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The Grand Canyon Skywalk

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-
clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 6.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no
visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered
to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that
extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake
within 50 mi, and is capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate
the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the
observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center,
48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane
to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion
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separately. The first region, denoted R1, consists of the curved part of the U. We model R1 as a semicircular annulus,

with inner radius 25 ft and outer radius 35 ft, centered at the origin (see the following figure).

Figure 6.73 We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between R1 and the canyon wall, comprise the second sub-region, R2. Last,

the ends of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, R3. Assume the density

of the lamina is constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the

visitor center; we will consider that later). Use g = 32 ft/sec2.

1. Compute the area of each of the three sub-regions. Note that the areas of regions R2 and R3 should include

the areas of the legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.

3. Calculate the center of mass of each of the three sub-regions.

4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding
sub-region. Using this representation, calculate the center of mass of the entire platform.

5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of
R3. Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the

center of mass change?

6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform
is capable of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform,
and all of them went to the farthest end of the platform, how would the center of gravity of the system be
affected? (Include the visitor center in the calculations and represent the people by a point mass located at the
farthest edge of the platform, 70 ft from the canyon wall.)

Theorem of Pappus
This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular
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kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 6.14: Theorem of Pappus for Volume

Let R be a region in the plane and let l be a line in the plane that does not intersect R. Then the volume of the solid of
revolution formed by revolving R around l is equal to the area of R multiplied by the distance d traveled by the centroid
of R.

Proof

We can prove the case when the region is bounded above by the graph of a function f (x) and below by the graph of a

function g(x) over an interval ⎡
⎣a, b⎤

⎦, and for which the axis of revolution is the y-axis. In this case, the area of the region is

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx. Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends

only on the x-coordinate of the centroid, x– , which is

x– =
My
m ,

where

m = ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx and My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

Then,

d = 2π
ρ∫

a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx

ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

and thus

d · A = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

However, using the method of cylindrical shells, we have

V = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

So,

V = d · A

and the proof is complete.

□

Example 6.34

Using the Theorem of Pappus for Volume

Let R be a circle of radius 2 centered at (4, 0). Use the theorem of Pappus for volume to find the volume of the

torus generated by revolving R around the y-axis.
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Solution

The region and torus are depicted in the following figure.

Figure 6.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.

The region R is a circle of radius 2, so the area of R is A = 4π units2. By the symmetry principle, the centroid of

R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid

travels d = 8π units. Then, the volume of the torus is A · d = 32π2 units3.

Let R be a circle of radius 1 centered at (3, 0). Use the theorem of Pappus for volume to find the

volume of the torus generated by revolving R around the y-axis.
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6.6 EXERCISES
For the following exercises, calculate the center of mass for
the collection of masses given.

254. m1 = 2 at x1 = 1 and m2 = 4 at x2 = 2

255. m1 = 1 at x1 = −1 and m2 = 3 at x2 = 2

256. m = 3 at x = 0, 1, 2, 6

257. Unit masses at (x, y) = (1, 0), (0, 1), (1, 1)

258. m1 = 1 at (1, 0) and m2 = 4 at (0, 1)

259. m1 = 1 at (1, 0) and m2 = 3 at (2, 2)

For the following exercises, compute the center of mass
x– .

260. ρ = 1 for x ∈ (−1, 3)

261. ρ = x2 for x ∈ (0, L)

262. ρ = 1 for x ∈ (0, 1) and ρ = 2 for x ∈ (1, 2)

263. ρ = sin x for x ∈ (0, π)

264. ρ = cos x for x ∈ ⎛
⎝0, π

2
⎞
⎠

265. ρ = ex for x ∈ (0, 2)

266. ρ = x3 + xe−x for x ∈ (0, 1)

267. ρ = x sin x for x ∈ (0, π)

268. ρ = x for x ∈ (1, 4)

269. ρ = ln x for x ∈ (1, e)

For the following exercises, compute the center of mass
⎛
⎝ x– , y– ⎞

⎠. Use symmetry to help locate the center of mass

whenever possible.

270. ρ = 7 in the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

271. ρ = 3 in the triangle with vertices (0, 0), (a, 0),
and (0, b)

272. ρ = 2 for the region bounded by y = cos(x),

y = −cos(x), x = − π
2, and x = π

2

For the following exercises, use a calculator to draw the
region, then compute the center of mass ⎛

⎝ x– , y– ⎞
⎠. Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by y = cos(2x),

x = − π
4, and x = π

4

274. [T] The region between y = 2x2, y = 0, x = 0,
and x = 1

275. [T] The region between y = 5
4x2 and y = 5

276. [T] Region between y = x, y = ln(x), x = 1,
and x = 4

277. [T] The region bounded by y = 0, x2

4 + y2

9 = 1

278. [T] The region bounded by y = 0, x = 0, and

x2

4 + y2

9 = 1

279. [T] The region bounded by y = x2 and y = x4 in

the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating y = mx around the x -axis between x = 0
and x = 1

281. Rotating y = mx around the y -axis between x = 0
and x = 1

282. A general cone created by rotating a triangle with
vertices (0, 0), (a, 0), and (0, b) around the y -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices (0, 0), (a, 0), (0, b), and (a, b) around

the y -axis. Does your answer agree with the volume of a

cylinder?

284. A sphere created by rotating a semicircle with radius
a around the y -axis. Does your answer agree with the

volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area M and the
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centroid ⎛
⎝ x– , y– ⎞

⎠ for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. [T] Quarter-circle: y = 1 − x2, y = 0, and

x = 0

286. [T] Triangle: y = x, y = 2 − x, and y = 0

287. [T] Lens: y = x2 and y = x

288. [T] Ring: y2 + x2 = 1 and y2 + x2 = 4

289. [T] Half-ring: y2 + x2 = 1, y2 + x2 = 4, and

y = 0

290. Find the generalized center of mass in the sliver

between y = xa and y = xb with a > b. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between

y = a2 − x2, x = 0, and y = 0. Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between
y = b sin(ax), x = 0, and x = π

a . Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of
a torus (pictured here). Assume that a disk of radius a
is positioned with the left end of the circle at x = b,
b > 0, and is rotated around the y-axis.

294. Find the center of mass ⎛
⎝ x– , y– ⎞

⎠ for a thin wire along

the semicircle y = 1 − x2 with unit mass. (Hint: Use the

theorem of Pappus.)
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6.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives
6.7.1 Write the definition of the natural logarithm as an integral.

6.7.2 Recognize the derivative of the natural logarithm.

6.7.3 Integrate functions involving the natural logarithmic function.

6.7.4 Define the number e through an integral.

6.7.5 Recognize the derivative and integral of the exponential function.

6.7.6 Prove properties of logarithms and exponential functions using integrals.

6.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral
Recall the power rule for integrals:

∫ xn dx = xn + 1

n + 1 + C, n ≠ −1.

Clearly, this does not work when n = −1, as it would force us to divide by zero. So, what do we do with ∫ 1
xdx? Recall

from the Fundamental Theorem of Calculus that ∫
1

x
1
t dt is an antiderivative of 1/x. Therefore, we can make the following

definition.

Definition

For x > 0, define the natural logarithm function by

(6.24)
ln x = ∫

1

x
1
t dt.

For x > 1, this is just the area under the curve y = 1/t from 1 to x. For x < 1, we have ∫
1

x
1
t dt = −∫

x

1
1
t dt, so in

this case it is the negative of the area under the curve from x to 1 (see the following figure).
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Figure 6.75 (a) When x > 1, the natural logarithm is the area under the

curve y = 1/t from 1 to x. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that ln 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear

that ln x is increasing for x > 0.

Properties of the Natural Logarithm
Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 6.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

d
dxln x = 1

x .

Theorem 6.16: Corollary to the Derivative of the Natural Logarithm

The function ln x is differentiable; therefore, it is continuous.

A graph of ln x is shown in Figure 6.76. Notice that it is continuous throughout its domain of (0, ∞).
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6.35

Figure 6.76 The graph of f (x) = ln x shows that it is a

continuous function.

Example 6.35

Calculating Derivatives of Natural Logarithms

Calculate the following derivatives:

a. d
dxln⎛

⎝5x3 − 2⎞
⎠

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2

Solution

We need to apply the chain rule in both cases.

a. d
dxln⎛

⎝5x3 − 2⎞
⎠ = 15x2

5x3 − 2

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2 = 2⎛

⎝ln(3x)⎞
⎠ · 3

3x = 2⎛
⎝ln(3x)⎞

⎠
x

Calculate the following derivatives:

a. d
dxln⎛

⎝2x2 + x⎞
⎠

b. d
dx

⎛
⎝ln

⎛
⎝x3⎞

⎠
⎞
⎠
2

Note that if we use the absolute value function and create a new function ln |x|, we can extend the domain of the natural

logarithm to include x < 0. Then ⎛
⎝d/(dx)⎞

⎠ln |x| = 1/x. This gives rise to the familiar integration formula.

Theorem 6.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function f (u) = 1/u:
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6.36

∫ 1
udu = ln |u| + C.

Example 6.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral ∫ x
x2 + 4

dx.

Solution

Using u -substitution, let u = x2 + 4. Then du = 2x dx and we have

∫ x
x2 + 4

dx = 1
2∫ 1

udu = 1
2ln |u| + C = 1

2ln |x2 + 4| + C = 1
2ln⎛

⎝x2 + 4⎞
⎠ + C.

Calculate the integral ∫ x2

x3 + 6
dx.

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 6.18: Properties of the Natural Logarithm

If a, b > 0 and r is a rational number, then

i. ln 1 = 0

ii. ln(ab) = ln a + ln b

iii. ln⎛
⎝a
b

⎞
⎠ = ln a − ln b

iv. ln(ar) = r ln a

Proof

i. By definition, ln 1 = ∫
1

1
1
t dt = 0.

ii. We have

() ln(ab) = ∫
1

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
1
t dt.

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t = a, u = 1, and when t = ab, u = b. So we get

() ln(ab) = ∫
1

a
1
t dt + ∫

a

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
a
t · 1

adt = ∫
1

a
1
t dt + ∫

1

b
1
udu = ln a + ln b.
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6.37

iv. Note that

() d
dxln(xr) = rxr − 1

xr = r
x.

Furthermore,

() d
dx(r ln x) = r

x.

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ by a
constant. So we have

() ln(xr) = r ln x + C

for some constant C. Taking x = 1, we get

()
ln(1r) = r ln(1) + C

0 = r(0) + C
C = 0.

Thus ln(xr) = r ln x and the proof is complete. Note that we can extend this property to irrational values of r later in this

section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

□

Example 6.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 9 − 2 ln 3 + ln⎛
⎝1
3

⎞
⎠.

Solution

We have

ln 9 − 2 ln 3 + ln⎛
⎝1
3

⎞
⎠ = ln⎛

⎝32⎞
⎠ − 2 ln 3 + ln⎛

⎝3−1⎞
⎠ = 2 ln 3 − 2 ln 3 − ln 3 = −ln 3.

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 8 − ln 2 − ln⎛
⎝1
4

⎞
⎠.

Defining the Number e
Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

ln e = 1.
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To put it another way, the area under the curve y = 1/t between t = 1 and t = e is 1 (Figure 6.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
ln x is increasing to prove uniqueness.)

Figure 6.77 The area under the curve from 1 to e is equal

to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and

Maclaurin Series (http://cnx.org/content/m53817/latest/) ). Its approximate value is given by

e ≈ 2.71828182846.

The Exponential Function
We now turn our attention to the function ex. Note that the natural logarithm is one-to-one and therefore has an inverse

function. For now, we denote this inverse function by exp x. Then,

exp(ln x) = x for x > 0 and ln(exp x) = x for all x.

The following figure shows the graphs of exp x and ln x.

Figure 6.78 The graphs of ln x and exp x.

We hypothesize that exp x = ex. For rational values of x, this is easy to show. If x is rational, then we have

ln(ex) = x ln e = x. Thus, when x is rational, ex = exp x. For irrational values of x, we simply define ex as the

inverse function of ln x.
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Definition

For any real number x, define y = ex to be the number for which

(6.25)ln y = ln(ex) = x.

Then we have ex = exp(x) for all x, and thus

(6.26)eln x = x for x > 0 and ln(ex) = x

for all x.

Properties of the Exponential Function
Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function ex.

Theorem 6.19: Properties of the Exponential Function

If p and q are any real numbers and r is a rational number, then

i. e p eq = e p + q

ii. e p

eq = e p − q

iii. (e p)r = e pr

Proof

Note that if p and q are rational, the properties hold. However, if p or q are irrational, we must apply the inverse

function definition of ex and verify the properties. Only the first property is verified here; the other two are left to you. We

have

ln(e p eq) = ln(e p) + ln(eq) = p + q = ln⎛
⎝e

p + q⎞
⎠.

Since ln x is one-to-one, then

e p eq = e p + q.

□

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end

of the section.

We also want to verify the differentiation formula for the function y = ex. To do this, we need to use implicit

differentiation. Let y = ex. Then

ln y = x
d
dxln y = d

dxx

1
y

dy
dx = 1

dy
dx = y.

Thus, we see
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6.38

d
dxex = ex

as desired, which leads immediately to the integration formula

∫ ex dx = ex + C.

We apply these formulas in the following examples.

Example 6.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

a. d
dte

3t et2

b. d
dxe3x2

Solution

We apply the chain rule as necessary.

a. d
dte

3t et2
= d

dte
3t + t2

= e3t + t2
(3 + 2t)

b. d
dxe3x2

= e3x2
6x

Evaluate the following derivatives:

a. d
dx

⎛
⎝
⎜ex2

e5x

⎞
⎠
⎟

b. d
dt

⎛
⎝e2t⎞⎠

3

Example 6.39

Using Properties of Exponential Functions

Evaluate the following integral: ∫ 2xe−x2
dx.

Solution

Using u -substitution, let u = −x2. Then du = −2x dx, and we have

∫ 2xe−x2
dx = −∫ eu du = −eu + C = −e−x2

+ C.
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6.39 Evaluate the following integral: ∫ 4
e3xdx.

General Logarithmic and Exponential Functions
We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions

are functions of the form f (x) = ax. Note that unless a = e, we still do not have a mathematically rigorous definition

of these functions for irrational exponents. Let’s rectify that here by defining the function f (x) = ax in terms of the

exponential function ex. We then examine logarithms with bases other than e as inverse functions of exponential

functions.

Definition

For any a > 0, and for any real number x, define y = ax as follows:

y = ax = ex ln a.

Now ax is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and

property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that

properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for ax. We have

d
dxax = d

dxex ln a = ex ln a ln a = ax ln a.

The corresponding integration formula follows immediately.

Theorem 6.20: Derivatives and Integrals Involving General Exponential Functions

Let a > 0. Then,

d
dxax = ax ln a

and

∫ ax dx = 1
ln aax + C.

If a ≠ 1, then the function ax is one-to-one and has a well-defined inverse. Its inverse is denoted by loga x. Then,

y = loga x if and only if x = ay.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = loga x. Then, x = ay.
Taking the natural logarithm of both sides of this second equation, we get

ln x = ln(ay)
ln x = y ln a

y = ln x
ln a

log x = ln x
ln a.

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y = loga x. Then,
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6.40

dy
dx = d

dx
⎛
⎝loga x⎞

⎠

= d
dx

⎛
⎝ln x
ln a

⎞
⎠

= ⎛
⎝ 1
ln a

⎞
⎠ d
dx(ln x)

= 1
ln a · 1

x

= 1
x ln a.

Theorem 6.21: Derivatives of General Logarithm Functions

Let a > 0. Then,

d
dxloga x = 1

x ln a.

Example 6.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

a. d
dt

⎛
⎝4t · 2t2⎞

⎠
b. d

dxlog8
⎛
⎝7x2 + 4⎞

⎠

Solution

We need to apply the chain rule as necessary.

a. d
dt

⎛
⎝4t · 2t2⎞

⎠ = d
dt

⎛
⎝22t · 2t2⎞

⎠ = d
dt

⎛
⎝22t + t2⎞

⎠ = 22t + t2
ln(2)(2 + 2t)

b. d
dxlog8

⎛
⎝7x2 + 4⎞

⎠ = 1
⎛
⎝7x2 + 4⎞

⎠(ln 8)
(14x)

Evaluate the following derivatives:

a. d
dt 4t4

b. d
dxlog3

⎛
⎝ x2 + 1⎞

⎠

Example 6.41

Integrating General Exponential Functions
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Evaluate the following integral: ∫ 3
23xdx.

Solution

Use u-substitution and let u = −3x. Then du = −3dx and we have

∫ 3
23xdx = ∫ 3 · 2−3xdx = −∫ 2u du = − 1

ln 22u + C = − 1
ln 22−3x + C.

Evaluate the following integral: ∫ x2 2x3
dx.
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6.7 EXERCISES

For the following exercises, find the derivative
dy
dx.

295. y = ln(2x)

296. y = ln(2x + 1)

297. y = 1
ln x

For the following exercises, find the indefinite integral.

298. ∫ dt
3t

299. ∫ dx
1 + x

For the following exercises, find the derivative dy/dx.
(You can use a calculator to plot the function and the
derivative to confirm that it is correct.)

300. [T] y = ln(x)
x

301. [T] y = x ln(x)

302. [T] y = log10 x

303. [T] y = ln(sin x)

304. [T] y = ln(ln x)

305. [T] y = 7 ln(4x)

306. [T] y = ln⎛
⎝(4x)7⎞

⎠

307. [T] y = ln(tan x)

308. [T] y = ln(tan(3x))

309. [T] y = ln⎛
⎝cos2 x⎞

⎠

For the following exercises, find the definite or indefinite
integral.

310. ∫
0

1
dx

3 + x

311. ∫
0

1
dt

3 + 2t

312. ∫
0

2
x dx

x2 + 1

313. ∫
0

2
x3 dx
x2 + 1

314. ∫
2

e
dx

x ln x

315. ∫
2

e
dx

x (ln x)2

316. ∫ cos x dx
sin x

317. ∫
0

π/4
tan x dx

318. ∫ cot(3x)dx

319. ∫ (ln x)2 dx
x

For the following exercises, compute dy/dx by

differentiating ln y.

320. y = x2 + 1

321. y = x2 + 1 x2 − 1

322. y = esin x

323. y = x−1/x

324. y = e(ex)

325. y = xe

326. y = x(ex)

327. y = x x3 x6

328. y = x−1/ln x

329. y = e−ln x

For the following exercises, evaluate by any method.
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330. ∫
5

10
dt
t − ∫

5x

10x
dt
t

331. ∫
1

eπ
dx
x + ∫

−2

−1
dx
x

332. d
dx∫

x

1
dt
t

333. d
dx∫

x

x2
dt
t

334. d
dxln(sec x + tan x)

For the following exercises, use the function ln x. If you

are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by x = 1 and

y = 5 above y = ln x.

336. [T] Find the arc length of ln x from x = 1 to

x = 2.

337. Find the area between ln x and the x-axis from

x = 1 to x = 2.

338. Find the volume of the shape created when rotating
this curve from x = 1 to x = 2 around the x-axis, as

pictured here.

339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from x = 1 to

x = 2 around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle
enclosed by x = 2 and y = 2 above y = 1/x.

341. [T] Find the arc length of y = 1/x from

x = 1 to x = 4.

342. Find the area under y = 1/x and above the x-axis

from x = 1 to x = 4.

For the following exercises, verify the derivatives and
antiderivatives.

343. d
dxln⎛

⎝x + x2 + 1⎞
⎠ = 1

1 + x2

344. d
dxln⎛

⎝x − a
x + a

⎞
⎠ = 2a

⎛
⎝x2 − a2⎞

⎠

345. d
dxln

⎛
⎝
⎜1 + 1 − x2

x
⎞
⎠
⎟ = − 1

x 1 − x2

346. d
dxln⎛

⎝x + x2 − a2⎞
⎠ = 1

x2 − a2

347. ∫ dx
x ln(x)ln(ln x) = ln⎛

⎝ln(ln x)⎞
⎠ + C

Chapter 6 | Applications of Integration 733



6.8 | Exponential Growth and Decay

Learning Objectives
6.8.1 Use the exponential growth model in applications, including population growth and
compound interest.

6.8.2 Explain the concept of doubling time.

6.8.3 Use the exponential decay model in applications, including radioactive decay and Newton’s
law of cooling.

6.8.4 Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth
and decay show up in a host of natural applications. From population growth and continuously compounded interest to
radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine
exponential growth and decay in the context of some of these applications.

Exponential Growth Model

Many systems exhibit exponential growth. These systems follow a model of the form y = y0 ekt, where y0 represents

the initial state of the system and k is a positive constant, called the growth constant. Notice that in an exponential growth

model, we have

(6.27)y′ = ky0 ekt = ky.

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
Equation 6.27 involves derivatives and is called a differential equation. We learn more about differential equations in
Introduction to Differential Equations (http://cnx.org/content/m53696/latest/) .

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model

y = y0 ekt,

where y0 represents the initial state of the system and k > 0 is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems
plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria
there are to reproduce, the faster the population grows. Figure 6.79 and Table 6.1 represent the growth of a population
of bacteria with an initial population of 200 bacteria and a growth constant of 0.02. Notice that after only 2 hours (120
minutes), the population is 10 times its original size!
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Figure 6.79 An example of exponential growth for bacteria.

Time (min) Population Size (no. of bacteria)

10 244

20 298

30 364

40 445

50 544

60 664

70 811

80 991

90 1210

100 1478

110 1805

120 2205

Table 6.1 Exponential Growth of a Bacterial Population

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
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growth models, we must always be careful to interpret the function values in the context of the phenomenon we are
modeling.

Example 6.42

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function

f (t) = 200e0.02t, where t is measured in minutes. How many bacteria are present in the population after 5
hours (300 minutes)? When does the population reach 100,000 bacteria?

Solution

We have f (t) = 200e0.02t. Then

f (300) = 200e0.02(300) ≈ 80,686.

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200e0.02t

500 = e0.02t

ln 500 = 0.02t
t = ln 500

0.02 ≈ 310.73.

The population reaches 100,000 bacteria after 310.73 minutes.

Consider a population of bacteria that grows according to the function f (t) = 500e0.05t, where t is

measured in minutes. How many bacteria are present in the population after 4 hours? When does the population
reach 100 million bacteria?

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). So, if we put $1000 in a

savings account earning 2% simple interest per year, then at the end of the year we have

1000(1 + 0.02) = $1020.

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every 6 months, it credits half of the year’s interest to the account after 6 months. During the

second half of the year, the account earns interest not only on the initial $1000, but also on the interest earned during the

first half of the year. Mathematically speaking, at the end of the year, we have

1000⎛
⎝1 + 0.02

2
⎞
⎠
2

= $1020.10.

Similarly, if the interest is compounded every 4 months, we have

1000⎛
⎝1 + 0.02

3
⎞
⎠

3
= $1020.13,

and if the interest is compounded daily (365 times per year), we have $1020.20. If we extend this concept, so that the

interest is compounded continuously, after t years we have
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6.43

1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

.

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number e can be

expressed as a limit:

e = limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m

.

Based on this, we want the expression inside the parentheses to have the form (1 + 1/m). Let n = 0.02m. Note that as

n → ∞, m → ∞ as well. Then we get

1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

= 1000 limm → ∞
⎛
⎝1 + 0.02

0.02m
⎞
⎠

0.02mt
= 1000⎡

⎣ limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m⎤

⎦
0.02t

.

We recognize the limit inside the brackets as the number e. So, the balance in our bank account after t years is given by

1000e0.02t. Generalizing this concept, we see that if a bank account with an initial balance of $P earns interest at a rate

of r%, compounded continuously, then the balance of the account after t years is

Balance = Pert.

Example 6.43

Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays 5%
annual interest compounded continuously. How much does the student need to invest today to have $1 million

when she retires at age 65? What if she could earn 6% annual interest compounded continuously instead?

Solution

We have

1,000,000 = Pe0.05(40)

P = 135,335.28.

She must invest $135,335.28 at 5% interest.

If, instead, she is able to earn 6%, then the equation becomes

1,000,000 = Pe0.06(40)

P = 90,717.95.

In this case, she needs to invest only $90,717.95. This is roughly two-thirds the amount she needs to invest at

5%. The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in

interest rate.

Suppose instead of investing at age 25 , the student waits until age 35. How much would she have to

invest at 5%? At 6%?

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to

20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity

reaches twice its original size. So we have
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2y0 = y0 ekt

2 = ekt

ln 2 = kt
t = ln 2

k .

Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Doubling time = ln 2
k .

Example 6.44

Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months,

there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish

population reaches 10,000. When will the owner’s friends be allowed to fish?

Solution

We know it takes the population of fish 6 months to double in size. So, if t represents time in months,

by the doubling-time formula, we have 6 = (ln 2)/k. Then, k = (ln 2)/6. Thus, the population is given by

y = 500e
⎛
⎝(ln 2)/6⎞

⎠t. To figure out when the population reaches 10,000 fish, we must solve the following

equation:

10,000 = 500e(ln 2/6)t

20 = e(ln 2/6)t

ln 20 = ⎛
⎝ln 2

6
⎞
⎠t

t = 6(ln 20)
ln 2 ≈ 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.

Suppose it takes 9 months for the fish population in Example 6.44 to reach 1000 fish. Under these

circumstances, how long do the owner’s friends have to wait?

Exponential Decay Model
Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical
compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth.
The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant k, we have

y = y0 e−kt.

As with exponential growth, there is a differential equation associated with exponential decay. We have

y′ = −ky0 e−kt = −ky.
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Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model

y = y0 e−kt,

where y0 represents the initial state of the system and k > 0 is a constant, called the decay constant.

The following figure shows a graph of a representative exponential decay function.

Figure 6.80 An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if T represents the temperature of the object and Ta represents the ambient temperature in a room, then

T′ = −k(T − Ta).

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional Ta term. Fortunately, we can make a change of variables that resolves this issue. Let

y(t) = T(t) − Ta. Then y′(t) = T′(t) − 0 = T′(t), and our equation becomes

y′ = −ky.

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

y = y0 e−kt,

and we see that

T − Ta = ⎛
⎝T0 − Ta

⎞
⎠e−kt

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

where T0 represents the initial temperature. Let’s apply this formula in the following example.

Example 6.45

Newton’s Law of Cooling

According to experienced baristas, the optimal temperature to serve coffee is between 155°F and 175°F.
Suppose coffee is poured at a temperature of 200°F, and after 2 minutes in a 70°F room it has cooled to
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180°F. When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to

the nearest half minute.

Solution

We have

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

180 = (200 − 70)e−k(2) + 70
110 = 130e−2k

11
13 = e−2k

ln 11
13 = −2k

ln 11 − ln 13 = −2k
k = ln 13 − ln 11

2 .

Then, the model is

T = 130e
⎛
⎝ln 11 − ln 13

2
⎞
⎠t + 70.

The coffee reaches 175°F when

175 = 130e
⎛
⎝ln 11 − ln 13

2
⎞
⎠t + 70

105 = 130e
⎛
⎝ln 11 − ln 13

2
⎞
⎠t

21
26 = e

⎛
⎝ln 11 − ln 13

2
⎞
⎠t

ln 21
26 = ln 11 − ln 13

2 t

ln 21 − ln 26 = ln 11 − ln 13
2 t

t = 2(ln 21 − ln 26)
ln 11 − ln 13 ≈ 2.56.

The coffee can be served about 2.5 minutes after it is poured. The coffee reaches 155°F at

155 = 130e
⎛
⎝ln 11 − ln 13

2
⎞
⎠t + 70

85 = 130e
⎛
⎝ln 11 − ln 13

2
⎞
⎠t

17
26 = e

⎛
⎝ln 11 − ln 13

2
⎞
⎠t

ln 17 − ln 26 = ⎛
⎝ln 11 − ln 13

2
⎞
⎠t

t = 2(ln 17 − ln 26)
ln 11 − ln 13 ≈ 5.09.

The coffee is too cold to be served about 5 minutes after it is poured.

Suppose the room is warmer (75°F) and, after 2 minutes, the coffee has cooled only to 185°F. When

is the coffee first cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest
half minute.
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Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

y0
2 = y0 e−kt

1
2 = e−kt

−ln 2 = −kt

t = ln 2
k .

Note: This is the same expression we came up with for doubling time.

Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Half-life = ln 2
k .

Example 6.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits

a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of carbon-14 is approximately 5730 years—meaning, after that many years, half the material has converted

from the original carbon-14 to the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how

much is left in 50 years? If an artifact that originally contained 100 g of carbon now contains 10 g of carbon,

how old is it? Round the answer to the nearest hundred years.

Solution

We have

5730 = ln 2
k

k = ln 2
5730.

So, the model says

y = 100e−(ln 2/5730)t.

In 50 years, we have

y = 100e−(ln 2/5730)(50)

≈ 99.40.

Therefore, in 50 years, 99.40 g of carbon-14 remains.

To determine the age of the artifact, we must solve
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10 = 100e−(ln 2/5730)t

1
10 = e−(ln 2/5730)t

t ≈ 19035.

The artifact is about 19,000 years old.

If we have 100 g of carbon-14, how much is left after t years? If an artifact that originally contained

100 g of carbon now contains 20g of carbon, how old is it? Round the answer to the nearest hundred years.
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6.8 EXERCISES
True or False? If true, prove it. If false, find the true answer.

348. The doubling time for y = ect is ⎛
⎝ln (2)⎞

⎠/⎛
⎝ln (c)⎞

⎠.

349. If you invest $500, an annual rate of interest of

3% yields more money in the first year than a 2.5%
continuous rate of interest.

350. If you leave a 100°C pot of tea at room temperature

(25°C) and an identical pot in the refrigerator (5°C),
with k = 0.02, the tea in the refrigerator reaches a

drinkable temperature (70°C) more than 5 minutes

before the tea at room temperature.

351. If given a half-life of t years, the constant k for

y = ekt is calculated by k = ln (1/2)/t.

For the following exercises, use y = y0 ekt.

352. If a culture of bacteria doubles in 3 hours, how many

hours does it take to multiply by 10?

353. If bacteria increase by a factor of 10 in 10 hours,

how many hours does it take to increase by 100?

354. How old is a skull that contains one-fifth as much
radiocarbon as a modern skull? Note that the half-life of
radiocarbon is 5730 years.

355. If a relic contains 90% as much radiocarbon as

new material, can it have come from the time of Christ
(approximately 2000 years ago)? Note that the half-life of

radiocarbon is 5730 years.

356. The population of Cairo grew from 5 million to

10 million in 20 years. Use an exponential model to find

when the population was 8 million.

357. The populations of New York and Los Angeles are
growing at 1% and 1.4% a year, respectively. Starting

from 8 million (New York) and 6 million (Los Angeles),

when are the populations equal?

358. Suppose the value of $1 in Japanese yen decreases

at 2% per year. Starting from $1 = ¥250, when will

$1 = ¥1?

359. The effect of advertising decays exponentially. If
40% of the population remembers a new product after 3
days, how long will 20% remember it?

360. If y = 1000 at t = 3 and y = 3000 at t = 4,
what was y0 at t = 0?

361. If y = 100 at t = 4 and y = 10 at t = 8, when

does y = 1?

362. If a bank offers annual interest of 7.5% or

continuous interest of 7.25%, which has a better annual

yield?

363. What continuous interest rate has the same yield as
an annual rate of 9%?

364. If you deposit $5000 at 8% annual interest, how

many years can you withdraw $500 (starting after the first

year) without running out of money?

365. You are trying to save $50,000 in 20 years for

college tuition for your child. If interest is a continuous
10%, how much do you need to invest initially?

366. You are cooling a turkey that was taken out of the
oven with an internal temperature of 165°F. After 10
minutes of resting the turkey in a 70°F apartment, the

temperature has reached 155°F. What is the temperature

of the turkey 20 minutes after taking it out of the oven?

367. You are trying to thaw some vegetables that are
at a temperature of 1°F. To thaw vegetables safely, you

must put them in the refrigerator, which has an ambient
temperature of 44°F. You check on your vegetables 2
hours after putting them in the refrigerator to find that they
are now 12°F. Plot the resulting temperature curve and use

it to determine when the vegetables reach 33°F.

368. You are an archaeologist and are given a bone that is
claimed to be from a Tyrannosaurus Rex. You know these
dinosaurs lived during the Cretaceous Era (146 million

years to 65 million years ago), and you find by

radiocarbon dating that there is 0.000001% the amount of

radiocarbon. Is this bone from the Cretaceous?

369. The spent fuel of a nuclear reactor contains
plutonium-239, which has a half-life of 24,000 years. If 1
barrel containing 10 kg of plutonium-239 is sealed, how

many years must pass until only 10g of plutonium-239 is

left?

For the next set of exercises, use the following table, which
features the world population by decade.
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Years since 1950 Population (millions)

0 2,556

10 3,039

20 3,706

30 4,453

40 5,279

50 6,083

60 6,849

Source: http://www.factmonster.com/ipka/
A0762181.html.

370. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 2686e0.01604t. Use

a graphing calculator to graph the data and the exponential
curve together.

371. [T] Find and graph the derivative y′ of your

equation. Where is it increasing and what is the meaning of
this increase?

372. [T] Find and graph the second derivative of your
equation. Where is it increasing and what is the meaning of
this increase?

373. [T] Find the predicted date when the population
reaches 10 billion. Using your previous answers about

the first and second derivatives, explain why exponential
growth is unsuccessful in predicting the future.

For the next set of exercises, use the following table, which
shows the population of San Francisco during the 19th
century.

Years since
1850

Population
(thousands)

0 21.00

10 56.80

20 149.5

30 234.0

Source: http://www.sfgenealogy.com/sf/history/
hgpop.htm.

374. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 35.26e0.06407t. Use

a graphing calculator to graph the data and the exponential
curve together.

375. [T] Find and graph the derivative y′ of your

equation. Where is it increasing? What is the meaning of
this increase? Is there a value where the increase is
maximal?

376. [T] Find and graph the second derivative of your
equation. Where is it increasing? What is the meaning of
this increase?
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6.9 | Calculus of the Hyperbolic Functions

Learning Objectives
6.9.1 Apply the formulas for derivatives and integrals of the hyperbolic functions.

6.9.2 Apply the formulas for the derivatives of the inverse hyperbolic functions and their
associated integrals.

6.9.3 Describe the common applied conditions of a catenary curve.

We were introduced to hyperbolic functions in Introduction to Functions and Graphs, along with some of their basic
properties. In this section, we look at differentiation and integration formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as

sinh x = ex − e−x

2 and cosh x = ex + e−x

2 .

The other hyperbolic functions are then defined in terms of sinh x and cosh x. The graphs of the hyperbolic functions are

shown in the following figure.

Figure 6.81 Graphs of the hyperbolic functions.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at sinh x we have
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d
dx(sinh x) = d

dx
⎛
⎝ex − e−x

2
⎞
⎠

= 1
2

⎡
⎣ d
dx(ex) − d

dx(e−x)⎤⎦
= 1

2[ex + e−x] = cosh x.

Similarly, (d/dx)cosh x = sinh x. We summarize the differentiation formulas for the hyperbolic functions in the following

table.

f(x)
d
dx f(x)

sinh x cosh x

cosh x sinh x

tanh x sech2 x

coth x −csch2 x

sech x −sech x tanh x

csch x −csch x coth x

Table 6.2 Derivatives of the
Hyperbolic Functions

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard
trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine
functions match: (d/dx)sin x = cos x and (d/dx)sinh x = cosh x. The derivatives of the cosine functions, however, differ

in sign: (d/dx)cos x = −sin x, but (d/dx)cosh x = sinh x. As we continue our examination of the hyperbolic functions,

we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

∫ sinh u du = cosh u + C ∫ csch2 u du = −coth u + C

∫ cosh u du = sinh u + C ∫ sech u tanh u du = −sech u + C

∫ sech2 u du = tanh u + C ∫ csch u coth u du = −csch u + C

Example 6.47

Differentiating Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠
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6.47

b. d
dx(cosh x)2

Solution

Using the formulas in Table 6.2 and the chain rule, we get

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠ = cosh⎛

⎝x2⎞
⎠ · 2x

b. d
dx(cosh x)2 = 2 cosh x sinh x

Evaluate the following derivatives:

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠

b. d
dx

⎛
⎝
⎜ 1
(sinh x)2

⎞
⎠
⎟

Example 6.48

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:

a. ∫ x cosh⎛
⎝x2⎞

⎠dx

b. ∫ tanh x dx

Solution

We can use u-substitution in both cases.

a. Let u = x2. Then, du = 2x dx and

∫ x cosh⎛
⎝x2⎞

⎠dx = ∫ 1
2cosh u du = 1

2sinh u + C = 1
2sinh⎛

⎝x2⎞
⎠ + C.

b. Let u = cosh x. Then, du = sinh x dx and

∫ tanh x dx = ∫ sinh x
cosh xdx = ∫ 1

udu = ln|u| + C = ln|cosh x| + C.

Note that cosh x > 0 for all x, so we can eliminate the absolute value signs and obtain

∫ tanh x dx = ln(cosh x) + C.
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6.48 Evaluate the following integrals:

a. ∫ sinh3 x cosh x dx

b. ∫ sech2 (3x)dx

Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses.
Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of
the inverse hyperbolic functions are summarized in the following table.

Function Domain Range

sinh−1 x (−∞, ∞) (−∞, ∞)

cosh−1 x [1, ∞) ⎡
⎣0, ∞)

tanh−1 x (−1, 1) (−∞, ∞)

coth−1 x (−∞, −1) ∪ (1, ∞) (−∞, 0) ∪ (0, ∞)

sech−1 x (0, 1] ⎡
⎣0, ∞)

csch−1 x (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)

Table 6.3 Domains and Ranges of the Inverse Hyperbolic
Functions

The graphs of the inverse hyperbolic functions are shown in the following figure.
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Figure 6.82 Graphs of the inverse hyperbolic functions.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

y = sinh−1 x
sinh y = x

d
dxsinh y = d

dxx

cosh ydy
dx = 1.

Recall that cosh2 y − sinh2 y = 1, so cosh y = 1 + sinh2 y. Then,

dy
dx = 1

cosh y = 1
1 + sinh2 y

= 1
1 + x2

.

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation
formulas are summarized in the following table.
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f(x)
d
dx f(x)

sinh−1 x
1

1 + x2

cosh−1 x
1

x2 − 1

tanh−1 x
1

1 − x2

coth−1 x
1

1 − x2

sech−1 x
−1

x 1 − x2

csch−1 x
−1

|x| 1 + x2

Table 6.4 Derivatives of the
Inverse Hyperbolic Functions

Note that the derivatives of tanh−1 x and coth−1 x are the same. Thus, when we integrate 1/⎛
⎝1 − x2⎞

⎠, we need to select

the proper antiderivative based on the domain of the functions and the values of x. Integration formulas involving the

inverse hyperbolic functions are summarized as follows.

∫ 1
1 + u2

du = sinh−1 u + C ∫ 1
u 1 − u2

du = −sech−1 |u| + C

∫ 1
u2 − 1

du = cosh−1 u + C ∫ 1
u 1 + u2

du = −csch−1 |u| + C

∫ 1
1 − u2du =

⎧
⎩
⎨tanh−1 u + C if |u| < 1

coth−1 u + C if |u| > 1

Example 6.49

Differentiating Inverse Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝x
3

⎞
⎠
⎞
⎠

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2
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6.49

6.50

Solution

Using the formulas in Table 6.4 and the chain rule, we obtain the following results:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝x
3

⎞
⎠
⎞
⎠ = 1

3 1 + x2
9

= 1
9 + x2

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2

=
2⎛

⎝tanh−1 x⎞
⎠

1 − x2

Evaluate the following derivatives:

a. d
dx

⎛
⎝cosh−1 (3x)⎞

⎠

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

Example 6.50

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:

a. ∫ 1
4x2 − 1

dx

b. ∫ 1
2x 1 − 9x2

dx

Solution

We can use u-substitution in both cases.

a. Let u = 2x. Then, du = 2dx and we have

∫ 1
4x2 − 1

dx = ∫ 1
2 u2 − 1

du = 1
2cosh−1 u + C = 1

2cosh−1 (2x) + C.

b. Let u = 3x. Then, du = 3dx and we obtain

∫ 1
2x 1 − 9x2

dx = 1
2∫ 1

u 1 − u2
du = − 1

2sech−1 |u| + C = − 1
2sech−1 |3x| + C.

Evaluate the following integrals:

a. ∫ 1
x2 − 4

dx, x > 2

b. ∫ 1
1 − e2x

dx
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Applications
One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended
between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage
power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure
shows chains hanging from a row of posts.

Figure 6.83 Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany,
Flickr)

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y = a cosh(x/a) are catenaries.

Figure 6.84 shows the graph of y = 2 cosh(x/2).
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6.51

Figure 6.84 A hyperbolic cosine function forms the shape of
a catenary.

Example 6.51

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape 10 cosh(x/10) for −15 ≤ x ≤ 15, where x is measured in feet.

Determine the length of the cable (in feet).

Solution

Recall from Section 2.4 that the formula for arc length is

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

We have f (x) = 10 cosh(x/10), so f ′(x) = sinh(x/10). Then

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

= ∫
−15

15
1 + sinh2 ⎛

⎝ x
10

⎞
⎠ dx.

Now recall that 1 + sinh2 x = cosh2 x, so we have

Arc Length = ∫
−15

15
1 + sinh2 ⎛

⎝ x
10

⎞
⎠ dx

= ∫
−15

15
cosh⎛

⎝ x
10

⎞
⎠dx

= 10 sinh⎛
⎝ x
10

⎞
⎠|−15

15
= 10⎡

⎣sinh⎛
⎝3
2

⎞
⎠ − sinh⎛

⎝−3
2

⎞
⎠
⎤
⎦ = 20 sinh⎛

⎝3
2

⎞
⎠

≈ 42.586 ft.

Assume a hanging cable has the shape 15 cosh(x/15) for −20 ≤ x ≤ 20. Determine the length of the

cable (in feet).
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6.9 EXERCISES
377. [T] Find expressions for cosh x + sinh x and

cosh x − sinh x. Use a calculator to graph these functions

and ensure your expression is correct.

378. From the definitions of cosh(x) and sinh(x), find

their antiderivatives.

379. Show that cosh(x) and sinh(x) satisfy y″ = y.

380. Use the quotient rule to verify that

tanh(x)′ = sech2 (x).

381. Derive cosh2 (x) + sinh2 (x) = cosh(2x) from the

definition.

382. Take the derivative of the previous expression to find
an expression for sinh(2x).

383. Prove
sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y) by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find
an expression for cosh(x + y).

For the following exercises, find the derivatives of the
given functions and graph along with the function to ensure
your answer is correct.

385. [T] cosh(3x + 1)

386. [T] sinh⎛
⎝x2⎞

⎠

387. [T] 1
cosh(x)

388. [T] sinh⎛
⎝ln(x)⎞

⎠

389. [T] cosh2 (x) + sinh2 (x)

390. [T] cosh2 (x) − sinh2 (x)

391. [T] tanh⎛
⎝ x2 + 1⎞

⎠

392. [T] 1 + tanh(x)
1 − tanh(x)

393. [T] sinh6 (x)

394. [T] ln⎛
⎝sech(x) + tanh(x)⎞

⎠

For the following exercises, find the antiderivatives for the
given functions.

395. cosh(2x + 1)

396. tanh(3x + 2)

397. x cosh⎛
⎝x2⎞

⎠

398. 3x3 tanh⎛
⎝x4⎞

⎠

399. cosh2 (x)sinh(x)

400. tanh2 (x)sech2 (x)

401. sinh(x)
1 + cosh(x)

402. coth(x)

403. cosh(x) + sinh(x)

404. ⎛
⎝cosh(x) + sinh(x)⎞

⎠
n

For the following exercises, find the derivatives for the
functions.

405. tanh−1 (4x)

406. sinh−1 ⎛
⎝x2⎞

⎠

407. sinh−1 ⎛
⎝cosh(x)⎞

⎠

408. cosh−1 ⎛
⎝x3⎞

⎠

409. tanh−1 (cos(x))

410. esinh−1 (x)

411. ln⎛
⎝tanh−1 (x)⎞

⎠

For the following exercises, find the antiderivatives for the
functions.

412. ∫ dx
4 − x2

413. ∫ dx
a2 − x2
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414. ∫ dx
x2 + 1

415. ∫ x dx
x2 + 1

416. ∫ − dx
x 1 − x2

417. ∫ ex

e2x − 1

418. ∫ − 2x
x4 − 1

For the following exercises, use the fact that a falling body
with friction equal to velocity squared obeys the equation

dv/dt = g − v2.

419. Show that v(t) = g tanh(( g)t) satisfies this

equation.

420. Derive the previous expression for v(t) by

integrating dv
g − v2 = dt.

421. [T] Estimate how far a body has fallen in 12 seconds

by finding the area underneath the curve of v(t).

For the following exercises, use this scenario: A cable
hanging under its own weight has a slope S = dy/dx that

satisfies dS/dx = c 1 + S2. The constant c is the ratio of

cable density to tension.

422. Show that S = sinh(cx) satisfies this equation.

423. Integrate dy/dx = sinh(cx) to find the cable height

y(x) if y(0) = 1/c.

424. Sketch the cable and determine how far down it sags
at x = 0.

For the following exercises, solve each problem.

425. [T] A chain hangs from two posts 2 m apart to form

a catenary described by the equation y = 2 cosh(x/2) − 1.
Find the slope of the catenary at the left fence post.

426. [T] A chain hangs from two posts four meters apart
to form a catenary described by the equation
y = 4 cosh(x/4) − 3. Find the total length of the catenary

(arc length).

427. [T] A high-voltage power line is a catenary described
by y = 10 cosh(x/10). Find the ratio of the area under the

catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by
y = a cosh(x/a). Find the ratio of the area under the

catenary to its arc length. Does this confirm your answer
for the previous question?

429. Prove the formula for the derivative of

y = sinh−1(x) by differentiating x = sinh(y). (Hint: Use

hyperbolic trigonometric identities.)

430. Prove the formula for the derivative of

y = cosh−1(x) by differentiating x = cosh(y). (Hint:

Use hyperbolic trigonometric identities.)

431. Prove the formula for the derivative of

y = sech−1(x) by differentiating x = sech(y). (Hint: Use

hyperbolic trigonometric identities.)

432. Prove that
⎛
⎝cosh(x) + sinh(x)⎞

⎠
n = cosh(nx) + sinh(nx).

433. Prove the expression for sinh−1 (x). Multiply

x = sinh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?

434. Prove the expression for cosh−1 (x). Multiply

x = cosh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?
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arc length

catenary

center of mass

centroid

cross-section

density function

disk method

doubling time

exponential decay

exponential growth

frustum

half-life

Hooke’s law

hydrostatic pressure

lamina

method of cylindrical shells

moment

slicing method

solid of revolution

CHAPTER 6 REVIEW

KEY TERMS
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

a curve in the shape of the function y = a cosh(x/a) is a catenary; a cable of uniform density suspended

between two supports assumes the shape of a catenary

the point at which the total mass of the system could be concentrated without changing the moment

the centroid of a region is the geometric center of the region; laminas are often represented by regions in the
plane; if the lamina has a constant density, the center of mass of the lamina depends only on the shape of the
corresponding planar region; in this case, the center of mass of the lamina corresponds to the centroid of the
representative region

the intersection of a plane and a solid object

a density function describes how mass is distributed throughout an object; it can be a linear density,
expressed in terms of mass per unit length; an area density, expressed in terms of mass per unit area; or a volume
density, expressed in terms of mass per unit volume; weight-density is also used to describe weight (rather than mass)
per unit volume

a special case of the slicing method used with solids of revolution when the slices are disks

if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double,
and is given by (ln 2)/k

systems that exhibit exponential decay follow a model of the form y = y0 e−kt

systems that exhibit exponential growth follow a model of the form y = y0 ekt

a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base

if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It
is given by (ln 2)/k

this law states that the force required to compress (or elongate) a spring is proportional to the distance the
spring has been compressed (or stretched) from equilibrium; in other words, F = kx, where k is a constant

the pressure exerted by water on a submerged object

a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are
two-dimensional

a method of calculating the volume of a solid of revolution by dividing the solid into
nested cylindrical shells; this method is different from the methods of disks or washers in that we integrate with
respect to the opposite variable

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by

M = ∑
i = 1

n
mi xi; if, instead, we consider a region in the plane, bounded above by a function f (x) over an interval

⎡
⎣a, b⎤

⎦, then the moments of the region with respect to the x- and y-axes are given by Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and

My = ρ∫
a

b
x f (x)dx, respectively

a method of calculating the volume of a solid that involves cutting the solid into pieces, estimating the
volume of each piece, then adding these estimates to arrive at an estimate of the total volume; as the number of slices
goes to infinity, this estimate becomes an integral that gives the exact value of the volume

a solid generated by revolving a region in a plane around a line in that plane
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surface area

symmetry principle

theorem of Pappus for volume

washer method

work

the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or
bricks, the surface area of the object is the sum of the areas of all of its faces

the symmetry principle states that if a region R is symmetric about a line l, then the centroid of R
lies on l

this theorem states that the volume of a solid of revolution formed by revolving a
region around an external axis is equal to the area of the region multiplied by the distance traveled by the centroid of
the region

a special case of the slicing method used with solids of revolution when the slices are washers

the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the
product of force and distance

KEY EQUATIONS
• Area between two curves, integrating on the x-axis

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

• Area between two curves, integrating on the y-axis

A = ∫
c

d
⎡
⎣u(y) − v(y)⎤

⎦dy

• Disk Method along the x-axis

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

• Disk Method along the y-axis

V = ∫
c

d
π⎡

⎣g(y)⎤
⎦
2 dy

• Washer Method

V = ∫
a

b
π⎡

⎣⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx

• Method of Cylindrical Shells

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

• Arc Length of a Function of x

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

• Arc Length of a Function of y

Arc Length = ∫
c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy

• Surface Area of a Function of x

Surface Area = ∫
a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx

• Mass of a one-dimensional object

m = ∫
a

b
ρ(x)dx

• Mass of a circular object

m = ∫
0

r
2πxρ(x)dx
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• Work done on an object

W = ∫
a

b
F(x)dx

• Hydrostatic force on a plate

F = ∫
a

b
ρw(x)s(x)dx

• Mass of a lamina

m = ρ∫
a

b
f (x)dx

• Moments of a lamina

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx

• Center of mass of a lamina

x– =
My
m and y– = Mx

m

• Natural logarithm function

• ln x = ∫
1

x
1
t dt Z

• Exponential function y = ex

• ln y = ln(ex) = x Z

KEY CONCEPTS

6.1 Areas between Curves

• Just as definite integrals can be used to find the area under a curve, they can also be used to find the area between
two curves.

• To find the area between two curves defined by functions, integrate the difference of the functions.

• If the graphs of the functions cross, or if the region is complex, use the absolute value of the difference of the
functions. In this case, it may be necessary to evaluate two or more integrals and add the results to find the area of
the region.

• Sometimes it can be easier to integrate with respect to y to find the area. The principles are the same regardless of
which variable is used as the variable of integration.

6.2 Determining Volumes by Slicing

• Definite integrals can be used to find the volumes of solids. Using the slicing method, we can find a volume by
integrating the cross-sectional area.

• For solids of revolution, the volume slices are often disks and the cross-sections are circles. The method of disks
involves applying the method of slicing in the particular case in which the cross-sections are circles, and using the
formula for the area of a circle.

• If a solid of revolution has a cavity in the center, the volume slices are washers. With the method of washers, the
area of the inner circle is subtracted from the area of the outer circle before integrating.

6.3 Volumes of Revolution: Cylindrical Shells

• The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of
revolution. This method is sometimes preferable to either the method of disks or the method of washers because we
integrate with respect to the other variable. In some cases, one integral is substantially more complicated than the
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other.

• The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration
method to use.

6.4 Arc Length of a Curve and Surface Area

• The arc length of a curve can be calculated using a definite integral.

• The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives
us the definite integral formula. The same process can be applied to functions of y.

• The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.

• The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be
necessary to use a computer or calculator to approximate the values of the integrals.

6.5 Physical Applications

• Several physical applications of the definite integral are common in engineering and physics.

• Definite integrals can be used to determine the mass of an object if its density function is known.

• Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a
pumping problem.

• Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

6.6 Moments and Centers of Mass

• Mathematically, the center of mass of a system is the point at which the total mass of the system could be
concentrated without changing the moment. Loosely speaking, the center of mass can be thought of as the balancing
point of the system.

• For point masses distributed along a number line, the moment of the system with respect to the origin is

M = ∑
i = 1

n
mi xi. For point masses distributed in a plane, the moments of the system with respect to the x- and

y-axes, respectively, are Mx = ∑
i = 1

n
mi yi and My = ∑

i = 1

n
mi xi, respectively.

• For a lamina bounded above by a function f (x), the moments of the system with respect to the x- and y-axes,

respectively, are Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx.

• The x- and y-coordinates of the center of mass can be found by dividing the moments around the y-axis and around
the x-axis, respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to
a line, then the centroid of the region lies on the line.

• The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the
resulting solid is equal to the area of the region multiplied by the distance traveled by the centroid of the region.

6.7 Integrals, Exponential Functions, and Logarithms

• The earlier treatment of logarithms and exponential functions did not define the functions precisely and formally.
This section develops the concepts in a mathematically rigorous way.

• The cornerstone of the development is the definition of the natural logarithm in terms of an integral.

• The function ex is then defined as the inverse of the natural logarithm.

• General exponential functions are defined in terms of ex, and the corresponding inverse functions are general

logarithms.
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• Familiar properties of logarithms and exponents still hold in this more rigorous context.

6.8 Exponential Growth and Decay

• Exponential growth and exponential decay are two of the most common applications of exponential functions.

• Systems that exhibit exponential growth follow a model of the form y = y0 ekt.

• In exponential growth, the rate of growth is proportional to the quantity present. In other words, y′ = ky.

• Systems that exhibit exponential growth have a constant doubling time, which is given by (ln 2)/k.

• Systems that exhibit exponential decay follow a model of the form y = y0 e−kt.

• Systems that exhibit exponential decay have a constant half-life, which is given by (ln 2)/k.

6.9 Calculus of the Hyperbolic Functions

• Hyperbolic functions are defined in terms of exponential functions.

• Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation
formulas give rise, in turn, to integration formulas.

• With appropriate range restrictions, the hyperbolic functions all have inverses.

• Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise
to integration formulas.

• The most common physical applications of hyperbolic functions are calculations involving catenaries.

CHAPTER 6 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

435. The amount of work to pump the water out of a half-
full cylinder is half the amount of work to pump the water
out of the full cylinder.

436. If the force is constant, the amount of work to move
an object from x = a to x = b is F(b − a).

437. The disk method can be used in any situation in
which the washer method is successful at finding the
volume of a solid of revolution.

438. If the half-life of seaborgium-266 is 360 ms, then

k = ⎛
⎝ln(2)⎞

⎠/360.

For the following exercises, use the requested method to
determine the volume of the solid.

439. The volume that has a base of the ellipse

x2/4 + y2/9 = 1 and cross-sections of an equilateral

triangle perpendicular to the y-axis. Use the method of

slicing.

440. y = x2 − x, from x = 1 to x = 4, rotated around

they-axis using the washer method

441. x = y2 and x = 3y rotated around the y-axis using

the washer method

442. x = 2y2 − y3, x = 0, and y = 0 rotated around the

x-axis using cylindrical shells

For the following exercises, find

a. the area of the region,

b. the volume of the solid when rotated around the
x-axis, and

c. the volume of the solid when rotated around the
y-axis. Use whichever method seems most
appropriate to you.

443. y = x3, x = 0, y = 0, and x = 2

444. y = x2 − x and x = 0

445. [T] y = ln(x) + 2 and y = x

446. y = x2 and y = x

447. y = 5 + x, y = x2, x = 0, and x = 1
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448. Below x2 + y2 = 1 and above y = 1 − x

449. Find the mass of ρ = e−x on a disk centered at the

origin with radius 4.

450. Find the center of mass for ρ = tan2 x on

x ∈ ⎛
⎝−π

4, π
4

⎞
⎠.

451. Find the mass and the center of mass of ρ = 1 on

the region bounded by y = x5 and y = x.

For the following exercises, find the requested arc lengths.

452. The length of x for y = cosh(x) from

x = 0 to x = 2.

453. The length of y for x = 3 − y from y = 0 to

y = 4

For the following exercises, find the surface area and
volume when the given curves are revolved around the
specified axis.

454. The shape created by revolving the region between
y = 4 + x, y = 3 − x, x = 0, and x = 2 rotated

around the y-axis.

455. The loudspeaker created by revolving y = 1/x from

x = 1 to x = 4 around the x-axis.

For the following exercises, consider the Karun-3 dam in
Iran. Its shape can be approximated as an isosceles triangle
with height 205 m and width 388 m. Assume the current

depth of the water is 180 m. The density of water is 1000
kg/m 3.

456. Find the total force on the wall of the dam.

457. You are a crime scene investigator attempting to
determine the time of death of a victim. It is noon and
45°F outside and the temperature of the body is 78°F.
You know the cooling constant is k = 0.00824°F/min.
When did the victim die, assuming that a human’s
temperature is 98°F ?

For the following exercise, consider the stock market crash
in 1929 in the United States. The table lists the Dow Jones

industrial average per year leading up to the crash.

Years after 1920 Value ($)

1 63.90

3 100

5 110

7 160

9 381.17

Source: http://stockcharts.com/
freecharts/historical/
djia19201940.html

458. [T] The best-fit exponential curve to these data is
given by y = 40.71 + 1.224x. Why do you think the gains

of the market were unsustainable? Use first and second
derivatives to help justify your answer. What would this
model predict the Dow Jones industrial average to be in
2014 ?

For the following exercises, consider the catenoid, the only
solid of revolution that has a minimal surface, or zero
mean curvature. A catenoid in nature can be found when
stretching soap between two rings.

459. Find the volume of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x-axis, as shown here.

460. Find surface area of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x -axis.
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APPENDIX A | TABLE OF

INTEGRALS
Basic Integrals

1. ∫ un du = un + 1

n + 1 + C, n ≠ −1

2. ∫ du
u = ln|u| + C

3. ∫ eu du = eu + C

4. ∫ au du = au

lna + C

5. ∫ sin u du = −cos u + C

6. ∫ cos u du = sin u + C

7. ∫ sec2 u du = tan u + C

8. ∫ csc2 u du = −cot u + C

9. ∫ sec u tan u du = sec u + C

10. ∫ csc u cot u du = −csc u + C

11. ∫ tan u du = ln|sec u| + C

12. ∫ cot u du = ln|sin u| + C

13. ∫ sec u du = ln|sec u + tan u| + C

14. ∫ csc u du = ln|csc u − cot u| + C

15. ∫ du
a2 − u2

= sin−1 u
a + C

16. ∫ du
a2 + u2 = 1

atan−1 u
a + C

17. ∫ du
u u2 − a2

= 1
asec−1 u

a + C

Trigonometric Integrals
18. ∫ sin2 u du = 1

2u − 1
4sin 2u + C
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19. ∫ cos2 u du = 1
2u + 1

4sin 2u + C

20. ∫ tan2 u du = tan u − u + C

21. ∫ cot2 u du = −cot u − u + C

22. ∫ sin3 u du = − 1
3

⎛
⎝2 + sin2 u⎞

⎠cos u + C

23. ∫ cos3 u du = 1
3

⎛
⎝2 + cos2 u⎞

⎠sin u + C

24. ∫ tan3 u du = 1
2tan2 u + ln|cos u| + C

25. ∫ cot3 u du = − 1
2cot2 u − ln|sin u| + C

26. ∫ sec3 u du = 1
2sec u tan u + 1

2ln |sec u + tan u| + C

27. ∫ csc3 u du = − 1
2csc u cot u + 1

2ln |csc u − cot u| + C

28. ∫ sinn u du = − 1
nsinn − 1 u cos u + n − 1

n ∫ sinn − 2 u du

29. ∫ cosn u du = 1
ncosn − 1 u sin u + n − 1

n ∫ cosn − 2 u du

30. ∫ tann u du = 1
n − 1tann − 1 u − ∫ tann − 2 u du

31. ∫ cotn u du = −1
n − 1cotn − 1 u − ∫ cotn − 2 u du

32. ∫ secn u du = 1
n − 1tan u secn − 2 u + n − 2

n − 1∫ secn − 2 u du

33. ∫ cscn u du = −1
n − 1cot u cscn − 2 u + n − 2

n − 1∫ cscn − 2 u du

34. ∫ sin au sin bu du = sin(a − b)u
2(a − b) − sin(a + b)u

2(a + b) + C

35. ∫ cos au cos bu du = sin(a − b)u
2(a − b) + sin(a + b)u

2(a + b) + C

36. ∫ sin au cos bu du = − cos(a − b)u
2(a − b) − cos(a + b)u

2(a + b) + C

37. ∫ u sin u du = sin u − u cos u + C

38. ∫ u cos u du = cos u + u sin u + C

39. ∫ un sin u du = −un cos u + n∫ un − 1 cos u du

40. ∫ un cos u du = un sin u − n∫ un − 1 sin u du

41.
∫ sinnu cosm u du = − sinn − 1 u cosm + 1 u

n + m + n − 1
n + m∫ sinn − 2 u cosm u du

= sinn + 1 u cosm − 1 u
n + m + m − 1

n + m∫ sinn u cosm − 2 u du
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Exponential and Logarithmic Integrals
42. ∫ ueau du = 1

a2(au − 1)eau + C

43. ∫ un eau du = 1
aun eau − n

a∫ un − 1 eau du

44. ∫ eau sin bu du = eau

a2 + b2(asin bu − b cos bu) + C

45. ∫ eau cos bu du = eau

a2 + b2(a cos bu + b sin bu) + C

46. ∫ lnu du = u lnu − u + C

47. ∫ unlnu du = un + 1

(n + 1)2
⎡
⎣(n + 1)lnu − 1⎤

⎦ + C

48. ∫ 1
u lnu du = ln|lnu| + C

Hyperbolic Integrals
49. ∫ sinh u du = cosh u + C

50. ∫ cosh u du = sinh u + C

51. ∫ tanh u du = lncosh u + C

52. ∫ coth u du = ln|sinh u| + C

53. ∫ sech u du = tan−1 |sinh u| + C

54. ∫ csch u du = ln|tanh 1
2u| + C

55. ∫ sech2 u du = tanh u + C

56. ∫ csch2 u du = −coth u + C

57. ∫ sech u tanh u du = −sech u + C

58. ∫ csch u coth u du = −csch u + C

Inverse Trigonometric Integrals
59. ∫ sin−1 u du = u sin−1 u + 1 − u2 + C

60. ∫ cos−1 u du = u cos−1 u − 1 − u2 + C

61. ∫ tan−1 u du = u tan−1 u − 1
2ln ⎛

⎝1 + u2⎞
⎠ + C

62. ∫ u sin−1 u du = 2u2 − 1
4 sin−1 u + u 1 − u2

4 + C
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63. ∫ u cos−1 u du = 2u2 − 1
4 cos−1 u − u 1 − u2

4 + C

64. ∫ u tan−1 u du = u2 + 1
2 tan−1 u − u

2 + C

65. ∫ un sin−1 u du = 1
n + 1

⎡
⎣
⎢un + 1 sin−1 u − ∫ un + 1 du

1 − u2

⎤
⎦
⎥, n ≠ −1

66. ∫ un cos−1 u du = 1
n + 1

⎡
⎣
⎢un + 1 cos−1 u + ∫ un + 1 du

1 − u2

⎤
⎦
⎥, n ≠ −1

67. ∫ un tan−1 u du = 1
n + 1

⎡
⎣un + 1 tan−1 u − ∫ un + 1 du

1 + u2
⎤
⎦, n ≠ −1

Integrals Involving a2 + u2, a > 0

68. ∫ a2 + u2 du = u
2 a2 + u2 + a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

69. ∫ u2 a2 + u2 du = u
8

⎛
⎝a2 + 2u2⎞

⎠ a2 + u2 − a4

8 ln⎛
⎝u + a2 + u2⎞

⎠ + C

70. ∫ a2 + u2
u du = a2 + u2 − a ln |a + a2 + u2

u | + C

71. ∫ a2 + u2

u2 du = − a2 + u2
u + ln⎛

⎝u + a2 + u2⎞
⎠ + C

72. ∫ du
a2 + u2

= ln⎛
⎝u + a2 + u2⎞

⎠ + C

73. ∫ u2 du
a2 + u2

= u
2

⎛
⎝ a2 + u2⎞

⎠ − a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

74. ∫ du
u a2 + u2

= − 1
aln | a2 + u2 + a

u | + C

75. ∫ du
u2 a2 + u2

= − a2 + u2

a2 u
+ C

76. ∫ du
⎛
⎝a2 + u2⎞

⎠
3/2 = u

a2 a2 + u2
+ C

Integrals Involving u2 − a2, a > 0

77. ∫ u2 − a2 du = u
2 u2 − a2 − a2

2 ln |u + u2 − a2| + C

78. ∫ u2 u2 − a2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ u2 − a2 − a4

8 ln |u + u2 − a2| + C

79. ∫ u2 − a2
u du = u2 − a2 − acos−1 a

|u| + C

80. ∫ u2 − a2

u2 du = − u2 − a2
u + ln|u + u2 − a2| + C
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81. ∫ du
u2 − a2

= ln|u + u2 − a2| + C

82. ∫ u2 du
u2 − a2

= u
2 u2 − a2 + a2

2 ln |u + u2 − a2| + C

83. ∫ du
u2 u2 − a2

= u2 − a2

a2 u
+ C

84. ∫ du
⎛
⎝u2 − a2⎞

⎠
3/2 = − u

a2 u2 − a2
+ C

Integrals Involving a2 − u2, a > 0

85. ∫ a2 − u2 du = u
2 a2 − u2 + a2

2 sin−1 u
a + C

86. ∫ u2 a2 − u2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ a2 − u2 + a4

8 sin−1 u
a + C

87. ∫ a2 − u2
u du = a2 − u2 − aln |a + a2 − u2

u | + C

88. ∫ a2 − u2

u2 du = − 1
u a2 − u2 − sin−1 u

a + C

89. ∫ u2 du
a2 − u2

= − u
u a2 − u2 + a2

2 sin−1 u
a + C

90. ∫ du
u a2 − u2

= − 1
aln |a + a2 − u2

u | + C

91. ∫ du
u2 a2 − u2

= − 1
a2 u

a2 − u2 + C

92. ∫ ⎛
⎝a2 − u2⎞

⎠
3/2

du = − u
8

⎛
⎝2u2 − 5a2⎞

⎠ a2 − u2 + 3a4

8 sin−1 u
a + C

93. ∫ du
⎛
⎝a2 − u2⎞

⎠
3/2 = − u

a2 a2 − u2
+ C

Integrals Involving 2au − u2, a > 0

94. ∫ 2au − u2 du = u − a
2 2au − u2 + a2

2 cos−1 ⎛
⎝a − u

a
⎞
⎠ + C

95. ∫ du
2au − u2

= cos−1 ⎛
⎝a − u

a
⎞
⎠ + C

96. ∫ u 2au − u2 du = 2u2 − au − 3a2

6 2au − u2 + a3

2 cos−1 ⎛
⎝a − u

a
⎞
⎠ + C

97. ∫ du
u 2au − u2

= − 2au − u2
au + C

Appendix A 767



Integrals Involving a + bu, a ≠ 0
98. ∫ u du

a + bu = 1
b2

⎛
⎝a + bu − aln |a + bu|⎞

⎠ + C

99. ∫ u2 du
a + bu = 1

2b3
⎡
⎣(a + bu)2 − 4a(a + bu) + 2a2 ln |a + bu|⎤⎦ + C

100. ∫ du
u(a + bu) = 1

aln | u
a + bu | + C

101. ∫ du
u2 (a + bu)

= − 1
au + b

a2ln |a + bu
u | + C

102. ∫ u du
(a + bu)2 = a

b2 (a + bu)
+ 1

b2ln |a + bu| + C

103. ∫ u du
u (a + bu)2 = 1

a(a + bu) − 1
a2ln |a + bu

u | + C

104. ∫ u2 du
(a + bu)2 = 1

b3
⎛
⎝a + bu − a2

a + bu − 2aln |a + bu|⎞⎠ + C

105. ∫ u a + bu du = 2
15b2(3bu − 2a)(a + bu)3/2 + C

106. ∫ u du
a + bu

= 2
3b2(bu − 2a) a + bu + C

107. ∫ u2 du
a + bu

= 2
15b3

⎛
⎝8a2 + 3b2 u2 − 4abu⎞

⎠ a + bu + C

108.
∫ du

u a + bu
= 1

aln | a + bu − a
a + bu + a | + C, if a > 0

= 2
−atan − 1 a + bu

−a + C, if a < 0

109. ∫ a + bu
u du = 2 a + bu + a∫ du

u a + bu

110. ∫ a + bu
u2 du = − a + bu

u + b
2∫ du

u a + bu

111. ∫ un a + bu du = 2
b(2n + 3)

⎡
⎣un (a + bu)3/2 − na∫ un − 1 a + bu du⎤

⎦

112. ∫ un du
a + bu

= 2un a + bu
b(2n + 1) − 2na

b(2n + 1)∫
un − 1 du

a + bu

113. ∫ du
un a + bu

= − a + bu
a(n − 1)un − 1 − b(2n − 3)

2a(n − 1)∫
du

un − 1 a + bu
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APPENDIX B | TABLE OF

DERIVATIVES
General Formulas
1. d

dx(c) = 0

2. d
dx

⎛
⎝ f (x) + g(x)⎞

⎠ = f ′ (x) + g′ (x)

3. d
dx

⎛
⎝ f (x)g(x)⎞

⎠ = f ′ (x)g(x) + f (x)g′ (x)

4. d
dx(xn) = nxn − 1, for real numbers n

5. d
dx

⎛
⎝c f (x)⎞

⎠ = c f ′ (x)

6. d
dx

⎛
⎝ f (x) − g(x)⎞

⎠ = f ′ (x) − g′ (x)

7. d
dx

⎛
⎝

f (x)
g(x)

⎞
⎠ = g(x) f ′ (x) − f (x)g′ (x)

⎛
⎝g(x)⎞

⎠
2

8. d
dx

⎡
⎣ f ⎛

⎝g(x)⎞
⎠
⎤
⎦ = f ′ ⎛

⎝g(x)⎞
⎠ · g′ (x)

Trigonometric Functions
9. d

dx(sinx) = cosx

10. d
dx(tanx) = sec2 x

11. d
dx(secx) = secx tanx

12. d
dx(cosx) = −sinx

13. d
dx(cotx) = −csc2 x

14. d
dx(cscx) = −cscxcot x

Inverse Trigonometric Functions
15. d

dx
⎛
⎝sin−1 x⎞

⎠ = 1
1 − x2

16. d
dx

⎛
⎝tan−1 x⎞

⎠ = 1
1 + x2

17. d
dx

⎛
⎝sec−1 x⎞

⎠ = 1
|x| x2 − 1
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18. d
dx

⎛
⎝cos−1 x⎞

⎠ = − 1
1 − x2

19. d
dx

⎛
⎝cot−1 x⎞

⎠ = − 1
1 + x2

20. d
dx

⎛
⎝csc−1 x⎞

⎠ = − 1
|x| x2 − 1

Exponential and Logarithmic Functions
21. d

dx(ex) = ex

22. d
dx(ln |x|) = 1

x

23. d
dx(bx) = bx lnb

24. d
dx

⎛
⎝logb x⎞

⎠ = 1
x lnb

Hyperbolic Functions
25. d

dx(sinhx) = coshx

26. d
dx(tanhx) = sech2 x

27. d
dx(sech x) = −sech x tanhx

28. d
dx(coshx) = sinhx

29. d
dx(cothx) = −csch2 x

30. d
dx(csch x) = −csch x cothx

Inverse Hyperbolic Functions
31. d

dx
⎛
⎝sinh−1 x⎞

⎠ = 1
x2 + 1

32. d
dx

⎛
⎝tanh−1 x⎞

⎠ = 1
1 − x2(|x| < 1)

33. d
dx

⎛
⎝sech−1 x⎞

⎠ = − 1
x 1 − x2

(0 < x < 1)

34. d
dx

⎛
⎝cosh−1 x⎞

⎠ = 1
x2 − 1

(x > 1)

35. d
dx

⎛
⎝coth−1 x⎞

⎠ = 1
1 − x2 (|x| > 1)

36. d
dx

⎛
⎝csch−1 x⎞

⎠ = − 1
|x| 1 + x2

(x ≠ 0)
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APPENDIX C | REVIEW OF

PRE-CALCULUS
Formulas from Geometry
A = area, V = Volume, and S = lateral surface area

Formulas from Algebra
Laws of Exponents

xm xn = xm + n xm

xn = xm − n (xm)n = xmn

x−n = 1
xn (xy)n = xn yn ⎛

⎝x
y

⎞
⎠
n

= xn

yn

x1/n = xn xyn = xn yn x
y

n = xn

yn

xm/n = xmn
= ( xn )m

Special Factorizations
x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)⎛
⎝x2 − xy + y2⎞

⎠
x3 − y3 = (x − y)⎛

⎝x2 + xy + y2⎞
⎠

Quadratic Formula

If ax2 + bx + c = 0, then x = −b ± b2 − 4ca
2a .
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Binomial Theorem

(a + b)n = an + ⎛
⎝
n
1

⎞
⎠an − 1 b + ⎛

⎝
n
2

⎞
⎠an − 2 b2 + ⋯ + ⎛

⎝
n

n − 1
⎞
⎠abn − 1 + bn,

where ⎛
⎝
n
k

⎞
⎠ = n(n − 1)(n − 2) ⋯ (n − k + 1)

k(k − 1)(k − 2) ⋯ 3 ⋅ 2 ⋅ 1 = n !
k !(n − k) !

Formulas from Trigonometry
Right-Angle Trigonometry

sinθ = opp
hyp cscθ = hyp

opp

cosθ = adj
hyp secθ = hyp

adj

tanθ = opp
adj cotθ = adj

opp

Trigonometric Functions of Important Angles

θ Radians sinθ cosθ tanθ

0° 0 0 1 0

30° π/6 1/2 3/2 3/3

45° π/4 2/2 2/2 1

60° π/3 3/2 1/2 3

90° π/2 1 0 —
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Fundamental Identities
sin2 θ + cos2 θ = 1 sin(−θ) = −sinθ

1 + tan2 θ = sec2 θ cos(−θ) = cosθ

1 + cot2 θ = csc2 θ tan(−θ) = −tanθ
sin⎛

⎝π
2 − θ⎞

⎠ = cosθ sin(θ + 2π) = sinθ

cos⎛
⎝π
2 − θ⎞

⎠ = sinθ cos(θ + 2π) = cosθ

tan⎛
⎝π
2 − θ⎞

⎠ = cotθ tan(θ + π) = tanθ

Law of Sines
sin A

a = sinB
b = sinC

c

Law of Cosines
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C

Addition and Subtraction Formulas
sin (x + y) = sin x cos y + cos x sin y
sin(x − y) = sin x cos y − cos x sin y
cos(x + y) = cos x cos y − sin x sin y
cos(x − y) = cos x cos y + sin x sin y

tan(x + y) = tan x + tany
1 − tan x tany

tan(x − y) = tan x − tany
1 + tan x tany

Double-Angle Formulas
sin 2x = 2sin x cos x
cos 2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x

tan 2x = 2tan x
1 − tan2 x
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Half-Angle Formulas

sin2 x = 1 − cos 2x
2

cos2 x = 1 + cos 2x
2
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ANSWER KEY
Chapter 1

Checkpoint

1.1. f (1) = 3 and f (a + h) = a2 + 2ah + h2 − 3a − 3h + 5
1.2. Domain = {x|x ≤ 2}, range =

⎧
⎩
⎨y|y ≥ 5⎫

⎭
⎬

1.3. x = 0, 2, 3

1.4.
⎛
⎝

f
g

⎞
⎠(x) = x2 + 3

2x − 5. The domain is
⎧
⎩
⎨x|x ≠ 5

2
⎫
⎭
⎬.

1.5. ⎛
⎝ f ∘g⎞

⎠(x) = 2 − 5 x.
1.6. (g ∘ f )(x) = 0.63x
1.7. f (x) is odd.

1.8. Domain = (−∞, ∞), range =
⎧
⎩
⎨y|y ≥ −4⎫

⎭
⎬.

1.9. m = 1/2. The point-slope form is y − 4 = 1
2(x − 1). The slope-intercept form is y = 1

2x + 7
2.

1.10. The zeros are x = 1 ± 3/3. The parabola opens upward.

1.11. The domain is the set of real numbers x such that x ≠ 1/2. The range is the set
⎧
⎩
⎨y|y ≠ 5/2⎫

⎭
⎬.

1.12. The domain of f is (−∞, ∞). The domain of g is {x|x ≥ 1/5}.
1.13. Algebraic
1.14.

1.15. C(x) =
⎧
⎩
⎨

49, 0 < x ≤ 1
70, 1 < x ≤ 2
91, 2 < x ≤ 3

1.16. Shift the graph y = x2 to the left 1 unit, reflect about the x -axis, then shift down 4 units.

1.17. 7π/6; 330°

1.18. cos(3π/4) = − 2/2; sin(−π/6) = −1/2
1.19. 10 ft

1.20. θ = 3π
2 + 2nπ, π

6 + 2nπ, 5π
6 + 2nπ for n = 0, ± 1, ± 2,…

1.22. To graph f (x) = 3sin(4x) − 5, the graph of y = sin(x) needs to be compressed horizontally by a factor of 4, then

stretched vertically by a factor of 3, then shifted down 5 units. The function f will have a period of π/2 and an amplitude of 3.

1.23. No.
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1.24. f −1 (x) = 2x
x − 3. The domain of f −1 is {x|x ≠ 3}. The range of f −1 is

⎧
⎩
⎨y|y ≠ 2⎫

⎭
⎬.

1.25.

1.26. The domain of f −1 is (0, ∞). The range of f −1 is (−∞, 0). The inverse function is given by the formula

f −1 (x) = −1/ x.
1.27. f (4) = 900; f (10) = 24, 300.

1.28. x/⎛
⎝2y3⎞

⎠

1.29. A(t) = 750e0.04t. After 30 years, there will be approximately $2, 490.09.

1.30. x = ln3
2

1.31. x = 1
e

1.32. 1.29248
1.33. The magnitude 8.4 earthquake is roughly 10 times as severe as the magnitude 7.4 earthquake.

1.34. (x2 + x−2)/2

1.35. 1
2ln(3) ≈ 0.5493.

Section Exercises

1. a. Domain = {−3, −2, −1, 0, 1, 2, 3}, range = {0, 1, 4, 9} b. Yes, a function

3. a. Domain = {0, 1, 2, 3}, range = {−3, −2, −1, 0, 1, 2, 3} b. No, not a function

5. a. Domain = {3, 5, 8, 10, 15, 21, 33}, range = {0, 1, 2, 3} b. Yes, a function

7. a. −2 b. 3 c. 13 d. −5x − 2 e. 5a − 2 f. 5a + 5h − 2

9. a. Undefined b. 2 c. 2
3 d. −2

x e 2
a f. 2

a + h
11. a. 5 b. 11 c. 23 d. −6x + 5 e. 6a + 5 f. 6a + 6h + 5
13. a. 9 b. 9 c. 9 d. 9 e. 9 f. 9

15. x ≥ 1
8; y ≥ 0; x = 1

8; no y-intercept

17. x ≥ −2; y ≥ −1; x = −1; y = −1 + 2

19. x ≠ 4; y ≠ 0; no x-intercept; y = − 3
4

21. x > 5; y > 0; no intercepts

23.
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25.

27.
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29. Function; a. Domain: all real numbers, range: y ≥ 0 b. x = ± 1 c. y = 1 d. −1 < x < 0 and 1 < x < ∞ e.

−∞ < x < − 1 and 0 < x < 1 f. Not constant g. y-axis h. Even

31. Function; a. Domain: all real numbers, range: −1.5 ≤ y ≤ 1.5 b. x = 0 c. y = 0 d. all real numbers e. None f. Not

constant g. Origin h. Odd
33. Function; a. Domain: −∞ < x < ∞, range: −2 ≤ y ≤ 2 b. x = 0 c. y = 0 d. −2 < x < 2 e. Not decreasing f.

−∞ < x < − 2 and 2 < x < ∞ g. Origin h. Odd

35. Function; a. Domain: −4 ≤ x ≤ 4, range: −4 ≤ y ≤ 4 b. x = 1.2 c. y = 4 d. Not increasing e. 0 < x < 4 f.

−4 < x < 0 g. No Symmetry h. Neither

37. a. 5x2 + x − 8; all real numbers b. −5x2 + x − 8; all real numbers c. 5x3 − 40x2; all real numbers d.
x − 8
5x2 ; x ≠ 0

39. a. −2x + 6; all real numbers b. −2x2 + 2x + 12; all real numbers c. −x4 + 2x3 + 12x2 − 18x − 27; all real numbers

d. − x + 3
x + 1; x ≠ −1, 3

41. a. 6 + 2
x; x ≠ 0 b. 6; x ≠ 0 c.

6
x + 1

x2; x ≠ 0 d. 6x + 1; x ≠ 0

43. a. 4x + 3; all real numbers b. 4x + 15; all real numbers

45. a. x4 − 6x2 + 16; all real numbers b. x4 + 14x2 + 46; all real numbers

47. a. 3x
4 + x; x ≠ 0, −4 b. 4x + 2

3 ; x ≠ − 1
2

49. a. Yes, because there is only one winner for each year. b. No, because there are three teams that won more than once during
the years 2001 to 2012.

51. a. V(s) = s3 b. V(11.8) ≈ 1643; a cube of side length 11.8 each has a volume of approximately 1643 cubic units.
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53. a. N(x) = 15x b. i. N(20) = 15(20) = 300; therefore, the vehicle can travel 300 mi on a full tank of gas. Ii.

N(15) = 225; therefore, the vehicle can travel 225 mi on 3/4 of a tank of gas. c. Domain: 0 ≤ x ≤ 20; range: [0, 300] d. The

driver had to stop at least once, given that it takes approximately 39 gal of gas to drive a total of 578 mi.

55. a. A(t) = A(r(t)) = π · ⎛⎝6 − 5
t2 + 1

⎞
⎠

2
b. Exact: 121π

4 ; approximately 95 cm2 c. C(t) = C⎛
⎝r(t)⎞

⎠ = 2π⎛
⎝6 − 5

t2 + 1
⎞
⎠ d.

Exact: 11π; approximately 35 cm

57. a. S(x) = 8.5x + 750 b. $962.50, $1090, $1217.50 c. 77 skateboards

59. a. −1 b. Decreasing
61. a. 3/4 b. Increasing
63. a. 4/3 b. Increasing
65. a. 0 b. Horizontal
67. y = −6x + 9

69. y = 1
3x + 4

71. y = 1
2x

73. y = 3
5x − 3

75. a. (m = 2, b = −3) b.

77. a. (m = −6, b = 0) b.
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79. a. (m = 0, b = −6) b.

81. a.
⎛
⎝m = − 2

3, b = 2⎞
⎠ b.

83. a. 2 b. 5
2, −1; c. −5 d. Both ends rise e. Neither

85. a. 2 b. ± 2 c. −1 d. Both ends rise e. Even
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87. a. 3 b. 0, ± 3 c. 0 d. Left end rises, right end falls e. Odd

89.

91.

93.
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95. a. 13, −3, 5 b.

97. a. −3
2 , −1

2 , 4 b.
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99. True; n = 3
101. False; f (x) = xb, where b is a real-valued constant, is a power function

103. a. V(t) = −2733t + 20500 b. (0, 20, 500) means that the initial purchase price of the equipment is $20,500; (7.5, 0)
means that in 7.5 years the computer equipment has no value. c. $6835 d. In approximately 6.4 years
105. a. C = 0.75x + 125 b. $245 c. 167 cupcakes

107. a. V(t) = −1500t + 26,000 b. In 4 years, the value of the car is $20,000.

109. $30,337.50
111. 96% of the total capacity

113. 4π
3 rad

115.
−π
3

117. 11π
6 rad

119. 210°
121. −540°
123. −0.5

125. − 2
2

127. 3 − 1
2 2

129. a. b = 5.7 b. sin A = 4
7, cos A = 5.7

7 , tan A = 4
5.7, csc A = 7

4, sec A = 7
5.7, cot A = 5.7

4
131. a. c = 151.7 b. sin A = 0.5623, cos A = 0.8273, tan A = 0.6797, csc A = 1.778, sec A = 1.209, cot A = 1.471

133. a. c = 85 b. sin A = 84
85, cos A = 13

85, tan A = 84
13, csc A = 85

84, sec A = 85
13, cot A = 13

84

135. a. y = 24
25 b. sinθ = 24

25, cosθ = 7
25, tanθ = 24

7 , cscθ = 25
24, secθ = 25

7 , cotθ = 7
24

137. a. x = − 2
3 b. sinθ = 7

3 , cosθ = − 2
3 , tanθ = − 14

2 , cscθ = 3 7
7 , secθ = −3 2

2 , cotθ = − 14
7

139. sec2 x
141. sin2 x
143. sec2 θ

145. 1
sin t = csc t
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155.
⎧
⎩
⎨π
6, 5π

6
⎫
⎭
⎬

157.
⎧
⎩
⎨π
4, 3π

4 , 5π
4 , 7π

4
⎫
⎭
⎬

159.
⎧
⎩
⎨2π

3 , 5π
3

⎫
⎭
⎬

161.
⎧
⎩
⎨0, π, π

3, 5π
3

⎫
⎭
⎬

163. y = 4sin⎛
⎝π
4x⎞

⎠
165. y = cos(2πx)

167. a. 1 b. 2π c.
π
4 units to the right

169. a. 1
2 b. 8π c. No phase shift

171. a. 3 b. 2 c. 2
π units to the left

173. Approximately 42 in.
175. a. 0.550 rad/sec b. 0.236 rad/sec c. 0.698 rad/min d. 1.697 rad/min
177. ≈ 30.9 in2

179. a. π/184; the voltage repeats every π/184 sec b. Approximately 59 periods
181. a. Amplitude = 10; period = 24 b. 47.4 °F c. 14 hours later, or 2 p.m. d.

183. Not one-to-one
185. Not one-to-one
187. One-to-one

189. a. f −1 (x) = x + 4 b. Domain : x ≥ −4, range: y ≥ 0

191. a. f −1 (x) = x − 13 b. Domain: all real numbers, range: all real numbers

193. a. f −1 (x) = x2 + 1, b. Domain: x ≥ 0, range: y ≥ 1
195.
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197.

199. These are inverses.
201. These are not inverses.
203. These are inverses.
205. These are inverses.

207.
π
6

209.
π
4

211.
π
6

213. 2
2

215. −π
6

217. a. x = f −1 (V) = 0.04 − V
500 b. The inverse function determines the distance from the center of the artery at which

blood is flowing with velocity V. c. 0.1 cm; 0.14 cm; 0.17 cm

219. a. $31,250, $66,667, $107,143 b.
⎛
⎝p = 85C

C + 75
⎞
⎠ c. 34 ppb

221. a. ~92° b. ~42° c. ~27°
223. x ≈ 6.69, 8.51; so, the temperature occurs on June 21 and August 15

225. ~1.5 sec

227. tan−1 (tan(2.1)) ≈ − 1.0416; the expression does not equal 2.1 since 2.1 > 1.57 = π
2 —in other words, it is not in the

restricted domain of tanx. cos−1 (cos(2.1)) = 2.1, since 2.1 is in the restricted domain of cosx.
229. a. 125 b. 2.24 c. 9.74
231. a. 0.01 b. 10,000 c. 46.42
233. d
235. b
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237. e
239. Domain: all real numbers, range: (2, ∞), y = 2

241. Domain: all real numbers, range: (0, ∞), y = 0

243. Domain: all real numbers, range: (−∞, 1), y = 1
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245. Domain: all real numbers, range: (−1, ∞), y = −1

247. 81/3 = 2
249. 52 = 25

251. e−3 = 1
e3

253. e0 = 1

255. log4
⎛
⎝ 1
16

⎞
⎠ = −2

257. log9 1 = 0

259. log64 4 = 1
3

261. log9 150 = y

263. log4 0.125 = − 3
2

265. Domain: (1, ∞), range: (−∞, ∞), x = 1

267. Domain: (0, ∞), range: (−∞, ∞), x = 0
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269. Domain: (−1, ∞), range: (−∞, ∞), x = −1

271. 2 + 3log3 a − log3 b

273. 3
2 + 1

2log5 x + 3
2log5 y

275. −3
2 + ln6

277. ln15
3

279. 3
2

281. log7.21

283. 2
3 + log11

3log7

285. x = 1
25

287. x = 4
289. x = 3
291. 1 + 5

293.
⎛
⎝
log82
log7 ≈ 2.2646⎞

⎠

788 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



295.
⎛
⎝
log211
log0.5 ≈ − 7.7211⎞

⎠
297.

⎛
⎝
log0.452
log0.2 ≈ 0.4934⎞

⎠
299. ~17, 491
301. Approximately $131,653 is accumulated in 5 years.
303. i. a. pH = 8 b. Base ii. a. pH = 3 b. Acid iii. a. pH = 4 b. Acid
305. a. ~333 million b. 94 years from 2013, or in 2107

307. a. k ≈ 0.0578 b. ≈ 92 hours

309. The San Francisco earthquake had 103.4 or ~2512 times more energy than the Japan earthquake.

Review Exercises

311. False
313. False
315. Domain: x > 5, range: all real numbers

317. Domain: x > 2 and x < − 4, range: all real numbers

319. Degree of 3, y -intercept: 0, zeros: 0, 3 − 1, −1 − 3

321. cos2 x – sin2 x = cos2x or = 1 – 2sin2 x
2 or = 2cos2 x – 1

2
323. 0, ± 2π
325. 4

327. One-to-one; yes, the function has an inverse; inverse: f −1(x) = 1
y

329. x ≥ − 3
2, f −1(x) = − 3

2 + 1
2 4y − 7

331. a. C(x) = 300 + 7x b. 100 shirts

333. The population is less than 20,000 from December 8 through January 23 and more than 140,000 from May 29 through August
2
335. 78.51%

Chapter 2

Checkpoint

2.1. 2.25
2.2. 12.006001
2.3. 16 unit2

2.4. lim
x → 1

1
x − 1
x − 1 = −1

2.5. lim
x → 2

h(x) = −1.

2.6. lim
x → 2

|x2 − 4|
x − 2

does not exist.

2.7. a. lim
x → 2−

|x2 − 4|
x − 2 = −4; b. lim

x → 2+
|x2 − 4|
x − 2 = 4

2.8. a. lim
x → 0−

1
x2 = +∞; b. lim

x → 0+
1
x2 = +∞; c. lim

x → 0
1
x2 = +∞

2.9. a. lim
x → 2−

1
(x − 2)3 = −∞; b. lim

x → 2+
1

(x − 2)3 = +∞; c. lim
x → 2

1
(x − 2)3 DNE. The line x = 2 is the vertical asymptote

of f (x) = 1/(x − 2)3.
2.10. Does not exist.
2.11. 11 10
2.12. −13;
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2.13. 1
3

2.14. 1
4

2.15. −1;

2.16. 1
4

2.17.

lim
x → −1− f (x) = −1

2.18. +∞
2.19. 0
2.20. 0

2.21. f is not continuous at 1 because f (1) = 2 ≠ 3 = lim
x → 1

f (x).

2.22. f (x) is continuous at every real number.

2.23. Discontinuous at 1; removable
2.24. [−3, +∞)
2.25. 0
2.26. f (0) = 1 > 0, f (1) = −2 < 0; f (x) is continuous over [0, 1]. It must have a zero on this interval.

2.27. Let ε > 0; choose δ = ε
3; assume 0 < |x − 2| < δ. Thus,

|(3x − 2) − 4| = |3x − 6| = |3| · |x − 2| < 3 · δ = 3 · (ε/3) = ε. Therefore, lim
x → 2

3x − 2 = 4.

2.28. Choose δ = min⎧
⎩
⎨9 − (3 − ε)2, (3 + ε)2 − 9⎫

⎭
⎬.

2.29. |x2 − 1| = |x − 1| · |x + 1| < ε/3 · 3 = ε

2.30. δ = ε2

Section Exercises

1. a. 2.2100000; b. 2.0201000; c. 2.0020010; d. 2.0002000; e. (1.1000000, 2.2100000); f. (1.0100000, 2.0201000); g. (1.0010000,
2.0020010); h. (1.0001000, 2.0002000); i. 2.1000000; j. 2.0100000; k. 2.0010000; l. 2.0001000
3. y = 2x
5. 3
7. a. 2.0248457; b. 2.0024984; c. 2.0002500; d. 2.0000250; e. (4.1000000,2.0248457); f. (4.0100000,2.0024984); g.
(4.0010000,2.0002500); h. (4.00010000,2.0000250); i. 0.24845673; j. 0.24984395; k. 0.24998438; l. 0.24999844

9. y = x
4 + 1

11. π
13. a. −0.95238095; b. −0.99009901; c. −0.99502488; d. −0.99900100; e. (−1;.0500000,−0;.95238095); f.
(−1;.0100000,−0;.9909901); g. (−1;.0050000,−0;.99502488); h. (1.0010000,−0;.99900100); i. −0.95238095; j. −0.99009901; k.
−0.99502488; l. −0.99900100
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15. y = −x − 2
17. −49 m/sec (velocity of the ball is 49 m/sec downward)
19. 5.2 m/sec
21. −9.8 m/sec
23. 6 m/sec

25. Under, 1 unit2; over: 4 unit2. The exact area of the two triangles is 1
2(1)(1) + 1

2(2)(2) = 2.5 units2.

27. Under, 0.96 unit2; over, 1.92 unit2. The exact area of the semicircle with radius 1 is π(1)2

2 = π
2

unit2.

29. Approximately 1.3333333 unit2

31. lim
x → 1

f (x) does not exist because lim
x → 1− f (x) = −2 ≠ lim

x → 1+
f (x) = 2.

33. lim
x → 0

(1 + x)1/x = 2.7183

35. a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h. 1.99999999;

lim
x → 0

sin2x
x = 2

37. lim
x → 0

sinax
x = a

39. a. −0.80000000; b. −0.98000000; c. −0.99800000; d. −0.99980000; e. −1.2000000; f. −1.0200000; g. −1.0020000; h.

−1.0002000; lim
x → 1

(1 − 2x) = −1

41. a. −37.931934; b. −3377.9264; c. −333,777.93; d. −33,337,778; e. −29.032258; f. −3289.0365; g. −332,889.04; h. −33,328,889

lim
x → 0

z − 1
z2 (z + 3)

= −∞

43. a. 0.13495277; b. 0.12594300; c. 0.12509381; d. 0.12500938; e. 0.11614402; f. 0.12406794; g. 0.12490631; h. 0.12499063;

∴ lim
x → 2

1 − 2
x

x2 − 4
= 0.1250 = 1

8

45. a. −10.00000; b. −100.00000; c. −1000.0000; d. −10,000.000; Guess: lim
α → 0+

1
α cos ⎛

⎝πα
⎞
⎠ = ∞, actual: DNE

47. False; lim
x → −2+

f (x) = + ∞

49. False; lim
x → 6

f (x) DNE since lim
x → 6− f (x) = 2 and lim

x → 6+
f (x) = 5.

51. 2
53. 1
55. 1
57. DNE
59. 0
61. DNE
63. 2
65. 3
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67. DNE
69. 0
71. −2
73. DNE
75. 0
77. Answers may vary.

79. Answers may vary.

81. a. ρ2 b. ρ1 c. DNE unless ρ1 = ρ2. As you approach xSF from the right, you are in the high-density area of the shock.

When you approach from the left, you have not experienced the “shock” yet and are at a lower density.

83. Use constant multiple law and difference law: lim
x → 0

⎛
⎝4x2 − 2x + 3⎞

⎠ = 4 lim
x → 0

x2 − 2 lim
x → 0

x + lim
x → 0

3 = 3

85. Use root law: lim
x → −2

x2 − 6x + 3 = lim
x → −2

⎛
⎝x2 − 6x + 3⎞

⎠ = 19

87. 49
89. 1

91. −5
7

93. lim
x → 4

x2 − 16
x − 4 = 16 − 16

4 − 4 = 0
0; then, lim

x → 4
x2 − 16
x − 4 = lim

x → 4
(x + 4)(x − 4)

x − 4 = 8
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95. lim
x → 6

3x − 18
2x − 12 = 18 − 18

12 − 12 = 0
0; then, lim

x → 6
3x − 18
2x − 12 = lim

x → 6
3(x − 6)
2(x − 6) = 3

2

97. lim
x → 9

t − 9
t − 3 = 9 − 9

3 − 3 = 0
0; then, lim

t → 9
t − 9
t − 3 = lim

t → 9
t − 9
t − 3

t + 3
t + 3 = lim

t → 9
( t + 3) = 6

99. lim
θ → π

sinθ
tanθ = sinπ

tanπ = 0
0; then, lim

θ → π
sinθ
tanθ = lim

θ → π
sinθ
sinθ
cosθ

= lim
θ → π

cosθ = −1

101. lim
x → 1/2

2x2 + 3x − 2
2x − 1 =

1
2 + 3

2 − 2
1 − 1 = 0

0; then, lim
x → 1/2

2x2 + 3x − 2
2x − 1 = lim

x → 1/2
(2x − 1)(x + 2)

2x − 1 = 5
2

103. −∞
105. −∞

107. lim
x → 6

2 f (x)g(x) = 2 lim
x → 6

f (x) lim
x → 6

g(x) = 72

109. lim
x → 6

⎛
⎝ f (x) + 1

3g(x)⎞⎠ = lim
x → 6

f (x) + 1
3 lim

x → 6
g(x) = 7

111. lim
x → 6

g(x) − f (x) = lim
x → 6

g(x) − lim
x → 6

f (x) = 5

113. lim
x → 6

⎡
⎣(x + 1) f (x)⎤

⎦ = ⎛
⎝ lim
x → 6

(x + 1)⎞⎠
⎛
⎝ lim
x → 6

f (x)⎞⎠ = 28

115.

a. 9; b. 7
117.
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a. 1; b. 1

119. lim
x → −3−

⎛
⎝ f (x) − 3g(x)⎞

⎠ = lim
x → −3− f (x) − 3 lim

x → −3− g(x) = 0 + 6 = 6

121. lim
x → −5

2 + g(x)
f (x) =

2 + ⎛
⎝ lim
x → −5

g(x)⎞⎠
lim

x → −5
f (x) = 2 + 0

2 = 1

123. lim
x → 1

f (x) − g(x)3 = lim
x → 1

f (x) − lim
x → 1

g(x)3 = 2 + 53 = 73

125. lim
x → −9

⎛
⎝x f (x) + 2g(x)⎞

⎠ = ⎛
⎝ lim
x → −9

x⎞
⎠
⎛
⎝ lim
x → −9

f (x)⎞⎠ + 2 lim
x → −9

⎛
⎝g(x)⎞

⎠ = (−9)(6) + 2(4) = −46

127. The limit is zero.

129. a.
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b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate
negative distance.
131. The function is defined for all x in the interval (0, ∞).
133. Removable discontinuity at x = 0; infinite discontinuity at x = 1
135. Infinite discontinuity at x = ln2

137. Infinite discontinuities at x = (2k + 1)π
4 , for k = 0, ± 1, ± 2, ± 3,…

139. No. It is a removable discontinuity.
141. Yes. It is continuous.
143. Yes. It is continuous.
145. k = −5
147. k = −1

149. k = 16
3

151. Since both s and y = t are continuous everywhere, then h(t) = s(t) − t is continuous everywhere and, in particular, it is

continuous over the closed interval ⎡
⎣2, 5⎤

⎦. Also, h(2) = 3 > 0 and h(5) = −3 < 0. Therefore, by the IVT, there is a value

x = c such that h(c) = 0.

153. The function f (x) = 2x − x3 is continuous over the interval ⎡
⎣1.25, 1.375⎤

⎦ and has opposite signs at the endpoints.

155. a.
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b. It is not possible to redefine f (1) since the discontinuity is a jump discontinuity.

157. Answers may vary; see the following example:

159. Answers may vary; see the following example:
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161. False. It is continuous over (−∞, 0) ∪ (0, ∞).

163. False. Consider f (x) =
⎧
⎩
⎨x if x ≠ 0
4 if x = 0

.

165. False. IVT only says that there is at least one solution; it does not guarantee that there is exactly one. Consider
f (x) = cos(x) on [−π, 2π].

167. False. The IVT does not work in reverse! Consider (x − 1)2 over the interval [−2, 2].
169. R = 0.0001519 m
171. D = 345,826 km

173. For all values of a, f (a) is defined, lim
θ → a

f (θ) exists, and lim
θ → a

f (θ) = f (a). Therefore, f (θ) is continuous

everywhere.
175. Nowhere
177. For every ε > 0, there exists a δ > 0, so that if 0 < |t − b| < δ, then |g(t) − M| < ε
179. For every ε > 0, there exists a δ > 0, so that if 0 < |x − a| < δ, then |φ(x) − A| < ε
181. δ ≤ 0.25
183. δ ≤ 2
185. δ ≤ 1
187. δ < 0.3900
189. Let δ = ε. If 0 < |x − 3| < ε, then |x + 3 − 6| = |x − 3| < ε.

191. Let δ = ε4 . If 0 < |x| < ε4 , then |x4| = x4 < ε.

193. Let δ = ε2. If 5 − ε2 < x < 5, then | 5 − x| = 5 − x < ε.

195. Let δ = ε/5. If 1 − ε/5 < x < 1, then | f (x) − 3| = 5x − 5 < ε.

197. Let δ = 3
M . If 0 < |x + 1| < 3

M , then f (x) = 3
(x + 1)2 > M.

199. 0.328 cm, ε = 8, δ = 0.33, a = 12, L = 144
201. Answers may vary.
203. 0
205. f (x) − g(x) = f (x) + (−1)g(x)
207. Answers may vary.

Review Exercises

209. False
211. False. A removable discontinuity is possible.
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213. 5
215. 8/7
217. DNE
219. 2/3
221. −4;

223. Since −1 ≤ cos(2πx) ≤ 1, then −x2 ≤ x2 cos(2πx) ≤ x2. Since lim
x → 0

x2 = 0 = lim
x → 0

− x2, it follows that

lim
x → 0

x2 cos(2πx) = 0.

225. [2, ∞]
227. c = −1
229. δ = ε3

231. 0 m/sec
Chapter 3

Checkpoint

3.1. 1
4

3.2. 6
3.3. f ′ (1) = 5
3.4. −32 ft/s

3.5. P′ (3.25) = 20 > 0; raise prices

3.6. f ′ (x) = 2x
3.7. (0, +∞)
3.8. a = 6 and b = −9
3.9. f ″(x) = 2
3.10. a(t) = 6t
3.11. 0
3.12. 4x3

3.13. f ′ (x) = 7x6

3.14. f ′ (x) = 6x2 − 12x.
3.15. y = 12x − 23

3.16. j′ (x) = 10x4 ⎛
⎝4x2 + x⎞

⎠ + (8x + 1)⎛
⎝2x5⎞

⎠ = 56x6 + 12x5.

3.17. k′ (x) = − 13
(4x − 3)2.

3.18. g′ (x) = −7x−8.
3.19. 3 f ′ (x) − 2g′ (x).

3.20. 5
8

3.21. −4.4
3.22. left to right
3.23. 3,300
3.24. $2

3.25. f ′ (x) = cos2 x − sin2 x

3.26.
cosx + xsinx

cos2 x

3.27. t = π
3, t = 2π

3
3.28. f ′ (x) = −csc2 x
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3.29. f ′ (x) = 2sec2 x + 3csc2 x

3.30. 4
3

3.31. cosx
3.32. −cosx

3.33. v⎛
⎝5π

6
⎞
⎠ = − 3 < 0 and a⎛

⎝5π
6

⎞
⎠ = −1 < 0. The block is speeding up.

3.34. h′ (x) = 4⎛
⎝2x3 + 2x − 1⎞

⎠
3 ⎛

⎝6x2 + 2⎞
⎠ = 8⎛

⎝3x2 + 1⎞
⎠
⎛
⎝2x3 + 2x − 1⎞

⎠
3

3.35. y = −48x − 88
3.36. h′ (x) = 7cos(7x + 2)

3.37. h′ (x) = 3 − 4x
(2x + 3)4

3.38. h′ (x) = 18x2 sin5 ⎛
⎝x3⎞

⎠cos ⎛
⎝x3⎞

⎠
3.39. a(t) = −16sin(4t)
3.40. 28

3.41.
dy
dx = −3x2 sin ⎛

⎝x3⎞
⎠

3.42. g′ (x) = − 1
(x + 2)2

3.43. g(x) = 1
5x−4/5

3.44. s′ (t) = (2t + 1)−1/2

3.45. g′ (x) = 1
1 + x2

3.46. h′ (x) = −3
6x − 9x2

3.47. y = x

3.48.
dy
dx = 5 − 20x4

sec2 y − 2y

3.49. y = 5
3x − 16

3
3.50. h′ (x) = e2x + 2xe2x

3.51. 996

3.52. f ′ (x) = 15
3x + 2

3.53. 9ln(3)

3.54.
dy
dx = xx (1 + lnx)

3.55. y′ = π(tanx)π − 1 sec2 x

Section Exercises

1. 4
3. 8.5

5. −3
4

7. 0.2
9. 0.25
11. a. −4 b. y = 3 − 4x
13. a. 3 b. y = 3x − 1
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15. a. −7
9 b. y = −7

9 x + 14
3

17. a. 12 b. y = 12x + 14
19. a. −2 b. y = −2x − 10
21. 5
23. 13

25. 1
4

27. −1
4

29. −3
31. a. (i) 5.100000, (ii) 5.010000, (iii) 5.001000, (iv) 5.000100, (v) 5.000010, (vi) 5.000001,
(vii) 4.900000, (viii) 4.990000, (ix) 4.999000, (x) 4.999900, (xi) 4.999990, (x) 4.999999 b. mtan = 5 c.

y = 5x + 3
33. a. (i) 4.8771, (ii) 4.9875 (iii) 4.9988, (iv) 4.9999, (v) 4.9999, (vi) 4.9999 b. mtan = 5 c. y = 5x + 10

35. a. 1
3; b. (i) 0. 3

–
m/s, (ii) 0. 3

–
m/s, (iii) 0. 3

–
m/s, (iv) 0. 3

–
m/s; c. 0. 3

–
= 1

3 m/s

37. a. 2⎛
⎝h2 + 6h + 12⎞

⎠; b. (i) 25.22 m/s, (ii) 24.12 m/s, (iii) 24.01 m/s, (iv) 24 m/s; c. 24 m/s

39. a. 1.25; b. 0.5

41. lim
x → 0−

x1/3 − 0
x − 0 = lim

x → 0−
1

x2/3 = ∞

43. lim
x → 1−

1 − 1
x − 1 = 0 ≠ 1 = lim

x → 1+
x − 1
x − 1

45. a. (i) 61.7244 ft/s, (ii) 61.0725 ft/s (iii) 61.0072 ft/s (iv) 61.0007 ft/s b. At 4 seconds the race car is traveling at a

rate/velocity of 61 ft/s.

47. a. The vehicle represented by f (t), because it has traveled 2 feet, whereas g(t) has traveled 1 foot. b. The velocity of

f (t) is constant at 1 ft/s, while the velocity of g(t) is approximately 2 ft/s. c. The vehicle represented by g(t), with a velocity

of approximately 4 ft/s. d. Both have traveled 4 feet in 4 seconds.

49. a.

b. a ≈ − 1.361, 2.694

51. a. N(x) = x
30 b. ∼ 3.3 gallons. When the vehicle travels 100 miles, it has used 3.3 gallons of gas. c. 1

30. The rate of

gas consumption in gallons per mile that the vehicle is achieving after having traveled 100 miles.

53. a.
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b. −0.028, −0.16, 0.16, 0.028
55. −3
57. 8x

59.
1
2x

61.
−9
x2

63.
−1

2x3/2

65.

67.
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69. f (x) = 3x2 + 2, a = 2

71. f (x) = x4, a = 2
73. f (x) = ex, a = 0
75. a.

b. lim
h → 1−

3 − 3
h ≠ lim

h → 1+
3h
h

77. a.
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b. lim
h → 1−

2h
h ≠ lim

h → 1+

2
x + h − 2

x
h .

79. a. x = 1, b. x = 2
81. 0

83.
2
x3

85. f ′ (x) = 6x + 2

87. f ′ (x) = − 1
(2x)3/2

89. f ′ (x) = 3x2
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91. a. Average rate at which customers spent on concessions in thousands per customer. b. Rate (in thousands per customer) at
which x customers spent money on concessions in thousands per customer.
93. a. Average grade received on the test with an average study time between two values. b. Rate (in percentage points per hour)
at which the grade on the test increased or decreased for a given average study time of x hours.
95. a. Average change of atmospheric pressure between two different altitudes. b. Rate (torr per foot) at which atmospheric
pressure is increasing or decreasing at x feet.
97. a. The rate (in degrees per foot) at which temperature is increasing or decreasing for a given height x. b. The rate of change
of temperature as altitude changes at 1000 feet is −0.1 degrees per foot.

99. a. The rate at which the number of people who have come down with the flu is changing t weeks after the initial outbreak. b.
The rate is increasing sharply up to the third week, at which point it slows down and then becomes constant.
101.

Time (seconds) h′ (t) (m/s)

0 2

1 2

2 5.5

3 10.5

4 9.5

5 7

103. G′ (t) = 2.858t + 0.0857
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105. H″(t) = 0, G″(t) = 2.858 and f ″(t) = 1.222t + 5.912 represent the acceleration of the rocket, with units of meters per

second squared
⎛
⎝m/s2 ).

107. f ′ (x) = 15x2 − 1

109. f ′ (x) = 32x3 + 18x

111. f ′ (x) = 270x4 + 39
(x + 1)2

113. f ′ (x) = −5
x2

115. f ′ (x) = 4x4 + 2x2 − 2x
x4

117.
f ′ (x) = −x2 − 18x + 64

⎛
⎝x2 − 7x + 1⎞

⎠
2

119.
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T(x) = 1
2x + 3

121.

T(x) = 4x − 5

123. h′ (x) = 3x2 f (x) + x3 f ′ (x)

125. h′ (x) = 3 f ′ (x)⎛
⎝g(x) + 2⎞

⎠ − 3 f (x)g′ (x)
⎛
⎝g(x) + 2⎞

⎠
2

127. 16
9

129. Undefined
131. a. 2, b. does not exist, c. 2.5
133. a. 23, b. y = 23x − 28

135. a. 3, b. y = 3x + 2
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137. y = −7x − 3
139. y = −5x + 7

141. y = − 3
2x + 15

2
143. y = −3x2 + 9x − 1

145. 12
121 or 0.0992 ft/s

147. a.
−2t4 − 2t3 + 200t + 50

⎛
⎝t3 + 50⎞

⎠
2 b. −0.02395 mg/L-hr, −0.01344 mg/L-hr, −0.003566 mg/L-hr, −0.001579 mg/L-hr c. The

rate at which the concentration of drug in the bloodstream decreases is slowing to 0 as time increases.

149. a. F′(d) = −2Gm1 m2
d3 b. −1.33 × 10−7 N/m

151. a. v(t) = 6t2 − 30t + 36, a(t) = 12t − 30; b. speeds up (2, 2.5) ∪ (3, ∞), slows down (0, 2) ∪ (2.5, 3)

153. a. 464 ft/s2 b. −32 ft/s2

155. a. 5 ft/s b. 9 ft/s

157. a. 84 ft/s, −84 ft/s b. 84 ft/s c. 25
8 s d. −32 ft/s2 in both cases e. 1

8
⎛
⎝25 + 965⎞

⎠ s f. −4 965 ft/s

159. a. Velocity is positive on (0, 1.5) ∪ (6, 7), negative on (1.5, 2) ∪ (5, 6), and zero on (2, 5). b.

c. Acceleration is positive on (5, 7), negative on (0, 2), and zero on (2, 5). d. The object is speeding up on

(6, 7) ∪ (1.5, 2) and slowing down on (0, 1.5) ∪ (5, 6).
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161. a. R(x) = 10x − 0.001x2 b. R′ (x) = 10 − 0.002x c. $6 per item, $0 per item

163. a. C′ (x) = 65 b. R(x) = 143x − 0.03x2, R′ (x) = 143 − 0.06x c. 83, −97. At a production level of 1000 cordless

drills, revenue is increasing at a rate of $83 per drill; at a production level of 4000 cordless drills, revenue is decreasing at a

rate of $97 per drill. d. P(x) = −0.03x2 + 78x − 75000, P′ (x) = −0.06x + 78 e. 18, −162. At a production level of 1000

cordless drills, profit is increasing at a rate of $18 per drill; at a production level of 4000 cordless drills, profit is decreasing at a
rate of $162 per drill.

165. a. N′ (t) = 3000
⎛

⎝
⎜
⎜−4t2 + 400

⎛
⎝t2 + 100⎞

⎠
2

⎞

⎠
⎟
⎟

b. 120, 0, −14.4, −9.6 c. The bacteria population increases from time 0 to 10 hours;

afterwards, the bacteria population decreases. d. 0, −6, 0.384, 0.432. The rate at which the bacteria is increasing is decreasing

during the first 10 hours. Afterwards, the bacteria population is decreasing at a decreasing rate.
167. a. P(t) = 0.03983 + 0.4280 b. P′ (t) = 0.03983. The population is increasing. c. P″(t) = 0. The rate at which the

population is increasing is constant.

169. a. p(t) = −0.6071x2 + 0.4357x − 0.3571 b. p′ (t) = −1.214x + 0.4357. This is the velocity of the sensor. c.

p″(t) = −1.214. This is the acceleration of the sensor; it is a constant acceleration downward.

171. a.

b. f ′ (x) = a. The more increase in prey, the more growth for predators. c. f ″(x) = 0. As the amount of prey increases, the rate

at which the predator population growth increases is constant. d. This equation assumes that if there is more prey, the predator is
able to increase consumption linearly. This assumption is unphysical because we would expect there to be some saturation point at
which there is too much prey for the predator to consume adequately.
173. a.

b.
f ′ (x) = 2axn2

⎛
⎝n2 + x2⎞

⎠
2.

When the amount of prey increases, the predator growth increases. c. f ″(x) =
2an2 ⎛

⎝n2 − 3x2⎞
⎠

⎛
⎝n2 + x2⎞

⎠
3 . When

the amount of prey is extremely small, the rate at which predator growth is increasing is increasing, but when the amount of prey
reaches above a certain threshold, the rate at which predator growth is increasing begins to decrease. d. At lower levels of prey,
the prey is more easily able to avoid detection by the predator, so fewer prey individuals are consumed, resulting in less predator
growth.

175.
dy
dx = 2x − secx tanx

177.
dy
dx = 2xcot x − x2 csc2 x
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179.
dy
dx = xsecx tanx − secx

x2

181.
dy
dx = (1 − sinx)(1 − sinx) − cosx(x + cosx)

183.
dy
dx = 2csc2 x

(1 + cot x)2

185. y = −x

187. y = x + 2 − 3π
2

189. y = −x

191. 3cosx − xsinx

193. 1
2 sinx

195. 2cscx⎛
⎝csc2 x + cot2 x⎞

⎠
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197.
(2n + 1)π

4 , where n is an integer

199.
⎛
⎝π
4, 1⎞

⎠,
⎛
⎝3π

4 , −1⎞
⎠

201. a = 0, b = 3

203. y′ = 5cos(x), increasing on
⎛
⎝0, π

2
⎞
⎠,

⎛
⎝3π

2 , 5π
2

⎞
⎠, and

⎛
⎝7π

2 , 12⎞
⎠

209. 3sinx
211. 5cosx
213. 720x7 − 5tan(x)sec3 (x) − tan3 (x)sec(x)

215. 18u2 · 7 = 18(7x − 4)2 · 7

217. −sinu · −1
8 = −sin⎛

⎝−x
8

⎞
⎠ · −1

8

219.
8x − 24

2 4u + 3
= 4x − 12

4x2 − 24x + 3

221. a. u = 3x2 + 1; b. 18x⎛
⎝3x2 + 1⎞

⎠
2

223. a. f (u) = u7, u = x
7 + 7

x; b. 7⎛
⎝x
7 + 7

x
⎞
⎠
6

· ⎛⎝1
7 − 7

x2
⎞
⎠

225. a. f (u) = cscu, u = πx + 1; b. −π csc(πx + 1) · cot (πx + 1)

227. a. f (u) = −6u−3, u = sinx, b. 18sin−4 x · cosx

229.
4

(5 − 2x)3

231. 6⎛
⎝2x3 − x2 + 6x + 1⎞

⎠
2 ⎛

⎝3x2 − x + 3⎞
⎠

233. −3(tanx + sinx)−4 · ⎛
⎝sec2 x + cosx⎞

⎠
235. −7cos(cos7x) · sin7x

237. −12cot2(4x + 1) · csc2(4x + 1)

239. 103
4

241. y = −1
2 x

243. x = ± 6
245. 10

247. −1
8

249. −4
251. −12

253. a. −200
343 m/s, b. 600

2401 m/s2, c. The train is slowing down since velocity and acceleration have opposite signs.

255. a. C′ (x) = 0.0003x2 − 0.04x + 3 b. dC
dt = 100 · ⎛

⎝0.0003x2 − 0.04x + 3⎞
⎠ c. Approximately $90,300 per week

257. a.
dS
dt = − 8πr2

(t + 1)3 b. The volume is decreasing at a rate of − π
36 ft3/min.

259. ~2.3 ft/hr

261. a.
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b.
⎛
⎝ f −1⎞

⎠′ (1)~2

263. a.

b.
⎛
⎝ f −1⎞

⎠′ (1)~ − 1/ 3

265. a. 6, b. x = f −1 (y) = ⎛
⎝
y + 3

2
⎞
⎠

1/3
, c. 1

6

267. a. 1, b. x = f −1(y) = sin−1 y, c. 1

269. 1
5

271. 1
3

273. 1
275. a. 4, b. y = 4x

277. a. − 1
96, b. y = − 1

13x + 18
13

279.
2x

1 − x4

281.
−1

1 − x2

283. 3⎛
⎝1 + tan−1 x⎞

⎠
2

1 + x2

285.
−1

⎛
⎝1 + x2⎞

⎠
⎛
⎝tan−1 x⎞

⎠
2

287.
x

⎛
⎝5 − x2⎞

⎠ 4 − x2
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289. −1

291. 1
2

293. 1
10

295. a. v(t) = 1
1 + t2 b.

a(t) = −2t
⎛
⎝1 + t2⎞

⎠
2 c. (a)0.2, 0.06, 0.03; (b) − 0.16, −0.028, −0.0088 d. The hockey puck is

decelerating/slowing down at 2, 4, and 6 seconds.
297. −0.0168 radians per foot

299. a.
dθ
dx = 10

100 + x2 − 40
1600 + x2 b. 18

325, 9
340, 42

4745, 0 c. As a person moves farther away from the screen, the

viewing angle is increasing, which implies that as he or she moves farther away, his or her screen vision is widening. d.

− 54
12905, − 3

500, − 198
29945, − 9

1360 e. As the person moves beyond 20 feet from the screen, the viewing angle is decreasing.

The optimal distance the person should stand for maximizing the viewing angle is 20 feet.

301.
dy
dx = −2x

y

303.
dy
dx = x

3y − y
2x

305. dy
dx =

y − y
2 x + 4

x + 4 − x

307.
dy
dx = y2 cos(xy)

2y − sin(xy) − xycosxy

309.
dy
dx = −3x2 y − y3

x3 + 3xy2

311.

y = −1
2 x + 2

313.
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y = 1
π + 12x − 3π + 38

π + 12
315.

y = 0
317. a. y = −x + 2 b. (3, −1)

319. a. ⎛
⎝± 7, 0⎞

⎠ b. −2 c. They are parallel since the slope is the same at both intercepts.

321. y = −x + 1
323. a. −0.5926 b. When $81 is spent on labor and $16 is spent on capital, the amount spent on capital is decreasing by $0.5926

per $1 spent on labor.
325. −8
327. −2.67

329. y′ = − 1
1 − x2

331. 2xex + x2 ex

333. ex3 lnx ⎛
⎝3x2 lnx + x2⎞

⎠

335.
4

(ex + e−x)2

337. 24x + 2 · ln2 + 8x
339. πxπ − 1 · π x + xπ · π x lnπ

341.
5

2(5x − 7)

343.
tanx
ln10

345. 2x · ln2 · log3 7x2 − 4 + 2x · 2x ln7
ln3
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347. (sin2x)4x ⎡
⎣4 · ln(sin2x) + 8x · cot2x⎤

⎦

349. x
log2 x

· 2 lnx
x ln2

351. xcot x · ⎡
⎣−csc2 x · lnx + cot x

x
⎤
⎦

353. x−1/2 ⎛
⎝x2 + 3⎞

⎠
2/3

(3x − 4)4 ·
⎡
⎣
⎢−1

2x + 4x
3⎛

⎝x2 + 3⎞
⎠

+ 12
3x − 4

⎤
⎦
⎥

355.

y = −1
5 + 5ln5x + ⎛

⎝5 + 1
5 + 5ln5

⎞
⎠

357. a. x = e~2.718 b. (e, ∞), (0, e)
359. a. P = 500,000(1.05)t individuals b. P′ (t) = 24395 · (1.05)t individuals per year c. 39,737 individuals per year

361. a. At the beginning of 1960 there were 5.3 thousand cases of the disease in New York City. At the beginning of 1963 there
were approximately 723 cases of the disease in the United States. b. At the beginning of 1960 the number of cases of the disease
was decreasing at rate of −4.611 thousand per year; at the beginning of 1963, the number of cases of the disease was decreasing

at a rate of −0.2808 thousand per year.

363. p = 35741(1.045)t

365.

Years since 1790 P″

0 69.25

10 107.5

20 167.0

30 259.4

40 402.8

50 625.5

60 971.4

70 1508.5
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Review Exercises

367. False.
369. False

371.
1

2 x + 4

373. 9x2 + 8
x3

375. esinx cosx
377. xsec2 (x) + 2xcos(x) + tan(x) − x2 sin(x)

379. 1
4

⎛
⎝
⎜ x

1 − x2
+ sin−1 (x)

⎞
⎠
⎟

381. cosx · (lnx + 1) − x ln(x)sinx

383. 4x (ln4)2 + 2sinx + 4xcosx − x2 sinx
385. T = (2 + e)x − 2
387.

389. w′ (3) = − 2.9π
6 . At 3 a.m. the tide is decreasing at a rate of 1.514 ft/hr.

391. −7.5. The wind speed is decreasing at a rate of 7.5 mph/hr

Chapter 4

Checkpoint

4.1. 1
72π cm/sec, or approximately 0.0044 cm/sec

4.2. 500 ft/sec

4.3. 1
10 rad/sec

4.4. −0.61 ft/sec

4.5. L(x) = 2 + 1
12(x − 8); 2.00833

4.6. L(x) = −x + π
2

4.7. L(x) = 1 + 4x

4.8. dy = 2xex2
dx

4.9. dy = 1.6, Δy = 1.64
4.10. The volume measurement is accurate to within 21.6 cm3.
4.11. 7.6%

4.12. x = − 2
3, x = 1

4.13. The absolute maximum is 3 and it occurs at x = 4. The absolute minimum is −1 and it occurs at x = 2.
4.14. c = 2

4.15.
5

2 2 sec
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4.16. f has a local minimum at −2 and a local maximum at 3.
4.17. f has no local extrema because f ′ does not change sign at x = 1.

4.18. f is concave up over the interval
⎛
⎝−∞, 1

2
⎞
⎠ and concave down over the interval

⎛
⎝1
2, ∞⎞

⎠
4.19. f has a local maximum at −2 and a local minimum at 3.
4.20. Both limits are 3. The line y = 3 is a horizontal asymptote.

4.21. Let ε > 0. Let N = 1
ε. Therefore, for all x > N, we have |3 − 1

x2 − 3| = 1
x2 < 1

N 2 = ε Therefore,

limx → ∞
⎛
⎝3 − 1/x2⎞

⎠ = 3.

4.22. Let M > 0. Let N = M
3 . Then, for all x > N, we have 3x2 > 3N 2 = 3⎛

⎝ M
3

⎞
⎠

2
2 = 3M

3 = M

4.23. −∞

4.24. 3
5

4.25. ± 3

4.26. limx → ∞ f (x) = 3
5, limx → −∞ f (x) = −2

4.27.

4.28.
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4.29. y = 3
2x

4.30. The function f has a cusp at (0, 5) lim
x → 0− f ′ (x) = ∞, lim

x → 0+
f ′ (x) = −∞. For end behavior,

limx → ±∞ f (x) = −∞.

4.31. The maximum area is 5000 ft2.
4.32. V(x) = x(20 − 2x)(30 − 2x). The domain is [0, 10].

4.33. T(x) = x
6 + (15 − x)2 + 1

2.5
4.34. The company should charge $75 per car per day.

4.35. A(x) = 4x 1 − x2. The domain of consideration is [0, 1].

4.36. c(x) = 259.2
x + 0.2x2 dollars

4.37. 1
4.38. 0

4.39. lim
x → 0+

cosx = 1. Therefore, we cannot apply L’Hôpital’s rule. The limit of the quotient is ∞

4.40. 1
4.41. 0
4.42. e
4.43. 1
4.44. The function 2x grows faster than x100.
4.45. x1 ≈ 0.33333333, x2 ≈ 0.347222222

4.46. x1 = 2, x2 = 1.75

4.47. x1 ≈ − 1.842105263, x2 ≈ − 1.772826920

4.48. x1 = 6, x2 = 8, x3 = 26
3 , x4 = 80

9 , x5 = 242
27 ; x * = 9

4.49. −cosx + C

4.50. d
dx(xsinx + cosx + C) = sinx + xcosx − sinx = xcosx

4.51. x4 − 5
3x3 + 1

2x2 − 7x + C

4.52. y = − 3
x + 5
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4.53. 2.93 sec, 64.5 ft

Section Exercises

1. 8

3.
13
10

5. 2 3 ft/sec

7. The distance is decreasing at 390 mi/h.

9. The distance between them shrinks at a rate of 1320
13 ≈ 101.5 mph.

11. 9
2 ft/sec

13. It grows at a rate 4
9 ft/sec

15. The distance is increasing at
⎛
⎝135 26⎞

⎠
26

ft/sec

17. −5
6 m/sec

19. 240π m2/sec

21. 1
2 π cm

23. The area is increasing at a rate
⎛
⎝3 3⎞

⎠
8 ft /sec.

25. The depth of the water decreases at 128
125π ft/min.

27. The volume is decreasing at a rate of
(25π)

16 ft3 /min.

29. The water flows out at rate
(2π)

5 m /min.

31. 3
2 m/sec

33. 25
19π ft/min

35. 2
45π ft/min

37. The angle decreases at 400
1681 rad/sec.

39. 100πmi/min

41. The angle is changing at a rate of 11
25 rad/sec.

43. The distance is increasing at a rate of 62.50 ft/sec.

45. The distance is decreasing at a rate of 11.99 ft/sec.

47. f ′ (a) = 0
49. The linear approximation exact when y = f (x) is linear or constant.

51. L(x) = 1
2 − 1

4(x − 2)

53. L(x) = 1
55. L(x) = 0
57. 0.02
59. 1.9996875
61. 0.001593
63. 1; error, ~0.00005
65. 0.97; error, ~0.0006
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67. 3 − 1
600; error, ~4.632 × 10−7

69. dy = (cosx − xsinx)dx

71. dy =
⎛
⎝
⎜x2 − 2x − 2

(x − 1)2

⎞
⎠
⎟dx

73. dy = − 1
(x + 1)2dx, − 1

16

75. dy = 9x2 + 12x − 2
2(x + 1)3/2 dx, −0.1

77. dy = ⎛
⎝3x2 + 2 − 1

x2
⎞
⎠dx, 0.2

79. 12xdx
81. 4πr2 dr
83. −1.2π cm3

85. −100 ft3

91. Answers may vary
93. Answers will vary
95. No; answers will vary
97. Since the absolute maximum is the function (output) value rather than the x value, the answer is no; answers will vary
99. When a = 0
101. Absolute minimum at 3; Absolute maximum at −2.2; local minima at −2, 1; local maxima at −1, 2
103. Absolute minima at −2, 2; absolute maxima at −2.5, 2.5; local minimum at 0; local maxima at −1, 1
105. Answers may vary.
107. Answers may vary.
109. x = 1
111. None
113. x = 0
115. None
117. x = −1, 1

119. Absolute maximum: x = 4, y = 33
2 ; absolute minimum: x = 1, y = 3

121. Absolute minimum: x = 1
2, y = 4

123. Absolute maximum: x = 2π, y = 2π; absolute minimum: x = 0, y = 0
125. Absolute maximum: x = −3; absolute minimum: −1 ≤ x ≤ 1, y = 2

127. Absolute maximum: x = π
4, y = 2; absolute minimum: x = 5π

4 , y = − 2

129. Absolute minimum: x = −2, y = 1
131. Absolute minimum: x = −3, y = −135; local maximum: x = 0, y = 0; local minimum: x = 1, y = −7

133. Local maximum: x = 1 − 2 2, y = 3 − 4 2; local minimum: x = 1 + 2 2, y = 3 + 4 2

135. Absolute maximum: x = 2
2 , y = 3

2; absolute minimum: x = − 2
2 , y = − 3

2
137. Local maximum: x = −2, y = 59; local minimum: x = 1, y = −130
139. Absolute maximum: x = 0, y = 1; absolute minimum: x = −2, 2, y = 0

141. h = 9245
49 m, t = 300

49 s

143. The global minimum was in 1848, when no gold was produced.
145. Absolute minima: x = 0, x = 2, y = 1; local maximum at x = 1, y = 2
147. No maxima/minima if a is odd, minimum at x = 1 if a is even

149. One example is f (x) = |x| + 3, −2 ≤ x ≤ 2
151. Yes, but the Mean Value Theorem still does not apply
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153. (−∞, 0), (0, ∞)
155. (−∞, −2), (2, ∞)
157. 2 points
159. 5 points

161. c = 2 3
3

163. c = 1
2, 1, 3

2
165. c = 1
167. Not differentiable
169. Not differentiable
171. Yes

173. The Mean Value Theorem does not apply since the function is discontinuous at x = 1
4, 3

4, 5
4, 7

4.

175. Yes
177. The Mean Value Theorem does not apply; discontinuous at x = 0.
179. Yes
181. The Mean Value Theorem does not apply; not differentiable at x = 0.
183. b = ±2 c

185. c = ±1
πcos−1 ⎛

⎝ π
2

⎞
⎠, c = ±0.1533

187. The Mean Value Theorem does not apply.

189.
1

2 c + 1
− 2

c3 = 521
2880; c = 3.133, 5.867

191. Yes
193. It is constant.
195. It is not a local maximum/minimum because f ′ does not change sign

197. No
199. False; for example, y = x.
201. Increasing for −2 < x < −1 and x > 2; decreasing for x < −2 and −1 < x < 2
203. Decreasing for x < 1, increasing for x > 1
205. Decreasing for −2 < x < −1 and 1 < x < 2; increasing for −1 < x < 1 and x < −2 and x > 2
207. a. Increasing over −2 < x < −1, 0 < x < 1, x > 2, decreasing over x < −2, −1 < x < 0, 1 < x < 2; b. maxima

at x = −1 and x = 1, minima at x = −2 and x = 0 and x = 2
209. a. Increasing over x > 0, decreasing over x < 0; b. Minimum at x = 0
211. Concave up on all x, no inflection points

213. Concave up on all x, no inflection points

215. Concave up for x < 0 and x > 1, concave down for 0 < x < 1, inflection points at x = 0 and x = 1
217. Answers will vary
219. Answers will vary

221. a. Increasing over −π
2 < x < π

2, decreasing over x < − π
2, x > π

2 b. Local maximum at x = π
2; local minimum at

x = − π
2

223. a. Concave up for x > 4
3, concave down for x < 4

3 b. Inflection point at x = 4
3

225. a. Increasing over x < 0 and x > 4, decreasing over 0 < x < 4 b. Maximum at x = 0, minimum at x = 4 c. Concave

up for x > 2, concave down for x < 2 d. Infection point at x = 2

227. a. Increasing over x < 0 and x > 60
11, decreasing over 0 < x < 60

11 b. Minimum at x = 60
11 c. Concave down for

x < 54
11, concave up for x > 54

11 d. Inflection point at x = 54
11

229. a. Increasing over x > − 1
2, decreasing over x < − 1

2 b. Minimum at x = − 1
2 c. Concave up for all x d. No inflection

points
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231. a. Increases over −1
4 < x < 3

4, decreases over x > 3
4 and x < − 1

4 b. Minimum at x = − 1
4, maximum at x = 3

4

c. Concave up for −3
4 < x < 1

4, concave down for x < − 3
4 and x > 1

4 d. Inflection points at x = − 3
4, x = 1

4
233. a. Increasing for all x b. No local minimum or maximum c. Concave up for x > 0, concave down for x < 0 d. Inflection

point at x = 0
235. a. Increasing for all x where defined b. No local minima or maxima c. Concave up for x < 1; concave down for x > 1 d.

No inflection points in domain

237. a. Increasing over −π
4 < x < 3π

4 , decreasing over x > 3π
4 , x < − π

4 b. Minimum at x = − π
4, maximum at x = 3π

4
c. Concave up for −π

2 < x < π
2, concave down for x < − π

2, x > π
2 d. Infection points at x = ±π

2
239. a. Increasing over x > 4, decreasing over 0 < x < 4 b. Minimum at x = 4 c. Concave up for 0 < x < 8 23 , concave

down for x > 8 23 d. Inflection point at x = 8 23

241. f > 0, f ′ > 0, f ″ < 0
243. f > 0, f ′ < 0, f ″ < 0
245. f > 0, f ′ > 0, f ″ > 0
247. True, by the Mean Value Theorem
249. True, examine derivative
251. x = 1
253. x = −1, x = 2
255. x = 0
257. Yes, there is a vertical asymptote
259. Yes, there is vertical asymptote
261. 0
263. ∞

265. −1
7

267. −2
269. −4
271. Horizontal: none, vertical: x = 0
273. Horizontal: none, vertical: x = ±2
275. Horizontal: none, vertical: none
277. Horizontal: y = 0, vertical: x = ±1
279. Horizontal: y = 0, vertical: x = 0 and x = −1
281. Horizontal: y = 1, vertical: x = 1
283. Horizontal: none, vertical: none

285. Answers will vary, for example: y = 2x
x − 1

287. Answers will vary, for example: y = 4x
x + 1

289. y = 0
291. ∞
293. y = 3
295.
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297.

299.

301.
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303.

305.
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307. The degree of Q(x) must be greater than the degree of P(x) .

309. lim
x → 1− f (x) = -∞ and lim

x → 1− g(x) = ∞

311. The critical points can be the minima, maxima, or neither.

313. False; y = −x2 has a minimum only

315. h = 62
3 in.

317. 1
319. 100 ft by 100 ft
321. 40 ft by 40 ft
323. 19.73 ft.
325. 84 bpm

327. T(θ) = 40θ
3v + 40cosθ

v

329. v = b
a

331. approximately 34.02 mph
333. 4
335. 0
337. Maximal: x = 5, y = 5; minimal: x = 0, y = 10 and y = 0, x = 10
339. Maximal: x = 1, y = 9; minimal: none

341.
4π
3 3

343. 6
345. r = 2, h = 4
347. (2, 1)
349. (0.8351, 0.6974)

351. A = 20r − 2r2 − 1
2πr2

353. C(x) = 5x2 + 32
x Differentiating, setting the derivative equal to zero and solving, we obtain x = 2

5
3

and h = 25
4

3
.
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355. P(x) = (50 − x)(800 + 25x − 50)
357. ∞

359. 1
2a

361.
1

nan − 1

363. Cannot apply directly; use logarithms

365. Cannot apply directly; rewrite as lim
x → 0

x3

367. 6
369. −2
371. −1
373. n

375. −1
2

377. 1
2

379. 1

381. 1
6

383. 1
385. 0
387. 0
389. −1
391. ∞
393. 0

395. 1
e

397. 0
399. 1
401. 0
403. tan(1)
405. 2

407. F(xn) = xn − xn
3 + 2xn + 1
3xn

2 + 2

409. F(xn) = xn − exn

exn

411. |c| > 0.5 fails, |c| ≤ 0.5 works

413. c = 1
f ′ (xn)

415. a. x1 = 12
25, x2 = 312

625; b. x1 = −4, x2 = −40

417. a. x1 = 1.291, x2 = 0.8801; b. x1 = 0.7071, x2 = 1.189

419. a. x1 = − 26
25, x2 = − 1224

625 ; b. x1 = 4, x2 = 18

421. a. x1 = 6
10, x2 = 6

10; b. x1 = 2, x2 = 2

423. 3.1623 or − 3.1623
425. 0, −1 or 1
427. 0
429. 0.5188 or − 1.2906
431. 0
433. 4.493
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435. 0.159, 3.146
437. We need f to be twice continuously differentiable.

439. x = 0
441. x = −1
443. x = 5.619
445. x = −1.326
447. There is no solution to the equation.
449. It enters a cycle.
451. 0
453. −0.3513
455. Newton: 11 iterations, secant: 16 iterations

457. Newton: three iterations, secant: six iterations
459. Newton: five iterations, secant: eight iterations
461. E = 4.071
463. 4.394%
465. F′ (x) = 15x2 + 4x + 3

467. F′ (x) = 2xex + x2 ex

469. F′ (x) = ex

471. F(x) = ex − x3 − cos(x) + C

473. F(x) = x2

2 − x − 2cos(2x) + C

475. F(x) = 1
2x2 + 4x3 + C

477. F(x) = 2
5( x)5 + C

479. F(x) = 3
2x2/3 + C

481. F(x) = x + tan(x) + C

483. F(x) = 1
3sin3 (x) + C

485. F(x) = − 1
2 cot(x) − 1

x + C

487. F(x) = −secx − 4cscx + C

489. F(x) = − 1
8e−4x − cosx + C

491. −cosx + C

493. 3x − 2
x + C

495. 8
3x3/2 + 4

5x5/4 + C

497. 14x − 2
x − 1

2x2 + C

499. f (x) = − 1
2x2 + 3

2

501. f (x) = sinx + tanx + 1

503. f (x) = − 1
6x3 − 2

x + 13
6

505. Answers may vary; one possible answer is f (x) = e−x

507. Answers may vary; one possible answer is f (x) = −sinx
509. 5.867 sec

511. 7.333 sec

513. 13.75 ft/sec2
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515. F(x) = 1
3x3 + 2x

517. F(x) = x2 − cosx + 1

519. F(x) = − 1
(x + 1) + 1

521. True
523. False

Review Exercises

525. True, by Mean Value Theorem
527. True
529. Increasing: (−2, 0) ∪ (4, ∞), decreasing: (−∞, −2) ∪ (0, 4)

531. L(x) = 17
16 + 1

2(1 + 4π)⎛
⎝x − 1

4
⎞
⎠

533. Critical point: x = 3π
4 , absolute minimum: x = 0, absolute maximum: x = π

535. Increasing: (−1, 0) ∪ (3, ∞), decreasing: (−∞, −1) ∪ (0, 3), concave up:

⎛
⎝−∞, 1

3
⎛
⎝2 − 13⎞

⎠
⎞
⎠ ∪ ⎛

⎝1
3

⎛
⎝2 + 13⎞

⎠, ∞⎞
⎠, concave down:

⎛
⎝1
3

⎛
⎝2 − 13⎞

⎠, 1
3

⎛
⎝2 + 13⎞

⎠
⎞
⎠

537. Increasing:
⎛
⎝1
4, ∞⎞

⎠, decreasing:
⎛
⎝0, 1

4
⎞
⎠, concave up: (0, ∞), concave down: nowhere

539. 3

541. − 1
π

543. x1 = −1, x2 = −1

545. F(x) = 2x3/2

3 + 1
x + C

547.

Inflection points: none; critical points: x = − 1
3; zeros: none; vertical asymptotes: x = −1, x = 0; horizontal asymptote:

y = 0
549. The height is decreasing at a rate of 0.125 m/sec

551. x = ab feet

Chapter 5

Checkpoint

5.1. ∑
i = 3

6
2i = 23 + 24 + 25 + 26 = 120

5.2. 15,550
5.3. 440
5.4. The left-endpoint approximation is 0.7595. The right-endpoint approximation is 0.6345. See the below image.
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5.5.
a. Upper sum = 8.0313.
b.

5.6. A ≈ 1.125
5.7. 6
5.8. 18 square units
5.9. 6
5.10. 18

5.11. 6∫
1

3
x3 dx − 4∫

1

3
x2 dx + 2∫

1

3
xdx − ⌠

⌡1

3

3dx

5.12. −7
5.13. 3
5.14. Average value = 1.5; c = 3
5.15. c = 3
5.16. g′ (r) = r2 + 4

5.17. F′ (x) = 3x2 cosx3

5.18. F′ (x) = 2xcosx2 − cosx

5.19. 7
24

5.20. Kathy still wins, but by a much larger margin: James skates 24 ft in 3 sec, but Kathy skates 29.3634 ft in 3 sec.

5.21. −10
3
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5.22. Net displacement: e2 − 9
2 ≈ − 0.8055 m; total distance traveled: 4ln4 − 7.5 + e2

2 ≈ 1.740 m

5.23. 17.5 mi

5.24. 64
5

5.25. ⌠
⌡3x2 ⎛

⎝x3 − 3⎞
⎠
2

dx = 1
3

⎛
⎝x3 − 3⎞

⎠
3

+ C

5.26.
⎛
⎝x3 + 5⎞

⎠
10

30 + C

5.27. − 1
sin t + C

5.28. −cos4 t
4 + C

5.29. 91
3

5.30. 2
3π ≈ 0.2122

5.31. ⌠
⌡x2 e−2x3

dx = − 1
6e−2x3

+ C

5.32. ⌠
⌡ex (3ex − 2)2 dx = 1

9(3ex − 2)3

5.33. ∫ 2x3 ex4
dx = 1

2ex4

5.34. 1
2

⌠
⌡0

4
eu du = 1

2
⎛
⎝e4 − 1⎞

⎠

5.35. Q(t) = 2t

ln2 + 8.557. There are 20,099 bacteria in the dish after 3 hours.

5.36. There are 116 flies.

5.37. ⌠
⌡1

2
1
x3e4x−2

dx = 1
8

⎡
⎣e4 − e⎤

⎦

5.38. ln|x + 2| + C

5.39.
x

ln3(lnx − 1) + C

5.40. 1
4sin−1 (4x) + C

5.41. sin−1 ⎛
⎝x
3

⎞
⎠ + C

5.42. 1
10tan−1 ⎛

⎝2x
5

⎞
⎠ + C

5.43. 1
4tan−1 ⎛

⎝x
4

⎞
⎠ + C

5.44.
π
8

Section Exercises

1. a. They are equal; both represent the sum of the first 10 whole numbers. b. They are equal; both represent the sum of the first 10
whole numbers. c. They are equal by substituting j = i − 1. d. They are equal; the first sum factors the terms of the second.

3. 385 − 30 = 355
5. 15 − (−12) = 27
7. 5(15) + 4(−12) = 27

9. ∑
j = 1

50
j2 − 2 ∑

j = 1

50
j = (50)(51)(101)

6 − 2(50)(51)
2 = 40, 375
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11. 4 ∑
k = 1

25
k2 − 100 ∑

k = 1

25
k = 4(25)(26)(51)

6 − 50(25)(26) = −10, 400

13. R4 = -0.25

15. R6 = 0.372

17. L4 = 2.20

19. L8 = 0.6875

21. L6 = 9.000 = R6. The graph of f is a triangle with area 9.

23. L6 = 13.12899 = R6. They are equal.

25. L10 = 4
10 ∑

i = 1

10
4 − ⎛

⎝−2 + 4(i − 1)
10

⎞
⎠

27. R100 = e − 1
100 ∑

i = 1

100
ln⎛

⎝1 + (e − 1) i
100

⎞
⎠

29.
R100 = 0.33835, L100 = 0.32835. The plot shows that the left Riemann sum is an underestimate because the function is

increasing. Similarly, the right Riemann sum is an overestimate. The area lies between the left and right Riemann sums. Ten
rectangles are shown for visual clarity. This behavior persists for more rectangles.

31.
L100 = −0.02, R100 = 0.02. The left endpoint sum is an underestimate because the function is increasing. Similarly, a right

endpoint approximation is an overestimate. The area lies between the left and right endpoint estimates.
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33.
L100 = 3.555, R100 = 3.670. The plot shows that the left Riemann sum is an underestimate because the function is increasing.

Ten rectangles are shown for visual clarity. This behavior persists for more rectangles.
35. The sum represents the cumulative rainfall in January 2009.

37. The total mileage is 7 × ∑
i = 1

25 ⎛
⎝1 + (i − 1)

10
⎞
⎠ = 7 × 25 + 7

10 × 12 × 25 = 385 mi.

39. Add the numbers to get 8.1-in. net increase.
41. 309,389,957
43. L8 = 3 + 2 + 1 + 2 + 3 + 4 + 5 + 4 = 24

45. L8 = 3 + 5 + 7 + 6 + 8 + 6 + 5 + 4 = 44

47. L10 ≈ 1.7604, L30 ≈ 1.7625, L50 ≈ 1.76265

49. R1 = −1, L1 = 1, R10 = −0.1, L10 = 0.1, L100 = 0.01, and R100 = −0.1. By symmetry of the graph, the exact area

is zero.
51. R1 = 0, L1 = 0, R10 = 2.4499, L10 = 2.4499, R100 = 2.1365, L100 = 2.1365

53. If ⎡
⎣c, d⎤

⎦ is a subinterval of ⎡
⎣a, b⎤

⎦ under one of the left-endpoint sum rectangles, then the area of the rectangle contributing to

the left-endpoint estimate is f (c)(d − c). But, f (c) ≤ f (x) for c ≤ x ≤ d, so the area under the graph of f between c and d is

f (c)(d − c) plus the area below the graph of f but above the horizontal line segment at height f (c), which is positive. As this

is true for each left-endpoint sum interval, it follows that the left Riemann sum is less than or equal to the area below the graph of
f on ⎡

⎣a, b⎤
⎦.

55. LN = b − a
N ∑

i = 1

N
f ⎛

⎝a + (b − a)i − 1
N

⎞
⎠ = b − a

N ∑
i = 0

N − 1
f ⎛

⎝a + (b − a) i
N

⎞
⎠ and RN = b − a

N ∑
i = 1

N
f ⎛

⎝a + (b − a) i
N

⎞
⎠. The left

sum has a term corresponding to i = 0 and the right sum has a term corresponding to i = N. In RN − LN, any term

corresponding to i = 1, 2,…, N − 1 occurs once with a plus sign and once with a minus sign, so each such term cancels and one

is left with RN − LN = b − a
N

⎛
⎝ f ⎛

⎝a + (b − a)⎞
⎠NN

⎞
⎠ − ⎛

⎝ f (a) + (b − a) 0
N

⎞
⎠ = b − a

N
⎛
⎝ f (b) − f (a)⎞

⎠.

57. Graph 1: a. L(A) = 0, B(A) = 20; b. U(A) = 20. Graph 2: a. L(A) = 9; b. B(A) = 11, U(A) = 20. Graph 3: a.

L(A) = 11.0; b. B(A) = 4.5, U(A) = 15.5.

59. Let A be the area of the unit circle. The circle encloses n congruent triangles each of area
sin⎛

⎝2π
n

⎞
⎠

2 , so n
2sin⎛

⎝2π
n

⎞
⎠ ≤ A.

Similarly, the circle is contained inside n congruent triangles each of area BH
2 = 1

2
⎛
⎝cos⎛

⎝πn
⎞
⎠ + sin⎛

⎝πn
⎞
⎠tan⎛

⎝πn
⎞
⎠
⎞
⎠sin⎛

⎝2π
n

⎞
⎠, so

A ≤ n
2sin⎛

⎝2π
n

⎞
⎠⎛

⎝cos⎛
⎝πn

⎞
⎠
⎞
⎠ + sin⎛

⎝πn
⎞
⎠tan⎛

⎝πn
⎞
⎠. As n → ∞, n

2sin⎛
⎝2π

n
⎞
⎠ =

π sin⎛
⎝2π

n
⎞
⎠

⎛
⎝2π

n
⎞
⎠

→ π, so we conclude π ≤ A. Also, as

n → ∞, cos⎛
⎝πn

⎞
⎠ + sin⎛

⎝πn
⎞
⎠tan⎛

⎝πn
⎞
⎠ → 1, so we also have A ≤ π. By the squeeze theorem for limits, we conclude that A = π.

61. ∫
0

2⎛
⎝5x2 − 3x3⎞

⎠dx

63. ∫
0

1
cos2 (2πx)dx
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65. ∫
0

1
xdx

67. ∫
3

6
xdx

69. ∫
1

2
x log⎛

⎝x2⎞
⎠dx

71. 1 + 2 · 2 + 3 · 3 = 14
73. 1 − 4 + 9 = 6
75. 1 − 2π + 9 = 10 − 2π

77. The integral is the area of the triangle, 1
2

79. The integral is the area of the triangle, 9.

81. The integral is the area 1
2πr2 = 2π.

83. The integral is the area of the “big” triangle less the “missing” triangle, 9 − 1
2.

85. L = 2 + 0 + 10 + 5 + 4 = 21, R = 0 + 10 + 10 + 2 + 0 = 22, L + R
2 = 21.5

87. L = 0 + 4 + 0 + 4 + 2 = 10, R = 4 + 0 + 2 + 4 + 0 = 10, L + R
2 = 10

89. ∫
2

4
f (x)dx + ∫

2

4
g(x)dx = 8 − 3 = 5

91. ∫
2

4
f (x)dx − ∫

2

4
g(x)dx = 8 + 3 = 11

93. 4∫
2

4
f (x)dx − 3∫

2

4
g(x)dx = 32 + 9 = 41

95. The integrand is odd; the integral is zero.
97. The integrand is antisymmetric with respect to x = 3. The integral is zero.

99. 1 − 1
2 + 1

3 − 1
4 = 7

12

101. ∫
0

1⎛
⎝1 − 6x + 12x2 − 8x3⎞

⎠dx =
⎛
⎝
⎜ x - 3x2 + 4x3 - 2x4⎞

⎠
⎟ =

⎛
⎝
⎜ 1 - 3 + 4 - 2

⎞
⎠
⎟

⎛
⎝
⎜ 0 - 0 + 0 - 0

⎞
⎠
⎟ = 0

103. 7 − 5
4 = 23

4
105. The integrand is negative over [−2, 3].

107. x ≤ x2 over [1, 2], so 1 + x ≤ 1 + x2 over [1, 2].

109. cos(t) ≥ 2
2 . Multiply by the length of the interval to get the inequality.

111. fave = 0; c = 0

113. 3
2 when c = ± 3

2

115. fave = 0; c = π
2, 3π

2
117. L100 = 1.294, R100 = 1.301; the exact average is between these values.

119. L100 × ⎛
⎝1
2

⎞
⎠ = 0.5178, R100 × ⎛

⎝1
2

⎞
⎠ = 0.5294

121. L1 = 0, L10 × ⎛
⎝1
2

⎞
⎠ = 8.743493, L100 × ⎛

⎝1
2

⎞
⎠ = 12.861728. The exact answer ≈ 26.799, so L100 is not accurate.

123. L1 × ⎛
⎝1
π

⎞
⎠ = 1.352, L10 × ⎛

⎝1
π

⎞
⎠ = −0.1837, L100 × ⎛

⎝1
π

⎞
⎠ = −0.2956. The exact answer ≈ − 0.303, so L100 is not

accurate to first decimal.
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125. Use tan2 θ + 1 = sec2 θ. Then, B − A = ∫
−π/4

π/4
1dx = π

2.

127. ∫
0

2π
cos2 tdt = π, so divide by the length 2π of the interval. cos2 t has period π, so yes, it is true.

129. The integral is maximized when one uses the largest interval on which p is nonnegative. Thus, A = −b − b2 − 4ac
2a

and

B = −b + b2 − 4ac
2a .

131. If f (t0) > g(t0) for some t0 ∈ ⎡
⎣a, b⎤

⎦, then since f − g is continuous, there is an interval containing t0 such that

f (t) > g(t) over the interval ⎡
⎣c, d⎤

⎦, and then ∫
d

d
f (t)dt > ∫

c

d
g(t)dt over this interval.

133. The integral of f over an interval is the same as the integral of the average of f over that interval. Thus,

∫
a

b
f (t)dt = ∫

a0

a1
f (t)dt + ∫

a1

a2
f (t)dt + ⋯ + ∫

aN + 1

aN
f (t)dt = ∫

a0

a1
1dt + ∫

a1

a2
1dt + ⋯ + ∫

aN + 1

aN
1dt

= (a1 − a0) + (a2 − a1) + ⋯ + (aN − aN − 1) = aN − a0 = b − a.
Dividing through

by b − a gives the desired identity.

135. ∫
0

N
f (t)dt = ∑

i = 1

N
∫

i − 1

i
f (t)dt = ∑

i = 1

N
i2 = N(N + 1)(2N + 1)

6

137. L10 = 1.815, R10 = 1.515, L10 + R10
2 = 1.665, so the estimate is accurate to two decimal places.

139. The average is 1/2, which is equal to the integral in this case.

141. a. The graph is antisymmetric with respect to t = 1
2 over [0, 1], so the average value is zero. b. For any value of a, the

graph between [a, a + 1] is a shift of the graph over [0, 1], so the net areas above and below the axis do not change and the

average remains zero.
143. Yes, the integral over any interval of length 1 is the same.
145. Yes. It is implied by the Mean Value Theorem for Integrals.
147. F′ (2) = −1; average value of F ′ over [1, 2] is −1/2.
149. ecos t

151.
1

16 − x2

153. x d
dx x = 1

2

155. − 1 − cos2 x d
dxcosx = |sinx|sinx

157. 2x |x|
1 + x2

159. ln(e2x) d
dxex = 2xex

161. a. f is positive over [1, 2] and ⎡
⎣5, 6⎤

⎦, negative over [0, 1] and [3, 4], and zero over [2, 3] and ⎡
⎣4, 5⎤

⎦. b. The

maximum value is 2 and the minimum is −3. c. The average value is 0.
163. a. ℓ is positive over [0, 1] and ⎡

⎣3, 6⎤
⎦, and negative over [1, 3]. b. It is increasing over [0, 1] and ⎡

⎣3, 5⎤
⎦, and it is

constant over [1, 3] and ⎡
⎣5, 6⎤

⎦. c. Its average value is 1
3.

165. T10 = 49.08, ∫
−2

3
x3 + 6x2 + x − 5dx = 48

167. T10 = 260.836, ∫
1

9⎛
⎝ x + x2⎞

⎠dx = 260
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169. T10 = 3.058, ⌠
⌡1

4
4
x2dx = 3

171. F(x) = x3

3 + 3x2

2 − 5x, F(3) − F(−2) = − 35
6

173. F(x) = − t5

5 + 13t3

3 − 36t, F(3) − F(2) = 62
15

175. F(x) = x100

100 , F(1) − F(0) = 1
100

177. F(x) = x3

3 + 1
x , F(4) − F⎛

⎝1
4

⎞
⎠ = 1125

64
179. F(x) = x, F(4) − F(1) = 1

181. F(x) = 4
3t3/4, F(16) − F(1) = 28

3

183. F(x) = −cosx, F⎛
⎝π
2

⎞
⎠ − F(0) = 1

185. F(x) = secx, F⎛
⎝π
4

⎞
⎠ − F(0) = 2 − 1

187. F(x) = −cot(x), F⎛
⎝π
2

⎞
⎠ − F⎛

⎝π
4

⎞
⎠ = 1

189. F(x) = − 1
x + 1

2x2, F(−1) − F(−2) = 7
8

191. F(x) = ex − e
193. F(x) = 0

195. ∫
−2

−1⎛
⎝t2 − 2t − 3⎞

⎠dt − ∫
−1

3 ⎛
⎝t2 − 2t − 3⎞

⎠dt + ∫
3

4⎛
⎝t2 − 2t − 3⎞

⎠dt = 46
3

197. −⌠
⌡−π/2

0

sin tdt + ∫
0

π/2
sin tdt = 2

199. a. The average is 11.21 × 109 since cos⎛
⎝πt

6
⎞
⎠ has period 12 and integral 0 over any period. Consumption is equal to

the average when cos⎛
⎝πt

6
⎞
⎠ = 0, when t = 3, and when t = 9. b. Total consumption is the average rate times duration:

11.21 × 12 × 109 = 1.35 × 1011 c. 109
⎛
⎝
⎜11.21 − 1

6
⌠
⌡3

9
cos⎛

⎝πt
6

⎞
⎠dt

⎞
⎠
⎟ = 109 ⎛

⎝11.21 + 2
π

⎞
⎠ = 11.84x109

201. If f is not constant, then its average is strictly smaller than the maximum and larger than the minimum, which are attained
over ⎡

⎣a, b⎤
⎦ by the extreme value theorem.

203. a. d2 θ = (acosθ + c)2 + b2 sin2 θ = a2 + c2 cos2 θ + 2accosθ = (a + ccosθ)2; b.

d
–

= 1
2π∫

0

2π
(a + 2ccosθ)dθ = a

205. Mean gravitational force = GmM
2

⌠
⌡
⎮⎮

0

2π

1
⎛
⎝a + 2 a2 − b2cosθ⎞

⎠
2dθ.

207. ∫ ⎛
⎝ x − 1

x
⎞
⎠dx = ∫ x1/2 dx − ∫ x−1/2 dx = 2

3x3/2 + C1 − 2x1/2 + C2 = 2
3x3/2 − 2x1/2 + C

209. ⌠
⌡
dx
2x = 1

2ln|x| + C

211. ⌠
⌡0

π
sinxdx − ∫

0

π
cosxdx = −cosx|0

π − (sinx)|0
π = ⎛

⎝−(−1) + 1⎞
⎠ − (0 − 0) = 2
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213. P(s) = 4s, so dP
ds = 4 and ∫

2

4
4ds = 8.

215. ∫
1

2
Nds = N

217. With p as in the previous exercise, each of the 12 pentagons increases in area from 2p to 4p units so the net increase in the
area of the dodecahedron is 36p units.

219. 18s2 = 6∫
s

2s
2xdx

221. 12πR2 = 8π∫
R

2R
rdr

223. d(t) = ∫
0

t
v(s)ds = 4t − t2. The total distance is d(2) = 4 m.

225. d(t) = ∫
0

t
v(s)ds. For t < 3, d(t) = ∫

0

t
(6 − 2t)dt = 6t − t2. For

t > 3, d(t) = d(3) + ∫
3

t
(2t − 6)dt = 9 + (t2 − 6t)|3

6
. The total distance is d(6) = 18 m.

227. v(t) = 40 − 9.8tm/sec; h(t) = 1.5 + 40t − 4.9t2 m/s

229. The net increase is 1 unit.

231. At t = 5, the height of water is x = ⎛
⎝15

π
⎞
⎠
1/3

m.. The net change in height from t = 5 to t = 10 is ⎛
⎝30

π
⎞
⎠
1/3

− ⎛
⎝15

π
⎞
⎠
1/3

m.
233. The total daily power consumption is estimated as the sum of the hourly power rates, or 911 gW-h.
235. 17 kJ

237. a. 54.3%; b. 27.00%; c. The curve in the following plot is 2.35(t + 3)e−0.15(t + 3).

239. In dry conditions, with initial velocity v0 = 30 m/s, D = 64.3 and, if v0 = 25, D = 44.64. In wet conditions, if

v0 = 30, and D = 180 and if v0 = 25, D = 125.
241. 225 cal
243. E(150) = 28, E(300) = 22, E(450) = 16
245. a.
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b. Between 600 and 1000 the average decrease in vehicles per hour per lane is −0.0075. Between 1000 and 1500 it is −0.006 per
vehicles per hour per lane, and between 1500 and 2100 it is −0.04 vehicles per hour per lane. c.

The graph is nonlinear, with minutes per mile increasing dramatically as vehicles per hour per lane reach 2000.

247. 1
37∫

0

37
p(t)dt = 0.07(37)3

4 + 2.42(37)2

3 − 25.63(37)
2 + 521.23 ≈ 2037

249. Average acceleration is A = 1
5∫

0

5
a(t)dt = −

0.7⎛
⎝52⎞

⎠
3 + 1.44(5)

2 + 10.44 ≈ 8.2 mph/s

251. d(t) = ∫
0

1
|v(t)|dt = ⌠

⌡0

t ⎛
⎝ 7
30t3 − 0.72t2 − 10.44t + 41.033⎞

⎠dt = 7
120t4 − 0.24t3 − 5.22t3 + 41.033t. Then,

d(5) ≈ 81.12 mph × sec ≈ 119 feet.

253. 1
40∫

0

40
(−0.068t + 5.14)dt = − 0.068(40)

2 + 5.14 = 3.78m/sec

255. u = h(x)

257. f (u) = (u + 1)2

u

259. du = 8xdx; f (u) = 1
8 u

261. 1
5(x + 1)5 + C

263. − 1
12(3 − 2x)6 + C

265. x2 + 1 + C
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267. 1
8

⎛
⎝x2 − 2x⎞

⎠
4

+ C

269. sinθ − sin3 θ
3 + C

271. (1 − x)101

101 − (1 − x)100

100 + C

273. ⌠
⌡(11x - 7)-2 dx = − 1

22(11x − 7)2 + C

275. −cos4 θ
4 + C

277. −cos3 (πt)
3π + C

279. −1
4cos2 ⎛

⎝t2⎞
⎠ + C

281. − 1
3(x3 − 3)

+ C

283. −
2⎛

⎝y3 − 2⎞
⎠

3 1 − y3

285. 1
33

⎛
⎝1 − cos3 θ⎞

⎠
11

+ C

287. 1
12

⎛
⎝sin3 θ − 3sin2 θ⎞

⎠
4

+ C

289. L50 = −8.5779. The exact area is −81
8

291. L50 = −0.006399 … The exact area is 0.

293. u = 1 + x2, du = 2xdx, 1
2∫

1

2
u−1/2 du = 2 − 1

295. u = 1 + t3, du = 3t2 dt, 1
3

⌠
⌡1

2
u−1/2 du = 2

3( 2 − 1)

297. u = cosθ, du = −sinθdθ, ⌠
⌡1/ 2

1
u−4 du = 1

3(2 2 − 1)

299.

The antiderivative is y = sin⎛
⎝ln(2x)⎞

⎠. Since the antiderivative is not continuous at x = 0, one cannot find a value of C that
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would make y = sin⎛
⎝ln(2x)⎞

⎠ − C work as a definite integral.

301.

The antiderivative is y = 1
2sec2 x. You should take C = −2 so that F⎛

⎝−π
3

⎞
⎠ = 0.

303.
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The antiderivative is y = 1
3

⎛
⎝2x3 + 1⎞

⎠
3/2

. One should take C = − 1
3.

305. No, because the integrand is discontinuous at x = 1.

307. u = sin⎛
⎝t2⎞

⎠; the integral becomes 1
2∫

0

0
udu.

309. u =
⎛
⎝
⎜1 + ⎛

⎝t − 1
2

⎞
⎠
2⎞
⎠
⎟; the integral becomes −∫

5/4

5/41
udu.

311. u = 1 − t; the integral becomes

∫
1

−1
ucos(π(1 − u))du

= ∫
1

−1
u[cosπ cosπu − sinπ sinπu]du

= −∫
1

−1
ucosπudu

= ∫
−1

1
ucosπudu = 0

since the integrand is odd.

313. Setting u = cx and du = cdx gets you 1
b
c − a

c
∫

a/c

b/c
f (cx)dx = c

b − a
⌠
⌡u = a

u = b

f (u)du
c = 1

b − a∫
a

b
f (u)du.

315.
⌠
⌡0

x

g(t)dt = 1
2

⌠
⌡

u = 1 − x2

1
du
ua = 1

2(1 − a)u1 − a |
u = 1 − x2

1

= 1
2(1 − a)

⎛
⎝1 − ⎛

⎝1 − x2⎞
⎠
1 − a⎞

⎠. As x → 1 the limit is

1
2(1 − a) if a < 1, and the limit diverges to +∞ if a > 1.

317. ∫
t = π

0
b 1 − cos2 t × (−asin t)dt = ∫

t = 0

π
absin2 tdt
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319. f (t) = 2cos(3t) − cos(2t); ⌠
⌡0

π/2
⎛
⎝2cos(3t) − cos(2t)⎞

⎠ = − 2
3

321. −1
3 e−3x + C

323. −3−x

ln3 + C

325. ln⎛
⎝x2⎞

⎠ + C

327. 2 x + C

329. − 1
lnx + C

331. ln⎛
⎝ln(lnx)⎞

⎠ + C
333. ln(xcosx) + C

335. −1
2

⎛
⎝ln(cos(x))⎞

⎠
2 + C

337. −e−x3

3 + C

339. etanx + C
341. t + C

343. 1
9x3 ⎛

⎝ln
⎛
⎝x3⎞

⎠ − 1⎞
⎠ + C

345. 2 x(lnx − 2) + C

347. ⌠
⌡0

lnx
et dt = et |0

lnx
= elnx − e0 = x − 1

349. −1
3ln⎛

⎝sin(3x) + cos(3x)⎞
⎠

351. −1
2ln|csc⎛

⎝x2⎞
⎠ + cot⎛

⎝x2⎞
⎠| + C

353. −1
2

⎛
⎝ln(cscx)⎞

⎠
2 + C

355. 1
3ln⎛

⎝26
7

⎞
⎠

357. ln⎛
⎝ 3 − 1⎞

⎠

359. 1
2ln 3

2
361. y − 2ln|y + 1| + C
363. ln|sinx − cosx| + C

365. −1
3

⎛
⎝1 − ⎛

⎝lnx2⎞
⎠
⎞
⎠
3/2

+ C

367. Exact solution: e − 1
e , R50 = 0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.

369. Exact solution:
2ln(3) − ln(6)

2 , R50 = 0.2033. Since f is increasing, the right endpoint estimate overestimates the area.

371. Exact solution: − 1
ln(4), R50 = −0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the

actual area is a larger negative number).

373. 11
2 ln2

375.
1

ln(65, 536)

377. ⌠
⌡N

N + 1
xe−x2

dx = 1
2
⎛
⎝e−N 2

− e−(N + 1)2⎞
⎠. The quantity is less than 0.01 when N = 2.
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379. ∫
a

bdx
x = ln(b) − ln(a) = ln⎛

⎝1
a

⎞
⎠ − ln⎛

⎝1
b

⎞
⎠ = ∫

1/b

1/adx
x

381. 23

383. We may assume that x > 1, so 1
x < 1. Then, ∫

1

1/xdt
t . Now make the substitution u = 1

t , so du = − dt
t2 and

du
u = − dt

t , and change endpoints: ∫
1

1/xdt
t = −∫

1

xdu
u = −lnx.

387. x = E⎛
⎝ln(x)⎞

⎠. Then, 1 = E '(lnx)
x or x = E '(ln x). Since any number t can be written t = lnx for some x, and for such t

we have x = E(t), it follows that for any t, E '(t) = E(t).
389. R10 = 0.6811, R100 = 0.6827

391. sin−1 x|0
3/2

= π
3

393. tan−1 x| 3

1
= − π

12

395. sec−1 x|1
2

= π
4

397. sin−1 ⎛
⎝x
3

⎞
⎠ + C

399. 1
3tan−1 ⎛

⎝x
3

⎞
⎠ + C

401. 1
3sec−1 ⎛

⎝x
3

⎞
⎠ + C

403. cos⎛
⎝π
2 − θ⎞

⎠ = sinθ. So, sin−1 t = π
2 − cos−1 t. They differ by a constant.

405. 1 − t2 is not defined as a real number when t > 1.
407.
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The antiderivative is sin−1 ⎛
⎝x
3

⎞
⎠ + C. Taking C = π

2 recovers the definite integral.

409.

The antiderivative is 1
2tan−1 ⎛

⎝sinx
2

⎞
⎠ + C. Taking C = 1

2tan−1 ⎛
⎝sin(6)

2
⎞
⎠ recovers the definite integral.

411. 1
2

⎛
⎝sin−1 t⎞

⎠
2

+ C

413. 1
4

⎛
⎝tan−1 (2t)⎞

⎠
2

415. 1
4

⎛
⎝
⎜sec−1 ⎛

⎝ t
2

⎞
⎠
2⎞
⎠
⎟ + C

417.

842 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



The antiderivative is 1
2sec−1 ⎛

⎝x
2

⎞
⎠ + C. Taking C = 0 recovers the definite integral over ⎡

⎣2, 6⎤
⎦.

419.

The general antiderivative is tan−1 (xsinx) + C. Taking C = −tan−1(6sin(6)) recovers the definite integral.

421.

The general antiderivative is tan−1 (lnx) + C. Taking C = π
2 = tan−1 ∞ recovers the definite integral.

423. sin−1 ⎛
⎝et⎞⎠ + C

425. sin−1 (ln t) + C

427. −1
2

⎛
⎝cos−1 (2t)⎞

⎠
2

+ C
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429. 1
2ln⎛

⎝4
3

⎞
⎠

431. 1 − 2
5

433. 2tan−1 (A) → π as A → ∞

435. Using the hint, one has ⌠
⌡

csc2 x
csc2 x + cot2 x

dx = ⌠
⌡

csc2 x
1 + 2cot2 x

dx. Set u = 2cot x. Then, du = − 2csc2 x and the

integral is − 1
2

⌠
⌡

du
1 + u2 = − 1

2
tan−1 u + C = 1

2
tan−1 ⎛

⎝ 2cot x⎞
⎠ + C. If one uses the identity tan−1 s + tan−1 ⎛

⎝1
s

⎞
⎠ = π

2,

then this can also be written 1
2

tan−1 ⎛
⎝tanx

2
⎞
⎠ + C.

437. x ≈ ± 1.7321. The left endpoint estimate with N = 100 is 4.781 and these decimals persist for N = 500.
Review Exercises

439. False
441. True
443. L4 = 5.25, R4 = 3.25, exact answer: 4

445. L4 = 5.364, R4 = 5.364, exact answer: 5.870

447. −4
3

449. 1

451. − 1
2(x + 4)2 + C

453. 4
3sin−1 ⎛

⎝x3⎞
⎠ + C

455.
sin t
1 + t2

457. 4lnx
x + 1

459. $6,328,113
461. $73.36

463. 19117
12 ft/sec, or 1593 ft/sec

Chapter 6

Checkpoint

6.1. 12 units2

6.2. 3
10 unit2

6.3. 2 + 2 2 units2

6.4. 5
3 units2

6.5. 5
3 units2

6.7.
π
2

6.8. 8π units3

6.9. 21π units3

6.10. 10π
3 units3

6.11. 60π units3

6.12. 15π
2 units3

6.13. 8π units3
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6.14. 12π units3

6.15. 11π
6 units3

6.16.
π
6 units3

6.17. Use the method of washers; V = ∫
−1

1
π⎡
⎣⎛

⎝2 − x2⎞
⎠
2

− ⎛
⎝x2⎞

⎠
2⎤
⎦dx

6.18. 1
6

⎛
⎝5 5 − 1⎞

⎠ ≈ 1.697

6.19. Arc Length ≈ 3.8202
6.20. Arc Length = 3.15018

6.21.
π
6

⎛
⎝5 5 − 3 3⎞

⎠ ≈ 3.133

6.22. 12π
6.23. 70/3
6.24. 24π
6.25. 8 ft-lb

6.26. Approximately 43,255.2 ft-lb

6.27. 156,800 N

6.28. Approximately 7,164,520,000 lb or 3,582,260 t

6.29. M = 24, x– = 2
5 m

6.30. (−1, −1) m

6.31. The centroid of the region is (3/2, 6/5).
6.32. The centroid of the region is (1, 13/5).
6.33. The centroid of the region is (0, 2/5).
6.34. 6π2 units3

6.35.

a.
d
dxln⎛

⎝2x2 + x⎞
⎠ = 4x + 1

2x2 + x

b. d
dx

⎛
⎝ln

⎛
⎝x3⎞

⎠
⎞
⎠
2

=
6 ln⎛

⎝x3⎞
⎠

x

6.36. ∫ x2

x3 + 6
dx = 1

3ln |x3 + 6| + C

6.37. 4 ln 2
6.38.

a. d
dx

⎛
⎝
⎜ex2

e5x

⎞
⎠
⎟ = ex2 − 5x (2x − 5)

b. d
dt

⎛
⎝e2t⎞⎠

3
= 6e6t

6.39. ∫ 4
e3xdx = − 4

3e−3x + C

6.40.

a. d
dt4

t4
= 4t4

(ln 4)⎛
⎝4t3⎞

⎠

b.
d
dxlog3

⎛
⎝ x2 + 1⎞

⎠ = x
(ln 3)⎛

⎝x2 + 1⎞
⎠

6.41. ∫ x2 2x3
dx = 1

3 ln 22x3
+ C

6.42. There are 81,377,396 bacteria in the population after 4 hours. The population reaches 100 million bacteria after
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244.12 minutes.

6.43. At 5% interest, she must invest $223,130.16. At 6% interest, she must invest $165,298.89.
6.44. 38.90 months

6.45. The coffee is first cool enough to serve about 3.5 minutes after it is poured. The coffee is too cold to serve about 7 minutes

after it is poured.
6.46. A total of 94.13 g of carbon remains. The artifact is approximately 13,300 years old.

6.47.

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠ = ⎛

⎝sech2 ⎛
⎝x2 + 3x⎞

⎠
⎞
⎠(2x + 3)

b. d
dx

⎛
⎝
⎜ 1
(sinh x)2

⎞
⎠
⎟ = d

dx(sinh x)−2 = −2(sinh x)−3 cosh x

6.48.

a. ∫ sinh3 x cosh x dx = sinh4 x
4 + C

b. ∫ sech2 (3x)dx = tanh(3x)
3 + C

6.49.

a.
d
dx

⎛
⎝cosh−1 (3x)⎞

⎠ = 3
9x2 − 1

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

=
3⎛

⎝coth−1 x⎞
⎠
2

1 − x2

6.50.

a. ∫ 1
x2 − 4

dx = cosh−1 ⎛
⎝x
2

⎞
⎠ + C

b. ∫ 1
1 − e2x

dx = −sech−1 (ex) + C

6.51. 52.95 ft
Section Exercises

1. 32
3

3. 13
12

5. 36
7.

243 square units
9.
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4
11.

2(e − 1)2
e

13.

1
3

15.
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34
3

17.

5
2

19.

1
2

21.
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9
2

23.

9
2

25.
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3 3
2

27.

e−2
29.

27
4

31.

4
3 − ln(3)

33.

1
2
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35.

1
2

37.

−2⎛
⎝ 2 − π⎞

⎠

39. 1.067
41. 0.852
43. 7.523

45. 3π − 4
12

47. 1.429
49. $33,333.33 total profit for 200 cell phones sold

51. 3.263 mi represents how far ahead the hare is from the tortoise

53. 343
24

55. 4 3

57. π − 32
25

63. 8 units3

65.
32
3 2 units3

67. 7π
12hr2

units3

69.
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π
24 units3

71.

2 units3

73.

π
240 units3

75.
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4096π
5 units3

77.

8π
9 units3

79.

π
2 units3

81.
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207π units3

83.

4π
5 units3

85.

16π
3 units3

87.

π units3

89.
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16π
3 units3

91.

72π
5 units3

93.

108π
5 units3

95.
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3π
10 units3

97.

2 6π units3

99.

9π units3

101.
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π
20

⎛
⎝75 − 4 ln5 (2)⎞

⎠ units3

103. m2 π
3

⎛
⎝b3 − a3⎞

⎠ units3

105. 4a2 bπ
3 units3

107. 2π2 units3

109. 2ab2 π
3 units3

111.
π
12(r + h)2 (6r − h) units3

113.
π
3(h + R)(h − 2R)2

units3

115.

54π units3

117.

81π units3

119.
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512π
7 units3

121. 2π units3

123. 2π
3 units3

125. 2π units3

127. 4π
5 units3

129. 64π
3 units3

131. 32π
5 units3

133. 7π
6

135. 48π

137. 97π
5

139. 512π
7

141. 64π
5 units3

143. 28π
15 units3

145. 3π
10 units3

147. 52π
5 units3

149. 0.9876 units3

151.

3 2 units3

153.
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496π
15 units3

155.

398π
15 units3

157.

15.9074 units3

159. 1
3πr2 h units3

161. πr2 h units3

163. πa2 units3

165. 2 26
167. 2 17

169.
π
6

⎛
⎝17 17 − 5 5⎞

⎠

171. 13 13 − 8
27

173. 4
3

175. 2.0035
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177. 123
32

179. 10

181. 20
3

183. 1
675

⎛
⎝229 229 − 8⎞

⎠

185. 1
8

⎛
⎝4 5 + ln⎛

⎝9 + 4 5⎞
⎠
⎞
⎠

187. 1.201
189. 15.2341

191. 49π
3

193. 70π 2
195. 8π
197. 120π 26

199.
π
6(17 17 − 1)

201. 9 2π

203. 10 10π
27

⎛
⎝73 73 − 1⎞

⎠

205. 25.645
207. 2π
209. 10.5017
211. 23 ft

213. 2
215. Answers may vary
217. For more information, look up Gabriel’s Horn.
219. 150 ft-lb

221. 200 J
223. 1 J

225. 39
2

227. ln(243)

229. 332π
15

231. 100π
233. 20π 15
235. 6 J

237. 5 cm

239. 36 J

241. 18,750 ft-lb

243. 32
3 × 109 ft-lb

245. 9.71 × 102 N m
247. a. 3,000,000 lb, b. 749,000 lb

249. 23.25π million ft-lb

251. AρH 2

2
253. Answers may vary

255. 5
4
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257.
⎛
⎝2
3, 2

3
⎞
⎠

259.
⎛
⎝7
4, 3

2
⎞
⎠

261. 3L
4

263.
π
2

265. e2 + 1
e2 − 1

267. π2 − 4
π

269. 1
4

⎛
⎝1 + e2⎞

⎠

271.
⎛
⎝a
3, b

3
⎞
⎠

273.
⎛
⎝0, π

8
⎞
⎠

275. (0, 3)

277.
⎛
⎝0, 4

π
⎞
⎠

279.
⎛
⎝5
8, 1

3
⎞
⎠

281.
mπ
3

283. πa2 b

285.
⎛
⎝ 4
3π , 4

3π
⎞
⎠

287.
⎛
⎝1
2, 2

5
⎞
⎠

289.
⎛
⎝0, 28

9π
⎞
⎠

291. Center of mass:
⎛
⎝a
6, 4a2

5
⎞
⎠, volume: 2πa4

9
293. Volume: 2π2 a2 (b + a)

295. 1
x

297. − 1
x(ln x)2

299. ln(x + 1) + C
301. ln(x) + 1
303. cot(x)

305. 7
x

307. csc(x)sec x
309. −2 tan x

311. 1
2ln⎛

⎝5
3

⎞
⎠

313. 2 − 1
2ln(5)

315.
1

ln(2) − 1

317. 1
2ln(2)
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319. 1
3(ln x)3

321.
2x3

x2 + 1 x2 − 1
323. x−2 − (1/x) (ln x − 1)
325. exe − 1

327. 1

329. − 1
x2

331. π − ln(2)

333. 1
x

335. e5 − 6 units2

337. ln(4) − 1 units2

339. 2.8656
341. 3.1502
349. True

351. False; k = ln (2)
t

353. 20 hours

355. No. The relic is approximately 871 years old.

357. 71.92 years

359. 5 days 6 hours 27 minutes

361. 12
363. 8.618%
365. $6766.76
367. 9 hours 13 minutes

369. 239,179 years

371. P′(t) = 43e0.01604t. The population is always increasing.

373. The population reaches 10 billion people in 2027.
375. P′(t) = 2.259e0.06407t. The population is always increasing.

377. ex and e−x

379. Answers may vary
381. Answers may vary
383. Answers may vary
385. 3 sinh(3x + 1)
387. −tanh(x)sech(x)
389. 4 cosh(x)sinh(x)

391.
x sech2 ⎛

⎝ x2 + 1⎞
⎠

x2 + 1
393. 6 sinh5 (x)cosh(x)

395. 1
2sinh(2x + 1) + C

397. 1
2sinh2 ⎛

⎝x2⎞
⎠ + C

399. 1
3cosh3 (x) + C

401. ln⎛
⎝1 + cosh(x)⎞

⎠ + C
403. cosh(x) + sinh(x) + C
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405.
4

1 − 16x2

407.
sinh(x)

cosh2 (x) + 1
409. −csc(x)

411. − 1
⎛
⎝x2 − 1⎞

⎠tanh−1 (x)

413. 1
atanh−1 ⎛

⎝xa
⎞
⎠ + C

415. x2 + 1 + C
417. cosh−1 (ex) + C
419. Answers may vary
421. 37.30

423. y = 1
ccosh(cx)

425. −0.521095
427. 10
Review Exercises

435. False
437. False
439. 32 3

441. 162π
5

443. a. 4, b. 128π
7 , c. 64π

5
445. a. 1.949, b. 21.952, c. 17.099

447. a. 31
6 , b. 452π

15 , c. 31π
6

449. 245.282

451. Mass: 1
2, center of mass:

⎛
⎝18
35, 9

11
⎞
⎠

453. 17 + 1
8ln(33 + 8 17)

455. Volume: 3π
4 , surface area: π⎛

⎝ 2 − sinh−1(1) + sinh−1(16) − 257
16

⎞
⎠

457. 11:02 a.m.
459. π(1 + sinh(1)cosh(1))
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INDEX
A
absolute extremum, 366, 499
absolute maximum, 366, 499
absolute minimum, 366, 499
absolute value function, 27, 117
acceleration, 225, 266, 334
algebraic function, 47, 117
amount of change, 266, 334
antiderivative, 485, 499
aphelion, 565
arc length, 671, 756
Archimedes, 175, 508
area density, 686
Area Problem, 129
area under the curve, 519
average rate of change, 266,
334
average value of a function, 616
average value of the function,
542
average velocity, 128, 208, 222

B
bald eagle, 580
base, 96, 117

C
carbon dating, 741
catenary, 752, 756
center of mass, 704, 756
centroid, 707, 756
chain rule, 287, 334
change of variables, 584, 616
chaos, 481
common logarithm, 105
composite function, 22, 117
compound interest, 736
compounding interest, 99
concave down, 395, 499
concave up, 395, 499
concavity, 395, 499
concavity test, 396, 499
conditional statement, 194
constant function, 40
Constant multiple law for limits,
161
constant multiple law for limits,
208
Constant Multiple Rule, 251
constant multiple rule, 334
constant rule, 247, 334
continuity at a point, 208
continuity from the left, 208
continuity from the right, 208
continuity over an interval, 186,

208
continuous at a point, 180
continuous from the left, 186
continuous from the right, 186
critical point, 369, 499
cross-section, 636, 756
cubic function, 40, 117

D
deceleration, 579
decreasing on the interval I ,

20, 117
definite integral, 529, 616
degree, 40, 117
density function, 685, 756
dependent variable, 8, 117
derivative, 220, 334
derivative function, 232, 334
Difference law for limits, 161
difference law for limits, 208
difference quotient, 215, 334
Difference Rule, 250
difference rule, 334
differentiable at a, 334
differentiable at a , 232

differentiable function, 232, 334
differentiable on S, 334
differentiable on S , 232

differential, 499
Differential calculus, 126
differential calculus, 208
differential form, 359, 499
differentials, 358
differentiation, 220, 334
discontinuity at a point, 208
discontinuous at a point, 180
disk method, 642, 756
displacement, 534, 567
domain, 8, 117
doubling time, 738, 756
dummy variable, 509, 529

E
earthquake, 106
end behavior, 41, 415, 499
endpoints, 10
epsilon-delta definition of the
limit, 194, 208
evaluation theorem, 555
even function, 26, 117, 572
existential quantifier, 194
exponent, 96, 117
exponential decay, 739, 756
exponential growth, 734, 756

Extreme Value Theorem, 367
extreme value theorem, 499

F
fave, 542
federal income tax, 580
Fermat’s theorem, 369, 499
first derivative test, 391, 499
folium of Descartes, 314
fruit flies, 600
frustum, 676, 756
function, 8, 117
Fundamental Theorem of
Calculus, 549
fundamental theorem of
calculus, 616
Fundamental Theorem of
Calculus, Part 1, 552
fundamental theorem of
calculus, part 1, 616
Fundamental Theorem of
Calculus, Part 2, 555
fundamental theorem of
calculus, part 2, 616

G
graph of a function, 9, 117
growth of bacteria, 599

H
half-life, 741, 756
hanging cables, 752
higher-order derivative, 334
higher-order derivatives, 241
Holling type I equation, 275
Hooke’s law, 689, 756
Hoover Dam, 698
horizontal asymptote, 408, 499
horizontal line test, 79, 117
hydrostatic pressure, 695, 756
hyperbolic functions, 107, 117

I
iceboat, 571
implicit differentiation, 310, 334
increasing on the interval I , 19,

117
indefinite integral, 487, 499
independent variable, 8, 117
indeterminate forms, 454, 499
index, 508
infinite discontinuity, 184, 208
infinite limit, 208
infinite limit at infinity, 414, 499
infinite limits, 146
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inflection point, 397, 499
initial value problem, 500
initial-value problem, 493
input, 8
instantaneous rate of change,
224, 334
instantaneous velocity, 128,
208, 222
integrable function, 529, 616
Integral calculus, 129
integral calculus, 208
integrand, 529, 616
integration by substitution, 584,
616
interior points, 246
Intermediate Value Theorem,
188, 208
interval notation, 10
intuitive definition of the limit,
136, 208
inverse function, 78, 117
inverse hyperbolic functions,
111, 117
inverse trigonometric functions,
86, 117
iterative process, 476, 500

J
joule, 688
jump discontinuity, 184, 208

L
lamina, 707, 756
leading coefficient, 40
left-endpoint approximation,
513, 616
Leibniz, 214, 529
limit, 128, 208
limit at infinity, 408, 413, 500
limit laws, 160, 209
limits of integration, 529, 616
linear approximation, 355, 500
linear function, 36, 117
linearization, 355
local extremum, 368, 500
local maximum, 368, 500
local minimum, 368, 500
logarithmic differentiation, 328,
334
logarithmic function, 50, 117
lower sum, 520, 616
L’Hôpital’s rule, 454, 500

M
Mandelbrot set, 481
marginal cost, 271, 334
marginal profit, 271, 334

marginal revenue, 334
mathematical model, 117
mathematical models, 44
maximizing revenue, 445
Mean Value Theorem, 379
mean value theorem, 500
Mean Value Theorem for
Integrals, 549
mean value theorem for
integrals, 616
method of cylindrical shells, 756
method of cylindrical shells.,
658
method of exhaustion, 508
moment, 704, 756
multivariable calculus, 131, 209

N
natural exponential function,
100, 117, 320
natural logarithm, 102, 118
natural logarithmic function, 320
net change theorem, 567, 616
net signed area, 533, 616
Newton, 214, 549
Newton’s law of cooling, 739
Newton’s method, 472, 500
number e, 118
number e , 100

O
oblique asymptote, 421, 500
odd function, 26, 118, 572
one-sided limit, 143, 209
one-to-one function, 79, 118
optimization problems, 439, 500
output, 8

P
partition, 512, 616
pascals, 695
Pascal’s principle, 695
percentage error, 362, 500
perihelion, 565
periodic function, 118
periodic functions., 70
piecewise-defined function, 50,
118
piecewise-defined functions, 11
point-slope equation, 38, 118
polynomial function, 40, 118
population growth, 96
Population growth, 734
population growth rate, 335
population growth rates, 266
power function, 40, 118
Power law for limits, 161

power law for limits, 209
power rule, 249, 335
price–demand function, 597
Product law for limits, 161
product law for limits, 209
product rule, 253, 335
propagated error, 361, 500
Pythagorean theorem, 344

Q
quadratic function, 40, 118
Quotient law for limits, 161
quotient law for limits, 209
quotient rule, 255, 335

R
radial density, 686
radians, 62, 118
range, 8, 118
rate of change, 124, 567
rational function, 47, 118
Regiomontanus’ problem, 505
regular partition, 512, 616
related rates, 342, 500
relative error, 362, 500
removable discontinuity, 184,
209
restricted domain, 84, 118
Richter scale, 106
Riemann sum, 519
riemann sum, 616
right-endpoint approximation,
513, 616
Rolle’s theorem, 379
rolle’s theorem, 500
root function, 47, 118
Root law for limits, 161
root law for limits, 209

S
secant, 125, 209
secant method, 484
second derivative test, 399, 500
sigma notation, 508, 616
simple interest, 736
skydiver, 560
slicing method, 638, 756
slope, 36, 118
slope-intercept form, 37, 118
smooth, 671
solid of revolution, 639, 756
speed, 267, 335
spring constant, 689
squeeze theorem, 170, 209
standard form of a line, 38
Sum law for limits, 161
sum law for limits, 209
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Sum Rule, 250
sum rule, 335
summation notation, 508
sums and powers of integers,
510
Surface area, 675
surface area, 757
symmetry about the origin, 25,
118
symmetry about the y-axis, 25,
118
symmetry principle, 707, 757

T
table of values, 13, 118
tangent, 126, 209
tangent line approximation, 355
tangent line approximation
(linearization), 500
Tangent Problem, 126
theorem of Pappus for volume,
716, 757
total area, 536, 616
Tour de France, 577
transcendental function, 118
transcendental functions, 50
transformation of a function, 53,
118
triangle inequality, 201, 209
trigonometric functions, 64, 118
trigonometric identity, 68, 118

U
universal quantifier, 194
upper sum, 520, 616

V
variable of integration, 529, 616
velocity, 567
vertical asymptote, 149, 209
vertical line test, 16, 118

W
washer method, 648, 757
wingsuits, 561
work, 689, 757

Z
zeroes of functions, 472
zeros of a function, 16, 118
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