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2 | APPLICATIONS OF
INTEGRATION

Figure 2.1 Hoover Dam is one of the United States’ iconic landmarks, and provides irrigation and hydroelectric power for
millions of people in the southwest United States. (credit: modification of work by Lynn Betts, Wikimedia)
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Introduction
The Hoover Dam is an engineering marvel. When Lake Mead, the reservoir behind the dam, is full, the dam withstands a
great deal of force. However, water levels in the lake vary considerably as a result of droughts and varying water demands.
Later in this chapter, we use definite integrals to calculate the force exerted on the dam when the reservoir is full and we
examine how changing water levels affect that force (see Example 2.28).

Hydrostatic force is only one of the many applications of definite integrals we explore in this chapter. From geometric
applications such as surface area and volume, to physical applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and model the world around us.

2.1 | Areas between Curves

Learning Objectives
2.1.1 Determine the area of a region between two curves by integrating with respect to the
independent variable.

2.1.2 Find the area of a compound region.

2.1.3 Determine the area of a region between two curves by integrating with respect to the
dependent variable.

In Introduction to Integration, we developed the concept of the definite integral to calculate the area below a curve on
a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the
area between two curves that are functions of x, beginning with the simple case in which one function value is always

greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the
area between two curves that are functions of y.

Area of a Region between Two Curves
Let f (x) and g(x) be continuous functions over an interval ⎡

⎣a, b⎤
⎦ such that f (x) ≥ g(x) on ⎡

⎣a, b⎤
⎦. We want to find the

area between the graphs of the functions, as shown in the following figure.

Figure 2.2 The area between the graphs of two functions,
f (x) and g(x), on the interval [a, b].

As we did before, we are going to partition the interval on the x-axis and approximate the area between the graphs

of the functions with rectangles. So, for i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡
⎣a, b⎤

⎦. Then, for

i = 1, 2,…, n, choose a point xi* ∈ [xi − 1, xi], and on each interval [xi − 1, xi] construct a rectangle that extends

vertically from g(xi* ) to f (xi* ). Figure 2.3(a) shows the rectangles when xi* is selected to be the left endpoint of the

interval and n = 10. Figure 2.3(b) shows a representative rectangle in detail.

Use this calculator (http://www.openstaxcollege.org/l/20_CurveCalc) to learn more about the areas
between two curves.
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Figure 2.3 (a)We can approximate the area between the
graphs of two functions, f (x) and g(x), with rectangles. (b)

The area of a typical rectangle goes from one curve to the other.

The height of each individual rectangle is f (xi* ) − g(xi* ) and the width of each rectangle is Δx. Adding the areas of all

the rectangles, we see that the area between the curves is approximated by

A ≈ ∑
i = 1

n
⎡
⎣ f (xi* ) − g(xi* )⎤

⎦Δx.

This is a Riemann sum, so we take the limit as n → ∞ and we get

A = limn → ∞ ∑
i = 1

n
⎡
⎣ f (xi* ) − g(xi* )⎤

⎦Δx = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

These findings are summarized in the following theorem.

Theorem 2.1: Finding the Area between Two Curves

Let f (x) and g(x) be continuous functions such that f (x) ≥ g(x) over an interval ⎡
⎣a, b⎤

⎦. Let R denote the region

bounded above by the graph of f (x), below by the graph of g(x), and on the left and right by the lines x = a and

x = b, respectively. Then, the area of R is given by

(2.1)
A = ∫

a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

We apply this theorem in the following example.

Example 2.1

Finding the Area of a Region between Two Curves 1

If R is the region bounded above by the graph of the function f (x) = x + 4 and below by the graph of the

function g(x) = 3 − x
2 over the interval [1, 4], find the area of region R.

Solution

The region is depicted in the following figure.
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2.1

Figure 2.4 A region between two curves is shown where one
curve is always greater than the other.

We have

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
1

4⎡
⎣(x + 4) − ⎛

⎝3 − x
2

⎞
⎠
⎤
⎦dx = ∫

1

4⎡
⎣
3x
2 + 1⎤

⎦dx

= ⎡
⎣

3x2

4 + x⎤
⎦ |14 = ⎛

⎝16 − 7
4

⎞
⎠ = 57

4 .

The area of the region is 57
4 units2.

If R is the region bounded by the graphs of the functions f (x) = x
2 + 5 and g(x) = x + 1

2 over the

interval ⎡
⎣1, 5⎤

⎦, find the area of region R.

In Example 2.1, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define
our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Example 2.2

Finding the Area of a Region between Two Curves 2

If R is the region bounded above by the graph of the function f (x) = 9 − (x/2)2 and below by the graph of the

function g(x) = 6 − x, find the area of region R.
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2.2

Solution

The region is depicted in the following figure.

Figure 2.5 This graph shows the region below the graph of
f (x) and above the graph of g(x).

We first need to compute where the graphs of the functions intersect. Setting f (x) = g(x), we get

f (x) = g(x)

9 − ⎛
⎝
x
2

⎞
⎠
2

= 6 − x

9 − x2

4 = 6 − x

36 − x2 = 24 − 4x

x2 − 4x − 12 = 0
(x − 6)(x + 2) = 0.

The graphs of the functions intersect when x = 6 or x = −2, so we want to integrate from −2 to 6. Since

f (x) ≥ g(x) for −2 ≤ x ≤ 6, we obtain

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
−2

6 ⎡

⎣
⎢9 − ⎛

⎝
x
2

⎞
⎠
2

− (6 − x)
⎤

⎦
⎥dx = ∫

−2

6 ⎡
⎣3 − x2

4 + x⎤
⎦dx

= ⎡
⎣3x − x3

12 + x2

2
⎤
⎦ |−2

6
= 64

3 .

The area of the region is 64/3 units2.

If R is the region bounded above by the graph of the function f (x) = x and below by the graph of the

function g(x) = x4, find the area of region R.

Chapter 2 | Applications of Integration 125



Areas of Compound Regions
So far, we have required f (x) ≥ g(x) over the entire interval of interest, but what if we want to look at regions bounded by

the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute
value function.

Theorem 2.2: Finding the Area of a Region between Curves That Cross

Let f (x) and g(x) be continuous functions over an interval ⎡
⎣a, b⎤

⎦. Let R denote the region between the graphs of

f (x) and g(x), and be bounded on the left and right by the lines x = a and x = b, respectively. Then, the area of

R is given by

A = ∫
a

b
| f (x) − g(x)|dx.

In practice, applying this theorem requires us to break up the interval ⎡
⎣a, b⎤

⎦ and evaluate several integrals, depending on

which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 2.3

Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions f (x) = sin x and g(x) = cos x over the interval [0, π],
find the area of region R.

Solution

The region is depicted in the following figure.

Figure 2.6 The region between two curves can be broken into
two sub-regions.

The graphs of the functions intersect at x = π/4. For x ∈ [0, π/4], cos x ≥ sin x, so

| f (x) − g(x)| = |sin x − cos x| = cos x − sin x.

On the other hand, for x ∈ [π/4, π], sin x ≥ cos x, so
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2.3

| f (x) − g(x)| = |sin x − cos x| = sin x − cos x.

Then

A = ∫
a

b
| f (x) − g(x)|dx

= ∫
0

π
|sin x − cos x|dx = ∫

0

π/4
(cos x − sin x)dx + ∫

π/4

π
(sin x − cos x)dx

= [sin x + cos x] |0π/4 + [−cos x − sin x] |π/4
π

= ( 2 − 1) + ⎛
⎝1 + 2⎞

⎠ = 2 2.

The area of the region is 2 2 units2.

If R is the region between the graphs of the functions f (x) = sin x and g(x) = cos x over the interval

[π/2, 2π], find the area of region R.

Example 2.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 2.7. Find the area of R.

Figure 2.7 Two integrals are required to calculate the area of
this region.

Solution

As with Example 2.3, we need to divide the interval into two pieces. The graphs of the functions intersect at
x = 1 (set f (x) = g(x) and solve for x), so we evaluate two separate integrals: one over the interval [0, 1] and

one over the interval [1, 2].

Over the interval [0, 1], the region is bounded above by f (x) = x2 and below by the x-axis, so we have

A1 = ∫
0

1
x2 dx = x3

3 |01 = 1
3.

Over the interval [1, 2], the region is bounded above by g(x) = 2 − x and below by the x-axis, so we have
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2.4

A2 = ∫
1

2
(2 − x)dx = ⎡

⎣2x − x2

2
⎤
⎦ |12 = 1

2.

Adding these areas together, we obtain

A = A1 + A2 = 1
3 + 1

2 = 5
6.

The area of the region is 5/6 units2.

Consider the region depicted in the following figure. Find the area of R.

Regions Defined with Respect to y
In Example 2.4, we had to evaluate two separate integrals to calculate the area of the region. However, there is another
approach that requires only one integral. What if we treat the curves as functions of y, instead of as functions of x?

Review Figure 2.7. Note that the left graph, shown in red, is represented by the function y = f (x) = x2. We could just

as easily solve this for x and represent the curve by the function x = v(y) = y. (Note that x = − y is also a valid

representation of the function y = f (x) = x2 as a function of y. However, based on the graph, it is clear we are interested

in the positive square root.) Similarly, the right graph is represented by the function y = g(x) = 2 − x, but could just as

easily be represented by the function x = u(y) = 2 − y. When the graphs are represented as functions of y, we see the

region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if
we integrate with respect to y, we need to evaluate one integral only. Let’s develop a formula for this type of integration.

Let u(y) and v(y) be continuous functions over an interval ⎡
⎣c, d⎤

⎦ such that u(y) ≥ v(y) for all y ∈ ⎡
⎣c, d⎤

⎦. We want to

find the area between the graphs of the functions, as shown in the following figure.

Figure 2.8 We can find the area between the graphs of two
functions, u(y) and v(y).
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This time, we are going to partition the interval on the y-axis and use horizontal rectangles to approximate the area between

the functions. So, for i = 0, 1, 2,…, n, let Q = {yi} be a regular partition of ⎡
⎣c, d⎤

⎦. Then, for i = 1, 2,…, n, choose

a point yi* ∈ [yi − 1, yi], then over each interval [yi − 1, yi] construct a rectangle that extends horizontally from v⎛
⎝yi*

⎞
⎠

to u⎛
⎝yi*

⎞
⎠. Figure 2.9(a) shows the rectangles when yi* is selected to be the lower endpoint of the interval and n = 10.

Figure 2.9(b) shows a representative rectangle in detail.

Figure 2.9 (a) Approximating the area between the graphs of
two functions, u(y) and v(y), with rectangles. (b) The area of

a typical rectangle.

The height of each individual rectangle is Δy and the width of each rectangle is u⎛
⎝yi*

⎞
⎠ − v⎛

⎝yi*
⎞
⎠. Therefore, the area

between the curves is approximately

A ≈ ∑
i = 1

n
⎡
⎣u⎛

⎝yi*
⎞
⎠ − v⎛

⎝yi*
⎞
⎠
⎤
⎦Δy.

This is a Riemann sum, so we take the limit as n → ∞, obtaining

A = limn → ∞ ∑
i = 1

n
⎡
⎣u⎛

⎝yi*
⎞
⎠ − v⎛

⎝yi*
⎞
⎠
⎤
⎦Δy = ∫

c

d
⎡
⎣u(y) − v(y)⎤

⎦dy.

These findings are summarized in the following theorem.

Theorem 2.3: Finding the Area between Two Curves, Integrating along the y-axis

Let u(y) and v(y) be continuous functions such that u(y) ≥ v(y) for all y ∈ ⎡
⎣c, d⎤

⎦. Let R denote the region bounded

on the right by the graph of u(y), on the left by the graph of v(y), and above and below by the lines y = d and

y = c, respectively. Then, the area of R is given by

(2.2)
A = ∫

c

d
⎡
⎣u(y) − v(y)⎤

⎦dy.

Example 2.5

Integrating with Respect to y
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2.5

Let’s revisit Example 2.4, only this time let’s integrate with respect to y. Let R be the region depicted in

Figure 2.10. Find the area of R by integrating with respect to y.

Figure 2.10 The area of region R can be calculated using

one integral only when the curves are treated as functions of y.

Solution

We must first express the graphs as functions of y. As we saw at the beginning of this section, the curve on

the left can be represented by the function x = v(y) = y, and the curve on the right can be represented by the

function x = u(y) = 2 − y.

Now we have to determine the limits of integration. The region is bounded below by the x-axis, so the lower limit
of integration is y = 0. The upper limit of integration is determined by the point where the two graphs intersect,

which is the point (1, 1), so the upper limit of integration is y = 1. Thus, we have ⎡
⎣c, d⎤

⎦ = [0, 1].

Calculating the area of the region, we get

A = ∫
c

d
⎡
⎣u(y) − v(y)⎤

⎦dy

= ∫
0

1
⎡
⎣
⎛
⎝2 − y⎞

⎠ − y⎤
⎦dy =

⎡

⎣
⎢ 2y − y2

2 − 2
3y3/2⎤

⎦
⎥ |01

= 5
6.

The area of the region is 5/6 units2.

Let’s revisit the checkpoint associated with Example 2.4, only this time, let’s integrate with respect to
y. Let be the region depicted in the following figure. Find the area of R by integrating with respect to y.
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2.1 EXERCISES
For the following exercises, determine the area of the
region between the two curves in the given figure by
integrating over the x-axis.

1. y = x2 − 3 and y = 1

2. y = x2 and y = 3x + 4

For the following exercises, split the region between the
two curves into two smaller regions, then determine the
area by integrating over the x-axis. Note that you will

have two integrals to solve.

3. y = x3 and y = x2 + x

4. y = cos θ and y = 0.5, for 0 ≤ θ ≤ π

For the following exercises, determine the area of the
region between the two curves by integrating over the
y-axis.

5. x = y2 and x = 9

6. y = x and x = y2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis.

7. y = x2 and y = −x2 + 18x

8. y = 1
x , y = 1

x2, and x = 3

9. y = cos x and y = cos2 x on x = [−π, π]

10. y = ex, y = e2x − 1, and x = 0

11. y = ex, y = e−x, x = −1 and x = 1
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12. y = e, y = ex, and y = e−x

13. y = |x| and y = x2

For the following exercises, graph the equations and shade
the area of the region between the curves. If necessary,
break the region into sub-regions to determine its entire
area.

14. y = sin(πx), y = 2x, and x > 0

15. y = 12 − x, y = x, and y = 1

16. y = sin x and y = cos x over x = [−π, π]

17. y = x3 and y = x2 − 2x over x = [−1, 1]

18. y = x2 + 9 and y = 10 + 2x over x = [−1, 3]

19. y = x3 + 3x and y = 4x

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the y-axis.

20. x = y3 and x = 3y − 2

21. x = 2y and x = y3 − y

22. x = −3 + y2 and x = y − y2

23. y2 = x and x = y + 2

24. x = |y| and 2x = −y2 + 2

25. x = sin y, x = cos(2y), y = π/2, and y = −π/2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis or y-axis, whichever
seems more convenient.

26. x = y4 and x = y5

27. y = xex, y = ex, x = 0, and x = 1

28. y = x6 and y = x4

29. x = y3 + 2y2 + 1 and x = −y2 + 1

30. y = |x| and y = x2 − 1

31. y = 4 − 3x and y = 1
x

32. y = sin x, x = −π/6, x = π/6, and y = cos3 x

33. y = x2 − 3x + 2 and y = x3 − 2x2 − x + 2

34. y = 2 cos3 (3x), y = −1, x = π
4, and x = − π

4

35. y + y3 = x and 2y = x

36. y = 1 − x2 and y = x2 − 1

37. y = cos−1 x, y = sin−1 x, x = −1, and x = 1

For the following exercises, find the exact area of the
region bounded by the given equations if possible. If you
are unable to determine the intersection points analytically,
use a calculator to approximate the intersection points with
three decimal places and determine the approximate area of
the region.

38. [T] x = ey and y = x − 2

39. [T] y = x2 and y = 1 − x2

40. [T] y = 3x2 + 8x + 9 and 3y = x + 24

41. [T] x = 4 − y2 and y2 = 1 + x2

42. [T] x2 = y3 and x = 3y

43. [T]

y = sin3 x + 2, y = tan x, x = −1.5, and x = 1.5

44. [T] y = 1 − x2 and y2 = x2

45. [T] y = 1 − x2 and y = x2 + 2x + 1

46. [T] x = 4 − y2 and x = 1 + 3y + y2

47. [T] y = cos x, y = ex, x = −π, and x = 0
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48. The largest triangle with a base on the x-axis that

fits inside the upper half of the unit circle y2 + x2 = 1
is given by y = 1 + x and y = 1 − x. See the following

figure. What is the area inside the semicircle but outside the
triangle?

49. A factory selling cell phones has a marginal cost

function C(x) = 0.01x2 − 3x + 229, where x represents

the number of cell phones, and a marginal revenue function
given by R(x) = 429 − 2x. Find the area between the

graphs of these curves and x = 0. What does this area

represent?

50. An amusement park has a marginal cost function
C(x) = 1000e−x + 5, where x represents the number

of tickets sold, and a marginal revenue function given by
R(x) = 60 − 0.1x. Find the total profit generated when

selling 550 tickets. Use a calculator to determine

intersection points, if necessary, to two decimal places.

51. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function H(t) = 1 − cos⎛

⎝(πt)/2⎞
⎠

whereas the speed of the tortoise is

T(t) = (1/2)tan−1 (t/4), where t is time measured in

hours and the speed is measured in miles per hour. Find the
area between the curves from time t = 0 to the first time

after one hour when the tortoise and hare are traveling at
the same speed. What does it represent? Use a calculator to
determine the intersection points, if necessary, accurate to
three decimal places.

52. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function
H(t) = (1/2) − (1/2)cos(2πt) whereas the speed of the

tortoise is T(t) = t, where t is time measured in hours

and speed is measured in kilometers per hour. If the race is
over in 1 hour, who won the race and by how much? Use a

calculator to determine the intersection points, if necessary,
accurate to three decimal places.

For the following exercises, find the area between the
curves by integrating with respect to x and then with

respect to y. Is one method easier than the other? Do you

obtain the same answer?

53. y = x2 + 2x + 1 and y = −x2 − 3x + 4

54. y = x4 and x = y5

55. x = y2 − 2 and x = 2y

For the following exercises, solve using calculus, then
check your answer with geometry.

56. Determine the equations for the sides of the square
that touches the unit circle on all four sides, as seen in the
following figure. Find the area between the perimeter of
this square and the unit circle. Is there another way to solve
this without using calculus?

57. Find the area between the perimeter of the unit circle
and the triangle created from y = 2x + 1, y = 1 − 2x and

y = − 3
5, as seen in the following figure. Is there a way

to solve this without using calculus?
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2.2 | Determining Volumes by Slicing

Learning Objectives
2.2.1 Determine the volume of a solid by integrating a cross-section (the slicing method).

2.2.2 Find the volume of a solid of revolution using the disk method.

2.2.3 Find the volume of a solid of revolution with a cavity using the washer method.

In the preceding section, we used definite integrals to find the area between two curves. In this section, we use definite
integrals to find volumes of three-dimensional solids. We consider three approaches—slicing, disks, and washers—for
finding these volumes, depending on the characteristics of the solid.

Volume and the Slicing Method
Just as area is the numerical measure of a two-dimensional region, volume is the numerical measure of a three-dimensional
solid. Most of us have computed volumes of solids by using basic geometric formulas. The volume of a rectangular solid,
for example, can be computed by multiplying length, width, and height: V = lwh. The formulas for the volume of a sphere
⎛
⎝V = 4

3πr3⎞
⎠, a cone ⎛

⎝V = 1
3πr2 h⎞

⎠, and a pyramid ⎛
⎝V = 1

3Ah⎞
⎠ have also been introduced. Although some of these

formulas were derived using geometry alone, all these formulas can be obtained by using integration.

We can also calculate the volume of a cylinder. Although most of us think of a cylinder as having a circular base, such as
a soup can or a metal rod, in mathematics the word cylinder has a more general meaning. To discuss cylinders in this more
general context, we first need to define some vocabulary.

We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid
that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder.
Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in Figure 2.11 is an example
of a cylinder with a noncircular base. To calculate the volume of a cylinder, then, we simply multiply the area of the cross-

section by the height of the cylinder: V = A · h. In the case of a right circular cylinder (soup can), this becomes V = πr2 h.

Figure 2.11 Each cross-section of a particular cylinder is identical to the others.

If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for
its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid
into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be
parallel to one another, and when we put all the slices together, we should get the whole solid. Consider, for example, the
solid S shown in Figure 2.12, extending along the x-axis.
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Figure 2.12 A solid with a varying cross-section.

We want to divide S into slices perpendicular to the x-axis. As we see later in the chapter, there may be times when we

want to slice the solid in some other direction—say, with slices perpendicular to the y-axis. The decision of which way to
slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter,
we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of
this section, however, we use slices perpendicular to the x-axis.

Because the cross-sectional area is not constant, we let A(x) represent the area of the cross-section at point x. Now let

P = ⎧

⎩
⎨x0, x1 …, Xn

⎫

⎭
⎬ be a regular partition of ⎡

⎣a, b⎤
⎦, and for i = 1, 2,…n, let Si represent the slice of S stretching from

xi − 1 to xi. The following figure shows the sliced solid with n = 3.

Figure 2.13 The solid S has been divided into three slices

perpendicular to the x-axis.

Finally, for i = 1, 2,…n, let xi* be an arbitrary point in [xi − 1, xi]. Then the volume of slice Si can be estimated by

V ⎛
⎝Si

⎞
⎠ ≈ A⎛

⎝xi*
⎞
⎠Δx. Adding these approximations together, we see the volume of the entire solid S can be approximated by

V(S) ≈ ∑
i = 1

n
A⎛

⎝xi*
⎞
⎠Δx.

By now, we can recognize this as a Riemann sum, and our next step is to take the limit as n → ∞. Then we have

V(S) = limn → ∞ ∑
i = 1

n
A⎛

⎝xi*
⎞
⎠Δx = ∫

a

b
A(x)dx.

Chapter 2 | Applications of Integration 135



The technique we have just described is called the slicing method. To apply it, we use the following strategy.

Problem-Solving Strategy: Finding Volumes by the Slicing Method

1. Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture
if one is not provided.

2. Determine a formula for the area of the cross-section.

3. Integrate the area formula over the appropriate interval to get the volume.

Recall that in this section, we assume the slices are perpendicular to the x-axis. Therefore, the area formula is in terms of

x and the limits of integration lie on the x-axis. However, the problem-solving strategy shown here is valid regardless of

how we choose to slice the solid.

Example 2.6

Deriving the Formula for the Volume of a Pyramid

We know from geometry that the formula for the volume of a pyramid is V = 1
3Ah. If the pyramid has a square

base, this becomes V = 1
3a2 h, where a denotes the length of one side of the base. We are going to use the

slicing method to derive this formula.

Solution

We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid
shown in Figure 2.14, oriented along the x-axis.

Figure 2.14 (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the
pyramid is seen from the side.

We first want to determine the shape of a cross-section of the pyramid. We are know the base is a square, so the
cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-
sectional squares. Looking at Figure 2.14(b), and using a proportion, since these are similar triangles, we have

s
a = x

h or s = ax
h .

Therefore, the area of one of the cross-sectional squares is
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2.6

A(x) = s2 = ⎛
⎝
ax
h

⎞
⎠

2
⎛
⎝step 2⎞

⎠.

Then we find the volume of the pyramid by integrating from 0 to h (step 3):

V = ∫
0

h
A(x)dx

= ∫
0

h
⎛
⎝
ax
h

⎞
⎠

2
dx = a2

h2∫
0

h
x2dx

= ⎡
⎣

a2

h2
⎛
⎝
1
3x3⎞

⎠
⎤
⎦ |0h = 1

3a2 h.

This is the formula we were looking for.

Use the slicing method to derive the formula V = 1
3πr2 h for the volume of a circular cone.

Solids of Revolution
If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution, as shown in
the following figure.
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Figure 2.15 (a) This is the region that is revolved around the x-axis.
(b) As the region begins to revolve around the axis, it sweeps out a
solid of revolution. (c) This is the solid that results when the
revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest
of this section looking at solids of this type. The next example uses the slicing method to calculate the volume of a solid of
revolution.

Use an online integral calculator (http://www.openstaxcollege.org/l/20_IntCalc2) to learn more.
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Example 2.7

Using the Slicing Method to find the Volume of a Solid of Revolution

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of

f (x) = x2 − 4x + 5, x = 1, and x = 4, and rotated about the x-axis.

Solution

Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval [1, 4] as

shown in the following figure.

Figure 2.16 A region used to produce a solid of revolution.

Next, revolve the region around the x-axis, as shown in the following figure.

Figure 2.17 Two views, (a) and (b), of the solid of revolution produced by revolving the region
in Figure 2.16 about the x-axis.
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2.7

Since the solid was formed by revolving the region around the x-axis, the cross-sections are circles (step 1).

The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by f (x). Use the

formula for the area of the circle:

A(x) = πr2 = π⎡
⎣ f (x)⎤

⎦
2 = π⎛

⎝x2 − 4x + 5⎞
⎠
2

(step 2).

The volume, then, is (step 3)

V = ∫
a

h
A(x)dx

= ∫
1

4
π⎛

⎝x2 − 4x + 5⎞
⎠
2
dx = π∫

1

4
⎛
⎝x4 − 8x3 + 26x2 − 40x + 25⎞

⎠dx

= π⎛
⎝

x5

5 − 2x4 + 26x3

3 − 20x2 + 25x⎞
⎠|14 = 78

5 π.

The volume is 78π/5.

Use the method of slicing to find the volume of the solid of revolution formed by revolving the region
between the graph of the function f (x) = 1/x and the x-axis over the interval [1, 2] around the x-axis. See

the following figure.

The Disk Method
When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of
revolution, the slices used to over approximate the volume of the solid are disks. To see this, consider the solid of revolution

generated by revolving the region between the graph of the function f (x) = (x − 1)2 + 1 and the x-axis over the interval

[−1, 3] around the x-axis. The graph of the function and a representative disk are shown in Figure 2.18(a) and (b). The

region of revolution and the resulting solid are shown in Figure 2.18(c) and (d).
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Figure 2.18 (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by
revolving the rectangle about the x-axis. (c) The region under the curve is revolved about the x-axis, resulting in

(d) the solid of revolution.

We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We
know that

V = ∫
a

b
A(x)dx.

The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the
area of a circle. This gives the following rule.

Rule: The Disk Method

Let f (x) be continuous and nonnegative. Define R as the region bounded above by the graph of f (x), below by the
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x-axis, on the left by the line x = a, and on the right by the line x = b. Then, the volume of the solid of revolution

formed by revolving R around the x-axis is given by

(2.3)
V = ∫

a

b
π⎡

⎣ f (x)⎤
⎦
2 dx.

The volume of the solid we have been studying (Figure 2.18) is given by

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

= ∫
−1

3
π⎡

⎣(x − 1)2 + 1⎤
⎦
2

dx = π∫
−1

3
⎡
⎣(x − 1)4 + 2(x − 1)2 + 1⎤

⎦
2

dx

= π⎡
⎣
1
5(x − 1)5 + 2

3(x − 1)3 + x⎤
⎦ |−1

3
= π⎡

⎣
⎛
⎝
32
5 + 16

3 + 3⎞
⎠ − ⎛

⎝−
32
5 − 16

3 − 1⎞
⎠
⎤
⎦ = 412π

15 units3.

Let’s look at some examples.

Example 2.8

Using the Disk Method to Find the Volume of a Solid of Revolution 1

Use the disk method to find the volume of the solid of revolution generated by rotating the region between the
graph of f (x) = x and the x-axis over the interval [1, 4] around the x-axis.

Solution

The graphs of the function and the solid of revolution are shown in the following figure.

Figure 2.19 (a) The function f (x) = x over the interval [1, 4]. (b) The solid of revolution

obtained by revolving the region under the graph of f (x) about the x-axis.

We have
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2.8

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

= ∫
1

4
π[ x]2dx = π∫

1

4
x dx

= π
2x2|14 = 15π

2 .

The volume is (15π)/2 units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of f (x) = 4 − x and the x-axis over the interval [0, 4] around the x-axis.

So far, our examples have all concerned regions revolved around the x-axis, but we can generate a solid of revolution by

revolving a plane region around any horizontal or vertical line. In the next example, we look at a solid of revolution that has
been generated by revolving a region around the y-axis. The mechanics of the disk method are nearly the same as when

the x-axis is the axis of revolution, but we express the function in terms of y and we integrate with respect to y as well.

This is summarized in the following rule.

Rule: The Disk Method for Solids of Revolution around the y-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on the

left by the y-axis, below by the line y = c, and above by the line y = d. Then, the volume of the solid of revolution

formed by revolving Q around the y-axis is given by

(2.4)
V = ∫

c

d
π⎡

⎣g(y)⎤
⎦
2 dy.

The next example shows how this rule works in practice.

Example 2.9

Using the Disk Method to Find the Volume of a Solid of Revolution 2

Let R be the region bounded by the graph of g(y) = 4 − y and the y-axis over the y-axis interval [0, 4].
Use the disk method to find the volume of the solid of revolution generated by rotating R around the y-axis.

Solution

Figure 2.20 shows the function and a representative disk that can be used to estimate the volume. Notice that
since we are revolving the function around the y-axis, the disks are horizontal, rather than vertical.
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Figure 2.20 (a) Shown is a thin rectangle between the curve of the function g(y) = 4 − y
and the y-axis. (b) The rectangle forms a representative disk after revolution around the y-axis.

The region to be revolved and the full solid of revolution are depicted in the following figure.

Figure 2.21 (a) The region to the left of the function g(y) = 4 − y over the y-axis interval

[0, 4]. (b) The solid of revolution formed by revolving the region about the y-axis.

To find the volume, we integrate with respect to y. We obtain

V = ∫
c

d
π⎡

⎣g(y)⎤
⎦
2 dy

= ∫
0

4
π⎡

⎣ 4 − y⎤
⎦
2 dy = π∫

0

4
⎛
⎝4 − y⎞

⎠dy

= π
⎡

⎣
⎢ 4y − y2

2
⎤

⎦
⎥ |04 = 8π.
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2.9

The volume is 8π units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of g(y) = y and the y-axis over the interval [1, 4] around the y-axis.

The Washer Method
Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes,
this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities
arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen
is when an axis of revolution other than the x-axis or y-axis is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers
(disks with holes in the center). For example, consider the region bounded above by the graph of the function f (x) = x
and below by the graph of the function g(x) = 1 over the interval [1, 4]. When this region is revolved around the x-axis,
the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative
washer are shown in Figure 2.22(a) and (b). The region of revolution and the resulting solid are shown in Figure 2.22(c)
and (d).
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Figure 2.22 (a) A thin rectangle in the region between two curves. (b) A
representative disk formed by revolving the rectangle about the x-axis. (c) The region

between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,

A(x) = π( x)2 − π(1)2 = π(x − 1).

Then the volume of the solid is

V = ∫
a

b
A(x)dx

= ∫
1

4
π(x − 1)dx = π⎡

⎣
x2

2 − x⎤
⎦ |14 = 9

2π units3.

Generalizing this process gives the washer method.

Rule: The Washer Method

Suppose f (x) and g(x) are continuous, nonnegative functions such that f (x) ≥ g(x) over ⎡
⎣a, b⎤

⎦. Let R denote the

region bounded above by the graph of f (x), below by the graph of g(x), on the left by the line x = a, and on
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2.10

the right by the line x = b. Then, the volume of the solid of revolution formed by revolving R around the x-axis is

given by

(2.5)
V = ∫

a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx.

Example 2.10

Using the Washer Method

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of f (x) = x
and below by the graph of g(x) = 1/x over the interval [1, 4] around the x-axis.

Solution

The graphs of the functions and the solid of revolution are shown in the following figure.

Figure 2.23 (a) The region between the graphs of the functions f (x) = x and

g(x) = 1/x over the interval [1, 4]. (b) Revolving the region about the x-axis generates

a solid of revolution with a cavity in the middle.

We have

V = ∫
a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx

= π∫
1

4⎡
⎣x2 − ⎛

⎝
1
x

⎞
⎠
2⎤
⎦dx = π⎡

⎣
x3

3 + 1
x
⎤
⎦ |14 = 81π

4 units3.

Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of
f (x) = x and g(x) = 1/x over the interval [1, 3] around the x-axis.

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region
around the y-axis. In this case, the following rule applies.
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Rule: The Washer Method for Solids of Revolution around the y-axis

Suppose u(y) and v(y) are continuous, nonnegative functions such that v(y) ≤ u(y) for y ∈ ⎡
⎣c, d⎤

⎦. Let Q denote

the region bounded on the right by the graph of u(y), on the left by the graph of v(y), below by the line y = c,
and above by the line y = d. Then, the volume of the solid of revolution formed by revolving Q around the y-axis
is given by

V = ∫
c

d
π⎡

⎣
⎛
⎝u(y)⎞

⎠
2 − ⎛

⎝v(y)⎞
⎠
2⎤

⎦dy.

Rather than looking at an example of the washer method with the y-axis as the axis of revolution, we now consider an

example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method
applies, but you may have to visualize just how to describe the cross-sectional area of the volume.

Example 2.11

The Washer Method with a Different Axis of Revolution

Find the volume of a solid of revolution formed by revolving the region bounded above by f (x) = 4 − x and

below by the x-axis over the interval [0, 4] around the line y = −2.

Solution

The graph of the region and the solid of revolution are shown in the following figure.

Figure 2.24 (a) The region between the graph of the function f (x) = 4 − x and the x-axis
over the interval [0, 4]. (b) Revolving the region about the line y = −2 generates a solid of

revolution with a cylindrical hole through its middle.

We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the
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2.11

coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the
area of the inner circle. Looking at the graph of the function, we see the radius of the outer circle is given by
f (x) + 2, which simplifies to

f (x) + 2 = (4 − x) + 2 = 6 − x.

The radius of the inner circle is g(x) = 2. Therefore, we have

V = ∫
0

4
π⎡

⎣(6 − x)2 − (2)2⎤
⎦dx

= π∫
0

4
⎛
⎝x2 − 12x + 32⎞

⎠dx = π⎡
⎣

x3

3 − 6x2 + 32x⎤
⎦ |04 = 160π

3 units3.

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of
f (x) = x + 2 and below by the x-axis over the interval [0, 3] around the line y = −1.
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2.2 EXERCISES
58. Derive the formula for the volume of a sphere using
the slicing method.

59. Use the slicing method to derive the formula for the
volume of a cone.

60. Use the slicing method to derive the formula for the
volume of a tetrahedron with side length a.

61. Use the disk method to derive the formula for the
volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus
the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find
the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side
2 units, as pictured here.

64. A pyramid with height 4 units and a rectangular base
with length 2 units and width 3 units, as pictured here.

65. A tetrahedron with a base side of 4 units, as seen here.

66. A pyramid with height 5 units, and an isosceles
triangular base with lengths of 6 units and 8 units, as seen
here.

67. A cone of radius r and height h has a smaller cone of

radius r/2 and height h/2 removed from the top, as seen

here. The resulting solid is called a frustum.

For the following exercises, draw an outline of the solid and
find the volume using the slicing method.

68. The base is a circle of radius a. The slices

perpendicular to the base are squares.

69. The base is a triangle with vertices (0, 0), (1, 0),
and (0, 1). Slices perpendicular to the xy-plane are

semicircles.

70. The base is the region under the parabola y = 1 − x2

in the first quadrant. Slices perpendicular to the xy-plane
are squares.

71. The base is the region under the parabola y = 1 − x2

and above the x-axis. Slices perpendicular to the y-axis
are squares.
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72. The base is the region enclosed by y = x2 and

y = 9. Slices perpendicular to the x-axis are right isosceles

triangles.

73. The base is the area between y = x and y = x2.
Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by
the curves. Then, use the disk method to find the volume
when the region is rotated around the x-axis.

74. x + y = 8, x = 0, and y = 0

75. y = 2x2, x = 0, x = 4, and y = 0

76. y = ex + 1, x = 0, x = 1, and y = 0

77. y = x4, x = 0, and y = 1

78. y = x, x = 0, x = 4, and y = 0

79. y = sin x, y = cos x, and x = 0

80. y = 1
x , x = 2, and y = 3

81. x2 − y2 = 9 and x + y = 9, y = 0 and x = 0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the y-axis.

82. y = 4 − 1
2x, x = 0, and y = 0

83. y = 2x3, x = 0, x = 1, and y = 0

84. y = 3x2, x = 0, and y = 3

85. y = 4 − x2, y = 0, and x = 0

86. y = 1
x + 1

, x = 0, and x = 3

87. x = sec(y) and y = π
4, y = 0 and x = 0

88. y = 1
x + 1, x = 0, and x = 2

89. y = 4 − x, y = x, and x = 0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the x-axis.

90. y = x + 2, y = x + 6, x = 0, and x = 5

91. y = x2 and y = x + 2

92. x2 = y3 and x3 = y2

93. y = 4 − x2 and y = 2 − x

94. [T] y = cos x, y = e−x, x = 0, and x = 1.2927

95. y = x and y = x2

96. y = sin x, y = 5 sin x, x = 0 and x = π

97. y = 1 + x2 and y = 4 − x2

For the following exercises, draw the region bounded by
the curves. Then, use the washer method to find the volume
when the region is revolved around the y-axis.

98. y = x, x = 4, and y = 0

99. y = x + 2, y = 2x − 1, and x = 0

100. y = x3 and y = x3

101. x = e2y, x = y2, y = 0, and y = ln(2)

102. x = 9 − y2, x = e−y, y = 0, and y = 3
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103. Yogurt containers can be shaped like frustums.

Rotate the line y = 1
mx around the y-axis to find the

volume between y = a and y = b.

104. Rotate the ellipse ⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1 around the

x-axis to approximate the volume of a football, as seen
here.

105. Rotate the ellipse ⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1 around the

y-axis to approximate the volume of a football.

106. A better approximation of the volume of a football
is given by the solid that comes from rotating y = sin x
around the x-axis from x = 0 to x = π. What is the

volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes
from rotating y = sin x around the y-axis from x = 0 to

x = π ?

For the following exercises, find the volume of the solid
described.

152 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



108. The base is the region between y = x and y = x2.
Slices perpendicular to the x-axis are semicircles.

109. The base is the region enclosed by the generic ellipse
⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1. Slices perpendicular to the x-axis

are semicircles.

110. Bore a hole of radius a down the axis of a right cone

and through the base of radius b, as seen here.

111. Find the volume common to two spheres of radius r
with centers that are 2h apart, as shown here.

112. Find the volume of a spherical cap of height h and

radius r where h < r, as seen here.

113. Find the volume of a sphere of radius R with a cap

of height h removed from the top, as seen here.

Chapter 2 | Applications of Integration 153



2.3 | Volumes of Revolution: Cylindrical Shells

Learning Objectives
2.3.1 Calculate the volume of a solid of revolution by using the method of cylindrical shells.

2.3.2 Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution.
We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and
washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical
shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable
of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry
of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the
last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to
help you determine which method to use in a given situation.

The Method of Cylindrical Shells
Again, we are working with a solid of revolution. As before, we define a region R, bounded above by the graph of a

function y = f (x), below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown

in Figure 2.25(a). We then revolve this region around the y-axis, as shown in Figure 2.25(b). Note that this is different
from what we have done before. Previously, regions defined in terms of functions of x were revolved around the x-axis
or a line parallel to it.

Figure 2.25 (a) A region bounded by the graph of a function of x. (b) The solid of revolution formed when the

region is revolved around the y-axis.

As we have done many times before, partition the interval ⎡
⎣a, b⎤

⎦ using a regular partition, P = {x0, x1 ,…, xn} and,

for i = 1, 2,…, n, choose a point xi* ∈ [xi − 1, xi]. Then, construct a rectangle over the interval [xi − 1, xi] of height

f (xi* ) and width Δx. A representative rectangle is shown in Figure 2.26(a). When that rectangle is revolved around the

y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.

154 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Figure 2.26 (a) A representative rectangle. (b) When this rectangle is revolved around the y-axis, the result is a cylindrical

shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure 2.27.

Figure 2.27 Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections
are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius xi and inner radius xi − 1.

Thus, the cross-sectional area is πxi
2 − πxi − 1

2 . The height of the cylinder is f (xi* ). Then the volume of the shell is

Vshell = f (xi* )(πxi
2 − πxi − 1

2 )

= π f (xi* )⎛
⎝xi

2 − xi − 1
2 ⎞

⎠

= π f (xi* )(xi + xi − 1)(xi − xi − 1)

= 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠(xi − xi − 1).

Note that xi − xi − 1 = Δx, so we have
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Vshell = 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠Δx.

Furthermore,
xi + xi − 1

2 is both the midpoint of the interval [xi − 1, xi] and the average radius of the shell, and we can

approximate this by xi* . We then have

Vshell ≈ 2π f (xi* )xi* Δx.

Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate
(Figure 2.28).

Figure 2.28 (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly
longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height f (xi* ),

width 2πxi* , and thickness Δx (Figure 2.28). The volume of the shell, then, is approximately the volume of the flat

plate. Multiplying the height, width, and depth of the plate, we get

Vshell ≈ f (xi* )⎛
⎝2πxi*

⎞
⎠Δx,

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain

V ≈ ∑
i = 1

n
⎛
⎝2πxi* f (xi* )Δx⎞

⎠.

Here we have another Riemann sum, this time for the function 2πx f (x). Taking the limit as n → ∞ gives us

V = limn → ∞ ∑
i = 1

n
⎛
⎝2πxi* f (xi* )Δx⎞

⎠ = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx.

This leads to the following rule for the method of cylindrical shells.

Rule: The Method of Cylindrical Shells

Let f (x) be continuous and nonnegative. Define R as the region bounded above by the graph of f (x), below by the

x-axis, on the left by the line x = a, and on the right by the line x = b. Then the volume of the solid of revolution
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2.12

formed by revolving R around the y-axis is given by

(2.6)
V = ∫

a

b
⎛
⎝2πx f (x)⎞

⎠dx.

Now let’s consider an example.

Example 2.12

The Method of Cylindrical Shells 1

Define R as the region bounded above by the graph of f (x) = 1/x and below by the x-axis over the interval

[1, 3]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First we must graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.29 (a) The region R under the graph of f (x) = 1/x over the

interval [1, 3]. (b) The solid of revolution generated by revolving R about

the y-axis.

Then the volume of the solid is given by

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

= ∫
1

3
⎛
⎝2πx⎛

⎝
1
x

⎞
⎠
⎞
⎠dx

= ∫
1

3
2π dx = 2πx|13 = 4π units3 .

Define R as the region bounded above by the graph of f (x) = x2 and below by the x-axis over the

interval [1, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.
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Example 2.13

The Method of Cylindrical Shells 2

Define R as the region bounded above by the graph of f (x) = 2x − x2 and below by the x-axis over the interval

[0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.30 (a) The region R under the graph of f (x) = 2x − x2 over

the interval [0, 2]. (b) The volume of revolution obtained by revolving

R about the y-axis.

Then the volume of the solid is given by

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

= ∫
0

2
⎛
⎝2πx⎛

⎝2x − x2⎞
⎠
⎞
⎠dx = 2π∫

0

2
⎛
⎝2x2 − x3⎞

⎠dx

= 2π⎡
⎣

2x3

3 − x4

4
⎤
⎦ |02 = 8π

3 units3 .

Define R as the region bounded above by the graph of f (x) = 3x − x2 and below by the x-axis over

the interval [0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution,
revolved around the x-axis, when we want to integrate with respect to y. The analogous rule for this type of solid is given

here.

Rule: The Method of Cylindrical Shells for Solids of Revolution around the x-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on

the left by the y-axis, below by the line y = c, and above by the line y = d. Then, the volume of the solid of
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2.14

revolution formed by revolving Q around the x-axis is given by

V = ∫
c

d
⎛
⎝2πyg(y)⎞

⎠dy.

Example 2.14

The Method of Cylindrical Shells for a Solid Revolved around the x-axis

Define Q as the region bounded on the right by the graph of g(y) = 2 y and on the left by the y-axis for

y ∈ [0, 4]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.

Solution

First, we need to graph the region Q and the associated solid of revolution, as shown in the following figure.

Figure 2.31 (a) The region Q to the left of the function g(y) over the interval

[0, 4]. (b) The solid of revolution generated by revolving Q around the x-axis.

Label the shaded region Q. Then the volume of the solid is given by

V = ∫
c

d
⎛
⎝2πyg(y)⎞

⎠dy

= ∫
0

4
⎛
⎝2πy⎛

⎝2 y⎞
⎠
⎞
⎠dy = 4π∫

0

4
y3/2dy

= 4π
⎡

⎣
⎢2y5/2

5
⎤

⎦
⎥ |04 = 256π

5 units3 .

Define Q as the region bounded on the right by the graph of g(y) = 3/y and on the left by the y-axis
for y ∈ [1, 3]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.
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For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than
one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall
that we found the volume of one of the shells to be given by

Vshell = f (xi* )(πxi
2 − πxi − 1

2 )

= π f (xi* )⎛
⎝xi

2 − xi − 1
2 ⎞

⎠

= π f (xi* )(xi + xi − 1)(xi − xi − 1)

= 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠(xi − xi − 1).

This was based on a shell with an outer radius of xi and an inner radius of xi − 1. If, however, we rotate the region around

a line other than the y-axis, we have a different outer and inner radius. Suppose, for example, that we rotate the region

around the line x = −k, where k is some positive constant. Then, the outer radius of the shell is xi + k and the inner

radius of the shell is xi − 1 + k. Substituting these terms into the expression for volume, we see that when a plane region is

rotated around the line x = −k, the volume of a shell is given by

Vshell = 2π f (xi* )⎛⎝
⎛
⎝xi + k⎞

⎠ + ⎛
⎝xi − 1 + k⎞

⎠

2
⎞
⎠

⎛
⎝
⎛
⎝xi + k⎞

⎠ − ⎛
⎝xi − 1 + k⎞

⎠
⎞
⎠

= 2π f (xi* )⎛⎝
⎛
⎝
xi + xi − 2

2
⎞
⎠ + k⎞

⎠Δx.

As before, we notice that
xi + xi − 1

2 is the midpoint of the interval [xi − 1, xi] and can be approximated by xi* . Then,

the approximate volume of the shell is

Vshell ≈ 2π⎛
⎝xi* + k⎞

⎠ f (xi* )Δx.

The remainder of the development proceeds as before, and we see that

V = ∫
a

b
⎛
⎝2π(x + k) f (x)⎞

⎠dx.

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In
each case, the volume formula must be adjusted accordingly. Specifically, the x-term in the integral must be replaced with

an expression representing the radius of a shell. To see how this works, consider the following example.

Example 2.15

A Region of Revolution Revolved around a Line

Define R as the region bounded above by the graph of f (x) = x and below by the x-axis over the interval

[1, 2]. Find the volume of the solid of revolution formed by revolving R around the line x = −1.

Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.
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2.15

Figure 2.32 (a) The region R between the graph of f (x) and the x-axis over the interval [1, 2]. (b) The

solid of revolution generated by revolving R around the line x = −1.

Note that the radius of a shell is given by x + 1. Then the volume of the solid is given by

V = ∫
1

2
⎛
⎝2π(x + 1) f (x)⎞

⎠dx

= ∫
1

2
(2π(x + 1)x)dx = 2π∫

1

2
⎛
⎝x2 + x⎞

⎠dx

= 2π⎡
⎣

x3

3 + x2

2
⎤
⎦ |12 = 23π

3 units3 .

Define R as the region bounded above by the graph of f (x) = x2 and below by the x-axis over the

interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the line x = −2.

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is
bounded by the graphs of two functions.

Example 2.16

A Region of Revolution Bounded by the Graphs of Two Functions

Define R as the region bounded above by the graph of the function f (x) = x and below by the graph of the

function g(x) = 1/x over the interval [1, 4]. Find the volume of the solid of revolution generated by revolving

R around the y-axis.
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2.16

Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.33 (a) The region R between the graph of f (x) and the graph of g(x) over the interval [1, 4]. (b)

The solid of revolution generated by revolving R around the y-axis.

Note that the axis of revolution is the y-axis, so the radius of a shell is given simply by x. We don’t need to

make any adjustments to the x-term of our integrand. The height of a shell, though, is given by f (x) − g(x), so

in this case we need to adjust the f (x) term of the integrand. Then the volume of the solid is given by

V = ∫
1

4
⎛
⎝2πx⎛

⎝ f (x) − g(x)⎞
⎠
⎞
⎠dx

= ∫
1

4⎛
⎝2πx⎛

⎝ x − 1
x

⎞
⎠
⎞
⎠dx = 2π∫

1

4
⎛
⎝x

3/2 − 1⎞
⎠dx

= 2π⎡
⎣

2x5/2

5 − x⎤
⎦ |14 = 94π

5 units3.

Define R as the region bounded above by the graph of f (x) = x and below by the graph of g(x) = x2

over the interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Which Method Should We Use?
We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use?
It often comes down to a choice of which integral is easiest to evaluate. Figure 2.34 describes the different approaches
for solids of revolution around the x-axis. It’s up to you to develop the analogous table for solids of revolution around the

y-axis.
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Figure 2.34

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

Example 2.17

Selecting the Best Method

For each of the following problems, select the best method to find the volume of a solid of revolution generated
by revolving the given region around the x-axis, and set up the integral to find the volume (do not evaluate the

integral).

a. The region bounded by the graphs of y = x, y = 2 − x, and the x-axis.

b. The region bounded by the graphs of y = 4x − x2 and the x-axis.

Solution

a. First, sketch the region and the solid of revolution as shown.
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Figure 2.35 (a) The region R bounded by two lines and the x-axis. (b) The solid of

revolution generated by revolving R about the x-axis.

Looking at the region, if we want to integrate with respect to x, we would have to break the integral

into two pieces, because we have different functions bounding the region over [0, 1] and [1, 2]. In this

case, using the disk method, we would have

V = ∫
0

1
⎛
⎝πx2⎞

⎠dx + ∫
1

2
⎛
⎝π(2 − x)2⎞

⎠dx.

If we used the shell method instead, we would use functions of y to represent the curves, producing

V = ∫
0

1
⎛
⎝2πy⎡

⎣
⎛
⎝2 − y⎞

⎠ − y⎤
⎦
⎞
⎠dy

= ∫
0

1
⎛
⎝2πy⎡

⎣2 − 2y⎤
⎦
⎞
⎠dy.

Neither of these integrals is particularly onerous, but since the shell method requires only one integral,
and the integrand requires less simplification, we should probably go with the shell method in this case.

b. First, sketch the region and the solid of revolution as shown.
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Figure 2.36 (a) The region R between the curve and the x-axis. (b) The solid of

revolution generated by revolving R about the x-axis.

Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on
the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no
cavity in the middle, so we can use the method of disks. Then

V = ∫
0

4
π⎛

⎝4x − x2⎞
⎠
2

dx.

Select the best method to find the volume of a solid of revolution generated by revolving the given
region around the x-axis, and set up the integral to find the volume (do not evaluate the integral): the region

bounded by the graphs of y = 2 − x2 and y = x2.
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2.3 EXERCISES
For the following exercise, find the volume generated when
the region between the two curves is rotated around the
given axis. Use both the shell method and the washer
method. Use technology to graph the functions and draw a
typical slice by hand.

114. [T] Over the curve of y = 3x, x = 0, and y = 3
rotated around the y-axis.

115. [T] Under the curve of y = 3x, x = 0, and x = 3
rotated around the y-axis.

116. [T] Over the curve of y = 3x, x = 0, and y = 3
rotated around the x-axis.

117. [T] Under the curve of y = 3x, x = 0, and x = 3
rotated around the x-axis.

118. [T] Under the curve of y = 2x3, x = 0, and x = 2
rotated around the y-axis.

119. [T] Under the curve of y = 2x3, x = 0, and x = 2
rotated around the x-axis.

For the following exercises, use shells to find the volumes
of the given solids. Note that the rotated regions lie between
the curve and the x-axis and are rotated around the

y-axis.

120. y = 1 − x2, x = 0, and x = 1

121. y = 5x3, x = 0, and x = 1

122. y = 1
x , x = 1, and x = 100

123. y = 1 − x2, x = 0, and x = 1

124. y = 1
1 + x2, x = 0, and x = 3

125. y = sinx2, x = 0, and x = π

126. y = 1
1 − x2

, x = 0, and x = 1
2

127. y = x, x = 0, and x = 1

128. y = ⎛
⎝1 + x2⎞

⎠
3
, x = 0, and x = 1

129. y = 5x3 − 2x4, x = 0, and x = 2

For the following exercises, use shells to find the volume
generated by rotating the regions between the given curve
and y = 0 around the x-axis.

130. y = 1 − x2, x = 0, and x = 1

131. y = x2, x = 0, and x = 2

132. y = ex, x = 0, and x = 1

133. y = ln(x), x = 1, and x = e

134. x = 1
1 + y2, y = 1, and y = 4

135. x = 1 + y2
y , y = 0, and y = 2

136. x = cos y, y = 0, and y = π

137. x = y3 − 4y2, x = −1, and x = 2

138. x = yey , x = −1, and x = 2

139. x = cos yey, x = 0, and x = π

For the following exercises, find the volume generated
when the region between the curves is rotated around the
given axis.

140. y = 3 − x, y = 0, x = 0, and x = 2 rotated around

the y-axis.

141. y = x3, y = 0, and y = 8 rotated around the

y-axis.

142. y = x2, y = x, rotated around the y-axis.

143. y = x, x = 0, and x = 1 rotated around the line

x = 2.

144. y = 1
4 − x, x = 1, and x = 2 rotated around the

line x = 4.

145. y = x and y = x2 rotated around the y-axis.

146. y = x and y = x2 rotated around the line x = 2.
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147. x = y3, y = 1
x , x = 1, and y = 2 rotated around

the x-axis.

148. x = y2 and y = x rotated around the line y = 2.

149. [T] Left of x = sin(πy), right of y = x, around

the y-axis.

For the following exercises, use technology to graph the
region. Determine which method you think would be
easiest to use to calculate the volume generated when the
function is rotated around the specified axis. Then, use your
chosen method to find the volume.

150. [T] y = x2 and y = 4x rotated around the y-axis.

151. [T] y = cos(πx), y = sin(πx), x = 1
4, and x = 5

4
rotated around the y-axis.

152. [T] y = x2 − 2x, x = 2, and x = 4 rotated around

the y-axis.

153. [T] y = x2 − 2x, x = 2, and x = 4 rotated around

the x-axis.

154. [T] y = 3x3 − 2, y = x, and x = 2 rotated around

the x-axis.

155. [T] y = 3x3 − 2, y = x, and x = 2 rotated around

the y-axis.

156. [T] x = sin⎛
⎝πy2⎞

⎠ and x = 2y rotated around the

x-axis.

157. [T] x = y2, x = y2 − 2y + 1, and x = 2 rotated

around the y-axis.

For the following exercises, use the method of shells to
approximate the volumes of some common objects, which
are pictured in accompanying figures.

158. Use the method of shells to find the volume of a
sphere of radius r.

159. Use the method of shells to find the volume of a cone
with radius r and height h.

160. Use the method of shells to find the volume of an

ellipse ⎛
⎝x2/a2⎞

⎠ + ⎛
⎝y2/b2⎞

⎠ = 1 rotated around the x-axis.

161. Use the method of shells to find the volume of a
cylinder with radius r and height h.

162. Use the method of shells to find the volume of the

donut created when the circle x2 + y2 = 4 is rotated

around the line x = 4.

163. Consider the region enclosed by the graphs of
y = f (x), y = 1 + f (x), x = 0, y = 0, and x = a > 0.
What is the volume of the solid generated when this region
is rotated around the y-axis? Assume that the function is

defined over the interval [0, a].
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164. Consider the function y = f (x), which decreases

from f (0) = b to f (1) = 0. Set up the integrals for

determining the volume, using both the shell method and
the disk method, of the solid generated when this region,
with x = 0 and y = 0, is rotated around the y-axis.
Prove that both methods approximate the same volume.
Which method is easier to apply? (Hint: Since f (x) is one-

to-one, there exists an inverse f −1(y).)
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2.4 | Arc Length of a Curve and Surface Area

Learning Objectives
2.4.1 Determine the length of a curve, y = f (x), between two points.

2.4.2 Determine the length of a curve, x = g(y), between two points.

2.4.3 Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you
would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket
is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a
road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of x, then we examine the same process for curves

defined as functions of y. (The process is identical, with the roles of x and y reversed.) The techniques we use to find arc

length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of
this concept.

Arc Length of the Curve y = f(x)
In previous applications of integration, we required the function f (x) to be integrable, or at most continuous. However,

for calculating arc length we have a more stringent requirement for f (x). Here, we require f (x) to be differentiable, and

furthermore we require its derivative, f ′(x), to be continuous. Functions like this, which have continuous derivatives, are

called smooth. (This property comes up again in later chapters.)

Let f (x) be a smooth function defined over ⎡
⎣a, b⎤

⎦. We want to calculate the length of the curve from the point ⎛
⎝a, f (a)⎞

⎠

to the point ⎛
⎝b, f (b)⎞

⎠. We start by using line segments to approximate the length of the curve. For i = 0, 1, 2,…, n,
let P = {xi} be a regular partition of ⎡

⎣a, b⎤
⎦. Then, for i = 1, 2,…, n, construct a line segment from the point

⎛
⎝xi − 1, f (xi − 1)⎞

⎠ to the point ⎛
⎝xi, f (xi)

⎞
⎠. Although it might seem logical to use either horizontal or vertical line segments,

we want our line segments to approximate the curve as closely as possible. Figure 2.37 depicts this construct for n = 5.

Figure 2.37 We can approximate the length of a curve by
adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is
given by Δx. The change in vertical distance varies from interval to interval, though, so we use Δyi = f (xi) − f (xi − 1)
to represent the change in vertical distance over the interval [xi − 1, xi], as shown in Figure 2.38. Note that some (or all)

Δyi may be negative.
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Figure 2.38 A representative line segment approximates the
curve over the interval [xi − 1, xi].

By the Pythagorean theorem, the length of the line segment is (Δx)2 + ⎛
⎝Δyi

⎞
⎠
2. We can also write this as

Δx 1 + ⎛
⎝
⎛
⎝Δyi

⎞
⎠/(Δx)⎞

⎠
2. Now, by the Mean Value Theorem, there is a point xi* ∈ [xi − 1, xi] such that

f ′(xi* ) = ⎛
⎝Δyi

⎞
⎠/(Δx). Then the length of the line segment is given by Δx 1 + ⎡

⎣ f ′(xi* )⎤
⎦
2. Adding up the lengths of all

the line segments, we get

Arc Length ≈ ∑
i = 1

n
1 + ⎡

⎣ f ′(xi* )⎤
⎦
2 Δx.

This is a Riemann sum. Taking the limit as n → ∞, we have

Arc Length = limn → ∞ ∑
i = 1

n
1 + ⎡

⎣ f ′(xi* )⎤
⎦
2 Δx = ∫

a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

We summarize these findings in the following theorem.

Theorem 2.4: Arc Length for y = f(x)

Let f (x) be a smooth function over the interval ⎡
⎣a, b⎤

⎦. Then the arc length of the portion of the graph of f (x) from

the point ⎛
⎝a, f (a)⎞

⎠ to the point ⎛
⎝b, f (b)⎞

⎠ is given by

(2.7)
Arc Length = ∫

a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

Note that we are integrating an expression involving f ′(x), so we need to be sure f ′(x) is integrable. This is why we

require f (x) to be smooth. The following example shows how to apply the theorem.

Example 2.18

Calculating the Arc Length of a Function of x

Let f (x) = 2x3/2. Calculate the arc length of the graph of f (x) over the interval [0, 1]. Round the answer to

three decimal places.
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2.18

2.19

Solution

We have f ′(x) = 3x1/2, so ⎡
⎣ f ′(x)⎤

⎦
2 = 9x. Then, the arc length is

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

= ∫
0

1
1 + 9x dx.

Substitute u = 1 + 9x. Then, du = 9 dx. When x = 0, then u = 1, and when x = 1, then u = 10. Thus,

Arc Length = ∫
0

1
1 + 9x dx

= 1
9∫

0

1
1 + 9x9dx = 1

9∫
1

10
u du

= 1
9 · 2

3u3/2|110
= 2

27
⎡
⎣10 10 − 1⎤

⎦ ≈ 2.268 units.

Let f (x) = (4/3)x3/2. Calculate the arc length of the graph of f (x) over the interval [0, 1]. Round the

answer to three decimal places.

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are
difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration. In some
cases, we may have to use a computer or calculator to approximate the value of the integral.

Example 2.19

Using a Computer or Calculator to Determine the Arc Length of a Function of x

Let f (x) = x2. Calculate the arc length of the graph of f (x) over the interval [1, 3].

Solution

We have f ′(x) = 2x, so ⎡
⎣ f ′(x)⎤

⎦
2 = 4x2. Then the arc length is given by

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx = ∫

1

3
1 + 4x2 dx.

Using a computer to approximate the value of this integral, we get

∫
1

3
1 + 4x2 dx ≈ 8.26815.

Let f (x) = sin x. Calculate the arc length of the graph of f (x) over the interval [0, π]. Use a

computer or calculator to approximate the value of the integral.
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Arc Length of the Curve x = g(y)
We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the
graph of a function of y, we can repeat the same process, except we partition the y-axis instead of the x-axis. Figure

2.39 shows a representative line segment.

Figure 2.39 A representative line segment over the interval
[yi − 1, yi].

Then the length of the line segment is ⎛
⎝Δy⎞

⎠
2 + ⎛

⎝Δxi
⎞
⎠
2, which can also be written as Δy 1 + ⎛

⎝
⎛
⎝Δxi

⎞
⎠/⎛

⎝Δy⎞
⎠
⎞
⎠
2. If we now

follow the same development we did earlier, we get a formula for arc length of a function x = g(y).

Theorem 2.5: Arc Length for x = g(y)

Let g(y) be a smooth function over an interval ⎡
⎣c, d⎤

⎦. Then, the arc length of the graph of g(y) from the point
⎛
⎝c, g(c)⎞

⎠ to the point ⎛
⎝d, g(d)⎞

⎠ is given by

(2.8)
Arc Length = ∫

c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy.

Example 2.20

Calculating the Arc Length of a Function of y

Let g(y) = 3y3. Calculate the arc length of the graph of g(y) over the interval [1, 2].

Solution

We have g′(y) = 9y2, so ⎡
⎣g′(y)⎤

⎦
2 = 81y4. Then the arc length is

Arc Length = ∫
c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy = ∫

1

2
1 + 81y4 dy.

Using a computer to approximate the value of this integral, we obtain

∫
1

2
1 + 81y4 dy ≈ 21.0277.
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2.20 Let g(y) = 1/y. Calculate the arc length of the graph of g(y) over the interval [1, 4]. Use a computer

or calculator to approximate the value of the integral.

Area of a Surface of Revolution
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution.
Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the
object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let f (x) be a

nonnegative smooth function over the interval ⎡
⎣a, b⎤

⎦. We wish to find the surface area of the surface of revolution created

by revolving the graph of y = f (x) around the x-axis as shown in the following figure.

Figure 2.40 (a) A curve representing the function f (x). (b) The surface of revolution

formed by revolving the graph of f (x) around the x-axis.

As we have done many times before, we are going to partition the interval ⎡
⎣a, b⎤

⎦ and approximate the surface area by

calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier
in this section. For i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡

⎣a, b⎤
⎦. Then, for i = 1, 2,…, n, construct a

line segment from the point ⎛
⎝xi − 1, f (xi − 1)⎞

⎠ to the point ⎛
⎝xi, f (xi)

⎞
⎠. Now, revolve these line segments around the x-axis

to generate an approximation of the surface of revolution as shown in the following figure.

Figure 2.41 (a) Approximating f (x) with line segments. (b) The surface of revolution

formed by revolving the line segments around the x-axis.

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones
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(think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, S, of the frustum (the area of just the slanted

outside surface of the frustum, not including the areas of the top or bottom faces). Let r1 and r2 be the radii of the wide

end and the narrow end of the frustum, respectively, and let l be the slant height of the frustum as shown in the following

figure.

Figure 2.42 A frustum of a cone can approximate a small part
of surface area.

We know the lateral surface area of a cone is given by

Lateral Surface Area = πrs,

where r is the radius of the base of the cone and s is the slant height (see the following figure).

Figure 2.43 The lateral surface area of the cone is given by
πrs.

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface
area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following
figure).
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Figure 2.44 Calculating the lateral surface area of a frustum
of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

r2
r1

= s − l
s .

Solving for s, we get

r2
r1

= s − l
s

r2 s = r1 (s − l)
r2 s = r1 s − r1 l
r1 l = r1 s − r2 s

r1 l = (r1 − r2)s

r1 l
r1 − r2

= s.

Then the lateral surface area (SA) of the frustum is

S = (Lateral SA of large cone) − (Lateral SA of small cone)
= πr1 s − πr2 (s − l)

= πr1
⎛
⎝

r1 l
r1 − r2

⎞
⎠ − πr2

⎛
⎝

r1 l
r1 − r2

− l⎞⎠

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr2 l

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr2 l(r1 − r2)
r1 − r2

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr1 r2 l
r1 − r2

− πr2
2 l

r1 − r2

=
π⎛

⎝r1
2 − r2

2⎞
⎠l

r1 − r2
= π(r1 − r2)(r1 + r2)l

r1 − r2
= π(r1 + r2)l.

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around
the x-axis. A representative band is shown in the following figure.
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Figure 2.45 A representative band used for determining
surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface
area formula, we have

S = π(r1 + r2)l

= π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠ Δx2 + ⎛

⎝Δyi
⎞
⎠
2

= π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠Δx 1 + ⎛

⎝
Δyi
Δx

⎞
⎠

2
.

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select xi* ∈ [xi − 1, xi]

such that f ′(xi* ) = ⎛
⎝Δyi

⎞
⎠/Δx. This gives us

S = π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠Δx 1 + ⎛

⎝ f ′(xi* )⎞
⎠
2.

Furthermore, since f (x) is continuous, by the Intermediate Value Theorem, there is a point xi
* * ∈ [xi − 1, xi] such that

f (xi
* * ) = (1/2)⎡

⎣ f (xi − 1) + f (xi)
⎤
⎦, so we get

S = 2π f (xi
* * )Δx 1 + ⎛

⎝ f ′(xi* )⎞
⎠
2.

Then the approximate surface area of the whole surface of revolution is given by

Surface Area ≈ ∑
i = 1

n
2π f (xi

* * )Δx 1 + ⎛
⎝ f ′(xi* )⎞

⎠
2.

This almost looks like a Riemann sum, except we have functions evaluated at two different points, xi* and xi
* * , over

the interval [xi − 1, xi]. Although we do not examine the details here, it turns out that because f (x) is smooth, if we let

n → ∞, the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense

intuitively. Both xi* and xi
* * are in the interval [xi − 1, xi], so it makes sense that as n → ∞, both xi* and xi

* *

approach x. Those of you who are interested in the details should consult an advanced calculus text.

Taking the limit as n → ∞, we get

Surface Area = limn → ∞ ∑
i = 1

n
2π f (xi

* * )Δx 1 + ⎛
⎝ f ′(xi* )⎞

⎠
2 = ∫

a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx.

As with arc length, we can conduct a similar development for functions of y to get a formula for the surface area of surfaces

of revolution about the y-axis. These findings are summarized in the following theorem.
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Theorem 2.6: Surface Area of a Surface of Revolution

Let f (x) be a nonnegative smooth function over the interval ⎡
⎣a, b⎤

⎦. Then, the surface area of the surface of revolution

formed by revolving the graph of f (x) around the x-axis is given by

(2.9)
Surface Area = ∫

a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx.

Similarly, let g(y) be a nonnegative smooth function over the interval ⎡
⎣c, d⎤

⎦. Then, the surface area of the surface of

revolution formed by revolving the graph of g(y) around the y-axis is given by

Surface Area = ∫
c

d⎛
⎝2πg(y) 1 + ⎛

⎝g′(y)⎞
⎠
2⎞
⎠dy.

Example 2.21

Calculating the Surface Area of a Surface of Revolution 1

Let f (x) = x over the interval [1, 4]. Find the surface area of the surface generated by revolving the graph of

f (x) around the x-axis. Round the answer to three decimal places.

Solution

The graph of f (x) and the surface of rotation are shown in the following figure.

Figure 2.46 (a) The graph of f (x). (b) The surface of revolution.

We have f (x) = x. Then, f ′(x) = 1/(2 x) and ⎛
⎝ f ′(x)⎞

⎠
2 = 1/(4x). Then,
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2.21

Surface Area = ∫
a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx

= ∫
1

4⎛
⎝2π x 1 + 1

4x
⎞
⎠dx

= ∫
1

4⎛
⎝2π x + 1

4
⎞
⎠dx.

Let u = x + 1/4. Then, du = dx. When x = 1, u = 5/4, and when x = 4, u = 17/4. This gives us

∫
0

1⎛
⎝2π x + 1

4
⎞
⎠dx = ∫

5/4

17/4
2π u du

= 2π⎡
⎣
2
3u3/2⎤

⎦ |5/4

17/4
= π

6
⎡
⎣17 17 − 5 5⎤

⎦ ≈ 30.846.

Let f (x) = 1 − x over the interval [0, 1/2]. Find the surface area of the surface generated by

revolving the graph of f (x) around the x-axis. Round the answer to three decimal places.

Example 2.22

Calculating the Surface Area of a Surface of Revolution 2

Let f (x) = y = 3x3 . Consider the portion of the curve where 0 ≤ y ≤ 2. Find the surface area of the surface

generated by revolving the graph of f (x) around the y-axis.

Solution

Notice that we are revolving the curve around the y-axis, and the interval is in terms of y, so we want to

rewrite the function as a function of y. We get x = g(y) = (1/3)y3. The graph of g(y) and the surface of rotation

are shown in the following figure.
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2.22

Figure 2.47 (a) The graph of g(y). (b) The surface of revolution.

We have g(y) = (1/3)y3, so g′(y) = y2 and ⎛
⎝g′(y)⎞

⎠
2 = y4. Then

Surface Area = ∫
c

d⎛
⎝2πg(y) 1 + ⎛

⎝g′(y)⎞
⎠
2⎞
⎠dy

= ∫
0

2⎛
⎝2π⎛

⎝
1
3y3⎞

⎠ 1 + y4⎞
⎠dy

= 2π
3 ∫

0

2⎛
⎝y

3 1 + y4⎞
⎠dy.

Let u = y4 + 1. Then du = 4y3 dy. When y = 0, u = 1, and when y = 2, u = 17. Then

2π
3 ∫

0

2⎛
⎝y

3 1 + y4⎞
⎠dy = 2π

3 ∫
1

17
1
4 udu

= π
6

⎡
⎣
2
3u3/2⎤

⎦ |117
= π

9
⎡
⎣(17)3/2 − 1⎤

⎦ ≈ 24.118.

Let g(y) = 9 − y2 over the interval y ∈ [0, 2]. Find the surface area of the surface generated by

revolving the graph of g(y) around the y-axis.
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2.4 EXERCISES
For the following exercises, find the length of the functions
over the given interval.

165. y = 5x from x = 0 to x = 2

166. y = − 1
2x + 25 from x = 1 to x = 4

167. x = 4y from y = −1 to y = 1

168. Pick an arbitrary linear function x = g(y) over any

interval of your choice (y1, y2). Determine the length of

the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve y = x revolves around the x-axis from (1, 1)
to (4, 2), as seen here.

170. Find the surface area of the volume generated when

the curve y = x2 revolves around the y-axis from (1, 1)
to (3, 9).

For the following exercises, find the lengths of the
functions of x over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

171. y = x3/2 from (0, 0) to (1, 1)

172. y = x2/3 from (1, 1) to (8, 4)

173. y = 1
3

⎛
⎝x2 + 2⎞

⎠
3/2

from x = 0 to x = 1

174. y = 1
3

⎛
⎝x2 − 2⎞

⎠
3/2

from x = 2 to x = 4

175. [T] y = ex on x = 0 to x = 1

176. y = x3

3 + 1
4x from x = 1 to x = 3

177. y = x4

4 + 1
8x2 from x = 1 to x = 2

178. y = 2x3/2

3 − x1/2

2 from x = 1 to x = 4

179. y = 1
27

⎛
⎝9x2 + 6⎞

⎠
3/2

from x = 0 to x = 2

180. [T] y = sin x on x = 0 to x = π

For the following exercises, find the lengths of the
functions of y over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

181. y = 5 − 3x
4 from y = 0 to y = 4

182. x = 1
2

⎛
⎝ey + e−y⎞

⎠ from y = −1 to y = 1

183. x = 5y3/2 from y = 0 to y = 1

184. [T] x = y2 from y = 0 to y = 1

185. x = y from y = 0 to y = 1

186. x = 2
3

⎛
⎝y2 + 1⎞

⎠
3/2

from y = 1 to y = 3

187. [T] x = tan y from y = 0 to y = 3
4

188. [T] x = cos2 y from y = − π
2 to y = π

2
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189. [T] x = 4y from y = 0 to y = 2

190. [T] x = ln(y) on y = 1
e to y = e

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the x-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

191. y = x from x = 2 to x = 6

192. y = x3 from x = 0 to x = 1

193. y = 7x from x = −1 to x = 1

194. [T] y = 1
x2 from x = 1 to x = 3

195. y = 4 − x2 from x = 0 to x = 2

196. y = 4 − x2 from x = −1 to x = 1

197. y = 5x from x = 1 to x = 5

198. [T] y = tan x from x = − π
4 to x = π

4

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the y-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

199. y = x2 from x = 0 to x = 2

200. y = 1
2x2 + 1

2 from x = 0 to x = 1

201. y = x + 1 from x = 0 to x = 3

202. [T] y = 1
x from x = 1

2 to x = 1

203. y = x3 from x = 1 to x = 27

204. [T] y = 3x4 from x = 0 to x = 1

205. [T] y = 1
x from x = 1 to x = 3

206. [T] y = cos x from x = 0 to x = π
2

207. The base of a lamp is constructed by revolving a

quarter circle y = 2x − x2 around the y-axis from

x = 1 to x = 2, as seen here. Create an integral for the

surface area of this curve and compute it.

208. A light bulb is a sphere with radius 1/2 in. with the

bottom sliced off to fit exactly onto a cylinder of radius
1/4 in. and length 1/3 in., as seen here. The sphere is

cut off at the bottom to fit exactly onto the cylinder, so
the radius of the cut is 1/4 in. Find the surface area (not

including the top or bottom of the cylinder).

209. [T] A lampshade is constructed by rotating y = 1/x
around the x-axis from y = 1 to y = 2, as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four
decimal places.

210. [T] An anchor drags behind a boat according to

the function y = 24e−x/2 − 24, where y represents the

depth beneath the boat and x is the horizontal distance of

the anchor from the back of the boat. If the anchor is 23 ft

below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.
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211. [T] You are building a bridge that will span 10
ft. You intend to add decorative rope in the shape of
y = 5|sin⎛

⎝(xπ)/5⎞
⎠|, where x is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.

212. y = ln(sin x) from x = π/4 to x = (3π)/4. (Hint:

Recall trigonometric identities.)

213. Draw graphs of y = x2, y = x6, and y = x10.
For y = xn, as n increases, formulate a prediction on

the arc length from (0, 0) to (1, 1). Now, compute the

lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola x = y2 and the

line x = by from (0, 0) to ⎛
⎝b2, b⎞

⎠ as b increases. What

do you notice?

215. Solve for the length of x = y2 from

(0, 0) to (1, 1). Show that x = (1/2)y2 from (0, 0) to

(2, 2) is twice as long. Graph both functions and explain

why this is so.

216. [T] Which is longer between (1, 1) and (2, 1/2):
the hyperbola y = 1/x or the graph of x + 2y = 3?

217. Explain why the surface area is infinite when
y = 1/x is rotated around the x-axis for 1 ≤ x < ∞,
but the volume is finite.
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2.5 | Physical Applications

Learning Objectives
2.5.1 Determine the mass of a one-dimensional object from its linear density function.

2.5.2 Determine the mass of a two-dimensional circular object from its radial density function.

2.5.3 Calculate the work done by a variable force acting along a line.

2.5.4 Calculate the work done in pumping a liquid from one height to another.

2.5.5 Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a
density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density
We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod
or wire. Orient the rod so it aligns with the x-axis, with the left end of the rod at x = a and the right end of the rod at

x = b (Figure 2.48). Note that although we depict the rod with some thickness in the figures, for mathematical purposes

we assume the rod is thin enough to be treated as a one-dimensional object.

Figure 2.48 We can calculate the mass of a thin rod oriented
along the x-axis by integrating its density function.

If the rod has constant density ρ, given in terms of mass per unit length, then the mass of the rod is just the product of the

density and the length of the rod: (b − a)ρ. If the density of the rod is not constant, however, the problem becomes a little

more challenging. When the density of the rod varies from point to point, we use a linear density function, ρ(x), to denote

the density of the rod at any point, x. Let ρ(x) be an integrable linear density function. Now, for i = 0, 1, 2,…, n let

P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n choose an arbitrary point xi* ∈ [xi − 1, xi].

Figure 2.49 shows a representative segment of the rod.

Figure 2.49 A representative segment of the rod.

The mass mi of the segment of the rod from xi − 1 to xi is approximated by

mi ≈ ρ(xi* )(xi − xi − 1) = ρ(xi* )Δx.

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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m = ∑
i = 1

n
mi ≈ ∑

i = 1

n
ρ(xi* )Δx.

This is a Riemann sum. Taking the limit as n → ∞, we get an expression for the exact mass of the rod:

m = limn → ∞ ∑
i = 1

n
ρ(xi* )Δx = ∫

a

b
ρ(x)dx.

We state this result in the following theorem.

Theorem 2.7: Mass–Density Formula of a One-Dimensional Object

Given a thin rod oriented along the x-axis over the interval ⎡
⎣a, b⎤

⎦, let ρ(x) denote a linear density function giving

the density of the rod at a point x in the interval. Then the mass of the rod is given by

(2.10)
m = ∫

a

b
ρ(x)dx.

We apply this theorem in the next example.

Example 2.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval [π/2, π]. If the density of the rod is given by

ρ(x) = sin x, what is the mass of the rod?

Solution

Applying Equation 2.10 directly, we have

m = ∫
a

b
ρ(x)dx = ∫

π/2

π
sin x dx = −cos x|π/2

π = 1.

Consider a thin rod oriented on the x-axis over the interval [1, 3]. If the density of the rod is given by

ρ(x) = 2x2 + 3, what is the mass of the rod?

We now extend this concept to find the mass of a two-dimensional disk of radius r. As with the rod we looked at in

the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a
two-dimensional object. We assume the density is given in terms of mass per unit area (called area density), and further
assume the density varies only along the disk’s radius (called radial density). We orient the disk in the xy-plane, with

the center at the origin. Then, the density of the disk can be treated as a function of x, denoted ρ(x). We assume

ρ(x) is integrable. Because density is a function of x, we partition the interval from [0, r] along the x-axis. For

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval [0, r], and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a

representative washer are depicted in the following figure.
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Figure 2.50 (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, mi. Note that the area of the

washer is given by

Ai = π(xi)
2 − π(xi − 1)2

= π⎡
⎣xi

2 − xi − 1
2 ⎤

⎦

= π(xi + xi − 1)(xi − xi − 1)
= π(xi + xi − 1)Δx.

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use xi* ≈ (xi + xi − 1)/2 to approximate the average radius of the washer. We obtain

Ai = π(xi + xi − 1)Δx ≈ 2πxi* Δx.

Using ρ(xi* ) to approximate the density of the washer, we approximate the mass of the washer by

mi ≈ 2πxi* ρ(xi* )Δx.

Adding up the masses of the washers, we see the mass m of the entire disk is approximated by

m = ∑
i = 1

n
mi ≈ ∑

i = 1

n
2πxi* ρ(xi* )Δx.

We again recognize this as a Riemann sum, and take the limit as n → ∞. This gives us

m = limn → ∞ ∑
i = 1

n
2πxi* ρ(xi* )Δx = ∫

0

r
2πxρ(x)dx.

We summarize these findings in the following theorem.

Theorem 2.8: Mass–Density Formula of a Circular Object

Let ρ(x) be an integrable function representing the radial density of a disk of radius r. Then the mass of the disk is

given by

(2.11)
m = ∫

0

r
2πxρ(x)dx.
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Example 2.24

Calculating Mass from Radial Density

Let ρ(x) = x represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution

Applying the formula, we find

m = ∫
0

r
2πxρ(x)dx

= ∫
0

4
2πx xdx = 2π∫

0

4
x3/2dx

= 2π2
5x5/2|04 = 4π

5 [32] = 128π
5 .

Let ρ(x) = 3x + 2 represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Work Done by a Force
We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object.
When a force moves an object, we say the force does work on the object. In other words, work can be thought of as the
amount of energy it takes to move an object. According to physics, when we have a constant force, work can be expressed
as the product of force and distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In
the metric system, kilograms and meters are used. One newton is the force needed to accelerate 1 kilogram of mass at the

rate of 1 m/sec2. Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both

are defined as kilograms times meters squared over seconds squared ⎛
⎝kg · m2/s2⎞

⎠.

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to
compress (or elongate) a spring, for example, varies depending on how far the spring has already been compressed (or
stretched). We look at springs in more detail later in this section.

Suppose we have a variable force F(x) that moves an object in a positive direction along the x-axis from point a to point

b. To calculate the work done, we partition the interval ⎡
⎣a, b⎤

⎦ and estimate the work done over each subinterval. So, for

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. To calculate the work done to move an object from point xi − 1 to point xi, we assume the

force is roughly constant over the interval, and use F(xi* ) to approximate the force. The work done over the interval

[xi − 1, xi], then, is given by

Wi ≈ F(xi* )(xi − xi − 1) = F(xi* )Δx.

Therefore, the work done over the interval ⎡
⎣a, b⎤

⎦ is approximately

W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
F(xi* )Δx.

Taking the limit of this expression as n → ∞ gives us the exact value for work:
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W = limn → ∞ ∑
i = 1

n
F(xi* )Δx = ∫

a

b
F(x)dx.

Thus, we can define work as follows.

Definition

If a variable force F(x) moves an object in a positive direction along the x-axis from point a to point b, then the work

done on the object is

(2.12)
W = ∫

a

b
F(x)dx.

Note that if F is constant, the integral evaluates to F · (b − a) = F · d, which is the formula we stated at the beginning of

this section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a
horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we
would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction
here and assume the block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is
said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the
block does not move until some force is introduced. We orient the system such that x = 0 corresponds to the equilibrium

position (see the following figure).

Figure 2.51 A block attached to a horizontal spring at
equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
F(x) = kx, for some constant k. The value of k depends on the physical characteristics of the spring. The constant k
is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.

Example 2.25

Chapter 2 | Applications of Integration 187



2.25

The Work Required to Stretch or Compress a Spring

Suppose it takes a force of 10 N (in the negative direction) to compress a spring 0.2 m from the equilibrium

position. How much work is done to stretch the spring 0.5 m from the equilibrium position?

Solution

First find the spring constant, k. When x = −0.2, we know F(x) = −10, so

F(x) = kx
−10 = k(−0.2)

k = 50

and F(x) = 50x. Then, to calculate work, we integrate the force function, obtaining

W = ∫
a

b
F(x)dx = ∫

0

0.5
50x dx = 25x2|00.5

= 6.25.

The work done to stretch the spring is 6.25 J.

Suppose it takes a force of 8 lb to stretch a spring 6 in. from the equilibrium position. How much work

is done to stretch the spring 1 ft from the equilibrium position?

Work Done in Pumping
Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated
than spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of
being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water,
and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the
tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different
shapes. Assume a cylindrical tank of radius 4 m and height 10 m is filled to a depth of 8 m. How much work does it take

to pump all the water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let x represent the vertical distance below the top of the

tank. That is, we orient the x-axis vertically, with the origin at the top of the tank and the downward direction being positive

(see the following figure).
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Figure 2.52 How much work is needed to empty a tank
partially filled with water?

Using this coordinate system, the water extends from x = 2 to x = 10. Therefore, we partition the interval [2, 10] and

look at the work required to lift each individual “layer” of water. So, for i = 0, 1, 2,…, n, let P = {xi} be a regular

partition of the interval [2, 10], and for i = 1, 2,…, n, choose an arbitrary point xi* ∈ [xi − 1, xi]. Figure 2.53

shows a representative layer.

Figure 2.53 A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is 9800 N/m3, or 62.4 lb/ft3, calculating the

volume of each layer gives us the weight. In this case, we have

V = π(4)2 Δx = 16πΔx.

Then, the force needed to lift each layer is

F = 9800 · 16πΔx = 156,800πΔx.

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use xi* as

an approximation of the distance the layer must be lifted. Then the work to lift the ith layer of water Wi is approximately

Wi ≈ 156,800πxi* Δx.

Adding the work for each layer, we see the approximate work to empty the tank is given by
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W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
156,800πxi* Δx.

This is a Riemann sum, so taking the limit as n → ∞, we get

W = limn → ∞ ∑
i = 1

n
156,800πxi* Δx

= 156,800π∫
2

10
xdx

= 156,800π⎡
⎣

x2

2
⎤
⎦ |210

= 7,526,400π ≈ 23,644,883.

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-
solving strategy lays out a step-by-step process for solving pumping problems.

Problem-Solving Strategy: Solving Pumping Problems

1. Sketch a picture of the tank and select an appropriate frame of reference.

2. Calculate the volume of a representative layer of water.

3. Multiply the volume by the weight-density of water to get the force.

4. Calculate the distance the layer of water must be lifted.

5. Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

6. Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out
the desired amount of water, and it is in the form of a Riemann sum.

7. Take the limit as n → ∞ and evaluate the resulting integral to get the exact work required to pump out the

desired amount of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Example 2.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height 12 ft and base radius 4 ft. The tank is full to start

with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is 4
ft. How much work is required to pump out that amount of water?

Solution

The tank is depicted in Figure 2.54. As we did in the example with the cylindrical tank, we orient the x-axis
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
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Figure 2.54 A water tank in the shape of an inverted cone.

The tank starts out full and ends with 4 ft of water left, so, based on our chosen frame of reference, we need

to partition the interval [0, 8]. Then, for i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval

[0, 8], and for i = 1, 2,…, n, choose an arbitrary point xi* ∈ [xi − 1, xi]. We can approximate the volume

of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).

Figure 2.55 Using similar triangles to express the radius of a disk of water.
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From properties of similar triangles, we have

ri
12 − xi*

= 4
12 = 1

3
3ri = 12 − xi*

ri =
12 − xi*

3

= 4 −
xi*
3 .

Then the volume of the disk is

Vi = π⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 2).

The weight-density of water is 62.4 lb/ft3, so the force needed to lift each layer is approximately

Fi ≈ 62.4π⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 3).

Based on the diagram, the distance the water must be lifted is approximately xi* feet (step 4), so the approximate

work needed to lift the layer is

Wi ≈ 62.4πxi*
⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 5).

Summing the work required to lift all the layers, we get an approximate value of the total work:

W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
62.4πxi*

⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 6).

Taking the limit as n → ∞, we obtain

W = limn → ∞ ∑
i = 1

n
62.4πxi*

⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx

= ∫
0

8
62.4πx⎛

⎝4 − x
3

⎞
⎠

2
dx

= 62.4π∫
0

8
x⎛
⎝16 − 8x

3 + x2

9
⎞
⎠dx = 62.4π∫

0

8⎛
⎝16x − 8x2

3 + x3

9
⎞
⎠dx

= 62.4π⎡
⎣8x2 − 8x3

9 + x4

36
⎤
⎦ |08 = 10,649.6π ≈ 33,456.7.

It takes approximately 33,450 ft-lb of work to empty the tank to the desired level.

A tank is in the shape of an inverted cone, with height 10 ft and base radius 6 ft. The tank is filled to a

depth of 8 ft to start with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the
tank. How much work is required to pump out that amount of water?
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Hydrostatic Force and Pressure
In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force
is measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English
system we have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric
system we have newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area A submerged horizontally in water at a depth s (Figure 2.56). Then, the

force exerted on the plate is simply the weight of the water above it, which is given by F = ρAs, where ρ is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is p = F/A = ρs.

Figure 2.56 A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find
the force exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula F = ρAs directly,

because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we
form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.

Suppose a thin plate is submerged in water. We choose our frame of reference such that the x-axis is oriented vertically, with
the downward direction being positive, and point x = 0 corresponding to a logical reference point. Let s(x) denote the

depth at point x. Note we often let x = 0 correspond to the surface of the water. In this case, depth at any point is simply

given by s(x) = x. However, in some cases we may want to select a different reference point for x = 0, so we proceed

with the development in the more general case. Last, let w(x) denote the width of the plate at the point x.

Assume the top edge of the plate is at point x = a and the bottom edge of the plate is at point x = b. Then, for

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. The partition divides the plate into several thin, rectangular strips (see the following figure).
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Figure 2.57 A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
s(xi* ). We then have

Fi = ρAs = ρ⎡
⎣w(xi* )Δx⎤

⎦s(xi* ).

Adding the forces, we get an estimate for the force on the plate:

F ≈ ∑
i = 1

n
Fi = ∑

i = 1

n
ρ⎡

⎣w(xi* )Δx⎤
⎦s(xi* ).

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

(2.13)
F = limn → ∞ ∑

i = 1

n
ρ⎡

⎣w(xi* )Δx⎤
⎦s(xi* ) = ∫

a

b
ρw(x)s(x)dx.

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

Problem-Solving Strategy: Finding Hydrostatic Force

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other
than the one used earlier, we may have to adjust Equation 2.13 accordingly.)

2. Determine the depth and width functions, s(x) and w(x).

3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is
62.4 lb/ft3, or 9800 N/m3.

4. Use the equation to calculate the total force.

Example 2.27

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution
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Figure 2.58 shows the trough and a more detailed view of one end.

Figure 2.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Select a frame of reference with the x-axis oriented vertically and the downward direction being positive. Select

the top of the trough as the point corresponding to x = 0 (step 1). The depth function, then, is s(x) = x. Using

similar triangles, we see that w(x) = 8 − (8/3)x (step 2). Now, the weight density of water is 62.4 lb/ft3 (step

3), so applying Equation 2.13, we obtain

F = ∫
a

b
ρw(x)s(x)dx

= ∫
0

3
62.4⎛

⎝8 − 8
3x⎞

⎠x dx = 62.4∫
0

3⎛
⎝8x − 8

3x2⎞
⎠dx

= 62.4⎡
⎣4x2 − 8

9x3⎤
⎦ |03 = 748.8.

The water exerts a force of 748.8 lb on the end of the trough (step 4).

A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4
m. Find the force on one end of the trough if the trough is full of water.
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Example 2.28

Chapter Opener: Finding Hydrostatic Force

We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is
arched, rather than flat, but we are going to make some simplifying assumptions to help us with the calculations.
Assume the face of the Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base

1250 ft, and height 750 ft (see the following figure).

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft
below the top of the dam (see the following figure).

Figure 2.59 A simplified model of the Hoover Dam with
assumed dimensions.

a. Find the force on the face of the dam when the reservoir is full.

b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125
ft below where it would be if the reservoir were full. What is the force on the face of the dam under these
circumstances?

Solution

a. We begin by establishing a frame of reference. As usual, we choose to orient the x-axis vertically, with

the downward direction being positive. This time, however, we are going to let x = 0 represent the top

of the dam, rather than the surface of the water. When the reservoir is full, the surface of the water is 10
ft below the top of the dam, so s(x) = x − 10 (see the following figure).
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Figure 2.60 We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

Figure 2.61 We use similar triangles to determine a function
for the width of the dam. (a) Assumed dimensions of the dam;
(b) highlighting the similar triangles.

From the figure, we see that w(x) = 750 + 2r. Using properties of similar triangles, we get

r = 250 − (1/3)x. Thus,

w(x) = 1250 − 2
3x (step 2).

Using a weight-density of 62.4 lb/ft3 (step 3) and applying Equation 2.13, we get
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2.28

F = ∫
a

b
ρw(x)s(x)dx

= ∫
10

540
62.4⎛

⎝1250 − 2
3x⎞

⎠(x − 10)dx = 62.4∫
10

540
−2

3
⎡
⎣x2 − 1885x + 18750⎤

⎦dx

= −62.4⎛
⎝
2
3

⎞
⎠
⎡
⎣

x3

3 − 1885x2

2 + 18750x⎤
⎦ |10

540
≈ 8,832,245,000 lb = 4,416,122.5 t.

Note the change from pounds to tons (2000 lb = 1 ton) (step 4). This changes our depth function, s(x), and our

limits of integration. We have s(x) = x − 135. The lower limit of integration is 135. The upper limit remains

540. Evaluating the integral, we get

F = ∫
a

b
ρw(x)s(x)dx

= ∫
135

540
62.4⎛

⎝1250 − 2
3x⎞

⎠(x − 135)dx

= −62.4⎛
⎝
2
3

⎞
⎠∫135

540
(x − 1875)(x − 135)dx = −62.4⎛

⎝
2
3

⎞
⎠∫135

540
⎛
⎝x2 − 2010x + 253125⎞

⎠dx

= −62.4⎛
⎝
2
3

⎞
⎠
⎡
⎣

x3

3 − 1005x2 + 253125x⎤
⎦ |135

540
≈ 5,015,230,000 lb = 2,507,615 t.

When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be
if the reservoir were full. What is the force on the face of the dam under these circumstances?

To learn more about Hoover Dam, see this article (http://www.openstaxcollege.org/l/20_HooverDam)
published by the History Channel.
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2.5 EXERCISES
For the following exercises, find the work done.

218. Find the work done when a constant force F = 12
lb moves a chair from x = 0.9 to x = 1.1 ft.

219. How much work is done when a person lifts a 50 lb

box of comics onto a truck that is 3 ft off the ground?

220. What is the work done lifting a 20 kg child from the

floor to a height of 2 m? (Note that 1 kg equates to 9.8
N)

221. Find the work done when you push a box along
the floor 2 m, when you apply a constant force of

F = 100 N.

222. Compute the work done for a force F = 12/x2 N

from x = 1 to x = 2 m.

223. What is the work done moving a particle from x = 0
to x = 1 m if the force acting on it is F = 3x2 N?

For the following exercises, find the mass of the one-
dimensional object.

224. A wire that is 2 ft long (starting at x = 0) and has

a density function of ρ(x) = x2 + 2x lb/ft

225. A car antenna that is 3 ft long (starting at x = 0)
and has a density function of ρ(x) = 3x + 2 lb/ft

226. A metal rod that is 8 in. long (starting at x = 0) and

has a density function of ρ(x) = e1/2x lb/in.

227. A pencil that is 4 in. long (starting at x = 2) and

has a density function of ρ(x) = 5/x oz/in.

228. A ruler that is 12 in. long (starting at x = 5) and

has a density function of ρ(x) = ln(x) + (1/2)x2 oz/in.

For the following exercises, find the mass of the two-
dimensional object that is centered at the origin.

229. An oversized hockey puck of radius 2 in. with

density function ρ(x) = x3 − 2x + 5

230. A frisbee of radius 6 in. with density function

ρ(x) = e−x

231. A plate of radius 10 in. with density function

ρ(x) = 1 + cos(πx)

232. A jar lid of radius 3 in. with density function

ρ(x) = ln(x + 1)

233. A disk of radius 5 cm with density function

ρ(x) = 3x

234. A 12 -in. spring is stretched to 15 in. by a force of

75 lb. What is the spring constant?

235. A spring has a natural length of 10 cm. It takes 2
J to stretch the spring to 15 cm. How much work would it

take to stretch the spring from 15 cm to 20 cm?

236. A 1 -m spring requires 10 J to stretch the spring to

1.1 m. How much work would it take to stretch the spring

from 1 m to 1.2 m?

237. A spring requires 5 J to stretch the spring from 8
cm to 12 cm, and an additional 4 J to stretch the spring

from 12 cm to 14 cm. What is the natural length of the

spring?

238. A shock absorber is compressed 1 in. by a weight of
1 t. What is the spring constant?

239. A force of F = 20x − x3 N stretches a nonlinear

spring by x meters. What work is required to stretch the

spring from x = 0 to x = 2 m?

240. Find the work done by winding up a hanging cable of
length 100 ft and weight-density 5 lb/ft.

241. For the cable in the preceding exercise, how much
work is done to lift the cable 50 ft?

242. For the cable in the preceding exercise, how much
additional work is done by hanging a 200 lb weight at the

end of the cable?

243. [T] A pyramid of height 500 ft has a square base

800 ft by 800 ft. Find the area A at height h. If the

rock used to build the pyramid weighs approximately

w = 100 lb/ft3, how much work did it take to lift all the

rock?
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244. [T] For the pyramid in the preceding exercise,
assume there were 1000 workers each working 10 hours

a day, 5 days a week, 50 weeks a year. If the workers, on

average, lifted 10 100 lb rocks 2 ft/hr, how long did it take

to build the pyramid?

245. [T] The force of gravity on a mass m is

F = −⎛
⎝(GMm)/x2⎞

⎠ newtons. For a rocket of mass

m = 1000 kg, compute the work to lift the rocket from

x = 6400 to x = 6500 km. (Note:

G = 6 × 10−17 N m2 /kg2 and M = 6 × 1024 kg.)

246. [T] For the rocket in the preceding exercise, find the
work to lift the rocket from x = 6400 to x = ∞.

247. [T] A rectangular dam is 40 ft high and 60 ft wide.

Compute the total force F on the dam when

a. the surface of the water is at the top of the dam and
b. the surface of the water is halfway down the dam.

248. [T] Find the work required to pump all the water out
of a cylinder that has a circular base of radius 5 ft and

height 200 ft. Use the fact that the density of water is 62
lb/ft3.

249. [T] Find the work required to pump all the water out
of the cylinder in the preceding exercise if the cylinder is
only half full.

250. [T] How much work is required to pump out a
swimming pool if the area of the base is 800 ft2, the water

is 4 ft deep, and the top is 1 ft above the water level?

Assume that the density of water is 62 lb/ft3.

251. A cylinder of depth H and cross-sectional area A
stands full of water at density ρ. Compute the work to

pump all the water to the top.

252. For the cylinder in the preceding exercise, compute
the work to pump all the water to the top if the cylinder is
only half full.

253. A cone-shaped tank has a cross-sectional area that

increases with its depth: A = ⎛
⎝πr2 h2⎞

⎠/H 3. Show that the

work to empty it is half the work for a cylinder with the
same height and base.
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2.6 | Moments and Centers of Mass

Learning Objectives
2.6.1 Find the center of mass of objects distributed along a line.

2.6.2 Locate the center of mass of a thin plate.

2.6.3 Use symmetry to help locate the centroid of a thin plate.

2.6.4 Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea
of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of
sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate
(without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere
other than that sweet spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the
spin helps keep the plates from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is
called the center of mass of the plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider
centers of mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by
applying the theorem of Pappus.

Center of Mass and Moments
Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible
mass resting on a fulcrum, as shown in Figure 2.62(a). Now suppose we place objects having masses m1 and m2 at

distances d1 and d2 from the fulcrum, respectively, as shown in Figure 2.62(b).

Figure 2.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different
weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks
down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances.
Applying this concept to the masses on the rod, we note that the masses balance each other if and only if m1 d1 = m2 d2.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However,
we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by
moving the fulcrum. Suppose we have two point masses, m1 and m2, located on a number line at points x1 and x2,
respectively (Figure 2.63). The center of mass, x– , is the point where the fulcrum should be placed to make the system

balance.
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Figure 2.63 The center of mass x– is the balance point of

the system.

Thus, we have

m1 |x1 − x– | = m2 |x2 − x– |
m1

⎛
⎝ x– − x1

⎞
⎠ = m2

⎛
⎝x2 − x– ⎞

⎠

m1 x– − m1 x1 = m2 x2 − m2 x–

x– (m1 + m2) = m1 x1 + m2 x2

x– = m1 x1 + m2 x2
m1 + m2

.

The expression in the numerator, m1 x1 + m2 x2, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, m1 + m2, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if n masses, m1, m2 ,…, mn, are placed on a number line at

points x1, x2 ,…, xn, respectively, then the center of mass of the system is given by

x– =
∑
i = 1

n
mixi

∑
i = 1

n
mi

.

Theorem 2.9: Center of Mass of Objects on a Line

Let m1, m2 ,…, mn be point masses placed on a number line at points x1, x2 ,…, xn, respectively, and let

m = ∑
i = 1

n
mi denote the total mass of the system. Then, the moment of the system with respect to the origin is given

by

(2.14)
M = ∑

i = 1

n
mi xi

and the center of mass of the system is given by

(2.15)x– = M
m .

We apply this theorem in the following example.

Example 2.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:
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2.29

m1 = 30 kg, placed at x1 = −2 m m2 = 5 kg, placed at x2 = 3 m

m3 = 10 kg, placed at x3 = 6 m m4 = 15 kg, placed at x4 = −3 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

Solution

First, we need to calculate the moment of the system:

M = ∑
i = 1

4
mixi

= −60 + 15 + 60 − 45 = −30.

Now, to find the center of mass, we need the total mass of the system:

m = ∑
i = 1

4
mi

= 30 + 5 + 10 + 15 = 60 kg.

Then we have

x– = M
m = −30

60 = − 1
2.

The center of mass is located 1/2 m to the left of the origin.

Suppose four point masses are placed on a number line as follows:

m1 = 12 kg, placed at x1 = −4 m m2 = 12 kg, placed at x2 = 4 m

m3 = 30 kg, placed at x3 = 2 m m4 = 6 kg, placed at x4 = −6 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let m1 be a point

mass located at point (x1, y1) in the plane. Then the moment Mx of the mass with respect to the x-axis is given by

Mx = m1 y1. Similarly, the moment My with respect to the y-axis is given by My = m1 x1. Notice that the x-coordinate

of the point is used to calculate the moment with respect to the y-axis, and vice versa. The reason is that the x-coordinate
gives the distance from the point mass to the y-axis, and the y-coordinate gives the distance to the x-axis (see the following
figure).

Figure 2.64 Point mass m1 is located at point (x1, y1) in

the plane.

If we have several point masses in the xy-plane, we can use the moments with respect to the x- and y-axes to calculate the
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x- and y-coordinates of the center of mass of the system.

Theorem 2.10: Center of Mass of Objects in a Plane

Let m1, m2 ,…, mn be point masses located in the xy-plane at points (x1, y1), (x2, y2),…, (xn, yn), respectively,

and let m = ∑
i = 1

n
mi denote the total mass of the system. Then the moments Mx and My of the system with respect

to the x- and y-axes, respectively, are given by

(2.16)
Mx = ∑

i = 1

n
mi yi and My = ∑

i = 1

n
mi xi.

Also, the coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ of the system are

(2.17)x– =
My
m and y– = Mx

m .

The next example demonstrates how to apply this theorem.

Example 2.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):

m1 = 2 kg, placed at (−1, 3),
m2 = 6 kg, placed at (1, 1),
m3 = 4 kg, placed at (2, −2).

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

m = ∑
i = 1

3
mi = 2 + 6 + 4 = 12 kg.

Next we find the moments with respect to the x- and y-axes:

My = ∑
i = 1

3
mixi = −2 + 6 + 8 = 12,

Mx = ∑
i = 1

3
miyi = 6 + 6 − 8 = 4.

Then we have

x– =
My
m = 12

12 = 1 and y– = Mx
m = 4

12 = 1
3.

The center of mass of the system is (1, 1/3), in meters.
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2.30 Suppose three point masses are placed on a number line as follows (assume coordinates are given in
meters):

m1 = 5 kg, placed at (−2, −3),
m2 = 3 kg, placed at (2, 3),
m3 = 2 kg, placed at (−3, −2).

Find the center of mass of the system.

Center of Mass of Thin Plates
So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously
across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-
dimensional. Such a sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this
section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its
centroid. Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on
the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the
lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find
the total mass of the lamina, as well as the moments of the lamina with respect to the x- and y-axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding,
it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the
symmetry principle, and it is stated here without proof.

Theorem 2.11: The Symmetry Principle

If a region R is symmetric about a line l, then the centroid of R lies on l.

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function f (x),
below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown in the following figure.

Figure 2.65 A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the x- and y-axes. As we have done many times before, we approximate
these quantities by partitioning the interval ⎡

⎣a, b⎤
⎦ and constructing rectangles.

For i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡
⎣a, b⎤

⎦. Recall that we can choose any point within the

interval [xi − 1, xi] as our xi* . In this case, we want xi* to be the x-coordinate of the centroid of our rectangles. Thus, for

i = 1, 2,…, n, we select xi* ∈ [xi − 1, xi] such that xi* is the midpoint of the interval. That is, xi* = (xi − 1 + xi)/2.

Now, for i = 1, 2,…, n, construct a rectangle of height f ⎛
⎝xi*

⎞
⎠ on [xi − 1, xi]. The center of mass of this rectangle is
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⎛
⎝xi* , ⎛

⎝ f (xi* )⎞
⎠/2⎞

⎠, as shown in the following figure.

Figure 2.66 A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let ρ represent the density of the lamina (note that ρ is a constant).

In this case, ρ is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by ρ. Then, the mass of the rectangle is given by ρ f (xi* )Δx.

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

m ≈ ∑
i = 1

n
ρ f (xi* )Δx.

This is a Riemann sum. Taking the limit as n → ∞ gives the exact mass of the lamina:

m = limn → ∞ ∑
i = 1

n
ρ f (xi* )Δx = ρ∫

a

b
f (x)dx.

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its

center of mass is ⎛
⎝xi* , ⎛

⎝ f (xi* )⎞
⎠/2⎞

⎠. Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, ρ f (xi* )Δx, multiplied by the distance from the center of mass to the x-axis: ⎛

⎝ f (xi* )⎞
⎠/2. Therefore, the

moment with respect to the x-axis of the rectangle is ρ⎛
⎝
⎡
⎣ f (xi* )⎤

⎦
2/2⎞

⎠Δx. Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is

Mx = limn → ∞ ∑
i = 1

n
ρ

⎡
⎣ f (xi* )⎤

⎦
2

2 Δx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx.

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is xi* . Then the moment of the lamina with respect to the y-axis is given by

My = limn → ∞ ∑
i = 1

n
ρxi* f (xi* )Δx = ρ∫

a

b
x f (x)dx.

We find the coordinates of the center of mass by dividing the moments by the total mass to give
x– = My/m and y– = Mx/m. If we look closely at the expressions for Mx, My, and m, we notice that the constant ρ

cancels out when x– and y– are calculated.

We summarize these findings in the following theorem.

Theorem 2.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function f (x), below by the x-axis, and on the left
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and right by the lines x = a and x = b, respectively. Let ρ denote the density of the associated lamina. Then we

can make the following statements:

i. The mass of the lamina is

(2.18)
m = ρ∫

a

b
f (x)dx.

ii. The moments Mx and My of the lamina with respect to the x- and y-axes, respectively, are

(2.19)
Mx = ρ∫

a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx.

iii. The coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ are

(2.20)x– =
My
m and y– = Mx

m .

In the next example, we use this theorem to find the center of mass of a lamina.

Example 2.31

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function f (x) = x and below by the x-axis over the

interval [0, 4]. Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure 2.67 Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant ρ cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume ρ = 1.

First, we need to calculate the total mass:

m = ρ∫
a

b
f (x)dx = ∫

0

4
x dx

= 2
3x3/2|04 = 2

3[8 − 0] = 16
3 .
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2.31

Next, we compute the moments:

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx

= ∫
0

4
x
2dx = 1

4x2|04 = 4

and

My = ρ∫
a

b
x f (x)dx

= ∫
0

4
x xdx = ∫

0

4
x3/2dx

= 2
5x5/2|04 = 2

5[32 − 0] = 64
5 .

Thus, we have

x– =
My
m = 64/5

16/3 = 64
5 · 3

16 = 12
5 and y– = Mx

y = 4
16/3 = 4 · 3

16 = 3
4.

The centroid of the region is (12/5, 3/4).

Let R be the region bounded above by the graph of the function f (x) = x2 and below by the x-axis over

the interval [0, 2]. Find the centroid of the region.

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the
graph of a continuous function f (x), as before, but now, instead of having the lower bound for the region be the x-axis,

suppose the region is bounded below by the graph of a second continuous function, g(x), as shown in the following figure.

Figure 2.68 A region between two functions.

Again, we partition the interval ⎡
⎣a, b⎤

⎦ and construct rectangles. A representative rectangle is shown in the following figure.
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Figure 2.69 A representative rectangle of the region between
two functions.

Note that the centroid of this rectangle is ⎛
⎝xi* , ⎛

⎝ f (xi* ) + g(xi* )⎞
⎠/2⎞

⎠. We won’t go through all the details of the Riemann

sum development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina
and the moment with respect to the y-axis, the height of each rectangle is given by f (xi* ) − g(xi* ), which leads to the

expression f (x) − g(x) in the integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found
by multiplying the area of the rectangle, ρ⎡

⎣ f (xi* ) − g(xi* )⎤
⎦Δx, by the distance of the centroid from the x-axis,

⎛
⎝ f (xi* ) + g(xi* )⎞

⎠/2, which gives ρ(1/2)⎧

⎩
⎨⎡
⎣ f (xi* )⎤

⎦
2 − ⎡

⎣g(xi* )⎤
⎦
2⎫

⎭
⎬Δx. Summarizing these findings, we arrive at the

following theorem.

Theorem 2.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function f (x), below by the graph of the

continuous function g(x), and on the left and right by the lines x = a and x = b, respectively. Let ρ denote the

density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

(2.21)
m = ρ∫

a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

ii. The moments Mx and My of the lamina with respect to the x- and y-axes, respectively, are

(2.22)
Mx = ρ∫

a

b
1
2

⎛
⎝

⎡
⎣ f (x)⎤

⎦
2 − ⎡

⎣g(x)⎤
⎦
2⎞

⎠dx and My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

iii. The coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ are

(2.23)x– =
My
m and y– = Mx

m .

We illustrate this theorem in the following example.

Example 2.32

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function f (x) = 1 − x2 and below by the graph of the

function g(x) = x − 1. Find the centroid of the region.
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Solution

The region is depicted in the following figure.

Figure 2.70 Finding the centroid of a region between two
curves.

The graphs of the functions intersect at (−2, −3) and (1, 0), so we integrate from −2 to 1. Once again, for the

sake of convenience, assume ρ = 1.

First, we need to calculate the total mass:

m = ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
−2

1
⎡
⎣1 − x2 − (x − 1)⎤

⎦dx = ∫
−2

1
(2 − x2 − x)dx

= ⎡
⎣2x − 1

3x3 − 1
2x2⎤

⎦ |−2
1

= ⎡
⎣2 − 1

3 − 1
2

⎤
⎦ − ⎡

⎣−4 + 8
3 − 2⎤

⎦ = 9
2.

Next, we compute the moments:

Mx = ρ∫
a

b
1
2

⎛
⎝

⎡
⎣ f (x)⎤

⎦
2 − ⎡

⎣g(x)⎤
⎦
2⎞

⎠dx

= 1
2∫

−2

1 ⎛
⎝

⎛
⎝1 − x2⎞

⎠
2

− (x − 1)2⎞
⎠dx = 1

2∫
−2

1
⎛
⎝x4 − 3x2 + 2x⎞

⎠dx

= 1
2

⎡
⎣

x5

5 − x3 + x2⎤
⎦ |−2

1
= − 27

10

and

My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx

= ∫
−2

1
x⎡

⎣(1 − x2) − (x − 1)⎤
⎦dx = ∫

−2

1
x⎡

⎣2 − x2 − x⎤
⎦dx = ∫

−2

1
⎛
⎝2x − x4 − x2⎞

⎠dx

= ⎡
⎣x2 − x5

5 − x3

3
⎤
⎦ |−2

1
= − 9

4.

Therefore, we have

x– =
My
m = − 9

4 · 2
9 = − 1

2 and y– = Mx
y = − 27

10 · 2
9 = − 3

5.
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2.32

The centroid of the region is ⎛
⎝−(1/2), −(3/5)⎞

⎠.

Let R be the region bounded above by the graph of the function f (x) = 6 − x2 and below by the graph

of the function g(x) = 3 − 2x. Find the centroid of the region.

The Symmetry Principle
We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can
be a great help when finding centroids of regions that are symmetric. Consider the following example.

Example 2.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function f (x) = 4 − x2 and below by the x-axis. Find the

centroid of the region.

Solution

The region is depicted in the following figure.

Figure 2.71 We can use the symmetry principle to help find
the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate y– . Once again, for the sake of convenience, assume ρ = 1.

First, we calculate the total mass:

m = ρ∫
a

b
f (x)dx

= ∫
−2

2
⎛
⎝4 − x2⎞

⎠dx

= ⎡
⎣4x − x3

3
⎤
⎦ |−2

2
= 32

3 .
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Next, we calculate the moments. We only need Mx :

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx

= 1
2∫

−2

2
⎡
⎣4 − x2⎤

⎦
2

dx = 1
2∫

−2

2
⎛
⎝16 − 8x2 + x4⎞

⎠dx

= 1
2

⎡
⎣

x5

5 − 8x3

3 + 16x⎤
⎦ |−2

2
= 256

15 .

Then we have

y– = Mx
y = 256

15 · 3
32 = 8

5.

The centroid of the region is (0, 8/5).

Let R be the region bounded above by the graph of the function f (x) = 1 − x2 and below by x-axis.

Find the centroid of the region.
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The Grand Canyon Skywalk

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-
clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 2.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no
visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered
to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that
extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake
within 50 mi, and is capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate
the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the
observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center,
48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane
to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion
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separately. The first region, denoted R1, consists of the curved part of the U. We model R1 as a semicircular annulus,

with inner radius 25 ft and outer radius 35 ft, centered at the origin (see the following figure).

Figure 2.73 We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between R1 and the canyon wall, comprise the second sub-region, R2. Last,

the ends of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, R3. Assume the density

of the lamina is constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the

visitor center; we will consider that later). Use g = 32 ft/sec2.

1. Compute the area of each of the three sub-regions. Note that the areas of regions R2 and R3 should include

the areas of the legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.

3. Calculate the center of mass of each of the three sub-regions.

4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding
sub-region. Using this representation, calculate the center of mass of the entire platform.

5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of
R3. Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the

center of mass change?

6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform
is capable of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform,
and all of them went to the farthest end of the platform, how would the center of gravity of the system be
affected? (Include the visitor center in the calculations and represent the people by a point mass located at the
farthest edge of the platform, 70 ft from the canyon wall.)

Theorem of Pappus
This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular
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kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 2.14: Theorem of Pappus for Volume

Let R be a region in the plane and let l be a line in the plane that does not intersect R. Then the volume of the solid of
revolution formed by revolving R around l is equal to the area of R multiplied by the distance d traveled by the centroid
of R.

Proof

We can prove the case when the region is bounded above by the graph of a function f (x) and below by the graph of a

function g(x) over an interval ⎡
⎣a, b⎤

⎦, and for which the axis of revolution is the y-axis. In this case, the area of the region is

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx. Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends

only on the x-coordinate of the centroid, x– , which is

x– =
My
m ,

where

m = ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx and My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

Then,

d = 2π
ρ∫

a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx

ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

and thus

d · A = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

However, using the method of cylindrical shells, we have

V = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

So,

V = d · A

and the proof is complete.

□

Example 2.34

Using the Theorem of Pappus for Volume

Let R be a circle of radius 2 centered at (4, 0). Use the theorem of Pappus for volume to find the volume of the

torus generated by revolving R around the y-axis.
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Solution

The region and torus are depicted in the following figure.

Figure 2.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.

The region R is a circle of radius 2, so the area of R is A = 4π units2. By the symmetry principle, the centroid of

R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid

travels d = 8π units. Then, the volume of the torus is A · d = 32π2 units3.

Let R be a circle of radius 1 centered at (3, 0). Use the theorem of Pappus for volume to find the

volume of the torus generated by revolving R around the y-axis.
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2.6 EXERCISES
For the following exercises, calculate the center of mass for
the collection of masses given.

254. m1 = 2 at x1 = 1 and m2 = 4 at x2 = 2

255. m1 = 1 at x1 = −1 and m2 = 3 at x2 = 2

256. m = 3 at x = 0, 1, 2, 6

257. Unit masses at (x, y) = (1, 0), (0, 1), (1, 1)

258. m1 = 1 at (1, 0) and m2 = 4 at (0, 1)

259. m1 = 1 at (1, 0) and m2 = 3 at (2, 2)

For the following exercises, compute the center of mass
x– .

260. ρ = 1 for x ∈ (−1, 3)

261. ρ = x2 for x ∈ (0, L)

262. ρ = 1 for x ∈ (0, 1) and ρ = 2 for x ∈ (1, 2)

263. ρ = sin x for x ∈ (0, π)

264. ρ = cos x for x ∈ ⎛
⎝0, π

2
⎞
⎠

265. ρ = ex for x ∈ (0, 2)

266. ρ = x3 + xe−x for x ∈ (0, 1)

267. ρ = x sin x for x ∈ (0, π)

268. ρ = x for x ∈ (1, 4)

269. ρ = ln x for x ∈ (1, e)

For the following exercises, compute the center of mass
⎛
⎝ x– , y– ⎞

⎠. Use symmetry to help locate the center of mass

whenever possible.

270. ρ = 7 in the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

271. ρ = 3 in the triangle with vertices (0, 0), (a, 0),
and (0, b)

272. ρ = 2 for the region bounded by y = cos(x),

y = −cos(x), x = − π
2, and x = π

2

For the following exercises, use a calculator to draw the
region, then compute the center of mass ⎛

⎝ x– , y– ⎞
⎠. Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by y = cos(2x),

x = − π
4, and x = π

4

274. [T] The region between y = 2x2, y = 0, x = 0,
and x = 1

275. [T] The region between y = 5
4x2 and y = 5

276. [T] Region between y = x, y = ln(x), x = 1,
and x = 4

277. [T] The region bounded by y = 0, x2

4 + y2

9 = 1

278. [T] The region bounded by y = 0, x = 0, and

x2

4 + y2

9 = 1

279. [T] The region bounded by y = x2 and y = x4 in

the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating y = mx around the x -axis between x = 0
and x = 1

281. Rotating y = mx around the y -axis between x = 0
and x = 1

282. A general cone created by rotating a triangle with
vertices (0, 0), (a, 0), and (0, b) around the y -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices (0, 0), (a, 0), (0, b), and (a, b) around

the y -axis. Does your answer agree with the volume of a

cylinder?

284. A sphere created by rotating a semicircle with radius
a around the y -axis. Does your answer agree with the

volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area M and the
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centroid ⎛
⎝ x– , y– ⎞

⎠ for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. [T] Quarter-circle: y = 1 − x2, y = 0, and

x = 0

286. [T] Triangle: y = x, y = 2 − x, and y = 0

287. [T] Lens: y = x2 and y = x

288. [T] Ring: y2 + x2 = 1 and y2 + x2 = 4

289. [T] Half-ring: y2 + x2 = 1, y2 + x2 = 4, and

y = 0

290. Find the generalized center of mass in the sliver

between y = xa and y = xb with a > b. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between

y = a2 − x2, x = 0, and y = 0. Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between
y = b sin(ax), x = 0, and x = π

a . Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of
a torus (pictured here). Assume that a disk of radius a
is positioned with the left end of the circle at x = b,
b > 0, and is rotated around the y-axis.

294. Find the center of mass ⎛
⎝ x– , y– ⎞

⎠ for a thin wire along

the semicircle y = 1 − x2 with unit mass. (Hint: Use the

theorem of Pappus.)
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2.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives
2.7.1 Write the definition of the natural logarithm as an integral.

2.7.2 Recognize the derivative of the natural logarithm.

2.7.3 Integrate functions involving the natural logarithmic function.

2.7.4 Define the number e through an integral.

2.7.5 Recognize the derivative and integral of the exponential function.

2.7.6 Prove properties of logarithms and exponential functions using integrals.

2.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral
Recall the power rule for integrals:

∫ xn dx = xn + 1

n + 1 + C, n ≠ −1.

Clearly, this does not work when n = −1, as it would force us to divide by zero. So, what do we do with ∫ 1
xdx? Recall

from the Fundamental Theorem of Calculus that ∫
1

x
1
t dt is an antiderivative of 1/x. Therefore, we can make the following

definition.

Definition

For x > 0, define the natural logarithm function by

(2.24)
ln x = ∫

1

x
1
t dt.

For x > 1, this is just the area under the curve y = 1/t from 1 to x. For x < 1, we have ∫
1

x
1
t dt = −∫

x

1
1
t dt, so in

this case it is the negative of the area under the curve from x to 1 (see the following figure).
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Figure 2.75 (a) When x > 1, the natural logarithm is the area under the

curve y = 1/t from 1 to x. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that ln 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear

that ln x is increasing for x > 0.

Properties of the Natural Logarithm
Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 2.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

d
dxln x = 1

x .

Theorem 2.16: Corollary to the Derivative of the Natural Logarithm

The function ln x is differentiable; therefore, it is continuous.

A graph of ln x is shown in Figure 2.76. Notice that it is continuous throughout its domain of (0, ∞).
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2.35

Figure 2.76 The graph of f (x) = ln x shows that it is a

continuous function.

Example 2.35

Calculating Derivatives of Natural Logarithms

Calculate the following derivatives:

a. d
dxln⎛

⎝5x3 − 2⎞
⎠

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2

Solution

We need to apply the chain rule in both cases.

a. d
dxln⎛

⎝5x3 − 2⎞
⎠ = 15x2

5x3 − 2

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2 = 2⎛

⎝ln(3x)⎞
⎠ · 3

3x = 2⎛
⎝ln(3x)⎞

⎠

x

Calculate the following derivatives:

a. d
dxln⎛

⎝2x2 + x⎞
⎠

b. d
dx

⎛
⎝ln

⎛
⎝x

3⎞
⎠
⎞
⎠
2

Note that if we use the absolute value function and create a new function ln |x|, we can extend the domain of the natural

logarithm to include x < 0. Then ⎛
⎝d/(dx)⎞

⎠ln |x| = 1/x. This gives rise to the familiar integration formula.

Theorem 2.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function f (u) = 1/u:
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∫ 1
udu = ln |u| + C.

Example 2.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral ∫ x
x2 + 4

dx.

Solution

Using u -substitution, let u = x2 + 4. Then du = 2x dx and we have

∫ x
x2 + 4

dx = 1
2∫ 1

udu1
2ln |u| + C = 1

2ln |x2 + 4| + C = 1
2ln⎛

⎝x2 + 4⎞
⎠ + C.

Calculate the integral ∫ x2

x3 + 6
dx.

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 2.18: Properties of the Natural Logarithm

If a, b > 0 and r is a rational number, then

i. ln 1 = 0

ii. ln(ab) = ln a + ln b

iii. ln⎛
⎝
a
b

⎞
⎠ = ln a − ln b

iv. ln(ar) = r ln a

Proof

i. By definition, ln 1 = ∫
1

1
1
t dt = 0.

ii. We have

ln(ab) = ∫
1

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
1
t dt.

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t = a, u = 1, and when t = ab, u = b. So we get

ln(ab) = ∫
1

a
1
t dt + ∫

a

ab
1
t dt = ∫

1

a
1
t dt + ∫

1

ab
a
t · 1

adt = ∫
1

a
1
t dt + ∫

1

b
1
udu = ln a + ln b.

iii. Note that
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d
dxln(xr) = rxr − 1

xr = r
x.

Furthermore,

d
dx(r ln x) = r

x.

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ
by a constant. So we have

ln(xr) = r ln x + C

for some constant C. Taking x = 1, we get

ln(1r) = r ln(1) + C
0 = r(0) + C
C = 0.

Thus ln(xr) = r ln x and the proof is complete. Note that we can extend this property to irrational values of r later

in this section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

□

Example 2.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 9 − 2 ln 3 + ln⎛
⎝
1
3

⎞
⎠.

Solution

We have

ln 9 − 2 ln 3 + ln⎛
⎝
1
3

⎞
⎠ = ln⎛

⎝32⎞
⎠ − 2 ln 3 + ln⎛

⎝3−1⎞
⎠ = 2 ln 3 − 2 ln 3 − ln 3 = −ln 3.

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 8 − ln 2 − ln⎛
⎝
1
4

⎞
⎠.

Defining the Number e
Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

ln e = 1.

To put it another way, the area under the curve y = 1/t between t = 1 and t = e is 1 (Figure 2.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
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ln x is increasing to prove uniqueness.)

Figure 2.77 The area under the curve from 1 to e is equal

to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and

Maclaurin Series). Its approximate value is given by

e ≈ 2.71828182846.

The Exponential Function
We now turn our attention to the function ex. Note that the natural logarithm is one-to-one and therefore has an inverse

function. For now, we denote this inverse function by exp x. Then,

exp(ln x) = x for x > 0 and ln(exp x) = x for all x.

The following figure shows the graphs of exp x and ln x.

Figure 2.78 The graphs of ln x and exp x.

We hypothesize that exp x = ex. For rational values of x, this is easy to show. If x is rational, then we have

ln(ex) = x ln e = x. Thus, when x is rational, ex = exp x. For irrational values of x, we simply define ex as the

inverse function of ln x.

224 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Definition

For any real number x, define y = ex to be the number for which

(2.25)ln y = ln(ex) = x.

Then we have ex = exp(x) for all x, and thus

(2.26)eln x = x for x > 0 and ln(ex) = x

for all x.

Properties of the Exponential Function
Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function ex.

Theorem 2.19: Properties of the Exponential Function

If p and q are any real numbers and r is a rational number, then

i. e p eq = e p + q

ii. e p

eq = e p − q

iii. (e p)r = e pr

Proof

Note that if p and q are rational, the properties hold. However, if p or q are irrational, we must apply the inverse

function definition of ex and verify the properties. Only the first property is verified here; the other two are left to you. We

have

ln(e p eq) = ln(e p) + ln(eq) = p + q = ln⎛
⎝e

p + q⎞
⎠.

Since ln x is one-to-one, then

e p eq = e p + q.

□

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end

of the section.

We also want to verify the differentiation formula for the function y = ex. To do this, we need to use implicit

differentiation. Let y = ex. Then

ln y = x
d
dxln y = d

dxx

1
y

dy
dx = 1

dy
dx = y.

Thus, we see
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d
dxex = ex

as desired, which leads immediately to the integration formula

∫ ex dx = ex + C.

We apply these formulas in the following examples.

Example 2.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

a. d
dte

3t et2

b. d
dxe3x2

Solution

We apply the chain rule as necessary.

a. d
dte

3t et2
= d

dte
3t + t2

= e3t + t2
(3 + 2t)

b. d
dxe3x2

= e3x2
6x

Evaluate the following derivatives:

a. d
dx

⎛

⎝
⎜ex2

e5x

⎞

⎠
⎟

b. d
dt

⎛
⎝e2t⎞

⎠
3

Example 2.39

Using Properties of Exponential Functions

Evaluate the following integral: ∫ 2xe−x2
dx.

Solution

Using u -substitution, let u = −x2. Then du = −2x dx, and we have

∫ 2xe−x2
dx = −∫ eu du = −eu + C = −e−x2

+ C.
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2.39 Evaluate the following integral: ∫ 4
e3xdx.

General Logarithmic and Exponential Functions
We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions

are functions of the form f (x) = ax. Note that unless a = e, we still do not have a mathematically rigorous definition

of these functions for irrational exponents. Let’s rectify that here by defining the function f (x) = ax in terms of the

exponential function ex. We then examine logarithms with bases other than e as inverse functions of exponential

functions.

Definition

For any a > 0, and for any real number x, define y = ax as follows:

y = ax = ex ln a.

Now ax is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and

property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that

properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for ax. We have

d
dxax = d

dxex ln a = ex ln a ln a = ax ln a.

The corresponding integration formula follows immediately.

Theorem 2.20: Derivatives and Integrals Involving General Exponential Functions

Let a > 0. Then,

d
dxax = ax ln a

and

∫ ax dx = 1
ln aax + C.

If a ≠ 1, then the function ax is one-to-one and has a well-defined inverse. Its inverse is denoted by loga x. Then,

y = loga x if and only if x = ay.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = loga x. Then, x = ay.
Taking the natural logarithm of both sides of this second equation, we get

ln x = ln(ay)
ln x = y ln a

y = ln x
ln a

log x = ln x
ln a.

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y = loga x. Then,
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dy
dx = d

dx
⎛
⎝loga x⎞

⎠

= d
dx

⎛
⎝
ln x
ln a

⎞
⎠

= ⎛
⎝

1
ln a

⎞
⎠

d
dx(ln x)

= 1
ln a · 1

x

= 1
x ln a.

Theorem 2.21: Derivatives of General Logarithm Functions

Let a > 0. Then,

d
dxloga x = 1

x ln a.

Example 2.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

a. d
dt

⎛
⎝4t · 2t2⎞

⎠

b. d
dxlog8

⎛
⎝7x2 + 4⎞

⎠

Solution

We need to apply the chain rule as necessary.

a. d
dt

⎛
⎝4t · 2t2⎞

⎠ = d
dt

⎛
⎝22t · 2t2⎞

⎠ = d
dt

⎛
⎝22t + t2⎞

⎠ = 22t + t2
ln(2)(2 + 2t)

b. d
dxlog8

⎛
⎝7x2 + 4⎞

⎠ = 1
⎛
⎝7x2 + 4⎞

⎠(ln 8)
(14x)

Evaluate the following derivatives:

a. d
dt 4t4

b. d
dxlog3

⎛
⎝ x2 + 1⎞

⎠

Example 2.41

Integrating General Exponential Functions
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Evaluate the following integral: ∫ 3
23xdx.

Solution

Use u-substitution and let u = −3x. Then du = −3dx and we have

∫ 3
23xdx = ∫ 3 · 2−3xdx = −∫ 2u du = − 1

ln 22u + C = − 1
ln 22−3x + C.

Evaluate the following integral: ∫ x2 2x3
dx.
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2.7 EXERCISES

For the following exercises, find the derivative
dy
dx.

295. y = ln(2x)

296. y = ln(2x + 1)

297. y = 1
ln x

For the following exercises, find the indefinite integral.

298. ∫ dt
3t

299. ∫ dx
1 + x

For the following exercises, find the derivative dy/dx.
(You can use a calculator to plot the function and the
derivative to confirm that it is correct.)

300. [T] y = ln(x)
x

301. [T] y = x ln(x)

302. [T] y = log10 x

303. [T] y = ln(sin x)

304. [T] y = ln(ln x)

305. [T] y = 7 ln(4x)

306. [T] y = ln⎛
⎝(4x)7⎞

⎠

307. [T] y = ln(tan x)

308. [T] y = ln(tan(3x))

309. [T] y = ln⎛
⎝cos2 x⎞

⎠

For the following exercises, find the definite or indefinite
integral.

310. ∫
0

1
dx

3 + x

311. ∫
0

1
dt

3 + 2t

312. ∫
0

2
x dx

x2 + 1

313. ∫
0

2
x3 dx
x2 + 1

314. ∫
2

e
dx

x ln x

315. ∫
2

e
dx

⎛
⎝x ln(x)⎞

⎠
2

316. ∫ cos x dx
sin x

317. ∫
0

π/4
tan x dx

318. ∫ cot(3x)dx

319. ∫ (ln x)2 dx
x

For the following exercises, compute dy/dx by

differentiating ln y.

320. y = x2 + 1

321. y = x2 + 1 x2 − 1

322. y = esin x

323. y = x−1/x

324. y = e(ex)

325. y = xe

326. y = x(ex)

327. y = x x3 x6

328. y = x−1/ln x

329. y = e−ln x

For the following exercises, evaluate by any method.
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330. ∫
5

10
dt
t − ∫

5x

10x
dt
t

331. ∫
1

eπ
dx
x + ∫

−2

−1
dx
x

332. d
dx∫

x

1
dt
t

333. d
dx∫

x

x2
dt
t

334. d
dxln(sec x + tan x)

For the following exercises, use the function ln x. If you

are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by x = 1 and

y = 5 above y = ln x.

336. [T] Find the arc length of ln x from x = 1 to

x = 2.

337. Find the area between ln x and the x-axis from

x = 1 to x = 2.

338. Find the volume of the shape created when rotating
this curve from x = 1 to x = 2 around the x-axis, as

pictured here.

339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from x = 1 to

x = 2 around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle
enclosed by x = 2 and y = 2 above y = 1/x.

341. [T] Find the arc length of y = 1/x from

x = 1 to x = 4.

342. Find the area under y = 1/x and above the x-axis

from x = 1 to x = 4.

For the following exercises, verify the derivatives and
antiderivatives.

343. d
dxln⎛

⎝x + x2 + 1⎞
⎠ = 1

1 + x2

344. d
dxln⎛

⎝
x − a
x + a

⎞
⎠ = 2a

⎛
⎝x2 − a2⎞

⎠

345. d
dxln

⎛

⎝
⎜1 + 1 − x2

x
⎞

⎠
⎟ = − 1

x 1 − x2

346. d
dxln⎛

⎝x + x2 − a2⎞
⎠ = 1

x2 − a2

347. ∫ dx
x ln(x)ln(ln x) = ln⎛

⎝ln(ln x)⎞
⎠ + C
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2.8 | Exponential Growth and Decay

Learning Objectives
2.8.1 Use the exponential growth model in applications, including population growth and
compound interest.

2.8.2 Explain the concept of doubling time.

2.8.3 Use the exponential decay model in applications, including radioactive decay and Newton’s
law of cooling.

2.8.4 Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth
and decay show up in a host of natural applications. From population growth and continuously compounded interest to
radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine
exponential growth and decay in the context of some of these applications.

Exponential Growth Model

Many systems exhibit exponential growth. These systems follow a model of the form y = y0 ekt, where y0 represents

the initial state of the system and k is a positive constant, called the growth constant. Notice that in an exponential growth

model, we have

(2.27)y′ = ky0 ekt = ky.

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
Equation 2.27 involves derivatives and is called a differential equation. We learn more about differential equations in
Introduction to Differential Equations.

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model

y = y0 ekt,

where y0 represents the initial state of the system and k > 0 is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems
plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria
there are to reproduce, the faster the population grows. Figure 2.79 and Table 2.1 represent the growth of a population
of bacteria with an initial population of 200 bacteria and a growth constant of 0.02. Notice that after only 2 hours (120
minutes), the population is 10 times its original size!
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Figure 2.79 An example of exponential growth for bacteria.

Time (min) Population Size (no. of bacteria)

10 244

20 298

30 364

40 445

50 544

60 664

70 811

80 991

90 1210

100 1478

110 1805

120 2205

Table 2.1 Exponential Growth of a Bacterial Population

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
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growth models, we must always be careful to interpret the function values in the context of the phenomenon we are
modeling.

Example 2.42

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function

f (t) = 200e0.02t, where t is measured in minutes. How many bacteria are present in the population after 5
hours (300 minutes)? When does the population reach 100,000 bacteria?

Solution

We have f (t) = 200e0.02t. Then

f (300) = 200e0.02(300) ≈ 80,686.

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200e0.02t

500 = e0.02t

ln 500 = 0.02t
t = ln 500

0.02 ≈ 310.73.

The population reaches 100,000 bacteria after 310.73 minutes.

Consider a population of bacteria that grows according to the function f (t) = 500e0.05t, where t is

measured in minutes. How many bacteria are present in the population after 4 hours? When does the population
reach 100 million bacteria?

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). So, if we put $1000 in a

savings account earning 2% simple interest per year, then at the end of the year we have

1000(1 + 0.02) = $1020.

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every 6 months, it credits half of the year’s interest to the account after 6 months. During the

second half of the year, the account earns interest not only on the initial $1000, but also on the interest earned during the

first half of the year. Mathematically speaking, at the end of the year, we have

1000⎛
⎝1 + 0.02

2
⎞
⎠
2

= $1020.10.

Similarly, if the interest is compounded every 4 months, we have

1000⎛
⎝1 + 0.02

3
⎞
⎠

3
= $1020.13,

and if the interest is compounded daily (365 times per year), we have $1020.20. If we extend this concept, so that the

interest is compounded continuously, after t years we have
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1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

.

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number e can be

expressed as a limit:

e = limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m

.

Based on this, we want the expression inside the parentheses to have the form (1 + 1/m). Let n = 0.02m. Note that as

n → ∞, m → ∞ as well. Then we get

1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

= 1000 limm → ∞
⎛
⎝1 + 0.02

0.02m
⎞
⎠

0.02mt
= 1000⎡

⎣ limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m⎤

⎦
0.02t

.

We recognize the limit inside the brackets as the number e. So, the balance in our bank account after t years is given by

1000e0.02t. Generalizing this concept, we see that if a bank account with an initial balance of $P earns interest at a rate

of r%, compounded continuously, then the balance of the account after t years is

Balance = Pert.

Example 2.43

Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays 5%
annual interest compounded continuously. How much does the student need to invest today to have $1 million

when she retires at age 65? What if she could earn 6% annual interest compounded continuously instead?

Solution

We have

1,000,000 = Pe0.05(40)

P = 135,335.28.

She must invest $135,335.28 at 5% interest.

If, instead, she is able to earn 6%, then the equation becomes

1,000,000 = Pe0.06(40)

P = 90,717.95.

In this case, she needs to invest only $90,717.95. This is roughly two-thirds the amount she needs to invest at

5%. The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in

interest rate.

Suppose instead of investing at age 25 b2 − 4ac, the student waits until age 35. How much would

she have to invest at 5%? At 6%?

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to

20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity
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reaches twice its original size. So we have

2y0 = y0 ekt

2 = ekt

ln 2 = kt
t = ln 2

k .

Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Doubling time = ln 2
k .

Example 2.44

Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months,

there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish

population reaches 10,000. When will the owner’s friends be allowed to fish?

Solution

We know it takes the population of fish 6 months to double in size. So, if t represents time in months,

by the doubling-time formula, we have 6 = (ln 2)/k. Then, k = (ln 2)/6. Thus, the population is given by

y = 500e
⎛
⎝(ln 2)/6⎞

⎠t. To figure out when the population reaches 10,000 fish, we must solve the following

equation:

10,000 = 500e(ln 2/6)t

20 = e(ln 2/6)t

ln 20 = ⎛
⎝
ln 2
6

⎞
⎠t

t = 6(ln 20)
ln 2 ≈ 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.

Suppose it takes 9 months for the fish population in Example 2.44 to reach 1000 fish. Under these

circumstances, how long do the owner’s friends have to wait?

Exponential Decay Model
Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical
compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth.
The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant k, we have

y = y0 e−kt.

As with exponential growth, there is a differential equation associated with exponential decay. We have
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y′ = −ky0 e−kt = −ky.

Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model

y = y0 e−kt,

where y0 represents the initial state of the system and k > 0 is a constant, called the decay constant.

The following figure shows a graph of a representative exponential decay function.

Figure 2.80 An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if T represents the temperature of the object and Ta represents the ambient temperature in a room, then

T′ = −k(T − Ta).

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional Ta term. Fortunately, we can make a change of variables that resolves this issue. Let

y(t) = T(t) − Ta. Then y′(t) = T′(t) − 0 = T′(t), and our equation becomes

y′ = −ky.

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

y = y0 e−kt,

and we see that

T − Ta = ⎛
⎝T0 − Ta

⎞
⎠e−kt

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

where T0 represents the initial temperature. Let’s apply this formula in the following example.

Example 2.45

Newton’s Law of Cooling
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According to experienced baristas, the optimal temperature to serve coffee is between 155°F and 175°F.
Suppose coffee is poured at a temperature of 200°F, and after 2 minutes in a 70°F room it has cooled to

180°F. When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to

the nearest half minute.

Solution

We have

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

180 = (200 − 70)e−k(2) + 70
110 = 130e−2k

11
13 = e−2k

ln 11
13 = −2k

ln 11 − ln 13 = −2k
k = ln 13 − ln 11

2 .

Then, the model is

T = 130e(ln 11 − ln 13/2)t + 70.

The coffee reaches 175°F when

175 = 130e(ln 11 − ln 13/2)t + 70
105 = 130e(ln 11 − ln 13/2)t

21
26 = e(ln 11 − ln 13/2)t

ln 21
26 = ln 11 − ln 13

2 t

ln 21 − ln 26 = ln 11 − ln 13
2 t

t = 2(ln 21 − ln 26)
ln 11 − ln 13 ≈ 2.56.

The coffee can be served about 2.5 minutes after it is poured. The coffee reaches 155°F at

155 = 130e(ln 11 − ln 13/2)t + 70
85 = 130e(ln 11 − ln 13)t

17
26 = e(ln 11 − ln 13)t

ln 17 − ln 26 = ⎛
⎝
ln 11 − ln 13

2
⎞
⎠t

t = 2(ln 17 − ln 26)
ln 11 − ln 13 ≈ 5.09.

The coffee is too cold to be served about 5 minutes after it is poured.

Suppose the room is warmer (75°F) and, after 2 minutes, the coffee has cooled only to 185°F. When

is the coffee first cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest
half minute.
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Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

y0
2 = y0 e−kt

1
2 = e−kt

−ln 2 = −kt

t = ln 2
k .

Note: This is the same expression we came up with for doubling time.

Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Half-life = ln 2
k .

Example 2.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits

a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of carbon-14 is approximately 5730 years—meaning, after that many years, half the material has converted

from the original carbon-14 to the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how

much is left in 50 years? If an artifact that originally contained 100 g of carbon now contains 10 g of carbon,

how old is it? Round the answer to the nearest hundred years.

Solution

We have

5730 = ln 2
k

k = ln 2
5730.

So, the model says

y = 100e−(ln 2/5730)t.

In 50 years, we have

y = 100e−(ln 2/5730)(50)

≈ 99.40.

Therefore, in 50 years, 99.40 g of carbon-14 remains.

To determine the age of the artifact, we must solve
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10 = 100e−(ln 2/5730)t

1
10 = e−(ln 2/5730)t

t ≈ 19035.

The artifact is about 19,000 years old.

If we have 100 g of carbon-14, how much is left after. years? If an artifact that originally contained

100 g of carbon now contains 20g of carbon, how old is it? Round the answer to the nearest hundred years.
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2.8 EXERCISES
True or False? If true, prove it. If false, find the true answer.

348. The doubling time for y = ect is ⎛
⎝ln (2)⎞

⎠/⎛
⎝ln (c)⎞

⎠.

349. If you invest $500, an annual rate of interest of

3% yields more money in the first year than a 2.5%
continuous rate of interest.

350. If you leave a 100°C pot of tea at room temperature

(25°C) and an identical pot in the refrigerator (5°C),
with k = 0.02, the tea in the refrigerator reaches a

drinkable temperature (70°C) more than 5 minutes

before the tea at room temperature.

351. If given a half-life of t years, the constant k for

y = ekt is calculated by k = ln (1/2)/t.

For the following exercises, use y = y0 ekt.

352. If a culture of bacteria doubles in 3 hours, how many

hours does it take to multiply by 10?

353. If bacteria increase by a factor of 10 in 10 hours,

how many hours does it take to increase by 100?

354. How old is a skull that contains one-fifth as much
radiocarbon as a modern skull? Note that the half-life of
radiocarbon is 5730 years.

355. If a relic contains 90% as much radiocarbon as

new material, can it have come from the time of Christ
(approximately 2000 years ago)? Note that the half-life of

radiocarbon is 5730 years.

356. The population of Cairo grew from 5 million to

10 million in 20 years. Use an exponential model to find

when the population was 8 million.

357. The populations of New York and Los Angeles are
growing at 1% and 1.4% a year, respectively. Starting

from 8 million (New York) and 6 million (Los Angeles),

when are the populations equal?

358. Suppose the value of $1 in Japanese yen decreases

at 2% per year. Starting from $1 = ¥250, when will

$1 = ¥1?

359. The effect of advertising decays exponentially. If
40% of the population remembers a new product after 3
days, how long will 20% remember it?

360. If y = 1000 at t = 3 and y = 3000 at t = 4,
what was y0 at t = 0?

361. If y = 100 at t = 4 and y = 10 at t = 8, when

does y = 1?

362. If a bank offers annual interest of 7.5% or

continuous interest of 7.25%, which has a better annual

yield?

363. What continuous interest rate has the same yield as
an annual rate of 9%?

364. If you deposit $5000 at 8% annual interest, how

many years can you withdraw $500 (starting after the first

year) without running out of money?

365. You are trying to save $50,000 in 20 years for

college tuition for your child. If interest is a continuous
10%, how much do you need to invest initially?

366. You are cooling a turkey that was taken out of the
oven with an internal temperature of 165°F. After 10
minutes of resting the turkey in a 70°F apartment, the

temperature has reached 155°F. What is the temperature

of the turkey 20 minutes after taking it out of the oven?

367. You are trying to thaw some vegetables that are
at a temperature of 1°F. To thaw vegetables safely, you

must put them in the refrigerator, which has an ambient
temperature of 44°F. You check on your vegetables 2
hours after putting them in the refrigerator to find that they
are now 12°F. Plot the resulting temperature curve and use

it to determine when the vegetables reach 33°F.

368. You are an archaeologist and are given a bone that is
claimed to be from a Tyrannosaurus Rex. You know these
dinosaurs lived during the Cretaceous Era (146 million

years to 65 million years ago), and you find by

radiocarbon dating that there is 0.000001% the amount of

radiocarbon. Is this bone from the Cretaceous?

369. The spent fuel of a nuclear reactor contains
plutonium-239, which has a half-life of 24,000 years. If 1
barrel containing 10 kg of plutonium-239 is sealed, how

many years must pass until only 10g of plutonium-239 is

left?

For the next set of exercises, use the following table, which
features the world population by decade.
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Years since 1950 Population (millions)

0 2,556

10 3,039

20 3,706

30 4,453

40 5,279

50 6,083

60 6,849

Source: http://www.factmonster.com/ipka/
A0762181.html.

370. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 2686e0.01604t. Use

a graphing calculator to graph the data and the exponential
curve together.

371. [T] Find and graph the derivative y′ of your

equation. Where is it increasing and what is the meaning of
this increase?

372. [T] Find and graph the second derivative of your
equation. Where is it increasing and what is the meaning of
this increase?

373. [T] Find the predicted date when the population
reaches 10 billion. Using your previous answers about

the first and second derivatives, explain why exponential
growth is unsuccessful in predicting the future.

For the next set of exercises, use the following table, which
shows the population of San Francisco during the 19th
century.

Years since
1850

Population
(thousands)

0 21.00

10 56.80

20 149.5

30 234.0

Source: http://www.sfgenealogy.com/sf/history/
hgpop.htm.

374. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 35.26e0.06407t. Use

a graphing calculator to graph the data and the exponential
curve together.

375. [T] Find and graph the derivative y′ of your

equation. Where is it increasing? What is the meaning of
this increase? Is there a value where the increase is
maximal?

376. [T] Find and graph the second derivative of your
equation. Where is it increasing? What is the meaning of
this increase?
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2.9 | Calculus of the Hyperbolic Functions

Learning Objectives
2.9.1 Apply the formulas for derivatives and integrals of the hyperbolic functions.

2.9.2 Apply the formulas for the derivatives of the inverse hyperbolic functions and their
associated integrals.

2.9.3 Describe the common applied conditions of a catenary curve.

We were introduced to hyperbolic functions in Introduction to Functions and Graphs (http://cnx.org/content/
m53472/latest/) , along with some of their basic properties. In this section, we look at differentiation and integration
formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as

sinh x = ex − e−x

2 and cosh x = ex + e−x

2 .

The other hyperbolic functions are then defined in terms of sinh x and cosh x. The graphs of the hyperbolic functions are

shown in the following figure.

Figure 2.81 Graphs of the hyperbolic functions.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at sinh x we have
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d
dx(sinh x) = d

dx
⎛
⎝
ex − e−x

2
⎞
⎠

= 1
2

⎡
⎣

d
dx(ex) − d

dx(e−x)⎤⎦

= 1
2[ex + e−x] = cosh x.

Similarly, (d/dx)cosh x = sinh x. We summarize the differentiation formulas for the hyperbolic functions in the following

table.

f(x)
d
dx f(x)

sinh x cosh x

cosh x sinh x

tanh x sech2 x

coth x −csch2 x

sech x −sech x tanh x

csch x −csch x coth x

Table 2.2 Derivatives of the
Hyperbolic Functions

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard
trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine
functions match: (d/dx)sin x = cos x and (d/dx)sinh x = cosh x. The derivatives of the cosine functions, however, differ

in sign: (d/dx)cos x = −sin x, but (d/dx)cosh x = sinh x. As we continue our examination of the hyperbolic functions,

we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

∫ sinh u du = cosh u + C ∫ csch2 u du = −coth u + C

∫ cosh u du = sinh u + C ∫ sech u tanh u du = −sech u + C

∫ sech2 u du = tanh u + C ∫ csch u coth u du = −csch u + C

Example 2.47

Differentiating Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠
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2.47

b. d
dx(cosh x)2

Solution

Using the formulas in Table 2.2 and the chain rule, we get

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠ = cosh⎛

⎝x2⎞
⎠ · 2x

b. d
dx(cosh x)2 = 2 cosh x sinh x

Evaluate the following derivatives:

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠

b. d
dx

⎛

⎝
⎜ 1
(sinh x)2

⎞

⎠
⎟

Example 2.48

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:

a. ∫ x cosh⎛
⎝x2⎞

⎠dx

b. ∫ tanh x dx

Solution

We can use u-substitution in both cases.

a. Let u = x2. Then, du = 2x dx and

∫ x cosh⎛
⎝x2⎞

⎠dx = ∫ 1
2cosh u du = 1

2sinh u + C = 1
2sinh⎛

⎝x2⎞
⎠ + C.

b. Let u = cosh x. Then, du = sinh x dx and

∫ tanh x dx = ∫ sinh x
cosh xdx = ∫ 1

udu = ln|u| + C = ln|cosh x| + C.

Note that cosh x > 0 for all x, so we can eliminate the absolute value signs and obtain

∫ tanh x dx = ln(cosh x) + C.
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2.48 Evaluate the following integrals:

a. ∫ sinh3 x cosh x dx

b. ∫ sech2 (3x)dx

Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses.
Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of
the inverse hyperbolic functions are summarized in the following table.

Function Domain Range

sinh−1 x (−∞, ∞) (−∞, ∞)

cosh−1 x (1, ∞) ⎡
⎣0, ∞)

tanh−1 x (−1, 1) (−∞, ∞)

coth−1 x (−∞, −1) ∪ (1, ∞) (−∞, 0) ∪ (0, ∞)

sech−1 x (0, 1) ⎡
⎣0, ∞)

csch−1 x (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)

Table 2.3 Domains and Ranges of the Inverse Hyperbolic
Functions

The graphs of the inverse hyperbolic functions are shown in the following figure.
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Figure 2.82 Graphs of the inverse hyperbolic functions.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

y = sinh−1 x
sinh y = x

d
dxsinh y = d

dxx

cosh ydy
dx = 1.

Recall that cosh2 y − sinh2 y = 1, so cosh y = 1 + sinh2 y. Then,

dy
dx = 1

cosh y = 1
1 + sinh2 y

= 1
1 + x2

.

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation
formulas are summarized in the following table.
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f(x)
d
dx f(x)

sinh−1 x
1

1 + x2

cosh−1 x
1

x2 − 1

tanh−1 x
1

1 − x2

coth−1 x
1

1 − x2

sech−1 x
−1

x 1 − x2

csch−1 x
−1

|x| 1 + x2

Table 2.4 Derivatives of the
Inverse Hyperbolic Functions

Note that the derivatives of tanh−1 x and coth−1 x are the same. Thus, when we integrate 1/⎛
⎝1 − x2⎞

⎠, we need to select

the proper antiderivative based on the domain of the functions and the values of x. Integration formulas involving the

inverse hyperbolic functions are summarized as follows.

∫ 1
1 + u2

du = sinh−1 u + C ∫ 1
u 1 − u2

du = −sech−1 |u| + C

∫ 1
u2 − 1

du = cosh−1 u + C ∫ 1
u 1 + u2

du = −csch−1 |u| + C

∫ 1
1 − u2du =

⎧

⎩
⎨tanh−1 u + C if |u| < 1

coth−1 u + C if |u| > 1

Example 2.49

Differentiating Inverse Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2
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2.49

2.50

Solution

Using the formulas in Table 2.4 and the chain rule, we obtain the following results:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠ = 1

3 1 + x2
9

= 1
9 + x2

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2

=
2⎛

⎝tanh−1 x⎞
⎠

1 − x2

Evaluate the following derivatives:

a. d
dx

⎛
⎝cosh−1 (3x)⎞

⎠

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

Example 2.50

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:

a. ∫ 1
4x2 − 1

dx

b. ∫ 1
2x 1 − 9x2

dx

Solution

We can use u-substitution in both cases.

a. Let u = 2x. Then, du = 2dx and we have

∫ 1
4x2 − 1

dx = ∫ 1
2 u2 − 1

du = 1
2cosh−1 u + C = 1

2cosh−1 (2x) + C.

b. Let u = 3x. Then, du = 3dx and we obtain

∫ 1
2x 1 − 9x2

dx = 1
2∫ 1

u 1 − u2
du = − 1

2sech−1 |u| + C = − 1
2sech−1 |3x| + C.

Evaluate the following integrals:

a. ∫ 1
x2 − 4

dx, x > 2

b. ∫ 1
1 − e2x

dx
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Applications
One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended
between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage
power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure
shows chains hanging from a row of posts.

Figure 2.83 Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany,
Flickr)

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y = a cosh(x/a) are catenaries.

Figure 2.84 shows the graph of y = 2 cosh(x/2).
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2.51

Figure 2.84 A hyperbolic cosine function forms the shape of
a catenary.

Example 2.51

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape 10 cosh(x/10) for −15 ≤ x ≤ 15, where x is measured in feet.

Determine the length of the cable (in feet).

Solution

Recall from Section 6.4 that the formula for arc length is

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

We have f (x) = 10 cosh(x/10), so f ′(x) = sinh(x/10). Then

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

= ∫
−15

15
1 + sinh2 ⎛

⎝
x

10
⎞
⎠ dx.

Now recall that 1 + sinh2 x = cosh2 x, so we have

Arc Length = ∫
−15

15
1 + sinh2 ⎛

⎝
x

10
⎞
⎠ dx

= ∫
−15

15
cosh⎛

⎝
x

10
⎞
⎠dx

= 10 sinh⎛
⎝

x
10

⎞
⎠|−15

15
= 10⎡

⎣sinh⎛
⎝
3
2

⎞
⎠ − sinh⎛

⎝−
3
2

⎞
⎠
⎤
⎦ = 20 sinh⎛

⎝
3
2

⎞
⎠

≈ 42.586 ft.

Assume a hanging cable has the shape 15 cosh(x/15) for −20 ≤ x ≤ 20. Determine the length of the

cable (in feet).
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2.9 EXERCISES
377. [T] Find expressions for cosh x + sinh x and

cosh x − sinh x. Use a calculator to graph these functions

and ensure your expression is correct.

378. From the definitions of cosh(x) and sinh(x), find

their antiderivatives.

379. Show that cosh(x) and sinh(x) satisfy y″ = y.

380. Use the quotient rule to verify that

tanh(x)′ = sech2 (x).

381. Derive cosh2 (x) + sinh2 (x) = cosh(2x) from the

definition.

382. Take the derivative of the previous expression to find
an expression for sinh(2x).

383. Prove
sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y) by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find
an expression for cosh(x + y).

For the following exercises, find the derivatives of the
given functions and graph along with the function to ensure
your answer is correct.

385. [T] cosh(3x + 1)

386. [T] sinh⎛
⎝x2⎞

⎠

387. [T] 1
cosh(x)

388. [T] sinh⎛
⎝ln(x)⎞

⎠

389. [T] cosh2 (x) + sinh2 (x)

390. [T] cosh2 (x) − sinh2 (x)

391. [T] tanh⎛
⎝ x2 + 1⎞

⎠

392. [T] 1 + tanh(x)
1 − tanh(x)

393. [T] sinh6 (x)

394. [T] ln⎛
⎝sech(x) + tanh(x)⎞

⎠

For the following exercises, find the antiderivatives for the
given functions.

395. cosh(2x + 1)

396. tanh(3x + 2)

397. x cosh⎛
⎝x2⎞

⎠

398. 3x3 tanh⎛
⎝x4⎞

⎠

399. cosh2 (x)sinh(x)

400. tanh2 (x)sech2 (x)

401. sinh(x)
1 + cosh(x)

402. coth(x)

403. cosh(x) + sinh(x)

404. ⎛
⎝cosh(x) + sinh(x)⎞

⎠
n

For the following exercises, find the derivatives for the
functions.

405. tanh−1 (4x)

406. sinh−1 ⎛
⎝x2⎞

⎠

407. sinh−1 ⎛
⎝cosh(x)⎞

⎠

408. cosh−1 ⎛
⎝x

3⎞
⎠

409. tanh−1 (cos(x))

410. esinh−1 (x)

411. ln⎛
⎝tanh−1 (x)⎞

⎠

For the following exercises, find the antiderivatives for the
functions.

412. ∫ dx
4 − x2

413. ∫ dx
a2 − x2
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414. ∫ dx
x2 + 1

415. ∫ x dx
x2 + 1

416. ∫ − dx
x 1 − x2

417. ∫ ex

e2x − 1

418. ∫ − 2x
x4 − 1

For the following exercises, use the fact that a falling body
with friction equal to velocity squared obeys the equation

dv/dt = g − v2.

419. Show that v(t) = g tanh⎛
⎝ gt⎞

⎠ satisfies this

equation.

420. Derive the previous expression for v(t) by

integrating dv
g − v2 = dt.

421. [T] Estimate how far a body has fallen in 12 seconds

by finding the area underneath the curve of v(t).

For the following exercises, use this scenario: A cable
hanging under its own weight has a slope S = dy/dx that

satisfies dS/dx = c 1 + S2. The constant c is the ratio of

cable density to tension.

422. Show that S = sinh(cx) satisfies this equation.

423. Integrate dy/dx = sinh(cx) to find the cable height

y(x) if y(0) = 1/c.

424. Sketch the cable and determine how far down it sags
at x = 0.

For the following exercises, solve each problem.

425. [T] A chain hangs from two posts 2 m apart to form

a catenary described by the equation y = 2 cosh(x/2) − 1.
Find the slope of the catenary at the left fence post.

426. [T] A chain hangs from two posts four meters apart
to form a catenary described by the equation
y = 4 cosh(x/4) − 3. Find the total length of the catenary

(arc length).

427. [T] A high-voltage power line is a catenary described
by y = 10 cosh(x/10). Find the ratio of the area under the

catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by
y = a cosh(x/a). Find the ratio of the area under the

catenary to its arc length. Does this confirm your answer
for the previous question?

429. Prove the formula for the derivative of

y = sinh−1(x) by differentiating x = sinh(y). (Hint: Use

hyperbolic trigonometric identities.)

430. Prove the formula for the derivative of

y = cosh−1(x) by differentiating x = cosh(y). (Hint:

Use hyperbolic trigonometric identities.)

431. Prove the formula for the derivative of

y = sech−1(x) by differentiating x = sech(y). (Hint: Use

hyperbolic trigonometric identities.)

432. Prove that
⎛
⎝cosh(x) + sinh(x)⎞

⎠
n = cosh(nx) + sinh(nx).

433. Prove the expression for sinh−1 (x). Multiply

x = sinh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?

434. Prove the expression for cosh−1 (x). Multiply

x = cosh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?
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arc length

catenary

center of mass

centroid

cross-section

density function

disk method

doubling time

exponential decay

exponential growth

frustum

half-life

Hooke’s law

hydrostatic pressure

lamina

method of cylindrical shells

moment

slicing method

solid of revolution

CHAPTER 2 REVIEW

KEY TERMS
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

a curve in the shape of the function y = a cosh(x/a) is a catenary; a cable of uniform density suspended

between two supports assumes the shape of a catenary

the point at which the total mass of the system could be concentrated without changing the moment

the centroid of a region is the geometric center of the region; laminas are often represented by regions in the
plane; if the lamina has a constant density, the center of mass of the lamina depends only on the shape of the
corresponding planar region; in this case, the center of mass of the lamina corresponds to the centroid of the
representative region

the intersection of a plane and a solid object

a density function describes how mass is distributed throughout an object; it can be a linear density,
expressed in terms of mass per unit length; an area density, expressed in terms of mass per unit area; or a volume
density, expressed in terms of mass per unit volume; weight-density is also used to describe weight (rather than mass)
per unit volume

a special case of the slicing method used with solids of revolution when the slices are disks

if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double,
and is given by (ln 2)/k

systems that exhibit exponential decay follow a model of the form y = y0 e−kt

systems that exhibit exponential growth follow a model of the form y = y0 ekt

a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base

if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It
is given by (ln 2)/k

this law states that the force required to compress (or elongate) a spring is proportional to the distance the
spring has been compressed (or stretched) from equilibrium; in other words, F = kx, where k is a constant

the pressure exerted by water on a submerged object

a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are
two-dimensional

a method of calculating the volume of a solid of revolution by dividing the solid into
nested cylindrical shells; this method is different from the methods of disks or washers in that we integrate with
respect to the opposite variable

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by

M = ∑
i = 1

n
mi xi; if, instead, we consider a region in the plane, bounded above by a function f (x) over an interval

⎡
⎣a, b⎤

⎦, then the moments of the region with respect to the x- and y-axes are given by Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and

My = ρ∫
a

b
x f (x)dx, respectively

a method of calculating the volume of a solid that involves cutting the solid into pieces, estimating the
volume of each piece, then adding these estimates to arrive at an estimate of the total volume; as the number of slices
goes to infinity, this estimate becomes an integral that gives the exact value of the volume

a solid generated by revolving a region in a plane around a line in that plane

254 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



surface area

symmetry principle

theorem of Pappus for volume

washer method

work

the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or
bricks, the surface area of the object is the sum of the areas of all of its faces

the symmetry principle states that if a region R is symmetric about a line l, then the centroid of R
lies on l

this theorem states that the volume of a solid of revolution formed by revolving a
region around an external axis is equal to the area of the region multiplied by the distance traveled by the centroid of
the region

a special case of the slicing method used with solids of revolution when the slices are washers

the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the
product of force and distance

KEY EQUATIONS
• Area between two curves, integrating on the x-axis

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

• Area between two curves, integrating on the y-axis

A = ∫
c

d
⎡
⎣u(y) − v(y)⎤

⎦dy

• Disk Method along the x-axis

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

• Disk Method along the y-axis

V = ∫
c

d
π⎡

⎣g(y)⎤
⎦
2 dy

• Washer Method

V = ∫
a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx

• Method of Cylindrical Shells

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

• Arc Length of a Function of x

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

• Arc Length of a Function of y

Arc Length = ∫
c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy

• Surface Area of a Function of x

Surface Area = ∫
a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx

• Mass of a one-dimensional object

m = ∫
a

b
ρ(x)dx

• Mass of a circular object

m = ∫
0

r
2πxρ(x)dx
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• Work done on an object

W = ∫
a

b
F(x)dx

• Hydrostatic force on a plate

F = ∫
a

b
ρw(x)s(x)dx

• Mass of a lamina

m = ρ∫
a

b
f (x)dx

• Moments of a lamina

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx

• Center of mass of a lamina

x– =
My
m and y– = Mx

m

• Natural logarithm function

• ln x = ∫
1

x
1
t dt Z

• Exponential function y = ex

• ln y = ln(ex) = x Z

KEY CONCEPTS

2.1 Areas between Curves

• Just as definite integrals can be used to find the area under a curve, they can also be used to find the area between
two curves.

• To find the area between two curves defined by functions, integrate the difference of the functions.

• If the graphs of the functions cross, or if the region is complex, use the absolute value of the difference of the
functions. In this case, it may be necessary to evaluate two or more integrals and add the results to find the area of
the region.

• Sometimes it can be easier to integrate with respect to y to find the area. The principles are the same regardless of
which variable is used as the variable of integration.

2.2 Determining Volumes by Slicing

• Definite integrals can be used to find the volumes of solids. Using the slicing method, we can find a volume by
integrating the cross-sectional area.

• For solids of revolution, the volume slices are often disks and the cross-sections are circles. The method of disks
involves applying the method of slicing in the particular case in which the cross-sections are circles, and using the
formula for the area of a circle.

• If a solid of revolution has a cavity in the center, the volume slices are washers. With the method of washers, the
area of the inner circle is subtracted from the area of the outer circle before integrating.

2.3 Volumes of Revolution: Cylindrical Shells

• The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of
revolution. This method is sometimes preferable to either the method of disks or the method of washers because we
integrate with respect to the other variable. In some cases, one integral is substantially more complicated than the
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other.

• The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration
method to use.

2.4 Arc Length of a Curve and Surface Area

• The arc length of a curve can be calculated using a definite integral.

• The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives
us the definite integral formula. The same process can be applied to functions of y.

• The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.

• The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be
necessary to use a computer or calculator to approximate the values of the integrals.

2.5 Physical Applications

• Several physical applications of the definite integral are common in engineering and physics.

• Definite integrals can be used to determine the mass of an object if its density function is known.

• Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a
pumping problem.

• Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

2.6 Moments and Centers of Mass

• Mathematically, the center of mass of a system is the point at which the total mass of the system could be
concentrated without changing the moment. Loosely speaking, the center of mass can be thought of as the balancing
point of the system.

• For point masses distributed along a number line, the moment of the system with respect to the origin is

M = ∑
i = 1

n
mi xi. For point masses distributed in a plane, the moments of the system with respect to the x- and

y-axes, respectively, are Mx = ∑
i = 1

n
mi yi and My = ∑

i = 1

n
mi xi, respectively.

• For a lamina bounded above by a function f (x), the moments of the system with respect to the x- and y-axes,

respectively, are Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx.

• The x- and y-coordinates of the center of mass can be found by dividing the moments around the y-axis and around
the x-axis, respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to
a line, then the centroid of the region lies on the line.

• The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the
resulting solid is equal to the area of the region multiplied by the distance traveled by the centroid of the region.

2.7 Integrals, Exponential Functions, and Logarithms

• The earlier treatment of logarithms and exponential functions did not define the functions precisely and formally.
This section develops the concepts in a mathematically rigorous way.

• The cornerstone of the development is the definition of the natural logarithm in terms of an integral.

• The function ex is then defined as the inverse of the natural logarithm.

• General exponential functions are defined in terms of ex, and the corresponding inverse functions are general

logarithms.
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• Familiar properties of logarithms and exponents still hold in this more rigorous context.

2.8 Exponential Growth and Decay

• Exponential growth and exponential decay are two of the most common applications of exponential functions.

• Systems that exhibit exponential growth follow a model of the form y = y0 ekt.

• In exponential growth, the rate of growth is proportional to the quantity present. In other words, y′ = ky.

• Systems that exhibit exponential growth have a constant doubling time, which is given by (ln 2)/k.

• Systems that exhibit exponential decay follow a model of the form y = y0 e−kt.

• Systems that exhibit exponential decay have a constant half-life, which is given by (ln 2)/k.

2.9 Calculus of the Hyperbolic Functions

• Hyperbolic functions are defined in terms of exponential functions.

• Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation
formulas give rise, in turn, to integration formulas.

• With appropriate range restrictions, the hyperbolic functions all have inverses.

• Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise
to integration formulas.

• The most common physical applications of hyperbolic functions are calculations involving catenaries.

CHAPTER 2 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

435. The amount of work to pump the water out of a half-
full cylinder is half the amount of work to pump the water
out of the full cylinder.

436. If the force is constant, the amount of work to move
an object from x = a to x = b is F(b − a).

437. The disk method can be used in any situation in
which the washer method is successful at finding the
volume of a solid of revolution.

438. If the half-life of seaborgium-266 is 360 ms, then

k = ⎛
⎝ln(2)⎞

⎠/360.

For the following exercises, use the requested method to
determine the volume of the solid.

439. The volume that has a base of the ellipse

x2/4 + y2/9 = 1 and cross-sections of an equilateral

triangle perpendicular to the y-axis. Use the method of

slicing.

440. y = x2 − x, from x = 1 to x = 4, rotated around

they-axis using the washer method

441. x = y2 and x = 3y rotated around the y-axis using

the washer method

442. x = 2y2 − y3, x = 0, and y = 0 rotated around the

x-axis using cylindrical shells

For the following exercises, find

a. the area of the region,

b. the volume of the solid when rotated around the
x-axis, and

c. the volume of the solid when rotated around the
y-axis. Use whichever method seems most
appropriate to you.

443. y = x3, x = 0, y = 0, and x = 2

444. y = x2 − x and x = 0

445. [T] y = ln(x) + 2 and y = x

446. y = x2 and y = x

447. y = 5 + x, y = x2, x = 0, and x = 1

258 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



448. Below x2 + y2 = 1 and above y = 1 − x

449. Find the mass of ρ = e−x on a disk centered at the

origin with radius 4.

450. Find the center of mass for ρ = tan2 x on

x ∈ ⎛
⎝−

π
4, π

4
⎞
⎠.

451. Find the mass and the center of mass of ρ = 1 on

the region bounded by y = x5 and y = x.

For the following exercises, find the requested arc lengths.

452. The length of x for y = cosh(x) from

x = 0 to x = 2.

453. The length of y for x = 3 − y from y = 0 to

y = 4

For the following exercises, find the surface area and
volume when the given curves are revolved around the
specified axis.

454. The shape created by revolving the region between
y = 4 + x, y = 3 − x, x = 0, and x = 2 rotated

around the y-axis.

455. The loudspeaker created by revolving y = 1/x from

x = 1 to x = 4 around the x-axis.

For the following exercises, consider the Karun-3 dam in
Iran. Its shape can be approximated as an isosceles triangle
with height 205 m and width 388 m. Assume the current

depth of the water is 180 m. The density of water is 1000
kg/m 3.

456. Find the total force on the wall of the dam.

457. You are a crime scene investigator attempting to
determine the time of death of a victim. It is noon and
45°F outside and the temperature of the body is 78°F.
You know the cooling constant is k = 0.00824°F/min.
When did the victim die, assuming that a human’s
temperature is 98°F ?

For the following exercise, consider the stock market crash
in 1929 in the United States. The table lists the Dow Jones

industrial average per year leading up to the crash.

Years after 1920 Value ($)

1 63.90

3 100

5 110

7 160

9 381.17

Source: http://stockcharts.com/
freecharts/historical/
djia19201940.html

458. [T] The best-fit exponential curve to these data is
given by y = 40.71 + 1.224x. Why do you think the gains

of the market were unsustainable? Use first and second
derivatives to help justify your answer. What would this
model predict the Dow Jones industrial average to be in
2014 ?

For the following exercises, consider the catenoid, the only
solid of revolution that has a minimal surface, or zero
mean curvature. A catenoid in nature can be found when
stretching soap between two rings.

459. Find the volume of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x-axis, as shown here.

460. Find surface area of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x -axis.
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3 | TECHNIQUES OF
INTEGRATION

Figure 3.1 Careful planning of traffic signals can prevent or reduce the number of accidents at busy intersections. (credit:
modification of work by David McKelvey, Flickr)

Chapter Outline

3.1 Integration by Parts

3.2 Trigonometric Integrals

3.3 Trigonometric Substitution

3.4 Partial Fractions

3.5 Other Strategies for Integration

3.6 Numerical Integration

3.7 Improper Integrals

Introduction
In a large city, accidents occurred at an average rate of one every three months at a particularly busy intersection. After
residents complained, changes were made to the traffic lights at the intersection. It has now been eight months since the
changes were made and there have been no accidents. Were the changes effective or is the eight-month interval without
an accident a result of chance? We explore this question later in this chapter and see that integration is an essential part of
determining the answer (see Example 3.49).

We saw in the previous chapter how important integration can be for all kinds of different topics—from calculations of
volumes to flow rates, and from using a velocity function to determine a position to locating centers of mass. It is no
surprise, then, that techniques for finding antiderivatives (or indefinite integrals) are important to know for everyone who
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uses them. We have already discussed some basic integration formulas and the method of integration by substitution. In
this chapter, we study some additional techniques, including some ways of approximating definite integrals when normal
techniques do not work.

3.1 | Integration by Parts

Learning Objectives
3.1.1 Recognize when to use integration by parts.

3.1.2 Use the integration-by-parts formula to solve integration problems.

3.1.3 Use the integration-by-parts formula for definite integrals.

By now we have a fairly thorough procedure for how to evaluate many basic integrals. However, although we can integrate

∫ xsin(x2)dx by using the substitution, u = x2, something as simple looking as ∫ xsinx dx defies us. Many students

want to know whether there is a product rule for integration. There isn’t, but there is a technique based on the product rule
for differentiation that allows us to exchange one integral for another. We call this technique integration by parts.

The Integration-by-Parts Formula
If, h(x) = f (x)g(x), then by using the product rule, we obtain h′(x) = f ′(x)g(x) + g′(x) f (x). Although at first it may

seem counterproductive, let’s now integrate both sides of this equation: ∫ h′(x)dx = ∫ ⎛
⎝g(x) f ′(x) + f (x)g′(x)⎞

⎠dx.

This gives us

h(x) = f (x)g(x) = ∫ g(x) f ′(x)dx + ∫ f (x)g′(x)dx.

Now we solve for ∫ f (x)g′(x)dx :

∫ f (x)g′(x)dx = f (x)g(x) − ∫ g(x) f ′(x)dx.

By making the substitutions u = f (x) and v = g(x), which in turn make du = f ′(x)dx and dv = g′(x)dx, we have the

more compact form

∫ u dv = uv − ∫ v du.

Theorem 3.1: Integration by Parts

Let u = f (x) and v = g(x) be functions with continuous derivatives. Then, the integration-by-parts formula for the

integral involving these two functions is:

(3.1)∫ u dv = uv − ∫ v du.

The advantage of using the integration-by-parts formula is that we can use it to exchange one integral for another, possibly
easier, integral. The following example illustrates its use.

Example 3.1

Using Integration by Parts

Use integration by parts with u = x and dv = sinx dx to evaluate ∫ xsinx dx.
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3.1

Solution

By choosing u = x, we have du = 1dx. Since dv = sinx dx, we get v = ∫ sinx dx = −cosx. It is handy to

keep track of these values as follows:

u = x dv = sinx dx

du = 1dx v = ∫ sinx dx = −cosx.

Applying the integration-by-parts formula results in

∫ xsinx dx = (x)(−cosx) − ∫ (−cosx)(1dx) Substitute.

= −xcosx + ∫ cosx dx Simplify.

= −xcosx + sinx + C. Use ∫ cosx dx = sinx + C.

Analysis
At this point, there are probably a few items that need clarification. First of all, you may be curious about
what would have happened if we had chosen u = sinx and dv = x. If we had done so, then we would

have du = cosx and v = 1
2x2. Thus, after applying integration by parts, we have

∫ xsinx dx = 1
2x2 sinx − ∫ 1

2x2 cosx dx. Unfortunately, with the new integral, we are in no better position

than before. It is important to keep in mind that when we apply integration by parts, we may need to try several
choices for u and dv before finding a choice that works.

Second, you may wonder why, when we find v = ∫ sinx dx = −cosx, we do not use v = −cosx + K. To see

that it makes no difference, we can rework the problem using v = −cosx + K:

∫ xsinx dx = (x)(−cosx + K) − ∫ (−cosx + K)(1dx)

= −xcosx + Kx + ∫ cosx dx − ∫ Kdx
= −xcosx + Kx + sinx − Kx + C
= −xcosx + sinx + C.

As you can see, it makes no difference in the final solution.

Last, we can check to make sure that our antiderivative is correct by differentiating −xcosx + sinx + C:

d
dx(−xcosx + sinx + C) = (−1)cosx + (−x)(−sinx) + cosx

= xsinx.

Therefore, the antiderivative checks out.

Watch this video (http://www.openstaxcollege.org/l/20_intbyparts1) and visit this website
(http://www.openstaxcollege.org/l/20_intbyparts2) for examples of integration by parts.

Evaluate ∫ xe2x dx using the integration-by-parts formula with u = x and dv = e2x dx.

The natural question to ask at this point is: How do we know how to choose u and dv? Sometimes it is a matter of trial

and error; however, the acronym LIATE can often help to take some of the guesswork out of our choices. This acronym
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stands for Logarithmic Functions, Inverse Trigonometric Functions, Algebraic Functions, Trigonometric Functions, and
Exponential Functions. This mnemonic serves as an aid in determining an appropriate choice for u.

The type of function in the integral that appears first in the list should be our first choice of u. For example, if an integral

contains a logarithmic function and an algebraic function, we should choose u to be the logarithmic function, because L

comes before A in LIATE. The integral in Example 3.1 has a trigonometric function (sinx) and an algebraic function

(x). Because A comes before T in LIATE, we chose u to be the algebraic function. When we have chosen u, dv is

selected to be the remaining part of the function to be integrated, together with dx.

Why does this mnemonic work? Remember that whatever we pick to be dv must be something we can integrate. Since we

do not have integration formulas that allow us to integrate simple logarithmic functions and inverse trigonometric functions,
it makes sense that they should not be chosen as values for dv. Consequently, they should be at the head of the list as

choices for u. Thus, we put LI at the beginning of the mnemonic. (We could just as easily have started with IL, since

these two types of functions won’t appear together in an integration-by-parts problem.) The exponential and trigonometric
functions are at the end of our list because they are fairly easy to integrate and make good choices for dv. Thus, we have

TE at the end of our mnemonic. (We could just as easily have used ET at the end, since when these types of functions appear
together it usually doesn’t really matter which one is u and which one is dv.) Algebraic functions are generally easy both

to integrate and to differentiate, and they come in the middle of the mnemonic.

Example 3.2

Using Integration by Parts

Evaluate ∫ lnx
x3 dx.

Solution

Begin by rewriting the integral:

∫ lnx
x3 dx = ∫ x−3 lnx dx.

Since this integral contains the algebraic function x−3 and the logarithmic function lnx, choose u = lnx,

since L comes before A in LIATE. After we have chosen u = lnx, we must choose dv = x−3 dx.

Next, since u = lnx, we have du = 1
xdx. Also, v = ∫ x−3 dx = − 1

2x−2. Summarizing,

u = lnx dv = x−3 dx

du = 1
xdx v = ∫ x−3 dx = − 1

2x−2.

Substituting into the integration-by-parts formula (Equation 3.1) gives

∫ lnx
x3 dx = ∫ x−3 lnx dx = ⎛

⎝lnx)(− 1
2x−2⎞

⎠ − ∫ ⎛
⎝−

1
2x−2⎞

⎠(
1
xdx)

= − 1
2x−2 lnx + ∫ 1

2x−3 dx Simplify.

= − 1
2x−2 lnx − 1

4x−2 + C Integrate.

= − 1
2x2lnx − 1

4x2 + C. Rewrite with positive integers.
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3.2 Evaluate ∫ x lnx dx.

In some cases, as in the next two examples, it may be necessary to apply integration by parts more than once.

Example 3.3

Applying Integration by Parts More Than Once

Evaluate ∫ x2 e3x dx.

Solution

Using LIATE, choose u = x2 and dv = e3x dx. Thus, du = 2x dx and v = ∫ e3x dx = ⎛
⎝
1
3

⎞
⎠e

3x. Therefore,

u = x2 dv = e3x dx

du = 2x dx v = ∫ e3x dx = 1
3e3x.

Substituting into Equation 3.1 produces

∫ x2 e3x dx = 1
3x2 e3x − ∫ 2

3xe3x dx.

We still cannot integrate ∫ 2
3xe3x dx directly, but the integral now has a lower power on x. We can evaluate this

new integral by using integration by parts again. To do this, choose u = x and dv = 2
3e3x dx. Thus, du = dx

and v = ∫ ⎛
⎝
2
3

⎞
⎠e

3x dx = ⎛
⎝
2
9

⎞
⎠e

3x. Now we have

u = x dv = 2
3e3x dx

du = dx v = ∫ 2
3e3x dx = 2

9e3x.

Substituting back into the previous equation yields

∫ x2 e3x dx = 1
3x2 e3x − ⎛

⎝
2
9xe3x − ∫ 2

9e3x dx⎞
⎠.

After evaluating the last integral and simplifying, we obtain

∫ x2 e3x dx = 1
3x2 e3x − 2

9xe3x + 2
27e3x + C.

Example 3.4

Applying Integration by Parts When LIATE Doesn’t Quite Work

Evaluate ∫ t3 et2
dt.
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Solution

If we use a strict interpretation of the mnemonic LIATE to make our choice of u, we end up with u = t3 and

dv = et2
dt. Unfortunately, this choice won’t work because we are unable to evaluate ∫ et2

dt. However, since

we can evaluate ∫ tet2
dx, we can try choosing u = t2 and dv = tet2

dt. With these choices we have

u = t2 dv = tet2
dt

du = 2t dt v = ∫ tet2
dt = 1

2et2
.

Thus, we obtain

∫ t3 et2
dt = 1

2t2 et2
− ∫ 1

2et2
2tdt

= 1
2t2 et2

− 1
2et2

+ C.

Example 3.5

Applying Integration by Parts More Than Once

Evaluate ∫ sin(lnx)dx.

Solution

This integral appears to have only one function—namely, sin(lnx) —however, we can always use the constant

function 1 as the other function. In this example, let’s choose u = sin(lnx) and dv = 1dx. (The decision to

use u = sin(lnx) is easy. We can’t choose dv = sin(lnx)dx because if we could integrate it, we wouldn’t be

using integration by parts in the first place!) Consequently, du = (1/x)cos(ln x)dx and v = ∫ 1dx = x. After

applying integration by parts to the integral and simplifying, we have

∫ sin(lnx)dx = xsin(lnx) − ∫ cos(lnx)dx.

Unfortunately, this process leaves us with a new integral that is very similar to the original. However, let’s see
what happens when we apply integration by parts again. This time let’s choose u = cos(lnx) and dv = 1dx,

making du = −(1/x)sin(lnx)dx and v = ∫ 1dx = x. Substituting, we have

∫ sin(lnx)dx = xsin(lnx) − ⎛
⎝xcos(lnx) — ∫ − sin(lnx)dx⎞

⎠.

After simplifying, we obtain

∫ sin(lnx)dx = xsin(lnx) − xcos(lnx) − ∫ sin(lnx)dx.

The last integral is now the same as the original. It may seem that we have simply gone in a circle, but now we

can actually evaluate the integral. To see how to do this more clearly, substitute I = ∫ sin(lnx)dx. Thus, the
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equation becomes

I = xsin(lnx) − xcos(lnx) − I.

First, add I to both sides of the equation to obtain

2I = xsin(lnx) − xcos(lnx).

Next, divide by 2:

I = 1
2xsin(lnx) − 1

2xcos(lnx).

Substituting I = ∫ sin(lnx)dx again, we have

∫ sin(lnx)dx = 1
2xsin(lnx) − 1

2xcos(lnx).

From this we see that (1/2)xsin(lnx) − (1/2)xcos(lnx) is an antiderivative of sin(lnx)dx. For the most general

antiderivative, add +C:

∫ sin(lnx)dx = 1
2xsin(lnx) − 1

2xcos(lnx) + C.

Analysis
If this method feels a little strange at first, we can check the answer by differentiation:

d
dx

⎛
⎝
1
2xsin(lnx) − 1

2xcos(lnx)⎞
⎠

= 1
2(sin(lnx)) + cos(lnx) · 1

x · 1
2x − ⎛

⎝
1
2cos(lnx) − sin(lnx) · 1

x · 1
2x⎞

⎠

= sin(lnx).

Evaluate ∫ x2 sinx dx.

Integration by Parts for Definite Integrals
Now that we have used integration by parts successfully to evaluate indefinite integrals, we turn our attention to definite
integrals. The integration technique is really the same, only we add a step to evaluate the integral at the upper and lower
limits of integration.

Theorem 3.2: Integration by Parts for Definite Integrals

Let u = f (x) and v = g(x) be functions with continuous derivatives on [a, b]. Then

(3.2)∫
a

b
u dv = uv|ab − ∫

a

b
v du.

Example 3.6

Finding the Area of a Region
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Find the area of the region bounded above by the graph of y = tan−1 x and below by the x -axis over the interval

[0, 1].

Solution

This region is shown in Figure 3.2. To find the area, we must evaluate ∫
0

1
tan−1 x dx.

Figure 3.2 To find the area of the shaded region, we have to
use integration by parts.

For this integral, let’s choose u = tan−1 x and dv = dx, thereby making du = 1
x2 + 1

dx and v = x. After

applying the integration-by-parts formula (Equation 3.2) we obtain

Area = x tan−1 x|0
1 − ∫

0

1
x

x2 + 1
dx.

Use u-substitution to obtain

∫
0

1
x

x2 + 1
dx = 1

2ln|x2 + 1|0
1
.

Thus,

Area = x tan−1 x|0
1

− 1
2ln|x2 + 1||0

1
= π

4 − 1
2ln 2.

At this point it might not be a bad idea to do a “reality check” on the reasonableness of our solution. Since
π
4 − 1

2ln2 ≈ 0.4388, and from Figure 3.2 we expect our area to be slightly less than 0.5, this solution appears

to be reasonable.

Example 3.7
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3.4

Finding a Volume of Revolution

Find the volume of the solid obtained by revolving the region bounded by the graph of f (x) = e−x, the x-axis,

the y-axis, and the line x = 1 about the y-axis.

Solution

The best option to solving this problem is to use the shell method. Begin by sketching the region to be revolved,
along with a typical rectangle (see the following graph).

Figure 3.3 We can use the shell method to find a volume of revolution.

To find the volume using shells, we must evaluate 2π∫
0

1
xe−x dx. To do this, let u = x and dv = e−x. These

choices lead to du = dx and v = ∫ e−x = −e−x. Substituting into Equation 3.2, we obtain

Volume = 2π∫
0

1
xe−x dx = 2π(−xe−x |0

1

+ ∫
0

1
e−x dx) Use integration by parts.

= −2πxe−x |0
1 − 2πe−x |0

1
Evaluate ∫

0

1
e−x dx = −e−x |0

1

.

= 2π − 4π
e . Evaluate and simplify.

Analysis
Again, it is a good idea to check the reasonableness of our solution. We observe that the solid has a volume
slightly less than that of a cylinder of radius 1 and height of 1/e added to the volume of a cone of base radius

1 and height of 1 − 1
3. Consequently, the solid should have a volume a bit less than

π(1)2 1
e + ⎛

⎝
π
3

⎞
⎠(1)2 ⎛

⎝1 − 1
e

⎞
⎠ = 2π

3e − π
3 ≈ 1.8177.

Since 2π − 4π
e ≈ 1.6603, we see that our calculated volume is reasonable.

Evaluate ∫
0

π/2
xcosx dx.
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3.1 EXERCISES
In using the technique of integration by parts, you must
carefully choose which expression is u. For each of the
following problems, use the guidelines in this section to
choose u. Do not evaluate the integrals.

1. ∫ x3 e2x dx

2. ∫ x3 ln(x)dx

3. ∫ y3 cosydx

4. ∫ x2 arctanx dx

5. ∫ e3x sin(2x)dx

Find the integral by using the simplest method. Not all
problems require integration by parts.

6. ∫ vsinvdv

7. ∫ lnx dx (Hint: ∫ lnx dx is equivalent to

∫ 1 · ln(x)dx.)

8. ∫ xcosx dx

9. ∫ tan−1 x dx

10. ∫ x2ex dx

11. ∫ xsin(2x)dx

12. ∫ xe4x dx

13. ∫ xe−x dx

14. ∫ xcos3x dx

15. ∫ x2cosx dx

16. ∫ x lnx dx

17. ∫ ln(2x + 1)dx

18. ∫ x2 e4xdx

19. ∫ ex sinx dx

20. ∫ ex cosx dx

21. ∫ xe−x2
dx

22. ∫ x2 e−x dx

23. ∫ sin(ln(2x))dx

24. ∫ cos(ln x)dx

25. ∫ (ln x)2 dx

26. ∫ ln(x2)dx

27. ∫ x2 lnx dx

28. ∫ sin−1 x dx

29. ∫ cos−1(2x)dx

30. ∫ xarctanx dx

31. ∫ x2 sinx dx

32. ∫ x3 cosx dx

33. ∫ x3 sinx dx

34. ∫ x3 ex dx

35. ∫ xsec−1 x dx

36. ∫ xsec2 x dx

37. ∫ xcoshx dx
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Compute the definite integrals. Use a graphing utility to
confirm your answers.

38. ∫
1/e

1
lnx dx

39. ∫
0

1
xe−2x dx (Express the answer in exact form.)

40. ∫
0

1
e x dx(let u = x)

41. ∫
1

e
ln(x2)dx

42. ∫
0

π
xcosx dx

43. ∫
−π

π
xsinx dx (Express the answer in exact form.)

44. ∫
0

3
ln(x2 + 1)dx (Express the answer in exact form.)

45. ∫
0

π/2
x2 sinx dx (Express the answer in exact form.)

46. ∫
0

1
x5x dx (Express the answer using five significant

digits.)

47. Evaluate ∫ cosx ln(sinx)dx

Derive the following formulas using the technique of
integration by parts. Assume that n is a positive integer.
These formulas are called reduction formulas because the
exponent in the x term has been reduced by one in each
case. The second integral is simpler than the original
integral.

48. ∫ xn ex dx = xn ex − n∫ xn − 1 ex dx

49. ∫ xn cosx dx = xn sinx − n∫ xn − 1 sinx dx

50. ∫ xn sinx dx = ______

51. Integrate ∫ 2x 2x − 3dx using two methods:

a. Using parts, letting dv = 2x − 3dx
b. Substitution, letting u = 2x − 3

State whether you would use integration by parts to

evaluate the integral. If so, identify u and dv. If not,
describe the technique used to perform the integration
without actually doing the problem.

52. ∫ x lnx dx

53. ∫ ln2 x
x dx

54. ∫ xex dx

55. ∫ xex2 − 3 dx

56. ∫ x2 sinx dx

57. ∫ x2 sin(3x3 + 2)dx

Sketch the region bounded above by the curve, the x-axis,
and x = 1, and find the area of the region. Provide the

exact form or round answers to the number of places
indicated.

58. y = 2xe−x (Approximate answer to four decimal

places.)

59. y = e−x sin(πx) (Approximate answer to five

decimal places.)

Find the volume generated by rotating the region bounded
by the given curves about the specified line. Express the
answers in exact form or approximate to the number of
decimal places indicated.

60. y = sinx, y = 0, x = 2π, x = 3π about the y-axis

(Express the answer in exact form.)

61. y = e−x y = 0, x = −1x = 0; about x = 1
(Express the answer in exact form.)

62. A particle moving along a straight line has a velocity

of v(t) = t2 e−t after t sec. How far does it travel in the

first 2 sec? (Assume the units are in feet and express the
answer in exact form.)

63. Find the area under the graph of y = sec3 x from

x = 0to x = 1. (Round the answer to two significant

digits.)

64. Find the area between y = (x − 2)ex and the x-axis

from x = 2 to x = 5. (Express the answer in exact form.)
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65. Find the area of the region enclosed by the curve

y = xcosx and the x-axis for 11π
2 ≤ x ≤ 13π

2 . (Express

the answer in exact form.)

66. Find the volume of the solid generated by revolving
the region bounded by the curve y = lnx, the x-axis,

and the vertical line x = e2 about the x-axis. (Express the

answer in exact form.)

67. Find the volume of the solid generated by revolving
the region bounded by the curve y = 4cosx and the

x-axis, π
2 ≤ x ≤ 3π

2 , about the x-axis. (Express the

answer in exact form.)

68. Find the volume of the solid generated by revolving
the region in the first quadrant bounded by y = ex and

the x-axis, from x = 0 to x = ln(7), about the y-axis.

(Express the answer in exact form.)
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3.5

3.2 | Trigonometric Integrals

Learning Objectives
3.2.1 Solve integration problems involving products and powers of sinx and cosx.
3.2.2 Solve integration problems involving products and powers of tanx and secx.
3.2.3 Use reduction formulas to solve trigonometric integrals.

In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called
trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is
featured in Trigonometric Substitution. This technique allows us to convert algebraic expressions that we may not be
able to integrate into expressions involving trigonometric functions, which we may be able to integrate using the techniques
described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and
spherical coordinate systems later. Let’s begin our study with products of sinx and cosx.

Integrating Products and Powers of sinx and cosx
A key idea behind the strategy used to integrate combinations of products and powers of sinx and cosx involves rewriting

these expressions as sums and differences of integrals of the form ∫ sin j xcosx dx or ∫ cos j xsinx dx. After rewriting

these integrals, we evaluate them using u-substitution. Before describing the general process in detail, let’s take a look at
the following examples.

Example 3.8

Integrating ∫cos j xsinx dx

Evaluate ∫ cos3 xsinx dx.

Solution

Use u -substitution and let u = cosx. In this case, du = −sinx dx. Thus,

∫ cos3 xsinx dx = −∫ u3 du

= − 1
4u4 + C

= − 1
4cos4 x + C.

Evaluate ∫ sin4 xcosx dx.

Example 3.9

A Preliminary Example: Integrating ∫cos j xsink x dx Where k is Odd
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3.6

Evaluate ∫ cos2 xsin3 x dx.

Solution

To convert this integral to integrals of the form ∫ cos j xsinx dx, rewrite sin3 x = sin2 xsinx and make the

substitution sin2 x = 1 − cos2 x. Thus,

∫ cos2 xsin3 x dx = ∫ cos2 x(1 − cos2 x)sinx dx Let u = cosx; then du = −sinx dx.

= −∫ u2 ⎛
⎝1 − u2⎞

⎠du

= ∫ ⎛
⎝u4 − u2⎞

⎠du

= 1
5u5 − 1

3u3 + C

= 1
5cos5 x − 1

3cos3 x + C.

Evaluate ∫ cos3 xsin2 x dx.

In the next example, we see the strategy that must be applied when there are only even powers of sinx and cosx. For

integrals of this type, the identities

sin2 x = 1
2 − 1

2cos(2x) = 1 − cos(2x)
2

and

cos2 x = 1
2 + 1

2cos(2x) = 1 + cos(2x)
2

are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the

double-angle identity cos(2x) = cos2 x − sin2 x and the Pythagorean identity cos2 x + sin2 x = 1.

Example 3.10

Integrating an Even Power of sinx

Evaluate ∫ sin2 x dx.

Solution

To evaluate this integral, let’s use the trigonometric identity sin2 x = 1
2 − 1

2cos(2x). Thus,

∫ sin2 x dx = ∫ ⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠dx

= 1
2x − 1

4sin(2x) + C.
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3.7 Evaluate ∫ cos2 x dx.

The general process for integrating products of powers of sinx and cosx is summarized in the following set of guidelines.

Problem-Solving Strategy: Integrating Products and Powers of sin x and cos x

To integrate ∫ cos j xsink x dx use the following strategies:

1. If k is odd, rewrite sink x = sink − 1 xsinx and use the identity sin2 x = 1 − cos2 x to rewrite sink − 1 x in

terms of cosx. Integrate using the substitution u = cosx. This substitution makes du = −sinx dx.

2. If j is odd, rewrite cos j x = cos j − 1 xcosx and use the identity cos2 x = 1 − sin2 x to rewrite cos j − 1 x
in terms of sinx. Integrate using the substitution u = sinx. This substitution makes du = cosx dx. (Note: If

both j and k are odd, either strategy 1 or strategy 2 may be used.)

3. If both j and k are even, use sin2 x = (1/2) − (1/2)cos(2x) and cos2 x = (1/2) + (1/2)cos(2x). After

applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.

Example 3.11

Integrating ∫cos j xsink x dx where k is Odd

Evaluate ∫ cos8 xsin5 x dx.

Solution

Since the power on sinx is odd, use strategy 1. Thus,

∫ cos8 xsin5 x dx = ∫ cos8 xsin4 xsinx dx Break off sinx.

= ∫ cos8 x(sin2 x)2 sinx dx Rewrite sin4 x = (sin2 x)2.

= ∫ cos8 x(1 − cos2 x)2 sinx dx Substitute sin2 x = 1 − cos2 x.

= ∫ u8 (1 − u2)2(−du) Let u = cosx and du = −sinx dx.

= ∫ ⎛
⎝−u8 + 2u10 − u12⎞

⎠du Expand.

= − 1
9u9 + 2

11u11 − 1
13u13 + C Evaluate the integral.

= − 1
9cos9 x + 2

11cos11 x − 1
13cos13 x + C. Substitute u = cosx.

Example 3.12
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3.9

Integrating ∫cos j xsink x dx where k and j are Even

Evaluate ∫ sin4 x dx.

Solution

Since the power on sinx is even (k = 4) and the power on cosx is even ⎛
⎝ j = 0⎞

⎠, we must use strategy 3.

Thus,

∫ sin4 x dx = ∫ ⎛
⎝sin2 x⎞

⎠
2

dx Rewrite sin4 x = ⎛
⎝sin2 x⎞

⎠
2
.

= ∫ ⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠
2

dx Substitute sin2 x = 1
2 − 1

2cos(2x).

= ∫ ⎛
⎝
1
4 − 1

2cos(2x) + 1
4cos2(2x)⎞

⎠dx Expand⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠
2
.

= ∫ ⎛
⎝
1
4 − 1

2cos(2x) + 1
4(1

2 + 1
2cos(4x)⎞

⎠dx.

Since cos2(2x) has an even power, substitute cos2(2x) = 1
2 + 1

2cos(4x):

= ∫ ⎛
⎝
3
8 − 1

2cos(2x) + 1
8cos(4x)⎞⎠dx Simplify.

= 3
8x − 1

4sin(2x) + 1
32 sin(4x) + C Evaluate the integral.

Evaluate ∫ cos3 x dx.

Evaluate ∫ cos2(3x)dx.

In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often
necessary to integrate products that include sin(ax), sin(bx), cos(ax), and cos(bx). These integrals are evaluated by

applying trigonometric identities, as outlined in the following rule.

Rule: Integrating Products of Sines and Cosines of Different Angles

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions

(3.3)sin(ax)sin(bx) = 1
2cos((a − b)x) − 1

2cos((a + b)x)

(3.4)sin(ax)cos(bx) = 1
2sin⎛

⎝(a − b)x⎞
⎠ + 1

2sin((a + b)x)

(3.5)cos(ax)cos(bx) = 1
2cos((a − b)x) + 1

2cos((a + b)x)

These formulas may be derived from the sum-of-angle formulas for sine and cosine.
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Example 3.13

Evaluating ∫ sin(ax)cos(bx)dx

Evaluate ∫ sin(5x)cos(3x)dx.

Solution

Apply the identity sin(5x)cos(3x) = 1
2sin(2x) − 1

2cos(8x). Thus,

∫ sin(5x)cos(3x)dx = ∫ 1
2sin(2x) − 1

2cos(8x)dx

= − 1
4cos(2x) − 1

16 sin(8x) + C.

Evaluate ∫ cos(6x)cos(5x)dx.

Integrating Products and Powers of tanx and secx
Before discussing the integration of products and powers of tanx and secx, it is useful to recall the integrals involving

tanx and secx we have already learned:

1. ∫ sec2 x dx = tanx + C

2. ∫ secx tanx dx = secx + C

3. ∫ tanx dx = ln|secx| + C

4. ∫ secx dx = ln|secx + tanx| + C.

For most integrals of products and powers of tanx and secx, we rewrite the expression we wish to integrate as the sum

or difference of integrals of the form ∫ tan j xsec2 x dx or ∫ sec j x tanx dx. As we see in the following example, we can

evaluate these new integrals by using u-substitution.

Example 3.14

Evaluating ∫ sec j xtanx dx

Evaluate ∫ sec5 x tanx dx.

Solution

Start by rewriting sec5 x tanx as sec4 xsecx tanx.
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∫ sec5 x tanx dx = ∫ sec4 xsecx tanx dx Let u = secx; then, du = secx tanx dx.

= ∫ u4 du Evaluate the integral.

= 1
5u5 + C Substitute secx = u.

= 1
5sec5 x + C

You can read some interesting information at this website (http://www.openstaxcollege.org/l/
20_intseccube) to learn about a common integral involving the secant.

Evaluate ∫ tan5 xsec2 x dx.

We now take a look at the various strategies for integrating products and powers of secx and tanx.

Problem-Solving Strategy: Integrating ∫ tank xsec j x dx

To integrate ∫ tank xsec j x dx, use the following strategies:

1. If j is even and j ≥ 2, rewrite sec j x = sec j − 2 xsec2 x and use sec2 x = tan2 x + 1 to rewrite sec j − 2 x

in terms of tanx. Let u = tanx and du = sec2 x.

2. If k is odd and j ≥ 1, rewrite tank xsec j x = tank − 1 xsec j − 1 xsecx tanx and use tan2 x = sec2 x − 1 to

rewrite tank − 1 x in terms of secx. Let u = secx and du = secx tanx dx. (Note: If j is even and k is odd,

then either strategy 1 or strategy 2 may be used.)

3. If k is odd where k ≥ 3 and j = 0, rewrite

tank x = tank − 2 x tan2 x = tank − 2 x(sec2 x − 1) = tank − 2 xsec2 x − tank − 2 x. It may be necessary to

repeat this process on the tank − 2 x term.

4. If k is even and j is odd, then use tan2 x = sec2 x − 1 to express tank x in terms of secx. Use integration

by parts to integrate odd powers of secx.

Example 3.15

Integrating ∫ tank xsec j x dx when j is Even

Evaluate ∫ tan6 xsec4 x dx.
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Solution

Since the power on secx is even, rewrite sec4 x = sec2 xsec2 x and use sec2 x = tan2 x + 1 to rewrite the first

sec2 x in terms of tanx. Thus,

∫ tan6 xsec4 x dx = ∫ tan6 x⎛
⎝tan2 x + 1⎞

⎠sec2 x dx Let u = tanx and du = sec2 x.

= ∫ u6 ⎛
⎝u2 + 1⎞

⎠du Expand.

= ∫ (u8 + u6)du Evaluate the integral.

= 1
9u9 + 1

7u7 + C Substitute tanx = u.

= 1
9tan9 x + 1

7tan7 x + C.

Example 3.16

Integrating ∫ tank xsec j x dx when k is Odd

Evaluate ∫ tan5 xsec3 x dx.

Solution

Since the power on tanx is odd, begin by rewriting tan5 xsec3 x = tan4 xsec2 xsecx tanx. Thus,

tan5 xsec3 x = tan4 xsec2 xsecx tanx. Write tan4 x = (tan2 x)2.

∫ tan5 xsec3 x dx = ∫ (tan2 x)2 sec2 xsecx tanx dx Use tan2 x = sec2 x − 1.

= ∫ (sec2 x − 1)2 sec2 xsecx tanx dx Let u = secx and du = secx tanx dx.

= ∫ (u2 − 1)2 u2 du Expand.

= ∫ ⎛
⎝u

6 − 2u4 + u2⎞
⎠du Integrate.

= 1
7u7 − 2

5u5 + 1
3u3 + C Substitute secx = u.

= 1
7sec7 x − 2

5sec5 x + 1
3sec3 x + C.

Example 3.17

Integrating ∫ tank x dx where k is Odd and k ≥ 3

Evaluate ∫ tan3 x dx.
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Solution

Begin by rewriting tan3 x = tanx tan2 x = tanx⎛
⎝sec2 x − 1⎞

⎠ = tanxsec2 x − tanx. Thus,

∫ tan3 x dx = ∫ ⎛
⎝tanxsec2 x − tanx⎞

⎠dx

= ∫ tanxsec2 x dx − ∫ tanx dx

= 1
2tan2 x − ln|secx| + C.

For the first integral, use the substitution u = tanx. For the second integral, use the formula.

Example 3.18

Integrating ∫ sec3 x dx

Integrate ∫ sec3 x dx.

Solution

This integral requires integration by parts. To begin, let u = secx and dv = sec2 x. These choices make

du = secx tanx and v = tanx. Thus,

∫ sec3 x dx = secx tanx − ∫ tanxsecx tanx dx

= secx tanx − ∫ tan2 xsecx dx Simplify.

= secx tanx − ∫ ⎛
⎝sec2 x − 1⎞

⎠secx dx Substitute tan2 x = sec2 x − 1.

= secx tanx + ∫ secx dx − ∫ sec3 x dx Rewrite.

= secx tanx + ln|secx + tanx| − ∫ sec3 x dx. Evaluate∫ secx dx.

We now have

∫ sec3 x dx = secx tanx + ln|secx + tanx| − ∫ sec3 x dx.

Since the integral ∫ sec3 x dx has reappeared on the right-hand side, we can solve for ∫ sec3 x dx by adding it

to both sides. In doing so, we obtain

2∫ sec3 x dx = secx tanx + ln|secx + tanx|.

Dividing by 2, we arrive at

∫ sec3 x dx = 1
2secx tanx + 1

2ln|secx + tanx| + C.

Evaluate ∫ tan3 xsec7 x dx.
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Reduction Formulas

Evaluating ∫ secn x dx for values of n where n is odd requires integration by parts. In addition, we must also know

the value of ∫ secn − 2 x dx to evaluate ∫ secn x dx. The evaluation of ∫ tann x dx also requires being able to integrate

∫ tann − 2 x dx. To make the process easier, we can derive and apply the following power reduction formulas. These

rules allow us to replace the integral of a power of secx or tanx with the integral of a lower power of secx or tanx.

Rule: Reduction Formulas for ∫ secn x dx and ∫ tann x dx

(3.6)∫ secn x dx = 1
n − 1secn − 2 x tanx + n − 2

n − 1∫ secn − 2 x dx

(3.7)∫ tann x dx = 1
n − 1tann − 1 x − ∫ tann − 2 x dx

The first power reduction rule may be verified by applying integration by parts. The second may be verified by
following the strategy outlined for integrating odd powers of tanx.

Example 3.19

Revisiting ∫ sec3 x dx

Apply a reduction formula to evaluate ∫ sec3 x dx.

Solution

By applying the first reduction formula, we obtain

∫ sec3 x dx = 1
2secx tanx + 1

2∫ secx dx

= 1
2secx tanx + 1

2ln|secx + tanx| + C.

Example 3.20

Using a Reduction Formula

Evaluate ∫ tan4 x dx.

Solution

Applying the reduction formula for ∫ tan4 x dx we have
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3.13

∫ tan4 x dx = 1
3tan3 x − ∫ tan2 x dx

= 1
3tan3 x − (tanx − ∫ tan0 x dx) Apply the reduction formula to∫ tan2 x dx.

= 1
3tan3 x − tanx + ∫ 1 dx Simplify.

= 1
3tan3 x − tanx + x + C. Evaluate∫ 1dx.

Apply the reduction formula to ∫ sec5 x dx.
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3.2 EXERCISES
Fill in the blank to make a true statement.

69. sin2 x + _______ = 1

70. sec2 x − 1 = _______

Use an identity to reduce the power of the trigonometric
function to a trigonometric function raised to the first
power.

71. sin2 x = _______

72. cos2 x = _______

Evaluate each of the following integrals by u-substitution.

73. ∫ sin3 xcosx dx

74. ∫ cosxsinx dx

75. ∫ tan5(2x)sec2(2x)dx

76. ∫ sin7(2x)cos(2x)dx

77. ∫ tan⎛
⎝
x
2

⎞
⎠sec2 ⎛

⎝
x
2

⎞
⎠dx

78. ∫ tan2 xsec2 x dx

Compute the following integrals using the guidelines for
integrating powers of trigonometric functions. Use a CAS
to check the solutions. (Note: Some of the problems may be
done using techniques of integration learned previously.)

79. ∫ sin3 x dx

80. ∫ cos3 x dx

81. ∫ sinxcosx dx

82. ∫ cos5 x dx

83. ∫ sin5 xcos2 x dx

84. ∫ sin3 xcos3 x dx

85. ∫ sinxcosx dx

86. ∫ sinxcos3 x dx

87. ∫ secx tanx dx

88. ∫ tan(5x)dx

89. ∫ tan2 xsecx dx

90. ∫ tanxsec3 x dx

91. ∫ sec4 x dx

92. ∫ cot x dx

93. ∫ cscx dx

94. ∫ tan3 x
secxdx

For the following exercises, find a general formula for the
integrals.

95. ∫ sin2 axcosax dx

96. ∫ sinaxcosax dx.

Use the double-angle formulas to evaluate the following
integrals.

97. ∫
0

π
sin2 x dx

98. ∫
0

π
sin4 x dx

99. ∫ cos2 3x dx

100. ∫ sin2 xcos2 x dx

101. ∫ sin2 x dx + ∫ cos2 x dx

102. ∫ sin2 xcos2(2x)dx
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For the following exercises, evaluate the definite integrals.
Express answers in exact form whenever possible.

103. ∫
0

2π
cosxsin2x dx

104. ∫
0

π
sin3xsin5x dx

105. ∫
0

π
cos(99x)sin(101x)dx

106. ∫
−π

π
cos2(3x)dx

107. ∫
0

2π
sinxsin(2x)sin(3x)dx

108. ∫
0

4π
cos(x/2)sin(x/2)dx

109. ∫
π/6

π/3
cos3 x

sinx
dx (Round this answer to three decimal

places.)

110. ∫
−π/3

π/3
sec2 x − 1dx

111. ∫
0

π/2
1 − cos(2x)dx

112. Find the area of the region bounded by the graphs of

the equations y = sinx, y = sin3 x, x = 0, and x = π
2.

113. Find the area of the region bounded by the graphs
of the equations

y = cos2 x, y = sin2 x, x = − π
4, and x = π

4.

114. A particle moves in a straight line with the velocity

function v(t) = sin(ωt)cos2 (ωt). Find its position

function x = f (t) if f (0) = 0.

115. Find the average value of the function

f (x) = sin2 xcos3 x over the interval [−π, π].

For the following exercises, solve the differential
equations.

116.
dy
dx = sin2 x. The curve passes through point

(0, 0).

117.
dy
dθ = sin4 (πθ)

118. Find the length of the curve
y = ln(cscx), π

4 ≤ x ≤ π
2.

119. Find the length of the curve
y = ln(sinx), π

3 ≤ x ≤ π
2.

120. Find the volume generated by revolving the curve
y = cos(3x) about the x-axis, 0 ≤ x ≤ π

36.

For the following exercises, use this information: The inner
product of two functions f and g over [a, b] is defined

by f (x) · g(x) = 〈 f , g 〉 = ∫
a

b
f · gdx. Two distinct

functions f and g are said to be orthogonal if
〈 f , g 〉 = 0.

121. Show that {sin(2x), cos(3x)} are orthogonal over

the interval [−π, π].

122. Evaluate ∫
−π

π
sin(mx)cos(nx)dx.

123. Integrate y′ = tanxsec4 x.

For each pair of integrals, determine which one is more
difficult to evaluate. Explain your reasoning.

124. ∫ sin456 xcosx dx or ∫ sin2 xcos2 x dx

125. ∫ tan350 xsec2 x dx or ∫ tan350 xsecx dx
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3.3 | Trigonometric Substitution

Learning Objectives
3.3.1 Solve integration problems involving the square root of a sum or difference of two squares.

In this section, we explore integrals containing expressions of the form a2 − x2, a2 + x2, and x2 − a2, where the

values of a are positive. We have already encountered and evaluated integrals containing some expressions of this type, but

many still remain inaccessible. The technique of trigonometric substitution comes in very handy when evaluating these
integrals. This technique uses substitution to rewrite these integrals as trigonometric integrals.

Integrals Involving a2 − x2

Before developing a general strategy for integrals containing a2 − x2, consider the integral ∫ 9 − x2dx. This integral

cannot be evaluated using any of the techniques we have discussed so far. However, if we make the substitution
x = 3sinθ, we have dx = 3cosθdθ. After substituting into the integral, we have

∫ 9 − x2dx = ∫ 9 − (3sinθ)23cosθdθ.

After simplifying, we have

∫ 9 − x2dx = ∫ 9 1 − sin2 θcosθdθ.

Letting 1 − sin2 θ = cos2 θ, we now have

∫ 9 − x2dx = ∫ 9 cos2 θcosθdθ.

Assuming that cosθ ≥ 0, we have

∫ 9 − x2dx = ∫ 9cos2 θdθ.

At this point, we can evaluate the integral using the techniques developed for integrating powers and products of
trigonometric functions. Before completing this example, let’s take a look at the general theory behind this idea.

To evaluate integrals involving a2 − x2, we make the substitution x = asinθ and dx = acosθ. To see that this

actually makes sense, consider the following argument: The domain of a2 − x2 is [−a, a]. Thus, −a ≤ x ≤ a.
Consequently, −1 ≤ x

a ≤ 1. Since the range of sinx over ⎡
⎣−(π/2), π/2⎤

⎦ is [−1, 1], there is a unique angle θ satisfying

−(π/2) ≤ θ ≤ π/2 so that sinθ = x/a, or equivalently, so that x = asinθ. If we substitute x = asinθ into a2 − x2,
we get

a2 − x2 = a2 − (asinθ)2 Let x = asinθ where − π
2 ≤ θ ≤ π

2. Simplify.

= a2 − a2 sin2 θ Factor out a2.
= a2(1 − sin2 θ) Substitute 1 − sin2 x = cos2 x.

= a2 cos2 θ Take the square root.
= |acosθ|
= acosθ.

Since cosx ≥ 0 on −π
2 ≤ θ ≤ π

2 and a > 0, |acosθ| = acosθ. We can see, from this discussion, that by making the

substitution x = asinθ, we are able to convert an integral involving a radical into an integral involving trigonometric

functions. After we evaluate the integral, we can convert the solution back to an expression involving x. To see how to
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do this, let’s begin by assuming that 0 < x < a. In this case, 0 < θ < π
2. Since sinθ = x

a, we can draw the reference

triangle in Figure 3.4 to assist in expressing the values of cosθ, tanθ, and the remaining trigonometric functions in

terms of x. It can be shown that this triangle actually produces the correct values of the trigonometric functions evaluated

at θ for all θ satisfying −π
2 ≤ θ ≤ π

2. It is useful to observe that the expression a2 − x2 actually appears as the length

of one side of the triangle. Last, should θ appear by itself, we use θ = sin−1 ⎛
⎝
x
a

⎞
⎠.

Figure 3.4 A reference triangle can help express the
trigonometric functions evaluated at θ in terms of x.

The essential part of this discussion is summarized in the following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving a2 − x2

1. It is a good idea to make sure the integral cannot be evaluated easily in another way. For example, although

this method can be applied to integrals of the form ∫ 1
a2 − x2

dx, ∫ x
a2 − x2

dx, and ∫ x a2 − x2dx,

they can each be integrated directly either by formula or by a simple u-substitution.

2. Make the substitution x = asinθ and dx = acosθdθ. Note: This substitution yields a2 − x2 = acosθ.

3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangle from Figure 3.4 to rewrite the result in terms of x. You may also need to use some

trigonometric identities and the relationship θ = sin−1 ⎛
⎝
x
a

⎞
⎠.

The following example demonstrates the application of this problem-solving strategy.

Example 3.21

Integrating an Expression Involving a2 − x2

Evaluate ∫ 9 − x2dx.

Solution

Begin by making the substitutions x = 3sinθ and dx = 3cosθdθ. Since sinθ = x
3, we can construct the

reference triangle shown in the following figure.
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Figure 3.5 A reference triangle can be constructed for
Example 3.21.

Thus,

∫ 9 − x2dx = ∫ 9 − (3sinθ)23cosθdθ Substitute x = 3sinθ and dx = 3cosθdθ.

= ∫ 9(1 − sin2 θ)3cosθdθ Simplify.

= ∫ 9cos2 θ3cosθdθ Substitute cos2 θ = 1 − sin2 θ.

= ∫ 3|cosθ|3cosθdθ Take the square root.

= ∫ 9cos2 θdθ
Simplify. Since − π

2 ≤ θ ≤ π
2, cosθ ≥ 0 and

|cosθ| = cosθ.

= ∫ 9⎛
⎝
1
2 + 1

2cos(2θ)⎞
⎠dθ Use the strategy for integrating an even power

of cosθ.
= 9

2θ + 9
4sin(2θ) + C Evaluate the integral.

= 9
2θ + 9

4(2sinθcosθ) + C Substitute sin(2θ) = 2sinθcosθ.

= 9
2sin−1 ⎛

⎝
x
3

⎞
⎠ + 9

2 · x
3 · 9 − x2

3 + C

Substitute sin−1 ⎛
⎝
x
3

⎞
⎠ = θ and sinθ = x

3. Use

the reference triangle to see that

cosθ = 9 − x2

3 and make this substitution.

= 9
2sin−1 ⎛

⎝
x
3

⎞
⎠ + x 9 − x2

2 + C. Simplify.

Example 3.22

Integrating an Expression Involving a2 − x2

Evaluate ∫ 4 − x2
x dx.

Solution

First make the substitutions x = 2sinθ and dx = 2cosθdθ. Since sinθ = x
2, we can construct the reference

triangle shown in the following figure.
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Figure 3.6 A reference triangle can be constructed for
Example 3.22.

Thus,

∫ 4 − x2
x dx = ∫ 4 − (2sinθ)2

2sinθ 2cosθdθ Substitute x = 2sinθ and = 2cosθdθ.

= ∫ 2cos2 θ
sinθ dθ Substitute cos2 θ = 1 − sin2 θ and simplify.

= ∫ 2(1 − sin2 θ)
sinθ dθ Substitute sin2 θ = 1 − cos2 θ.

= ∫ (2cscθ − 2sinθ)dθ
Separate the numerator, simplify, and use

cscθ = 1
sinθ .

= 2ln|cscθ − cotθ| + 2cosθ + C Evaluate the integral.

= 2ln|2x − 4 − x2
x | + 4 − x2 + C.

Use the reference triangle to rewrite the
expression in terms of x and simplify.

In the next example, we see that we sometimes have a choice of methods.

Example 3.23

Integrating an Expression Involving a2 − x2 Two Ways

Evaluate ∫ x3 1 − x2dx two ways: first by using the substitution u = 1 − x2 and then by using a

trigonometric substitution.

Solution

Method 1

Let u = 1 − x2 and hence x2 = 1 − u. Thus, du = −2xdx. In this case, the integral becomes
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3.14

∫ x3 1 − x2dx = − 1
2∫ x2 1 − x2(−2xdx) Make the substitution.

= − 1
2∫ (1 − u) udu Expand the expression.

= − 1
2∫ ⎛

⎝u
1/2 − u3/2⎞

⎠du Evaluate the integral.

= − 1
2

⎛
⎝
2
3u3/2 − 2

5u5/2⎞
⎠ + C Rewrite in terms of x.

= − 1
3

⎛
⎝1 − x2⎞

⎠
3/2

+ 1
5

⎛
⎝1 − x2⎞

⎠
5/2

+ C.

Method 2

Let x = sinθ. In this case, dx = cosθdθ. Using this substitution, we have

∫ x3 1 − x2dx = ∫ sin3 θcos2 θdθ

= ∫ ⎛
⎝1 − cos2 θ⎞

⎠cos2 θsinθdθ Let u = cosθ. Thus, du = −sinθdθ.

= ∫ ⎛
⎝u4 − u2⎞

⎠du

= 1
5u5 − 1

3u3 + C Substitute cosθ = u.

= 1
5cos5 θ − 1

3cos3 θ + C
Use a reference triangle to see that

cosθ = 1 − x2.

= 1
5

⎛
⎝1 − x2⎞

⎠
5/2

− 1
3

⎛
⎝1 − x2⎞

⎠
3/2

+ C.

Rewrite the integral ∫ x3

25 − x2
dx using the appropriate trigonometric substitution (do not evaluate

the integral).

Integrating Expressions Involving a2 + x2

For integrals containing a2 + x2, let’s first consider the domain of this expression. Since a2 + x2 is defined for all

real values of x, we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our

choice is restricted to selecting either x = a tanθ or x = acotθ. Either of these substitutions would actually work, but

the standard substitution is x = a tanθ or, equivalently, tanθ = x/a. With this substitution, we make the assumption that

−(π/2) < θ < π/2, so that we also have θ = tan−1 (x/a). The procedure for using this substitution is outlined in the

following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving a2 + x2

1. Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more
convenient to use an alternative method.

2. Substitute x = a tanθ and dx = asec2 θdθ. This substitution yields

a2 + x2 = a2 + (a tanθ)2 = a2(1 + tan2 θ) = a2 sec2 θ = |asecθ| = asecθ. (Since −π
2 < θ < π

2 and

secθ > 0 over this interval, |asecθ| = asecθ.)
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3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangle from Figure 3.7 to rewrite the result in terms of x. You may also need to use

some trigonometric identities and the relationship θ = tan−1 ⎛
⎝
x
a

⎞
⎠. (Note: The reference triangle is based on the

assumption that x > 0; however, the trigonometric ratios produced from the reference triangle are the same as

the ratios for which x ≤ 0.)

Figure 3.7 A reference triangle can be constructed to express
the trigonometric functions evaluated at θ in terms of x.

Example 3.24

Integrating an Expression Involving a2 + x2

Evaluate ∫ dx
1 + x2

and check the solution by differentiating.

Solution

Begin with the substitution x = tanθ and dx = sec2 θdθ. Since tanθ = x, draw the reference triangle in the

following figure.

Figure 3.8 The reference triangle for Example 3.24.

Thus,

∫ dx
1 + x2

= ∫ sec2 θ
secθ dθ

Substitute x = tanθ and dx = sec2 θdθ. This
substitution makes 1 + x2 = secθ. Simplify.

= ∫ secθdθ Evaluate the integral.

= ln|secθ + tanθ| + C Use the reference triangle to express the result
in terms of x.

= ln| 1 + x2 + x| + C.
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To check the solution, differentiate:

d
dx

⎛
⎝ln| 1 + x2 + x|⎞⎠ = 1

1 + x2 + x
·
⎛

⎝
⎜ x

1 + x2
+ 1

⎞

⎠
⎟

= 1
1 + x2 + x

· x + 1 + x2

1 + x2

= 1
1 + x2

.

Since 1 + x2 + x > 0 for all values of x, we could rewrite ln| 1 + x2 + x| + C = ln⎛
⎝ 1 + x2 + x⎞

⎠ + C, if

desired.

Example 3.25

Evaluating ∫ dx
1 + x2

Using a Different Substitution

Use the substitution x = sinhθ to evaluate ∫ dx
1 + x2

.

Solution

Because sinhθ has a range of all real numbers, and 1 + sinh2 θ = cosh2 θ, we may also use the substitution

x = sinhθ to evaluate this integral. In this case, dx = coshθdθ. Consequently,

∫ dx
1 + x2

= ∫ coshθ
1 + sinh2 θ

dθ
Substitute x = sinhθ and dx = coshθdθ.
Substitute 1 + sinh2 θ = cosh2 θ.

= ∫ coshθ
cosh2 θ

dθ cosh2 θ = |coshθ|

= ∫ coshθ
|coshθ|dθ |coshθ| = coshθ since coshθ > 0 for all θ.

= ∫ coshθ
coshθdθ Simplify.

= ∫ 1dθ Evaluate the integral.

= θ + C Since x = sinhθ, we know θ = sinh−1 x.
= sinh−1 x + C.

Analysis
This answer looks quite different from the answer obtained using the substitution x = tanθ. To see that the

solutions are the same, set y = sinh−1 x. Thus, sinhy = x. From this equation we obtain:

ey − e−y

2 = x.

After multiplying both sides by 2ey and rewriting, this equation becomes:
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e2y − 2xey − 1 = 0.

Use the quadratic equation to solve for ey :

ey = 2x ± 4x2 + 4
2 .

Simplifying, we have:

ey = x ± x2 + 1.

Since x − x2 + 1 < 0, it must be the case that ey = x + x2 + 1. Thus,

y = ln⎛
⎝x + x2 + 1⎞

⎠.

Last, we obtain

sinh−1 x = ln⎛
⎝x + x2 + 1⎞

⎠.

After we make the final observation that, since x + x2 + 1 > 0,

ln⎛
⎝x + x2 + 1⎞

⎠ = ln| 1 + x2 + x|,
we see that the two different methods produced equivalent solutions.

Example 3.26

Finding an Arc Length

Find the length of the curve y = x2 over the interval [0, 1
2].

Solution

Because
dy
dx = 2x, the arc length is given by

∫
0

1/2
1 + (2x)2dx = ∫

0

1/2
1 + 4x2dx.

To evaluate this integral, use the substitution x = 1
2tanθ and dx = 1

2sec2 θdθ. We also need to change the limits

of integration. If x = 0, then θ = 0 and if x = 1
2, then θ = π

4. Thus,
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3.15

∫
0

1/2
1 + 4x2dx = ∫

0

π/4
1 + tan2 θ1

2sec2 θdθ

After substitution,

1 + 4x2 = tanθ. Substitute
1 + tan2 θ = sec2 θ and simplify.

= 1
2∫

0

π/4
sec3 θdθ

We derived this integral in the
previous section.

= 1
2

⎛
⎝
1
2secθ tanθ + ln|secθ + tanθ|⎞⎠|0π/4

Evaluate and simplify.

= 1
4( 2 + ln( 2 + 1)).

Rewrite ∫ x3 x2 + 4dx by using a substitution involving tanθ.

Integrating Expressions Involving x2 − a2

The domain of the expression x2 − a2 is (−∞, −a] ∪ [a, +∞). Thus, either x < −a or x > a. Hence, x
a ≤ − 1

or x
a ≥ 1. Since these intervals correspond to the range of secθ on the set

⎡
⎣0, π

2
⎞
⎠ ∪ ⎛

⎝
π
2, π⎤

⎦, it makes sense to use the

substitution secθ = x
a or, equivalently, x = asecθ, where 0 ≤ θ < π

2 or π
2 < θ ≤ π. The corresponding substitution

for dx is dx = asecθ tanθdθ. The procedure for using this substitution is outlined in the following problem-solving

strategy.

Problem-Solving Strategy: Integrals Involving x2 − a2

1. Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider
applying an alternative technique.

2. Substitute x = asecθ and dx = asecθ tanθdθ. This substitution yields

x2 − a2 = (asecθ)2 − a2 = a2(sec2 θ + 1) = a2 tan2 θ = |a tanθ|.

For x ≥ a, |a tanθ| = a tanθ and for x ≤ − a, |a tanθ| = −a tanθ.

3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangles from Figure 3.9 to rewrite the result in terms of x. You may also need to use some

trigonometric identities and the relationship θ = sec−1 ⎛
⎝
x
a

⎞
⎠. (Note: We need both reference triangles, since the

values of some of the trigonometric ratios are different depending on whether x > a or x < −a.)
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Figure 3.9 Use the appropriate reference triangle to express the trigonometric functions evaluated at θ in terms of x.

Example 3.27

Finding the Area of a Region

Find the area of the region between the graph of f (x) = x2 − 9 and the x-axis over the interval [3, 5].

Solution

First, sketch a rough graph of the region described in the problem, as shown in the following figure.

Figure 3.10 Calculating the area of the shaded region requires
evaluating an integral with a trigonometric substitution.

We can see that the area is A = ∫
3

5
x2 − 9dx. To evaluate this definite integral, substitute x = 3secθ and

dx = 3secθ tanθdθ. We must also change the limits of integration. If x = 3, then 3 = 3secθ and hence

θ = 0. If x = 5, then θ = sec−1 ⎛
⎝
5
3

⎞
⎠. After making these substitutions and simplifying, we have
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3.16

Area = ∫
3

5
x2 − 9dx

= ∫
0

sec−1 (5/3)
9tan2 θsecθdθ Use tan2 θ = 1 − sec2 θ.

= ∫
0

sec−1 (5/3)
9(sec2 θ − 1)secθdθ Expand.

= ∫
0

sec−1 (5/3)
9(sec3 θ − secθ)dθ Evaluate the integral.

= ⎛
⎝
9
2ln|secθ + tanθ| + 9

2secθ tanθ⎞
⎠ − 9ln|secθ + tanθ||0sec−1 (5/3)

Simplify.

= 9
2secθ tanθ − 9

2ln|secθ + tanθ||0sec−1 (5/3) Evaluate. Use sec⎛
⎝sec−1 5

3
⎞
⎠ = 5

3
and tan⎛

⎝sec−1 5
3

⎞
⎠ = 4

3.

= 9
2 · 5

3 · 4
3 − 9

2ln|53 + 4
3| − ⎛

⎝
9
2 · 1 · 0 − 9

2ln|1 + 0|⎞⎠
= 10 − 9

2ln3.

Evaluate ∫ dx
x2 − 4

. Assume that x > 2.
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3.3 EXERCISES
Simplify the following expressions by writing each one
using a single trigonometric function.

126. 4 − 4sin2 θ

127. 9sec2 θ − 9

128. a2 + a2 tan2 θ

129. a2 + a2 sinh2 θ

130. 16cosh2 θ − 16

Use the technique of completing the square to express each
trinomial as the square of a binomial.

131. 4x2 − 4x + 1

132. 2x2 − 8x + 3

133. −x2 − 2x + 4

Integrate using the method of trigonometric substitution.
Express the final answer in terms of the variable.

134. ∫ dx
4 − x2

135. ∫ dx
x2 − a2

136. ∫ 4 − x2dx

137. ∫ dx
1 + 9x2

138. ∫ x2 dx
1 − x2

139. ∫ dx
x2 1 − x2

140. ∫ dx
(1 + x2)2

141. ∫ x2 + 9dx

142. ∫ x2 − 25
x dx

143. ∫ θ3 dθ
9 − θ2

dθ

144. ∫ dx
x6 − x2

145. ∫ x6 − x8dx

146. ∫ dx
⎛
⎝1 + x2⎞

⎠
3/2

147. ∫ dx
⎛
⎝x2 − 9⎞

⎠
3/2

148. ∫ 1 + x2dx
x

149. ∫ x2 dx
x2 − 1

150. ∫ x2 dx
x2 + 4

151. ∫ dx
x2 x2 + 1

152. ∫ x2 dx
1 + x2

153. ∫
−1

1
(1 − x2)3/2 dx

In the following exercises, use the substitutions
x = sinhθ, coshθ, or tanhθ. Express the final answers

in terms of the variable x.

154. ∫ dx
x2 − 1

155. ∫ dx
x 1 − x2

156. ∫ x2 − 1dx

157. ∫ x2 − 1
x2 dx
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158. ∫ dx
1 − x2

159. ∫ 1 + x2

x2 dx

Use the technique of completing the square to evaluate the
following integrals.

160. ∫ 1
x2 − 6x

dx

161. ∫ 1
x2 + 2x + 1

dx

162. ∫ 1
−x2 + 2x + 8

dx

163. ∫ 1
−x2 + 10x

dx

164. ∫ 1
x2 + 4x − 12

dx

165. Evaluate the integral without using calculus:

∫
−3

3
9 − x2dx.

166. Find the area enclosed by the ellipse x2

4 + y2

9 = 1.

167. Evaluate the integral ∫ dx
1 − x2

using two different

substitutions. First, let x = cosθ and evaluate using

trigonometric substitution. Second, let x = sinθ and use

trigonometric substitution. Are the answers the same?

168. Evaluate the integral ∫ dx
x x2 − 1

using the

substitution x = secθ. Next, evaluate the same integral

using the substitution x = cscθ. Show that the results are

equivalent.

169. Evaluate the integral ∫ x
x2 + 1

dx using the form

∫ 1
udu. Next, evaluate the same integral using x = tanθ.

Are the results the same?

170. State the method of integration you would use to

evaluate the integral ∫ x x2 + 1dx. Why did you choose

this method?

171. State the method of integration you would use to

evaluate the integral ∫ x2 x2 − 1dx. Why did you

choose this method?

172. Evaluate ∫
−1

1
xdx

x2 + 1

173. Find the length of the arc of the curve over the
specified interval: y = lnx, [1, 5]. Round the answer to

three decimal places.

174. Find the surface area of the solid generated by
revolving the region bounded by the graphs of

y = x2, y = 0, x = 0, and x = 2 about the x-axis.

(Round the answer to three decimal places).

175. The region bounded by the graph of f (x) = 1
1 + x2

and the x-axis between x = 0 and x = 1 is revolved about

the x-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for y as a function of x.

176. ⎛
⎝x2 + 36⎞

⎠
dy
dx = 1, y(6) = 0

177. ⎛
⎝64 − x2⎞

⎠
dy
dx = 1, y(0) = 3

178. Find the area bounded by

y = 2
64 − 4x2

, x = 0, y = 0, and x = 2.

179. An oil storage tank can be described as the volume
generated by revolving the area bounded by

y = 16
64 + x2

, x = 0, y = 0, x = 2 about the x-axis. Find

the volume of the tank (in cubic meters).

180. During each cycle, the velocity v (in feet per second)

of a robotic welding device is given by v = 2t − 14
4 + t2,

where t is time in seconds. Find the expression for the
displacement s (in feet) as a function of t if s = 0 when

t = 0.

181. Find the length of the curve y = 16 − x2 between

x = 0 and x = 2.
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3.4 | Partial Fractions

Learning Objectives
3.4.1 Integrate a rational function using the method of partial fractions.

3.4.2 Recognize simple linear factors in a rational function.

3.4.3 Recognize repeated linear factors in a rational function.

3.4.4 Recognize quadratic factors in a rational function.

We have seen some techniques that allow us to integrate specific rational functions. For example, we know that

∫ du
u = ln|u| + C and ∫ du

u2 + a2 = 1
atan−1 ⎛

⎝
u
a

⎞
⎠ + C.

However, we do not yet have a technique that allows us to tackle arbitrary quotients of this type. Thus, it is not immediately

obvious how to go about evaluating ∫ 3x
x2 − x − 2

dx. However, we know from material previously developed that

∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx = ln|x + 1| + 2ln|x − 2| + C.

In fact, by getting a common denominator, we see that

1
x + 1 + 2

x − 2 = 3x
x2 − x − 2

.

Consequently,

∫ 3x
x2 − x − 2

dx = ∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx.

In this section, we examine the method of partial fraction decomposition, which allows us to decompose rational functions
into sums of simpler, more easily integrated rational functions. Using this method, we can rewrite an expression such as:

3x
x2 − x − 2

as an expression such as 1
x + 1 + 2

x − 2.

The key to the method of partial fraction decomposition is being able to anticipate the form that the decomposition of a
rational function will take. As we shall see, this form is both predictable and highly dependent on the factorization of the
denominator of the rational function. It is also extremely important to keep in mind that partial fraction decomposition

can be applied to a rational function
P(x)
Q(x) only if deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠. In the case when deg(P(x)) ≥ deg⎛

⎝Q(x)⎞
⎠, we

must first perform long division to rewrite the quotient
P(x)
Q(x) in the form A(x) + R(x)

Q(x), where deg(R(x)) < deg⎛
⎝Q(x)⎞

⎠.

We then do a partial fraction decomposition on
R(x)
Q(x). The following example, although not requiring partial fraction

decomposition, illustrates our approach to integrals of rational functions of the form ∫ P(x)
Q(x)dx, where

deg(P(x)) ≥ deg⎛
⎝Q(x)⎞

⎠.

Example 3.28

Integrating ∫ P(x)
Q(x)dx, where deg(P(x)) ≥ deg⎛

⎝Q(x)⎞⎠

Evaluate ∫ x2 + 3x + 5
x + 1 dx.
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3.17

Solution

Since deg⎛
⎝x2 + 3x + 5⎞

⎠ ≥ deg(x + 1), we perform long division to obtain

x2 + 3x + 5
x + 1 = x + 2 + 3

x + 1.

Thus,

∫ x2 + 3x + 5
x + 1 dx = ∫ ⎛

⎝x + 2 + 3
x + 1

⎞
⎠dx

= 1
2x2 + 2x + 3ln|x + 1| + C.

Visit this website (http://www.openstaxcollege.org/l/20_polylongdiv) for a review of long division of
polynomials.

Evaluate ∫ x − 3
x + 2dx.

To integrate ∫ P(x)
Q(x)dx, where deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠, we must begin by factoring Q(x).

Nonrepeated Linear Factors
If Q(x) can be factored as ⎛

⎝a1 x + b1
⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct, then it is possible to

find constants A1, A2 ,… An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

The proof that such constants exist is beyond the scope of this course.

In this next example, we see how to use partial fractions to integrate a rational function of this type.

Example 3.29

Partial Fractions with Nonrepeated Linear Factors

Evaluate ∫ 3x + 2
x3 − x2 − 2x

dx.

Solution

Since deg(3x + 2) < deg⎛
⎝x

3 − x2 − 2x⎞
⎠, we begin by factoring the denominator of 3x + 2

x3 − x2 − 2x
. We can see

that x3 − x2 − 2x = x(x − 2)(x + 1). Thus, there are constants A, B, and C satisfying

3x + 2
x(x − 2)(x + 1) = A

x + B
x − 2 + C

x + 1.
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We must now find these constants. To do so, we begin by getting a common denominator on the right. Thus,

3x + 2
x(x − 2)(x + 1) = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2)

x(x − 2)(x + 1) .

Now, we set the numerators equal to each other, obtaining

3x + 2 = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2).

There are two different strategies for finding the coefficients A, B, and C. We refer to these as the method of

equating coefficients and the method of strategic substitution.

Rule: Method of Equating Coefficients

Rewrite Equation 3.8 in the form

3x + 2 = (A + B + C)x2 + (−A + B − 2C)x + (−2A).

Equating coefficients produces the system of equations

A + B + C = 0
−A + B − 2C = 3

−2A = 2.

To solve this system, we first observe that −2A = 2 ⇒ A = −1. Substituting this value into the first two

equations gives us the system

B + C = 1
B − 2C = 2.

Multiplying the second equation by −1 and adding the resulting equation to the first produces

−3C = 1,

which in turn implies that C = − 1
3. Substituting this value into the equation B + C = 1 yields B = 4

3.

Thus, solving these equations yields A = −1, B = 4
3, and C = − 1

3.

It is important to note that the system produced by this method is consistent if and only if we have set up the
decomposition correctly. If the system is inconsistent, there is an error in our decomposition.

Rule: Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set up the decomposition
correctly. If the decomposition is set up correctly, then there must be values of A, B, and C that satisfy

Equation 3.8 for all values of x. That is, this equation must be true for any value of x we care to substitute

into it. Therefore, by choosing values of x carefully and substituting them into the equation, we may find

A, B, and C easily. For example, if we substitute x = 0, the equation reduces to 2 = A(−2)(1).
Solving for A yields A = −1. Next, by substituting x = 2, the equation reduces to 8 = B(2)(3),
or equivalently B = 4/3. Last, we substitute x = −1 into the equation and obtain −1 = C(−1)(−3).

Solving, we have C = − 1
3.

It is important to keep in mind that if we attempt to use this method with a decomposition that has not been
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set up correctly, we are still able to find values for the constants, but these constants are meaningless. If we
do opt to use the method of strategic substitution, then it is a good idea to check the result by recombining
the terms algebraically.

Now that we have the values of A, B, and C, we rewrite the original integral:

∫ 3x + 2
x3 − x2 − 2x

dx = ∫ ⎛
⎝− 1

x + 4
3 · 1

(x − 2) − 1
3 · 1

(x + 1)
⎞
⎠dx.

Evaluating the integral gives us

∫ 3x + 2
x3 − x2 − 2x

dx = −ln|x| + 4
3ln|x − 2| − 1

3ln|x + 1| + C.

In the next example, we integrate a rational function in which the degree of the numerator is not less than the degree of the
denominator.

Example 3.30

Dividing before Applying Partial Fractions

Evaluate ∫ x2 + 3x + 1
x2 − 4

dx.

Solution

Since degree(x2 + 3x + 1) ≥ degree(x2 − 4), we must perform long division of polynomials. This results in

x2 + 3x + 1
x2 − 4

= 1 + 3x + 5
x2 − 4

.

Next, we perform partial fraction decomposition on 3x + 5
x2 − 4

= 3x + 5
(x + 2)(x − 2). We have

3x + 5
(x − 2)(x + 2) = A

x − 2 + B
x + 2.

Thus,

3x + 5 = A(x + 2) + B(x − 2).

Solving for A and B using either method, we obtain A = 11/4 and B = 1/4.

Rewriting the original integral, we have

∫ x2 + 3x + 1
x2 − 4

dx = ∫ ⎛
⎝1 + 11

4 · 1
x − 2 + 1

4 · 1
x + 2

⎞
⎠dx.

Evaluating the integral produces

∫ x2 + 3x + 1
x2 − 4

dx = x + 11
4 ln|x − 2| + 1

4ln|x + 2| + C.
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3.18

As we see in the next example, it may be possible to apply the technique of partial fraction decomposition to a nonrational
function. The trick is to convert the nonrational function to a rational function through a substitution.

Example 3.31

Applying Partial Fractions after a Substitution

Evaluate ∫ cosx
sin2 x − sinx

dx.

Solution

Let’s begin by letting u = sinx. Consequently, du = cosxdx. After making these substitutions, we have

∫ cosx
sin2 x − sinx

dx = ∫ du
u2 − u

= ∫ du
u(u − 1).

Applying partial fraction decomposition to 1/u(u − 1) gives 1
u(u − 1) = − 1

u + 1
u − 1.

Thus,

∫ cosx
sin2 x − sinx

dx = −ln|u| + ln|u − 1| + C

= −ln|sinx| + ln|sinx − 1| + C.

Evaluate ∫ x + 1
(x + 3)(x − 2)dx.

Repeated Linear Factors
For some applications, we need to integrate rational expressions that have denominators with repeated linear factors—that
is, rational functions with at least one factor of the form (ax + b)n, where n is a positive integer greater than or equal to

2. If the denominator contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

As we see in our next example, the basic technique used for solving for the coefficients is the same, but it requires more
algebra to determine the numerators of the partial fractions.

Example 3.32

Partial Fractions with Repeated Linear Factors

Evaluate ∫ x − 2
(2x − 1)2(x − 1)

dx.

Solution

We have degree(x − 2) < degree⎛
⎝(2x − 1)2 (x − 1)⎞

⎠, so we can proceed with the decomposition. Since
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(3.9)

3.19

(2x − 1)2 is a repeated linear factor, include A
2x − 1 + B

(2x − 1)2 in the decomposition. Thus,

x − 2
(2x − 1)2(x − 1)

= A
2x − 1 + B

(2x − 1)2 + C
x − 1.

After getting a common denominator and equating the numerators, we have

x − 2 = A(2x − 1)(x − 1) + B(x − 1) + C(2x − 1)2.

We then use the method of equating coefficients to find the values of A, B, and C.

x − 2 = (2A + 4C)x2 + (−3A + B − 4C)x + (A − B + C).

Equating coefficients yields 2A + 4C = 0, −3A + B − 4C = 1, and A − B + C = −2. Solving this system

yields A = 2, B = 3, and C = −1.

Alternatively, we can use the method of strategic substitution. In this case, substituting x = 1 and x = 1/2 into

Equation 3.9 easily produces the values B = 3 and C = −1. At this point, it may seem that we have run out

of good choices for x, however, since we already have values for B and C, we can substitute in these values

and choose any value for x not previously used. The value x = 0 is a good option. In this case, we obtain the

equation −2 = A(−1)(−1) + 3(−1) + (−1)(−1)2 or, equivalently, A = 2.

Now that we have the values for A, B, and C, we rewrite the original integral and evaluate it:

∫ x − 2
(2x − 1)2(x − 1)

dx = ∫
⎛

⎝
⎜ 2
2x − 1 + 3

(2x − 1)2 − 1
x − 1

⎞

⎠
⎟dx

= ln|2x − 1| − 3
2(2x − 1) − ln|x − 1| + C.

Set up the partial fraction decomposition for ∫ x + 2
(x + 3)3 (x − 4)2dx. (Do not solve for the coefficients

or complete the integration.)

The General Method
Now that we are beginning to get the idea of how the technique of partial fraction decomposition works, let’s outline the
basic method in the following problem-solving strategy.

Problem-Solving Strategy: Partial Fraction Decomposition

To decompose the rational function P(x)/Q(x), use the following steps:

1. Make sure that degree(P(x)) < degree(Q(x)). If not, perform long division of polynomials.

2. Factor Q(x) into the product of linear and irreducible quadratic factors. An irreducible quadratic is a quadratic

that has no real zeros.

3. Assuming that deg(P(x)) < deg(Q(x)), the factors of Q(x) determine the form of the decomposition of

P(x)/Q(x).

a. If Q(x) can be factored as ⎛
⎝a1 x + b1

⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct,
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then it is possible to find constants A1, A2, ...An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

b. If Q(x) contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

c. For each irreducible quadratic factor ax2 + bx + c that Q(x) contains, the decomposition must

include

Ax + B
ax2 + bx + c

.

d. For each repeated irreducible quadratic factor ⎛
⎝ax2 + bx + c⎞

⎠
n
, the decomposition must include

A1 x + B1
ax2 + bx + c

+ A2 x + B2
(ax2 + bx + c)2 + ⋯ + An x + Bn

(ax2 + bx + c)n.

e. After the appropriate decomposition is determined, solve for the constants.

f. Last, rewrite the integral in its decomposed form and evaluate it using previously developed techniques
or integration formulas.

Simple Quadratic Factors
Now let’s look at integrating a rational expression in which the denominator contains an irreducible quadratic factor. Recall

that the quadratic ax2 + bx + c is irreducible if ax2 + bx + c = 0 has no real zeros—that is, if b2 − 4ac < 0.

Example 3.33

Rational Expressions with an Irreducible Quadratic Factor

Evaluate ∫ 2x − 3
x3 + x

dx.

Solution

Since deg(2x − 3) < deg(x3 + x), factor the denominator and proceed with partial fraction decomposition.

Since x3 + x = x(x2 + 1) contains the irreducible quadratic factor x2 + 1, include Ax + B
x2 + 1

as part of the

decomposition, along with C
x for the linear term x. Thus, the decomposition has the form

2x − 3
x(x2 + 1)

= Ax + B
x2 + 1

+ C
x .

After getting a common denominator and equating the numerators, we obtain the equation

2x − 3 = (Ax + B)x + C⎛
⎝x2 + 1⎞

⎠.

Solving for A, B, and C, we get A = 3, B = 2, and C = −3.

Thus,
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2x − 3
x3 + x

= 3x + 2
x2 + 1

− 3
x .

Substituting back into the integral, we obtain

∫ 2x − 3
x3 + x

dx = ∫ ⎛
⎝

3x + 2
x2 + 1

− 3
x
⎞
⎠dx

= 3∫ x
x2 + 1

dx + 2∫ 1
x2 + 1

dx − 3∫ 1
xdx Split up the integral.

= 3
2ln|x2 + 1| + 2tan−1 x − 3ln|x| + C. Evaluate each integral.

Note: We may rewrite ln|x2 + 1| = ln(x2 + 1), if we wish to do so, since x2 + 1 > 0.

Example 3.34

Partial Fractions with an Irreducible Quadratic Factor

Evaluate ∫ dx
x3 − 8

.

Solution

We can start by factoring x3 − 8 = (x − 2)(x2 + 2x + 4). We see that the quadratic factor x2 + 2x + 4 is

irreducible since 22 − 4(1)(4) = −12 < 0. Using the decomposition described in the problem-solving strategy,

we get

1
(x − 2)(x2 + 2x + 4)

= A
x − 2 + Bx + C

x2 + 2x + 4
.

After obtaining a common denominator and equating the numerators, this becomes

1 = A⎛
⎝x2 + 2x + 4⎞

⎠ + (Bx + C)(x − 2).

Applying either method, we get A = 1
12, B = − 1

12, and C = − 1
3.

Rewriting ∫ dx
x3 − 8

, we have

∫ dx
x3 − 8

= 1
12∫ 1

x − 2dx − 1
12∫ x + 4

x2 + 2x + 4
dx.

We can see that

∫ 1
x − 2dx = ln|x − 2| + C, but ∫ x + 4

x2 + 2x + 4
dx requires a bit more effort. Let’s begin by completing the

square on x2 + 2x + 4 to obtain

x2 + 2x + 4 = (x + 1)2 + 3.
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By letting u = x + 1 and consequently du = dx, we see that

∫ x + 4
x2 + 2x + 4

dx = ∫ x + 4
(x + 1)2 + 3

dx Complete the square on the
denominator.

= ∫ u + 3
u2 + 3

du Substitute u = x + 1, x = u − 1,
and du = dx.

= ∫ u
u2 + 3

du + ∫ 3
u2 + 3

du Split the numerator apart.

= 1
2ln|u2 + 3| + 3

3
tan−1 u

3
+ C Evaluate each integral.

= 1
2ln|x2 + 2x + 4| + 3tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C. Rewrite in terms of x and

simplify.

Substituting back into the original integral and simplifying gives

∫ dx
x3 − 8

= 1
12ln|x − 2| − 1

24ln|x2 + 2x + 4| − 3
12tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C.

Here again, we can drop the absolute value if we wish to do so, since x2 + 2x + 4 > 0 for all x.

Example 3.35

Finding a Volume

Find the volume of the solid of revolution obtained by revolving the region enclosed by the graph of

f (x) = x2

⎛
⎝x2 + 1⎞

⎠
2 and the x-axis over the interval [0, 1] about the y-axis.

Solution

Let’s begin by sketching the region to be revolved (see Figure 3.11). From the sketch, we see that the shell
method is a good choice for solving this problem.

Figure 3.11 We can use the shell method to find the volume
of revolution obtained by revolving the region shown about the
y-axis.
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3.20

The volume is given by

V = 2π∫
0

1
x · x2

⎛
⎝x2 + 1⎞

⎠
2dx = 2π∫

0

1
x3

(x2 + 1)2dx.

Since deg⎛
⎝

⎛
⎝x2 + 1⎞

⎠
2⎞
⎠ = 4 > 3 = deg(x3), we can proceed with partial fraction decomposition. Note that

(x2 + 1)2 is a repeated irreducible quadratic. Using the decomposition described in the problem-solving strategy,

we get

x3

(x2 + 1)2 = Ax + B
x2 + 1

+ Cx + D
(x2 + 1)2.

Finding a common denominator and equating the numerators gives

x3 = (Ax + B)⎛
⎝x2 + 1⎞

⎠ + Cx + D.

Solving, we obtain A = 1, B = 0, C = −1, and D = 0. Substituting back into the integral, we have

V = 2π∫
0

1
x3

(x2 + 1)2dx

= 2π∫
0

1 ⎛

⎝
⎜ x
x2 + 1

− x
(x2 + 1)2

⎞

⎠
⎟dx

= 2π⎛
⎝

1
2ln(x2 + 1) + 1

2 · 1
x2 + 1

⎞
⎠|01

= π⎛
⎝ln2 − 1

2
⎞
⎠.

Set up the partial fraction decomposition for ∫ x2 + 3x + 1
(x + 2)(x − 3)2 (x2 + 4)2dx.
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3.4 EXERCISES
Express the rational function as a sum or difference of two
simpler rational expressions.

182. 1
(x − 3)(x − 2)

183. x2 + 1
x(x + 1)(x + 2)

184. 1
x3 − x

185. 3x + 1
x2

186. 3x2

x2 + 1
(Hint: Use long division first.)

187. 2x4

x2 − 2x

188. 1
(x − 1)(x2 + 1)

189. 1
x2(x − 1)

190. x
x2 − 4

191. 1
x(x − 1)(x − 2)(x − 3)

192. 1
x4 − 1

= 1
(x + 1)(x − 1)⎛

⎝x2 + 1⎞
⎠

193. 3x2

x3 − 1
= 3x2

(x − 1)(x2 + x + 1)

194. 2x
(x + 2)2

195. 3x4 + x3 + 20x2 + 3x + 31

(x + 1)⎛
⎝x2 + 4⎞

⎠
2

Use the method of partial fractions to evaluate each of the
following integrals.

196. ∫ dx
(x − 3)(x − 2)

197. ∫ 3x
x2 + 2x − 8

dx

198. ∫ dx
x3 − x

199. ∫ x
x2 − 4

dx

200. ∫ dx
x(x − 1)(x − 2)(x − 3)

201. ∫ 2x2 + 4x + 22
x2 + 2x + 10

dx

202. ∫ dx
x2 − 5x + 6

203. ∫ 2 − x
x2 + x

dx

204. ∫ 2
x2 − x − 6

dx

205. ∫ dx
x3 − 2x2 − 4x + 8

206. ∫ dx
x4 − 10x2 + 9

Evaluate the following integrals, which have irreducible
quadratic factors.

207. ∫ 2
(x − 4)⎛

⎝x2 + 2x + 6⎞
⎠
dx

208. ∫ x2

x3 − x2 + 4x − 4
dx

209. ∫ x3 + 6x2 + 3x + 6
x3 + 2x2 dx

210. ∫ x

(x − 1)⎛
⎝x2 + 2x + 2⎞

⎠
2dx

Use the method of partial fractions to evaluate the
following integrals.

211. ∫ 3x + 4
⎛
⎝x2 + 4⎞

⎠(3 − x)
dx

212. ∫ 2
(x + 2)2(2 − x)

dx
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213. ∫ 3x + 4
x3 − 2x − 4

dx (Hint: Use the rational root

theorem.)

Use substitution to convert the integrals to integrals of
rational functions. Then use partial fractions to evaluate the
integrals.

214. ∫
0

1
ex

36 − e2xdx (Give the exact answer and the

decimal equivalent. Round to five decimal places.)

215. ∫ ex dx
e2x − exdx

216. ∫ sinxdx
1 − cos2 x

217. ∫ sinx
cos2 x + cosx − 6

dx

218. ∫ 1 − x
1 + xdx

219. ∫ dt
⎛
⎝et − e−t⎞

⎠
2

220. ∫ 1 + ex

1 − exdx

221. ∫ dx
1 + x + 1

222. ∫ dx
x + x4

223. ∫ cosx
sinx(1 − sinx)dx

224. ∫ ex

⎛
⎝e2x − 4⎞

⎠
2dx

225. ∫
1

2
1

x2 4 − x2
dx

226. ∫ 1
2 + e−xdx

227. ∫ 1
1 + exdx

Use the given substitution to convert the integral to an
integral of a rational function, then evaluate.

228. ∫ 1
t − t3 dt t = x3

229. ∫ 1
x + x3 dx; x = u6

230. Graph the curve y = x
1 + x over the interval ⎡

⎣0, 5⎤
⎦.

Then, find the area of the region bounded by the curve, the
x-axis, and the line x = 4.

231. Find the volume of the solid generated when the
region bounded by y = 1/ x(3 − x), y = 0, x = 1,
and x = 2 is revolved about the x-axis.

232. The velocity of a particle moving along a line is a

function of time given by v(t) = 88t2

t2 + 1
. Find the distance

that the particle has traveled after t = 5 sec.

Solve the initial-value problem for x as a function of t.

233. ⎛
⎝t2 − 7t + 12⎞

⎠
dx
dt = 1, ⎛

⎝t > 4, x(5) = 0⎞
⎠

234. (t + 5)dx
dt = x2 + 1, t > −5, x(1) = tan1

235. ⎛
⎝2t3 − 2t2 + t − 1⎞

⎠
dx
dt = 3, x(2) = 0

236. Find the x-coordinate of the centroid of the area

bounded by y⎛
⎝x2 − 9⎞

⎠ = 1, y = 0, x = 4, and x = 5.

(Round the answer to two decimal places.)

237. Find the volume generated by revolving the area

bounded by y = 1
x3 + 7x2 + 6x

x = 1, x = 7, and y = 0

about the y-axis.

238. Find the area bounded by y = x − 12
x2 − 8x − 20

,

y = 0, x = 2, and x = 4. (Round the answer to the

nearest hundredth.)
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239. Evaluate the integral ∫ dx
x3 + 1

.

For the following problems, use the substitutions

tan⎛
⎝
x
2

⎞
⎠ = t, dx = 2

1 + t2dt, sinx = 2t
1 + t2, and

cosx = 1 − t2

1 + t2.

240. ∫ dx
3 − 5sinx

241. Find the area under the curve y = 1
1 + sinx between

x = 0 and x = π. (Assume the dimensions are in inches.)

242. Given tan⎛
⎝
x
2

⎞
⎠ = t, derive the formulas

dx = 2
1 + t2dt, sinx = 2t

1 + t2, and cosx = 1 − t2

1 + t2.

243. Evaluate ∫ x − 83

x dx.
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3.5 | Other Strategies for Integration

Learning Objectives
3.5.1 Use a table of integrals to solve integration problems.

3.5.2 Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the
process of integration. Among these tools are integration tables, which are readily available in many books, including the
appendices to this one. Also widely available are computer algebra systems (CAS), which are found on calculators and in
many campus computer labs, and are free online.

Tables of Integrals
Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in
mind that when using a table to check an answer, it is possible for two completely correct solutions to look very different.
For example, in Trigonometric Substitution, we found that, by using the substitution x = tanθ, we can arrive at

∫ dx
1 + x2

= ln⎛
⎝x + x2 + 1⎞

⎠ + C.

However, using x = sinhθ, we obtained a different solution—namely,

∫ dx
1 + x2

= sinh−1 x + C.

We later showed algebraically that the two solutions are equivalent. That is, we showed that sinh−1 x = ln⎛
⎝x + x2 + 1⎞

⎠.

In this case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the
difference in the two antiderivatives is a constant, they are equivalent.

Example 3.36

Using a Formula from a Table to Evaluate an Integral

Use the table formula

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C

to evaluate ∫ 16 − e2x

ex dx.

Solution

If we look at integration tables, we see that several formulas contain expressions of the form a2 − u2. This

expression is actually similar to 16 − e2x, where a = 4 and u = ex. Keep in mind that we must also have

du = ex. Multiplying the numerator and the denominator of the given integral by ex should help to put this

integral in a useful form. Thus, we now have

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx.
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Substituting u = ex and du = ex produces ∫ a2 − u2

u2 du. From the integration table (#88 in Appendix A),

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C.

Thus,

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx Substitute u = ex and du = ex dx.

= ∫ 42 − u2

u2 du Apply the formula using a = 4.

= − 42 − u2
u − sin−1 u

4 + C Substitute u = ex.

= − 16 − e2x
u − sin−1 ⎛

⎝
ex

4
⎞
⎠ + C.

Computer Algebra Systems
If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely
available and are, in general, quite easy to use.

Example 3.37

Using a Computer Algebra System to Evaluate an Integral

Use a computer algebra system to evaluate ∫ dx
x2 − 4

. Compare this result with ln| x2 − 4
2 + x

2| + C, a result

we might have obtained if we had used trigonometric substitution.

Solution

Using Wolfram Alpha, we obtain

∫ dx
x2 − 4

= ln| x2 − 4 + x| + C.

Notice that

ln| x2 − 4
2 + x

2| + C = ln| x2 − 4 + x
2 | + C = ln| x2 − 4 + x| − ln2 + C.

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also
demonstrated that each of these antiderivatives is correct by differentiating them.

You can access an integral calculator (http://www.openstaxcollege.org/l/20_intcalc) for more examples.
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Example 3.38

Using a CAS to Evaluate an Integral

Evaluate ∫ sin3 xdx using a CAS. Compare the result to 1
3cos3 x − cosx + C, the result we might have

obtained using the technique for integrating odd powers of sinx discussed earlier in this chapter.

Solution

Using Wolfram Alpha, we obtain

∫ sin3 xdx = 1
12(cos(3x) − 9cosx) + C.

This looks quite different from 1
3cos3 x − cosx + C. To see that these antiderivatives are equivalent, we can

make use of a few trigonometric identities:

1
12(cos(3x) − 9cosx) = 1

12(cos(x + 2x) − 9cosx)

= 1
12(cos(x)cos(2x) − sin(x)sin(2x) − 9cosx)

= 1
12(cosx⎛

⎝2cos2 x − 1⎞
⎠ − sinx(2sinxcosx) − 9cosx)

= 1
12(2cos x − cosx − 2cosx⎛

⎝1 − cos2 x⎞
⎠ − 9cosx)

= 1
12(4cos x − 12cosx)

= 1
3cos x − cosx.

Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Figure 3.12 The graphs of y = 1
3cos3 x − cosx and

y = 1
12(cos(3x) − 9cosx) are identical.

Use a CAS to evaluate ∫ dx
x2 + 4

.
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3.5 EXERCISES
Use a table of integrals to evaluate the following integrals.

244. ∫
0

4
x

1 + 2x
dx

245. ∫ x + 3
x2 + 2x + 2

dx

246. ∫ x3 1 + 2x2dx

247. ∫ 1
x2 + 6x

dx

248. ∫ x
x + 1dx

249. ∫ x · 2x2
dx

250. ∫ 1
4x2 + 25

dx

251. ∫ dy
4 − y2

252. ∫ sin3(2x)cos(2x)dx

253. ∫ csc(2w)cot(2w)dw

254. ∫ 2y dy

255. ∫
0

1
3xdx
x2 + 8

256. ∫
−1/4

1/4
sec2(πx)tan(πx)dx

257. ∫
0

π/2
tan2 ⎛

⎝
x
2

⎞
⎠dx

258. ∫ cos3 xdx

259. ∫ tan5 (3x)dx

260. ∫ sin2 ycos3 ydy

Use a CAS to evaluate the following integrals. Tables can

also be used to verify the answers.

261. [T] ∫ dw
1 + sec⎛

⎝
w
2

⎞
⎠

262. [T] ∫ dw
1 − cos(7w)

263. [T] ∫
0

t
dt

4cos t + 3sin t

264. [T] ∫ x2 − 9
3x dx

265. [T] ∫ dx
x1/2 + x1/3

266. [T] ∫ dx
x x − 1

267. [T] ∫ x3 sinxdx

268. [T] ∫ x x4 − 9dx

269. [T] ∫ x
1 + e−x2dx

270. [T] ∫ 3 − 5x
2x dx

271. [T] ∫ dx
x x − 1

272. [T] ∫ ex cos−1(ex)dx

Use a calculator or CAS to evaluate the following integrals.

273. [T] ∫
0

π/4
cos(2x)dx

274. [T] ∫
0

1
x · e−x2

dx

275. [T] ∫
0

8
2x

x2 + 36
dx

276. [T] ∫
0

2/ 3
1

4 + 9x2dx
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277. [T] ∫ dx
x2 + 4x + 13

278. [T] ∫ dx
1 + sinx

Use tables to evaluate the integrals. You may need to
complete the square or change variables to put the integral
into a form given in the table.

279. ∫ dx
x2 + 2x + 10

280. ∫ dx
x2 − 6x

281. ∫ ex

e2x − 4
dx

282. ∫ cosx
sin2 x + 2sinx

dx

283. ∫ arctan⎛
⎝x

3⎞
⎠

x4 dx

284. ∫ ln|x|arcsin(ln|x|)
x dx

Use tables to perform the integration.

285. ∫ dx
x2 + 16

286. ∫ 3x
2x + 7dx

287. ∫ dx
1 − cos(4x)

288. ∫ dx
4x + 1

289. Find the area bounded by

y⎛
⎝4 + 25x2⎞

⎠ = 5, x = 0, y = 0, and x = 4. Use a table of

integrals or a CAS.

290. The region bounded between the curve

y = 1
1 + cosx

, 0.3 ≤ x ≤ 1.1, and the x-axis is

revolved about the x-axis to generate a solid. Use a table of
integrals to find the volume of the solid generated. (Round
the answer to two decimal places.)

291. Use substitution and a table of integrals to find the
area of the surface generated by revolving the curve
y = ex, 0 ≤ x ≤ 3, about the x-axis. (Round the answer

to two decimal places.)

292. [T] Use an integral table and a calculator to find
the area of the surface generated by revolving the curve

y = x2

2 , 0 ≤ x ≤ 1, about the x-axis. (Round the answer

to two decimal places.)

293. [T] Use a CAS or tables to find the area of the surface
generated by revolving the curve y = cosx, 0 ≤ x ≤ π

2,

about the x-axis. (Round the answer to two decimal
places.)

294. Find the length of the curve y = x2

4 over [0, 8].

295. Find the length of the curve y = ex over ⎡
⎣0, ln(2)⎤

⎦.

296. Find the area of the surface formed by revolving
the graph of y = 2 x over the interval [0, 9] about the

x-axis.

297. Find the average value of the function

f (x) = 1
x2 + 1

over the interval [−3, 3].

298. Approximate the arc length of the curve y = tan(πx)

over the interval
⎡
⎣0, 1

4
⎤
⎦. (Round the answer to three

decimal places.)
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3.6 | Numerical Integration

Learning Objectives
3.6.1 Approximate the value of a definite integral by using the midpoint and trapezoidal rules.

3.6.2 Determine the absolute and relative error in using a numerical integration technique.

3.6.3 Estimate the absolute and relative error using an error-bound formula.

3.6.4 Recognize when the midpoint and trapezoidal rules over- or underestimate the true value
of an integral.

3.6.5 Use Simpson’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is,
in terms of known functions). Consequently, rather than evaluate definite integrals of these functions directly, we resort
to various techniques of numerical integration to approximate their values. In this section we explore several of these
techniques. In addition, we examine the process of estimating the error in using these techniques.

The Midpoint Rule
Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums. In general,

any Riemann sum of a function f (x) over an interval [a, b] may be viewed as an estimate of ∫
a

b
f (x)dx. Recall that a

Riemann sum of a function f (x) over an interval [a, b] is obtained by selecting a partition

P = {x0, x1, x2 ,…, xn}, where a = x0 < x1 < x2 < ⋯ < xn = b

and a set

S = ⎧

⎩
⎨x1* , x2* ,…, xn*

⎫

⎭
⎬, where xi − 1 ≤ xi* ≤ xi for all i.

The Riemann sum corresponding to the partition P and the set S is given by ∑
i = 1

n
f (xi* )Δxi, where Δxi = xi − xi − 1,

the length of the ith subinterval.

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints,
mi, of each subinterval in place of xi* . Formally, we state a theorem regarding the convergence of the midpoint rule as

follows.

Theorem 3.3: The Midpoint Rule

Assume that f (x) is continuous on ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . If ⎡

⎣a, b⎤
⎦ is divided into n

subintervals, each of length Δx, and mi is the midpoint of the ith subinterval, set

(3.10)
Mn = ∑

i = 1

n
f (mi)Δx.

Then limn → ∞Mn = ∫
a

b
f (x)dx.

As we can see in Figure 3.13, if f (x) ≥ 0 over [a, b], then ∑
i = 1

n
f (mi)Δx corresponds to the sum of the areas of

rectangles approximating the area between the graph of f (x) and the x-axis over ⎡
⎣a, b⎤

⎦. The graph shows the rectangles

corresponding to M4 for a nonnegative function over a closed interval [a, b].
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Figure 3.13 The midpoint rule approximates the area between
the graph of f (x) and the x-axis by summing the areas of

rectangles with midpoints that are points on f (x).

Example 3.39

Using the Midpoint Rule with M4

Use the midpoint rule to estimate ∫
0

1
x2 dx using four subintervals. Compare the result with the actual value of

this integral.

Solution

Each subinterval has length Δx = 1 − 0
4 = 1

4. Therefore, the subintervals consist of

⎡
⎣0, 1

4
⎤
⎦,

⎡
⎣
1
4, 1

2
⎤
⎦,

⎡
⎣
1
2, 3

4
⎤
⎦, and ⎡

⎣
3
4, 1⎤

⎦.

The midpoints of these subintervals are
⎧

⎩
⎨1
8, 3

8, 5
8, 7

8
⎫

⎭
⎬. Thus,

M4 = 1
4 f ⎛

⎝
1
8

⎞
⎠ + 1

4 f ⎛
⎝
3
8

⎞
⎠ + 1

4 f ⎛
⎝
5
8

⎞
⎠ + 1

4 f ⎛
⎝
7
8

⎞
⎠ = 1

4 · 1
64 + 1

4 · 9
64 + 1

4 · 25
64 + 1

4 · 21
64 = 21

64.

Since

∫
0

1
x2 dx = 1

3 and |13 − 21
64| = 1

192 ≈ 0.0052,

we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite
integral.

Example 3.40

Using the Midpoint Rule with M6

Use M6 to estimate the length of the curve y = 1
2x2 on [1, 4].
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Solution

The length of y = 1
2x2 on [1, 4] is

∫
1

4
1 + ⎛

⎝
dy
dx

⎞
⎠

2
dx.

Since
dy
dx = x, this integral becomes ∫

1

4
1 + x2dx.

If [1, 4] is divided into six subintervals, then each subinterval has length Δx = 4 − 1
6 = 1

2 and the midpoints

of the subintervals are
⎧

⎩
⎨5
4, 7

4, 9
4, 11

4 , 13
4 , 15

4
⎫

⎭
⎬. If we set f (x) = 1 + x2,

M6 = 1
2 f ⎛

⎝
5
4

⎞
⎠ + 1

2 f ⎛
⎝
7
4

⎞
⎠ + 1

2 f ⎛
⎝
9
4

⎞
⎠ + 1

2 f ⎛
⎝
11
4

⎞
⎠ + 1

2 f ⎛
⎝
13
4

⎞
⎠ + 1

2 f ⎛
⎝
15
4

⎞
⎠

≈ 1
2(1.6008 + 2.0156 + 2.4622 + 2.9262 + 3.4004 + 3.8810) = 8.1431.

Use the midpoint rule with n = 2 to estimate ∫
1

2
1
xdx.

The Trapezoidal Rule
We can also approximate the value of a definite integral by using trapezoids rather than rectangles. In Figure 3.14, the area
beneath the curve is approximated by trapezoids rather than by rectangles.

Figure 3.14 Trapezoids may be used to approximate the area
under a curve, hence approximating the definite integral.

The trapezoidal rule for estimating definite integrals uses trapezoids rather than rectangles to approximate the area under
a curve. To gain insight into the final form of the rule, consider the trapezoids shown in Figure 3.14. We assume that the
length of each subinterval is given by Δx. First, recall that the area of a trapezoid with a height of h and bases of length

b1 and b2 is given by Area = 1
2h(b1 + b2). We see that the first trapezoid has a height Δx and parallel bases of length

f (x0) and f (x1). Thus, the area of the first trapezoid in Figure 3.14 is

1
2Δx( f (x0) + f (x1)).

The areas of the remaining three trapezoids are
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1
2Δx( f (x1) + f (x2)), 1

2Δx( f (x2) + f (x3)), and 1
2Δx( f (x3) + f (x4)).

Consequently,

∫
a

b
f (x)dx ≈ 1

2Δx( f (x0) + f (x1)) + 1
2Δx( f (x1) + f (x2)) + 1

2Δx( f (x2) + f (x3)) + 1
2Δx( f (x3) + f (x4)).

After taking out a common factor of 1
2Δx and combining like terms, we have

∫
a

b
f (x)dx ≈ 1

2Δx⎛
⎝ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)⎞

⎠.

Generalizing, we formally state the following rule.

Theorem 3.4: The Trapezoidal Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided into

n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 …, xn

⎫

⎭
⎬. Set

(3.11)Tn = 1
2Δx⎛

⎝ f (x0) + 2 f (x1) + 2 f (x2) + ⋯ + 2 f (xn − 1) + f (xn)⎞
⎠.

Then, lim
n → +∞

Tn = ∫
a

b
f (x)dx.

Before continuing, let’s make a few observations about the trapezoidal rule. First of all, it is useful to note that

Tn = 1
2(Ln + Rn) where Ln = ∑

i = 1

n
f (xi − 1)Δx and Rn = ∑

i = 1

n
f (xi)Δx.

That is, Ln and Rn approximate the integral using the left-hand and right-hand endpoints of each subinterval, respectively.

In addition, a careful examination of Figure 3.15 leads us to make the following observations about using the trapezoidal
rules and midpoint rules to estimate the definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals where the function is concave up and to
underestimate the value of a definite integral systematically over intervals where the function is concave down. On the other
hand, the midpoint rule tends to average out these errors somewhat by partially overestimating and partially underestimating
the value of the definite integral over these same types of intervals. This leads us to hypothesize that, in general, the
midpoint rule tends to be more accurate than the trapezoidal rule.

Figure 3.15 The trapezoidal rule tends to be less accurate than the midpoint rule.
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Example 3.41

Using the Trapezoidal Rule

Use the trapezoidal rule to estimate ∫
0

1
x2 dx using four subintervals.

Solution

The endpoints of the subintervals consist of elements of the set P =
⎧

⎩
⎨0, 1

4, 1
2, 3

4, 1
⎫

⎭
⎬ and Δx = 1 − 0

4 = 1
4.

Thus,

∫
0

1
x2 dx ≈ 1

2 · 1
4

⎛
⎝ f (0) + 2 f ⎛

⎝
1
4

⎞
⎠ + 2 f ⎛

⎝
1
2

⎞
⎠ + 2 f ⎛

⎝
3
4

⎞
⎠ + f (1)⎞

⎠

= 1
8

⎛
⎝0 + 2 · 1

16 + 2 · 1
4 + 2 · 9

16 + 1⎞
⎠

= 11
32.

Use the trapezoidal rule with n = 2 to estimate ∫
1

2
1
xdx.

Absolute and Relative Error
An important aspect of using these numerical approximation rules consists of calculating the error in using them for
estimating the value of a definite integral. We first need to define absolute error and relative error.

Definition

If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A − B|. The

relative error is the error as a percentage of the absolute value and is given by |A − B
A | = |A − B

A | · 100%.

Example 3.42

Calculating Error in the Midpoint Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the midpoint rule, found in Example

3.39.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is M4 = 21
64. Thus, the absolute error

is given by |⎛⎝1
3

⎞
⎠ − ⎛

⎝
21
64

⎞
⎠| = 1

192 ≈ 0.0052. The relative error is
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1/192
1/3 = 1

64 ≈ 0.015625 ≈ 1.6%.

Example 3.43

Calculating Error in the Trapezoidal Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the trapezoidal rule, found in

Example 3.41.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is T4 = 11
32. Thus, the absolute error

is given by |13 − 11
32| = 1

96 ≈ 0.0104. The relative error is given by

1/96
1/3 = 0.03125 ≈ 3.1%.

In an earlier checkpoint, we estimated ∫
1

2
1
xdx to be 24

35 using T2. The actual value of this integral is

ln2. Using 24
35 ≈ 0.6857 and ln2 ≈ 0.6931, calculate the absolute error and the relative error.

In the two previous examples, we were able to compare our estimate of an integral with the actual value of the integral;
however, we do not typically have this luxury. In general, if we are approximating an integral, we are doing so because we
cannot compute the exact value of the integral itself easily. Therefore, it is often helpful to be able to determine an upper
bound for the error in an approximation of an integral. The following theorem provides error bounds for the midpoint and
trapezoidal rules. The theorem is stated without proof.

Theorem 3.5: Error Bounds for the Midpoint and Trapezoidal Rules

Let f (x) be a continuous function over ⎡
⎣a, b⎤

⎦, having a second derivative f ″(x) over this interval. If M is the

maximum value of | f ″(x)| over [a, b], then the upper bounds for the error in using Mn and Tn to estimate

∫
a

b
f (x)dx are

(3.12)
Error in Mn ≤ M(b − a)3

24n2

and

(3.13)
Error in Tn ≤ M(b − a)3

12n2 .
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We can use these bounds to determine the value of n necessary to guarantee that the error in an estimate is less than a

specified value.

Example 3.44

Determining the Number of Intervals to Use

What value of n should be used to guarantee that an estimate of ∫
0

1
ex2

dx is accurate to within 0.01 if we use

the midpoint rule?

Solution

We begin by determining the value of M, the maximum value of | f ″(x)| over [0, 1] for f (x) = ex2
. Since

f ′ (x) = 2xex2
, we have

f ″ (x) = 2ex2
+ 4x2 ex2

.

Thus,

| f ″(x)| = 2ex2 ⎛
⎝1 + 2x2⎞

⎠ ≤ 2 · e · 3 = 6e.

From the error-bound Equation 3.12, we have

Error in Mn ≤ M(b − a)3

24n2 ≤ 6e(1 − 0)3

24n2 = 6e
24n2.

Now we solve the following inequality for n:

6e
24n2 ≤ 0.01.

Thus, n ≥ 600e
24 ≈ 8.24. Since n must be an integer satisfying this inequality, a choice of n = 9 would

guarantee that |∫0

1
ex2

dx − Mn| < 0.01.

Analysis
We might have been tempted to round 8.24 down and choose n = 8, but this would be incorrect because we

must have an integer greater than or equal to 8.24. We need to keep in mind that the error estimates provide an

upper bound only for the error. The actual estimate may, in fact, be a much better approximation than is indicated
by the error bound.

Use Equation 3.13 to find an upper bound for the error in using M4 to estimate ∫
0

1
x2 dx.

Simpson’s Rule
With the midpoint rule, we estimated areas of regions under curves by using rectangles. In a sense, we approximated the
curve with piecewise constant functions. With the trapezoidal rule, we approximated the curve by using piecewise linear
functions. What if we were, instead, to approximate a curve using piecewise quadratic functions? With Simpson’s rule,
we do just this. We partition the interval into an even number of subintervals, each of equal width. Over the first pair
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of subintervals we approximate ∫
x0

x2
f (x)dx with ∫

x0

x2
p(x)dx, where p(x) = Ax2 + Bx + C is the quadratic function

passing through (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)) (Figure 3.16). Over the next pair of subintervals we

approximate ∫
x2

x4
f (x)dx with the integral of another quadratic function passing through (x2, f (x2)), (x3, f (x3)), and

(x4, f (x4)). This process is continued with each successive pair of subintervals.

Figure 3.16 With Simpson’s rule, we approximate a definite integral by integrating a piecewise quadratic function.

To understand the formula that we obtain for Simpson’s rule, we begin by deriving a formula for this approximation over
the first two subintervals. As we go through the derivation, we need to keep in mind the following relationships:

f (x0) = p(x0) = Ax0
2 + Bx0 + C

f (x1) = p(x1) = Ax1
2 + Bx1 + C

f (x2) = p(x2) = Ax2
2 + Bx2 + C

x2 − x0 = 2Δx, where Δx is the length of a subinterval.

x2 + x0 = 2x1, since x1 = (x2 + x0)
2 .

Thus,
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∫
x0

x2
f (x)dx ≈ ∫

x0

x2
p(x)dx

= ∫
x0

x2
(Ax2 + Bx + C)dx

= A
3 x3 + B

2 x2 + Cx|x2
x0

Find the antiderivative.

= A
3

⎛
⎝x2

3 − x0
3⎞

⎠ + B
2

⎛
⎝x2

2 − x0
2⎞

⎠ + C(x2 − x0) Evaluate the antiderivative.

= A
3 (x2 − x0)⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠

+ B
2 (x2 − x0)(x2 + x0) + C(x2 − x0)

= x2 − x0
6

⎛
⎝2A⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠ + 3B(x2 + x0) + 6C⎞

⎠ Factor out x2 − x0
6 .

= Δx
3

⎛
⎝
⎛
⎝Ax2

2 + Bx2 + C⎞
⎠ + (Ax0

2 + Bx0 + C⎞
⎠

+A⎛
⎝x2

2 + 2x2 x0 + x0
2⎞

⎠ + 2B(x2 + x0) + 4C)

= Δx
3

⎛
⎝ f (x2) + f (x0) + A(x2 + x0)2 + 2B(x2 + x0) + 4C⎞

⎠ Rearrange the terms.

Factor and substitute.
f (x2) = Ax0

2 + Bx0 + C and

f (x0) = Ax0
2 + Bx0 + C.

= Δx
3

⎛
⎝ f (x2) + f (x0) + A⎛

⎝2x1
⎞
⎠
2 + 2B⎛

⎝2x1
⎞
⎠ + 4C⎞

⎠ Substitute x2 + x0 = 2x1.

= Δx
3

⎛
⎝ f (x2) + 4 f (x1) + f (x0)⎞

⎠.
Expand and substitute

f (x1) = Ax1
2 + Bx1 +.

If we approximate ∫
x2

x4
f (x)dx using the same method, we see that we have

∫
x0

x4
f (x)dx ≈ Δx

3
⎛
⎝ f (x4) + 4 f (x3) + f (x2)⎞

⎠.

Combining these two approximations, we get

∫
x0

x4
f (x)dx = Δx

3
⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)⎞

⎠.

The pattern continues as we add pairs of subintervals to our approximation. The general rule may be stated as follows.

Theorem 3.6: Simpson’s Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive even integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided

into n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 ,…, xn

⎫

⎭
⎬. Set

(3.14)Sn = Δx
3

⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)⎞

⎠.

Then,

lim
n → +∞

Sn = ∫
a

b
f (x)dx.

Just as the trapezoidal rule is the average of the left-hand and right-hand rules for estimating definite integrals, Simpson’s
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rule may be obtained from the midpoint and trapezoidal rules by using a weighted average. It can be shown that

S2n = ⎛
⎝
2
3

⎞
⎠Mn + ⎛

⎝
1
3

⎞
⎠Tn.

It is also possible to put a bound on the error when using Simpson’s rule to approximate a definite integral. The bound in
the error is given by the following rule:

Rule: Error Bound for Simpson’s Rule

Let f (x) be a continuous function over [a, b] having a fourth derivative, f (4)(x), over this interval. If M is the

maximum value of | f (4)(x)| over [a, b], then the upper bound for the error in using Sn to estimate ∫
a

b
f (x)dx is

given by

(3.15)
Error in Sn ≤ M(b − a)5

180n4 .

Example 3.45

Applying Simpson’s Rule 1

Use S2 to approximate ∫
0

1
x3 dx. Estimate a bound for the error in S2.

Solution

Since [0, 1] is divided into two intervals, each subinterval has length Δx = 1 − 0
2 = 1

2. The endpoints of these

subintervals are
⎧

⎩
⎨0, 1

2, 1
⎫

⎭
⎬. If we set f (x) = x3, then

S4 = 1
3 · 1

2
⎛
⎝ f (0) + 4 f ⎛

⎝
1
2

⎞
⎠ + f (1)⎞

⎠ = 1
6

⎛
⎝0 + 4 · 1

8 + 1⎞
⎠ = 1

4. Since f (4) (x) = 0 and consequently M = 0, we

see that

Error in S2 ≤ 0(1)5

180 ⋅ 24 = 0.

This bound indicates that the value obtained through Simpson’s rule is exact. A quick check will verify that, in

fact, ∫
0

1
x3 dx = 1

4.

Example 3.46

Applying Simpson’s Rule 2

Use S6 to estimate the length of the curve y = 1
2x2 over [1, 4].

Solution
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The length of y = 1
2x2 over [1, 4] is ∫

1

4
1 + x2dx. If we divide [1, 4] into six subintervals, then each

subinterval has length Δx = 4 − 1
6 = 1

2, and the endpoints of the subintervals are
⎧

⎩
⎨1, 3

2, 2, 5
2, 3, 7

2, 4
⎫

⎭
⎬.

Setting f (x) = 1 + x2,

S6 = 1
3 · 1

2
⎛
⎝ f (1) + 4 f ⎛

⎝
3
2

⎞
⎠ + 2 f (2) + 4 f ⎛

⎝
5
2

⎞
⎠ + 2 f (3) + 4 f ⎛

⎝
7
2

⎞
⎠ + f (4)⎞

⎠.

After substituting, we have

S6 = 1
6(1.4142 + 4 · 1.80278 + 2 · 2.23607 + 4 · 2.69258 + 2 · 3.16228 + 4 · 3.64005 + 4.12311)

≈ 8.14594.

Use S2 to estimate ∫
1

2
1
xdx.
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3.6 EXERCISES
Approximate the following integrals using either the
midpoint rule, trapezoidal rule, or Simpson’s rule as
indicated. (Round answers to three decimal places.)

299. ∫
1

2
dx
x ; trapezoidal rule; n = 5

300. ∫
0

3
4 + x3dx; trapezoidal rule; n = 6

301. ∫
0

3
4 + x3dx; Simpson’s rule; n = 3

302. ∫
0

12
x2 dx; midpoint rule; n = 6

303. ∫
0

1
sin2 (πx)dx; midpoint rule; n = 3

304. Use the midpoint rule with eight subdivisions to

estimate ∫
2

4
x2 dx.

305. Use the trapezoidal rule with four subdivisions to

estimate ∫
2

4
x2 dx.

306. Find the exact value of ∫
2

4
x2 dx. Find the error

of approximation between the exact value and the value
calculated using the trapezoidal rule with four subdivisions.
Draw a graph to illustrate.

Approximate the integral to three decimal places using the
indicated rule.

307. ∫
0

1
sin2 (πx)dx; trapezoidal rule; n = 6

308. ∫
0

3
1

1 + x3dx; trapezoidal rule; n = 6

309. ∫
0

3
1

1 + x3dx; Simpson’s rule; n = 3

310. ∫
0

0.8
e−x2

dx; trapezoidal rule; n = 4

311. ∫
0

0.8
e−x2

dx; Simpson’s rule; n = 4

312. ∫
0

0.4
sin(x2)dx; trapezoidal rule; n = 4

313. ∫
0

0.4
sin(x2)dx; Simpson’s rule; n = 4

314. ∫
0.1

0.5
cosx

x dx; trapezoidal rule; n = 4

315. ∫
0.1

0.5
cosx

x dx; Simpson’s rule; n = 4

316. Evaluate ∫
0

1
dx

1 + x2 exactly and show that the result

is π/4. Then, find the approximate value of the integral

using the trapezoidal rule with n = 4 subdivisions. Use the

result to approximate the value of π.

317. Approximate ∫
2

4
1

lnxdx using the midpoint rule

with four subdivisions to four decimal places.

318. Approximate ∫
2

4
1

lnxdx using the trapezoidal rule

with eight subdivisions to four decimal places.

319. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx to four decimal places.

320. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx. Compare this value with the exact

value and find the error estimate.

321. Using Simpson’s rule with four subdivisions, find

∫
0

π/2
cos(x)dx.

322. Show that the exact value of ∫
0

1
xe−x dx = 1 − 2

e .

Find the absolute error if you approximate the integral
using the midpoint rule with 16 subdivisions.

323. Given ∫
0

1
xe−x dx = 1 − 2

e , use the trapezoidal

rule with 16 subdivisions to approximate the integral and
find the absolute error.
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324. Find an upper bound for the error in estimating

∫
0

3
(5x + 4)dx using the trapezoidal rule with six steps.

325. Find an upper bound for the error in estimating

∫
4

5
1

(x − 1)2dx using the trapezoidal rule with seven

subdivisions.

326. Find an upper bound for the error in estimating

∫
0

3
(6x2 − 1)dx using Simpson’s rule with n = 10 steps.

327. Find an upper bound for the error in estimating

∫
2

5
1

x − 1dx using Simpson’s rule with n = 10 steps.

328. Find an upper bound for the error in estimating

∫
0

π
2xcos(x)dx using Simpson’s rule with four steps.

329. Estimate the minimum number of subintervals

needed to approximate the integral ∫
1

4
⎛
⎝5x2 + 8⎞

⎠dx with

an error magnitude of less than 0.0001 using the trapezoidal
rule.

330. Determine a value of n such that the trapezoidal rule

will approximate ∫
0

1
1 + x2dx with an error of no more

than 0.01.

331. Estimate the minimum number of subintervals

needed to approximate the integral ∫
2

3
⎛
⎝2x3 + 4x⎞

⎠dx with

an error of magnitude less than 0.0001 using the trapezoidal
rule.

332. Estimate the minimum number of subintervals

needed to approximate the integral ∫
3

4
1

(x − 1)2dx with an

error magnitude of less than 0.0001 using the trapezoidal
rule.

333. Use Simpson’s rule with four subdivisions to
approximate the area under the probability density function

y = 1
2π

e−x2/2 from x = 0 to x = 0.4.

334. Use Simpson’s rule with n = 14 to approximate (to

three decimal places) the area of the region bounded by the
graphs of y = 0, x = 0, and x = π/2.

335. The length of one arch of the curve y = 3sin(2x) is

given by L = ∫
0

π/2
1 + 36cos2(2x)dx. Estimate L using

the trapezoidal rule with n = 6.

336. The length of the ellipse
x = acos(t), y = bsin(t), 0 ≤ t ≤ 2π is given by

L = 4a∫
0

π/2
1 − e2 cos2(t)dt, where e is the

eccentricity of the ellipse. Use Simpson’s rule with n = 6
subdivisions to estimate the length of the ellipse when
a = 2 and e = 1/3.

337. Estimate the area of the surface generated by
revolving the curve y = cos(2x), 0 ≤ x ≤ π

4 about the

x-axis. Use the trapezoidal rule with six subdivisions.

338. Estimate the area of the surface generated by

revolving the curve y = 2x2, 0 ≤ x ≤ 3 about the

x-axis. Use Simpson’s rule with n = 6.

339. The growth rate of a certain tree (in feet) is given by

y = 2
t + 1 + e−t2 /2, where t is time in years. Estimate the

growth of the tree through the end of the second year by
using Simpson’s rule, using two subintervals. (Round the
answer to the nearest hundredth.)

340. [T] Use a calculator to approximate ∫
0

1
sin(πx)dx

using the midpoint rule with 25 subdivisions. Compute the
relative error of approximation.

341. [T] Given ∫
1

5
⎛
⎝3x2 − 2x⎞

⎠dx = 100, approximate

the value of this integral using the midpoint rule with 16
subdivisions and determine the absolute error.

342. Given that we know the Fundamental Theorem of
Calculus, why would we want to develop numerical
methods for definite integrals?
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343. The table represents the coordinates (x, y) that give

the boundary of a lot. The units of measurement are meters.
Use the trapezoidal rule to estimate the number of square
meters of land that is in this lot.

x y x y

0 125 600 95

100 125 700 88

200 120 800 75

300 112 900 35

400 90 1000 0

500 90

344. Choose the correct answer. When Simpson’s rule is
used to approximate the definite integral, it is necessary that
the number of partitions be____

a. an even number
b. odd number
c. either an even or an odd number
d. a multiple of 4

345. The “Simpson” sum is based on the area under a
____.

346. The error formula for Simpson’s rule depends
on___.

a. f (x)
b. f ′(x)

c. f (4)(x)
d. the number of steps
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3.7 | Improper Integrals

Learning Objectives
3.7.1 Evaluate an integral over an infinite interval.

3.7.2 Evaluate an integral over a closed interval with an infinite discontinuity within the interval.

3.7.3 Use the comparison theorem to determine whether a definite integral is convergent.

Is the area between the graph of f (x) = 1
x and the x-axis over the interval [1, +∞) finite or infinite? If this same region

is revolved about the x-axis, is the volume finite or infinite? Surprisingly, the area of the region described is infinite, but the
volume of the solid obtained by revolving this region about the x-axis is finite.

In this section, we define integrals over an infinite interval as well as integrals of functions containing a discontinuity on
the interval. Integrals of these types are called improper integrals. We examine several techniques for evaluating improper
integrals, all of which involve taking limits.

Integrating over an Infinite Interval

How should we go about defining an integral of the type ∫
a

+∞
f (x)dx? We can integrate ∫

a

t
f (x)dx for any value of

t, so it is reasonable to look at the behavior of this integral as we substitute larger values of t. Figure 3.17 shows that

∫
a

t
f (x)dx may be interpreted as area for various values of t. In other words, we may define an improper integral as a

limit, taken as one of the limits of integration increases or decreases without bound.

Figure 3.17 To integrate a function over an infinite interval, we consider the limit of the integral as the upper limit increases
without bound.

Definition

1. Let f (x) be continuous over an interval of the form [a, +∞). Then

(3.16)∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx,

provided this limit exists.

2. Let f (x) be continuous over an interval of the form (−∞, b]. Then

(3.17)∫
−∞

b
f (x)dx = lim

t → −∞
∫

t

b
f (x)dx,

provided this limit exists.
In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then
the improper integral is said to diverge.

3. Let f (x) be continuous over (−∞, +∞). Then
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(3.18)∫
−∞

+∞
f (x)dx = ∫

−∞

0
f (x)dx + ∫

0

+∞
f (x)dx,

provided that ∫
−∞

0
f (x)dx and ∫

0

+∞
f (x)dx both converge. If either of these two integrals diverge, then

∫
−∞

+∞
f (x)dx diverges. (It can be shown that, in fact, ∫

−∞

+∞
f (x)dx = ∫

−∞

a
f (x)dx + ∫

a

+∞
f (x)dx for any

value of a.)

In our first example, we return to the question we posed at the start of this section: Is the area between the graph of

f (x) = 1
x and the x -axis over the interval [1, +∞) finite or infinite?

Example 3.47

Finding an Area

Determine whether the area between the graph of f (x) = 1
x and the x-axis over the interval [1, +∞) is finite or

infinite.

Solution

We first do a quick sketch of the region in question, as shown in the following graph.

Figure 3.18 We can find the area between the curve
f (x) = 1/x and the x-axis on an infinite interval.

We can see that the area of this region is given by A = ∫
1

∞
1
xdx. Then we have
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A = ∫
1

∞
1
xdx

= lim
t → +∞

∫
1

t
1
xdx Rewrite the improper integral as a limit.

= lim
t → +∞

ln|x||1t Find the antiderivative.

= lim
t → +∞

(ln|t| − ln1) Evaluate the antiderivative.

= +∞. Evaluate the limit.

Since the improper integral diverges to +∞, the area of the region is infinite.

Example 3.48

Finding a Volume

Find the volume of the solid obtained by revolving the region bounded by the graph of f (x) = 1
x and the x-axis

over the interval [1, +∞) about the x -axis.

Solution

The solid is shown in Figure 3.19. Using the disk method, we see that the volume V is

V = π∫
1

+∞
1
x2dx.

Figure 3.19 The solid of revolution can be generated by rotating an infinite area about the
x-axis.

Then we have
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V = π∫
1

+∞
1
x2dx

= π lim
t → +∞

∫
1

t
1
x2dx Rewrite as a limit.

= π lim
t → +∞

− 1
x |1t Find the antiderivative.

= π lim
t → +∞

⎛
⎝− 1

t + 1⎞
⎠ Evaluate the antiderivative.

= π.

The improper integral converges to π. Therefore, the volume of the solid of revolution is π.

In conclusion, although the area of the region between the x-axis and the graph of f (x) = 1/x over the interval [1, +∞)
is infinite, the volume of the solid generated by revolving this region about the x-axis is finite. The solid generated is known
as Gabriel’s Horn.

Visit this website (http://www.openstaxcollege.org/l/20_GabrielsHorn) to read more about Gabriel’s
Horn.

Example 3.49

Chapter Opener: Traffic Accidents in a City

Figure 3.20 (credit: modification of work by David
McKelvey, Flickr)

In the chapter opener, we stated the following problem: Suppose that at a busy intersection, traffic accidents occur
at an average rate of one every three months. After residents complained, changes were made to the traffic lights
at the intersection. It has now been eight months since the changes were made and there have been no accidents.
Were the changes effective or is the 8-month interval without an accident a result of chance?

Probability theory tells us that if the average time between events is k, the probability that X, the time between

events, is between a and b is given by

P(a ≤ x ≤ b) = ∫
a

b
f (x)dx where f (x) =

⎧

⎩
⎨

0 if x < 0
ke−kx if x ≥ 0

.

Thus, if accidents are occurring at a rate of one every 3 months, then the probability that X, the time between

accidents, is between a and b is given by
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P(a ≤ x ≤ b) = ∫
a

b
f (x)dx where f (x) =

⎧

⎩
⎨

0 if x < 0
3e−3x if x ≥ 0

.

To answer the question, we must compute P(X ≥ 8) = ∫
8

+∞
3e−3x dx and decide whether it is likely that 8

months could have passed without an accident if there had been no improvement in the traffic situation.

Solution

We need to calculate the probability as an improper integral:

P(X ≥ 8) = ∫
8

+∞
3e−3x dx

= lim
t → +∞

∫
8

t
3e−3x dx

= lim
t → +∞

−e−3x|8t
= lim

t → +∞
(−e−3t + e−24)

≈ 3.8 × 10−11.

The value 3.8 × 10−11 represents the probability of no accidents in 8 months under the initial conditions. Since

this value is very, very small, it is reasonable to conclude the changes were effective.

Example 3.50

Evaluating an Improper Integral over an Infinite Interval

Evaluate ∫
−∞

0
1

x2 + 4
dx. State whether the improper integral converges or diverges.

Solution

Begin by rewriting ∫
−∞

0
1

x2 + 4
dx as a limit using Equation 3.17 from the definition. Thus,

∫
−∞

0
1

x2 + 4
dx = lim

t → −∞
∫

t

0
1

x2 + 4
dx Rewrite as a limit.

= lim
t → −∞

tan−1 x
2|t0 Find the antiderivative.

= lim
t → −∞

(tan−1 0 − tan−1 t
2) Evaluate the antiderivative.

= π
2. Evaluate the limit and simplify.

The improper integral converges to π
2.
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Example 3.51

Evaluating an Improper Integral on (−∞, +∞)

Evaluate ∫
−∞

+∞
xex dx. State whether the improper integral converges or diverges.

Solution

Start by splitting up the integral:

∫
−∞

+∞
xex dx = ∫

−∞

0
xex dx + ∫

0

+∞
xex dx.

If either ∫
−∞

0
xex dx or ∫

0

+∞
xex dx diverges, then ∫

−∞

+∞
xex dx diverges. Compute each integral separately.

For the first integral,

∫
−∞

0
xex dx = lim

t → −∞
∫

t

0
xex dx Rewrite as a limit.

= lim
t → −∞

(xex − ex)|t0 Use integration by parts to find he
antiderivative. (Here u = x and dv = ex.)

= lim
t → −∞

⎛
⎝−1 − tet + et⎞

⎠ Evaluate the antiderivative.

= −1.

Evaluate the limit. Note: lim
t → −∞

tet is

indeterminate of the form 0 · ∞. Thus,

lim
t → −∞

tet = lim
t → −∞

t
e−t = lim

t → −∞
−1
e−t = lim

t → −∞
− et = 0 by

L’Hôpital’s Rule.

The first improper integral converges. For the second integral,

∫
0

+∞
xex dx = lim

t → +∞
∫

0

t
xex dx Rewrite as a limit.

= lim
t → +∞

(xex − ex)|0t Find the antiderivative.

= lim
t → +∞

⎛
⎝tet − et + 1⎞

⎠ Evaluate the antiderivative.

= lim
t → +∞

⎛
⎝(t − 1)et + 1⎞

⎠ Rewrite. (tet − et is indeterminate.)

= +∞. Evaluate the limit.

Thus, ∫
0

+∞
xex dx diverges. Since this integral diverges, ∫

−∞

+∞
xex dx diverges as well.

Evaluate ∫
−3

+∞
e−x dx. State whether the improper integral converges or diverges.

Integrating a Discontinuous Integrand
Now let’s examine integrals of functions containing an infinite discontinuity in the interval over which the integration
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occurs. Consider an integral of the form ∫
a

b
f (x)dx, where f (x) is continuous over [a, b) and discontinuous at b. Since

the function f (x) is continuous over [a, t] for all values of t satisfying a < t < b, the integral ∫
a

t
f (x)dx is defined

for all such values of t. Thus, it makes sense to consider the values of ∫
a

t
f (x)dx as t approaches b for a < t < b. That

is, we define ∫
a

b
f (x)dx = lim

t → b− ∫
a

t
f (x)dx, provided this limit exists. Figure 3.21 illustrates ∫

a

t
f (x)dx as areas of

regions for values of t approaching b.

Figure 3.21 As t approaches b from the left, the value of the area from a to t approaches the area from a to b.

We use a similar approach to define ∫
a

b
f (x)dx, where f (x) is continuous over (a, b] and discontinuous at a. We now

proceed with a formal definition.

Definition

1. Let f (x) be continuous over [a, b). Then,

(3.19)∫
a

b
f (x)dx = lim

t → b− ∫
a

t
f (x)dx.

2. Let f (x) be continuous over (a, b]. Then,

(3.20)∫
a

b
f (x)dx = lim

t → a+
∫

t

b
f (x)dx.

In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then
the improper integral is said to diverge.

3. If f (x) is continuous over [a, b] except at a point c in (a, b), then

(3.21)∫
a

b
f (x)dx = ∫

a

c
f (x)dx + ∫

c

b
f (x)dx,

provided both ∫
a

c
f (x)dx and ∫

c

b
f (x)dx converge. If either of these integrals diverges, then ∫

a

b
f (x)dx

diverges.

The following examples demonstrate the application of this definition.
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Example 3.52

Integrating a Discontinuous Integrand

Evaluate ∫
0

4
1

4 − x
dx, if possible. State whether the integral converges or diverges.

Solution

The function f (x) = 1
4 − x

is continuous over [0, 4) and discontinuous at 4. Using Equation 3.19 from the

definition, rewrite ∫
0

4
1

4 − x
dx as a limit:

∫
0

4
1

4 − x
dx = lim

t → 4− ∫
0

t
1

4 − x
dx Rewrite as a limit.

= lim
t → 4−

⎛
⎝−2 4 − x⎞

⎠|0t Find the antiderivative.

= lim
t → 4−

⎛
⎝−2 4 − t + 4⎞

⎠ Evaluate the antiderivative.

= 4. Evaluate the limit.

The improper integral converges.

Example 3.53

Integrating a Discontinuous Integrand

Evaluate ∫
0

2
x lnxdx. State whether the integral converges or diverges.

Solution

Since f (x) = x lnx is continuous over (0, 2] and is discontinuous at zero, we can rewrite the integral in limit

form using Equation 3.20:

∫
0

2
x lnxdx = lim

t → 0+
∫

t

2
x lnxdx Rewrite as a limit.

= lim
t → 0+

⎛
⎝
1
2x2 lnx − 1

4x2⎞
⎠|t2 Evaluate ∫ x lnxdx using integration by parts

with u = lnx and dv = x.
= lim

t → 0+
⎛
⎝2ln2 − 1 − 1

2t2 ln t + 1
4t2⎞

⎠. Evaluate the antiderivative.

= 2ln2 − 1.
Evaluate the limit. lim

t → 0+
t2 ln t is indeterminate.

To evaluate it, rewrite as a quotient and apply
L’Hôpital’s rule.

The improper integral converges.
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Example 3.54

Integrating a Discontinuous Integrand

Evaluate ∫
−1

1
1
x3dx. State whether the improper integral converges or diverges.

Solution

Since f (x) = 1/x3 is discontinuous at zero, using Equation 3.21, we can write

∫
−1

1
1
x3dx = ∫

−1

0
1
x3dx + ∫

0

1
1
x3dx.

If either of the two integrals diverges, then the original integral diverges. Begin with ∫
−1

0
1
x3dx :

∫
−1

0
1
x3dx = lim

t → 0− ∫
−1

t
1
x3dx Rewrite as a limit.

= lim
t → 0−

⎛
⎝− 1

2x2
⎞
⎠|−1

t
Find the antiderivative.

= lim
t → 0−

⎛
⎝− 1

2t2 + 1
2
⎞
⎠ Evaluate the antiderivative.

= +∞. Evaluate the limit.

Therefore, ∫
−1

0
1
x3dx diverges. Since ∫

−1

0
1
x3dx diverges, ∫

−1

1
1
x3dx diverges.

Evaluate ∫
0

2
1
xdx. State whether the integral converges or diverges.

A Comparison Theorem
It is not always easy or even possible to evaluate an improper integral directly; however, by comparing it with another
carefully chosen integral, it may be possible to determine its convergence or divergence. To see this, consider two
continuous functions f (x) and g(x) satisfying 0 ≤ f (x) ≤ g(x) for x ≥ a (Figure 3.22). In this case, we may view

integrals of these functions over intervals of the form [a, t] as areas, so we have the relationship

0 ≤ ∫
a

t
f (x)dx ≤ ∫

a

t
g(x)dx for t ≥ a.
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Figure 3.22 If 0 ≤ f (x) ≤ g(x) for x ≥ a, then for

t ≥ a, ∫
a

t
f (x)dx ≤ ∫

a

t
g(x)dx.

Thus, if

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = +∞,

then

∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = +∞ as well. That is, if the area of the region between the graph of f (x) and the x-axis

over [a, +∞) is infinite, then the area of the region between the graph of g(x) and the x-axis over [a, +∞) is infinite

too.

On the other hand, if

∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = L for some real number L, then

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx must converge to some value less than or equal to L, since ∫

a

t
f (x)dx increases as t

increases and ∫
a

t
f (x)dx ≤ L for all t ≥ a.

If the area of the region between the graph of g(x) and the x-axis over [a, +∞) is finite, then the area of the region

between the graph of f (x) and the x-axis over [a, +∞) is also finite.

These conclusions are summarized in the following theorem.

Theorem 3.7: A Comparison Theorem

Let f (x) and g(x) be continuous over [a, +∞). Assume that 0 ≤ f (x) ≤ g(x) for x ≥ a.

i. If ∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = +∞, then ∫

a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = +∞.

ii. If ∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = L, where L is a real number, then

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = M for some real number M ≤ L.
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Example 3.55

Applying the Comparison Theorem

Use a comparison to show that ∫
1

+∞
1

xexdx converges.

Solution

We can see that

0 ≤ 1
xex ≤ 1

ex = e−x,

so if ∫
1

+∞
e−x dx converges, then so does ∫

1

+∞
1

xexdx. To evaluate ∫
1

+∞
e−x dx, first rewrite it as a limit:

∫
1

+∞
e−xdx = lim

t → +∞
∫

1

t
e−x dx

= lim
t → +∞

(−e−x)| t1
= lim

t → +∞
⎛
⎝−e−t + e1⎞

⎠

= e1.

Since ∫
1

+∞
e−x dx converges, so does ∫

1

+∞
1

xexdx.

Example 3.56

Applying the Comparison Theorem

Use the comparison theorem to show that ∫
1

+∞
1
x pdx diverges for all p < 1.

Solution

For p < 1, 1/x ≤ 1/(x p) over [1, +∞). In Example 3.47, we showed that ∫
1

+∞
1
xdx = +∞. Therefore,

∫
1

+∞
1
x pdx diverges for all p < 1.

Use a comparison to show that ∫
e

+∞
lnx
x dx diverges.
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Laplace Transforms

In the last few chapters, we have looked at several ways to use integration for solving real-world problems. For this
next project, we are going to explore a more advanced application of integration: integral transforms. Specifically, we
describe the Laplace transform and some of its properties. The Laplace transform is used in engineering and physics to
simplify the computations needed to solve some problems. It takes functions expressed in terms of time and transforms
them to functions expressed in terms of frequency. It turns out that, in many cases, the computations needed to solve
problems in the frequency domain are much simpler than those required in the time domain.

The Laplace transform is defined in terms of an integral as

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = F(s) = ∫

0

∞
e−st f (t)dt.

Note that the input to a Laplace transform is a function of time, f (t), and the output is a function of frequency, F(s).

Although many real-world examples require the use of complex numbers (involving the imaginary number i = −1),
in this project we limit ourselves to functions of real numbers.

Let’s start with a simple example. Here we calculate the Laplace transform of f (t) = t . We have

L{t} = ∫
0

∞
te−st dt.

This is an improper integral, so we express it in terms of a limit, which gives

L{t} = ∫
0

∞
te−st dt = limz → ∞∫

0

z
te−st dt.

Now we use integration by parts to evaluate the integral. Note that we are integrating with respect to t, so we treat the
variable s as a constant. We have

u = t dv = e−st dt
du = dt v = −1

se−st.

Then we obtain

limz → ∞∫
0

z
te−st dt = limz → ∞

⎡
⎣

⎡
⎣− t

se−st⎤
⎦|0z + 1

s∫
0

z
e−st dt⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣−

z
se−sz + 0

se−0s⎤
⎦ + 1

s∫
0

z
e−st dt⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣− z

se−sz + 0⎤
⎦ − 1

s
⎡
⎣
e−st

s
⎤
⎦|0z⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣− z

se−sz⎤
⎦ − 1

s2
⎡
⎣e−sz − 1⎤

⎦
⎤
⎦

= limz → ∞
⎡
⎣− z

sesz
⎤
⎦ − limz → ∞

⎡
⎣

1
s2 esz

⎤
⎦ + limz → ∞

1
s2

= 0 − 0 + 1
s2

= 1
s2.

1. Calculate the Laplace transform of f (t) = 1.

Chapter 3 | Techniques of Integration 341



2. Calculate the Laplace transform of f (t) = e−3t.

3. Calculate the Laplace transform of f (t) = t2. (Note, you will have to integrate by parts twice.)

Laplace transforms are often used to solve differential equations. Differential equations are not covered in
detail until later in this book; but, for now, let’s look at the relationship between the Laplace transform of a
function and the Laplace transform of its derivative.
Let’s start with the definition of the Laplace transform. We have

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = ∫

0

∞
e−st f (t)dt = limz → ∞∫

0

z
e−st f (t)dt.

4. Use integration by parts to evaluate limz → ∞∫
0

z
e−st f (t)dt. (Let u = f (t) and dv = e−st dt.)

After integrating by parts and evaluating the limit, you should see that

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = f (0)

s + 1
s

⎡
⎣L⎧

⎩
⎨ f ′(t)⎫

⎭
⎬⎤
⎦.

Then,

L⎧

⎩
⎨ f ′(t)⎫

⎭
⎬ = sL⎧

⎩
⎨ f (t)⎫

⎭
⎬ − f (0).

Thus, differentiation in the time domain simplifies to multiplication by s in the frequency domain.
The final thing we look at in this project is how the Laplace transforms of f (t) and its antiderivative are

related. Let g(t) = ∫
0

t
f (u)du. Then,

L⎧

⎩
⎨g(t)⎫

⎭
⎬ = ∫

0

∞
e−st g(t)dt = limz → ∞∫

0

z
e−st g(t)dt.

5. Use integration by parts to evaluate limz → ∞∫
0

z
e−st g(t)dt. (Let u = g(t) and dv = e−st dt. Note, by the way,

that we have defined g(t), du = f (t)dt.)
As you might expect, you should see that

L⎧

⎩
⎨g(t)⎫

⎭
⎬ = 1

s · L⎧

⎩
⎨ f (t)⎫

⎭
⎬.

Integration in the time domain simplifies to division by s in the frequency domain.
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3.7 EXERCISES
Evaluate the following integrals. If the integral is not
convergent, answer “divergent.”

347. ∫
2

4
dx

(x − 3)2

348. ∫
0

∞
1

4 + x2dx

349. ∫
0

2
1

4 − x2
dx

350. ∫
1

∞
1

x lnxdx

351. ∫
1

∞
xe−x dx

352. ∫
−∞

∞
x

x2 + 1
dx

353. Without integrating, determine whether the integral

∫
1

∞
1

x3 + 1
dx converges or diverges by comparing the

function f (x) = 1
x3 + 1

with g(x) = 1
x3

.

354. Without integrating, determine whether the integral

∫
1

∞
1

x + 1
dx converges or diverges.

Determine whether the improper integrals converge or
diverge. If possible, determine the value of the integrals that
converge.

355. ∫
0

∞
e−x cosxdx

356. ∫
1

∞
lnx
x dx

357. ∫
0

1
lnx

x dx

358. ∫
0

1
lnxdx

359. ∫
−∞

∞
1

x2 + 1
dx

360. ∫
1

5
dx

x − 1

361. ∫
−2

2
dx

(1 + x)2

362. ∫
0

∞
e−x dx

363. ∫
0

∞
sinxdx

364. ∫
−∞

∞
ex

1 + e2xdx

365. ∫
0

1
dx

x3

366. ∫
0

2
dx
x3

367. ∫
−1

2
dx
x3

368. ∫
0

1
dx

1 − x2

369. ∫
0

3
1

x − 1dx

370. ∫
1

∞
5
x3dx

371. ∫
3

5
5

(x − 4)2dx

Determine the convergence of each of the following
integrals by comparison with the given integral. If the
integral converges, find the number to which it converges.

372. ∫
1

∞
dx

x2 + 4x
; compare with ∫

1

∞
dx
x2 .

373. ∫
1

∞
dx

x + 1; compare with ∫
1

∞
dx
2 x.

Evaluate the integrals. If the integral diverges, answer
“diverges.”
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374. ∫
1

∞
dx
xe

375. ∫
0

1
dx
xπ

376. ∫
0

1
dx

1 − x

377. ∫
0

1
dx

1 − x

378. ∫
−∞

0
dx

x2 + 1

379. ∫
−1

1
dx

1 − x2

380. ∫
0

1
lnx
x dx

381. ∫
0

e
ln(x)dx

382. ∫
0

∞
xe−x dx

383. ∫
−∞

∞
x

⎛
⎝x2 + 1⎞

⎠
2dx

384. ∫
0

∞
e−x dx

Evaluate the improper integrals. Each of these integrals
has an infinite discontinuity either at an endpoint or at an
interior point of the interval.

385. ∫
0

9
dx

9 − x

386. ∫
−27

1
dx

x2/3

387. ∫
0

3
dx

9 − x2

388. ∫
6

24
dt

t t2 − 36

389. ∫
0

4
x ln(4x)dx

390. ∫
0

3
x

9 − x2
dx

391. Evaluate ∫
.5

t
dx

1 − x2
. (Be careful!) (Express your

answer using three decimal places.)

392. Evaluate ∫
1

4
dx

x2 − 1
. (Express the answer in exact

form.)

393. Evaluate ∫
2

∞
dx

(x2 − 1)3/2.

394. Find the area of the region in the first quadrant

between the curve y = e−6x and the x-axis.

395. Find the area of the region bounded by the curve

y = 7
x2, the x-axis, and on the left by x = 1.

396. Find the area under the curve y = 1
(x + 1)3/2,

bounded on the left by x = 3.

397. Find the area under y = 5
1 + x2 in the first

quadrant.

398. Find the volume of the solid generated by revolving

about the x-axis the region under the curve y = 3
x from

x = 1 to x = ∞.

399. Find the volume of the solid generated by revolving

about the y-axis the region under the curve y = 6e−2x in

the first quadrant.

400. Find the volume of the solid generated by revolving
about the x-axis the area under the curve y = 3e−x in the

first quadrant.

The Laplace transform of a continuous function over the

interval [0, ∞) is defined by F(s) = ∫
0

∞
e−sx f (x)dx

(see the Student Project). This definition is used to solve
some important initial-value problems in differential
equations, as discussed later. The domain of F is the set
of all real numbers s such that the improper integral
converges. Find the Laplace transform F of each of the
following functions and give the domain of F.
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401. f (x) = 1

402. f (x) = x

403. f (x) = cos(2x)

404. f (x) = eax

405. Use the formula for arc length to show that the

circumference of the circle x2 + y2 = 1 is 2π.

A function is a probability density function if it satisfies

the following definition: ∫
−∞

∞
f (t)dt = 1. The probability

that a random variable x lies between a and b is given by

P(a ≤ x ≤ b) = ∫
a

b
f (t)dt.

406. Show that f (x) =
⎧

⎩
⎨

0if x < 0
7e−7x if x ≥ 0

is a probability

density function.

407. Find the probability that x is between 0 and 0.3. (Use
the function defined in the preceding problem.) Use four-
place decimal accuracy.
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absolute error

computer algebra system (CAS)

improper integral

integration by parts

integration table

midpoint rule

numerical integration

partial fraction decomposition

power reduction formula

relative error

Simpson’s rule

trigonometric integral

trigonometric substitution

CHAPTER 3 REVIEW

KEY TERMS
if B is an estimate of some quantity having an actual value of A, then the absolute error is given by

|A − B|

technology used to perform many mathematical tasks, including integration

an integral over an infinite interval or an integral of a function containing an infinite discontinuity on
the interval; an improper integral is defined in terms of a limit. The improper integral converges if this limit is a finite
real number; otherwise, the improper integral diverges

a technique of integration that allows the exchange of one integral for another using the formula

∫ u dv = uv − ∫ v du

a table that lists integration formulas

a rule that uses a Riemann sum of the form Mn = ∑
i = 1

n
f (mi)Δx, where mi is the midpoint of the ith

subinterval to approximate ∫
a

b
f (x)dx

the variety of numerical methods used to estimate the value of a definite integral, including the
midpoint rule, trapezoidal rule, and Simpson’s rule

a technique used to break down a rational function into the sum of simple rational
functions

a rule that allows an integral of a power of a trigonometric function to be exchanged for an
integral involving a lower power

error as a percentage of the absolute value, given by |A − B
A | = |A − B

A | · 100%

a rule that approximates ∫
a

b
f (x)dx using the integrals of a piecewise quadratic function. The

approximation Sn to ∫
a

b
f (x)dx is given by Sn = Δx

3
⎛
⎝

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5)
+ ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)

⎞
⎠

trapezoidal rule a rule that approximates ∫
a

b
f (x)dx using trapezoids

an integral involving powers and products of trigonometric functions

an integration technique that converts an algebraic integral containing expressions of the

form a2 − x2, a2 + x2, or x2 − a2 into a trigonometric integral

KEY EQUATIONS
• Integration by parts formula

∫ u dv = uv − ∫ v du

• Integration by parts for definite integrals

∫
a

b
u dv = uv|ab − ∫

a

b
v du

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions.
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• Sine Products

sin(ax)sin(bx) = 1
2cos((a − b)x) − 1

2cos((a + b)x)

• Sine and Cosine Products

sin(ax)cos(bx) = 1
2sin⎛

⎝(a − b)x⎞
⎠ + 1

2sin((a + b)x)

• Cosine Products

cos(ax)cos(bx) = 1
2cos((a − b)x) + 1

2cos((a + b)x)

• Power Reduction Formula

∫ secn x dx = 1
n − 1secn − 1 x + n − 2

n − 1∫ secn − 2 x dx

• Power Reduction Formula

∫ tann x dx = 1
n − 1tann − 1 x − ∫ tann − 2 x dx

• Midpoint rule

Mn = ∑
i = 1

n
f (mi)Δx

• Trapezoidal rule

Tn = 1
2Δx⎛

⎝ f (x0) + 2 f (x1) + 2 f (x2) + ⋯ + 2 f (xn − 1) + f (xn)⎞
⎠

• Simpson’s rule

Sn = Δx
3

⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)⎞

⎠

• Error bound for midpoint rule

Error in Mn ≤ M(b − a)3

24n2

• Error bound for trapezoidal rule

Error in Tn ≤ M(b − a)3

12n2

• Error bound for Simpson’s rule

Error in Sn ≤ M(b − a)5

180n4

• Improper integrals

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx

∫
−∞

b
f (x)dx = lim

t → −∞
∫

t

b
f (x)dx

∫
−∞

+∞
f (x)dx = ∫

−∞

0
f (x)dx + ∫

0

+∞
f (x)dx

KEY CONCEPTS

3.1 Integration by Parts

• The integration-by-parts formula allows the exchange of one integral for another, possibly easier, integral.

• Integration by parts applies to both definite and indefinite integrals.
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3.2 Trigonometric Integrals

• Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include

1. Applying trigonometric identities to rewrite the integral so that it may be evaluated by u-substitution

2. Using integration by parts

3. Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the
sum of individual sine and cosine functions

4. Applying reduction formulas

3.3 Trigonometric Substitution

• For integrals involving a2 − x2, use the substitution x = asinθ and dx = acosθdθ.

• For integrals involving a2 + x2, use the substitution x = a tanθ and dx = asec2 θdθ.

• For integrals involving x2 − a2, substitute x = asecθ and dx = asecθ tanθdθ.

3.4 Partial Fractions

• Partial fraction decomposition is a technique used to break down a rational function into a sum of simple rational
functions that can be integrated using previously learned techniques.

• When applying partial fraction decomposition, we must make sure that the degree of the numerator is less
than the degree of the denominator. If not, we need to perform long division before attempting partial fraction
decomposition.

• The form the decomposition takes depends on the type of factors in the denominator. The types of factors
include nonrepeated linear factors, repeated linear factors, nonrepeated irreducible quadratic factors, and repeated
irreducible quadratic factors.

3.5 Other Strategies for Integration

• An integration table may be used to evaluate indefinite integrals.

• A CAS (or computer algebra system) may be used to evaluate indefinite integrals.

• It may require some effort to reconcile equivalent solutions obtained using different methods.

3.6 Numerical Integration

• We can use numerical integration to estimate the values of definite integrals when a closed form of the integral is
difficult to find or when an approximate value only of the definite integral is needed.

• The most commonly used techniques for numerical integration are the midpoint rule, trapezoidal rule, and
Simpson’s rule.

• The midpoint rule approximates the definite integral using rectangular regions whereas the trapezoidal rule
approximates the definite integral using trapezoidal approximations.

• Simpson’s rule approximates the definite integral by first approximating the original function using piecewise
quadratic functions.

3.7 Improper Integrals

• Integrals of functions over infinite intervals are defined in terms of limits.

• Integrals of functions over an interval for which the function has a discontinuity at an endpoint may be defined in
terms of limits.
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• The convergence or divergence of an improper integral may be determined by comparing it with the value of an
improper integral for which the convergence or divergence is known.

CHAPTER 3 REVIEW EXERCISES
For the following exercises, determine whether the
statement is true or false. Justify your answer with a proof
or a counterexample.

408. ∫ ex sin(x)dx cannot be integrated by parts.

409. ∫ 1
x4 + 1

dx cannot be integrated using partial

fractions.

410. In numerical integration, increasing the number of
points decreases the error.

411. Integration by parts can always yield the integral.

For the following exercises, evaluate the integral using the
specified method.

412. ∫ x2 sin(4x)dx using integration by parts

413. ∫ 1
x2 x2 + 16

dx using trigonometric substitution

414. ∫ x ln(x)dx using integration by parts

415. ∫ 3x
x3 + 2x2 − 5x − 6

dx using partial fractions

416. ∫ x5

⎛
⎝4x2 + 4⎞

⎠
5/2dx using trigonometric substitution

417. ∫ 4 − sin2(x)
sin2(x)

cos(x)dx using a table of integrals or

a CAS

For the following exercises, integrate using whatever
method you choose.

418. ∫ sin2(x)cos2(x)dx

419. ∫ x3 x2 + 2dx

420. ∫ 3x2 + 1
x4 − 2x3 − x2 + 2x

dx

421. ∫ 1
x4 + 4

dx

422. ∫ 3 + 16x4

x4 dx

For the following exercises, approximate the integrals
using the midpoint rule, trapezoidal rule, and Simpson’s
rule using four subintervals, rounding to three decimals.

423. [T] ∫
1

2
x5 + 2dx

424. [T] ∫
0

π
e−sin(x2)dx

425. [T] ∫
1

4ln(1/x)
x dx

For the following exercises, evaluate the integrals, if
possible.

426. ∫
1

∞
1
xndx, for what values of n does this integral

converge or diverge?

427. ∫
1

∞
e−x

x dx

For the following exercises, consider the gamma function

given by Γ(a) = ∫
0

∞
e−y ya − 1 dy.

428. Show that Γ(a) = (a − 1)Γ(a − 1).
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429. Extend to show that Γ(a) = (a − 1)!, assuming a
is a positive integer.

The fastest car in the world, the Bugati Veyron, can reach a
top speed of 408 km/h. The graph represents its velocity.

430. [T] Use the graph to estimate the velocity every
20 sec and fit to a graph of the form

v(t) = aexpbx sin(cx) + d. (Hint: Consider the time

units.)

431. [T] Using your function from the previous problem,
find exactly how far the Bugati Veyron traveled in the 1 min
40 sec included in the graph.
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4 | INTRODUCTION TO
DIFFERENTIAL EQUATIONS

Figure 4.1 The white-tailed deer (Odocoileus virginianus) of the eastern United States. Differential equations can be used to
study animal populations. (credit: modification of work by Rachel Kramer, Flickr)

Chapter Outline

4.1 Basics of Differential Equations

4.2 Direction Fields and Numerical Methods

4.3 Separable Equations

4.4 The Logistic Equation

4.5 First-order Linear Equations

Introduction
Many real-world phenomena can be modeled mathematically by using differential equations. Population growth,
radioactive decay, predator-prey models, and spring-mass systems are four examples of such phenomena. In this chapter we
study some of these applications.

Suppose we wish to study a population of deer over time and determine the total number of animals in a given area. We
can first observe the population over a period of time, estimate the total number of deer, and then use various assumptions
to derive a mathematical model for different scenarios. Some factors that are often considered are environmental impact,
threshold population values, and predators. In this chapter we see how differential equations can be used to predict
populations over time (see Example 4.14).

Another goal of this chapter is to develop solution techniques for different types of differential equations. As the equations
become more complicated, the solution techniques also become more complicated, and in fact an entire course could
be dedicated to the study of these equations. In this chapter we study several types of differential equations and their
corresponding methods of solution.
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4.1 | Basics of Differential Equations

Learning Objectives
4.1.1 Identify the order of a differential equation.

4.1.2 Explain what is meant by a solution to a differential equation.

4.1.3 Distinguish between the general solution and a particular solution of a differential equation.

4.1.4 Identify an initial-value problem.

4.1.5 Identify whether a given function is a solution to a differential equation or an initial-value
problem.

Calculus is the mathematics of change, and rates of change are expressed by derivatives. Thus, one of the most common
ways to use calculus is to set up an equation containing an unknown function y = f (x) and its derivative, known as

a differential equation. Solving such equations often provides information about how quantities change and frequently
provides insight into how and why the changes occur.

Techniques for solving differential equations can take many different forms, including direct solution, use of graphs, or
computer calculations. We introduce the main ideas in this chapter and describe them in a little more detail later in the
course. In this section we study what differential equations are, how to verify their solutions, some methods that are used
for solving them, and some examples of common and useful equations.

General Differential Equations
Consider the equation y′ = 3x2, which is an example of a differential equation because it includes a derivative. There is a

relationship between the variables x and y: y is an unknown function of x. Furthermore, the left-hand side of the equation

is the derivative of y. Therefore we can interpret this equation as follows: Start with some function y = f (x) and take its

derivative. The answer must be equal to 3x2. What function has a derivative that is equal to 3x2? One such function is

y = x3, so this function is considered a solution to a differential equation.

Definition

A differential equation is an equation involving an unknown function y = f (x) and one or more of its derivatives.

A solution to a differential equation is a function y = f (x) that satisfies the differential equation when f and its

derivatives are substituted into the equation.

Go to this website (http://www.openstaxcollege.org/l/20_Differential) to explore more on this topic.

Some examples of differential equations and their solutions appear in Table 4.1.
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4.1

Equation Solution

y′ = 2x y = x2

y′ + 3y = 6x + 11 y = e−3x + 2x + 3

y′′ − 3y′ + 2y = 24e−2x y = 3ex − 4e2x + 2e−2x

Table 4.1 Examples of Differential Equations and Their
Solutions

Note that a solution to a differential equation is not necessarily unique, primarily because the derivative of a constant is

zero. For example, y = x2 + 4 is also a solution to the first differential equation in Table 4.1. We will return to this idea a

little bit later in this section. For now, let’s focus on what it means for a function to be a solution to a differential equation.

Example 4.1

Verifying Solutions of Differential Equations

Verify that the function y = e−3x + 2x + 3 is a solution to the differential equation y′ + 3y = 6x + 11.

Solution

To verify the solution, we first calculate y′ using the chain rule for derivatives. This gives y′ = −3e−3x + 2.
Next we substitute y and y′ into the left-hand side of the differential equation:

(−3e−2x + 2) + 3(e−2x + 2x + 3).

The resulting expression can be simplified by first distributing to eliminate the parentheses, giving

−3e−2x + 2 + 3e−2x + 6x + 9.

Combining like terms leads to the expression 6x + 11, which is equal to the right-hand side of the differential

equation. This result verifies that y = e−3x + 2x + 3 is a solution of the differential equation.

Verify that y = 2e3x − 2x − 2 is a solution to the differential equation y′ − 3y = 6x + 4.

It is convenient to define characteristics of differential equations that make it easier to talk about them and categorize them.
The most basic characteristic of a differential equation is its order.

Definition

The order of a differential equation is the highest order of any derivative of the unknown function that appears in the
equation.
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Example 4.2

Identifying the Order of a Differential Equation

What is the order of each of the following differential equations?

a. y′ − 4y = x2 − 3x + 4

b. x2 y‴ − 3xy″ + xy′ − 3y = sinx

c. 4
xy(4) − 6

x2y″ + 12
x4 y = x3 − 3x2 + 4x − 12

Solution

a. The highest derivative in the equation is y′, so the order is 1.

b. The highest derivative in the equation is y‴, so the order is 3.

c. The highest derivative in the equation is y(4), so the order is 4.

What is the order of the following differential equation?

⎛
⎝x4 − 3x⎞

⎠y
(5) − ⎛

⎝3x2 + 1⎞
⎠y′ + 3y = sinxcosx

General and Particular Solutions
We already noted that the differential equation y′ = 2x has at least two solutions: y = x2 and y = x2 + 4. The only

difference between these two solutions is the last term, which is a constant. What if the last term is a different constant?

Will this expression still be a solution to the differential equation? In fact, any function of the form y = x2 + C, where C

represents any constant, is a solution as well. The reason is that the derivative of x2 + C is 2x, regardless of the value of

C. It can be shown that any solution of this differential equation must be of the form y = x2 + C. This is an example of a

general solution to a differential equation. A graph of some of these solutions is given in Figure 4.2. (Note: in this graph
we used even integer values for C ranging between −4 and 4. In fact, there is no restriction on the value of C; it can be

an integer or not.)

Figure 4.2 Family of solutions to the differential equation
y′ = 2x.
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4.3

In this example, we are free to choose any solution we wish; for example, y = x2 − 3 is a member of the family of solutions

to this differential equation. This is called a particular solution to the differential equation. A particular solution can often
be uniquely identified if we are given additional information about the problem.

Example 4.3

Finding a Particular Solution

Find the particular solution to the differential equation y′ = 2x passing through the point (2, 7).

Solution

Any function of the form y = x2 + C is a solution to this differential equation. To determine the value of C,
we substitute the values x = 2 and y = 7 into this equation and solve for C:

y = x2 + C

7 = 22 + C = 4 + C
C = 3.

Therefore the particular solution passing through the point (2, 7) is y = x2 + 3.

Find the particular solution to the differential equation

y′ = 4x + 3

passing through the point (1, 7), given that y = 2x2 + 3x + C is a general solution to the differential

equation.

Initial-Value Problems
Usually a given differential equation has an infinite number of solutions, so it is natural to ask which one we want to use.
To choose one solution, more information is needed. Some specific information that can be useful is an initial value, which
is an ordered pair that is used to find a particular solution.

A differential equation together with one or more initial values is called an initial-value problem. The general rule is
that the number of initial values needed for an initial-value problem is equal to the order of the differential equation. For
example, if we have the differential equation y′ = 2x, then y(3) = 7 is an initial value, and when taken together, these

equations form an initial-value problem. The differential equation y″ − 3y′ + 2y = 4ex is second order, so we need two

initial values. With initial-value problems of order greater than one, the same value should be used for the independent
variable. An example of initial values for this second-order equation would be y(0) = 2 and y′(0) = −1. These two initial

values together with the differential equation form an initial-value problem. These problems are so named because often the
independent variable in the unknown function is t, which represents time. Thus, a value of t = 0 represents the beginning

of the problem.

Example 4.4

Verifying a Solution to an Initial-Value Problem
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Verify that the function y = 2e−2t + et is a solution to the initial-value problem

y′ + 2y = 3et, y(0) = 3.

Solution

For a function to satisfy an initial-value problem, it must satisfy both the differential equation and the initial
condition. To show that y satisfies the differential equation, we start by calculating y′. This gives

y′ = −4e−2t + et. Next we substitute both y and y′ into the left-hand side of the differential equation and

simplify:

y′ + 2y = ⎛
⎝−4e−2t + et⎞

⎠ + 2⎛
⎝2e−2t + et⎞

⎠

= −4e−2t + et + 4e−2t + 2et

= 3et.

This is equal to the right-hand side of the differential equation, so y = 2e−2t + et solves the differential equation.

Next we calculate y(0):

y(0) = 2e−2(0) + e0

= 2 + 1
= 3.

This result verifies the initial value. Therefore the given function satisfies the initial-value problem.

Verify that y = 3e2t + 4sin t is a solution to the initial-value problem

y′ − 2y = 4cos t − 8sin t, y(0) = 3.

In Example 4.4, the initial-value problem consisted of two parts. The first part was the differential equation
y′ + 2y = 3ex, and the second part was the initial value y(0) = 3. These two equations together formed the initial-value

problem.

The same is true in general. An initial-value problem will consists of two parts: the differential equation and the initial
condition. The differential equation has a family of solutions, and the initial condition determines the value of C. The

family of solutions to the differential equation in Example 4.4 is given by y = 2e−2t + Cet. This family of solutions is

shown in Figure 4.3, with the particular solution y = 2e−2t + et labeled.
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(4.1)

Figure 4.3 A family of solutions to the differential equation

y′ + 2y = 3et. The particular solution y = 2e−2t + et is

labeled.

Example 4.5

Solving an Initial-value Problem

Solve the following initial-value problem:

y′ = 3ex + x2 − 4, y(0) = 5.

Solution

The first step in solving this initial-value problem is to find a general family of solutions. To do this, we find an
antiderivative of both sides of the differential equation

∫ y′ dx = ∫ ⎛
⎝3ex + x2 − 4⎞

⎠dx,

namely,

y + C1 = 3ex + 1
3x3 − 4x + C2.

We are able to integrate both sides because the y term appears by itself. Notice that there are two integration
constants: C1 and C2. Solving Equation 4.1 for y gives

y = 3ex + 1
3x3 − 4x + C2 − C1.

Because C1 and C2 are both constants, C2 − C1 is also a constant. We can therefore define C = C2 − C1,
which leads to the equation

y = 3ex + 1
3x3 − 4x + C.

Next we determine the value of C. To do this, we substitute x = 0 and y = 5 into Equation 4.1 and solve for

C:

5 = 3e0 + 1
303 − 4(0) + C

5 = 3 + C
C = 2.
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Now we substitute the value C = 2 into Equation 4.1. The solution to the initial-value problem is

y = 3ex + 1
3x3 − 4x + 2.

Analysis
The difference between a general solution and a particular solution is that a general solution involves a family of
functions, either explicitly or implicitly defined, of the independent variable. The initial value or values determine
which particular solution in the family of solutions satisfies the desired conditions.

Solve the initial-value problem

y′ = x2 − 4x + 3 − 6ex, y(0) = 8.

In physics and engineering applications, we often consider the forces acting upon an object, and use this information to
understand the resulting motion that may occur. For example, if we start with an object at Earth’s surface, the primary force
acting upon that object is gravity. Physicists and engineers can use this information, along with Newton’s second law of
motion (in equation form F = ma, where F represents force, m represents mass, and a represents acceleration), to

derive an equation that can be solved.

Figure 4.4 For a baseball falling in air, the only force acting
on it is gravity (neglecting air resistance).

In Figure 4.4 we assume that the only force acting on a baseball is the force of gravity. This assumption ignores air
resistance. (The force due to air resistance is considered in a later discussion.) The acceleration due to gravity at Earth’s

surface, g, is approximately 9.8 m/s2. We introduce a frame of reference, where Earth’s surface is at a height of 0 meters.

Let v(t) represent the velocity of the object in meters per second. If v(t) > 0, the ball is rising, and if v(t) < 0, the ball

is falling (Figure 4.5).

Figure 4.5 Possible velocities for the rising/falling baseball.

358 Chapter 4 | Introduction to Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Our goal is to solve for the velocity v(t) at any time t. To do this, we set up an initial-value problem. Suppose the mass

of the ball is m, where m is measured in kilograms. We use Newton’s second law, which states that the force acting on

an object is equal to its mass times its acceleration (F = ma). Acceleration is the derivative of velocity, so a(t) = v′(t).
Therefore the force acting on the baseball is given by F = m v′(t). However, this force must be equal to the force of gravity

acting on the object, which (again using Newton’s second law) is given by Fg = −mg, since this force acts in a downward

direction. Therefore we obtain the equation F = Fg, which becomes m v′(t) = −mg. Dividing both sides of the equation

by m gives the equation

v′(t) = −g.

Notice that this differential equation remains the same regardless of the mass of the object.

We now need an initial value. Because we are solving for velocity, it makes sense in the context of the problem to assume
that we know the initial velocity, or the velocity at time t = 0. This is denoted by v(0) = v0.

Example 4.6

Velocity of a Moving Baseball

A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,
and the only force acting on it is gravity. The ball has a mass of 0.15 kg at Earth’s surface.

a. Find the velocity v(t) of the baseball at time t.

b. What is its velocity after 2 seconds?

Solution

a. From the preceding discussion, the differential equation that applies in this situation is

v′(t) = −g,

where g = 9.8 m/s2. The initial condition is v(0) = v0, where v0 = 10 m/s. Therefore the initial-

value problem is v′(t) = −9.8 m/s2, v(0) = 10 m/s.
The first step in solving this initial-value problem is to take the antiderivative of both sides of the
differential equation. This gives

∫ v′ (t)dt = ∫ −9.8dt

v(t) = −9.8t + C.

The next step is to solve for C. To do this, substitute t = 0 and v(0) = 10:

v(t) = −9.8t + C
v(0) = −9.8(0) + C

10 = C.

Therefore C = 10 and the velocity function is given by v(t) = −9.8t + 10.

b. To find the velocity after 2 seconds, substitute t = 2 into v(t).

Chapter 4 | Introduction to Differential Equations 359



4.6

v(t) = −9.8t + 10
v(2) = −9.8(2) + 10
v(2) = −9.6.

The units of velocity are meters per second. Since the answer is negative, the object is falling at a speed
of 9.6 m/s.

Suppose a rock falls from rest from a height of 100 meters and the only force acting on it is gravity. Find

an equation for the velocity v(t) as a function of time, measured in meters per second.

A natural question to ask after solving this type of problem is how high the object will be above Earth’s surface at a given
point in time. Let s(t) denote the height above Earth’s surface of the object, measured in meters. Because velocity is the

derivative of position (in this case height), this assumption gives the equation s′ (t) = v(t). An initial value is necessary;

in this case the initial height of the object works well. Let the initial height be given by the equation s(0) = s0. Together

these assumptions give the initial-value problem

s′ (t) = v(t), s(0) = s0.

If the velocity function is known, then it is possible to solve for the position function as well.

Example 4.7

Height of a Moving Baseball

A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,
and the only force acting on it is gravity. The ball has a mass of 0.15 kilogram at Earth’s surface.

a. Find the position s(t) of the baseball at time t.

b. What is its height after 2 seconds?

Solution

a. We already know the velocity function for this problem is v(t) = −9.8t + 10. The initial height of the

baseball is 3 meters, so s0 = 3. Therefore the initial-value problem for this example is

To solve the initial-value problem, we first find the antiderivatives:

∫ s′ (t)dt = ∫ −9.8t + 10dt

s(t) = −4.9t2 + 10t + C.

Next we substitute t = 0 and solve for C:

s(t) = −4.9t2 + 10t + C

s(0) = −4.9(0)2 + 10(0) + C
3 = C.
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Therefore the position function is s(t) = −4.9t2 + 10t + 3.

b. The height of the baseball after 2 s is given by s(2):

s(2) = −4.9(2)2 + 10(2) + 3
= −4.9(4) + 23
= 3.4.

Therefore the baseball is 3.4 meters above Earth’s surface after 2 seconds. It is worth noting that the

mass of the ball cancelled out completely in the process of solving the problem.
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4.1 EXERCISES
Determine the order of the following differential equations.

1. y′ + y = 3y2

2. (y′)2 = y′ + 2y

3. y‴ + y″y′ = 3x2

4. y′ = y″ + 3t2

5.
dy
dt = t

6.
dy
dx + d2 y

dx2 = 3x4

7.
⎛
⎝
dy
dt

⎞
⎠

2
+ 8dy

dt + 3y = 4t

Verify that the following functions are solutions to the
given differential equation.

8. y = x3

3 solves y′ = x2

9. y = 2e−x + x − 1 solves y′ = x − y

10. y = e3x − ex

2 solves y′ = 3y + ex

11. y = 1
1 − x solves y′ = y2

12. y = ex2/2 solves y′ = xy

13. y = 4 + lnx solves xy′ = 1

14. y = 3 − x + x lnx solves y′ = lnx

15. y = 2ex − x − 1 solves y′ = y + x

16. y = ex + sinx
2 − cosx

2 solves y′ = cosx + y

17. y = πe−cosx solves y′ = ysinx

Verify the following general solutions and find the
particular solution.

18. Find the particular solution to the differential equation

y′ = 4x2 that passes through (−3, −30), given that

y = C + 4x3

3 is a general solution.

19. Find the particular solution to the differential equation

y′ = 3x3 that passes through (1, 4.75), given that

y = C + 3x4

4 is a general solution.

20. Find the particular solution to the differential equation

y′ = 3x2 y that passes through (0, 12), given that

y = Cex3
is a general solution.

21. Find the particular solution to the differential equation

y′ = 2xy that passes through ⎛
⎝0, 1

2
⎞
⎠, given that

y = Cex2
is a general solution.

22. Find the particular solution to the differential equation

y′ = ⎛
⎝2xy⎞

⎠
2 that passes through ⎛

⎝1, − 1
2

⎞
⎠, given that

y = − 3
C + 4x3 is a general solution.

23. Find the particular solution to the differential equation

y′ x2 = y that passes through ⎛
⎝1, 2

e
⎞
⎠, given that

y = Ce−1/x is a general solution.

24. Find the particular solution to the differential equation

8dx
dt = −2cos(2t) − cos(4t) that passes through (π, π),

given that x = C − 1
8sin(2t) − 1

32sin(4t) is a general

solution.

25. Find the particular solution to the differential equation
du
dt = tanu that passes through ⎛

⎝1, π
2

⎞
⎠, given that

u = sin−1 ⎛
⎝e

C + t⎞
⎠ is a general solution.

26. Find the particular solution to the differential equation
dy
dt = e(t + y)

that passes through (1, 0), given that

y = −ln(C − et) is a general solution.

27. Find the particular solution to the differential equation

y′(1 − x2) = 1 + y that passes through (0, −2), given

that y = C x + 1
1 − x

− 1 is a general solution.
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For the following problems, find the general solution to the
differential equation.

28. y′ = 3x + ex

29. y′ = ln x + tanx

30. y′ = sinxecosx

31. y′ = 4x

32. y′ = sin−1 (2x)

33. y′ = 2t t2 + 16

34. x′ = coth t + ln t + 3t2

35. x′ = t 4 + t

36. y′ = y

37. y′ = y
x

Solve the following initial-value problems starting from
y(t = 0) = 1 and y(t = 0) = −1. Draw both solutions on

the same graph.

38.
dy
dt = 2t

39.
dy
dt = −t

40.
dy
dt = 2y

41.
dy
dt = −y

42.
dy
dt = 2

Solve the following initial-value problems starting from
y0 = 10. At what time does y increase to 100 or drop to

1?

43.
dy
dt = 4t

44.
dy
dt = 4y

45.
dy
dt = −2y

46.
dy
dt = e4t

47.
dy
dt = e−4t

Recall that a family of solutions includes solutions to a
differential equation that differ by a constant. For the
following problems, use your calculator to graph a family
of solutions to the given differential equation. Use initial
conditions from y(t = 0) = −10 to y(t = 0) = 10
increasing by 2. Is there some critical point where the

behavior of the solution begins to change?

48. [T] y′ = y(x)

49. [T] xy′ = y

50. [T] y′ = t3

51. [T] y′ = x + y (Hint: y = Cex − x − 1 is the

general solution)

52. [T] y′ = x lnx + sinx

53. Find the general solution to describe the velocity of a
ball of mass 1 lb that is thrown upward at a rate a ft/sec.

54. In the preceding problem, if the initial velocity of the
ball thrown into the air is a = 25 ft/s, write the particular

solution to the velocity of the ball. Solve to find the time
when the ball hits the ground.

55. You throw two objects with differing masses m1 and

m2 upward into the air with the same initial velocity a ft/

s. What is the difference in their velocity after 1 second?

56. [T] You throw a ball of mass 1 kilogram upward

with a velocity of a = 25 m/s on Mars, where the force

of gravity is g = −3.711 m/s2. Use your calculator to

approximate how much longer the ball is in the air on
Mars.

57. [T] For the previous problem, use your calculator to
approximate how much higher the ball went on Mars.

58. [T] A car on the freeway accelerates according to
a = 15cos(πt), where t is measured in hours. Set up

and solve the differential equation to determine the velocity
of the car if it has an initial speed of 51 mph. After 40
minutes of driving, what is the driver’s velocity?
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59. [T] For the car in the preceding problem, find the
expression for the distance the car has traveled in time t,
assuming an initial distance of 0. How long does it take

the car to travel 100 miles? Round your answer to hours

and minutes.

60. [T] For the previous problem, find the total distance
traveled in the first hour.

61. Substitute y = Be3t into y′ − y = 8e3t to find a

particular solution.

62. Substitute y = acos(2t) + bsin(2t) into

y′ + y = 4sin(2t) to find a particular solution.

63. Substitute y = a + bt + ct2 into y′ + y = 1 + t2 to

find a particular solution.

64. Substitute y = aet cos t + bet sin t into

y′ = 2et cos t to find a particular solution.

65. Solve y′ = ekt with the initial condition y(0) = 0
and solve y′ = 1 with the same initial condition. As k
approaches 0, what do you notice?
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4.2 | Direction Fields and Numerical Methods

Learning Objectives
4.2.1 Draw the direction field for a given first-order differential equation.

4.2.2 Use a direction field to draw a solution curve of a first-order differential equation.

4.2.3 Use Euler’s Method to approximate the solution to a first-order differential equation.

For the rest of this chapter we will focus on various methods for solving differential equations and analyzing the behavior
of the solutions. In some cases it is possible to predict properties of a solution to a differential equation without knowing
the actual solution. We will also study numerical methods for solving differential equations, which can be programmed by
using various computer languages or even by using a spreadsheet program, such as Microsoft Excel.

Creating Direction Fields
Direction fields (also called slope fields) are useful for investigating first-order differential equations. In particular, we
consider a first-order differential equation of the form

y′ = f (x, y).

An applied example of this type of differential equation appears in Newton’s law of cooling, which we will solve explicitly
later in this chapter. First, though, let us create a direction field for the differential equation

T′ (t) = −0.4(T − 72).

Here T(t) represents the temperature (in degrees Fahrenheit) of an object at time t, and the ambient temperature is 72°F.
Figure 4.6 shows the direction field for this equation.

Figure 4.6 Direction field for the differential equation
T′ (t) = −0.4(T − 72). Two solutions are plotted: one with

initial temperature less than 72°F and the other with initial

temperature greater than 72°F.

The idea behind a direction field is the fact that the derivative of a function evaluated at a given point is the slope of the
tangent line to the graph of that function at the same point. Other examples of differential equations for which we can create
a direction field include
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y′ = 3x + 2y − 4
y′ = x2 − y2

y′ = 2x + 4
y − 2 .

To create a direction field, we start with the first equation: y′ = 3x + 2y − 4. We let (x0, y0) be any ordered pair, and we

substitute these numbers into the right-hand side of the differential equation. For example, if we choose x = 1 and y = 2,
substituting into the right-hand side of the differential equation yields

y′ = 3x + 2y − 4
= 3(1) + 2(2) − 4 = 3.

This tells us that if a solution to the differential equation y′ = 3x + 2y − 4 passes through the point (1, 2), then the

slope of the solution at that point must equal 3. To start creating the direction field, we put a short line segment at the

point (1, 2) having slope 3. We can do this for any point in the domain of the function f (x, y) = 3x + 2y − 4, which

consists of all ordered pairs (x, y) in ℝ2. Therefore any point in the Cartesian plane has a slope associated with it,

assuming that a solution to the differential equation passes through that point. The direction field for the differential equation
y′ = 3x + 2y − 4 is shown in Figure 4.7.

Figure 4.7 Direction field for the differential equation
y′ = 3x + 2y − 4.

We can generate a direction field of this type for any differential equation of the form y′ = f (x, y).

Definition

A direction field (slope field) is a mathematical object used to graphically represent solutions to a first-order
differential equation. At each point in a direction field, a line segment appears whose slope is equal to the slope of a
solution to the differential equation passing through that point.

Using Direction Fields
We can use a direction field to predict the behavior of solutions to a differential equation without knowing the actual
solution. For example, the direction field in Figure 4.7 serves as a guide to the behavior of solutions to the differential
equation y′ = 3x + 2y − 4.
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4.7

To use a direction field, we start by choosing any point in the field. The line segment at that point serves as a signpost
telling us what direction to go from there. For example, if a solution to the differential equation passes through the point
(0, 1), then the slope of the solution passing through that point is given by y′ = 3(0) + 2(1) − 4 = −2. Now let x
increase slightly, say to x = 0.1. Using the method of linear approximations gives a formula for the approximate value of

y for x = 0.1. In particular,

L(x) = y0 + f ′ (x0)(x − x0)
= 1 − 2(x0 − 0)
= 1 − 2x0.

Substituting x0 = 0.1 into L(x) gives an approximate y value of 0.8.

At this point the slope of the solution changes (again according to the differential equation). We can keep progressing,
recalculating the slope of the solution as we take small steps to the right, and watching the behavior of the solution. Figure
4.8 shows a graph of the solution passing through the point (0, 1).

Figure 4.8 Direction field for the differential equation
y′ = 3x + 2y − 4 with the solution passing through the point

(0, 1).

The curve is the graph of the solution to the initial-value problem

y′ = 3x + 2y − 4, y(0) = 1.

This curve is called a solution curve passing through the point (0, 1). The exact solution to this initial-value problem is

y = − 3
2x + 5

4 − 1
4e2x,

and the graph of this solution is identical to the curve in Figure 4.8.

Create a direction field for the differential equation y′ = x2 − y2 and sketch a solution curve passing

through the point (−1, 2).

Go to this Java applet (http://www.openstaxcollege.org/l/20_DifferEq) and this website
(http://www.openstaxcollege.org/l/20_SlopeFields) to see more about slope fields.
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Now consider the direction field for the differential equation y′ = (x − 3)(y2 − 4), shown in Figure 4.9. This direction

field has several interesting properties. First of all, at y = −2 and y = 2, horizontal dashes appear all the way across the

graph. This means that if y = −2, then y′ = 0. Substituting this expression into the right-hand side of the differential

equation gives

(x − 3)(y2 − 4) = (x − 3)((−2 − 4)

= (x − 3)(0)
= 0
= y′.

Therefore y = −2 is a solution to the differential equation. Similarly, y = 2 is a solution to the differential equation. These

are the only constant-valued solutions to the differential equation, as we can see from the following argument. Suppose
y = k is a constant solution to the differential equation. Then y′ = 0. Substituting this expression into the differential

equation yields 0 = (x − 3)⎛
⎝k2 − 4⎞

⎠. This equation must be true for all values of x, so the second factor must equal zero.

This result yields the equation k2 − 4 = 0. The solutions to this equation are k = −2 and k = 2, which are the constant

solutions already mentioned. These are called the equilibrium solutions to the differential equation.

Figure 4.9 Direction field for the differential equation

y′ = (x − 3)(y2 − 4) showing two solutions. These solutions

are very close together, but one is barely above the equilibrium
solution x = −2 and the other is barely below the same

equilibrium solution.

Definition

Consider the differential equation y′ = f (x, y). An equilibrium solution is any solution to the differential equation

of the form y = c, where c is a constant.

To determine the equilibrium solutions to the differential equation y′ = f (x, y), set the right-hand side equal to zero. An

equilibrium solution of the differential equation is any function of the form y = k such that f (x, k) = 0 for all values of

x in the domain of f .

An important characteristic of equilibrium solutions concerns whether or not they approach the line y = k as an asymptote
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for large values of x.

Definition

Consider the differential equation y′ = f (x, y), and assume that all solutions to this differential equation are defined

for x ≥ x0. Let y = k be an equilibrium solution to the differential equation.

1. y = k is an asymptotically stable solution to the differential equation if there exists ε > 0 such that for any

value c ∈ (k − ε, k + ε) the solution to the initial-value problem

y′ = f (x, y), y(x0) = c

approaches k as x approaches infinity.

2. y = k is an asymptotically unstable solution to the differential equation if there exists ε > 0 such that for

any value c ∈ (k − ε, k + ε) the solution to the initial-value problem

y′ = f (x, y), y(x0) = c

never approaches k as x approaches infinity.

3. y = k is an asymptotically semi-stable solution to the differential equation if it is neither asymptotically

stable nor asymptotically unstable.

Now we return to the differential equation y′ = (x − 3)(y2 − 4), with the initial condition y(0) = 0.5. The direction field

for this initial-value problem, along with the corresponding solution, is shown in Figure 4.10.

Figure 4.10 Direction field for the initial-value problem

y′ = (x − 3)(y2 − 4), y(0) = 0.5.

The values of the solution to this initial-value problem stay between y = −2 and y = 2, which are the equilibrium

solutions to the differential equation. Furthermore, as x approaches infinity, y approaches 2. The behavior of solutions

is similar if the initial value is higher than 2, for example, y(0) = 2.3. In this case, the solutions decrease and approach

y = 2 as x approaches infinity. Therefore y = 2 is an asymptotically stable solution to the differential equation.

Chapter 4 | Introduction to Differential Equations 369



What happens when the initial value is below y = −2? This scenario is illustrated in Figure 4.11, with the initial value

y(0) = −3.

Figure 4.11 Direction field for the initial-value problem

y′ = (x − 3)(y2 − 4), y(0) = −3.

The solution decreases rapidly toward negative infinity as x approaches infinity. Furthermore, if the initial value is slightly

higher than −2, then the solution approaches 2, which is the other equilibrium solution. Therefore in neither case does

the solution approach y = −2, so y = −2 is called an asymptotically unstable, or unstable, equilibrium solution.

Example 4.8

Stability of an Equilibrium Solution

Create a direction field for the differential equation y′ = (y − 3)2(y2 + y − 2) and identify any equilibrium

solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Solution

The direction field is shown in Figure 4.12.
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4.8

Figure 4.12 Direction field for the differential equation

y′ = (y − 3)2(y2 + y − 2).

The equilibrium solutions are y = −2, y = 1, and y = 3. To classify each of the solutions, look at an arrow

directly above or below each of these values. For example, at y = −2 the arrows directly below this solution

point up, and the arrows directly above the solution point down. Therefore all initial conditions close to y = −2
approach y = −2, and the solution is stable. For the solution y = 1, all initial conditions above and below

y = 1 are repelled (pushed away) from y = 1, so this solution is unstable. The solution y = 3 is semi-stable,

because for initial conditions slightly greater than 3, the solution approaches infinity, and for initial conditions

slightly less than 3, the solution approaches y = 1.

Analysis
It is possible to find the equilibrium solutions to the differential equation by setting the right-hand side equal to
zero and solving for y. This approach gives the same equilibrium solutions as those we saw in the direction field.

Create a direction field for the differential equation y′ = (x + 5)(y + 2)(y2 − 4y + 4) and identify any

equilibrium solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Euler’s Method
Consider the initial-value problem

y′ = 2x − 3, y(0) = 3.

Integrating both sides of the differential equation gives y = x2 − 3x + C, and solving for C yields the particular solution

y = x2 − 3x + 3. The solution for this initial-value problem appears as the parabola in Figure 4.13.
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Figure 4.13 Euler’s Method for the initial-value problem
y′ = 2x − 3, y(0) = 3.

The red graph consists of line segments that approximate the solution to the initial-value problem. The graph starts at
the same initial value of (0, 3). Then the slope of the solution at any point is determined by the right-hand side of the

differential equation, and the length of the line segment is determined by increasing the x value by 0.5 each time (the step

size). This approach is the basis of Euler’s Method.

Before we state Euler’s Method as a theorem, let’s consider another initial-value problem:

y′ = x2 − y2, y(−1) = 2.

The idea behind direction fields can also be applied to this problem to study the behavior of its solution. For example, at

the point (−1, 2), the slope of the solution is given by y′ = (−1)2 − 22 = −3, so the slope of the tangent line to the

solution at that point is also equal to −3. Now we define x0 = −1 and y0 = 2. Since the slope of the solution at this

point is equal to −3, we can use the method of linear approximation to approximate y near (−1, 2).

L(x) = y0 + f ′ (x0)(x − x0).

Here x0 = −1, y0 = 2, and f ′ (x0) = −3, so the linear approximation becomes

L(x) = 2 − 3⎛
⎝x − (−1)⎞

⎠

= 2 − 3x − 3
= −3x − 1.

Now we choose a step size. The step size is a small value, typically 0.1 or less, that serves as an increment for x; it is

represented by the variable h. In our example, let h = 0.1. Incrementing x0 by h gives our next x value:

x1 = x0 + h = −1 + 0.1 = −0.9.

We can substitute x1 = −0.9 into the linear approximation to calculate y1.

y1 = L(x1)
= −3(−0.9) − 1
= 1.7.

Therefore the approximate y value for the solution when x = −0.9 is y = 1.7. We can then repeat the process, using

x1 = −0.9 and y1 = 1.7 to calculate x2 and y2. The new slope is given by y′ = (−0.9)2 − (1.7)2 = −2.08. First,

x2 = x1 + h = −0.9 + 0.1 = −0.8. Using linear approximation gives
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L(x) = y1 + f ′ (x1)(x − x1)
= 1.7 − 2.08(x − (−0.9))
= 1.7 − 2.08x − 1.872
= −2.08x − 0.172.

Finally, we substitute x2 = −0.8 into the linear approximation to calculate y2.

y2 = L(x2)
= −2.08x2 − 0.172
= −2.08(−0.8) − 0.172
= 1.492.

Therefore the approximate value of the solution to the differential equation is y = 1.492 when x = −0.8.

What we have just shown is the idea behind Euler’s Method. Repeating these steps gives a list of values for the solution.
These values are shown in Table 4.2, rounded off to four decimal places.

n 0 1 2 3 4 5

xn −1 −0.9 −0.8 −0.7 −0.6 −0.5

yn 2 1.7 1.492 1.3334 1.2046 1.0955

n 6 7 8 9 10

xn −0.4 −0.3 −0.2 −0.1 0

yn 1.0004 1.9164 1.8414 1.7746 1.7156

Table 4.2 Using Euler’s Method to Approximate Solutions to a Differential
Equation

Theorem 4.1: Euler’s Method

Consider the initial-value problem

y′ = f (x, y), y(x0) = y0.

To approximate a solution to this problem using Euler’s method, define

(4.2)xn = x0 + nh
yn = yn − 1 + h f (xn − 1, yn − 1).

Here h > 0 represents the step size and n is an integer, starting with 1. The number of steps taken is counted by the

variable n.

Typically h is a small value, say 0.1 or 0.05. The smaller the value of h, the more calculations are needed. The higher

the value of h, the fewer calculations are needed. However, the tradeoff results in a lower degree of accuracy for larger

step size, as illustrated in Figure 4.14.
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Figure 4.14 Euler’s method for the initial-value problem y′ = 2x − 3, y(0) = 3 with (a) a step size of

h = 0.5; and (b) a step size of h = 0.25.

Example 4.9

Using Euler’s Method

Consider the initial-value problem

y′ = 3x2 − y2 + 1, y(0) = 2.

Use Euler’s method with a step size of 0.1 to generate a table of values for the solution for values of x between

0 and 1.

Solution

We are given h = 0.1 and f (x, y) = 3x2 − y2 + 1. Furthermore, the initial condition y(0) = 2 gives x0 = 0
and y0 = 2. Using Equation 4.2 with n = 0, we can generate Table 4.3.
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n xn yn = yn − 1 + h f (xn − 1, yn − 1)

0 0 2

1 0.1 y1 = y0 + h f (x0, y0) = 1.7

2 0.2 y2 = y1 + h f (x1, y1) = 1.514

3 0.3 y3 = y2 + h f (x2, y2) = 1.3968

4 0.4 y4 = y3 + h f (x3, y3) = 1.3287

5 0.5 y5 = y4 + h f (x4, y4) = 1.3001

6 0.6 y6 = y5 + h f (x5, y5) = 1.3061

7 0.7 y7 = y6 + h f (x6, y6) = 1.3435

8 0.8 y8 = y7 + h f (x7, y7) = 1.4100

9 0.9 y9 = y8 + h f (x8, y8) = 1.5032

10 1.0 y10 = y9 + h f (x9, y9) = 1.6202

Table 4.3
Using Euler’s Method to Approximate Solutions to a
Differential Equation

With ten calculations, we are able to approximate the values of the solution to the initial-value problem for values
of x between 0 and 1.

Go to this website (http://www.openstaxcollege.org/l/20_EulersMethod) for more information on Euler’s
method.
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4.9 Consider the initial-value problem

y′ = x3 + y2, y(1) = −2.

Using a step size of 0.1, generate a table with approximate values for the solution to the initial-value problem

for values of x between 1 and 2.

Visit this website (http://www.openstaxcollege.org/l/20_EulerMethod2) for a practical application of the
material in this section.
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4.2 EXERCISES
For the following problems, use the direction field below
from the differential equation y′ = −2y. Sketch the graph

of the solution for the given initial conditions.

66. y(0) = 1

67. y(0) = 0

68. y(0) = −1

69. Are there any equilibria? What are their stabilities?

For the following problems, use the direction field below

from the differential equation y′ = y2 − 2y. Sketch the

graph of the solution for the given initial conditions.

70. y(0) = 3

71. y(0) = 1

72. y(0) = −1

73. Are there any equilibria? What are their stabilities?

Draw the direction field for the following differential
equations, then solve the differential equation. Draw your
solution on top of the direction field. Does your solution
follow along the arrows on your direction field?

74. y′ = t3

75. y′ = et

76.
dy
dx = x2 cosx

77.
dy
dt = tet

78. dx
dt = cosh(t)

Draw the directional field for the following differential
equations. What can you say about the behavior of the
solution? Are there equilibria? What stability do these
equilibria have?

79. y′ = y2 − 1

80. y′ = y − x

81. y′ = 1 − y2 − x2

82. y′ = t2 siny

83. y′ = 3y + xy

Match the direction field with the given differential
equations. Explain your selections.
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84. y′ = −3y

85. y′ = −3t

86. y′ = et

87. y′ = 1
2y + t

88. y′ = −ty

Match the direction field with the given differential
equations. Explain your selections.
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89. y′ = t siny

90. y′ = −tcosy

91. y′ = t tany

92. y′ = sin2 y

93. y′ = y2 t3

Estimate the following solutions using Euler’s method with
n = 5 steps over the interval t = [0, 1]. If you are able

to solve the initial-value problem exactly, compare your
solution with the exact solution. If you are unable to solve
the initial-value problem, the exact solution will be
provided for you to compare with Euler’s method. How
accurate is Euler’s method?

94. y′ = −3y, y(0) = 1

95. y′ = t2

96. y′ = 3t − y, y(0) = 1. Exact solution is

y = 3t + 4e−t − 3

97. y′ = y + t2, y(0) = 3. Exact solution is

y = 5et − 2 − t2 − 2t

98. y′ = 2t, y(0) = 0

99. [T] y′ = e(x + y), y(0) = −1. Exact solution is

y = −ln(e + 1 − ex)
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100. y′ = y2 ln(x + 1), y(0) = 1. Exact solution is

y = − 1
(x + 1)(ln(x + 1) − 1)

101. y′ = 2x, y(0) = 0, Exact solution is y = 2x − 1
ln(2)

102. y′ = y, y(0) = −1. Exact solution is y = −ex.

103. y′ = −5t, y(0) = −2. Exact solution is

y = − 5
2t2 − 2

Differential equations can be used to model disease
epidemics. In the next set of problems, we examine the
change of size of two sub-populations of people living in
a city: individuals who are infected and individuals who
are susceptible to infection. S represents the size of the

susceptible population, and I represents the size of the

infected population. We assume that if a susceptible person
interacts with an infected person, there is a probability
c that the susceptible person will become infected. Each

infected person recovers from the infection at a rate r
and becomes susceptible again. We consider the case of
influenza, where we assume that no one dies from the
disease, so we assume that the total population size of
the two sub-populations is a constant number, N. The

differential equations that model these population sizes are

S′ = rI − cSI and
I′ = cSI − rI.

Here c represents the contact rate and r is the recovery

rate.

104. Show that, by our assumption that the total
population size is constant (S + I = N), you can reduce

the system to a single differential equation in
I: I′ = c(N − I)I − rI.

105. Assuming the parameters are c = 0.5, N = 5, and

r = 0.5, draw the resulting directional field.

106. [T] Use computational software or a calculator to
compute the solution to the initial-value problem
y′ = ty, y(0) = 2 using Euler’s Method with the given

step size h. Find the solution at t = 1. For a hint, here

is “pseudo-code” for how to write a computer program
to perform Euler’s Method for y′ = f (t, y), y(0) = 2:
Create function f (t, y) Define parameters

y(1) = y0, t(0) = 0, step size h, and total number

of steps, N Write a for loop: for k = 1 to N
fn = f⎛

⎝t(k), y(k)⎞
⎠ y(k+1) = y(k) + h*fn

t(k+1) = t(k) + h

107. Solve the initial-value problem for the exact
solution.

108. Draw the directional field

109. h = 1

110. [T] h = 10

111. [T] h = 100

112. [T] h = 1000

113. [T] Evaluate the exact solution at t = 1. Make a

table of errors for the relative error between the Euler’s
method solution and the exact solution. How much does the
error change? Can you explain?

Consider the initial-value problem y′ = −2y, y(0) = 2.

114. Show that y = 2e−2x solves this initial-value

problem.

115. Draw the directional field of this differential
equation.

116. [T] By hand or by calculator or computer,
approximate the solution using Euler’s Method at t = 10
using h = 5.

117. [T] By calculator or computer, approximate the
solution using Euler’s Method at t = 10 using h = 100.

118. [T] Plot exact answer and each Euler approximation
(for h = 5 and h = 100) at each h on the directional

field. What do you notice?
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4.3 | Separable Equations

Learning Objectives
4.3.1 Use separation of variables to solve a differential equation.

4.3.2 Solve applications using separation of variables.

We now examine a solution technique for finding exact solutions to a class of differential equations known as separable
differential equations. These equations are common in a wide variety of disciplines, including physics, chemistry, and
engineering. We illustrate a few applications at the end of the section.

Separation of Variables
We start with a definition and some examples.

Definition

A separable differential equation is any equation that can be written in the form

(4.3)y′ = f (x)g(y).

The term ‘separable’ refers to the fact that the right-hand side of the equation can be separated into a function of x times a

function of y. Examples of separable differential equations include

y′ = ⎛
⎝x2 − 4⎞

⎠
⎛
⎝3y + 2⎞

⎠

y′ = 6x2 + 4x

y′ = secy + tany
y′ = xy + 3x − 2y − 6.

The second equation is separable with f (x) = 6x2 + 4x and g(y) = 1, the third equation is separable with f (x) = 1 and

g(y) = secy + tany, and the right-hand side of the fourth equation can be factored as (x + 3)⎛
⎝y − 2⎞

⎠, so it is separable

as well. The third equation is also called an autonomous differential equation because the right-hand side of the equation
is a function of y alone. If a differential equation is separable, then it is possible to solve the equation using the method of

separation of variables.

Problem-Solving Strategy: Separation of Variables

1. Check for any values of y that make g(y) = 0. These correspond to constant solutions.

2. Rewrite the differential equation in the form
dy

g(y) = f (x)dx.

3. Integrate both sides of the equation.

4. Solve the resulting equation for y if possible.

5. If an initial condition exists, substitute the appropriate values for x and y into the equation and solve for the

constant.

Note that Step 4. states “Solve the resulting equation for y if possible.” It is not always possible to obtain y as an

explicit function of x. Quite often we have to be satisfied with finding y as an implicit function of x.
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Example 4.10

Using Separation of Variables

Find a general solution to the differential equation y′ = ⎛
⎝x2 − 4⎞

⎠
⎛
⎝3y + 2⎞

⎠ using the method of separation of

variables.

Solution

Follow the five-step method of separation of variables.

1. In this example, f (x) = x2 − 4 and g(y) = 3y + 2. Setting g(y) = 0 gives y = − 2
3 as a constant

solution.

2. Rewrite the differential equation in the form

dy
3y + 2 = (x2 − 4)dx.

3. Integrate both sides of the equation:

⌠
⌡

dy
3y + 2 = ∫ ⎛

⎝x2 − 4⎞
⎠dx.

Let u = 3y + 2. Then du = 3dy
dxdx, so the equation becomes

1
3∫ 1

udu = 1
3x3 − 4x + C

1
3 ln|u| = 1

3x3 − 4x + C

1
3 ln|3y + 2| = 1

3x3 − 4x + C.

4. To solve this equation for y, first multiply both sides of the equation by 3.

ln|3y + 2| = x3 − 12x + 3C

Now we use some logic in dealing with the constant C. Since C represents an arbitrary constant, 3C
also represents an arbitrary constant. If we call the second arbitrary constant C1, the equation becomes

ln|3y + 2| = x3 − 12x + C1.

Now exponentiate both sides of the equation (i.e., make each side of the equation the exponent for the
base e).

eln|3y + 2| = e
x3 − 12x + C1

|3y + 2| = e
C1 ex3 − 12x

Again define a new constant C2 = e
c1 (note that C2 > 0):

|3y + 2| = C2 ex3 − 12x.
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4.10

(4.4)

This corresponds to two separate equations: 3y + 2 = C2 ex3 − 12x and 3y + 2 = −C2 ex3 − 12x.

The solution to either equation can be written in the form y = −2 ± C2 ex3 − 12x

3 .

Since C2 > 0, it does not matter whether we use plus or minus, so the constant can actually have either

sign. Furthermore, the subscript on the constant C is entirely arbitrary, and can be dropped. Therefore

the solution can be written as

y = −2 + Cex3 − 12x

3 .

5. No initial condition is imposed, so we are finished.

Use the method of separation of variables to find a general solution to the differential equation
y′ = 2xy + 3y − 4x − 6.

Example 4.11

Solving an Initial-Value Problem

Using the method of separation of variables, solve the initial-value problem

y′ = (2x + 3)(y2 − 4), y(0) = −3.

Solution

Follow the five-step method of separation of variables.

1. In this example, f (x) = 2x + 3 and g(y) = y2 − 4. Setting g(y) = 0 gives y = ± 2 as constant

solutions.

2. Divide both sides of the equation by y2 − 4 and multiply by dx. This gives the equation

dy
y2 − 4

= (2x + 3)dx.

3. Next integrate both sides:

⌠
⌡

1
y2 − 4

dy = ∫ (2x + 3)dx.

To evaluate the left-hand side, use the method of partial fraction decomposition. This leads to the identity

1
y2 − 4

= 1
4

⎛
⎝

1
y − 2 − 1

y + 2
⎞
⎠.

Then Equation 4.4 becomes
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1
4

⌠
⌡
⎛
⎝

1
y − 2 − 1

y + 2
⎞
⎠dy = ∫ (2x + 3)dx

1
4

⎛
⎝ln|y − 2| − ln|y + 2|⎞⎠ = x2 + 3x + C.

Multiplying both sides of this equation by 4 and replacing 4C with C1 gives

ln|y − 2| − ln|y + 2| = 4x2 + 12x + C1

ln|y − 2
y + 2| = 4x2 + 12x + C1.

4. It is possible to solve this equation for y. First exponentiate both sides of the equation and define

C2 = e
C1 :

|y − 2
y + 2| = C2 e4x2 + 12x.

Next we can remove the absolute value and let C2 be either positive or negative. Then multiply both

sides by y + 2.

y − 2 = C2
⎛
⎝y + 2⎞

⎠e4x2 + 12x

y − 2 = C2 ye 4x2 + 12x + 2C2 e 4x2 + 12x.

Now collect all terms involving y on one side of the equation, and solve for y:

y − C2 ye4x2 + 12x = 2 + 2C2 e4x2 + 12x

y(1 − C2 e4x2 + 12x) = 2 + 2C2 e4x2 + 12x

y = 2 + 2C2 e4x2 + 12x

1 − C2 e4x2 + 12x
.

5. To determine the value of C2, substitute x = 0 and y = −1 into the general solution. Alternatively,

we can put the same values into an earlier equation, namely the equation
y − 2
y + 2 = C2 e4x2 + 12. This is

much easier to solve for C2 :

y − 2
y + 2 = C2 e4x2 + 12x

−1 − 2
−1 + 2 = C2 e4(0)2 + 12(0)

C2 = −3.

Therefore the solution to the initial-value problem is

y = 2 − 6e4x2 + 12x

1 + 3e4x2 + 12x
.
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4.11

A graph of this solution appears in Figure 4.15.

Figure 4.15 Graph of the solution to the initial-value problem

y′ = (2x + 3)⎛
⎝y2 − 4⎞

⎠, y(0) = −3.

Find the solution to the initial-value problem

6y′ = (2x + 1)⎛
⎝y2 − 2y − 8⎞

⎠, y(0) = −3

using the method of separation of variables.

Applications of Separation of Variables
Many interesting problems can be described by separable equations. We illustrate two types of problems: solution
concentrations and Newton’s law of cooling.

Solution concentrations

Consider a tank being filled with a salt solution. We would like to determine the amount of salt present in the tank as a
function of time. We can apply the process of separation of variables to solve this problem and similar problems involving
solution concentrations.

Example 4.12

Determining Salt Concentration over Time

A tank containing 100 L of a brine solution initially has 4 kg of salt dissolved in the solution. At time t = 0,
another brine solution flows into the tank at a rate of 2 L/min. This brine solution contains a concentration of

0.5 kg/L of salt. At the same time, a stopcock is opened at the bottom of the tank, allowing the combined solution

to flow out at a rate of 2 L/min, so that the level of liquid in the tank remains constant (Figure 4.16). Find the

amount of salt in the tank as a function of time (measured in minutes), and find the limiting amount of salt in the
tank, assuming that the solution in the tank is well mixed at all times.
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(4.5)

Figure 4.16 A brine tank with an initial amount of salt
solution accepts an input flow and delivers an output flow. How
does the amount of salt change with time?

Solution

First we define a function u(t) that represents the amount of salt in kilograms in the tank as a function of time.

Then du
dt represents the rate at which the amount of salt in the tank changes as a function of time. Also, u(0)

represents the amount of salt in the tank at time t = 0, which is 4 kilograms.

The general setup for the differential equation we will solve is of the form

du
dt = INFLOW RATE − OUTFLOW RATE.

INFLOW RATE represents the rate at which salt enters the tank, and OUTFLOW RATE represents the rate at
which salt leaves the tank. Because solution enters the tank at a rate of 2 L/min, and each liter of solution

contains 0.5 kilogram of salt, every minute 2(0.5) = 1 kilogram of salt enters the tank. Therefore INFLOW

RATE = 1.

To calculate the rate at which salt leaves the tank, we need the concentration of salt in the tank at any point in
time. Since the actual amount of salt varies over time, so does the concentration of salt. However, the volume of
the solution remains fixed at 100 liters. The number of kilograms of salt in the tank at time t is equal to u(t).

Thus, the concentration of salt is u(t)
100 kg/L, and the solution leaves the tank at a rate of 2 L/min. Therefore

salt leaves the tank at a rate of u(t)
100 · 2 = u(t)

50 kg/min, and OUTFLOW RATE is equal to u(t)
50 . Therefore the

differential equation becomes du
dt = 1 − u

50, and the initial condition is u(0) = 4. The initial-value problem to

be solved is

du
dt = 1 − u

50, u(0) = 4.

The differential equation is a separable equation, so we can apply the five-step strategy for solution.

Step 1. Setting 1 − u
50 = 0 gives u = 50 as a constant solution. Since the initial amount of salt in the tank is 4

kilograms, this solution does not apply.

Step 2. Rewrite the equation as

du
dt = 50 − u

50 .
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Then multiply both sides by dt and divide both sides by 50 − u:

du
50 − u = dt

50.

Step 3. Integrate both sides:

⌠
⌡

du
50 − u = ⌠

⌡
dt
50

−ln|50 − u| = t
50 + C.

Step 4. Solve for u(t):

ln|50 − u| = − t
50 − C

eln|50 − u| = e−(t/50) − C

|50 − u| = C1 e−t/50.

Eliminate the absolute value by allowing the constant to be either positive or negative:

50 − u = C1 e−t/50.

Finally, solve for u(t):

u(t) = 50 − C1 e−t/50.

Step 5. Solve for C1 :

u(0) = 50 − C1 e−0/50

4 = 50 − C1
C1 = 46.

The solution to the initial value problem is u(t) = 50 − 46e−t/50. To find the limiting amount of salt in the tank,

take the limit as t approaches infinity:

lim
t → ∞

u(t) = 50 − 46e−t/50

= 50 − 46(0)
= 50.

Note that this was the constant solution to the differential equation. If the initial amount of salt in the tank is 50
kilograms, then it remains constant. If it starts at less than 50 kilograms, then it approaches 50 kilograms over
time.

A tank contains 3 kilograms of salt dissolved in 75 liters of water. A salt solution of 0.4 kg salt/L is

pumped into the tank at a rate of 6 L/min and is drained at the same rate. Solve for the salt concentration at

time t. Assume the tank is well mixed at all times.

Newton’s law of cooling

Newton’s law of cooling states that the rate of change of an object’s temperature is proportional to the difference between
its own temperature and the ambient temperature (i.e., the temperature of its surroundings). If we let T(t) represent

the temperature of an object as a function of time, then dT
dt represents the rate at which that temperature changes. The
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temperature of the object’s surroundings can be represented by Ts. Then Newton’s law of cooling can be written in the

form

dT
dt = k⎛

⎝T(t) − Ts
⎞
⎠

or simply

(4.6)dT
dt = k(T − Ts).

The temperature of the object at the beginning of any experiment is the initial value for the initial-value problem. We call
this temperature T0. Therefore the initial-value problem that needs to be solved takes the form

(4.7)dT
dt = k(T − Ts), T(0) = T0,

where k is a constant that needs to be either given or determined in the context of the problem. We use these equations in

Example 4.13.

Example 4.13

Waiting for a Pizza to Cool

A pizza is removed from the oven after baking thoroughly, and the temperature of the oven is 350°F. The

temperature of the kitchen is 75°F, and after 5 minutes the temperature of the pizza is 340°F. We would like

to wait until the temperature of the pizza reaches 300°F before cutting and serving it (Figure 4.17). How much

longer will we have to wait?

Figure 4.17 From Newton’s law of cooling, if the pizza cools
10°F in 5 minutes, how long before it cools to 300°F?

Solution

The ambient temperature (surrounding temperature) is 75°F, so Ts = 75. The temperature of the pizza when

it comes out of the oven is 350°F, which is the initial temperature (i.e., initial value), so T0 = 350. Therefore

Equation 4.4 becomes

dT
dt = k(T − 75), T(0) = 350.

To solve the differential equation, we use the five-step technique for solving separable equations.

1. Setting the right-hand side equal to zero gives T = 75 as a constant solution. Since the pizza starts at

350°F, this is not the solution we are seeking.
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2. Rewrite the differential equation by multiplying both sides by dt and dividing both sides by T − 75:

dT
T − 75 = kdt.

3. Integrate both sides:

⌠
⌡

dT
T − 75 = ∫ kdt

ln|T − 75| = kt + C.
4. Solve for T by first exponentiating both sides:

eln|T − 75| = ekt + C

|T − 75| = C1 ekt

T − 75 = C1 ekt

T(t) = 75 + C1 ekt.
5. Solve for C1 by using the initial condition T(0) = 350:

T(t) = 75 + C1 ekt

T(0) = 75 + C1 ek(0)

350 = 75 + C1
C1 = 275.

Therefore the solution to the initial-value problem is

T(t) = 75 + 275ekt.

To determine the value of k, we need to use the fact that after 5 minutes the temperature of the pizza

is 340°F. Therefore T(5) = 340. Substituting this information into the solution to the initial-value

problem, we have

T(t) = 75 + 275ekt

T(5) = 340 = 75 + 275e5k

265 = 275e5k

e5k = 53
55

lne5k = ln⎛
⎝
53
55

⎞
⎠

5k = ln⎛
⎝
53
55

⎞
⎠

k = 1
5 ln⎛

⎝
53
55

⎞
⎠ ≈ − 0.007408.

So now we have T(t) = 75 + 275e−0.007048t. When is the temperature 300°F? Solving for t, we find
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T(t) = 75 + 275e−0.007048t

300 = 75 + 275e−0.007048t

225 = 275e−0.007048t

e−0.007048t = 9
11

lne−0.007048t = ln 9
11

−0.007048t = ln 9
11

t = − 1
0.007048 ln 9

11 ≈ 28.5.

Therefore we need to wait an additional 23.5 minutes (after the temperature of the pizza reached

340°F). That should be just enough time to finish this calculation.

A cake is removed from the oven after baking thoroughly, and the temperature of the oven is 450°F.
The temperature of the kitchen is 70°F, and after 10 minutes the temperature of the cake is 430°F.

a. Write the appropriate initial-value problem to describe this situation.

b. Solve the initial-value problem for T(t).

c. How long will it take until the temperature of the cake is within 5°F of room temperature?
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4.3 EXERCISES
Solve the following initial-value problems with the initial
condition y0 = 0 and graph the solution.

119.
dy
dt = y + 1

120.
dy
dt = y − 1

121.
dy
dt = y + 1

122.
dy
dt = −y − 1

Find the general solution to the differential equation.

123. x2 y′ = (x + 1)y

124. y′ = tan(y)x

125. y′ = 2xy2

126.
dy
dt = ycos(3t + 2)

127. 2xdy
dx = y2

128. y′ = ey x2

129. (1 + x)y′ = (x + 2)⎛
⎝y − 1⎞

⎠

130. dx
dt = 3t2 ⎛

⎝x2 + 4⎞
⎠

131. tdy
dt = 1 − y2

132. y′ = ex ey

Find the solution to the initial-value problem.

133. y′ = ey − x, y(0) = 0

134. y′ = y2(x + 1), y(0) = 2

135.
dy
dx = y3 xex2

, y(0) = 1

136.
dy
dt = y2 ex sin(3x), y(0) = 1

137. y′ = x
sech2 y

, y(0) = 0

138. y′ = 2xy(1 + 2y), y(0) = −1

139. dx
dt = ln(t) 1 − x2, x(0) = 0

140. y′ = 3x2(y2 + 4), y(0) = 0

141. y′ = ey 5x, y(0) = ln(ln(5))

142. y′ = −2x tan(y), y(0) = π
2

For the following problems, use a software program or your
calculator to generate the directional fields. Solve explicitly
and draw solution curves for several initial conditions. Are
there some critical initial conditions that change the
behavior of the solution?

143. [T] y′ = 1 − 2y

144. [T] y′ = y2 x3

145. [T] y′ = y3 ex

146. [T] y′ = ey

147. [T] y′ = y ln(x)

148. Most drugs in the bloodstream decay according to
the equation y′ = cy, where y is the concentration of

the drug in the bloodstream. If the half-life of a drug is
2 hours, what fraction of the initial dose remains after 6
hours?

149. A drug is administered intravenously to a patient
at a rate r mg/h and is cleared from the body at a rate

proportional to the amount of drug still present in the body,
d Set up and solve the differential equation, assuming

there is no drug initially present in the body.

150. [T] How often should a drug be taken if its dose is
3 mg, it is cleared at a rate c = 0.1 mg/h, and 1 mg is

required to be in the bloodstream at all times?

151. A tank contains 1 kilogram of salt dissolved in 100
liters of water. A salt solution of 0.1 kg salt/L is pumped

into the tank at a rate of 2 L/min and is drained at the same

rate. Solve for the salt concentration at time t. Assume the

tank is well mixed.

Chapter 4 | Introduction to Differential Equations 391



152. A tank containing 10 kilograms of salt dissolved

in 1000 liters of water has two salt solutions pumped in.

The first solution of 0.2 kg salt/L is pumped in at a rate

of 20 L/min and the second solution of 0.05 kg salt/L is

pumped in at a rate of 5 L/min. The tank drains at 25
L/min. Assume the tank is well mixed. Solve for the salt
concentration at time t.

153. [T] For the preceding problem, find how much salt is
in the tank 1 hour after the process begins.

154. Torricelli’s law states that for a water tank with a
hole in the bottom that has a cross-section of A and with

a height of water h above the bottom of the tank, the

rate of change of volume of water flowing from the tank
is proportional to the square root of the height of water,

according to dV
dt = −A 2gh, where g is the acceleration

due to gravity. Note that dV
dt = Adh

dt . Solve the resulting

initial-value problem for the height of the water, assuming
a tank with a hole of radius 2 ft. The initial height of water

is 100 ft.

155. For the preceding problem, determine how long it
takes the tank to drain.

For the following problems, use Newton’s law of cooling.

156. The liquid base of an ice cream has an initial
temperature of 200°F before it is placed in a freezer with

a constant temperature of 0°F. After 1 hour, the

temperature of the ice-cream base has decreased to 140°F.
Formulate and solve the initial-value problem to determine
the temperature of the ice cream.

157. [T] The liquid base of an ice cream has an initial
temperature of 210°F before it is placed in a freezer with

a constant temperature of 20°F. After 2 hours, the

temperature of the ice-cream base has decreased to 170°F.
At what time will the ice cream be ready to eat? (Assume
30°F is the optimal eating temperature.)

158. [T] You are organizing an ice cream social. The
outside temperature is 80°F and the ice cream is at 10°F.
After 10 minutes, the ice cream temperature has risen by

10°F. How much longer can you wait before the ice cream

melts at 40°F?

159. You have a cup of coffee at temperature 70°C and

the ambient temperature in the room is 20°C. Assuming

a cooling rate k of 0.125, write and solve the differential

equation to describe the temperature of the coffee with
respect to time.

160. [T] You have a cup of coffee at temperature 70°C
that you put outside, where the ambient temperature is
0°C. After 5 minutes, how much colder is the coffee?

161. You have a cup of coffee at temperature 70°C and

you immediately pour in 1 part milk to 5 parts coffee.

The milk is initially at temperature 1°C. Write and solve

the differential equation that governs the temperature of
this coffee.

162. You have a cup of coffee at temperature 70°C,
which you let cool 10 minutes before you pour in the same

amount of milk at 1°C as in the preceding problem. How

does the temperature compare to the previous cup after 10
minutes?

163. Solve the generic problem y′ = ay + b with initial

condition y(0) = c.

164. Prove the basic continual compounded interest
equation. Assuming an initial deposit of P0 and an interest

rate of r, set up and solve an equation for continually

compounded interest.

165. Assume an initial nutrient amount of I kilograms

in a tank with L liters. Assume a concentration of c kg/

L being pumped in at a rate of r L/min. The tank is well

mixed and is drained at a rate of r L/min. Find the equation

describing the amount of nutrient in the tank.

166. Leaves accumulate on the forest floor at a rate of
2 g/cm2/yr and also decompose at a rate of 90% per

year. Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor,
assuming at time 0 there is no leaf litter on the ground.

Does this amount approach a steady value? What is that
value?

167. Leaves accumulate on the forest floor at a rate of 4
g/cm2/yr. These leaves decompose at a rate of 10% per

year. Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor.
Does this amount approach a steady value? What is that
value?
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4.4 | The Logistic Equation

Learning Objectives
4.4.1 Describe the concept of environmental carrying capacity in the logistic model of population
growth.

4.4.2 Draw a direction field for a logistic equation and interpret the solution curves.

4.4.3 Solve a logistic equation and interpret the results.

Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier
chapter in the section on exponential growth and decay, which is the simplest model. A more realistic model includes other
factors that affect the growth of the population. In this section, we study the logistic differential equation and see how it
applies to the study of population dynamics in the context of biology.

Population Growth and Carrying Capacity
To model population growth using a differential equation, we first need to introduce some variables and relevant terms. The
variable t. will represent time. The units of time can be hours, days, weeks, months, or even years. Any given problem

must specify the units used in that particular problem. The variable P will represent population. Since the population varies

over time, it is understood to be a function of time. Therefore we use the notation P(t) for the population as a function

of time. If P(t) is a differentiable function, then the first derivative dP
dt represents the instantaneous rate of change of the

population as a function of time.

In Exponential Growth and Decay, we studied the exponential growth and decay of populations and radioactive
substances. An example of an exponential growth function is P(t) = P0 ert. In this function, P(t) represents the

population at time t, P0 represents the initial population (population at time t = 0), and the constant r > 0 is called

the growth rate. Figure 4.18 shows a graph of P(t) = 100e0.03t. Here P0 = 100 and r = 0.03.

Figure 4.18 An exponential growth model of population.

We can verify that the function P(t) = P0 ert satisfies the initial-value problem

dP
dt = rP, P(0) = P0.

This differential equation has an interesting interpretation. The left-hand side represents the rate at which the population
increases (or decreases). The right-hand side is equal to a positive constant multiplied by the current population. Therefore
the differential equation states that the rate at which the population increases is proportional to the population at that point
in time. Furthermore, it states that the constant of proportionality never changes.

One problem with this function is its prediction that as time goes on, the population grows without bound. This is unrealistic
in a real-world setting. Various factors limit the rate of growth of a particular population, including birth rate, death rate,
food supply, predators, and so on. The growth constant r usually takes into consideration the birth and death rates but

none of the other factors, and it can be interpreted as a net (birth minus death) percent growth rate per unit time. A natural
question to ask is whether the population growth rate stays constant, or whether it changes over time. Biologists have found
that in many biological systems, the population grows until a certain steady-state population is reached. This possibility is
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not taken into account with exponential growth. However, the concept of carrying capacity allows for the possibility that in
a given area, only a certain number of a given organism or animal can thrive without running into resource issues.

Definition

The carrying capacity of an organism in a given environment is defined to be the maximum population of that
organism that the environment can sustain indefinitely.

We use the variable K to denote the carrying capacity. The growth rate is represented by the variable r. Using these

variables, we can define the logistic differential equation.

Definition

Let K represent the carrying capacity for a particular organism in a given environment, and let r be a real number

that represents the growth rate. The function P(t) represents the population of this organism as a function of time t,
and the constant P0 represents the initial population (population of the organism at time t = 0). Then the logistic

differential equation is

(4.8)dP
dt = rP⎛

⎝1 − P
K

⎞
⎠ − = rP.

See this website (http://www.openstaxcollege.org/l/20_logisticEq) for more information on the logistic
equation.

The logistic equation was first published by Pierre Verhulst in 1845. This differential equation can be coupled with the

initial condition P(0) = P0 to form an initial-value problem for P(t).

Suppose that the initial population is small relative to the carrying capacity. Then P
K is small, possibly close to zero. Thus,

the quantity in parentheses on the right-hand side of Equation 4.8 is close to 1, and the right-hand side of this equation

is close to rP. If r > 0, then the population grows rapidly, resembling exponential growth.

However, as the population grows, the ratio P
K also grows, because K is constant. If the population remains below the

carrying capacity, then P
K is less than 1, so 1 − P

K > 0. Therefore the right-hand side of Equation 4.8 is still positive,

but the quantity in parentheses gets smaller, and the growth rate decreases as a result. If P = K then the right-hand side is

equal to zero, and the population does not change.

Now suppose that the population starts at a value higher than the carrying capacity. Then P
K > 1, and 1 − P

K < 0.

Then the right-hand side of Equation 4.8 is negative, and the population decreases. As long as P > K, the population

decreases. It never actually reaches K because dP
dt will get smaller and smaller, but the population approaches the carrying

capacity as t approaches infinity. This analysis can be represented visually by way of a phase line. A phase line describes

the general behavior of a solution to an autonomous differential equation, depending on the initial condition. For the case
of a carrying capacity in the logistic equation, the phase line is as shown in Figure 4.19.
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Figure 4.19 A phase line for the differential equation
dP
dt = rP⎛

⎝1 − P
K

⎞
⎠.

This phase line shows that when P is less than zero or greater than K, the population decreases over time. When P is

between 0 and K, the population increases over time.

Example 4.14

Chapter Opener: Examining the Carrying Capacity of a Deer Population

Figure 4.20 (credit: modification of work by Rachel Kramer,
Flickr)

Let’s consider the population of white-tailed deer (Odocoileus virginianus) in the state of Kentucky. The
Kentucky Department of Fish and Wildlife Resources (KDFWR) sets guidelines for hunting and fishing in
the state. Before the hunting season of 2004, it estimated a population of 900,000 deer. Johnson notes:

“A deer population that has plenty to eat and is not hunted by humans or other predators will double every
three years.” (George Johnson, “The Problem of Exploding Deer Populations Has No Attractive Solutions,”
January 12, 2001, accessed April 9, 2015, http://www.txtwriter.com/onscience/Articles/deerpops.html.) This

observation corresponds to a rate of increase r = ln(2)
3 = 0.2311, so the approximate growth rate is 23.11%

per year. (This assumes that the population grows exponentially, which is reasonable––at least in the short
term––with plentiful food supply and no predators.) The KDFWR also reports deer population densities for 32
counties in Kentucky, the average of which is approximately 27 deer per square mile. Suppose this is the deer

density for the whole state (39,732 square miles). The carrying capacity K is 39,732 square miles times 27
deer per square mile, or 1,072,764 deer.
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a. For this application, we have P0 = 900,000, K = 1,072,764, and r = 0.2311. Substitute these values

into Equation 4.8 and form the initial-value problem.

b. Solve the initial-value problem from part a.

c. According to this model, what will be the population in 3 years? Recall that the doubling time predicted

by Johnson for the deer population was 3 years. How do these values compare?

d. Suppose the population managed to reach 1,200,000 deer. What does the logistic equation predict will

happen to the population in this scenario?

Solution

a. The initial value problem is

dP
dt = 0.2311P⎛

⎝1 − P
1,072,764

⎞
⎠, P(0) = 900,000.

b. The logistic equation is an autonomous differential equation, so we can use the method of separation of
variables.
Step 1: Setting the right-hand side equal to zero gives P = 0 and P = 1,072,764. This means that if the

population starts at zero it will never change, and if it starts at the carrying capacity, it will never change.
Step 2: Rewrite the differential equation and multiply both sides by:

dP
dt = 0.2311P⎛

⎝
1,072,764 − P

1,072,764
⎞
⎠

dP = 0.2311P⎛
⎝
1,072,764 − P

1,072,764
⎞
⎠dt.

Divide both sides by P(1,072,764 − P):

dP
P(1,072,764 − P) = 0.2311

1,072,764dt.

Step 3: Integrate both sides of the equation using partial fraction decomposition:

⌠
⌡

dP
P(1,072,764 − P) = ⌠

⌡
0.2311

1,072,764dt

1
1,072,764

⌠
⌡
⎛
⎝

1
P + 1

1,072,764 − P
⎞
⎠dP = 0.2311t

1,072,764 + C

1
1,072,764

⎛
⎝ln|P| − ln|1,072,764 − P|⎞

⎠ = 0.2311t
1,072,764 + C.

Step 4: Multiply both sides by 1,072,764 and use the quotient rule for logarithms:

ln| P
1,072,764 − P | = 0.2311t + C1.

Here C1 = 1,072,764C. Next exponentiate both sides and eliminate the absolute value:

e
ln| P

1,072,764 − P | = e
0.2311t + C1

| P
1,072,764 − P | = C2 e0.2311t

P
1,072,764 − P = C2 e0.2311t.
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Here C2 = e
C1 but after eliminating the absolute value, it can be negative as well. Now solve for:

P = C2 e0.2311t (1,072,764 − P).

P = 1,072,764C2 e0.2311t − C2 Pe0.2311t

P + C2 Pe0.2311t = 1,072,764C2 e0.2311t

P⎛
⎝1 + C2 e0.2311t⎞

⎠ = 1,072,764C2 e0.2311t

P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t .

Step 5: To determine the value of C2, it is actually easier to go back a couple of steps to where C2 was

defined. In particular, use the equation

P
1,072,764 − P = C2 e0.2311t.

The initial condition is P(0) = 900,000. Replace P with 900,000 and t with zero:

P
1,072,764 − P = C2 e0.2311t

900,000
1,072,764 − 900,000 = C2 e0.2311(0)

900,000
172,764 = C2

C2 = 25,000
4,799 ≈ 5.209.

Therefore

P(t) =
1,072,764⎛

⎝
25000
4799

⎞
⎠e0.2311t

1 + ⎛
⎝
25000
4799

⎞
⎠e0.2311t

= 1,072,764(25000)e0.2311t

4799 + 25000e0.2311t .

Dividing the numerator and denominator by 25,000 gives

P(t) = 1,072,764e0.2311t

0.19196 + e0.2311t .

Figure 4.21 is a graph of this equation.
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Figure 4.21 Logistic curve for the deer population with an
initial population of 900,000 deer.

c. Using this model we can predict the population in 3 years.

P(3) = 1,072,764e0.2311(3)

0.19196 + e0.2311(3) ≈ 978,830 deer

This is far short of twice the initial population of 900,000. Remember that the doubling time is based

on the assumption that the growth rate never changes, but the logistic model takes this possibility into
account.

d. If the population reached 1,200,000 deer, then the new initial-value problem would be

dP
dt = 0.2311P⎛

⎝1 − P
1,072,764

⎞
⎠, P(0) = 1,200,000.

The general solution to the differential equation would remain the same.

P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t

To determine the value of the constant, return to the equation

P
1,072,764 − P = C2 e0.2311t.

Substituting the values t = 0 and P = 1,200,000, you get

C2 e0.2311(0) = 1,200,000
1,072,764 − 1,200,000

C2 = −100,000
10,603 ≈ − 9.431.

Therefore
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P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t

=
1,072,764⎛

⎝−
100,000
10,603

⎞
⎠e0.2311t

1 + ⎛
⎝−

100,000
10,603

⎞
⎠e0.2311t

= − 107,276,400,000e0.2311t

100,000e0.2311t − 10,603

≈ 10,117,551e0.2311t

9.43129e0.2311t − 1
.

This equation is graphed in Figure 4.22.

Figure 4.22 Logistic curve for the deer population with an
initial population of 1,200,000 deer.

Solving the Logistic Differential Equation
The logistic differential equation is an autonomous differential equation, so we can use separation of variables to find the
general solution, as we just did in Example 4.14.

Step 1: Setting the right-hand side equal to zero leads to P = 0 and P = K as constant solutions. The first solution

indicates that when there are no organisms present, the population will never grow. The second solution indicates that when
the population starts at the carrying capacity, it will never change.

Step 2: Rewrite the differential equation in the form

dP
dt = rP(K − P)

K .

Then multiply both sides by dt and divide both sides by P(K − P). This leads to

dP
P(K − P) = r

Kdt.

Multiply both sides of the equation by K and integrate:

⌠
⌡

K
P(K − P)dP = ∫ rdt.
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The left-hand side of this equation can be integrated using partial fraction decomposition. We leave it to you to verify that

K
P(K − P) = 1

P + 1
K − P.

Then the equation becomes

∫ 1
P + 1

K − PdP = ∫ rdt

ln|P| − ln|K − P| = rt + C
ln| P

K − P | = rt + C.

Now exponentiate both sides of the equation to eliminate the natural logarithm:

e
ln| P

K − P | = ert + C

| P
K − P | = eC ert.

We define C1 = ec so that the equation becomes

(4.9)P
K − P = C1 ert.

To solve this equation for P(t), first multiply both sides by K − P and collect the terms containing P on the left-hand

side of the equation:

P = C1 ert (K − P)
P = C1 Kert − C1 Pert

P + C1 Pert = C1 Kert.

Next, factor P from the left-hand side and divide both sides by the other factor:

(4.10)P⎛
⎝1 + C1 ert⎞

⎠ = C1 Kert

P(t) = C1 Kert

1 + C1 ert .

The last step is to determine the value of C1. The easiest way to do this is to substitute t = 0 and P0 in place of P in

Equation 4.9 and solve for C1 :

P
K − P = C1 ert

P0
K − P0

= C1 er(0)

C1 = P0
K − P0

.

Finally, substitute the expression for C1 into Equation 4.10:

P(t) = C1 Kert

1 + C1 ert =

P0
K − P0

Kert

1 + P0
K − P0

ert

Now multiply the numerator and denominator of the right-hand side by ⎛
⎝K − P0

⎞
⎠ and simplify:
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P(t) =

P0
K − P0

Kert

1 + P0
K − P0

ert

=

P0
K − P0

Kert

1 + P0
K − P0

ert
· K − P0
K − P0

= P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert .

We state this result as a theorem.

Theorem 4.2: Solution of the Logistic Differential Equation

Consider the logistic differential equation subject to an initial population of P0 with carrying capacity K and growth

rate r. The solution to the corresponding initial-value problem is given by

(4.11)
P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert .

Now that we have the solution to the initial-value problem, we can choose values for P0, r, and K and study the solution

curve. For example, in Example 4.14 we used the values r = 0.2311, K = 1,072,764, and an initial population of

900,000 deer. This leads to the solution

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

= 900,000(1,072,764)e0.2311t

(1,072,764 − 900,000) + 900,000e0.2311t

= 900,000(1,072,764)e0.2311t

172,764 + 900,000e0.2311t .

Dividing top and bottom by 900,000 gives

P(t) = 1,072,764e0.2311t

0.19196 + e0.2311t .

This is the same as the original solution. The graph of this solution is shown again in blue in Figure 4.23, superimposed
over the graph of the exponential growth model with initial population 900,000 and growth rate 0.2311 (appearing in

green). The red dashed line represents the carrying capacity, and is a horizontal asymptote for the solution to the logistic
equation.
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Figure 4.23 A comparison of exponential versus logistic
growth for the same initial population of 900,000 organisms

and growth rate of 23.11%.

Working under the assumption that the population grows according to the logistic differential equation, this graph predicts
that approximately 20 years earlier (1984), the growth of the population was very close to exponential. The net growth

rate at that time would have been around 23.1% per year. As time goes on, the two graphs separate. This happens

because the population increases, and the logistic differential equation states that the growth rate decreases as the population
increases. At the time the population was measured (2004), it was close to carrying capacity, and the population was

starting to level off.

The solution to the logistic differential equation has a point of inflection. To find this point, set the second derivative equal
to zero:

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

P′ (t) = rP0 K⎛
⎝K − P0

⎞
⎠ert

⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
2

P″(t) = r2 P0 K⎛
⎝K − P0

⎞
⎠
2 ert − r2 P0

2 K⎛
⎝K − P0

⎞
⎠e2rt

⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
3

=
r2 P0 K⎛

⎝K − P0
⎞
⎠ert ⎛

⎝
⎛
⎝K − P0

⎞
⎠ − P0 ert⎞

⎠
⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
3 .

Setting the numerator equal to zero,

r2 P0 K⎛
⎝K − P0

⎞
⎠ert ⎛

⎝
⎛
⎝K − P0

⎞
⎠ − P0 ert⎞

⎠ = 0.

As long as P0 ≠ K, the entire quantity before and including ert is nonzero, so we can divide it out:

⎛
⎝K − P0

⎞
⎠ − P0 ert = 0.

Solving for t,
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4.14

P0 ert = K − P0

ert = K − P0
P0

lnert = ln K − P0
P0

rt = ln K − P0
P0

t = 1
r ln K − P0

P0
.

Notice that if P0 > K, then this quantity is undefined, and the graph does not have a point of inflection. In the logistic

graph, the point of inflection can be seen as the point where the graph changes from concave up to concave down. This is
where the “leveling off” starts to occur, because the net growth rate becomes slower as the population starts to approach the
carrying capacity.

A population of rabbits in a meadow is observed to be 200 rabbits at time t = 0. After a month, the

rabbit population is observed to have increased by 4%. Using an initial population of 200 and a growth rate of

0.04, with a carrying capacity of 750 rabbits,

a. Write the logistic differential equation and initial condition for this model.

b. Draw a slope field for this logistic differential equation, and sketch the solution corresponding to an
initial population of 200 rabbits.

c. Solve the initial-value problem for P(t).

d. Use the solution to predict the population after 1 year.
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Student Project: Logistic Equation with a Threshold Population

An improvement to the logistic model includes a threshold population. The threshold population is defined to be the
minimum population that is necessary for the species to survive. We use the variable T to represent the threshold

population. A differential equation that incorporates both the threshold population T and carrying capacity K is

(4.12)dP
dt = −rP⎛

⎝1 − P
K

⎞
⎠
⎛
⎝1 − P

T
⎞
⎠

where r represents the growth rate, as before.

1. The threshold population is useful to biologists and can be utilized to determine whether a given species should
be placed on the endangered list. A group of Australian researchers say they have determined the threshold
population for any species to survive: 5000 adults. (Catherine Clabby, “A Magic Number,” American Scientist

98(1): 24, doi:10.1511/2010.82.24. accessed April 9, 2015, http://www.americanscientist.org/issues/pub/a-
magic-number). Therefore we use T = 5000 as the threshold population in this project. Suppose that the

environmental carrying capacity in Montana for elk is 25,000. Set up Equation 4.12 using the carrying

capacity of 25,000 and threshold population of 5000. Assume an annual net growth rate of 18%.

2. Draw the direction field for the differential equation from step 1, along with several solutions for different

initial populations. What are the constant solutions of the differential equation? What do these solutions
correspond to in the original population model (i.e., in a biological context)?

3. What is the limiting population for each initial population you chose in step 2? (Hint: use the slope field to

see what happens for various initial populations, i.e., look for the horizontal asymptotes of your solutions.)

4. This equation can be solved using the method of separation of variables. However, it is very difficult to get the
solution as an explicit function of t. Using an initial population of 18,000 elk, solve the initial-value problem

and express the solution as an implicit function of t, or solve the general initial-value problem, finding a

solution in terms of r, K, T , and P0.
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4.4 EXERCISES
For the following problems, consider the logistic equation

in the form P′ = CP − P2. Draw the directional field and

find the stability of the equilibria.

168. C = 3

169. C = 0

170. C = −3

171. Solve the logistic equation for C = 10 and an initial

condition of P(0) = 2.

172. Solve the logistic equation for C = −10 and an

initial condition of P(0) = 2.

173. A population of deer inside a park has a carrying
capacity of 200 and a growth rate of 2%. If the initial

population is 50 deer, what is the population of deer at any

given time?

174. A population of frogs in a pond has a growth rate
of 5%. If the initial population is 1000 frogs and the

carrying capacity is 6000, what is the population of frogs

at any given time?

175. [T] Bacteria grow at a rate of 20% per hour in a

petri dish. If there is initially one bacterium and a carrying
capacity of 1 million cells, how long does it take to reach

500,000 cells?

176. [T] Rabbits in a park have an initial population of
10 and grow at a rate of 4% per year. If the carrying

capacity is 500, at what time does the population reach

100 rabbits?

177. [T] Two monkeys are placed on an island. After 5
years, there are 8 monkeys, and the estimated carrying

capacity is 25 monkeys. When does the population of

monkeys reach 16 monkeys?

178. [T] A butterfly sanctuary is built that can hold 2000
butterflies, and 400 butterflies are initially moved in. If

after 2 months there are now 800 butterflies, when does

the population get to 1500 butterflies?

The following problems consider the logistic equation with
an added term for depletion, either through death or
emigration.

179. [T] The population of trout in a pond is given by

P′ = 0.4P⎛
⎝1 − P

10000
⎞
⎠ − 400, where 400 trout are

caught per year. Use your calculator or computer software
to draw a directional field and draw a few sample solutions.
What do you expect for the behavior?

180. In the preceding problem, what are the stabilities of
the equilibria 0 < P1 < P2?

181. [T] For the preceding problem, use software to
generate a directional field for the value f = 400. What

are the stabilities of the equilibria?

182. [T] For the preceding problems, use software to
generate a directional field for the value f = 600. What

are the stabilities of the equilibria?

183. [T] For the preceding problems, consider the case
where a certain number of fish are added to the pond, or
f = −200. What are the nonnegative equilibria and their

stabilities?

It is more likely that the amount of fishing is governed by
the current number of fish present, so instead of a constant
number of fish being caught, the rate is proportional to
the current number of fish present, with proportionality
constant k, as

P′ = 0.4P⎛
⎝1 − P

10000
⎞
⎠ − kP.

184. [T] For the previous fishing problem, draw a
directional field assuming k = 0.1. Draw some solutions

that exhibit this behavior. What are the equilibria and what
are their stabilities?

185. [T] Use software or a calculator to draw directional
fields for k = 0.4. What are the nonnegative equilibria and

their stabilities?

186. [T] Use software or a calculator to draw directional
fields for k = 0.6. What are the equilibria and their

stabilities?

187. Solve this equation, assuming a value of k = 0.05
and an initial condition of 2000 fish.

188. Solve this equation, assuming a value of k = 0.05
and an initial condition of 5000 fish.

The following problems add in a minimal threshold value
for the species to survive, T , which changes the

differential equation to P′(t) = rP⎛
⎝1 − P

K
⎞
⎠
⎛
⎝1 − T

P
⎞
⎠.
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189. Draw the directional field of the threshold logistic
equation, assuming K = 10, r = 0.1, T = 2. When does

the population survive? When does it go extinct?

190. For the preceding problem, solve the logistic
threshold equation, assuming the initial condition
P(0) = P0.

191. Bengal tigers in a conservation park have a carrying
capacity of 100 and need a minimum of 10 to survive.

If they grow in population at a rate of 1% per year, with

an initial population of 15 tigers, solve for the number of

tigers present.

192. A forest containing ring-tailed lemurs in Madagascar
has the potential to support 5000 individuals, and the

lemur population grows at a rate of 5% per year. A

minimum of 500 individuals is needed for the lemurs to

survive. Given an initial population of 600 lemurs, solve

for the population of lemurs.

193. The population of mountain lions in Northern
Arizona has an estimated carrying capacity of 250 and

grows at a rate of 0.25% per year and there must be 25
for the population to survive. With an initial population of
30 mountain lions, how many years will it take to get

the mountain lions off the endangered species list (at least
100)?

The following questions consider the Gompertz equation,
a modification for logistic growth, which is often used for
modeling cancer growth, specifically the number of tumor
cells.

194. The Gompertz equation is given by

P(t)′ = α ln⎛
⎝

K
P(t)

⎞
⎠P(t). Draw the directional fields for this

equation assuming all parameters are positive, and given
that K = 1.

195. Assume that for a population, K = 1000 and

α = 0.05. Draw the directional field associated with this

differential equation and draw a few solutions. What is the
behavior of the population?

196. Solve the Gompertz equation for generic α and K
and P(0) = P0.

197. [T] The Gompertz equation has been used to model
tumor growth in the human body. Starting from one tumor
cell on day 1 and assuming α = 0.1 and a carrying

capacity of 10 million cells, how long does it take to reach

“detection” stage at 5 million cells?

198. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.
Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for logistic growth, and
determine what year the population reached 7 billion.

199. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.
Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for Gompertz growth,
and determine what year the population reached 7 billion.

Was logistic growth or Gompertz growth more accurate,
considering world population reached 7 billion on October

31, 2011?

200. Show that the population grows fastest when it
reaches half the carrying capacity for the logistic equation

P′ = rP⎛
⎝1 − P

K
⎞
⎠.

201. When does population increase the fastest in the

threshold logistic equation P′(t) = rP⎛
⎝1 − P

K
⎞
⎠
⎛
⎝1 − T

P
⎞
⎠?

202. When does population increase the fastest for the

Gompertz equation P(t)′ = α ln⎛
⎝

K
P(t)

⎞
⎠P(t)?

Below is a table of the populations of whooping cranes in
the wild from 1940 to 2000. The population rebounded

from near extinction after conservation efforts began. The
following problems consider applying population models
to fit the data. Assume a carrying capacity of 10,000
cranes. Fit the data assuming years since 1940 (so your

initial population at time 0 would be 22 cranes).
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Year (years since
conservation began)

Whooping
Crane
Population

1940(0) 22

1950(10) 31

1960(20) 36

1970(30) 57

1980(40) 91

1990(50) 159

2000(60) 256

Source: https://www.savingcranes.org/images/
stories/site_images/conservation/whooping_crane/
pdfs/historic_wc_numbers.pdf

203. Find the equation and parameter r that best fit the

data for the logistic equation.

204. Find the equation and parameters r and T that best

fit the data for the threshold logistic equation.

205. Find the equation and parameter α that best fit the

data for the Gompertz equation.

206. Graph all three solutions and the data on the same
graph. Which model appears to be most accurate?

207. Using the three equations found in the previous
problems, estimate the population in 2010 (year 70 after

conservation). The real population measured at that time
was 437. Which model is most accurate?

Chapter 4 | Introduction to Differential Equations 407



4.5 | First-order Linear Equations

Learning Objectives
4.5.1 Write a first-order linear differential equation in standard form.

4.5.2 Find an integrating factor and use it to solve a first-order linear differential equation.

4.5.3 Solve applied problems involving first-order linear differential equations.

Earlier, we studied an application of a first-order differential equation that involved solving for the velocity of an object.
In particular, if a ball is thrown upward with an initial velocity of v0 ft/s, then an initial-value problem that describes the

velocity of the ball after t seconds is given by

dv
dt = −32, v(0) = v0.

This model assumes that the only force acting on the ball is gravity. Now we add to the problem by allowing for the
possibility of air resistance acting on the ball.

Air resistance always acts in the direction opposite to motion. Therefore if an object is rising, air resistance acts in a
downward direction. If the object is falling, air resistance acts in an upward direction (Figure 4.24). There is no exact
relationship between the velocity of an object and the air resistance acting on it. For very small objects, air resistance is
proportional to velocity; that is, the force due to air resistance is numerically equal to some constant k times v. For larger

(e.g., baseball-sized) objects, depending on the shape, air resistance can be approximately proportional to the square of the

velocity. In fact, air resistance may be proportional to v1.5, or v0.9, or some other power of v.

Figure 4.24 Forces acting on a moving baseball: gravity acts
in a downward direction and air resistance acts in a direction
opposite to the direction of motion.

We will work with the linear approximation for air resistance. If we assume k > 0, then the expression for the force FA

due to air resistance is given by FA = −kv. Therefore the sum of the forces acting on the object is equal to the sum of

the gravitational force and the force due to air resistance. This, in turn, is equal to the mass of the object multiplied by its
acceleration at time t (Newton’s second law). This gives us the differential equation

mdv
dt = −kv − mg.

Finally, we impose an initial condition v(0) = v0, where v0 is the initial velocity measured in meters per second. This

makes g = 9.8 m/s2. The initial-value problem becomes

(4.13)mdv
dt = −kv − mg, v(0) = v0.
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The differential equation in this initial-value problem is an example of a first-order linear differential equation. (Recall that
a differential equation is first-order if the highest-order derivative that appears in the equation is 1.) In this section, we

study first-order linear equations and examine a method for finding a general solution to these types of equations, as well as
solving initial-value problems involving them.

Definition

A first-order differential equation is linear if it can be written in the form

(4.14)a(x)y′ + b(x)y = c(x),

where a(x), b(x), and c(x) are arbitrary functions of x.

Remember that the unknown function y depends on the variable x; that is, x is the independent variable and y is the

dependent variable. Some examples of first-order linear differential equations are

⎛
⎝3x2 − 4⎞

⎠y′ + (x − 3)y = sinx
(sinx)y′ − (cosx)y = cot x

4xy′ + (3lnx)y = x3 − 4x.

Examples of first-order nonlinear differential equations include

⎛
⎝y′⎞

⎠
4 − ⎛

⎝y′⎞
⎠
3 = (3x − 2)⎛

⎝y + 4⎞
⎠

4y′ + 3y3 = 4x − 5
⎛
⎝y′⎞

⎠
2 = siny + cosx.

These equations are nonlinear because of terms like ⎛
⎝y′⎞

⎠
4, y3, etc. Due to these terms, it is impossible to put these

equations into the same form as Equation 4.14.

Standard Form
Consider the differential equation

⎛
⎝3x2 − 4⎞

⎠y′ + (x − 3)y = sinx.

Our main goal in this section is to derive a solution method for equations of this form. It is useful to have the coefficient of

y′ be equal to 1. To make this happen, we divide both sides by 3x2 − 4.

y′ + ⎛
⎝

x − 3
3x2 − 4

⎞
⎠y = sinx

3x2 − 4

This is called the standard form of the differential equation. We will use it later when finding the solution to a general
first-order linear differential equation. Returning to Equation 4.14, we can divide both sides of the equation by a(x). This

leads to the equation

(4.15)y′ + b(x)
a(x)y = c(x)

a(x).

Now define p(x) = b(x)
a(x) and q(x) = c(x)

a(x). Then Equation 4.14 becomes

(4.16)y′ + p(x)y = q(x).

We can write any first-order linear differential equation in this form, and this is referred to as the standard form for a first-
order linear differential equation.
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(4.17)

4.15

Example 4.15

Writing First-Order Linear Equations in Standard Form

Put each of the following first-order linear differential equations into standard form. Identify p(x) and q(x) for

each equation.

a. y′ = 3x − 4y

b.
3xy′

4y − 3 = 2 (here x > 0)

c. y = 3y′ − 4x2 + 5

Solution

a. Add 4y to both sides:

y′ + 4y = 3x.

In this equation, p(x) = 4 and q(x) = 3x.

b. Multiply both sides by 4y − 3, then subtract 8y from each side:

3xy′
4y − 3 = 2

3xy′ = 2⎛
⎝4y − 3⎞

⎠

3xy′ = 8y − 6
3xy′ − 8y = −6.

Finally, divide both sides by 3x to make the coefficient of y′ equal to 1:

y′ − 8
3xy = − 2

3x.

This is allowable because in the original statement of this problem we assumed that x > 0. (If x = 0
then the original equation becomes 0 = 2, which is clearly a false statement.)

In this equation, p(x) = − 8
3x and q(x) = − 2

3x.

c. Subtract y from each side and add 4x2 − 5:

3y′ − y = 4x2 − 5.

Next divide both sides by 3:

y′ − 1
3y = 4

3x2 − 5
3.

In this equation, p(x) = − 1
3 and q(x) = 4

3x2 − 5
3.

Put the equation
(x + 3)y′

2x − 3y − 4 = 5 into standard form and identify p(x) and q(x).

410 Chapter 4 | Introduction to Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Integrating Factors
We now develop a solution technique for any first-order linear differential equation. We start with the standard form of a
first-order linear differential equation:

(4.18)y′ + p(x)y = q(x).

The first term on the left-hand side of Equation 4.15 is the derivative of the unknown function, and the second term
is the product of a known function with the unknown function. This is somewhat reminiscent of the power rule from the
Differentiation Rules (http://cnx.org/content/m53575/latest/) section. If we multiply Equation 4.16 by a yet-to-
be-determined function µ(x), then the equation becomes

(4.19)µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

The left-hand side Equation 4.18 can be matched perfectly to the product rule:

d
dx

⎡
⎣ f (x)g(x)⎤

⎦ = f ′ (x)g(x) + f (x)g′ (x).

Matching term by term gives y = f (x), g(x) = µ(x), and g′ (x) = µ(x)p(x). Taking the derivative of g(x) = µ(x) and

setting it equal to the right-hand side of g′ (x) = µ(x)p(x) leads to

µ′ (x) = µ(x)p(x).

This is a first-order, separable differential equation for µ(x). We know p(x) because it appears in the differential equation

we are solving. Separating variables and integrating yields

µ′ (x)
µ(x) = p(x)

⌠
⌡

µ′ (x)
µ(x) dx = ∫ p(x)dx

ln|µ(x)| = ∫ p(x)dx + C

eln|µ(x)| = e
∫ p(x)dx + C

|µ(x)| = C1 e
∫ p(x)dx

µ(x) = C2 e
∫ p(x)dx

.

Here C2 can be an arbitrary (positive or negative) constant. This leads to a general method for solving a first-order linear

differential equation. We first multiply both sides of Equation 4.16 by the integrating factor µ(x). This gives

(4.20)µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

The left-hand side of Equation 4.19 can be rewritten as d
dx

⎛
⎝µ(x)y⎞

⎠.

(4.21)d
dx

⎛
⎝µ(x)y⎞

⎠ = µ(x)q(x).

Next integrate both sides of Equation 4.20 with respect to x.

(4.22)⌠
⌡

d
dx

⎛
⎝µ(x)y⎞

⎠dx = ∫ µ(x)q(x)dx

µ(x)y = ∫ µ(x)q(x)dx.

Divide both sides of Equation 4.21 by µ(x):

(4.23)y = 1
µ(x)

⎡
⎣∫ µ(x)q(x)dx + C⎤

⎦.

Since µ(x) was previously calculated, we are now finished. An important note about the integrating constant C: It may
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seem that we are inconsistent in the usage of the integrating constant. However, the integral involving p(x) is necessary in

order to find an integrating factor for Equation 4.15. Only one integrating factor is needed in order to solve the equation;
therefore, it is safe to assign a value for C for this integral. We chose C = 0. When calculating the integral inside the

brackets in Equation 4.21, it is necessary to keep our options open for the value of the integrating constant, because our
goal is to find a general family of solutions to Equation 4.15. This integrating factor guarantees just that.

Problem-Solving Strategy: Solving a First-order Linear Differential Equation

1. Put the equation into standard form and identify p(x) and q(x).

2. Calculate the integrating factor µ(x) = e
∫ p(x)dx

.

3. Multiply both sides of the differential equation by µ(x).

4. Integrate both sides of the equation obtained in step 3, and divide both sides by µ(x).

5. If there is an initial condition, determine the value of C.

Example 4.16

Solving a First-order Linear Equation

Find a general solution for the differential equation xy′ + 3y = 4x2 − 3x. Assume x > 0.

Solution

1. To put this differential equation into standard form, divide both sides by x:

y′ + 3
xy = 4x − 3.

Therefore p(x) = 3
x and q(x) = 4x − 3.

2. The integrating factor is µ(x) = e
∫ (3/x)dx

= e3lnx = x3.

3. Multiplying both sides of the differential equation by µ(x) gives us

x3 y′ + x3 ⎛
⎝
3
x

⎞
⎠y = x3 (4x − 3)

x3 y′ + 3x2 y = 4x4 − 3x3

d
dx

⎛
⎝x

3 y⎞
⎠ = 4x4 − 3x3.

4. Integrate both sides of the equation.

⌠
⌡

d
dx

⎛
⎝x

3 y⎞
⎠dx = ∫ 4x4 − 3x3dx

x3 y = 4x5

5 − 3x4

4 + C

y = 4x2

5 − 3x
4 + Cx−3.

5. There is no initial value, so the problem is complete.

Analysis
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4.16

You may have noticed the condition that was imposed on the differential equation; namely, x > 0. For any

nonzero value of C, the general solution is not defined at x = 0. Furthermore, when x < 0, the integrating

factor changes. The integrating factor is given by Equation 4.19 as f (x) = e
∫ p(x)dx

. For this p(x) we get

e
∫ p(x)dx =

e
∫ (3/x)dx

= e3ln|x| = |x|3,

since x < 0. The behavior of the general solution changes at x = 0 largely due to the fact that p(x) is not

defined there.

Find the general solution to the differential equation (x − 2)y′ + y = 3x2 + 2x. Assume x > 2.

Now we use the same strategy to find the solution to an initial-value problem.

Example 4.17

A First-order Linear Initial-Value Problem

Solve the initial-value problem

y′ + 3y = 2x − 1, y(0) = 3.

Solution

1. This differential equation is already in standard form with p(x) = 3 and q(x) = 2x − 1.

2. The integrating factor is µ(x) = e
∫ 3dx

= e3x.

3. Multiplying both sides of the differential equation by µ(x) gives

e3x y′ + 3e3x y = (2x − 1)e3x

d
dx

⎡
⎣ye3x⎤

⎦ = (2x − 1)e3x.

Integrate both sides of the equation:

⌠
⌡

d
dx

⎡
⎣ye3x⎤

⎦dx = ∫ (2x − 1)e3x dx

ye3x = e3x

3 (2x − 1) − ⌠
⌡
2
3e3x dx

ye3x = e3x (2x − 1)
3 − 2e3x

9 + C

y = 2x − 1
3 − 2

9 + Ce−3x

y = 2x
3 − 5

9 + Ce−3x.

4. Now substitute x = 0 and y = 3 into the general solution and solve for C:
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4.17

y = 2
3x − 5

9 + Ce−3x

3 = 2
3(0) − 5

9 + Ce−3(0)

3 = −5
9 + C

C = 32
9 .

Therefore the solution to the initial-value problem is

y = 2
3x − 5

9 + 32
9 e−3x.

Solve the initial-value problem y′ − 2y = 4x + 3 y(0) = −2.

Applications of First-order Linear Differential Equations
We look at two different applications of first-order linear differential equations. The first involves air resistance as it relates
to objects that are rising or falling; the second involves an electrical circuit. Other applications are numerous, but most are
solved in a similar fashion.

Free fall with air resistance

We discussed air resistance at the beginning of this section. The next example shows how to apply this concept for a ball in
vertical motion. Other factors can affect the force of air resistance, such as the size and shape of the object, but we ignore
them here.

Example 4.18

A Ball with Air Resistance

A racquetball is hit straight upward with an initial velocity of 2 m/s. The mass of a racquetball is approximately

0.0427 kg. Air resistance acts on the ball with a force numerically equal to 0.5v, where v represents the

velocity of the ball at time t.

a. Find the velocity of the ball as a function of time.

b. How long does it take for the ball to reach its maximum height?

c. If the ball is hit from an initial height of 1 meter, how high will it reach?

Solution

a. The mass m = 0.0427 kg, k = 0.5, and g = 9.8 m/s2. The initial velocity is v0 = 2 m/s. Therefore

the initial-value problem is

0.0427dv
dt = −0.5v − 0.0427(9.8), v0 = 2.

Dividing the differential equation by 0.0427 gives
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dv
dt = −11.7096v − 9.8, v0 = 2.

The differential equation is linear. Using the problem-solving strategy for linear differential equations:

Step 1. Rewrite the differential equation as dv
dt + 11.7096v = −9.8. This gives p(t) = 11.7096 and

q(t) = −9.8

Step 2. The integrating factor is µ(t) = e
∫ 11.7096dt

= e11.7096t.
Step 3. Multiply the differential equation by µ(t):

e11.7096t dv
dt + 11.7096ve11.7096t = −9.8e11.7096t

d
dt

⎡
⎣ve11.7096t⎤

⎦ = −9.8e11.7096t.

Step 4. Integrate both sides:

⌠
⌡

d
dt

⎡
⎣ve11.7096t⎤

⎦dt = ∫ −9.8e11.7096t dt

ve11.7096t = −9.8
11.7096e11.7096t + C

v(t) = −0.8369 + Ce−11.7096t.

Step 5. Solve for C using the initial condition v0 = v(0) = 2:

v(t) = −0.8369 + Ce−11.7096t

v(0) = −0.8369 + Ce−11.7096(0)

2 = −0.8369 + C
C = 2.8369.

Therefore the solution to the initial-value problem is v(t) = 2.8369e−11.7096t − 0.8369.

b. The ball reaches its maximum height when the velocity is equal to zero. The reason is that when the
velocity is positive, it is rising, and when it is negative, it is falling. Therefore when it is zero, it is neither
rising nor falling, and is at its maximum height:

2.8369e−11.7096t − 0.8369 = 0
2.8369e−11.7096t = 0.8369

e−11.7096t = 0.8369
2.8369 ≈ 0.295

lne−11.7096t = ln0.295 ≈ − 1.221
−11.7096t = −1.221

t ≈ 0.104.

Therefore it takes approximately 0.104 second to reach maximum height.

c. To find the height of the ball as a function of time, use the fact that the derivative of position is velocity,
i.e., if h(t) represents the height at time t, then h′ (t) = v(t). Because we know v(t) and the initial

height, we can form an initial-value problem:

h′ (t) = 2.8369e−11.7096t − 0.8369, h(0) = 1.
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Integrating both sides of the differential equation with respect to t gives

∫ h′ (t)dt = ∫ 2.8369e−11.7096t − 0.8369dt

h(t) = − 2.8369
11.7096e−11.7096t − 0.8369t + C

h(t) = −0.2423e−11.7096t − 0.8369t + C.

Solve for C by using the initial condition:

h(t) = −0.2423e−11.7096t − 0.8369t + C

h(0) = −0.2423e−11.7096(0) − 0.8369(0) + C
1 = −0.2423 + C
C = 1.2423.

Therefore

h(t) = −0.2423e−11.7096t − 0.8369t + 1.2423.

After 0.104 second, the height is given by

h(0.2) = −0.2423e−11.7096t − 0.8369t + 1.2423 ≈ 1.0836 meter.

The weight of a penny is 2.5 grams (United States Mint, “Coin Specifications,” accessed April 9, 2015,

http://www.usmint.gov/about_the_mint/?action=coin_specifications), and the upper observation deck of the
Empire State Building is 369 meters above the street. Since the penny is a small and relatively smooth object,

air resistance acting on the penny is actually quite small. We assume the air resistance is numerically equal to
0.0025v. Furthermore, the penny is dropped with no initial velocity imparted to it.

a. Set up an initial-value problem that represents the falling penny.

b. Solve the problem for v(t).

c. What is the terminal velocity of the penny (i.e., calculate the limit of the velocity as t approaches

infinity)?

Electrical Circuits

A source of electromotive force (e.g., a battery or generator) produces a flow of current in a closed circuit, and this current
produces a voltage drop across each resistor, inductor, and capacitor in the circuit. Kirchhoff’s Loop Rule states that the sum
of the voltage drops across resistors, inductors, and capacitors is equal to the total electromotive force in a closed circuit.
We have the following three results:

1. The voltage drop across a resistor is given by

ER = Ri,

where R is a constant of proportionality called the resistance, and i is the current.

2. The voltage drop across an inductor is given by

EL = Li′,

416 Chapter 4 | Introduction to Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



where L is a constant of proportionality called the inductance, and i again denotes the current.

3. The voltage drop across a capacitor is given by

EC = 1
Cq,

where C is a constant of proportionality called the capacitance, and q is the instantaneous charge on the capacitor. The

relationship between i and q is i = q′.

We use units of volts (V) to measure voltage E, amperes (A) to measure current i, coulombs (C) to measure charge

q, ohms (Ω) to measure resistance R, henrys (H) to measure inductance L, and farads (F) to measure capacitance

C. Consider the circuit in Figure 4.25.

Figure 4.25 A typical electric circuit, containing a voltage
generator ⎛

⎝VS
⎞
⎠, capacitor (C), inductor (L), and resistor

(R).

Applying Kirchhoff’s Loop Rule to this circuit, we let E denote the electromotive force supplied by the voltage generator.

Then

EL + ER + EC = E.

Substituting the expressions for EL, ER, and EC into this equation, we obtain

(4.24)Li′ + Ri + 1
Cq = E.

If there is no capacitor in the circuit, then the equation becomes

(4.25)Li′ + Ri = E.

This is a first-order differential equation in i. The circuit is referred to as an LR circuit.

Next, suppose there is no inductor in the circuit, but there is a capacitor and a resistor, so L = 0, R ≠ 0, and C ≠ 0. Then

Equation 4.23 can be rewritten as

(4.26)Rq′ + 1
Cq = E,

which is a first-order linear differential equation. This is referred to as an RC circuit. In either case, we can set up and solve
an initial-value problem.

Example 4.19

Finding Current in an RL Electric Circuit

A circuit has in series an electromotive force given by E = 50sin20t V, a resistor of 5Ω, and an inductor of

0.4 H. If the initial current is 0, find the current at time t > 0.
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Solution

We have a resistor and an inductor in the circuit, so we use Equation 4.24. The voltage drop across the resistor is
given by ER = Ri = 5i. The voltage drop across the inductor is given by EL = Li′ = 0.4i′. The electromotive

force becomes the right-hand side of Equation 4.24. Therefore Equation 4.24 becomes

0.4i′ + 5i = 50sin20t.

Dividing both sides by 0.4 gives the equation

i′ + 12.5i = 125sin20t.

Since the initial current is 0, this result gives an initial condition of i(0) = 0. We can solve this initial-value

problem using the five-step strategy for solving first-order differential equations.

Step 1. Rewrite the differential equation as i′ + 12.5i = 125sin20t. This gives p(t) = 12.5 and

q(t) = 125sin20t.

Step 2. The integrating factor is µ(t) = e
∫ 12.5dt

= e12.5t.

Step 3. Multiply the differential equation by µ(t):

e12.5t i′ + 12.5e12.5t i = 125e12.5t sin20t
d
dt

⎡
⎣ie12.5t⎤

⎦ = 125e12.5t sin20t.

Step 4. Integrate both sides:

⌠
⌡

d
dt

⎡
⎣ie12.5t⎤

⎦dt = ∫ 125e12.5t sin20t dt

ie12.5t = ⎛
⎝
250sin20t − 400cos20t

89
⎞
⎠e12.5t + C

i(t) = 250sin20t − 400cos20t
89 + Ce−12.5t.

Step 5. Solve for C using the initial condition v(0) = 2:

i(t) = 250sin20t − 400cos20t
89 + Ce−12.5t

i(0) = 250sin20(0) − 400cos20(0)
89 + Ce−12.5(0)

0 = −400
89 + C

C = 400
89 .

Therefore the solution to the initial-value problem is

i(t) = 250sin20t − 400cos20t + 400e−12.5t

89 = 250sin20t − 400cos20t
89 + 400e−12.5t

89 .

The first term can be rewritten as a single cosine function. First, multiply and divide by 2502 + 4002 = 50 89:

250sin20t − 400cos20t
89 = 50 89

89
⎛
⎝
250sin20t − 400cos20t

50 89
⎞
⎠

= − 50 89
89

⎛
⎝
8cos20t

89
− 5sin20t

89
⎞
⎠.

Next, define φ to be an acute angle such that cosφ = 8
89

. Then sinφ = 5
89

and
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4.19

−50 89
89

⎛
⎝
8cos20t

89
− 5sin20t

89
⎞
⎠ = − 50 89

89
⎛
⎝cosφcos20t − sinφsin20t⎞

⎠

= − 50 89
89 cos⎛

⎝20t + φ⎞
⎠.

Therefore the solution can be written as

i(t) = − 50 89
89 cos ⎛

⎝20t + φ⎞
⎠ + 400e−12.5t

89 .

The second term is called the attenuation term, because it disappears rapidly as t grows larger. The phase shift is

given by φ, and the amplitude of the steady-state current is given by 50 89
89 . The graph of this solution appears

in Figure 4.26:

Figure 4.26

A circuit has in series an electromotive force given by E = 20sin5t V, a capacitor with capacitance

0.02 F, and a resistor of 8 Ω. If the initial charge is 4 C, find the charge at time t > 0.
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4.5 EXERCISES
Are the following differential equations linear? Explain
your reasoning.

208.
dy
dx = x2 y + sinx

209.
dy
dt = ty

210.
dy
dt + y2 = x

211. y′ = x3 + ex

212. y′ = y + ey

Write the following first-order differential equations in
standard form.

213. y′ = x3 y + sinx

214. y′ + 3y − lnx = 0

215. −xy′ = (3x + 2)y + xex

216.
dy
dt = 4y + ty + tan t

217.
dy
dt = yx(x + 1)

What are the integrating factors for the following
differential equations?

218. y′ = xy + 3

219. y′ + ex y = sinx

220. y′ = x ln(x)y + 3x

221.
dy
dx = tanh(x)y + 1

222.
dy
dt + 3ty = et y

Solve the following differential equations by using
integrating factors.

223. y′ = 3y + 2

224. y′ = 2y − x2

225. xy′ = 3y − 6x2

226. (x + 2)y′ = 3x + y

227. y′ = 3x + xy

228. xy′ = x + y

229. sin(x)y′ = y + 2x

230. y′ = y + ex

231. xy′ = 3y + x2

232. y′ + lnx = y
x

Solve the following differential equations. Use your
calculator to draw a family of solutions. Are there certain
initial conditions that change the behavior of the solution?

233. [T] (x + 2)y′ = 2y − 1

234. [T] y′ = 3et/3 − 2y

235. [T] xy′ + y
2 = sin(3t)

236. [T] xy′ = 2cosx
x − 3y

237. [T] (x + 1)y′ = 3y + x2 + 2x + 1

238. [T] sin(x)y′ + cos(x)y = 2x

239. [T] x2 + 1y′ = y + 2

240. [T] x3 y′ + 2x2 y = x + 1

Solve the following initial-value problems by using
integrating factors.

241. y′ + y = x, y(0) = 3

242. y′ = y + 2x2, y(0) = 0

243. xy′ = y − 3x3, y(1) = 0

244. x2 y′ = xy − lnx, y(1) = 1

245. ⎛
⎝1 + x2⎞

⎠y′ = y − 1, y(0) = 0

246. xy′ = y + 2x lnx, y(1) = 5
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247. (2 + x)y′ = y + 2 + x, y(0) = 0

248. y′ = xy + 2xex, y(0) = 2

249. xy′ = y + 2x, y(0) = 1

250. y′ = 2y + xex, y(0) = −1

251. A falling object of mass m can reach terminal

velocity when the drag force is proportional to its velocity,
with proportionality constant k. Set up the differential

equation and solve for the velocity given an initial velocity
of 0.

252. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior; does the velocity approach a value?)

253. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000
meters if the mass is 100 kilograms, the acceleration due

to gravity is 9.8 m/s2 and the proportionality constant is

4?

254. A more accurate way to describe terminal velocity is
that the drag force is proportional to the square of velocity,
with a proportionality constant k. Set up the differential

equation and solve for the velocity.

255. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior: Does the velocity approach a value?)

256. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000
meters if the mass is 100 kilograms, the acceleration due

to gravity is 9.8 m/s2 and the proportionality constant

is 4? Does it take more or less time than your initial

estimate?

For the following problems, determine how parameter a
affects the solution.

257. Solve the generic equation y′ = ax + y. How does

varying a change the behavior?

258. Solve the generic equation y′ = ax + y. How does

varying a change the behavior?

259. Solve the generic equation y′ = ax + xy. How does

varying a change the behavior?

260. Solve the generic equation y′ = x + axy. How does

varying a change the behavior?

261. Solve y′ − y = ekt with the initial condition

y(0) = 0. As k approaches 1, what happens to your

formula?
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asymptotically semi-stable solution

asymptotically stable solution

asymptotically unstable solution

autonomous differential equation

carrying capacity

differential equation

direction field (slope field)

equilibrium solution

Euler’s Method

general solution (or family of solutions)

growth rate

initial population

initial value(s)

initial velocity

initial-value problem

integrating factor

linear

logistic differential equation

order of a differential equation

particular solution

phase line

separable differential equation

separation of variables

solution curve

solution to a differential equation

CHAPTER 4 REVIEW

KEY TERMS
y = k if it is neither asymptotically stable nor asymptotically unstable

y = k if there exists ε > 0 such that for any value c ∈ (k − ε, k + ε) the solution

to the initial-value problem y′ = f (x, y), y(x0) = c approaches k as x approaches infinity

y = k if there exists ε > 0 such that for any value c ∈ (k − ε, k + ε) the

solution to the initial-value problem y′ = f (x, y), y(x0) = c never approaches k as x approaches infinity

an equation in which the right-hand side is a function of y alone

the maximum population of an organism that the environment can sustain indefinitely

an equation involving a function y = y(x) and one or more of its derivatives

a mathematical object used to graphically represent solutions to a first-order differential
equation; at each point in a direction field, a line segment appears whose slope is equal to the slope of a solution to
the differential equation passing through that point

any solution to the differential equation of the form y = c, where c is a constant

a numerical technique used to approximate solutions to an initial-value problem

the entire set of solutions to a given differential equation

the constant r > 0 in the exponential growth function P(t) = P0 ert

the population at time t = 0

a value or set of values that a solution of a differential equation satisfies for a fixed value of the
independent variable

the velocity at time t = 0

a differential equation together with an initial value or values

any function f (x) that is multiplied on both sides of a differential equation to make the side

involving the unknown function equal to the derivative of a product of two functions

description of a first-order differential equation that can be written in the form a(x)y′ + b(x)y = c(x)

a differential equation that incorporates the carrying capacity K and growth rate r into

a population model

the highest order of any derivative of the unknown function that appears in the
equation

member of a family of solutions to a differential equation that satisfies a particular initial condition

a visual representation of the behavior of solutions to an autonomous differential equation subject to various
initial conditions

any equation that can be written in the form y′ = f (x)g(y)

a method used to solve a separable differential equation

a curve graphed in a direction field that corresponds to the solution to the initial-value problem passing
through a given point in the direction field

a function y = f (x) that satisfies a given differential equation
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standard form

step size

threshold population

the form of a first-order linear differential equation obtained by writing the differential equation in the
form y′ + p(x)y = q(x)

the increment h that is added to the x value at each step in Euler’s Method

the minimum population that is necessary for a species to survive

KEY EQUATIONS
• Euler’s Method

xn = x0 + nh
yn = yn − 1 + h f (xn − 1, yn − 1), where h is the step size

• Separable differential equation
y′ = f (x)g(y)

• Solution concentration
du
dt = INFLOW RATE − OUTFLOW RATE

• Newton’s law of cooling
dT
dt = k(T − Ts)

• Logistic differential equation and initial-value problem
dP
dt = rP⎛

⎝1 − P
K

⎞
⎠, P(0) = P0

• Solution to the logistic differential equation/initial-value problem

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

• Threshold population model
dP
dt = −rP⎛

⎝1 − P
K

⎞
⎠
⎛
⎝1 − P

T
⎞
⎠

• standard form
y′ + p(x)y = q(x)

• integrating factor

µ(x) = e
∫ p(x)dx

KEY CONCEPTS

4.1 Basics of Differential Equations

• A differential equation is an equation involving a function y = f (x) and one or more of its derivatives. A solution

is a function y = f (x) that satisfies the differential equation when f and its derivatives are substituted into the

equation.

• The order of a differential equation is the highest order of any derivative of the unknown function that appears in
the equation.

• A differential equation coupled with an initial value is called an initial-value problem. To solve an initial-value
problem, first find the general solution to the differential equation, then determine the value of the constant. Initial-
value problems have many applications in science and engineering.

4.2 Direction Fields and Numerical Methods

• A direction field is a mathematical object used to graphically represent solutions to a first-order differential
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equation.

• Euler’s Method is a numerical technique that can be used to approximate solutions to a differential equation.

4.3 Separable Equations

• A separable differential equation is any equation that can be written in the form y′ = f (x)g(y).

• The method of separation of variables is used to find the general solution to a separable differential equation.

4.4 The Logistic Equation

• When studying population functions, different assumptions—such as exponential growth, logistic growth, or
threshold population—lead to different rates of growth.

• The logistic differential equation incorporates the concept of a carrying capacity. This value is a limiting value on
the population for any given environment.

• The logistic differential equation can be solved for any positive growth rate, initial population, and carrying
capacity.

4.5 First-order Linear Equations

• Any first-order linear differential equation can be written in the form y′ + p(x)y = q(x).

• We can use a five-step problem-solving strategy for solving a first-order linear differential equation that may or may
not include an initial value.

• Applications of first-order linear differential equations include determining motion of a rising or falling object with
air resistance and finding current in an electrical circuit.

CHAPTER 4 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

262. The differential equation y′ = 3x2 y − cos(x)y″ is

linear.

263. The differential equation y′ = x − y is separable.

264. You can explicitly solve all first-order differential
equations by separation or by the method of integrating
factors.

265. You can determine the behavior of all first-order
differential equations using directional fields or Euler’s
method.

For the following problems, find the general solution to the
differential equations.

266. y′ = x2 + 3ex − 2x

267. y′ = 2x + cos−1 x

268. y′ = y⎛
⎝x2 + 1⎞

⎠

269. y′ = e−y sinx

270. y′ = 3x − 2y

271. y′ = y lny

For the following problems, find the solution to the initial
value problem.

272. y′ = 8x − lnx − 3x4, y(1) = 5

273. y′ = 3x − cosx + 2, y(0) = 4

274. xy′ = y(x − 2), y(1) = 3

275. y′ = 3y2 (x + cosx), y(0) = −2

276. (x − 1)y′ = y − 2, y(0) = 0

277. y′ = 3y − x + 6x2, y(0) = −1

For the following problems, draw the directional field
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associated with the differential equation, then solve the
differential equation. Draw a sample solution on the
directional field.

278. y′ = 2y − y2

279. y′ = 1
x + lnx − y, for x > 0

For the following problems, use Euler’s Method with
n = 5 steps over the interval t = [0, 1]. Then solve the

initial-value problem exactly. How close is your Euler’s
Method estimate?

280. y′ = −4yx, y(0) = 1

281. y′ = 3x − 2y, y(0) = 0

For the following problems, set up and solve the differential
equations.

282. A car drives along a freeway, accelerating according
to a = 5sin(πt), where t represents time in minutes.

Find the velocity at any time t, assuming the car starts

with an initial speed of 60 mph.

283. You throw a ball of mass 2 kilograms into the air

with an upward velocity of 8 m/s. Find exactly the time the

ball will remain in the air, assuming that gravity is given by

g = 9.8 m/s2.

284. You drop a ball with a mass of 5 kilograms out an

airplane window at a height of 5000 m. How long does it

take for the ball to reach the ground?

285. You drop the same ball of mass 5 kilograms out

of the same airplane window at the same height, except
this time you assume a drag force proportional to the ball’s
velocity, using a proportionality constant of 3 and the ball

reaches terminal velocity. Solve for the distance fallen as a
function of time. How long does it take the ball to reach the
ground?

286. A drug is administered to a patient every 24 hours

and is cleared at a rate proportional to the amount of drug
left in the body, with proportionality constant 0.2. If the

patient needs a baseline level of 5 mg to be in the

bloodstream at all times, how large should the dose be?

287. A 1000 -liter tank contains pure water and a solution

of 0.2 kg salt/L is pumped into the tank at a rate of 1 L/

min and is drained at the same rate. Solve for total amount
of salt in the tank at time t.

288. You boil water to make tea. When you pour the
water into your teapot, the temperature is 100°C. After 5
minutes in your 15°C room, the temperature of the tea is

85°C. Solve the equation to determine the temperatures of

the tea at time t. How long must you wait until the tea is at

a drinkable temperature (72°C)?

289. The human population (in thousands) of Nevada in
1950 was roughly 160. If the carrying capacity is

estimated at 10 million individuals, and assuming a

growth rate of 2% per year, develop a logistic growth

model and solve for the population in Nevada at any time
(use 1950 as time = 0). What population does your model

predict for 2000? How close is your prediction to the true

value of 1,998,257?

290. Repeat the previous problem but use Gompertz
growth model. Which is more accurate?
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