is much more compact.

Typically, sigma notation is presented in the form
n
Z 4
i=1

where a; describes the terms to be added, and the i is called the index. Each term is evaluated, then we sum all the values,

7

beginning with the value when i = 1 and ending with the value when i = n. For example, an expression like Z S;

; is
i=2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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interpreted as s, + s3 + 54 + S5+ ¢ + 57. Note that the index is used only to keep track of the terms to be added; it does

not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we
like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let’s try a couple of examples of using sigma notation.

Example 5.1

Using Sigma Notation

a. Write in sigma notation and evaluate the sum of terms 3 for i= 1,2, 3, 4, 5.

b. Write the sum in sigma notation:

1,1,1,1
I+g+5+16+35

Solution
a. Write

30 =3+32433 434430

Mu\

i=1

= 363.
b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as

: 1

@ 5.1 Write in sigma notation and evaluate the sum of terms 2ifor i=3,4,5,6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let ay, ay,...,a, and by, b,,...,b, represent two sequences of terms and let ¢ be a constant. The following

properties hold for all positive integers n and for integers m, with 1 < m < n.

1.
1 (5.1)
Z C = nc
i=1
2.
i e 5.2
Z Cai =cC Z ai ( )
i=1 i=1
3.
n n n (5.3)
Z (a;+b)= Z a;+ Z b;
i=1 i=1 i=1
4,

'21 (@;=b;) = i a;— i b, (5.4)
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n m n (5.5)
Zai= Zai+ Z al-
i=1 i=1 i=m+1

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.
2. We have

n
Z ca; =caj+cay+caz+ - +cay
i=1

=C((11 +az+a3+“' +an)

n
=CZ a;.
i=1

3. We have
n
Z (ai+b) =(ay+by)+(ay+by)+(az+bz)+ - +lan+by)
i=1
=(aj+as+az+-+ap)+ b +by+by+ - +by)
n n
= Z ai+ Z bi’
i=1 i=1
O

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next
rule, for sums and powers of integers, and we use them in the next set of examples.

Rule:

1.

Sums and Powers of Integers

The sum of n integers is given by

n
Yi=t+2+ - 4n=2010D

=1 2
2. The sum of consecutive integers squared is given by

M=

i2=12+22+"'+”2=w'

i

1
The sum of consecutive integers cubed is given by

i 2 2
Z i3=13+23+...+n3=%_
i=1

Example 5.2

Evaluation Using Sigma Notation

Write using sigma notation and evaluate:

a. The sum of the terms (i — 3)2 for i=1, 2,...,200

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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b. The sum of the terms (i3 - i2) fori=1,23,4,5,6.

Solution

a. Multiplying out (i — 3)2, we can break the expression into three terms.

200 200
i; (i-3)?% = i; (2~ 6i+9)
200 200 200
=) =) 6i+ )09
=1 =1 =1
1200 l 200 lZOO

= i2—6z i+z 9

i=1 i=1 i=1
_ 200200 +61)(400 +1 6[200(2(%0 + 1)]+ 9(200)
= 2,686,700 — 120,600 + 1800
= 2,567,900

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

i= i=1 i=1

_ 626+ D% 66+ DR6) + 1)
- 4 6

_ 1764 _ 546
4 "6

=350

@ 5.2 Find the sum of the values of 4 + 3i for i =1, 2,..., 100.

Example 5.3

Finding the Sum of the Function Values
Find the sum of the values of f(x) = x> over the integers 1, 2, 3,..., 10.

Solution

Using the formula, we have

—
(=]

3 (100210 + 1)?
= 7]

Il
o

100(121)
4
3025.
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20

5.3
@ Evaluate the sum indicated by the notation Z 2k +1).
k=1

Approximating Area

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f(x)
be a continuous, nonnegative function defined on the closed interval [a, b]. We want to approximate the area A bounded by

f(x) above, the x-axis below, the line x = @ on the left, and the line x = b on the right (Figure 5.2).

y

f(x)

>

a b

Figure 5.2 An area (shaded region) bounded by the curve
f(x) at top, the x-axis at bottom, the line x = a to the left, and

the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small
shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin

b—a
n

by dividing the interval [a, b] into n subintervals of equal width, . We do this by selecting equally spaced points

Xg» X5 Xp,..., Xp With xg=a, x, = b, and

XY= X1 =
fori=1,2,3,...,n.
b—a
7}

We denote the width of each subinterval with the notation Ax, so Ax = and

X; =X+ iAx

for i =1, 2, 3,..., n. This notion of dividing an interval [a, b] into subintervals by selecting points from within the interval

is used quite often in approximating the area under a curve, so let’s define some relevant terminology.

Definition

A set of points P = {x;} for i=0, 1, 2,...,n with a =x3 < x| <Xy < -+ <x, =b, which divides the interval
[a, b] into subintervals of the form [xg, x], [xy, x5l,...,[x,, _ |, X»] is called a partition of [a, b]. If the

subintervals all have the same width, the set of points forms a regular partition of the interval [a, b].

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two
methods: the left-endpoint approximation and the right-endpoint approximation.

Rule: Left-Endpoint Approximation

On each subinterval [x;_q, x;] (for i =1, 2, 3,...,n), construct a rectangle with width Ax and height equal to
f(x;_1), which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is
f(x;_1)Ax. Adding the areas of all these rectangles, we get an approximate value for A (Figure 5.3). We use the
notation L,, to denote that this is a left-endpoint approximation of A using n subintervals.

A~ L, =f(xg)Ax+ f(xpDAx+ -+ f(x, _ DAX (5.6)

= _Zl fG;_ DAx

y
"""\.,____ |
Left
endpoints
/%
‘:“/. 3 - -
a=xp X,_1 b=x, X

Figure 5.3 1In the left-endpoint approximation of area under a
curve, the height of each rectangle is determined by the function
value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the
left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Rule: Right-Endpoint Approximation

Construct a rectangle on each subinterval [x; _, x;], only this time the height of the rectangle is determined by the
function value f(x;) at the right endpoint of the subinterval. Then, the area of each rectangle is f(x;)Ax and the

approximation for A is given by

ARR, = fxpDAx+ f(x)Ax+ - + f(xp)Ax (5.7)

= ‘Zl fGepAx.

The notation R,, indicates this is a right-endpoint approximation for A (Figure 5.4).
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y
""""N.,_____
Right
endpoints
7
a = 1] Xp—1 b=x, .;

Figure 5.4 1In the right-endpoint approximation of area under
a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the
right-endpoint approximation differs from the left-endpoint
approximation in Figure 5.3.

2
The graphs in Figure 5.5 represent the curve f(x) = x? In graph (a) we divide the region represented by the interval

[0, 3] into six subintervals, each of width 0.5. Thus, Ax = (0.5. We then form six rectangles by drawing vertical lines
perpendicular to x; _, the left endpoint of each subinterval. We determine the height of each rectangle by calculating
f(x;_p for i=1,2,3,4,5, 6. The intervals are [0, 0.5}, [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3]. We find the area
of each rectangle by multiplying the height by the width. Then, the sum of the rectangular areas approximates the area
between f(x) and the x-axis. When the left endpoints are used to calculate height, we have a left-endpoint approximation.
Thus,

6
ArLg = z fO_DAx = f(xg)Ax + f(xDAx + f(x)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax
i=1
= f(0)0.5 + £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5 + f(2.5)0.5
= (0)0.5 + (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5

=04 0.0625 +0.25 4+ 0.5625 + 1 + 1.5625

= 3.4375.
L y = f(x) yi y = f(x)
4 44
2 24
Ax 1 ;

‘! [=ey »- ! i ! -

1 2 3 % 1 2 3 A
Xg X1 X2 X3 X34 Xs Xp Xg X1 Xo X3 X3 X5 Xg

(@) (b)

Figure 5.5 Methods of approximating the area under a curve by using (a) the left endpoints
and (b) the right endpoints.

In Figure 5.5(b), we draw vertical lines perpendicular to x; such that x; is the right endpoint of each subinterval, and
calculate f(x;) for i=1, 2, 3, 4, 5, 6. We multiply each f(x;) by Ax to find the rectangular areas, and then add them.

This is a right-endpoint approximation of the area under f(x). Thus,

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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6
AR Ry = z FO)Ax = f(xDAx + f(xx)Ax + f(x3)Ax + f(x)Ax + f(x5)Ax + f(xg)Ax
i=1
= £(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5 + f(2.5)0.5 + f(3)0.5
= (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5 + (4.5)0.5
=0.0625+0.25 + 0.5625 + 1 + 1.5625 + 2.25
= 5.6875.

Example 5.4

Approximating the Area Under a Curve
Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of f(x) = x?

on the interval [0, 2]; use n = 4.

Solution

2-0
4

each rectangle. The intervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] are shown in Figure 5.6. Using a left-endpoint
approximation, the heights are f(0) = 0, f(0.5) = 0.25, f(1) =1, f(1.5) = 2.25. Then,

First, divide the interval [0, 2] into n equal subintervals. Using n = 4, Ax = = 0.5. This is the width of

Ly = f(xp)Ax+ f(xDAx + f(x)Ax + f(x3)Ax
= 0(0.5) + 0.25(0.5) + 1(0.5) + 2.25(0.5)

=1.75.
yi
fx) = x2
44
21
AX AX
} — =7 2k v— -
05 1 15 2 x

Figure 5.6 The graph shows the left-endpoint approximation
of the area under f(x) = x2 from 0 to 2.

The right-endpoint approximation is shown in Figure 5.7. The intervals are the same, Ax = 0.5, but now use
the right endpoint to calculate the height of the rectangles. We have
Ry = f(x)DAx+ f(xp)Ax + f(x3)Ax + f(xy)Ax
= 0.25(0.5) + 1(0.5) + 2.25(0.5) + 4(0.5)
=3.75.
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yi
44
)| = x2
24
AX AX AX
. ., T R
0.5 1 15 2 X

Figure 5.7 The graph shows the right-endpoint approximation
of the area under f(x) = x2 from 0 to 2.

The left-endpoint approximation is 1.75; the right-endpoint approximation is 3.75.

@ 54 Sketch left-endpoint and right-endpoint approximations for f(x) =% on [1,2]; use n=4.

Approximate the area using both methods.

Looking at Figure 5.5 and the graphs in Example 5.4, we can see that when we use a small number of intervals, neither
the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under
the curve. However, it seems logical that if we increase the number of points in our partition, our estimate of A will improve.
We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more
precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea
of increasing n, first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally 32 rectangles.
Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.

Figure 5.8 shows the area of the region under the curve f(x) = (x — 1)3 + 4 on the interval [0, 2] using a left-endpoint

approximation where n = 4. The width of each rectangle is

Apo2-0_1

4 2°
The area is approximated by the summed areas of the rectangles, or
Ly = f(0)(0.5) + £(0.5)(0.5) + f(1)(0.5) + £(1.5)0.5
=17.35.
Yi

y =fx)

AX | AX | AX | AX

a=/x0 X; Xp Xg b=x%

Figure 5.8 With a left-endpoint approximation and dividing
the region from a to b into four equal intervals, the area under
the curve is approximately equal to the sum of the areas of the
rectangles.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Figure 5.9 shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure 5.8
with this graph with eight rectangles, we can see there appears to be less white space under the curve when n = 8. This

white space is area under the curve we are unable to include using our approximation. The area of the rectangles is

Lg = f(0)(0.25) + £(0.25)(0.25) + £(0.5)(0.25) + £(0.75)(0.25)
+£(1)(0.25) + £(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25)

=17.75.
y y

B,

yi

M
/B |

e%=x0 X1 Xo Xz Xg Xs Xg X7 b=xgX

Figure 5.9 The region under the curve is divided into n = 8

rectangular areas of equal width for a left-endpoint
approximation.

The graph in Figure 5.10 shows the same function with 32 rectangles inscribed under the curve. There appears to be little
white space left. The area occupied by the rectangles is
L3y = £(0)(0.0625) + £(0.0625)(0.0625) + f(0.125)(0.0625) + --- + f(1.9375)(0.0625)
= 7.9375.
yi
y=1()/

?: Xo \ X
X313 b =Xg

Figure 5.10 Here, 32 rectangles are inscribed under the curve
for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the
same curve, using four rectangles (Figure 5.11), yields an area
R4 = f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5) + f(2)(0.5)
= 8.5.
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JATIETIETIETS

a:/XO X1 Xz Xz Xy X

Figure 5.11 Now we divide the area under the curve into four
equal subintervals for a right-endpoint approximation.

Dividing the region over the interval [0, 2] into eight rectangles results in Ax = % = 0.25. The graph is shown in

Figure 5.12. The area is

Rg = f(0.25)(0.25) + f(0.5)(0.25) + f(0.75)(0.25) + f(1)(0.25)

+ f(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25) + f(2)(0.25)
= 8.25.

yi

e
/

EVQXO X1 X2 Xz X4 X5 Xg X7 b=xg

y = 1)

>y

Figure 5.12 Here we use right-endpoint approximation for a
region divided into eight equal subintervals.

Last, the right-endpoint approximation with n = 32 is close to the actual area (Figure 5.13). The area is approximately

R, = f(0.0625)(0.0625) + £(0.125)(0.0625) + £(0.1875)(0.0625) + --- + f(2)(0.0625)
= 8.0625.

v y =10)
/
. d

A31

A AT
7/0 b =Xz

Figure 5.13 The region is divided into 32 equal subintervals
for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area
under the curve better as n gets larger. Furthermore, as n increases, both the left-endpoint and right-endpoint approximations
appear to approach an area of 8 square units. Table 5.1 shows a numerical comparison of the left- and right-endpoint

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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methods. The idea that the approximations of the area under the curve get better and better as n gets larger and larger is very
important, and we now explore this idea in more detail.

Values of n Approximate Area L, Approximate Area Ry,
n=4 7.5 8.5

n=3_§ 7.75 8.25

n=32 7.94 8.06

Table 5.1 Converging Values of Left- and Right-Endpoint Approximations
as n Increases

Forming Riemann Sums

So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been
determined by evaluating the function at either the right or left endpoints of the subinterval [x;_, x;]. In reality, there is

no reason to restrict evaluation of the function to one of these two points only. We could evaluate the function at any point
x; in the subinterval [x;_, x;], and use f(x;-" ) as the height of our rectangle. This gives us an estimate for the area of

the form
n
Ax ) flxF )Ax.
i=1

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed
the idea.

Definition

Let f(x) be defined on a closed interval [a, b] and let P be a regular partition of [a, b]. Let Ax be the width of each

subinterval [x; _, x;] and for each i, let x¥ be any pointin [x;_{, x;]. A Riemann sum is defined for f(x) as

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as n get larger and
larger. The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of n. We
are now ready to define the area under a curve in terms of Riemann sums.

Definition

n
Let f(x) be a continuous, nonnegative function on an interval [a, b], and let z f(x;l‘ )Ax be a Riemann sum for
i=1

f(x). Then, the area under the curve y = f(x) on [a, b] is given by
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See a graphical demonstration (http://lwww.openstax.org/l/20_riemannsums) of the construction of a
Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit
of a function f(x) as x goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series

(http:/lcnx.org/content/m53756/latest/) ; however, for now we can assume that the computational techniques we used
to compute limits of functions can also be used to calculate limits of sums.

Second, we must consider what to do if the expression converges to different limits for different choices of {x;k }

Fortunately, this does not happen. Although the proof is beyond the scope of this text, it can be shown that if f(x) is

n
continuous on the closed interval [a, b], then nlew Z f (x;*‘ )Ax exists and is unique (in other words, it does not depend

1=

on the choice of {x;“ }).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for {x;k }

Although any choice for {x;“ } gives us an estimate of the area under the curve, we don’t necessarily know whether that

estimate is too high (overestimate) or too low (underestimate). If it is important to know whether our estimate is high or

low, we can select our value for {x;k } to guarantee one result or the other.

If we want an overestimate, for example, we can choose {x;" } such that for i =1, 2, 3,...,n, f(x;!< )Z f(x) for all

x € [x;_q, x;]. In other words, we choose {x;" } sothat for i =1, 2, 3,...,n, f(x’t!< ) is the maximum function value on

n

the interval [x;_q, x;]. If we select {x;“ } in this way, then the Riemann sum Z f(x;!‘ )Ax is called an upper sum.
i=1

Similarly, if we want an underestimate, we can choose {x;" } sothatfor i =1, 2, 3,...,n, f(x?‘ ) is the minimum function

value on the interval [x; _, x;]. In this case, the associated Riemann sum is called a lower sum. Note that if f(x) is either
increasing or decreasing throughout the interval [a, b], then the maximum and minimum values of the function occur at the

endpoints of the subintervals, so the upper and lower sums are just the same as the left- and right-endpoint approximations.

Example 5.5

Finding Lower and Upper Sums

2 on [1, 2]; let n = 4 subintervals.

Find a lower sum for f(x) =10 —x
Solution

With n=4 over the interval [1, 2], Ax = 1 We can list the intervals as

T
[1, 1.25], [1.25, 1.5], [1.5, 1.75], [1.75, 2]. Because the function is decreasing over the interval [1, 2], Figure

5.14 shows that a lower sum is obtained by using the right endpoints.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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f(x) =10 — x2

" L~

1 2 »
a:XO X]_ Xz Xg X4

Figure 5.14 The graph of f(x) =10 — x? is set up for a

right-endpoint approximation of the area bounded by the curve
and the x-axis on [1, 2], and it shows a lower sum.

The Riemann sum is

4
Z (10 - x%)0.25) = 0.25[10 —(1.25)%+ 10— (1.5)2+ 10— (1.75)2 + 10 — (2)2]
k=1

= 0.25[8.4375 + 7.75 4+ 6.9375 + 6]
=17.28.

The area of 7.28 is a lower sum and an underestimate.

@ 55 4. Findan upper sum for f(x) = 10 —x% on [1, 2]; let n = 4.

b. Sketch the approximation.

Example 5.6

Finding Lower and Upper Sums for f(x) = sinx

Find a lower sum for f(x) = sinx over the interval [a, b] = [O, %], let n = 6.

Solution
Let’s first look at the graph in Figure 5.15 to get a better idea of the area of interest.




522 Chapter 5 | Integration

1+ y = sin x

X
; T ¥ T T ST T T\
12 6 4 3 12 2
Figure 5.15 The graph of y = sinx is divided into six regions: Ax = % = %

: x|z z| |z z| |z z| |z 5= Sz & - ;
The intervals are [0, 12], [12, 6]’ [6’ 4], [4, 3], [3, 12], and [12, 2]. Note that f(x) =sinx is
increasing on the interval [0, %] so a left-endpoint approximation gives us the lower sum. A left-endpoint

5
approximation is the Riemann sum Z sinx; (l—ﬂz) We have
~

A s sl ) o) o))

@ 5.6 Using the function f(x) = sinx over the interval [0, Z ], find an upper sum; let n = 6.

S
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5.1 EXERCISES

1. State whether the given sums are equal or unequal.
10 10

a. Ziand Zk
i=1 k=1
10 15
b. Ztan 1—5)
10
C. Zl(l—l)and Z(]-l—l

N
—_

i j=0

d. Z i(i—1) and Z

i=1

In the following exercises, use the rules for sums of powers
of integers to compute the sums.

10
i
i=5

—
(=]

I
W

100 100

Suppose that D, a;=15 and Y, b;=—12.
i=1 i=1

In the

following exercises, compute the sums.

100
i=1
100
5 (ai_ bl)
i=1
100
i=1
100
7. (5a; +4b))

II
—_

i

In the following exercises, use summation properties and
formulas to rewrite and evaluate the sums.

20
8. ), 100(k> - 5k+1)
k=1
50
9 Zl(jz—ZJ)
Jj=

523

20

0. Y (2-10))
j=11

25
1. Y [@k)? - 1004]

k=1

Let L, denote the left-endpoint sum using n subintervals
and let R, denote the corresponding right-endpoint sum.

In the following exercises, compute the indicated left and
right sums for the given functions on the indicated interval.

12. Lyfor f(x) = xl T on [2, 3]

13. Ry for g(x) = cos(zx) on [0, 1]

14. Lgfor f(x) =m on [2, 5]

15. RG for f(x) = m on [2, 5]

16. Ry for 21 on [-2, 2]
x“+1

17. Ly for 21 on [-2, 2]
x“+1

18. Ryfor x>—2x+1 on [0, 2]

19. Lgfor x2=2x+1 on [0, 2]

20. Compute the left and right Riemann sums—L,4 and Ry,
respectively—for f(x) = (2 — |xl) on [-2, 2]. Compute

their average value and compare it with the area under the
graph of f.

21. Compute the left and right Riemann sums—Lg and
Rg, respectively—for f(x) =3 —-13—x) on [0, 6].
Compute their average value and compare it with the area
under the graph of f.

22. Compute the left and right Riemann sums—L, and
Ry, respectively—for f(x) = 4 —x% on [-2, 2] and

compare their values.

23. Compute the left and right Riemann sums—Lg and

Re, respectively—for f(x) =19 — (x — 3)2 on [0, 6] and

compare their values.

Express the following endpoint sums in sigma notation but
do not evaluate them.
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24. Ly for f(x) = x> on [1, 2]

25. Ligfor f(x) =V4 —x%on [-2, 2]
26. Ry for f(x) =sinx on [0, 7]
27. Rygo for Inx on [1, e]

In the following exercises, graph the function then use a
calculator or a computer program to evaluate the following
left and right endpoint sums. Is the area under the curve on
the given interval better approximated by the left Riemann
sum or right Riemann sum? If the two agree, say "neither."

28. [T] Lqgp and Rygg for y = x2=3x+ 1 on the interval
(-1, 1]

29. [T] Lqpp and Rygg for y = x2 on the interval [0, 1]

30. [T]Lsand Rso for y = £+ 11 on the interval [2, 4]
2

31. [T]Lgg and Ry for y = x> on the interval [—1, 1]

]

32. [T]Lspand Rs for y = tan(x) on the interval [0,

NN

33. [T]Lygpand Rygp for y = ¢ on the interval [—1, 1]

34. Let t; denote the time that it took Tejay van Garteren

to ride the jth stage of the Tour de France in 2014. If there
21

were a total of 21 stages, interpret Z tj.
i=1

35. Let r; denote the total rainfall in Portland on the jth

31
day of the year in 2009. Interpret Z r.
i=1

36. Let d; denote the hours of daylight and 6; denote the

increase in the hours of daylight from day j— 1 to day j

in Fargo, North Dakota, on the jth day of the year. Interpret
365

d+ Z ;.
i=2

Chapter 5 | Integration

37. To help get in shape, Joe gets a new pair of running

shoes. If Joe runs 1 mi each day in week 1 and adds L omi

10

to his daily routine each week, what is the total mileage on
Joe’s shoes after 25 weeks?

38. The following table gives approximate values of the
average annual atmospheric rate of increase in carbon
dioxide (CO,) each decade since 1960, in parts per million
(ppm). Estimate the total increase in atmospheric CO,
between 1964 and 2013.

Decade

Ppm/y

1964-1973 1.07

1974-1983 1.34

1984-1993 1.40

1994-2003 1.87

2004-2013 2.07

Table 5.2 Average Annual
Atmospheric CO,

Increase,

1964-2013 Source:
http:/lwww.esrl.noaa.gov/
gmd/ccggltrendsl.
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39. The following table gives the approximate increase in
sea level in inches over 20 years starting in the given year.
Estimate the net change in mean sea level from 1870 to

2010.

Starting Year 20-Year Change
1870 0.3
1890 1.5
1910 0.2
1930 2.8
1950 0.7
1970 1.1
1990 1.5

Table 5.3 Approximate 20-Year Sea

Level Increases, 1870-1990 Source:

http:/llink.springer.com/article/
10.1007%2Fs10712-011-9119-1

525

40. The following table gives the approximate increase in
dollars in the average price of a gallon of gas per decade
since 1950. If the average price of a gallon of gas in 2010
was $2.60, what was the average price of a gallon of gas in
19507

Starting Year 10-Year Change
1950 0.03

1960 0.05

1970 0.86

1980 —-0.03

1990 0.29

2000 1.12

Table 5.4 Approximate 10-Year Gas
Price Increases, 1950-2000 Source:
http:/lepb.lbl.gov/Ihomepages/
Rick_Diamond/docs/
Ibni55011-trends.pdf.
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41.

The following table gives the percent growth of the
U.S. population beginning in July of the year indicated. If
the U.S. population was 281,421,906 in July 2000, estimate

the U.S. population in July 2010.

(Hint: To obtain the population in July 2001, multiply the
population in July 2000 by 1.0112 to get 284,573,831.)

In the following exercises, estimate the areas under the

Year % Change/Year
2000 1.12
2001 0.99
2002 0.93
2003 0.86
2004 0.93
2005 0.93
2006 0.97
2007 0.96
2008 0.95
2009 0.88

Table 5.5 Annual Percentage
Growth of U.S. Population,
2000-2009 Source:
http://lwww.census.gov/
popest/data.

curves by computing the left Riemann sums, Lg.

42.

O
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43.

O

44,

45.

00 1 2 3 4 5 6 7 8%

46. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30,50 for

F) =V1=x%on [-1, 1].
47. [T] Use a computer algebra system to compute the

Riemann sum, Ly, for N =10, 30, 50 for

f(x) = —L— on [~1, 1].
V1 +x2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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48. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N = 10, 30, 50 for f(x) = sin’x

on [0, 27]. Compare these estimates with 7.

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100. How do these estimates compare with the

exact answers, which you can find via geometry?

49. [T] y = cos(nx) on the interval [0, 1]
50. [T] y = 3x+ 2 on the interval [3, 5]

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100.

51. [T] y= x*—5x2+4 on the interval [-2, 2],

p32

which has an exact area o 15

52. [T] y =Inx on the interval [1, 2], which has an

exact area of 2In(2) — 1

53. Explain why, if f(a) >0 and f is increasing on
la, b], that the left endpoint estimate is a lower bound for

the area below the graph of fon [a, b].

54. Explain why, if f(b) >0 and f is decreasing on
la, b], that the left endpoint estimate is an upper bound for

the area below the graph of fon [a, b].

55. Show that, in general,
Ry—Ly= (b—a)x—f(b);]f(a).
56. Explain why, if f is increasing on [a, b], the error

between either Ly or Ry and the area A below the graph of

NIGEIO)

fis at most (b —

527

57. For each of the three graphs:
a. Obtain a lower bound L(A) for the area enclosed

by the curve by adding the areas of the squares
enclosed completely by the curve.
b. Obtain an upper bound U(A) for the area by

adding to L(A) the areas B(A) of the squares

enclosed partially by the curve.
Yi

Graph 3

58. In the previous exercise, explain why L(A) gets no
smaller while U(A) gets no larger as the squares are

subdivided into four boxes of equal area.
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59. A unit circle is made up of n wedges equivalent to the

inner wedge in the figure. The base of the inner triangle

is 1 unit and its height is sin(%). The base of the outer

triangle is B = cos(Z)+ sin(Z)tan(Z) and the height is
H= Bsin(%’). Use this information to argue that the area

of a unit circle is equal to m.
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5.2 | The Definite Integral

Learning Objectives

5.2.1 State the definition of the definite integral.

5.2.2 Explain the terms integrand, limits of integration, and variable of integration.
5.2.3 Explain when a function is integrable.

5.2.4 Describe the relationship between the definite integral and net area.

5.2.5 Use geometry and the properties of definite integrals to evaluate them.
5.2.6 Calculate the average value of a function.

In the preceding section we defined the area under a curve in terms of Riemann sums:

n
A= ”li’m‘”,-;l f(x’}‘ )Ax.

However, this definition came with restrictions. We required f(x) to be continuous and nonnegative. Unfortunately, real-

world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under
the curve to a broader set of functions through the use of the definite integral.

Definition and Notation

The definite integral generalizes the concept of the area under a curve. We lift the requirements that f(x) be continuous

and nonnegative, and define the definite integral as follows.

Definition

If f(x) is a function defined on an interval [a, b], the definite integral of f from a to b is given by

f bf (dx = lim D ek )Ax, (5.8)
¢ i=1

provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a, b], or is an integrable

function.

The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on
Applications of Derivatives, where we used the indefinite integral symbol (without the a and b above and below) to
represent an antiderivative. Although the notation for indefinite integrals may look similar to the notation for a definite
integral, they are not the same. A definite integral is a number. An indefinite integral is a family of functions. Later in this
chapter we examine how these concepts are related. However, close attention should always be paid to notation so we know
whether we’re working with a definite integral or an indefinite integral.

Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz, who
is often considered to be the codiscoverer of calculus, along with Isaac Newton. The integration symbol [ is an elongated S,
suggesting sigma or summation. On a definite integral, above and below the summation symbol are the boundaries of the
interval, [a, b]. The numbers a and b are x-values and are called the limits of integration; specifically, a is the lower limit

and b is the upper limit. To clarify, we are using the word limit in two different ways in the context of the definite integral.
First, we talk about the limit of a sum as n» — 0. Second, the boundaries of the region are called the limits of integration.

We call the function f(x) the integrand, and the dx indicates that f(x) is a function with respect to x, called the variable

of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the
computation of the integral. We could use any variable we like as the variable of integration:

fa bf(x)dx= fa bf(t)dt= fa bf(u)du
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n
Previously, we discussed the fact that if f(x) is continuous on [a, b], then the limit nlem Z f(x;" )Ax exists and is
i=1

unique. This leads to the following theorem, which we state without proof.

Theorem 5.1: Continuous Functions Are Integrable

If f(x) is continuous on [a, b], then fis integrable on [a, b].

Functions that are not continuous on [a, b] may still be integrable, depending on the nature of the discontinuities. For
example, functions with a finite number of jump discontinuities on a closed interval are integrable.

It is also worth noting here that we have retained the use of a regular partition in the Riemann sums. This restriction is not
strictly necessary. Any partition can be used to form a Riemann sum. However, if a nonregular partition is used to define
the definite integral, it is not sufficient to take the limit as the number of subintervals goes to infinity. Instead, we must take
the limit as the width of the largest subinterval goes to zero. This introduces a little more complex notation in our limits and
makes the calculations more difficult without really gaining much additional insight, so we stick with regular partitions for
the Riemann sums.

Example 5.7

Evaluating an Integral Using the Definition

2
Use the definition of the definite integral to evaluate / x%dx. Use a right-endpoint approximation to generate
0

the Riemann sum.

Solution

We first want to set up a Riemann sum. Based on the limits of integration, we have ¢ =0 and b =2. For
i=0,1,2,...,n, let P={x;} bearegular partition of [0, 2]. Then

Ax=b-a-2

Since we are using a right-endpoint approximation to generate Riemann sums, for each i, we need to calculate
the function value at the right endpoint of the interval [x; _q, x;]. The right endpoint of the interval is x;, and

since P is a regular partition,
xi=x0+iAx=0+i[%]=%.
Thus, the function value at the right endpoint of the interval is
2 2
2
fap=xF=(4) =4

Then the Riemann sum takes the form

n n k) 143 k) n
PIIED) (4_P -y 8832

i=

n

Using the summation formula for Z i 2, we have
i=1
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Z fOe)Ax =%zn: i?
ni=1

i=1

6

=&[M]

}13 6

_ 16n° + 24n% + 8n
6n°

8.4, 8

=5+a+ =

- &t e+ 1)

2 n
2 R
fO x“dx = "lewigl fxepAx

T 8.4 8

= nll)moo(g + 7 + F)

T 4 8

= nll)moo( )+nll>moo )+ hm (W
_8 8
3+0+0 3

Now, to calculate the definite integral, we need to take the limit as n — co. We get

)

531

5.7 3
@ Use the definition of the definite integral to evaluate / (2x — 1)dx. Use a right-endpoint approximation
0

to generate the Riemann sum.

Evaluating Definite Integrals

Evaluating definite integrals this way can be quite tedious because of the complexity of the calculations. Later in this chapter
we develop techniques for evaluating definite integrals without taking limits of Riemann sums. However, for now, we can
rely on the fact that definite integrals represent the area under the curve, and we can evaluate definite integrals by using
geometric formulas to calculate that area. We do this to confirm that definite integrals do, indeed, represent areas, so we can

then discuss what to do in the case of a curve of a function dropping below the x-axis.

Example 5.8

Using Geometric Formulas to Calculate Definite Integrals

6
Use the formula for the area of a circle to evaluate / 9—(x— 3)2dx.
3

Solution

The function describes a semicircle with radius 3. To find
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6
/ 9 — (x—3)%dx,
3

we want to find the area under the curve over the interval [3, 6]. The formula for the area of a circleis A = ar.
The area of a semicircle is just one-half the area of a circle, or A = (%)ﬂrz. The shaded area in Figure 5.16

covers one-half of the semicircle, or A = (i)ﬂrz. Thus,

[ 3/9 —x-3)2 = %;;(3)2

-9
_47[
~ 7.069.
y
Tl I _ 2
%) f(x) = \9 — (x — 3)

3 6 x
Figure 5.16 The value of the integral of the function f(x)

over the interval [3, 6] is the area of the shaded region.

5.8 4
@ Use the formula for the area of a trapezoid to evaluate f (2x + 3)dx.
2

Area and the Definite Integral

When we defined the definite integral, we lifted the requirement that f(x) be nonnegative. But how do we interpret “the

area under the curve” when f(x) is negative?

Net Signed Area

Let us return to the Riemann sum. Consider, for example, the function f(x) =2 — 2x2 (shown in Figure 5.17) on
the interval [0, 2]. Use n =8 and choose {x;" } as the left endpoint of each interval. Construct a rectangle on each
subinterval of height f(x’ik ) and width Ax. When f(x;!‘ ) is positive, the product f(x’l!‘ )Ax represents the area of the

rectangle, as before. When f(x;f< ) is negative, however, the product f(xj‘ )Ax represents the negative of the area of the

rectangle. The Riemann sum then becomes

8
Z f(x# )Ax = (Area of rectangles above the x-axis) — (Area of rectangles below the x-axis)
i=1

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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yi

xY

21

41

641

Figure 5.17 For a function that is partly negative, the
Riemann sum is the area of the rectangles above the x-axis less
the area of the rectangles below the x-axis.

Taking the limit as # — oo, the Riemann sum approaches the area between the curve above the x-axis and the x-axis, less

the area between the curve below the x-axis and the x-axis, as shown in Figure 5.18. Then,
2 n
/0 fdx = "li’m°°,-; fle)Ax
= A 1= A2.
The quantity A; — A, is called the net signed area.

Yi

_2: 0 > X

Figure 5.18 In the limit, the definite integral equals area A;
less area Ay, or the net signed area.

Notice that net signed area can be positive, negative, or zero. If the area above the x-axis is larger, the net signed area is
positive. If the area below the x-axis is larger, the net signed area is negative. If the areas above and below the x-axis are
equal, the net signed area is zero.

Example 5.9

Finding the Net Signed Area
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Find the net signed area between the curve of the function f(x) = 2x and the x-axis over the interval [—3, 3].

Solution
The function produces a straight line that forms two triangles: one from x = —3 to x = 0 and the other from

x=0 to x =3 (Figure 5.19). Using the geometric formula for the area of a triangle, A = %bh, the area of

triangle Ay, above the axis, is

Ay =436 =9,

where 3 is the base and 2(3) = 6 is the height. The area of triangle A,, below the axis, is

Ay =336 =9,

where 3 is the base and 6 is the height. Thus, the net area is

3
[ 2xdx=a,-4,=9-9=0.
-3

yi
64
34
Ay
6 - 3 6X
Az
Bl

Figure 5.19 The area above the curve and below the x-axis
equals the area below the curve and above the x-axis.

Analysis

If A; is the area above the x-axis and A, is the area below the x-axis, then the net areais A; — A,. Since the areas

of the two triangles are equal, the net area is zero.

@ 5.9 Find the net signed area of f(x) = x — 2 over the interval [0, 6], illustrated in the following image.

yi

f(xXy=x—2

Total Area

One application of the definite integral is finding displacement when given a velocity function. If v(#) represents the

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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velocity of an object as a function of time, then the area under the curve tells us how far the object is from its original
position. This is a very important application of the definite integral, and we examine it in more detail later in the chapter.
For now, we’re just going to look at some basics to get a feel for how this works by studying constant velocities.

When velocity is a constant, the area under the curve is just velocity times time. This idea is already very familiar. If a car
travels away from its starting position in a straight line at a speed of 75 mph for 2 hours, then it is 150 mi away from its
original position (Figure 5.20). Using integral notation, we have

2
f 75dt = 150.

0
v (mifhr) 4
80

70

60+
50
40+
30
20+

10+

O 02 04 06 08 1 12 14 16 18 2 22 t(hours)
Figure 5.20 The area under the curve v(¢) = 75 tells us how far the car

is from its starting point at a given time.

In the context of displacement, net signed area allows us to take direction into account. If a car travels straight north at a
speed of 60 mph for 2 hours, it is 120 mi north of its starting position. If the car then turns around and travels south at a
speed of 40 mph for 3 hours, it will be back at it starting position (Figure 5.21). Again, using integral notation, we have

2 5
f 60dt+f —40dt =120 — 120
0 2

=0.

In this case the displacement is zero.
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v (mifhr) 4
70T

60

50+
40+
30+
20+
10+

O i it * (o)

—104+
-204

—304

—404

—504

Figure 5.21 The area above the axis and the area below the axis
are equal, so the net signed area is zero.

Suppose we want to know how far the car travels overall, regardless of direction. In this case, we want to know the area
between the curve and the x-axis, regardless of whether that area is above or below the axis. This is called the total area.

Graphically, it is easiest to think of calculating total area by adding the areas above the axis and the areas below the axis
(rather than subtracting the areas below the axis, as we did with net signed area). To accomplish this mathematically, we use
the absolute value function. Thus, the total distance traveled by the car is

2 5 2 5
fo 160]dt + f2 |—40ldt = fo 60d1 + f2 40dt

=120+ 120
= 240.

Bringing these ideas together formally, we state the following definitions.

Definition

Let f(x) be an integrable function defined on an interval [a, b]. Let A; represent the area between f(x) and the
x-axis that lies above the axis and let A, represent the area between f(x) and the x-axis that lies below the axis. Then,

the net signed area between f(x) and the x-axis is given by

b
fa Ffdx=A, — A,

The total area between f(x) and the x-axis is given by

b
/ 1f(ldx = A, + A,

Example 5.10
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Finding the Total Area

Find the total area between f(x) = x — 2 and the x-axis over the interval [0, 6].

Solution
Calculate the x-intercept as (2, 0) (set y =0, solve for x). To find the total area, take the area below the x-axis

over the subinterval [0, 2] and add it to the area above the x-axis on the subinterval (2, 6] (Figure 5.22).

Y|
fix)=x—2

Figure 5.22 The total area between the line and the x-axis
over [0, 6] is A; plus A;.

We have

6
[l =2ldx=A,+A4,.
0

Then, using the formula for the area of a triangle, we obtain
=1lpp=L.0.2=
Ay = th =5 2.2=2

Ay=gbh=4-4-4=8.

1,
2
The total area, then, is

A1+A2:8+2: 10

@ 5.10 Find the total area between the function f(x) = 2x and the x-axis over the interval [-3, 3].

Properties of the Definite Integral

The properties of indefinite integrals apply to definite integrals as well. Definite integrals also have properties that relate to
the limits of integration. These properties, along with the rules of integration that we examine later in this chapter, help us
manipulate expressions to evaluate definite integrals.

Rule: Properties of the Definite Integral
1.

f * fodx = 0 s
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If the limits of integration are the same, the integral is just a line and contains no area.

2.
a b (5.10)
[ fdx == [ fedx
b a
If the limits are reversed, then place a negative sign in front of the integral.
3.
b b b (5.11)
[ @) +g@ldx = [ fdx+ [ g
a a a
The integral of a sum is the sum of the integrals.
4.
b b . (5.12)
J [F(0) = g(0)ldx = J fodx - [ gxdx
a a ¢
The integral of a difference is the difference of the integrals.
5.
b b (5.13)
[ efmax=cf o
a a
for constant c. The integral of the product of a constant and a function is equal to the constant multiplied by
the integral of the function.
6.

/abf (0dx = fa FOdx + fc ’ FO)dx (5.14)

Although this formula normally applies when c is between a and b, the formula holds for all values of a, b, and
c, provided f(x) is integrable on the largest interval.

Example 5.11

Using the Properties of the Definite Integral

Use the properties of the definite integral to express the definite integral of f(x) = —3x3 4 2x+2 over the

interval [—2, 1] as the sum of three definite integrals.

Solution

1
Using integral notation, we have / (—3x3 +2x+ Z)dx. We apply properties 3. and 5. to get
)

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 5 | Integration 539

/_12(—3x3 +2x+2)dx = /_12—3x3 dx + /_122xdx + /_122dx

= —3/_12)63 dx + Zf_lzxdx + f_122dx.

5.11  Use the properties of the definite integral to express the definite integral of f(x) = 6x> —4x% +2x -3

over the interval [1, 3] as the sum of four definite integrals.

Example 5.12

Using the Properties of the Definite Integral

8 5 8
If it is known that f f(x)dx =10 and / f(x)dx =5, find the value of / f(x)dx.
0 0 5

Solution
By property 6.,
b c b
[a f(x)dx = [ F()dx + f F)dx.
Thus,
i d ’ d i d
[ f@ax = [ fwdx+ [ feodx
8
10 = 5 d
+ f5 Fdx
8
5 = dx.
f5 f(x)dx

5.12 5 5 2
@ If it is known that f f(x)dx = -3 and / f(x)dx =4, find the value of f f(x)dx.
1 2 1

Comparison Properties of Integrals

A picture can sometimes tell us more about a function than the results of computations. Comparing functions by their graphs
as well as by their algebraic expressions can often give new insight into the process of integration. Intuitively, we might say
that if a function f(x) is above another function g(x), then the area between f(x) and the x-axis is greater than the area

between g(x) and the x-axis. This is true depending on the interval over which the comparison is made. The properties of
definite integrals are valid whether a < b, a=b, or a > b. The following properties, however, concern only the case

a < b, and are used when we want to compare the sizes of integrals.
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Theorem 5.2: Comparison Theorem

i. If f(x) >0 for a < x <b, then

b
f f(x)dx > 0.

ii. If f(x)>g(x) for a <x<b, then

/ ’ fwdx> [ bg(x)a’x.

iii. If mand M are constants such that m < f(x) < M for a < x < b, then

b
mb-a) < [ feodx
<M - a).

Example 5.13

Comparing Two Functions over a Given Interval

Compare f(x) =V1+ x% and g(x) = V1 + x over the interval [0, 1].

Solution

Graphing these functions is necessary to understand how they compare over the interval [0, 1]. Initially, when
graphed on a graphing calculator, f(x) appears to be above g(x) everywhere. However, on the interval [0, 1],
the graphs appear to be on top of each other. We need to zoom in to see that, on the interval [0, 1], g(x) is above

f(x). The two functions intersectat x =0 and x = 1 (Figure 5.23).

yi

= -, O

(a) (b)
Figure 5.23 (a) The function f(x) appears above the function g(x)

except over the interval [0, 1] (b) Viewing the same graph with a greater

zoom shows this more clearly.

We can see from the graph that over the interval [0, 1], g(x) > f(x). Comparing the integrals over the specified

1 1
interval [0, 1], we also see that / g(x)dx > f f(x)dx (Figure 5.24). The thin, red-shaded area shows just
0 0

how much difference there is between these two integrals over the interval [0, 1].
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(a) (b)
Figure 5.24 (a) The graph shows that over the interval
[0, 1], g(x) > f(x), where equality holds only at the endpoints of the

interval. (b) Viewing the same graph with a greater zoom shows this more
clearly.

Average Value of a Function

We often need to find the average of a set of numbers, such as an average test grade. Suppose you received the following
test scores in your algebra class: 89, 90, 56, 78, 100, and 69. Your semester grade is your average of test scores and you
want to know what grade to expect. We can find the average by adding all the scores and dividing by the number of scores.
In this case, there are six test scores. Thus,

89+90+56+678+100+69=%%80'33,

Therefore, your average test grade is approximately 80.33, which translates to a B— at most schools.

Suppose, however, that we have a function v(¢) that gives us the speed of an object at any time ¢, and we want to find the
object’s average speed. The function v(¢) takes on an infinite number of values, so we can’t use the process just described.
Fortunately, we can use a definite integral to find the average value of a function such as this.

Let f(x) be continuous over the interval [a, b] and let [a, b] be divided into n subintervals of width Ax = (b — a)/n.

Choose a representative x¥ in each subinterval and calculate f(x;i< ) for i =1, 2,...,n. In other words, consider each

f(x;?< ) as a sampling of the function over each subinterval. The average value of the function may then be approximated as

SO )+ fg )+ -+ flxg)
2 :

which is basically the same expression used to calculate the average of discrete values.

b—a b—a

But we know Ax = , SO n=
n Ax

, and we get

SO )+ 05 ) o+ Sl ) _ Sk )+ S )+ Sl )
n (b-a ’
Ax

n
Following through with the algebra, the numerator is a sum that is represented as z f (x;" ), and we are dividing by a
i=1
fraction. To divide by a fraction, invert the denominator and multiply. Thus, an approximate value for the average value of
the function is given by
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3 et \
,:@ = (bA_xa),z f(x;F )

Ax i=1

~ (L a)éjl Sl JAx.

This is a Riemann sum. Then, to get the exact average value, take the limit as n goes to infinity. Thus, the average value of
a function is given by

1L b
L lim_ Y fephr=71— [ fedx.
i=1 a

b—an-—

Definition

Let f(x) be continuous over the interval [a, b]. Then, the average value of the function f(x) (or five) On [a, b] is

given by

b
—_1
fave—m/af(x)dx-

Example 5.14

Finding the Average Value of a Linear Function
Find the average value of f(x) = x+ 1 over the interval [0, 5].

Solution
First, graph the function on the stated interval, as shown in Figure 5.25.

Yi

o1 2 5 4 5 & 17
Figure 5.25 The graph shows the area under the function
f(x)=x+1 over [0, 5].

The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid A = %h(a +b), where

h represents height, and a and b represent the two parallel sides. Then,
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5
f x+ 1dx =Lha+b)
o 2

=1l.5.

=5 5-(1+6)
_35
5
Thus the average value of the function is

1.35_171

@ 5.13 Find the average value of f(x) = 6 — 2x over the interval [0, 3].

5
1 =1.3_17
5_0/0)6+1dx—5 5 =7

543
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5.2 EXERCISES

In the following exercises, express the limits as integrals.

n
60. ”h*m"",; (¥ )Ax over [1, 3]
N 3
61. nlewi: 1 (5(xx > = 3(x¥ )*)Ax over [0, 2]

n
62. lim_ 21 sin?(2zx )Ax over [0, 1]
=

n

63. lim

n— oo

i=1

cosz(2nx;“ )JAx over [0, 1]

In the following exercises, given L, or R, as indicated,
express their limits as n — co as definite integrals,

identifying the correct intervals.

i=1

7l .
65. R,=1> 4

i=1

6. Li=2Y (1+251)

i=1

7 .

67. Ry=5) (3+3L)
i=1

68. L,=2E

In the following exercises, evaluate the integrals of the
functions graphed using the formulas for areas of triangles
and circles, and subtracting the areas below the x-axis.

70.

Yi
51
5 =72 + 18x — X2
| _ e

V2% — x2
1+

of " 2 a4 6 8 10 12X

Chapter 5 | Integration

8 10 12x

V=72 + 18x — x2
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75.

——1Z T B — X

In the following exercises, evaluate the integral using area
formulas.

3
76. f (3 — x)dx
0
3
77. f (3 = x)dx
2
3
78. f (3 — Ixl)dx
-3
6
79. j (3 — Ix — 31)dx
0
2
80. f V4 — xzdx
-2
5
81. f 4 — (x — 3)2dx
1

12
82. [ 36 — (x — 6)2dx
0

545

3
83. f (3 — Ix)dx
-2

In the following exercises, use averages of values at the left
(L) and right (R) endpoints to compute the integrals of the
piecewise linear functions with graphs that pass through the
given list of points over the indicated intervals.

84.  {(0, 0), (2, 1), (4, 3), (5, 0), (6, 0), (8, 3)} over
[0, 8]

85.  {(0, 2), (1, 0), (3, 5), (5, 5), (6, 2), (8, 0)} over
[0, 8]

86. {(—4, —4), (-2, 0), (0, =2), (3, 3), (4, 3)} over
[_4’ 4]

87. {(—4, 0), (=2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}
over [—4, 4]

4 2
Suppose that f f(x)dx =135 and f f(x)dx =-3, and
0 0

4 2
/ g(x)dx = -1 and / g(x)dx = 2. In the following
0 0

exercises, compute the integrals.

4
88, /O (f(x) + g(0))dx
4
89. /2 (f(x) + g(x))dx
2
90. /0 (f(x) — g(0)dx
4
91. f2 (f(x) — g(x))dx
2
92. 3 -4 d
/0 (3/(x) — 4g(x))dx

4
93. f2 (4F(x) — 3g(x))dx

In the following exercises, use the

A 0 A
/ fo)dx = f Fo)dx + f f(x)dx to compute the
—-A —-A 0

identity

integrals.

/3
94, J %a’t (Hint: sin(—t) = —sin(?))
o+t
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VT
%. [ —L—ar
vzl +cost

In the following exercises, find the net signed area between
f(x) and the x-axis.

3
96. f (2 — x)dx (Hint: Look at the graph of f.)
1

4
97. f (x- 3)3 dx (Hint: Look at the graph of f.)
2

In the
1

/0 xdx = %, folx2 dx = %, and f01x3 dx = %,

compute the integrals.

following exercises, given that

98. /1(1 +x+x2+x3)dx
0

! B 2.3
99. /0(1 X+ x x)dx
1
2
100. fo(l 2 dx

1
101. f (1 —2x)3dx
0

1

102. J (6x — %xz)dx
0

1

103. 7 = 5x3)dx
[r-s6)

In the following exercises,
theorem.

use the comparison
3
104. Show that / (x2 —6x+ 9)dx > 0.
0
3
105. Show that f (x — 3)(x + 2)dx < 0.
-2
1 1
106. Show that / V1 + x3dx < / V1 + x2dx.
0 0

2 2
107. Show that f VT + xdx < f V1 + x2dx.
1 1

Chapter 5 | Integration

/2 )
108. Show that / sintdt > % (Hint: sint > 7’ over
0

o)
nl4

109. Show that f costdr > n\2/4.
—rl4

In the following exercises, find the average value f,ye of f
between a and b, and find a point ¢, where f(c) = fave-

110. f)=x%a=-1,b=1
1. fW=xa=-1,b=1

12, f) =V4—x%a=0,b=2
113. f(x)=@—1Ixl),a=-3,b=3
114. f(x) =sinx,a=0,b=2n
115. f(x) =cosx,a=0,b=2n

In the following exercises, approximate the average value
using Riemann sums Lqqy and Rygg. How does your answer
compare with the exact given answer?

116. [T] y =In(x) over the interval [1, 4]; the exact

In(256) _
3

solution is 1.

117. [T] y= e*"? over the interval [0, 1]; the exact
solution is 2(ve — 1).

118. [T] y =tanx over the interval [0, A ]; the exact

Y
21n(2)

solution is T

119. [T] y=-X*tl1
My=i_e

exact solution is Z.

6

over the interval [—1, 1]; the

In the following exercises, compute the average value using
the left Riemann sums Ly for N = 1, 10, 100. How does

the accuracy compare with the given exact value?

120. [T] y = x2 — 4 over the interval [0, 2]; the exact
8

solution is —%.

3
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2
121. [T] y = xe”

solution is %(e4 - 1).

over the interval [0, 2]; the exact

X

122. [T] y= (%) over the interval [0, 4]; the exact

solution is

15
641n(2)’

123. [T] y=xsin(x2) over the interval [—z, O]; the

COS(ﬂ'z) -1
exact solution is —=—*——.
2
2r
124. Suppose that A= / sintdt and
0

2r
B= f cos2tdr. Show that A+ B =2z and A = B.
0

/4 )
125. Suppose  that A=/ sec“tdt=n and
—rl4

/4
B= / tanZtds. Show that A — B = Z.
—nl4 2

24 over [0, 27]

126. Show that the average value of sin
is equal to 1/2 Without further calculation, determine
whether the average value of sin®¢ over [0, ] is also

equal to 1/2.

2¢ over [0, 27]

127. Show that the average value of cos
is equal to 1/2. Without further calculation, determine
whether the average value of cosz(t) over [0, z] is also

equal to 1/2.

128. Explain why the graphs of a quadratic function
(parabola) p(x) and a linear function #(x) can intersect

in at most two points. Suppose that p(a) = £(a) and

b b
p(b) = £(b), and that f p(t)dt > f £(H)dt. Explain
a a

d d
why / p@) > fc Z(t)dt whenever a <c <d <b.
c

129. Suppose that parabola p(x) = ax>+bx+c opens

downward (a < 0) and has a vertex of y = 5—5 > (. For

B
which interval [A, B] is / (ax2 + bx+ c)dx as large as
A

possible?

547

130. Suppose [a, b] can be subdivided into subintervals
a=ap<ay;<a,<--<ay=>b such that either

f>0 over [a;_y,a;] or f<0 over [a;_4, a;]. Set

a:

]
A= / fdt.
aj—1
b
a. Explain why f fOdt=A;+Ay+ - +Ay.
a

b b
b. Then, explain why ‘ / f(dt < / |f(@)|ds.
a a

131. Suppose f and g are continuous functions such that
d d

f f(®dt < f g(t)dt for every subinterval [c, d] of
c c

la, b]. Explain why f(x) < g(x) for all values of x.

132. Suppose the average value of f over [a, b] is 1 and
the average value of f over [b, c] is 1 where a < ¢ < b.

Show that the average value of fover [a, c] is also 1.

133. Suppose that [a, b] can be partitioned. taking
a=agy<aj<--<ap=>b such that the average value
of f over each subinterval [a;_ 4, a;] =1 is equal to 1 for
each i = 1,..., N. Explain why the average value of f over

la, b] is also equal to 1.

134. Suppose that for each i such that 1 <i < N one has
NN+
—

i

N
f f(®dt = i. Show that f fdt =
1 0

i—

135. Suppose that for each i such that 1 <i < N one
i
has /

i—

N(N + DN + 1)
z :

f@dt = i%. Show that
1

/O Y ot =

136. [T] Compute the left and right Riemann sums Liq

L R
and Ryg and their average % for f(t) = 1> over
1 _
[0, 1]. Given that / t2dt =0.33, to how many
0

accurate?

L R
decimal places is %
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137. [T] Compute the left and right Riemann sums, Liq
L R
and Ry, and their average w for f(t) = (4 — 12)

2 _
over [1, 2]. Given that f (4—t2)dt= 1.66, to how
1

L R
many decimal places is w accurate?
5
138 1f [ Vi+da=417133.,  what s
1

5
/ V1 + udu?
1

1
139. Estimate f tdt using the left and right endpoint
0

sums, each with a single rectangle. How does the average
of these left and right endpoint sums compare with the

1
actual value / tdt?
0

1

140. Estimate f tdt by comparison with the area of a
0

single rectangle with height equal to the value of ¢ at the

1

> How does this midpoint estimate compare

midpoint ¢ =
1

with the actual value / tdt?
0

141. From the graph of sin(2zx) shown:

1
a. Explain why / sin(2zt)dt = 0.
0

a+1
b. Explain why, in general, / sin(2zt)dt = 0 for
a

any value of a.

¥
T

0.5+

—05+
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142. If f is 1-periodic (f(¢t+ 1) = f(2)),
[0, 1], is it

odd, and

integrable over always true that

1
[ f(Hdt = 0?
0

1
143. If f is l-periodic and [ f()dr=A, s it
0

1+a
necessarily true that / f(dt = A forall A?
a
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5.3 | The Fundamental Theorem of Calculus

Learning Objectives

5.3.1 Describe the meaning of the Mean Value Theorem for Integrals.

5.3.2 State the meaning of the Fundamental Theorem of Calculus, Part 1.

5.3.3 Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
5.3.4 State the meaning of the Fundamental Theorem of Calculus, Part 2.

5.3.5 Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.

5.3.6 Explain the relationship between differentiation and integration.

In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function.
Unfortunately, so far, the only tools we have available to calculate the value of a definite integral are geometric area
formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section we look at some
more powerful and useful techniques for evaluating definite integrals.

These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and
explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s,
and it is codified in what we now call the Fundamental Theorem of Calculus, which has two parts that we examine in this
section. Its very name indicates how central this theorem is to the entire development of calculus.

Isaac Newton’s contributions to mathematics and physics changed the way we look at the world. The relationships
he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational
material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief
biography (http://lwww.openstax.org/l/20_newtonbio) of Newton with multimedia clips.

Before we get to this crucial theorem, however, let’s examine another important theorem, the Mean Value Theorem for
Integrals, which is needed to prove the Fundamental Theorem of Calculus.

The Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value
at some point in that interval. The theorem guarantees that if f(x) is continuous, a point ¢ exists in an interval [a, b] such

that the value of the function at ¢ is equal to the average value of f(x) over [a, b]. We state this theorem mathematically

with the help of the formula for the average value of a function that we presented at the end of the preceding section.

Theorem 5.3: The Mean Value Theorem for Integrals

If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b] such that

b 5.15
fo=51 f F(x)dx. e

This formula can also be stated as

b
/a f@)dx = f(c)b - a).

Proof
Since f(x) is continuous on [a, b], by the extreme value theorem (see Maxima and Minima), it assumes minimum and
maximum values—m and M, respectively—on [a, b]. Then, for all x in [a, b], we have m < f(x) < M. Therefore, by

the comparison theorem (see The Definite Integral), we have

b
m(b — a) < f F(x)dx < M(b — a).


http://www.openstax.org/l/20_newtonbio
http://www.openstax.org/l/20_newtonbio
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Dividing by b — a gives us

b
m<+a/af(x)dx$M.

1
b—a

la, b], by the Intermediate Value Theorem (see Continuity), there is a number ¢ over [a, b] such that

Since

b
f f(x)dx is a number between m and M, and since f(x) is continuous and assumes the values m and M over
a

b
f© =515 [ fx,

and the proof is complete.

O

Example 5.15

Finding the Average Value of a Function

Find the average value of the function f(x) = 8 — 2x over the interval [0, 4] and find c such that f(c) equals

the average value of the function over [0, 4].

Solution

The formula states the mean value of f(x) is given by

4
_1 _
5 /0 (8 — 2x)dx.

We can see in Figure 5.26 that the function represents a straight line and forms a right triangle bounded by the
x- and y-axes. The area of the triangle is A = %(base)(height). We have

A= %(4)(8) =16.
The average value is found by multiplying the area by 1/(4 — 0). Thus, the average value of the function is
116) =
4(16) =4.

Set the average value equal to f(c¢) and solve for c.

8 —2¢
c = 2

|
N

At c=2, f(2) =4.
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@ A0

-
t

fx) = 8 — 2x

9.4

14

1 9 1¢=23 a4 5 X
.4

Figure 5.26 By the Mean Value Theorem, the continuous
function f(x) takes on its average value at c at least once over

a closed interval.

@ 5.14 Find the average value of the function f(x) =% over the interval [0, 6] and find c such that f(c)

equals the average value of the function over [0, 6].

Example 5.16

Finding the Point Where a Function Takes on Its Average Value
3

Given / x*dx =9, find c such that f(c) equals the average value of f(x) = x% over [0, 3].
0

Solution

We are looking for the value of ¢ such that
3
—_1 2. _ 1oy —
fe) = 3_0f0x dx=19)=3.
Replacing f(c) with c¢?, we have

2 =3

+V3.

Since —\3 is outside the interval, take only the positive value. Thus, ¢ = V3 (Figure 5.27).
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f(x) = x?

Figure 5.27 Over the interval [0, 3], the function

fx) = %2 takes on its average value at ¢ = V3.

5.15 3, 2
Given / (2x - l)dx =15, find c such that f(c) equals the average value of f(x) =2x“—1 over
0

[0, 3].

Fundamental Theorem of Calculus Part 1: Integrals and
Antiderivatives

As mentioned earlier, the Fundamental Theorem of Calculus is an extremely powerful theorem that establishes the
relationship between differentiation and integration, and gives us a way to evaluate definite integrals without using Riemann
sums or calculating areas. The theorem is comprised of two parts, the first of which, the Fundamental Theorem of
Calculus, Part 1, is stated here. Part 1 establishes the relationship between differentiation and integration.

Theorem 5.4: Fundamental Theorem of Calculus, Part 1

If f(x) is continuous over an interval [a, b], and the function F(x) is defined by

F(x) = /a o (5.16)

then F'(x) = f(x) over [a, b].

Before we delve into the proof, a couple of subtleties are worth mentioning here. First, a comment on the notation. Note that
we have defined a function, F(x), as the definite integral of another function, f(¢), from the point a to the point x. At

first glance, this is confusing, because we have said several times that a definite integral is a number, and here it looks like
it’s a function. The key here is to notice that for any particular value of x, the definite integral is a number. So the function
F(x) returns a number (the value of the definite integral) for each value of x.
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Second, it is worth commenting on some of the key implications of this theorem. There is a reason it is called the
Fundamental Theorem of Calculus. Not only does it establish a relationship between integration and differentiation, but
also it guarantees that any integrable function has an antiderivative. Specifically, it guarantees that any continuous function
has an antiderivative.

Proof

Applying the definition of the derivative, we have

F(x+h) — F(x)

F'(@) = lim -

= lim h[ f f(t)dt— / f(t)dt]

= lim [ f f(t)dt+ f f(t)dt]

x+h
Looking carefully at this last expression, we see — / f(®)dt is just the average value of the function f(x) over the

interval [x, x + h]. Therefore, by The Mean Value Theorem for Integrals, there is some number c in [x, x + k] such
that

x+h
5 f@dx= g,

In addition, since c is between x and x + h, ¢ approaches x as h approaches zero. Also, since f(x) is continuous, we have

hlimo fo) = Cli_r}n xf (¢) = f(x). Putting all these pieces together, we have

x+h
F' (%) =h1iLnO% /x ’ F)dx
zhli—I}lof ©
= f(0),

and the proof is complete.

O

Example 5.17

Finding a Derivative with the Fundamental Theorem of Calculus

Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of

X
1
glx) = ] dt.
1

Solution
According to the Fundamental Theorem of Calculus, the derivative is given by
1

Ol

g )=
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,
@ 5.16 Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of g(r) = / Vx2 + 4dx.
0

Example 5.18

Using the Fundamental Theorem and the Chain Rule to Calculate Derivatives

Vx
Let F(x) = f sintdt. Find F’ (x).
1

Solution

u(x)

Letting u(x) = vx, wehave F(x) = f sintdt. Thus, by the Fundamental Theorem of Calculus and the chain
1

rule,

F'(x) = sin(u(x))%

= sin(u(x)) - (%x_ll 2)

_ sinvx

2vx

@ 5.17 P
Let F(x) = / costdt. Find F’ (x).
1

Example 5.19

Using the Fundamental Theorem of Calculus with Two Variable Limits of
Integration

2x
Let F(x) = f 3dr. Find F' (x).
X

Solution

2x
We have F(x) = / 13 dt. Both limits of integration are variable, so we need to split this into two integrals. We
X

get
2x
Fx) = [ ar
w =/
0 2x
3 3
= tdt + tdt
[rax [

X 2x
=—/ t3dt+f .
0 0
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Differentiating the first term, we obtain

dl sl .3
dx[fotdt]_ x°.

Differentiating the second term, we first let #(x) = 2x. Then,

d 2.7c3 d u(x)3
a[-/otdt] =Ef0 t”dt

_ 3du

= (u(x)) dx

=Q2x)°3-2

= 16x°.
Thus,

2x
, _dl_r's d 3
F' (x) _dx[ fot dt]+dx[/0 t dt]
=—x3+16x3
= 15x°.

@ 5.18 2
Let F(x) = f costdr. Find F’ (x).

X

Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem

The Fundamental Theorem of Calculus, Part 2, is perhaps the most important theorem in calculus. After tireless efforts
by mathematicians for approximately 500 years, new techniques emerged that provided scientists with the necessary tools
to explain many phenomena. Using calculus, astronomers could finally determine distances in space and map planetary
orbits. Everyday financial problems such as calculating marginal costs or predicting total profit could now be handled with
simplicity and accuracy. Engineers could calculate the bending strength of materials or the three-dimensional motion of
objects. Our view of the world was forever changed with calculus.

After finding approximate areas by adding the areas of n rectangles, the application of this theorem is straightforward by
comparison. It almost seems too simple that the area of an entire curved region can be calculated by just evaluating an
antiderivative at the first and last endpoints of an interval.

Theorem 5.5: The Fundamental Theorem of Calculus, Part 2

If f is continuous over the interval [a, b] and F(x) is any antiderivative of f(x), then

b (5.17)
fa f(x)dx = F(b) — F(a).

We often see the notation F (x)IZ to denote the expression F(b) — F(a). We use this vertical bar and associated limits a
and b to indicate that we should evaluate the function F(x) at the upper limit (in this case, b), and subtract the value of the

function F(x) evaluated at the lower limit (in this case, a).

The Fundamental Theorem of Calculus, Part 2 (also known as the evaluation theorem) states that if we can find an
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antiderivative for the integrand, then we can evaluate the definite integral by evaluating the antiderivative at the endpoints
of the interval and subtracting.

Proof

Let P = {x;},i=0, 1,...,n be aregular partition of [a, b]. Then, we can write

F(b) = F(a) = F(xp) — F(xq)
=[F(xp) = F(x, _ D]+ [F(x,,_ ) = F(x,, _ )]+ ... +[F(x)) = F(xp)]

n
= Z [F(xp) — F(x;_ ]
i=1
Now, we know F is an antiderivative of f over [a, b], so by the Mean Value Theorem (see The Mean Value Theorem)
for i=0, 1,...,n wecanfind ¢; in [x;_, x;] such that
F(xl) - F()Cl'_ 1) = F/ (Cl')(xi - .xl'_ l) = f(Cl)Ax
Then, substituting into the previous equation, we have

F(b) — F(a) = Z f(e)Ax.

i=1

Taking the limit of both sides as n — o0, we obtain

im0 fle)Ax

i=1

fa ’ Fx)dx.

F(b) - F(a)

O

Example 5.20

Evaluating an Integral with the Fundamental Theorem of Calculus

Use The Fundamental Theorem of Calculus, Part 2 to evaluate

2
2
t°—4)dt.
/7=
Solution
Recall the power rule for Antiderivatives:
_on n _ xn+1
Ify=x ,fx dx P +C

Use this rule to find the antiderivative of the function and then apply the theorem. We have
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Analysis

Notice that we did not include the “+ C” term when we wrote the antiderivative. The reason is that, according
to the Fundamental Theorem of Calculus, Part 2, any antiderivative works. So, for convenience, we chose the
antiderivative with C = 0. If we had chosen another antiderivative, the constant term would have canceled out.

This always happens when evaluating a definite integral.

The region of the area we just calculated is depicted in Figure 5.28. Note that the region between the curve
and the x-axis is all below the x-axis. Area is always positive, but a definite integral can still produce a negative
number (a net signed area). For example, if this were a profit function, a negative number indicates the company
is operating at a loss over the given interval.

B

fty="12—4

Figure 5.28 The evaluation of a definite integral can produce
a negative value, even though area is always positive.

Example 5.21

Evaluating a Definite Integral Using the Fundamental Theorem of Calculus, Part 2

Evaluate the following integral using the Fundamental Theorem of Calculus, Part 2:

9x -1
. de

Solution
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First, eliminate the radical by rewriting the integral using rational exponents. Then, separate the numerator terms
by writing each one over the denominator:

9 9
x_ldx—J (_x S )dx.
Jl 172 | x1/2 xl/2

Use the properties of exponents to simplify:
9

J‘l(ﬁ_ﬁ)d =/( 172 _ I/Z)dx

Now, integrate using the power rule:

/(1/2 X~ [; _i]

2 2
[(9)3/2 (9)1/2] [(1)3/2 (1)1/2]
Fd
_ 2 2
= § 27) - 2(3)]—[3(1) —2(1)]
=18—-6-— § +2
_ 40,
3
See Figure 5.29.
yi
sl fix) = X 'Xl

x¥

0 / g

Figure 5.29 The area under the curve from x =1 to x =9

can be calculated by evaluating a definite integral.

5.19 2
@ Use The Fundamental Theorem of Calculus, Part 2 to evaluate / x4dx.
1

A Roller-Skating Race

James and Kathy are racing on roller skates. They race along a long, straight track, and whoever has gone the
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farthest after 5 sec wins a prize. If James can skate at a velocity of f(¢#) =5 + 2¢ ft/sec and Kathy can skate at a

velocity of g(r) =10+ cos(%t) ft/sec, who is going to win the race?

Solution
We need to integrate both functions over the interval [0, 5] and see which value is bigger. For James, we want to

calculate
5
[ +20dr.
0
Using the power rule, we have

f5(5 +20dt = (5t+ t2)|(5)
0
— (25 +25) = 50.

Thus, James has skated 50 ft after 5 sec. Turning now to Kathy, we want to calculate
5
/ 10 + cos(ﬂt)dt.
0 2
I

We know sint is an antiderivative of cos?, so it is reasonable to expect that an antiderivative of cos(jt) would

involve sin(%t). However, when we differentiate sin(%t), we get %cos(%t) as a result of the chain rule, so we
have to account for this additional coefficient when we integrate. We obtain

/0 510 + cos(%t)dt = (IOt + %sin(%t))‘z
= (50 +2) - (0 - Zsin0)
~ 50.6.

Kathy has skated approximately 50.6 ft after 5 sec. Kathy wins, but not by much!

5.20 Suppose James and Kathy have a rematch, but this time the official stops the contest after only 3 sec.
Does this change the outcome?
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|

A Parachutist in Free Fall

—! ' =~

Figure 5.30 Skydivers can adjust the velocity of their dive by changing the position of their body during the
free fall. (credit: Jeremy T. Lock)

Julie is an avid skydiver. She has more than 300 jumps under her belt and has mastered the art of making adjustments
to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the
ground, she reaches a terminal velocity of approximately 120 mph (176 ft/sec). If, instead, she orients her body with
her head straight down, she falls faster, reaching a terminal velocity of 150 mph (220 ft/sec).

Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify
our calculations. Julie executes her jumps from an altitude of 12,500 ft. After she exits the aircraft, she immediately
starts falling at a velocity given by v(#) = 32¢. She continues to accelerate according to this velocity function until she

reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord
and slows down to land.

On her first jump of the day, Julie orients herself in the slower “belly down” position (terminal velocity is 176 ft/sec).
Using this information, answer the following questions.

1. How long after she exits the aircraft does Julie reach terminal velocity?

2. Based on your answer to question 1, set up an expression involving one or more integrals that represents the
distance Julie falls after 30 sec.

If Julie pulls her ripcord at an altitude of 3000 ft, how long does she spend in a free fall?

Julie pulls her ripcord at 3000 ft. It takes 5 sec for her parachute to open completely and for her to slow down,
during which time she falls another 400 ft. After her canopy is fully open, her speed is reduced to 16 ft/sec.
Find the total time Julie spends in the air, from the time she leaves the airplane until the time her feet touch the
ground.
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On Julie’s second jump of the day, she decides she wants to fall a little faster and orients herself in the “head
down” position. Her terminal velocity in this position is 220 ft/sec. Answer these questions based on this
velocity:

How long does it take Julie to reach terminal velocity in this case?

Before pulling her ripcord, Julie reorients her body in the “belly down” position so she is not moving quite as
fast when her parachute opens. If she begins this maneuver at an altitude of 4000 ft, how long does she spend
in a free fall before beginning the reorientation?

Some jumpers wear “ wingsuits” (see Figure 5.31). These suits have fabric panels between the arms and legs
and allow the wearer to glide around in a free fall, much like a flying squirrel. (Indeed, the suits are sometimes
called “flying squirrel suits.”) When wearing these suits, terminal velocity can be reduced to about 30 mph (44
ft/sec), allowing the wearers a much longer time in the air. Wingsuit flyers still use parachutes to land; although
the vertical velocities are within the margin of safety, horizontal velocities can exceed 70 mph, much too fast
to land safely.

Figure 5.31 The fabric panels on the arms and legs of a wingsuit work to reduce the vertical velocity of a
skydiver’s fall. (credit: Richard Schneider)

Answer the following question based on the velocity in a wingsuit.

7. 1If Julie dons a wingsuit before her third jump of the day, and she pulls her ripcord at an altitude of 3000 ft, how
long does she get to spend gliding around in the air?
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5.3 EXERCISES

144. Consider two athletes running at variable speeds
vy (#) and v, (#). The runners start and finish a race at

exactly the same time. Explain why the two runners must
be going the same speed at some point.

145. Two mountain climbers start their climb at base
camp, taking two different routes, one steeper than the
other, and arrive at the peak at exactly the same time. Is it
necessarily true that, at some point, both climbers increased
in altitude at the same rate?

146. To get on a certain toll road a driver has to take a
card that lists the mile entrance point. The card also has a
timestamp. When going to pay the toll at the exit, the driver
is surprised to receive a speeding ticket along with the toll.
Explain how this can happen.

X

147.  Set F(x)= f (1=0ndr. Find F'(2) and the
1

average value of F " over [1, 2].

In the following exercises, use the Fundamental Theorem
of Calculus, Part 1, to find each derivative.

d [,
148, 4L /1 e~ dt
d * CcoSt
149. 4L /1 eCO! gy
X
150. % V9 — yZdy
3

ds

X

: J
151, 4| —ds
dx 44 16—S2

2x
d
152, ix /x tdt

VX

d
153. dx/, tdt

i sinx )
154. dx/O V1 — t°dt

1
d _ 2
155. dxf V1 = r2dr

Cosx

VX

2
156. %J L dr
1 1+7¢
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157. ij

Vi
dx) T+

1

Inx
158. 4 [ “eldr
dx 0

X
d [ 0,2
159. a’x/l Inu” du

X
160. The graph of y = f f(®)dt, where fis a piecewise
0

constant function, is shown here.
y
al
3 4
24

14

0 1 2 5 4 & 6%

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

What are the maximum and minimum values of f?

c. What is the average value of f?

X
161. The graph of y = f f(®)dt, where fis a piecewise
0

constant function, is shown here.

y
21

14

gl

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

What are the maximum and minimum values of f?

c. What is the average value of f?
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X
162. The graph of y = / £(t)dt, where £ is a piecewise 169. [T] J%dx over [1, 4]
0 X

linear function, is shown here.

y In the following exercises, evaluate each definite integral
41 using the Fundamental Theorem of Calculus, Part 2.
31 2
2
2l 170. f_l(x — 3x)dx
14
[ (e ne-sp
0 — 171. x“+3x—5)dx
\1/ 2 3 4 5 6% )
—1+
3
a. Over which intervals is ¢ positive? Over which 172. f (t+2)(t—3)dt
intervals is it negative? Over which, if any, is it -2
zero?
b. Over which intervals is € increasing? Over which is 3 2 2
it decreasing? Over which, if any, is it constant? 173. f 5 (t B 9)(4 -t )dt

c. What is the average value of £?

2
X 9
163. The graph of y = f £(t)dt, where £ is a piecewise 174. fl x”dx
0

linear function, is shown here.

1
% 99
4 175. fo x7dx

14

) . 176. /8(4t5/2 -3r7)dr
4

1 W 5 6X
_1_.
4
—27 177. J (xz—%)dx
1/4 X

a. Over which intervals is £ positive? Over which
intervals is it negative? Over which, if any, is it 5

zero? o)
b. Over which intervals is ¢ increasing? Over which 178. _de

is it decreasing? Over which intervals, if any, is it 1
constant? A
. hat is thi lue of £?
c. What is the average value of £ 179, J L,
12vx

In the following exercises, use a calculator to estimate the

area under the curve by computing Tyo, the average of 4

the left- and right-endpoint Riemann sums using N = 10 180 J 2=ty
: 2

rectangles. Then, using the Fundamental Theorem of 1t
Calculus, Part 2, determine the exact area.

16
164. [T] y = x2 over [0, 4] 181. dr_

| t1/4
165. [T] y = x>+ 6x2+x—5 over [—4, 2]

2

/. T
182. cosf@do
166. [T] y = Vx3 over [0, 6] 0

2 7l2
167. [T] y = vx + x“ over [1, 9] 183. / sinfdo
0

168. [T] / (cosx — sinx)dx over [0, 7]
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/4
184. f sec?0do
0

/4
185. / sec@tand @
0

/4

186. f csclcotOdo
/3
/2

187. / csc20do
/4
2

188. J(l—l)dz
AV

In the following exercises, use the evaluation theorem to
express the integral as a function F(x).

X
190. / 2di
a

X

191. /1 el dt

X
192. / costdt
0

X
193. f sinzdt
—X

In the following exercises, identify the roots of the
integrand to remove absolute values, then evaluate using
the Fundamental Theorem of Calculus, Part 2.

3
194, Lxldx
-2
4
195. f |12 — 21 - 3|ar
-2

T
196. f |costldt
0

/2
197. f Isin|dz
/2
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198. Suppose that the number of hours of daylight on
a given day in Seattle is modeled by the function

—3.75005(%)+ 12.25, with t given in months and

t = 0 corresponding to the winter solstice.

a. What is the average number of daylight hours in a
year?

b. At which times ¢ and ), where
0<t;<ty<12, do the number of daylight

hours equal the average number?
c. Write an integral that expresses the total number of
daylight hours in Seattle between ¢ and ¢,.

d. Compute the mean hours of daylight in Seattle
between f; and f,, where 0 <1 <, <12,

and then between 7, and #;, and show that the

average of the two is equal to the average day
length.

199. Suppose the rate of gasoline consumption over the
course of a year in the United States can be modeled by a

sinusoidal function of the form (1 1.21 — cos(%t)) x 107

gal/mo.

a. What is the average monthly consumption, and for
which values of t is the rate at time ¢ equal to the
average rate?

b. What is the number of gallons of gasoline
consumed in the United States in a year?

c. Write an integral that expresses the average
monthly U.S. gas consumption during the part of
the year between the beginning of April (r = 3)

and the end of September (r = 9).

200. Explain why, if f is continuous over [a, b], there

is at least one ©point c¢€Ela, b] such that

b
flo=71 / f(@ydr.

201. Explain why, if fis continuous over [a, b] and is not

equal to a constant, there is at least one point M € [a, b]

b
such that f(M) = ﬁ f f(®)dt and at least one point
- a

b
m € la, b such that f(m) < blTa f f(dt.
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202. Kepler’s first law states that the planets move in
elliptical orbits with the Sun at one focus. The closest point
of a planetary orbit to the Sun is called the perihelion (for
Earth, it currently occurs around January 3) and the farthest
point is called the aphelion (for Earth, it currently occurs
around July 4). Kepler’s second law states that planets
sweep out equal areas of their elliptical orbits in equal
times. Thus, the two arcs indicated in the following figure
are swept out in equal times. At what time of year is Earth
moving fastest in its orbit? When is it moving slowest?

203. A point on an ellipse with major axis length 2a
and minor axis length 2b has the coordinates
(acos@, bsinf), 0 < 0 < 2r.

a. Show that the distance from this point to the focus
at (—¢,0) is d(@) =a+ccosf, where

c=Va% - b2
b. Use these coordinates to show that the average

distance d from a point on the ellipse to the focus
at (—c, 0), with respect to angle 6, is a.

204. As implied earlier, according to Kepler’s laws,
Earth’s orbit is an ellipse with the Sun at one focus. The
perihelion for Earth’s orbit around the Sun is 147,098,290
km and the aphelion is 152,098,232 km.

a. By placing the major axis along the x-axis, find the
average distance from Earth to the Sun.

b. The classic definition of an astronomical unit (AU)
is the distance from Earth to the Sun, and its value
was computed as the average of the perihelion and
aphelion distances. Is this definition justified?

205. The force of gravitational attraction between the Sun

and a planet is F(0) = G2171_M where m is the mass of the
r=(0)
planet, M is the mass of the Sun, G is a universal constant,

and r(0) is the distance between the Sun and the planet

when the planet is at an angle 6 with the major axis of its
orbit. Assuming that M, m, and the ellipse parameters a
and b (half-lengths of the major and minor axes) are given,
set up—but do not evaluate—an integral that expresses in
terms of G, m, M, a, b the average gravitational force

between the Sun and the planet.

565

206. The displacement from rest of a mass attached to
a spring satisfies the simple harmonic motion equation
x(t) = Acos(wt — ¢), where ¢ is a phase constant, w is

the angular frequency, and A is the amplitude. Find the
average velocity, the average speed (magnitude of
velocity), the average displacement, and the average
distance from rest (magnitude of displacement) of the
mass.
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5.4 | Integration Formulas and the Net Change Theorem

Learning Objectives

5.4.1 Apply the basic integration formulas.

5.4.2 Explain the significance of the net change theorem.
5.4.3 Use the net change theorem to solve applied problems.
5.4.4 Apply the integrals of odd and even functions.

In this section, we use some basic integration formulas studied previously to solve some key applied problems. It is
important to note that these formulas are presented in terms of indefinite integrals. Although definite and indefinite integrals
are closely related, there are some key differences to keep in mind. A definite integral is either a number (when the limits
of integration are constants) or a single function (when one or both of the limits of integration are variables). An indefinite
integral represents a family of functions, all of which differ by a constant. As you become more familiar with integration,
you will get a feel for when to use definite integrals and when to use indefinite integrals. You will naturally select the correct
approach for a given problem without thinking too much about it. However, until these concepts are cemented in your mind,
think carefully about whether you need a definite integral or an indefinite integral and make sure you are using the proper
notation based on your choice.

Basic Integration Formulas

Recall the integration formulas given in the table in Antiderivatives and the rule on properties of definite integrals. Let’s
look at a few examples of how to apply these rules.

Example 5.23

Integrating a Function Using the Power Rule
4

Use the power rule to integrate the function f Vi(1 + t)dt.
1

Solution

The first step is to rewrite the function and simplify it so we can apply the power rule:

4 4
/ VA + 1)dt =f 1201 + nydr
1 1

— /4(1‘1/2 + t3/2)dt.
1

Now apply the power rule:

f14(t1/2 +t3/2)d (% 32, 2, 5/2)|
[%(4)3/2 2(4)5/2] [2(1)3/2 2(1)5/2]

5

@' 5.21  Find the definite integral of f(x) = x> — 3x over the interval [1, 3].
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The Net Change Theorem

The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value
equals the initial value plus the integral of the rate of change of that quantity. The formula can be expressed in two ways.
The second is more familiar; it is simply the definite integral.

Theorem 5.6: Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

b (5.18)
F(b) = F(a) + f F'(x)dx

or

b
f F'(x)dx = F(b) — F(a).

Subtracting F(a) from both sides of the first equation yields the second equation. Since they are equivalent formulas, which
one we use depends on the application.

The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to
name only a few applications. Net change accounts for negative quantities automatically without having to write more than
one integral. To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement.

We looked at a simple example of this in The Definite Integral. Suppose a car is moving due north (the positive direction)
at 40 mph between 2 p.m. and 4 p.m., then the car moves south at 30 mph between 4 p.m. and 5 p.m. We can graph this
motion as shown in Figure 5.32.

vy
401

30+

20+

10+

0 : . |

—-10+

—204

—-30+

Figure 5.32 The graph shows speed versus time for the given
motion of a car.

Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled.
The net displacement is given by

5 4 5
f vdt = f 40d1 + J —30dt
2 2 4
=80 —30
= 50.

Thus, at 5 p.m. the car is 50 mi north of its starting position. The total distance traveled is given by
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5 4 3
f V()ldr = f 40dt+J 30dt
2 2
4
=80+30
= 110.

Therefore, between 2 p.m. and 5 p.m., the car traveled a total of 110 mi.

To summarize, net displacement may include both positive and negative values. In other words, the velocity function
accounts for both forward distance and backward distance. To find net displacement, integrate the velocity function over
the interval. Total distance traveled, on the other hand, is always positive. To find the total distance traveled by an object,
regardless of direction, we need to integrate the absolute value of the velocity function.

Example 5.24

Finding Net Displacement

Given a velocity function v(f) = 3¢ — 5 (in meters per second) for a particle in motion from time # = 0 to time

t =3, find the net displacement of the particle.

Solution
Applying the net change theorem, we have

3 2 3
/ Br=5)dr = % - 5t’

0 0
_[332 55 ]
= [ 5 53)|-0
=27 _
=5 15
—27_30

2 2
- _3
5
The net displacement is —% m (Figure 5.33).
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Figure 5.33 The graph shows velocity versus time for a
particle moving with a linear velocity function.

Example 5.25

Finding the Total Distance Traveled

Use Example 5.24 to find the total distance traveled by a particle according to the velocity function
v(t) = 3t — 5 m/sec over a time interval [0, 3].

Solution

The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the
absolute value of the velocity function to find the total distance traveled.

To continue with the example, use two integrals to find the total distance. First, find the t-intercept of the function,
since that is where the division of the interval occurs. Set the equation equal to zero and solve for t. Thus,

3t=5 =0
3t =5
= 32

t =3

The two subintervals are [O, %] and [%, 3]. To find the total distance traveled, integrate the absolute value of

the function. Since the function is negative over the interval [O, %], we have |[v(7)] = —v(?) over that interval.

Over [%, 3], the function is positive, so |v(¢)| = v(¢). Thus, we have
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3 5/3 3
/ Vv(0)|dt =J —v(t)dt + / v()dt
0 0 5/3

5/3 3
=f 5—3tdt+/ 3¢ — 5dt
0 5/3
5/3 3

_ 32 312
= (5“7)\0 * (T‘5f)\5/3

=25_25_.27_15_25.25
=3T3 %3
_41
6
So, the total distance traveled is 14 m.

= [36)- 25 o s[5

Chapter 5 | Integration

25
3

5.22 Find the net displacement and total distance traveled in meters given the velocity function

f(t) = %e’ — 2 over the interval [0, 2].

Applying the Net Change Theorem

The net change theorem can be applied to the flow and consumption of fluids, as shown in Example 5.26.

Example 5.26

How Many Gallons of Gasoline Are Consumed?

how much gasoline is used in the first hour?

Solution

The limits of integration are the endpoints of the interval [0, 1]. We have

1

/0 (5-F)ar = (5t - %)‘;

4
- [5(1) —%]—0

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

If the motor on a motorboat is started at # = 0 and the boat consumes gasoline at 5 — I gal/hr for the first hour,

Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus.
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Thus, the motorboat uses 4.75 gal of gas in 1 hour.

Example 5.27

Chapter Opener: Iceboats

Figure 5.34 (credit: modification of work by Carter Brown,
Flickr)

As we saw at the beginning of the chapter, top iceboat racers (Figure 5.1) can attain speeds of up to five times the
wind speed. Andrew is an intermediate iceboater, though, so he attains speeds equal to only twice the wind speed.
Suppose Andrew takes his iceboat out one morning when a light 5-mph breeze has been blowing all morning. As
Andrew gets his iceboat set up, though, the wind begins to pick up. During his first half hour of iceboating, the
wind speed increases according to the function v(#) = 207 + 5. For the second half hour of Andrew’s outing, the

wind remains steady at 15 mph. In other words, the wind speed is given by

20t + 5 for 05;5%

v(t) =

1
15 for2§t§1.

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he moves in a straight line away
from his starting point, how far is Andrew from his starting point after 1 hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then
1
Distance = / 2v(t)dt.
0

Substituting the expressions we were given for v(f), we get
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172

1 1
f 2v(t)dt 2(t)dt + f 2v(t)dt

0 Jo 12
~1/2 1
= | 2001 +5)dt+ f 2(15)dr

J 1/3

0
~1/2

1

= | @or+10)dr + / 30dt
Jo 172

[20¢% + 10¢] S+ o,

=(%+5)—0+(30—15)
= 25.

Andrew is 25 mi from his starting point after 1 hour.

@ 5.23 Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind
starts to die down according to the function v(#) = —10¢ + 15. In other words, the wind speed is given by

20t+5  for OStS%
1.

—10t+ 15 for %stg

w(t) =

Under these conditions, how far from his starting point is Andrew after 1 hour?

Integrating Even and Odd Functions
We saw in Functions and Graphs that an even function is a function in which f(—x) = f(x) for all x in the

domain—that is, the graph of the curve is unchanged when x is replaced with —x. The graphs of even functions are
symmetric about the y-axis. An odd function is one in which f(—x) = —f(x) for all x in the domain, and the graph of the

function is symmetric about the origin.

Integrals of even functions, when the limits of integration are from —a to a, involve two equal areas, because they are
symmetric about the y-axis. Integrals of odd functions, when the limits of integration are similarly [—a, a], evaluate to

zero because the areas above and below the x-axis are equal.

Rule: Integrals of Even and Odd Functions

For continuous even functions such that f(—x) = f(x),

J fx)dx =2 fo e,

—a

For continuous odd functions such that f(—x) = —f(x),

/_a f(x)dx = 0.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Example 5.28

Integrating an Even Function

Integrate the even function f (?)x8 - 2)dx and verify that the integration formula for even functions holds.
-2

Solution

The symmetry appears in the graphs in Figure 5.35. Graph (a) shows the region below the curve and above the
x-axis. We have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above
the curve and below the x-axis. The signed area of this region is negative. Both views illustrate the symmetry
about the y-axis of an even function. We have

To verify the integration formula for even functions, we can calculate the integral from 0 to 2 and double it, then
check to make sure we get the same answer.

2 9 2
8 =[x _
/0(3x —2)dx —(3 2x)
0
—512 _
=23 4
_ 500
3
Since 2 5:’,& = l%ﬂ we have verified the formula for even functions in this particular example.
y f(x) =3x8 — 2 yi f(x)=3x" -2
T ; o7 :
500} ! a4 :
e
i 24 i
2004 1]
_é -1 0 ZI X
t } - Jl el }
-2 -1 9 1 2x ‘. ‘.

(@ (b)
Figure 5.35 Graph (a) shows the positive area between the curve and the x-axis, whereas graph (b) shows the negative area
between the curve and the x-axis. Both views show the symmetry about the y-axis.
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Example 5.29

Integrating an Odd Function

Evaluate the definite integral of the odd function —5sinx over the interval [—z, 7].

Solution

The graph is shown in Figure 5.36. We can see the symmetry about the origin by the positive area above the
x-axis over [—z, 0], and the negative area below the x-axis over [0, 7]. We have

T

f —5sinxdx = —5(—cosx)|”
-7

= 5cosx|”
-7

= [Scosx] —[5cos(—mx)]

=-5-(-5)
=0.
Yi f(x) = 5si
4! (x) sin x
i 0 x
—54

Figure 5.36 The graph shows areas between a curve and the
x-axis for an odd function.

2

5.24 . 4
Integrate the function / x"dx.
=2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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5.4 EXERCISES

Use basic integration formulas to compute the following
antiderivatives or definite integrals.

207. f(ﬁ—% X

208. [(ezx - %exn)dx

209. [%
210. [%dx
X

T

211. f (sinx — cosx)dx
0

/2
212. f (x — sinx)dx
0

213. Write an integral that expresses the increase in the
perimeter P(s) of a square when its side length s increases

from 2 units to 4 units and evaluate the integral.

214. Write an integral that quantifies the change in the
area A(s)=s” of a square when the side length doubles

from S units to 2S units and evaluate the integral.

215. A regular N-gon (an N-sided polygon with sides that
have equal length s, such as a pentagon or hexagon) has
perimeter Ns. Write an integral that expresses the increase
in perimeter of a regular N-gon when the length of each side
increases from 1 unit to 2 units and evaluate the integral.

216. The area of a regular pentagon with side length
a> 0 is pa® with p :% 54 V5 4+ 2V5. The Pentagon in

Washington, DC, has inner sides of length 360 ft and outer
sides of length 920 ft. Write an integral to express the area
of the roof of the Pentagon according to these dimensions
and evaluate this area.

217. A dodecahedron is a Platonic solid with a surface that
consists of 12 pentagons, each of equal area. By how much
does the surface area of a dodecahedron increase as the side
length of each pentagon doubles from 1 unit to 2 units?

218. An icosahedron is a Platonic solid with a surface that
consists of 20 equilateral triangles. By how much does the
surface area of an icosahedron increase as the side length of
each triangle doubles from a unit to 2a units?

219. Write an integral that quantifies the change in the
area of the surface of a cube when its side length doubles
from s unit to 2s units and evaluate the integral.
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220. Write an integral that quantifies the increase in the
volume of a cube when the side length doubles from s unit
to 2s units and evaluate the integral.

221. Write an integral that quantifies the increase in the
surface area of a sphere as its radius doubles from R unit to
2R units and evaluate the integral.

222. Write an integral that quantifies the increase in the
volume of a sphere as its radius doubles from R unit to 2R
units and evaluate the integral.

223. Suppose that a particle moves along a straight line
with velocity v(f) =4 —2t, where 0 <7 <2 (in meters

per second). Find the displacement at time t and the total
distance traveled up to ¢ = 2.

224. Suppose that a particle moves along a straight line
with velocity defined by v(r) = t>=3t—18, where
0 <t < 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to ¢ = 6.

225. Suppose that a particle moves along a straight line
with velocity defined by v(f) =1|2t—6|, where

0 <t < 6 (in meters per second). Find the displacement at

time ¢t and the total distance traveled up to # = 6.

226. Suppose that a particle moves along a straight line
with acceleration defined by a(t)=t¢t—3, where

0 <t <6 (in meters per second). Find the velocity and

displacement at time ¢ and the total distance traveled up to
t =06 if v(0) =3 and d(0) = 0.

227. A ball is thrown upward from a height of 1.5 m at
an initial speed of 40 m/sec. Acceleration resulting from
gravity is —9.8 m/sec®. Neglecting air resistance, solve for
the velocity v(¢) and the height A(7) of the ball t seconds

after it is thrown and before it returns to the ground.

228. A ball is thrown upward from a height of 3 m at
an initial speed of 60 m/sec. Acceleration resulting from
gravity is —9.8 m/sec?. Neglecting air resistance, solve for
the velocity v(f) and the height A(f) of the ball t seconds

after it is thrown and before it returns to the ground.

229. The area A(f) of a circular shape is growing at a

constant rate. If the area increases from 4 units to 97 units
between times ¢ = 2 and ¢ = 3, find the net change in the

radius during that time.
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230. A spherical balloon is being inflated at a constant
rate. If the volume of the balloon changes from 36 in.> to
288m in.3 between time 7= 30 and 7= 60 seconds, find

the net change in the radius of the balloon during that time.

231. Water flows into a conical tank with cross-sectional
3
area mx® at height x and volume % up to height x. If

water flows into the tank at a rate of 1 m3min, find the
height of water in the tank after 5 min. Find the change in
height between 5 min and 10 min.

232. A horizontal cylindrical tank has cross-sectional area
Alx) = 4(6x - xz)m2 at height x meters above the bottom

when x < 3.

a. The volume V between heights a and b is
b

/ A(x)dx. Find the volume at heights between 2
a

m and 3 m.

b. Suppose that oil is being pumped into the tank
at a rate of 50 L/min. Using the chain rule,
dx _ dx dV
dt dV dt’
the height of oil in the tank changing, expressed in
terms of x, when the height is at x meters?

c. How long does it take to fill the tank to 3 m starting
from a fill level of 2 m?

at how many meters per minute is

Chapter 5 | Integration

233. The following table lists the electrical power in
gigawatts—the rate at which energy is consumed—used in
a certain city for different hours of the day, in a typical
24-hour period, with hour 1 corresponding to midnight to 1
a.m.

Hour Power Hour Power
1 28 13 48
2 25 14 49
3 24 15 49
4 23 16 50
5 24 17 50
6 27 18 50
7 29 19 46
8 32 20 43
9 34 21 42
10 39 22 40
11 42 23 37
12 46 24 34

Find the total amount of energy in gigawatt-hours (gW-h)
consumed by the city in a typical 24-hour period.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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234. The average residential electrical power use (in 235. The data in the following table are used to estimate
hundreds of watts) per hour is given in the following table. the average power output produced by Peter Sagan for each

Hour Power Hour Power of the last 18 sec of Stage 1 of the 2012 Tour de France.
Second Watts Second Watts
1 8 13 12
1 600 10 1200
2 6 14 13
2 500 11 1170
3 5 15 14
3 575 12 1125
4 4 16 15
4 1050 13 1100
5 5 17 17
5 925 14 1075
6 6 18 19
6 950 15 1000
7 7 19 18
7 1050 16 950
8 8 20 17
8 950 17 900
9 9 21 16
9 1100 18 780
10 10 22 16
Table 5.6 Average Power Output Source:
sportsexercisengineering.com
11 10 23 13 ) o )
Estimate the net energy used in kilojoules (kJ), noting that
1W =1 J/s, and the average power output by Sagan during
12 11 24 11 this time interval.

a. Compute the average total energy used in a day in
kilowatt-hours (kWh).

b. If a ton of coal generates 1842 kWh, how long does
it take for an average residence to burn a ton of
coal?

c. Explain why the data might fit a plot of the form

p(H)=115-75 sin(l%).
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236. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
15-min interval of Stage 1 of the 2012 Tour de France.

Minutes Watts Minutes Watts
15 200 165 170
30 180 180 220
45 190 195 140
60 230 210 225
75 240 225 170
90 210 240 210
105 210 255 200
120 220 270 220
135 210 285 250
150 150 300 400

Table 5.7 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules, noting that 1W

=117Js.

Chapter 5 | Integration

237. The distribution of incomes as of 2012 in the United
States in $5000 increments is given in the following table.
The kth row denotes the percentage of households with
incomes between $5000xk and 5000xk + 4999. The row
k =40 contains all households with income between
$200,000 and $250,000 and k =41 accounts for all
households with income exceeding $250,000.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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0 3.5 21 1.5
1 41 22 1.4
2 5.9 23 1.3
3 5.7 24 1.3
4 5.9 25 1.1
5 5.4 26 1.0
6 5.5 27 0.75
7 5.1 28 0.8
8 4.8 29 1.0
9 41 30 0.6
10 4.3 31 0.6
11 3.5 32 0.5
12 3.7 33 0.5
13 3.2 34 0.4
14 3.0 35 0.3
15 2.8 36 0.3
16 2.5 37 0.3
17 2.2 38 0.2
18 2.2 39 1.8

Table 5.8 Income

Distributions Source:

http:/lwww.census.gov/

prod/2013pubs/p60-245.pdf
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19 1.8 40 2.3

20 2.1 41

Table 5.8 Income
Distributions Source:
http:/lwww.census.gov/
prod/2013pubs/p60-245.pdf

a. Estimate the percentage of U.S. households in 2012
with incomes less than $55,000.

b. What percentage of households had incomes
exceeding $85,000?

c. Plot the data and try to fit its shape to that of a

graph of the form a(x + c)e_b(“'e) for suitable

a, b, c.

238. Newton’s law of gravity states that the gravitational
force exerted by an object of mass M and one of mass
m with centers that are separated by a distance r is

F= G%, with G an  empirical constant

G:6.67x10_11m3/(kg-s2). The work done by a

variable force over an interval [a, b] is defined as

b
W= f F(x)dx. If Earth has mass 5.97219 x 10%* and
a

radius 6371 km, compute the amount of work to elevate
a polar weather satellite of mass 1400 kg to its orbiting
altitude of 850 km above Earth.

239. For a given motor vehicle, the maximum achievable
deceleration from braking is approximately 7 m/sec? on dry
concrete. On wet asphalt, it is approximately 2.5 m/sec?.
Given that 1 mph corresponds to 0.447 m/sec, find the total
distance that a car travels in meters on dry concrete after the
brakes are applied until it comes to a complete stop if the
initial velocity is 67 mph (30 m/sec) or if the initial braking
velocity is 56 mph (25 m/sec). Find the corresponding
distances if the surface is slippery wet asphalt.

240. John is a 25-year old man who weighs 160 lb. He
burns 500 — 50¢ calories/hr while riding his bike for ¢
hours. If an oatmeal cookie has 55 cal and John eats 4t
cookies during the tth hour, how many net calories has he
lost after 3 hours riding his bike?

241. Sandra is a 25-year old woman who weighs 120
Ib. She burns 300 — 507 cal/hr while walking on her
treadmill. Her caloric intake from drinking Gatorade is 100t
calories during the tth hour. What is her net decrease in
calories after walking for 3 hours?
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242. A motor vehicle has a maximum efficiency of 33
mpg at a cruising speed of 40 mph. The efficiency drops at
arate of 0.1 mpg/mph between 40 mph and 50 mph, and at
a rate of 0.4 mpg/mph between 50 mph and 80 mph. What
is the efficiency in miles per gallon if the car is cruising at
50 mph? What is the efficiency in miles per gallon if the car
is cruising at 80 mph? If gasoline costs $3.50/gal, what is
the cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at
80 mph?

243. Although some engines are more efficient at given
a horsepower than others, on average, fuel efficiency
decreases with horsepower at a rate of 1/25 mpg/
horsepower. If a typical 50-horsepower engine has an
average fuel efficiency of 32 mpg, what is the average fuel
efficiency of an engine with the following horsepower: 150,
300, 450?

244. [T] The following table lists the 2013 schedule of
federal income tax versus taxable income.

Chapter 5 | Integration

245. [T] The following table provides hypothetical data
regarding the level of service for a certain highway.

Highway Vehicles per Density
Range
Speed Range Hour per .
(mph) Lane (vehicles/
P mi)
> 60 <600 <10
60-57 600-1000 10-20
57-54 1000-1500 20-30
54-46 1500-1900 3045
46-30 1900-2100 45-70
<30 Unstable 70-200
Table 5.10

a. Plot vehicles per hour per lane on the x-axis and
highway speed on the y-axis.

b. Compute the average decrease in speed (in miles
per hour) per unit increase in congestion (vehicles
per hour per lane) as the latter increases from 600 to
1000, from 1000 to 1500, and from 1500 to 2100.
Does the decrease in miles per hour depend linearly
on the increase in vehicles per hour per lane?

c. Plot minutes per mile (60 times the reciprocal of
miles per hour) as a function of vehicles per hour

Taxable Income The Tax Is -.. Of the
Range Amount
Over

$0-$8925 10% $0
$892.50 +

$8925-$36,250 15% $8925
$4,991.25 +

$36,250-$87,850 25% $36,250
$17,891.25

$87,850-$183,250 +28% $87,850
$44,603.25

$183,250-$398,350 +133% $183,250
$115,586.25

$398,350-$400,000 +35% $398,350
$116,163.75

> $400,000 +139 6% $400,000

per lane. Is this function linear?

For the next two exercises use the data in the following
table, which displays bald eagle populations from 1963 to
2000 in the continental United States.

Table 5.9 Federal Income Tax Versus Taxable
Income Source: http:/lwww.irs.govipublirs-prior/
i1040tt--2013.pdf.

Suppose that Steve just received a $10,000 raise. How
much of this raise is left after federal taxes if Steve’s salary
before receiving the raise was $40,000? If it was $90,000?
If it was $385,000?

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Population of Breeding Pairs of
Year
Bald Eagles
1963 487
1974 791
1981 1188
1986 1875
1992 3749
1996 5094
2000 6471

Table 5.11 Population of Breeding Bald Eagle
Pairs Source: http:/lwww.fws.goviMidwest/eagle/
population/chtofprs.html.

246. [T] The graph below plots the quadratic
p(t)=6.48t2—80.3 1+ 585.69 against the data in

preceding table, normalized so that # = 0 corresponds to

1963. Estimate the average number of bald eagles per year
present for the 37 years by computing the average value of
p over [0, 37].

y
7000 1 (37, 6471)
6000+
(33, 5094)

5000 +
10001 (29, 3749)
3000+
20004 (0 487) £ (23, 1875)
10004/ (11791 415 11g8)

L

0 5 10 15 20 25 30 35 40X
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247. [T] The graph below plots the cubic
p(t) = 0.0713 + 242> — 25.631 + 521.23

data in the preceding table, normalized so that =10

against the

corresponds to 1963. Estimate the average number of bald
eagles per year present for the 37 years by computing the
average value of p over [0, 37].

y
7000+
(37, 6471)

6000 1
(33, 5094)
5000 +

4000 4 (29, 3749)
3000 +

2000 +

(0, 487)

1000}/ (1.73)

Of 5 10 15 20 25 30 35 40X

248. [T] Suppose you go on a road trip and record your
speed at every half hour, as compiled in the following
table. The best quadratic fit to the data is
q(t) = 5x>— 11x+49, shown in the accompanying

graph. Integrate g to estimate the total distance driven over
the 3 hours.

Time (hr) Speed (mph)

0 (start) 50

1 40

2 50

3 60

Yi
65+

3,60

601 ( )
55+
5060 59 (2,50)

454

40+ e (1, 40)

>

0 05 1 15 2 25 3%

As a car accelerates, it does not accelerate at a constant
rate; rather, the acceleration is variable. For the following
exercises, use the following table, which contains the
acceleration measured at every second as a driver merges
onto a freeway.
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Time (sec) Acceleration (mph/sec)
1 11.2
2 10.6
3 8.1
4 54
5 0

249. [T] The accompanying graph plots the best quadratic
fit, a(r) = —0.701% + 1.441 + 10.44, to the data from the
preceding table. Compute the average value of a(f) to
estimate the average acceleration between ¢=0 and
t=>5.

Yi
12+

f 12 5453

(5,0
25 3 35 4 45 5X

0 05 1 15 2

250. [T] Using your acceleration equation from the
previous exercise, find the corresponding velocity
equation. Assuming the final velocity is 0 mph, find the
velocity at time ¢ = 0.

251. [T] Using your velocity equation from the previous
exercise, find the corresponding distance equation,
assuming your initial distance is 0 mi. How far did you
travel while you accelerated your car? (Hint: You will need
to convert time units.)
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252. [T] The number of hamburgers sold at a restaurant
throughout the day is given in the following table, with the
accompanying graph plotting the best cubic fit to the data,

b(f) = 0.1265 =213 + 12.13t +3.91, with =0

corresponding to 9 a.m. and ¢ = 12 corresponding to 9
p.m. Compute the average value of b(f) to estimate the

average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold
9 3

12 28

15 20

18 30

21 45

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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253. [T] An athlete runs by a motion detector, which
records her speed, as displayed in the following table. The
best linear fit to this data, Z(¢f) = —0.0687 + 5.14, is

shown in the accompanying graph. Use the average value
of £(f) between t=0 and ¢r=40 to estimate the

runner’s average speed.

Minutes Speed (m/sec)
0 5

10 4.8

20 3.6

30 3.0

40 2.5

0 5 10 15 20 25 30 35 40X
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5.5 | Substitution

Learning Objectives

5.5.1 Use substitution to evaluate indefinite integrals.
5.5.2 Use substitution to evaluate definite integrals.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback
of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we
examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us
find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that
is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to

3
see? We are looking for an integrand of the form f[g(x)]g’ (x)dx. For example, in the integral J (x2 - 3) 2xdx, we have
flx) = x3, gx) = X% - 3, and g'(x) = 2x. Then,

3
flele’ () = (x* = 3) @2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable u and part of the integrand
with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier
to work with for applying the integration rules.

Theorem 5.7: Substitution with Indefinite Integrals

Let u = g(x),, where g’(x) is continuous over an interval, let f(x) be continuous over the corresponding range of

g, and let F(x) be an antiderivative of f(x). Then,

f fleW®lg’ (xydx = f Fwdu (5.19)
=Fu)+C
= F(g(x))+ C.

Proof

Let f, g, u, and F be as specified in the theorem. Then
Lpg) =F (gl @
= fle@lg’ ().
Integrating both sides with respect to x, we see that
[ e’ (dx = Flg)+ C.
If we now substitute # = g(x), and du = g'(x)dx, we get
[Hewle’ wdx = [ fadu

=Fu)+C
= Flg()+ C.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Returning to the problem we looked at originally, we let u = x*—3 and then du = 2xdx. Rewrite the integral in terms of

u:
3

(x*=3) udx) = [u’du.
——

M du

Using the power rule for integrals, we have

4
Ju3du=”T+C.

Substitute the original expression for x back into the solution:

4
i (203)

L —+C.

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution

1. Look carefully at the integrand and select an expression g(x) within the integrand to set equal to u. Let’s select

g(x). such that g’ (x) is also part of the integrand.

2. Substitute u = g(x) and du = g’ (x)dx. into the integral.

3. We should now be able to evaluate the integral with respect to u. If the integral can’t be evaluated we need to

go back and select a different expression to use as u.
Evaluate the integral in terms of u.

Write the result in terms of x and the expression g(x).

Example 5.30

Using Substitution to Find an Antiderivative

4
Use substitution to find the antiderivative J6x(3x2 + 4) dx.

Solution

already have du in the integrand. Write the integral in terms of u:

J6x(3x2 + 4)4dx = /u4 du.

we can evaluate the integral with respect to u:

The first step is to choose an expression for u. We choose u = 3x2 4+ 4 because then du = 6xdx, and we

Remember that du is the derivative of the expression chosen for u, regardless of what is inside the integrand. Now
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5
4 _u
/u du ——5+C

( )
= 7
Anal YSiS

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand.
5
Picking a value for C of 1, we let y = %(3)62 + 4) + 1. We have
= 1322 +4 ’
y=53x + ) +1,
o

o= (L) + 4) 6
= 6x(3x% + 4)4.

This is exactly the expression we started with inside the integrand.

5.25 2
@ Use substitution to find the antiderivative Jsz (x3 — 3) dx.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are
substituting.

Example 5.31

Using Substitution with Alteration
Use substitution to find / 72 - 5dz.

Solution
5 172 9
Rewrite the integral as Jz(z - 5) dz. Let u=z"—5 and du =2zdz. Now we have a problem because

du = 2zdz and the original expression has only zdz. We have to alter our expression for du or the integral in

u will be twice as large as it should be. If we multiply both sides of the du equation by L e can solve this

2
problem. Thus,

u =z>-5
du =2zdz
1, =1 -
2du = 2(2Z)dz zdz.
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Write the integral in terms of u, but pull the L outside the integration symbol:

2

Jz(zz - 5)

172
_1/[ 12
dz = 2fu du.

Integrate the expression in u:

e - (5

(e

_ 131
—3u +C

5.26 9
@ Use substitution to find sz (x3 + 5) dx.

Example 5.32

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral [Ln;dt.

cos™ ¢

Solution
We know the derivative of cost is —sin#, so we set u = cost. Then du = —sintdt. Substituting into the

integral, we have

J sing_, _ _J@_
COS3I M3

Evaluating the integral, we get
—Jd—’; = —/u_3 du
u
— _(_1),-2
= ( 2)14 +C.

Putting the answer back in terms of t, we get

sint g =Ly
Jcos3t 2u?

=—L_+c
2cos“t
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5.27 - .
@ Use substitution to evaluate the integral C.O—S2tdt.
sin“ ¢

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a
constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we
are done, u should be the only variable in the integrand. In some cases, this means solving for the original variable in terms
of u. This technique should become clear in the next example.

Example 5.33

Finding an Antiderivative Using u-Substitution

Use substitution to find the antiderivative

X
dx.
Vx—lx

Solution
If welet u=x—1, then du = dx. But this does not account for the x in the numerator of the integrand. We

need to express x in terms of u. If u = x — 1, then x = u + 1. Now we can rewrite the integral in terms of u:

X _ fu+1
-/x—ldx =/ du

= fﬁ+%du
_ /(u1/2+u_”2)du.

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result.
Thus,

/(ul/2+u_1/2)du =%u3/2+2u1/2+c
=2x-DP+2x-D"+C
e \12[2,.
(-1 [3(x 1)+2]+c

= (- 1)1/2(%x—;+§)

37%3
== D"(2x+4)

=%(x— D2 x+2)+C.

@ 5.28  yse substitution to evaluate the indefinite integral / cos> tsint dt.

Substitution for Definite Integrals

Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a
change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.
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Theorem 5.8: Substitution with Definite Integrals

Let u = g(x) and let g/ be continuous over an interval [a, b], and let f be continuous over the range of u = g(x).
Then,

g(b)

b
J fleCg’ (dx = [ fwdu.

8@

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for
indefinite integrals, if F(x) is an antiderivative of f(x), we have

[ flgCog’ (x)dx = Flg(x)+ C.

Then
(5.20)

= Fig(b)) - Flg(a))

=g
= Fl, o

g(b)
=/ fwdu,

g(a)

and we have the desired result.

Example 5.34

Using Substitution to Evaluate a Definite Integral

1 5
Use substitution to evaluate J x2 (1 + 2x3) dx.
0

Solution

Let u=1+2x, so du=6x>dx. Since the original function includes one factor of x* and du = 6x2 dx,
multiply both sides of the du equation by 1/6. Then,

du = 6x’dx
1, _ 2
6du x“dx.

To adjust the limits of integration, note that when x=0,u=1+2(0)=1, and when
x=1,u=1+42(1) =3. Then

1 5 3
J x2(1+2x3) dx:%/ u du.
0 1

Evaluating this expression, we get
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5.29 0 5
@ Use substitution to evaluate the definite integral J y(2y2 — 3) dy.
-1

Example 5.35

Using Substitution with an Exponential Function

1 2
Use substitution to evaluate / xe¥ 3y

0

Solution

Let u = 4x> + 3. Then, du = 8xdx. To adjust the limits of integration, we note that when x =0, u =3, and

when x =1, u = 7. So our substitution gives

1 2 7
4x“+3 _1 u
_/Oxe dx —8f3€ du

5.30 3
Use substitution to evaluate l X cos( )d

Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of
integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before
we can apply substitution. Also, we have the option of replacing the original expression for u after we find the antiderivative,
which means that we do not have to change the limits of integration. These two approaches are shown in Example 5.36.

Example 5.36
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Using Substitution to Evaluate a Trigonometric Integral

/2
Use substitution to evaluate f cos26do.
0

Solution

allows us

Let us first use a trigonometric identity to rewrite the integral. The trig identity cos? 0 = HCZM

to rewrite the integral as

/O " 052 0d0 = J:/21+°—20529d9.
Then,
[T (L2 [+ Jeos2ahio

/2 /2
_1/" 1
=1 /O do+1 /O 0s20d0.

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let
u = 26. Then, du = 2d6, or %du = df. Also, when 8 =0, u =0, and when 6 = n/2, u = x. Expressing

the second integral in terms of u, we have

2 /2 /2 T
1 1 1 1(1
2J0 d0+2/0 c0s20d0 _2J0 d0+2(2)f0 cosudu
0=rnrl2 u=20
0 1.
=7 + sinu
2|9 0 4 u=0
— (T _ _ '
_(4 0)+(0 =2

501
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5.5 EXERCISES

254. Why is u-substitution referred to as change of
variable?

255. 2. If f=goh, when reversing the chain rule,
%(goh)(x) = g’ (h(x))h' (x), should you take u = g(x)

or u=h(x)?

In the following exercises, verify each identity using
differentiation. Then, using the indicated u-substitution,

identify f such that the integral takes the form f fwdu.

256.
/xw/x+ ldx =%(x+ D2@Bx=)+Ciu=x+1

257. For
2
. X _2 2 C
x>1.dex—15Vx—l(3x +4x+8)+C,u—x—1

258.

3/2
JxV4x2 +9dx = {47 +9) + Cu=4x+9

259. J4dx = %v4x2 +9+C,u= 4x2+9

V4x>+9

1 cu=4x>+9

260. — X  dx= - _—
J(4x2 +9)2 8(4x% +9)

In the following exercises, find the antiderivative using the
indicated substitution.

261. f(x+1)4dx;u=x+1
262. /(x—1)5dx;u=x—1
263. /(2x—3)_7dx;u=2x—3

264. /(3x— 2 My u=3x-2

X du=x>+1

265.
Jsz +1

X 2

266.
JVl —x?

dx,u=1-—x

Chapter 5 | Integration

267. J(x - 1)()62 - 2x)3 dx; u= x2 = 2x
268. J(xz - 2x)(x3 - 3x2)2 dx; u= x3 =3y

269. /cos39d6; u = sinf (Hint: cos?0 =1 — sin? )

270. fsin3 0dO; u = cos@ (Hint: sin2@=1-— 00520)

In the following exercises, use a suitable change of
variables to determine the indefinite integral.

271, [x(1—x)*dx

272. Jt(l—tz)lodt

273. f(llx—7)_3dx

274, [(x—1D*dx

275. [ cos® 0sin0do

276. [ sin” 6cos0do

277. / cos2 (zt)sin(zt)dt

278. f sinZxcos® xdx (Hint: sin®x + cos?x = 1)
279, [rsin(t)oos(t?)dr

200, [cos? (P in(e s

281. | —~——dx

[ 3
282. X dx

JV1 =42
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283. |—X—ay

99
284. / cosd(1 — cosO) sinfdo

285. /(1 — cos39)10c03293in9d9

3
286. J(cos& — 1)(cos29 — 200s6) sin0d6

287. J(sinZQ — 2sin6)(sin’ 0 — 3sin2¢9)3 cos0do

In the following exercises, use a calculator to estimate the
area under the curve using left Riemann sums with 50
terms, then use substitution to solve for the exact answer.

288. [T] y =3(1 —x)2 over [0, 2]
3
289. [T] y =x{1—x?) over [1, 2]

290. [T] y = sinx(1 — cosx)2 over [0, 7]

291. [T] y=—2—

( 5 )2 over [—1, 1]
x“+1

In the following exercises, use a change of variables to
evaluate the definite integral.

1
292. /x\/l—xzdx
0

o1

293. X dx
J O\/1 + x2
2
/2
294. 2dr
JoVS+1
.1
;2
295. dt
JV1+43

/4
296. f sec2@tanfdo
0

593

/4 .
297. J -sind g
o COS 0

In the following exercises, evaluate the indefinite integral

/ f(x)dx with constant C =0 using u-substitution.

Then, graph the function and the antiderivative over the
indicated interval. If possible, estimate a value of C that
would need to be added to the antiderivative to make it

X
equal to the definite integral F(x) = / f(®)dt, withathe
a

left endpoint of the given interval.

2
298. [T] f(2x+ De*” ¥~ 04x over [-3, 2]

200. [ [Ny on [0, 2]

2
300. [T] J%dx over [—1, 2]

X+ x“+x+4

sinx 1
301, [T] LOSSde over [ z 3]

2
302. [T] f (x+2)e ™ =M +3 4y over [-5, 1]

303. [T] f3x2 \/2x3 + 1dx over [0, 1]

b

304. If h(a) = h(b) in / g'(h(x))h(x)dx, what can you
a

say about the value of the integral?

305. Is the substitution u = 1 — x? in the definite integral
2

J L—dx okay? If not, why not?
ol —x

In the following exercises, use a change of variables to
show that each definite integral is equal to zero.

b3
306. f cos2 (20)sin(260)d0
0

%3

307. / tcos(tz)sin(t2)dt

0

1
308. f (1 = 20)dt
0
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o1
309. | —L1=2L<ar
(1+6-3)
Jo
ATl 3
310. sin[(z - %) Jcos(t - %)dt
0

2
311, / (1 = H)cos(zt)dt
0

3n/4
312. / sin® rcos tdt
74
313. Show that the average value of f(x) over an interval

la, b] is the same as the average value of f(cx) over the

interval [% %] for ¢ > 0.
314. Find the area under the graph of f(r) = %

(1+¢%)
between 1 =0 and t=x where ¢a>0 and a#1 is

fixed, and evaluate the limit as x — oo.

t
a

(=7

between t =0 and t =x, where 0<x<1 and a >0

315. Find the area under the graph of g(¢) =

is fixed. Evaluate the limitas x — 1.

316. The area of a semicircle of radius 1 can be expressed

1
as f V1 — x2dx. Use the substitution x = cost to
-1

express the area of a semicircle as the integral of a
trigonometric function. You do not need to compute the
integral.

317. The area of the top half of an ellipse with a major
axis that is the x-axis from x = a to a and with a minor

axis that is the y-axis from y = —b to b can be written

a
2
as J b 1—x—2dx. Use the substitution x = acos? to
a

—a
express this area in terms of an integral of a trigonometric
function. You do not need to compute the integral.
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318. [T] The following graph is of a function of the form
f(t) = asin(nt) + bsin(mt). Estimate the coefficients a

and b, and the frequency parameters n and m. Use these

V2
estimates to approximate f f(rdt.
0

Yi

3__

24

Ao/

0 ——f R R
z\z pr ,,3\]5&3_*7’1’ 24

1+ a2 \2 f2 42 \4

_2__

_3__

319. [T] The following graph is of a function of the form
f(x) = acos(nt) + bcos(mt). Estimate the coefficients a

and b and the frequency parameters n and m. Use these

Y/
estimates to approximate f f(ndt.
0
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5.6 | Integrals Involving Exponential and Logarithmic
Functions

Learning Objectives

5.6.1 Integrate functions involving exponential functions.
5.6.2 Integrate functions involving logarithmic functions.

Exponential and logarithmic functions are used to model population growth, cell growth, and financial growth, as well as
depreciation, radioactive decay, and resource consumption, to name only a few applications. In this section, we explore
integration involving exponential and logarithmic functions.

Integrals of Exponential Functions

The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential
function, y = e, is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.
/exdx = "+ C (5.21)

/axdx a L c
Ina

Example 5.37

Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function e™*.

Solution

Use substitution, setting u# = —x, and then du = —1dx. Multiply the du equation by —1, so you now have

—du = dx. Then,
fe_xdx = —fe”du

=-e"+C
=—e "+ C.

531 . g . . o 2 —2x3
Find the antiderivative of the function using substitution: x“e .

A common mistake when dealing with exponential expressions is treating the exponent on e the same way we treat
exponents in polynomial expressions. We cannot use the power rule for the exponent on e. This can be especially confusing
when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we
should always double-check to make sure we’re using the right rules for the functions we’re integrating.
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Example 5.38

Square Root of an Exponential Function

Find the antiderivative of the exponential function e*V1 + e,

Solution

First rewrite the problem using a rational exponent:
/exmdx = /ex(l + 92 dx.
Using substitution, choose u = 1+ e¢*.u =1+ ¢*. Then, du = ¢*dx. We have (Figure 5.37)
/ex(l +e92dx = /ullzdu.
Then

32
Jumdu W =232 = %(1 ey

32 3
3 -+
2 _/
fx) = ey

i A

Figure 5.37 The graph shows an exponential function times
the square root of an exponential function.

@ 5.32  Find the antiderivative of e*(3e* —2)2.

Example 5.39

Using Substitution with an Exponential Function
s . R 2 2:3
Use substitution to evaluate the indefinite integral f 3x“e™ dx.

Solution

Here we choose to let u equal the expression in the exponent on e. Let u = 2x3 and du = 6x%dx.. Again, du

is off by a constant multiplier; the original function contains a factor of 3x2, not 6x2. Multiply both sides of the
1

equation by 7 S0 that the integrand in u equals the integrand in x. Thus,

/3x262x3dx = %/e”du.
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Integrate the expression in u and then substitute the original expression in x back into the u integral:

1/ uy, 1 u _l2x3
2/edu—ze +C—2€ + C.

4
@ >.33 Evaluate the indefinite integral / 2x3 e dx.

As mentioned at the beginning of this section, exponential functions are used in many real-life applications. The number e is
often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although
the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s
look at an example in which integration of an exponential function solves a common business application.

A price—demand function tells us the relationship between the quantity of a product demanded and the price of the product.
In general, price decreases as quantity demanded increases. The marginal price—demand function is the derivative of the
price—demand function and it tells us how fast the price changes at a given level of production. These functions are used in
business to determine the price—elasticity of demand, and to help companies determine whether changing production levels
would be profitable.

Example 5.40

Finding a Price-Demand Equation

Find the price—-demand equation for a particular brand of toothpaste at a supermarket chain when the demand is
50 tubes per week at $2.35 per tube, given that the marginal price—demand function, p’(x), for x number of

tubes per week, is given as
p'(x) = —0.015¢7001x,

If the supermarket chain sells 100 tubes per week, what price should it set?

Solution

To find the price—demand equation, integrate the marginal price—demand function. First find the antiderivative,
then look at the particulars. Thus,

p(x) = f —0.015¢70:01x gy
=-0.015 f e =001y,

Using substitution, let # = —0.01x and du = —0.01dx. Then, divide both sides of the du equation by —0.01.

This gives
=0.015 [, u - u
—0.01J¢ du = I.Sfe du
=1.5e"+C
=1.5¢700x 4

The next step is to solve for C. We know that when the price is $2.35 per tube, the demand is 50 tubes per week.
This means
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p(50) = 1.5¢700160

= 2.35.

C

Now, just solve for C:

C =235-15¢79
=235-091
= 1.44.

Thus,
p(x) = 1.5¢7001x 4 1 44,

If the supermarket sells 100 tubes of toothpaste per week, the price would be

—0.01(100)

p(100) = 1.5¢ +1.44 =15¢"" +1.44 ~ 1.99.

The supermarket should charge $1.99 per tube if it is selling 100 tubes per week.

Example 5.41

Evaluating a Definite Integral Involving an Exponential Function
2

Evaluate the definite integral f e! ~¥dx.
1

Solution

Again, substitution is the method to use. Let u=1-x, so du=-1ldx or —du=dx. Then

/ el T¥dx=— / e"du. Next, change the limits of integration. Using the equation u = 1 —x, we have

u=1-(1)=0
u=1-Q2)=-1.

The integral then becomes

flzel_xdx =—f0_le”du
=/_Ole”du

= eu|(jl
- (e
=—141

See Figure 5.38.
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Figure 5.38 The indicated area can be calculated by
evaluating a definite integral using substitution.

5.34 2
@ Evaluate / e dx.
0

Example 5.42

Growth of Bacteria in a Culture

Suppose the rate of growth of bacteria in a Petri dish is given by ¢(f) = 3’, where t is given in hours and ¢(t)
is given in thousands of bacteria per hour. If a culture starts with 10,000 bacteria, find a function Q(¢) that gives

the number of bacteria in the Petri dish at any time t. How many bacteria are in the dish after 2 hours?

Solution
We have

= [3rgr = 3L
Q(t)—J3 dt_ln3+C.

Then, at t =0 we have Q(0) = 10 = ﬁ + C, so C=9.090 and we get

_ 3!
o = 3 +9.090.
Attime t =2, we have

2)= 32 4909
Q( )—m+ .
= 17.282.

After 2 hours, there are 17,282 bacteria in the dish.

5.35 From Example 5.42, suppose the bacteria grow at a rate of g(r) = 2’. Assume the culture still starts

with 10,000 bacteria. Find Q(¢f). How many bacteria are in the dish after 3 hours?
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Example 5.43

Fruit Fly Population Growth

0.02¢

Suppose a population of fruit flies increases at a rate of g(t) = 2e , in flies per day. If the initial population

of fruit flies is 100 flies, how many flies are in the population after 10 days?

Solution
Let G(¢) represent the number of flies in the population at time t. Applying the net change theorem, we have

10
G(10) = G(0) + / 20021 gy
0

10

=100+ |25

= 100 + [100e*%] (1)0

= 100 + 100¢%2 - 100
~ 122.

There are 122 flies in the population after 10 days.

0.01¢

5.36  Suppose the rate of growth of the fly population is given by g(r) = e , and the initial fly population

is 100 flies. How many flies are in the population after 15 days?

Example 5.44

Evaluating a Definite Integral Using Substitution

Evaluate the definite integral using substitution: j € _dx.

Solution

This problem requires some rewriting to simplify applying the properties. First, rewrite the exponent on e as a
power of x, then bring the x? in the denominator up to the numerator using a negative exponent. We have

2
1/x 2
Je dx=f e xZdx.
1

1x2

Let u = x_l, the exponent on e. Then

du =—-x"2dx
—du =x"2dx.

Bringing the negative sign outside the integral sign, the problem now reads
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Chapter 5 | Integration 601

Next, change the limits of integration:

Notice that now the limits begin with the larger number, meaning we must multiply by —1 and interchange the
limits. Thus,

172
—/ e'du = / e'du
1 1/2

nn
SN
|

N

2

5.37 )
@ Evaluate the definite integral using substitution: J %e“x dx.
X

Integrals Involving Logarithmic Functions

Integrating functions of the form f(x) = x7!

result in the absolute value of the natural log function, as shown in the
following rule. Integral formulas for other logarithmic functions, suchas f(x) = Inx and f(x) =log,x, are also included

in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.
fx_l dx = Inlx|+C (5.22)
flnxdx = xlnx—x+C=x(Inx—1)+C

= X —
/logaxdx = lrla(ln)c H+C

Example 5.45

Finding an Antiderivative Involving Inx

3

Find the antiderivative of the function = 10"
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Solution

First factor the 3 outside the integral symbol. Then use the u™" rule. Thus,

[P0t =3 ot

_ d

_3f7”

= 3lnlul+ C

=3Inlx — 101 + C, x # 10.

See Figure 5.39.

y

8_.

6+

At 3

f(_,() = —

51 x—10
L } T ] ;
= 0 20 30

a5

Figure 5.39 The domain of this function is x # 10.

@ 5.38  Find the antiderivative of 1 .
x+2

Example 5.46

Finding an Antiderivative of a Rational Function

3
Find the antiderivative of %
x4 3x

Solution

-1
This can be rewritten as J(Z)CS + 3x)(x4 + 3x2) dx. Use substitution. Let u=x*+ 3x2, then
du = 4x> + 6x. Alter du by factoring out the 2. Thus,

du = (4x3 + 6x)dx
2(2)(3 + 3x)dx
(2x3 + 3x)dx.

=
QU
<

Il

Rewrite the integrand in u:
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J(2x3 + 3x)(x4 + 3)62)_1 dx = %/u_ldu.

Then we have

1/ -1 =1
2/“ du —21n|u|+C

= %ln|x4 + 3x2| +C.

Example 5.47

Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function log, x.

Solution

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based
on this format, we have

=X -
/logzxdx = lnz(lnx D+ C.

@ 5.39 Find the antiderivative of logs; x.

Example 5.48 is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a
trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key
to a smooth integration.

Example 5.48

Evaluating a Definite Integral

/2

Find the definite integral of I —Sinx_ g,
o 1+cosx

Solution
We need substitution to evaluate this problem. Let u = 1 + cosx, , so du = —sinx dx. Rewrite the integral in
terms of u, changing the limits of integration as well. Thus,

u=1+cos(0)=2

u=1 +cos(%)= 1.




604 Chapter 5 | Integration

Then
2
Jﬂ/ sinx _ _ —/lu_ldu
o l+cosx 2
2
=/ uldu
1
= lnlull%
=[In2 —In1]
=In2.
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5.6 EXERCISES

In the following exercises, compute each indefinite
integral.

320, [e¥dx
321, [e™Hax
322. [2%dx
323 [37%dx
324, [SLdx
325, [%dx
326. J#dx

327. f Lax

In the following exercises, find each indefinite integral by
using appropriate substitutions.

328 [102ax

329. J dx_
x(Inx)

dx
330. J—xlnx (x> 1)

dx
331 Jxlnxln(lnx)

332. /tane do

COSX — xsinx
333, [eoskoxsinxgy

In(sinx)

335. f In(cos x)tan xdx

2
336. _/xe_x dx

605

3
337. x2e™ dx
338. f ¢S cos xdx
339. f @502 xdx

340. f eI dx

In(l —£)
341. Je dt
1-1¢

In the following exercises, verify by differentiation that

f Inxdx = x(Inx - 1) + C, then use appropriate

changes of variables to compute the integral.

342. f Inxdx (Hint: [lnxdx = % xln(xz)dx)
343. fx2ln2xdx
344. Jln—zxdx (Hint: Setu = 1)

X

345. f lnT;Cdx (Hint: Set u = vx.)

346. Write an integral to express the area under the graph

of y= % from t =1 to e* and evaluate the integral.

347. Write an integral to express the area under the graph
of y= ¢! between t =0 and 7= 1Inx, and evaluate the

integral.
In the following exercises, use appropriate substitutions

to express the trigonometric integrals in terms of
compositions with logarithms.

348. / tan(2x)dx

Jsin(3x) — cos(3x)
sin(3x) + cos(3x)

)
350. J&(x)dx

COS()CZ)

351. fxcsc(xz)dx
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/ In(cosx)tanx dx

353. f In(cscx)cot xdx

X —X
354. J%dx

et +e*

In the following exercises, evaluate the definite integral.

2
355. J L-i-x?)dx
3x+3x2+x

/4
356. f tanx dx

/3 .
SInX — COSX

357. J ;
0 sSinx + cosx

/2
358. / cscxdx
/6

TT)
359. f cotxdx
/4

In the following exercises, integrate using the indicated
substitution.

360. / lOod)c; u=x-—100

361. Jy+1dy,u—y+1

2
362. Jl_x3dx;u=3x—x3
3x—x

363. dex u = sinx — cosx
Sinx — cosx

364. feszI —eXdx; u=e*
365. Jln(x)—”(lnx)

dx; u =1Inx

In the following exercises, does the right-endpoint
approximation overestimate or underestimate the exact
area? Calculate the right endpoint estimate Rgy and solve
for the exact area.

366. [T] y =e* over [0, 1]

367. [T] y=e* over [0, 1]

Chapter 5 | Integration

368. [T] y =In(x) over [1, 2]
369. [Ty =—*+1— over [0, 1]
x“+2x+6

370. [T] y =2* over [—1, 0]

371. [T] y=-2"" over [0, 1]

In the following exercises, f(x) >0 for a < x < b. Find
the area under the graph of f(x) between the given values

a and b by integrating.

log o (%),
X

372, f(x)= ;a=10, b =100

loga ).\ _ 32, =64

373. f(x) =
374. f)=2"Ya=1,b=2

375. f(x)=2"%a=3,b=4

376. Find the area under the graph of the function

2
f(x) =xe ™ between x =0 and x = 5.

2
377. Compute the integral of f(x) = xe™* and find the
smallest value of N such that the area under the graph

fx) = xe_)62

most, 0.01.

between x =N and x=N+1 is, at
378. Find the limit, as N tends to infinity, of the area under

2
the graph of f(x) = xe™ between x =0 and x = 5.

379. Show that / dt _ / dt when 0 <a <b.
1/b

380. Suppose that f(x) > 0 for all x and that f and g are

ghnf

differentiable. Use the identity f$ =e and the chain

rule to find the derivative of f&.
381. Use the previous exercise to find the antiderivative of

3
h(x) = x*(1 +Inx) and evaluate / x*(1 + Inx)dx.
2

382. Show that if ¢ > 0,
ac to bc (0 < a < b) is the same as the integral of 1/x

then the integral of 1/x from

from a to b.

The following exercises are intended to derive the
fundamental properties of the natural log starting from the
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Ydt

definition In(x) = %> using properties of the definite
1

integral and making no further assumptions.

X
383. Use the identity In(x) = f % to derive the identity
1

1n(%) = —Inx.

xy
384. Use a change of variable in the integral / %dt to
1

show that Inxy = Inx + Iny for x, y > 0.

X
385. Use the identity Inx = / % to show that In(x)
1

is an increasing function of x on [0, o), and use the
previous exercises to show that the range of In(x) is
(—o0, 00). Without any further assumptions, conclude that

In(x) has an inverse function defined on (—o0, o).

386. Pretend, for the moment, that we do not know that

e* is the inverse function of In(x), but keep in mind

that In(x) has an inverse function defined on (—co, 00).
Call it E. Use the identity Inxy = Inx + Iny to deduce that
E(a+ b) = E(a)E(b) for any real numbers a, b.

387. Pretend, for the moment, that we do not know that

e” is the inverse function of Inx, but keep in mind that

Inx has an inverse function defined on (—oo0, oo). Call it
E. Show that E'(¢t) = E(¢).

X .
388. The sine integral, defined as S(x) = / %mdt is
0

an important quantity in engineering. Although it does not
have a simple closed formula, it is possible to estimate
its  behavior for large x. Show that for

1
k> 1,|SQxk) — S2alk + 1)) < %k + D

(Hint: sin(t + ) = —sint)

389. [T] The normal distribution in probability is given
2 2
1 —(x—w)*2c
b X) = ——€ ,
y px) e
deviation and p is the average. The standard normal
distribution in probability, pjg, corresponds  to

where o is the standard

u=0ando = 1. Compute the right endpoint estimates

1 22
Ro and R o, of J L= g,
10 100 . m

390. [T] Compute

RSO andeOO of J

5

the

1

2V

right endpoint

2
~(xr— D218
e(x ) .

607

estimates
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5.7 | Integrals Resulting in Inverse Trigonometric
Functions

Learning Objectives

5.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are
restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions
into account. Also in Derivatives, we developed formulas for derivatives of inverse trigonometric functions. The formulas
developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.
5.23
du__ _gp=lu 4 ¢ (5:23)

a2 — 2 lal

2.

du 1, .—1lu (5.24)
=—tan <+ +C

3.
5.25
—du - ety o

W2 — a2 lal lal
Proof

Let y = sin”! %. Then asiny = x. Now let’s use implicit differentiation. We obtain

A (4si - d

dx(aslny) = W

acosy% =1
a1
dx acosy-

For —% <y<Z cosy>0. Thus, applying the Pythagorean identity sinzy + coszy =1, we have

cosy =1\1- sin®y. This gives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 5 | Integration 609

1 _ 1
_ 1
a’ - a? sinzy
_ 1
a’—x?

Then for —a < x < a, and generalizing to u, we have

v[édu = sin_l(l) +C.

Va? — u? “

d

Example 5.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

dx

Evaluate the definite integral J >

oVl—x

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

-1
=sin " =—sin" 0
2

5.40 d
Find the antiderivative of |—%X——.
V1 - 16x2

Example 5.50

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral JL

V4 — 9x2‘
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Solution
Substitute u = 3x. Then du = 3dx and we have

J dx =LJ du
\/4—9)c2 3 \/4—u2

Applying the formula with a = 2, we obtain

J dx ZLJ du
Va—ox2  3JVa—u?

= Lgin~! (ﬂ) +C

3 2
= %sin_1 (32_x)+ C.

5.41
@ Find the indefinite integral using an inverse trigonometric function and substitution for J LZ
9—x

Example 5.51

Evaluating a Definite Integral

V312

Evaluate the definite integral J
o l—u

Solution
The format of the problem matches the inverse sine formula. Thus,

V312 4 e
—4u __ —gip u|
0 1 —u?

Il
||
12}
Z.
=

|
—
i
| S—
I
|y |
»
=.
=
|
~
=}
N—"
| S

Integrals Resulting in Other Inverse Trigonometric Functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out —1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.
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Example 5.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of J 1 2d)c.
1+4x

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse
trigonometric functions, the integrand looks similar to the formula for tan~!u+ C. So we use substitution,
letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

DI I T P _ Lian~!
2J1+u2du 2tan u+C 2tan 2x) + C.

@ 542 Use substitution to find the antiderivative JLZ
25+ 4x

Example 5.53

Applying the Integration Formulas

Find the antiderivative of j 1 2dx.
9+x

Solution
Apply the formula with a = 3. Then,

Jﬁ %tan_1 (1) +C.

@ 543 Find the antiderivative of JLZ
16 + x

Example 5.54

Evaluating a Definite Integral

V3
dx

Evaluate the definite integral j 5
NeYe) 1+x
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Solution
Use the formula for the inverse tangent. We have
V3
V3
J Lz = tan~! x|
Gl X V313
= [tan_1 (\/5)] - [tan_l (?)]
-z
6
@ 5.44 2
Evaluate the definite integral J dx 7
o4+ x
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5.7 EXERCISES

In the following exercises, evaluate each integral in terms
of an inverse trigonometric function.

32
391. _dx
0 1 —x2
12
392. _dx _
_ipl—x
1
393, | -4
J vgl -X
3
394. _dx _
J 1/@1 + X
2
dx
395. —
J, le\/x2 -1
213
396. _dx
IV = 1

In the following exercises, find each indefinite integral,
using appropriate substitutions.

397. dx

398. dx

399. |—dx
9+ x

400. [—4x

J25+ 16x
dx

401, |—dx
Jxl Vx2 -9

402.

dx
JixVax? - 16

613

403. Explain the
—cosTl'r+C= J dt

V1 -2

general, that cos™lt=—sin"1¢?

relationship

=sin"'t+C. Is it true, in

404. Explain the
-1 dt
sec” t+C= J—

V> — 1

T = —cse™ 142

relationship

= —csc ¢+ C. Is it true, in

general, that sec™

405. Explain what is wrong with the following integral:

2
J di
N1—72

406. Explain what is wrong with the following integral:
1

dr
J_lm\/z2 -1

In the following exercises, solve for the antiderivative / f

of fwith C =0,

the antiderivative over the given interval [a, b]. Identify a

then use a calculator to graph f and

value of C such that adding C to the antiderivative recovers

X
the definite integral F(x) = / f(0)dt.
a

407. [T] 1 dx over [—3, 3]
JV9 — 42

408. [T] |—2—dx over [~6, 6]
JO+x

409. [T] |—S95X_dx over [-6, 6]
J4 +sin“x

410. [T] exz dx over [—6, 6]
J14+e~*

In the following exercises, compute the antiderivative using
appropriate substitutions.

411. JSln_l tdt

V1 —¢2

dt
412. _—
J‘sin_1 A1 — 2
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(o 1

413, Mdt
J 1+ 4t
nttan_l(tz)

414. —4dt

1+¢

"sec_l(i)

415. | ———2L4r
JiuNi? —a
ntsec_l(tz)

416. —dt
J 2t =1

In the following exercises, use a calculator to graph the

antiderivative / f with C =0 over the given interval
la, bl. Approximate a value of C, if possible, such that
adding C to the antiderivative gives the same value as the

X
definite integral F(x) = f f(dt.
a

417. [T] 1

JxVx2 -4

dx over [2, 6]

1
418. [T] |rexa Z)de over [0, 6]
419, 1] [SIXEICOSD) 0 ouer [, 6]
1+ x“sin“x

[ e =*
420. [T] , —mdx over [0, 2]
421. [T] % over [0, 2]

Jx+ xIn“x

422. [T] |S_X over [—1, 1]

JV1 =2

In the following exercises, compute each integral using
appropriate substitutions.

~

t
423, | —&—dr

1—€2t

[ t
424. € 5t
J1+e”

425, dt

JA1 = 1n?¢

Chapter 5 | Integration

~

dt
426 ] t(l +1n?7)

-l
a7, |€0_QD
JV1 - 42
P
J 1 _ eZt

In the following exercises, compute each definite integral.

~1/2
tan(sin_1 t)
J 1—1t¢
~1/2
tan(cos_1 t)
Jig -t
~1/2
sin(tan_1 t)
431. —Zdt
1+1¢
~1/2
cos(tan_1 t)
432. —2dl‘
1+1¢
A
433. For A>0, compute I(A)= J Lz and
L+t
: 1
evaluate all)mool(A), the area under the graph of )

on [—oo, o0].

B
434. For 1 < B < o0, compute I(B) = J _dr and

(21

evaluate Blim I(B), the area under the graph of
— 00

1

N2 -1

435. Use the substitution u = V2 cotx and the identity

over [1, o0).

1+ cot?x =csc’x to evaluate J% (Hint:

1+cos“x

Multiply the top and bottom of the integrand by cse?x.)
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436. [T] Approximate the points at which the graphs of

2 202
f(x)=2x“—1 and g(x)= (1 +4x ) intersect to
four decimal places, and approximate the area between

their graphs to three decimal places.

437. 47.[T] Approximate the points at which the graphs
1

2 2 2
of f(x)=x"—1 and g(x) = (x + 1) intersect to four
decimal places, and approximate the area between their
graphs to three decimal places.

438 Use the following graph to prove that

8.
J V1 —tzdtzlx 1—x2+lsin_1x.
0 2 2

1-—x2

615
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CHAPTER 5 REVIEW

KEY TERMS

average value of a function (or f,.) the average value of a function on an interval can be found by calculating the
definite integral of the function and dividing that value by the length of the interval

change of variables the substitution of a variable, such as u, for an expression in the integrand

definite integral a primary operation of calculus; the area between the curve and the x-axis over a given interval is a
definite integral

fundamental theorem of calculus the theorem, central to the entire development of calculus, that establishes the
relationship between differentiation and integration

fundamental theorem of calculus, part 1 uses a definite integral to define an antiderivative of a function

fundamental theorem of calculus, part 2 (also, evaluation theorem) we can evaluate a definite integral by
evaluating the antiderivative of the integrand at the endpoints of the interval and subtracting

integrable function a function is integrable if the limit defining the integral exists; in other words, if the limit of the
Riemann sums as n goes to infinity exists

integrand the function to the right of the integration symbol; the integrand includes the function being integrated

integration by substitution a technique for integration that allows integration of functions that are the result of a
chain-rule derivative

left-endpoint approximation an approximation of the area under a curve computed by using the left endpoint of each
subinterval to calculate the height of the vertical sides of each rectangle

limits of integration these values appear near the top and bottom of the integral sign and define the interval over which
the function should be integrated

lower sum a sum obtained by using the minimum value of f(x) on each subinterval

mean value theorem for integrals guarantees that a point ¢ exists such that f(c) is equal to the average value of the

function

net change theorem if we know the rate of change of a quantity, the net change theorem says the future quantity is
equal to the initial quantity plus the integral of the rate of change of the quantity

net signhed area the area between a function and the x-axis such that the area below the x-axis is subtracted from the area
above the x-axis; the result is the same as the definite integral of the function

partition a set of points that divides an interval into subintervals
regular partition a partition in which the subintervals all have the same width
riemann sum ) L
an estimate of the area under the curve of the form A ~ Z S )Ax
i=1
right-endpoint approximation the right-endpoint approximation is an approximation of the area of the rectangles

under a curve using the right endpoint of each subinterval to construct the vertical sides of each rectangle

sigma nhotation (also, summation notation) the Greek letter sigma (X) indicates addition of the values; the values of the
index above and below the sigma indicate where to begin the summation and where to end it

total area total area between a function and the x-axis is calculated by adding the area above the x-axis and the area
below the x-axis; the result is the same as the definite integral of the absolute value of the function

upper sum a sum obtained by using the maximum value of f(x) on each subinterval

variable of integration indicates which variable you are integrating with respect to; if it is x, then the function in the
integrand is followed by dx
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KEY EQUATIONS

¢ Properties of Sigma Notation

n
ZC=I’£C

i=1

D=
2

I
. 9}
N
NQ

Il
—
Il
—

Il
—
Il
—_

'21 (@;+b;)= Zl a;+ .Zl b;
.Zl(ai_bi)= Z a;— Z b;
)

Vi

n
a; = ai+ Z a;
1 i=m+1

¢ Sums and Powers of Integers

Il
—_
Il

n
Yizt1424tp="01D
P 2
i=1
,-2=12+22+m+n2=n(n+1)6(2n+1)
i=1
" 3 (3,3 3 nlm+1)2

i=0

¢ Left-Endpoint Approximation

ArLy= f(xg)Ax+ f(xDAx+ - + f(x,_DAx = Z SO DAx
i=1

* Right-Endpoint Approximation

A% Ry = fx)AX + f(xo)Ax + - + f(xy)Ax = Z fx)Ax

i=1

¢ Definite Integral
b n
fa fdx = nlemiZI flet )Ax

¢ Properties of the Definite Integral

f fdx =0
fb ‘ F)dx = — /a ’ f)dx

b b b
/a [£(x) + g(0)ldx = /a Fo)dx + fa g(x)dx

b

b b
[f(x) — g(0)ldx = J F(x)dx — / g(x)dx

b b
f cf(x)dx =c f f(x) for constant ¢

/a ’ fo)dx = [a “odx + /L b F)dx

¢ Mean Value Theorem for Integrals

617
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If f(x) is continuous over an interval [a, b], then there is at least one point c¢ € [a, b] such that
b
1
c)=—— x)dx.
fO=512/ 1@

¢ Fundamental Theorem of Calculus Part 1

X
If f(x) is continuous over an interval [a, b], and the function F(x) is defined by F(x) = f f(t)dt, then
a

F'(x) = f(x).
¢ Fundamental Theorem of Calculus Part 2

b
If fis continuous over the interval [a, b] and F(x) is any antiderivative of f(x), then / fx)dx = F(b) — F(a).
a

¢ Net Change Theorem
b b
F(b) = F(a) + f F'(x)dx or / F'(x)dx = F(b) — F(a)

¢ Substitution with Indefinite Integrals

[ e’ (dx = [ fadu = Fu) + C = Flg(x) + C

¢ Substitution with Definite Integrals

b g(b)
J flewlg'@dx= [ fdu

g(a)
¢ Integrals of Exponential Functions
/ etdx=e"+C
Jax dx=-4"1¢C
Ina

¢ Integration Formulas Involving Logarithmic Functions
/x_l dx =1Inlx| + C

/lnxdx:xlnx—x+C=x(lnx—1)+C
- _X_ _
/loga xdx = lna(lnx H+C

¢ Integrals That Produce Inverse Trigonometric Functions

—du__ _ pl (W) 4 ¢
az _ uz (a)
. —achruz = %tan_1 W+c
n—d” = Loec (1) 4 ¢
Ju u2 _ a2 a (CZ)

KEY CONCEPTS

5.1 Approximating Areas

n
¢ The use of sigma (summation) notation of the form Z a; is useful for expressing long sums of values in compact
i=1

form.
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e For a continuous function defined over an interval [a, b], the process of dividing the interval into n equal parts,

extending a rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing
the areas yields an approximation of the area of that region.

¢ The width of each rectangle is Ax = b%a_

n
¢ Riemann sums are expressions of the form Z f(x;!‘ )Ax, and can be used to estimate the area under the curve
i=1
y = f(x). Left- and right-endpoint approximations are special kinds of Riemann sums where the values of {x;“ }
are chosen to be the left or right endpoints of the subintervals, respectively.
¢ Riemann sums allow for much flexibility in choosing the set of points {x;k } at which the function is evaluated,

often with an eye to obtaining a lower sum or an upper sum.

5.2 The Definite Integral
¢ The definite integral can be used to calculate net signed area, which is the area above the x-axis less the area below
the x-axis. Net signed area can be positive, negative, or zero.

e The component parts of the definite integral are the integrand, the variable of integration, and the limits of
integration.

¢ Continuous functions on a closed interval are integrable. Functions that are not continuous may still be integrable,
depending on the nature of the discontinuities.

¢ The properties of definite integrals can be used to evaluate integrals.
¢ The area under the curve of many functions can be calculated using geometric formulas.

¢ The average value of a function can be calculated using definite integrals.

5.3 The Fundamental Theorem of Calculus

¢ The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value ¢
such that f(c) equals the average value of the function. See The Mean Value Theorem for Integrals.

¢ The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See
Fundamental Theorem of Calculus, Part 1.

¢ The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an
antiderivative of its integrand. The total area under a curve can be found using this formula. See The
Fundamental Theorem of Calculus, Part 2.

5.4 Integration Formulas and the Net Change Theorem
¢ The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral
of the rate of change. Net change can be a positive number, a negative number, or zero.

¢ The area under an even function over a symmetric interval can be calculated by doubling the area over the positive
x-axis. For an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

5.5 Substitution

¢ Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative.
The term ‘substitution’ refers to changing variables or substituting the variable u and du for appropriate expressions
in the integrand.

¢ When using substitution for a definite integral, we also have to change the limits of integration.
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5.6 Integrals Involving Exponential and Logarithmic Functions
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¢ Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and

decay.

« Substitution is often used to evaluate integrals involving exponential functions or logarithms.

5.7 Integrals Resulting in Inverse Trigonometric Functions

¢ Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and
Logarithmic Functions lead directly to integration formulas involving inverse trigonometric functions.

¢ Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up
the correct format and make alterations as necessary to solve the problem.

¢ Substitution is often required to put the integrand in the correct form.

CHAPTER 5 REVIEW EXERCISES

True or False. Justify your answer with a proof or a
counterexample. Assume all functions f and g are

continuous over their domains.

439. If f(x) >0, f'(x) >0 for all x, then the right-

b
hand rule underestimates the integral / f(x). Use a graph
a

to justify your answer.
b ) b b
440. X)“dx = xX)dx x)dx
[ t@rax= [ f@adx | e

441. If f(x)<glx) for al x€la, b, then

fa "o < / o0,

442. All continuous functions have an antiderivative.

Evaluate the Riemann sums L, and R, for the following

functions over the specified interval. Compare your answer
with the exact answer, when possible, or use a calculator to
determine the answer.

443. y = 3x2 —2x+1 over [-1, 1]
444, y = ln(x2 + 1) over [0, e]

2

445. y = x“sinx over [0, x]

446. y = W+% over [1, 4]

Evaluate the following integrals.

447. fl (x3 P 4x)dx
-1

4
448. J 3ty
0

V1 + 612

/2
449. 2sec(20)tan(26)d6

/3
/4 2

450. / €% “sinxcosxdx
0

Find the antiderivative.

451. J%
(x+4)

452. / xln(xz)dx

2
453. Jde
1 —x°

2x
454, Je Tdx
1+

Find the derivative.

t
455. dij _sinx ;.
! 0 l+x2
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3
d [ _p2
456. dxfl V4 — 12dr

In(x)

d_ t
457. < fl (41 + e\t
CosX 9
458, 4L e!"dt
dx 0

The following problems consider the historic average cost
per gigabyte of RAM on a computer.

Year 5-Year Change ($)
1980 0

1985 -5,468,750

1990 —755,495

1995 —-73,005

2000 —29,768

2005 -918

2010 =177

459. If the average cost per gigabyte of RAM in 2010 is
$12, find the average cost per gigabyte of RAM in 1980.

460. The average cost per gigabyte of RAM can be
approximated by the function

C(7) = 8, 500, 000(0.65)’, where ¢ is measured in years
since 1980, and C is cost in US$. Find the average cost per
gigabyte of RAM for 1980 to 2010.

461. Find the average cost of 1GB RAM for 2005 to
2010.

462. The velocity of a bullet from a rifle can be
approximated by v(r) = 640012 — 6505t + 2686, where
t is seconds after the shot and v is the velocity measured

in feet per second. This equation only models the velocity
for the first half-second after the shot: 0 <t < 0.5. What

is the total distance the bullet travels in 0.5 sec?

621

463. What is the average velocity of the bullet for the first
half-second?
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6 | APPLICATIONS OF
INTEGRATION

=shis A ), «
Figure 6.1 Hoover Dam is one of the United States’ iconic landmarks, and provides irrigation and hydroelectric power for
millions of people in the southwest United States. (credit: modification of work by Lynn Betts, Wikimedia)

Chapter Outline
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6.5 Physical Applications
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6.7 Integrals, Exponential Functions, and Logarithms
6.8 Exponential Growth and Decay

6.9 Calculus of the Hyperbolic Functions
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Introduction

The Hoover Dam is an engineering marvel. When Lake Mead, the reservoir behind the dam, is full, the dam withstands a
great deal of force. However, water levels in the lake vary considerably as a result of droughts and varying water demands.
Later in this chapter, we use definite integrals to calculate the force exerted on the dam when the reservoir is full and we
examine how changing water levels affect that force (see Example 6.28).

Hydrostatic force is only one of the many applications of definite integrals we explore in this chapter. From geometric
applications such as surface area and volume, to physical applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and model the world around us.

6.1 | Areas between Curves

Learning Objectives

6.1.1 Determine the area of a region between two curves by integrating with respect to the
independent variable.

6.1.2 Find the area of a compound region.

6.1.3 Determine the area of a region between two curves by integrating with respect to the
dependent variable.

In Introduction to Integration, we developed the concept of the definite integral to calculate the area below a curve on
a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the
area between two curves that are functions of x, beginning with the simple case in which one function value is always

greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the
area between two curves that are functions of y.

Area of a Region between Two Curves

Let f(x) and g(x) be continuous functions over an interval [a, b] such that f(x) > g(x) on [a, b]. We want to find the
area between the graphs of the functions, as shown in the following figure.

yi
f(x)

g(x)

a b X
Figure 6.2 The area between the graphs of two functions,
f(x) and g(x), on theinterval [a, b].

As we did before, we are going to partition the interval on the x-axis and approximate the area between the graphs
of the functions with rectangles. So, for i =0, 1, 2,..., n, let P = {x;} be a regular partition of [a, b] Then, for

i=1,2,..,n, chooseapoint xf € [x;_, x;], and on each interval [x;_, x;] construct a rectangle that extends

vertically from g(x¥ ) to f(x¥ ). Figure 6.3(a) shows the rectangles when x¥ is selected to be the left endpoint of the
interval and n = 10. Figure 6.3(b) shows a representative rectangle in detail.

Use this calculator (http://lwww.openstax.org/l/20_CurveCalc) to learn more about the areas between two
curves.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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yi

glxi)—=

g(x)

xY

a b

@) (b)
Figure 6.3 (a)We can approximate the area between the
graphs of two functions, f(x) and g(x), with rectangles. (b)

The area of a typical rectangle goes from one curve to the other.

The height of each individual rectangle is f(x* ) — g(x¥ ) and the width of each rectangle is Ax. Adding the areas of all

the rectangles, we see that the area between the curves is approximated by
n
Ax Z [f(x;-" ) — g(x¥ )]Ax.
i=1
This is a Riemann sum, so we take the limit as # — oo and we get
n
i=1

b
A= lim D (1) - g )]Ax = [ [£) - gokdx.

These findings are summarized in the following theorem.

Theorem 6.1: Finding the Area between Two Curves

Let f(x) and g(x) be continuous functions such that f(x) > g(x) over an interval [a, b]. Let R denote the region
bounded above by the graph of f(x), below by the graph of g(x), and on the left and right by the lines x = a and
x = b, respectively. Then, the area of R is given by

b (6.1)
A= [ 700 - gk

We apply this theorem in the following example.

Example 6.1

Finding the Area of a Region between Two Curves 1

If R is the region bounded above by the graph of the function f(x) = x+4 and below by the graph of the

function g(x) =3 —% over the interval [1, 4], find the area of region R.

Solution

The region is depicted in the following figure.
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1 0
—14

Figure 6.4 A region between two curves is shown where one
curve is always greater than the other.

We have
-/ 110 - sk
= [ o= -3k = [ B 1
[ o-D-

The area of the region is % units?.

@ 6.1 If R is the region bounded by the graphs of the functions f(x) = % +5 and g(x) =x +% over the

interval [1, 5], find the area of region R.

In Example 6.1, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define
our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Example 6.2

Finding the Area of a Region between Two Curves 2

If R is the region bounded above by the graph of the function f(x) =9 — ()5/2)2 and below by the graph of the

function g(x) = 6 — x, find the area of region R.
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Solution

The region is depicted in the following figure.

—104

Figure 6.5 This graph shows the region below the graph of
f(x) and above the graph of g(x).

We first need to compute where the graphs of the functions intersect. Setting f(x) = g(x), we get

f(xg = gx)
_ (X — _
9 (2) = 6-x
9_x 6
e
36 —x% = 24 —4x
¥ —4x—12 = 0

x=-6)(x+2) = 0.

The graphs of the functions intersect when x =6 or x = —2, so we want to integrate from —2 to 6. Since
f(x) > g(x) for =2 < x £ 6, we obtain

b
A = [ [10) - gtoux

S Jp- -6-ope= -l

3 2
_ X X _ 64
= [3x —12+—2]‘_2——3 .

The area of the region is 64/3 units?.

6.2 If R is the region bounded above by the graph of the function f(x) = x and below by the graph of the

function g(x) = x*, find the area of region R.
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Areas of Compound Regions

So far, we have required f(x) > g(x) over the entire interval of interest, but what if we want to look at regions bounded by

the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute
value function.

Theorem 6.2: Finding the Area of a Region between Curves That Cross

Let f(x) and g(x) be continuous functions over an interval [a, b]. Let R denote the region between the graphs of
f(x) and g(x), and be bounded on the left and right by the lines x = @ and x = b, respectively. Then, the area of
R is given by

b
A= [ 170 - g@lax.

In practice, applying this theorem requires us to break up the interval [a, b] and evaluate several integrals, depending on

which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 6.3
Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions f(x) = sinx and g(x) = cos x over the interval [0, x],

find the area of region R.

Solution

The region is depicted in the following figure.

Yi
21
- f{x) = sin x
_2I’.I'T T TX
¢ 1A 1
T g(x)=cosx
oy

Figure 6.6 The region between two curves can be broken into
two sub-regions.

The graphs of the functions intersect at x = z/4. For x € [0, /4], cosx >sinx, so
|f(x) — g(x)| = |sin x — cos x| = cos x — sin x.

On the other hand, for x € [#/4, x], sinx > cosx, so
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|f(x) — g(x)| = [sin x — cos x| = sin x — cos x.

Then

b
A = [ 1o - gl

b4 /4 V1
= / |sin x — cos x|dx = / (cos x — sin x)dx + f (sinx — cos x)dx
0 0 /4

= [sin x + cos x] |6/4 + [~cos x —sinx] |7,

=(2-D+(1+12)=22.

The area of the region is 22 units?.

@ 6.3 If R is the region between the graphs of the functions f(x) = sinx and g(x) = cosx over the interval
[#/2, 2x], find the area of region R.

Example 6.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 6.7. Find the area of R.

yi
44
i‘
]
1
-1

gx)=2—x
Figure 6.7 Two integrals are required to calculate the area of
this region.

Solution

As with Example 6.3, we need to divide the interval into two pieces. The graphs of the functions intersect at
x =1 (set f(x) = g(x) and solve for x), so we evaluate two separate integrals: one over the interval [0, 1] and

one over the interval [1, 2].

Over the interval [0, 1], the region is bounded above by f(x) = x2 and below by the x-axis, so we have

1 3
Alzfoxzdxzx?

1
3

Over the interval [1, 2], the region is bounded above by g(x) = 2 — x and below by the x-axis, so we have
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2 2112 1
A2=/1(2—x)dx=[2x—x7i”1=§.

Adding these areas together, we obtain

A=A1+A2= +

[=){[9))

w|.—
=

The area of the region is 5/6 units?.

@ 6.4 Consider the region depicted in the following figure. Find the area of R.
Y
at

Regions Defined with Respect to y

In Example 6.4, we had to evaluate two separate integrals to calculate the area of the region. However, there is another
approach that requires only one integral. What if we treat the curves as functions of y, instead of as functions of x?

Review Figure 6.7. Note that the left graph, shown in red, is represented by the function y = f(x) = x%. We could just

as easily solve this for x and represent the curve by the function x = v(y) =+/y. (Note that x = —/y is also a valid

representation of the function y = f(x) = x2

as a function of y. However, based on the graph, it is clear we are interested
in the positive square root.) Similarly, the right graph is represented by the function y = g(x) =2 — x, but could just as
easily be represented by the function x = u(y) = 2 — y. When the graphs are represented as functions of y, we see the
region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if
we integrate with respect to y, we need to evaluate one integral only. Let’s develop a formula for this type of integration.

Let u(y) and v(y) be continuous functions over an interval [c, d] such that u(y) > v(y) for all y € [c, d]. We want to

find the area between the graphs of the functions, as shown in the following figure.

Yi

Figure 6.8 We can find the area between the graphs of two
functions, u(y) and v(y).
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This time, we are going to partition the interval on the y-axis and use horizontal rectangles to approximate the area between
the functions. So, for i =0, 1, 2,..., n, let Q = {y;} be aregular partition of [c, d]. Then, for i =1, 2,..., n, choose
apoint y¥ € [y;_q, y;l, thenover each interval [y;_;, y;] construct a rectangle that extends horizontally from v(y’ik )
to u(y’l!< ) Figure 6.9(a) shows the rectangles when y* is selected to be the lower endpoint of the interval and n = 10.

Figure 6.9(b) shows a representative rectangle in detail.

yi
Ay
d 4
C -
/ - V{yf} ur\yr]
(@) (b)

Figure 6.9 (a) Approximating the area between the graphs of
two functions, u(y) and v(y), with rectangles. (b) The area of

a typical rectangle.

The height of each individual rectangle is Ay and the width of each rectangle is u(y* )— v(y¥ ). Therefore, the area

between the curves is approximately
n
Ar 2 ulyy )=t Ay
i=1

This is a Riemann sum, so we take the limit as n» — oo, obtaining
n d
A= tim D [ulyt )= Ay = [ Tue) = vy

These findings are summarized in the following theorem.

Theorem 6.3: Finding the Area between Two Curves, Integrating along the y-axis

Let u(y) and v(y) be continuous functions such that u(y) > v(y) forall y € [c, d]. Let R denote the region bounded
on the right by the graph of u(y), on the left by the graph of v(y), and above and below by the lines y = d and

y = ¢, respectively. Then, the area of R is given by

d (6.2)
A= [ ) = vy

Example 6.5

Integrating with Respect to y
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Let’s revisit Example 6.4, only this time let’s integrate with respect to y. Let R be the region depicted in
Figure 6.10. Find the area of R by integrating with respect to y.

Yi
4l
i

gx)=2—x
Figure 6.10 The area of region R can be calculated using

one integral only when the curves are treated as functions of y.

Solution

We must first express the graphs as functions of y. As we saw at the beginning of this section, the curve on
the left can be represented by the function x = v(y) = +/y, and the curve on the right can be represented by the
function x = u(y) =2 —y.

Now we have to determine the limits of integration. The region is bounded below by the x-axis, so the lower limit
of integration is y = 0. The upper limit of integration is determined by the point where the two graphs intersect,

which is the point (1, 1), so the upper limit of integration is y = 1. Thus, we have [c, d] = [0, 1].

Calculating the area of the region, we get
d

A = [ TuG) = vy
c

1

! 2
= fo[(Z—Y)—W]dy = [Zy_%_%yz/z] .

=5

6

The area of the region is 5/6 units?.

6.5 Let’s revisit the checkpoint associated with Example 6.4, only this time, let’s integrate with respect to
y. Let R be the region depicted in the following figure. Find the area of R by integrating with respect to y.
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6.1 EXERCISES

For the following exercises, determine the area of the 4., y=cosf and y=0.5, for 0<0<r

region between the two curves in the given figure by Y4 #6) = cos 6
integrating over the x-axis. v
- \ g(x) =05
1. y=x2—3andy=1 o \
o S/ 1% a4
: ) -05+
_1__

For the following exercises, determine the area of the
region between the two curves by integrating over the

i h ;
s -axis.
—4 2 Q y
5 x= y2 andx =9
— 54
yi
47 2
X —:
2. y=x2andy=3x+4 2l z
x=29
Yi
20 0 : } . } -
4 2 4 6 8 |10¥
15+ -2+
_4__
/ x) = x2 6 _ 2
. y=xandx=Yy
4 -# 0 YA
/Z/_5 4 2t
y=X
15+
For the following exercises, split the region between the i 5
two curves into two smaller regions, then determine the x=Y
area by integrating over the x-axis. Note that you will 05+
have two integrals to solve. 0 o
3 5 05 1 15 2%
3. y=x"and y=x"+x -0.5+
—14

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis.

7. y=)c2 andy = —x>+18x

8. y=%,y=%, andx =3
X

2

9. y=cosx and y=cos“x on x = [—x, 7]

10. y=ex,y=e2x_l, andx =0

1. y=e", y=e , x=—landx=1
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X

12. y=e,y=¢", andy=¢"

13. y=lxlandy = x?

For the following exercises, graph the equations and shade
the area of the region between the curves. If necessary,
break the region into sub-regions to determine its entire
area.

14. y =sin(zx), y =2x, andx > 0

15. y=12—-x,y=+vx, andy =1

16. y=sinx and y = cosx over x = [—z, 7]
17. y=x3 andy =x%—2x over x = [-1, 1]
18. y=x2+9andy=10+2x over x = [—1, 3]
19. y=x3+3xandy=4x

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the y-axis.

20. )czy3 andx=3y—2

21. x=2yandx=y3—y

22. x:—3+yzandx=y—y2

23. y2=xandx=y+2

24. x=|yland 2x = —y2+2

25. x=siny, x =cos(2y), y=n/2, andy = —x/2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis or y-axis, whichever
seems more convenient.

26. x= y4andx = y5

27. y=xe*,y=e ,x=0, andx=1
28. y= x(’andy =x*
29. x=y3+2y2+1andx=—y2+1

30. y=|x|andy=x2—l

Chapter 6 | Applications of Integration

3. y=4-3xandy=1
32. y=sinx, x = —7/6, x = 7/6, and y = cos’ x

33. y=x2—3x+2andy=x3—2x2—x+2

34. y=2c0s’(3x), y ==, x=%, andx= -

&N

35. y+y3 =xand2y =x

36. y= l—xzandy=x2—1

1 1

37. y=cos x,y=sin_ x,x=-—1, andx=1

For the following exercises, find the exact area of the
region bounded by the given equations if possible. If you
are unable to determine the intersection points analytically,
use a calculator to approximate the intersection points with
three decimal places and determine the approximate area of
the region.

38. [Tl x=¢’andy=x-2
39. [T]y=x2andy=\/1—x2
40. [T] y =3x>+8x+9and3y =x+24

41. [T] x = \/4—y2andy2: 1+x2

42. [T] x> = y3 and x = 3y

43. [T]
y= sin3x+2, y=tanx, x=—15, andx=1.5

44, [T] y=1V1 —xzandyzzx2
45. [Tl y = Vl—xzandy=x2+2x+1

46. [T] x=4—y?andx=1+3y+y2

47. [Tl y=cosx,y=e", x=—-n, andx=0
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48. The largest triangle with a base on the x-axis that
fits inside the upper half of the unit circle y2 +x2=1
isgivenby y=1+x and y =1 —x. See the following
figure. What is the area inside the semicircle but outside the
triangle?

y
15+

—-15+1

49. A factory selling cell phones has a marginal cost
function C(x) = 0.01x% - 3x + 229, where x represents

the number of cell phones, and a marginal revenue function
given by R(x) =429 — 2x. Find the area between the

graphs of these curves and x = 0. What does this area
represent?

50. An amusement park has a marginal cost function
C(x) = 1000e ™ +5, where x represents the number

of tickets sold, and a marginal revenue function given by
R(x) =60 — 0.1x. Find the total profit generated when

selling 550
intersection points, if necessary, to two decimal places.

tickets. Use a calculator to determine

51. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function H(¢) = 1 — cos((n?)/2)
whereas the speed of the tortoise is
T@) = (1/2)tan_1 (t/4), where t is time measured in
hours and the speed is measured in miles per hour. Find the
area between the curves from time ¢ = 0 to the first time

after one hour when the tortoise and hare are traveling at
the same speed. What does it represent? Use a calculator to
determine the intersection points, if necessary, accurate to
three decimal places.

52. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function
H(t) = (1/2) — (1/2)cos(2xt) whereas the speed of the

tortoise is T'(f) = V¢, where ¢ is time measured in hours
and speed is measured in kilometers per hour. If the race is
overin 1 hour, who won the race and by how much? Use a

calculator to determine the intersection points, if necessary,
accurate to three decimal places.

For the following exercises, find the area between the
curves by integrating with respect to x and then with

respect to y. Is one method easier than the other? Do you

635

obtain the same answer?
53. y=x2+2x+1andy= —x2—3x+4

54. y:x4andx=y5

55. x=y2—2andx=2y

For the following exercises, solve using calculus, then
check your answer with geometry.

56. Determine the equations for the sides of the square

that touches the unit circle on all four sides, as seen in the

following figure. Find the area between the perimeter of

this square and the unit circle. Is there another way to solve
this without using calculus?

y

15+

-15-1-05 0 05 J 15%
—0.5+

57. Find the area between the perimeter of the unit circle
and the triangle created from y =2x+ 1, y=1—2x and

y= — % as seen in the following figure. Is there a way
to solve this without using calculus?
Yy
15+
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6.2 | Determining Volumes by Slicing

Learning Objectives

6.2.1 Determine the volume of a solid by integrating a cross-section (the slicing method).
6.2.2 Find the volume of a solid of revolution using the disk method.
6.2.3 Find the volume of a solid of revolution with a cavity using the washer method.

In the preceding section, we used definite integrals to find the area between two curves. In this section, we use definite
integrals to find volumes of three-dimensional solids. We consider three approaches—slicing, disks, and washers—for
finding these volumes, depending on the characteristics of the solid.

Volume and the Slicing Method

Just as area is the numerical measure of a two-dimensional region, volume is the numerical measure of a three-dimensional
solid. Most of us have computed volumes of solids by using basic geometric formulas. The volume of a rectangular solid,
for example, can be computed by multiplying length, width, and height: V = Iwh. The formulas for the volume of a sphere

(V = %ﬂr3), a cone (V = %ﬂr2 h), and a pyramid (V = %Ah) have also been introduced. Although some of these

formulas were derived using geometry alone, all these formulas can be obtained by using integration.

We can also calculate the volume of a cylinder. Although most of us think of a cylinder as having a circular base, such as
a soup can or a metal rod, in mathematics the word cylinder has a more general meaning. To discuss cylinders in this more
general context, we first need to define some vocabulary.

We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid
that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder.
Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in Figure 6.11 is an example
of a cylinder with a noncircular base. To calculate the volume of a cylinder, then, we simply multiply the area of the cross-

section by the height of the cylinder: V = A - h. In the case of a right circular cylinder (soup can), this becomes V = xr*h.

Three-dimensional cylinder Two-dimensional cross section
Figure 6.11 Each cross-section of a particular cylinder is identical to the others.

If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for
its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid
into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be
parallel to one another, and when we put all the slices together, we should get the whole solid. Consider, for example, the
solid S shown in Figure 6.12, extending along the x-axis.
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Figure 6.12 A solid with a varying cross-section.

We want to divide § into slices perpendicular to the x-axis. As we see later in the chapter, there may be times when we

want to slice the solid in some other direction—say, with slices perpendicular to the y-axis. The decision of which way to
slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter,
we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of
this section, however, we use slices perpendicular to the x-axis.

Because the cross-sectional area is not constant, we let A(x) represent the area of the cross-section at point x. Now let
P= {xo, X1y Xn} be aregular partition of [a, b], andfor i =1, 2,...n, let §; represent the slice of § stretching from

X; _1to x;. The following figure shows the sliced solid with n = 3.

y

Figure 6.13 The solid S has been divided into three slices
perpendicular to the x-axis.

Finally, for i = 1, 2,...n, let x§ be an arbitrary point in [x; _, x;]. Then the volume of slice S; can be estimated by
V(S;) ~ A(x’l?‘ )Ax. Adding these approximations together, we see the volume of the entire solid S can be approximated by
n
V)~ ) Ak )Ax.
i=1
By now, we can recognize this as a Riemann sum, and our next step is to take the limit as n — co. Then we have

n b
V(S) = lim_ Y At JAx= [A®dx.
i=1 a
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The technique we have just described is called the slicing method. To apply it, we use the following strategy.

Problem-Solving Strategy: Finding Volumes by the Slicing Method

1. Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture
if one is not provided.

2. Determine a formula for the area of the cross-section.

3. Integrate the area formula over the appropriate interval to get the volume.

Recall that in this section, we assume the slices are perpendicular to the x-axis. Therefore, the area formula is in terms of
x and the limits of integration lie on the x-axis. However, the problem-solving strategy shown here is valid regardless of
how we choose to slice the solid.

Example 6.6

Deriving the Formula for the Volume of a Pyramid

1

We know from geometry that the formula for the volume of a pyramid is V = §Ah. If the pyramid has a square
base, this becomes V = %azh, where a denotes the length of one side of the base. We are going to use the

slicing method to derive this formula.

Solution

We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid
shown in Figure 6.14, oriented along the x-axis.

Yi Yi

Y

\

(@) (b)
Figure 6.14 (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the
pyramid is seen from the side.

We first want to determine the shape of a cross-section of the pyramid. We know the base is a square, so the
cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-
sectional squares. Looking at Figure 6.14(b), and using a proportion, since these are similar triangles, we have

S _Xgrg= aX

a h h’

Therefore, the area of one of the cross-sectional squares is
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2

Ax) = s> = (%) (step 2).

Then we find the volume of the pyramid by integrating from Oto A (step 3):

h
v = [A@adx
0

This is the formula we were looking for.

@ 6.6  Use the slicing method to derive the formula V = %ﬂ"‘zh for the volume of a circular cone.

Solids of Revolution

639

If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution, as shown in

the following figure.
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Aregion in the
Xy-plane

x¥

@)

The region is
revolved around
the x-axis, ...

(b)

... producing a
solid of revolution

(©)
Figure 6.15 (a) This is the region that is revolved around the x-axis.
(b) As the region begins to revolve around the axis, it sweeps out a
solid of revolution. (c) This is the solid that results when the
revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest
of this section looking at solids of this type. The next example uses the slicing method to calculate the volume of a solid of

revolution.

@ Use an online integral calculator (http://lwww.openstax.org/l/20_IntCalc2) to learn more.
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Example 6.7

Using the Slicing Method to find the Volume of a Solid of Revolution

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of
flx) = X2 —dx + 5, x=1, andx =4, and rotated about the x-axis.

Solution
Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval [1, 4] as

shown in the following figure.

YA fo) =x2-4x + 5

A /

-1 9 1 2 3 4 5 6%
_1__

Figure 6.16 A region used to produce a solid of revolution.

Next, revolve the region around the x-axis, as shown in the following figure.

Yi fX)=x-4x+5 ¥2_4x + 5
J
|
|
|
|
! - - ——tt - -
5 6% -1 0 4 5 6%
_1__ |
|
_2__ | —2—— |
|
| |
-3¢ | -3¢ '.
-4 \ -4
\
gl 54
—gl 64+
@) (b)

Figure 6.17 Two views, (a) and (b), of the solid of revolution produced by revolving the region
in Figure 6.16 about the x-axis.
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Since the solid was formed by revolving the region around the x-axis, the cross-sections are circles (step 1).
The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by f(x). Use the

formula for the area of the circle:
2
A(x) = zr? = alf(0)] = (x> — 4x+5) (step 2).

The volume, then, is (step 3)

vV = 7A(x)dx

4 2 4
2 4 3 2
= —4x+5) dx= —8x” +26x° —40x + 25
L 7r(x X ) X ﬂ"/‘1 (x X X X )dx
.X'S 2 4 26X3 20 2 25 ! 78
n-(? —2X + T — X + x) 1 ?ﬂ:_

The volume is 787x/5.

6.7 Use the method of slicing to find the volume of the solid of revolution formed by revolving the region
between the graph of the function f(x) = 1/x and the x-axis over the interval [1, 2] around the x-axis. See

the following figure.

@) (b)

The Disk Method

When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of
revolution, the slices used to over approximate the volume of the solid are disks. To see this, consider the solid of revolution

generated by revolving the region between the graph of the function f(x) = (x — 1)2+ 1 and the x-axis over the interval
[—1, 3] around the x-axis. The graph of the function and a representative disk are shown in Figure 6.18(a) and (b). The

region of revolution and the resulting solid are shown in Figure 6.18(c) and (d).
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A thin rectangle
under a curve...

...produces a disk
when revolved
about the x-axis.

-3 -2 -1 9 1 2 3 4 é} -3 -2 -1 0 1 ol 3 4 é;
-1 -14 .
—2- —2&
-3 -3+
44 —44
-5 —54
(a) (b)

g i |

The area under
the curve..

...produces a solid
of revolution when
revolved about the
X-axis.

4 5% 4 s5X
_2 n & [ Th = .
-3 b ,3 _
I L
-41 | &
W \
-5 V-s

(© (d)
Figure 6.18 (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by
revolving the rectangle about the x-axis. (c) The region under the curve is revolved about the x-axis, resulting in

(d) the solid of revolution.

We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We
know that

V= fa bA(x)dx.

The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the
area of a circle. This gives the following rule.

Rule: The Disk Method

Let f(x) be continuous and nonnegative. Define R as the region bounded above by the graph of f(x), below by the
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x-axis, on the left by the line x = @, and on the right by the line x = b. Then, the volume of the solid of revolution

formed by revolving R around the x-axis is given by

b 6.3
V= f Jt[f(x)]zdx. (6.3)

The volume of the solid we have been studying (Figure 6.18) is given by

vV = fa bﬂ[f(x)]zdx
’ 24T ’ 4 2
= [ de-n?+ 1l de=xf [@-1*+ 20— D7+ 1

= ﬂ[%(x— D +2(x-1)? +x]’: = [(35—2+13—6+ 3)- (—35—2 16 1)] = 4122 yies?.

Let’s look at some examples.

Example 6.8

Using the Disk Method to Find the Volume of a Solid of Revolution 1

Use the disk method to find the volume of the solid of revolution generated by rotating the region between the
graph of f(x) = vx and the x-axis over the interval [1, 4] around the x-axis.

Solution

The graphs of the function and the solid of revolution are shown in the following figure.

Yi Yi

y.g af
31 f(x) = Jx
2.4
14

_1__
5 -5
-3 =3
= —44
@) (b)

Figure 6.19 (a) The function f(x) = vx over the interval [1, 4]. (b) The solid of revolution

obtained by revolving the region under the graph of f(x) about the x-axis.

We have
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b

v = [ dfoPdx

= ffﬂ[ﬁ] Zdx = ﬂf14x dx

The volume is (157)/2 units>.

6.8 Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of f(x) = V4 — x and the x-axis over the interval [0, 4] around the x-axis.

So far, our examples have all concerned regions revolved around the x-axis, but we can generate a solid of revolution by

revolving a plane region around any horizontal or vertical line. In the next example, we look at a solid of revolution that has
been generated by revolving a region around the y-axis. The mechanics of the disk method are nearly the same as when

the x-axis is the axis of revolution, but we express the function in terms of y and we integrate with respect to y as well.

This is summarized in the following rule.

Rule: The Disk Method for Solids of Revolution around the y-axis

Let g(y) be continuous and nonnegative. Define O as the region bounded on the right by the graph of g(y), on the
left by the y-axis, below by the line y = ¢, and above by the line y = d. Then, the volume of the solid of revolution

formed by revolving O around the y-axis is given by

d (6.4)
V= fc g dy.

The next example shows how this rule works in practice.

Example 6.9

Using the Disk Method to Find the Volume of a Solid of Revolution 2

Let R be the region bounded by the graph of g(y) =44 —y and the y-axis over the y-axis interval [0, 4].

Use the disk method to find the volume of the solid of revolution generated by rotating R around the y-axis.

Solution

Figure 6.20 shows the function and a representative disk that can be used to estimate the volume. Notice that
since we are revolving the function around the y-axis, the disks are horizontal, rather than vertical.
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A _V

3 4
—21 —5.1
—gl —34
-4} —4+
@) (b)

Figure 6.20 (a) Shown is a thin rectangle between the curve of the function g(y) =y4 —y

and the y-axis. (b) The rectangle forms a representative disk after revolution around the y-axis.

The region to be revolved and the full solid of revolution are depicted in the following figure.

Yi

(@) (b)
Figure 6.21 (a) The region to the left of the function g(y) = Y4 — y over the y-axis interval

[0, 4]. (b) The solid of revolution formed by revolving the region about the y-axis.

To find the volume, we integrate with respect to y. We obtain

d
v = [ gy

4 4
=foﬂ[v4—y2dy=ﬂf0(4—y)dy

5 4
=ﬂ[4y—y7] o= 8.
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The volume is 87 units®.

6.9 Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of g(y) =y and the y-axis over the interval [1, 4] around the y-axis.

The Washer Method

Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes,
this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities
arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen
is when an axis of revolution other than the x-axis or y-axis is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers
(disks with holes in the center). For example, consider the region bounded above by the graph of the function f(x) = vx
and below by the graph of the function g(x) = 1 over the interval [1, 4]. When this region is revolved around the x-axis,

the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative
washer are shown in Figure 6.22(a) and (b). The region of revolution and the resulting solid are shown in Figure 6.22(c)
and (d).
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A thin rectangle in the ...produces a washer when

41 region between two curves... 4+ revolved around the x-axis.
3t (%) = Jx 3t
2+ 2+
. glx) =1 .
1 9 1 2 3 4 5 6% 1 9 1 2 (34 5 6%
= -1+ 1
2] il
-3 -34
_4 4 _4__
@ (b)
When the region between ...it produces a solid of
Vi two curves is revolved Vi revolution with a cavity.
41 about the x-axis... 4+
3+ 3+
24 24
/ t t / —t—t
-1 9 1 2 3 4 5 6% -1 0 g a0l 5 6%
_1__ }_ |
-2 -21
-34 —3d
-4 4 —44
© (d)

Figure 6.22 (a) A thin rectangle in the region between two curves. (b) A
representative disk formed by revolving the rectangle about the x-axis. (c) The region

between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,
AX) = 7(v0)? = m(1)? = 7(x — 1).

Then the volume of the solid is

vV = /a bA(x)dx

=f14n(x—l)dx:ﬂ[x72—x]4 3

1= %77.’ units”.

Generalizing this process gives the washer method.

Rule: The Washer Method

Suppose f(x) and g(x) are continuous, nonnegative functions such that f(x) > g(x) over [a, b]. Let R denote the

region bounded above by the graph of f(x), below by the graph of g(x), on the left by the line x =a, and on
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the right by the line x = b. Then, the volume of the solid of revolution formed by revolving R around the x-axis is
given by

b 6.5
v= [ dfr - Pk ©9)

Example 6.10

Using the Washer Method

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of f(x) = x

and below by the graph of g(x) = 1/x over the interval [1, 4] around the x-axis.

Solution
The graphs of the functions and the solid of revolution are shown in the following figure.
ki
fix) = x

1l
-2 -2
-3 -3
-4 —4

(a) (b)
Figure 6.23 (a) The region between the graphs of the functions f(x) = x and

g(x) = 1/x over the interval [1, 4]. (b) Revolving the region about the x-axis generates

a solid of revolution with a cavity in the middle.

We have

b
v = [ iR - oo

— 817 1pits3
=27 units”.

I
N
_.\
—
=
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6.10 Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of
f(x) =vx and g(x) = 1/x over the interval [1, 3] around the x-axis.

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region
around the y-axis. In this case, the following rule applies.
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Rule: The Washer Method for Solids of Revolution around the y-axis

Suppose u(y) and v(y) are continuous, nonnegative functions such that v(y) < u(y) for y € [c, d]. Let Q denote
the region bounded on the right by the graph of u(y), on the left by the graph of v(y), below by the line y =c,
and above by the line y = d. Then, the volume of the solid of revolution formed by revolving Q around the y-axis

is given by

d
V= [ au)? - vy

Rather than looking at an example of the washer method with the y-axis as the axis of revolution, we now consider an

example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method
applies, but you may have to visualize just how to describe the cross-sectional area of the volume.

Example 6.11

The Washer Method with a Different Axis of Revolution

Find the volume of a solid of revolution formed by revolving the region bounded above by f(x) =4 —x and

below by the x-axis over the interval [0, 4] around the line y = —2.

Solution

The graph of the region and the solid of revolution are shown in the following figure.

(@) (b)
Figure 6.24 (a) The region between the graph of the function f(x) =4 — x and the x-axis

over the interval [0, 4]. (b) Revolving the region about the line y = —2 generates a solid of

revolution with a cylindrical hole through its middle.

We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the
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coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the
area of the inner circle. Looking at the graph of the function, we see the radius of the outer circle is given by
f(x) + 2, which simplifies to

f)+2=@4-x)+2=6—=x.

The radius of the inner circle is g(x) = 2. Therefore, we have
/ ! 2 2
V =/ #(6—x)"—2)"ldx
,A6-07-@?}

4
= 71'/0 (x2 —12x+ 32)dx = n:[x?3 —6x%+ 32x]

4

0= 160z 630” units>,

6.11 Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of
f(x) = x+ 2 and below by the x-axis over the interval [0, 3] around the line y = —1.
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6.2 EXERCISES

58. Derive the formula for the volume of a sphere using
the slicing method.

59. Use the slicing method to derive the formula for the
volume of a cone.

60. Use the slicing method to derive the formula for the
volume of a tetrahedron with side length a.

61. Use the disk method to derive the formula for the
volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus
the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find
the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side
2 units, as pictured here.

ﬂ
2/\
N4

64. A pyramid with height 4 units and a rectangular base
with length 2 units and width 3 units, as pictured here.

4
N

2
—3—¥

65. A tetrahedron with a base side of 4 units, as seen here.

4

\
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66. A pyramid with height 5 units, and an isosceles
triangular base with lengths of 6 units and 8 units, as seen

here.
/ /\ 8
6

67. A cone of radius » and height 4 has a smaller cone of
radius 7/2 and height A/2 removed from the top, as seen
here. The resulting solid is called a frustum.

For the following exercises, draw an outline of the solid and
find the volume using the slicing method.

68. The base is a circle of radius a. The slices

perpendicular to the base are squares.

69. The base is a triangle with vertices (0, 0), (1, 0),
and (0O, 1).

semicircles.

Slices perpendicular to the x-axis are

70. The base is the region under the parabola y =1 — x?

in the first quadrant. Slices perpendicular to the xy-plane
are squares.

71. The base is the region under the parabola y = 1 — x2
and above the x-axis. Slices perpendicular to the y-axis

are squares.
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2

72. The base is the region enclosed by y = x“ and

y = 9. Slices perpendicular to the x-axis are right isosceles

triangles. The intersection of one of these slices and the
base is the leg of the triangle.

73. The base is the area between y=x and y = x>,

Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by
the curves. Then, use the disk method to find the volume
when the region is rotated around the x-axis.

74. x+y=8,x=0, andy=0

75. y:2x2,x:0,x:4, andy=0
76. y=e¢*+1,x=0,x=1, andy=0
77. y=x4,x=0, andy =1

78. y=vx,x=0,x=4, andy=0
79. y=sinx, y=cosx, andx =0

80. y=%,x=2, andy =3

81. x2—y2:9andx+y:9,y:Oandx:O

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the y-axis.

82. y=4—%x,x=0, andy =0

83. y=2x3,x=0,x=1, andy =0
84. y:3x2,x:0, andy =3
85. y=v4—x2,y=0, andx =0

86. y= ,x=0, andx =3

_1
Vx + 1
87. x=sec(y)andy=%,y=0andx=0

88. y=x-}-1’

x=0, andx=2

89. y=4—x,y=x, andx=0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
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rotated around the x-axis.

9. y=x+2,y=x+6,x=0, andx=35

91. y=x2andy=x+2

92. xz=y3 andx3=y2

93. y=4—x2andy=2—x

94. [T] y=cosx,y=e ¥, x=0, andx = 1.2927
95. y=ﬁandy=x2

96. y=sinx,y=5sinx, x=0andx=7x

97. y= 1+x2andy=m

For the following exercises, draw the region bounded by
the curves. Then, use the washer method to find the volume
when the region is revolved around the y-axis.

98. y=vx,x=4, andy=0

9. y=x+2,y=2x—1, andx=0
100. y= %Randy =x’
101. x= ezy, x=y2, y=0, andy = In(2)

102. x=19-y% x=¢ ", y=0, andy=3
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103. Yogurt containers can be shaped like frustums.

Rotate the line y = %x around the y-axis to find the

volume between y = aandy = b.

z

Y 15

-2.0

104. Rotate the ellipse (x2/a2) + (yzlbz) = 1 around the

x-axis to approximate the volume of a football, as seen
here.

105. Rotate the ellipse (x2 /az) + (yz/bz) = 1 around the

y-axis to approximate the volume of a football.

Chapter 6 | Applications of Integration

106. A better approximation of the volume of a football
is given by the solid that comes from rotating y = sin x

around the x-axis from x=0 to x=x. What is the

volume of this football approximation, as seen here?
—1.0
z

-0.5

=
o
o
o [ B e L L

=1.0 &

107. What is the volume of the Bundt cake that comes
from rotating y = sin x around the y-axis from x =0 to

x=nr?

1.0F

y 05

0.0

For the following exercises, find the volume of the solid
described.
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108. The base is the region between y = x and y = x° 113. Find the volume of a sphere of radius R with a cap
of height & removed from the top, as seen here.

Slices perpendicular to the x-axis are semicircles.

109. The base is the region enclosed by the generic ellipse
(x2 /az) + (y2/b2) = 1. Slices perpendicular to the x-axis

are semicircles.

110. Bore a hole of radius a down the axis of a right cone
and through the base of radius b, as seen here.

111. Find the volume common to two spheres of radius r
with centers that are 2/ apart, as shown here.

4>

112. Find the volume of a spherical cap of height 4 and
radius r where h < r, as seen here.
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6.3 | Volumes of Revolution: Cylindrical Shells

Learning Objectives

6.3.1 Calculate the volume of a solid of revolution by using the method of cylindrical shells.
6.3.2 Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution.
We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and
washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical
shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable
of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry
of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the
last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to
help you determine which method to use in a given situation.

The Method of Cylindrical Shells

Again, we are working with a solid of revolution. As before, we define a region R, bounded above by the graph of a
function y = f(x), below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown

in Figure 6.25(a). We then revolve this region around the y-axis, as shown in Figure 6.25(b). Note that this is different
from what we have done before. Previously, regions defined in terms of functions of x were revolved around the x-axis

or a line parallel to it.

y y

= f
Y (XJb

@) (b)
Figure 6.25 (a) A region bounded by the graph of a function of x. (b) The solid of revolution formed when the

region is revolved around the y-axis.

As we have done many times before, partition the interval [a, b] using a regular partition, P = {x(, x;,..., X,} and,

for i=1, 2,..., n, choose apoint x¥ € [x;_, x;]. Then, construct a rectangle over the interval [x; _, x;] of height

f(x¥ ) and width Ax. A representative rectangle is shown in Figure 6.26(a). When that rectangle is revolved around the

y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.
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(@) (b) ©

Figure 6.26 (a) A representative rectangle. (b) When this rectangle is revolved around the y-axis, the result is a cylindrical

shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure 6.27.
yi

fx*)

e x

Figure 6.27 Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections
are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius x; and inner radius x; _ .

Thus, the cross-sectional area is ﬂxiz - ﬂxiz_ 1- The height of the cylinder is f(x¥ ). Then the volume of the shell is

Vehet = fOcf Yax} — mx}_ )
= nf(x¥ )(xi2 - x%_ 1)
=af(xf )0 +x - Pl —x; )

xl-+x,-_1

=2nf(x¥ )(T)(xi —Xi_ 1)

Note that x; —x; _| = Ax, so we have
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X;+Xx;_
Vet = 27f (¥ )(’T’])Ax.

Xi+Xx;_q . . . .
Furthermore, ’T’l is both the midpoint of the interval [x;_, x;] and the average radius of the shell, and we can

approximate this by x¥ . We then have
Vinell ® 27 f(x¥ )x¥ Ax.

Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate
(Figure 6.28).

Y

i—. 27X} —i
_r £ /
Cut line
/ fx?) A
A
o
X
(a) (b)

Figure 6.28 (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly
longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height f(x¥ ),

width 2zx¥ ,

plate. Multiplying the height, width, and depth of the plate, we get
Vet & f(F )(27x} )Ax,

and thickness Ax (Figure 6.28). The volume of the shell, then, is approximately the volume of the flat

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain
n
V) 2axk fxF)Ax),
i=1

Here we have another Riemann sum, this time for the function 2zxf(x). Taking the limitas n — oo gives us
n b
V= lim ) (2mxf [ )Ax)= [a Qrxf ().

1=

This leads to the following rule for the method of cylindrical shells.

Rule: The Method of Cylindrical Shells

Let f(x) be continuous and nonnegative. Define R as the region bounded above by the graph of f(x), below by the

x-axis, on the left by the line x = @, and on the right by the line x = b. Then the volume of the solid of revolution
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formed by revolving R around the y-axis is given by

b 5
V= [ @rxf(Mx. e

Now let’s consider an example.

Example 6.12

The Method of Cylindrical Shells 1

Define R as the region bounded above by the graph of f(x) = 1/x and below by the x-axis over the interval

[1, 3]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution
First we must graph the region R and the associated solid of revolution, as shown in the following figure.

P4 g
154 15
14 1
054+ 05
=1 ® 0
—051 —05
~i4 -

(@) (b)
Figure 6.29 (a) The region R under the graph of f(x) = 1/x over the

interval [1, 3]. (b) The solid of revolution generated by revolving R about

the y-axis.

Then the volume of the solid is given by

b
v = [ eaxfeoux

-/ emsbs

3
= [ 2ndx = 2220} = 4z units®.
1

6.12  Define R as the region bounded above by the graph of f(x) = x% and below by the x-axis over the

interval [1, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.
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Example 6.13

The Method of Cylindrical Shells 2

Define R as the region bounded above by the graph of f(x) = 2x — x2 and below by the x-axis over the interval

[0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First graph the region R and the associated solid of revolution, as shown in the following figure.

P4 g

15+

(a) (b)
Figure 6.30 (a) The region R under the graph of f(x) = 2x — x% over
the interval [0, 2]. (b) The volume of revolution obtained by revolving

R about the y-axis.

Then the volume of the solid is given by
b

vV = fa QaxfOO)x
2 2 2 2 3
= /;) (27rx(2x—x ))dx = 27:/0 (2x -X )dx

=2 20 ot 2=8—”units3
3 4 {07 3 ‘

6.13  Define R as the region bounded above by the graph of f(x) = 3x — x2 and below by the x-axis over

the interval [0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution,
revolved around the x-axis, when we want to integrate with respect to y. The analogous rule for this type of solid is given

here.

Rule: The Method of Cylindrical Shells for Solids of Revolution around the x-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on
the left by the y-axis, below by the line y = ¢, and above by the line y = d. Then, the volume of the solid of
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revolution formed by revolving Q around the x-axis is given by

d
V= /C (2zyg(y)dy.

Example 6.14

The Method of Cylindrical Shells for a Solid Revolved around the x-axis

Define Q as the region bounded on the right by the graph of g(y) =24/ and on the left by the y-axis for

y € [0, 4]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.

Solution

First, we need to graph the region O and the associated solid of revolution, as shown in the following figure.

yi y
21 5 ,
gly) = 2y
44 4.1 ;
34 3+ ||
2+ 2+ 4 |
1+ 1% .
t - — —:J—’—'i—fr—4 =
-1 0 6 -1 0 1.2 3 4|5 6%
_1 _1+
= ~24 }
-3 ~3+ }
4 —j '
\
_5 —5
(a) (b)

Figure 6.31 (a) The region Q to the left of the function g(y) over the interval

[0, 4]. (b) The solid of revolution generated by revolving Q around the x-axis.

Label the shaded region Q. Then the volume of the solid is given by

d
v = [ eaygondy

4 4
= [ iy = 4x |y ay

4
5/2
= 4n[—2y 5 ] = 256 ypigs3 |

0 5

@ 6.14 Define Q as the region bounded on the right by the graph of g(y) = 3/y and on the left by the y-axis

for y € [1, 3]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.
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For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than
one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall
that we found the volume of one of the shells to be given by

Ve = f(xF Yaxi — ax?_ )
= xf(xf )(xl2 - x%_ 1)
= mf(ck )+ x; - D= x;_ 1)

= 2mf(x* )(%)(xi —X;_1).

This was based on a shell with an outer radius of x; and an inner radius of x; _ ;. If, however, we rotate the region around
a line other than the y-axis, we have a different outer and inner radius. Suppose, for example, that we rotate the region
around the line x = —k, where k is some positive constant. Then, the outer radius of the shell is x; + k and the inner

radius of the shell is x; _ | + k. Substituting these terms into the expression for volume, we see that when a plane region is

rotated around the line x = —k, the volume of a shell is given by
X;+k)+(x; - +k
Vihen = 27f(xf )(( s £ = ))((xi+k)—(xi—1 +k))

xi+xi_2

= 2nf(xt )((T) + k)Ax.

x,-_

2
the approximate volume of the shell is

. X;+ . S . .
As before, we notice that — L is the midpoint of the interval [x; _ 4, x;] and can be approximated by x¥ . Then,

Vel & 27(x¥ + k)f(x¥ )Ax.
The remainder of the development proceeds as before, and we see that
b
V= [ @atc+ b f()x.
a

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In
each case, the volume formula must be adjusted accordingly. Specifically, the x-term in the integral must be replaced with

an expression representing the radius of a shell. To see how this works, consider the following example.

Example 6.15

A Region of Revolution Revolved around a Line

Define R as the region bounded above by the graph of f(x) = x and below by the x-axis over the interval

[1, 2]. Find the volume of the solid of revolution formed by revolving R around the line x = —1.

Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.
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yi y
51 5
x=-11 a4 fix) = x x=-1| 4
3 3
2 ST 2 e
1 i y
I |
1+ R E l.E.
: i : i : i i i f f e e B e S
-5 —4 -3 -2 —] 1 2 3 4 58X -5 -4 =3—2—1 AT 2 3 4 5%
L4 V.1
=5 =2 8
-3¢ -3
—4 ~4-
] —54
@ (b)

Figure 6.32 (a) The region R between the graph of f(x) and the x-axis over the interval [1, 2]. (b) The

solid of revolution generated by revolving R around the line x = —1.

Note that the radius of a shell is given by x + 1. Then the volume of the solid is given by

2
vV = /1 Qa(x + 1) f(0)x

2 2
= fl Qr(x+ Dx)dx = 277/1 (x2 + x)dx

2

3 2
= 2n[%+x7]’1 = 2g—”units3.

6.15 Define R as the region bounded above by the graph of f(x) = x* and below by the x-axis over the

interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the line x = —2.

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is
bounded by the graphs of two functions.

Example 6.16

A Region of Revolution Bounded by the Graphs of Two Functions

Define R as the region bounded above by the graph of the function f(x) = vx and below by the graph of the
function g(x) = 1/x over the interval [1, 4]. Find the volume of the solid of revolution generated by revolving
R around the y-axis.
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Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.

Yi y
5+ ;

; : : : : : \TEEee——— el
1 2 3 4 5X _5 —4 -3 =23 0 = 4 5X

@ (b)
Figure 6.33 (a) The region R between the graph of f(x) and the graph of g(x) over the interval [1, 4]. (b)

The solid of revolution generated by revolving R around the y-axis.

Note that the axis of revolution is the y-axis, so the radius of a shell is given simply by x. We don’t need to
make any adjustments to the x-term of our integrand. The height of a shell, though, is given by f(x) — g(x), so

in this case we need to adjust the f(x) term of the integrand. Then the volume of the solid is given by

4

Vo= f rx(f(x) — g(x))dx
_f (2ﬂx( —%))dx—zﬂf 312 1)dx

5/2
_ Zﬂ[z " x] 94;;

1= "= unlts

6.16 Define R as the region bounded above by the graph of f(x) = x and below by the graph of g(x) = x?

over the interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Which Method Should We Use?

We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use?
It often comes down to a choice of which integral is easiest to evaluate. Figure 6.34 describes the different approaches
for solids of revolution around the x-axis. It’s up to you to develop the analogous table for solids of revolution around the

y-axis.
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Comparing the Methods for Finding the Volume of a Solid Revolution around the x-axis

Compare Disk Method Washer Method Shell Method
Volume formula b b _ d
V= J; [ f(x)T? dx V= J; #l(f))2 — (gx))?] dx V= J; 2wy gly) dy
Solid No cavity in the center Cavity in the center With or without a cavity
in the center
Interval to partition [a, b] on x-axis [a, b] on x-axis [c, d] on y-axis
Rectangle Vertical Vertical Horizontal
y Yi yi
f(x)
Typical region d
g0 a(y)
— ! : - c -
a b X a b X \ X
y i
f(x)
Typical element
;\90’)
ab X \ X

Figure 6.34

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

Example 6.17

Selecting the Best Method

For each of the following problems, select the best method to find the volume of a solid of revolution generated
by revolving the given region around the x-axis, and set up the integral to find the volume (do not evaluate the

integral).
a. The region bounded by the graphs of y =x, y =2 —x, andthe x-axis.

b. The region bounded by the graphs of y = 4x — x% and the x-axis.

Solution

a. First, sketch the region and the solid of revolution as shown.
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A
4 ?
y =X y=X
14 1
R
t t | | |-
=4 1 -1 1 2 3X
=2-X
gl y 1l y
—24 el
@ (b)

Figure 6.35 (a) The region R bounded by two lines and the x-axis. (b) The solid of
revolution generated by revolving R about the x-axis.

Looking at the region, if we want to integrate with respect to x, we would have to break the integral
into two pieces, because we have different functions bounding the region over [0, 1] and [1, 2]. In this

case, using the disk method, we would have
1 2
V= /0 () + /1 (72 = 0.

If we used the shell method instead, we would use functions of y to represent the curves, producing

1

Vo= f0 22 — y) - y)dy

1
= /0 (27y[2 = 2y)dy.

Neither of these integrals is particularly onerous, but since the shell method requires only one integral,
and the integrand requires less simplification, we should probably go with the shell method in this case.

b. First, sketch the region and the solid of revolution as shown.
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Yi Yi
61 6+
5+ 5
41 y = 4x — X2 41 y=4x =
3+ 34
2+ 21
R
1+ 1+
t 1 t t t - t t e b e
-2 1 2 3 5 6% —2—15123 5 6%
34
44 — 4+
—54 —54
_6__ _5__
@ (b)

Figure 6.36 (a) The region R between the curve and the x-axis. (b) The solid of
revolution generated by revolving R about the x-axis.

Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on
the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no
cavity in the middle, so we can use the method of disks. Then

V= /047r(4x — x2)2 dx.

6.17 Select the best method to find the volume of a solid of revolution generated by revolving the given
region around the x-axis, and set up the integral to find the volume (do not evaluate the integral): the region

bounded by the graphs of y =2 — x% and y= x2.
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6.3 EXERCISES

For the following exercise, find the volume generated when
the region between the two curves is rotated around the
given axis. Use both the shell method and the washer
method. Use technology to graph the functions and draw a
typical slice by hand.

114. [T] Over the curve of y =3x, x =0,

rotated around the y-axis.

and y=3

115. [T] Under the curve of y=3x, y=0, andx =3

rotated around the y-axis.

116. [T] Over the curve of y=3x,y=0, andy =3

rotated around the x-axis.

117. [T] Under the curve of y=3x, y=0, andx =3

rotated around the x-axis.

118. [T] Under the curve of y = 2x3, x=0, andx=2

rotated around the y-axis.

119. [T] Under the curve of y = 2x3, x=0, andx =2

rotated around the x-axis.

For the following exercises, use shells to find the volumes
of the given solids. Note that the rotated regions lie between
the curve and the x-axis and are rotated around the

y-axis.

120. y=1—x2,x=0, andx =1
121. y=5x3, x=0, andx =1
122. y= %, x=1, andx =100
123. y= l—xz,x=0, andx =1

1
124, y=—Lb_,
1+ x2

x=0, andx=3
125. y=sinx2,x:0, and x = V&

126, y=—L_
1—x

L, x=0, andx:%

127. y=vx,x=0, andx =1

128. y= (1 +x2)3, x=0, andx=1

Chapter 6 | Applications of Integration

129. y= 5x3 — 2x4, x=0, andx=2

For the following exercises, use shells to find the volume
generated by rotating the regions between the given curve
and y = 0 around the x-axis.

2

130. y="V1—-x% x=0, x =1 and the x-axis

131. y= xz, x =0, x =2 and the x-axis

3
132. y= XT’ x=0, x =2, and the x-axis

133. y:%, x =1, x =2, and the x-axis
X
__1 1 _
134. x= 7 X = , andy =0
I+y 5
2
135. x=1_;y ,y=1, y=4, and the y-axis

136. x=cosy,y=0, andy=7x
137. x= y3 - 2y2, x=0, x=9, and the y-axis

138. x=yy+1, x=1, x =3, and the x-axis
139. x= 3«/27yandx = %Ty

For the following exercises, find the volume generated
when the region between the curves is rotated around the
given axis.

140. y=3—-x,y=0,x=0, and x = 2 rotated around

the y-axis.

141. y= x>, x=0, and y =238 rotated around the

y-axis.
142, y= x?, y = x, rotated around the y-axis.

143. y=+vx,y=0, andx =1 rotated around the line
x=2.

144, y=-1

,x=1, andx =2 rotated around the
4—x

line x = 4.

145. y=vxandy = x? rotated around the y-axis.
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146. y=vxandy = x? rotated around the line x = 2.

=1, andx =2 rotated around

147. x=y ,x=%

the x-axis.
148. x = y2 and y = x rotated around the line y = 2.

149. [T] Left of x = sin(xy), around

the y-axis.

right of y = x,

For the following exercises, use technology to graph the
region. Determine which method you think would be
easiest to use to calculate the volume generated when the
function is rotated around the specified axis. Then, use your
chosen method to find the volume.

150. [T] y = x% and y = 4x rotated around the y-axis.

151. [T] y = cos(zx), y = sin(zx), x = %, and x =

EN(9)]

rotated around the y-axis.

152. [T] y = x2— 2x, x =2, and x = 4 rotated around

the y-axis.

153. [T] y = x2 - 2x, x =2, and x = 4 rotated around

the x-axis.

154. [T] y = 3% — 2, y=x, and x = 2 rotated around

the x-axis.

155. [T] y = 3x3 — 2, y=x, and x = 2 rotated around

the y-axis.

156. [T] x= sin(ﬂyz) and x = \/Ey rotated around the

Xx-axis.

157. [T] x= y2, X = y2 —2y+1, andx =2 rotated

around the y-axis.

For the following exercises, use the method of shells to
approximate the volumes of some common objects, which
are pictured in accompanying figures.

669

158. Use the method of shells to find the volume of a
sphere of radius r.

159. Use the method of shells to find the volume of a cone
with radius r and height 4.

160. Use the method of shells to find the volume of an
ellipse (x2/a2)+( 2/b2) =1 rotated around the x-axis.

161. Use the method of shells to find the volume of a
cylinder with radius » and height A.
r

TR
\-_——_

h
\-..._____________./

162. Use the method of shells to find the volume of the
donut created when the circle x”+ y2 =4 is rotated

G

around the line x = 4.

-
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163. Consider the region enclosed by the graphs of
y=fx),y=1+f(x),x=0,y=0, and x=a>0.

What is the volume of the solid generated when this region
is rotated around the y-axis? Assume that the function is

defined over the interval [0, a].

164. Consider the function y = f(x), which decreases
from f(0)=5b to f(1)=0. Set up the integrals for

determining the volume, using both the shell method and
the disk method, of the solid generated when this region,
with x=0 and y =0, is rotated around the y-axis.

Prove that both methods approximate the same volume.
Which method is easier to apply? (Hint: Since f(x) is one-

to-one, there exists an inverse f _l(y).)
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6.4 | Arc Length of a Curve and Surface Area

Learning Objectives

6.4.1 Determine the length of a curve, y = f(x), between two points.

6.4.2 Determine the length of a curve, x = g(y), between two points.

6.4.3 Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you
would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket
is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a
road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of x, then we examine the same process for curves
defined as functions of y. (The process is identical, with the roles of x and y reversed.) The techniques we use to find arc

length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of
this concept.

Arc Length of the Curve y = f(x)

In previous applications of integration, we required the function f(x) to be integrable, or at most continuous. However,
for calculating arc length we have a more stringent requirement for f(x). Here, we require f(x) to be differentiable, and
furthermore we require its derivative, f’(x), to be continuous. Functions like this, which have continuous derivatives, are
called smooth. (This property comes up again in later chapters.)

Let f(x) be a smooth function defined over [a, b]. We want to calculate the length of the curve from the point (a, f(a))
to the point (b, f(b)). We start by using line segments to approximate the length of the curve. For i =0, 1, 2,..., n,
let P={x;} be a regular partition of [a, b Then, for i=1, 2,..., n, construct a line segment from the point
(x; _ 1 f(x;_ 1)) tothe point (x; f(x;)). Although it might seem logical to use either horizontal or vertical line segments,

we want our line segments to approximate the curve as closely as possible. Figure 6.37 depicts this construct for n = 5.

Y

f(xs)

x¥

0 a=Xx; X Xo Xs Xy K5=b

Figure 6.37 We can approximate the length of a curve by
adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is
given by Ax. The change in vertical distance varies from interval to interval, though, so we use Ay; = f(x;) — f(x;_1)

to represent the change in vertical distance over the interval [x;_, x;], asshown in Figure 6.38. Note that some (or all)

Ay;

; may be negative.
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yi
f{X‘-)
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Figure 6.38 A representative line segment approximates the

curve over the interval [x; _, x;].

By the Pythagorean theorem, the length of the line segment is (Ax)2+(Ayl~)2. We can also write this as
Ax|1 +((Ay)(Ax))>. Now, by the Mean Value Theorem, there is a point x* € [x;_;, x;] such that

f'(x¥ ) = (Ay,;)/(Ax). Then the length of the line segment is given by Ax|1 + [ [ )]2. Adding up the lengths of all

the line segments, we get

n
Arc Length ~ Z |1 +[f’(x§< )]2 Ax.

i=1

This is a Riemann sum. Taking the limit as » — co, we have

n b
Arc Length = lim_ '21 L+ [f )P Ax = /a 1 +[f/(0)]* dx.
i=

We summarize these findings in the following theorem.

Theorem 6.4: Arc Length for y = f(x)

Let f(x) be a smooth function over the interval [a, b]. Then the arc length of the portion of the graph of f(x) from
the point (a, f(a)) to the point (b, f(b)) is given by

b 6.7
Arc Length = / 1+ [f' () dx. b

Note that we are integrating an expression involving f’(x), so we need to be sure f’(x) is integrable. This is why we

require f(x) to be smooth. The following example shows how to apply the theorem.

Example 6.18

Calculating the Arc Length of a Function of x

Let f(x) = 2x%2. Calculate the arc length of the graph of f(x) over the interval [0, 1]. Round the answer to

three decimal places.
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Solution

We have f'(x) = 3x!2, so [f’(x)]2 = 9x. Then, the arc length is

b

Arc Length = / V1 + [/ ()] dx
a
1

= _/0 V1 + 9x dx.
Substitute # = 1+ 9x. Then, du = 9dx. When x =0, then u =1, and when x =1, then u = 10. Thus,
1
Arc Length = /0 V1 +9xdx
1 1 1 10
= §fow/l +9x0dx = §f1 Vit du

1.2 32 10 2 .
3257 = Z{10V10 - 1]~ 2.268 units.

@ 6.18 et f(x) = (4/3)x3/ 2. Calculate the arc length of the graph of f(x) over the interval [0, 1]. Round the

answer to three decimal places.

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that
are difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration
(http:/lcnx.org/content/m53654/latest/) . In some cases, we may have to use a computer or calculator to approximate
the value of the integral.

Example 6.19

Using a Computer or Calculator to Determine the Arc Length of a Function of x
Let f(x) = x2. Calculate the arc length of the graph of f(x) over the interval [1, 3].

Solution

We have f'(x) = 2x, so [f'(x)]* = 4x>. Then the arc length is given by

b 3
Arc Length = / L+[f' (0P dx = _/ V1 + 4x2 dx.
a 1
Using a computer to approximate the value of this integral, we get

3
fl V1 + 4x2 dx ~ 8.26815.

6.19 Let f(x) =sinx. Calculate the arc length of the graph of f(x) over the interval [0, z]. Use a

computer or calculator to approximate the value of the integral.
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Arc Length of the Curve x = g(y)

We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the
graph of a function of y, we can repeat the same process, except we partition the y-axis instead of the x-axis. Figure

6.39 shows a representative line segment.

Yi

YiA

xV

Yi-1t

Figure 6.39 A representative line segment over the interval
lyi—1 yil-

Then the length of the line segment is |/(Ay)” + (Ax;)?, which can also be written as Ay |1+ (Ax(Ay)?. If we now

follow the same development we did earlier, we get a formula for arc length of a function x = g(y).

Theorem 6.5: Arc Length for x = g(y)

Let g(y) be a smooth function over an interval [c, d]. Then, the arc length of the graph of g(y) from the point
(c, g(c)) to the point (d, g(d)) is given by

d 6.8
Arc Length = [ {1+ [’ dy. L

Example 6.20

Calculating the Arc Length of a Function of y

Let g(y) = 3y3. Calculate the arc length of the graph of g(y) over the interval [1, 2].

Solution

We have g’(y) = 9y2, so [g'(y)]> = 81y*. Then the arc length is

d 2
Arc Length = /C 1+’ dy = fl V1 + 81y*dy.

Using a computer to approximate the value of this integral, we obtain

2
/1 \1+81y* dy ~ 21.0277.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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6.20 Let g(y) = 1/y. Calculate the arc length of the graph of g(y) over the interval [1, 4]. Use a computer

or calculator to approximate the value of the integral.

Area of a Surface of Revolution

The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution.
Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the
object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let f(x) be a

nonnegative smooth function over the interval [a, b]. We wish to find the surface area of the surface of revolution created

by revolving the graph of y = f(x) around the x-axis as shown in the following figure.

yi p

x
>

(@) (b)

Figure 6.40 (a) A curve representing the function f(x). (b) The surface of revolution

formed by revolving the graph of f(x) around the x-axis.

As we have done many times before, we are going to partition the interval [a, b] and approximate the surface area by

calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier
in this section. For i =0, 1, 2,..., n, let P = {x;} be aregular partition of [a, b]. Then, for i =1, 2,..., n, constructa

line segment from the point (x; _ ;, f(x; _)) to the point (x; f(x;)). Now, revolve these line segments around the x-axis
to generate an approximation of the surface of revolution as shown in the following figure.

yi
y = f(x)

\/Q

x
>

(@) (b)

Figure 6.41 (a) Approximating f(x) with line segments. (b) The surface of revolution

formed by revolving the line segments around the x-axis.

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones
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(think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.
To find the surface area of the band, we need to find the lateral surface area, S, of the frustum (the area of just the slanted
outside surface of the frustum, not including the areas of the top or bottom faces). Let r; and r, be the radii of the wide

end and the narrow end of the frustum, respectively, and let / be the slant height of the frustum as shown in the following
figure.

r

X
Figure 6.42 A frustum of a cone can approximate a small part
of surface area.

We know the lateral surface area of a cone is given by

Lateral Surface Area = zrs,

where r is the radius of the base of the cone and s is the slant height (see the following figure).

Figure 6.43 The lateral surface area of the cone is given by
zrs.

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface
area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following
figure).
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\

|~

-—."1—-

Figure 6.44 Calculating the lateral surface area of a frustum
of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

h _s—1
rl_ S
Solving for s, we get
o _ os=1
rl - S
rys = ri(s=10
rys = rys—rql
ril = ris—rys
rll = (rl—rz)s
rl
# = .
1 2

Then the lateral surface area (SA) of the frustum is

S (Lateral SA of large cone) — (Lateral SA of small cone)

=qxrys—ary(s—1)

|
N
~
—
—
-
=
™
<
[ye]
N—
|
3
~
[\)
—
-
=
=
\N
8]
-
~

ﬂr%l wryryl  wryl(ry —rp)
rl—rz_rl—rz ry—ry

nr%l wryryl  mryryl ﬂrzzl
Fi—Ty Ti—TIy " ri—ry T1—1

2 2
alri =3l z(ry = ro)(ry + o)l
= (rl—”z) = 1 r12_r12 2 =7'[(Vl+7‘2)l.

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around
the x-axis. A representative band is shown in the following figure.
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yi
y =1fx)
ek
) | -~
x
Ax

Figure 6.45 A representative band used for determining
surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface
area formula, we have

S =a(r;+rpl

= 2(f(;_ )+ F))Ax? + (Ay,)f
2
= a(f(x;_ )+ flxp)Ax 1+(%) _

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select x* € [x; _{, x;]

such that f’(x¥* ) = (Ay,/Ax. This gives us

S = 2(f(x;_ 1) + FE)ART + (F/(e5 )

Furthermore, since f(x) is continuous, by the Intermediate Value Theorem, there is a point xi* = [x; _ 1, x;] such that

o) =R f(x;_ )+ f(x)], sowe get

S =2nf(x; AL+ (£ )

Then the approximate surface area of the whole surface of revolution is given by
n
* % 2
Surface Area ~ Y. 27f(x; AT+ (f'(x¥ ).
i=1
This almost looks like a Riemann sum, except we have functions evaluated at two different points, x¥ and xl.* *, over

the interval [x;_, x;]. Although we do not examine the details here, it turns out that because f(x) is smooth, if we let
n — oo, the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense
intuitively. Both x’f and xl-* * are in the interval [x; _ 1, x;], so it makes sense that as n — oo, both x;-“ and xl-* ¥
approach x. Those of you who are interested in the details should consult an advanced calculus text.

Taking the limit as n — oo, we get

n . b
Surface Area = lim Z} 2af(x; DHAx|T + (f'(x¥ ) = fa (271' FEVT + (£/(x))* Jdx.
i=

As with arc length, we can conduct a similar development for functions of y to get a formula for the surface area of surfaces

of revolution about the y-axis. These findings are summarized in the following theorem.
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Theorem 6.6: Surface Area of a Surface of Revolution

Let f(x) be a nonnegative smooth function over the interval [a, b]. Then, the surface area of the surface of revolution

formed by revolving the graph of f(x) around the x-axis is given by

b
Surface Area = / (27r FENT + (f /(x))2 idx.

Similarly, let g(y) be a nonnegative smooth function over the interval [c, d]. Then, the surface area of the surface of

(6.9)

revolution formed by revolving the graph of g(y) around the y-axis is given by

d

Surface Area = /C (2ﬂg(y) 1+(g’(y))2 Y.

Example 6.21

Calculating the Surface Area of a Surface of Revolution 1

Let f(x) = vx over the interval [1, 4]. Find the surface area of the surface generated by revolving the graph of

f(x) around the x-axis. Round the answer to three decimal places.

Solution

The graph of f(x) and the surface of rotation are shown in the following figure.

Yi Yi
a4t al

3 f(x) = 3 f(x) = Jx
2 2
1 1

- R —

-2 -1 9 1 2 3 4 5 g% -2 -1 O kB 2 3 u 5 gX
-1 -1
-2 -2
_3 _3.
—4 -4

(@) (b)

Figure 6.46 (a) The graph of f(x). (b) The surface of revolution.

We have f(x) = vx. Then, f'(x) = 1/(2vx) and (f'(x)/> = 1/(4x). Then,
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b
Surface Area = / (27r FEVL+(f ’(x))2 )dx

(277:«7 1 +

- f1 (zﬂmx.

Let u = x+ 1/4. Then, du = dx. When x =1, u =15/4, and when x =4, u = 17/4. This gives us

17/4

(2nx/x+ kix = f vt du

17/4
=22 23?5y = Z{17V17 - 5V5] ~ 30.846.

6.21 Let f(x)=%V1—x over the interval [0, 1/2]. Find the surface area of the surface generated by

revolving the graph of f(x) around the x-axis. Round the answer to three decimal places.

Example 6.22

Calculating the Surface Area of a Surface of Revolution 2

3
Let f(x) =y = V3x. Consider the portion of the curve where 0 <y < 2. Find the surface area of the surface
generated by revolving the graph of f(x) around the y-axis.

Solution

Notice that we are revolving the curve around the y-axis, and the interval is in terms of y, so we want to

rewrite the function as a function of y. We get x = g(y) = (1/3)y3 . The graph of g(y) and the surface of rotation

are shown in the following figure.
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Yi Yi
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Figure 6.47 (a) The graph of g(y). (b) The surface of revolution.

We have g(y) = (1/3)y°, so g'(y) =y and (g'(y))> = y*. Then

d
Surface Area = /C (Zﬂg(y)\/l +(g' ) \dy
2
_ 1.3 4
- [y
2
=2z 3y 4)d
=3 /;) (y 1+ y™|dy.
Let u = y4+ 1. Then du = 4y3dy. When y=0, u=1, andwhen y=2, wu=17. Then
17
2z 34/ )d 2z [ 1
3 ( 1+y"dy _3f1 4Wdu

_ [2 3/2]| _[(17)3/2 ] 24.118.
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@ 6.22 1 g =19 - y2 over the interval y € [0, 2]. Find the surface area of the surface generated by

revolving the graph of g(y) around the y-axis.
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6.4 EXERCISES

For the following exercises, find the length of the functions
over the given interval.

165. y=5xfromx=0tox =2

166. y= — L+ 25fromx=1tox =4

2
167. x=4yfromy=—-1toy=1

168. Pick an arbitrary linear function x = g(y) over any
interval of your choice (y;, y,). Determine the length of
the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve y = vx revolves around the x-axis from (1, 1)

to (4, 2), as seen here.

170. Find the surface area of the volume generated when
the curve y = x? revolves around the y-axis from (1, 1)

to (3, 9).

For the following exercises, find the lengths of the
functions of x over the given interval. If you cannot

Chapter 6 | Applications of Integration

evaluate the
approximate it.

integral exactly, use technology to

171. y=x>"? from (0, 0)to (1, 1)

172. y=x*3 from (1, 1)to (8, 4)

3/2
from x=0tox =1

173. y %(x2+2)

1 3/2

174. y=—(x2—2) from x=2 to x=4

Y}

175. [Tl y=e*on x=0to x=1

3
176. y=%+4lx from x =1tox =3

4
177. y=%4+ L from x=1tox=2
4 gy?
3/2 12
178. y:sz—foromx:Itoxzét

1 5 3/2
179. y:279x +6) from x =0tox =2

180. [T] y=sinx on x=0tox=rx

For the following exercises, find the lengths of the
functions of y over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.
181. y= 5—43x from y=0to y=4

182. x=%(ey+e_y) from y=-1ltoy=1

183. x=5y3/2 from y=0to y=1
184. [T])c=y2 from y=0to y=1

185. x =y from y=0toy =1

372
186. x:%(y2+l) from y=1to y=3
187. [T] x=tany from y =0 to y:%
188. [T]x=c0s2y from y = —%to y=%
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189. [T] x=4Y from y=0toy =2

190. [T] x =In(y) on y=%t0 y=e

For the following exercises, find the surface area of the

volume generated when the following curves revolve
around the x-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

191. y=vx fromx=2t0o x=6
192. y=x3fromx=0t0x=1
193. y="7x from x=—-1tox=1

194. [T] y:%from x=1tox=3
X

195. y= V4 — x? from x=0tox =2

196. y= V4 — x% from x=—1tox =1
197. y=>5x from x=1tox =35

198. [T] y=tanx from x= —Ztox =

4

&N

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the y-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

199. y=x2 from x=0tox =2

200. y=%x2+% from x=0tox=1
201. y=x+1 from x=0tox =3

_1 _1 _
202. [T]y—yfromx—itox—l
203. y:%from x=1tox=27
204. [T] y:3x4 from x=0 to x=1

_ 1 _ _
205. [T]y—ﬁfromx—ltox—3

206. [T] y=cosx from x =0 to x =

STE

683

207. The base of a lamp is constructed by revolving a
quarter circle y = V2x — x> around the y-axis from

x=1 to x=2, as seen here. Create an integral for the

surface area of this curve and compute it.
-2

y = 2x — x2

208. A light bulb is a sphere with radius 1/2 in. with the

bottom sliced off to fit exactly onto a cylinder of radius
1/4 in. and length 1/3 in., as seen here. The sphere is

cut off at the bottom to fit exactly onto the cylinder, so
the radius of the cut is 1/4 in. Find the surface area (not

including the top or bottom of the cylinder).

il
(W
|

209. [T] A lampshade is constructed by rotating y = 1/x

around the x-axis from y=1 to y =2, as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four

decimal places.
T

(—

210. [T] An anchor drags behind a boat according to

—x/2

the function y = 24e — 24, where y represents the

depth beneath the boat and x is the horizontal distance of
the anchor from the back of the boat. If the anchor is 23 ft

below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.
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211. [T] You are building a bridge that will span 10

ft. You intend to add decorative rope in the shape of
y = 5|sin((x7)/5), where x is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.
212. y =In(sinx) from x = z/4 to x = 3x)/4. (Hint:

Recall trigonometric identities.)

213. Draw graphs of y = x2, y= x6, and y= x10,

For y=x", as n increases, formulate a prediction on
the arc length from (0, 0) to (1, 1). Now, compute the

lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola x = y2 and the
line x = by from (0, 0) to (bz, b) as b increases. What

do you notice?

215.  Solve for the length of )c=y2 from
(0, 0)to (1, 1). Show that x = (1/2)y2 from (0, 0) to

(2, 2) is twice as long. Graph both functions and explain

why this is so.

216. [T] Which is longer between (1, 1) and (2, 1/2):
the hyperbola y = 1/x or the graph of x + 2y =3?

217. Explain why the surface area is infinite when
y = 1/x is rotated around the x-axis for 1 <x < oo,

but the volume is finite.
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6.5 | Physical Applications

Learning Objectives

6.5.1 Determine the mass of a one-dimensional object from its linear density function.

6.5.2 Determine the mass of a two-dimensional circular object from its radial density function.
6.5.3 Calculate the work done by a variable force acting along a line.

6.5.4 Calculate the work done in pumping a liquid from one height to another.

6.5.5 Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a
density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density

We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod
or wire. Orient the rod so it aligns with the x-axis, with the left end of the rod at x = a and the right end of the rod at
x = b (Figure 6.48). Note that although we depict the rod with some thickness in the figures, for mathematical purposes
we assume the rod is thin enough to be treated as a one-dimensional object.

Yi

Figure 6.48 We can calculate the mass of a thin rod oriented
along the x-axis by integrating its density function.

If the rod has constant density p, given in terms of mass per unit length, then the mass of the rod is just the product of the
density and the length of the rod: (b — a)p. If the density of the rod is not constant, however, the problem becomes a little
more challenging. When the density of the rod varies from point to point, we use a linear density function, p(x), to denote
the density of the rod at any point, x. Let p(x) be an integrable linear density function. Now, for i =0, 1, 2,..., n let

P = {x;} be aregular partition of the interval |a, b|, andfor i =1, 2,..., n choose an arbitrary point x} € [x;_1, x;].

Figure 6.49 shows a representative segment of the rod.
Yi

Figure 6.49 A representative segment of the rod.

The mass m; of the segment of the rod from x; _; to x; is approximated by
m; & p(xf )x; —x;_1) = p(x§ )Ax.

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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n n
= Z m; & E px¥ )Ax.
i=1 i=1

This is a Riemann sum. Taking the limit as n — co, we get an expression for the exact mass of the rod:

1] b
3 1 * —
m lim ;1 px¥ )Ax /; p(x)dx.

n— 0.
i

We state this result in the following theorem.

Theorem 6.7: Mass—-Density Formula of a One-Dimensional Object

Given a thin rod oriented along the x-axis over the interval [a, b], let p(x) denote a linear density function giving
the density of the rod at a point x in the interval. Then the mass of the rod is given by

b 6.10
m= / p(x)dx. ( )

We apply this theorem in the next example.

Example 6.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval [#/2, z]. If the density of the rod is given by

p(x) = sinx, what is the mass of the rod?

Solution
Applying Equation 6.10 directly, we have

T

b
m= /(lp(x)a’x = / /2s1nxdx = —cosxl =1L

@ 6.23 Consider a thin rod oriented on the x-axis over the interval [1, 3]. If the density of the rod is given by

px) = 22+ 3, what is the mass of the rod?

We now extend this concept to find the mass of a two-dimensional disk of radius r. As with the rod we looked at in

the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a
two-dimensional object. We assume the density is given in terms of mass per unit area (called area density), and further
assume the density varies only along the disk’s radius (called radial density). We orient the disk in the xy-plane, with

the center at the origin. Then, the density of the disk can be treated as a function of x, denoted p(x). We assume
p(x) is integrable. Because density is a function of x, we partition the interval from [0, r] along the x-axis. For
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [0, 7], andfor i=1, 2,..., n, choose an arbitrary

point x¥ € [x;_ 1, x;]. Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a

representative washer are depicted in the following figure.
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Ax

(a) (b)
Figure 6.50 (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, m;. Note that the area of the

washer is given by
A; = a(x)? - m(x;_ )2

— 2 2
= ”[xi —Xi- 1]
= ﬁ(xi +xl~_ 1)(xt —X;_ 1)

=nm(x; +x;_)Ax.

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use x¥ = (x;+ x;_1)/2 to approximate the average radius of the washer. We obtain

A;=r(x;+x;_ DAx = 27xF Ax.
Using p(x¥ ) to approximate the density of the washer, we approximate the mass of the washer by
m; = 2zx¥ p(x¥F )Ax.

Adding up the masses of the washers, we see the mass m of the entire disk is approximated by
n n
m= z m; & Z 2xt p(x¥ )Ax.
i=1 i=1

We again recognize this as a Riemann sum, and take the limit as n — oo. This gives us

i=1

7L r
m= nli_)moo Z 2rx¥ p(xf )Ax = '/O 2rxp(x)dx.

We summarize these findings in the following theorem.

Theorem 6.8: Mass—-Density Formula of a Circular Object

Let p(x) be an integrable function representing the radial density of a disk of radius r. Then the mass of the disk is
given by

m= /;)an:xp(x)dx. (6.11)



688 Chapter 6 | Applications of Integration

Example 6.24

Calculating Mass from Radial Density
Let p(x) = vx represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution
Applying the formula, we find

,
m = /0 2rxp(x)dx

4 4
= / 2rnxvxdx = 2x f x32dx
0 0

4
_~. 252 _4n _ 128z
= 222577 = 42(32) = 1282,

@ 6.24 Let p(x) = 3x + 2 represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Work Done by a Force

We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object.
When a force moves an object, we say the force does work on the object. In other words, work can be thought of as the
amount of energy it takes to move an object. According to physics, when we have a constant force, work can be expressed
as the product of force and distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In
the metric system, kilograms and meters are used. One newton is the force needed to accelerate 1 kilogram of mass at the

rate of 1 m/sec®. Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both

are defined as kilograms times meters squared over seconds squared (kg . mzlsz).

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to
compress (or elongate) a spring, for example, varies depending on how far the spring has already been compressed (or
stretched). We look at springs in more detail later in this section.

Suppose we have a variable force F(x) that moves an object in a positive direction along the x-axis from point a to point
b. To calculate the work done, we partition the interval [a, b] and estimate the work done over each subinterval. So, for
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [a, b], andfor i =1, 2,..., n, choose an arbitrary

point x¥ € [x;_, x;]. To calculate the work done to move an object from point x; _; to point x;, we assume the

force is roughly constant over the interval, and use F(x} ) to approximate the force. The work done over the interval

[x; _ 1, x;], then,is given by
Wir F(xf )(x;—x;_ 1) = F(x} )Ax.

Therefore, the work done over the interval [a, b] is approximately

W= Zn: W, = Zn: F(x} )Ax.
i=1 i=1

Taking the limit of this expression as n — co gives us the exact value for work:
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n b
W= lim_ -21 F(x¥ )Ax = fa F(x)dx.
1=
Thus, we can define work as follows.

Definition

If a variable force F(x) moves an object in a positive direction along the x-axis from point a to point b, then the work
done on the object is

b 6.12
w= [ Fdx. (6:12)

Note that if F is constant, the integral evaluates to F'- (b —a) = F -d, which is the formula we stated at the beginning of
this section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a
horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we
would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction
here and assume the block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is
said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the
block does not move until some force is introduced. We orient the system such that x = 0 corresponds to the equilibrium

position (see the following figure).

x=0
Equilibrium _
X
’—— x<0
]’WWWL Compressed
| x
x=0
Elongated
’\/\/\- (Stretched)
| x

Figure 6.51 A block attached to a horizontal spring at
equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
F(x) = kx, for some constant k. The value of k& depends on the physical characteristics of the spring. The constant k

is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.

Example 6.25
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The Work Required to Stretch or Compress a Spring

Suppose it takes a force of 10 N (in the negative direction) to compress a spring 0.2 m from the equilibrium
position. How much work is done to stretch the spring 0.5 m from the equilibrium position?

Solution
First find the spring constant, k. When x = —0.2, we know F(x) = —10, so

F(x) = kx
—10 = k(-0.2)
k = 50

and F(x) = 50x. Then, to calculate work, we integrate the force function, obtaining

b 0.5 0.5
W= /a F(x)dx = /0 50x dx = 25x%, " = 6.25.

The work done to stretch the spring is 6.25 J.

6.25 Suppose it takes a force of 8 1b to stretch a spring 6 in. from the equilibrium position. How much work
is done to stretch the spring 1 ft from the equilibrium position?

Work Done in Pumping

Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated
than spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of
being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water,
and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the
tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different
shapes. Assume a cylindrical tank of radius 4 m and height 10 m is filled to a depth of 8 m. How much work does it take

to pump all the water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let x represent the vertical distance below the top of the
tank. That is, we orient the x-axis vertically, with the origin at the top of the tank and the downward direction being positive
(see the following figure).
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1 5%

Figure 6.52 How much work is needed to empty a tank
partially filled with water?

Using this coordinate system, the water extends from x =2 to x = 10. Therefore, we partition the interval [2, 10] and
look at the work required to lift each individual “layer” of water. So, for i =0, 1, 2,..., n, let P = {x;} be a regular

partition of the interval [2, 10], and for i =1, 2,..., n, choose an arbitrary point x¥ € [x;_, x;]. Figure 6.53

shows a representative layer.

Figure 6.53 A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is 9800 N/m?, or 62.4 1b/ft3, calculating the

volume of each layer gives us the weight. In this case, we have
V = 7(4)? Ax = 16zAx.
Then, the force needed to lift each layer is

F =9800-167Ax = 156,800z Ax.

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use x¥ as

an approximation of the distance the layer must be lifted. Then the work to lift the ith layer of water W, is approximately
W; ~ 156,800zxF Ax.

Adding the work for each layer, we see the approximate work to empty the tank is given by
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n n
W= Wi~ Y 156800zxcF Ax.
i=1 i=1

This is a Riemann sum, so taking the limit as n — oo, we get

n
lim .Zl 156,800zx} Ax
=

w

10
156,800 /2 xdx

10
2
= 156,8007r[x7i| ’2 = 7,526,400z = 23,644,883.

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-
solving strategy lays out a step-by-step process for solving pumping problems.

Problem-Solving Strategy: Solving Pumping Problems

Sketch a picture of the tank and select an appropriate frame of reference.
Calculate the volume of a representative layer of water.

Multiply the volume by the weight-density of water to get the force.
Calculate the distance the layer of water must be lifted.

Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

@ @ & @M=

Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out
the desired amount of water, and it is in the form of a Riemann sum.

7. Take the limit as » — oo and evaluate the resulting integral to get the exact work required to pump out the
desired amount of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Example 6.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height 12 ft and base radius 4 ft. The tank is full to start
with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is 4
ft. How much work is required to pump out that amount of water?

Solution

The tank is depicted in Figure 6.54. As we did in the example with the cylindrical tank, we orient the x-axis
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
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Figure 6.54 A water tank in the shape of an inverted cone.

The tank starts out full and ends with 4 ft of water left, so, based on our chosen frame of reference, we need
to partition the interval [0, 8]. Then, for i =0, 1, 2,..., n, let P = {x;} be aregular partition of the interval

[0, 8], andfor i=1, 2,..., n, choose an arbitrary point x§ € [x;_, x;]. We can approximate the volume

of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).

4 x=0

X [

12:—5er

@ (b)

Figure 6.55 Using similar triangles to express the radius of a disk of water.
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From properties of similar triangles, we have

o _ 4 _1
12 — x¥ 12 3
3r; = 12—-x%
12 — x¥
rp = —x—
Xt
= 4=
Then the volume of the disk is
x¥ 2
Vi= 71'(4 — #) Ax (step 2).

The weight-density of water is 62.4 1b/ft3, so the force needed to lift each layer is approximately
2
*

F,~ 62.4;1(4 - %) Ax (step 3).

Based on the diagram, the distance the water must be lifted is approximately x¥ feet (step 4), so the approximate

work needed to lift the layer is

2
%
i

W; = 62.4nx} (4 3 ) Ax (step 5).

Summing the work required to lift all the layers, we get an approximate value of the total work:
2

n n *
W= Wr ) 624nxk (4—%) Ax (step 6).
i=1 i=1

Taking the limit as # — co, we obtain

n ¥ 2
W = 1me[; 6247k (4 X;T) Ax
8 2
_ _X
- fo 62 4ﬂx(4 3) dx
8 8 2 8 8
= _0X 4 X — _oX X
—624ﬂfox(16 3+9)d = 624z (16x : +9)a'x
8
2 8)(3 x4
= 62.47|8x2 — 85 4 L || = 10,649.67 ~ 33,456.7.

It takes approximately 33,450 ft-1b of work to empty the tank to the desired level.

6.26 A tank is in the shape of an inverted cone, with height 10 ft and base radius 6 ft. The tank is filled to a

depth of 8 ft to start with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the
tank. How much work is required to pump out that amount of water?
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Hydrostatic Force and Pressure

In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force
is measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English
system we have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric
system we have newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area A submerged horizontally in water at a depth s (Figure 6.56). Then, the
force exerted on the plate is simply the weight of the water above it, which is given by F' = pAs, where p is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is p = F/A = ps.

N

Figure 6.56 A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find
the force exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula F' = pAs directly,

because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we
form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.

Suppose a thin plate is submerged in water. We choose our frame of reference such that the x-axis is oriented vertically, with
the downward direction being positive, and point x = O corresponding to a logical reference point. Let s(x) denote the

depth at point x. Note we often let x = 0 correspond to the surface of the water. In this case, depth at any point is simply
given by s(x) = x. However, in some cases we may want to select a different reference point for x = 0, so we proceed

with the development in the more general case. Last, let w(x) denote the width of the plate at the point x.
Assume the top edge of the plate is at point x =a and the bottom edge of the plate is at point x = b. Then, for
i=0,1,2,..,n, let P={x;} bearegular partition of the interval [a, b], andfor i =1, 2,..., n, choose an arbitrary

point x¥ € [x; _, x;]. The partition divides the plate into several thin, rectangular strips (see the following figure).
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Wimiml e L S S s(x*)
Xl l J,
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e e T

x:b -------------------------

I x
Figure 6.57 A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
s(x¥ ). We then have
F;=pAs = p[w(x’l?‘ )Ax]s(x;.k ).

Adding the forces, we get an estimate for the force on the plate:

n

Fr ) Fi= D plwoe )Axfs(es ).
i=1 i=1

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

z b 6.13
F= lim > plwei At ) = [ pw)stod. €49
i=1 “

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

Problem-Solving Strategy: Finding Hydrostatic Force

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other
than the one used earlier, we may have to adjust Equation 6.13 accordingly.)

2. Determine the depth and width functions, s(x) and w(x).

3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is
62.4 1b/ft, or 9800 N/m®.

4. Use the equation to calculate the total force.

Example 6.27

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 6 | Applications of Integration 697

Figure 6.58 shows the trough and a more detailed view of one end.

X

(b)
Figure 6.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Select a frame of reference with the x-axis oriented vertically and the downward direction being positive. Select
the top of the trough as the point corresponding to x = 0 (step 1). The depth function, then, is s(x) = x. Using
similar triangles, we see that w(x) = 8 — (8/3)x (step 2). Now, the weight density of water is 62.4 1b/ft> (step
3), so applying Equation 6.13, we obtain

F = fa bpw(x)s(x)dx
= /;)362.4(8 - %x)x dx = 62.4/03(8x - %xz)dx
3
- 62.4[4x2 - %ﬁ] ’0 = 748.8.

The water exerts a force of 748.8 1b on the end of the trough (step 4).

6.27 A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4
m. Find the force on one end of the trough if the trough is full of water.
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Example 6.28

Chapter Opener: Finding Hydrostatic Force

We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is
arched, rather than flat, but we are going to make some simplifying assumptions to help us with the calculations.
Assume the face of the Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base

1250 ft, and height 750 ft (see the following figure).

1250 ft

750 ft

750 ft

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft
below the top of the dam (see the following figure).

Figure 6.59 A simplified model of the Hoover Dam with
assumed dimensions.

Find the force on the face of the dam when the reservoir is full.

b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125
ft below where it would be if the reservoir were full. What is the force on the face of the dam under these
circumstances?

Solution
a. We begin by establishing a frame of reference. As usual, we choose to orient the x-axis vertically, with
the downward direction being positive. This time, however, we are going to let x = O represent the top
of the dam, rather than the surface of the water. When the reservoir is full, the surface of the water is 10
ft below the top of the dam, so s(x) = x — 10 (see the following figure).
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101‘1l x=0

s(x) =x—10

/
\ / "

Figure 6.60 We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

I‘ZSOﬁ"‘ 750 ft “‘250ﬂ"J|
Y
- w(x) -
- 750 ft -l 750 ft
r
X
750 ft
(@)
250 ft |
T Y
X
r 750 ft
750 — x
l W
(b)

Figure 6.61 We use similar triangles to determine a function
for the width of the dam. (a) Assumed dimensions of the dam;
(b) highlighting the similar triangles.

From the figure, we see that w(x) =750+ 2r. Using properties of similar triangles, we get
r =250 — (1/3)x. Thus,

w(x) = 1250 — %x (step 2).

Using a weight-density of 62.4 Ib/ft® (step 3) and applying Equation 6.13, we get
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b
F = f pw(x)s(x)dx

540 540
_ fl ) 62.4(1250 - %x)(x —10)dx = 62.4 f1 . —%[xz — 1885x + 18750 dx

540

3 2
= —62.4(2)[)‘— _ 1885x% 18750x] 10 ~ 8,832,245,0001b = 4,416,122.51.

313 2
Note the change from pounds to tons (2000 1b = 1 ton) (step 4).

b. Notice that the drought changes our depth function, s(x), and our limits of integration. We have
s(x) = x — 135. The lower limit of integration is 135. The upper limit remains 540. Evaluating the

integral, we get
b
F = d
/u pw(x)s(x)dx

- /1 5345062.4(1250 - %x)(x —135)dx

540 540
= —62.4(%) /1 = 1875)(r— 135)dx = —62.4(%) /1 N (x? - 2010x + 253125 )dx
540

3
= —62.4(2)[)6— — 1005x2 + 253125x] 135 ~ 5,015,230,000 b = 2,507,615 t.

313

6.28 When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be
if the reservoir were full. What is the force on the face of the dam under these circumstances?

r’ To learn more about Hoover Dam, see this article (http://lwww.openstax.org/l/20_HooverDam) published
by the History Channel.
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6.5 EXERCISES

For the following exercises, find the work done.

218. Find the work done when a constant force F = 12
Ib moves a chair from x =0.9 to x = 1.1 ft.

219. How much work is done when a person lifts a 50 1b
box of comics onto a truck that is 3 ft off the ground?

220. What is the work done lifting a 20 kg child from the
floor to a height of 2 m? (Note that 1 kg equates to 9.8
N)

221. Find the work done when you push a box along
the floor 2 m, when you apply a constant force of

F =100 N.

222. Compute the work done for a force F = 12/x* N
from x=1to x=2 m.

223. What is the work done moving a particle from x = 0

to x = 1 m if the force acting on itis F = 3x% N?

For the following exercises, find the mass of the one-
dimensional object.

224. A wire that is 2 ft long (starting at x = 0) and has

a density function of p(x) = x% + 2x Ib/ft

225. A car antenna that is 3 ft long (starting at x = 0)
and has a density function of p(x) = 3x+ 2 Ib/ft

226. A metal rod that is 8 in. long (starting at x = 0) and

has a density function of p(x) = e!">* 1b/in.

227. A pencil that is 4 in. long (starting at x = 2) and

has a density function of p(x) = 5/x oz/in.

228. A ruler that is 12 in. long (starting at x = 5) and

has a density function of p(x) = In(x) + (1/2)x2 oz/in.

For the following exercises, find the mass of the two-
dimensional object that is centered at the origin.

229. An oversized hockey puck of radius 2 in. with

density function p(x) = x> —2x+5

230. A frisbee of radius 6 in. with density function

px) =e™"
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231. A plate of radius 10 in. with density function
p(x) =1+ cos(zx)

232. A jar lid of radius 3 in. with density function
px)=In(x+ 1)

233. A disk of radius 5 cm with density function

p(x) =V3x

234. A 12 -in. spring is stretched to 15 in. by a force of
75 1b. What is the spring constant?

235. A spring has a natural length of 10 cm. It takes 2
J to stretch the spring to 15 c¢cm. How much work would it
take to stretch the spring from 15 cmto 20 cm?

236. A 1 -m spring requires 10 J to stretch the spring to
1.1 m. How much work would it take to stretch the spring
from 1 mto 1.2 m?

237. A spring requires 5 J to stretch the spring from 8
cm to 12 cm, and an additional 4 J to stretch the spring
from 12 cm to 14 cm. What is the natural length of the
spring?

238. A shock absorber is compressed 1 in. by a weight of
1 t. What is the spring constant?

239. A force of F =20x—x> N stretches a nonlinear
spring by x meters. What work is required to stretch the
spring from x =0 to x =2 m?

240. Find the work done by winding up a hanging cable of
length 100 ft and weight-density 5 Ib/ft.

241. For the cable in the preceding exercise, how much
work is done to lift the cable 50 ft?

242. For the cable in the preceding exercise, how much
additional work is done by hanging a 200 1b weight at the

end of the cable?

243. [T] A pyramid of height 500 ft has a square base
800 ft by 800 ft. Find the area A at height h. If the
rock used to build the pyramid weighs approximately
w =100 lb/ft3, how much work did it take to lift all the

rock?
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244. [T] For the pyramid in the preceding exercise,
assume there were 1000 workers each working 10 hours

aday, 5 days a week, 50 weeks a year. If the workers, on
average, lifted 10 100 Ib rocks 2 ft/hr, how long did it take
to build the pyramid?

245. [T] The force of gravity on a mass m is

F =—((GMm)/x2) newtons. For a rocket of mass

m = 1000kg, compute the work to lift the rocket from
x =6400 to x = 6500 m. State your answers with three
significant figures. (Note: G = 6.67 X 1077 N m2/1<g2

and M = 6% 10** kg.)

246. [T] For the rocket in the preceding exercise, find the
work to lift the rocket from x = 6400 to x = 0.

247. [TI] A rectangular dam is 40 ft high and 60 ft wide.
Compute the total force ' on the dam when

a. the surface of the water is at the top of the dam and
b. the surface of the water is halfway down the dam.

248. [T] Find the work required to pump all the water out
of a cylinder that has a circular base of radius 5 ft and

height 200 ft. Use the fact that the density of water is 62
Ib/fe,

249. [T] Find the work required to pump all the water out
of the cylinder in the preceding exercise if the cylinder is
only half full.

250. [T] How much work is required to pump out a
swimming pool if the area of the base is 800 ft?, the water

is 4 ft deep, and the top is 1 ft above the water level?
Assume that the density of water is 62 Ib/ft,

251. A cylinder of depth H and cross-sectional area A
stands full of water at density p. Compute the work to

pump all the water to the top.
252. For the cylinder in the preceding exercise, compute

the work to pump all the water to the top if the cylinder is
only half full.

253. A cone-shaped tank has a cross-sectional area that
increases with its depth: A = (ﬂrzhz)/H 3. Show that the

work to empty it is half the work for a cylinder with the
same height and base.
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6.6 | Moments and Centers of Mass

Learning Objectives

6.6.1 Find the center of mass of objects distributed along a line.
6.6.2 Locate the center of mass of a thin plate.

6.6.3 Use symmetry to help locate the centroid of a thin plate.
6.6.4 Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea
of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of
sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate
(without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere
other than that sweet spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the
spin helps keep the plates from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is
called the center of mass of the plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider
centers of mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by
applying the theorem of Pappus.

Center of Mass and Moments

Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible
mass resting on a fulcrum, as shown in Figure 6.62(a). Now suppose we place objects having masses m; and m, at

distances d and d, from the fulcrum, respectively, as shown in Figure 6.62(b).

A

(@)

- dl—uu-—dz

(b)
Figure 6.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different
weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks
down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances.
Applying this concept to the masses on the rod, we note that the masses balance each other if and only if m;d; = m,d,.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However,
we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by
moving the fulcrum. Suppose we have two point masses, m; and m,, located on a number line at points x; and x,,

respectively (Figure 6.63). The center of mass, x, is the point where the fulcrum should be placed to make the system
balance.
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my m;
- ® | e - X
Figure 6.63 The center of mass x is the balance point of

the system.

Thus, we have

mylx;— x| mylx, — X |

mi(X —x;) = mylx,— ¥)

m; X —myx; MyXy — Ny X

E(m1+m2) m1x1+m2x2

myxy+myXxy

X = ny +m,

The expression in the numerator, m; x| + m, Xx,, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, m| + m,, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.
This idea is not limited just to two point masses. In general, if n masses, m, m,,..., my, are placed on a number line at

points Xy, X,,..., X, respectively, then the center of mass of the system is given by

Theorem 6.9: Center of Mass of Objects on a Line

Let my, m,,..., m, be point masses placed on a number line at points xi, X5,..., X,, respectively, and let

n
m= Z m; denote the total mass of the system. Then, the moment of the system with respect to the origin is given
i=1

by
L (6.14)

and the center of mass of the system is given by

- _M 6.15
X =m ( )

We apply this theorem in the following example.

Example 6.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:
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my =30kg,placedatx; = —-2m  m, = 5kg, placed atx, =3 m
ms = 10kg, placed at x3 = 6 m my = 15kg, placed at x, = =3 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

Solution

First, we need to calculate the moment of the system:

4
M = Z ml-xi
i=1
=—-60+15+60 —45 = -30.
Now, to find the center of mass, we need the total mass of the system:
4
m = Z m;
i=1
=30+5+10+ 15 =60kg.

Then we have

The center of mass is located 1/2 m to the left of the origin.

@ 6.29 Suppose four point masses are placed on a number line as follows:
my = 12kg, placedatx; =—-4m m, = 12kg, placed atx, =4 m
mg = 30kg, placed at x3 =2m my = 6kg, placed at x, = —6m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let m be a point
mass located at point (xy, y;) in the plane. Then the moment M, of the mass with respect to the x-axis is given by
My =my,. Similarly, the moment M, with respect to the y-axis is given by My =mx;. Notice that the x-coordinate

of the point is used to calculate the moment with respect to the y-axis, and vice versa. The reason is that the x-coordinate
gives the distance from the point mass to the y-axis, and the y-coordinate gives the distance to the x-axis (see the following
figure).

Yi

b ] omenttentenc i *m

Figure 6.64 Point mass m islocated at point (xy, y{) in

the plane.

If we have several point masses in the xy-plane, we can use the moments with respect to the x- and y-axes to calculate the
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x- and y-coordinates of the center of mass of the system.

Theorem 6.10: Center of Mass of Objects in a Plane

Let my, m,,..., m, be point masses located in the xy-plane at points (xy, y1), (X2, ¥2),..., (Xn, y»), Tespectively,

n
and let m = Z m; denote the total mass of the system. Then the moments M and My, of the system with respect
i=1

to the x- and y-axes, respectively, are given by

2 L (6.16)
M}C= Z m;y; and My= Z m;Xx;.
i=1 i=1
Also, the coordinates of the center of mass (x, y ) of the system are
_ M _ 6.17
x = Wy and y = % (6.17)

The next example demonstrates how to apply this theorem.

Example 6.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):
m; = 2Kkg, placed at (-1, 3),
m, = 6kg, placed at (1, 1),
ms = 4 kg, placed at (2, =2).

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

3
m= z m;=2+6+4=12kg.
i=1
Next we find the moments with respect to the x- and y-axes:

3

1=

3
Mx—Zmlyl=6+6— =4
i=
Then we have
- _M, 1 - _M,_ 4 _1
x_W=1_=1andy=Wx=E=§

The center of mass of the system is (1, 1/3), in meters.
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6.30 Suppose three point masses are placed on a number line as follows (assume coordinates are given in
meters):

my = 5Kkg, placed at (-2, —3),

my = 3 kg, placed at (2, 3),

my = 2kg, placed at (=3, —2).

Find the center of mass of the system.

Center of Mass of Thin Plates

So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously
across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-
dimensional. Such a sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this
section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its
centroid. Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on
the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the
lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find
the total mass of the lamina, as well as the moments of the lamina with respect to the x- and y-axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding,
it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the
symmetry principle, and it is stated here without proof.

Theorem 6.11: The Symmetry Principle

If a region R is symmetric about a line I, then the centroid of R lies on I.

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function f(x),

below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown in the following figure.

y

y =X

a b X

Figure 6.65 A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the x- and y-axes. As we have done many times before, we approximate
these quantities by partitioning the interval [a, b] and constructing rectangles.

For i=0,1,2,...,n, let P={x;} be a regular partition of [a, b] Recall that we can choose any point within the

interval [x; _, x;] asour x¥ . Inthis case, we want x¥ to be the x-coordinate of the centroid of our rectangles. Thus, for
i=1,2,..,n, weselect x¥ € [x;_, x;] suchthat x§ isthe midpoint of the interval. That is, x¥ = (x;_ |+ x;)/2.

Now, for i =1, 2,..., n, construct a rectangle of height f(x;-" ) on [x;_1, x;]. The center of mass of this rectangle is
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(x?‘ , ( St ))/2), as shown in the following figure.

y

Figure 6.66 A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let p represent the density of the lamina (note that p is a constant).
In this case, p is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by p. Then, the mass of the rectangle is given by pf(x¥ )Ax.

To get the approximate mass of the lamina, we add the masses of all the rectangles to get
n
m -21 pf (% )Ax.
1=
This is a Riemann sum. Taking the limit as n — oo gives the exact mass of the lamina:
1] b
m= nlemiZI pfeesax=p [ .

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its

center of mass is (x;" , ( St ))/2). Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, pf(x¥* )Ax, multiplied by the distance from the center of mass to the x-axis: ( Sfxf ))/2. Therefore, the

moment with respect to the x-axis of the rectangle is p([ St )]2/2)Ax. Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is
X [fe)P P
o= im, X o= pf V9 ar
1=

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is x§ . Then the moment of the lamina with respect to the y-axis is given by

n b
My= lim_ 'Zl pxt S )Bx=p [ (o
=

We find the coordinates of the center of mass by dividing the moments by the total mass to give
X =My/mand y = M,/m. If we look closely at the expressions for My, My, andm, we notice that the constant p

cancels out when X and y are calculated.

We summarize these findings in the following theorem.

Theorem 6.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function f(x), below by the x-axis, and on the left
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and right by the lines x =a and x = b, respectively. Let p denote the density of the associated lamina. Then we
can make the following statements:

i. The mass of the lamina is

/b g (6.18)
m=pf f(x)dx.
ii. The moments M, and M, of the lamina with respect to the x- and y-axes, respectively, are
b 2 b (6.19)
M, = p/ deandMy = p/ xf(x)dx.
a 2 a
iii. The coordinates of the center of mass (x, y) are
- M _ 6.20
x = Wyand y = % ( )

In the next example, we use this theorem to find the center of mass of a lamina.

Example 6.31

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function f(x) = vx and below by the x-axis over the
interval [0, 4]. Find the centroid of the region.

Solution
The region is depicted in the following figure.

Yi
5__

Figure 6.67 Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant p cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume p = 1.

First, we need to calculate the total mass:
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Next, we compute the moments:
b 2
Lf ()]
M, = == dx
X p ‘/va 2
4

X 124
= Ozd)C:Zx |0=4

and
b
M, :p/axf(x)dx
4 4
:/ xﬁdx:f x32dx
0 0
4
_2.52] _ 2 - 64
=207 =232-0 =5

Thus, we have

My _ 645 _ 64 12

- — 64 3 _ 12 -~ _M_ 4 _, 3
Y= T le3 =5 16-5 My =7 =4

The centroid of the region is (12/5, 3/4).

6.31  Let R be the region bounded above by the graph of the function f(x) = x* and below by the x-axis over
the interval [0, 2]. Find the centroid of the region.

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the
graph of a continuous function f(x), as before, but now, instead of having the lower bound for the region be the x-axis,

suppose the region is bounded below by the graph of a second continuous function, g(x), asshown in the following figure.

yi
f(x)
R
a b X

Figure 6.68 A region between two functions.

Again, we partition the interval [a, b] and construct rectangles. A representative rectangle is shown in the following figure.
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Figure 6.69 A representative rectangle of the region between
two functions.

Note that the centroid of this rectangle is (x;" R ( SO )+ glxk ))/2). We won’t go through all the details of the Riemann

sum development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina
and the moment with respect to the y-axis, the height of each rectangle is given by f(x¥ ) — g(x¥ ), which leads to the

expression f(x) — g(x) in the integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found
by multiplying the area of the rectangle, p[f(xj?‘ ) — g(x¥ )]Ax, by the distance of the centroid from the x-axis,

(f()c;?< )+ g(x* ))/2, which gives p(1/2){[f(x;-" )]2—[g(x’}‘ )]Z}Ax. Summarizing these findings, we arrive at the

following theorem.

Theorem 6.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function f(x), below by the graph of the
continuous function g(x), and on the left and right by the lines x = a and x = b, respectively. Let p denote the
density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

b (6.21)
m=p [ [f(x) - go)kx.
a
ii. The moments M, and M, of the lamina with respect to the x- and y-axes, respectively, are
b b (6.22)
— 1 2 _ 2 — -
M= p [ P -leoR)xand My = p [ sfe) - gk
iii. The coordinates of the center of mass (x, y ) are
- M _ 6.23
x = Wyand y = % ( )

We illustrate this theorem in the following example.

Example 6.32

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function f(x) =1 — x% and below by the graph of the

function g(x) = x — 1. Find the centroid of the region.
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Solution
The region is depicted in the following figure.

Figure 6.70 Finding the centroid of a region between two
curves.

The graphs of the functions intersect at (=2, —3) and (1, 0), so we integrate from —2 to 1. Once again, for the

sake of convenience, assume p = 1.

First, we need to calculate the total mass:
b
m =p[ [f0) - g
a
1 1
=/ [1-x2=@x-Dlx= 2—x>=xd
f_Z[ x“—(x )]dx f _2( x“ = x)dx
1
—lrr_1,3_1,2 =Ll _1]_[_4.8_5]=9
—[Zx 3% T2 ]|—2 [ 3 2] [ 4+3 2] 2
Next, we compute the moments:
b
_ l 2 _ 2
Mo =pf HroPR - lgeoP)ax

1 1
o e R T
1
R S

and

b
My =p ] Afe0 - g(okix

! 2 ! 2
=/_2x[(1—x )—(x—l)]dx=/_2x[2—x —x]dx

I
|
[\
[
[
PN

Therefore, we have
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The centroid of the region is (—(1/2), —(3/5)).

6.32  Let R be the region bounded above by the graph of the function f(x) = 6 — x2 and below by the graph

of the function g(x) = 3 — 2x. Find the centroid of the region.

The Symmetry Principle

We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can
be a great help when finding centroids of regions that are symmetric. Consider the following example.

Example 6.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function f(x) =4 — x% and below by the x-axis. Find the

centroid of the region.

Solution

The region is depicted in the following figure.

= _/2 10
e, 1 g
Figure 6.71 We can use the symmetry principle to help find
the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate y . Once again, for the sake of convenience, assume p = 1.

First, we calculate the total mass:
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b
m = p_/af(x)dx
2
= 2(4 - xz)dx

Then we have

The centroid of the region is (0, 8/5).

6.33 Let R be the region bounded above by the graph of the function f(x) =1 — x% and below by x-axis.

Find the centroid of the region.
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