
Volume 2



426 Chapter 4 | Introduction to Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



5 | SEQUENCES AND
SERIES

Figure 5.1 The Koch snowflake is constructed by using an iterative process. Starting with an equilateral triangle, at each step
of the process the middle third of each line segment is removed and replaced with an equilateral triangle pointing outward.

Chapter Outline

5.1 Sequences

5.2 Infinite Series

5.3 The Divergence and Integral Tests

5.4 Comparison Tests

5.5 Alternating Series

5.6 Ratio and Root Tests

Introduction
The Koch snowflake is constructed from an infinite number of nonoverlapping equilateral triangles. Consequently, we can
express its area as a sum of infinitely many terms. How do we add an infinite number of terms? Can a sum of an infinite
number of terms be finite? To answer these questions, we need to introduce the concept of an infinite series, a sum with
infinitely many terms. Having defined the necessary tools, we will be able to calculate the area of the Koch snowflake (see
Example 5.8).

The topic of infinite series may seem unrelated to differential and integral calculus. In fact, an infinite series whose terms
involve powers of a variable is a powerful tool that we can use to express functions as “infinite polynomials.” We can
use infinite series to evaluate complicated functions, approximate definite integrals, and create new functions. In addition,
infinite series are used to solve differential equations that model physical behavior, from tiny electronic circuits to Earth-
orbiting satellites.

5.1 | Sequences

Learning Objectives
5.1.1 Find the formula for the general term of a sequence.

5.1.2 Calculate the limit of a sequence if it exists.

5.1.3 Determine the convergence or divergence of a given sequence.
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In this section, we introduce sequences and define what it means for a sequence to converge or diverge. We show how to
find limits of sequences that converge, often by using the properties of limits for functions discussed earlier. We close this
section with the Monotone Convergence Theorem, a tool we can use to prove that certain types of sequences converge.

Terminology of Sequences
To work with this new topic, we need some new terms and definitions. First, an infinite sequence is an ordered list of
numbers of the form

a1, a2, a3 ,…, an ,… .

Each of the numbers in the sequence is called a term. The symbol n is called the index variable for the sequence. We use

the notation

{an}n = 1
∞ , or simply ⎧

⎩
⎨an

⎫

⎭
⎬,

to denote this sequence. A similar notation is used for sets, but a sequence is an ordered list, whereas a set is not ordered.
Because a particular number an exists for each positive integer n, we can also define a sequence as a function whose

domain is the set of positive integers.

Let’s consider the infinite, ordered list

2, 4, 8, 16, 32,… .

This is a sequence in which the first, second, and third terms are given by a1 = 2, a2 = 4, and a3 = 8. You can

probably see that the terms in this sequence have the following pattern:

a1 = 21, a2 = 22, a3 = 23, a4 = 24, and a5 = 25.

Assuming this pattern continues, we can write the nth term in the sequence by the explicit formula an = 2n. Using this

notation, we can write this sequence as

{2n}n = 1
∞ or ⎧

⎩
⎨2n⎫

⎭
⎬.

Alternatively, we can describe this sequence in a different way. Since each term is twice the previous term, this sequence
can be defined recursively by expressing the nth term an in terms of the previous term an − 1. In particular, we can

define this sequence as the sequence {an} where a1 = 2 and for all n ≥ 2, each term an is defined by the recurrence

relation an = 2an − 1.

Definition

An infinite sequence {an} is an ordered list of numbers of the form

a1, a2 ,…, an ,… .

The subscript n is called the index variable of the sequence. Each number an is a term of the sequence. Sometimes

sequences are defined by explicit formulas, in which case an = f (n) for some function f (n) defined over the

positive integers. In other cases, sequences are defined by using a recurrence relation. In a recurrence relation, one
term (or more) of the sequence is given explicitly, and subsequent terms are defined in terms of earlier terms in the
sequence.

Note that the index does not have to start at n = 1 but could start with other integers. For example, a sequence given by

the explicit formula an = f (n) could start at n = 0, in which case the sequence would be

a0, a1, a2 ,… .

Similarly, for a sequence defined by a recurrence relation, the term a0 may be given explicitly, and the terms an for n ≥ 1
may be defined in terms of an − 1. Since a sequence {an} has exactly one value for each positive integer n, it can be

described as a function whose domain is the set of positive integers. As a result, it makes sense to discuss the graph of a
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sequence. The graph of a sequence {an} consists of all points (n, an) for all positive integers n. Figure 5.2 shows the

graph of {2n}.

Figure 5.2 The plotted points are a graph of the sequence
{2n}.

Two types of sequences occur often and are given special names: arithmetic sequences and geometric sequences. In an
arithmetic sequence, the difference between every pair of consecutive terms is the same. For example, consider the
sequence

3, 7, 11, 15, 19,… .

You can see that the difference between every consecutive pair of terms is 4. Assuming that this pattern continues, this

sequence is an arithmetic sequence. It can be described by using the recurrence relation

⎧

⎩
⎨
a1 = 3
an = an − 1 + 4 for n ≥ 2.

Note that

a2 = 3 + 4
a3 = 3 + 4 + 4 = 3 + 2 · 4
a4 = 3 + 4 + 4 + 4 = 3 + 3 · 4.

Thus the sequence can also be described using the explicit formula

an = 3 + 4(n − 1)
= 4n − 1.

In general, an arithmetic sequence is any sequence of the form an = cn + b.

In a geometric sequence, the ratio of every pair of consecutive terms is the same. For example, consider the sequence

2, − 2
3, 2

9, − 2
27, 2

81,… .

We see that the ratio of any term to the preceding term is −1
3. Assuming this pattern continues, this sequence is a geometric

sequence. It can be defined recursively as

a1 = 2
an = − 1

3 · an − 1 for n ≥ 2.

Alternatively, since
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5.1

a2 = − 1
3 · 2

a3 = ⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠(2) = ⎛

⎝−
1
3

⎞
⎠

2
· 2

a4 = ⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠(2) = ⎛

⎝−
1
3

⎞
⎠

3
· 2,

we see that the sequence can be described by using the explicit formula

an = 2⎛
⎝−

1
3

⎞
⎠

n − 1
.

The sequence {2n} that we discussed earlier is a geometric sequence, where the ratio of any term to the previous term is

2. In general, a geometric sequence is any sequence of the form an = crn.

Example 5.1

Finding Explicit Formulas

For each of the following sequences, find an explicit formula for the nth term of the sequence.

a. −1
2, 2

3, − 3
4, 4

5, − 5
6,…

b. 3
4, 9

7, 27
10, 81

13, 243
16 ,…

Solution

a. First, note that the sequence is alternating from negative to positive. The odd terms in the sequence are
negative, and the even terms are positive. Therefore, the nth term includes a factor of (−1)n. Next,

consider the sequence of numerators {1, 2, 3,…} and the sequence of denominators {2, 3, 4,…}.
We can see that both of these sequences are arithmetic sequences. The nth term in the sequence of

numerators is n, and the nth term in the sequence of denominators is n + 1. Therefore, the sequence

can be described by the explicit formula

an = (−1)n n
n + 1 .

b. The sequence of numerators 3, 9, 27, 81, 243,… is a geometric sequence. The numerator of the

nth term is 3n The sequence of denominators 4, 7, 10, 13, 16,… is an arithmetic sequence. The

denominator of the nth term is 4 + 3(n − 1) = 3n + 1. Therefore, we can describe the sequence by the

explicit formula an = 3n

3n + 1.

Find an explicit formula for the nth term of the sequence
⎧

⎩
⎨1
5, − 1

7, 1
9, − 1

11,…
⎫

⎭
⎬.

Example 5.2
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5.2

Defined by Recurrence Relations

For each of the following recursively defined sequences, find an explicit formula for the sequence.

a. a1 = 2, an = −3an − 1 for n ≥ 2

b. a1 = 1
2, an = an − 1 + ⎛

⎝
1
2

⎞
⎠
n

for n ≥ 2

Solution

a. Writing out the first few terms, we have

a1 = 2
a2 = −3a1 = −3(2)
a3 = −3a2 = (−3)2 2

a4 = −3a3 = (−3)3 2.

In general,

an = 2(−3)n − 1.
b. Write out the first few terms:

a1 = 1
2

a2 = a1 + ⎛
⎝
1
2

⎞
⎠
2

= 1
2 + 1

4 = 3
4

a3 = a2 + ⎛
⎝
1
2

⎞
⎠
3

= 3
4 + 1

8 = 7
8

a4 = a3 + ⎛
⎝
1
2

⎞
⎠
4

= 7
8 + 1

16 = 15
16.

From this pattern, we derive the explicit formula

an = 2n − 1
2n = 1 − 1

2n.

Find an explicit formula for the sequence defined recursively such that a1 = −4 and an = an − 1 + 6.

Limit of a Sequence
A fundamental question that arises regarding infinite sequences is the behavior of the terms as n gets larger. Since a

sequence is a function defined on the positive integers, it makes sense to discuss the limit of the terms as n → ∞. For

example, consider the following four sequences and their different behaviors as n → ∞ (see Figure 5.3):

a. {1 + 3n} = {4, 7, 10, 13,…}. The terms 1 + 3n become arbitrarily large as n → ∞. In this case, we say that

1 + 3n → ∞ as n → ∞.

b.
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ =

⎧

⎩
⎨1
2, 3

4, 7
8, 15

16,…
⎫

⎭
⎬. The terms 1 − ⎛

⎝
1
2

⎞
⎠
n

→ 1 as n → ∞.

c. ⎧

⎩
⎨(−1)n⎫

⎭
⎬ = ⎧

⎩
⎨−1, 1, −1, 1,…⎫

⎭
⎬. The terms alternate but do not approach one single value as n → ∞.
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d.
⎧

⎩
⎨(−1)n

n
⎫

⎭
⎬ =

⎧

⎩
⎨−1, 1

2, − 1
3, 1

4,…
⎫

⎭
⎬. The terms alternate for this sequence as well, but

(−1)n
n → 0 as n → ∞.

Figure 5.3 (a) The terms in the sequence become arbitrarily large as n → ∞. (b) The terms

in the sequence approach 1 as n → ∞. (c) The terms in the sequence alternate between 1
and −1 as n → ∞. (d) The terms in the sequence alternate between positive and negative

values but approach 0 as n → ∞.

From these examples, we see several possibilities for the behavior of the terms of a sequence as n → ∞. In two of the

sequences, the terms approach a finite number as n → ∞. In the other two sequences, the terms do not. If the terms of a

sequence approach a finite number L as n → ∞, we say that the sequence is a convergent sequence and the real number

L is the limit of the sequence. We can give an informal definition here.

Definition

Given a sequence {an}, if the terms an become arbitrarily close to a finite number L as n becomes sufficiently

large, we say {an} is a convergent sequence and L is the limit of the sequence. In this case, we write

limn → ∞an = L.

If a sequence {an} is not convergent, we say it is a divergent sequence.

From Figure 5.3, we see that the terms in the sequence
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ are becoming arbitrarily close to 1 as n becomes
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very large. We conclude that
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ is a convergent sequence and its limit is 1. In contrast, from Figure 5.3, we see

that the terms in the sequence 1 + 3n are not approaching a finite number as n becomes larger. We say that {1 + 3n} is

a divergent sequence.

In the informal definition for the limit of a sequence, we used the terms “arbitrarily close” and “sufficiently large.” Although
these phrases help illustrate the meaning of a converging sequence, they are somewhat vague. To be more precise, we now
present the more formal definition of limit for a sequence and show these ideas graphically in Figure 5.4.

Definition

A sequence {an} converges to a real number L if for all ε > 0, there exists an integer N such that |an − L| < ε
if n ≥ N. The number L is the limit of the sequence and we write

limn → ∞an = L or an → L.

In this case, we say the sequence {an} is a convergent sequence. If a sequence does not converge, it is a divergent

sequence, and we say the limit does not exist.

We remark that the convergence or divergence of a sequence {an} depends only on what happens to the terms an as

n → ∞. Therefore, if a finite number of terms b1, b2 ,…, bN are placed before a1 to create a new sequence

b1, b2 ,…, bN, a1, a2 ,…,

this new sequence will converge if {an} converges and diverge if {an} diverges. Further, if the sequence {an} converges

to L, this new sequence will also converge to L.

Figure 5.4 As n increases, the terms an become closer to L. For values of n ≥ N, the

distance between each point (n, an) and the line y = L is less than ε.

As defined above, if a sequence does not converge, it is said to be a divergent sequence. For example, the sequences
{1 + 3n} and

⎧

⎩
⎨(−1)n⎫

⎭
⎬ shown in Figure 5.4 diverge. However, different sequences can diverge in different ways. The

sequence
⎧

⎩
⎨(−1)n⎫

⎭
⎬ diverges because the terms alternate between 1 and −1, but do not approach one value as n → ∞.

On the other hand, the sequence {1 + 3n} diverges because the terms 1 + 3n → ∞ as n → ∞. We say the sequence

{1 + 3n} diverges to infinity and write limn → ∞(1 + 3n) = ∞. It is important to recognize that this notation does not imply

the limit of the sequence {1 + 3n} exists. The sequence is, in fact, divergent. Writing that the limit is infinity is intended
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only to provide more information about why the sequence is divergent. A sequence can also diverge to negative infinity. For
example, the sequence {−5n + 2} diverges to negative infinity because −5n + 2 → −∞ as n → −∞. We write this as

limn → ∞(−5n + 2) = → −∞.

Because a sequence is a function whose domain is the set of positive integers, we can use properties of limits of functions
to determine whether a sequence converges. For example, consider a sequence {an} and a related function f defined

on all positive real numbers such that f (n) = an for all integers n ≥ 1. Since the domain of the sequence is a subset

of the domain of f , if limx → ∞ f (x) exists, then the sequence converges and has the same limit. For example, consider

the sequence
⎧

⎩
⎨1
n

⎫

⎭
⎬ and the related function f (x) = 1

x . Since the function f defined on all real numbers x > 0 satisfies

f (x) = 1
x → 0 as x → ∞, the sequence

⎧

⎩
⎨1
n

⎫

⎭
⎬ must satisfy 1

n → 0 as n → ∞.

Theorem 5.1: Limit of a Sequence Defined by a Function

Consider a sequence {an} such that an = f (n) for all n ≥ 1. If there exists a real number L such that

limx → ∞ f (x) = L,

then {an} converges and

limn → ∞an = L.

We can use this theorem to evaluate limn → ∞rn for 0 ≤ r ≤ 1. For example, consider the sequence
⎧

⎩
⎨(1/2)n⎫

⎭
⎬ and the related

exponential function f (x) = (1/2)x. Since limx → ∞(1/2)x = 0, we conclude that the sequence
⎧

⎩
⎨(1/2)n⎫

⎭
⎬ converges and its

limit is 0. Similarly, for any real number r such that 0 ≤ r < 1, limx → ∞r x = 0, and therefore the sequence {rn}

converges. On the other hand, if r = 1, then limx → ∞r x = 1, and therefore the limit of the sequence {1n} is 1. If r > 1,

limx → ∞r x = ∞, and therefore we cannot apply this theorem. However, in this case, just as the function r x grows without

bound as n → ∞, the terms rn in the sequence become arbitrarily large as n → ∞, and we conclude that the sequence

{rn} diverges to infinity if r > 1.

We summarize these results regarding the geometric sequence {rn}:

rn → 0 if 0 < r < 1
rn → 1 if r = 1
rn → ∞ if r > 1.

Later in this section we consider the case when r < 0.

We now consider slightly more complicated sequences. For example, consider the sequence
⎧

⎩
⎨(2/3)n + (1/4)n⎫

⎭
⎬. The terms

in this sequence are more complicated than other sequences we have discussed, but luckily the limit of this sequence is
determined by the limits of the two sequences

⎧

⎩
⎨(2/3)n⎫

⎭
⎬ and

⎧

⎩
⎨(1/4)n⎫

⎭
⎬. As we describe in the following algebraic limit laws,

since
⎧

⎩
⎨(2/3)n⎫

⎭
⎬ and {1/4)n⎫

⎭
⎬ both converge to 0, the sequence

⎧

⎩
⎨(2/3)n + (1/4)n⎫

⎭
⎬ converges to 0 + 0 = 0. Just as we were

able to evaluate a limit involving an algebraic combination of functions f and g by looking at the limits of f and g (see

Introduction to Limits (http://cnx.org/content/m53483/latest/) ), we are able to evaluate the limit of a sequence
whose terms are algebraic combinations of an and bn by evaluating the limits of {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬.
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Theorem 5.2: Algebraic Limit Laws

Given sequences {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬ and any real number c, if there exist constants A and B such that limn → ∞an = A

and limn → ∞bn = B, then

i. limn → ∞c = c

ii. limn → ∞can = c limn → ∞an = cA

iii. limn → ∞
⎛
⎝an ± bn

⎞
⎠ = limn → ∞an ± limn → ∞bn = A ± B

iv. limn → ∞
⎛
⎝an · bn

⎞
⎠ = ⎛

⎝ limn → ∞an
⎞
⎠ · ⎛

⎝ limn → ∞bn
⎞
⎠ = A · B

v. limn → ∞
⎛
⎝
an
bn

⎞
⎠ =

limn → ∞an
limn → ∞bn

= A
B , provided B ≠ 0 and each bn ≠ 0.

Proof

We prove part iii.

Let ϵ > 0. Since limn → ∞an = A, there exists a constant positive integer N1 such that for all n ≥ N1. Since

limn → ∞bn = B, there exists a constant N2 such that |bn − B| < ε/2 for all n ≥ N2. Let N be the largest of N1 and

N2. Therefore, for all n ≥ N,

|(an + bn)−(A + B)| ≤ |an − A| + |bn − B| < ε
2 + ε

2 = ε.

□

The algebraic limit laws allow us to evaluate limits for many sequences. For example, consider the sequence
⎧

⎩
⎨ 1

n2
⎫

⎭
⎬. As

shown earlier, limn → ∞1/n = 0. Similarly, for any positive integer k, we can conclude that

limn → ∞
1
nk = 0.

In the next example, we make use of this fact along with the limit laws to evaluate limits for other sequences.

Example 5.3

Determining Convergence and Finding Limits

For each of the following sequences, determine whether or not the sequence converges. If it converges, find its
limit.

a.
⎧

⎩
⎨5 − 3

n2
⎫

⎭
⎬

b.
⎧

⎩
⎨3n4 − 7n2 + 5

6 − 4n4
⎫

⎭
⎬

c.
⎧

⎩
⎨2n

n2
⎫

⎭
⎬
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d.
⎧

⎩
⎨⎛

⎝1 + 4
n

⎞
⎠
n⎫

⎭
⎬

Solution

a. We know that 1/n → 0. Using this fact, we conclude that

limn → ∞
1
n2 = limn → ∞

⎛
⎝
1
n

⎞
⎠. limn → ∞

⎛
⎝
1
n

⎞
⎠ = 0.

Therefore,

limn → ∞
⎛
⎝5 − 3

n2
⎞
⎠ = limn → ∞5 − 3 limn → ∞

1
n2 = 5 − 3.0 = 5.

The sequence converges and its limit is 5.

b. By factoring n4 out of the numerator and denominator and using the limit laws above, we have

limn → ∞
3n4 − 7n2 + 5

6 − 4n4 = limn → ∞

3 − 7
n2 + 5

n4
6

n4 − 4

=
limn → ∞

⎛
⎝3 − 7

n2 + 5
n4

⎞
⎠

limn → ∞
⎛
⎝

6
n4 − 4⎞

⎠

=

⎛
⎝ limn → ∞(3)− limn → ∞

7
n2 + limn → ∞

5
n4

⎞
⎠

⎛
⎝ limn → ∞

6
n4 − limn → ∞(4)⎞⎠

=

⎛
⎝ limn → ∞(3)−7 · limn → ∞

1
n2 + 5 · limn → ∞

1
n4

⎞
⎠

⎛
⎝6 · limn → ∞

1
n4 − limn → ∞(4)⎞⎠

= 3 − 7 · 0 + 5 · 0
6 · 0 − 4 = − 3

4.

The sequence converges and its limit is −3/4.

c. Consider the related function f (x) = 2x /x2 defined on all real numbers x > 0. Since 2x → ∞ and

x2 → ∞ as x → ∞, apply L’Hôpital’s rule and write

limx → ∞
2x

x2 = limx → ∞
2x ln2

2x Take the derivatives of the numerator and denominator.

= limx → ∞
2x (ln2)2

2 Take the derivatives again.
= ∞.

We conclude that the sequence diverges.

d. Consider the function f (x) = ⎛
⎝1 + 4

x
⎞
⎠
x

defined on all real numbers x > 0. This function has the

indeterminate form 1∞ as x → ∞. Let
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5.3

y = limx → ∞
⎛
⎝1 + 4

x
⎞
⎠
x
.

Now taking the natural logarithm of both sides of the equation, we obtain

ln(y) = ln⎡
⎣ limx → ∞

⎛
⎝1 + 4

x
⎞
⎠
x⎤
⎦.

Since the function f (x) = lnx is continuous on its domain, we can interchange the limit and the natural

logarithm. Therefore,

ln(y) = limx → ∞
⎡
⎣ln⎛

⎝1 + 4
x

⎞
⎠
x⎤
⎦.

Using properties of logarithms, we write

limx → ∞
⎡
⎣ln⎛

⎝1 + 4
x

⎞
⎠
x⎤
⎦ = limx → ∞x ln⎛

⎝1 + 4
x

⎞
⎠.

Since the right-hand side of this equation has the indeterminate form ∞ · 0, rewrite it as a fraction to

apply L’Hôpital’s rule. Write

limx → ∞x ln⎛
⎝1 + 4

x
⎞
⎠ = limx → ∞

ln(1 + 4/x)
1/x .

Since the right-hand side is now in the indeterminate form 0/0, we are able to apply L’Hôpital’s rule.

We conclude that

limx → ∞
ln(1 + 4/x)

1/x = limx → ∞
4

1 + 4/x = 4.

Therefore, ln(y) = 4 and y = e4. Therefore, since limx → ∞
⎛
⎝1 + 4

x
⎞
⎠
x

= e4, we can conclude that the

sequence
⎧

⎩
⎨⎛

⎝1 + 4
n

⎞
⎠
n⎫

⎭
⎬ converges to e4.

Consider the sequence
⎧

⎩
⎨⎛
⎝5n2 + 1⎞

⎠/en⎫

⎭
⎬. Determine whether or not the sequence converges. If it converges,

find its limit.

Recall that if f is a continuous function at a value L, then f (x) → f (L) as x → L. This idea applies to sequences

as well. Suppose a sequence an → L, and a function f is continuous at L. Then f (an) → f (L). This property often

enables us to find limits for complicated sequences. For example, consider the sequence 5 − 3
n2. From Example 5.3a.

we know the sequence 5 − 3
n2 → 5. Since x is a continuous function at x = 5,

limn → ∞ 5 − 3
n2 = limn → ∞

⎛
⎝5 − 3

n2
⎞
⎠ = 5.

Chapter 5 | Sequences and Series 437



5.4

Theorem 5.3: Continuous Functions Defined on Convergent Sequences

Consider a sequence {an} and suppose there exists a real number L such that the sequence {an} converges to L.
Suppose f is a continuous function at L. Then there exists an integer N such that f is defined at all values an for

n ≥ N, and the sequence ⎧

⎩
⎨ f (an)⎫

⎭
⎬ converges to f (L) (Figure 5.5).

Proof

Let ϵ > 0. Since f is continuous at L, there exists δ > 0 such that | f (x) − f (L)| < ε if |x − L| < δ. Since the

sequence {an} converges to L, there exists N such that |an − L| < δ for all n ≥ N. Therefore, for all n ≥ N,

|an − L| < δ, which implies | f (an)− f (L)| < ε. We conclude that the sequence ⎧

⎩
⎨ f (an)⎫

⎭
⎬ converges to f (L).

□

Figure 5.5 Because f is a continuous function as the inputs

a1, a2, a3 ,… approach L, the outputs

f (a1), f (a2), f (a3),… approach f (L).

Example 5.4

Limits Involving Continuous Functions Defined on Convergent Sequences

Determine whether the sequence
⎧

⎩
⎨cos⎛

⎝3/n2⎞
⎠

⎫

⎭
⎬ converges. If it converges, find its limit.

Solution

Since the sequence
⎧

⎩
⎨3/n2⎫

⎭
⎬ converges to 0 and cosx is continuous at x = 0, we can conclude that the sequence

⎧

⎩
⎨cos⎛

⎝3/n2⎞
⎠

⎫

⎭
⎬ converges and

limn → ∞cos⎛⎝
3
n2

⎞
⎠ = cos(0) = 1.

Determine if the sequence
⎧

⎩
⎨ 2n + 1

3n + 5
⎫

⎭
⎬ converges. If it converges, find its limit.

Another theorem involving limits of sequences is an extension of the Squeeze Theorem for limits discussed in
Introduction to Limits (http://cnx.org/content/m53483/latest/) .
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Theorem 5.4: Squeeze Theorem for Sequences

Consider sequences {an}, ⎧

⎩
⎨bn

⎫

⎭
⎬, and {cn}. Suppose there exists an integer N such that

an ≤ bn ≤ cn for all n ≥ N.

If there exists a real number L such that

limn → ∞an = L = limn → ∞cn,

then ⎧

⎩
⎨bn

⎫

⎭
⎬ converges and limn → ∞bn = L (Figure 5.6).

Proof

Let ε > 0. Since the sequence {an} converges to L, there exists an integer N1 such that |an − L| < ε for all n ≥ N1.
Similarly, since {cn} converges to L, there exists an integer N2 such that |cn − L| < ε for all n ≥ N2. By assumption,

there exists an integer N such that an ≤ bn ≤ cn for all n ≥ N. Let M be the largest of N1, N2, and N. We must

show that |bn − L| < ε for all n ≥ M. For all n ≥ M,

−ε < −|an − L| ≤ an − L ≤ bn − L ≤ cn − L ≤ |cn − L| < ε.

Therefore, −ε < bn − L < ε, and we conclude that |bn − L| < ε for all n ≥ M, and we conclude that the sequence ⎧

⎩
⎨bn

⎫

⎭
⎬

converges to L.

□

Figure 5.6 Each term bn satisfies an ≤ bn ≤ cn and the

sequences {an} and {cn} converge to the same limit, so the

sequence ⎧

⎩
⎨bn

⎫

⎭
⎬ must converge to the same limit as well.

Example 5.5

Using the Squeeze Theorem

Use the Squeeze Theorem to find the limit of each of the following sequences.

a.
⎧

⎩
⎨cosn

n2
⎫

⎭
⎬

b.
⎧

⎩
⎨⎛

⎝−
1
2

⎞
⎠
n⎫

⎭
⎬
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Solution

a. Since −1 ≤ cosn ≤ 1 for all integers n, we have

− 1
n2 ≤ cosn

n2 ≤ 1
n2.

Since −1/n2 → 0 and 1/n2 → 0, we conclude that cosn/n2 → 0 as well.

b. Since

− 1
2n ≤ ⎛

⎝−
1
2

⎞
⎠
n

≤ 1
2n

for all positive integers n, −1/2n → 0 and 1/2n → 0, we can conclude that (−1/2)n → 0.

Find limn → ∞
2n − sinn

n .

Using the idea from Example 5.5b. we conclude that rn → 0 for any real number r such that −1 < r < 0. If r < −1,
the sequence {rn} diverges because the terms oscillate and become arbitrarily large in magnitude. If r = −1, the

sequence {rn} = ⎧

⎩
⎨(−1)n⎫

⎭
⎬ diverges, as discussed earlier. Here is a summary of the properties for geometric sequences.

(5.1)rn → 0 if |r| < 1
(5.2)rn → 1 if r = 1
(5.3)rn → ∞ if r > 1
(5.4)⎧

⎩
⎨rn⎫

⎭
⎬ diverges if r ≤ −1

Bounded Sequences
We now turn our attention to one of the most important theorems involving sequences: the Monotone Convergence
Theorem. Before stating the theorem, we need to introduce some terminology and motivation. We begin by defining what
it means for a sequence to be bounded.

Definition

A sequence {an} is bounded above if there exists a real number M such that

an ≤ M

for all positive integers n.

A sequence {an} is bounded below if there exists a real number M such that

M ≤ an

for all positive integers n.

A sequence {an} is a bounded sequence if it is bounded above and bounded below.

If a sequence is not bounded, it is an unbounded sequence.

For example, the sequence {1/n} is bounded above because 1/n ≤ 1 for all positive integers n. It is also bounded below

because 1/n ≥ 0 for all positive integers n. Therefore, {1/n} is a bounded sequence. On the other hand, consider the
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sequence {2n}. Because 2n ≥ 2 for all n ≥ 1, the sequence is bounded below. However, the sequence is not bounded

above. Therefore, {2n} is an unbounded sequence.

We now discuss the relationship between boundedness and convergence. Suppose a sequence {an} is unbounded. Then it is

not bounded above, or not bounded below, or both. In either case, there are terms an that are arbitrarily large in magnitude

as n gets larger. As a result, the sequence {an} cannot converge. Therefore, being bounded is a necessary condition for a

sequence to converge.

Theorem 5.5: Convergent Sequences Are Bounded

If a sequence {an} converges, then it is bounded.

Note that a sequence being bounded is not a sufficient condition for a sequence to converge. For example, the sequence
⎧

⎩
⎨(−1)n⎫

⎭
⎬ is bounded, but the sequence diverges because the sequence oscillates between 1 and −1 and never approaches a

finite number. We now discuss a sufficient (but not necessary) condition for a bounded sequence to converge.

Consider a bounded sequence {an}. Suppose the sequence {an} is increasing. That is, a1 ≤ a2 ≤ a3 …. Since the

sequence is increasing, the terms are not oscillating. Therefore, there are two possibilities. The sequence could diverge to
infinity, or it could converge. However, since the sequence is bounded, it is bounded above and the sequence cannot diverge
to infinity. We conclude that {an} converges. For example, consider the sequence

⎧

⎩
⎨1
2, 2

3, 3
4, 4

5,…
⎫

⎭
⎬.

Since this sequence is increasing and bounded above, it converges. Next, consider the sequence

⎧

⎩
⎨2, 0, 3, 0, 4, 0, 1, − 1

2, − 1
3, − 1

4,…
⎫

⎭
⎬.

Even though the sequence is not increasing for all values of n, we see that −1/2 < −1/3 < −1/4 < ⋯. Therefore,

starting with the eighth term, a8 = −1/2, the sequence is increasing. In this case, we say the sequence is eventually

increasing. Since the sequence is bounded above, it converges. It is also true that if a sequence is decreasing (or eventually
decreasing) and bounded below, it also converges.

Definition

A sequence {an} is increasing for all n ≥ n0 if

an ≤ an + 1 for all n ≥ n0.

A sequence {an} is decreasing for all n ≥ n0 if

an ≥ an + 1 for all n ≥ n0.

A sequence {an} is a monotone sequence for all n ≥ n0 if it is increasing for all n ≥ n0 or decreasing for all

n ≥ n0.

We now have the necessary definitions to state the Monotone Convergence Theorem, which gives a sufficient condition for
convergence of a sequence.

Theorem 5.6: Monotone Convergence Theorem

If {an} is a bounded sequence and there exists a positive integer n0 such that {an} is monotone for all n ≥ n0,
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then {an} converges.

The proof of this theorem is beyond the scope of this text. Instead, we provide a graph to show intuitively why this theorem
makes sense (Figure 5.7).

Figure 5.7 Since the sequence {an} is increasing and

bounded above, it must converge.

In the following example, we show how the Monotone Convergence Theorem can be used to prove convergence of a
sequence.

Example 5.6

Using the Monotone Convergence Theorem

For each of the following sequences, use the Monotone Convergence Theorem to show the sequence converges
and find its limit.

a.
⎧

⎩
⎨4n

n!
⎫

⎭
⎬

b. {an} defined recursively such that

a1 = 2 and an + 1 = an
2 + 1

2an
for all n ≥ 2.

Solution

a. Writing out the first few terms, we see that

⎧

⎩
⎨4n

n!
⎫

⎭
⎬ =

⎧

⎩
⎨4, 8, 32

3 , 32
3 , 128

15 ,…
⎫

⎭
⎬.

At first, the terms increase. However, after the third term, the terms decrease. In fact, the terms decrease
for all n ≥ 3. We can show this as follows.

an + 1 = 4n + 1

(n + 1)! = 4
n + 1 · 4n

n! = 4
n + 1 · an ≤ an i f n ≥ 3.

Therefore, the sequence is decreasing for all n ≥ 3. Further, the sequence is bounded below by 0
because 4n /n! ≥ 0 for all positive integers n. Therefore, by the Monotone Convergence Theorem, the

sequence converges.
To find the limit, we use the fact that the sequence converges and let L = limn → ∞an. Now note this

442 Chapter 5 | Sequences and Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



important observation. Consider limn → ∞an + 1. Since

{an + 1} = {a2, a3, a4 ,…},

the only difference between the sequences {an + 1} and {an} is that {an + 1} omits the first term.

Since a finite number of terms does not affect the convergence of a sequence,

limn → ∞an + 1 = limn → ∞an = L.

Combining this fact with the equation

an + 1 = 4
n + 1an

and taking the limit of both sides of the equation

limn → ∞an + 1 = limn → ∞
4

n + 1an,

we can conclude that

L = 0 · L = 0.
b. Writing out the first several terms,

⎧

⎩
⎨2, 5

4, 41
40, 3281

3280,…
⎫

⎭
⎬.

we can conjecture that the sequence is decreasing and bounded below by 1. To show that the sequence

is bounded below by 1, we can show that

an
2 + 1

2an
≥ 1.

To show this, first rewrite

an
2 + 1

2an
= an

2 + 1
2an

.

Since a1 > 0 and a2 is defined as a sum of positive terms, a2 > 0. Similarly, all terms an > 0.
Therefore,

an
2 + 1
2an

≥ 1

if and only if

an
2 + 1 ≥ 2an.

Rewriting the inequality an
2 + 1 ≥ 2an as an

2 − 2an + 1 ≥ 0, and using the fact that

an
2 − 2an + 1 = (an − 1)2 ≥ 0

because the square of any real number is nonnegative, we can conclude that

an
2 + 1

2an
≥ 1.
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To show that the sequence is decreasing, we must show that an + 1 ≤ an for all n ≥ 1. Since 1 ≤ an
2,

it follows that

an
2 + 1 ≤ 2an

2.

Dividing both sides by 2an, we obtain

an
2 + 1

2an
≤ an.

Using the definition of an + 1, we conclude that

an + 1 = an
2 + 1

2an
≤ an.

Since {an} is bounded below and decreasing, by the Monotone Convergence Theorem, it converges.

To find the limit, let L = limn → ∞an. Then using the recurrence relation and the fact that

limn → ∞an = limn → ∞an + 1, we have

limn → ∞an + 1 = limn → ∞
⎛
⎝
an
2 + 1

2an

⎞
⎠,

and therefore

L = L
2 + 1

2L.

Multiplying both sides of this equation by 2L, we arrive at the equation

2L2 = L2 + 1.

Solving this equation for L, we conclude that L2 = 1, which implies L = ±1. Since all the terms are

positive, the limit L = 1.

Consider the sequence {an} defined recursively such that a1 = 1, an = an − 1 /2. Use the Monotone

Convergence Theorem to show that this sequence converges and find its limit.

444 Chapter 5 | Sequences and Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Fibonacci Numbers

The Fibonacci numbers are defined recursively by the sequence {Fn} where F0 = 0, F1 = 1 and for n ≥ 2,

Fn = Fn − 1 + Fn − 2.

Here we look at properties of the Fibonacci numbers.

1. Write out the first twenty Fibonacci numbers.

2. Find a closed formula for the Fibonacci sequence by using the following steps.

a. Consider the recursively defined sequence {xn} where xo = c and xn + 1 = axn. Show that this

sequence can be described by the closed formula xn = can for all n ≥ 0.

b. Using the result from part a. as motivation, look for a solution of the equation

Fn = Fn − 1 + Fn − 2

of the form Fn = cλn. Determine what two values for λ will allow Fn to satisfy this equation.

c. Consider the two solutions from part b.: λ1 and λ2. Let Fn = c1 λ1
n + c2 λ2

n. Use the initial

conditions F0 and F1 to determine the values for the constants c1 and c2 and write the closed

formula Fn.

3. Use the answer in 2 c. to show that

limn → ∞
Fn + 1

Fn
= 1 + 5

2 .

The number ϕ = ⎛
⎝1 + 5⎞

⎠/2 is known as the golden ratio (Figure 5.8 and Figure 5.9).

Figure 5.8 The seeds in a sunflower exhibit spiral patterns
curving to the left and to the right. The number of spirals in each
direction is always a Fibonacci number—always. (credit:
modification of work by Esdras Calderan, Wikimedia
Commons)
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Figure 5.9 The proportion of the golden ratio appears in many
famous examples of art and architecture. The ancient Greek
temple known as the Parthenon was designed with these
proportions, and the ratio appears again in many of the smaller
details. (credit: modification of work by TravelingOtter, Flickr)
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5.1 EXERCISES
Find the first six terms of each of the following sequences,
starting with n = 1.

1. an = 1 + (−1)n for n ≥ 1

2. an = n2 − 1 for n ≥ 1

3. a1 = 1 and an = an − 1 + n for n ≥ 2

4. a1 = 1, a2 = 1 and an + 2 = an + an + 1 for

n ≥ 1

5. Find an explicit formula for an where a1 = 1 and

an = an − 1 + n for n ≥ 2.

6. Find a formula an for the nth term of the arithmetic

sequence whose first term is a1 = 1 such that

an − 1 − an = 17 for n ≥ 1.

7. Find a formula an for the nth term of the arithmetic

sequence whose first term is a1 = −3 such that

an − 1 − an = 4 for n ≥ 1.

8. Find a formula an for the nth term of the geometric

sequence whose first term is a1 = 1 such that

an + 1
an

= 10 for n ≥ 1.

9. Find a formula an for the nth term of the geometric

sequence whose first term is a1 = 3 such that

an + 1
an

= 1/10 for n ≥ 1.

10. Find an explicit formula for the nth term of the

sequence whose first several terms are
{0, 3, 8, 15, 24, 35, 48, 63, 80, 99,…}. (Hint: First

add one to each term.)

11. Find an explicit formula for the nth term of the

sequence satisfying a1 = 0 and an = 2an − 1 + 1 for

n ≥ 2.

Find a formula for the general term an of each of the

following sequences.

12. {1, 0, −1, 0, 1, 0, −1, 0,…} (Hint: Find where

sinx takes these values)

13. {1, −1/3, 1/5, −1/7,…}

Find a function f (n) that identifies the nth term an of the

following recursively defined sequences, as an = f (n).

14. a1 = 1 and an + 1 = −an for n ≥ 1

15. a1 = 2 and an + 1 = 2an for n ≥ 1

16. a1 = 1 and an + 1 = (n + 1)an for n ≥ 1

17. a1 = 2 and an + 1 = (n + 1)an /2 for n ≥ 1

18. a1 = 1 and an + 1 = an /2n for n ≥ 1

Plot the first N terms of each sequence. State whether the

graphical evidence suggests that the sequence converges or
diverges.

19. [T] a1 = 1, a2 = 2, and for n ≥ 2,

an = 1
2(an − 1 + an − 2); N = 30

20. [T] a1 = 1, a2 = 2, a3 = 3 and for n ≥ 4,

an = 1
3(an − 1 + an − 2 + an − 3), N = 30

21. [T] a1 = 1, a2 = 2, and for n ≥ 3,
an = an − 1 an − 2; N = 30

22. [T] a1 = 1, a2 = 2, a3 = 3, and for n ≥ 4,
an = an − 1 an − 2 an − 3; N = 30

Suppose that limn → ∞an = 1, limn → ∞bn = −1, and

0 < −bn < an for all n. Evaluate each of the following

limits, or state that the limit does not exist, or state that
there is not enough information to determine whether the
limit exists.

23. limn → ∞3an − 4bn

24. limn → ∞
1
2bn − 1

2an

25. limn → ∞
an + bn
an − bn

26. limn → ∞
an − bn
an + bn

Find the limit of each of the following sequences, using
L’Hôpital’s rule when appropriate.
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27. n2

2n

28.
(n − 1)2

(n + 1)2

29. n
n + 1

30. n1/n (Hint: n1/n = e
1
n ln n

)

For each of the following sequences, whose nth terms

are indicated, state whether the sequence is bounded and
whether it is eventually monotone, increasing, or
decreasing.

31. n/2n, n ≥ 2

32. ln⎛
⎝1 + 1

n
⎞
⎠

33. sinn

34. cos⎛
⎝n2⎞

⎠

35. n1/n, n ≥ 3

36. n−1/n, n ≥ 3

37. tann

38. Determine whether the sequence defined as follows
has a limit. If it does, find the limit. a1 = 2,

a2 = 2 2, a3 = 2 2 2 etc.

39. Determine whether the sequence defined as follows
has a limit. If it does, find the limit. a1 = 3,

an = 2an − 1, n = 2, 3,….

Use the Squeeze Theorem to find the limit of each of the
following sequences.

40. nsin(1/n)

41. cos(1/n) − 1
1/n

42. an = n!
nn

43. an = sinnsin(1/n)

For the following sequences, plot the first 25 terms of the

sequence and state whether the graphical evidence suggests

that the sequence converges or diverges.

44. [T] an = sinn

45. [T] an = cosn

Determine the limit of the sequence or show that the
sequence diverges. If it converges, find its limit.

46. an = tan−1(n2)

47. an = (2n)1/n − n1/n

48. an = ln(n2)
ln(2n)

49. an = ⎛
⎝1 − 2

n
⎞
⎠
n

50. an = ln⎛
⎝

n + 2
n2 − 3

⎞
⎠

51. an = 2n + 3n

4n

52. an = (1000)n

n!

53. an = (n!)2

(2n)!

Newton’s method seeks to approximate a solution
f (x) = 0 that starts with an initial approximation x0 and

successively defines a sequence xn + 1 = xn − f (xn)
f ′ (xn).

For the given choice of f and x0, write out the formula

for xn + 1. If the sequence appears to converge, give an

exact formula for the solution x, then identify the limit

x accurate to four decimal places and the smallest n such

that xn agrees with x up to four decimal places.

54. [T] f (x) = x2 − 2, x0 = 1

55. [T] f (x) = (x − 1)2 − 2, x0 = 2

56. [T] f (x) = ex − 2, x0 = 1

57. [T] f (x) = lnx − 1, x0 = 2
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58. [T] Suppose you start with one liter of vinegar and
repeatedly remove 0.1 L, replace with water, mix, and

repeat.
a. Find a formula for the concentration after n steps.

b. After how many steps does the mixture contain less
than 10% vinegar?

59. [T] A lake initially contains 2000 fish. Suppose that

in the absence of predators or other causes of removal, the
fish population increases by 6% each month. However,

factoring in all causes, 150 fish are lost each month.

a. Explain why the fish population after n months

is modeled by Pn = 1.06Pn − 1 − 150 with

P0 = 2000.
b. How many fish will be in the pond after one year?

60. [T] A bank account earns 5% interest compounded

monthly. Suppose that $1000 is initially deposited into the

account, but that $10 is withdrawn each month.

a. Show that the amount in the account after n
months is An = (1 + .05/12)An − 1 − 10;
A0 = 1000.

b. How much money will be in the account after 1
year?

c. Is the amount increasing or decreasing?
d. Suppose that instead of $10, a fixed amount d

dollars is withdrawn each month. Find a value of
d such that the amount in the account after each

month remains $1000.
e. What happens if d is greater than this amount?

61. [T] A student takes out a college loan of $10,000 at

an annual percentage rate of 6%, compounded monthly.

a. If the student makes payments of $100 per month,

how much does the student owe after 12 months?

b. After how many months will the loan be paid off?

62. [T] Consider a series combining geometric growth
and arithmetic decrease. Let a1 = 1. Fix a > 1 and

0 < b < a. Set an + 1 = a.an − b. Find a formula for

an + 1 in terms of an, a, and b and a relationship

between a and b such that an converges.

63. [T] The binary representation x = 0.b1 b2 b3 ... of a

number x between 0 and 1 can be defined as follows.

Let b1 = 0 if x < 1/2 and b1 = 1 if 1/2 ≤ x < 1. Let

x1 = 2x − b1. Let b2 = 0 if x1 < 1/2 and b2 = 1 if

1/2 ≤ x < 1. Let x2 = 2x1 − b2 and in general,

xn = 2xn − 1 − bn and bn − 1 = 0 if xn < 1/2 and

bn − 1 = 1 if 1/2 ≤ xn < 1. Find the binary expansion of

1/3.

64. [T] To find an approximation for π, set

a0 = 2 + 1, a1 = 2 + a0, and, in general,

an + 1 = 2 + an. Finally, set pn = 3.2n 2 − an. Find

the first ten terms of pn and compare the values to π.

For the following two exercises, assume that you have
access to a computer program or Internet source that can
generate a list of zeros and ones of any desired length.
Pseudorandom number generators (PRNGs) play an
important role in simulating random noise in physical
systems by creating sequences of zeros and ones that
appear like the result of flipping a coin repeatedly. One of
the simplest types of PRNGs recursively defines a random-
looking sequence of N integers a1, a2 ,…, aN by fixing

two special integers K and M and letting an + 1 be the

remainder after dividing K.an into M, then creates a bit

sequence of zeros and ones whose nth term bn is equal to

one if an is odd and equal to zero if an is even. If the bits

bn are pseudorandom, then the behavior of their average
⎛
⎝b1 + b2 + ⋯ + bN

⎞
⎠/N should be similar to behavior of

averages of truly randomly generated bits.

65. [T] Starting with K = 16,807 and

M = 2,147,483,647, using ten different starting values

of a1, compute sequences of bits bn up to n = 1000,
and compare their averages to ten such sequences generated
by a random bit generator.

66. [T] Find the first 1000 digits of π using either

a computer program or Internet resource. Create a bit
sequence bn by letting bn = 1 if the nth digit of π is

odd and bn = 0 if the nth digit of π is even. Compute

the average value of bn and the average value of

dn = |bn + 1 − bn|, n = 1,..., 999. Does the sequence

bn appear random? Do the differences between successive

elements of bn appear random?
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5.2 | Infinite Series

Learning Objectives
5.2.1 Explain the meaning of the sum of an infinite series.

5.2.2 Calculate the sum of a geometric series.

5.2.3 Evaluate a telescoping series.

We have seen that a sequence is an ordered set of terms. If you add these terms together, you get a series. In this section we
define an infinite series and show how series are related to sequences. We also define what it means for a series to converge
or diverge. We introduce one of the most important types of series: the geometric series. We will use geometric series in the
next chapter to write certain functions as polynomials with an infinite number of terms. This process is important because it
allows us to evaluate, differentiate, and integrate complicated functions by using polynomials that are easier to handle. We
also discuss the harmonic series, arguably the most interesting divergent series because it just fails to converge.

Sums and Series
An infinite series is a sum of infinitely many terms and is written in the form

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯.

But what does this mean? We cannot add an infinite number of terms in the same way we can add a finite number of terms.
Instead, the value of an infinite series is defined in terms of the limit of partial sums. A partial sum of an infinite series is a
finite sum of the form

∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak.

To see how we use partial sums to evaluate infinite series, consider the following example. Suppose oil is seeping into a lake
such that 1000 gallons enters the lake the first week. During the second week, an additional 500 gallons of oil enters the

lake. The third week, 250 more gallons enters the lake. Assume this pattern continues such that each week half as much oil

enters the lake as did the previous week. If this continues forever, what can we say about the amount of oil in the lake? Will
the amount of oil continue to get arbitrarily large, or is it possible that it approaches some finite amount? To answer this
question, we look at the amount of oil in the lake after k weeks. Letting Sk denote the amount of oil in the lake (measured

in thousands of gallons) after k weeks, we see that

S1 = 1
S2 = 1 + 0.5 = 1 + 1

2
S3 = 1 + 0.5 + 0.25 = 1 + 1

2 + 1
4

S4 = 1 + 0.5 + 0.25 + 0.125 = 1 + 1
2 + 1

4 + 1
8

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1 + 1
2 + 1

4 + 1
8 + 1

16.

Looking at this pattern, we see that the amount of oil in the lake (in thousands of gallons) after k weeks is

Sk = 1 + 1
2 + 1

4 + 1
8 + 1

16 + ⋯ + 1
2k − 1 = ∑

n = 1

k
⎛
⎝
1
2

⎞
⎠
n − 1

.

We are interested in what happens as k → ∞. Symbolically, the amount of oil in the lake as k → ∞ is given by the infinite

series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 1 + 1
2 + 1

4 + 1
8 + 1

16 + ⋯.
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At the same time, as k → ∞, the amount of oil in the lake can be calculated by evaluating lim
k → ∞

Sk. Therefore, the

behavior of the infinite series can be determined by looking at the behavior of the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬. If the

sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges, we say that the infinite series converges, and its sum is given by lim

k → ∞
Sk. If

the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ diverges, we say the infinite series diverges. We now turn our attention to determining the limit of this

sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬.

First, simplifying some of these partial sums, we see that

S1 = 1
S2 = 1 + 1

2 = 3
2

S3 = 1 + 1
2 + 1

4 = 7
4

S4 = 1 + 1
2 + 1

4 + 1
8 = 15

8
S5 = 1 + 1

2 + 1
4 + 1

8 + 1
16 = 31

16.

Plotting some of these values in Figure 5.10, it appears that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ could be approaching 2.

Figure 5.10 The graph shows the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬. It appears that the sequence is approaching the value 2.

Let’s look for more convincing evidence. In the following table, we list the values of Sk for several values of k.

k 5 10 15 20

Sk 1.9375 1.998 1.999939 1.999998

These data supply more evidence suggesting that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges to 2. Later we will provide an analytic

argument that can be used to prove that lim
k → ∞

Sk = 2. For now, we rely on the numerical and graphical data to convince

ourselves that the sequence of partial sums does actually converge to 2. Since this sequence of partial sums converges to

2, we say the infinite series converges to 2 and write

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 2.

Returning to the question about the oil in the lake, since this infinite series converges to 2, we conclude that the amount

of oil in the lake will get arbitrarily close to 2000 gallons as the amount of time gets sufficiently large.

This series is an example of a geometric series. We discuss geometric series in more detail later in this section. First, we
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summarize what it means for an infinite series to converge.

Definition

An infinite series is an expression of the form

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯.

For each positive integer k, the sum

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak

is called the kth partial sum of the infinite series. The partial sums form a sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬. If the sequence of partial

sums converges to a real number S, the infinite series converges. If we can describe the convergence of a series to

S, we call S the sum of the series, and we write

∑
n = 1

∞
an = S.

If the sequence of partial sums diverges, we have the divergence of a series.

This website (http://www.openstaxcollege.org/l/20_series) shows a more whimsical approach to series.

Note that the index for a series need not begin with n = 1 but can begin with any value. For example, the series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠

n − 1

can also be written as

∑
n = 0

∞
⎛
⎝
1
2

⎞
⎠

n

or ∑
n = 5

∞
⎛
⎝
1
2

⎞
⎠

n − 5

.

Often it is convenient for the index to begin at 1, so if for some reason it begins at a different value, we can reindex by

making a change of variables. For example, consider the series

∑
n = 2

∞
1
n2.

By introducing the variable m = n − 1, so that n = m + 1, we can rewrite the series as

∑
m = 1

∞
1

(m + 1)2.

Example 5.7

Evaluating Limits of Sequences of Partial Sums

For each of the following series, use the sequence of partial sums to determine whether the series converges or
diverges.
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a. ∑
n = 1

∞
n

n + 1

b. ∑
n = 1

∞
(−1)n

c. ∑
n = 1

∞
1

n(n + 1)

Solution

a. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies

S1 = 1
2

S2 = 1
2 + 2

3
S3 = 1

2 + 2
3 + 3

4
S4 = 1

2 + 2
3 + 3

4 + 4
5.

Notice that each term added is greater than 1/2. As a result, we see that

S1 = 1
2

S2 = 1
2 + 2

3 > 1
2 + 1

2 = 2⎛
⎝
1
2

⎞
⎠

S3 = 1
2 + 2

3 + 3
4 > 1

2 + 1
2 + 1

2 = 3⎛
⎝
1
2

⎞
⎠

S4 = 1
2 + 2

3 + 3
4 + 4

5 > 1
2 + 1

2 + 1
2 + 1

2 = 4⎛
⎝
1
2

⎞
⎠.

From this pattern we can see that Sk > k⎛
⎝
1
2

⎞
⎠ for every integer k. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded and

consequently, diverges. Therefore, the infinite series ∑
n = 1

∞
n/(n + 1) diverges.

b. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies

S1 = −1
S2 = −1 + 1 = 0
S3 = −1 + 1 − 1 = −1
S4 = −1 + 1 − 1 + 1 = 0.

From this pattern we can see the sequence of partial sums is
⎧

⎩
⎨Sk

⎫

⎭
⎬ = {−1, 0, −1, 0,…}.

Since this sequence diverges, the infinite series ∑
n = 1

∞
(−1)n diverges.

c. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies

Chapter 5 | Sequences and Series 453



5.7

S1 = 1
1 · 2 = 1

2
S2 = 1

1 · 2 + 1
2 · 3 = 1

2 + 1
6 = 2

3
S3 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 = 1
2 + 1

6 + 1
12 = 3

4
S4 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + 1
4 · 5 = 4

5
S5 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + 1
4 · 5 + 1

5 · 6 = 5
6.

From this pattern, we can see that the kth partial sum is given by the explicit formula

Sk = k
k + 1.

Since k/(k + 1) → 1, we conclude that the sequence of partial sums converges, and therefore the infinite

series converges to 1. We have

∑
n = 1

∞
1

n(n + 1) = 1.

Determine whether the series ∑
n = 1

∞
(n + 1)/n converges or diverges.

The Harmonic Series

A useful series to know about is the harmonic series. The harmonic series is defined as

(5.5)∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + 1

4 + ⋯.

This series is interesting because it diverges, but it diverges very slowly. By this we mean that the terms in the sequence of
partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ approach infinity, but do so very slowly. We will show that the series diverges, but first we illustrate the

slow growth of the terms in the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ in the following table.

k 10 100 1000 10,000 100,000 1,000,000

Sk 2.92897 5.18738 7.48547 9.78761 12.09015 14.39273

Even after 1,000,000 terms, the partial sum is still relatively small. From this table, it is not clear that this series actually

diverges. However, we can show analytically that the sequence of partial sums diverges, and therefore the series diverges.

To show that the sequence of partial sums diverges, we show that the sequence of partial sums is unbounded. We begin by
writing the first several partial sums:
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S1 = 1
S2 = 1 + 1

2
S3 = 1 + 1

2 + 1
3

S4 = 1 + 1
2 + 1

3 + 1
4.

Notice that for the last two terms in S4,

1
3 + 1

4 > 1
4 + 1

4.

Therefore, we conclude that

S4 > 1 + 1
2 + ⎛

⎝
1
4 + 1

4
⎞
⎠ = 1 + 1

2 + 1
2 = 1 + 2⎛

⎝
1
2

⎞
⎠.

Using the same idea for S8, we see that

S8 = 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 > 1 + 1

2 + ⎛
⎝
1
4 + 1

4
⎞
⎠ + ⎛

⎝
1
8 + 1

8 + 1
8 + 1

8
⎞
⎠

= 1 + 1
2 + 1

2 + 1
2 = 1 + 3⎛

⎝
1
2

⎞
⎠.

From this pattern, we see that S1 = 1, S2 = 1 + 1/2, S4 > 1 + 2(1/2), and S8 > 1 + 3(1/2). More generally, it can

be shown that S2 j > 1 + j(1/2) for all j > 1. Since 1 + j(1/2) → ∞, we conclude that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded

and therefore diverges. In the previous section, we stated that convergent sequences are bounded. Consequently, since
⎧

⎩
⎨Sk

⎫

⎭
⎬

is unbounded, it diverges. Thus, the harmonic series diverges.

Algebraic Properties of Convergent Series

Since the sum of a convergent infinite series is defined as a limit of a sequence, the algebraic properties for series listed
below follow directly from the algebraic properties for sequences.

Theorem 5.7: Algebraic Properties of Convergent Series

Let ∑
n = 1

∞
an and ∑

n = 1

∞
bn be convergent series. Then the following algebraic properties hold.

i. The series ∑
n = 1

∞
(an + bn) converges and ∑

n = 1

∞
⎛
⎝an + bn

⎞
⎠ = ∑

n = 1

∞
an + ∑

n = 1

∞
bn. (Sum Rule)

ii. The series ∑
n = 1

∞
(an − bn) converges and ∑

n = 1

∞
⎛
⎝an − bn

⎞
⎠ = ∑

n = 1

∞
an − ∑

n = 1

∞
bn. (Difference Rule)

iii. For any real number c, the series ∑
n = 1

∞
can converges and ∑

n = 1

∞
can = c ∑

n = 1

∞
an. (Constant Multiple Rule)

Example 5.8

Using Algebraic Properties of Convergent Series

Evaluate
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5.8

∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥.

Solution

We showed earlier that

∑
n = 1

∞
1

n(n + 1)

and

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 2.

Since both of those series converge, we can apply the properties of Algebraic Properties of Convergent
Series to evaluate

∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥.

Using the sum rule, write

∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥ = ∑

n = 1

∞
3

n(n + 1)+∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 2

.

Then, using the constant multiple rule and the sums above, we can conclude that

∑
n = 1

∞
3

n(n + 1) + ∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 2

= 3 ∑
n = 1

∞
1

n(n + 1) + ⎛
⎝
1
2

⎞
⎠
−1

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 3(1) + ⎛
⎝
1
2

⎞
⎠
−1

(2) = 3 + 2(2) = 7.

Evaluate ∑
n = 1

∞
5

2n − 1.

Geometric Series

A geometric series is any series that we can write in the form

(5.6)
a + ar + ar2 + ar3 + ⋯ = ∑

n = 1

∞
arn − 1.

Because the ratio of each term in this series to the previous term is r, the number r is called the ratio. We refer to a as the
initial term because it is the first term in the series. For example, the series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 1 + 1
2 + 1

4 + 1
8 + ⋯

is a geometric series with initial term a = 1 and ratio r = 1/2.

In general, when does a geometric series converge? Consider the geometric series

∑
n = 1

∞
arn − 1

when a > 0. Its sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is given by
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Sk = ∑
n = 1

k
arn − 1 = a + ar + ar2 + ⋯ + ark − 1.

Consider the case when r = 1. In that case,

Sk = a + a(1) + a(1)2 + ⋯ + a(1)k − 1 = ak.

Since a > 0, we know ak → ∞ as k → ∞. Therefore, the sequence of partial sums is unbounded and thus diverges.

Consequently, the infinite series diverges for r = 1. For r ≠ 1, to find the limit of
⎧

⎩
⎨Sk

⎫

⎭
⎬, multiply Equation 5.6 by

1 − r. Doing so, we see that

(1 − r)Sk = a(1 − r)⎛
⎝1 + r + r2 + r3 + ⋯ + rk − 1⎞

⎠

= a[(1 + r + r2 + r3 + ⋯ + rk − 1) − (r + r2 + r3 + ⋯ + rk)]
= a⎛

⎝1 − rk⎞
⎠.

All the other terms cancel out.

Therefore,

Sk =
a⎛

⎝1 − rk⎞
⎠

1 − r for r ≠ 1.

From our discussion in the previous section, we know that the geometric sequence rk → 0 if |r| < 1 and that rk diverges

if |r| > 1 or r = ±1. Therefore, for |r| < 1, Sk → a/(1 − r) and we have

∑
n = 1

∞
arn − 1 = a

1 − r if |r| < 1.

If |r| ≥ 1, Sk diverges, and therefore

∑
n = 1

∞
arn − 1 diverges if |r| ≥ 1.

Definition

A geometric series is a series of the form

∑
n = 1

∞
arn − 1 = a + ar + ar2 + ar3 + ⋯.

If |r| < 1, the series converges, and

(5.7)∑
n = 1

∞
arn − 1 = a

1 − r for |r| < 1.

If |r| ≥ 1, the series diverges.

Geometric series sometimes appear in slightly different forms. For example, sometimes the index begins at a value other
than n = 1 or the exponent involves a linear expression for n other than n − 1. As long as we can rewrite the series in

the form given by Equation 5.5, it is a geometric series. For example, consider the series

∑
n = 0

∞
⎛
⎝
2
3

⎞
⎠

n + 2
.

To see that this is a geometric series, we write out the first several terms:
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5.9

∑
n = 0

∞
⎛
⎝
2
3

⎞
⎠

n + 2
= ⎛

⎝
2
3

⎞
⎠

2
+ ⎛

⎝
2
3

⎞
⎠

3
+ ⎛

⎝
2
3

⎞
⎠

4
+ ⋯

= 4
9 + 4

9 · ⎛
⎝
2
3

⎞
⎠ + 4

9 · ⎛
⎝
2
3

⎞
⎠

2
+ ⋯.

We see that the initial term is a = 4/9 and the ratio is r = 2/3. Therefore, the series can be written as

∑
n = 1

∞
4
9 · ⎛

⎝
2
3

⎞
⎠

n − 1
.

Since r = 2/3 < 1, this series converges, and its sum is given by

∑
n = 1

∞
4
9 · ⎛

⎝
2
3

⎞
⎠

n − 1
= 4/9

1 − 2/3 = 4
3.

Example 5.9

Determining Convergence or Divergence of a Geometric Series

Determine whether each of the following geometric series converges or diverges, and if it converges, find its sum.

a. ∑
n = 1

∞ (−3)n + 1

4n − 1

b. ∑
n = 1

∞
e2n

Solution

a. Writing out the first several terms in the series, we have

∑
n = 1

∞ (−3)n + 1

4n − 1 = (−3)2

40 + (−3)3

4 + (−3)4

42 + ⋯

= (−3)2 + (−3)2 · ⎛
⎝
−3
4

⎞
⎠ + (−3)2 · ⎛

⎝
−3
4

⎞
⎠
2

+ ⋯

= 9 + 9 · ⎛
⎝
−3
4

⎞
⎠ + 9 · ⎛

⎝
−3
4

⎞
⎠
2

+ ⋯.

The initial term a = −3 and the ratio r = −3/4. Since |r| = 3/4 < 1, the series converges to

9
1 − (−3/4) = 9

7/4 = 36
7 .

b. Writing this series as

e2 ∑
n = 1

∞
⎛
⎝e2⎞

⎠
n − 1

we can see that this is a geometric series where r = e2 > 1. Therefore, the series diverges.

Determine whether the series ∑
n = 1

∞
⎛
⎝
−2
5

⎞
⎠

n − 1
converges or diverges. If it converges, find its sum.
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5.10

We now turn our attention to a nice application of geometric series. We show how they can be used to write repeating
decimals as fractions of integers.

Example 5.10

Writing Repeating Decimals as Fractions of Integers

Use a geometric series to write 3.26
—

as a fraction of integers.

Solution

Since 3.26
—

= 3.262626…, first we write

3.262626… = 3 + 26
100 + 26

1000 + 26
100,000 + ⋯

= 3 + 26
102 + 26

104 + 26
106 + ⋯.

Ignoring the term 3, the rest of this expression is a geometric series with initial term a = 26/102 and ratio

r = 1/102. Therefore, the sum of this series is

26/102

1 − (1/102)
= 26/102

99/102 = 26
99.

Thus,

3.262626… = 3 + 26
99 = 323

99 .

Write 5.27– as a fraction of integers.

Example 5.11

Chapter Opener: Finding the Area of the Koch Snowflake

Define a sequence of figures {Fn} recursively as follows (Figure 5.11). Let F0 be an equilateral triangle with

sides of length 1. For n ≥ 1, let Fn be the curve created by removing the middle third of each side of Fn − 1

and replacing it with an equilateral triangle pointing outward. The limiting figure as n → ∞ is known as Koch’s

snowflake.
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Figure 5.11 The first four figures, F0, F1, F2, and F3, in the construction of the Koch snowflake.

a. Find the length Ln of the perimeter of Fn. Evaluate limn → ∞Ln to find the length of the perimeter of

Koch’s snowflake.

b. Find the area An of figure Fn. Evaluate limn → ∞An to find the area of Koch’s snowflake.

Solution

a. Let Nn denote the number of sides of figure Fn. Since F0 is a triangle, N0 = 3. Let ln denote the

length of each side of Fn. Since F0 is an equilateral triangle with sides of length l0 = 1, we now need

to determine N1 and l1. Since F1 is created by removing the middle third of each side and replacing

that line segment with two line segments, for each side of F0, we get four sides in F1. Therefore, the

number of sides for F1 is

N1 = 4 · 3.

Since the length of each of these new line segments is 1/3 the length of the line segments in F0, the

length of the line segments for F1 is given by

l1 = 1
3 · 1 = 1

3.

Similarly, for F2, since the middle third of each side of F1 is removed and replaced with two line

segments, the number of sides in F2 is given by

N2 = 4N1 = 4(4 · 3) = 42 · 3.

Since the length of each of these sides is 1/3 the length of the sides of F1, the length of each side of

figure F2 is given by

l2 = 1
3 · l1 = 1

3 · 1
3 = ⎛

⎝
1
3

⎞
⎠

2
.

More generally, since Fn is created by removing the middle third of each side of Fn − 1 and replacing

that line segment with two line segments of length 1
3ln − 1 in the shape of an equilateral triangle, we
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know that Nn = 4Nn − 1 and ln = ln − 1
3 . Therefore, the number of sides of figure Fn is

Nn = 4n · 3

and the length of each side is

ln = ⎛
⎝
1
3

⎞
⎠

n
.

Therefore, to calculate the perimeter of Fn, we multiply the number of sides Nn and the length of each

side ln. We conclude that the perimeter of Fn is given by

Ln = Nn · ln = 3 · ⎛
⎝
4
3

⎞
⎠

n
.

Therefore, the length of the perimeter of Koch’s snowflake is

L = limn → ∞Ln = ∞.

b. Let Tn denote the area of each new triangle created when forming Fn. For n = 0, T0 is the area of

the original equilateral triangle. Therefore, T0 = A0 = 3/4. For n ≥ 1, since the lengths of the sides

of the new triangle are 1/3 the length of the sides of Fn − 1, we have

Tn = ⎛
⎝
1
3

⎞
⎠

2
Tn − 1 = 1

9 · Tn − 1.

Therefore, Tn = ⎛
⎝
1
9

⎞
⎠

n
· 3

4 . Since a new triangle is formed on each side of Fn − 1,

An = An − 1 + Nn − 1 · Tn

= An − 1 + ⎛
⎝3 · 4n − 1⎞

⎠ · ⎛
⎝
1
9

⎞
⎠

n
· 3

4

= An − 1 + 3
4 · ⎛

⎝
4
9

⎞
⎠

n
· 3

4 .

Writing out the first few terms A0, A1, A2, we see that

A0 = 3
4

A1 = A0 + 3
4 · ⎛

⎝
4
9

⎞
⎠ · 3

4 = 3
4 + 3

4 · ⎛
⎝
4
9

⎞
⎠ · 3

4 = 3
4

⎡
⎣1 + 3

4 · ⎛
⎝
4
9

⎞
⎠
⎤
⎦

A2 = A1 + 3
4 · ⎛

⎝
4
9

⎞
⎠

2
· 3

4 = 3
4

⎡
⎣1 + 3

4 · ⎛
⎝
4
9

⎞
⎠
⎤
⎦ + 3

4 · ⎛
⎝
4
9

⎞
⎠

2
· 3

4 = 3
4

⎡

⎣
⎢1 + 3

4 · ⎛
⎝
4
9

⎞
⎠ + 3

4 · ⎛
⎝
4
9

⎞
⎠

2⎤

⎦
⎥.

More generally,

An = 3
4

⎡

⎣
⎢1 + 3

4
⎛

⎝
⎜4
9 + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n⎞

⎠
⎟
⎤

⎦
⎥.

Factoring 4/9 out of each term inside the inner parentheses, we rewrite our expression as
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An = 3
4

⎡

⎣
⎢1 + 1

3
⎛

⎝
⎜1 + 4

9 + ⎛
⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1⎞

⎠
⎟
⎤

⎦
⎥.

The expression 1 + ⎛
⎝
4
9

⎞
⎠ + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1
is a geometric sum. As shown earlier, this sum satisfies

1 + 4
9 + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1
= 1 − (4/9)n

1 − (4/9) .

Substituting this expression into the expression above and simplifying, we conclude that

An = 3
4

⎡
⎣1 + 1

3
⎛
⎝
1 − (4/9)n

1 − (4/9)
⎞
⎠
⎤
⎦

= 3
4

⎡
⎣

8
5 − 3

5
⎛
⎝
4
9

⎞
⎠

n⎤
⎦.

Therefore, the area of Koch’s snowflake is

A = limn → ∞An = 2 3
5 .

Analysis
The Koch snowflake is interesting because it has finite area, yet infinite perimeter. Although at first this may
seem impossible, recall that you have seen similar examples earlier in the text. For example, consider the region

bounded by the curve y = 1/x2 and the x -axis on the interval [1, ∞). Since the improper integral

∫
1

∞
1
x2dx

converges, the area of this region is finite, even though the perimeter is infinite.

Telescoping Series

Consider the series ∑
n = 1

∞
1

n(n + 1). We discussed this series in Example 5.7, showing that the series converges by writing

out the first several partial sums S1, S2 ,…, S6 and noticing that they are all of the form Sk = k
k + 1. Here we use a

different technique to show that this series converges. By using partial fractions, we can write

1
n(n + 1) = 1

n − 1
n + 1.

Therefore, the series can be written as

∑
n = 1

∞
⎡
⎣
1
n − 1

n + 1
⎤
⎦ = ⎛

⎝1 + 1
2

⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯.

Writing out the first several terms in the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬, we see that

S1 = 1 − 1
2

S2 = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ = 1 − 1

3
S3 = ⎛

⎝1 − 1
2

⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ = 1 − 1

4.
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In general,

Sk = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯ + ⎛

⎝
1
k − 1

k + 1
⎞
⎠ = 1 − 1

k + 1.

We notice that the middle terms cancel each other out, leaving only the first and last terms. In a sense, the series collapses
like a spyglass with tubes that disappear into each other to shorten the telescope. For this reason, we call a series that has
this property a telescoping series. For this series, since Sk = 1 − 1/(k + 1) and 1/(k + 1) → 0 as k → ∞, the sequence

of partial sums converges to 1, and therefore the series converges to 1.

Definition

A telescoping series is a series in which most of the terms cancel in each of the partial sums, leaving only some of the
first terms and some of the last terms.

For example, any series of the form

∑
n = 1

∞
⎡
⎣bn − bn + 1

⎤
⎦ = ⎛

⎝b1 − b2
⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ + ⎛

⎝b3 − b4
⎞
⎠ + ⋯

is a telescoping series. We can see this by writing out some of the partial sums. In particular, we see that

S1 = b1 − b2
S2 = ⎛

⎝b1 − b2
⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ = b1 − b3

S3 = ⎛
⎝b1 − b2

⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ + ⎛

⎝b3 − b4
⎞
⎠ = b1 − b4.

In general, the kth partial sum of this series is

Sk = b1 − bk + 1.

Since the kth partial sum can be simplified to the difference of these two terms, the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ will

converge if and only if the sequence
⎧

⎩
⎨bk + 1

⎫

⎭
⎬ converges. Moreover, if the sequence bk + 1 converges to some finite number

B, then the sequence of partial sums converges to b1 − B, and therefore

∑
n = 1

∞
[bn − bn + 1] = b1 − B.

In the next example, we show how to use these ideas to analyze a telescoping series of this form.

Example 5.12

Evaluating a Telescoping Series

Determine whether the telescoping series

∑
n = 1

∞
⎡
⎣cos⎛

⎝
1
n

⎞
⎠ − cos⎛

⎝
1

n + 1
⎞
⎠
⎤
⎦

converges or diverges. If it converges, find its sum.

Solution

By writing out terms in the sequence of partial sums, we can see that
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5.11

S1 = cos(1) − cos⎛
⎝
1
2

⎞
⎠

S2 = ⎛
⎝cos(1) − cos⎛

⎝
1
2

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
2

⎞
⎠ − cos⎛

⎝
1
3

⎞
⎠
⎞
⎠ = cos(1) − cos⎛

⎝
1
3

⎞
⎠

S3 = ⎛
⎝cos(1) − cos⎛

⎝
1
2

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
2

⎞
⎠ − cos⎛

⎝
1
3

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
3

⎞
⎠ − cos⎛

⎝
1
4

⎞
⎠
⎞
⎠

= cos(1) − cos⎛
⎝
1
4

⎞
⎠.

In general,

Sk = cos(1) − cos⎛
⎝

1
k + 1

⎞
⎠.

Since 1/(k + 1) → 0 as k → ∞ and cosx is a continuous function, cos(1/(k + 1)) → cos(0) = 1. Therefore,

we conclude that Sk → cos(1) − 1. The telescoping series converges and the sum is given by

∑
n = 1

∞
⎡
⎣cos⎛

⎝
1
n

⎞
⎠ − cos⎛

⎝
1

n + 1
⎞
⎠
⎤
⎦ = cos(1) − 1.

Determine whether ∑
n = 1

∞
⎡
⎣e

1/n − e1/(n + 1)⎤
⎦ converges or diverges. If it converges, find its sum.
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Euler’s Constant

We have shown that the harmonic series ∑
n = 1

∞
1
n diverges. Here we investigate the behavior of the partial sums Sk

as k → ∞. In particular, we show that they behave like the natural logarithm function by showing that there exists a

constant γ such that

∑
n = 1

k
1
n − lnk → γ as k → ∞.

This constant γ is known as Euler’s constant.

1. Let Tk = ∑
n = 1

k
1
n − lnk. Evaluate Tk for various values of k.

2. For Tk as defined in part 1. show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ converges by using the following steps.

a. Show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ is monotone decreasing. (Hint: Show that ln⎛

⎝1 + 1/k > 1/(k + 1)⎞
⎠

b. Show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ is bounded below by zero. (Hint: Express lnk as a definite integral.)

c. Use the Monotone Convergence Theorem to conclude that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ converges. The limit γ

is Euler’s constant.

3. Now estimate how far Tk is from γ for a given integer k. Prove that for k ≥ 1, 0 < Tk − γ ≤ 1/k by using

the following steps.

a. Show that ln(k + 1) − lnk < 1/k.

b. Use the result from part a. to show that for any integer k,

Tk − Tk + 1 < 1
k − 1

k + 1.

c. For any integers k and j such that j > k, express Tk − T j as a telescoping sum by writing

Tk − T j = ⎛
⎝Tk − Tk + 1

⎞
⎠ + ⎛

⎝Tk + 1 − Tk + 2
⎞
⎠ + ⎛

⎝Tk + 2 − Tk + 3
⎞
⎠ + ⋯ + ⎛

⎝T j − 1 − T j
⎞
⎠.

Use the result from part b. combined with this telescoping sum to conclude that

Tk − T j < 1
k − 1

j .

d. Apply the limit to both sides of the inequality in part c. to conclude that

Tk − γ ≤ 1
k .

e. Estimate γ to an accuracy of within 0.001.
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5.2 EXERCISES
Using sigma notation, write the following expressions as
infinite series.

67. 1 + 1
2 + 1

3 + 1
4 + ⋯

68. 1 − 1 + 1 − 1 + ⋯

69. 1 − 1
2 + 1

3 − 1
4 + ...

70. sin1 + sin1/2 + sin1/3 + sin1/4 + ⋯

Compute the first four partial sums S1 ,…, S4 for the

series having nth term an starting with n = 1 as follows.

71. an = n

72. an = 1/n

73. an = sin(nπ/2)

74. an = (−1)n

In the following exercises, compute the general term an of

the series with the given partial sum Sn. If the sequence of

partial sums converges, find its limit S.

75. Sn = 1 − 1
n, n ≥ 2

76. Sn = n(n + 1)
2 , n ≥ 1

77. Sn = n, n ≥ 2

78. Sn = 2 − (n + 2)/2n, n ≥ 1

For each of the following series, use the sequence of partial
sums to determine whether the series converges or
diverges.

79. ∑
n = 1

∞
n

n + 2

80. ∑
n = 1

∞
⎛
⎝1 − (−1)n)⎞

⎠

81. ∑
n = 1

∞
1

(n + 1)(n + 2) (Hint: Use a partial fraction

decomposition like that for ∑
n = 1

∞
1

n(n + 1).)

82. ∑
n = 1

∞
1

2n + 1 (Hint: Follow the reasoning for

∑
n = 1

∞
1
n.)

Suppose that ∑
n = 1

∞
an = 1, that ∑

n = 1

∞
bn = −1, that

a1 = 2, and b1 = −3. Find the sum of the indicated

series.

83. ∑
n = 1

∞
(an + bn)

84. ∑
n = 1

∞
(an − 2bn)

85. ∑
n = 2

∞
(an − bn)

86. ∑
n = 1

∞
(3an + 1 − 4bn + 1)

State whether the given series converges and explain why.

87. ∑
n = 1

∞
1

n + 1000 (Hint: Rewrite using a change of

index.)

88. ∑
n = 1

∞
1

n + 1080 (Hint: Rewrite using a change of

index.)

89. 1 + 1
10 + 1

100 + 1
1000 + ⋯

90. 1 + e
π + e2

π2 + e3

π3 + ⋯

91. 1 + π
e + π2

e4 + π3

e6 + π4

e8 + ⋯

92. 1 − π
3 + π2

9 − π3

27 + ⋯

For an as follows, write the sum as a geometric series of

the form ∑
n = 1

∞
arn. State whether the series converges and

if it does, find the value of ∑ an.
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93. a1 = −1 and an /an + 1 = −5 for n ≥ 1.

94. a1 = 2 and an /an + 1 = 1/2 for n ≥ 1.

95. a1 = 10 and an /an + 1 = 10 for n ≥ 1.

96. a1 = 1/10 and an /an + 1 = −10 for n ≥ 1.

Use the identity 1
1 − y = ∑

n = 0

∞
yn to express the function

as a geometric series in the indicated term.

97. x
1 + x in x

98. x
1 − x3/2 in x

99. 1
1 + sin2 x

in sinx

100. sec2 x in sinx

Evaluate the following telescoping series or state whether
the series diverges.

101. ∑
n = 1

∞
21/n − 21/(n + 1)

102. ∑
n = 1

∞
1

n13 − 1
(n + 1)13

103. ∑
n = 1

∞
⎛
⎝ n − n + 1⎞

⎠

104. ∑
n = 1

∞
⎛
⎝sinn − sin(n + 1)⎞

⎠

Express the following series as a telescoping sum and
evaluate its nth partial sum.

105. ∑
n = 1

∞
ln⎛

⎝
n

n + 1
⎞
⎠

106. ∑
n = 1

∞
2n + 1

⎛
⎝n2 + n⎞

⎠
2 (Hint: Factor denominator and use

partial fractions.)

107. ∑
n = 2

∞ ln⎛
⎝1 +n

1⎞
⎠

lnn ln(n + 1)

108. ∑
n = 1

∞ (n + 2)
n(n + 1)2n + 1 (Hint: Look at 1/(n2n).⎞

⎠

A general telescoping series is one in which all but the
first few terms cancel out after summing a given number of
successive terms.

109. Let an = f (n) − 2 f (n + 1) + f (n + 2), in which

f (n) → 0 as n → ∞. Find ∑
n = 1

∞
an.

110. an = f (n) − f (n + 1) − f (n + 2) + f (n + 3), in

which f (n) → 0 as n → ∞. Find ∑
n = 1

∞
an.

111. Suppose that
an = c0 f (n) + c1 f (n + 1) + c2 f (n + 2) + c3 f (n + 3) + c4 f (n + 4),

where f (n) → 0 as n → ∞. Find a condition on the

coefficients c0 ,…, c4 that make this a general telescoping

series.

112. Evaluate ∑
n = 1

∞
1

n(n + 1)(n + 2) (Hint:

1
n(n + 1)(n + 2) = 1

2n − 1
n + 1 + 1

2(n + 2)
⎞
⎠

113. Evaluate ∑
n = 2

∞
2

n3 − n
.

114. Find a formula for ∑
n = 1

∞
1

n(n + N) where N is a

positive integer.

115. [T] Define a sequence tk = ∑
n = 1

k − 1
(1/k) − lnk. Use

the graph of 1/x to verify that tk is increasing. Plot tk for

k = 1…100 and state whether it appears that the sequence

converges.
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116. [T] Suppose that N equal uniform rectangular

blocks are stacked one on top of the other, allowing for
some overhang. Archimedes’ law of the lever implies that
the stack of N blocks is stable as long as the center of

mass of the top (N − 1) blocks lies at the edge of the

bottom block. Let x denote the position of the edge of

the bottom block, and think of its position as relative to
the center of the next-to-bottom block. This implies that

(N − 1)x = ⎛
⎝
1
2 − x⎞

⎠ or x = 1/(2N). Use this expression

to compute the maximum overhang (the position of the
edge of the top block over the edge of the bottom block.)
See the following figure.

Each of the following infinite series converges to the given
multiple of π or 1/π.

In each case, find the minimum value of N such that the

Nth partial sum of the series accurately approximates the

left-hand side to the given number of decimal places, and
give the desired approximate value. Up to 15 decimals

place, π = 3.141592653589793....

117. [T] π = −3 + ∑
n = 1

∞
n2n n!2

(2n)! , error < 0.0001

118. [T] π
2 = ∑

k = 0

∞
k!

(2k + 1)!! = ∑
k = 0

∞
2k k!2

(2k + 1)!, error

< 10−4

119. [T] 9801
2π = 4

9801 ∑
k = 0

∞ (4k)!(1103 + 26390k)
(k!)4 3964k ,

error < 10−12

120. [T]

1
12π = ∑

k = 0

∞ (−1)k (6k)!(13591409 + 545140134k)
(3k)!(k!)3 6403203k + 3/2 ,

error < 10−15

121. [T] A fair coin is one that has probability 1/2 of

coming up heads when flipped.
a. What is the probability that a fair coin will come up

tails n times in a row?

b. Find the probability that a coin comes up heads for
the first time after an even number of coin flips.

122. [T] Find the probability that a fair coin is flipped a
multiple of three times before coming up heads.

123. [T] Find the probability that a fair coin will come up
heads for the second time after an even number of flips.

124. [T] Find a series that expresses the probability that
a fair coin will come up heads for the second time on a
multiple of three flips.

125. [T] The expected number of times that a fair coin
will come up heads is defined as the sum over n = 1, 2,…
of n times the probability that the coin will come up

heads exactly n times in a row, or n/2n + 1. Compute the

expected number of consecutive times that a fair coin will
come up heads.

126. [T] A person deposits $10 at the beginning of each

quarter into a bank account that earns 4% annual interest

compounded quarterly (four times a year).
a. Show that the interest accumulated after n quarters

is $10⎛
⎝

1.01n + 1 − 1
0.01 − n⎞

⎠.

b. Find the first eight terms of the sequence.
c. How much interest has accumulated after 2 years?

127. [T] Suppose that the amount of a drug in a patient’s
system diminishes by a multiplicative factor r < 1 each

hour. Suppose that a new dose is administered every N
hours. Find an expression that gives the amount A(n) in

the patient’s system after n hours for each n in terms of

the dosage d and the ratio r. (Hint: Write n = mN + k,
where 0 ≤ k < N, and sum over values from the different

doses administered.)

128. [T] A certain drug is effective for an average patient
only if there is at least 1 mg per kg in the patient’s system,

while it is safe only if there is at most 2 mg per kg in

an average patient’s system. Suppose that the amount in
a patient’s system diminishes by a multiplicative factor
of 0.9 each hour after a dose is administered. Find the

maximum interval N of hours between doses, and

corresponding dose range d (in mg/kg) for this N that

will enable use of the drug to be both safe and effective in
the long term.

129. Suppose that an ≥ 0 is a sequence of numbers.

Explain why the sequence of partial sums of an is

increasing.
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130. [T] Suppose that an is a sequence of positive

numbers and the sequence Sn of partial sums of an is

bounded above. Explain why ∑
n = 1

∞
an converges. Does

the conclusion remain true if we remove the hypothesis
an ≥ 0?

131. [T] Suppose that a1 = S1 = 1 and that, for given

numbers S > 1 and 0 < k < 1, one defines

an + 1 = k(S − Sn) and Sn + 1 = an + 1 + Sn. Does Sn

converge? If so, to what? (Hint: First argue that Sn < S for

all n and Sn is increasing.)

132. [T] A version of von Bertalanffy growth can be used
to estimate the age of an individual in a homogeneous
species from its length if the annual increase in year n + 1
satisfies an + 1 = k(S − Sn), with Sn as the length at

year n, S as a limiting length, and k as a relative growth

constant. If S1 = 3, S = 9, and k = 1/2, numerically

estimate the smallest value of n such that Sn ≥ 8. Note

that Sn + 1 = Sn + an + 1. Find the corresponding n when

k = 1/4.

133. [T] Suppose that ∑
n = 1

∞
an is a convergent series of

positive terms. Explain why lim
N → ∞

∑
n = N + 1

∞
an = 0.

134. [T] Find the length of the dashed zig-zag path in the
following figure.

135. [T] Find the total length of the dashed path in the
following figure.

136. [T] The Sierpinski triangle is obtained from a triangle
by deleting the middle fourth as indicated in the first step,
by deleting the middle fourths of the remaining three
congruent triangles in the second step, and in general
deleting the middle fourths of the remaining triangles in
each successive step. Assuming that the original triangle is
shown in the figure, find the areas of the remaining parts of
the original triangle after N steps and find the total length

of all of the boundary triangles after N steps.
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137. [T] The Sierpinski gasket is obtained by dividing
the unit square into nine equal sub-squares, removing the
middle square, then doing the same at each stage to the
remaining sub-squares. The figure shows the remaining set
after four iterations. Compute the total area removed after
N stages, and compute the length the total perimeter of the

remaining set after N stages.
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5.3 | The Divergence and Integral Tests

Learning Objectives
5.3.1 Use the divergence test to determine whether a series converges or diverges.

5.3.2 Use the integral test to determine the convergence of a series.

5.3.3 Estimate the value of a series by finding bounds on its remainder term.

In the previous section, we determined the convergence or divergence of several series by explicitly calculating the limit of
the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬. In practice, explicitly calculating this limit can be difficult or impossible. Luckily, several

tests exist that allow us to determine convergence or divergence for many types of series. In this section, we discuss two of
these tests: the divergence test and the integral test. We will examine several other tests in the rest of this chapter and then
summarize how and when to use them.

Divergence Test

For a series ∑
n = 1

∞
an to converge, the nth term an must satisfy an → 0 as n → ∞.

Therefore, from the algebraic limit properties of sequences,

lim
k → ∞

ak = lim
k → ∞

(Sk − Sk − 1) = lim
k → ∞

Sk − lim
k → ∞

Sk − 1 = S − S = 0.

Therefore, if ∑
n = 1

∞
an converges, the nth term an → 0 as n → ∞. An important consequence of this fact is the following

statement:

(5.8)
If an ↛ 0 as n → ∞, ∑

n = 1

∞
an diverges.

This test is known as the divergence test because it provides a way of proving that a series diverges.

Theorem 5.8: Divergence Test

If limn → ∞an = c ≠ 0 or limn → ∞an does not exist, then the series ∑
n = 1

∞
an diverges.

It is important to note that the converse of this theorem is not true. That is, if limn → ∞an = 0, we cannot make any

conclusion about the convergence of ∑
n = 1

∞
an. For example, lim

n → 0
(1/n) = 0, but the harmonic series ∑

n = 1

∞
1/n diverges.

In this section and the remaining sections of this chapter, we show many more examples of such series. Consequently,
although we can use the divergence test to show that a series diverges, we cannot use it to prove that a series converges.
Specifically, if an → 0, the divergence test is inconclusive.

Example 5.13

Using the divergence test

For each of the following series, apply the divergence test. If the divergence test proves that the series diverges,
state so. Otherwise, indicate that the divergence test is inconclusive.
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5.12

a. ∑
n = 1

∞
n

3n − 1

b. ∑
n = 1

∞
1
n3

c. ∑
n = 1

∞
e1/n2

Solution

a. Since n/(3n − 1) → 1/3 ≠ 0, by the divergence test, we can conclude that

∑
n = 1

∞
n

3n − 1

diverges.

b. Since 1/n3 → 0, the divergence test is inconclusive.

c. Since e1/n2
→ 1 ≠ 0, by the divergence test, the series

∑
n = 1

∞
e1/n2

diverges.

What does the divergence test tell us about the series ∑
n = 1

∞
cos(1/n2)?

Integral Test
In the previous section, we proved that the harmonic series diverges by looking at the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ and

showing that S2k > 1 + k/2 for all positive integers k. In this section we use a different technique to prove the divergence

of the harmonic series. This technique is important because it is used to prove the divergence or convergence of many other
series. This test, called the integral test, compares an infinite sum to an improper integral. It is important to note that this
test can only be applied when we are considering a series whose terms are all positive.

To illustrate how the integral test works, use the harmonic series as an example. In Figure 5.12, we depict the harmonic
series by sketching a sequence of rectangles with areas 1, 1/2, 1/3, 1/4,… along with the function f (x) = 1/x. From the

graph, we see that

∑
n = 1

k
1
n = 1 + 1

2 + 1
3 + ⋯ + 1

k > ∫
1

k + 1
1
xdx.

Therefore, for each k, the kth partial sum Sk satisfies

Sk = ∑
n = 1

k
1
n > ∫

1

k + 1
1
xdx = lnx |1

k + 1

= ln(k + 1) − ln(1) = ln(k + 1).
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Since lim
k → ∞

ln(k + 1) = ∞, we see that the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ diverges, and,

consequently, the series ∑
n = 1

∞
1
n also diverges.

Figure 5.12 The sum of the areas of the rectangles is greater
than the area between the curve f (x) = 1/x and the x -axis for

x ≥ 1. Since the area bounded by the curve is infinite (as

calculated by an improper integral), the sum of the areas of the
rectangles is also infinite.

Now consider the series ∑
n = 1

∞
1/n2. We show how an integral can be used to prove that this series converges. In Figure

5.13, we sketch a sequence of rectangles with areas 1, 1/22, 1/32 ,… along with the function f (x) = 1/x2. From the

graph we see that

∑
n = 1

k
1
n2 = 1 + 1

22 + 1
32 + ⋯ + 1

k2 < 1 + ∫
1

k
1
x2dx.

Therefore, for each k, the kth partial sum Sk satisfies

Sk = ∑
n = 1

k
1
n2 < 1 + ∫

1

k
1
x2dx = 1 − 1

x |1k = 1 − 1
k + 1 = 2 − 1

k < 2.

We conclude that the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded. We also see that

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an increasing sequence:

Sk = Sk − 1 + 1
k2 for k ≥ 2.

Since
⎧

⎩
⎨Sk

⎫

⎭
⎬ is increasing and bounded, by the Monotone Convergence Theorem, it converges. Therefore, the series

∑
n = 1

∞
1/n2 converges.
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Figure 5.13 The sum of the areas of the rectangles is less than
the sum of the area of the first rectangle and the area between

the curve f (x) = 1/x2 and the x -axis for x ≥ 1. Since the

area bounded by the curve is finite, the sum of the areas of the
rectangles is also finite.

We can extend this idea to prove convergence or divergence for many different series. Suppose ∑
n = 1

∞
an is a series with

positive terms an such that there exists a continuous, positive, decreasing function f where f (n) = an for all positive

integers. Then, as in Figure 5.14(a), for any integer k, the kth partial sum Sk satisfies

Sk = a1 + a2 + a3 + ⋯ + ak < a1 + ∫
1

k
f (x)dx < 1 + ∫

1

∞
f (x)dx.

Therefore, if ∫
1

∞
f (x)dx converges, then the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded. Since

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an increasing

sequence, if it is also a bounded sequence, then by the Monotone Convergence Theorem, it converges. We conclude that if

∫
1

∞
f (x)dx converges, then the series ∑

n = 1

∞
an also converges. On the other hand, from Figure 5.14(b), for any integer

k, the kth partial sum Sk satisfies

Sk = a1 + a2 + a3 + ⋯ + ak > ∫
1

k + 1
f (x)dx.

If lim
k → ∞

∫
1

k + 1
f (x)dx = ∞, then

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an unbounded sequence and therefore diverges. As a result, the series ∑

n = 1

∞
an

also diverges. Since f is a positive function, if ∫
1

∞
f (x)dx diverges, then lim

k → ∞
∫

1

k + 1
f (x)dx = ∞. We conclude that if

∫
1

∞
f (x)dx diverges, then ∑

n = 1

∞
an diverges.
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Figure 5.14 (a) If we can inscribe rectangles inside a region bounded by a curve y = f (x)
and the x -axis, and the area bounded by those curves for x ≥ 1 is finite, then the sum of the

areas of the rectangles is also finite. (b) If a set of rectangles circumscribes the region bounded
by y = f (x) and the x axis for x ≥ 1 and the region has infinite area, then the sum of the

areas of the rectangles is also infinite.

Theorem 5.9: Integral Test

Suppose ∑
n = 1

∞
an is a series with positive terms an. Suppose there exists a function f and a positive integer N such

that the following three conditions are satisfied:

i. f is continuous,

ii. f is decreasing, and

iii. f (n) = an for all integers n ≥ N.
Then

∑
n = 1

∞
an and∫

N

∞
f (x)dx

both converge or both diverge (see Figure 5.14).

Although convergence of ∫
N

∞
f (x)dx implies convergence of the related series ∑

n = 1

∞
an, it does not imply that the value

of the integral and the series are the same. They may be different, and often are. For example,

∑
n = 1

∞
⎛
⎝
1
e

⎞
⎠
n

= 1
e + ⎛

⎝
1
e

⎞
⎠
2

+ ⎛
⎝
1
e

⎞
⎠
3

+ ⋯

is a geometric series with initial term a = 1/e and ratio r = 1/e, which converges to

1/e
1 − (1/e) = 1/e

(e − 1)/e = 1
e − 1.

However, the related integral ∫
1

∞
(1/e)xdx satisfies

∫
1

∞⎛
⎝
1
e

⎞
⎠
x
dx = ∫

1

∞
e−xdx = lim

b → ∞
∫

1

b
e−xdx = lim

b → ∞
− e−x |1

b

= lim
b → ∞

⎡
⎣−e−b + e−1⎤

⎦ = 1
e .
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5.13

Example 5.14

Using the Integral Test

For each of the following series, use the integral test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
1/n3

b. ∑
n = 1

∞
1/ 2n − 1

Solution

a. Compare

∑
n = 1

∞
1
n3 and ∫

1

∞
1
x3dx.

We have

∫
1

∞
1
x3dx = lim

b → ∞
∫

1

b
1
x3dx = lim

b → ∞

⎡

⎣
⎢ − 1

2x2 |1
b⎤

⎦
⎥ = lim

b → ∞
⎡
⎣− 1

2b2 + 1
2
⎤
⎦ = 1

2.

Thus the integral ∫
1

∞
1/x3 dx converges, and therefore so does the series

∑
n = 1

∞
1
n3.

b. Compare

∑
n = 1

∞
1

2n − 1
and ∫

1

∞
1

2x − 1
dx.

Since

∫
1

∞
1

2x − 1
dx = lim

b → ∞
∫

1

b
1

2x − 1
dx = lim

b → ∞
2x − 1|1

b

= lim
b → ∞

⎡
⎣ 2b − 1 − 1⎤

⎦ = ∞,

the integral ∫
1

∞
1/ 2x − 1dx diverges, and therefore

∑
n = 1

∞
1

2n − 1

diverges.

Use the integral test to determine whether the series ∑
n = 1

∞
n

3n2 + 1
converges or diverges.
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The p-Series

The harmonic series ∑
n = 1

∞
1/n and the series ∑

n = 1

∞
1/n2 are both examples of a type of series called a p-series.

Definition

For any real number p, the series

∑
n = 1

∞
1

n p

is called a p-series.

We know the p-series converges if p = 2 and diverges if p = 1. What about other values of p? In general, it is difficult,

if not impossible, to compute the exact value of most p -series. However, we can use the tests presented thus far to prove

whether a p -series converges or diverges.

If p < 0, then 1/n p → ∞, and if p = 0, then 1/n p → 1. Therefore, by the divergence test,

∑
n = 1

∞
1/n p diverges if p ≤ 0.

If p > 0, then f (x) = 1/x p is a positive, continuous, decreasing function. Therefore, for p > 0, we use the integral

test, comparing

∑
n = 1

∞
1

n p and ∫
1

∞
1
x pdx.

We have already considered the case when p = 1. Here we consider the case when p > 0, p ≠ 1. For this case,

∫
1

∞
1
x pdx = lim

b → ∞
∫

1

b
1
x pdx = lim

b → ∞
1

1 − px1 − p |1
b

= lim
b → ∞

1
1 − p

⎡
⎣b

1 − p − 1⎤
⎦.

Because

b1 − p → 0 if p > 1 and b1 − p → ∞ if p < 1,

we conclude that

∫
1

∞
1
x pdx =

⎧

⎩
⎨

1
p − 1 if p > 1

∞ if p < 1
.

Therefore, ∑
n = 1

∞
1/n p converges if p > 1 and diverges if 0 < p < 1.

In summary,

(5.9)∑
n = 1

∞
1

n p
⎧

⎩
⎨
converges if p > 1
diverges if p ≤ 1

.

Example 5.15
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5.14

Testing for Convergence of p-series

For each of the following series, determine whether it converges or diverges.

a. ∑
n = 1

∞
1
n4

b. ∑
n = 1

∞
1

n2/3

Solution

a. This is a p-series with p = 4 > 1, so the series converges.

b. Since p = 2/3 < 1, the series diverges.

Does the series ∑
n = 1

∞
1

n5/4 converge or diverge?

Estimating the Value of a Series

Suppose we know that a series ∑
n = 1

∞
an converges and we want to estimate the sum of that series. Certainly we can

approximate that sum using any finite sum ∑
n = 1

N
an where N is any positive integer. The question we address here is, for

a convergent series ∑
n = 1

∞
an, how good is the approximation ∑

n = 1

N
an ? More specifically, if we let

RN = ∑
n = 1

∞
an − ∑

n = 1

N
an

be the remainder when the sum of an infinite series is approximated by the Nth partial sum, how large is RN ? For some

types of series, we are able to use the ideas from the integral test to estimate RN.

Theorem 5.10: Remainder Estimate from the Integral Test

Suppose ∑
n = 1

∞
an is a convergent series with positive terms. Suppose there exists a function f satisfying the following

three conditions:

i. f is continuous,

ii. f is decreasing, and

iii. f (n) = an for all integers n ≥ 1.

Let SN be the Nth partial sum of ∑
n = 1

∞
an. For all positive integers N,
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SN + ∫
N + 1

∞
f (x)dx < ∑

n = 1

∞
an < SN + ∫

N

∞
f (x)dx.

In other words, the remainder RN = ∑
n = 1

∞
an − SN = ∑

n = N + 1

∞
an satisfies the following estimate:

(5.10)∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

This is known as the remainder estimate.

We illustrate Remainder Estimate from the Integral Test in Figure 5.15. In particular, by representing the remainder
RN = aN + 1 + aN + 2 + aN + 3 + ⋯ as the sum of areas of rectangles, we see that the area of those rectangles is bounded

above by ∫
N

∞
f (x)dx and bounded below by ∫

N + 1

∞
f (x)dx. In other words,

RN = aN + 1 + aN + 2 + aN + 3 + ⋯ > ∫
N + 1

∞
f (x)dx

and

RN = aN + 1 + aN + 2 + aN + 3 + ⋯ < ∫
N

∞
f (x)dx.

We conclude that

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

Since

∑
n = 1

∞
an = SN + RN,

where SN is the Nth partial sum, we conclude that

SN + ∫
N + 1

∞
f (x)dx < ∑

n = 1

∞
an < SN + ∫

N

∞
f (x)dx.
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Figure 5.15 Given a continuous, positive, decreasing function f and a sequence of positive

terms an such that an = f (n) for all positive integers n, (a) the areas

aN + 1 + aN + 2 + aN + 3 + ⋯ < ∫
N

∞
f (x)dx, or (b) the areas

aN + 1 + aN + 2 + aN + 3 + ⋯ > ∫
N + 1

∞
f (x)dx. Therefore, the integral is either an

overestimate or an underestimate of the error.

Example 5.16

Estimating the Value of a Series

Consider the series ∑
n = 1

∞
1/n3.

a. Calculate S10 = ∑
n = 1

10
1/n3 and estimate the error.

b. Determine the least value of N necessary such that SN will estimate ∑
n = 1

∞
1/n3 to within 0.001.

Solution

a. Using a calculating utility, we have

S10 = 1 + 1
23 + 1

33 + 1
43 + ⋯ + 1

103 ≈ 1.19753.

By the remainder estimate, we know

RN < ∫
N

∞
1
x3dx.

We have

∫
10

∞
1
x3dx = lim

b → ∞
∫

10

b
1
x3dx = lim

b → ∞
⎡
⎣− 1

2x2
⎤
⎦

N

b
= lim

b → ∞
⎡
⎣− 1

2b2 + 1
2N 2

⎤
⎦ = 1

2N 2.
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5.15

Therefore, the error is R10 < 1/2(10)2 = 0.005.

b. Find N such that RN < 0.001. In part a. we showed that RN < 1/2N 2. Therefore, the remainder

RN < 0.001 as long as 1/2N 2 < 0.001. That is, we need 2N 2 > 1000. Solving this inequality for

N, we see that we need N > 22.36. To ensure that the remainder is within the desired amount, we need

to round up to the nearest integer. Therefore, the minimum necessary value is N = 23.

For ∑
n = 1

∞
1
n4, calculate S5 and estimate the error R5.
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5.3 EXERCISES
For each of the following sequences, if the divergence test
applies, either state that limn → ∞an does not exist or find

limn → ∞an. If the divergence test does not apply, state why.

138. an = n
n + 2

139. an = n
5n2 − 3

140. an = n
3n2 + 2n + 1

141. an = (2n + 1)(n − 1)
(n + 1)2

142. an = (2n + 1)2n

⎛
⎝3n2 + 1⎞

⎠
n

143. an = 2n

3n/2

144. an = 2n + 3n

10n/2

145. an = e−2/n

146. an = cosn

147. an = tann

148. an = 1 − cos2 (1/n)
sin2 (2/n)

149. an = ⎛
⎝1 − 1

n
⎞
⎠
2n

150. an = lnn
n

151. an = (lnn)2

n

State whether the given p -series converges.

152. ∑
n = 1

∞
1
n

153. ∑
n = 1

∞
1

n n

154. ∑
n = 1

∞
1
n23

155. ∑
n = 1

∞
1
n43

156. ∑
n = 1

∞
ne

nπ

157. ∑
n = 1

∞
nπ

n2e

Use the integral test to determine whether the following
sums converge.

158. ∑
n = 1

∞
1

n + 5

159. ∑
n = 1

∞
1

n + 53

160. ∑
n = 2

∞
1

n lnn

161. ∑
n = 1

∞
n

1 + n2

162. ∑
n = 1

∞
en

1 + e2n

163. ∑
n = 1

∞
2n

1 + n4

164. ∑
n = 2

∞
1

n ln2 n

Express the following sums as p -series and determine

whether each converges.

165. ∑
n = 1

∞
2−lnn (Hint: 2−lnn = 1/nln2 .)

166. ∑
n = 1

∞
3−lnn (Hint: 3−lnn = 1/nln3 .)

167. ∑
n = 1

∞
n2−2lnn
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168. ∑
n = 1

∞
n3−2lnn

Use the estimate RN ≤ ∫
N

∞
f (t)dt to find a bound for the

remainder RN = ∑
n = 1

∞
an − ∑

n = 1

N
an where an = f (n).

169. ∑
n = 1

1000
1
n2

170. ∑
n = 1

1000
1
n3

171. ∑
n = 1

1000
1

1 + n2

172. ∑
n = 1

100
n/2n

[T] Find the minimum value of N such that the remainder

estimate ∫
N + 1

∞
f < RN < ∫

N

∞
f guarantees that ∑

n = 1

N
an

estimates ∑
n = 1

∞
an, accurate to within the given error.

173. an = 1
n2, error < 10−4

174. an = 1
n1.1, error < 10−4

175. an = 1
n1.01, error < 10−4

176. an = 1
n ln2 n

, error < 10−3

177. an = 1
1 + n2, error < 10−3

In the following exercises, find a value of N such that

RN is smaller than the desired error. Compute the

corresponding sum ∑
n = 1

N
an and compare it to the given

estimate of the infinite series.

178. an = 1
n11, error < 10−4,

∑
n = 1

∞
1

n11 = 1.000494…

179. an = 1
en, error < 10−5,

∑
n = 1

∞
1
en = 1

e − 1 = 0.581976…

180. an = 1
en2, error < 10−5,

∑
n = 1

∞
n/en2 = 0.40488139857…

181. an = 1/n4, error < 10−4,

∑
n = 1

∞
1/n4 = π4 /90 = 1.08232...

182. an = 1/n6, error < 10−6,

∑
n = 1

∞
1/n4 = π6 /945 = 1.01734306...,

183. Find the limit as n → ∞ of 1
n + 1

n + 1 + ⋯ + 1
2n.

(Hint: Compare to ∫
n

2n
1
t dt.)

184. Find the limit as n → ∞ of 1
n + 1

n + 1 + ⋯ + 1
3n

The next few exercises are intended to give a sense of
applications in which partial sums of the harmonic series
arise.

185. In certain applications of probability, such as the
so-called Watterson estimator for predicting mutation rates
in population genetics, it is important to have an accurate

estimate of the number Hk = ⎛
⎝1 + 1

2 + 1
3 + ⋯ + 1

k
⎞
⎠.

Recall that Tk = Hk − lnk is decreasing. Compute

T = lim
k → ∞

Tk to four decimal places. (Hint:

1
k + 1 < ∫

k

k + 1
1
xdx .)
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186. [T] Complete sampling with replacement, sometimes
called the coupon collector’s problem, is phrased as
follows: Suppose you have N unique items in a bin. At

each step, an item is chosen at random, identified, and put
back in the bin. The problem asks what is the expected
number of steps E(N) that it takes to draw each unique

item at least once. It turns out that

E(N) = N.HN = N⎛
⎝1 + 1

2 + 1
3 + ⋯ + 1

N
⎞
⎠. Find E(N)

for N = 10, 20, and 50.

187. [T] The simplest way to shuffle cards is to take the
top card and insert it at a random place in the deck, called
top random insertion, and then repeat. We will consider
a deck to be randomly shuffled once enough top random
insertions have been made that the card originally at the
bottom has reached the top and then been randomly
inserted. If the deck has n cards, then the probability that

the insertion will be below the card initially at the bottom
(call this card B) is 1/n. Thus the expected number of top

random insertions before B is no longer at the bottom is

n. Once one card is below B, there are two places below

B and the probability that a randomly inserted card will

fall below B is 2/n. The expected number of top random

insertions before this happens is n/2. The two cards below

B are now in random order. Continuing this way, find a

formula for the expected number of top random insertions
needed to consider the deck to be randomly shuffled.

188. Suppose a scooter can travel 100 km on a full tank

of fuel. Assuming that fuel can be transferred from one
scooter to another but can only be carried in the tank,
present a procedure that will enable one of the scooters to
travel 100HN km, where HN = 1 + 1/2 + ⋯ + 1/N.

189. Show that for the remainder estimate to apply on
[N, ∞) it is sufficient that f (x) be decreasing on

[N, ∞), but f need not be decreasing on [1, ∞).

190. [T] Use the remainder estimate and integration by

parts to approximate ∑
n = 1

∞
n/en within an error smaller

than 0.0001.

191. Does ∑
n = 2

∞
1

n(lnn) p converge if p is large enough?

If so, for which p?

192. [T] Suppose a computer can sum one million terms

per second of the divergent series ∑
n = 1

N
1
n. Use the integral

test to approximate how many seconds it will take to add
up enough terms for the partial sum to exceed 100.

193. [T] A fast computer can sum one million terms per

second of the divergent series ∑
n = 2

N
1

n lnn. Use the integral

test to approximate how many seconds it will take to add
up enough terms for the partial sum to exceed 100.

484 Chapter 5 | Sequences and Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



5.4 | Comparison Tests

Learning Objectives
5.4.1 Use the comparison test to test a series for convergence.

5.4.2 Use the limit comparison test to determine convergence of a series.

We have seen that the integral test allows us to determine the convergence or divergence of a series by comparing it to a
related improper integral. In this section, we show how to use comparison tests to determine the convergence or divergence
of a series by comparing it to a series whose convergence or divergence is known. Typically these tests are used to determine
convergence of series that are similar to geometric series or p-series.

Comparison Test
In the preceding two sections, we discussed two large classes of series: geometric series and p-series. We know exactly
when these series converge and when they diverge. Here we show how to use the convergence or divergence of these series
to prove convergence or divergence for other series, using a method called the comparison test.

For example, consider the series

∑
n = 1

∞
1

n2 + 1
.

This series looks similar to the convergent series

∑
n = 1

∞
1
n2.

Since the terms in each of the series are positive, the sequence of partial sums for each series is monotone increasing.
Furthermore, since

0 < 1
n2 + 1

< 1
n2

for all positive integers n, the kth partial sum Sk of ∑
n = 1

∞
1

n2 + 1
satisfies

Sk = ∑
n = 1

k
1

n2 + 1
< ∑

n = 1

k
1
n2 < ∑

n = 1

∞
1
n2.

(See Figure 5.16(a) and Table 5.1.) Since the series on the right converges, the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded above. We

conclude that
⎧

⎩
⎨Sk

⎫

⎭
⎬ is a monotone increasing sequence that is bounded above. Therefore, by the Monotone Convergence

Theorem,
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges, and thus

∑
n = 1

∞
1

n2 + 1

converges.

Similarly, consider the series

∑
n = 1

∞
1

n − 1/2.

This series looks similar to the divergent series

∑
n = 1

∞
1
n.

The sequence of partial sums for each series is monotone increasing and
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1
n − 1/2 > 1

n > 0

for every positive integer n. Therefore, the kth partial sum Sk of ∑
n = 1

∞
1

n − 1/2 satisfies

Sk = ∑
n = 1

k
1

n − 1/2 > ∑
n = 1

k
1
n.

(See Figure 5.16(b) and Table 5.2.) Since the series ∑
n = 1

∞
1/n diverges to infinity, the sequence of partial sums ∑

n = 1

k
1/n

is unbounded. Consequently,
⎧

⎩
⎨Sk

⎫

⎭
⎬ is an unbounded sequence, and therefore diverges. We conclude that

∑
n = 1

∞
1

n − 1/2

diverges.

Figure 5.16 (a) Each of the partial sums for the given series is less than the corresponding
partial sum for the converging p − series. (b) Each of the partial sums for the given series is

greater than the corresponding partial sum for the diverging harmonic series.

k 1 2 3 4 5 6 7 8

∑
n = 1

k
1

n2 + 1
0.5 0.7 0.8 0.8588 0.8973 0.9243 0.9443 0.9597

∑
n = 1

k
1
n2 1 1.25 1.3611 1.4236 1.4636 1.4914 1.5118 1.5274

Table 5.1 Comparing a series with a p-series (p = 2)
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k 1 2 3 4 5 6 7 8

∑
n = 1

k
1

n − 1/2 2 2.6667 3.0667 3.3524 3.5746 3.7564 3.9103 4.0436

∑
n = 1

k
1
n 1 1.5 1.8333 2.0933 2.2833 2.45 2.5929 2.7179

Table 5.2 Comparing a series with the harmonic series

Theorem 5.11: Comparison Test

i. Suppose there exists an integer N such that 0 ≤ an ≤ bn for all n ≥ N. If ∑
n = 1

∞
bn converges, then

∑
n = 1

∞
an converges.

ii. Suppose there exists an integer N such that an ≥ bn ≥ 0 for all n ≥ N. If ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an

diverges.

Proof

We prove part i. The proof of part ii. is the contrapositive of part i. Let
⎧

⎩
⎨Sk

⎫

⎭
⎬ be the sequence of partial sums associated with

∑
n = 1

∞
an, and let L = ∑

n = 1

∞
bn. Since the terms an ≥ 0,

Sk = a1 + a2 + ⋯ + ak ≤ a1 + a2 + ⋯ + ak + ak + 1 = Sk + 1.

Therefore, the sequence of partial sums is increasing. Further, since an ≤ bn for all n ≥ N, then

∑
n = N

k
an ≤ ∑

n = N

k
bn ≤ ∑

n = 1

∞
bn = L.

Therefore, for all k ≥ 1,

Sk = (a1 + a2 + ⋯ + aN − 1) + ∑
n = N

k
an ≤ (a1 + a2 + ⋯ + aN − 1) + L.

Since a1 + a2 + ⋯ + aN − 1 is a finite number, we conclude that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded above. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ is

an increasing sequence that is bounded above. By the Monotone Convergence Theorem, we conclude that
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges,

and therefore the series ∑
n = 1

∞
an converges.

□

To use the comparison test to determine the convergence or divergence of a series ∑
n = 1

∞
an, it is necessary to find a suitable

series with which to compare it. Since we know the convergence properties of geometric series and p-series, these series are
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often used. If there exists an integer N such that for all n ≥ N, each term an is less than each corresponding term of a

known convergent series, then ∑
n = 1

∞
an converges. Similarly, if there exists an integer N such that for all n ≥ N, each

term an is greater than each corresponding term of a known divergent series, then ∑
n = 1

∞
an diverges.

Example 5.17

Using the Comparison Test

For each of the following series, use the comparison test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
1

n3 + 3n + 1

b. ∑
n = 1

∞
1

2n + 1

c. ∑
n = 2

∞
1

ln(n)

Solution

a. Compare to ∑
n = 1

∞
1
n3 Since ∑

n = 1

∞
1
n3 is a p-series with p = 3, it converges. Further,

1
n3 + 3n + 1

< 1
n3

for every positive integer n. Therefore, we can conclude that ∑
n = 1

∞
1

n3 + 3n + 1
converges.

b. Compare to ∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n
. Since ∑

n = 1

∞
⎛
⎝
1
2

⎞
⎠
n

is a geometric series with r = 1/2 and |1/2| < 1, it

converges. Also,

1
2n + 1

< 1
2n

for every positive integer n. Therefore, we see that ∑
n = 1

∞
1

2n + 1
converges.

c. Compare to ∑
n = 2

∞
1
n. Since

1
ln(n) > 1

n

for every integer n ≥ 2 and ∑
n = 2

∞
1/n diverges, we have that ∑

n = 2

∞
1

ln(n) diverges.
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5.16
Use the comparison test to determine if the series ∑

n = 1

∞
n

n3 + n + 1
converges or diverges.

Limit Comparison Test
The comparison test works nicely if we can find a comparable series satisfying the hypothesis of the test. However,
sometimes finding an appropriate series can be difficult. Consider the series

∑
n = 2

∞
1

n2 − 1
.

It is natural to compare this series with the convergent series

∑
n = 2

∞
1
n2.

However, this series does not satisfy the hypothesis necessary to use the comparison test because

1
n2 − 1

> 1
n2

for all integers n ≥ 2. Although we could look for a different series with which to compare ∑
n = 2

∞
1/(n2 − 1), instead we

show how we can use the limit comparison test to compare

∑
n = 2

∞
1

n2 − 1
and ∑

n = 2

∞
1
n2.

Let us examine the idea behind the limit comparison test. Consider two series ∑
n = 1

∞
an and ∑

n = 1

∞
bn. with positive terms

an and bn and evaluate

limn → ∞
an
bn

.

If

limn → ∞
an
bn

= L ≠ 0,

then, for n sufficiently large, an ≈ Lbn. Therefore, either both series converge or both series diverge. For the series

∑
n = 2

∞
1/(n2 − 1) and ∑

n = 2

∞
1/n2, we see that

limn → ∞
1/(n2 − 1)

1/n2 = limn → ∞
n2

n2 − 1
= 1.

Since ∑
n = 2

∞
1/n2 converges, we conclude that

∑
n = 2

∞
1

n2 − 1

converges.

The limit comparison test can be used in two other cases. Suppose

limn → ∞
an
bn

= 0.
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In this case, ⎧

⎩
⎨an /bn

⎫

⎭
⎬ is a bounded sequence. As a result, there exists a constant M such that an ≤ Mbn. Therefore, if

∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges. On the other hand, suppose

limn → ∞
an
bn

= ∞.

In this case, ⎧

⎩
⎨an /bn

⎫

⎭
⎬ is an unbounded sequence. Therefore, for every constant M there exists an integer N such that

an ≥ Mbn for all n ≥ N. Therefore, if ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges as well.

Theorem 5.12: Limit Comparison Test

Let an, bn ≥ 0 for all n ≥ 1.

i. If limn → ∞an /bn = L ≠ 0, then ∑
n = 1

∞
an and ∑

n = 1

∞
bn both converge or both diverge.

ii. If limn → ∞an /bn = 0 and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges.

iii. If limn → ∞an /bn = ∞ and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges.

Note that if an /bn → 0 and ∑
n = 1

∞
bn diverges, the limit comparison test gives no information. Similarly, if an /bn → ∞

and ∑
n = 1

∞
bn converges, the test also provides no information. For example, consider the two series ∑

n = 1

∞
1/ n and

∑
n = 1

∞
1/n2. These series are both p-series with p = 1/2 and p = 2, respectively. Since p = 1/2 > 1, the series

∑
n = 1

∞
1/ n diverges. On the other hand, since p = 2 < 1, the series ∑

n = 1

∞
1/n2 converges. However, suppose we

attempted to apply the limit comparison test, using the convergent p − series ∑
n = 1

∞
1/n3 as our comparison series. First,

we see that

1/ n
1/n3 = n3

n = n5/2 → ∞ as n → ∞.

Similarly, we see that

1/n2

1/n3 = n → ∞ as n → ∞.

Therefore, if an /bn → ∞ when ∑
n = 1

∞
bn converges, we do not gain any information on the convergence or divergence of

∑
n = 1

∞
an.
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Example 5.18

Using the Limit Comparison Test

For each of the following series, use the limit comparison test to determine whether the series converges or
diverges. If the test does not apply, say so.

a. ∑
n = 1

∞
1

n + 1

b. ∑
n = 1

∞
2n + 1

3n

c. ∑
n = 1

∞ ln(n)
n2

Solution

a. Compare this series to ∑
n = 1

∞
1
n. Calculate

limn → ∞
1/( n + 1)

1/ n = limn → ∞
n

n + 1 = limn → ∞
1 / n

1 + 1/ n = 1.

By the limit comparison test, since ∑
n = 1

∞
1
n diverges, then ∑

n = 1

∞
1

n + 1 diverges.

b. Compare this series to ∑
n = 1

∞
⎛
⎝
2
3

⎞
⎠

n
. We see that

limn → ∞
(2n + 1)/3n

2n /3n = limn → ∞
2n + 1

3n · 3n

2n = limn → ∞
2n + 1

2n = limn → ∞
⎡
⎣1 + ⎛

⎝
1
2

⎞
⎠
n⎤
⎦ = 1.

Therefore,

limn → ∞
(2n + 1)/3n

2n /3n = 1.

Since ∑
n = 1

∞
⎛
⎝
2
3

⎞
⎠

n
converges, we conclude that ∑

n = 1

∞
2n + 1

3n converges.

c. Since lnn < n, compare with ∑
n = 1

∞
1
n. We see that

limn → ∞
lnn/n2

1/n = limn → ∞
lnn
n2 · n

1 = limn → ∞
lnn
n .

In order to evaluate limn → ∞lnn/n, evaluate the limit as x → ∞ of the real-valued function ln(x)/x.

These two limits are equal, and making this change allows us to use L’Hôpital’s rule. We obtain

limx → ∞
lnx
x = limx → ∞

1
x = 0.

Chapter 5 | Sequences and Series 491



5.17

Therefore, limn → ∞lnn/n = 0, and, consequently,

limn → ∞
lnn/n2

1/n = 0.

Since the limit is 0 but ∑
n = 1

∞
1
n diverges, the limit comparison test does not provide any information.

Compare with ∑
n = 1

∞
1
n2 instead. In this case,

limn → ∞
ln n/n2

1/n2 = limn → ∞
ln n
n2 · n2

1 = limn → ∞lnn = ∞.

Since the limit is ∞ but ∑
n = 1

∞
1
n2 converges, the test still does not provide any information.

So now we try a series between the two we already tried. Choosing the series ∑
n = 1

∞
1

n3/2, we see that

limn → ∞
lnn/n2

1/n3/2 = limn → ∞
lnn
n2 · n3/2

1 = limn → ∞
lnn

n .

As above, in order to evaluate limn → ∞lnn/ n, evaluate the limit as x → ∞ of the real-valued function

lnx/ x. Using L’Hôpital’s rule,

limx → ∞
lnx

x = limx → ∞
2 x

x = limx → ∞
2
x = 0.

Since the limit is 0 and ∑
n = 1

∞
1

n3/2 converges, we can conclude that ∑
n = 1

∞
lnn
n2 converges.

Use the limit comparison test to determine whether the series ∑
n = 1

∞
5n

3n + 2
converges or diverges.
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5.4 EXERCISES
Use the comparison test to determine whether the following
series converge.

194. ∑
n = 1

∞
an where an = 2

n(n + 1)

195. ∑
n = 1

∞
an where an = 1

n(n + 1/2)

196. ∑
n = 1

∞
1

2(n + 1)

197. ∑
n = 1

∞
1

2n − 1

198. ∑
n = 2

∞
1

(n lnn)2

199. ∑
n = 1

∞
n!

(n + 2)!

200. ∑
n = 1

∞
1
n!

201. ∑
n = 1

∞ sin(1/n)
n

202. ∑
n = 1

∞
sin2 n

n2

203. ∑
n = 1

∞ sin(1/n)
n

204. ∑
n = 1

∞
n1.2 − 1
n2.3 + 1

205. ∑
n = 1

∞
n + 1 − n

n

206. ∑
n = 1

∞
n4

n4 + n23

Use the limit comparison test to determine whether each of
the following series converges or diverges.

207. ∑
n = 1

∞
⎛
⎝
lnn
n

⎞
⎠
2

208. ∑
n = 1

∞ ⎛
⎝

lnn
n0.6

⎞
⎠

2

209. ∑
n = 1

∞ ln⎛
⎝1 + 1

n
⎞
⎠

n

210. ∑
n = 1

∞
ln⎛

⎝1 + 1
n2

⎞
⎠

211. ∑
n = 1

∞
1

4n − 3n

212. ∑
n = 1

∞
1

n2 − nsinn

213. ∑
n = 1

∞
1

e(1.1)n − 3n

214. ∑
n = 1

∞
1

e(1.01)n − 3n

215. ∑
n = 1

∞
1

n1 + 1/n

216. ∑
n = 1

∞
1

21 + 1/n n1 + 1/n

217. ∑
n = 1

∞
⎛
⎝
1
n − sin⎛

⎝
1
n

⎞
⎠
⎞
⎠

218. ∑
n = 1

∞
⎛
⎝1 − cos⎛

⎝
1
n

⎞
⎠
⎞
⎠

219. ∑
n = 1

∞
1
n

⎛
⎝tan−1 n − π

2
⎞
⎠

220. ∑
n = 1

∞
⎛
⎝1 − 1

n
⎞
⎠
n.n

(Hint: ⎛
⎝1 − 1

n
⎞
⎠
n

→ 1/e.)

221. ∑
n = 1

∞
⎛
⎝1 − e−1/n⎞

⎠ (Hint: 1/e ≈ (1 − 1/n)n, so

1 − e−1/n ≈ 1/n.)

222. Does ∑
n = 2

∞
1

(lnn) p converge if p is large enough?

If so, for which p?

Chapter 5 | Sequences and Series 493



223. Does ∑
n = 1

∞ ⎛
⎝
(lnn)

n
⎞
⎠

p
converge if p is large enough?

If so, for which p?

224. For which p does the series ∑
n = 1

∞
2 pn /3n

converge?

225. For which p > 0 does the series ∑
n = 1

∞
n p

2n

converge?

226. For which r > 0 does the series ∑
n = 1

∞
rn2

2n

converge?

227. For which r > 0 does the series ∑
n = 1

∞
2n

rn2

converge?

228. Find all values of p and q such that ∑
n = 1

∞
n p

(n!)q

converges.

229. Does ∑
n = 1

∞ sin2 (nr/2)
n converge or diverge?

Explain.

230. Explain why, for each n, at least one of

{|sinn|, |sin(n + 1)|,..., |sinn + 6|} is larger than 1/2.

Use this relation to test convergence of ∑
n = 1

∞ |sinn|
n .

231. Suppose that an ≥ 0 and bn ≥ 0 and that

∑
n = 1

∞
a2

n and ∑
n = 1

∞
b2

n converge. Prove that ∑
n = 1

∞
an bn

converges and ∑
n = 1

∞
an bn ≤ 1

2
⎛

⎝
⎜ ∑
n = 1

∞
an

2 + ∑
n = 1

∞
bn

2
⎞

⎠
⎟.

232. Does ∑
n = 1

∞
2−lnlnn converge? (Hint: Write 2lnlnn

as a power of lnn.)

233. Does ∑
n = 1

∞
(lnn)−lnn converge? (Hint: Use

t = eln(t)
to compare to a p − series.)

234. Does ∑
n = 2

∞
(lnn)−lnlnn converge? (Hint: Compare

an to 1/n.)

235. Show that if an ≥ 0 and ∑
n = 1

∞
an converges, then

∑
n = 1

∞
a2

n converges. If ∑
n = 1

∞
a2

n converges, does

∑
n = 1

∞
an necessarily converge?

236. Suppose that an > 0 for all n and that ∑
n = 1

∞
an

converges. Suppose that bn is an arbitrary sequence of

zeros and ones. Does ∑
n = 1

∞
anbn necessarily converge?

237. Suppose that an > 0 for all n and that ∑
n = 1

∞
an

diverges. Suppose that bn is an arbitrary sequence of zeros

and ones with infinitely many terms equal to one. Does

∑
n = 1

∞
anbn necessarily diverge?

238. Complete the details of the following argument: If

∑
n = 1

∞
1
n converges to a finite sum s, then

1
2s = 1

2 + 1
4 + 1

6 + ⋯ and s − 1
2s = 1 + 1

3 + 1
5 + ⋯.

Why does this lead to a contradiction?

239. Show that if an ≥ 0 and ∑
n = 1

∞
a2

n converges, then

∑
n = 1

∞
sin2 (an) converges.

240. Suppose that an /bn → 0 in the comparison test,

where an ≥ 0 and bn ≥ 0. Prove that if ∑ bn

converges, then ∑ an converges.

241. Let bn be an infinite sequence of zeros and ones.

What is the largest possible value of x = ∑
n = 1

∞
bn /2n?
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242. Let dn be an infinite sequence of digits, meaning

dn takes values in {0, 1,…, 9}. What is the largest

possible value of x = ∑
n = 1

∞
dn /10n that converges?

243. Explain why, if x > 1/2, then x cannot be written

x = ∑
n = 2

∞ bn
2n

⎛
⎝bn = 0 or 1, b1 = 0⎞

⎠.

244. [T] Evelyn has a perfect balancing scale, an
unlimited number of 1 -kg weights, and one each of

1/2 -kg, 1/4 -kg, 1/8 -kg, and so on weights. She

wishes to weigh a meteorite of unspecified origin to
arbitrary precision. Assuming the scale is big enough, can
she do it? What does this have to do with infinite series?

245. [T] Robert wants to know his body mass to arbitrary
precision. He has a big balancing scale that works perfectly,
an unlimited collection of 1 -kg weights, and nine each

of 0.1 -kg, 0.01 -kg, 0.001 -kg, and so on weights.

Assuming the scale is big enough, can he do this? What
does this have to do with infinite series?

246. The series ∑
n = 1

∞
1
2n is half the harmonic series and

hence diverges. It is obtained from the harmonic series by
deleting all terms in which n is odd. Let m > 1 be fixed.

Show, more generally, that deleting all terms 1/n where

n = mk for some integer k also results in a divergent

series.

247. In view of the previous exercise, it may be surprising
that a subseries of the harmonic series in which about one
in every five terms is deleted might converge. A depleted

harmonic series is a series obtained from ∑
n = 1

∞
1
n by

removing any term 1/n if a given digit, say 9, appears

in the decimal expansion of n. Argue that this depleted

harmonic series converges by answering the following
questions.

a. How many whole numbers n have d digits?

b. How many d-digit whole numbers h(d). do not

contain 9 as one or more of their digits?

c. What is the smallest d-digit number m(d)?
d. Explain why the deleted harmonic series is

bounded by ∑
d = 1

∞ h(d)
m(d).

e. Show that ∑
d = 1

∞ h(d)
m(d) converges.

248. Suppose that a sequence of numbers an > 0 has

the property that a1 = 1 and an + 1 = 1
n + 1Sn, where

Sn = a1 + ⋯ + an. Can you determine whether ∑
n = 1

∞
an

converges? (Hint: Sn is monotone.)

249. Suppose that a sequence of numbers an > 0 has the

property that a1 = 1 and an + 1 = 1
(n + 1)2Sn, where

Sn = a1 + ⋯ + an. Can you determine whether ∑
n = 1

∞
an

converges? (Hint:
S2 = a2 + a1 = a2 + S1 = a2 + 1 = 1 + 1/4 = (1 + 1/4)S1,

S3 = 1
32S2 + S2 = (1 + 1/9)S2 = (1 + 1/9)(1 + 1/4)S1,

etc. Look at ln(Sn), and use ln(1 + t) ≤ t, t > 0.)
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5.5 | Alternating Series

Learning Objectives
5.5.1 Use the alternating series test to test an alternating series for convergence.

5.5.2 Estimate the sum of an alternating series.

5.5.3 Explain the meaning of absolute convergence and conditional convergence.

So far in this chapter, we have primarily discussed series with positive terms. In this section we introduce alternating
series—those series whose terms alternate in sign. We will show in a later chapter that these series often arise when studying
power series. After defining alternating series, we introduce the alternating series test to determine whether such a series
converges.

The Alternating Series Test
A series whose terms alternate between positive and negative values is an alternating series. For example, the series

(5.11)∑
n = 1

∞
⎛
⎝−

1
2

⎞
⎠
n

= − 1
2 + 1

4 − 1
8 + 1

16 − ⋯

and

(5.12)∑
n = 1

∞ (−1)n + 1
n = 1 − 1

2 + 1
3 − 1

4 + ⋯

are both alternating series.

Definition

Any series whose terms alternate between positive and negative values is called an alternating series. An alternating
series can be written in the form

(5.13)∑
n = 1

∞
(−1)n + 1 bn = b1 − b2 + b3 − b4 + ⋯

or

(5.14)∑
n − 1

∞
(−1)n bn = −b1 + b2 − b3 + b4 − ⋯

Where bn ≥ 0 for all positive integers n.

Series (1), shown in Equation 5.11, is a geometric series. Since |r| = |−1/2| < 1, the series converges. Series (2), shown

in Equation 5.12, is called the alternating harmonic series. We will show that whereas the harmonic series diverges, the
alternating harmonic series converges.

To prove this, we look at the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ (Figure 5.17).

Proof

Consider the odd terms S2k + 1 for k ≥ 0. Since 1/(2k + 1) < 1/2k,

S2k + 1 = S2k − 1 − 1
2k + 1

2k + 1 < S2k − 1.

Therefore,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is a decreasing sequence. Also,

S2k + 1 = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯ + ⎛

⎝
1

2k − 1 − 1
2k

⎞
⎠ + 1

2k + 1 > 0.
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Therefore,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is bounded below. Since

⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is a decreasing sequence that is bounded below, by the Monotone

Convergence Theorem,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ converges. Similarly, the even terms

⎧

⎩
⎨S2k

⎫

⎭
⎬ form an increasing sequence that is bounded

above because

S2k = S2k − 2 + 1
2k − 1 − 1

2k > S2k − 2

and

S2k = 1 + ⎛
⎝−

1
2 + 1

3
⎞
⎠ + ⋯ + ⎛

⎝−
1

2k − 2 + 1
2k − 1

⎞
⎠ − 1

2k < 1.

Therefore, by the Monotone Convergence Theorem, the sequence
⎧

⎩
⎨S2k

⎫

⎭
⎬ also converges. Since

S2k + 1 = S2k + 1
2k + 1,

we know that

lim
k → ∞

S2k + 1 = lim
k → ∞

S2k + lim
k → ∞

1
2k + 1.

Letting S = lim
k → ∞

S2k + 1 and using the fact that 1/(2k + 1) → 0, we conclude that lim
k → ∞

S2k = S. Since the odd terms

and the even terms in the sequence of partial sums converge to the same limit S, it can be shown that the sequence of

partial sums converges to S, and therefore the alternating harmonic series converges to S.

It can also be shown that S = ln2, and we can write

∑
n = 1

∞ (−1)n + 1
n = 1 − 1

2 + 1
3 − 1

4 + ⋯ = ln(2).

Figure 5.17 For the alternating harmonic series, the odd terms
S2k + 1 in the sequence of partial sums are decreasing and

bounded below. The even terms S2k are increasing and

bounded above.

□

More generally, any alternating series of form (3) (Equation 5.13) or (4) (Equation 5.14) converges as long as
b1 ≥ b2 ≥ b3 ≥ ⋯ and bn → 0 (Figure 5.18). The proof is similar to the proof for the alternating harmonic series.
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Figure 5.18 For an alternating series b1 − b2 + b3 − ⋯ in

which b1 > b2 > b3 > ⋯, the odd terms S2k + 1 in the

sequence of partial sums are decreasing and bounded below. The
even terms S2k are increasing and bounded above.

Theorem 5.13: Alternating Series Test

An alternating series of the form

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

converges if

i. 0 ≤ bn + 1 ≤ bn for all n ≥ 1 and

ii. limn → ∞bn = 0.

This is known as the alternating series test.

We remark that this theorem is true more generally as long as there exists some integer N such that 0 ≤ bn + 1 ≤ bn for

all n ≥ N.

Example 5.19

Convergence of Alternating Series

For each of the following alternating series, determine whether the series converges or diverges.

a. ∑
n = 1

∞
(−1)n + 1 /n2

b. ∑
n = 1

∞
(−1)n + 1 n/(n + 1)

Solution

a. Since
1

(n + 1)2 < 1
n2 and 1

n2 → 0,

the series converges.

b. Since n/(n + 1) ↛ 0 as n → ∞, we cannot apply the alternating series test. Instead, we use the nth
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5.18

term test for divergence. Since

limn → ∞
(−1)n + 1 n

n + 1 ≠ 0,

the series diverges.

Determine whether the series ∑
n = 1

∞
(−1)n + 1 n/2n converges or diverges.

Remainder of an Alternating Series
It is difficult to explicitly calculate the sum of most alternating series, so typically the sum is approximated by using a partial
sum. When doing so, we are interested in the amount of error in our approximation. Consider an alternating series

∑
n = 1

∞
(−1)n + 1 bn

satisfying the hypotheses of the alternating series test. Let S denote the sum of this series and
⎧

⎩
⎨Sk

⎫

⎭
⎬ be the corresponding

sequence of partial sums. From Figure 5.18, we see that for any integer N ≥ 1, the remainder RN satisfies

|RN| = |S − SN| ≤ |SN + 1 − SN| = bn + 1.

Theorem 5.14: Remainders in Alternating Series

Consider an alternating series of the form

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

that satisfies the hypotheses of the alternating series test. Let S denote the sum of the series and SN denote the Nth
partial sum. For any integer N ≥ 1, the remainder RN = S − SN satisfies

|RN| ≤ bN + 1.

In other words, if the conditions of the alternating series test apply, then the error in approximating the infinite series by the
Nth partial sum SN is in magnitude at most the size of the next term bN + 1.

Example 5.20

Estimating the Remainder of an Alternating Series

Consider the alternating series

∑
n = 1

∞ (−1)n + 1

n2 .

Use the remainder estimate to determine a bound on the error R10 if we approximate the sum of the series by the

partial sum S10.
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Solution

From the theorem stated above,

|R10| ≤ b11 = 1
112 ≈ 0.008265.

Find a bound for R20 when approximating ∑
n = 1

∞
(−1)n + 1 /n by S20.

Absolute and Conditional Convergence

Consider a series ∑
n = 1

∞
an and the related series ∑

n = 1

∞
|an|. Here we discuss possibilities for the relationship between

the convergence of these two series. For example, consider the alternating harmonic series ∑
n = 1

∞
(−1)n + 1/n. The series

whose terms are the absolute value of these terms is the harmonic series, since ∑
n = 1

∞
|(−1)n + 1 /n| = ∑

n = 1

∞
1/n. Since the

alternating harmonic series converges, but the harmonic series diverges, we say the alternating harmonic series exhibits
conditional convergence.

By comparison, consider the series ∑
n = 1

∞
(−1)n + 1/n2. The series whose terms are the absolute values of the terms of this

series is the series ∑
n = 1

∞
1/n2. Since both of these series converge, we say the series ∑

n = 1

∞
(−1)n + 1/n2 exhibits absolute

convergence.

Definition

A series ∑
n = 1

∞
an exhibits absolute convergence if ∑

n = 1

∞
|an| converges. A series ∑

n = 1

∞
an exhibits conditional

convergence if ∑
n = 1

∞
an converges but ∑

n = 1

∞
|an| diverges.

As shown by the alternating harmonic series, a series ∑
n = 1

∞
an may converge, but ∑

n = 1

∞
|an| may diverge. In the following

theorem, however, we show that if ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

Theorem 5.15: Absolute Convergence Implies Convergence

If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.
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Proof

Suppose that ∑
n = 1

∞
|an| converges. We show this by using the fact that an = |an| or an = −|an| and therefore

|an| + an = 2|an| or |an| + an = 0. Therefore, 0 ≤ |an| + an ≤ 2|an|. Consequently, by the comparison test, since

2 ∑
n = 1

∞
|an| converges, the series

∑
n = 1

∞
(|an| + an)

converges. By using the algebraic properties for convergent series, we conclude that

∑
n = 1

∞
an = ∑

n = 1

∞
(|an| + an)− ∑

n = 1

∞
|an|

converges.

□

Example 5.21

Absolute versus Conditional Convergence

For each of the following series, determine whether the series converges absolutely, converges conditionally, or
diverges.

a. ∑
n = 1

∞
(−1)n + 1 /(3n + 1)

b. ∑
n = 1

∞
cos(n)/n2

Solution

a. We can see that

∑
n = 1

∞ |(−1)n + 1

3n + 1 | = ∑
n = 1

∞
1

3n + 1

diverges by using the limit comparison test with the harmonic series. In fact,

limn → ∞
1/(3n + 1)

1/n = 1
3.

Therefore, the series does not converge absolutely. However, since

1
3(n + 1) + 1 < 1

3n + 1 and 1
3n + 1 → 0,

the series converges. We can conclude that ∑
n = 1

∞
(−1)n + 1 /(3n + 1) converges conditionally.

b. Noting that |cosn| ≤ 1, to determine whether the series converges absolutely, compare
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5.20

∑
n = 1

∞ |cosn
n2 |

with the series ∑
n = 1

∞
1/n2. Since ∑

n = 1

∞
1/n2 converges, by the comparison test, ∑

n = 1

∞
|cosn/n2|

converges, and therefore ∑
n = 1

∞
cosn/n2 converges absolutely.

Determine whether the series ∑
n = 1

∞
(−1)n + 1 n/(2n3 + 1) converges absolutely, converges

conditionally, or diverges.

To see the difference between absolute and conditional convergence, look at what happens when we rearrange the terms of

the alternating harmonic series ∑
n = 1

∞
(−1)n + 1 /n. We show that we can rearrange the terms so that the new series diverges.

Certainly if we rearrange the terms of a finite sum, the sum does not change. When we work with an infinite sum, however,
interesting things can happen.

Begin by adding enough of the positive terms to produce a sum that is larger than some real number M > 0. For example,

let M = 10, and find an integer k such that

1 + 1
3 + 1

5 + ⋯ + 1
2k − 1 > 10.

(We can do this because the series ∑
n = 1

∞
1/(2n − 1) diverges to infinity.) Then subtract 1/2. Then add more positive terms

until the sum reaches 100. That is, find another integer j > k such that

1 + 1
3 + ⋯ + 1

2k − 1 − 1
2 + 1

2k + 1 + ⋯ + 1
2 j + 1 > 100.

Then subtract 1/4. Continuing in this way, we have found a way of rearranging the terms in the alternating harmonic series

so that the sequence of partial sums for the rearranged series is unbounded and therefore diverges.

The terms in the alternating harmonic series can also be rearranged so that the new series converges to a different value. In
Example 5.22, we show how to rearrange the terms to create a new series that converges to 3ln(2)/2. We point out that

the alternating harmonic series can be rearranged to create a series that converges to any real number r; however, the proof

of that fact is beyond the scope of this text.

In general, any series ∑
n = 1

∞
an that converges conditionally can be rearranged so that the new series diverges or converges

to a different real number. A series that converges absolutely does not have this property. For any series ∑
n = 1

∞
an that

converges absolutely, the value of ∑
n = 1

∞
an is the same for any rearrangement of the terms. This result is known as the

Riemann Rearrangement Theorem, which is beyond the scope of this book.
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Example 5.22

Rearranging Series

Use the fact that

1 − 1
2 + 1

3 − 1
4 + 1

5 − ⋯ = ln2

to rearrange the terms in the alternating harmonic series so the sum of the rearranged series is 3ln(2)/2.

Solution

Let

∑
n = 1

∞
an = 1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + 1
7 − 1

8 + ⋯.

Since ∑
n = 1

∞
an = ln(2), by the algebraic properties of convergent series,

∑
n = 1

∞
1
2an = 1

2 − 1
4 + 1

6 − 1
8 + ⋯ = 1

2 ∑
n = 1

∞
an = ln2

2 .

Now introduce the series ∑
n = 1

∞
bn such that for all n ≥ 1, b2n − 1 = 0 and b2n = an /2. Then

∑
n = 1

∞
bn = 0 + 1

2 + 0 − 1
4 + 0 + 1

6 + 0 − 1
8 + ⋯ = ln2

2 .

Then using the algebraic limit properties of convergent series, since ∑
n = 1

∞
an and ∑

n = 1

∞
bn converge, the series

∑
n = 1

∞
(an + bn) converges and

∑
n = 1

∞
(an + bn) = ∑

n = 1

∞
an + ∑

n = 1

∞
bn = ln2 + ln2

2 = 3ln2
2 .

Now adding the corresponding terms, an and bn, we see that

∑
n = 1

∞
(an + bn) = (1 + 0) + ⎛

⎝−
1
2 + 1

2
⎞
⎠ + ⎛

⎝
1
3 + 0⎞

⎠ + ⎛
⎝−

1
4 − 1

4
⎞
⎠ + ⎛

⎝
1
5 + 0⎞

⎠ + ⎛
⎝−

1
6 + 1

6
⎞
⎠

+⎛
⎝
1
7 + 0⎞

⎠ + ⎛
⎝
1
8 − 1

8
⎞
⎠ + ⋯

= 1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + ⋯.

We notice that the series on the right side of the equal sign is a rearrangement of the alternating harmonic series.

Since ∑
n = 1

∞
(an + bn) = 3ln(2)/2, we conclude that

1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + ⋯ = 3ln(2)

2 .

Chapter 5 | Sequences and Series 503



Therefore, we have found a rearrangement of the alternating harmonic series having the desired property.
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5.5 EXERCISES
State whether each of the following series converges
absolutely, conditionally, or not at all.

250. ∑
n = 1

∞
(−1)n + 1 n

n + 3

251. ∑
n = 1

∞
(−1)n + 1 n + 1

n + 3

252. ∑
n = 1

∞
(−1)n + 1 1

n + 3

253. ∑
n = 1

∞
(−1)n + 1 n + 3

n

254. ∑
n = 1

∞
(−1)n + 1 1

n!

255. ∑
n = 1

∞
(−1)n + 1 3n

n!

256. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
n − 1

n
⎞
⎠
n

257. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
n + 1

n
⎞
⎠
n

258. ∑
n = 1

∞
(−1)n + 1 sin2 n

259. ∑
n = 1

∞
(−1)n + 1 cos2 n

260. ∑
n = 1

∞
(−1)n + 1 sin2 (1/n)

261. ∑
n = 1

∞
(−1)n + 1 cos2 (1/n)

262. ∑
n = 1

∞
(−1)n + 1 ln(1/n)

263. ∑
n = 1

∞
(−1)n + 1 ln⎛

⎝1 + 1
n

⎞
⎠

264. ∑
n = 1

∞
(−1)n + 1 n2

1 + n4

265. ∑
n = 1

∞
(−1)n + 1 ne

1 + nπ

266. ∑
n = 1

∞
(−1)n + 1 21/n

267. ∑
n = 1

∞
(−1)n + 1 n1/n

268. ∑
n = 1

∞
(−1)n ⎛

⎝1 − n1/n⎞
⎠ (Hint: n1/n ≈ 1 + ln(n)/n

for large n.)

269. ∑
n = 1

∞
(−1)n + 1 n⎛

⎝1 − cos⎛
⎝
1
n

⎞
⎠
⎞
⎠ (Hint:

cos(1/n) ≈ 1 − 1/n2 for large n.)

270. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝ n + 1 − n⎞
⎠ (Hint: Rationalize the

numerator.)

271. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠ (Hint: Cross-

multiply then rationalize numerator.)

272. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝ln(n + 1) − ln n⎞
⎠

273. ∑
n = 1

∞
(−1)n + 1 n⎛

⎝tan−1 (n + 1) − tan−1 n⎞
⎠ (Hint:

Use Mean Value Theorem.)

274. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝(n + 1)2 − n2⎞
⎠

275. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠

276. ∑
n = 1

∞ cos(nπ)
n

277. ∑
n = 1

∞ cos(nπ)
n1/n

278. ∑
n = 1

∞
1
n sin⎛

⎝
nπ
2

⎞
⎠
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279. ∑
n = 1

∞
sin(nπ/2)sin(1/n)

In each of the following problems, use the estimate

|RN| ≤ bN + 1 to find a value of N that guarantees that

the sum of the first N terms of the alternating series

∑
n = 1

∞
(−1)n + 1 bn differs from the infinite sum by at most

the given error. Calculate the partial sum SN for this N.

280. [T] bn = 1/n, error < 10−5

281. [T] bn = 1/ln(n), n ≥ 2, error < 10−1

282. [T] bn = 1/ n, error < 10−3

283. [T] bn = 1/2n, error < 10−6

284. [T] bn = ln⎛
⎝1 + 1

n
⎞
⎠, error < 10−3

285. [T] bn = 1/n2, error < 10−6

For the following exercises, indicate whether each of the
following statements is true or false. If the statement is
false, provide an example in which it is false.

286. If bn ≥ 0 is decreasing and limn → ∞bn = 0, then

∑
n = 1

∞
⎛
⎝b2n − 1 − b2n

⎞
⎠ converges absolutely.

287. If bn ≥ 0 is decreasing, then ∑
n = 1

∞
⎛
⎝b2n − 1 − b2n

⎞
⎠

converges absolutely.

288. If bn ≥ 0 and limn → ∞bn = 0 then

∑
n = 1

∞
(1
2(b3n − 2 + b3n − 1)−b3n) converges.

289. If bn ≥ 0 is decreasing and

∑
n = 1

∞
(b3n − 2 + b3n − 1 − b3n) converges then

∑
n = 1

∞
b3n − 2 converges.

290. If bn ≥ 0 is decreasing and ∑
n = 1

∞
(−1)n − 1 bn

converges conditionally but not absolutely, then bn does

not tend to zero.

291. Let an
+ = an if an ≥ 0 and an

− = −an if

an < 0. (Also, an
+ = 0 if an < 0 and

an
− = 0 if an ≥ 0.) If ∑

n = 1

∞
an converges conditionally

but not absolutely, then neither ∑
n = 1

∞
an

+ nor ∑
n = 1

∞
an

−

converge.

292. Suppose that an is a sequence of positive real

numbers and that ∑
n = 1

∞
an converges. Suppose that bn

is an arbitrary sequence of ones and minus ones. Does

∑
n = 1

∞
anbn necessarily converge?

293. Suppose that an is a sequence such that ∑
n = 1

∞
anbn

converges for every possible sequence bn of zeros and

ones. Does ∑
n = 1

∞
an converge absolutely?

The following series do not satisfy the hypotheses of the
alternating series test as stated.

In each case, state which hypothesis is not satisfied. State
whether the series converges absolutely.

294. ∑
n = 1

∞
(−1)n + 1 sin2 n

n

295. ∑
n = 1

∞
(−1)n + 1 cos2 n

n

296. 1 + 1
2 − 1

3 − 1
4 + 1

5 + 1
6 − 1

7 − 1
8 + ⋯

297. 1 + 1
2 − 1

3 + 1
4 + 1

5 − 1
6 + 1

7 + 1
8 − 1

9 + ⋯

298. Show that the alternating series

1 − 1
2 + 1

2 − 1
4 + 1

3 − 1
6 + 1

4 − 1
8 + ⋯ does not

converge. What hypothesis of the alternating series test is
not met?

299. Suppose that ∑ an converges absolutely. Show

that the series consisting of the positive terms an also

converges.
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300. Show that the alternating series
2
3 − 3

5 + 4
7 − 5

9 + ⋯ does not converge. What hypothesis

of the alternating series test is not met?

301. The formula cosθ = 1 − θ2

2! + θ4

4! − θ6

6! + ⋯ will

be derived in the next chapter. Use the remainder

|RN| ≤ bN + 1 to find a bound for the error in estimating

cosθ by the fifth partial sum

1 − θ2 /2! + θ4 /4!−θ6 /6! + θ8 /8! for θ = 1,
θ = π/6, and θ = π.

302. The formula sinθ = θ − θ3

3! + θ5

5! − θ7

7! + ⋯ will

be derived in the next chapter. Use the remainder

|RN| ≤ bN + 1 to find a bound for the error in estimating

sinθ by the fifth partial sum

θ − θ3 /3! + θ5 /5!−θ7 /7! + θ9 /9! for θ = 1,
θ = π/6, and θ = π.

303. How many terms in

cosθ = 1 − θ2

2! + θ4

4! − θ6

6! + ⋯ are needed to

approximate cos1 accurate to an error of at most

0.00001?

304. How many terms in

sinθ = θ − θ3

3! + θ5

5! − θ7

7! + ⋯ are needed to

approximate sin1 accurate to an error of at most

0.00001?

305. Sometimes the alternating series ∑
n = 1

∞
(−1)n − 1bn

converges to a certain fraction of an absolutely convergent

series ∑
n = 1

∞
bn at a faster rate. Given that ∑

n = 1

∞
1
n2 = π2

6 ,

find S = 1 − 1
22 + 1

32 − 1
42 + ⋯. Which of the series

6 ∑
n = 1

∞
1
n2 and S ∑

n = 1

∞ (−1)n − 1

n2 gives a better estimation

of π2 using 1000 terms?

The following alternating series converge to given
multiples of π. Find the value of N predicted by the

remainder estimate such that the Nth partial sum of the

series accurately approximates the left-hand side to within
the given error. Find the minimum N for which the error

bound holds, and give the desired approximate value in
each case. Up to 15 decimals places,

π = 3.141592653589793….

306. [T] π
4 = ∑

n = 0

∞ (−1)n

2n + 1, error < 0.0001

307. [T] π
12

= ∑
k = 0

∞ (−3)−k

2k + 1 , error < 0.0001

308. [T] The series ∑
n = 0

∞ sin(x + πn)
x + πn plays an important

role in signal processing. Show that ∑
n = 0

∞ sin(x + πn)
x + πn

converges whenever 0 < x < π. (Hint: Use the formula

for the sine of a sum of angles.)

309. [T] If ∑
n = 1

N
(−1)n − 1 1

n → ln2, what is

1 + 1
3 + 1

5 − 1
2 − 1

4 − 1
6 + 1

7 + 1
9 + 1

11 − 1
8 − 1

10 − 1
12 + ⋯?

310. [T] Plot the series ∑
n = 1

100 cos(2πnx)
n for 0 ≤ x < 1.

Explain why ∑
n = 1

100 cos(2πnx)
n diverges when x = 0, 1.

How does the series behave for other x?

311. [T] Plot the series ∑
n = 1

100 sin(2πnx)
n for 0 ≤ x < 1

and comment on its behavior

312. [T] Plot the series ∑
n = 1

100 cos(2πnx)
n2 for 0 ≤ x < 1

and describe its graph.

313. [T] The alternating harmonic series converges
because of cancellation among its terms. Its sum is known
because the cancellation can be described explicitly. A

random harmonic series is one of the form ∑
n = 1

∞ Sn
n ,

where sn is a randomly generated sequence of ±1's in

which the values ±1 are equally likely to occur. Use a

random number generator to produce 1000 random ±1s

and plot the partial sums SN = ∑
n = 1

N sn
n of your random

harmonic sequence for N = 1 to 1000. Compare to a plot

of the first 1000 partial sums of the harmonic series.
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314. [T] Estimates of ∑
n = 1

∞
1
n2 can be accelerated by

writing its partial sums as

∑
n = 1

N
1
n2 = ∑

n = 1

N
1

n(n + 1) + ∑
n = 1

N
1

n2(n + 1)
and recalling

that ∑
n = 1

N
1

n(n + 1) = 1 − 1
N + 1 converges to one as

N → ∞. Compare the estimate of π2 /6 using the sums

∑
n = 1

1000
1
n2 with the estimate using 1 + ∑

n = 1

1000
1

n2(n + 1)
.

315. [T] The Euler transform rewrites S = ∑
n = 0

∞
(−1)nbn

as S = ∑
n = 0

∞
(−1)n2−n − 1 ∑

m = 0

n
⎛
⎝
n
m

⎞
⎠bn − m. For the

alternating harmonic series, it takes the form

ln(2) = ∑
n = 1

∞ (−1)n − 1
n = ∑

n = 1

∞
1

n2n. Compute partial

sums of ∑
n = 1

∞
1

n2n until they approximate ln(2) accurate

to within 0.0001. How many terms are needed? Compare

this answer to the number of terms of the alternating
harmonic series are needed to estimate ln(2).

316. [T] In the text it was stated that a conditionally
convergent series can be rearranged to converge to any
number. Here is a slightly simpler, but similar, fact. If

an ≥ 0 is such that an → 0 as n → ∞ but ∑
n = 1

∞
an

diverges, then, given any number A there is a sequence sn

of ±1's such that ∑
n = 1

∞
ansn → A. Show this for A > 0

as follows.
a. Recursively define sn by sn = 1 if

Sn − 1 = ∑
k = 1

n − 1
aksk < A and sn = −1 otherwise.

b. Explain why eventually Sn ≥ A, and for any m
larger than this n, A − am ≤ Sm ≤ A + am.

c. Explain why this implies that Sn → A as n → ∞.
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5.6 | Ratio and Root Tests

Learning Objectives
5.6.1 Use the ratio test to determine absolute convergence of a series.

5.6.2 Use the root test to determine absolute convergence of a series.

5.6.3 Describe a strategy for testing the convergence of a given series.

In this section, we prove the last two series convergence tests: the ratio test and the root test. These tests are particularly
nice because they do not require us to find a comparable series. The ratio test will be especially useful in the discussion of
power series in the next chapter.

Throughout this chapter, we have seen that no single convergence test works for all series. Therefore, at the end of this
section we discuss a strategy for choosing which convergence test to use for a given series.

Ratio Test

Consider a series ∑
n = 1

∞
an. From our earlier discussion and examples, we know that limn → ∞an = 0 is not a sufficient

condition for the series to converge. Not only do we need an → 0, but we need an → 0 quickly enough. For example,

consider the series ∑
n = 1

∞
1/n and the series ∑

n = 1

∞
1/n2. We know that 1/n → 0 and 1/n2 → 0. However, only the series

∑
n = 1

∞
1/n2 converges. The series ∑

n = 1

∞
1/n diverges because the terms in the sequence {1/n} do not approach zero fast

enough as n → ∞. Here we introduce the ratio test, which provides a way of measuring how fast the terms of a series

approach zero.

Theorem 5.16: Ratio Test

Let ∑
n = 1

∞
an be a series with nonzero terms. Let

ρ = limn → ∞|an + 1
an |.

i. If 0 ≤ ρ < 1, then ∑
n = 1

∞
an converges absolutely.

ii. If ρ > 1 or ρ = ∞, then ∑
n = 1

∞
an diverges.

iii. If ρ = 1, the test does not provide any information.

Proof

Let ∑
n = 1

∞
an be a series with nonzero terms.

We begin with the proof of part i. In this case, ρ = limn → ∞|an + 1
an | < 1. Since 0 ≤ ρ < 1, there exists R such that

0 ≤ ρ < R < 1. Let ε = R − ρ > 0. By the definition of limit of a sequence, there exists some integer N such that

||an + 1
an | − ρ| < ε for all n ≥ N.
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Therefore,

|an + 1
an | < ρ + ε = R for all n ≥ N

and, thus,

|aN + 1| < R|aN|
|aN + 2| < R|aN + 1| < R2|aN|
|aN + 3| < R|aN + 2| < R2|aN + 1| < R3|aN|
|aN + 4| < R|aN + 3| < R2|aN + 2| < R3|aN + 1| < R4|aN|
⋮ .

Since R < 1, the geometric series

R|aN| + R2|aN| + R3|aN| + ⋯

converges. Given the inequalities above, we can apply the comparison test and conclude that the series

|aN + 1| + |aN + 2| + |aN + 3| + |aN + 4| + ⋯

converges. Therefore, since

∑
n = 1

∞
|an| = ∑

n = 1

N
|an| + ∑

n = N + 1

∞
|an|

where ∑
n = 1

N
|an| is a finite sum and ∑

n = N + 1

∞
|an| converges, we conclude that ∑

n = 1

∞
|an| converges.

For part ii.

ρ = limn → ∞|an + 1
an | > 1.

Since ρ > 1, there exists R such that ρ > R > 1. Let ε = ρ − R > 0. By the definition of the limit of a sequence, there

exists an integer N such that

||an + 1
an | − ρ| < ε for all n ≥ N.

Therefore,

R = ρ − ε < |an + 1
an | for all n ≥ N,

and, thus,

|aN + 1| > R|aN|
|aN + 2| > R|aN + 1| > R2|aN|
|aN + 3| > R|aN + 2| > R2|aN + 1| > R3|aN|
|aN + 4| > R|aN + 3| > R2|aN + 2| > R3|aN + 1| > R4|aN|.

Since R > 1, the geometric series

R|aN| + R2|aN| + R3|aN| + ⋯

diverges. Applying the comparison test, we conclude that the series

|aN + 1| + |aN + 2| + |aN + 3| + ⋯

510 Chapter 5 | Sequences and Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



diverges, and therefore the series ∑
n = 1

∞
|an| diverges.

For part iii. we show that the test does not provide any information if ρ = 1 by considering the p − series ∑
n = 1

∞
1/n p.

For any real number p,

ρ = limn → ∞
1/(n + 1) p

1/n p = limn → ∞
n p

(n + 1) p = 1.

However, we know that if p ≤ 1, the p − series ∑
n = 1

∞
1/n p diverges, whereas ∑

n = 1

∞
1/n p converges if p > 1.

□

The ratio test is particularly useful for series whose terms contain factorials or exponentials, where the ratio of terms
simplifies the expression. The ratio test is convenient because it does not require us to find a comparative series. The
drawback is that the test sometimes does not provide any information regarding convergence.

Example 5.23

Using the Ratio Test

For each of the following series, use the ratio test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
2n

n!

b. ∑
n = 1

∞
nn

n! ∑
n = 1

∞ (−1)n (n!)2

(2n)!

c. ∑
n = 1

∞ (−1)n (n!)2

(2n)!

Solution

a. From the ratio test, we can see that

ρ = limn → ∞
2n + 1 /(n + 1)!

2n /n!
= limn → ∞

2n + 1

(n + 1)! · n!
2n.

Since (n + 1)! = (n + 1) · n!,

ρ = limn → ∞
2

n + 1 = 0.

Since ρ < 1, the series converges.

b. We can see that
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5.21

ρ = limn → ∞
(n + 1)n + 1 /(n + 1)!

nn /n!

= limn → ∞
(n + 1)n + 1

(n + 1)! · n!
nn

= limn → ∞
⎛
⎝
n + 1

n
⎞
⎠
n

= limn → ∞
⎛
⎝1 + 1

n
⎞
⎠
n

= e.

Since ρ > 1, the series diverges.

c. Since

|(−1)n + 1 ((n + 1)!)2 /(2(n + 1))!
(−1)n (n!)2 /(2n)! | = (n + 1)!(n + 1)!

(2n + 2)! · (2n)!
n!n!

= (n + 1)(n + 1)
(2n + 2)(2n + 1)

we see that

ρ = limn → ∞
(n + 1)(n + 1)

(2n + 2)(2n + 1) = 1
4.

Since ρ < 1, the series converges.

Use the ratio test to determine whether the series ∑
n = 1

∞
n3

3n converges or diverges.

Root Test

The approach of the root test is similar to that of the ratio test. Consider a series ∑
n = 1

∞
an such that limn → ∞ |an|n = ρ for

some real number ρ. Then for N sufficiently large, |aN| ≈ ρN. Therefore, we can approximate ∑
n = N

∞
|an| by writing

|aN| + |aN + 1| + |aN + 2| + ⋯ ≈ ρN + ρN + 1 + ρN + 2 + ⋯.

The expression on the right-hand side is a geometric series. As in the ratio test, the series ∑
n = 1

∞
an converges absolutely if

0 ≤ ρ < 1 and the series diverges if ρ ≥ 1. If ρ = 1, the test does not provide any information. For example, for any

p-series, ∑
n = 1

∞
1/n p, we see that

ρ = limn → ∞ | 1
n p |n

= limn → ∞
1

n p/n.

To evaluate this limit, we use the natural logarithm function. Doing so, we see that

ln ρ = ln
⎛

⎝
⎜ limn → ∞

1
n p/n

⎞

⎠
⎟ = limn → ∞ln⎛

⎝
1
n

⎞
⎠

p/n
= limn → ∞

p
n · ln⎛

⎝
1
n

⎞
⎠ = limn → ∞

p ln(1/n)
n .
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Using L’Hôpital’s rule, it follows that ln ρ = 0, and therefore ρ = 1 for all p. However, we know that the p-series only

converges if p > 1 and diverges if p < 1.

Theorem 5.17: Root Test

Consider the series ∑
n = 1

∞
an. Let

ρ = limn → ∞ |an|n .

i. If 0 ≤ ρ < 1, then ∑
n = 1

∞
an converges absolutely.

ii. If ρ > 1 or ρ = ∞, then ∑
n = 1

∞
an diverges.

iii. If ρ = 1, the test does not provide any information.

The root test is useful for series whose terms involve exponentials. In particular, for a series whose terms an satisfy

|an| = bn
n, then |an|n = bn and we need only evaluate limn → ∞bn.

Example 5.24

Using the Root Test

For each of the following series, use the root test to determine whether the series converges or diverges.

a. ∑
n = 1

∞ ⎛
⎝n2 + 3n⎞

⎠
n

⎛
⎝4n2 + 5⎞

⎠
n

b. ∑
n = 1

∞
nn

⎛
⎝ln(n)⎞

⎠
n

Solution

a. To apply the root test, we compute

ρ = limn → ∞
⎛
⎝n2 + 3n⎞

⎠
n

/⎛
⎝4n2 + 5⎞

⎠
nn

= limn → ∞
n2 + 3n
4n2 + 5

= 1
4.

Since ρ < 1, the series converges absolutely.

b. We have

ρ = limn → ∞ nn /(ln n)nn = limn → ∞
n

ln n = ∞ by L’Hôpital’s rule .

Since ρ = ∞, the series diverges.
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5.22
Use the root test to determine whether the series ∑

n = 1

∞
1/nn converges or diverges.

Choosing a Convergence Test
At this point, we have a long list of convergence tests. However, not all tests can be used for all series. When given a series,
we must determine which test is the best to use. Here is a strategy for finding the best test to apply.

Problem-Solving Strategy: Choosing a Convergence Test for a Series

Consider a series ∑
n = 1

∞
an. In the steps below, we outline a strategy for determining whether the series converges.

1. Is ∑
n = 1

∞
an a familiar series? For example, is it the harmonic series (which diverges) or the alternating

harmonic series (which converges)? Is it a p − series or geometric series? If so, check the power p or the

ratio r to determine if the series converges.

2. Is it an alternating series? Are we interested in absolute convergence or just convergence? If we are just
interested in whether the series converges, apply the alternating series test. If we are interested in absolute

convergence, proceed to step 3, considering the series of absolute values ∑
n = 1

∞
|an|.

3. Is the series similar to a p − series or geometric series? If so, try the comparison test or limit comparison test.

4. Do the terms in the series contain a factorial or power? If the terms are powers such that an = bn
n, try the root

test first. Otherwise, try the ratio test first.

5. Use the divergence test. If this test does not provide any information, try the integral test.

Visit this website (http://www.openstaxcollege.org/l/20_series2) for more information on testing series
for convergence, plus general information on sequences and series.

Example 5.25

Using Convergence Tests

For each of the following series, determine which convergence test is the best to use and explain why. Then
determine if the series converges or diverges. If the series is an alternating series, determine whether it converges
absolutely, converges conditionally, or diverges.

a. ∑
n = 1

∞
n2 + 2n

n3 + 3n2 + 1

b. ∑
n = 1

∞ (−1)n + 1 (3n + 1)
n!

c. ∑
n = 1

∞
en

n3
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d. ∑
n = 1

∞
3n

(n + 1)n

Solution

a. Step 1. The series is not a p – series or geometric series.

Step 2. The series is not alternating.
Step 3. For large values of n, we approximate the series by the expression

n2 + 2n
n3 + 3n2 + 1

≈ n2

n3 = 1
n.

Therefore, it seems reasonable to apply the comparison test or limit comparison test using the series

∑
n = 1

∞
1/n. Using the limit comparison test, we see that

limn → ∞
(n2 + 2n)/(n3 + 3n2 + 1)

1/n = limn → ∞
n3 + 2n2

n3 + 3n2 + 1
= 1.

Since the series ∑
n = 1

∞
1/n diverges, this series diverges as well.

b. Step 1.The series is not a familiar series.
Step 2. The series is alternating. Since we are interested in absolute convergence, consider the series

∑
n = 1

∞
3n

(n + 1)!.

Step 3. The series is not similar to a p-series or geometric series.
Step 4. Since each term contains a factorial, apply the ratio test. We see that

limn → ∞
(3(n + 1))/(n + 1)!

(3n + 1)/n! = limn → ∞
3n + 3
(n + 1)! · n!

3n + 1 = limn → ∞
3n + 3

(n + 1)(3n + 1) = 0.

Therefore, this series converges, and we conclude that the original series converges absolutely, and thus
converges.

c. Step 1. The series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. There is no factorial. There is a power, but it is not an ideal situation for the root test.
Step 5. To apply the divergence test, we calculate that

limn → ∞
en

n3 = ∞.

Therefore, by the divergence test, the series diverges.

d. Step 1. This series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. Since each term is a power of n, we can apply the root test. Since

limn → ∞
⎛
⎝

3
n + 1

⎞
⎠

nn
= limn → ∞

3
n + 1 = 0,
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by the root test, we conclude that the series converges.

For the series ∑
n = 1

∞
2n

3n + n
, determine which convergence test is the best to use and explain why.

In Table 5.3, we summarize the convergence tests and when each can be applied. Note that while the comparison test, limit

comparison test, and integral test require the series ∑
n = 1

∞
an to have nonnegative terms, if ∑

n = 1

∞
an has negative terms,

these tests can be applied to ∑
n = 1

∞
|an| to test for absolute convergence.
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Series or Test Conclusions Comments

If limn → ∞an = 0, the test

is inconclusive.

Divergence Test

For any series ∑
n = 1

∞
an, evaluate

limn → ∞an.
If limn → ∞an ≠ 0, the

series diverges.

This test cannot prove convergence
of a series.

If |r| < 1, the series

converges to
a/(1 − r).

Geometric Series

∑
n = 1

∞
arn − 1

If |r| ≥ 1, the series

diverges.

Any geometric series can be
reindexed to be written in the form

a + ar + ar2 + ⋯, where a is the

initial term and r is the ratio.

If p > 1, the series

converges.

p-Series

∑
n = 1

∞
1

n p

If p ≤ 1, the series

diverges.

For p = 1, we have the harmonic

series ∑
n = 1

∞
1/n.

If an ≤ bn for all n ≥ N

and ∑
n = 1

∞
bn converges,

then ∑
n = 1

∞
an converges.

Comparison Test

For ∑
n = 1

∞
an with nonnegative

terms, compare with a known

series ∑
n = 1

∞
bn.

If an ≥ bn for all n ≥ N

and ∑
n = 1

∞
bn diverges,

then ∑
n = 1

∞
an diverges.

Typically used for a series similar to
a geometric or p -series. It can

sometimes be difficult to find an
appropriate series.

Limit Comparison Test

For ∑
n = 1

∞
an with positive terms,

compare with a series ∑
n = 1

∞
bn

by evaluating

L = limn → ∞
an
bn

.

If L is a real number and

L ≠ 0, then ∑
n = 1

∞
an

and ∑
n = 1

∞
bn both

converge or both diverge.

Typically used for a series similar to
a geometric or p -series. Often

easier to apply than the comparison
test.

Table 5.3 Summary of Convergence Tests
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Series or Test Conclusions Comments

If L = 0 and ∑
n = 1

∞
bn

converges, then ∑
n = 1

∞
an

converges.

If L = ∞ and ∑
n = 1

∞
bn

diverges, then ∑
n = 1

∞
an

diverges.

Integral Test
If there exists a positive,
continuous, decreasing function
f such that an = f (n) for all

n ≥ N, evaluate ∫
N

∞
f (x)dx.

∫
N

∞
f (x)dx and ∑

n = 1

∞
an

both converge or both
diverge.

Limited to those series for which the
corresponding function f can be

easily integrated.

Alternating Series

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

If bn + 1 ≤ bn for all

n ≥ 1 and bn → 0, then

the series converges.

Only applies to alternating series.

If 0 ≤ ρ < 1, the series

converges absolutely.

If ρ > 1 or ρ = ∞, the

series diverges.

Ratio Test

For any series ∑
n = 1

∞
an with

nonzero terms, let

ρ = limn → ∞|an + 1
an |.

If ρ = 1, the test is

inconclusive.

Often used for series involving
factorials or exponentials.

If 0 ≤ ρ < 1, the series

converges absolutely.

Root Test

For any series ∑
n = 1

∞
an, let

ρ = limn → ∞ |an|n . If ρ > 1 or ρ = ∞, the

series diverges.

Often used for series where

|an| = bn
n.

Table 5.3 Summary of Convergence Tests
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Series or Test Conclusions Comments

If ρ = 1, the test is

inconclusive.

Table 5.3 Summary of Convergence Tests
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Series Converging to π and 1/π

Dozens of series exist that converge to π or an algebraic expression containing π. Here we look at several examples

and compare their rates of convergence. By rate of convergence, we mean the number of terms necessary for a partial
sum to be within a certain amount of the actual value. The series representations of π in the first two examples can be

explained using Maclaurin series, which are discussed in the next chapter. The third example relies on material beyond
the scope of this text.

1. The series

π = 4 ∑
n = 1

∞ (−1)n + 1

2n − 1 = 4 − 4
3 + 4

5 − 4
7 + 4

9 − ⋯

was discovered by Gregory and Leibniz in the late 1600s. This result follows from the Maclaurin series for

f (x) = tan−1 x. We will discuss this series in the next chapter.

a. Prove that this series converges.

b. Evaluate the partial sums Sn for n = 10, 20, 50, 100.

c. Use the remainder estimate for alternating series to get a bound on the error Rn.

d. What is the smallest value of N that guarantees |RN| < 0.01? Evaluate SN.

2. The series

π = 6 ∑
n = 0

∞ (2n)!
24n + 1 (n!)2 (2n + 1)

= 6
⎛

⎝
⎜1
2 + 1

2 · 3
⎛
⎝
1
2

⎞
⎠
3

+ 1 · 3
2 · 4 · 5 · ⎛

⎝
1
2

⎞
⎠
5

+ 1 · 3 · 5
2 · 4 · 6 · 7

⎛
⎝
1
2

⎞
⎠
7

+ ⋯
⎞

⎠
⎟

has been attributed to Newton in the late 1600s. The proof of this result uses the Maclaurin series for

f (x) = sin−1 x.

a. Prove that the series converges.

b. Evaluate the partial sums Sn for n = 5, 10, 20.

c. Compare Sn to π for n = 5, 10, 20 and discuss the number of correct decimal places.

3. The series

1
π = 8

9801 ∑
n = 0

∞ (4n)!(1103 + 26390n)
(n!)4 3964n

was discovered by Ramanujan in the early 1900s. William Gosper, Jr., used this series to calculate π to an

accuracy of more than 17 million digits in the mid-1980s. At the time, that was a world record. Since that

time, this series and others by Ramanujan have led mathematicians to find many other series representations
for π and 1/π.

a. Prove that this series converges.

b. Evaluate the first term in this series. Compare this number with the value of π from a calculating
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utility. To how many decimal places do these two numbers agree? What if we add the first two terms
in the series?

c. Investigate the life of Srinivasa Ramanujan (1887–1920) and write a brief summary. Ramanujan is

one of the most fascinating stories in the history of mathematics. He was basically self-taught, with no
formal training in mathematics, yet he contributed in highly original ways to many advanced areas of
mathematics.
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5.6 EXERCISES

Use the ratio test to determine whether ∑
n = 1

∞
an converges,

where an is given in the following problems. State if the

ratio test is inconclusive.

317. an = 1/n!

318. an = 10n /n!

319. an = n2 /2n

320. an = n10 /2n

321. ∑
n = 1

∞ (n!)3

(3n!)

322. ∑
n = 1

∞ 23n (n!)3

(3n!)

323. ∑
n = 1

∞ (2n)!
n2n

324. ∑
n = 1

∞ (2n)!
(2n)n

325. ∑
n = 1

∞
n!

(n/e)n

326. ∑
n = 1

∞ (2n)!
(n/e)2n

327. ∑
n = 1

∞ (2n n!)2

(2n)2n

Use the root test to determine whether ∑
n = 1

∞
an converges,

where an is as follows.

328. ak = ⎛
⎝

k − 1
2k + 3

⎞
⎠

k

329. ak = ⎛
⎝

2k2 − 1
k2 + 3

⎞
⎠

k

330. an = (ln n)2n

nn

331. an = n/2n

332. an = n/en

333. ak = ke

ek

334. ak = πk

kπ

335. an = ⎛
⎝
1
e + 1

n
⎞
⎠
n

336. ak = 1
(1 + lnk)k

337. an =
⎛
⎝ln(1 + ln n)⎞

⎠
n

(ln n)n

In the following exercises, use either the ratio test or the
root test as appropriate to determine whether the series

∑
k = 1

∞
ak with given terms ak converges, or state if the test

is inconclusive.

338. ak = k!
1 · 3 · 5⋯(2k − 1)

339. ak = 2 · 4 · 6⋯2k
(2k)!

340. ak = 1 · 4 · 7⋯(3k − 2)
3k k!

341. an = ⎛
⎝1 − 1

n
⎞
⎠
n2

342. ak = ⎛
⎝

1
k + 1 + 1

k + 2 + ⋯ + 1
2k

⎞
⎠

k
(Hint: Compare

ak
1/k to ∫

k

2k
dt
t .)

343. ak = ⎛
⎝

1
k + 1 + 1

k + 2 + ⋯ + 1
3k

⎞
⎠

k

344. an = (n1/n − 1)n

Use the ratio test to determine whether ∑
n = 1

∞
an converges,

or state if the ratio test is inconclusive.
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345. ∑
n = 1

∞
3n2

2n3

346. ∑
n = 1

∞
2n2

nn n!

Use the root and limit comparison tests to determine

whether ∑
n = 1

∞
an converges.

347. an = 1/xn
n where xn + 1 = 1

2xn + 1
xn

, x1 = 1

(Hint: Find limit of {xn}.)

In the following exercises, use an appropriate test to
determine whether the series converges.

348. ∑
n = 1

∞ (n + 1)
n3 + n2 + n + 1

349. ∑
n = 1

∞ (−1)n + 1 (n + 1)
n3 + 3n2 + 3n + 1

350. ∑
n = 1

∞ (n + 1)2

n3 + (1.1)n

351. ∑
n = 1

∞ (n − 1)n

(n + 1)n

352. an = ⎛
⎝1 + 1

n2
⎞
⎠

n
(Hint:

⎛
⎝1 + 1

n2
⎞
⎠

n2

≈ e.)

353. ak = 1/2sin2 k

354. ak = 2−sin(1/k)

355. an = 1/⎛⎝
n + 2

n
⎞
⎠ where ⎛

⎝
n
k

⎞
⎠ = n!

k!(n − k)!

356. ak = 1/⎛⎝
2k
k

⎞
⎠

357. ak = 2k /⎛⎝
3k
k

⎞
⎠

358. ak = ⎛
⎝

k
k + lnk

⎞
⎠

k
(Hint:

ak = ⎛
⎝1 + lnk

k
⎞
⎠

−(k/lnk)lnk
≈ e−lnk.)

359. ak = ⎛
⎝

k
k + lnk

⎞
⎠

2k
(Hint:

ak = ⎛
⎝1 + lnk

k
⎞
⎠

−(k/lnk) lnk2

.)

The following series converge by the ratio test. Use
summation by parts,

∑
k = 1

n
ak

⎛
⎝bk + 1 − bk

⎞
⎠ = ⎡

⎣an + 1 bn + 1 − a1 b1
⎤
⎦ − ∑

k = 1

n
bk + 1(ak + 1 − ak),

to find the sum of the given series.

360. ∑
k = 1

∞
k
2k (Hint: Take ak = k and bk = 21 − k.)

361. ∑
k = 1

∞
k
ck , where c > 1 (Hint: Take ak = k and

bk = c1 − k /(c − 1).)

362. ∑
n = 1

∞
n2

2n

363. ∑
n = 1

∞ (n + 1)2

2n

The kth term of each of the following series has a factor

xk. Find the range of x for which the ratio test implies

that the series converges.

364. ∑
k = 1

∞
xk

k2

365. ∑
k = 1

∞
x2k

k2

366. ∑
k = 1

∞
x2k

3k

367. ∑
k = 1

∞
xk

k!

368. Does there exist a number p such that ∑
n = 1

∞
2n

n p

converges?

369. Let 0 < r < 1. For which real numbers p does

∑
n = 1

∞
n prn converge?
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370. Suppose that limn → ∞|an + 1
an | = p. For which values

of p must ∑
n = 1

∞
2nan converge?

371. Suppose that limn → ∞|an + 1
an | = p. For which values

of r > 0 is ∑
n = 1

∞
rnan guaranteed to converge?

372. Suppose that |an + 1
an | ≤ (n + 1) p for all

n = 1, 2,… where p is a fixed real number. For which

values of p is ∑
n = 1

∞
n! an guaranteed to converge?

373. For which values of r > 0, if any, does ∑
n = 1

∞
r n

converge? (Hint: ∑
n = 1

∞
an = ∑

k = 1

∞
∑

n = k2

(k + 1)2 − 1
an.)

374. Suppose that |an + 2
an | ≤ r < 1 for all n. Can you

conclude that ∑
n = 1

∞
an converges?

375. Let an = 2−[n/2]
where [x] is the greatest integer

less than or equal to x. Determine whether ∑
n = 1

∞
an

converges and justify your answer.

The following advanced exercises use a generalized ratio
test to determine convergence of some series that arise in
particular applications when tests in this chapter, including
the ratio and root test, are not powerful enough to determine

their convergence. The test states that if limn → ∞
a2n
an

< 1/2,

then ∑ an converges, while if limn → ∞
a2n + 1

an
> 1/2,

then ∑ an diverges.

376. Let an = 1
4

3
6

5
8⋯2n − 1

2n + 2 = 1 · 3 · 5 ⋯ (2n − 1)
2n(n + 1)!

.

Explain why the ratio test cannot determine convergence of

∑
n = 1

∞
an. Use the fact that 1 − 1/(4k) is increasing k to

estimate limn → ∞
a2n
an

.

377. Let

an = 1
1 + x

2
2 + x⋯ n

n + x
1
n = (n − 1)!

(1 + x)(2 + x)⋯(n + x).

Show that a2n /an ≤ e−x/2 /2. For which x > 0 does the

generalized ratio test imply convergence of ∑
n = 1

∞
an?

(Hint: Write 2a2n /an as a product of n factors each

smaller than 1/⎛
⎝1 + x/(2n)⎞

⎠.)

378. Let an = nln n

(ln n)n. Show that
a2n
an

→ 0 as n → ∞.
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absolute convergence

alternating series

alternating series test

arithmetic sequence

bounded above

bounded below

bounded sequence

comparison test

conditional convergence

convergence of a series

convergent sequence

divergence of a series

divergence test

divergent sequence

explicit formula

geometric sequence

geometric series

harmonic series

CHAPTER 5 REVIEW

KEY TERMS

if the series ∑
n = 1

∞
|an| converges, the series ∑

n = 1

∞
an is said to converge absolutely

a series of the form ∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn, where bn ≥ 0, is called an alternating

series

for an alternating series of either form, if bn + 1 ≤ bn for all integers n ≥ 1 and bn → 0,
then an alternating series converges

a sequence in which the difference between every pair of consecutive terms is the same is called
an arithmetic sequence

a sequence {an} is bounded above if there exists a constant M such that an ≤ M for all positive

integers n

a sequence {an} is bounded below if there exists a constant M such that M ≤ an for all positive

integers n

a sequence {an} is bounded if there exists a constant M such that |an| ≤ M for all positive

integers n

if 0 ≤ an ≤ bn for all n ≥ N and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges; if an ≥ bn ≥ 0 for

all n ≥ N and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges

if the series ∑
n = 1

∞
an converges, but the series ∑

n = 1

∞
|an| diverges, the series ∑

n = 1

∞
an is

said to converge conditionally

a series converges if the sequence of partial sums for that series converges

a convergent sequence is a sequence {an} for which there exists a real number L such that an

is arbitrarily close to L as long as n is sufficiently large

a series diverges if the sequence of partial sums for that series diverges

if limn → ∞an ≠ 0, then the series ∑
n = 1

∞
an diverges

a sequence that is not convergent is divergent

a sequence may be defined by an explicit formula such that an = f (n)

a sequence {an} in which the ratio an + 1 /an is the same for all positive integers n is called a

geometric sequence

a geometric series is a series that can be written in the form

∑
n = 1

∞
arn − 1 = a + ar + ar2 + ar3 + ⋯

the harmonic series takes the form
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index variable

infinite series

integral test

limit comparison test

limit of a sequence

monotone sequence

p-series

partial sum

ratio test

recurrence relation

remainder estimate

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + ⋯

the subscript used to define the terms in a sequence is called the index

an infinite series is an expression of the form

a1 + a2 + a3 + ⋯ = ∑
n = 1

∞
an

for a series ∑
n = 1

∞
an with positive terms an, if there exists a continuous, decreasing function f such that

f (n) = an for all positive integers n, then

∑
n = 1

∞
an and∫

1

∞
f (x)dx

either both converge or both diverge

suppose an, bn ≥ 0 for all n ≥ 1. If limn → ∞an /bn → L ≠ 0, then ∑
n = 1

∞
an and ∑

n = 1

∞
bn

both converge or both diverge; if limn → ∞an /bn → 0 and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges. If

limn → ∞an /bn → ∞, and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges

the real number L to which a sequence converges is called the limit of the sequence

an increasing or decreasing sequence

a series of the form ∑
n = 1

∞
1/n p

the kth partial sum of the infinite series ∑
n = 1

∞
an is the finite sum

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak

for a series ∑
n = 1

∞
an with nonzero terms, let ρ = limn → ∞|an + 1 /an|; if 0 ≤ ρ < 1, the series converges

absolutely; if ρ > 1, the series diverges; if ρ = 1, the test is inconclusive

a recurrence relation is a relationship in which a term an in a sequence is defined in terms of

earlier terms in the sequence

for a series ∑
n = 1

∞
an with positive terms an and a continuous, decreasing function f such that

f (n) = an for all positive integers n, the remainder RN = ∑
n = 1

∞
an − ∑

n = 1

N
an satisfies the following estimate:

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx
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root test

sequence

telescoping series

term

unbounded sequence

for a series ∑
n = 1

∞
an, let ρ = limn → ∞ |an|n ; if 0 ≤ ρ < 1, the series converges absolutely; if ρ > 1, the

series diverges; if ρ = 1, the test is inconclusive

an ordered list of numbers of the form a1, a2, a3 ,… is a sequence

a telescoping series is one in which most of the terms cancel in each of the partial sums

the number an in the sequence {an} is called the nth term of the sequence

a sequence that is not bounded is called unbounded

KEY EQUATIONS
• Harmonic series

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + 1

4 + ⋯

• Sum of a geometric series

∑
n = 1

∞
arn − 1 = a

1 − r for |r| < 1

• Divergence test

If an ↛ 0 as n → ∞, ∑
n = 1

∞
an diverges.

• p-series

∑
n = 1

∞
1

n p
⎧

⎩
⎨
converges if p > 1
diverges if p ≤ 1

• Remainder estimate from the integral test

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx

• Alternating series

∑
n = 1

∞
(−1)n + 1 bn = b1 − b2 + b3 − b4 + ⋯ or

∑
n = 1

∞
(−1)n bn = −b1 + b2 − b3 + b4 − ⋯

KEY CONCEPTS

5.1 Sequences

• To determine the convergence of a sequence given by an explicit formula an = f (n), we use the properties of

limits for functions.

• If {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬ are convergent sequences that converge to A and B, respectively, and c is any real number,

then the sequence {can} converges to c · A, the sequences ⎧

⎩
⎨an ± bn

⎫

⎭
⎬ converge to A ± B, the sequence ⎧

⎩
⎨an · bn

⎫

⎭
⎬

converges to A · B, and the sequence ⎧

⎩
⎨an /bn

⎫

⎭
⎬ converges to A/B, provided B ≠ 0.

• If a sequence is bounded and monotone, then it converges, but not all convergent sequences are monotone.

• If a sequence is unbounded, it diverges, but not all divergent sequences are unbounded.

• The geometric sequence {rn} converges if and only if |r| < 1 or r = 1.
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5.2 Infinite Series

• Given the infinite series

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯

and the corresponding sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ where

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak,

the series converges if and only if the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges.

• The geometric series ∑
n = 1

∞
arn − 1 converges if |r| < 1 and diverges if |r| ≥ 1. For |r| < 1,

∑
n = 1

∞
arn − 1 = a

1 − r .

• The harmonic series

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + ⋯

diverges.

• A series of the form ∑
n = 1

∞
[bn − bn + 1] = [b1 − b2] + [b2 − b3] + [b3 − b4] + ⋯ + [bn − bn + 1] + ⋯

is a telescoping series. The kth partial sum of this series is given by Sk = b1 − bk + 1. The series will converge if

and only if lim
k → ∞

bk + 1 exists. In that case,

∑
n = 1

∞
[bn − bn + 1] = b1 − lim

k → ∞
⎛
⎝bk + 1

⎞
⎠.

5.3 The Divergence and Integral Tests

• If limn → ∞an ≠ 0, then the series ∑
n = 1

∞
an diverges.

• If limn → ∞an = 0, the series ∑
n = 1

∞
an may converge or diverge.

• If ∑
n = 1

∞
an is a series with positive terms an and f is a continuous, decreasing function such that f (n) = an for

all positive integers n, then

∑
n = 1

∞
an and∫

1

∞
f (x)dx

either both converge or both diverge. Furthermore, if ∑
n = 1

∞
an converges, then the Nth partial sum approximation
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SN is accurate up to an error RN where ∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

• The p-series ∑
n = 1

∞
1/n p converges if p > 1 and diverges if p ≤ 1.

5.4 Comparison Tests

• The comparison tests are used to determine convergence or divergence of series with positive terms.

• When using the comparison tests, a series ∑
n = 1

∞
an is often compared to a geometric or p-series.

5.5 Alternating Series

• For an alternating series ∑
n = 1

∞
(−1)n + 1 bn, if bk + 1 ≤ bk for all k and bk → 0 as k → ∞, the alternating

series converges.

• If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

5.6 Ratio and Root Tests

• For the ratio test, we consider

ρ = limn → ∞|an + 1
an |.

If ρ < 1, the series ∑
n = 1

∞
an converges absolutely. If ρ > 1, the series diverges. If ρ = 1, the test does not

provide any information. This test is useful for series whose terms involve factorials.

• For the root test, we consider

ρ = limn → ∞ |an|n .

If ρ < 1, the series ∑
n = 1

∞
an converges absolutely. If ρ > 1, the series diverges. If ρ = 1, the test does not

provide any information. The root test is useful for series whose terms involve powers.

• For a series that is similar to a geometric series or p − series, consider one of the comparison tests.

CHAPTER 5 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

379. If limn → ∞an = 0, then ∑
n = 1

∞
an converges.

380. If limn → ∞an ≠ 0, then ∑
n = 1

∞
an diverges.

381. If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

382. If ∑
n = 1

∞
2n an converges, then ∑

n = 1

∞
(−2)n an

converges.

Is the sequence bounded, monotone, and convergent or
divergent? If it is convergent, find the limit.
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383. an = 3 + n2

1 − n

384. an = ln⎛
⎝
1
n

⎞
⎠

385. an = ln(n + 1)
n + 1

386. an = 2n + 1

5n

387. an = ln(cosn)
n

Is the series convergent or divergent?

388. ∑
n = 1

∞
1

n2 + 5n + 4

389. ∑
n = 1

∞
ln⎛

⎝
n + 1

n
⎞
⎠

390. ∑
n = 1

∞
2n

n4

391. ∑
n = 1

∞
en

n!

392. ∑
n = 1

∞
n−(n + 1/n)

Is the series convergent or divergent? If convergent, is it
absolutely convergent?

393. ∑
n = 1

∞ (−1)n

n

394. ∑
n = 1

∞ (−1)n n!
3n

395. ∑
n = 1

∞ (−1)n n!
nn

396. ∑
n = 1

∞
sin⎛

⎝
nπ
2

⎞
⎠

397. ∑
n = 1

∞
cos(πn)e−n

Evaluate

398. ∑
n = 1

∞
2n + 4

7n

399. ∑
n = 1

∞
1

(n + 1)(n + 2)

400. A legend from India tells that a mathematician
invented chess for a king. The king enjoyed the game so
much he allowed the mathematician to demand any
payment. The mathematician asked for one grain of rice
for the first square on the chessboard, two grains of rice
for the second square on the chessboard, and so on. Find
an exact expression for the total payment (in grains of
rice) requested by the mathematician. Assuming there are
30,000 grains of rice in 1 pound, and 2000 pounds in 1
ton, how many tons of rice did the mathematician attempt
to receive?

The following problems consider a simple population
model of the housefly, which can be exhibited by the
recursive formula xn + 1 = bxn, where xn is the

population of houseflies at generation n, and b is the

average number of offspring per housefly who survive to
the next generation. Assume a starting population x0.

401. Find limn → ∞xn if b > 1, b < 1, and b = 1.

402. Find an expression for Sn = ∑
i = 0

n
xi in terms of b

and x0. What does it physically represent?

403. If b = 3
4 and x0 = 100, find S10 and limn → ∞Sn

404. For what values of b will the series converge and

diverge? What does the series converge to?
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6 | POWER SERIES

Figure 6.1 If you win a lottery, do you get more money by taking a lump-sum payment or by accepting fixed payments over
time? (credit: modification of work by Robert Huffstutter, Flickr)

Chapter Outline

6.1 Power Series and Functions

6.2 Properties of Power Series

6.3 Taylor and Maclaurin Series

6.4 Working with Taylor Series

Introduction
When winning a lottery, sometimes an individual has an option of receiving winnings in one lump-sum payment or receiving
smaller payments over fixed time intervals. For example, you might have the option of receiving 20 million dollars today
or receiving 1.5 million dollars each year for the next 20 years. Which is the better deal? Certainly 1.5 million dollars over
20 years is equivalent to 30 million dollars. However, receiving the 20 million dollars today would allow you to invest the
money.

Alternatively, what if you were guaranteed to receive 1 million dollars every year indefinitely (extending to your heirs) or
receive 20 million dollars today. Which would be the better deal? To answer these questions, you need to know how to use
infinite series to calculate the value of periodic payments over time in terms of today’s dollars (see Example 6.7).

An infinite series of the form ∑
n = 0

∞
cn xn is known as a power series. Since the terms contain the variable x, power series

can be used to define functions. They can be used to represent given functions, but they are also important because they
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allow us to write functions that cannot be expressed any other way than as “infinite polynomials.” In addition, power series
can be easily differentiated and integrated, thus being useful in solving differential equations and integrating complicated
functions. An infinite series can also be truncated, resulting in a finite polynomial that we can use to approximate functional
values. Power series have applications in a variety of fields, including physics, chemistry, biology, and economics. As we
will see in this chapter, representing functions using power series allows us to solve mathematical problems that cannot be
solved with other techniques.

6.1 | Power Series and Functions

Learning Objectives
6.1.1 Identify a power series and provide examples of them.

6.1.2 Determine the radius of convergence and interval of convergence of a power series.

6.1.3 Use a power series to represent a function.

A power series is a type of series with terms involving a variable. More specifically, if the variable is x, then all the terms
of the series involve powers of x. As a result, a power series can be thought of as an infinite polynomial. Power series are
used to represent common functions and also to define new functions. In this section we define power series and show how
to determine when a power series converges and when it diverges. We also show how to represent certain functions using
power series.

Form of a Power Series
A series of the form

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯,

where x is a variable and the coefficients cn are constants, is known as a power series. The series

1 + x + x2 + ⋯ = ∑
n = 0

∞
xn

is an example of a power series. Since this series is a geometric series with ratio r = |x|, we know that it converges if

|x| < 1 and diverges if |x| ≥ 1.

Definition

A series of the form

(6.1)∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

is a power series centered at x = 0. A series of the form

(6.2)∑
n = 0

∞
cn (x − a)n = c0 + c1 (x − a) + c2 (x − a)2 + ⋯

is a power series centered at x = a.

To make this definition precise, we stipulate that x0 = 1 and (x − a)0 = 1 even when x = 0 and x = a, respectively.

The series

∑
n = 0

∞
xn

n! = 1 + x + x2

2! + x3

3! + ⋯

and
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∑
n = 0

∞
n!xn = 1 + x + 2!x2 + 3!x3 + ⋯

are both power series centered at x = 0. The series

∑
n = 0

∞ (x − 2)n

(n + 1)3n = 1 + x − 2
2 · 3 + (x − 2)2

3 · 32 + (x − 2)3

4 · 33 + ⋯

is a power series centered at x = 2.

Convergence of a Power Series
Since the terms in a power series involve a variable x, the series may converge for certain values of x and diverge for other
values of x. For a power series centered at x = a, the value of the series at x = a is given by c0. Therefore, a power

series always converges at its center. Some power series converge only at that value of x. Most power series, however,
converge for more than one value of x. In that case, the power series either converges for all real numbers x or converges

for all x in a finite interval. For example, the geometric series ∑
n = 0

∞
xn converges for all x in the interval (−1, 1), but

diverges for all x outside that interval. We now summarize these three possibilities for a general power series.

Theorem 6.1: Convergence of a Power Series

Consider the power series ∑
n = 0

∞
cn (x − a)n. The series satisfies exactly one of the following properties:

i. The series converges at x = a and diverges for all x ≠ a.

ii. The series converges for all real numbers x.

iii. There exists a real number R > 0 such that the series converges if |x − a| < R and diverges if |x − a| > R.
At the values x where |x − a| = R, the series may converge or diverge.

Proof

Suppose that the power series is centered at a = 0. (For a series centered at a value of a other than zero, the result follows

by letting y = x − a and considering the series ∑
n = 1

∞
cn yn.) We must first prove the following fact:

If there exists a real number d ≠ 0 such that ∑
n = 0

∞
cn dn converges, then the series ∑

n = 0

∞
cn xn converges absolutely for

all x such that |x| < |d|.

Since ∑
n = 0

∞
cn dn converges, the nth term cn dn → 0 as n → ∞. Therefore, there exists an integer N such that

|cn dn| ≤ 1 for all n ≥ N. Writing

|cn xn| = |cn dn||xd |n,

we conclude that, for all n ≥ N,

|cn xn| ≤ |xd |n.

The series
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∑
n = N

∞

|xd |n

is a geometric series that converges if |xd | < 1. Therefore, by the comparison test, we conclude that ∑
n = N

∞
cn xn also

converges for |x| < |d|. Since we can add a finite number of terms to a convergent series, we conclude that ∑
n = 0

∞
cn xn

converges for |x| < |d|.
With this result, we can now prove the theorem. Consider the series

∑
n = 0

∞
an xn

and let S be the set of real numbers for which the series converges. Suppose that the set S = {0}. Then the series falls

under case i. Suppose that the set S is the set of all real numbers. Then the series falls under case ii. Suppose that S ≠ {0}
and S is not the set of real numbers. Then there exists a real number x * ≠ 0 such that the series does not converge. Thus,

the series cannot converge for any x such that |x| > |x * |. Therefore, the set S must be a bounded set, which means that it

must have a smallest upper bound. (This fact follows from the Least Upper Bound Property for the real numbers, which is
beyond the scope of this text and is covered in real analysis courses.) Call that smallest upper bound R. Since S ≠ {0},
the number R > 0. Therefore, the series converges for all x such that |x| < R, and the series falls into case iii.

□

If a series ∑
n = 0

∞
cn (x − a)n falls into case iii. of Convergence of a Power Series, then the series converges for all x

such that |x − a| < R for some R > 0, and diverges for all x such that |x − a| > R. The series may converge or diverge

at the values x where |x − a| = R. The set of values x for which the series ∑
n = 0

∞
cn (x − a)n converges is known as the

interval of convergence. Since the series diverges for all values x where |x − a| > R, the length of the interval is 2R, and

therefore, the radius of the interval is R. The value R is called the radius of convergence. For example, since the series

∑
n = 0

∞
xn converges for all values x in the interval (−1, 1) and diverges for all values x such that |x| ≥ 1, the interval of

convergence of this series is (−1, 1). Since the length of the interval is 2, the radius of convergence is 1.

Definition

Consider the power series ∑
n = 0

∞
cn (x − a)n. The set of real numbers x where the series converges is the interval

of convergence. If there exists a real number R > 0 such that the series converges for |x − a| < R and diverges

for |x − a| > R, then R is the radius of convergence. If the series converges only at x = a, we say the radius of

convergence is R = 0. If the series converges for all real numbers x, we say the radius of convergence is R = ∞
(Figure 6.2).
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Figure 6.2 For a series ∑
n = 0

∞
cn (x − a)n graph (a) shows a

radius of convergence at R = 0, graph (b) shows a radius of

convergence at R = ∞, and graph (c) shows a radius of

convergence at R. For graph (c) we note that the series may or
may not converge at the endpoints x = a + R and x = a − R.

To determine the interval of convergence for a power series, we typically apply the ratio test. In Example 6.1, we show
the three different possibilities illustrated in Figure 6.2.

Example 6.1

Finding the Interval and Radius of Convergence

For each of the following series, find the interval and radius of convergence.

a. ∑
n = 0

∞
xn

n!

b. ∑
n = 0

∞
n!xn

c. ∑
n = 0

∞ (x − 2)n

(n + 1)3n

Solution

a. To check for convergence, apply the ratio test. We have
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ρ = limn → ∞| xn + 1
(n + 1)!

xn
n! |

= limn → ∞| xn + 1

(n + 1)! · n!
xn |

= limn → ∞| xn + 1

(n + 1) · n! · n!
xn |

= limn → ∞| x
n + 1|

= |x| limn → ∞
1

n + 1
= 0 < 1

for all values of x. Therefore, the series converges for all real numbers x. The interval of convergence is
(−∞, ∞) and the radius of convergence is R = ∞.

b. Apply the ratio test. For x ≠ 0, we see that

ρ = limn → ∞|(n + 1)!xn + 1

n!xn |
= limn → ∞|(n + 1)x|
= |x| limn → ∞(n + 1)
= ∞.

Therefore, the series diverges for all x ≠ 0. Since the series is centered at x = 0, it must converge

there, so the series converges only for x ≠ 0. The interval of convergence is the single value x = 0 and

the radius of convergence is R = 0.

c. In order to apply the ratio test, consider

ρ = limn → ∞| (x − 2)n + 1

(n + 2)3n + 1

(x − 2)n

(n + 1)3n |
= limn → ∞| (x − 2)n + 1

(n + 2)3n + 1 · (n + 1)3n

(x − 2)n |
= limn → ∞|(x − 2)(n + 1)

3(n + 2) |
= |x − 2|

3 .

The ratio ρ < 1 if |x − 2| < 3. Since |x − 2| < 3 implies that −3 < x − 2 < 3, the series converges

absolutely if −1 < x < 5. The ratio ρ > 1 if |x − 2| > 3. Therefore, the series diverges if x < −1 or

x > 5. The ratio test is inconclusive if ρ = 1. The ratio ρ = 1 if and only if x = −1 or x = 5. We

need to test these values of x separately. For x = −1, the series is given by

∑
n = 0

∞ (−1)n

n + 1 = 1 − 1
2 + 1

3 − 1
4 + ⋯.
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6.1

Since this is the alternating harmonic series, it converges. Thus, the series converges at x = −1. For

x = 5, the series is given by

∑
n = 0

∞
1

n + 1 = 1 + 1
2 + 1

3 + 1
4 + ⋯.

This is the harmonic series, which is divergent. Therefore, the power series diverges at x = 5. We

conclude that the interval of convergence is ⎡
⎣−1, 5) and the radius of convergence is R = 3.

Find the interval and radius of convergence for the series ∑
n = 1

∞
xn
n.

Representing Functions as Power Series
Being able to represent a function by an “infinite polynomial” is a powerful tool. Polynomial functions are the easiest
functions to analyze, since they only involve the basic arithmetic operations of addition, subtraction, multiplication, and
division. If we can represent a complicated function by an infinite polynomial, we can use the polynomial representation to
differentiate or integrate it. In addition, we can use a truncated version of the polynomial expression to approximate values
of the function. So, the question is, when can we represent a function by a power series?

Consider again the geometric series

(6.3)
1 + x + x2 + x3 + ⋯ = ∑

n = 0

∞
xn.

Recall that the geometric series

a + ar + ar2 + ar3 + ⋯

converges if and only if |r| < 1. In that case, it converges to a
1 − r . Therefore, if |x| < 1, the series in Example 6.3

converges to 1
1 − x and we write

1 + x + x2 + x3 + ⋯ = 1
1 − x for |x| < 1.

As a result, we are able to represent the function f (x) = 1
1 − x by the power series

1 + x + x2 + x3 + ⋯ when |x| < 1.

We now show graphically how this series provides a representation for the function f (x) = 1
1 − x by comparing the graph

of f with the graphs of several of the partial sums of this infinite series.

Example 6.2

Graphing a Function and Partial Sums of its Power Series
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6.2

Sketch a graph of f (x) = 1
1 − x and the graphs of the corresponding partial sums SN (x) = ∑

n = 0

N
xn for

N = 2, 4, 6 on the interval (−1, 1). Comment on the approximation SN as N increases.

Solution

From the graph in Figure 6.3 you see that as N increases, SN becomes a better approximation for f (x) = 1
1 − x

for x in the interval (−1, 1).

Figure 6.3 The graph shows a function and three
approximations of it by partial sums of a power series.

Sketch a graph of f (x) = 1
1 − x2 and the corresponding partial sums SN (x) = ∑

n = 0

N
x2n for

N = 2, 4, 6 on the interval (−1, 1).

Next we consider functions involving an expression similar to the sum of a geometric series and show how to represent
these functions using power series.

Example 6.3

Representing a Function with a Power Series

Use a power series to represent each of the following functions f . Find the interval of convergence.

a. f (x) = 1
1 + x3

b. f (x) = x2

4 − x2

Solution

a. You should recognize this function f as the sum of a geometric series, because
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1
1 + x3 = 1

1 − ⎛
⎝−x3⎞

⎠
.

Using the fact that, for |r| < 1, a
1 − r is the sum of the geometric series

∑
n = 0

∞
arn = a + ar + ar2 + ⋯,

we see that, for |−x3| < 1,

1
1 + x3 = 1

1 − ⎛
⎝−x3⎞

⎠

= ∑
n = 0

∞
⎛
⎝−x3⎞

⎠
n

= 1 − x3 + x6 − x9 + ⋯.

Since this series converges if and only if |−x3| < 1, the interval of convergence is (−1, 1), and we

have

1
1 + x3 = 1 − x3 + x6 − x9 + ⋯ for |x| < 1.

b. This function is not in the exact form of a sum of a geometric series. However, with a little algebraic
manipulation, we can relate f to a geometric series. By factoring 4 out of the two terms in the denominator,
we obtain

x2

4 − x2 = x2

4⎛
⎝

1 − x2
4

⎞
⎠

= x2

4⎛
⎝1 − ⎛

⎝
x
2

⎞
⎠
2⎞
⎠

.

Therefore, we have

x2

4 − x2 = x2

4⎛
⎝1 − ⎛

⎝
x
2

⎞
⎠
2⎞
⎠

=
x2
4

1 − ⎛
⎝
x
2

⎞
⎠
2

= ∑
n = 0

∞
x2

4
⎛
⎝
x
2

⎞
⎠
2n

.

The series converges as long as |⎛⎝x
2

⎞
⎠
2| < 1 (note that when |⎛⎝x

2
⎞
⎠
2| = 1 the series does not converge).

Solving this inequality, we conclude that the interval of convergence is (−2, 2) and
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6.3

x2

4 − x2 = ∑
n = 0

∞
x2n + 2

4n + 1

= x2

4 + x4

42 + x6

43 + ⋯

for |x| < 2.

Represent the function f (x) = x3

2 − x using a power series and find the interval of convergence.

In the remaining sections of this chapter, we will show ways of deriving power series representations for many other
functions, and how we can make use of these representations to evaluate, differentiate, and integrate various functions.
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6.1 EXERCISES
In the following exercises, state whether each statement is
true, or give an example to show that it is false.

1. If ∑
n = 1

∞
an xn converges, then an xn → 0 as n → ∞.

2. ∑
n = 1

∞
an xn converges at x = 0 for any real numbers

an.

3. Given any sequence an, there is always some

R > 0, possibly very small, such that ∑
n = 1

∞
an xn

converges on (−R, R).

4. If ∑
n = 1

∞
an xn has radius of convergence R > 0 and

if |bn| ≤ |an| for all n, then the radius of convergence of

∑
n = 1

∞
bn xn is greater than or equal to R.

5. Suppose that ∑
n = 0

∞
an (x − 3)n converges at x = 6.

At which of the following points must the series also

converge? Use the fact that if ∑ an (x − c)n converges at

x, then it converges at any point closer to c than x.
a. x = 1
b. x = 2
c. x = 3
d. x = 0
e. x = 5.99
f. x = 0.000001

6. Suppose that ∑
n = 0

∞
an (x + 1)n converges at x = −2.

At which of the following points must the series also

converge? Use the fact that if ∑ an (x − c)n converges at

x, then it converges at any point closer to c than x.
a. x = 2
b. x = −1
c. x = −3
d. x = 0
e. x = 0.99
f. x = 0.000001

In the following exercises, suppose that |an + 1
an | → 1 as

n → ∞. Find the radius of convergence for each series.

7. ∑
n = 0

∞
an 2n xn

8. ∑
n = 0

∞ an xn

2n

9. ∑
n = 0

∞ an πn xn

en

10. ∑
n = 0

∞ an (−1)n xn

10n

11. ∑
n = 0

∞
an (−1)n x2n

12. ∑
n = 0

∞
an (−4)n x2n

In the following exercises, find the radius of convergence

R and interval of convergence for ∑ an xn with the given

coefficients an.

13. ∑
n = 1

∞ (2x)n
n

14. ∑
n = 1

∞
(−1)n xn

n

15. ∑
n = 1

∞
nxn

2n

16. ∑
n = 1

∞
nxn

en

17. ∑
n = 1

∞
n2 xn

2n

18. ∑
k = 1

∞
ke xk

ek

19. ∑
k = 1

∞
πk xk

kπ
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20. ∑
n = 1

∞
xn

n!

21. ∑
n = 1

∞
10n xn

n!

22. ∑
n = 1

∞
(−1)n xn

ln(2n)

In the following exercises, find the radius of convergence
of each series.

23. ∑
k = 1

∞ (k!)2 xk

(2k)!

24. ∑
n = 1

∞ (2n)!xn

n2n

25. ∑
k = 1

∞
k!

1 · 3 · 5⋯(2k − 1)xk

26. ∑
k = 1

∞
2 · 4 · 6⋯2k

(2k)! xk

27. ∑
n = 1

∞
xn

⎛
⎝
2n
n

⎞
⎠

where ⎛
⎝
n
k

⎞
⎠ = n!

k!(n − k)!

28. ∑
n = 1

∞
sin2 nxn

In the following exercises, use the ratio test to determine
the radius of convergence of each series.

29. ∑
n = 1

∞ (n!)3

(3n)!xn

30. ∑
n = 1

∞ 23n (n!)3

(3n)! xn

31. ∑
n = 1

∞
n!
nnxn

32. ∑
n = 1

∞ (2n)!
n2n xn

In the following exercises, given that 1
1 − x = ∑

n = 0

∞
xn

with convergence in (−1, 1), find the power series for

each function with the given center a, and identify its
interval of convergence.

33. f (x) = 1
x; a = 1 (Hint: 1

x = 1
1 − (1 − x))

34. f (x) = 1
1 − x2; a = 0

35. f (x) = x
1 − x2; a = 0

36. f (x) = 1
1 + x2; a = 0

37. f (x) = x2

1 + x2; a = 0

38. f (x) = 1
2 − x; a = 1

39. f (x) = 1
1 − 2x; a = 0.

40. f (x) = 1
1 − 4x2; a = 0

41. f (x) = x2

1 − 4x2; a = 0

42. f (x) = x2

5 − 4x + x2; a = 2

Use the next exercise to find the radius of convergence of
the given series in the subsequent exercises.

43. Explain why, if |an|1/n → r > 0, then

|an xn|1/n → |x|r < 1 whenever |x| < 1
r and, therefore,

the radius of convergence of ∑
n = 1

∞
an xn is R = 1

r .

44. ∑
n = 1

∞
xn

nn

45. ∑
k = 1

∞
⎛
⎝

k − 1
2k + 3

⎞
⎠

k
xk

46. ∑
k = 1

∞ ⎛
⎝

2k2 − 1
k2 + 3

⎞
⎠

k
xk

47. ∑
n = 1

∞
an = ⎛

⎝n
1/n − 1⎞

⎠
n

xn
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48. Suppose that p(x) = ∑
n = 0

∞
an xn such that an = 0 if

n is even. Explain why p(x) = p(−x).

49. Suppose that p(x) = ∑
n = 0

∞
an xn such that an = 0 if

n is odd. Explain why p(x) = −p(−x).

50. Suppose that p(x) = ∑
n = 0

∞
an xn converges on

(−1, 1]. Find the interval of convergence of p(Ax).

51. Suppose that p(x) = ∑
n = 0

∞
an xn converges on

(−1, 1]. Find the interval of convergence of p(2x − 1).

In the following exercises, suppose that p(x) = ∑
n = 0

∞
an xn

satisfies limn → ∞
an + 1

an
= 1 where an ≥ 0 for each n. State

whether each series converges on the full interval
(−1, 1), or if there is not enough information to draw a

conclusion. Use the comparison test when appropriate.

52. ∑
n = 0

∞
an x2n

53. ∑
n = 0

∞
a2n x2n

54. ∑
n = 0

∞
a2n xn ⎛

⎝Hint: x = ± x2⎞
⎠

55. ∑
n = 0

∞
an2 xn2

(Hint: Let bk = ak if k = n2 for

some n, otherwise bk = 0.)

56. Suppose that p(x) is a polynomial of degree N. Find

the radius and interval of convergence of ∑
n = 1

∞
p(n)xn.

57. [T] Plot the graphs of 1
1 − x and of the partial sums

SN = ∑
n = 0

N
xn for n = 10, 20, 30 on the interval

[−0.99, 0.99]. Comment on the approximation of 1
1 − x

by SN near x = −1 and near x = 1 as N increases.

58. [T] Plot the graphs of −ln(1 − x) and of the partial

sums SN = ∑
n = 1

N
xn
n for n = 10, 50, 100 on the interval

[−0.99, 0.99]. Comment on the behavior of the sums near

x = −1 and near x = 1 as N increases.

59. [T] Plot the graphs of the partial sums Sn = ∑
n = 1

N
xn

n2

for n = 10, 50, 100 on the interval [−0.99, 0.99].
Comment on the behavior of the sums near x = −1 and

near x = 1 as N increases.

60. [T] Plot the graphs of the partial sums

SN = ∑
n = 1

N
sinnxn for n = 10, 50, 100 on the interval

[−0.99, 0.99]. Comment on the behavior of the sums near

x = −1 and near x = 1 as N increases.

61. [T] Plot the graphs of the partial sums

SN = ∑
n = 0

N
(−1)n x2n + 1

(2n + 1)! for n = 3, 5, 10 on the

interval [−2π, 2π]. Comment on how these plots

approximate sinx as N increases.

62. [T] Plot the graphs of the partial sums

SN = ∑
n = 0

N
(−1)n x2n

(2n)! for n = 3, 5, 10 on the interval

[−2π, 2π]. Comment on how these plots approximate

cosx as N increases.
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6.2 | Properties of Power Series

Learning Objectives
6.2.1 Combine power series by addition or subtraction.

6.2.2 Create a new power series by multiplication by a power of the variable or a constant, or by
substitution.

6.2.3 Multiply two power series together.

6.2.4 Differentiate and integrate power series term-by-term.

In the preceding section on power series and functions we showed how to represent certain functions using power series.
In this section we discuss how power series can be combined, differentiated, or integrated to create new power series. This
capability is particularly useful for a couple of reasons. First, it allows us to find power series representations for certain
elementary functions, by writing those functions in terms of functions with known power series. For example, given the

power series representation for f (x) = 1
1 − x, we can find a power series representation for f ′ (x) = 1

(1 − x)2. Second,

being able to create power series allows us to define new functions that cannot be written in terms of elementary functions.
This capability is particularly useful for solving differential equations for which there is no solution in terms of elementary
functions.

Combining Power Series
If we have two power series with the same interval of convergence, we can add or subtract the two series to create a new
power series, also with the same interval of convergence. Similarly, we can multiply a power series by a power of x or
evaluate a power series at xm for a positive integer m to create a new power series. Being able to do this allows us to find

power series representations for certain functions by using power series representations of other functions. For example,

since we know the power series representation for f (x) = 1
1 − x, we can find power series representations for related

functions, such as

y = 3x
1 − x2 and y = 1

(x − 1)(x − 3).

In Combining Power Series we state results regarding addition or subtraction of power series, composition of a power
series, and multiplication of a power series by a power of the variable. For simplicity, we state the theorem for power series
centered at x = 0. Similar results hold for power series centered at x = a.

Theorem 6.2: Combining Power Series

Suppose that the two power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to the functions f and g, respectively, on a

common interval I.

i. The power series ∑
n = 0

∞
⎛
⎝cn xn ± dn xn⎞

⎠ converges to f ± g on I.

ii. For any integer m ≥ 0 and any real number b, the power series ∑
n = 0

∞
bxm cn xn converges to bxm f (x) on I.

iii. For any integer m ≥ 0 and any real number b, the series ∑
n = 0

∞
cn (bxm)n converges to f (bxm) for all x such

that bxm is in I.
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Proof

We prove i. in the case of the series ∑
n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠. Suppose that ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to the

functions f and g, respectively, on the interval I. Let x be a point in I and let SN (x) and TN (x) denote the Nth partial sums

of the series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn, respectively. Then the sequence

⎧

⎩
⎨SN (x)⎫

⎭
⎬ converges to f (x) and the sequence

⎧

⎩
⎨TN (x)⎫

⎭
⎬ converges to g(x). Furthermore, the Nth partial sum of ∑

n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠ is

∑
n = 0

N
⎛
⎝cn xn + dn xn⎞

⎠ = ∑
n = 0

N
cn xn + ∑

n = 0

N
dn xn

= SN (x) + TN (x).

Because

lim
N → ∞

⎛
⎝SN (x) + TN (x)⎞

⎠ = lim
N → ∞

SN (x) + lim
N → ∞

TN (x)

= f (x) + g(x),

we conclude that the series ∑
n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠ converges to f (x) + g(x).

□

We examine products of power series in a later theorem. First, we show several applications of Combining Power Series
and how to find the interval of convergence of a power series given the interval of convergence of a related power series.

Example 6.4

Combining Power Series

Suppose that ∑
n = 0

∞
an xn is a power series whose interval of convergence is (−1, 1), and suppose that

∑
n = 0

∞
bn xn is a power series whose interval of convergence is (−2, 2).

a. Find the interval of convergence of the series ∑
n = 0

∞
⎛
⎝an xn + bn xn⎞

⎠.

b. Find the interval of convergence of the series ∑
n = 0

∞
an 3n xn.

Solution

a. Since the interval (−1, 1) is a common interval of convergence of the series ∑
n = 0

∞
an xn and

∑
n = 0

∞
bn xn, the interval of convergence of the series ∑

n = 0

∞
⎛
⎝an xn + bn xn⎞

⎠ is (−1, 1).
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6.4

b. Since ∑
n = 0

∞
an xn is a power series centered at zero with radius of convergence 1, it converges for all x in

the interval (−1, 1). By Combining Power Series, the series

∑
n = 0

∞
an 3n xn = ∑

n = 0

∞
an (3x)n

converges if 3x is in the interval (−1, 1). Therefore, the series converges for all x in the interval

⎛
⎝−

1
3, 1

3
⎞
⎠.

Suppose that ∑
n = 0

∞
an xn has an interval of convergence of (−1, 1). Find the interval of convergence of

∑
n = 0

∞
an

⎛
⎝
x
2

⎞
⎠
n
.

In the next example, we show how to use Combining Power Series and the power series for a function f to construct

power series for functions related to f. Specifically, we consider functions related to the function f (x) = 1
1 − x and we use

the fact that

1
1 − x = ∑

n = 0

∞
xn = 1 + x + x2 + x3 + ⋯

for |x| < 1.

Example 6.5

Constructing Power Series from Known Power Series

Use the power series representation for f (x) = 1
1 − x combined with Combining Power Series to construct

a power series for each of the following functions. Find the interval of convergence of the power series.

a. f (x) = 3x
1 + x2

b. f (x) = 1
(x − 1)(x − 3)

Solution

a. First write f (x) as

f (x) = 3x
⎛

⎝
⎜ 1
1 − ⎛

⎝−x2⎞
⎠

⎞

⎠
⎟.
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6.5

Using the power series representation for f (x) = 1
1 − x and parts ii. and iii. of Combining Power

Series, we find that a power series representation for f is given by

∑
n = 0

∞
3x⎛

⎝−x2⎞
⎠
n

= ∑
n = 0

∞
3(−1)n x2n + 1.

Since the interval of convergence of the series for 1
1 − x is (−1, 1), the interval of convergence for

this new series is the set of real numbers x such that |x2| < 1. Therefore, the interval of convergence is

(−1, 1).

b. To find the power series representation, use partial fractions to write f (x) = 1
(1 − x)(x − 3) as the sum

of two fractions. We have

1
(x − 1)(x − 3) = −1/2

x − 1 + 1/2
x − 3

= 1/2
1 − x − 1/2

3 − x
= 1/2

1 − x − 1/6
1 − x

3
.

First, using part ii. of Combining Power Series, we obtain

1/2
1 − x = ∑

n = 0

∞
1
2xn for |x| < 1.

Then, using parts ii. and iii. of Combining Power Series, we have

1/6
1 − x/3 = ∑

n = 0

∞
1
6

⎛
⎝
x
3

⎞
⎠

n
for |x| < 3.

Since we are combining these two power series, the interval of convergence of the difference must be the
smaller of these two intervals. Using this fact and part i. of Combining Power Series, we have

1
(x − 1)(x − 3) = ∑

n = 0

∞ ⎛
⎝
1
2 − 1

6 · 3n
⎞
⎠xn

where the interval of convergence is (−1, 1).

Use the series for f (x) = 1
1 − x on |x| < 1 to construct a series for 1

(1 − x)(x − 2). Determine the

interval of convergence.

In Example 6.5, we showed how to find power series for certain functions. In Example 6.6 we show how to do the
opposite: given a power series, determine which function it represents.

Example 6.6

Chapter 6 | Power Series 547



6.6

Finding the Function Represented by a Given Power Series

Consider the power series ∑
n = 0

∞
2n xn. Find the function f represented by this series. Determine the interval of

convergence of the series.

Solution

Writing the given series as

∑
n = 0

∞
2n xn = ∑

n = 0

∞
(2x)n,

we can recognize this series as the power series for

f (x) = 1
1 − 2x.

Since this is a geometric series, the series converges if and only if |2x| < 1. Therefore, the interval of

convergence is ⎛
⎝−

1
2, 1

2
⎞
⎠.

Find the function represented by the power series ∑
n = 0

∞
1
3nxn. Determine its interval of convergence.

Recall the questions posed in the chapter opener about which is the better way of receiving payouts from lottery winnings.
We now revisit those questions and show how to use series to compare values of payments over time with a lump sum
payment today. We will compute how much future payments are worth in terms of today’s dollars, assuming we have the
ability to invest winnings and earn interest. The value of future payments in terms of today’s dollars is known as the present
value of those payments.

Example 6.7

Chapter Opener: Present Value of Future Winnings

Figure 6.4 (credit: modification of work by Robert
Huffstutter, Flickr)

Suppose you win the lottery and are given the following three options: (1) Receive 20 million dollars today; (2)
receive 1.5 million dollars per year over the next 20 years; or (3) receive 1 million dollars per year indefinitely
(being passed on to your heirs). Which is the best deal, assuming that the annual interest rate is 5%? We answer
this by working through the following sequence of questions.
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a. How much is the 1.5 million dollars received annually over the course of 20 years worth in terms of
today’s dollars, assuming an annual interest rate of 5%?

b. Use the answer to part a. to find a general formula for the present value of payments of C dollars received
each year over the next n years, assuming an average annual interest rate r.

c. Find a formula for the present value if annual payments of C dollars continue indefinitely, assuming an
average annual interest rate r.

d. Use the answer to part c. to determine the present value of 1 million dollars paid annually indefinitely.

e. Use your answers to parts a. and d. to determine which of the three options is best.

Solution

a. Consider the payment of 1.5 million dollars made at the end of the first year. If you were able to
receive that payment today instead of one year from now, you could invest that money and earn 5%
interest. Therefore, the present value of that money P1 satisfies P1 (1 + 0.05) = 1.5 million dollars. We

conclude that

P1 = 1.5
1.05 = $1.429 million dollars.

Similarly, consider the payment of 1.5 million dollars made at the end of the second year. If you
were able to receive that payment today, you could invest that money for two years, earning 5%
interest, compounded annually. Therefore, the present value of that money P2 satisfies

P2 (1 + 0.05)2 = 1.5 million dollars. We conclude that

P2 = 1.5
(1.05)2 = $1.361 million dollars.

The value of the future payments today is the sum of the present values P1, P2, …, P20 of each of those

annual payments. The present value Pk satisfies

Pk = 1.5
(1.05)k .

Therefore,

P = 1.5
1.05 + 1.5

(1.05)2 + ⋯ + 1.5
(1.05)20

= $18.693 million dollars.
b. Using the result from part a. we see that the present value P of C dollars paid annually over the course of

n years, assuming an annual interest rate r, is given by

P = C
1 + r + C

(1 + r)2 + ⋯ + C
(1 + r)n dollars.

c. Using the result from part b. we see that the present value of an annuity that continues indefinitely is given
by the infinite series

P = ∑
n = 0

∞
C

(1 + r)n + 1.

We can view the present value as a power series in r, which converges as long as | 1
1 + r | < 1. Since

r > 0, this series converges. Rewriting the series as
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P = C
(1 + r) ∑

n = 0

∞
⎛
⎝

1
1 + r

⎞
⎠

n
,

we recognize this series as the power series for

f (r) = 1
1 − ⎛

⎝
1

1 + r
⎞
⎠

= 1
⎛
⎝

r
1 + r

⎞
⎠

= 1 + r
r .

We conclude that the present value of this annuity is

P = C
1 + r · 1 + r

r = C
r .

d. From the result to part c. we conclude that the present value P of C = 1 million dollars paid out every

year indefinitely, assuming an annual interest rate r = 0.05, is given by

P = 1
0.05 = 20 million dollars.

e. From part a. we see that receiving $1.5 million dollars over the course of 20 years is worth $18.693
million dollars in today’s dollars. From part d. we see that receiving $1 million dollars per year
indefinitely is worth $20 million dollars in today’s dollars. Therefore, either receiving a lump-sum
payment of $20 million dollars today or receiving $1 million dollars indefinitely have the same present
value.

Multiplication of Power Series
We can also create new power series by multiplying power series. Being able to multiply two power series provides another
way of finding power series representations for functions.

The way we multiply them is similar to how we multiply polynomials. For example, suppose we want to multiply

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

and

∑
n = 0

∞
dn xn = d0 + d1 x + d2 x2 + ⋯.

It appears that the product should satisfy

⎛

⎝
⎜ ∑
n = 0

∞
cn xn

⎞

⎠
⎟
⎛

⎝
⎜ ∑
n = −0

∞
dn xn

⎞

⎠
⎟ = ⎛

⎝c0 + c1 x + c2 x2 + ⋯⎞
⎠ · ⎛

⎝d0 + d1 x + d2 x2 + ⋯⎞
⎠

= c0 d0 + ⎛
⎝c1 d0 + c0 d1

⎞
⎠x + ⎛

⎝c2 d0 + c1 d1 + c0 d2
⎞
⎠x2 + ⋯.

In Multiplying Power Series, we state the main result regarding multiplying power series, showing that if ∑
n = 0

∞
cn xn

and ∑
n = 0

∞
dn xn converge on a common interval I, then we can multiply the series in this way, and the resulting series also

converges on the interval I.
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Theorem 6.3: Multiplying Power Series

Suppose that the power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to f and g, respectively, on a common interval I.

Let

en = c0 dn + c1 dn − 1 + c2 dn − 2 + ⋯ + cn − 1 d1 + cn d0

= ∑
k = 0

n
ck dn − k.

Then

⎛

⎝
⎜ ∑
n = 0

∞
cn xn

⎞

⎠
⎟
⎛

⎝
⎜ ∑
n = 0

∞
dn xn

⎞

⎠
⎟ = ∑

n = 0

∞
en xn

and

∑
n = 0

∞
en xn converges to f (x) · g(x) on I.

The series ∑
n = 0

∞
enxn is known as the Cauchy product of the series ∑

n = 0

∞
cn xn and ∑

n = 0

∞
dn xn.

We omit the proof of this theorem, as it is beyond the level of this text and is typically covered in a more advanced course.
We now provide an example of this theorem by finding the power series representation for

f (x) = 1
(1 − x)⎛

⎝1 − x2⎞
⎠

using the power series representations for

y = 1
1 − x and y = 1

1 − x2.

Example 6.8

Multiplying Power Series

Multiply the power series representation

1
1 − x = ∑

n = 0

∞
xn

= 1 + x + x2 + x3 + ⋯

for |x| < 1 with the power series representation

1
1 − x2 = ∑

n = 0

∞
⎛
⎝x2⎞

⎠
n

= 1 + x2 + x4 + x6 + ⋯

for |x| < 1 to construct a power series for f (x) = 1
(1 − x)⎛

⎝1 − x2⎞
⎠

on the interval (−1, 1).
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Solution

We need to multiply

⎛
⎝1 + x + x2 + x3 + ⋯⎞

⎠
⎛
⎝1 + x2 + x4 + x6 + ⋯⎞

⎠.

Writing out the first several terms, we see that the product is given by

⎛
⎝1 + x2 + x4 + x6 + ⋯⎞

⎠ + ⎛
⎝x + x3 + x5 + x7 + ⋯⎞

⎠ + ⎛
⎝x2 + x4 + x6 + x8 + ⋯⎞

⎠ + ⎛
⎝x

3 + x5 + x7 + x9 + ⋯⎞
⎠

= 1 + x + (1 + 1)x2 + (1 + 1)x3 + (1 + 1 + 1)x4 + (1 + 1 + 1)x5 + ⋯
= 1 + x + 2x2 + 2x3 + 3x4 + 3x5 + ⋯.

Since the series for y = 1
1 − x and y = 1

1 − x2 both converge on the interval (−1, 1), the series for the

product also converges on the interval (−1, 1).

Multiply the series 1
1 − x = ∑

n = 0

∞
xn by itself to construct a series for 1

(1 − x)(1 − x).

Differentiating and Integrating Power Series

Consider a power series ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯ that converges on some interval I, and let f be the function

defined by this series. Here we address two questions about f .

• Is f differentiable, and if so, how do we determine the derivative f ′ ?

• How do we evaluate the indefinite integral ∫ f (x)dx?

We know that, for a polynomial with a finite number of terms, we can evaluate the derivative by differentiating each term
separately. Similarly, we can evaluate the indefinite integral by integrating each term separately. Here we show that we can
do the same thing for convergent power series. That is, if

f (x) = cn xn = c0 + c1 x + c2 x2 + ⋯

converges on some interval I, then

f ′ (x) = c1 + 2c2 x + 3c3 x2 + ⋯

and

∫ f (x)dx = C + c0 x + c1
x2

2 + c2
x3

3 + ⋯.

Evaluating the derivative and indefinite integral in this way is called term-by-term differentiation of a power series and
term-by-term integration of a power series, respectively. The ability to differentiate and integrate power series term-
by-term also allows us to use known power series representations to find power series representations for other functions.

For example, given the power series for f (x) = 1
1 − x, we can differentiate term-by-term to find the power series for

f ′ (x) = 1
(1 − x)2. Similarly, using the power series for g(x) = 1

1 + x, we can integrate term-by-term to find the power

series for G(x) = ln(1 + x), an antiderivative of g. We show how to do this in Example 6.9 and Example 6.10. First,

we state Term-by-Term Differentiation and Integration for Power Series, which provides the main result regarding
differentiation and integration of power series.
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Theorem 6.4: Term-by-Term Differentiation and Integration for Power Series

Suppose that the power series ∑
n = 0

∞
cn (x − a)n converges on the interval (a − R, a + R) for some R > 0. Let f be

the function defined by the series

f (x) = ∑
n = 0

∞
cn (x − a)n

= c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ⋯

for |x − a| < R. Then f is differentiable on the interval (a − R, a + R) and we can find f ′ by differentiating the

series term-by-term:

f ′ (x) = ∑
n = 1

∞
ncn (x − a)n − 1

= c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯

for |x − a| < R. Also, to find ∫ f (x)dx, we can integrate the series term-by-term. The resulting series converges on

(a − R, a + R), and we have

∫ f (x)dx = C + ∑
n = 0

∞
cn

(x − a)n + 1

n + 1

= C + c0 (x − a) + c1
(x − a)2

2 + c2
(x − a)3

3 + ⋯

for |x − a| < R.

The proof of this result is beyond the scope of the text and is omitted. Note that although Term-by-Term Differentiation
and Integration for Power Series guarantees the same radius of convergence when a power series is differentiated
or integrated term-by-term, it says nothing about what happens at the endpoints. It is possible that the differentiated and
integrated power series have different behavior at the endpoints than does the original series. We see this behavior in the
next examples.

Example 6.9

Differentiating Power Series

a. Use the power series representation

f (x) = 1
1 − x

= ∑
n = 0

∞
xn

= 1 + x + x2 + x3 + ⋯

for |x| < 1 to find a power series representation for

g(x) = 1
(1 − x)2

on the interval (−1, 1). Determine whether the resulting series converges at the endpoints.
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b. Use the result of part a. to evaluate the sum of the series ∑
n = 0

∞
n + 1

4n .

Solution

a. Since g(x) = 1
(1 − x)2 is the derivative of f (x) = 1

1 − x, we can find a power series representation for

g by differentiating the power series for f term-by-term. The result is

g(x) = 1
(1 − x)2

= d
dx

⎛
⎝

1
1 − x

⎞
⎠

= ∑
n = 0

∞
d
dx(xn)

= d
dx

⎛
⎝1 + x + x2 + x3 + ⋯⎞

⎠

= 0 + 1 + 2x + 3x2 + 4x3 + ⋯

= ∑
n = 0

∞
(n + 1)xn

for |x| < 1. Term-by-Term Differentiation and Integration for Power Series does not guarantee

anything about the behavior of this series at the endpoints. Testing the endpoints by using the divergence
test, we find that the series diverges at both endpoints x = ±1. Note that this is the same result found in

Example 6.8.

b. From part a. we know that

∑
n = 0

∞
(n + 1)xn = 1

(1 − x)2.

Therefore,

∑
n = 0

∞
n + 1

4n = ∑
n = 0

∞
(n + 1)⎛

⎝
1
4

⎞
⎠
n

= 1
⎛
⎝1 − 1

4
⎞
⎠
2

= 1
⎛
⎝
3
4

⎞
⎠
2

= 16
9 .

Differentiate the series 1
(1 − x)2 = ∑

n = 0

∞
(n + 1)xn term-by-term to find a power series representation for

2
(1 − x)3 on the interval (−1, 1).
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Example 6.10

Integrating Power Series

For each of the following functions f, find a power series representation for f by integrating the power series for
f ′ and find its interval of convergence.

a. f (x) = ln(1 + x)

b. f (x) = tan−1 x

Solution

a. For f (x) = ln(1 + x), the derivative is f ′ (x) = 1
1 + x. We know that

1
1 + x = 1

1 − (−x)

= ∑
n = 0

∞
(−x)n

= 1 − x + x2 − x3 + ⋯

for |x| < 1. To find a power series for f (x) = ln(1 + x), we integrate the series term-by-term.

∫ f ′ (x)dx = ∫ ⎛
⎝1 − x + x2 − x3 + ⋯⎞

⎠dx

= C + x − x2

2 + x3

3 − x4

4 + ⋯

Since f (x) = ln(1 + x) is an antiderivative of 1
1 + x, it remains to solve for the constant C. Since

ln(1 + 0) = 0, we have C = 0. Therefore, a power series representation for f (x) = ln(1 + x) is

ln(1 + x) = x − x2

2 + x3

3 − x4

4 + ⋯

= ∑
n = 1

∞
(−1)n + 1 xn

n

for |x| < 1. Term-by-Term Differentiation and Integration for Power Series does not guarantee

anything about the behavior of this power series at the endpoints. However, checking the endpoints, we
find that at x = 1 the series is the alternating harmonic series, which converges. Also, at x = −1, the

series is the harmonic series, which diverges. It is important to note that, even though this series converges
at x = 1, Term-by-Term Differentiation and Integration for Power Series does not guarantee

that the series actually converges to ln(2). In fact, the series does converge to ln(2), but showing this

fact requires more advanced techniques. (Abel’s theorem, covered in more advanced texts, deals with this
more technical point.) The interval of convergence is (−1, 1].

b. The derivative of f (x) = tan−1 x is f ′ (x) = 1
1 + x2. We know that
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6.9

1
1 + x2 = 1

1 − ⎛
⎝−x2⎞

⎠

= ∑
n = 0

∞
⎛
⎝−x2⎞

⎠
n

= 1 − x2 + x4 − x6 + ⋯

for |x| < 1. To find a power series for f (x) = tan−1 x, we integrate this series term-by-term.

∫ f ′ (x)dx = ∫ ⎛
⎝1 − x2 + x4 − x6 + ⋯⎞

⎠dx

= C + x − x3

3 + x5

5 − x7

7 + ⋯

Since tan−1 (0) = 0, we have C = 0. Therefore, a power series representation for f (x) = tan−1 x is

tan−1 x = x − x3

3 + x5

5 − x7

7 + ⋯

= ∑
n = 0

∞
(−1)n x2n + 1

2n + 1

for |x| < 1. Again, Term-by-Term Differentiation and Integration for Power Series does not

guarantee anything about the convergence of this series at the endpoints. However, checking the endpoints
and using the alternating series test, we find that the series converges at x = 1 and x = −1. As discussed

in part a., using Abel’s theorem, it can be shown that the series actually converges to tan−1 (1) and

tan−1 (−1) at x = 1 and x = −1, respectively. Thus, the interval of convergence is [−1, 1].

Integrate the power series ln(1 + x) = ∑
n = 1

∞
(−1)n + 1 xn

n term-by-term to evaluate ∫ ln(1 + x)dx.

Up to this point, we have shown several techniques for finding power series representations for functions. However, how
do we know that these power series are unique? That is, given a function f and a power series for f at a, is it possible that
there is a different power series for f at a that we could have found if we had used a different technique? The answer to this
question is no. This fact should not seem surprising if we think of power series as polynomials with an infinite number of
terms. Intuitively, if

c0 + c1 x + c2 x2 + ⋯ = d0 + d1 x + d2 x2 + ⋯

for all values x in some open interval I about zero, then the coefficients cn should equal dn for n ≥ 0. We now state this

result formally in Uniqueness of Power Series.

Theorem 6.5: Uniqueness of Power Series

Let ∑
n = 0

∞
cn (x − a)n and ∑

n = 0

∞
dn (x − a)n be two convergent power series such that

∑
n = 0

∞
cn (x − a)n = ∑

n = 0

∞
dn (x − a)n
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for all x in an open interval containing a. Then cn = dn for all n ≥ 0.

Proof

Let

f (x) = c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ⋯

= d0 + d1 (x − a) + d2 (x − a)2 + d3 (x − a)3 + ⋯.

Then f (a) = c0 = d0. By Term-by-Term Differentiation and Integration for Power Series, we can differentiate

both series term-by-term. Therefore,

f ′ (x) = c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯

= d1 + 2d2 (x − a) + 3d3 (x − a)2 + ⋯,

and thus, f ′ (a) = c1 = d1. Similarly,

f ″(x) = 2c2 + 3 · 2c3 (x − a) + ⋯
= 2d2 + 3 · 2d3 (x − a) + ⋯

implies that f ″(a) = 2c2 = 2d2, and therefore, c2 = d2. More generally, for any integer

n ≥ 0, f (n) (a) = n!cn = n!dn, and consequently, cn = dn for all n ≥ 0.

□

In this section we have shown how to find power series representations for certain functions using various algebraic
operations, differentiation, or integration. At this point, however, we are still limited as to the functions for which we can
find power series representations. Next, we show how to find power series representations for many more functions by
introducing Taylor series.
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6.2 EXERCISES

63. If f (x) = ∑
n = 0

∞
xn

n! and g(x) = ∑
n = 0

∞
(−1)n xn

n! , find

the power series of 1
2

⎛
⎝ f (x) + g(x)⎞

⎠ and of 1
2

⎛
⎝ f (x) − g(x)⎞

⎠.

64. If C(x) = ∑
n = 0

∞
x2n

(2n)! and S(x) = ∑
n = 0

∞
x2n + 1

(2n + 1)!,

find the power series of C(x) + S(x) and of C(x) − S(x).

In the following exercises, use partial fractions to find the
power series of each function.

65. 4
(x − 3)(x + 1)

66. 3
(x + 2)(x − 1)

67. 5
⎛
⎝x2 + 4⎞

⎠
⎛
⎝x2 − 1⎞

⎠

68. 30
⎛
⎝x2 + 1⎞

⎠
⎛
⎝x2 − 9⎞

⎠

In the following exercises, express each series as a rational
function.

69. ∑
n = 1

∞
1
xn

70. ∑
n = 1

∞
1

x2n

71. ∑
n = 1

∞
1

(x − 3)2n − 1

72. ∑
n = 1

∞ ⎛

⎝
⎜ 1
(x − 3)2n − 1 − 1

(x − 2)2n − 1

⎞

⎠
⎟

The following exercises explore applications of annuities.

73. Calculate the present values P of an annuity in which
$10,000 is to be paid out annually for a period of 20 years,
assuming interest rates of r = 0.03, r = 0.05, and

r = 0.07.

74. Calculate the present values P of annuities in which
$9,000 is to be paid out annually perpetually, assuming
interest rates of r = 0.03, r = 0.05 and r = 0.07.

75. Calculate the annual payouts C to be given for 20
years on annuities having present value $100,000 assuming
respective interest rates of r = 0.03, r = 0.05, and

r = 0.07.

76. Calculate the annual payouts C to be given perpetually
on annuities having present value $100,000 assuming
respective interest rates of r = 0.03, r = 0.05, and

r = 0.07.

77. Suppose that an annuity has a present value
P = 1 million dollars. What interest rate r would allow

for perpetual annual payouts of $50,000?

78. Suppose that an annuity has a present value
P = 10 million dollars. What interest rate r would allow

for perpetual annual payouts of $100,000?

In the following exercises, express the sum of each power
series in terms of geometric series, and then express the
sum as a rational function.

79. x + x2 − x3 + x4 + x5 − x6 + ⋯ (Hint: Group

powers x3k, x3k − 1, and x3k − 2.)

80. x + x2 − x3 − x4 + x5 + x6 − x7 − x8 + ⋯ (Hint:

Group powers x4k, x4k − 1, etc.)

81. x − x2 − x3 + x4 − x5 − x6 + x7 − ⋯ (Hint: Group

powers x3k, x3k − 1, and x3k − 2.)

82. x
2 + x2

4 − x3

8 + x4

16 + x5

32 − x6

64 + ⋯ (Hint: Group

powers ⎛
⎝
x
2

⎞
⎠
3k

, ⎛
⎝
x
2

⎞
⎠
3k − 1

, and ⎛
⎝
x
2

⎞
⎠
3k − 2

.)

In the following exercises, find the power series of
f (x)g(x) given f and g as defined.

83. f (x) = 2 ∑
n = 0

∞
xn, g(x) = ∑

n = 0

∞
nxn

84. f (x) = ∑
n = 1

∞
xn, g(x) = ∑

n = 1

∞
1
nxn. Express the

coefficients of f (x)g(x) in terms of Hn = ∑
k = 1

n
1
k .

85. f (x) = g(x) = ∑
n = 1

∞
⎛
⎝
x
2

⎞
⎠
n
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86. f (x) = g(x) = ∑
n = 1

∞
nxn

In the following exercises, differentiate the given series
expansion of f term-by-term to obtain the corresponding
series expansion for the derivative of f.

87. f (x) = 1
1 + x = ∑

n = 0

∞
(−1)n xn

88. f (x) = 1
1 − x2 = ∑

n = 0

∞
x2n

In the following exercises, integrate the given series
expansion of f term-by-term from zero to x to obtain the

corresponding series expansion for the indefinite integral of
f .

89. f (x) = 2x
⎛
⎝1 + x2⎞

⎠
2 = ∑

n = 1

∞
(−1)n (2n)x2n − 1

90. f (x) = 2x
1 + x2 = 2 ∑

n = 0

∞
(−1)n x2n + 1

In the following exercises, evaluate each infinite series by
identifying it as the value of a derivative or integral of
geometric series.

91. Evaluate ∑
n = 1

∞
n
2n as f ′ ⎛

⎝
1
2

⎞
⎠ where f (x) = ∑

n = 0

∞
xn.

92. Evaluate ∑
n = 1

∞
n
3n as f ′ ⎛

⎝
1
3

⎞
⎠ where f (x) = ∑

n = 0

∞
xn.

93. Evaluate ∑
n = 2

∞ n(n − 1)
2n as f ″⎛

⎝
1
2

⎞
⎠ where

f (x) = ∑
n = 0

∞
xn.

94. Evaluate ∑
n = 0

∞ (−1)n

n + 1 as ∫
0

1
f (t)dt where

f (x) = ∑
n = 0

∞
(−1)n x2n = 1

1 + x2.

In the following exercises, given that 1
1 − x = ∑

n = 0

∞
xn,

use term-by-term differentiation or integration to find
power series for each function centered at the given point.

95. f (x) = lnx centered at x = 1 (Hint:

x = 1 − (1 − x))

96. ln(1 − x) at x = 0

97. ln ⎛
⎝1 − x2⎞

⎠ at x = 0

98. f (x) = 2x
⎛
⎝1 − x2⎞

⎠
2 at x = 0

99. f (x) = tan−1 ⎛
⎝x2⎞

⎠ at x = 0

100. f (x) = ln ⎛
⎝1 + x2⎞

⎠ at x = 0

101. f (x) = ∫
0

x
ln tdt where

ln(x) = ∑
n = 1

∞
(−1)n − 1 (x − 1)n

n

102. [T] Evaluate the power series expansion

ln(1 + x) = ∑
n = 1

∞
(−1)n − 1 xn

n at x = 1 to show that

ln(2) is the sum of the alternating harmonic series. Use the

alternating series test to determine how many terms of the
sum are needed to estimate ln(2) accurate to within 0.001,

and find such an approximation.

103. [T] Subtract the infinite series of ln(1 − x) from

ln(1 + x) to get a power series for ln⎛
⎝
1 + x
1 − x

⎞
⎠. Evaluate

at x = 1
3. What is the smallest N such that the Nth partial

sum of this series approximates ln(2) with an error less

than 0.001?

In the following exercises, using a substitution if indicated,
express each series in terms of elementary functions and
find the radius of convergence of the sum.

104. ∑
k = 0

∞
⎛
⎝x

k − x2k + 1⎞
⎠

105. ∑
k = 1

∞
x3k

6k

106. ∑
k = 1

∞
⎛
⎝1 + x2⎞

⎠
−k

using y = 1
1 + x2

107. ∑
k = 1

∞
2−kx using y = 2−x
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108. Show that, up to powers x3 and y3, E(x) = ∑
n = 0

∞
xn

n!

satisfies E(x + y) = E(x)E(y).

109. Differentiate the series E(x) = ∑
n = 0

∞
xn

n! term-by-

term to show that E(x) is equal to its derivative.

110. Show that if f (x) = ∑
n = 0

∞
an xn is a sum of even

powers, that is, an = 0 if n is odd, then F = ∫
0

x
f (t)dt is

a sum of odd powers, while if f is a sum of odd powers, then
F is a sum of even powers.

111. [T] Suppose that the coefficients an of the series

∑
n = 0

∞
an xn are defined by the recurrence relation

an = an − 1
n + an − 2

n(n − 1). For a0 = 0 and a1 = 1,

compute and plot the sums SN = ∑
n = 0

N
an xn for

N = 2, 3, 4, 5 on [−1, 1].

112. [T] Suppose that the coefficients an of the series

∑
n = 0

∞
an xn are defined by the recurrence relation

an = an − 1
n − an − 2

n(n − 1)
. For a0 = 1 and a1 = 0,

compute and plot the sums SN = ∑
n = 0

N
an xn for

N = 2, 3, 4, 5 on [−1, 1].

113. [T] Given the power series expansion

ln(1 + x) = ∑
n = 1

∞
(−1)n − 1 xn

n , determine how many

terms N of the sum evaluated at x = −1/2 are needed to

approximate ln(2) accurate to within 1/1000. Evaluate the

corresponding partial sum ∑
n = 1

N
(−1)n − 1 xn

n .

114. [T] Given the power series expansion

tan−1 (x) = ∑
k = 0

∞
(−1)k x2k + 1

2k + 1, use the alternating series

test to determine how many terms N of the sum evaluated at

x = 1 are needed to approximate tan−1 (1) = π
4 accurate

to within 1/1000. Evaluate the corresponding partial sum

∑
k = 0

N
(−1)k x2k + 1

2k + 1.

115. [T] Recall that tan−1 ⎛
⎝

1
3

⎞
⎠ = π

6. Assuming an exact

value of
⎛
⎝

1
3

⎞
⎠, estimate π

6 by evaluating partial sums

SN
⎛
⎝

1
3

⎞
⎠ of the power series expansion

tan−1 (x) = ∑
k = 0

∞
(−1)k x2k + 1

2k + 1 at x = 1
3

. What is the

smallest number N such that 6SN
⎛
⎝

1
3

⎞
⎠ approximates π

accurately to within 0.001? How many terms are needed for
accuracy to within 0.00001?
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6.3 | Taylor and Maclaurin Series

Learning Objectives
6.3.1 Describe the procedure for finding a Taylor polynomial of a given order for a function.

6.3.2 Explain the meaning and significance of Taylor’s theorem with remainder.

6.3.3 Estimate the remainder for a Taylor series approximation of a given function.

In the previous two sections we discussed how to find power series representations for certain types of
functions––specifically, functions related to geometric series. Here we discuss power series representations for other types
of functions. In particular, we address the following questions: Which functions can be represented by power series and
how do we find such representations? If we can find a power series representation for a particular function f and the series

converges on some interval, how do we prove that the series actually converges to f ?

Overview of Taylor/Maclaurin Series
Consider a function f that has a power series representation at x = a. Then the series has the form

(6.4)∑
n = 0

∞
cn (x − a)n = c0 + c1(x − a) + c2 (x − a)2 + ⋯.

What should the coefficients be? For now, we ignore issues of convergence, but instead focus on what the series should be,
if one exists. We return to discuss convergence later in this section. If the series Equation 6.4 is a representation for f at

x = a, we certainly want the series to equal f (a) at x = a. Evaluating the series at x = a, we see that

∑
n = 0

∞
cn (x − a)n = c0 + c1 (a − a) + c2 (a − a)2 + ⋯

= c0.

Thus, the series equals f (a) if the coefficient c0 = f (a). In addition, we would like the first derivative of the power series

to equal f ′ (a) at x = a. Differentiating Equation 6.4 term-by-term, we see that

d
dx

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯.

Therefore, at x = a, the derivative is

d
dx

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = c1 + 2c2 (a − a) + 3c3 (a − a)2 + ⋯

= c1.

Therefore, the derivative of the series equals f ′ (a) if the coefficient c1 = f ′ (a). Continuing in this way, we look

for coefficients cn such that all the derivatives of the power series Equation 6.4 will agree with all the corresponding
derivatives of f at x = a. The second and third derivatives of Equation 6.4 are given by

d2

dx2

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 2c2 + 3 · 2c3 (x − a) + 4 · 3c4 (x − a)2 + ⋯

and

d3

dx3

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 3 · 2c3 + 4 · 3 · 2c4 (x − a) + 5 · 4 · 3c5 (x − a)2 + ⋯.

Therefore, at x = a, the second and third derivatives
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d2

dx2

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 2c2 + 3 · 2c3 (a − a) + 4 · 3c4 (a − a)2 + ⋯

= 2c2

and

d3

dx3

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 3 · 2c3 + 4 · 3 · 2c4 (a − a) + 5 · 4 · 3c5 (a − a)2 + ⋯

= 3 · 2c3

equal f ″(a) and f ‴(a), respectively, if c2 = f ″(a)
2 and c3 = f ‴(a)

3 · 2. More generally, we see that if f has a power

series representation at x = a, then the coefficients should be given by cn = f (n) (a)
n! . That is, the series should be

∑
n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + f ‴(a)
3! (x − a)3 + ⋯.

This power series for f is known as the Taylor series for f at a. If x = 0, then this series is known as the Maclaurin

series for f .

Definition

If f has derivatives of all orders at x = a, then the Taylor series for the function f at a is

(6.5)
∑

n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + ⋯ + f (n) (a)
n! (x − a)n + ⋯.

The Taylor series for f at 0 is known as the Maclaurin series for f .

Later in this section, we will show examples of finding Taylor series and discuss conditions under which the Taylor series
for a function will converge to that function. Here, we state an important result. Recall from Uniqueness of Power
Series that power series representations are unique. Therefore, if a function f has a power series at a, then it must be

the Taylor series for f at a.

Theorem 6.6: Uniqueness of Taylor Series

If a function f has a power series at a that converges to f on some open interval containing a, then that power series

is the Taylor series for f at a.

The proof follows directly from Uniqueness of Power Series.

To determine if a Taylor series converges, we need to look at its sequence of partial sums. These partial sums are finite
polynomials, known as Taylor polynomials.

Visit the MacTutor History of Mathematics archive to read brief biographies of Brook Taylor
(http://www.openstaxcollege.org/l/20_BTaylor) and Colin Maclaurin
(http://www.openstaxcollege.org/l/20_CMaclaurin) and how they developed the concepts named after
them.

Taylor Polynomials
The nth partial sum of the Taylor series for a function f at a is known as the nth Taylor polynomial. For example, the 0th,
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1st, 2nd, and 3rd partial sums of the Taylor series are given by

p0 (x) = f (a),
p1 (x) = f (a) + f ′ (a)(x − a),
p2 (x) = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2,

p3 (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + f ‴(a)

3! (x − a)3,

respectively. These partial sums are known as the 0th, 1st, 2nd, and 3rd Taylor polynomials of f at a, respectively. If

x = a, then these polynomials are known as Maclaurin polynomials for f . We now provide a formal definition of Taylor

and Maclaurin polynomials for a function f .

Definition

If f has n derivatives at x = a, then the nth Taylor polynomial for f at a is

pn (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + f ‴(a)

3! (x − a)3 + ⋯ + f (n) (a)
n! (x − a)n.

The nth Taylor polynomial for f at 0 is known as the nth Maclaurin polynomial for f .

We now show how to use this definition to find several Taylor polynomials for f (x) = lnx at x = 1.

Example 6.11

Finding Taylor Polynomials

Find the Taylor polynomials p0, p1, p2 and p3 for f (x) = lnx at x = 1. Use a graphing utility to compare

the graph of f with the graphs of p0, p1, p2 and p3.

Solution

To find these Taylor polynomials, we need to evaluate f and its first three derivatives at x = 1.

f (x) = lnx f (1) = 0

f ′ (x) = 1
x f ′ (1) = 1

f ″(x) = − 1
x2 f ″(1) = −1

f ‴(x) = 2
x3 f ‴(1) = 2

Therefore,

p0 (x) = f (1) = 0,

p1 (x) = f (1) + f ′ (1)(x − 1) = x − 1,

p2 (x) = f (1) + f ′ (1)(x − 1) + f ″(1)
2 (x − 1)2 = (x − 1) − 1

2(x − 1)2,

p3 (x) = f (1) + f ′ (1)(x − 1) + f ″(1)
2 (x − 1)2 + f ‴(1)

3! (x − 1)3

= (x − 1) − 1
2(x − 1)2 + 1

3(x − 1)3.
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The graphs of y = f (x) and the first three Taylor polynomials are shown in Figure 6.5.

Figure 6.5 The function y = lnx and the Taylor polynomials

p0, p1, p2 and p3 at x = 1 are plotted on this graph.

Find the Taylor polynomials p0, p1, p2 and p3 for f (x) = 1
x2 at x = 1.

We now show how to find Maclaurin polynomials for ex, sinx, and cosx. As stated above, Maclaurin polynomials are

Taylor polynomials centered at zero.

Example 6.12

Finding Maclaurin Polynomials

For each of the following functions, find formulas for the Maclaurin polynomials p0, p1, p2 and p3. Find a

formula for the nth Maclaurin polynomial and write it using sigma notation. Use a graphing utilty to compare the
graphs of p0, p1, p2 and p3 with f .

a. f (x) = ex

b. f (x) = sinx

c. f (x) = cosx

Solution

a. Since f (x) = ex, we know that f (x) = f ′ (x) = f ″(x) = ⋯ = f (n) (x) = ex for all positive integers n.

Therefore,

f (0) = f ′ (0) = f ″(0) = ⋯ = f (n) (0) = 1
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for all positive integers n. Therefore, we have

p0 (x) = f (0) = 1,

p1 (x) = f (0) + f ′ (0)x = 1 + x,

p2 (x) = f (0) + f ′ (0)x + f ″(0)
2! x2 = 1 + x + 1

2x2,

p3 (x) = f (0) + f ′ (0)x + f ″(0)
2 x2 + f ‴(0)

3! x3

= 1 + x + 1
2x2 + 1

3!x3,

pn (x) = f (0) + f ′ (0)x + f ″(0)
2 x2 + f ‴(0)

3! x3 + ⋯ + f (n) (0)
n! xn

= 1 + x + x2

2! + x3

3! + ⋯ + xn

n!

= ∑
k = 0

n
xk

k! .

The function and the first three Maclaurin polynomials are shown in Figure 6.6.

Figure 6.6 The graph shows the function y = ex and the

Maclaurin polynomials p0, p1, p2 and p3.

b. For f (x) = sinx, the values of the function and its first four derivatives at x = 0 are given as follows:

f (x) = sinx f (0) = 0
f ′ (x) = cosx f ′ (0) = 1
f ″(x) = −sinx f ″(0) = 0
f ‴(x) = −cosx f ‴(0) = −1

f (4) (x) = sinx f (4) (0) = 0.

Since the fourth derivative is sinx, the pattern repeats. That is, f (2m) (0) = 0 and

f (2m + 1) (0) = (−1)m for m ≥ 0. Thus, we have
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p0 (x) = 0,
p1 (x) = 0 + x = x,
p2 (x) = 0 + x + 0 = x,
p3 (x) = 0 + x + 0 − 1

3!x3 = x − x3

3! ,

p4 (x) = 0 + x + 0 − 1
3!x3 + 0 = x − x3

3! ,

p5 (x) = 0 + x + 0 − 1
3!x3 + 0 + 1

5!x5 = x − x3

3! + x5

5! ,

and for m ≥ 0,

p2m + 1 (x) = p2m + 2 (x)

= x − x3

3! + x5

5! − ⋯ + (−1)m x2m + 1

(2m + 1)!

= ∑
k = 0

m
(−1)k x2k + 1

(2k + 1)!.

Graphs of the function and its Maclaurin polynomials are shown in Figure 6.7.

Figure 6.7 The graph shows the function y = sinx and the

Maclaurin polynomials p1, p3 and p5.

c. For f (x) = cosx, the values of the function and its first four derivatives at x = 0 are given as follows:

f (x) = cosx f (0) = 1
f ′ (x) = −sinx f ′ (0) = 0
f ″(x) = −cosx f ″(0) = −1
f ‴(x) = sinx f ‴(0) = 0

f (4) (x) = cosx f (4) (0) = 1.

Since the fourth derivative is sinx, the pattern repeats. In other words, f (2m) (0) = (−1)m and
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f (2m + 1) = 0 for m ≥ 0. Therefore,

p0 (x) = 1,
p1 (x) = 1 + 0 = 1,
p2 (x) = 1 + 0 − 1

2!x2 = 1 − x2

2! ,

p3 (x) = 1 + 0 − 1
2!x2 + 0 = 1 − x2

2! ,

p4 (x) = 1 + 0 − 1
2!x2 + 0 + 1

4!x4 = 1 − x2

2! + x4

4! ,

p5 (x) = 1 + 0 − 1
2!x2 + 0 + 1

4!x4 + 0 = 1 − x2

2! + x4

4! ,

and for n ≥ 0,

p2m (x) = p2m + 1 (x)

= 1 − x2

2! + x4

4! − ⋯ + (−1)m x2m

(2m)!

= ∑
k = 0

m
(−1)k x2k

(2k)!.

Graphs of the function and the Maclaurin polynomials appear in Figure 6.8.

Figure 6.8 The function y = cosx and the Maclaurin

polynomials p0, p2 and p4 are plotted on this graph.

Find formulas for the Maclaurin polynomials p0, p1, p2 and p3 for f (x) = 1
1 + x. Find a formula for

the nth Maclaurin polynomial. Write your anwer using sigma notation.

Taylor’s Theorem with Remainder
Recall that the nth Taylor polynomial for a function f at a is the nth partial sum of the Taylor series for f at a. Therefore,

to determine if the Taylor series converges, we need to determine whether the sequence of Taylor polynomials {pn}
converges. However, not only do we want to know if the sequence of Taylor polynomials converges, we want to know if it
converges to f . To answer this question, we define the remainder Rn (x) as
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Rn (x) = f (x) − pn (x).

For the sequence of Taylor polynomials to converge to f , we need the remainder Rn to converge to zero. To determine

if Rn converges to zero, we introduce Taylor’s theorem with remainder. Not only is this theorem useful in proving that
a Taylor series converges to its related function, but it will also allow us to quantify how well the nth Taylor polynomial
approximates the function.

Here we look for a bound on |Rn|. Consider the simplest case: n = 0. Let p0 be the 0th Taylor polynomial at a for a

function f . The remainder R0 satisfies

R0 (x) = f (x) − p0 (x)
= f (x) − f (a).

If f is differentiable on an interval I containing a and x, then by the Mean Value Theorem there exists a real number c

between a and x such that f (x) − f (a) = f ′ (c)(x − a). Therefore,

R0 (x) = f ′ (c)(x − a).

Using the Mean Value Theorem in a similar argument, we can show that if f is n times differentiable on an interval I

containing a and x, then the nth remainder Rn satisfies

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

for some real number c between a and x. It is important to note that the value c in the numerator above is not the center a,
but rather an unknown value c between a and x. This formula allows us to get a bound on the remainder Rn. If we happen to

know that | f (n + 1) (x)| is bounded by some real number M on this interval I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

for all x in the interval I.

We now state Taylor’s theorem, which provides the formal relationship between a function f and its nth degree Taylor

polynomial pn (x). This theorem allows us to bound the error when using a Taylor polynomial to approximate a function

value, and will be important in proving that a Taylor series for f converges to f .

Theorem 6.7: Taylor’s Theorem with Remainder

Let f be a function that can be differentiated n + 1 times on an interval I containing the real number a. Let pn be the

nth Taylor polynomial of f at a and let

Rn (x) = f (x) − pn (x)

be the nth remainder. Then for each x in the interval I, there exists a real number c between a and x such that

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1.

If there exists a real number M such that | f (n + 1) (x)| ≤ M for all x ∈ I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

for all x in I.
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Proof

Fix a point x ∈ I and introduce the function g such that

g(t) = f (x) − f (t) − f ′ (t)(x − t) − f ″(t)
2! (x − t)2 − ⋯ − f (n) (t)

n! (x − t)n − Rn (x) (x − t)n + 1

(x − a)n + 1.

We claim that g satisfies the criteria of Rolle’s theorem. Since g is a polynomial function (in t), it is a differentiable function.
Also, g is zero at t = a and t = x because

g(a) = f (x) − f (a) − f ′ (a)(x − a) − f ″(a)
2! (x − a)2 + ⋯ + f (n) (a)

n! (x − a)n − Rn (x)

= f (x) − pn (x) − Rn (x)
= 0,

g(x) = f (x) − f (x) − 0 − ⋯ − 0
= 0.

Therefore, g satisfies Rolle’s theorem, and consequently, there exists c between a and x such that g′ (c) = 0. We now

calculate g′. Using the product rule, we note that

d
dt

⎡

⎣
⎢ f (n) (t)

n! (x − t)n
⎤

⎦
⎥ = − f (n) (t)

(n − 1)! (x − t)n − 1 + f (n + 1) (t)
n! (x − t)n.

Consequently,

g′ (t) = − f ′ (t) + ⎡
⎣ f ′ (t) − f ″(t)(x − t)⎤

⎦ + ⎡
⎣ f ″(t)(x − t) − f ‴(t)

2! (x − t)2⎤
⎦ + ⋯

+
⎡

⎣
⎢ f (n) (t)
(n − 1)!(x − t)n − 1 − f (n + 1) (t)

n! (x − t)n
⎤

⎦
⎥ + (n + 1)Rn (x) (x − t)n

(x − a)n + 1.

Notice that there is a telescoping effect. Therefore,

g′ (t) = − f (n + 1) (t)
n! (x − t)n + (n + 1)Rn (x) (x − t)n

(x − a)n + 1.

By Rolle’s theorem, we conclude that there exists a number c between a and x such that g′ (c) = 0. Since

g′ (c) = − f (n + 1) (c)
n! (x − c)n + (n + 1)Rn (x) (x − c)n

(x − a)n + 1

we conclude that

− f (n + 1) (c)
n! (x − c)n + (n + 1)Rn (x) (x − c)n

(x − a)n + 1 = 0.

Adding the first term on the left-hand side to both sides of the equation and dividing both sides of the equation by n + 1,
we conclude that

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

as desired. From this fact, it follows that if there exists M such that | f (n + 1) (x)| ≤ M for all x in I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1.

□

Not only does Taylor’s theorem allow us to prove that a Taylor series converges to a function, but it also allows us to
estimate the accuracy of Taylor polynomials in approximating function values. We begin by looking at linear and quadratic
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approximations of f (x) = x3 at x = 8 and determine how accurate these approximations are at estimating 113 .

Example 6.13

Using Linear and Quadratic Approximations to Estimate Function Values

Consider the function f (x) = x3 .

a. Find the first and second Taylor polynomials for f at x = 8. Use a graphing utility to compare these

polynomials with f near x = 8.

b. Use these two polynomials to estimate 113 .

c. Use Taylor’s theorem to bound the error.

Solution

a. For f (x) = x3 , the values of the function and its first two derivatives at x = 8 are as follows:

f (x) = x3 f (8) = 2

f ′ (x) = 1
3x2/3 f ′ (8) = 1

12

f ″(x) = −2
9x5/3 f ″(8) = − 1

144.

Thus, the first and second Taylor polynomials at x = 8 are given by

p1 (x) = f (8) + f ′ (8)(x − 8)

= 2 + 1
12(x − 8)

p2 (x) = f (8) + f ′ (8)(x − 8) + f ″(8)
2! (x − 8)2

= 2 + 1
12(x − 8) − 1

288(x − 8)2.

The function and the Taylor polynomials are shown in Figure 6.9.
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Figure 6.9 The graphs of f (x) = x3 and the linear and

quadratic approximations p1 (x) and p2 (x).

b. Using the first Taylor polynomial at x = 8, we can estimate

113 ≈ p1 (11) = 2 + 1
12(11 − 8) = 2.25.

Using the second Taylor polynomial at x = 8, we obtain

113 ≈ p2 (11) = 2 + 1
12(11 − 8) − 1

288(11 − 8)2 = 2.21875.

c. By Uniqueness of Taylor Series, there exists a c in the interval (8, 11) such that the remainder when

approximating 113
by the first Taylor polynomial satisfies

R1 (11) = f ″(c)
2! (11 − 8)2.

We do not know the exact value of c, so we find an upper bound on R1 (11) by determining the maximum

value of f ″ on the interval (8, 11). Since f ″(x) = − 2
9x5/3, the largest value for | f ″(x)| on that

interval occurs at x = 8. Using the fact that f ″(8) = − 1
144, we obtain

|R1 (11)| ≤ 1
144 · 2!(11 − 8)2 = 0.03125.

Similarly, to estimate R2 (11), we use the fact that

R2 (11) = f ‴(c)
3! (11 − 8)3.

Since f ‴(x) = 10
27x8/3, the maximum value of f ‴ on the interval (8, 11) is f ‴(8) ≈ 0.0014468.

Therefore, we have
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|R2 (11)| ≤ 0.0011468
3! (11 − 8)3 ≈ 0.0065104.

Find the first and second Taylor polynomials for f (x) = x at x = 4. Use these polynomials to

estimate 6. Use Taylor’s theorem to bound the error.

Example 6.14

Approximating sin x Using Maclaurin Polynomials

From Example 6.12b., the Maclaurin polynomials for sinx are given by

p2m + 1 (x) = p2m + 2 (x)

= x − x3

3! + x5

5! − x7

7! + ⋯ + (−1)m x2m + 1

(2m + 1)!

for m = 0, 1, 2, ….

a. Use the fifth Maclaurin polynomial for sinx to approximate sin⎛
⎝

π
18

⎞
⎠ and bound the error.

b. For what values of x does the fifth Maclaurin polynomial approximate sinx to within 0.0001?

Solution

a. The fifth Maclaurin polynomial is

p5 (x) = x − x3

3! + x5

5! .

Using this polynomial, we can estimate as follows:

sin⎛
⎝

π
18

⎞
⎠ ≈ p5

⎛
⎝

π
18

⎞
⎠

= π
18 − 1

3!
⎛
⎝

π
18

⎞
⎠

3
+ 1

5!
⎛
⎝

π
18

⎞
⎠

5

≈ 0.173648.

To estimate the error, use the fact that the sixth Maclaurin polynomial is p6 (x) = p5 (x) and calculate a

bound on R6
⎛
⎝

π
18

⎞
⎠. By Uniqueness of Taylor Series, the remainder is

R6
⎛
⎝

π
18

⎞
⎠ = f (7) (c)

7!
⎛
⎝

π
18

⎞
⎠

7

for some c between 0 and π
18. Using the fact that | f (7) (x)| ≤ 1 for all x, we find that the magnitude of

the error is at most
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1
7! · ⎛

⎝
π
18

⎞
⎠

7
≤ 9.8 × 10−10.

b. We need to find the values of x such that

1
7!|x|7 ≤ 0.0001.

Solving this inequality for x, we have that the fifth Maclaurin polynomial gives an estimate to within
0.0001 as long as |x| < 0.907.

Use the fourth Maclaurin polynomial for cosx to approximate cos⎛
⎝

π
12

⎞
⎠.

Now that we are able to bound the remainder Rn (x), we can use this bound to prove that a Taylor series for f at a

converges to f .

Representing Functions with Taylor and Maclaurin Series
We now discuss issues of convergence for Taylor series. We begin by showing how to find a Taylor series for a function,
and how to find its interval of convergence.

Example 6.15

Finding a Taylor Series

Find the Taylor series for f (x) = 1
x at x = 1. Determine the interval of convergence.

Solution

For f (x) = 1
x , the values of the function and its first four derivatives at x = 1 are

f (x) = 1
x f (1) = 1

f ′ (x) = − 1
x2 f ′ (1) = −1

f ″(x) = 2
x3 f ″(1) = 2!

f ‴(x) = −3 · 2
x4 f ‴(1) = −3!

f (4) (x) = 4 · 3 · 2
x5 f (4) (1) = 4!.

That is, we have f (n) (1) = (−1)n n! for all n ≥ 0. Therefore, the Taylor series for f at x = 1 is given by

∑
n = 0

∞ f (n) (1)
n! (x − 1)n = ∑

n = 0

∞
(−1)n (x − 1)n.

To find the interval of convergence, we use the ratio test. We find that
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|an + 1|
|an| = |(−1)n + 1 (x − 1)n + 1|

|(−1)n (x − 1)n| = |x − 1|.

Thus, the series converges if |x − 1| < 1. That is, the series converges for 0 < x < 2. Next, we need to check

the endpoints. At x = 2, we see that

∑
n = 0

∞
(−1)n (2 − 1)n = ∑

n = 0

∞
(−1)n

diverges by the divergence test. Similarly, at x = 0,

∑
n = 0

∞
(−1)n (0 − 1)n = ∑

n = 0

∞
(−1)2n = ∑

n = 0

∞
1

diverges. Therefore, the interval of convergence is (0, 2).

Find the Taylor series for f (x) = 1
2 at x = 2 and determine its interval of convergence.

We know that the Taylor series found in this example converges on the interval (0, 2), but how do we know it actually

converges to f ? We consider this question in more generality in a moment, but for this example, we can answer this

question by writing

f (x) = 1
x = 1

1 − (1 − x).

That is, f can be represented by the geometric series ∑
n = 0

∞
(1 − x)n. Since this is a geometric series, it converges to 1

x as

long as |1 − x| < 1. Therefore, the Taylor series found in Example 6.15 does converge to f (x) = 1
x on (0, 2).

We now consider the more general question: if a Taylor series for a function f converges on some interval, how can we

determine if it actually converges to f ? To answer this question, recall that a series converges to a particular value if and

only if its sequence of partial sums converges to that value. Given a Taylor series for f at a, the nth partial sum is given by

the nth Taylor polynomial pn. Therefore, to determine if the Taylor series converges to f , we need to determine whether

limn → ∞pn (x) = f (x).

Since the remainder Rn (x) = f (x) − pn (x), the Taylor series converges to f if and only if

limn → ∞Rn (x) = 0.

We now state this theorem formally.

Theorem 6.8: Convergence of Taylor Series

Suppose that f has derivatives of all orders on an interval I containing a. Then the Taylor series

∑
n = 0

∞ f (n) (a)
n! (x − a)n
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converges to f (x) for all x in I if and only if

limn → ∞Rn (x) = 0

for all x in I.

With this theorem, we can prove that a Taylor series for f at a converges to f if we can prove that the remainder

Rn (x) → 0. To prove that Rn (x) → 0, we typically use the bound

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

from Taylor’s theorem with remainder.

In the next example, we find the Maclaurin series for ex and sinx and show that these series converge to the corresponding

functions for all real numbers by proving that the remainders Rn (x) → 0 for all real numbers x.

Example 6.16

Finding Maclaurin Series

For each of the following functions, find the Maclaurin series and its interval of convergence. Use Taylor’s
Theorem with Remainder to prove that the Maclaurin series for f converges to f on that interval.

a. ex

b. sinx

Solution

a. Using the nth Maclaurin polynomial for ex found in Example 6.12a., we find that the Maclaurin series
for ex is given by

∑
n = 0

∞
xn

n! .

To determine the interval of convergence, we use the ratio test. Since

|an + 1|
|an| = |x|n + 1

(n + 1)! · n!
|x|n

= |x|
n + 1,

we have

limn → ∞
|an + 1|

|an| = limn → ∞
|x|

n + 1 = 0

for all x. Therefore, the series converges absolutely for all x, and thus, the interval of convergence is

(−∞, ∞). To show that the series converges to ex for all x, we use the fact that f (n) (x) = ex for all

n ≥ 0 and ex is an increasing function on (−∞, ∞). Therefore, for any real number b, the maximum

value of ex for all |x| ≤ b is eb. Thus,

|Rn (x)| ≤ eb

(n + 1)!|x|n + 1.
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Since we just showed that

∑
n = 0

∞
|x|n
n!

converges for all x, by the divergence test, we know that

limn → ∞
|x|n + 1

(n + 1)! = 0

for any real number x. By combining this fact with the squeeze theorem, the result is limn → ∞Rn (x) = 0.

b. Using the nth Maclaurin polynomial for sinx found in Example 6.12b., we find that the Maclaurin

series for sinx is given by

∑
n = 0

∞
(−1)n x2n + 1

(2n + 1)!.

In order to apply the ratio test, consider

|an + 1|
|an| = |x|2n + 3

(2n + 3)! · (2n + 1)!
|x|2n + 1 = |x|2

(2n + 3)(2n + 2).

Since

limn → ∞
|x|2

(2n + 3)(2n + 2) = 0

for all x, we obtain the interval of convergence as (−∞, ∞). To show that the Maclaurin series converges

to sinx, look at Rn (x). For each x there exists a real number c between 0 and x such that

Rn (x) = f (n + 1) (c)
(n + 1)! xn + 1.

Since | f (n + 1) (c)| ≤ 1 for all integers n and all real numbers c, we have

|Rn (x)| ≤ |x|n + 1

(n + 1)!

for all real numbers x. Using the same idea as in part a., the result is limn → ∞Rn (x) = 0 for all x, and

therefore, the Maclaurin series for sinx converges to sinx for all real x.

Find the Maclaurin series for f (x) = cosx. Use the ratio test to show that the interval of convergence is

(−∞, ∞). Show that the Maclaurin series converges to cosx for all real numbers x.
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Proving that e is Irrational

In this project, we use the Maclaurin polynomials for ex to prove that e is irrational. The proof relies on supposing that
e is rational and arriving at a contradiction. Therefore, in the following steps, we suppose e = r/s for some integers r

and s where s ≠ 0.

1. Write the Maclaurin polynomials p0 (x), p1 (x), p2 (x), p3 (x), p4 (x) for ex. Evaluate

p0 (1), p1 (1), p2 (1), p3 (1), p4 (1) to estimate e.

2. Let Rn (x) denote the remainder when using pn (x) to estimate ex. Therefore, Rn (x) = ex − pn (x),
and Rn (1) = e − pn (1). Assuming that e = r

s for integers r and s, evaluate

R0 (1), R1 (1), R2 (1), R3 (1), R4 (1).

3. Using the results from part 2, show that for each remainder R0 (1), R1 (1), R2 (1), R3 (1), R4 (1), we can

find an integer k such that kRn (1) is an integer for n = 0, 1, 2, 3, 4.

4. Write down the formula for the nth Maclaurin polynomial pn (x) for ex and the corresponding remainder

Rn (x). Show that sn!Rn (1) is an integer.

5. Use Taylor’s theorem to write down an explicit formula for Rn (1). Conclude that Rn (1) ≠ 0, and therefore,

sn!Rn (1) ≠ 0.

6. Use Taylor’s theorem to find an estimate on Rn (1). Use this estimate combined with the result from part 5 to

show that |sn!Rn (1)| < se
n + 1. Conclude that if n is large enough, then |sn!Rn (1)| < 1. Therefore, sn!Rn (1)

is an integer with magnitude less than 1. Thus, sn!Rn (1) = 0. But from part 5, we know that sn!Rn (1) ≠ 0.
We have arrived at a contradiction, and consequently, the original supposition that e is rational must be false.
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6.3 EXERCISES
In the following exercises, find the Taylor polynomials of
degree two approximating the given function centered at
the given point.

116. f (x) = 1 + x + x2 at a = 1

117. f (x) = 1 + x + x2 at a = −1

118. f (x) = cos(2x) at a = π

119. f (x) = sin(2x) at a = π
2

120. f (x) = x at a = 4

121. f (x) = lnx at a = 1

122. f (x) = 1
x at a = 1

123. f (x) = ex at a = 1

In the following exercises, verify that the given choice of

n in the remainder estimate |Rn| ≤ M
(n + 1)!(x − a)n + 1,

where M is the maximum value of | f (n + 1) (z)| on the

interval between a and the indicated point, yields

|Rn| ≤ 1
1000. Find the value of the Taylor polynomial pn

of f at the indicated point.

124. [T] 10; a = 9, n = 3

125. [T] (28)1/3; a = 27, n = 1

126. [T] sin(6); a = 2π, n = 5

127. [T] e2; a = 0, n = 9

128. [T] cos⎛
⎝
π
5

⎞
⎠; a = 0, n = 4

129. [T] ln(2); a = 1, n = 1000

130. Integrate the approximation

sin t ≈ t − t3

6 + t5

120 − t7

5040 evaluated at πt to

approximate ∫
0

1sinπt
πt dt.

131. Integrate the approximation

ex ≈ 1 + x + x2

2 + ⋯ + x6

720 evaluated at −x2 to

approximate ∫
0

1
e−x2

dx.

In the following exercises, find the smallest value of n such

that the remainder estimate |Rn| ≤ M
(n + 1)!(x − a)n + 1,

where M is the maximum value of | f (n + 1) (z)| on the

interval between a and the indicated point, yields

|Rn| ≤ 1
1000 on the indicated interval.

132. f (x) = sinx on [−π, π], a = 0

133. f (x) = cosx on
⎡
⎣−

π
2, π

2
⎤
⎦, a = 0

134. f (x) = e−2x on [−1, 1], a = 0

135. f (x) = e−x on [−3, 3], a = 0

In the following exercises, the maximum of the right-hand

side of the remainder estimate |R1| ≤ max| f ″(z)|
2 R2 on

[a − R, a + R] occurs at a or a ± R. Estimate the

maximum value of R such that
max| f ″(z)|

2 R2 ≤ 0.1 on

[a − R, a + R] by plotting this maximum as a function of

R.

136. [T] ex approximated by 1 + x, a = 0

137. [T] sinx approximated by x, a = 0

138. [T] lnx approximated by x − 1, a = 1

139. [T] cosx approximated by 1, a = 0

In the following exercises, find the Taylor series of the
given function centered at the indicated point.

140. x4 at a = −1

141. 1 + x + x2 + x3 at a = −1

142. sinx at a = π

143. cosx at a = 2π
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144. sinx at x = π
2

145. cosx at x = π
2

146. ex at a = −1

147. ex at a = 1

148. 1
(x − 1)2 at a = 0 (Hint: Differentiate 1

1 − x.)

149. 1
(x − 1)3 at a = 0

150. F(x) = ∫
0

x
cos( t)dt; f (t) = ∑

n = 0

∞
(−1)n tn

(2n)! at

a = 0 (Note: f is the Taylor series of cos( t).)

In the following exercises, compute the Taylor series of
each function around x = 1.

151. f (x) = 2 − x

152. f (x) = x3

153. f (x) = (x − 2)2

154. f (x) = lnx

155. f (x) = 1
x

156. f (x) = 1
2x − x2

157. f (x) = x
4x − 2x2 − 1

158. f (x) = e−x

159. f (x) = e2x

[T] In the following exercises, identify the value of x such

that the given series ∑
n = 0

∞
an is the value of the Maclaurin

series of f (x) at x. Approximate the value of f (x) using

S10 = ∑
n = 0

10
an.

160. ∑
n = 0

∞
1
n!

161. ∑
n = 0

∞
2n

n!

162. ∑
n = 0

∞ (−1)n (2π)2n

(2n)!

163. ∑
n = 0

∞ (−1)n (2π)2n + 1

(2n + 1)!

The following exercises make use of the functions

S5 (x) = x − x3

6 + x5

120 and C4 (x) = 1 − x2

2 + x4

24 on

[−π, π].

164. [T] Plot sin2 x − ⎛
⎝S5 (x)⎞

⎠
2 on [−π, π]. Compare

the maximum difference with the square of the Taylor
remainder estimate for sinx.

165. [T] Plot cos2 x − ⎛
⎝C4 (x)⎞

⎠
2 on [−π, π]. Compare

the maximum difference with the square of the Taylor
remainder estimate for cosx.

166. [T] Plot |2S5 (x)C4 (x) − sin(2x)| on [−π, π].

167. [T] Compare
S5 (x)
C4 (x) on [−1, 1] to tanx. Compare

this with the Taylor remainder estimate for the

approximation of tanx by x + x3

3 + 2x5

15 .

168. [T] Plot ex − e4
⎛
⎝x⎞

⎠ where

e4 (x) = 1 + x + x2

2 + x3

6 + x4

24 on [0, 2]. Compare the

maximum error with the Taylor remainder estimate.

169. (Taylor approximations and root finding.) Recall that

Newton’s method xn + 1 = xn − f (xn)
f ′(xn) approximates

solutions of f (x) = 0 near the input x0.
a. If f and g are inverse functions, explain why a

solution of g(x) = a is the value f (a) of f .
b. Let pN (x) be the N th degree Maclaurin

polynomial of ex. Use Newton’s method to

approximate solutions of pN (x) − 2 = 0 for

N = 4, 5, 6.
c. Explain why the approximate roots of

pN (x) − 2 = 0 are approximate values of ln(2).

In the following exercises, use the fact that if
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q(x) = ∑
n = 1

∞
an (x − c)n converges in an interval

containing c, then limx → cq(x) = a0 to evaluate each limit

using Taylor series.

170. lim
x → 0

cosx − 1
x2

171. lim
x → 0

ln ⎛
⎝1 − x2⎞

⎠

x2

172. lim
x → 0

ex2
− x2 − 1

x4

173. lim
x → 0+

cos( x) − 1
2x
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6.4 | Working with Taylor Series

Learning Objectives
6.4.1 Write the terms of the binomial series.

6.4.2 Recognize the Taylor series expansions of common functions.

6.4.3 Recognize and apply techniques to find the Taylor series for a function.

6.4.4 Use Taylor series to solve differential equations.

6.4.5 Use Taylor series to evaluate nonelementary integrals.

In the preceding section, we defined Taylor series and showed how to find the Taylor series for several common functions
by explicitly calculating the coefficients of the Taylor polynomials. In this section we show how to use those Taylor series
to derive Taylor series for other functions. We then present two common applications of power series. First, we show how
power series can be used to solve differential equations. Second, we show how power series can be used to evaluate integrals
when the antiderivative of the integrand cannot be expressed in terms of elementary functions. In one example, we consider

∫ e−x2
dx, an integral that arises frequently in probability theory.

The Binomial Series
Our first goal in this section is to determine the Maclaurin series for the function f (x) = (1 + x)r for all real numbers r.
The Maclaurin series for this function is known as the binomial series. We begin by considering the simplest case: r is a

nonnegative integer. We recall that, for r = 0, 1, 2, 3, 4, f (x) = (1 + x)r can be written as

f (x) = (1 + x)0 = 1,

f (x) = (1 + x)1 = 1 + x,

f (x) = (1 + x)2 = 1 + 2x + x2,

f (x) = (1 + x)3 = 1 + 3x + 3x2 + x3,

f (x) = (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4.

The expressions on the right-hand side are known as binomial expansions and the coefficients are known as binomial
coefficients. More generally, for any nonnegative integer r, the binomial coefficient of xn in the binomial expansion of

(1 + x)r is given by

(6.6)⎛
⎝
r
n

⎞
⎠ = r!

n!(r − n)!

and

(6.7)f (x) = (1 + x)r

= ⎛
⎝
r
0

⎞
⎠1 + ⎛

⎝
r
1

⎞
⎠x + ⎛

⎝
r
2

⎞
⎠x

2 + ⎛
⎝
r
3

⎞
⎠x

3 + ⋯ + ⎛
⎝
r
r − 1

⎞
⎠x

r − 1 + ⎛
⎝
r
r

⎞
⎠xr

= ∑
n = 0

r
⎛
⎝
r
n

⎞
⎠xn.

For example, using this formula for r = 5, we see that

f (x) = (1 + x)5

= ⎛
⎝
5
0

⎞
⎠1 + ⎛

⎝
5
1

⎞
⎠x + ⎛

⎝
5
2

⎞
⎠x2 + ⎛

⎝
5
3

⎞
⎠x3 + ⎛

⎝
5
4

⎞
⎠x4 + ⎛

⎝
5
5

⎞
⎠x5

= 5!
0!5!1 + 5!

1!4!x + 5!
2!3!x2 + 5!

3!2!x3 + 5!
4!1!x4 + 5!

5!0!x5

= 1 + 5x + 10x2 + 10x3 + 5x4 + x5.

We now consider the case when the exponent r is any real number, not necessarily a nonnegative integer. If r is not a
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nonnegative integer, then f (x) = (1 + x)r cannot be written as a finite polynomial. However, we can find a power series

for f . Specifically, we look for the Maclaurin series for f . To do this, we find the derivatives of f and evaluate them at

x = 0.

f (x) = (1 + x)r f (0) = 1

f ′ (x) = r(1 + x)r − 1 f ′(0) = r

f ″(x) = r(r − 1)(1 + x)r − 2 f ″(0) = r(r − 1)

f ‴(x) = r(r − 1)(r − 2)(1 + x)r − 3 f ‴(0) = r(r − 1)(r − 2)

f (n) (x) = r(r − 1)(r − 2)⋯(r − n + 1)(1 + x)r − n f (n) (0) = r(r − 1)(r − 2)⋯(r − n + 1)

We conclude that the coefficients in the binomial series are given by

(6.8)f (n) (0)
n! = r(r − 1)(r − 2)⋯(r − n + 1)

n! .

We note that if r is a nonnegative integer, then the (r + 1)st derivative f (r + 1)
is the zero function, and the series

terminates. In addition, if r is a nonnegative integer, then Equation 6.8 for the coefficients agrees with Equation 6.6 for

the coefficients, and the formula for the binomial series agrees with Equation 6.7 for the finite binomial expansion. More
generally, to denote the binomial coefficients for any real number r, we define

⎛
⎝
r
n

⎞
⎠ = r(r − 1)(r − 2)⋯(r − n + 1)

n! .

With this notation, we can write the binomial series for (1 + x)r as

(6.9)∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn = 1 + rx + r(r − 1)

2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)
n! xn + ⋯.

We now need to determine the interval of convergence for the binomial series Equation 6.9. We apply the ratio test.
Consequently, we consider

|an + 1|
|an| = |r(r − 1)(r − 2)⋯(r − n)|x||n + 1

(n + 1)! · n
|r(r − 1)(r − 2)⋯(r − n + 1)||x|n

= |r − n||x|
|n + 1| .

Since

limn → ∞
|an + 1|

|an| = |x| < 1

if and only if |x| < 1, we conclude that the interval of convergence for the binomial series is (−1, 1). The behavior at

the endpoints depends on r. It can be shown that for r ≥ 0 the series converges at both endpoints; for −1 < r < 0, the

series converges at x = 1 and diverges at x = −1; and for r < −1, the series diverges at both endpoints. The binomial

series does converge to (1 + x)r in (−1, 1) for all real numbers r, but proving this fact by showing that the remainder

Rn (x) → 0 is difficult.

Definition

For any real number r, the Maclaurin series for f (x) = (1 + x)r is the binomial series. It converges to f for

|x| < 1, and we write
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(1 + x)r = ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn

= 1 + rx + r(r − 1)
2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)

n! xn + ⋯

for |x| < 1.

We can use this definition to find the binomial series for f (x) = 1 + x and use the series to approximate 1.5.

Example 6.17

Finding Binomial Series

a. Find the binomial series for f (x) = 1 + x.

b. Use the third-order Maclaurin polynomial p3 (x) to estimate 1.5. Use Taylor’s theorem to bound the

error. Use a graphing utility to compare the graphs of f and p3.

Solution

a. Here r = 1
2. Using the definition for the binomial series, we obtain

1 + x = 1 + 1
2x + (1/2)(−1/2)

2! x2 + (1/2)(−1/2)(−3/2)
3! x3 + ⋯

= 1 + 1
2x − 1

2!
1
22x2 + 1

3!
1 · 3
23 x3 − ⋯ + (−1)n + 1

n!
1 · 3 · 5⋯(2n − 3)

2n xn + ⋯

= 1 + ∑
n = 1

∞ (−1)n + 1

n!
1 · 3 · 5⋯(2n − 3)

2n xn.

b. From the result in part a. the third-order Maclaurin polynomial is

p3 (x) = 1 + 1
2x − 1

8x2 + 1
16x3.

Therefore,

1.5 = 1 + 0.5
≈ 1 + 1

2(0.5) − 1
8(0.5)2 + 1

16(0.5)3

≈ 1.2266.

From Taylor’s theorem, the error satisfies

R3 (0.5) = f (4) (c)
4! (0.5)4

for some c between 0 and 0.5. Since f (4) (x) = − 15
24 (1 + x)7/2, and the maximum value of

| f (4) (x)| on the interval (0, 0.5) occurs at x = 0, we have

|R3 (0.5)| ≤ 15
4!24(0.5)4 ≈ 0.00244.
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6.16

The function and the Maclaurin polynomial p3 are graphed in Figure 6.10.

Figure 6.10 The third-order Maclaurin polynomial p3 (x)

provides a good approximation for f (x) = 1 + x for x near

zero.

Find the binomial series for f (x) = 1
(1 + x)2.

Common Functions Expressed as Taylor Series
At this point, we have derived Maclaurin series for exponential, trigonometric, and logarithmic functions, as well as
functions of the form f (x) = (1 + x)r. In Table 6.1, we summarize the results of these series. We remark that the

convergence of the Maclaurin series for f (x) = ln(1 + x) at the endpoint x = 1 and the Maclaurin series for

f (x) = tan−1 x at the endpoints x = 1 and x = −1 relies on a more advanced theorem than we present here. (Refer to

Abel’s theorem for a discussion of this more technical point.)
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Function Maclaurin Series Interval of Convergence

f (x) = 1
1 − x ∑

n = 0

∞
xn −1 < x < 1

f (x) = ex ∑
n = 0

∞
xn

n! −∞ < x < ∞

f (x) = sinx ∑
n = 0

∞
(−1)n x2n + 1

(2n + 1)! −∞ < x < ∞

f (x) = cosx ∑
n = 0

∞
(−1)n x2n

(2n)! −∞ < x < ∞

f (x) = ln(1 + x) ∑
n = 0

∞
(−1)n + 1 xn

n −1 < x ≤ 1

f (x) = tan−1 x ∑
n = 0

∞
(−1)n x2n + 1

2n + 1 −1 < x ≤ 1

f (x) = (1 + x)r ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn −1 < x < 1

Table 6.1 Maclaurin Series for Common Functions

Earlier in the chapter, we showed how you could combine power series to create new power series. Here we use these
properties, combined with the Maclaurin series in Table 6.1, to create Maclaurin series for other functions.

Example 6.18

Deriving Maclaurin Series from Known Series

Find the Maclaurin series of each of the following functions by using one of the series listed in Table 6.1.

a. f (x) = cos x

b. f (x) = sinhx

Solution

a. Using the Maclaurin series for cosx we find that the Maclaurin series for cos x is given by
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6.17

∑
n = 0

∞ (−1)n ( x)2n

(2n)! = ∑
n = 0

∞ (−1)n xn

(2n)!

= 1 − x
2! + x2

4! − x3

6! + x4

8! − ⋯.

This series converges to cos x for all x in the domain of cos x; that is, for all x ≥ 0.

b. To find the Maclaurin series for sinhx, we use the fact that

sinhx = ex − e−x

2 .

Using the Maclaurin series for ex, we see that the nth term in the Maclaurin series for sinhx is given

by

xn

n! − (−x)n

n! .

For n even, this term is zero. For n odd, this term is 2xn

n! . Therefore, the Maclaurin series for sinhx

has only odd-order terms and is given by

∑
n = 0

∞
x2n + 1

(2n + 1)! = x + x3

3! + x5

5! + ⋯.

Find the Maclaurin series for sin⎛
⎝x2⎞

⎠.

We also showed previously in this chapter how power series can be differentiated term by term to create a new power series.

In Example 6.19, we differentiate the binomial series for 1 + x term by term to find the binomial series for 1
1 + x

.

Note that we could construct the binomial series for 1
1 + x

directly from the definition, but differentiating the binomial

series for 1 + x is an easier calculation.

Example 6.19

Differentiating a Series to Find a New Series

Use the binomial series for 1 + x to find the binomial series for 1
1 + x

.

Solution

The two functions are related by

d
dx 1 + x = 1

2 1 + x
,
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6.18

so the binomial series for 1
1 + x

is given by

1
1 + x

= 2 d
dx 1 + x

= 1 + ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn.

Find the binomial series for f (x) = 1
(1 + x)3/2

In this example, we differentiated a known Taylor series to construct a Taylor series for another function. The ability to
differentiate power series term by term makes them a powerful tool for solving differential equations. We now show how
this is accomplished.

Solving Differential Equations with Power Series
Consider the differential equation

y′ (x) = y.

Recall that this is a first-order separable equation and its solution is y = Cex. This equation is easily solved using

techniques discussed earlier in the text. For most differential equations, however, we do not yet have analytical tools to
solve them. Power series are an extremely useful tool for solving many types of differential equations. In this technique, we

look for a solution of the form y = ∑
n = 0

∞
cn xn and determine what the coefficients would need to be. In the next example,

we consider an initial-value problem involving y′ = y to illustrate the technique.

Example 6.20

Power Series Solution of a Differential Equation

Use power series to solve the initial-value problem

y′ = y, y(0) = 3.

Solution

Suppose that there exists a power series solution

y(x) = ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + ⋯.

Differentiating this series term by term, we obtain

y′ = c1 + 2c2 x + 3c3 x2 + 4c4 x3 + ⋯.

If y satisfies the differential equation, then

c0 + c1 x + c2 x2 + c3 x3 + ⋯ = c1 + 2c2 x + 3c3 x2 + 4c3 x3 + ⋯.

Using Uniqueness of Power Series on the uniqueness of power series representations, we know that these
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series can only be equal if their coefficients are equal. Therefore,

c0 = c1,
c1 = 2c2,
c2 = 3c3,
c3 = 4c4,

⋮.

Using the initial condition y(0) = 3 combined with the power series representation

y(x) = c0 + c1 x + c2 x2 + c3 x3 + ⋯,

we find that c0 = 3. We are now ready to solve for the rest of the coefficients. Using the fact that c0 = 3, we

have

c1 = c0 = 3 = 3
1!,

c2 = c1
2 = 3

2 = 3
2!,

c3 = c2
3 = 3

3 · 2 = 3
3!,

c4 = c3
4 = 3

4 · 3 · 2 = 3
4!.

Therefore,

y = 3⎡
⎣1 + 1

1!x + 1
2!x2 + 1

3!x3 1
4!x4 + ⋯⎤

⎦

= 3 ∑
n = 0

∞
xn

n! .

You might recognize

∑
n = 0

∞
xn

n!

as the Taylor series for ex. Therefore, the solution is y = 3ex.

Use power series to solve y′ = 2y, y(0) = 5.

We now consider an example involving a differential equation that we cannot solve using previously discussed methods.
This differential equation

y′ − xy = 0

is known as Airy’s equation. It has many applications in mathematical physics, such as modeling the diffraction of light.
Here we show how to solve it using power series.

Example 6.21
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Power Series Solution of Airy’s Equation

Use power series to solve

y″ − xy = 0

with the initial conditions y(0) = a and y′(0) = b.

Solution

We look for a solution of the form

y = ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + ⋯.

Differentiating this function term by term, we obtain

y′ = c1 + 2c2 x + 3c3 x2 + 4c4 x3 + ⋯,

y″ = 2 · 1c2 + 3 · 2c3 x + 4 · 3c4 x2 + ⋯.

If y satisfies the equation y″ = xy, then

2 · 1c2 + 3 · 2c3 x + 4 · 3c4 x2 + ⋯ = x⎛
⎝c0 + c1 x + c2 x2 + c3 x3 + ⋯⎞

⎠.

Using Uniqueness of Power Series on the uniqueness of power series representations, we know that
coefficients of the same degree must be equal. Therefore,

2 · 1c2 = 0,
3 · 2c3 = c0,
4 · 3c4 = c1,
5 · 4c5 = c2,

⋮.

More generally, for n ≥ 3, we have n · (n − 1)cn = cn − 3. In fact, all coefficients can be written in terms of

c0 and c1. To see this, first note that c2 = 0. Then

c3 = c0
3 · 2,

c4 = c1
4 · 3.

For c5, c6, c7, we see that

c5 = c2
5 · 4 = 0,

c6 = c3
6 · 5 = c0

6 · 5 · 3 · 2,

c7 = c4
7 · 6 = c1

7 · 6 · 4 · 3.

Therefore, the series solution of the differential equation is given by

y = c0 + c1 x + 0 · x2 + c0
3 · 2x3 + c1

4 · 3x4 + 0 · x5 + c0
6 · 5 · 3 · 2x6 + c1

7 · 6 · 4 · 3x7 + ⋯.

The initial condition y(0) = a implies c0 = a. Differentiating this series term by term and using the fact that
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y′ (0) = b, we conclude that c1 = b. Therefore, the solution of this initial-value problem is

y = a⎛
⎝1 + x3

3 · 2 + x6

6 · 5 · 3 · 2 + ⋯⎞
⎠ + b⎛

⎝x + x4

4 · 3 + x7

7 · 6 · 4 · 3 + ⋯⎞
⎠.

Use power series to solve y″ + x2 y = 0 with the initial condition y(0) = a and y′ (0) = b.

Evaluating Nonelementary Integrals
Solving differential equations is one common application of power series. We now turn to a second application. We show
how power series can be used to evaluate integrals involving functions whose antiderivatives cannot be expressed using
elementary functions.

One integral that arises often in applications in probability theory is ∫ e−x2
dx. Unfortunately, the antiderivative of the

integrand e−x2
is not an elementary function. By elementary function, we mean a function that can be written using a

finite number of algebraic combinations or compositions of exponential, logarithmic, trigonometric, or power functions. We
remark that the term “elementary function” is not synonymous with noncomplicated function. For example, the function

f (x) = x2 − 3x + ex3
− sin(5x + 4) is an elementary function, although not a particularly simple-looking function. Any

integral of the form ∫ f (x)dx where the antiderivative of f cannot be written as an elementary function is considered a

nonelementary integral.

Nonelementary integrals cannot be evaluated using the basic integration techniques discussed earlier. One way to evaluate
such integrals is by expressing the integrand as a power series and integrating term by term. We demonstrate this technique

by considering ∫ e−x2
dx.

Example 6.22

Using Taylor Series to Evaluate a Definite Integral

a. Express ∫ e−x2
dx as an infinite series.

b. Evaluate ∫
0

1
e−x2

dx to within an error of 0.01.

Solution

a. The Maclaurin series for e−x2
is given by

590 Chapter 6 | Power Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



6.21

e−x2
= ∑

n = 0

∞ ⎛
⎝−x2⎞

⎠
n

n!

= 1 − x2 + x4

2! − x6

3! + ⋯ + (−1)n x2n

n! + ⋯

= ∑
n = 0

∞
(−1)n x2n

n! .

Therefore,

∫ e−x2
dx = ⌠

⌡
⎛
⎝1 − x2 + x4

2! − x6

3! + ⋯ + (−1)n x2n

n! + ⋯⎞
⎠dx

= C + x − x3

3 + x5

5.2! − x7

7.3! + ⋯ + (−1)n x2n + 1

(2n + 1)n! + ⋯.

b. Using the result from part a. we have

∫
0

1
e−x2

dx = 1 − 1
3 + 1

10 − 1
42 + 1

216 − ⋯.

The sum of the first four terms is approximately 0.74. By the alternating series test, this estimate is

accurate to within an error of less than 1
216 ≈ 0.0046296 < 0.01.

Express ∫ cos xdx as an infinite series. Evaluate ∫
0

1
cos xdx to within an error of 0.01.

As mentioned above, the integral ∫ e−x2
dx arises often in probability theory. Specifically, it is used when studying data

sets that are normally distributed, meaning the data values lie under a bell-shaped curve. For example, if a set of data values
is normally distributed with mean µ and standard deviation σ, then the probability that a randomly chosen value lies

between x = a and x = b is given by

(6.10)
1

σ 2π
⌠
⌡a

b

e
−(x − µ)2 /⎛⎝2σ2⎞

⎠ dx.

(See Figure 6.11.)
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Figure 6.11 If data values are normally distributed with mean µ and standard

deviation σ, the probability that a randomly selected data value is between a

and b is the area under the curve y = 1
σ 2π

e
−(x − µ)2 /⎛⎝2σ2⎞

⎠
between x = a

and x = b.

To simplify this integral, we typically let z = x − µ
σ . This quantity z is known as the z score of a data value. With this

simplification, integral Equation 6.10 becomes

(6.11)1
2π∫

(a − µ)/σ

⎛
⎝b − µ⎞

⎠/σ
e−z2 /2dz.

In Example 6.23, we show how we can use this integral in calculating probabilities.

Example 6.23

Using Maclaurin Series to Approximate a Probability

Suppose a set of standardized test scores are normally distributed with mean µ = 100 and standard deviation

σ = 50. Use Equation 6.11 and the first six terms in the Maclaurin series for e−x2 /2 to approximate the

probability that a randomly selected test score is between x = 100 and x = 200. Use the alternating series test

to determine how accurate your approximation is.

Solution

Since µ = 100, σ = 50, and we are trying to determine the area under the curve from a = 100 to b = 200,
integral Equation 6.11 becomes

1
2π∫

0

2
e−z2 /2dz.

The Maclaurin series for e−x2 /2 is given by
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e−x2 /2 = ∑
n = 0

∞ ⎛
⎝− x2

2
⎞
⎠

n

n!

= 1 − x2

21 · 1!
+ x4

22 · 2!
− x6

23 · 3!
+ ⋯ + (−1)n x2n

2n · n!
+ ⋯

= ∑
n = 0

∞
(−1)n x2 n

2n · n!
.

Therefore,

1
2π∫ e−z2 /2 dz = 1

2π
⌠
⌡
⎛
⎝1 − z2

21 · 1!
+ z4

22 · 2!
− z6

23 · 3!
+ ⋯ + (−1)n z2n

2n · n!
+ ⋯⎞

⎠dz

= 1
2π

⎛
⎝C + z − z3

3 · 21 · 1!
+ z5

5 · 22 · 2!
− z7

7 · 23 · 3!
+ ⋯ + (−1)n z2n + 1

(2n + 1)2n · n!
+ ⋯⎞

⎠
1
2π∫

0

2
e−z2 /2 dz = 1

2π
⎛
⎝2 − 8

6 + 32
40 − 128

336 + 512
3456 − 211

11 · 25 · 5!
+ ⋯⎞

⎠.

Using the first five terms, we estimate that the probability is approximately 0.4922. By the alternating series

test, we see that this estimate is accurate to within

1
2π

213

13 · 26 · 6!
≈ 0.00546.

Analysis
If you are familiar with probability theory, you may know that the probability that a data value is within two
standard deviations of the mean is approximately 95%. Here we calculated the probability that a data value is

between the mean and two standard deviations above the mean, so the estimate should be around 47.5%. The

estimate, combined with the bound on the accuracy, falls within this range.

Use the first five terms of the Maclaurin series for e−x2 /2 to estimate the probability that a randomly

selected test score is between 100 and 150. Use the alternating series test to determine the accuracy of this

estimate.

Another application in which a nonelementary integral arises involves the period of a pendulum. The integral is

⌠
⌡0

π/2
dθ

1 − k2 sin2 θ
.

An integral of this form is known as an elliptic integral of the first kind. Elliptic integrals originally arose when trying to
calculate the arc length of an ellipse. We now show how to use power series to approximate this integral.

Example 6.24

Period of a Pendulum

The period of a pendulum is the time it takes for a pendulum to make one complete back-and-forth swing. For a
pendulum with length L that makes a maximum angle θmax with the vertical, its period T is given by
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T = 4 L
g

⌠
⌡0

π/2
dθ

1 − k2 sin2 θ

where g is the acceleration due to gravity and k = sin⎛
⎝
θmax

2
⎞
⎠ (see Figure 6.12). (We note that this formula

for the period arises from a non-linearized model of a pendulum. In some cases, for simplification, a linearized
model is used and sinθ is approximated by θ.) Use the binomial series

1
1 + x

= 1 + ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn

to estimate the period of this pendulum. Specifically, approximate the period of the pendulum if

a. you use only the first term in the binomial series, and

b. you use the first two terms in the binomial series.

Figure 6.12 This pendulum has length L and makes a

maximum angle θmax with the vertical.

Solution

We use the binomial series, replacing x with −k2 sin2 θ. Then we can write the period as

T = 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 1 · 3
2!22k4 sin4 θ + ⋯⎞

⎠dθ.

a. Using just the first term in the integrand, the first-order estimate is

T ≈ 4 L
g

⌠
⌡0

π/2
dθ = 2π L

g .

If θmax is small, then k = sin⎛
⎝
θmax

2
⎞
⎠ is small. We claim that when k is small, this is a good estimate.

To justify this claim, consider
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⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 1 · 3
2!22k4 sin4 θ + ⋯⎞

⎠dθ.

Since |sinx| ≤ 1, this integral is bounded by

⌠
⌡0

π/2⎛
⎝

1
2k2 + 1.3

2!22k4 + ⋯⎞
⎠dθ < π

2
⎛
⎝

1
2k2 + 1 · 3

2!22k4 + ⋯⎞
⎠.

Furthermore, it can be shown that each coefficient on the right-hand side is less than 1 and, therefore,

that this expression is bounded by

πk2

2
⎛
⎝1 + k2 + k4 + ⋯⎞

⎠ = πk2

2 · 1
1 − k2,

which is small for k small.

b. For larger values of θmax, we can approximate T by using more terms in the integrand. By using the

first two terms in the integral, we arrive at the estimate

T ≈ 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ⎞
⎠dθ

= 2π L
g

⎛
⎝1 + k2

4
⎞
⎠.

The applications of Taylor series in this section are intended to highlight their importance. In general, Taylor series are
useful because they allow us to represent known functions using polynomials, thus providing us a tool for approximating
function values and estimating complicated integrals. In addition, they allow us to define new functions as power series,
thus providing us with a powerful tool for solving differential equations.
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6.4 EXERCISES
In the following exercises, use appropriate substitutions to
write down the Maclaurin series for the given binomial.

174. (1 − x)1/3

175. ⎛
⎝1 + x2⎞

⎠
−1/3

176. (1 − x)1.01

177. (1 − 2x)2/3

In the following exercises, use the substitution

(b + x)r = (b + a)r ⎛
⎝1 + x − a

b + a
⎞
⎠

r
in the binomial

expansion to find the Taylor series of each function with the
given center.

178. x + 2 at a = 0

179. x2 + 2 at a = 0

180. x + 2 at a = 1

181. 2x − x2 at a = 1 (Hint:

2x − x2 = 1 − (x − 1)2)

182. (x − 8)1/3 at a = 9

183. x at a = 4

184. x1/3 at a = 27

185. x at x = 9

In the following exercises, use the binomial theorem to
estimate each number, computing enough terms to obtain
an estimate accurate to an error of at most 1/1000.

186. [T] (15)1/4 using (16 − x)1/4

187. [T] (1001)1/3 using (1000 + x)1/3

In the following exercises, use the binomial approximation

1 − x ≈ 1 − x
2 − x2

8 − x3

16 − 5x4

128 − 7x5

256 for |x| < 1 to

approximate each number. Compare this value to the value
given by a scientific calculator.

188. [T] 1
2

using x = 1
2 in (1 − x)1/2

189. [T] 5 = 5 × 1
5

using x = 4
5 in (1 − x)1/2

190. [T] 3 = 3
3

using x = 2
3 in (1 − x)1/2

191. [T] 6 using x = 5
6 in (1 − x)1/2

192. Integrate the binomial approximation of 1 − x to

find an approximation of ∫
0

x
1 − tdt.

193. [T] Recall that the graph of 1 − x2 is an upper

semicircle of radius 1. Integrate the binomial

approximation of 1 − x2 up to order 8 from x = −1 to

x = 1 to estimate π
2.

In the following exercises, use the expansion

(1 + x)1/3 = 1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯ to

write the first five terms (not necessarily a quartic
polynomial) of each expression.

194. (1 + 4x)1/3; a = 0

195. (1 + 4x)4/3; a = 0

196. (3 + 2x)1/3; a = −1

197. ⎛
⎝x2 + 6x + 10⎞

⎠
1/3

; a = −3

198. Use

(1 + x)1/3 = 1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯ with

x = 1 to approximate 21/3.

199. Use the approximation

(1 − x)2/3 = 1 − 2x
3 − x2

9 − 4x3

81 − 7x4

243 − 14x5

729 + ⋯ for

|x| < 1 to approximate 21/3 = 2.2−2/3.

200. Find the 25th derivative of f (x) = ⎛
⎝1 + x2⎞

⎠
13

at

x = 0.

201. Find the 99 th derivative of f (x) = ⎛
⎝1 + x4⎞

⎠
25

.

In the following exercises, find the Maclaurin series of each
function.
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202. f (x) = xe2x

203. f (x) = 2x

204. f (x) = sinx
x

205. f (x) = sin( x)
x , (x > 0),

206. f (x) = sin⎛
⎝x2⎞

⎠

207. f (x) = ex3

208. f (x) = cos2 x using the identity

cos2 x = 1
2 + 1

2 cos(2x)

209. f (x) = sin2 x using the identity

sin2 x = 1
2 − 1

2 cos(2x)

In the following exercises, find the Maclaurin series of

F(x) = ∫
0

x
f (t)dt by integrating the Maclaurin series of

f term by term. If f is not strictly defined at zero, you

may substitute the value of the Maclaurin series at zero.

210. F(x) = ∫
0

x
e−t2

dt; f (t) = e−t2
= ∑

n = 0

∞
(−1)nt2n

n!

211. F(x) = tan−1 x; f (t) = 1
1 + t2 = ∑

n = 0

∞
(−1)n t2n

212. F(x) = tanh−1 x; f (t) = 1
1 − t2 = ∑

n = 0

∞
t2n

213. F(x) = sin−1 x; f (t) = 1
1 − t2

= ∑
k = 0

∞ ⎛

⎝
⎜
1
2
k

⎞

⎠
⎟t2k

k!

214.

F(x) = ∫
0

xsin t
t dt; f (t) = sin t

t = ∑
n = 0

∞
(−1)n t2n

(2n + 1)!

215. F(x) = ∫
0

x
cos( t)dt; f (t) = ∑

n = 0

∞
(−1)n xn

(2n)!

216.

F(x) = ⌠
⌡0

x
1 − cos t

t2 dt; f (t) = 1 − cos t
t2 = ∑

n = 0

∞
(−1)n t2n

(2n + 2)!

217. F(x) = ⌠
⌡0

x ln(1 + t)
t dt; f (t) = ∑

n = 0

∞
(−1)n tn

n + 1

In the following exercises, compute at least the first three
nonzero terms (not necessarily a quadratic polynomial) of
the Maclaurin series of f .

218. f (x) = sin⎛
⎝x + π

4
⎞
⎠ = sinxcos⎛

⎝
π
4

⎞
⎠ + cosxsin⎛

⎝
π
4

⎞
⎠

219. f (x) = tanx

220. f (x) = ln(cosx)

221. f (x) = ex cosx

222. f (x) = esinx

223. f (x) = sec2 x

224. f (x) = tanhx

225. f (x) = tan x
x (see expansion for tanx)

In the following exercises, find the radius of convergence
of the Maclaurin series of each function.

226. ln(1 + x)

227. 1
1 + x2

228. tan−1 x

229. ln ⎛
⎝1 + x2⎞

⎠

230. Find the Maclaurin series of sinhx = ex − e−x

2 .

231. Find the Maclaurin series of coshx = ex + e−x

2 .

232. Differentiate term by term the Maclaurin series of
sinhx and compare the result with the Maclaurin series of

coshx.
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233. [T] Let Sn (x) = ∑
k = 0

n
(−1)k x2k + 1

(2k + 1)! and

Cn (x) = ∑
n = 0

n
(−1)k x2k

(2k)! denote the respective

Maclaurin polynomials of degree 2n + 1 of sinx and

degree 2n of cosx. Plot the errors
Sn (x)
Cn (x) − tanx for

n = 1, .., 5 and compare them to

x + x3

3 + 2x5

15 + 17x7

315 − tanx on ⎛
⎝−

π
4, π

4
⎞
⎠.

234. Use the identity 2sinxcosx = sin(2x) to find the

power series expansion of sin2 x at x = 0. (Hint:

Integrate the Maclaurin series of sin(2x) term by term.)

235. If y = ∑
n = 0

∞
an xn, find the power series expansions

of xy′ and x2 y″.

236. [T] Suppose that y = ∑
k = 0

∞
ak xk satisfies

y′ = −2xy and y(0) = 0. Show that a2k + 1 = 0 for all

k and that a2k + 2 = −a2k
k + 1. Plot the partial sum S20 of

y on the interval [−4, 4].

237. [T] Suppose that a set of standardized test scores
is normally distributed with mean µ = 100 and standard

deviation σ = 10. Set up an integral that represents the

probability that a test score will be between 90 and 110
and use the integral of the degree 10 Maclaurin

polynomial of 1
2π

e−x2 /2 to estimate this probability.

238. [T] Suppose that a set of standardized test scores
is normally distributed with mean µ = 100 and standard

deviation σ = 10. Set up an integral that represents the

probability that a test score will be between 70 and 130
and use the integral of the degree 50 Maclaurin

polynomial of 1
2π

e−x2 /2 to estimate this probability.

239. [T] Suppose that ∑
n = 0

∞
an xn converges to a function

f (x) such that f (0) = 1, f ′ (0) = 0, and

f ″(x) = − f (x). Find a formula for an and plot the partial

sum SN for N = 20 on [−5, 5].

240. [T] Suppose that ∑
n = 0

∞
an xn converges to a function

f (x) such that f (0) = 0, f ′ (0) = 1, and

f ″(x) = − f (x). Find a formula for an and plot the partial

sum SN for N = 10 on [−5, 5].

241. Suppose that ∑
n = 0

∞
an xn converges to a function

y such that y″ − y′ + y = 0 where y(0) = 1 and

y′(0) = 0. Find a formula that relates an + 2, an + 1, and

an and compute a0, ..., a5.

242. Suppose that ∑
n = 0

∞
an xn converges to a function

y such that y″ − y′ + y = 0 where y(0) = 0 and

y′ (0) = 1. Find a formula that relates an + 2, an + 1, and

an and compute a1, ..., a5.

The error in approximating the integral ∫
a

b
f (t)dt by that

of a Taylor approximation ∫
a

b
Pn (t)dt is at most

∫
a

b
Rn (t)dt. In the following exercises, the Taylor

remainder estimate Rn ≤ M
(n + 1)!|x − a|n + 1 guarantees

that the integral of the Taylor polynomial of the given order

approximates the integral of f with an error less than 1
10.

a. Evaluate the integral of the appropriate Taylor
polynomial and verify that it approximates the CAS

value with an error less than 1
100.

b. Compare the accuracy of the polynomial integral
estimate with the remainder estimate.

243. [T] ∫
0

πsin t
t dt; Ps = 1 − x2

3! + x4

5! − x6

7! + x8

9! (You

may assume that the absolute value of the ninth derivative

of sin t
t is bounded by 0.1.)

244. [T]

∫
0

2
e−x2

dx; p11 = 1 − x2 + x4

2 − x6

3! + ⋯ − x22

11! (You

may assume that the absolute value of the 23rd derivative

of e−x2
is less than 2 × 1014.)

The following exercises deal with Fresnel integrals.
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245. The Fresnel integrals are defined by

C(x) = ∫
0

x
cos⎛

⎝t2⎞
⎠dt and S(x) = ∫

0

x
sin⎛

⎝t2⎞
⎠dt. Compute

the power series of C(x) and S(x) and plot the sums

CN (x) and SN (x) of the first N = 50 nonzero terms on

[0, 2π].

246. [T] The Fresnel integrals are used in design
applications for roadways and railways and other
applications because of the curvature properties of the
curve with coordinates ⎛

⎝C(t), S(t)⎞
⎠. Plot the curve

⎛
⎝C50, S50

⎞
⎠ for 0 ≤ t ≤ 2π, the coordinates of which

were computed in the previous exercise.

247. Estimate ∫
0

1/4
x − x2dx by approximating 1 − x

using the binomial approximation

1 − x
2 − x2

8 − x3

16 − 5x4

2128 − 7x5

256.

248. [T] Use Newton’s approximation of the binomial

1 − x2 to approximate π as follows. The circle centered

at ⎛
⎝
1
2, 0⎞

⎠ with radius 1
2 has upper semicircle

y = x 1 − x. The sector of this circle bounded by the x

-axis between x = 0 and x = 1
2 and by the line joining

⎛
⎝
1
4, 3

4
⎞
⎠ corresponds to 1

6 of the circle and has area π
24.

This sector is the union of a right triangle with height 3
4

and base 1
4 and the region below the graph between x = 0

and x = 1
4. To find the area of this region you can write

y = x 1 − x = x × ⎛
⎝binomial expansion of 1 − x⎞

⎠

and integrate term by term. Use this approach with the
binomial approximation from the previous exercise to
estimate π.

249. Use the approximation T ≈ 2π L
g

⎛
⎝1 + k2

4
⎞
⎠ to

approximate the period of a pendulum having length 10
meters and maximum angle θmax = π

6 where

k = sin⎛
⎝
θmax

2
⎞
⎠. Compare this with the small angle

estimate T ≈ 2π L
g .

250. Suppose that a pendulum is to have a period of
2 seconds and a maximum angle of θmax = π

6. Use

T ≈ 2π L
g

⎛
⎝1 + k2

4
⎞
⎠ to approximate the desired length of

the pendulum. What length is predicted by the small angle

estimate T ≈ 2π L
g ?

251. Evaluate ∫
0

π/2
sin4 θdθ in the approximation

T = 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 3
8k4 sin4 θ + ⋯⎞

⎠dθ to

obtain an improved estimate for T .

252. [T] An equivalent formula for the period of a
pendulum with amplitude θmax is

T ⎛
⎝θmax

⎞
⎠ = 2 2 L

g
⌠
⌡0

θmax
dθ

cosθ − cos⎛
⎝θmax

⎞
⎠

where L is

the pendulum length and g is the gravitational acceleration

constant. When θmax = π
3 we get

1
cos t − 1/2

≈ 2⎛
⎝1 + t2

2 + t4

3 + 181t6

720
⎞
⎠. Integrate this

approximation to estimate T⎛
⎝
π
3

⎞
⎠ in terms of L and g.

Assuming g = 9.806 meters per second squared, find an

approximate length L such that T⎛
⎝
π
3

⎞
⎠ = 2 seconds.
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binomial series

interval of convergence

Maclaurin polynomial

Maclaurin series

nonelementary integral

power series

radius of convergence

Taylor polynomials

Taylor series

Taylor’s theorem with remainder

term-by-term differentiation of a power series

term-by-term integration of a power series

CHAPTER 6 REVIEW

KEY TERMS
the Maclaurin series for f (x) = (1 + x)r; it is given by

(1 + x)r = ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn = 1 + rx + r(r − 1)

2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)
n! xn + ⋯ for |x| < 1

the set of real numbers x for which a power series converges

a Taylor polynomial centered at 0; the nth Taylor polynomial for f at 0 is the nth Maclaurin

polynomial for f

a Taylor series for a function f at x = 0 is known as a Maclaurin series for f

an integral for which the antiderivative of the integrand cannot be expressed as an elementary
function

a series of the form ∑
n = 0

∞
cn xn is a power series centered at x = 0; a series of the form ∑

n = 0

∞
cn (x − a)n

is a power series centered at x = a

if there exists a real number R > 0 such that a power series centered at x = a converges for

|x − a| < R and diverges for |x − a| > R, then R is the radius of convergence; if the power series only converges at

x = a, the radius of convergence is R = 0; if the power series converges for all real numbers x, the radius of

convergence is R = ∞

the nth Taylor polynomial for f at x = a is

pn (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + ⋯ + f (n) (a)

n! (x − a)n

a power series at a that converges to a function f on some open interval containing a

for a function f and the nth Taylor polynomial for f at x = a, the remainder

Rn (x) = f (x) − pn (x) satisfies Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

for some c between x and a; if there exists an interval I containing a and a real number M such that | f (n + 1) (x)| ≤ M

for all x in I, then |Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

a technique for evaluating the derivative of a power series

∑
n = 0

∞
cn (x − a)n by evaluating the derivative of each term separately to create the new power series

∑
n = 1

∞
ncn (x − a)n − 1

a technique for integrating a power series ∑
n = 0

∞
cn (x − a)n by

integrating each term separately to create the new power series C + ∑
n = 0

∞
cn

(x − a)n + 1

n + 1
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KEY EQUATIONS
• Power series centered at x = 0

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

• Power series centered at x = a

∑
n = 0

∞
cn (x − a)n = c0 + c1 (x − a) + c2 (x − a)2 + ⋯

• Taylor series for the function f at the point x = a

∑
n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + ⋯ + f (n) (a)
n! (x − a)n + ⋯

KEY CONCEPTS

6.1 Power Series and Functions

• For a power series centered at x = a, one of the following three properties hold:

i. The power series converges only at x = a. In this case, we say that the radius of convergence is R = 0.

ii. The power series converges for all real numbers x. In this case, we say that the radius of convergence is
R = ∞.

iii. There is a real number R such that the series converges for |x − a| < R and diverges for |x − a| > R. In

this case, the radius of convergence is R.

• If a power series converges on a finite interval, the series may or may not converge at the endpoints.

• The ratio test may often be used to determine the radius of convergence.

• The geometric series ∑
n = 0

∞
xn = 1

1 − x for |x| < 1 allows us to represent certain functions using geometric series.

6.2 Properties of Power Series

• Given two power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn that converge to functions f and g on a common interval I,

the sum and difference of the two series converge to f ± g, respectively, on I. In addition, for any real number b

and integer m ≥ 0, the series ∑
n = 0

∞
bxm cn xn converges to bxm f (x) and the series ∑

n = 0

∞
cn (bxm)n converges

to f (bxm) whenever bxm is in the interval I.

• Given two power series that converge on an interval (−R, R), the Cauchy product of the two power series

converges on the interval (−R, R).

• Given a power series that converges to a function f on an interval (−R, R), the series can be differentiated term-

by-term and the resulting series converges to f ′ on (−R, R). The series can also be integrated term-by-term and

the resulting series converges to ∫ f (x)dx on (−R, R).

6.3 Taylor and Maclaurin Series

• Taylor polynomials are used to approximate functions near a value x = a. Maclaurin polynomials are Taylor
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polynomials at x = 0.

• The nth degree Taylor polynomials for a function f are the partial sums of the Taylor series for f .

• If a function f has a power series representation at x = a, then it is given by its Taylor series at x = a.

• A Taylor series for f converges to f if and only if limn → ∞Rn (x) = 0 where Rn (x) = f (x) − pn (x).

• The Taylor series for ex, sinx, and cosx converge to the respective functions for all real x.

6.4 Working with Taylor Series

• The binomial series is the Maclaurin series for f (x) = (1 + x)r. It converges for |x| < 1.

• Taylor series for functions can often be derived by algebraic operations with a known Taylor series or by
differentiating or integrating a known Taylor series.

• Power series can be used to solve differential equations.

• Taylor series can be used to help approximate integrals that cannot be evaluated by other means.

CHAPTER 6 REVIEW EXERCISES
True or False? In the following exercises, justify your
answer with a proof or a counterexample.

253. If the radius of convergence for a power series

∑
n = 0

∞
an xn is 5, then the radius of convergence for the

series ∑
n = 1

∞
nan xn − 1 is also 5.

254. Power series can be used to show that the derivative

of ex is ex. (Hint: Recall that ex = ∑
n = 0

∞
1
n!xn.)

255. For small values of x, sinx ≈ x.

256. The radius of convergence for the Maclaurin series of
f (x) = 3x is 3.

In the following exercises, find the radius of convergence
and the interval of convergence for the given series.

257. ∑
n = 0

∞
n2(x − 1)n

258. ∑
n = 0

∞
xn

nn

259. ∑
n = 0

∞
3nxn

12n

260. ∑
n = 0

∞
2n

en(x − e)n

In the following exercises, find the power series
representation for the given function. Determine the radius
of convergence and the interval of convergence for that
series.

261. f (x) = x2

x + 3

262. f (x) = 8x + 2
2x2 − 3x + 1

In the following exercises, find the power series for the
given function using term-by-term differentiation or
integration.

263. f (x) = tan−1 (2x)

264. f (x) = x
⎛
⎝2 + x2⎞

⎠
2

In the following exercises, evaluate the Taylor series
expansion of degree four for the given function at the
specified point. What is the error in the approximation?

265. f (x) = x3 − 2x2 + 4, a = −3

266. f (x) = e1/(4x), a = 4

In the following exercises, find the Maclaurin series for the
given function.
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267. f (x) = cos(3x)

268. f (x) = ln(x + 1)

In the following exercises, find the Taylor series at the
given value.

269. f (x) = sinx, a = π
2

270. f (x) = 3
x , a = 1

In the following exercises, find the Maclaurin series for the
given function.

271. f (x) = e−x2
− 1

272. f (x) = cosx − xsinx

In the following exercises, find the Maclaurin series for

F(x) = ∫
0

x
f (t)dt by integrating the Maclaurin series of

f (x) term by term.

273. f (x) = sinx
x

274. f (x) = 1 − ex

275. Use power series to prove Euler’s formula:

eix = cosx + isinx

The following exercises consider problems of annuity
payments.

276. For annuities with a present value of $1 million,

calculate the annual payouts given over 25 years assuming

interest rates of 1%, 5%, and 10%.

277. A lottery winner has an annuity that has a present
value of $10 million. What interest rate would they need

to live on perpetual annual payments of $250,000?

278. Calculate the necessary present value of an annuity
in order to support annual payouts of $15,000 given over

25 years assuming interest rates of 1%, 5%, and 10%.
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7 | PARAMETRIC
EQUATIONS AND POLAR
COORDINATES

Figure 7.1 The chambered nautilus is a marine animal that lives in the tropical Pacific Ocean. Scientists think they have
existed mostly unchanged for about 500 million years.(credit: modification of work by Jitze Couperus, Flickr)
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Chapter Outline

7.1 Parametric Equations

7.2 Calculus of Parametric Curves

7.3 Polar Coordinates

7.4 Area and Arc Length in Polar Coordinates

7.5 Conic Sections

Introduction
The chambered nautilus is a fascinating creature. This animal feeds on hermit crabs, fish, and other crustaceans. It has a
hard outer shell with many chambers connected in a spiral fashion, and it can retract into its shell to avoid predators. When
part of the shell is cut away, a perfect spiral is revealed, with chambers inside that are somewhat similar to growth rings in
a tree.

The mathematical function that describes a spiral can be expressed using rectangular (or Cartesian) coordinates. However,
if we change our coordinate system to something that works a bit better with circular patterns, the function becomes much
simpler to describe. The polar coordinate system is well suited for describing curves of this type. How can we use this
coordinate system to describe spirals and other radial figures? (See Example 7.14.)

In this chapter we also study parametric equations, which give us a convenient way to describe curves, or to study the
position of a particle or object in two dimensions as a function of time. We will use parametric equations and polar
coordinates for describing many topics later in this text.

7.1 | Parametric Equations

Learning Objectives
7.1.1 Plot a curve described by parametric equations.

7.1.2 Convert the parametric equations of a curve into the form y = f (x).

7.1.3 Recognize the parametric equations of basic curves, such as a line and a circle.

7.1.4 Recognize the parametric equations of a cycloid.

In this section we examine parametric equations and their graphs. In the two-dimensional coordinate system, parametric
equations are useful for describing curves that are not necessarily functions. The parameter is an independent variable that
both x and y depend on, and as the parameter increases, the values of x and y trace out a path along a plane curve. For
example, if the parameter is t (a common choice), then t might represent time. Then x and y are defined as functions of time,
and ⎛

⎝x(t), y(t)⎞
⎠ can describe the position in the plane of a given object as it moves along a curved path.

Parametric Equations and Their Graphs
Consider the orbit of Earth around the Sun. Our year lasts approximately 365.25 days, but for this discussion we will use
365 days. On January 1 of each year, the physical location of Earth with respect to the Sun is nearly the same, except for

leap years, when the lag introduced by the extra 1
4 day of orbiting time is built into the calendar. We call January 1 “day 1”

of the year. Then, for example, day 31 is January 31, day 59 is February 28, and so on.

The number of the day in a year can be considered a variable that determines Earth’s position in its orbit. As Earth revolves
around the Sun, its physical location changes relative to the Sun. After one full year, we are back where we started, and a
new year begins. According to Kepler’s laws of planetary motion, the shape of the orbit is elliptical, with the Sun at one
focus of the ellipse. We study this idea in more detail in Conic Sections.
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Figure 7.2 Earth’s orbit around the Sun in one year.

Figure 7.2 depicts Earth’s orbit around the Sun during one year. The point labeled F2 is one of the foci of the ellipse; the

other focus is occupied by the Sun. If we superimpose coordinate axes over this graph, then we can assign ordered pairs to
each point on the ellipse (Figure 7.3). Then each x value on the graph is a value of position as a function of time, and each
y value is also a value of position as a function of time. Therefore, each point on the graph corresponds to a value of Earth’s
position as a function of time.

Figure 7.3 Coordinate axes superimposed on the orbit of
Earth.

We can determine the functions for x(t) and y(t), thereby parameterizing the orbit of Earth around the Sun. The variable

t is called an independent parameter and, in this context, represents time relative to the beginning of each year.

A curve in the (x, y) plane can be represented parametrically. The equations that are used to define the curve are called

parametric equations.

Definition

If x and y are continuous functions of t on an interval I, then the equations

x = x(t) and y = y(t)

are called parametric equations and t is called the parameter. The set of points (x, y) obtained as t varies over the
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interval I is called the graph of the parametric equations. The graph of parametric equations is called a parametric
curve or plane curve, and is denoted by C.

Notice in this definition that x and y are used in two ways. The first is as functions of the independent variable t. As t varies
over the interval I, the functions x(t) and y(t) generate a set of ordered pairs (x, y). This set of ordered pairs generates the

graph of the parametric equations. In this second usage, to designate the ordered pairs, x and y are variables. It is important
to distinguish the variables x and y from the functions x(t) and y(t).

Example 7.1

Graphing a Parametrically Defined Curve

Sketch the curves described by the following parametric equations:

a. x(t) = t − 1, y(t) = 2t + 4, −3 ≤ t ≤ 2

b. x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3

c. x(t) = 4 cos t, y(t) = 4 sin t, 0 ≤ t ≤ 2π

Solution

a. To create a graph of this curve, first set up a table of values. Since the independent variable in both x(t)
and y(t) is t, let t appear in the first column. Then x(t) and y(t) will appear in the second and third

columns of the table.

t x(t) y(t)

−3 −4 −2

−2 −3 0

−1 −2 2

0 −1 4

1 0 6

2 1 8

The second and third columns in this table provide a set of points to be plotted. The graph of these points
appears in Figure 7.4. The arrows on the graph indicate the orientation of the graph, that is, the direction
that a point moves on the graph as t varies from −3 to 2.
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Figure 7.4 Graph of the plane curve described by the
parametric equations in part a.

b. To create a graph of this curve, again set up a table of values.

t x(t) y(t)

−2 1 −3

−1 −2 −1

0 −3 1

1 −2 3

2 1 5

3 6 7

The second and third columns in this table give a set of points to be plotted (Figure 7.5). The first point
on the graph (corresponding to t = −2) has coordinates (1, −3), and the last point (corresponding

to t = 3) has coordinates (6, 7). As t progresses from −2 to 3, the point on the curve travels along a

parabola. The direction the point moves is again called the orientation and is indicated on the graph.
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Figure 7.5 Graph of the plane curve described by the
parametric equations in part b.

c. In this case, use multiples of π/6 for t and create another table of values:

t x(t) y(t) t x(t) y(t)

0 4 0 7π
6

−2 3 ≈ −3.5 2

π
6 2 3 ≈ 3.5 2 4π

3
−2 −2 3 ≈ −3.5

π
3

2 2 3 ≈ 3.5 3π
2

0 −4

π
2

0 4 5π
3

2 −2 3 ≈ −3.5

2π
3

−2 2 3 ≈ 3.5 11π
6

2 3 ≈ 3.5 2

5π
6

−2 3 ≈ −3.5 2 2π 4 0

π −4 0
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7.1

The graph of this plane curve appears in the following graph.

Figure 7.6 Graph of the plane curve described by the
parametric equations in part c.

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The
starting point and ending points of the curve both have coordinates (4, 0).

Sketch the curve described by the parametric equations

x(t) = 3t + 2, y(t) = t2 − 1, −3 ≤ t ≤ 2.

Eliminating the Parameter
To better understand the graph of a curve represented parametrically, it is useful to rewrite the two equations as a single
equation relating the variables x and y. Then we can apply any previous knowledge of equations of curves in the plane to
identify the curve. For example, the equations describing the plane curve in Example 7.1b. are

x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3.

Solving the second equation for t gives

t = y − 1
2 .

This can be substituted into the first equation:

x = ⎛
⎝
y − 1

2
⎞
⎠

2
− 3 = y2 − 2y + 1

4 − 3 = y2 − 2y − 11
4 .

This equation describes x as a function of y. These steps give an example of eliminating the parameter. The graph of this
function is a parabola opening to the right. Recall that the plane curve started at (1, −3) and ended at (6, 7). These

terminations were due to the restriction on the parameter t.
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Example 7.2

Eliminating the Parameter

Eliminate the parameter for each of the plane curves described by the following parametric equations and describe
the resulting graph.

a. x(t) = 2t + 4, y(t) = 2t + 1, −2 ≤ t ≤ 6

b. x(t) = 4 cos t, y(t) = 3 sin t, 0 ≤ t ≤ 2π

Solution

a. To eliminate the parameter, we can solve either of the equations for t. For example, solving the first
equation for t gives

x = 2t + 4
x2 = 2t + 4

x2 − 4 = 2t

t = x2 − 4
2 .

Note that when we square both sides it is important to observe that x ≥ 0. Substituting t = x2 − 4
2 this

into y(t) yields

y(t) = 2t + 1

y = 2⎛
⎝

x2 − 4
2

⎞
⎠ + 1

y = x2 − 4 + 1

y = x2 − 3.

This is the equation of a parabola opening upward. There is, however, a domain restriction because
of the limits on the parameter t. When t = −2, x = 2(−2) + 4 = 0, and when t = 6,

x = 2(6) + 4 = 4. The graph of this plane curve follows.
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Figure 7.7 Graph of the plane curve described by the
parametric equations in part a.

b. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for
this example are

x(t) = 4 cos t and y(t) = 3 sin t.

Solving either equation for t directly is not advisable because sine and cosine are not one-to-one functions.
However, dividing the first equation by 4 and the second equation by 3 (and suppressing the t) gives us

cos t = x
4 and sin t = y

3.

Now use the Pythagorean identity cos2 t + sin2 t = 1 and replace the expressions for sin t and cos t
with the equivalent expressions in terms of x and y. This gives

⎛
⎝
x
4

⎞
⎠
2

+ ⎛
⎝
y
3

⎞
⎠

2
= 1

x2

16 + y2

9 = 1.

This is the equation of a horizontal ellipse centered at the origin, with semimajor axis 4 and semiminor
axis 3 as shown in the following graph.
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7.2

Figure 7.8 Graph of the plane curve described by the
parametric equations in part b.

As t progresses from 0 to 2π, a point on the curve traverses the ellipse once, in a counterclockwise

direction. Recall from the section opener that the orbit of Earth around the Sun is also elliptical. This is a
perfect example of using parameterized curves to model a real-world phenomenon.

Eliminate the parameter for the plane curve defined by the following parametric equations and describe
the resulting graph.

x(t) = 2 + 3
t , y(t) = t − 1, 2 ≤ t ≤ 6

So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe
a plane curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for
that curve? This is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process
is known as parameterization of a curve.

Example 7.3

Parameterizing a Curve

Find two different pairs of parametric equations to represent the graph of y = 2x2 − 3.

Solution

First, it is always possible to parameterize a curve by defining x(t) = t, then replacing x with t in the equation

for y(t). This gives the parameterization

x(t) = t, y(t) = 2t2 − 3.
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7.3

Since there is no restriction on the domain in the original graph, there is no restriction on the values of t.

We have complete freedom in the choice for the second parameterization. For example, we can choose
x(t) = 3t − 2. The only thing we need to check is that there are no restrictions imposed on x; that is, the range

of x(t) is all real numbers. This is the case for x(t) = 3t − 2. Now since y = 2x2 − 3, we can substitute

x(t) = 3t − 2 for x. This gives

y(t) = 2(3t − 2)2 − 2

= 2⎛
⎝9t2 − 12t + 4⎞

⎠ − 2

= 18t2 − 24t + 8 − 2
= 18t2 − 24t + 6.

Therefore, a second parameterization of the curve can be written as

x(t) = 3t − 2 and y(t) = 18t2 − 24t + 6.

Find two different sets of parametric equations to represent the graph of y = x2 + 2x.

Cycloids and Other Parametric Curves
Imagine going on a bicycle ride through the country. The tires stay in contact with the road and rotate in a predictable
pattern. Now suppose a very determined ant is tired after a long day and wants to get home. So he hangs onto the side of
the tire and gets a free ride. The path that this ant travels down a straight road is called a cycloid (Figure 7.9). A cycloid
generated by a circle (or bicycle wheel) of radius a is given by the parametric equations

x(t) = a(t − sin t), y(t) = a(1 − cos t).

To see why this is true, consider the path that the center of the wheel takes. The center moves along the x-axis at a constant
height equal to the radius of the wheel. If the radius is a, then the coordinates of the center can be given by the equations

x(t) = at, y(t) = a

for any value of t. Next, consider the ant, which rotates around the center along a circular path. If the bicycle is moving

from left to right then the wheels are rotating in a clockwise direction. A possible parameterization of the circular motion of
the ant (relative to the center of the wheel) is given by

x(t) = −a sin t, y(t) = −a cos t.

(The negative sign is needed to reverse the orientation of the curve. If the negative sign were not there, we would have to
imagine the wheel rotating counterclockwise.) Adding these equations together gives the equations for the cycloid.

x(t) = a(t − sin t), y(t) = a(1 − cos t).

Figure 7.9 A wheel traveling along a road without slipping; the point on
the edge of the wheel traces out a cycloid.

Now suppose that the bicycle wheel doesn’t travel along a straight road but instead moves along the inside of a larger wheel,
as in Figure 7.10. In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point
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on the edge of the green circle traces out the red graph, which is called a hypocycloid.

Figure 7.10 Graph of the hypocycloid described by the parametric
equations shown.

The general parametric equations for a hypocycloid are

x(t) = (a − b) cos t + b cos⎛
⎝
a − b

b
⎞
⎠ t

y(t) = (a − b) sin t − b sin⎛
⎝
a − b

b
⎞
⎠ t.

These equations are a bit more complicated, but the derivation is somewhat similar to the equations for the cycloid. In this
case we assume the radius of the larger circle is a and the radius of the smaller circle is b. Then the center of the wheel
travels along a circle of radius a − b. This fact explains the first term in each equation above. The period of the second

trigonometric function in both x(t) and y(t) is equal to 2πb
a − b.

The ratio a
b is related to the number of cusps on the graph (cusps are the corners or pointed ends of the graph), as illustrated

in Figure 7.11. This ratio can lead to some very interesting graphs, depending on whether or not the ratio is rational.
Figure 7.10 corresponds to a = 4 and b = 1. The result is a hypocycloid with four cusps. Figure 7.11 shows some

other possibilities. The last two hypocycloids have irrational values for a
b. In these cases the hypocycloids have an infinite

number of cusps, so they never return to their starting point. These are examples of what are known as space-filling curves.
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Figure 7.11 Graph of various hypocycloids corresponding to
different values of a/b.
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The Witch of Agnesi

Many plane curves in mathematics are named after the people who first investigated them, like the folium of Descartes
or the spiral of Archimedes. However, perhaps the strangest name for a curve is the witch of Agnesi. Why a witch?

Maria Gaetana Agnesi (1718–1799) was one of the few recognized women mathematicians of eighteenth-century Italy.
She wrote a popular book on analytic geometry, published in 1748, which included an interesting curve that had been
studied by Fermat in 1630. The mathematician Guido Grandi showed in 1703 how to construct this curve, which he
later called the “versoria,” a Latin term for a rope used in sailing. Agnesi used the Italian term for this rope, “versiera,”
but in Latin, this same word means a “female goblin.” When Agnesi’s book was translated into English in 1801, the
translator used the term “witch” for the curve, instead of rope. The name “witch of Agnesi” has stuck ever since.

The witch of Agnesi is a curve defined as follows: Start with a circle of radius a so that the points (0, 0) and (0, 2a)
are points on the circle (Figure 7.12). Let O denote the origin. Choose any other point A on the circle, and draw the
secant line OA. Let B denote the point at which the line OA intersects the horizontal line through (0, 2a). The vertical

line through B intersects the horizontal line through A at the point P. As the point A varies, the path that the point P
travels is the witch of Agnesi curve for the given circle.

Witch of Agnesi curves have applications in physics, including modeling water waves and distributions of spectral
lines. In probability theory, the curve describes the probability density function of the Cauchy distribution. In this
project you will parameterize these curves.

Figure 7.12 As the point A moves around the circle, the point P traces out the witch of
Agnesi curve for the given circle.

1. On the figure, label the following points, lengths, and angle:

a. C is the point on the x-axis with the same x-coordinate as A.

b. x is the x-coordinate of P, and y is the y-coordinate of P.

c. E is the point (0, a).

d. F is the point on the line segment OA such that the line segment EF is perpendicular to the line segment
OA.

e. b is the distance from O to F.

f. c is the distance from F to A.

g. d is the distance from O to B.

h. θ is the measure of angle ∠COA.

The goal of this project is to parameterize the witch using θ as a parameter. To do this, write equations for x

and y in terms of only θ.
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2. Show that d = 2a
sin θ .

3. Note that x = d cos θ. Show that x = 2a cot θ. When you do this, you will have parameterized the

x-coordinate of the curve with respect to θ. If you can get a similar equation for y, you will have parameterized

the curve.

4. In terms of θ, what is the angle ∠EOA?

5. Show that b + c = 2a cos⎛
⎝
π
2 − θ⎞

⎠.

6. Show that y = 2a cos⎛
⎝
π
2 − θ⎞

⎠ sin θ.

7. Show that y = 2a sin2 θ. You have now parameterized the y-coordinate of the curve with respect to θ.

8. Conclude that a parameterization of the given witch curve is

x = 2a cot θ, y = 2a sin2 θ, − ∞ < θ < ∞.

9. Use your parameterization to show that the given witch curve is the graph of the function f (x) = 8a3

x2 + 4a2.
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Travels with My Ant: The Curtate and Prolate Cycloids

Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a
wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid,
called the curtate and prolate cycloids.

First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant
trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very
edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 7.13).

As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter t
represent the angle the tire has rotated through. Looking at Figure 7.13, we see that after the tire has rotated through
an angle of t, the position of the center of the wheel, C = (xC, yC), is given by

xC = at and yC = a.

Furthermore, letting A = (xA, yA) denote the position of the ant, we note that

xC − xA = a sin t and yC − yA = a cos t.

Then

xA = xC − a sin t = at − a sin t = a(t − sin t)
yA = yC − a cos t = a − a cos t = a(1 − cos t).

Figure 7.13 (a) The ant clings to the edge of the bicycle tire as the tire rolls along
the ground. (b) Using geometry to determine the position of the ant after the tire has
rotated through an angle of t.

Note that these are the same parametric representations we had before, but we have now assigned a physical meaning
to the parametric variable t.

After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the
spokes toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of
motion. The new path has less up-and-down motion and is called a curtate cycloid (Figure 7.14). As shown in the
figure, we let b denote the distance along the spoke from the center of the wheel to the ant. As before, we let t represent
the angle the tire has rotated through. Additionally, we let C = (xC, yC) represent the position of the center of the

wheel and A = (xA, yA) represent the position of the ant.
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Figure 7.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b)
The ant’s path of motion after he climbs closer to the center of the wheel. This is called a
curtate cycloid. (c) The new setup, now that the ant has moved closer to the center of the
wheel.

1. What is the position of the center of the wheel after the tire has rotated through an angle of t?

2. Use geometry to find expressions for xC − xA and for yC − yA.

3. On the basis of your answers to parts 1 and 2, what are the parametric equations representing the curtate
cycloid?
Once the ant’s head clears, he realizes that the bicyclist has made a turn, and is now traveling away from his
home. So he drops off the bicycle tire and looks around. Fortunately, there is a set of train tracks nearby, headed
back in the right direction. So the ant heads over to the train tracks to wait. After a while, a train goes by,
heading in the right direction, and he manages to jump up and just catch the edge of the train wheel (without
getting squished!).
The ant is still worried about getting dizzy, but the train wheel is slippery and has no spokes to climb, so he
decides to just hang on to the edge of the wheel and hope for the best. Now, train wheels have a flange to keep
the wheel running on the tracks. So, in this case, since the ant is hanging on to the very edge of the flange, the
distance from the center of the wheel to the ant is actually greater than the radius of the wheel (Figure 7.15).
The setup here is essentially the same as when the ant climbed up the spoke on the bicycle wheel. We let
b denote the distance from the center of the wheel to the ant, and we let t represent the angle the tire has
rotated through. Additionally, we let C = (xC, yC) represent the position of the center of the wheel and

A = (xA, yA) represent the position of the ant (Figure 7.15).

When the distance from the center of the wheel to the ant is greater than the radius of the wheel, his path of
motion is called a prolate cycloid. A graph of a prolate cycloid is shown in the figure.
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Figure 7.15 (a) The ant is hanging onto the flange of the train wheel. (b) The new
setup, now that the ant has jumped onto the train wheel. (c) The ant travels along a
prolate cycloid.

4. Using the same approach you used in parts 1– 3, find the parametric equations for the path of motion of the
ant.

5. What do you notice about your answer to part 3 and your answer to part 4?
Notice that the ant is actually traveling backward at times (the “loops” in the graph), even though the train
continues to move forward. He is probably going to be really dizzy by the time he gets home!
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7.1 EXERCISES
For the following exercises, sketch the curves below by
eliminating the parameter t. Give the orientation of the
curve.

1. x = t2 + 2t, y = t + 1

2. x = cos(t), y = sin(t), (0, 2π]

3. x = 2t + 4, y = t − 1

4. x = 3 − t, y = 2t − 3, 1.5 ≤ t ≤ 3

For the following exercises, eliminate the parameter and
sketch the graphs.

5. x = 2t2, y = t4 + 1

For the following exercises, use technology (CAS or
calculator) to sketch the parametric equations.

6. [T] x = t2 + t, y = t2 − 1

7. [T] x = e−t, y = e2t − 1

8. [T] x = 3 cos t, y = 4 sin t

9. [T] x = sec t, y = cos t

For the following exercises, sketch the parametric
equations by eliminating the parameter. Indicate any
asymptotes of the graph.

10. x = et, y = e2t + 1

11. x = 6 sin(2θ), y = 4 cos(2θ)

12. x = cos θ, y = 2 sin(2θ)

13. x = 3 − 2 cos θ, y = −5 + 3 sin θ

14. x = 4 + 2 cos θ, y = −1 + sin θ

15. x = sec t, y = tan t

16. x = ln(2t), y = t2

17. x = et, y = e2t

18. x = e−2t, y = e3t

19. x = t3, y = 3 ln t

20. x = 4 sec θ, y = 3 tan θ

For the following exercises, convert the parametric
equations of a curve into rectangular form. No sketch is
necessary. State the domain of the rectangular form.

21. x = t2 − 1, y = t
2

22. x = 1
t + 1

, y = t
1 + t , t > −1

23. x = 4 cos θ, y = 3 sin θ, t ∈ (0, 2π]

24. x = cosh t, y = sinh t

25. x = 2t − 3, y = 6t − 7

26. x = t2, y = t3

27. x = 1 + cos t, y = 3 − sin t

28. x = t, y = 2t + 4

29. x = sec t, y = tan t, π ≤ t < 3π
2

30. x = 2 cosh t, y = 4 sinh t

31. x = cos(2t), y = sin t

32. x = 4t + 3, y = 16t2 − 9

33. x = t2, y = 2 ln t, t ≥ 1

34. x = t3, y = 3 ln t, t ≥ 1

35. x = tn, y = n ln t, t ≥ 1, where n is a natural

number

36.
x = ln(5t)
y = ln(t2) where 1 ≤ t ≤ e

37.
x = 2 sin(8t)
y = 2 cos(8t)

38.
x = tan t
y = sec2 t − 1

For the following exercises, the pairs of parametric
equations represent lines, parabolas, circles, ellipses, or
hyperbolas. Name the type of basic curve that each pair of
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equations represents.

39.
x = 3t + 4
y = 5t − 2

40.
x − 4 = 5t
y + 2 = t

41.
x = 2t + 1
y = t2 − 3

42.
x = 3 cos t
y = 3 sin t

43.
x = 2 cos(3t)
y = 2 sin(3t)

44.
x = cosh t
y = sinh t

45.
x = 3 cos t
y = 4 sin t

46.
x = 2 cos(3t)
y = 5 sin(3t)

47.
x = 3 cosh(4t)
y = 4 sinh(4t)

48.
x = 2 cosh t
y = 2 sinh t

49. Show that
x = h + r cos θ
y = k + r sin θ represents the equation of

a circle.

50. Use the equations in the preceding problem to find a
set of parametric equations for a circle whose radius is 5
and whose center is (−2, 3).

For the following exercises, use a graphing utility to graph
the curve represented by the parametric equations and
identify the curve from its equation.

51. [T]
x = θ + sin θ
y = 1 − cos θ

52. [T]
x = 2t − 2 sin t
y = 2 − 2 cos t

53. [T]
x = t − 0.5 sin t
y = 1 − 1.5 cos t

54. An airplane traveling horizontally at 100 m/s over
flat ground at an elevation of 4000 meters must drop an
emergency package on a target on the ground. The
trajectory of the package is given by

x = 100t, y = −4.9t2 + 4000, t ≥ 0 where the origin is

the point on the ground directly beneath the plane at the
moment of release. How many horizontal meters before the
target should the package be released in order to hit the
target?

55. The trajectory of a bullet is given by

x = v0 (cos α) ty = v0 (sin α) t − 1
2gt2 where

v0 = 500 m/s, g = 9.8 = 9.8 m/s2, and

α = 30 degrees. When will the bullet hit the ground? How

far from the gun will the bullet hit the ground?

56. [T] Use technology to sketch the curve represented by
x = sin(4t), y = sin(3t), 0 ≤ t ≤ 2π.

57. [T] Use technology to sketch
x = 2 tan(t), y = 3 sec(t), −π < t < π.

58. Sketch the curve known as an epitrochoid, which gives
the path of a point on a circle of radius b as it rolls on
the outside of a circle of radius a. The equations are

x = (a + b)cos t − c · cos⎡
⎣
(a + b)t

b
⎤
⎦

y = (a + b)sin t − c · sin⎡
⎣
(a + b)t

b
⎤
⎦.

Let a = 1, b = 2, c = 1.

59. [T] Use technology to sketch the spiral curve given by
x = t cos(t), y = t sin(t) from −2π ≤ t ≤ 2π.

60. [T] Use technology to graph the curve given by the
parametric equations
x = 2 cot(t), y = 1 − cos(2t), −π/2 ≤ t ≤ π/2. This

curve is known as the witch of Agnesi.

61. [T] Sketch the curve given by parametric equations
x = cosh(t)
y = sinh(t), where −2 ≤ t ≤ 2.
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7.2 | Calculus of Parametric Curves

Learning Objectives
7.2.1 Determine derivatives and equations of tangents for parametric curves.

7.2.2 Find the area under a parametric curve.

7.2.3 Use the equation for arc length of a parametric curve.

7.2.4 Apply the formula for surface area to a volume generated by a parametric curve.

Now that we have introduced the concept of a parameterized curve, our next step is to learn how to work with this concept
in the context of calculus. For example, if we know a parameterization of a given curve, is it possible to calculate the slope
of a tangent line to the curve? How about the arc length of the curve? Or the area under the curve?

Another scenario: Suppose we would like to represent the location of a baseball after the ball leaves a pitcher’s hand. If
the position of the baseball is represented by the plane curve ⎛

⎝x(t), y(t)⎞
⎠, then we should be able to use calculus to find

the speed of the ball at any given time. Furthermore, we should be able to calculate just how far that ball has traveled as a
function of time.

Derivatives of Parametric Equations
We start by asking how to calculate the slope of a line tangent to a parametric curve at a point. Consider the plane curve
defined by the parametric equations

x(t) = 2t + 3, y(t) = 3t − 4, −2 ≤ t ≤ 3.

The graph of this curve appears in Figure 7.16. It is a line segment starting at (−1, −10) and ending at (9, 5).

Figure 7.16 Graph of the line segment described by the given
parametric equations.
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We can eliminate the parameter by first solving the equation x(t) = 2t + 3 for t:

x(t) = 2t + 3
x − 3 = 2t

t = x − 3
2 .

Substituting this into y(t), we obtain

y(t) = 3t − 4

y = 3⎛
⎝
x − 3

2
⎞
⎠ − 4

y = 3x
2 − 9

2 − 4

y = 3x
2 − 17

2 .

The slope of this line is given by
dy
dx = 3

2. Next we calculate x′ (t) and y′ (t). This gives x′ (t) = 2 and y′ (t) = 3. Notice

that
dy
dx = dy/dt

dx/dt = 3
2. This is no coincidence, as outlined in the following theorem.

Theorem 7.1: Derivative of Parametric Equations

Consider the plane curve defined by the parametric equations x = x(t) and y = y(t). Suppose that x′ (t) and y′ (t)

exist, and assume that x′ (t) ≠ 0. Then the derivative
dy
dx is given by

(7.1)dy
dx = dy/dt

dx/dt = y′ (t)
x′ (t).

Proof

This theorem can be proven using the Chain Rule. In particular, assume that the parameter t can be eliminated, yielding
a differentiable function y = F(x). Then y(t) = F(x(t)). Differentiating both sides of this equation using the Chain Rule

yields

y′ (t) = F′ (x(t))x′ (t),

so

F′ ⎛
⎝x(t)⎞

⎠ = y′ (t)
x′ (t).

But F′ ⎛
⎝x(t)⎞

⎠ = dy
dx, which proves the theorem.

□

Equation 7.1 can be used to calculate derivatives of plane curves, as well as critical points. Recall that a critical point of
a differentiable function y = f (x) is any point x = x0 such that either f ′ (x0) = 0 or f ′ (x0) does not exist. Equation

7.1 gives a formula for the slope of a tangent line to a curve defined parametrically regardless of whether the curve can be
described by a function y = f (x) or not.

Example 7.4
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Finding the Derivative of a Parametric Curve

Calculate the derivative
dy
dx for each of the following parametrically defined plane curves, and locate any critical

points on their respective graphs.

a. x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4

b. x(t) = 2t + 1, y(t) = t3 − 3t + 4, −2 ≤ t ≤ 5

c. x(t) = 5 cos t, y(t) = 5 sin t, 0 ≤ t ≤ 2π

Solution

a. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = 2t
y′ (t) = 2.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 2

2t
dy
dx = 1

t .

This derivative is undefined when t = 0. Calculating x(0) and y(0) gives x(0) = (0)2 − 3 = −3 and

y(0) = 2(0) − 1 = −1, which corresponds to the point (−3, −1) on the graph. The graph of this curve

is a parabola opening to the right, and the point (−3, −1) is its vertex as shown.

Figure 7.17 Graph of the parabola described by parametric
equations in part a.

b. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = 2
y′ (t) = 3t2 − 3.
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Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 3t2 − 3

2 .

This derivative is zero when t = ±1. When t = −1 we have

x(−1) = 2(−1) + 1 = −1 and y(−1) = (−1)3 − 3(−1) + 4 = −1 + 3 + 4 = 6,

which corresponds to the point (−1, 6) on the graph. When t = 1 we have

x(1) = 2(1) + 1 = 3 and y(1) = (1)3 − 3(1) + 4 = 1 − 3 + 4 = 2,

which corresponds to the point (3, 2) on the graph. The point (3, 2) is a relative minimum and the point

(−1, 6) is a relative maximum, as seen in the following graph.

Figure 7.18 Graph of the curve described by parametric
equations in part b.

c. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = −5 sin t
y′ (t) = 5 cos t.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 5 cos t

−5 sin t
dy
dx = −cot t.

This derivative is zero when cos t = 0 and is undefined when sin t = 0. This gives

t = 0, π
2, π, 3π

2 , and 2π as critical points for t. Substituting each of these into x(t) and y(t), we obtain
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7.4

t x(t) y(t)

0 5 0

π
2

0 5

π −5 0

3π
2

0 −5

2π 5 0

These points correspond to the sides, top, and bottom of the circle that is represented by the parametric
equations (Figure 7.19). On the left and right edges of the circle, the derivative is undefined, and on the
top and bottom, the derivative equals zero.

Figure 7.19 Graph of the curve described by parametric
equations in part c.

Calculate the derivative dy/dx for the plane curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

and locate any critical points on its graph.
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Example 7.5

Finding a Tangent Line

Find the equation of the tangent line to the curve defined by the equations

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4 when t = 2.

Solution

First find the slope of the tangent line using Equation 7.1, which means calculating x′ (t) and y′(t):

x′ (t) = 2t
y′ (t) = 2.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 2

2t
dy
dx = 1

t .

When t = 2, dy
dx = 1

2, so this is the slope of the tangent line. Calculating x(2) and y(2) gives

x(2) = (2)2 − 3 = 1 and y(2) = 2(2) − 1 = 3,

which corresponds to the point (1, 3) on the graph (Figure 7.20). Now use the point-slope form of the equation

of a line to find the equation of the tangent line:

y − y0 = m(x − x0)

y − 3 = 1
2(x − 1)

y − 3 = 1
2x − 1

2
y = 1

2x + 5
2.

Figure 7.20 Tangent line to the parabola described by the
given parametric equations when t = 2.
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7.5

7.6

Find the equation of the tangent line to the curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3 when t = 5.

Second-Order Derivatives
Our next goal is to see how to take the second derivative of a function defined parametrically. The second derivative of a
function y = f (x) is defined to be the derivative of the first derivative; that is,

d2 y
dx2 = d

dx
⎡
⎣
dy
dx

⎤
⎦.

Since
dy
dx = dy/dt

dx/dt , we can replace the y on both sides of this equation with
dy
dx. This gives us

(7.2)d2 y
dx2 = d

dx
⎛
⎝
dy
dx

⎞
⎠ = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt .

If we know dy/dx as a function of t, then this formula is straightforward to apply.

Example 7.6

Finding a Second Derivative

Calculate the second derivative d2 y/dx2 for the plane curve defined by the parametric equations

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4.

Solution

From Example 7.4 we know that
dy
dx = 2

2t = 1
t . Using Equation 7.2, we obtain

d2 y
dx2 = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt = (d/dt)(1/t)
2t = −t−2

2t = − 1
2t3.

Calculate the second derivative d2 y/dx2 for the plane curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

and locate any critical points on its graph.

Integrals Involving Parametric Equations
Now that we have seen how to calculate the derivative of a plane curve, the next question is this: How do we find the
area under a curve defined parametrically? Recall the cycloid defined by the equations x(t) = t − sin t, y(t) = 1 − cos t.
Suppose we want to find the area of the shaded region in the following graph.
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Figure 7.21 Graph of a cycloid with the arch over [0, 2π]
highlighted.

To derive a formula for the area under the curve defined by the functions

x = x(t), y = y(t), a ≤ t ≤ b,

we assume that x(t) is differentiable and start with an equal partition of the interval a ≤ t ≤ b. Suppose

t0 = a < t1 < t2 < ⋯ < tn = b and consider the following graph.

Figure 7.22 Approximating the area under a parametrically
defined curve.

We use rectangles to approximate the area under the curve. The height of a typical rectangle in this parametrization is
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠ for some value t– i in the ith subinterval, and the width can be calculated as x(ti) − x(ti − 1). Thus the area of the

ith rectangle is given by

Ai = y⎛
⎝x⎛

⎝ t– i
⎞
⎠
⎞
⎠

⎛
⎝x(ti) − x(ti − 1)⎞

⎠.

Then a Riemann sum for the area is

An = ∑
i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠

⎛
⎝x(ti) − x(ti − 1)⎞

⎠.

Multiplying and dividing each area by ti − ti − 1 gives

An = ∑
i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠
⎛
⎝

x(ti) − x(ti − 1)
ti − ti − 1

⎞
⎠(ti − ti − 1) = ∑

i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠
⎛
⎝

x(ti) − x(ti − 1)
Δt

⎞
⎠Δt.

Taking the limit as n approaches infinity gives

A = limn → ∞An = ∫
a

b
y(t)x′ (t) dt.
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7.7

This leads to the following theorem.

Theorem 7.2: Area under a Parametric Curve

Consider the non-self-intersecting plane curve defined by the parametric equations

x = x(t), y = y(t), a ≤ t ≤ b

and assume that x(t) is differentiable. The area under this curve is given by

(7.3)
A = ∫

a

b
y(t)x′ (t) dt.

Example 7.7

Finding the Area under a Parametric Curve

Find the area under the curve of the cycloid defined by the equations

x(t) = t − sin t, y(t) = 1 − cos t, 0 ≤ t ≤ 2π.

Solution

Using Equation 7.3, we have

A = ∫
a

b
y(t)x′ (t) dt

= ∫
0

2π
(1 − cos t)(1 − cos t) dt

= ∫
0

2π
(1 − 2 cos t + cos2 t)dt

= ∫
0

2π⎛
⎝1 − 2 cos t + 1 + cos 2t

2
⎞
⎠ dt

= ∫
0

2π⎛
⎝
3
2 − 2 cos t + cos 2t

2
⎞
⎠ dt

= 3t
2 − 2 sin t + sin 2t

4 |02π

= 3π.

Find the area under the curve of the hypocycloid defined by the equations

x(t) = 3 cos t + cos 3t, y(t) = 3 sin t − sin 3t, 0 ≤ t ≤ π.

Arc Length of a Parametric Curve
In addition to finding the area under a parametric curve, we sometimes need to find the arc length of a parametric curve. In
the case of a line segment, arc length is the same as the distance between the endpoints. If a particle travels from point A to
point B along a curve, then the distance that particle travels is the arc length. To develop a formula for arc length, we start
with an approximation by line segments as shown in the following graph.
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Figure 7.23 Approximation of a curve by line segments.

Given a plane curve defined by the functions x = x(t), y = y(t), a ≤ t ≤ b, we start by partitioning the interval [a, b]
into n equal subintervals: t0 = a < t1 < t2 < ⋯ < tn = b. The width of each subinterval is given by Δt = (b − a)/n. We

can calculate the length of each line segment:

d1 = ⎛
⎝x(t1) − x(t0)⎞

⎠
2 + ⎛

⎝y(t1) − y(t0)⎞
⎠
2

d2 = ⎛
⎝x(t2) − x(t1)⎞

⎠
2 + ⎛

⎝y(t2) − y(t1)⎞
⎠
2 etc.

Then add these up. We let s denote the exact arc length and sn denote the approximation by n line segments:

(7.4)
s ≈ ∑

k = 1

n
sk = ∑

k = 1

n
⎛
⎝x(tk) − x(tk − 1)⎞

⎠
2 + ⎛

⎝y(tk) − y(tk − 1)⎞
⎠
2.

If we assume that x(t) and y(t) are differentiable functions of t, then the Mean Value Theorem (Introduction to the

Applications of Derivatives (http://cnx.org/content/m53602/latest/) ) applies, so in each subinterval [tk − 1, tk]

there exist t^ k and t̃k such that

x(tk) − x(tk − 1) = x′ ⎛
⎝t^ k

⎞
⎠(tk − tk − 1) = x′ ⎛

⎝t^ k
⎞
⎠Δt

y(tk) − y(tk − 1) = y′ ⎛
⎝t̃k

⎞
⎠(tk − tk − 1) = y′ ⎛

⎝t̃k
⎞
⎠Δt.

Therefore Equation 7.4 becomes

s ≈ ∑
k = 1

n
sk

= ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠Δt⎞⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠Δt⎞

⎠
2

= ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
(Δt)2 + ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2

(Δt)2

=
⎛

⎝
⎜ ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2⎞

⎠
⎟Δt.

This is a Riemann sum that approximates the arc length over a partition of the interval [a, b]. If we further assume that

the derivatives are continuous and let the number of points in the partition increase without bound, the approximation
approaches the exact arc length. This gives
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s = limn → ∞ ∑
k = 1

n
sk

= limn → ∞

⎛

⎝
⎜ ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2⎞

⎠
⎟Δt

= ∫
a

b
(x′ (t))2 + ⎛

⎝y′ (t)⎞
⎠
2dt.

When taking the limit, the values of t^ k and t̃k are both contained within the same ever-shrinking interval of width Δt,
so they must converge to the same value.

We can summarize this method in the following theorem.

Theorem 7.3: Arc Length of a Parametric Curve

Consider the plane curve defined by the parametric equations

x = x(t), y = y(t), t1 ≤ t ≤ t2

and assume that x(t) and y(t) are differentiable functions of t. Then the arc length of this curve is given by

(7.5)
s = ∫

t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

At this point a side derivation leads to a previous formula for arc length. In particular, suppose the parameter can
be eliminated, leading to a function y = F(x). Then y(t) = F(x(t)) and the Chain Rule gives y′ (t) = F′ (x(t))x′ (t).
Substituting this into Equation 7.5 gives

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝F′ (x)dx
dt

⎞
⎠

2
dt

= ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
⎛
⎝1 + (F′ (x))2⎞

⎠dt

= ∫
t1

t2
x′ (t) 1 + ⎛

⎝
dy
dx

⎞
⎠

2
dt.

Here we have assumed that x′ (t) > 0, which is a reasonable assumption. The Chain Rule gives dx = x′ (t) dt, and

letting a = x(t1) and b = x(t2) we obtain the formula

s = ∫
a

b
1 + ⎛

⎝
dy
dx

⎞
⎠

2
dx,

which is the formula for arc length obtained in the Introduction to the Applications of Integration.

Example 7.8

Finding the Arc Length of a Parametric Curve

Find the arc length of the semicircle defined by the equations
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7.8

x(t) = 3 cos t, y(t) = 3 sin t, 0 ≤ t ≤ π.

Solution

The values t = 0 to t = π trace out the red curve in Figure 7.23. To determine its length, use Equation 7.5:

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
0

π
(−3 sin t)2 + (3 cos t)2dt

= ∫
0

π
9 sin2 t + 9 cos2 t dt

= ∫
0

π
9⎛

⎝sin2 t + cos2 t⎞
⎠dt

= ∫
0

π
3dt = 3t|0

π = 3π.

Note that the formula for the arc length of a semicircle is πr and the radius of this circle is 3. This is a great

example of using calculus to derive a known formula of a geometric quantity.

Figure 7.24 The arc length of the semicircle is equal to its
radius times π.

Find the arc length of the curve defined by the equations

x(t) = 3t2, y(t) = 2t3, 1 ≤ t ≤ 3.

We now return to the problem posed at the beginning of the section about a baseball leaving a pitcher’s hand. Ignoring the
effect of air resistance (unless it is a curve ball!), the ball travels a parabolic path. Assuming the pitcher’s hand is at the
origin and the ball travels left to right in the direction of the positive x-axis, the parametric equations for this curve can be
written as

x(t) = 140t, y(t) = −16t2 + 2t

where t represents time. We first calculate the distance the ball travels as a function of time. This distance is represented
by the arc length. We can modify the arc length formula slightly. First rewrite the functions x(t) and y(t) using v as an

independent variable, so as to eliminate any confusion with the parameter t:

x(v) = 140v, y(v) = −16v2 + 2v.
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Then we write the arc length formula as follows:

s(t) = ∫
0

t ⎛
⎝
dx
dv

⎞
⎠

2
+ ⎛

⎝
dy
dv

⎞
⎠

2
dv

= ∫
0

t
1402 + (−32v + 2)2dv.

The variable v acts as a dummy variable that disappears after integration, leaving the arc length as a function of time t. To
integrate this expression we can use a formula from Appendix A,

∫ a2 + u2du = u
2 a2 + u2 + a2

2 ln|u + a2 + u2| + C.

We set a = 140 and u = −32v + 2. This gives du = −32dv, so dv = − 1
32du. Therefore

∫ 1402 + (−32v + 2)2dv = − 1
32∫ a2 + u2du

= − 1
32

⎡

⎣
⎢
⎢

(−32v + 2)
2 1402 + (−32v + 2)2

+1402

2 ln|(−32v + 2) + 1402 + (−32v + 2)2|
⎤

⎦
⎥
⎥ + C

and

s(t) = − 1
32

⎡
⎣

(−32t + 2)
2 1402 + (−32t + 2)2 + 1402

2 ln|(−32t + 2) + 1402 + (−32t + 2)2|⎤⎦
+ 1

32
⎡
⎣ 1402 + 22 + 1402

2 ln|2 + 1402 + 22|⎤⎦
= ⎛

⎝
t
2 − 1

32
⎞
⎠ 1024t2 − 128t + 19604 − 1225

4 ln|(−32t + 2) + 1024t2 − 128t + 19604|
+ 19604

32 + 1225
4 ln⎛

⎝2 + 19604⎞
⎠.

This function represents the distance traveled by the ball as a function of time. To calculate the speed, take the derivative of
this function with respect to t. While this may seem like a daunting task, it is possible to obtain the answer directly from the
Fundamental Theorem of Calculus:

d
dx∫

a

x
f (u) du = f (x).

Therefore

s′ (t) = d
dt

⎡
⎣s(t)⎤

⎦

= d
dt

⎡
⎣∫0

t
1402 + (−32v + 2)2dv

⎤
⎦

= 1402 + (−32t + 2)2

= 1024t2 − 128t + 19604

= 2 256t2 − 32t + 4901.

One third of a second after the ball leaves the pitcher’s hand, the distance it travels is equal to

Chapter 7 | Parametric Equations and Polar Coordinates 637



s⎛
⎝
1
3

⎞
⎠ = ⎛

⎝
1/3
2 − 1

32
⎞
⎠ 1024⎛

⎝
1
3

⎞
⎠

2
− 128⎛

⎝
1
3

⎞
⎠ + 19604

−1225
4 ln|⎛⎝−32⎛

⎝
1
3

⎞
⎠ + 2⎞

⎠ + 1024⎛
⎝
1
3

⎞
⎠

2
− 128⎛

⎝
1
3

⎞
⎠ + 19604|

+ 19604
32 + 1225

4 ln⎛
⎝2 + 19604⎞

⎠

≈ 46.69 feet.

This value is just over three quarters of the way to home plate. The speed of the ball is

s′ ⎛
⎝
1
3

⎞
⎠ = 2 256⎛

⎝
1
3

⎞
⎠

2
− 16⎛

⎝
1
3

⎞
⎠ + 4901 ≈ 140.34 ft/s.

This speed translates to approximately 95 mph—a major-league fastball.

Surface Area Generated by a Parametric Curve
Recall the problem of finding the surface area of a volume of revolution. In Curve Length and Surface Area, we
derived a formula for finding the surface area of a volume generated by a function y = f (x) from x = a to x = b,
revolved around the x-axis:

S = 2π∫
a

b
f (x) 1 + ⎛

⎝ f ′ (x)⎞
⎠
2dx.

We now consider a volume of revolution generated by revolving a parametrically defined curve
x = x(t), y = y(t), a ≤ t ≤ b around the x-axis as shown in the following figure.

Figure 7.25 A surface of revolution generated by a
parametrically defined curve.

The analogous formula for a parametrically defined curve is

(7.6)
S = 2π∫

a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

provided that y(t) is not negative on [a, b].

Example 7.9

Finding Surface Area

Find the surface area of a sphere of radius r centered at the origin.
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7.9

Solution

We start with the curve defined by the equations

x(t) = r cos t, y(t) = r sin t, 0 ≤ t ≤ π.

This generates an upper semicircle of radius r centered at the origin as shown in the following graph.

Figure 7.26 A semicircle generated by parametric equations.

When this curve is revolved around the x-axis, it generates a sphere of radius r. To calculate the surface area of
the sphere, we use Equation 7.6:

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

= 2π∫
0

π
r sin t (−r sin t)2 + (r cos t)2dt

= 2π∫
0

π
r sin t r2 sin2 t + r2 cos2 t dt

= 2π∫
0

π
r sin t r2 ⎛

⎝sin2 t + cos2 t⎞
⎠dt

= 2π∫
0

π
r2 sin t dt

= 2πr2(−cos t|0
π)

= 2πr2 (−cos π + cos 0)
= 4πr2.

This is, in fact, the formula for the surface area of a sphere.

Find the surface area generated when the plane curve defined by the equations

x(t) = t3, y(t) = t2, 0 ≤ t ≤ 1

is revolved around the x-axis.
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7.2 EXERCISES
For the following exercises, each set of parametric
equations represents a line. Without eliminating the
parameter, find the slope of each line.

62. x = 3 + t, y = 1 − t

63. x = 8 + 2t, y = 1

64. x = 4 − 3t, y = −2 + 6t

65. x = −5t + 7, y = 3t − 1

For the following exercises, determine the slope of the
tangent line, then find the equation of the tangent line at the
given value of the parameter.

66. x = 3 sin t, y = 3 cos t, t = π
4

67. x = cos t, y = 8 sin t, t = π
2

68. x = 2t, y = t3, t = −1

69. x = t + 1
t , y = t − 1

t , t = 1

70. x = t, y = 2t, t = 4

For the following exercises, find all points on the curve that
have the given slope.

71. x = 4 cos t, y = 4 sin t, slope = 0.5

72. x = 2 cos t, y = 8 sin t, slope = −1

73. x = t + 1
t , y = t − 1

t , slope = 1

74. x = 2 + t, y = 2 − 4t, slope = 0

For the following exercises, write the equation of the
tangent line in Cartesian coordinates for the given
parameter t.

75. x = e t, y = 1 − ln t2, t = 1

76. x = t ln t, y = sin2 t, t = π
4

77. x = et, y = (t − 1)2, at(1, 1)

78. For x = sin(2t), y = 2 sin t where 0 ≤ t < 2π. Find

all values of t at which a horizontal tangent line exists.

79. For x = sin(2t), y = 2 sin t where 0 ≤ t < 2π. Find

all values of t at which a vertical tangent line exists.

80. Find all points on the curve x = 4 cos(t), y = 4 sin(t)

that have the slope of 1
2.

81. Find
dy
dx for x = sin(t), y = cos(t).

82. Find the equation of the tangent line to
x = sin(t), y = cos(t) at t = π

4.

83. For the curve x = 4t, y = 3t − 2, find the slope and

concavity of the curve at t = 3.

84. For the parametric curve whose equation is
x = 4 cos θ, y = 4 sin θ, find the slope and concavity of

the curve at θ = π
4.

85. Find the slope and concavity for the curve whose
equation is x = 2 + sec θ, y = 1 + 2 tan θ at θ = π

6.

86. Find all points on the curve x = t + 4, y = t3 − 3t at

which there are vertical and horizontal tangents.

87. Find all points on the curve x = sec θ, y = tan θ at

which horizontal and vertical tangents exist.

For the following exercises, find d2 y/dx2.

88. x = t4 − 1, y = t − t2

89. x = sin(πt), y = cos(πt)

90. x = e−t, y = te2t

For the following exercises, find points on the curve at
which tangent line is horizontal or vertical.

91. x = t(t2 − 3), y = 3(t2 − 3)

92. x = 3t
1 + t3, y = 3t2

1 + t3

For the following exercises, find dy/dx at the value of the

parameter.

93. x = cos t, y = sin t, t = 3π
4
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94. x = t, y = 2t + 4, t = 9

95. x = 4 cos(2πs), y = 3 sin(2πs), s = − 1
4

For the following exercises, find d2 y/dx2 at the given

point without eliminating the parameter.

96. x = 1
2t2, y = 1

3t3, t = 2

97. x = t, y = 2t + 4, t = 1

98. Find t intervals on which the curve

x = 3t2, y = t3 − t is concave up as well as concave

down.

99. Determine the concavity of the curve
x = 2t + ln t, y = 2t − ln t.

100. Sketch and find the area under one arch of the cycloid
x = r(θ − sin θ), y = r(1 − cos θ).

101. Find the area bounded by the curve
x = cos t, y = et, 0 ≤ t ≤ π

2 and the lines y = 1 and

x = 0.

102. Find the area enclosed by the ellipse
x = a cos θ, y = b sin θ, 0 ≤ θ < 2π.

103. Find the area of the region bounded by

x = 2 sin2 θ, y = 2 sin2 θ tan θ, for 0 ≤ θ ≤ π
2.

For the following exercises, find the area of the regions
bounded by the parametric curves and the indicated values
of the parameter.

104. x = 2 cot θ, y = 2 sin2 θ, 0 ≤ θ ≤ π

105. [T]
x = 2a cos t − a cos(2t), y = 2a sin t − a sin(2t), 0 ≤ t < 2π

106. [T] x = a sin(2t), y = b sin(t), 0 ≤ t < 2π (the

“hourglass”)

107. [T]
x = 2a cos t − a sin(2t), y = b sin t, 0 ≤ t < 2π (the

“teardrop”)

For the following exercises, find the arc length of the curve
on the indicated interval of the parameter.

108. x = 4t + 3, y = 3t − 2, 0 ≤ t ≤ 2

109. x = 1
3t3, y = 1

2t2, 0 ≤ t ≤ 1

110. x = cos(2t), y = sin(2t), 0 ≤ t ≤ π
2

111. x = 1 + t2, y = (1 + t)3, 0 ≤ t ≤ 1

112. x = et cos t, y = et sin t, 0 ≤ t ≤ π
2 (express

answer as a decimal rounded to three places)

113. x = a cos3 θ, y = a sin3 θ on the interval [0, 2π)
(the hypocycloid)

114. Find the length of one arch of the cycloid
x = 4(t − sin t), y = 4(1 − cos t).

115. Find the distance traveled by a particle with position
(x, y) as t varies in the given time interval:

x = sin2 t, y = cos2 t, 0 ≤ t ≤ 3π.

116. Find the length of one arch of the cycloid
x = θ − sin θ, y = 1 − cos θ.

117. Show that the total length of the ellipse
x = 4 sin θ, y = 3 cos θ is

L = 16∫
0

π/2
1 − e2 sin2 θ dθ, where e = c

a and

c = a2 − b2.

118. Find the length of the curve

x = et − t, y = 4et/2, −8 ≤ t ≤ 3.

For the following exercises, find the area of the surface
obtained by rotating the given curve about the x-axis.

119. x = t3, y = t2, 0 ≤ t ≤ 1

120. x = a cos3 θ, y = a sin3 θ, 0 ≤ θ ≤ π
2

121. [T] Use a CAS to find the area of the surface

generated by rotating x = t + t3, y = t − 1
t2, 1 ≤ t ≤ 2

about the x-axis. (Answer to three decimal places.)

122. Find the surface area obtained by rotating

x = 3t2, y = 2t3, 0 ≤ t ≤ 5 about the y-axis.

123. Find the area of the surface generated by revolving

x = t2, y = 2t, 0 ≤ t ≤ 4 about the x-axis.

124. Find the surface area generated by revolving

x = t2, y = 2t2, 0 ≤ t ≤ 1 about the y-axis.
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7.3 | Polar Coordinates

Learning Objectives
7.3.1 Locate points in a plane by using polar coordinates.

7.3.2 Convert points between rectangular and polar coordinates.

7.3.3 Sketch polar curves from given equations.

7.3.4 Convert equations between rectangular and polar coordinates.

7.3.5 Identify symmetry in polar curves and equations.

The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered
pairs to points. This is called a one-to-one mapping from points in the plane to ordered pairs. The polar coordinate system
provides an alternative method of mapping points to ordered pairs. In this section we see that in some circumstances, polar
coordinates can be more useful than rectangular coordinates.

Defining Polar Coordinates
To find the coordinates of a point in the polar coordinate system, consider Figure 7.27. The point P has Cartesian

coordinates (x, y). The line segment connecting the origin to the point P measures the distance from the origin to P and

has length r. The angle between the positive x -axis and the line segment has measure θ. This observation suggests a

natural correspondence between the coordinate pair (x, y) and the values r and θ. This correspondence is the basis of

the polar coordinate system. Note that every point in the Cartesian plane has two values (hence the term ordered pair)
associated with it. In the polar coordinate system, each point also two values associated with it: r and θ.

Figure 7.27 An arbitrary point in the Cartesian plane.

Using right-triangle trigonometry, the following equations are true for the point P:

cos θ = x
r so x = r cos θ

sin θ = y
r so y = r sin θ.

Furthermore,

r2 = x2 + y2 and tan θ = y
x.

Each point (x, y) in the Cartesian coordinate system can therefore be represented as an ordered pair (r, θ) in the polar

coordinate system. The first coordinate is called the radial coordinate and the second coordinate is called the angular
coordinate. Every point in the plane can be represented in this form.

Note that the equation tan θ = y/x has an infinite number of solutions for any ordered pair (x, y). However, if we restrict

the solutions to values between 0 and 2π then we can assign a unique solution to the quadrant in which the original point

(x, y) is located. Then the corresponding value of r is positive, so r2 = x2 + y2.
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Theorem 7.4: Converting Points between Coordinate Systems

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ), the following

conversion formulas hold true:

(7.7)x = r cos θ and y = r sin θ,
(7.8)r2 = x2 + y2 and tan θ = y

x.

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

Example 7.10

Converting between Rectangular and Polar Coordinates

Convert each of the following points into polar coordinates.

a. (1, 1)

b. (−3, 4)

c. (0, 3)

d. (5 3, −5)

Convert each of the following points into rectangular coordinates.

e. (3, π/3)

f. (2, 3π/2)

g. (6, −5π/6)

Solution

a. Use x = 1 and y = 1 in Equation 7.8:

r2 = x2 + y2

= 12 + 12

r = 2

and

tan θ = y
x

= 1
1 = 1

θ = π
4.

Therefore this point can be represented as ⎛
⎝ 2, π

4
⎞
⎠ in polar coordinates.

b. Use x = −3 and y = 4 in Equation 7.8:

r2 = x2 + y2

= (−3)2 + (4)2

r = 5

and

tan θ = y
x

= −4
3

θ = −arctan⎛
⎝
4
3

⎞
⎠

≈ 2.21.

Therefore this point can be represented as (5, 2.21) in polar coordinates.
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c. Use x = 0 and y = 3 in Equation 7.8:

r2 = x2 + y2

= (3)2 + (0)2

= 9 + 0
r = 3

and
tan θ = y

x
= 3

0.

Direct application of the second equation leads to division by zero. Graphing the point (0, 3) on the

rectangular coordinate system reveals that the point is located on the positive y-axis. The angle between

the positive x-axis and the positive y-axis is π
2. Therefore this point can be represented as ⎛

⎝3, π
2

⎞
⎠ in polar

coordinates.

d. Use x = 5 3 and y = −5 in Equation 7.8:

r2 = x2 + y2

= ⎛
⎝5 3⎞

⎠
2 + (−5)2

= 75 + 25
r = 10

and

tan θ = y
x

= −5
5 3

= − 3
3

θ = −π
6.

Therefore this point can be represented as ⎛
⎝10, − π

6
⎞
⎠ in polar coordinates.

e. Use r = 3 and θ = π
3 in Equation 7.7:

x = r cos θ
= 3 cos⎛

⎝
π
3

⎞
⎠

= 3⎛
⎝
1
2

⎞
⎠ = 3

2

and

y = r sin θ

= 3 sin⎛
⎝
π
3

⎞
⎠

= 3⎛
⎝

3
2

⎞
⎠ = 3 3

2 .

Therefore this point can be represented as
⎛
⎝
3
2, 3 3

2
⎞
⎠ in rectangular coordinates.

f. Use r = 2 and θ = 3π
2 in Equation 7.7:

x = r cos θ
= 2 cos⎛

⎝
3π
2

⎞
⎠

= 2(0) = 0

and

y = r sin θ

= 2 sin⎛
⎝
3π
2

⎞
⎠

= 2(−1) = −2.

Therefore this point can be represented as (0, −2) in rectangular coordinates.

g. Use r = 6 and θ = − 5π
6 in Equation 7.7:

x = r cos θ
= 6 cos⎛

⎝−
5π
6

⎞
⎠

= 6⎛
⎝− 3

2
⎞
⎠

= −3 3

and

y = r sin θ

= 6 sin⎛
⎝−

5π
6

⎞
⎠

= 6⎛
⎝−

1
2

⎞
⎠

= −3.
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7.10

Therefore this point can be represented as ⎛
⎝−3 3, −3⎞

⎠ in rectangular coordinates.

Convert (−8, −8) into polar coordinates and ⎛
⎝4, 2π

3
⎞
⎠ into rectangular coordinates.

The polar representation of a point is not unique. For example, the polar coordinates ⎛
⎝2, π

3
⎞
⎠ and ⎛

⎝2, 7π
3

⎞
⎠ both represent the

point ⎛
⎝1, 3⎞

⎠ in the rectangular system. Also, the value of r can be negative. Therefore, the point with polar coordinates

⎛
⎝−2, 4π

3
⎞
⎠ also represents the point ⎛

⎝1, 3⎞
⎠ in the rectangular system, as we can see by using Equation 7.8:

x = r cos θ
= −2 cos⎛

⎝
4π
3

⎞
⎠

= −2⎛
⎝−

1
2

⎞
⎠ = 1

and

y = r sin θ

= −2 sin⎛
⎝
4π
3

⎞
⎠

= −2⎛
⎝− 3

2
⎞
⎠ = 3.

Every point in the plane has an infinite number of representations in polar coordinates. However, each point in the plane has
only one representation in the rectangular coordinate system.

Note that the polar representation of a point in the plane also has a visual interpretation. In particular, r is the directed

distance that the point lies from the origin, and θ measures the angle that the line segment from the origin to the point makes

with the positive x -axis. Positive angles are measured in a counterclockwise direction and negative angles are measured in

a clockwise direction. The polar coordinate system appears in the following figure.

Figure 7.28 The polar coordinate system.

The line segment starting from the center of the graph going to the right (called the positive x-axis in the Cartesian system)
is the polar axis. The center point is the pole, or origin, of the coordinate system, and corresponds to r = 0. The innermost

circle shown in Figure 7.28 contains all points a distance of 1 unit from the pole, and is represented by the equation r = 1.
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Then r = 2 is the set of points 2 units from the pole, and so on. The line segments emanating from the pole correspond

to fixed angles. To plot a point in the polar coordinate system, start with the angle. If the angle is positive, then measure
the angle from the polar axis in a counterclockwise direction. If it is negative, then measure it clockwise. If the value of r
is positive, move that distance along the terminal ray of the angle. If it is negative, move along the ray that is opposite the
terminal ray of the given angle.

Example 7.11

Plotting Points in the Polar Plane

Plot each of the following points on the polar plane.

a. ⎛
⎝2, π

4
⎞
⎠

b. ⎛
⎝−3, 2π

3
⎞
⎠

c. ⎛
⎝4, 5π

4
⎞
⎠

Solution

The three points are plotted in the following figure.

Figure 7.29 Three points plotted in the polar coordinate
system.

Plot ⎛
⎝4, 5π

3
⎞
⎠ and ⎛

⎝−3, − 7π
2

⎞
⎠ on the polar plane.

Polar Curves
Now that we know how to plot points in the polar coordinate system, we can discuss how to plot curves. In the rectangular
coordinate system, we can graph a function y = f (x) and create a curve in the Cartesian plane. In a similar fashion, we can

graph a curve that is generated by a function r = f (θ).
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The general idea behind graphing a function in polar coordinates is the same as graphing a function in rectangular
coordinates. Start with a list of values for the independent variable (θ in this case) and calculate the corresponding values

of the dependent variable r. This process generates a list of ordered pairs, which can be plotted in the polar coordinate

system. Finally, connect the points, and take advantage of any patterns that may appear. The function may be periodic, for
example, which indicates that only a limited number of values for the independent variable are needed.

Problem-Solving Strategy: Plotting a Curve in Polar Coordinates

1. Create a table with two columns. The first column is for θ, and the second column is for r.

2. Create a list of values for θ.

3. Calculate the corresponding r values for each θ.

4. Plot each ordered pair (r, θ) on the coordinate axes.

5. Connect the points and look for a pattern.

Watch this video (http://www.openstaxcollege.org/l/20_polarcurves) for more information on sketching
polar curves.

Example 7.12

Graphing a Function in Polar Coordinates

Graph the curve defined by the function r = 4 sin θ. Identify the curve and rewrite the equation in rectangular

coordinates.

Solution

Because the function is a multiple of a sine function, it is periodic with period 2π, so use values for θ between

0 and 2π. The result of steps 1–3 appear in the following table. Figure 7.30 shows the graph based on this table.
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θ r = 4 sin θ θ r = 4 sin θ

0 0 π 0

π
6

2 7π
6

−2

π
4 2 2 ≈ 2.8 5π

4
−2 2 ≈ −2.8

π
3 2 3 ≈ 3.4 4π

3
−2 3 ≈ −3.4

π
2

4 3π
2

4

2π
3

2 3 ≈ 3.4 5π
3

−2 3 ≈ −3.4

3π
4

2 2 ≈ 2.8 7π
4

−2 2 ≈ −2.8

5π
6

2 11π
6

−2

2π 0
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7.12

Figure 7.30 The graph of the function r = 4 sin θ is a circle.

This is the graph of a circle. The equation r = 4 sin θ can be converted into rectangular coordinates by first

multiplying both sides by r. This gives the equation r2 = 4r sin θ. Next use the facts that r2 = x2 + y2 and

y = r sin θ. This gives x2 + y2 = 4y. To put this equation into standard form, subtract 4y from both sides of

the equation and complete the square:

x2 + y2 − 4y = 0

x2 + ⎛
⎝y2 − 4y⎞

⎠ = 0

x2 + ⎛
⎝y2 − 4y + 4⎞

⎠ = 0 + 4

x2 + ⎛
⎝y − 2⎞

⎠
2 = 4.

This is the equation of a circle with radius 2 and center (0, 2) in the rectangular coordinate system.

Create a graph of the curve defined by the function r = 4 + 4 cos θ.

The graph in Example 7.12 was that of a circle. The equation of the circle can be transformed into rectangular coordinates
using the coordinate transformation formulas in Equation 7.8. Example 7.14 gives some more examples of functions
for transforming from polar to rectangular coordinates.

Example 7.13

Transforming Polar Equations to Rectangular Coordinates

Rewrite each of the following equations in rectangular coordinates and identify the graph.

a. θ = π
3

Chapter 7 | Parametric Equations and Polar Coordinates 649
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b. r = 3

c. r = 6 cos θ − 8 sin θ

Solution

a. Take the tangent of both sides. This gives tan θ = tan(π/3) = 3. Since tan θ = y/x we can replace the

left-hand side of this equation by y/x. This gives y/x = 3, which can be rewritten as y = x 3. This

is the equation of a straight line passing through the origin with slope 3. In general, any polar equation

of the form θ = K represents a straight line through the pole with slope equal to tan K.

b. First, square both sides of the equation. This gives r2 = 9. Next replace r2 with x2 + y2. This gives

the equation x2 + y2 = 9, which is the equation of a circle centered at the origin with radius 3. In

general, any polar equation of the form r = k where k is a positive constant represents a circle of radius

k centered at the origin. (Note: when squaring both sides of an equation it is possible to introduce new
points unintentionally. This should always be taken into consideration. However, in this case we do not

introduce new points. For example, ⎛
⎝−3, π

3
⎞
⎠ is the same point as ⎛

⎝3, 4π
3

⎞
⎠.)

c. Multiply both sides of the equation by r. This leads to r2 = 6r cos θ − 8r sin θ. Next use the formulas

r2 = x2 + y2, x = r cos θ, y = r sin θ.

This gives

r2 = 6(r cos θ) − 8(r sin θ)
x2 + y2 = 6x − 8y.

To put this equation into standard form, first move the variables from the right-hand side of the equation
to the left-hand side, then complete the square.

x2 + y2 = 6x − 8y

x2 − 6x + y2 + 8y = 0
⎛
⎝x2 − 6x⎞

⎠ + ⎛
⎝y2 + 8y⎞

⎠ = 0
⎛
⎝x2 − 6x + 9⎞

⎠ + ⎛
⎝y2 + 8y + 16⎞

⎠ = 9 + 16

(x − 3)2 + ⎛
⎝y + 4⎞

⎠
2 = 25.

This is the equation of a circle with center at (3, −4) and radius 5. Notice that the circle passes through

the origin since the center is 5 units away.

Rewrite the equation r = sec θ tan θ in rectangular coordinates and identify its graph.

We have now seen several examples of drawing graphs of curves defined by polar equations. A summary of some common
curves is given in the tables below. In each equation, a and b are arbitrary constants.
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Figure 7.31
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Figure 7.32

A cardioid is a special case of a limaçon (pronounced “lee-mah-son”), in which a = b or a = −b. The rose is a very

interesting curve. Notice that the graph of r = 3 sin 2θ has four petals. However, the graph of r = 3 sin 3θ has three petals

as shown.
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Figure 7.33 Graph of r = 3 sin 3θ.

If the coefficient of θ is even, the graph has twice as many petals as the coefficient. If the coefficient of θ is odd,

then the number of petals equals the coefficient. You are encouraged to explore why this happens. Even more interesting
graphs emerge when the coefficient of θ is not an integer. For example, if it is rational, then the curve is closed; that is,

it eventually ends where it started (Figure 7.34(a)). However, if the coefficient is irrational, then the curve never closes
(Figure 7.34(b)). Although it may appear that the curve is closed, a closer examination reveals that the petals just above
the positive x axis are slightly thicker. This is because the petal does not quite match up with the starting point.

Figure 7.34 Polar rose graphs of functions with (a) rational coefficient and (b) irrational coefficient. Note that
the rose in part (b) would actually fill the entire circle if plotted in full.

Since the curve defined by the graph of r = 3 sin(πθ) never closes, the curve depicted in Figure 7.34(b) is only a partial

depiction. In fact, this is an example of a space-filling curve. A space-filling curve is one that in fact occupies a two-
dimensional subset of the real plane. In this case the curve occupies the circle of radius 3 centered at the origin.

Example 7.14
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Chapter Opener: Describing a Spiral

Recall the chambered nautilus introduced in the chapter opener. This creature displays a spiral when half the outer
shell is cut away. It is possible to describe a spiral using rectangular coordinates. Figure 7.35 shows a spiral in
rectangular coordinates. How can we describe this curve mathematically?

Figure 7.35 How can we describe a spiral graph
mathematically?

Solution

As the point P travels around the spiral in a counterclockwise direction, its distance d from the origin increases.
Assume that the distance d is a constant multiple k of the angle θ that the line segment OP makes with the

positive x-axis. Therefore d(P, O) = kθ, where O is the origin. Now use the distance formula and some

trigonometry:

d(P, O) = kθ

(x − 0)2 + ⎛
⎝y − 0⎞

⎠
2 = k arctan⎛

⎝
y
x

⎞
⎠

x2 + y2 = k arctan⎛
⎝
y
x

⎞
⎠

arctan⎛
⎝
y
x

⎞
⎠ = x2 + y2

k

y = x tan
⎛

⎝
⎜ x2 + y2

k
⎞

⎠
⎟.

Although this equation describes the spiral, it is not possible to solve it directly for either x or y. However, if
we use polar coordinates, the equation becomes much simpler. In particular, d(P, O) = r, and θ is the second

coordinate. Therefore the equation for the spiral becomes r = kθ. Note that when θ = 0 we also have r = 0,
so the spiral emanates from the origin. We can remove this restriction by adding a constant to the equation.
Then the equation for the spiral becomes r = a + kθ for arbitrary constants a and k. This is referred to as an

Archimedean spiral, after the Greek mathematician Archimedes.

Another type of spiral is the logarithmic spiral, described by the function r = a · bθ. A graph of the function

r = 1.2⎛
⎝1.25θ⎞

⎠ is given in Figure 7.36. This spiral describes the shell shape of the chambered nautilus.
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Figure 7.36 A logarithmic spiral is similar to the shape of the chambered nautilus shell. (credit: modification of
work by Jitze Couperus, Flickr)

Suppose a curve is described in the polar coordinate system via the function r = f (θ). Since we have conversion formulas

from polar to rectangular coordinates given by

x = r cos θ
y = r sin θ,

it is possible to rewrite these formulas using the function

x = f (θ) cos θ
y = f (θ) sin θ.

This step gives a parameterization of the curve in rectangular coordinates using θ as the parameter. For example, the spiral

formula r = a + bθ from Figure 7.31 becomes

x = (a + bθ) cos θ
y = (a + bθ) sin θ.

Letting θ range from −∞ to ∞ generates the entire spiral.

Symmetry in Polar Coordinates
When studying symmetry of functions in rectangular coordinates (i.e., in the form y = f (x)), we talk about symmetry

with respect to the y-axis and symmetry with respect to the origin. In particular, if f (−x) = f (x) for all x in the domain

of f , then f is an even function and its graph is symmetric with respect to the y-axis. If f (−x) = − f (x) for all x in the

domain of f , then f is an odd function and its graph is symmetric with respect to the origin. By determining which types

of symmetry a graph exhibits, we can learn more about the shape and appearance of the graph. Symmetry can also reveal
other properties of the function that generates the graph. Symmetry in polar curves works in a similar fashion.

Theorem 7.5: Symmetry in Polar Curves and Equations

Consider a curve generated by the function r = f (θ) in polar coordinates.
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i. The curve is symmetric about the polar axis if for every point (r, θ) on the graph, the point (r, −θ) is also

on the graph. Similarly, the equation r = f (θ) is unchanged by replacing θ with −θ.

ii. The curve is symmetric about the pole if for every point (r, θ) on the graph, the point (r, π + θ) is also on

the graph. Similarly, the equation r = f (θ) is unchanged when replacing r with −r, or θ with π + θ.

iii. The curve is symmetric about the vertical line θ = π
2 if for every point (r, θ) on the graph, the point

(r, π − θ) is also on the graph. Similarly, the equation r = f (θ) is unchanged when θ is replaced by π − θ.

The following table shows examples of each type of symmetry.
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Example 7.15

Using Symmetry to Graph a Polar Equation

Find the symmetry of the rose defined by the equation r = 3 sin(2θ) and create a graph.

Solution

Suppose the point (r, θ) is on the graph of r = 3 sin(2θ).

i. To test for symmetry about the polar axis, first try replacing θ with −θ. This gives

r = 3 sin(2(−θ)) = −3 sin(2θ). Since this changes the original equation, this test is not satisfied.

However, returning to the original equation and replacing r with −r and θ with π − θ yields

−r = 3 sin(2(π − θ))
−r = 3 sin(2π − 2θ)
−r = 3 sin(−2θ)
−r = −3 sin 2θ.

Multiplying both sides of this equation by −1 gives r = 3 sin 2θ, which is the original equation. This

demonstrates that the graph is symmetric with respect to the polar axis.

ii. To test for symmetry with respect to the pole, first replace r with −r, which yields −r = 3 sin(2θ).
Multiplying both sides by −1 gives r = −3 sin(2θ), which does not agree with the original equation.

Therefore the equation does not pass the test for this symmetry. However, returning to the original
equation and replacing θ with θ + π gives

r = 3 sin(2(θ + π))
= 3 sin(2θ + 2π)
= 3(sin 2θ cos 2π + cos 2θ sin 2π)
= 3 sin 2θ.

Since this agrees with the original equation, the graph is symmetric about the pole.

iii. To test for symmetry with respect to the vertical line θ = π
2, first replace both r with −r and θ with

−θ.

−r = 3 sin(2(−θ))
−r = 3 sin(−2θ)
−r = −3 sin 2θ.

Multiplying both sides of this equation by −1 gives r = 3 sin 2θ, which is the original equation.

Therefore the graph is symmetric about the vertical line θ = π
2.

This graph has symmetry with respect to the polar axis, the origin, and the vertical line going through the pole.
To graph the function, tabulate values of θ between 0 and π/2 and then reflect the resulting graph.
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θ r

0 0

π
6 3 3

2 ≈ 2.6

π
4

3

π
3 3 3

2 ≈ 2.6

π
2

0

This gives one petal of the rose, as shown in the following graph.

Figure 7.37 The graph of the equation between θ = 0 and

θ = π/2.

Reflecting this image into the other three quadrants gives the entire graph as shown.

658 Chapter 7 | Parametric Equations and Polar Coordinates

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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Figure 7.38 The entire graph of the equation is called a four-
petaled rose.

Determine the symmetry of the graph determined by the equation r = 2 cos(3θ) and create a graph.
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7.3 EXERCISES
In the following exercises, plot the point whose polar
coordinates are given by first constructing the angle θ and

then marking off the distance r along the ray.

125. ⎛
⎝3, π

6
⎞
⎠

126. ⎛
⎝−2, 5π

3
⎞
⎠

127. ⎛
⎝0, 7π

6
⎞
⎠

128. ⎛
⎝−4, 3π

4
⎞
⎠

129. ⎛
⎝1, π

4
⎞
⎠

130. ⎛
⎝2, 5π

6
⎞
⎠

131. ⎛
⎝1, π

2
⎞
⎠

For the following exercises, consider the polar graph below.
Give two sets of polar coordinates for each point.

132. Coordinates of point A.

133. Coordinates of point B.

134. Coordinates of point C.

135. Coordinates of point D.

For the following exercises, the rectangular coordinates of
a point are given. Find two sets of polar coordinates for the

point in (0, 2π]. Round to three decimal places.

136. (2, 2)

137. (3, −4) (3, −4)

138. (8, 15)

139. (−6, 8)

140. (4, 3)

141. ⎛
⎝3, − 3⎞

⎠

For the following exercises, find rectangular coordinates
for the given point in polar coordinates.

142. ⎛
⎝2, 5π

4
⎞
⎠

143. ⎛
⎝−2, π

6
⎞
⎠

144. ⎛
⎝5, π

3
⎞
⎠

145. ⎛
⎝1, 7π

6
⎞
⎠

146. ⎛
⎝−3, 3π

4
⎞
⎠

147. ⎛
⎝0, π

2
⎞
⎠

148. (−4.5, 6.5)

For the following exercises, determine whether the graphs
of the polar equation are symmetric with respect to the x
-axis, the y -axis, or the origin.

149. r = 3 sin(2θ)

150. r2 = 9 cos θ

151. r = cos⎛
⎝
θ
5

⎞
⎠

152. r = 2 sec θ

153. r = 1 + cos θ

For the following exercises, describe the graph of each
polar equation. Confirm each description by converting
into a rectangular equation.
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154. r = 3

155. θ = π
4

156. r = sec θ

157. r = csc θ

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

158. x2 + y2 = 16

159. x2 − y2 = 16

160. x = 8

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

161. 3x − y = 2

162. y2 = 4x

For the following exercises, convert the polar equation to
rectangular form and sketch its graph.

163. r = 4 sin θ

164. r = 6 cos θ

165. r = θ

166. r = cot θ csc θ

For the following exercises, sketch a graph of the polar
equation and identify any symmetry.

167. r = 1 + sin θ

168. r = 3 − 2 cos θ

169. r = 2 − 2 sin θ

170. r = 5 − 4 sin θ

171. r = 3 cos(2θ)

172. r = 3 sin(2θ)

173. r = 2 cos(3θ)

174. r = 3 cos⎛
⎝
θ
2

⎞
⎠

175. r2 = 4 cos(2θ)

176. r2 = 4 sin θ

177. r = 2θ

178. [T] The graph of r = 2 cos(2θ)sec(θ). is called a

strophoid. Use a graphing utility to sketch the graph, and,
from the graph, determine the asymptote.

179. [T] Use a graphing utility and sketch the graph of

r = 6
2 sin θ − 3 cos θ .

180. [T] Use a graphing utility to graph r = 1
1 − cos θ .

181. [T] Use technology to graph

r = esin(θ) − 2 cos(4θ).

182. [T] Use technology to plot r = sin⎛
⎝
3θ
7

⎞
⎠ (use the

interval 0 ≤ θ ≤ 14π).

183. Without using technology, sketch the polar curve

θ = 2π
3 .

184. [T] Use a graphing utility to plot r = θ sin θ for

−π ≤ θ ≤ π.

185. [T] Use technology to plot r = e−0.1θ for

−10 ≤ θ ≤ 10.

186. [T] There is a curve known as the “Black Hole.” Use

technology to plot r = e−0.01θ for −100 ≤ θ ≤ 100.

187. [T] Use the results of the preceding two problems to

explore the graphs of r = e−0.001θ and r = e−0.0001θ for

|θ| > 100.
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7.4 | Area and Arc Length in Polar Coordinates

Learning Objectives
7.4.1 Apply the formula for area of a region in polar coordinates.

7.4.2 Determine the arc length of a polar curve.

In the rectangular coordinate system, the definite integral provides a way to calculate the area under a curve. In particular,
if we have a function y = f (x) defined from x = a to x = b where f (x) > 0 on this interval, the area between the curve

and the x-axis is given by A = ∫
a

b
f (x) dx. This fact, along with the formula for evaluating this integral, is summarized in

the Fundamental Theorem of Calculus. Similarly, the arc length of this curve is given by L = ∫
a

b
1 + ⎛

⎝ f ′ (x)⎞
⎠
2dx. In this

section, we study analogous formulas for area and arc length in the polar coordinate system.

Areas of Regions Bounded by Polar Curves
We have studied the formulas for area under a curve defined in rectangular coordinates and parametrically defined curves.
Now we turn our attention to deriving a formula for the area of a region bounded by a polar curve. Recall that the proof of
the Fundamental Theorem of Calculus used the concept of a Riemann sum to approximate the area under a curve by using
rectangles. For polar curves we use the Riemann sum again, but the rectangles are replaced by sectors of a circle.

Consider a curve defined by the function r = f (θ), where α ≤ θ ≤ β. Our first step is to partition the interval [α, β] into

n equal-width subintervals. The width of each subinterval is given by the formula Δθ = (β − α)/n, and the ith partition

point θi is given by the formula θi = α + iΔθ. Each partition point θ = θi defines a line with slope tanθi passing

through the pole as shown in the following graph.

Figure 7.39 A partition of a typical curve in polar coordinates.
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The line segments are connected by arcs of constant radius. This defines sectors whose areas can be calculated by using a
geometric formula. The area of each sector is then used to approximate the area between successive line segments. We then
sum the areas of the sectors to approximate the total area. This approach gives a Riemann sum approximation for the total
area. The formula for the area of a sector of a circle is illustrated in the following figure.

Figure 7.40 The area of a sector of a circle is given by

A = 1
2θr2.

Recall that the area of a circle is A = πr2. When measuring angles in radians, 360 degrees is equal to 2π radians.

Therefore a fraction of a circle can be measured by the central angle θ. The fraction of the circle is given by θ
2π , so the

area of the sector is this fraction multiplied by the total area:

A = ⎛
⎝

θ
2π

⎞
⎠ πr2 = 1

2θr2.

Since the radius of a typical sector in Figure 7.39 is given by ri = f ⎛
⎝θi

⎞
⎠, the area of the ith sector is given by

Ai = 1
2(Δθ)⎛

⎝ f ⎛
⎝θi

⎞
⎠
⎞
⎠
2.

Therefore a Riemann sum that approximates the area is given by

An = ∑
i = 1

n
Ai ≈ ∑

i = 1

n
1
2(Δθ)⎛

⎝ f ⎛
⎝θi

⎞
⎠
⎞
⎠
2.

We take the limit as n → ∞ to get the exact area:

A = limn → ∞An = 1
2∫

α

β
⎛
⎝ f (θ)⎞

⎠
2 dθ.

This gives the following theorem.

Theorem 7.6: Area of a Region Bounded by a Polar Curve

Suppose f is continuous and nonnegative on the interval α ≤ θ ≤ β with 0 < β − α ≤ 2π. The area of the region

bounded by the graph of r = f (θ) between the radial lines θ = α and θ = β is

(7.9)
A = 1

2∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ = 1

2∫
α

β
r2 dθ.

Chapter 7 | Parametric Equations and Polar Coordinates 663



Example 7.16

Finding an Area of a Polar Region

Find the area of one petal of the rose defined by the equation r = 3 sin(2θ).

Solution

The graph of r = 3 sin(2θ) follows.

Figure 7.41 The graph of r = 3 sin(2θ).

When θ = 0 we have r = 3 sin(2(0)) = 0. The next value for which r = 0 is θ = π/2. This can be seen by

solving the equation 3 sin(2θ) = 0 for θ. Therefore the values θ = 0 to θ = π/2 trace out the first petal of the

rose. To find the area inside this petal, use Equation 7.9 with f (θ) = 3 sin(2θ), α = 0, and β = π/2:

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ

= 1
2∫

0

π/2
⎡
⎣3 sin(2θ)⎤

⎦
2 dθ

= 1
2∫

0

π/2
9 sin2 (2θ) dθ.

To evaluate this integral, use the formula sin2 α = (1 − cos(2α))/2 with α = 2θ:
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7.15

A = 1
2∫

0

π/2
9 sin2 (2θ) dθ

= 9
2∫

0

π/2(1 − cos(4θ))
2 dθ

= 9
4

⎛

⎝
⎜∫

0

π/2
1 − cos(4θ) dθ

⎞

⎠
⎟

= 9
4

⎛
⎝θ − sin(4θ)

4 |0π/2

= 9
4

⎛
⎝
π
2 − sin 2π

4
⎞
⎠ − 9

4
⎛
⎝0 − sin 4(0)

4
⎞
⎠

= 9π
8 .

Find the area inside the cardioid defined by the equation r = 1 − cos θ.

Example 7.16 involved finding the area inside one curve. We can also use Area of a Region Bounded by a Polar
Curve to find the area between two polar curves. However, we often need to find the points of intersection of the curves
and determine which function defines the outer curve or the inner curve between these two points.

Example 7.17

Finding the Area between Two Polar Curves

Find the area outside the cardioid r = 2 + 2 sin θ and inside the circle r = 6 sin θ.

Solution

First draw a graph containing both curves as shown.

Figure 7.42 The region between the curves r = 2 + 2 sin θ
and r = 6 sin θ.
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7.16

To determine the limits of integration, first find the points of intersection by setting the two functions equal to
each other and solving for θ:

6 sin θ = 2 + 2 sin θ
4 sin θ = 2

sin θ = 1
2.

This gives the solutions θ = π
6 and θ = 5π

6 , which are the limits of integration. The circle r = 3 sin θ is the

red graph, which is the outer function, and the cardioid r = 2 + 2 sin θ is the blue graph, which is the inner

function. To calculate the area between the curves, start with the area inside the circle between θ = π
6 and

θ = 5π
6 , then subtract the area inside the cardioid between θ = π

6 and θ = 5π
6 :

A = circle − cardioid

= 1
2∫

π/6

5π/6
[6 sin θ]2 dθ − 1

2∫
π/6

5π/6
[2 + 2 sin θ]2 dθ

= 1
2∫

π/6

5π/6
36 sin2 θ dθ − 1

2∫
π/6

5π/6
4 + 8 sin θ + 4 sin2 θ dθ

= 18∫
π/6

5π/61 − cos(2θ)
2 dθ − 2∫

π/6

5π/6
1 + 2 sin θ + 1 − cos(2θ)

2 dθ

= 9⎡
⎣θ − sin(2θ)

2
⎤
⎦π/6

5π/6
− 2⎡

⎣
3θ
2 − 2 cos θ − sin(2θ)

4
⎤
⎦π/6

5π/6

= 9⎛
⎝
5π
6 − sin 2(5π/6)

2
⎞
⎠ − 9⎛

⎝
π
6 − sin 2(π/6)

2
⎞
⎠

−⎛
⎝3⎛

⎝
5π
6

⎞
⎠ − 4 cos 5π

6 − sin 2(5π/6)
2

⎞
⎠ + ⎛

⎝3⎛
⎝
π
6

⎞
⎠ − 4 cos π

6 − sin 2(π/6)
2

⎞
⎠

= 4π.

Find the area inside the circle r = 4 cos θ and outside the circle r = 2.

In Example 7.17 we found the area inside the circle and outside the cardioid by first finding their intersection points.

Notice that solving the equation directly for θ yielded two solutions: θ = π
6 and θ = 5π

6 . However, in the graph there are

three intersection points. The third intersection point is the origin. The reason why this point did not show up as a solution
is because the origin is on both graphs but for different values of θ. For example, for the cardioid we get

2 + 2 sin θ = 0
sin θ = −1,

so the values for θ that solve this equation are θ = 3π
2 + 2nπ, where n is any integer. For the circle we get

6 sin θ = 0.

The solutions to this equation are of the form θ = nπ for any integer value of n. These two solution sets have no points in

common. Regardless of this fact, the curves intersect at the origin. This case must always be taken into consideration.
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Arc Length in Polar Curves
Here we derive a formula for the arc length of a curve defined in polar coordinates.

In rectangular coordinates, the arc length of a parameterized curve ⎛
⎝x(t), y(t)⎞

⎠ for a ≤ t ≤ b is given by

L = ∫
a

b ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

In polar coordinates we define the curve by the equation r = f (θ), where α ≤ θ ≤ β. In order to adapt the arc length

formula for a polar curve, we use the equations

x = r cos θ = f (θ) cos θ and y = r sin θ = f (θ) sin θ,

and we replace the parameter t by θ. Then

dx
dθ = f ′ (θ) cos θ − f (θ) sin θ

dy
dθ = f ′ (θ) sin θ + f (θ) cos θ.

We replace dt by dθ, and the lower and upper limits of integration are α and β, respectively. Then the arc length

formula becomes

L = ∫
a

b ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
α

β ⎛
⎝
dx
dθ

⎞
⎠

2
+ ⎛

⎝
dy
dθ

⎞
⎠

2
dθ

= ∫
α

β
⎛
⎝ f ′ (θ) cos θ − f (θ) sin θ⎞

⎠
2 + ⎛

⎝ f ′ (θ) sin θ + f (θ) cos θ⎞
⎠
2dθ

= ∫
α

β
⎛
⎝ f ′ (θ)⎞

⎠
2 ⎛

⎝cos2 θ + sin2 θ⎞
⎠ + ⎛

⎝ f (θ)⎞
⎠
2 ⎛

⎝cos2 θ + sin2 θ⎞
⎠dθ

= ∫
α

β
⎛
⎝ f ′ (θ)⎞

⎠
2 + ⎛

⎝ f (θ)⎞
⎠
2dθ

= ∫
α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

This gives us the following theorem.

Theorem 7.7: Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval α ≤ θ ≤ β. The length of the graph of r = f (θ)
from θ = α to θ = β is

(7.10)
L = ∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

Example 7.18

Finding the Arc Length of a Polar Curve

Find the arc length of the cardioid r = 2 + 2cosθ.
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7.17

Solution

When θ = 0, r = 2 + 2cos0 = 4. Furthermore, as θ goes from 0 to 2π, the cardioid is traced out exactly

once. Therefore these are the limits of integration. Using f (θ) = 2 + 2cosθ, α = 0, and β = 2π, Equation

7.10 becomes

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2 dθ

= ∫
0

2π
[2 + 2cosθ]2 + [−2sinθ]2 dθ

= ∫
0

2π
4 + 8cosθ + 4cos2 θ + 4sin2 θ dθ

= ∫
0

2π
4 + 8cosθ + 4⎛

⎝cos2 θ + sin2 θ⎞
⎠ dθ

= ∫
0

2π
8 + 8cosθ dθ

= 2∫
0

2π
2 + 2cosθ dθ.

Next, using the identity cos(2α) = 2cos2 α − 1, add 1 to both sides and multiply by 2. This gives

2 + 2cos(2α) = 4cos2 α. Substituting α = θ/2 gives 2 + 2cosθ = 4cos2(θ/2), so the integral becomes

L = 2∫
0

2π
2 + 2 cos θdθ

= 2∫
0

2π
4 cos2 ⎛

⎝
θ
2

⎞
⎠dθ

= 2∫
0

2π|cos⎛
⎝
θ
2

⎞
⎠|dθ.

The absolute value is necessary because the cosine is negative for some values in its domain. To resolve this issue,
change the limits from 0 to π and double the answer. This strategy works because cosine is positive between 0
and π

2. Thus,

L = 4∫
0

2π|cos⎛
⎝
θ
2

⎞
⎠|dθ

= 8∫
0

π
cos⎛

⎝
θ
2

⎞
⎠ dθ

= 8⎛
⎝2 sin⎛

⎝
θ
2

⎞
⎠|0π

= 16.

Find the total arc length of r = 3 sin θ.
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7.4 EXERCISES
For the following exercises, determine a definite integral
that represents the area.

188. Region enclosed by r = 4

189. Region enclosed by r = 3 sin θ

190. Region in the first quadrant within the cardioid
r = 1 + sin θ

191. Region enclosed by one petal of r = 8 sin(2θ)

192. Region enclosed by one petal of r = cos(3θ)

193. Region below the polar axis and enclosed by
r = 1 − sin θ

194. Region in the first quadrant enclosed by
r = 2 − cos θ

195. Region enclosed by the inner loop of
r = 2 − 3 sin θ

196. Region enclosed by the inner loop of
r = 3 − 4 cos θ

197. Region enclosed by r = 1 − 2 cos θ and outside the

inner loop

198. Region common to r = 3 sin θ and r = 2 − sin θ

199. Region common to r = 2 and r = 4 cos θ

200. Region common to r = 3 cos θ and r = 3 sin θ

For the following exercises, find the area of the described
region.

201. Enclosed by r = 6 sin θ

202. Above the polar axis enclosed by r = 2 + sin θ

203. Below the polar axis and enclosed by r = 2 − cos θ

204. Enclosed by one petal of r = 4 cos(3θ)

205. Enclosed by one petal of r = 3 cos(2θ)

206. Enclosed by r = 1 + sin θ

207. Enclosed by the inner loop of r = 3 + 6 cos θ

208. Enclosed by r = 2 + 4 cos θ and outside the inner

loop

209. Common interior of r = 4 sin(2θ) and r = 2

210. Common interior of
r = 3 − 2 sin θ and r = −3 + 2 sin θ

211. Common interior of r = 6 sin θ and r = 3

212. Inside r = 1 + cos θ and outside r = cos θ

213. Common interior of
r = 2 + 2 cos θ and r = 2 sin θ

For the following exercises, find a definite integral that
represents the arc length.

214. r = 4 cos θ on the interval 0 ≤ θ ≤ π
2

215. r = 1 + sin θ on the interval 0 ≤ θ ≤ 2π

216. r = 2 sec θ on the interval 0 ≤ θ ≤ π
3

217. r = eθ on the interval 0 ≤ θ ≤ 1

For the following exercises, find the length of the curve
over the given interval.

218. r = 6 on the interval 0 ≤ θ ≤ π
2

219. r = e3θ on the interval 0 ≤ θ ≤ 2

220. r = 6 cos θ on the interval 0 ≤ θ ≤ π
2

221. r = 8 + 8 cos θ on the interval 0 ≤ θ ≤ π

222. r = 1 − sin θ on the interval 0 ≤ θ ≤ 2π

For the following exercises, use the integration capabilities
of a calculator to approximate the length of the curve.

223. [T] r = 3θ on the interval 0 ≤ θ ≤ π
2

224. [T] r = 2
θ on the interval π ≤ θ ≤ 2π

225. [T] r = sin2 ⎛
⎝
θ
2

⎞
⎠ on the interval 0 ≤ θ ≤ π

226. [T] r = 2θ2 on the interval 0 ≤ θ ≤ π

227. [T] r = sin(3 cos θ) on the interval 0 ≤ θ ≤ π

For the following exercises, use the familiar formula from
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geometry to find the area of the region described and then
confirm by using the definite integral.

228. r = 3 sin θ on the interval 0 ≤ θ ≤ π

229. r = sin θ + cos θ on the interval 0 ≤ θ ≤ π

230. r = 6 sin θ + 8 cos θ on the interval 0 ≤ θ ≤ π

For the following exercises, use the familiar formula from
geometry to find the length of the curve and then confirm
using the definite integral.

231. r = 3 sin θ on the interval 0 ≤ θ ≤ π

232. r = sin θ + cos θ on the interval 0 ≤ θ ≤ π

233. r = 6 sin θ + 8 cos θ on the interval 0 ≤ θ ≤ π

234. Verify that if y = r sin θ = f (θ)sin θ then

dy
dθ = f ′(θ)sin θ + f (θ)cos θ.

For the following exercises, find the slope of a tangent line
to a polar curve r = f (θ). Let x = r cos θ = f (θ)cos θ
and y = r sin θ = f (θ)sin θ, so the polar equation

r = f (θ) is now written in parametric form.

235. Use the definition of the derivative
dy
dx = dy/dθ

dx/dθ and

the product rule to derive the derivative of a polar equation.

236. r = 1 − sin θ; ⎛
⎝
1
2, π

6
⎞
⎠

237. r = 4 cos θ; ⎛
⎝2, π

3
⎞
⎠

238. r = 8 sin θ; ⎛
⎝4, 5π

6
⎞
⎠

239. r = 4 + sin θ; ⎛
⎝3, 3π

2
⎞
⎠

240. r = 6 + 3 cos θ; (3, π)

241. r = 4 cos(2θ); tips of the leaves

242. r = 2 sin(3θ); tips of the leaves

243. r = 2θ; ⎛
⎝
π
2, π

4
⎞
⎠

244. Find the points on the interval −π ≤ θ ≤ π at which

the cardioid r = 1 − cos θ has a vertical or horizontal

tangent line.

245. For the cardioid r = 1 + sin θ, find the slope of the

tangent line when θ = π
3.

For the following exercises, find the slope of the tangent
line to the given polar curve at the point given by the value
of θ.

246. r = 3 cos θ, θ = π
3

247. r = θ, θ = π
2

248. r = ln θ, θ = e

249. [T] Use technology: r = 2 + 4 cos θ at θ = π
6

For the following exercises, find the points at which the
following polar curves have a horizontal or vertical tangent
line.

250. r = 4 cos θ

251. r2 = 4 cos(2θ)

252. r = 2 sin(2θ)

253. The cardioid r = 1 + sin θ

254. Show that the curve r = sin θ tan θ (called a cissoid

of Diocles) has the line x = 1 as a vertical asymptote.
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7.5 | Conic Sections

Learning Objectives
7.5.1 Identify the equation of a parabola in standard form with given focus and directrix.

7.5.2 Identify the equation of an ellipse in standard form with given foci.

7.5.3 Identify the equation of a hyperbola in standard form with given foci.

7.5.4 Recognize a parabola, ellipse, or hyperbola from its eccentricity value.

7.5.5 Write the polar equation of a conic section with eccentricity e .

7.5.6 Identify when a general equation of degree two is a parabola, ellipse, or hyperbola.

Conic sections have been studied since the time of the ancient Greeks, and were considered to be an important mathematical
concept. As early as 320 BCE, such Greek mathematicians as Menaechmus, Appollonius, and Archimedes were fascinated
by these curves. Appollonius wrote an entire eight-volume treatise on conic sections in which he was, for example, able to
derive a specific method for identifying a conic section through the use of geometry. Since then, important applications of
conic sections have arisen (for example, in astronomy), and the properties of conic sections are used in radio telescopes,
satellite dish receivers, and even architecture. In this section we discuss the three basic conic sections, some of their
properties, and their equations.

Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically
shaped parts called nappes. One nappe is what most people mean by “cone,” having the shape of a party hat. A right circular
cone can be generated by revolving a line passing through the origin around the y-axis as shown.

Figure 7.43 A cone generated by revolving the line y = 3x
around the y -axis.

Conic sections are generated by the intersection of a plane with a cone (Figure 7.44). If the plane is parallel to the axis of
revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section
is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle. If the plane intersects one
nappe at an angle to the axis (other than 90°), then the conic section is an ellipse.
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Figure 7.44 The four conic sections. Each conic is determined by the angle the plane makes with the axis of
the cone.

Parabolas
A parabola is generated when a plane intersects a cone parallel to the generating line. In this case, the plane intersects only
one of the nappes. A parabola can also be defined in terms of distances.

Definition

A parabola is the set of all points whose distance from a fixed point, called the focus, is equal to the distance from
a fixed line, called the directrix. The point halfway between the focus and the directrix is called the vertex of the
parabola.

A graph of a typical parabola appears in Figure 7.45. Using this diagram in conjunction with the distance formula, we can
derive an equation for a parabola. Recall the distance formula: Given point P with coordinates (x1, y1) and point Q with

coordinates (x2, y2), the distance between them is given by the formula

d(P, Q) = (x2 − x1)2 + (y2 − y1)2.

Then from the definition of a parabola and Figure 7.45, we get

d(F, P) = d(P, Q)

(0 − x)2 + (p − y)2 = (x − x)2 + (−p − y)2.

Squaring both sides and simplifying yields

x2 + (p − y)2 = 02 + (−p − y)2

x2 + p2 − 2py + y2 = p2 + 2py + y2

x2 − 2py = 2py

x2 = 4py.
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Figure 7.45 A typical parabola in which the distance from the
focus to the vertex is represented by the variable p.

Now suppose we want to relocate the vertex. We use the variables (h, k) to denote the coordinates of the vertex. Then if

the focus is directly above the vertex, it has coordinates ⎛
⎝h, k + p⎞

⎠ and the directrix has the equation y = k − p. Going

through the same derivation yields the formula (x − h)2 = 4p⎛
⎝y − k⎞

⎠. Solving this equation for y leads to the following

theorem.

Theorem 7.8: Equations for Parabolas

Given a parabola opening upward with vertex located at (h, k) and focus located at ⎛
⎝h, k + p⎞

⎠, where p is a constant,

the equation for the parabola is given by

(7.11)y = 1
4p(x − h)2 + k.

This is the standard form of a parabola.

We can also study the cases when the parabola opens down or to the left or the right. The equation for each of these cases
can also be written in standard form as shown in the following graphs.
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Figure 7.46 Four parabolas, opening in various directions, along with their equations in standard form.

In addition, the equation of a parabola can be written in the general form, though in this form the values of h, k, and p are
not immediately recognizable. The general form of a parabola is written as

ax2 + bx + cy + d = 0 or ay2 + bx + cy + d = 0.

The first equation represents a parabola that opens either up or down. The second equation represents a parabola that opens
either to the left or to the right. To put the equation into standard form, use the method of completing the square.

Example 7.19

Converting the Equation of a Parabola from General into Standard Form

Put the equation x2 − 4x − 8y + 12 = 0 into standard form and graph the resulting parabola.
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Solution

Since y is not squared in this equation, we know that the parabola opens either upward or downward. Therefore
we need to solve this equation for y, which will put the equation into standard form. To do that, first add 8y to

both sides of the equation:

8y = x2 − 4x + 12.

The next step is to complete the square on the right-hand side. Start by grouping the first two terms on the right-
hand side using parentheses:

8y = ⎛
⎝x2 − 4x⎞

⎠ + 12.

Next determine the constant that, when added inside the parentheses, makes the quantity inside the parentheses

a perfect square trinomial. To do this, take half the coefficient of x and square it. This gives ⎛
⎝
−4
2

⎞
⎠
2

= 4. Add 4

inside the parentheses and subtract 4 outside the parentheses, so the value of the equation is not changed:

8y = ⎛
⎝x2 − 4x + 4⎞

⎠ + 12 − 4.

Now combine like terms and factor the quantity inside the parentheses:

8y = (x − 2)2 + 8.

Finally, divide by 8:

y = 1
8(x − 2)2 + 1.

This equation is now in standard form. Comparing this to Equation 7.11 gives h = 2, k = 1, and p = 2.
The parabola opens up, with vertex at (2, 1), focus at (2, 3), and directrix y = −1. The graph of this parabola

appears as follows.

Figure 7.47 The parabola in Example 7.19.

Put the equation 2y2 − x + 12y + 16 = 0 into standard form and graph the resulting parabola.
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The axis of symmetry of a vertical (opening up or down) parabola is a vertical line passing through the vertex. The
parabola has an interesting reflective property. Suppose we have a satellite dish with a parabolic cross section. If a beam of
electromagnetic waves, such as light or radio waves, comes into the dish in a straight line from a satellite (parallel to the
axis of symmetry), then the waves reflect off the dish and collect at the focus of the parabola as shown.

Consider a parabolic dish designed to collect signals from a satellite in space. The dish is aimed directly at the satellite, and
a receiver is located at the focus of the parabola. Radio waves coming in from the satellite are reflected off the surface of the
parabola to the receiver, which collects and decodes the digital signals. This allows a small receiver to gather signals from a
wide angle of sky. Flashlights and headlights in a car work on the same principle, but in reverse: the source of the light (that
is, the light bulb) is located at the focus and the reflecting surface on the parabolic mirror focuses the beam straight ahead.
This allows a small light bulb to illuminate a wide angle of space in front of the flashlight or car.

Ellipses
An ellipse can also be defined in terms of distances. In the case of an ellipse, there are two foci (plural of focus), and two
directrices (plural of directrix). We look at the directrices in more detail later in this section.

Definition

An ellipse is the set of all points for which the sum of their distances from two fixed points (the foci) is constant.
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Figure 7.48 A typical ellipse in which the sum of the distances from any
point on the ellipse to the foci is constant.

A graph of a typical ellipse is shown in Figure 7.48. In this figure the foci are labeled as F and F′. Both are the same

fixed distance from the origin, and this distance is represented by the variable c. Therefore the coordinates of F are (c, 0)
and the coordinates of F′ are (−c, 0). The points P and P′ are located at the ends of the major axis of the ellipse, and

have coordinates (a, 0) and (−a, 0), respectively. The major axis is always the longest distance across the ellipse, and

can be horizontal or vertical. Thus, the length of the major axis in this ellipse is 2a. Furthermore, P and P′ are called the

vertices of the ellipse. The points Q and Q′ are located at the ends of the minor axis of the ellipse, and have coordinates

(0, b) and (0, −b), respectively. The minor axis is the shortest distance across the ellipse. The minor axis is perpendicular

to the major axis.

According to the definition of the ellipse, we can choose any point on the ellipse and the sum of the distances from this
point to the two foci is constant. Suppose we choose the point P. Since the coordinates of point P are (a, 0), the sum of

the distances is

d(P, F) + d(P, F′) = (a − c) + (a + c) = 2a.

Therefore the sum of the distances from an arbitrary point A with coordinates (x, y) is also equal to 2a. Using the distance

formula, we get

d(A, F) + d(A, F′) = 2a

(x − c)2 + y2 + (x + c)2 + y2 = 2a.

Subtract the second radical from both sides and square both sides:

(x − c)2 + y2 = 2a − (x + c)2 + y2

(x − c)2 + y2 = 4a2 − 4a (x + c)2 + y2 + (x + c)2 + y2

x2 − 2cx + c2 + y2 = 4a2 − 4a (x + c)2 + y2 + x2 + 2cx + c2 + y2

−2cx = 4a2 − 4a (x + c)2 + y2 + 2cx.

Now isolate the radical on the right-hand side and square again:
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−2cx = 4a2 − 4a (x + c)2 + y2 + 2cx

4a (x + c)2 + y2 = 4a2 + 4cx

(x + c)2 + y2 = a + cx
a

(x + c)2 + y2 = a2 + 2cx + c2 x2

a2

x2 + 2cx + c2 + y2 = a2 + 2cx + c2 x2

a2

x2 + c2 + y2 = a2 + c2 x2

a2 .

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

x2 − c2 x2

a2 + y2 = a2 − c2

⎛
⎝a2 − c2⎞

⎠x2

a2 + y2 = a2 − c2.

Divide both sides by a2 − c2. This gives the equation

x2

a2 + y2

a2 − c2 = 1.

If we refer back to Figure 7.48, then the length of each of the two green line segments is equal to a. This is true because
the sum of the distances from the point Q to the foci F and F′ is equal to 2a, and the lengths of these two line segments

are equal. This line segment forms a right triangle with hypotenuse length a and leg lengths b and c. From the Pythagorean

theorem, a2 + b2 = c2 and b2 = a2 − c2. Therefore the equation of the ellipse becomes

x2

a2 + y2

b2 = 1.

Finally, if the center of the ellipse is moved from the origin to a point (h, k), we have the following standard form of an

ellipse.

Theorem 7.9: Equation of an Ellipse in Standard Form

Consider the ellipse with center (h, k), a horizontal major axis with length 2a, and a vertical minor axis with length

2b. Then the equation of this ellipse in standard form is

(7.12)(x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1

and the foci are located at (h ± c, k), where c2 = a2 − b2. The equations of the directrices are x = h ± a2
c .

If the major axis is vertical, then the equation of the ellipse becomes

(7.13)(x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1

and the foci are located at (h, k ± c), where c2 = a2 − b2. The equations of the directrices in this case are

y = k ± a2
c .

If the major axis is horizontal, then the ellipse is called horizontal, and if the major axis is vertical, then the ellipse is
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called vertical. The equation of an ellipse is in general form if it is in the form Ax2 + By2 + Cx + Dy + E = 0, where A

and B are either both positive or both negative. To convert the equation from general to standard form, use the method of
completing the square.

Example 7.20

Finding the Standard Form of an Ellipse

Put the equation 9x2 + 4y2 − 36x + 24y + 36 = 0 into standard form and graph the resulting ellipse.

Solution

First subtract 36 from both sides of the equation:

9x2 + 4y2 − 36x + 24y = −36.

Next group the x terms together and the y terms together, and factor out the common factor:

⎛
⎝9x2 − 36x⎞

⎠ + ⎛
⎝4y2 + 24y⎞

⎠ = −36
9⎛

⎝x2 − 4x⎞
⎠ + 4⎛

⎝y2 + 6y⎞
⎠ = −36.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square.

In the first set of parentheses, take half the coefficient of x and square it. This gives ⎛
⎝
−4
2

⎞
⎠
2

= 4. In the second

set of parentheses, take half the coefficient of y and square it. This gives ⎛
⎝
6
2

⎞
⎠
2

= 9. Add these inside each pair

of parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are adding 36 to the second set as well. Therefore the equation becomes

9⎛
⎝x2 − 4x + 4⎞

⎠ + 4⎛
⎝y2 + 6y + 9⎞

⎠ = −36 + 36 + 36

9⎛
⎝x2 − 4x + 4⎞

⎠ + 4⎛
⎝y2 + 6y + 9⎞

⎠ = 36.

Now factor both sets of parentheses and divide by 36:

9(x − 2)2 + 4⎛
⎝y + 3⎞

⎠
2 = 36

9(x − 2)2

36 + 4⎛
⎝y + 3⎞

⎠
2

36 = 1

(x − 2)2

4 +
⎛
⎝y + 3⎞

⎠
2

9 = 1.

The equation is now in standard form. Comparing this to Equation 7.14 gives h = 2, k = −3, a = 3, and

b = 2. This is a vertical ellipse with center at (2, −3), major axis 6, and minor axis 4. The graph of this ellipse

appears as follows.
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Figure 7.49 The ellipse in Example 7.20.

Put the equation 9x2 + 16y2 + 18x − 64y − 71 = 0 into standard form and graph the resulting ellipse.

According to Kepler’s first law of planetary motion, the orbit of a planet around the Sun is an ellipse with the Sun at one
of the foci as shown in Figure 7.50(a). Because Earth’s orbit is an ellipse, the distance from the Sun varies throughout the
year. A commonly held misconception is that Earth is closer to the Sun in the summer. In fact, in summer for the northern
hemisphere, Earth is farther from the Sun than during winter. The difference in season is caused by the tilt of Earth’s axis
in the orbital plane. Comets that orbit the Sun, such as Halley’s Comet, also have elliptical orbits, as do moons orbiting the
planets and satellites orbiting Earth.

Ellipses also have interesting reflective properties: A light ray emanating from one focus passes through the other focus
after mirror reflection in the ellipse. The same thing occurs with a sound wave as well. The National Statuary Hall in the
U.S. Capitol in Washington, DC, is a famous room in an elliptical shape as shown in Figure 7.50(b). This hall served as
the meeting place for the U.S. House of Representatives for almost fifty years. The location of the two foci of this semi-
elliptical room are clearly identified by marks on the floor, and even if the room is full of visitors, when two people stand on
these spots and speak to each other, they can hear each other much more clearly than they can hear someone standing close
by. Legend has it that John Quincy Adams had his desk located on one of the foci and was able to eavesdrop on everyone
else in the House without ever needing to stand. Although this makes a good story, it is unlikely to be true, because the
original ceiling produced so many echoes that the entire room had to be hung with carpets to dampen the noise. The ceiling
was rebuilt in 1902 and only then did the now-famous whispering effect emerge. Another famous whispering gallery—the
site of many marriage proposals—is in Grand Central Station in New York City.

Figure 7.50 (a) Earth’s orbit around the Sun is an ellipse with the Sun at one focus. (b) Statuary Hall in the U.S. Capitol is a
whispering gallery with an elliptical cross section.
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Hyperbolas
A hyperbola can also be defined in terms of distances. In the case of a hyperbola, there are two foci and two directrices.
Hyperbolas also have two asymptotes.

Definition

A hyperbola is the set of all points where the difference between their distances from two fixed points (the foci) is
constant.

A graph of a typical hyperbola appears as follows.

Figure 7.51 A typical hyperbola in which the difference of the distances from any
point on the ellipse to the foci is constant. The transverse axis is also called the major
axis, and the conjugate axis is also called the minor axis.

The derivation of the equation of a hyperbola in standard form is virtually identical to that of an ellipse. One slight hitch lies
in the definition: The difference between two numbers is always positive. Let P be a point on the hyperbola with coordinates
(x, y). Then the definition of the hyperbola gives |d⎛

⎝P, F1
⎞
⎠ − d⎛

⎝P, F2
⎞
⎠| = constant. To simplify the derivation, assume

that P is on the right branch of the hyperbola, so the absolute value bars drop. If it is on the left branch, then the subtraction
is reversed. The vertex of the right branch has coordinates (a, 0), so

d⎛
⎝P, F1

⎞
⎠ − d⎛

⎝P, F2
⎞
⎠ = (c + a) − (c − a) = 2a.

This equation is therefore true for any point on the hyperbola. Returning to the coordinates (x, y) for P:

d⎛
⎝P, F1

⎞
⎠ − d⎛

⎝P, F2
⎞
⎠ = 2a

(x + c)2 + y2 − (x − c)2 + y2 = 2a.

Add the second radical from both sides and square both sides:

(x − c)2 + y2 = 2a + (x + c)2 + y2

(x − c)2 + y2 = 4a2 + 4a (x + c)2 + y2 + (x + c)2 + y2

x2 − 2cx + c2 + y2 = 4a2 + 4a (x + c)2 + y2 + x2 + 2cx + c2 + y2

−2cx = 4a2 + 4a (x + c)2 + y2 + 2cx.

Now isolate the radical on the right-hand side and square again:
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−2cx = 4a2 + 4a (x + c)2 + y2 + 2cx

4a (x + c)2 + y2 = −4a2 − 4cx

(x + c)2 + y2 = −a − cx
a

(x + c)2 + y2 = a2 + 2cx + c2 x2

a2

x2 + 2cx + c2 + y2 = a2 + 2cx + c2 x2

a2

x2 + c2 + y2 = a2 + c2 x2

a2 .

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

x2 − c2 x2

a2 + y2 = a2 − c2

⎛
⎝a2 − c2⎞

⎠x2

a2 + y2 = a2 − c2.

Finally, divide both sides by a2 − c2. This gives the equation

x2

a2 + y2

a2 − c2 = 1.

We now define b so that b2 = c2 − a2. This is possible because c > a. Therefore the equation of the ellipse becomes

x2

a2 − y2

b2 = 1.

Finally, if the center of the hyperbola is moved from the origin to the point (h, k), we have the following standard form of

a hyperbola.

Theorem 7.10: Equation of a Hyperbola in Standard Form

Consider the hyperbola with center (h, k), a horizontal major axis, and a vertical minor axis. Then the equation of

this ellipse is

(7.14)(x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1

and the foci are located at (h ± c, k), where c2 = a2 + b2. The equations of the asymptotes are given by

y = k ± b
a(x − h). The equations of the directrices are

x = k ± a2

a2 + b2
= h ± a2

c .

If the major axis is vertical, then the equation of the hyperbola becomes

(7.15)⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1

and the foci are located at (h, k ± c), where c2 = a2 + b2. The equations of the asymptotes are given by

y = k ± a
b(x − h). The equations of the directrices are
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y = k ± a2

a2 + b2
= k ± a2

c .

If the major axis (transverse axis) is horizontal, then the hyperbola is called horizontal, and if the major axis is vertical
then the hyperbola is called vertical. The equation of a hyperbola is in general form if it is in the form

Ax2 + By2 + Cx + Dy + E = 0, where A and B have opposite signs. In order to convert the equation from general to

standard form, use the method of completing the square.

Example 7.21

Finding the Standard Form of a Hyperbola

Put the equation 9x2 − 16y2 + 36x + 32y − 124 = 0 into standard form and graph the resulting hyperbola.

What are the equations of the asymptotes?

Solution

First add 124 to both sides of the equation:

9x2 − 16y2 + 36x + 32y = 124.

Next group the x terms together and the y terms together, then factor out the common factors:

⎛
⎝9x2 + 36x⎞

⎠ − ⎛
⎝16y2 − 32y⎞

⎠ = 124
9⎛

⎝x2 + 4x⎞
⎠ − 16⎛

⎝y2 − 2y⎞
⎠ = 124.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square. In

the first set of parentheses, take half the coefficient of x and square it. This gives ⎛
⎝
4
2

⎞
⎠
2

= 4. In the second set

of parentheses, take half the coefficient of y and square it. This gives ⎛
⎝
−2
2

⎞
⎠
2

= 1. Add these inside each pair of

parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are subtracting 16 from the second set of parentheses. Therefore the equation becomes

9⎛
⎝x2 + 4x + 4⎞

⎠ − 16⎛
⎝y2 − 2y + 1⎞

⎠ = 124 + 36 − 16

9⎛
⎝x2 + 4x + 4⎞

⎠ − 16⎛
⎝y2 − 2y + 1⎞

⎠ = 144.

Next factor both sets of parentheses and divide by 144:

9(x + 2)2 − 16⎛
⎝y − 1⎞

⎠
2 = 144

9(x + 2)2

144 − 16⎛
⎝y − 1⎞

⎠
2

144 = 1

(x + 2)2

16 −
⎛
⎝y − 1⎞

⎠
2

9 = 1.

The equation is now in standard form. Comparing this to Equation 7.15 gives h = −2, k = 1, a = 4,
and b = 3. This is a horizontal hyperbola with center at (−2, 1) and asymptotes given by the equations

y = 1 ± 3
4(x + 2). The graph of this hyperbola appears in the following figure.

Chapter 7 | Parametric Equations and Polar Coordinates 683



7.20

Figure 7.52 Graph of the hyperbola in Example 7.21.

Put the equation 4y2 − 9x2 + 16y + 18x − 29 = 0 into standard form and graph the resulting

hyperbola. What are the equations of the asymptotes?

Hyperbolas also have interesting reflective properties. A ray directed toward one focus of a hyperbola is reflected by a
hyperbolic mirror toward the other focus. This concept is illustrated in the following figure.

Figure 7.53 A hyperbolic mirror used to collect light from distant stars.

This property of the hyperbola has important applications. It is used in radio direction finding (since the difference in signals
from two towers is constant along hyperbolas), and in the construction of mirrors inside telescopes (to reflect light coming
from the parabolic mirror to the eyepiece). Another interesting fact about hyperbolas is that for a comet entering the solar
system, if the speed is great enough to escape the Sun’s gravitational pull, then the path that the comet takes as it passes
through the solar system is hyperbolic.

Eccentricity and Directrix
An alternative way to describe a conic section involves the directrices, the foci, and a new property called eccentricity. We
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will see that the value of the eccentricity of a conic section can uniquely define that conic.

Definition

The eccentricity e of a conic section is defined to be the distance from any point on the conic section to its focus,
divided by the perpendicular distance from that point to the nearest directrix. This value is constant for any conic
section, and can define the conic section as well:

1. If e = 1, the conic is a parabola.

2. If e < 1, it is an ellipse.

3. If e > 1, it is a hyperbola.

The eccentricity of a circle is zero. The directrix of a conic section is the line that, together with the point known
as the focus, serves to define a conic section. Hyperbolas and noncircular ellipses have two foci and two associated
directrices. Parabolas have one focus and one directrix.

The three conic sections with their directrices appear in the following figure.

Figure 7.54 The three conic sections with their foci and directrices.

Recall from the definition of a parabola that the distance from any point on the parabola to the focus is equal to the distance
from that same point to the directrix. Therefore, by definition, the eccentricity of a parabola must be 1. The equations of the

directrices of a horizontal ellipse are x = ±a2
c . The right vertex of the ellipse is located at (a, 0) and the right focus is

(c, 0). Therefore the distance from the vertex to the focus is a − c and the distance from the vertex to the right directrix

is a2
c − c. This gives the eccentricity as

e = a − c
a2
c − a

= c(a − c)
a2 − ac

= c(a − c)
a(a − c) = c

a.

Since c < a, this step proves that the eccentricity of an ellipse is less than 1. The directrices of a horizontal hyperbola are

also located at x = ±a2
c , and a similar calculation shows that the eccentricity of a hyperbola is also e = c

a. However in

this case we have c > a, so the eccentricity of a hyperbola is greater than 1.
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Example 7.22

Determining Eccentricity of a Conic Section

Determine the eccentricity of the ellipse described by the equation

(x − 3)2

16 +
⎛
⎝y + 2⎞

⎠
2

25 = 1.

Solution

From the equation we see that a = 5 and b = 4. The value of c can be calculated using the equation

a2 = b2 + c2 for an ellipse. Substituting the values of a and b and solving for c gives c = 3. Therefore the

eccentricity of the ellipse is e = c
a = 3

5 = 0.6.

Determine the eccentricity of the hyperbola described by the equation

⎛
⎝y − 3⎞

⎠
2

49 − (x + 2)2

25 = 1.

Polar Equations of Conic Sections
Sometimes it is useful to write or identify the equation of a conic section in polar form. To do this, we need the concept of
the focal parameter. The focal parameter of a conic section p is defined as the distance from a focus to the nearest directrix.
The following table gives the focal parameters for the different types of conics, where a is the length of the semi-major axis
(i.e., half the length of the major axis), c is the distance from the origin to the focus, and e is the eccentricity. In the case of
a parabola, a represents the distance from the vertex to the focus.

Conic e p

Ellipse 0 < e < 1
a2 − c2

c =
a⎛

⎝1 − e2⎞
⎠

c

Parabola e = 1 2a

Hyperbola e > 1
c2 − a2

c =
a⎛

⎝e2 − 1⎞
⎠

e

Table 7.7 Eccentricities and Focal Parameters of the
Conic Sections

Using the definitions of the focal parameter and eccentricity of the conic section, we can derive an equation for any conic
section in polar coordinates. In particular, we assume that one of the foci of a given conic section lies at the pole. Then using
the definition of the various conic sections in terms of distances, it is possible to prove the following theorem.

Theorem 7.11: Polar Equation of Conic Sections

The polar equation of a conic section with focal parameter p is given by

r = ep
1 ± e cos θ or r = ep

1 ± e sin θ .
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In the equation on the left, the major axis of the conic section is horizontal, and in the equation on the right, the major axis
is vertical. To work with a conic section written in polar form, first make the constant term in the denominator equal to 1.
This can be done by dividing both the numerator and the denominator of the fraction by the constant that appears in front of
the plus or minus in the denominator. Then the coefficient of the sine or cosine in the denominator is the eccentricity. This
value identifies the conic. If cosine appears in the denominator, then the conic is horizontal. If sine appears, then the conic
is vertical. If both appear then the axes are rotated. The center of the conic is not necessarily at the origin. The center is at
the origin only if the conic is a circle (i.e., e = 0).

Example 7.23

Graphing a Conic Section in Polar Coordinates

Identify and create a graph of the conic section described by the equation

r = 3
1 + 2 cos θ .

Solution

The constant term in the denominator is 1, so the eccentricity of the conic is 2. This is a hyperbola. The focal

parameter p can be calculated by using the equation ep = 3. Since e = 2, this gives p = 3
2. The cosine

function appears in the denominator, so the hyperbola is horizontal. Pick a few values for θ and create a table of

values. Then we can graph the hyperbola (Figure 7.55).

θ r θ r

0 1 π −3

π
4

3
1 + 2

≈ 1.2426 5π
4

3
1 − 2

≈ −7.2426

π
2

3 3π
2

3

3π
4

3
1 − 2

≈ −7.2426 7π
4

3
1 + 2

≈ 1.2426
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Figure 7.55 Graph of the hyperbola described in Example
7.23.

Identify and create a graph of the conic section described by the equation

r = 4
1 − 0.8 sin θ .

General Equations of Degree Two
A general equation of degree two can be written in the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

The graph of an equation of this form is a conic section. If B ≠ 0 then the coordinate axes are rotated. To identify the conic

section, we use the discriminant of the conic section 4AC − B2. One of the following cases must be true:

1. 4AC − B2 > 0. If so, the graph is an ellipse.

2. 4AC − B2 = 0. If so, the graph is a parabola.

3. 4AC − B2 < 0. If so, the graph is a hyperbola.

The simplest example of a second-degree equation involving a cross term is xy = 1. This equation can be solved for y to

obtain y = 1
x . The graph of this function is called a rectangular hyperbola as shown.
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Figure 7.56 Graph of the equation xy = 1; The red lines

indicate the rotated axes.

The asymptotes of this hyperbola are the x and y coordinate axes. To determine the angle θ of rotation of the conic section,

we use the formula cot 2θ = A − C
B . In this case A = C = 0 and B = 1, so cot 2θ = (0 − 0)/1 = 0 and θ = 45°.

The method for graphing a conic section with rotated axes involves determining the coefficients of the conic in the rotated
coordinate system. The new coefficients are labeled A′, B′, C′, D′, E′, and F′, and are given by the formulas

A′ = A cos2 θ + B cos θ sin θ + C sin2 θ
B′ = 0
C′ = A sin2 θ − B sin θ cos θ + C cos2 θ
D′ = D cos θ + E sin θ
E′ = −D sin θ + E cos θ
F′ = F.

The procedure for graphing a rotated conic is the following:

1. Identify the conic section using the discriminant 4AC − B2.

2. Determine θ using the formula cot 2θ = A − C
B .

3. Calculate A′, B′, C′, D′, E′, and F′.

4. Rewrite the original equation using A′, B′, C′, D′, E′, and F′.

5. Draw a graph using the rotated equation.

Example 7.24

Identifying a Rotated Conic

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

13x2 − 6 3xy + 7y2 − 256 = 0.

Solution
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In this equation, A = 13, B = −6 3, C = 7, D = 0, E = 0, and F = −256. The discriminant of this

equation is 4AC − B2 = 4(13)(7) − ⎛
⎝−6 3⎞

⎠
2 = 364 − 108 = 256. Therefore this conic is an ellipse. To

calculate the angle of rotation of the axes, use cot 2θ = A − C
B . This gives

cot 2θ = A − C
B

= 13 − 7
−6 3

= − 3
3 .

Therefore 2θ = 120o and θ = 60o, which is the angle of the rotation of the axes.

To determine the rotated coefficients, use the formulas given above:

A′ = A cos2 θ + B cos θ sin θ + C sin2 θ
= 13cos2 60 + ⎛

⎝−6 3⎞
⎠ cos 60 sin 60 + 7sin2 60

= 13⎛
⎝
1
2

⎞
⎠
2

− 6 3⎛
⎝
1
2

⎞
⎠
⎛
⎝

3
2

⎞
⎠ + 7⎛

⎝
3
2

⎞
⎠

2

= 4,
B′ = 0,
C′ = A sin2 θ − B sin θ cos θ + C cos2 θ

= 13sin2 60 + ⎛
⎝−6 3⎞

⎠ sin 60 cos 60 = 7cos2 60

= ⎛
⎝

3
2

⎞
⎠

2
+ 6 3⎛

⎝
3

2
⎞
⎠
⎛
⎝
1
2

⎞
⎠ + 7⎛

⎝
1
2

⎞
⎠
2

= 16,
D′ = D cos θ + E sin θ

= (0) cos 60 + (0) sin 60
= 0,

E′ = −D sin θ + E cos θ
= −(0) sin 60 + (0) cos 60
= 0,

F′ = F
= −256.

The equation of the conic in the rotated coordinate system becomes

4(x′)2 + 16⎛
⎝y′⎞

⎠
2 = 256

(x′)2

64 +
⎛
⎝y′⎞

⎠
2

16 = 1.

A graph of this conic section appears as follows.
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7.23

Figure 7.57 Graph of the ellipse described by the equation

13x2 − 6 3xy + 7y2 − 256 = 0. The axes are rotated 60°.
The red dashed lines indicate the rotated axes.

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

3x2 + 5xy − 2y2 − 125 = 0.
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7.5 EXERCISES
For the following exercises, determine the equation of the
parabola using the information given.

255. Focus (4, 0) and directrix x = −4

256. Focus (0, −3) and directrix y = 3

257. Focus (0, 0.5) and directrix y = −0.5

258. Focus (2, 3) and directrix x = −2

259. Focus (0, 2) and directrix y = 4

260. Focus (−1, 4) and directrix x = 5

261. Focus (−3, 5) and directrix y = 1

262. Focus ⎛
⎝
5
2, −4⎞

⎠ and directrix x = 7
2

For the following exercises, determine the equation of the
ellipse using the information given.

263. Endpoints of major axis at (4, 0), (−4, 0) and foci

located at (2, 0), (−2, 0)

264. Endpoints of major axis at (0, 5), (0, −5) and foci

located at (0, 3), (0, −3)

265. Endpoints of major axis at (0, 2), (0, −2) and foci

located at (3, 0), (−3, 0)

266. Endpoints of major axis at (−3, 3), (7, 3) and foci

located at (−2, 3), (6, 3)

267. Endpoints of major axis at (−3, 5), (−3, −3) and

foci located at (−3, 3), (−3, −1)

268. Endpoints of major axis at (0, 0), (0, 4) and foci

located at (5, 2), (−5, 2)

269. Foci located at (2, 0), (−2, 0) and eccentricity of

1
2

270. Foci located at (0, −3), (0, 3) and eccentricity of

3
4

For the following exercises, determine the equation of the
hyperbola using the information given.

271. Vertices located at (5, 0), (−5, 0) and foci located

at (6, 0), (−6, 0)

272. Vertices located at (0, 2), (0, −2) and foci located

at (0, 3), (0, −3)

273. Endpoints of the conjugate axis located at
(0, 3), (0, −3) and foci located (4, 0), (−4, 0)

274. Vertices located at (0, 1), (6, 1) and focus located

at (8, 1)

275. Vertices located at (−2, 0), (−2, −4) and focus

located at (−2, −8)

276. Endpoints of the conjugate axis located at
(3, 2), (3, 4) and focus located at (3, 7)

277. Foci located at (6, −0), (6, 0) and eccentricity of 3

278. (0, 10), (0, −10) and eccentricity of 2.5

For the following exercises, consider the following polar
equations of conics. Determine the eccentricity and identify
the conic.

279. r = −1
1 + cos θ

280. r = 8
2 − sin θ

281. r = 5
2 + sin θ

282. r = 5
−1 + 2 sin θ

283. r = 3
2 − 6 sin θ

284. r = 3
−4 + 3 sin θ

For the following exercises, find a polar equation of the
conic with focus at the origin and eccentricity and directrix
as given.

285. Directrix: x = 4; e = 1
5

286. Directrix: x = −4; e = 5

287. Directrix: y = 2; e = 2
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288. Directrix: y = −2; e = 1
2

For the following exercises, sketch the graph of each conic.

289. r = 1
1 + sin θ

290. r = 1
1 − cos θ

291. r = 4
1 + cos θ

292. r = 10
5 + 4 sin θ

293. r = 15
3 − 2 cos θ

294. r = 32
3 + 5 sin θ

295. r(2 + sin θ) = 4

296. r = 3
2 + 6 sin θ

297. r = 3
−4 + 2 sin θ

298.
x2

9 + y2

4 = 1

299. x2

4 + y2

16 = 1

300. 4x2 + 9y2 = 36

301. 25x2 − 4y2 = 100

302. x2

16 − y2

9 = 1

303. x2 = 12y

304. y2 = 20x

305. 12x = 5y2

For the following equations, determine which of the conic
sections is described.

306. xy = 4

307. x2 + 4xy − 2y2 − 6 = 0

308. x2 + 2 3xy + 3y2 − 6 = 0

309. x2 − xy + y2 − 2 = 0

310. 34x2 − 24xy + 41y2 − 25 = 0

311. 52x2 − 72xy + 73y2 + 40x + 30y − 75 = 0

312. The mirror in an automobile headlight has a parabolic
cross section, with the lightbulb at the focus. On a
schematic, the equation of the parabola is given as

x2 = 4y. At what coordinates should you place the

lightbulb?

313. A satellite dish is shaped like a paraboloid of
revolution. The receiver is to be located at the focus. If the
dish is 12 feet across at its opening and 4 feet deep at its
center, where should the receiver be placed?

314. Consider the satellite dish of the preceding problem.
If the dish is 8 feet across at the opening and 2 feet deep,
where should we place the receiver?

315. A searchlight is shaped like a paraboloid of
revolution. A light source is located 1 foot from the base
along the axis of symmetry. If the opening of the
searchlight is 3 feet across, find the depth.

316. Whispering galleries are rooms designed with
elliptical ceilings. A person standing at one focus can
whisper and be heard by a person standing at the other
focus because all the sound waves that reach the ceiling are
reflected to the other person. If a whispering gallery has a
length of 120 feet and the foci are located 30 feet from the
center, find the height of the ceiling at the center.

317. A person is standing 8 feet from the nearest wall in
a whispering gallery. If that person is at one focus and the
other focus is 80 feet away, what is the length and the height
at the center of the gallery?

For the following exercises, determine the polar equation
form of the orbit given the length of the major axis and
eccentricity for the orbits of the comets or planets. Distance
is given in astronomical units (AU).

318. Halley’s Comet: length of major axis = 35.88,
eccentricity = 0.967

319. Hale-Bopp Comet: length of major axis = 525.91,
eccentricity = 0.995

320. Mars: length of major axis = 3.049, eccentricity =
0.0934

321. Jupiter: length of major axis = 10.408, eccentricity =
0.0484
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angular coordinate

cardioid

conic section

cusp

cycloid

directrix

discriminant

eccentricity

focal parameter

focus

general form

limaçon

major axis

minor axis

nappe

orientation

parameter

parameterization of a curve

parametric curve

parametric equations

polar axis

polar coordinate system

polar equation

pole

CHAPTER 7 REVIEW

KEY TERMS
θ the angle formed by a line segment connecting the origin to a point in the polar coordinate

system with the positive radial (x) axis, measured counterclockwise

a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius;
the equation of a cardioid is r = a(1 + sin θ) or r = a(1 + cos θ)

a conic section is any curve formed by the intersection of a plane with a cone of two nappes

a pointed end or part where two curves meet

the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage

a directrix (plural: directrices) is a line used to construct and define a conic section; a parabola has one directrix;
ellipses and hyperbolas have two

the value 4AC − B2, which is used to identify a conic when the equation contains a term involving xy,
is called a discriminant

the eccentricity is defined as the distance from any point on the conic section to its focus divided by the
perpendicular distance from that point to the nearest directrix

the focal parameter is the distance from a focus of a conic section to the nearest directrix

a focus (plural: foci) is a point used to construct and define a conic section; a parabola has one focus; an ellipse and
a hyperbola have two

an equation of a conic section written as a general second-degree equation

the graph of the equation r = a + b sin θ or r = a + b cos θ. If a = b then the graph is a cardioid

the major axis of a conic section passes through the vertex in the case of a parabola or through the two
vertices in the case of an ellipse or hyperbola; it is also an axis of symmetry of the conic; also called the transverse
axis

the minor axis is perpendicular to the major axis and intersects the major axis at the center of the conic, or at
the vertex in the case of the parabola; also called the conjugate axis

a nappe is one half of a double cone

the direction that a point moves on a graph as the parameter increases

an independent variable that both x and y depend on in a parametric curve; usually represented by the variable
t

rewriting the equation of a curve defined by a function y = f (x) as parametric

equations

the graph of the parametric equations x(t) and y(t) over an interval a ≤ t ≤ b combined with the

equations

the equations x = x(t) and y = y(t) that define a parametric curve

the horizontal axis in the polar coordinate system corresponding to r ≥ 0

a system for locating points in the plane. The coordinates are r, the radial coordinate, and

θ, the angular coordinate

an equation or function relating the radial coordinate to the angular coordinate in the polar coordinate
system

the central point of the polar coordinate system, equivalent to the origin of a Cartesian system
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radial coordinate

rose

space-filling curve

standard form

vertex

r the coordinate in the polar coordinate system that measures the distance from a point in the plane to

the pole

graph of the polar equation r = a cos 2θ or r = a sin 2θ for a positive constant a

a curve that completely occupies a two-dimensional subset of the real plane

an equation of a conic section showing its properties, such as location of the vertex or lengths of major
and minor axes

a vertex is an extreme point on a conic section; a parabola has one vertex at its turning point. An ellipse has two
vertices, one at each end of the major axis; a hyperbola has two vertices, one at the turning point of each branch

KEY EQUATIONS
• Derivative of parametric equations

dy
dx = dy/dt

dx/dt = y′ (t)
x′ (t)

• Second-order derivative of parametric equations

d2 y
dx2 = d

dx
⎛
⎝
dy
dx

⎞
⎠ = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt

• Area under a parametric curve

A = ∫
a

b
y(t)x′ (t) dt

• Arc length of a parametric curve

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

• Surface area generated by a parametric curve

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

• Area of a region bounded by a polar curve

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ = 1

2∫
α

β
r2 dθ

• Arc length of a polar curve

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ

KEY CONCEPTS

7.1 Parametric Equations

• Parametric equations provide a convenient way to describe a curve. A parameter can represent time or some other
meaningful quantity.

• It is often possible to eliminate the parameter in a parameterized curve to obtain a function or relation describing
that curve.

• There is always more than one way to parameterize a curve.

• Parametric equations can describe complicated curves that are difficult or perhaps impossible to describe using
rectangular coordinates.
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7.2 Calculus of Parametric Curves

• The derivative of the parametrically defined curve x = x(t) and y = y(t) can be calculated using the formula

dy
dx = y′(t)

x′(t). Using the derivative, we can find the equation of a tangent line to a parametric curve.

• The area between a parametric curve and the x-axis can be determined by using the formula A = ∫
t1

t2
y(t)x′ (t) dt.

• The arc length of a parametric curve can be calculated by using the formula s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

• The surface area of a volume of revolution revolved around the x-axis is given by

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt. If the curve is revolved around the y-axis, then the formula is

S = 2π∫
a

b
x(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt.

7.3 Polar Coordinates

• The polar coordinate system provides an alternative way to locate points in the plane.

• Convert points between rectangular and polar coordinates using the formulas

x = r cos θ and y = r sin θ

and

r = x2 + y2 and tan θ = y
x.

• To sketch a polar curve from a given polar function, make a table of values and take advantage of periodic
properties.

• Use the conversion formulas to convert equations between rectangular and polar coordinates.

• Identify symmetry in polar curves, which can occur through the pole, the horizontal axis, or the vertical axis.

7.4 Area and Arc Length in Polar Coordinates

• The area of a region in polar coordinates defined by the equation r = f (θ) with α ≤ θ ≤ β is given by the integral

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦

2

dθ.

• To find the area between two curves in the polar coordinate system, first find the points of intersection, then subtract
the corresponding areas.

• The arc length of a polar curve defined by the equation r = f (θ) with α ≤ θ ≤ β is given by the integral

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

7.5 Conic Sections

• The equation of a vertical parabola in standard form with given focus and directrix is y = 1
4p(x − h)2 + k where p

is the distance from the vertex to the focus and (h, k) are the coordinates of the vertex.
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• The equation of a horizontal ellipse in standard form is
(x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1 where the center has coordinates

(h, k), the major axis has length 2a, the minor axis has length 2b, and the coordinates of the foci are (h ± c, k),

where c2 = a2 − b2.

• The equation of a horizontal hyperbola in standard form is
(x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1 where the center has

coordinates (h, k), the vertices are located at (h ± a, k), and the coordinates of the foci are (h ± c, k), where

c2 = a2 + b2.

• The eccentricity of an ellipse is less than 1, the eccentricity of a parabola is equal to 1, and the eccentricity of a
hyperbola is greater than 1. The eccentricity of a circle is 0.

• The polar equation of a conic section with eccentricity e is r = ep
1 ± e cos θ or r = ep

1 ± e sin θ , where p

represents the focal parameter.

• To identify a conic generated by the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, first calculate the

discriminant D = 4AC − B2. If D > 0 then the conic is an ellipse, if D = 0 then the conic is a parabola, and if

D < 0 then the conic is a hyperbola.

CHAPTER 7 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

322. The rectangular coordinates of the point ⎛
⎝4, 5π

6
⎞
⎠ are

⎛
⎝2 3, −2⎞

⎠.

323. The equations x = cosh(3t), y = 2 sinh(3t)
represent a hyperbola.

324. The arc length of the spiral given by r = θ
2 for

0 ≤ θ ≤ 3π is 9
4π3.

325. Given x = f (t) and y = g(t), if dx
dy = dy

dx, then

f (t) = g(t) + C, where C is a constant.

For the following exercises, sketch the parametric curve
and eliminate the parameter to find the Cartesian equation
of the curve.

326. x = 1 + t, y = t2 − 1, −1 ≤ t ≤ 1

327. x = et, y = 1 − e3t, 0 ≤ t ≤ 1

328. x = sin θ, y = 1 − csc θ, 0 ≤ θ ≤ 2π

329. x = 4 cos ϕ, y = 1 − sin ϕ, 0 ≤ ϕ ≤ 2π

For the following exercises, sketch the polar curve and
determine what type of symmetry exists, if any.

330. r = 4 sin⎛
⎝
θ
3

⎞
⎠

331. r = 5 cos(5θ)

For the following exercises, find the polar equation for the
curve given as a Cartesian equation.

332. x + y = 5

333. y2 = 4 + x2

For the following exercises, find the equation of the tangent
line to the given curve. Graph both the function and its
tangent line.

334. x = ln(t), y = t2 − 1, t = 1

335. r = 3 + cos(2θ), θ = 3π
4

336. Find
dy
dx, dx

dy, and d2 x
dy2 of y = ⎛

⎝2 + e−t⎞
⎠,

x = 1 − sin(t)

For the following exercises, find the area of the region.

337. x = t2, y = ln(t), 0 ≤ t ≤ e
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338. r = 1 − sin θ in the first quadrant

For the following exercises, find the arc length of the curve
over the given interval.

339. x = 3t + 4, y = 9t − 2, 0 ≤ t ≤ 3

340. r = 6 cos θ, 0 ≤ θ ≤ 2π. Check your answer by

geometry.

For the following exercises, find the Cartesian equation
describing the given shapes.

341. A parabola with focus (2, −5) and directrix x = 6

342. An ellipse with a major axis length of 10 and foci at
(−7, 2) and (1, 2)

343. A hyperbola with vertices at (3, −2) and (−5, −2)
and foci at (−2, −6) and (−2, 4)

For the following exercises, determine the eccentricity and
identify the conic. Sketch the conic.

344. r = 6
1 + 3 cos(θ)

345. r = 4
3 − 2 cos θ

346. r = 7
5 − 5 cos θ

347. Determine the Cartesian equation describing the orbit
of Pluto, the most eccentric orbit around the Sun. The
length of the major axis is 39.26 AU and minor axis is
38.07 AU. What is the eccentricity?

348. The C/1980 E1 comet was observed in 1980. Given
an eccentricity of 1.057 and a perihelion (point of closest
approach to the Sun) of 3.364 AU, find the Cartesian
equations describing the comet’s trajectory. Are we
guaranteed to see this comet again? (Hint: Consider the Sun
at point (0, 0).)
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APPENDIX A | TABLE OF

INTEGRALS
Basic Integrals

1. ∫ un du = un + 1

n + 1 + C, n ≠ −1

2. ∫ du
u = ln|u| + C

3. ∫ eu du = eu + C

4. ∫ au du = au

lna + C

5. ∫ sin u du = −cos u + C

6. ∫ cos u du = sin u + C

7. ∫ sec2 u du = tan u + C

8. ∫ csc2 u du = −cot u + C

9. ∫ sec u tan u du = sec u + C

10. ∫ csc u cot u du = −csc u + C

11. ∫ tan u du = ln|sec u| + C

12. ∫ cot u du = ln|sin u| + C

13. ∫ sec u du = ln|sec u + tan u| + C

14. ∫ csc u du = ln|csc u − cot u| + C

15. ∫ du
a2 − u2

= sin−1 u
a + C

16. ∫ du
a2 + u2 = 1

atan−1 u
a + C

17. ∫ du
u u2 − a2

= 1
asec−1 u

a + C

Trigonometric Integrals
18. ∫ sin2 u du = 1

2u − 1
4sin 2u + C
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19. ∫ cos2 u du = 1
2u + 1

4sin 2u + C

20. ∫ tan2 u du = tan u − u + C

21. ∫ cot2 u du = −cot u − u + C

22. ∫ sin3 u du = − 1
3

⎛
⎝2 + sin2 u⎞

⎠cos u + C

23. ∫ cos3 u du = 1
3

⎛
⎝2 + cos2 u⎞

⎠sin u + C

24. ∫ tan3 u du = 1
2tan2 u + ln|cos u| + C

25. ∫ cot3 u du = − 1
2cot2 u − ln|sin u| + C

26. ∫ sec3 u du = 1
2sec u tan u + 1

2ln |sec u + tan u| + C

27. ∫ csc3 u du = − 1
2csc u cot u + 1

2ln |csc u − cot u| + C

28. ∫ sinn u du = − 1
nsinn − 1 u cos u + n − 1

n ∫ sinn − 2 u du

29. ∫ cosn u du = 1
ncosn − 1 u sin u + n − 1

n ∫ cosn − 2 u du

30. ∫ tann u du = 1
n − 1tann − 1 u − ∫ tann − 2 u du

31. ∫ cotn u du = −1
n − 1cotn − 1 u − ∫ cotn − 2 u du

32. ∫ secn u du = 1
n − 1tan u secn − 2 u + n − 2

n − 1∫ secn − 2 u du

33. ∫ cscn u du = −1
n − 1cot u cscn − 2 u + n − 2

n − 1∫ cscn − 2 u du

34. ∫ sin au sin bu du = sin(a − b)u
2(a − b) − sin(a + b)u

2(a + b) + C

35. ∫ cos au cos bu du = sin(a − b)u
2(a − b) + sin(a + b)u

2(a + b) + C

36. ∫ sin au cos bu du = − cos(a − b)u
2(a − b) − cos(a + b)u

2(a + b) + C

37. ∫ u sin u du = sin u − u cos u + C

38. ∫ u cos u du = cos u + u sin u + C

39. ∫ un sin u du = −un cos u + n∫ un − 1 cos u du

40. ∫ un cos u du = un sin u − n∫ un − 1 sin u du

41.
∫ sinnu cosm u du = − sinn − 1 u cosm + 1 u

n + m + n − 1
n + m∫ sinn − 2 u cosm u du

= sinn + 1 u cosm − 1 u
n + m + m − 1

n + m∫ sinn u cosm − 2 u du
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Exponential and Logarithmic Integrals
42. ∫ ueau du = 1

a2(au − 1)eau + C

43. ∫ un eau du = 1
aun eau − n

a∫ un − 1 eau du

44. ∫ eau sin bu du = eau

a2 + b2(asin bu − b cos bu) + C

45. ∫ eau cos bu du = eau

a2 + b2(a cos bu + b sin bu) + C

46. ∫ lnu du = u lnu − u + C

47. ∫ unlnu du = un + 1

(n + 1)2
⎡
⎣(n + 1)lnu − 1⎤

⎦ + C

48. ∫ 1
u lnu du = ln|lnu| + C

Hyperbolic Integrals
49. ∫ sinh u du = cosh u + C

50. ∫ cosh u du = sinh u + C

51. ∫ tanh u du = lncosh u + C

52. ∫ coth u du = ln|sinh u| + C

53. ∫ sech u du = tan−1 |sinh u| + C

54. ∫ csch u du = ln|tanh 1
2u| + C

55. ∫ sech2 u du = tanh u + C

56. ∫ csch2 u du = −coth u + C

57. ∫ sech u tanh u du = −sech u + C

58. ∫ csch u coth u du = −csch u + C

Inverse Trigonometric Integrals
59. ∫ sin−1 u du = u sin−1 u + 1 − u2 + C

60. ∫ cos−1 u du = u cos−1 u − 1 − u2 + C

61. ∫ tan−1 u du = u tan−1 u − 1
2ln ⎛

⎝1 + u2⎞
⎠ + C

62. ∫ u sin−1 u du = 2u2 − 1
4 sin−1 u + u 1 − u2

4 + C

Appendix A 701



63. ∫ u cos−1 u du = 2u2 − 1
4 cos−1 u − u 1 − u2

4 + C

64. ∫ u tan−1 u du = u2 + 1
2 tan−1 u − u

2 + C

65. ∫ un sin−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 sin−1 u − ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

66. ∫ un cos−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 cos−1 u + ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

67. ∫ un tan−1 u du = 1
n + 1

⎡
⎣un + 1 tan−1 u − ∫ un + 1 du

1 + u2
⎤
⎦, n ≠ −1

Integrals Involving a2 + u2, a > 0

68. ∫ a2 + u2 du = u
2 a2 + u2 + a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

69. ∫ u2 a2 + u2 du = u
8

⎛
⎝a2 + 2u2⎞

⎠ a2 + u2 − a4

8 ln⎛
⎝u + a2 + u2⎞

⎠ + C

70. ∫ a2 + u2
u du = a2 + u2 − a ln |a + a2 + u2

u | + C

71. ∫ a2 + u2

u2 du = − a2 + u2
u + ln⎛

⎝u + a2 + u2⎞
⎠ + C

72. ∫ du
a2 + u2

= ln⎛
⎝u + a2 + u2⎞

⎠ + C

73. ∫ u2 du
a2 + u2

= u
2

⎛
⎝ a2 + u2⎞

⎠ − a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

74. ∫ du
u a2 + u2

= − 1
aln | a2 + u2 + a

u | + C

75. ∫ du
u2 a2 + u2

= − a2 + u2

a2 u
+ C

76. ∫ du
⎛
⎝a2 + u2⎞

⎠
3/2 = u

a2 a2 + u2
+ C

Integrals Involving u2 − a2, a > 0

77. ∫ u2 − a2 du = u
2 u2 − a2 − a2

2 ln |u + u2 − a2| + C

78. ∫ u2 u2 − a2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ u2 − a2 − a4

8 ln |u + u2 − a2| + C

79. ∫ u2 − a2
u du = u2 − a2 − acos−1 a

|u| + C

80. ∫ u2 − a2

u2 du = − u2 − a2
u + ln|u + u2 − a2| + C
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81. ∫ du
u2 − a2

= ln|u + u2 − a2| + C

82. ∫ u2 du
u2 − a2

= u
2 u2 − a2 + a2

2 ln |u + u2 − a2| + C

83. ∫ du
u2 u2 − a2

= u2 − a2

a2 u
+ C

84. ∫ du
⎛
⎝u2 − a2⎞

⎠
3/2 = − u

a2 u2 − a2
+ C

Integrals Involving a2 − u2, a > 0

85. ∫ a2 − u2 du = u
2 a2 − u2 + a2

2 sin−1 u
a + C

86. ∫ u2 a2 − u2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ a2 − u2 + a4

8 sin−1 u
a + C

87. ∫ a2 − u2
u du = a2 − u2 − aln |a + a2 − u2

u | + C

88. ∫ a2 − u2

u2 du = − 1
u a2 − u2 − sin−1 u

a + C

89. ∫ u2 du
a2 − u2

= − u
u a2 − u2 + a2

2 sin−1 u
a + C

90. ∫ du
u a2 − u2

= − 1
aln |a + a2 − u2

u | + C

91. ∫ du
u2 a2 − u2

= − 1
a2 u

a2 − u2 + C

92. ∫ ⎛
⎝a2 − u2⎞

⎠
3/2

du = − u
8

⎛
⎝2u2 − 5a2⎞

⎠ a2 − u2 + 3a4

8 sin−1 u
a + C

93. ∫ du
⎛
⎝a2 − u2⎞

⎠
3/2 = − u

a2 a2 − u2
+ C

Integrals Involving 2au − u2, a > 0

94. ∫ 2au − u2 du = u − a
2 2au − u2 + a2

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

95. ∫ du
2au − u2

= cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

96. ∫ u 2au − u2 du = 2u2 − au − 3a2

6 2au − u2 + a3

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

97. ∫ du
u 2au − u2

= − 2au − u2
au + C
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Integrals Involving a + bu, a ≠ 0
98. ∫ u du

a + bu = 1
b2

⎛
⎝a + bu − aln |a + bu|⎞

⎠ + C

99. ∫ u2 du
a + bu = 1

2b3
⎡
⎣(a + bu)2 − 4a(a + bu) + 2a2 ln |a + bu|⎤⎦ + C

100. ∫ du
u(a + bu) = 1

aln | u
a + bu | + C

101. ∫ du
u2 (a + bu)

= − 1
au + b

a2ln |a + bu
u | + C

102. ∫ u du
(a + bu)2 = a

b2 (a + bu)
+ 1

b2ln |a + bu| + C

103. ∫ u du
u (a + bu)2 = 1

a(a + bu) − 1
a2ln |a + bu

u | + C

104. ∫ u2 du
(a + bu)2 = 1

b3
⎛
⎝a + bu − a2

a + bu − 2aln |a + bu|⎞⎠ + C

105. ∫ u a + bu du = 2
15b2(3bu − 2a)(a + bu)3/2 + C

106. ∫ u du
a + bu

= 2
3b2(bu − 2a) a + bu + C

107. ∫ u2 du
a + bu

= 2
15b3

⎛
⎝8a2 + 3b2 u2 − 4abu⎞

⎠ a + bu + C

108.
∫ du

u a + bu
= 1

aln | a + bu − a
a + bu + a | + C, if a > 0

= 2
−atan − 1 a + bu

−a + C, if a < 0

109. ∫ a + bu
u du = 2 a + bu + a∫ du

u a + bu

110. ∫ a + bu
u2 du = − a + bu

u + b
2∫ du

u a + bu

111. ∫ un a + bu du = 2
b(2n + 3)

⎡
⎣un (a + bu)3/2 − na∫ un − 1 a + bu du⎤

⎦

112. ∫ un du
a + bu

= 2un a + bu
b(2n + 1) − 2na

b(2n + 1)∫
un − 1 du

a + bu

113. ∫ du
un a + bu

= − a + bu
a(n − 1)un − 1 − b(2n − 3)

2a(n − 1)∫
du

un − 1 a + bu
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APPENDIX B | TABLE OF

DERIVATIVES
General Formulas
1. d

dx(c) = 0

2. d
dx

⎛
⎝ f (x) + g(x)⎞

⎠ = f ′ (x) + g′ (x)

3. d
dx

⎛
⎝ f (x)g(x)⎞

⎠ = f ′ (x)g(x) + f (x)g′ (x)

4. d
dx(xn) = nxn − 1, for real numbers n

5. d
dx

⎛
⎝c f (x)⎞

⎠ = c f ′ (x)

6. d
dx

⎛
⎝ f (x) − g(x)⎞

⎠ = f ′ (x) − g′ (x)

7. d
dx

⎛
⎝

f (x)
g(x)

⎞
⎠ = g(x) f ′ (x) − f (x)g′ (x)

⎛
⎝g(x)⎞

⎠
2

8. d
dx

⎡
⎣ f ⎛

⎝g(x)⎞
⎠
⎤
⎦ = f ′ ⎛

⎝g(x)⎞
⎠ · g′ (x)

Trigonometric Functions
9. d

dx(sinx) = cosx

10. d
dx(tanx) = sec2 x

11. d
dx(secx) = secx tanx

12. d
dx(cosx) = −sinx

13. d
dx(cotx) = −csc2 x

14. d
dx(cscx) = −cscxcot x

Inverse Trigonometric Functions
15. d

dx
⎛
⎝sin−1 x⎞

⎠ = 1
1 − x2

16. d
dx

⎛
⎝tan−1 x⎞

⎠ = 1
1 + x2

17. d
dx

⎛
⎝sec−1 x⎞

⎠ = 1
|x| x2 − 1
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18. d
dx

⎛
⎝cos−1 x⎞

⎠ = − 1
1 − x2

19. d
dx

⎛
⎝cot−1 x⎞

⎠ = − 1
1 + x2

20. d
dx

⎛
⎝csc−1 x⎞

⎠ = − 1
|x| x2 − 1

Exponential and Logarithmic Functions
21. d

dx(ex) = ex

22. d
dx(ln |x|) = 1

x

23. d
dx(bx) = bx lnb

24. d
dx

⎛
⎝logb x⎞

⎠ = 1
x lnb

Hyperbolic Functions
25. d

dx(sinhx) = coshx

26. d
dx(tanhx) = sech2 x

27. d
dx(sech x) = −sech x tanhx

28. d
dx(coshx) = sinhx

29. d
dx(cothx) = −csch2 x

30. d
dx(csch x) = −csch x cothx

Inverse Hyperbolic Functions
31. d

dx
⎛
⎝sinh−1 x⎞

⎠ = 1
x2 + 1

32. d
dx

⎛
⎝tanh−1 x⎞

⎠ = 1
1 − x2(|x| < 1)

33. d
dx

⎛
⎝sech−1 x⎞

⎠ = − 1
x 1 − x2

(0 < x < 1)

34. d
dx

⎛
⎝cosh−1 x⎞

⎠ = 1
x2 − 1

(x > 1)

35. d
dx

⎛
⎝coth−1 x⎞

⎠ = 1
1 − x2 (|x| > 1)

36. d
dx

⎛
⎝csch−1 x⎞

⎠ = − 1
|x| 1 + x2

(x ≠ 0)
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APPENDIX C | REVIEW OF

PRE-CALCULUS
Formulas from Geometry
A = area, V = Volume, and S = lateral surface area

Formulas from Algebra
Laws of Exponents

xm xn = xm + n xm

xn = xm − n (xm)n = xmn

x−n = 1
xn (xy)n = xn yn ⎛

⎝
x
y

⎞
⎠
n

= xn

yn

x1/n = xn xyn = xn yn x
y

n = xn

yn

xm/n = xmn
= ( xn )m

Special Factorizations
x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)⎛
⎝x2 − xy + y2⎞

⎠

x3 − y3 = (x − y)⎛
⎝x2 + xy + y2⎞

⎠

Quadratic Formula

If ax2 + bx + c = 0, then x = −b ± b2 − 4ca
2a .
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Binomial Theorem

(a + b)n = an + ⎛
⎝
n
1

⎞
⎠a

n − 1 b + ⎛
⎝
n
2

⎞
⎠a

n − 2 b2 + ⋯ + ⎛
⎝

n
n − 1

⎞
⎠abn − 1 + bn,

where ⎛
⎝
n
k

⎞
⎠ = n(n − 1)(n − 2) ⋯ (n − k + 1)

k(k − 1)(k − 2) ⋯ 3 ⋅ 2 ⋅ 1 = n !
k !(n − k) !

Formulas from Trigonometry
Right-Angle Trigonometry

sinθ = opp
hyp cscθ = hyp

opp

cosθ = adj
hyp secθ = hyp

adj

tanθ = opp
adj cotθ = adj

opp

Trigonometric Functions of Important Angles

θ Radians sinθ cosθ tanθ

0° 0 0 1 0

30° π/6 1/2 3/2 3/3

45° π/4 2/2 2/2 1

60° π/3 3/2 1/2 3

90° π/2 1 0 —
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Fundamental Identities
sin2 θ + cos2 θ = 1 sin(−θ) = −sinθ

1 + tan2 θ = sec2 θ cos(−θ) = cosθ

1 + cot2 θ = csc2 θ tan(−θ) = −tanθ
sin⎛

⎝
π
2 − θ⎞

⎠ = cosθ sin(θ + 2π) = sinθ

cos⎛
⎝
π
2 − θ⎞

⎠ = sinθ cos(θ + 2π) = cosθ

tan⎛
⎝
π
2 − θ⎞

⎠ = cotθ tan(θ + π) = tanθ

Law of Sines
sin A

a = sinB
b = sinC

c

Law of Cosines
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C

Addition and Subtraction Formulas
sin (x + y) = sin x cos y + cos x sin y
sin(x − y) = sin x cos y − cos x sin y
cos(x + y) = cos x cos y − sin x sin y
cos(x − y) = cos x cos y + sin x sin y

tan(x + y) = tan x + tany
1 − tan x tany

tan(x − y) = tan x − tany
1 + tan x tany

Double-Angle Formulas
sin 2x = 2sin x cos x
cos 2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x

tan 2x = 2tan x
1 − tan2 x
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Half-Angle Formulas

sin2 x = 1 − cos 2x
2

cos2 x = 1 + cos 2x
2
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ANSWER KEY
Chapter 1

Checkpoint

1.1. ∑
i = 3

6
2i = 23 + 24 + 25 + 26 = 120

1.2. 15,550
1.3. 440
1.4. The left-endpoint approximation is 0.7595. The right-endpoint approximation is 0.6345. See the below image.

1.5.
a. Upper sum = 8.0313.
b.

1.6. A ≈ 1.125
1.7. 6
1.8. 18 square units
1.9. 6
1.10. 18

1.11. 6∫
1

3
x3 dx − 4∫

1

3
x2 dx + 2∫

1

3
xdx − ⌠

⌡1

3

3dx

1.12. −7
1.13. 3
1.14. Average value = 1.5; c = 3
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1.15. c = 3
1.16. g′ (r) = r2 + 4

1.17. F′ (x) = 3x2 cosx3

1.18. F′ (x) = 2xcosx2 − cosx

1.19. 7
24

1.20. Kathy still wins, but by a much larger margin: James skates 24 ft in 3 sec, but Kathy skates 29.3634 ft in 3 sec.

1.21. −10
3

1.22. Net displacement: e2 − 9
2 ≈ − 0.8055 m; total distance traveled: 4ln4 − 7.5 + e2

2 ≈ 1.740 m

1.23. 17.5 mi

1.24. 64
5

1.25. ⌠
⌡

3x2 ⎛
⎝x

3 − 3⎞
⎠
2

dx = 1
3

⎛
⎝x

3 − 3⎞
⎠
3

+ C

1.26.
⎛
⎝x

3 + 5⎞
⎠
10

30 + C

1.27. − 1
sin t + C

1.28. −cos4 t
4 + C

1.29. 91
3

1.30. 2
3π ≈ 0.2122

1.31. ⌠
⌡

x2 e−2x3
dx = − 1

6e−2x3
+ C

1.32. ⌠
⌡
ex (3ex − 2)2 dx = 1

9(3ex − 2)3

1.33. ∫ 2x3 ex4
dx = 1

2ex4

1.34. 1
2

⌠
⌡0

4
eu du = 1

2
⎛
⎝e4 − 1⎞

⎠

1.35. Q(t) = 2t

ln2 + 8.557. There are 20,099 bacteria in the dish after 3 hours.

1.36. There are 116 flies.

1.37. ⌠
⌡1

2
1
x3e4x−2

dx = 1
8

⎡
⎣e4 − e⎤

⎦

1.38. ln|x + 2| + C

1.39.
x

ln3(lnx − 1) + C

1.40. 1
4sin−1 (4x) + C

1.41. sin−1 ⎛
⎝
x
3

⎞
⎠ + C

1.42. 1
10tan−1 ⎛

⎝
2x
5

⎞
⎠ + C

1.43. 1
4tan−1 ⎛

⎝
x
4

⎞
⎠ + C

1.44.
π
8
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Section Exercises

1. a. They are equal; both represent the sum of the first 10 whole numbers. b. They are equal; both represent the sum of the first 10
whole numbers. c. They are equal by substituting j = i − 1. d. They are equal; the first sum factors the terms of the second.

3. 385 − 30 = 355
5. 15 − (−12) = 27
7. 5(15) + 4(−12) = 27

9. ∑
j = 1

50
j2 − 2 ∑

j = 1

50
j = (50)(51)(101)

6 − 2(50)(51)
2 = 40, 375

11. 4 ∑
k = 1

25
k2 − 100 ∑

k = 1

25
k = 4(25)(26)(51)

9 − 50(25)(26) = −10, 400

13. R4 = 0.25

15. R6 = 0.372

17. L4 = 2.20

19. L8 = 0.6875

21. L6 = 9.000 = R6. The graph of f is a triangle with area 9.

23. L6 = 13.12899 = R6. They are equal.

25. L10 = 4
10 ∑

i = 1

10
4 − ⎛

⎝−2 + 4(i − 1)
10

⎞
⎠

27. R100 = e − 1
100 ∑

i = 1

100
ln⎛

⎝1 + (e − 1) i
100

⎞
⎠

29.
R100 = 0.33835, L100 = 0.32835. The plot shows that the left Riemann sum is an underestimate because the function is

increasing. Similarly, the right Riemann sum is an overestimate. The area lies between the left and right Riemann sums. Ten
rectangles are shown for visual clarity. This behavior persists for more rectangles.
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31.
L100 = −0.02, R100 = 0.02. The left endpoint sum is an underestimate because the function is increasing. Similarly, a right

endpoint approximation is an overestimate. The area lies between the left and right endpoint estimates.

33.
L100 = 3.555, R100 = 3.670. The plot shows that the left Riemann sum is an underestimate because the function is increasing.

Ten rectangles are shown for visual clarity. This behavior persists for more rectangles.
35. The sum represents the cumulative rainfall in January 2009.

37. The total mileage is 7 × ∑
i = 1

25 ⎛
⎝1 + (i − 1)

10
⎞
⎠ = 7 × 25 + 7

10 × 12 × 25 = 385 mi.

39. Add the numbers to get 8.1-in. net increase.
41. 309,389,957
43. L8 = 3 + 2 + 1 + 2 + 3 + 4 + 5 + 4 = 24

45. L8 = 3 + 5 + 7 + 6 + 8 + 6 + 5 + 4 = 44

47. L10 ≈ 1.7604, L30 ≈ 1.7625, L50 ≈ 1.76265

49. R1 = −1, L1 = 1, R10 = −0.1, L10 = 0.1, L100 = 0.01, and R100 = −0.1. By symmetry of the graph, the exact area

is zero.
51. R1 = 0, L1 = 0, R10 = 2.4499, L10 = 2.4499, R100 = 2.1365, L100 = 2.1365

53. If ⎡
⎣c, d⎤

⎦ is a subinterval of ⎡
⎣a, b⎤

⎦ under one of the left-endpoint sum rectangles, then the area of the rectangle contributing to

the left-endpoint estimate is f (c)(d − c). But, f (c) ≤ f (x) for c ≤ x ≤ d, so the area under the graph of f between c and d is

f (c)(d − c) plus the area below the graph of f but above the horizontal line segment at height f (c), which is positive. As this

is true for each left-endpoint sum interval, it follows that the left Riemann sum is less than or equal to the area below the graph of
f on ⎡

⎣a, b⎤
⎦.

55. LN = b − a
N ∑

i = 1

N
f ⎛

⎝a + (b − a)i − 1
N

⎞
⎠ = b − a

N ∑
i = 0

N − 1
f ⎛

⎝a + (b − a) i
N

⎞
⎠ and RN = b − a

N ∑
i = 1

N
f ⎛

⎝a + (b − a) i
N

⎞
⎠. The left

sum has a term corresponding to i = 0 and the right sum has a term corresponding to i = N. In RN − LN, any term

corresponding to i = 1, 2,…, N − 1 occurs once with a plus sign and once with a minus sign, so each such term cancels and one
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is left with RN − LN = b − a
N

⎛
⎝ f ⎛

⎝a + (b − a)⎞
⎠
N
N

⎞
⎠ − ⎛

⎝ f (a) + (b − a) 0
N

⎞
⎠ = b − a

N
⎛
⎝ f (b) − f (a)⎞

⎠.

57. Graph 1: a. L(A) = 0, B(A) = 20; b. U(A) = 20. Graph 2: a. L(A) = 9; b. B(A) = 11, U(A) = 20. Graph 3: a.

L(A) = 11.0; b. B(A) = 4.5, U(A) = 15.5.

59. Let A be the area of the unit circle. The circle encloses n congruent triangles each of area
sin⎛

⎝
2π
n

⎞
⎠

2 , so n
2sin⎛

⎝
2π
n

⎞
⎠ ≤ A.

Similarly, the circle is contained inside n congruent triangles each of area BH
2 = 1

2
⎛
⎝cos⎛

⎝
π
n

⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠
⎞
⎠sin⎛

⎝
2π
n

⎞
⎠, so

A ≤ n
2sin⎛

⎝
2π
n

⎞
⎠

⎛
⎝cos⎛

⎝
π
n

⎞
⎠
⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠. As n → ∞, n

2sin⎛
⎝
2π
n

⎞
⎠ =

π sin⎛
⎝
2π
n

⎞
⎠

⎛
⎝
2π
n

⎞
⎠

→ π, so we conclude π ≤ A. Also, as

n → ∞, cos⎛
⎝
π
n

⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠ → 1, so we also have A ≤ π. By the squeeze theorem for limits, we conclude that A = π.

61. ∫
0

2⎛
⎝5x2 − 3x3⎞

⎠dx

63. ∫
0

1
cos2 (2πx)dx

65. ∫
0

1
xdx

67. ∫
3

6
xdx

69. ∫
1

2
x log⎛

⎝x2⎞
⎠dx

71. 1 + 2 · 2 + 3 · 3 = 14
73. 1 − 4 + 9 = 6
75. 1 − 2π + 9 = 10 − 2π

77. The integral is the area of the triangle, 1
2

79. The integral is the area of the triangle, 9.

81. The integral is the area 1
2πr2 = 2π.

83. The integral is the area of the “big” triangle less the “missing” triangle, 9 − 1
2.

85. L = 2 + 0 + 10 + 5 + 4 = 21, R = 0 + 10 + 10 + 2 + 0 = 22, L + R
2 = 21.5

87. L = 0 + 4 + 0 + 4 + 2 = 10, R = 4 + 0 + 2 + 4 + 0 = 10, L + R
2 = 10

89. ∫
2

4
f (x)dx + ∫

2

4
g(x)dx = 8 − 3 = 5

91. ∫
2

4
f (x)dx − ∫

2

4
g(x)dx = 8 + 3 = 11

93. 4∫
2

4
f (x)dx − 3∫

2

4
g(x)dx = 32 + 9 = 41

95. The integrand is odd; the integral is zero.
97. The integrand is antisymmetric with respect to x = 3. The integral is zero.

99. 1 − 1
2 + 1

3 − 1
4 = 7

12

101. ∫
0

1⎛
⎝1 − 2x + 4x2 − 8x3⎞

⎠dx = 1 − 1 + 4
3 − 2 = − 2

3

103. 7 − 5
4 = 23

4
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105. The integrand is negative over [−2, 3].

107. x ≤ x2 over [1, 2], so 1 + x ≤ 1 + x2 over [1, 2].

109. cos(t) ≥ 2
2 . Multiply by the length of the interval to get the inequality.

111. fave = 0; c = 0

113. 3
2 when c = ± 3

2

115. fave = 0; c = π
2, 3π

2
117. L100 = 1.294, R100 = 1.301; the exact average is between these values.

119. L100 × ⎛
⎝
1
2

⎞
⎠ = 0.5178, R100 × ⎛

⎝
1
2

⎞
⎠ = 0.5294

121. L1 = 0, L10 × ⎛
⎝
1
2

⎞
⎠ = 8.743493, L100 × ⎛

⎝
1
2

⎞
⎠ = 12.861728. The exact answer ≈ 26.799, so L100 is not accurate.

123. L1 × ⎛
⎝
1
π

⎞
⎠ = 1.352, L10 × ⎛

⎝
1
π

⎞
⎠ = −0.1837, L100 × ⎛

⎝
1
π

⎞
⎠ = −0.2956. The exact answer ≈ − 0.303, so L100 is not

accurate to first decimal.

125. Use tan2 θ + 1 = sec2 θ. Then, B − A = ∫
−π/4

π/4
1dx = π

2.

127. ∫
0

2π
cos2 tdt = π, so divide by the length 2π of the interval. cos2 t has period π, so yes, it is true.

129. The integral is maximized when one uses the largest interval on which p is nonnegative. Thus, A = −b − b2 − 4ac
2a

and

B = −b + b2 − 4ac
2a .

131. If f (t0) > g(t0) for some t0 ∈ ⎡
⎣a, b⎤

⎦, then since f − g is continuous, there is an interval containing t0 such that

f (t) > g(t) over the interval ⎡
⎣c, d⎤

⎦, and then ∫
d

d
f (t)dt > ∫

c

d
g(t)dt over this interval.

133. The integral of f over an interval is the same as the integral of the average of f over that interval. Thus,

∫
a

b
f (t)dt = ∫

a0

a1
f (t)dt + ∫

a1

a2
f (t)dt + ⋯ + ∫

aN + 1

aN
f (t)dt = ∫

a0

a1
1dt + ∫

a1

a2
1dt + ⋯ + ∫

aN + 1

aN
1dt

= (a1 − a0) + (a2 − a1) + ⋯ + (aN − aN − 1) = aN − a0 = b − a.
Dividing through

by b − a gives the desired identity.

135. ∫
0

N
f (t)dt = ∑

i = 1

N
∫

i − 1

i
f (t)dt = ∑

i = 1

N
i2 = N(N + 1)(2N + 1)

6

137. L10 = 1.815, R10 = 1.515, L10 + R10
2 = 1.665, so the estimate is accurate to two decimal places.

139. The average is 1/2, which is equal to the integral in this case.

141. a. The graph is antisymmetric with respect to t = 1
2 over [0, 1], so the average value is zero. b. For any value of a, the

graph between [a, a + 1] is a shift of the graph over [0, 1], so the net areas above and below the axis do not change and the

average remains zero.
143. Yes, the integral over any interval of length 1 is the same.
145. Yes. It is implied by the Mean Value Theorem for Integrals.
147. F′ (2) = −1; average value of F ′ over [1, 2] is −1/2.
149. ecos t

151.
1

16 − x2

153. x d
dx x = 1

2
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155. − 1 − cos2 x d
dxcosx = |sinx|sinx

157. 2x |x|
1 + x2

159. ln(e2x) d
dxex = 2xex

161. a. f is positive over [1, 2] and ⎡
⎣5, 6⎤

⎦, negative over [0, 1] and [3, 4], and zero over [2, 3] and ⎡
⎣4, 5⎤

⎦. b. The

maximum value is 2 and the minimum is −3. c. The average value is 0.
163. a. ℓ is positive over [0, 1] and ⎡

⎣3, 6⎤
⎦, and negative over [1, 3]. b. It is increasing over [0, 1] and ⎡

⎣3, 5⎤
⎦, and it is

constant over [1, 3] and ⎡
⎣5, 6⎤

⎦. c. Its average value is 1
3.

165. T10 = 49.08, ∫
−2

3
x3 + 6x2 + x − 5dx = 48

167. T10 = 260.836, ∫
1

9
⎛
⎝ x + x2⎞

⎠dx = 260

169. T10 = 3.058, ⌠
⌡1

4
4
x2dx = 3

171. F(x) = x3

3 + 3x2

2 − 5x, F(3) − F(−2) = − 35
6

173. F(x) = − t5

5 + 13t3

3 − 36t, F(3) − F(2) = 62
15

175. F(x) = x100

100 , F(1) − F(0) = 1
100

177. F(x) = x3

3 + 1
x , F(4) − F⎛

⎝
1
4

⎞
⎠ = 1125

64
179. F(x) = x, F(4) − F(1) = 1

181. F(x) = 4
3t3/4, F(16) − F(1) = 28

3

183. F(x) = −cosx, F⎛
⎝
π
2

⎞
⎠ − F(0) = 1

185. F(x) = secx, F⎛
⎝
π
4

⎞
⎠ − F(0) = 2 − 1

187. F(x) = −cot(x), F⎛
⎝
π
2

⎞
⎠ − F⎛

⎝
π
4

⎞
⎠ = 1

189. F(x) = − 1
x + 1

2x2, F(−1) − F(−2) = 7
8

191. F(x) = ex − e
193. F(x) = 0

195. ∫
−2

−1⎛
⎝t2 − 2t − 3⎞

⎠dt − ∫
−1

3
⎛
⎝t2 − 2t − 3⎞

⎠dt + ∫
3

4⎛
⎝t2 − 2t − 3⎞

⎠dt = 46
3

197. −⌠
⌡−π/2

0

sin tdt + ∫
0

π/2
sin tdt = 2

199. a. The average is 11.21 × 109 since cos⎛
⎝
πt
6

⎞
⎠ has period 12 and integral 0 over any period. Consumption is equal to

the average when cos⎛
⎝
πt
6

⎞
⎠ = 0, when t = 3, and when t = 9. b. Total consumption is the average rate times duration:

11.21 × 12 × 109 = 1.35 × 1011 c. 109
⎛

⎝
⎜11.21 − 1

6
⌠
⌡3

9
cos⎛

⎝
πt
6

⎞
⎠dt

⎞

⎠
⎟ = 109 ⎛

⎝11.21 + 2
π

⎞
⎠ = 11.84x109

201. If f is not constant, then its average is strictly smaller than the maximum and larger than the minimum, which are attained
over ⎡

⎣a, b⎤
⎦ by the extreme value theorem.
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203. a. d2 θ = (acosθ + c)2 + b2 sin2 θ = a2 + c2 cos2 θ + 2accosθ = (a + ccosθ)2; b.

d
–

= 1
2π∫

0

2π
(a + 2ccosθ)dθ = a

205. Mean gravitational force = GmM
2

⌠

⌡
⎮⎮

0

2π

1
⎛
⎝a + 2 a2 − b2cosθ⎞

⎠
2dθ.

207. ∫ ⎛
⎝ x − 1

x
⎞
⎠dx = ∫ x1/2 dx − ∫ x−1/2 dx = 2

3x3/2 + C1 − 2x1/2 + C2 = 2
3x3/2 − 2x1/2 + C

209. ⌠
⌡
dx
2x = 1

2ln|x| + C

211. ⌠
⌡0

π
sinxdx − ∫

0

π
cosxdx = −cosx|0

π − (sinx)|0
π = ⎛

⎝−(−1) + 1⎞
⎠ − (0 − 0) = 2

213. P(s) = 4s, so dP
ds = 4 and ∫

2

4
4ds = 8.

215. ∫
1

2
Nds = N

217. With p as in the previous exercise, each of the 12 pentagons increases in area from 2p to 4p units so the net increase in the
area of the dodecahedron is 36p units.

219. 18s2 = 6∫
s

2s
2xdx

221. 12πR2 = 8π∫
R

2R
rdr

223. d(t) = ∫
0

t
v(s)ds = 4t − t2. The total distance is d(2) = 4 m.

225. d(t) = ∫
0

t
v(s)ds. For t < 3, d(t) = ∫

0

t
(6 − 2t)dt = 6t − t2. For

t > 3, d(t) = d(3) + ∫
3

t
(2t − 6)dt = 9 + (t2 − 6t). The total distance is d(6) = 9 m.

227. v(t) = 40 − 9.8t; h(t) = 1.5 + 40t − 4.9t2 m/s

229. The net increase is 1 unit.

231. At t = 5, the height of water is x = ⎛
⎝
15
π

⎞
⎠
1/3

m.. The net change in height from t = 5 to t = 10 is ⎛
⎝
30
π

⎞
⎠
1/3

− ⎛
⎝
15
π

⎞
⎠
1/3

m.
233. The total daily power consumption is estimated as the sum of the hourly power rates, or 911 gW-h.
235. 17 kJ

237. a. 54.3%; b. 27.00%; c. The curve in the following plot is 2.35(t + 3)e−0.15(t + 3).

718 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



239. In dry conditions, with initial velocity v0 = 30 m/s, D = 64.3 and, if v0 = 25, D = 44.64. In wet conditions, if

v0 = 30, and D = 180 and if v0 = 25, D = 125.
241. 225 cal
243. E(150) = 28, E(300) = 22, E(450) = 16
245. a.

b. Between 600 and 1000 the average decrease in vehicles per hour per lane is −0.0075. Between 1000 and 1500 it is −0.006 per
vehicles per hour per lane, and between 1500 and 2100 it is −0.04 vehicles per hour per lane. c.

The graph is nonlinear, with minutes per mile increasing dramatically as vehicles per hour per lane reach 2000.

247. 1
37∫

0

37
p(t)dt = 0.07(37)3

4 + 2.42(37)2

3 − 25.63(37)
2 + 521.23 ≈ 2037

249. Average acceleration is A = 1
5∫

0

5
a(t)dt = −

0.7⎛
⎝52⎞

⎠
3 + 1.44(5)

2 + 10.44 ≈ 8.2 mph/s

251. d(t) = ∫
0

1
|v(t)|dt = ⌠

⌡0

t ⎛
⎝

7
30t3 − 0.72t2 − 10.44t + 41.033⎞

⎠dt = 7
120t4 − 0.24t3 − 5.22t3 + 41.033t. Then,

d(5) ≈ 81.12 mph × sec ≈ 119 feet.

253. 1
40∫

0

40
(−0.068t + 5.14)dt = − 0.068(40)

2 + 5.14 = 3.78

255. u = h(x)

257. f (u) = (u + 1)2

u

259. du = 8xdx; f (u) = 1
8 u
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261. 1
5(x + 1)5 + C

263. − 1
12(3 − 2x)6 + C

265. x2 + 1 + C

267. 1
8

⎛
⎝x2 − 2x⎞

⎠
4

+ C

269. sinθ − sin3 θ
3 + C

271. (1 − x)101

101 − (1 − x)100

100 + C

273. − 1
22⎛

⎝7 − 11x2⎞
⎠

+ C

275. −cos4 θ
4 + C

277. −cos3 (πt)
3π + C

279. −1
4cos2 ⎛

⎝t2⎞
⎠ + C

281. − 1
3(x3 − 3)

+ C

283. −
2⎛

⎝y
3 − 2⎞

⎠

3 1 − y3

285. 1
33

⎛
⎝1 − cos3 θ⎞

⎠
11

+ C

287. 1
12

⎛
⎝sin3 θ − 3sin2 θ⎞

⎠
4

+ C

289. L50 = −8.5779. The exact area is −81
8

291. L50 = −0.006399 … The exact area is 0.

293. u = 1 + x2, du = 2xdx, 1
2∫

1

2
u−1/2 du = 2 − 1

295. u = 1 + t3, du = 3t2, 1
3

⌠
⌡1

2
u−1/2 du = 2

3( 2 − 1)

297. u = cosθ, du = −sinθdθ, ⌠
⌡1/ 2

1
u−4 du = 1

3(2 2 − 1)

299.
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The antiderivative is y = sin⎛
⎝ln(2x)⎞

⎠. Since the antiderivative is not continuous at x = 0, one cannot find a value of C that

would make y = sin⎛
⎝ln(2x)⎞

⎠ − C work as a definite integral.

301.

The antiderivative is y = 1
2sec2 x. You should take C = −2 so that F⎛

⎝−
π
3

⎞
⎠ = 0.
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303.

The antiderivative is y = 1
3

⎛
⎝2x3 + 1⎞

⎠
3/2

. One should take C = − 1
3.

305. No, because the integrand is discontinuous at x = 1.

307. u = sin⎛
⎝t2⎞

⎠; the integral becomes 1
2∫

0

0
udu.

309. u =
⎛

⎝
⎜1 + ⎛

⎝t − 1
2

⎞
⎠
2⎞

⎠
⎟; the integral becomes −∫

5/4

5/41
udu.

311. u = 1 − t; the integral becomes

∫
1

−1
ucos(π(1 − u))du

= ∫
1

−1
u[cosπ cosu − sinπ sinu]du

= −∫
1

−1
ucosudu

= ∫
−1

1
ucosudu = 0

since the integrand is odd.

313. Setting u = cx and du = cdx gets you 1
b
c − a

c
∫

a/c

b/c
f (cx)dx = c

b − a
⌠
⌡u = a

u = b

f (u)du
c = 1

b − a∫
a

b
f (u)du.

315.
⌠
⌡0

x

g(t)dt = 1
2

⌠
⌡

u = 1 − x2

1
du
ua = 1

2(1 − a)u1 − a |
u = 1 − x2

1

= 1
2(1 − a)

⎛
⎝1 − ⎛

⎝1 − x2⎞
⎠
1 − a⎞

⎠. As x → 1 the limit is

1
2(1 − a) if a < 1, and the limit diverges to +∞ if a > 1.

317. ∫
t = π

0
b 1 − cos2 t × (−asin t)dt = ∫

t = 0

π
absin2 tdt
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319. f (t) = 2cos(3t) − cos(2t); ⌠
⌡0

π/2
⎛
⎝2cos(3t) − cos(2t)⎞

⎠ = − 2
3

321. −1
3 e−3x + C

323. −3−x

ln3 + C

325. ln⎛
⎝x2⎞

⎠ + C

327. 2 x + C

329. − 1
lnx + C

331. ln⎛
⎝ln(lnx)⎞

⎠ + C
333. ln(xcosx) + C

335. −1
2

⎛
⎝ln(cos(x))⎞

⎠
2 + C

337. −e−x3

3 + C

339. etanx + C
341. t + C

343. 1
9x3 ⎛

⎝ln
⎛
⎝x

3⎞
⎠ − 1⎞

⎠ + C

345. 2 x(lnx − 2) + C

347. ⌠
⌡0

lnx
et dt = et |0

lnx
= elnx − e0 = x − 1

349. −1
3ln⎛

⎝sin(3x) + cos(3x)⎞
⎠

351. −1
2ln|csc⎛

⎝x2⎞
⎠ + cot⎛

⎝x2⎞
⎠| + C

353. −1
2

⎛
⎝ln(cscx)⎞

⎠
2 + C

355. 1
3ln⎛

⎝
26
7

⎞
⎠

357. ln⎛
⎝ 3 − 1⎞

⎠

359. 1
2ln 3

2
361. y − 2ln|y + 1| + C
363. ln|sinx − cosx| + C

365. −1
3

⎛
⎝1 − ⎛

⎝lnx2⎞
⎠
⎞
⎠
3/2

+ C

367. Exact solution: e − 1
e , R50 = 0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.

369. Exact solution:
2ln(3) − ln(6)

2 , R50 = 0.2033. Since f is increasing, the right endpoint estimate overestimates the area.

371. Exact solution: − 1
ln(4), R50 = −0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the

actual area is a larger negative number).

373. 11
2 ln2

375.
1

ln(65, 536)

377. ⌠
⌡N

N + 1
xe−x2

dx = 1
2
⎛
⎝e−N 2

− e−(N + 1)2⎞
⎠. The quantity is less than 0.01 when N = 2.

Answer Key 723



379. ∫
a

bdx
x = ln(b) − ln(a) = ln⎛

⎝
1
a

⎞
⎠ − ln⎛

⎝
1
b

⎞
⎠ = ∫

1/b

1/adx
x

381. 23

383. We may assume that x > 1, so 1
x < 1. Then, ∫

1

1/xdt
t . Now make the substitution u = 1

t , so du = − dt
t2 and

du
u = − dt

t , and change endpoints: ∫
1

1/xdt
t = −∫

1

xdu
u = −lnx.

387. x = E⎛
⎝ln(x)⎞

⎠. Then, 1 = E '(lnx)
x or x = E '(lnx). Since any number t can be written t = lnx for some x, and for such t

we have x = E(t), it follows that for any t, E '(t) = E(t).
389. R10 = 0.6811, R100 = 0.6827

391. sin−1 x|0
3/2

= π
3

393. tan−1 x| 3

1
= − π

12

395. sec−1 x|1
2

= π
4

397. sin−1 ⎛
⎝
x
3

⎞
⎠ + C

399. 1
3tan−1 ⎛

⎝
x
3

⎞
⎠ + C

401. 1
3sec−1 ⎛

⎝
x
3

⎞
⎠ + C

403. cos⎛
⎝
π
2 − θ⎞

⎠ = sinθ. So, sin−1 t = π
2 − cos−1 t. They differ by a constant.

405. 1 − t2 is not defined as a real number when t > 1.
407.
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The antiderivative is sin−1 ⎛
⎝
x
3

⎞
⎠ + C. Taking C = π

2 recovers the definite integral.

409.

The antiderivative is 1
2tan−1 ⎛

⎝
sinx

2
⎞
⎠ + C. Taking C = 1

2tan−1 ⎛
⎝
sin(6)

2
⎞
⎠ recovers the definite integral.

411. 1
2

⎛
⎝sin−1 t⎞

⎠
2

+ C

413. 1
4

⎛
⎝tan−1 (2t)⎞

⎠
2

415. 1
4

⎛

⎝
⎜sec−1 ⎛

⎝
t
2

⎞
⎠
2⎞

⎠
⎟ + C

417.
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The antiderivative is 1
2sec−1 ⎛

⎝
x
2

⎞
⎠ + C. Taking C = 0 recovers the definite integral over ⎡

⎣2, 6⎤
⎦.

419.

The general antiderivative is tan−1 (xsinx) + C. Taking C = −tan−1(6sin(6)) recovers the definite integral.

421.

The general antiderivative is tan−1 (lnx) + C. Taking C = π
2 = tan−1 ∞ recovers the definite integral.

423. sin−1 ⎛
⎝et⎞

⎠ + C

425. sin−1 (ln t) + C

427. −1
2

⎛
⎝cos−1 (2t)⎞

⎠
2

+ C
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429. 1
2ln⎛

⎝
4
3

⎞
⎠

431. 1 − 2
5

433. 2tan−1 (A) → π as A → ∞

435. Using the hint, one has ⌠
⌡

csc2 x
csc2 x + cot2 x

dx = ⌠
⌡

csc2 x
1 + 2cot2 x

dx. Set u = 2cot x. Then, du = − 2csc2 x and the

integral is − 1
2

⌠
⌡

du
1 + u2 = − 1

2
tan−1 u + C = 1

2
tan−1 ⎛

⎝ 2cot x⎞
⎠ + C. If one uses the identity tan−1 s + tan−1 ⎛

⎝
1
s

⎞
⎠ = π

2,

then this can also be written 1
2

tan−1 ⎛
⎝
tanx

2
⎞
⎠ + C.

437. x ≈ ± 1.13525. The left endpoint estimate with N = 100 is 2.796 and these decimals persist for N = 500.
Review Exercises

439. False
441. True
443. L4 = 5.25, R4 = 3.25, exact answer: 4

445. L4 = 5.364, R4 = 5.364, exact answer: 5.870

447. −4
3

449. 1

451. − 1
2(x + 4)2 + C

453. 4
3sin−1 ⎛

⎝x
3⎞

⎠ + C

455.
sin t
1 + t2

457. 4lnx
x + 1

459. $6,328,113
461. $73.36

463. 19117
12 ft/sec, or 1593 ft/sec

Chapter 2

Checkpoint

2.1. 12 units2

2.2. 3
10 unit2

2.3. 2 + 2 2 units2

2.4. 5
3 units2

2.5. 5
3 units2

2.7.
π
2

2.8. 8π units3

2.9. 21π units3

2.10. 10π
3 units3

2.11. 60π units3

2.12. 15π
2 units3

2.13. 8π units3
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2.14. 12π units3

2.15. 11π
6 units3

2.16.
π
6 units3

2.17. Use the method of washers; V = ∫
−1

1
π⎡
⎣

⎛
⎝2 − x2⎞

⎠
2

− ⎛
⎝x2⎞

⎠
2⎤
⎦dx

2.18. 1
6

⎛
⎝5 5 − 1⎞

⎠ ≈ 1.697

2.19. Arc Length ≈ 3.8202
2.20. Arc Length = 3.15018

2.21.
π
6

⎛
⎝5 5 − 3 3⎞

⎠ ≈ 3.133

2.22. 12π
2.23. 70/3
2.24. 24π
2.25. 8 ft-lb

2.26. Approximately 43,255.2 ft-lb

2.27. 156,800 N

2.28. Approximately 7,164,520,000 lb or 3,582,260 t

2.29. M = 24, x– = 2
5 m

2.30. (−1, −1) m

2.31. The centroid of the region is (3/2, 6/5).
2.32. The centroid of the region is (1, 13/5).
2.33. The centroid of the region is (0, 2/5).
2.34. 6π2 units3

2.35.

a.
d
dxln⎛

⎝2x2 + x⎞
⎠ = 4x + 1

2x2 + x

b. d
dx

⎛
⎝ln

⎛
⎝x

3⎞
⎠
⎞
⎠
2

=
6 ln⎛

⎝x
3⎞

⎠
x

2.36. ∫ x2

x3 + 6
dx = 1

3ln |x3 + 6| + C

2.37. 4 ln 2
2.38.

a. d
dx

⎛

⎝
⎜ex2

e5x

⎞

⎠
⎟ = ex2 − 5x (2x − 5)

b. d
dt

⎛
⎝e2t⎞

⎠
3

= 6e6t

2.39. ∫ 4
e3xdx = − 4

3e−3x + C

2.40.

a. d
dt4

t4
= 4t4

(ln 4)⎛
⎝4t3⎞

⎠

b.
d
dxlog3

⎛
⎝ x2 + 1⎞

⎠ = x
(ln 3)⎛

⎝x2 + 1⎞
⎠

2.41. ∫ x2 2x3
dx = 1

3 ln 22x3
+ C

2.42. There are 81,377,396 bacteria in the population after 4 hours. The population reaches 100 million bacteria after
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244.12 minutes.

2.43. At 5% interest, she must invest $223,130.16. At 6% interest, she must invest $165,298.89.
2.44. 38.90 months

2.45. The coffee is first cool enough to serve about 3.5 minutes after it is poured. The coffee is too cold to serve about 7 minutes

after it is poured.
2.46. A total of 94.13 g of carbon remains. The artifact is approximately 13,300 years old.

2.47.

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠ = ⎛

⎝sech2 ⎛
⎝x2 + 3x⎞

⎠
⎞
⎠(2x + 3)

b. d
dx

⎛

⎝
⎜ 1
(sinh x)2

⎞

⎠
⎟ = d

dx(sinh x)−2 = −2(sinh x)−3 cosh x

2.48.

a. ∫ sinh3 x cosh x dx = sinh4 x
4 + C

b. ∫ sech2 (3x)dx = tanh(3x)
3 + C

2.49.

a.
d
dx

⎛
⎝cosh−1 (3x)⎞

⎠ = 3
9x2 − 1

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

=
3⎛

⎝coth−1 x⎞
⎠
2

1 − x2

2.50.

a. ∫ 1
x2 − 4

dx = cosh−1 ⎛
⎝
x
2

⎞
⎠ + C

b. ∫ 1
1 − e2x

dx = −sech−1 (ex) + C

2.51. 52.95 ft
Section Exercises

1. 32
3

3. 13
12

5. 36
7.

243 square units
9.
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4
11.

2(e − 1)2
e

13.

1
3

15.
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34
3

17.

5
2

19.

1
2

21.
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9
2

23.

9
2

25.
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3 3
2

27.

e−2

29.

27
4

31.

4
3 − ln(3)

33.

1
2
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35.

1
2

37.

−2⎛
⎝ 2 − π⎞

⎠

39. 1.067
41. 0.852
43. 7.523

45. 3π − 4
12

47. 1.429
49. $33,333.33 total profit for 200 cell phones sold

51. 3.263 mi represents how far ahead the hare is from the tortoise

53. 343
24

55. 4 3

57. π − 32
25

63. 8 units3

65.
32
3 2 units3

67. 7π
12hr2

units3

69.
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π
24 units3

71.

2 units3

73.

π
240 units3

75.
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4096π
5 units3

77.

8π
9 units3

79.

π
2 units3

81.
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207π units3

83.

4π
5 units3

85.

16π
3 units3

87.

π units3

89.
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16π
3 units3

91.

72π
5 units3

93.

108π
5 units3

95.
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3π
10 units3

97.

2 6π units3

99.

9π units3

101.
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π
20

⎛
⎝75 − 4 ln5 (2)⎞

⎠ units3

103. m2 π
3

⎛
⎝b

3 − a3⎞
⎠ units3

105. 4a2 bπ
3 units3

107. 2π2 units3

109. 2ab2 π
3 units3

111.
π
12(r + h)2 (6r − h) units3

113.
π
3(h + R)(h − 2R)2

units3

115.

54π units3

117.

81π units3

119.
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512π
7 units3

121. 2π units3

123. 2π
3 units3

125. 2π units3

127. 4π
5 units3

129. 64π
3 units3

131. 32π
5 units3

133. π(e − 2) units3

135. 28π
3 units3

137. −84π
5 units3

139. −eπ π2 units3

141. 64π
5 units3

143. 28π
15 units3

145. 3π
10 units3

147. 52π
5 units3

149. 0.9876 units3

151.

3 2 units3

153.
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496π
15 units3

155.

398π
15 units3

157.

15.9074 units3

159. 1
3πr2 h units3

161. πr2 h units3

163. πa2 units3

165. 2 26
167. 2 17

169.
π
6

⎛
⎝17 17 − 5 5⎞

⎠

171. 13 13 − 8
27

173. 4
3

175. 2.0035
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177. 123
32

179. 10

181. 20
3

183. 1
675

⎛
⎝229 229 − 8⎞

⎠

185. 1
8

⎛
⎝4 5 + ln⎛

⎝9 + 4 5⎞
⎠
⎞
⎠

187. 1.201
189. 15.2341

191. 49π
3

193. 70π 2
195. 8π
197. 120π 26

199.
π
6(17 17 − 1)

201. 9 2π

203. 10 10π
27

⎛
⎝73 73 − 1⎞

⎠

205. 25.645
207. 2π
209. 10.5017
211. 23 ft

213. 2
215. Answers may vary
217. For more information, look up Gabriel’s Horn.
219. 150 ft-lb

221. 200 J
223. 1 J

225. 39
2

227. ln(243)

229. 332π
15

231. 100π
233. 20π 15
235. 6 J

237. 5 cm

239. 36 J

241. 18,750 ft-lb

243. 32
3 × 109 ft-lb

245. 8.65 × 105 J
247. a. 3,000,000 lb, b. 749,000 lb

249. 23.25π million ft-lb

251. AρH 2

2
253. Answers may vary

255. 5
4
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257.
⎛
⎝
2
3, 2

3
⎞
⎠

259.
⎛
⎝
7
4, 3

2
⎞
⎠

261. 3L
4

263.
π
2

265. e2 + 1
e2 − 1

267. π2 − 4
π

269. 1
4

⎛
⎝1 + e2⎞

⎠

271.
⎛
⎝
a
3, b

3
⎞
⎠

273.
⎛
⎝0, π

8
⎞
⎠

275. (0, 3)

277.
⎛
⎝0, 4

π
⎞
⎠

279.
⎛
⎝
5
8, 1

3
⎞
⎠

281.
mπ
3

283. πa2 b

285.
⎛
⎝

4
3π , 4

3π
⎞
⎠

287.
⎛
⎝
1
2, 2

5
⎞
⎠

289.
⎛
⎝0, 28

9π
⎞
⎠

291. Center of mass:
⎛
⎝
a
6, 4a2

5
⎞
⎠, volume: 2πa4

9
293. Volume: 2π2 a2 (b + a)

295. 1
x

297. − 1
x(ln x)2

299. ln(x + 1) + C
301. ln(x) + 1
303. cot(x)

305. 7
x

307. csc(x)sec x
309. −2 tan x

311. 1
2ln⎛

⎝
5
3

⎞
⎠

313. 2 − 1
2ln(5)

315.
1

ln(2) − 1

317. 1
2ln(2)
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319. 1
3(ln x)3

321.
2x3

x2 + 1 x2 − 1
323. x−2 − (1/x) (ln x − 1)
325. exe − 1

327. 1

329. − 1
x2

331. π − ln(2)

333. 1
x

335. e5 − 6 units2

337. ln(4) − 1 units2

339. 2.8656
341. 3.1502
349. True

351. False; k = ln (2)
t

353. 20 hours

355. No. The relic is approximately 871 years old.

357. 71.92 years

359. 5 days 6 hours 27 minutes

361. 12
363. 8.618%
365. $6766.76
367. 9 hours 13 minutes

369. 239,179 years

371. P′(t) = 43e0.01604t. The population is always increasing.

373. The population reaches 10 billion people in 2027.
375. P′(t) = 2.259e0.06407t. The population is always increasing.

377. ex and e−x

379. Answers may vary
381. Answers may vary
383. Answers may vary
385. 3 sinh(3x + 1)
387. −tanh(x)sech(x)
389. 4 cosh(x)sinh(x)

391.
x sech2 ⎛

⎝ x2 + 1⎞
⎠

x2 + 1
393. 6 sinh5 (x)cosh(x)

395. 1
2sinh(2x + 1) + C

397. 1
2sinh2 ⎛

⎝x2⎞
⎠ + C

399. 1
3cosh3 (x) + C

401. ln⎛
⎝1 + cosh(x)⎞

⎠ + C
403. cosh(x) + sinh(x) + C
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405.
4

1 − 16x2

407.
sinh(x)

cosh2 (x) + 1
409. −csc(x)

411. − 1
⎛
⎝x2 − 1⎞

⎠tanh−1 (x)

413. 1
atanh−1 ⎛

⎝
x
a

⎞
⎠ + C

415. x2 + 1 + C
417. cosh−1 (ex) + C
419. Answers may vary
421. 37.30

423. y = 1
ccosh(cx)

425. −0.521095
427. 10
Review Exercises

435. False
437. False
439. 32 3

441. 162π
5

443. a. 4, b. 128π
7 , c. 64π

5
445. a. 1.949, b. 21.952, c. 17.099

447. a. 31
6 , b. 452π

15 , c. 31π
6

449. 245.282

451. Mass: 1
2, center of mass:

⎛
⎝
18
35, 9

11
⎞
⎠

453. 17 + 1
8ln(33 + 8 17)

455. Volume: 3π
4 , surface area: π⎛

⎝ 2 − sinh−1(1) + sinh−1(16) − 257
16

⎞
⎠

457. 11:02 a.m.
459. π(1 + sinh(1)cosh(1))

Chapter 3

Checkpoint

3.1. ∫ xe2x dx = 1
2xe2x − 1

4e2x + C

3.2. 1
2x2 lnx − 1

4x2 + C

3.3. −x2 cosx + 2xsinx + 2cosx + C

3.4.
π
2 − 1

3.5. 1
5sin5 x + C

3.6. 1
3sin3 x − 1

5sin5 x + C

3.7. 1
2x + 1

4sin(2x) + C
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3.8. sinx − 1
3sin3 x + C

3.9. 1
2x + 1

12 sin(6x) + C

3.10. 1
2sinx + 1

22 sin(11x) + C

3.11. 1
6tan6 x + C

3.12. 1
9sec9 x − 1

7sec7 x + C

3.13. ∫ sec5 x dx = 1
4sec3 x tanx − 3

4∫ sec3 x

3.14. ∫ 125sin3 θdθ

3.15. ∫ 32tan3 θsec3 θdθ

3.16. ln|x2 + x2 − 4
2 | + C

3.17. x − 5ln|x + 2| + C

3.18. 2
5ln|x + 3| + 3

5ln|x − 2| + C

3.19.
x + 2

(x + 3)3 (x − 4)2 = A
x + 3 + B

(x + 3)2 + C
(x + 3)3 + D

(x − 4) + E
(x − 4)2

3.20.
x2 + 3x + 1

(x + 2)(x − 3)2 (x2 + 4)2 = A
x + 2 + B

x − 3 + C
(x − 3)2 + Dx + E

x2 + 4
+ Fx + G

(x2 + 4)2

3.21. Possible solutions include sinh−1 ⎛
⎝
x
2

⎞
⎠ + C and ln| x2 + 4 + x| + C.

3.22. 24
35

3.23. 17
24

3.24. 0.0074, 1.1%

3.25. 1
192

3.26. 25
36

3.27. e3, converges

3.28. +∞, diverges

3.29. Since ∫
e

+∞
1
xdx = +∞, ∫

e

+∞
lnx
x dx diverges.

Section Exercises

1. u = x3

3. u = y3

5. u = sin(2x)
7. −x + x lnx + C

9. x tan−1 x − 1
2ln(1 + x2) + C

11. −1
2xcos(2x) + 1

4sin(2x) + C

13. e−x (−1 − x) + C

15. 2xcosx + ⎛
⎝−2 + x2⎞

⎠sinx + C
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17. 1
2(1 + 2x)⎛

⎝−1 + ln(1 + 2x)⎞
⎠ + C

19. 1
2ex (−cosx + sinx) + C

21. −e−x2

2 + C

23. −1
2xcos⎡

⎣ln(2x)⎤
⎦ + 1

2xsin⎡
⎣ln(2x)⎤

⎦ + C

25. 2x − 2x lnx + x(lnx)2 + C

27.
⎛
⎝− x3

9 + 1
3x3 lnx⎞

⎠ + C

29. −1
2 1 − 4x2 + x cos−1(2x) + C

31. −⎛
⎝−2 + x2⎞

⎠cosx + 2xsinx + C

33. −x⎛
⎝−6 + x2⎞

⎠cosx + 3⎛
⎝−2 + x2⎞

⎠sinx + C

35. 1
2x⎛

⎝− 1 − 1
x2 + x · sec−1 x⎞

⎠ + C

37. −coshx + xsinhx + C

39.
1
4 − 3

4e2

41. 2
43. 2π
45. −2 + π
47. −sin(x) + ln⎡

⎣sin(x)⎤
⎦sinx + C

49. Answers vary

51. a. 2
5(1 + x)(−3 + 2x)3/2 + C b. 2

5(1 + x)(−3 + 2x)3/2 + C

53. Do not use integration by parts. Choose u to be lnx, and the integral is of the form ∫ u2 du.

55. Do not use integration by parts. Let u = x2 − 3, and the integral can be put into the form ∫ eu du.

57. Do not use integration by parts. Choose u to be u = 3x3 + 2 and the integral can be put into the form ∫ sin(u)du.

59. The area under graph is 0.39535.

61. 2πe
63. 2.05
65. 12π
67. 8π2

69. cos2 x
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71.
1 − cos(2x)

2

73. sin4 x
4 + C

75. 1
12tan6(2x) + C

77. sec2 ⎛
⎝
x
2

⎞
⎠ + C

79. −3cosx
4 + 1

12 cos(3x) + C = −cosx + cos3 x
3 + C

81. −1
2cos2 x + C

83. −5cosx
64 − 1

192 cos(3x) + 3
320 cos(5x) − 1

448 cos(7x) + C

85. 2
3(sinx)2/3 + C

87. secx + C

89. 1
2secx tanx − 1

2ln(secx + tanx) + C

91. 2tanx
3 + 1

3sec(x)2 tanx = tanx + tan3 x
3 + C

93. −ln|cot x + cscx| + C

95. sin3 (ax)
3a + C

97.
π
2

99. x
2 + 1

12 sin(6x) + C

101. x + C
103. 0
105. 0
107. 0
109. Approximately 0.239
111. 2
113. 1.0
115. 0

117. 3θ
8 − 1

4π sin(2πθ) + 1
32π sin(4πθ) + C = f (x)

119. ln⎛
⎝ 3⎞

⎠

121. ∫
−π

π
sin(2x)cos(3x)dx = 0

123. tan(x)x⎛
⎝
8tanx

21 +2
7sec x2 tanx⎞

⎠ + C = f (x)

125. The second integral is more difficult because the first integral is simply a u-substitution type.
127. 9tan2 θ
129. a2 cosh2 θ

131. 4⎛
⎝x − 1

2
⎞
⎠
2

133. −(x + 1)2 + 5

135. ln|x + −a2 + x2| + C

137. 1
3ln| 9x2 + 1 + 3x| + C

Answer Key 749



139. − 1 − x2
x + C

141. 9
⎡

⎣
⎢x x2 + 9

18 + 1
2ln| x2 + 9

3 + x
3|⎤⎦⎥ + C

143. −1
3 9 − θ2⎛

⎝18 + θ2⎞
⎠ + C

145.
⎛
⎝−1 + x2⎞

⎠
⎛
⎝2 + 3x2⎞

⎠ x6 − x8

15x3 + C

147. − x
9 −9 + x2

+ C

149. 1
2

⎛
⎝ln|x + x2 − 1| + x x2 − 1⎞

⎠ + C

151. − 1 + x2
x + C

153. 1
8

⎛
⎝x⎛

⎝5 − 2x2⎞
⎠ 1 − x2 + 3arcsinx⎞

⎠ + C

155. lnx − ln|1 + 1 − x2| + C

157. − −1 + x2
x + ln|x + −1 + x2| + C

159. − 1 + x2
x + arcsinhx + C

161. − 1
1 + x + C

163.
2 −10 + x x ln| −10 + x + x|

(10 − x)x
+ C

165. 9π
2 ; area of a semicircle with radius 3

167. arcsin(x) + C is the common answer.

169. 1
2ln⎛

⎝1 + x2⎞
⎠ + C is the result using either method.

171. Use trigonometric substitution. Let x = sec(θ).
173. 4.367

175. π2

8 + π
4

177. y = 1
16ln|x + 8

x − 8| + 3

179. 24.6 m3

181. 2π
3

183. − 2
x + 1 + 5

2(x + 2) + 1
2x

185.
1
x2 + 3

x

187. 2x2 + 4x + 8 + 16
x − 2

189. − 1
x2 − 1

x + 1
x − 1

191. − 1
2(x − 2) + 1

2(x − 1) − 1
6x + 1

6(x − 3)

193.
1

x − 1 + 2x + 1
x2 + x + 1
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195.
2

x + 1 + x
x2 + 4

− 1
⎛
⎝x2 + 4⎞

⎠
2

197. −ln|2 − x| + 2ln|4 + x| + C

199. 1
2ln|4 − x2| + C

201. 2⎛
⎝x + 1

3arctan⎛
⎝
1 + x

3
⎞
⎠
⎞
⎠ + C

203. 2ln|x| − 3ln|1 + x| + C

205. 1
16

⎛
⎝−

4
−2 + x − ln|−2 + x| + ln|2 + x|⎞⎠ + C

207. 1
30

⎛
⎝−2 5arctan⎡

⎣
1 + x

5
⎤
⎦ + 2ln|−4 + x| − ln|6 + 2x + x2|⎞⎠ + C

209. −3
x + 4ln|x + 2| + x + C

211. −ln|3 − x| + 1
2ln|x2 + 4| + C

213. ln|x − 2| − 1
2ln|x2 + 2x + 2| + C

215. −x + ln|1 − ex| + C

217. 1
5ln|cosx + 3

cosx − 2| + C

219.
1

2 − 2e2t + C

221. 2 1 + x − 2ln|1 + 1 + x| + C

223. ln| sinx
1 − sinx | + C

225. 3
4

227. x − ln(1 + ex) + C

229. 6x1/6 − 3x1/3 + 2 x − 6ln⎛
⎝1 + x1/6⎞

⎠ + C

231. 4
3π arctanh⎡

⎣
1
3

⎤
⎦ = 1

3π ln4

233. x = −ln|t − 3| + ln|t − 4| + ln2

235. x = ln|t − 1| − 2arctan⎛
⎝ 2t⎞

⎠ − 1
2ln⎛

⎝t
2 + 1

2
⎞
⎠ + 2arctan(2 2) + 1

2ln4.5

237. 2
5π ln 28

13

239.
arctan⎡

⎣
−1 + 2x

3
⎤
⎦

3
+ 1

3ln|1 + x| − 1
6ln|1 − x + x2| + C

241. 2.0 in.2

243. 3(−8 + x)1/3

−2 3arctan
⎡

⎣
⎢ −1 + (−8 + x)1/3

3

⎤

⎦
⎥

−2ln⎡
⎣2 + (−8 + x)1/3⎤

⎦

+ln⎡
⎣4 − 2(−8 + x)1/3 + (−8 + x)2/3⎤

⎦ + C

245. 1
2ln|x2 + 2x + 2| + 2arctan(x + 1) + C

247. cosh−1 ⎛
⎝
x + 3

3
⎞
⎠ + C
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249. 2x2 − 1

ln2 + C

251. arcsin⎛
⎝
y
2

⎞
⎠ + C

253. −1
2csc(2w) + C

255. 9 − 6 2

257. 2 − π
2

259. 1
12tan4 (3x) − 1

6tan2 (3x) + 1
3ln|sec(3x)| + C

261. 2cot⎛⎝
w
2

⎞
⎠ − 2csc⎛

⎝
w
2

⎞
⎠ + w + C

263. 1
5ln|2(5 + 4sin t − 3cos t)

4cos t + 3sin t |
265. 6x1/6 − 3x1/3 + 2 x − 6ln⎡

⎣1 + x1/6⎤
⎦ + C

267. −x3 cosx + 3x2 sinx + 6xcosx − 6sinx + C

269. 1
2

⎛
⎝x2 + ln|1 + e−x2|⎞⎠ + C

271. 2arctan⎛
⎝ x − 1⎞

⎠ + C

273. 0.5 = 1
2

275. 8.0

277. 1
3arctan⎛

⎝
1
3(x + 2)⎞⎠ + C

279. 1
3arctan⎛

⎝
x + 1

3
⎞
⎠ + C

281. ln⎛
⎝e

x + 4 + e2x⎞
⎠ + C

283. lnx − 1
6ln⎛

⎝x
6 + 1⎞

⎠ −
arctan⎛

⎝x
3⎞

⎠

3x3 + C

285. ln|x + 16 + x2| + C

287. −1
4cot(2x) + C

289. 1
2arctan10

291. 1276.14
293. 7.21

295. 5 − 2 + ln|2 + 2 2
1 + 5 |

297. 1
3arctan(3) ≈ 0.416

299. 0.696
301. 9.279
303. 0.5000
305. T4 = 18.75
307. 0.500
309. 1.1614
311. 0.6577
313. 0.0213
315. 1.5629
317. 1.9133
319. T(4) = 0.1088
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321. 1.0
323. Approximate error is 0.000325.

325. 1
7938

327.
81

25, 000
329. 475
331. 174
333. 0.1544
335. 6.2807
337. 4.606
339. 3.41 ft
341. T16 = 100.125; absolute error = 0.125

343. about 89,250 m2

345. parabola
347. divergent

349.
π
2

351. 2
e

353. Converges
355. Converges to 1/2.
357. −4
359. π
361. diverges
363. diverges
365. 1.5
367. diverges
369. diverges
371. diverges
373. Both integrals diverge.
375. diverges
377. diverges
379. π
381. 0.0
383. 0.0
385. 6.0

387.
π
2

389. 8ln(16) − 4
391. 1.047

393. −1 + 2
3

395. 7.0

397. 5π
2

399. 3π

401. 1
s , s > 0

403.
s

s2 + 4
, s > 0

405. Answers will vary.
407. 0.8775

Review Exercises

409. False
411. False

413. − x2 + 16
16x + C
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415. 1
10

⎛
⎝4ln(2 − x) + 5ln(x + 1) − 9ln(x + 3)⎞

⎠ + C

417. − 4 − sin2(x)
sin(x) − x

2 + C

419. 1
15

⎛
⎝x2 + 2⎞

⎠
3/2 ⎛

⎝3x2 − 4⎞
⎠ + C

421. 1
16ln⎛

⎝
x2 + 2x + 2
x2 − 2x + 2

⎞
⎠ − 1

8tan−1 (1 − x) + 1
8tan−1 (x + 1) + C

423. M4 = 3.312, T4 = 3.354, S4 = 3.326

425. M4 = −0.982, T4 = −0.917, S4 = −0.952
427. approximately 0.2194
431. Answers may vary. Ex: 9.405 km

Chapter 4

Checkpoint

4.2. 5
4.3. y = 2x2 + 3x + 2

4.5. y = 1
3x3 − 2x2 + 3x − 6ex + 14

4.6. v(t) = −9.8t
4.7.

4.8.
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The equilibrium solutions are y = −2 and y = 2. For this equation, y = −2 is an unstable equilibrium solution, and y = 2 is

a semi-stable equilibrium solution.
4.9.
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n xn yn = yn − 1 + hf(xn − 1, yn − 1)

0 1 −2

1 1.1 y1 = y0 + h f (x0, y0) = −1.5

2 1.2 y2 = y1 + h f (x1, y1) = −1.1419

3 1.3 y3 = y2 + h f (x2, y2) = −0.8387

4 1.4 y4 = y3 + h f (x3, y3) = −0.5487

5 1.5 y5 = y4 + h f (x4, y4) = −0.2442

6 1.6 y6 = y5 + h f (x5, y5) = 0.0993

7 1.7 y7 = y6 + h f (x6, y6) = 0.5099

8 1.8 y8 = y7 + h f (x7, y7) = 1.0272

9 1.9 y9 = y8 + h f (x8, y8) = 1.7159

10 2 y10 = y9 + h f (x9, y9) = 2.6962

4.10. y = 2 + Cex2 + 3x

4.11. y = 4 + 14ex2 + x

1 − 7ex2 + x

4.12. Initial value problem: du
dt = 2.4 − 2u

25, u(0) = 3 Solution: u(t) = 30 − 27e−t/50

4.13.
a. Initial-value problem

dT
dt = k(T − 70), T(0) = 450

b. T(t) = 70 + 380ekt

c. Approximately 114 minutes.

4.14.

a. dP
dt = 0.04⎛

⎝1 − P
750

⎞
⎠, P(0) = 200

b.
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c. P(t) = 3000e .04t

11 + 4e .04t

d. After 12 months, the population will be P(12) ≈ 278 rabbits.

4.15. y′ + 15
x + 3y = 10x − 20

x + 3 ; p(x) = 15
x + 3 and q(x) = 10x − 20

x + 3

4.16. y = x3 + x2 + C
x − 2

4.17. y = −2x − 4 + 2e2x

4.18.

a.

dv
dt = −v − 9.8

v(0) = 0

b. v(t) = 9.8⎛
⎝e−t − 1⎞

⎠

c. lim
t → ∞

v(t) = lim
t → ∞

⎛
⎝9.8⎛

⎝e−t − 1⎞
⎠
⎞
⎠ = −9.8 m/s ≈ − 21.922 mph

4.19. Initial-value problem: 8q′ + 1
0.02q = 20sin5t, q(0) = 4 q(t) = 10sin5t − 8cos5t + 172e−6.25t

41
Section Exercises

1. 1
3. 3
5. 1
7. 1

19. y = 4 + 3x4

4

21. y = 1
2ex2

23. y = 2e−1/x

25. u = sin−1 ⎛
⎝e

−1 + t⎞
⎠

27. y = − x + 1
1 − x

− 1

29. y = C − x + x lnx − ln(cosx)

31. y = C + 4x

ln(4)

33. y = 2
3 t2 + 16⎛

⎝t2 + 16⎞
⎠ + C
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35. x = 2
15 4 + t⎛

⎝3t2 + 4t − 32⎞
⎠ + C

37. y = Cx

39. y = 1 − t2

2 , y = − t2

2 − 1

41. y = e−t, y = −e−t

43. y = 2⎛
⎝t2 + 5⎞

⎠, t = 3 5

45. y = 10e−2t, t = − 1
2 ln⎛

⎝
1
10

⎞
⎠

47. y = 1
4

⎛
⎝41 − e−4t⎞

⎠, never

49. Solution changes from increasing to decreasing at y(0) = 0
51. Solution changes from increasing to decreasing at y(0) = 0
53. v(t) = −32t + a
55. 0 ft/s

57. 4.86 meters

59. x = 50t − 15
π2cos(πt) + 3

π2, 2 hours 1 minute

61. y = 4e3t

63. y = 1 − 2t + t2

65. y = 1
k

⎛
⎝e

kt − 1⎞
⎠ and y = x

67.

69. y = 0 is a stable equilibrium

71.
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73. y = 0 is a stable equilibrium and y = 2 is unstable

75.

77.

79.
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81.

83.

85. E
87. A
89. B
91. A
93. C
95. 2.24, exact: 3
97. 7.739364, exact: 5(e − 1)
99. −0.2535 exact: 0
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101. 1.345, exact:
1

ln(2)
103. −4, exact: −1/2
105.

107. y′ = 2et2 /2

109. 2
111. 3.2756
113. 2 e

Step Size Error

h = 1 0.3935

h = 10 0.06163

h = 100 0.006612

h = 1000 0.0006661

115.

Answer Key 761



117. 4.0741e−10

119. y = et − 1

121. y = 1 − e−t

123. y = Cxe−1/x

125. y = 1
C − x2

127. y = − 2
C + lnx

129. y = Cex (x + 1) + 1
131. y = sin(ln t + C)

133. y = −ln(e−x)

135. y = 1

2 − ex2

137. y = tanh−1 ⎛
⎝

x2

2
⎞
⎠

139. x = −sin(t − t ln t)
141. y = ln(ln(5)) − ln(2 − 5x)

143. y = Ce−2x + 1
2

145. y = 1
2 C − ex
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147. y = Ce−x xx

149. y = r
d

⎛
⎝1 − e−dt⎞

⎠

151. y(t) = 10 − 9e−x/50

153. 134.3 kilograms

155. 720 seconds

157. 12 hours 14 minutes

159. T(t) = 20 + 50e−0.125t

161. T(t) = 20 + 38.5e−0.125t

163. y = ⎛
⎝c + b

a
⎞
⎠e

ax − b
a

165. y(t) = cL + (I − cL)e−rt/L

167. y = 40⎛
⎝1 − e−0.1t⎞

⎠, 40 g/cm2

169.
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P = 0 semi-stable

171. P = 10e10x

e10x + 4

173. P(t) = 10000e0.02t

150 + 50e0.02t

175. 69 hours 5 minutes

177. 7 years 2 months

179.

181.
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P1 semi-stable

183.

P2 > 0 stable

185.
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P1 = 0 is semi-stable

187. y = −20
4 × 10−6 − 0.002e0.01t

189.

191. P(t) = 850 + 500e0.009t

85 + 5e0.009t

193. 13 years months

195.
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197. 31.465 days

199. September 2008

201. K + T
2

203. r = 0.0405
205. α = 0.0081
207. Logistic: 361, Threshold: 436, Gompertz: 309.
209. Yes
211. Yes

213. y′ − x3 y = sinx

215. y′ + (3x + 2)
x y = −ex

217.
dy
dt − yx(x + 1) = 0

219. ex

221. −ln(coshx)

223. y = Ce3x − 2
3

225. y = Cx3 + 6x2

227. y = Cex2 /2 − 3

229. y = C tan⎛
⎝
x
2

⎞
⎠ − 2x + 4tan⎛

⎝
x
2

⎞
⎠ln

⎛
⎝sin⎛

⎝
x
2

⎞
⎠
⎞
⎠

231. y = Cx3 − x2

233. y = C(x + 2)2 + 1
2

235. y = C
x + 2sin(3t)

237. y = C(x + 1)3 − x2 − 2x − 1

239. y = Cesinh−1 x − 2
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241. y = x + 4ex − 1

243. y = − 3x
2

⎛
⎝x2 − 1⎞

⎠

245. y = 1 − etan−1 x

247. y = (x + 2)ln⎛
⎝
x + 2

2
⎞
⎠

249. y = 2e2 x − 2x − 2 x − 1

251. v(t) = gm
k

⎛
⎝1 − e−kt/m⎞

⎠

253. 40.451 seconds

255.
gm
k

257. y = Cex − a(x + 1)

259. y = Cex2/2 − a

261. y = ekt − et

k − 1
Review Exercises

263. F
265. T

267. y(x) = 2x

ln(2) + xcos−1 x − 1 − x2 + C

269. y(x) = ln(C − cosx)

271. y(x) = eeC + x

273. y(x) = 4 + 3
2x2 + 2x − sinx

275. y(x) = − 2
1 + 3⎛

⎝x2 + 2sinx⎞
⎠

277. y(x) = −2x2 − 2x − 1
3 − 2

3e3x

279.
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y(x) = Ce−x + lnx

281. Euler: 0.6939, exact solution: y(x) = 3x − e−2x

2 + ln(3)

283. 40
49 second

285. x(t) = 5000 + 245
9 − 49

3 t − 245
9 e−5/3t, t = 307.8 seconds

287. T(t) = 200⎛
⎝1 − e−t/1000⎞

⎠

289. P(t) = 1600000e0.02t

9840 + 160e0.02t

Chapter 5

Checkpoint

5.1. an = (−1)n + 1

3 + 2n
5.2. an = 6n − 10
5.3. The sequence converges, and its limit is 0.
5.4. The sequence converges, and its limit is 2/3.
5.5. 2
5.6. 0.
5.7. The series diverges because the kth partial sum Sk > k.
5.8. 10.
5.9. 5/7
5.10. 475/90
5.11. e − 1
5.12. The series diverges.
5.13. The series diverges.
5.14. The series converges.
5.15. S5 ≈ 1.09035, R5 < 0.00267
5.16. The series converges.
5.17. The series diverges.
5.18. The series converges.
5.19. 0.04762
5.20. The series converges absolutely.
5.21. The series converges.
5.22. The series converges.
5.23. The comparison test because 2n /(3n + n) < 2n /3n for all positive integers n. The limit comparison test could also be

used.

Section Exercises

1. an = 0 if n is odd and an = 2 if n is even

3.
⎧

⎩
⎨an

⎫

⎭
⎬ = ⎧

⎩
⎨1, 3, 6, 10, 15, 21,…⎫

⎭
⎬

5. an = n(n + 1)
2

7. an = 4n − 7

9. an = 3.101 − n = 30.10−n

11. an = 2n − 1

13. an = (−1)n − 1

2n − 1
15. f (n) = 2n
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17. f (n) = n!/2n − 2

19. Terms oscillate above and below 5/3 and appear to converge to 5/3.

21. Terms oscillate above and below y ≈ 1.57... and appear to converge to a limit.

23. 7
25. 0
27. 0
29. 1
31. bounded, decreasing for n ≥ 1
33. bounded, not monotone
35. bounded, decreasing
37. not monotone, not bounded
39. an is decreasing and bounded below by 2. The limit a must satisfy a = 2a so a = 2, independent of the initial value.

41. 0
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43. 0 : |sinx| ≤ |x| and |sinx| ≤ 1 so −1
n ≤ an ≤ 1

n).
45. Graph oscillates and suggests no limit.

47. n1/n → 1 and 21/n → 1, so an → 0

49. Since (1 + 1/n)n → e, one has (1 − 2/n)n ≈ (1 + k)−2k → e−2 as k → ∞.
51. 2n + 3n ≤ 2 · 3n and 3n /4n → 0 as n → ∞, so an → 0 as n → ∞.

53.
an + 1

an
= n!/(n + 1)(n + 2)⋯ (2n) = 1 · 2 · 3⋯n

(n + 1)(n + 2)⋯ (2n) < 1/2n. In particular, an + 1 /an ≤ 1/2, so an → 0 as

n → ∞.

55. xn + 1 = xn − ⎛
⎝

⎛
⎝xn − 1⎞

⎠
2 − 2⎞

⎠/2⎛
⎝xn − 1⎞

⎠; x = 1 + 2, x ≈ 2.4142, n = 5

57. xn + 1 = xn − xn
⎛
⎝ln(xn) − 1⎞

⎠; x = e, x ≈ 2.7183, n = 5
59. a. Without losses, the population would obey Pn = 1.06Pn − 1. The subtraction of 150 accounts for fish losses. b. After

12 months, we have P12 ≈ 1494.
61. a. The student owes $9383 after 12 months. b. The loan will be paid in full after 139 months or eleven and a half years.

63. b1 = 0, x1 = 2/3, b2 = 1, x2 = 4/3 − 1 = 1/3, so the pattern repeats, and 1/3 = 0.010101….
65. For the starting values a1 = 1, a2 = 2,…, a1 = 10, the corresponding bit averages calculated by the method indicated

are 0.5220, 0.5000, 0.4960, 0.4870, 0.4860, 0.4680, 0.5130, 0.5210, 0.5040, and 0.4840. Here is an

example of ten corresponding averages of strings of 1000 bits generated by a random number generator: 0.4880, 0.4870,
0.5150, 0.5490, 0.5130, 0.5180, 0.4860, 0.5030, 0.5050, 0.4980. There is no real pattern in either type

of average. The random-number-generated averages range between 0.4860 and 0.5490, a range of 0.0630, whereas the

calculated PRNG bit averages range between 0.4680 and 0.5220, a range of 0.0540.

67. ∑
n = 1

∞
1
n

69. ∑
n = 1

∞ (−1)n − 1
n

71. 1, 3, 6, 10
73. 1, 1, 0, 0

75. an = Sn − Sn − 1 = 1
n − 1 − 1

n. Series converges to S = 1.

77. an = Sn − Sn − 1 = n − n − 1 = 1
n − 1 + n

. Series diverges because partial sums are unbounded.
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79. S1 = 1/3, S2 = 1/3 + 2/4 > 1/3 + 1/3 = 2/3, S3 = 1/3 + 2/4 + 3/5 > 3 · (1/3) = 1. In general Sk > k/3. Series

diverges.

81.

S1 = 1/(2.3) = 1/6 = 2/3 − 1/2,
S2 = 1/(2.3) + 1/(3.4) = 2/12 + 1/12 = 1/4 = 3/4 − 1/2,
S3 = 1/(2.3) + 1/(3.4) + 1/(4.5) = 10/60 + 5/60 + 3/60 = 3/10 = 4/5 − 1/2,
S4 = 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) = 10/60 + 5/60 + 3/60 + 2/60 = 1/3 = 5/6 − 1/2.

The pattern is

Sk = (k + 1)/(k + 2) − 1/2 and the series converges to 1/2.
83. 0
85. −3

87. diverges, ∑
n = 1001

∞
1
n

89. convergent geometric series, r = 1/10 < 1
91. convergent geometric series, r = π/e2 < 1

93. ∑
n = 1

∞
5 · (−1/5)n, converges to −5/6

95. ∑
n = 1

∞
100 · (1/10)n, converges to 100/9

97. x ∑
n = 0

∞
(−x)n = ∑

n = 1

∞
(−1)n − 1 xn

99. ∑
n = 0

∞
(−1)n sin2n (x)

101. Sk = 2 − 21/(k + 1) → 1 as k → ∞.

103. Sk = 1 − k + 1 diverges

105. ∑
n = 1

∞
lnn − ln(n + 1), Sk = −ln(k + 1)

107. an = 1
lnn − 1

ln(n + 1) and Sk = 1
ln(2) − 1

ln(k + 1) → 1
ln(2)

109. ∑
n = 1

∞
an = f (1) − f (2)

111. c0 + c1 + c2 + c3 + c4 = 0

113.
2

n3 − 1
= 1

n − 1 − 2
n + 1

n + 1, Sn = (1 − 1 + 1/3) + (1/2 − 2/3 + 1/4)

+(1/3 − 2/4 + 1/5) + (1/4 − 2/5 + 1/6) + ⋯ = 1/2
115. tk converges to 0.57721…tk is a sum of rectangles of height 1/k over the interval [k, k + 1] which lie above the graph

of 1/x.
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117. N = 22, SN = 6.1415

119. N = 3, SN = 1.559877597243667...
121. a. The probability of any given ordered sequence of outcomes for n coin flips is 1/2n. b. The probability of coming up

heads for the first time on the n th flip is the probability of the sequence TT…TH which is 1/2n. The probability of coming

up heads for the first time on an even flip is ∑
n = 1

∞
1/22n or 1/3.

123. 5/9

125. E = ∑
n = 1

∞
n/2n + 1 = 1, as can be shown using summation by parts

127. The part of the first dose after n hours is drn, the part of the second dose is drn − N, and, in general, the part

remaining of the mth dose is drn − mN, so

A(n) = ∑
l = 0

m
drn − lN = ∑

l = 0

m
drk + (m − l)N = ∑

q = 0

m
drk + qN = drk ∑

q = 0

m
rNq = drk 1 − r (m + 1)N

1 − rN , n = k + mN.

129. SN + 1 = aN + 1 + SN ≥ SN

131. Since S > 1, a2 > 0, and since k < 1, S2 = 1 + a2 < 1 + (S − 1) = S. If Sn > S for some n, then there is

a smallest n. For this n, S > Sn − 1, so Sn = Sn − 1 + k(S − Sn − 1) = kS + (1 − k)Sn − 1 < S, a contradiction. Thus

Sn < S and an + 1 > 0 for all n, so Sn is increasing and bounded by S. Let S∗ = lim Sn. If S∗ < S, then

δ = k(S − S∗) > 0, but we can find n such that S* − Sn < δ/2, which implies that Sn + 1 = Sn + k(S − Sn)
> S* + δ/2, contradicting that Sn is increasing to S∗. Thus Sn → S.

133. Let Sk = ∑
n = 1

k
an and Sk → L. Then Sk eventually becomes arbitrarily close to L, which means that

L − SN = ∑
n = N + 1

∞
an becomes arbitrarily small as N → ∞.

135. L = ⎛
⎝1 + 1

2
⎞
⎠ ∑
n = 1

∞
1/2n = 3

2.

137. At stage one a square of area 1/9 is removed, at stage 2 one removes 8 squares of area 1/92, at stage three

one removes 82 squares of area 1/93, and so on. The total removed area after N stages is

∑
n = 0

N − 1
8N /9N + 1 = 1

8
⎛
⎝1 − (8/9)N⎞

⎠/(1 − 8/9) → 1 as N → ∞. The total perimeter is 4 + 4 ∑
n = 0

8N /3N + 1 → ∞.

139. limn → ∞an = 0. Divergence test does not apply.

141. limn → ∞an = 2. Series diverges.
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143. limn → ∞an = ∞ (does not exist). Series diverges.

145. limn → ∞an = 1. Series diverges.

147. limn → ∞an does not exist. Series diverges.

149. limn → ∞an = 1/e2. Series diverges.

151. limn → ∞an = 0. Divergence test does not apply.

153. Series converges, p > 1.
155. Series converges, p = 4/3 > 1.
157. Series converges, p = 2e − π > 1.

159. Series diverges by comparison with ∫
1

∞
dx

(x + 5)1/3.

161. Series diverges by comparison with ∫
1

∞
x

1 + x2dx.

163. Series converges by comparison with ∫
1

∞
2x

1 + x4dx.

165. 2−lnn = 1/nln2. Since ln2 < 1, diverges by p -series.

167. 2−2lnn = 1/n2ln2. Since 2ln2 − 1 < 1, diverges by p -series.

169. R1000 ≤ ∫
1000

∞
dt
t2 = − 1

t |1000

∞
= 0.001

171. R1000 ≤ ∫
1000

∞
dt

1 + t2 = tan−1 ∞ − tan−1(1000) = π/2 − tan−1(1000) ≈ 0.000999

173. RN < ∫
N

∞
dx
x2 = 1/N, N > 104

175. RN < ∫
N

∞
dx

x1.01 = 100N −0.01, N > 10600

177. RN < ∫
N

∞
dx

1 + x2 = π/2 − tan−1 (N), N > tan⎛
⎝π/2 − 10−3⎞

⎠ ≈ 1000

179. RN < ∫
N

∞
dx
ex = e−N, N > 5ln(10), okay if N = 12; ∑

n = 1

12
e−n = 0.581973.... Estimate agrees with 1/(e − 1) to

five decimal places.

181. RN < ∫
N

∞
dx/x4 = 4/N 3, N > ⎛

⎝4.104⎞
⎠
1/3

, okay if N = 35; ∑
n = 1

35
1/n4 = 1.08231…. Estimate agrees with the sum

to four decimal places.
183. ln(2)
185. T = 0.5772...
187. The expected number of random insertions to get B to the top is n + n/2 + n/3 + ⋯ + n/(n − 1). Then one more insertion

puts B back in at random. Thus, the expected number of shuffles to randomize the deck is n(1 + 1/2 + ⋯ + 1/n).
189. Set bn = an + N and g(t) = f (t + N) such that f is decreasing on [t, ∞).
191. The series converges for p > 1 by integral test using change of variable.

193. N = ee100
≈ e1043 terms are needed.

195. Converges by comparison with 1/n2.
197. Diverges by comparison with harmonic series, since 2n − 1 ≥ n.
199. an = 1/(n + 1)(n + 2) < 1/n2. Converges by comparison with p-series, p = 2.

201. sin(1/n) ≤ 1/n, so converges by comparison with p-series, p = 2.
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203. sin(1/n) ≤ 1, so converges by comparison with p-series, p = 3/2.

205. Since n + 1 − n = 1/⎛
⎝ n + 1 + n⎞

⎠ ≤ 2/ n, series converges by comparison with p-series for p = 1.5.

207. Converges by limit comparison with p-series for p > 1.
209. Converges by limit comparison with p-series, p = 2.
211. Converges by limit comparison with 4−n.
213. Converges by limit comparison with 1/e1.1n.
215. Diverges by limit comparison with harmonic series.
217. Converges by limit comparison with p-series, p = 3.
219. Converges by limit comparison with p-series, p = 3.
221. Diverges by limit comparison with 1/n.
223. Converges for p > 1 by comparison with a p series for slightly smaller p.

225. Converges for all p > 0.
227. Converges for all r > 1. If r > 1 then rn > 4, say, once n > ln(2)/ln(r) and then the series converges by limit

comparison with a geometric series with ratio 1/2.

229. The numerator is equal to 1 when n is odd and 0 when n is even, so the series can be rewritten ∑
n = 1

∞
1

2n + 1, which

diverges by limit comparison with the harmonic series.

231. (a − b)2 = a2 − 2ab + b2 or a2 + b2 ≥ 2ab, so convergence follows from comparison of 2an bn with a2
n + b2

n.
Since the partial sums on the left are bounded by those on the right, the inequality holds for the infinite series.

233. (lnn)−lnn = e−ln(n)lnln(n). If n is sufficiently large, then lnlnn > 2, so (lnn)−lnn < 1/n2, and the series converges

by comparison to a p − series.

235. an → 0, so a2
n ≤ |an| for large n. Convergence follows from limit comparison. ∑ 1/n2 converges, but ∑ 1/n

does not, so the fact that ∑
n = 1

∞
a2

n converges does not imply that ∑
n = 1

∞
an converges.

237. No. ∑
n = 1

∞
1/n diverges. Let bk = 0 unless k = n2 for some n. Then ∑

k
bk /k = ∑ 1/k2

converges.

239. |sin t| ≤ |t|, so the result follows from the comparison test.

241. By the comparison test, x = ∑
n = 1

∞
bn /2n ≤ ∑

n = 1

∞
1/2n = 1.

243. If b1 = 0, then, by comparison, x ≤ ∑
n = 2

∞
1/2n = 1/2.

245. Yes. Keep adding 1 -kg weights until the balance tips to the side with the weights. If it balances perfectly, with Robert

standing on the other side, stop. Otherwise, remove one of the 1 -kg weights, and add 0.1 -kg weights one at a time. If it balances

after adding some of these, stop. Otherwise if it tips to the weights, remove the last 0.1 -kg weight. Start adding 0.01 -kg
weights. If it balances, stop. If it tips to the side with the weights, remove the last 0.01 -kg weight that was added. Continue in this

way for the 0.001 -kg weights, and so on. After a finite number of steps, one has a finite series of the form A + ∑
n = 1

N
sn/10n

where A is the number of full kg weights and dn is the number of 1/10n -kg weights that were added. If at some state this

series is Robert’s exact weight, the process will stop. Otherwise it represents the Nth partial sum of an infinite series that gives

Robert’s exact weight, and the error of this sum is at most 1/10N.
247. a. 10d − 10d − 1 < 10d b. h(d) < 9d c. m(d) = 10d − 1 + 1 d. Group the terms in the deleted harmonic series

together by number of digits. h(d) bounds the number of terms, and each term is at most 1/m(d).
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∑
d = 1

∞
h(d)/m(d) ≤ ∑

d = 1

∞
9d /(10)d − 1 ≤ 90. One can actually use comparison to estimate the value to smaller than 80. The

actual value is smaller than 23.

249. Continuing the hint gives SN = ⎛
⎝1 + 1/N 2⎞

⎠
⎛
⎝1 + 1/(N − 1)2 …(1 + 1/4)⎞

⎠. Then

ln⎛
⎝SN

⎞
⎠ = ln⎛

⎝1 + 1/N 2⎞
⎠ + ln⎛

⎝1 + 1/(N − 1)2⎞
⎠ + ⋯ + ln(1 + 1/4). Since ln(1 + t) is bounded by a constant times t, when

0 < t < 1 one has ln⎛
⎝SN

⎞
⎠ ≤ C ∑

n = 1

N
1
n2, which converges by comparison to the p-series for p = 2.

251. Does not converge by divergence test. Terms do not tend to zero.
253. Converges conditionally by alternating series test, since n + 3/n is decreasing. Does not converge absolutely by

comparison with p-series, p = 1/2.
255. Converges absolutely by limit comparison to 3n /4n, for example.

257. Diverges by divergence test since limn → ∞|an| = e.

259. Does not converge. Terms do not tend to zero.

261. limn → ∞cos2(1/n) = 1. Diverges by divergence test.

263. Converges by alternating series test.
265. Converges conditionally by alternating series test. Does not converge absolutely by limit comparison with p-series,
p = π − e

267. Diverges; terms do not tend to zero.
269. Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.
271. Converges absolutely by limit comparison with p-series, p = 3/2, after applying the hint.

273. Converges by alternating series test since n(tan−1(n + 1)−tan−1 n) is decreasing to zero for large n. Does not converge

absolutely by limit comparison with harmonic series after applying hint.

275. Converges absolutely, since an = 1
n − 1

n + 1 are terms of a telescoping series.

277. Terms do not tend to zero. Series diverges by divergence test.
279. Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.

281. ln(N + 1) > 10, N + 1 > e10, N ≥ 22026; S22026 = 0.0257…

283. 2N + 1 > 106 or N + 1 > 6ln(10)/ln(2) = 19.93. or N ≥ 19; S19 = 0.333333969…

285. (N + 1)2 > 106 or N > 999; S1000 ≈ 0.822466.

287. True. bn need not tend to zero since if cn = bn − lim bn, then c2n − 1 − c2n = b2n − 1 − b2n.

289. True. b3n − 1 − b3n ≥ 0, so convergence of ∑ b3n − 2 follows from the comparison test.

291. True. If one converges, then so must the other, implying absolute convergence.

293. Yes. Take bn = 1 if an ≥ 0 and bn = 0 if an < 0. Then ∑
n = 1

∞
anbn = ∑

n : an ≥ 0
an converges. Similarly, one can

show ∑
n : an < 0

an converges. Since both series converge, the series must converge absolutely.

295. Not decreasing. Does not converge absolutely.

297. Not alternating. Can be expressed as ∑
n = 1

∞
( 1
3n − 2 + 1

3n − 1 − 1
3n), which diverges by comparison with ∑ 1

3n − 2.

299. Let a+
n = an if an ≥ 0 and a+

n = 0 if an < 0. Then a+
n ≤ |an| for all n so the sequence of partial sums of a+

n

is increasing and bounded above by the sequence of partial sums of |an|, which converges; hence, ∑
n = 1

∞
a+

n converges.

301. For N = 5 one has |RN|b6 = θ10 /10!. When θ = 1, R5 ≤ 1/10! ≈ 2.75 × 10−7. When θ = π/6,

R5 ≤ (π/6)10 /10! ≈ 4.26 × 10−10. When θ = π, R5 ≤ π10 /10! = 0.0258.
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303. Let bn = 1/(2n − 2)!. Then RN ≤ 1/(2N)! < 0.00001 when (2N)! > 105 or N = 5 and

1 − 1
2! + 1

4! − 1
6! + 1

8! = 0.540325…, whereas cos1 = 0.5403023…

305. Let T = ∑ 1
n2. Then T − S = 1

2T , so S = T /2. 6 × ∑
n = 1

1000
1/n2 = 3.140638…;

12 × ∑
n = 1

1000
(−1)n − 1 /n2 = 3.141591…; π = 3.141592…. The alternating series is more accurate for 1000 terms.

307. N = 6, SN = 0.9068
309. ln(2). The 3nth partial sum is the same as that for the alternating harmonic series.

311. The series jumps rapidly near the endpoints. For x away from the endpoints, the graph looks like π(1/2 − x).

313. Here is a typical result. The top curve consists of partial sums of the harmonic series. The bottom curve plots partial sums of
a random harmonic series.

315. By the alternating series test, |Sn − S| ≤ bn + 1, so one needs 104 terms of the alternating harmonic series to estimate

ln(2) to within 0.0001. The first 10 partial sums of the series ∑
n = 1

∞
1

n2n are (up to four decimals)

0.5000, 0.6250, 0.6667, 0.6823, 0.6885, 0.6911, 0.6923, 0.6928, 0.6930, 0.6931 and the tenth partial sum is within

0.0001 of ln(2) = 0.6931….
317. an + 1 /an → 0. Converges.

319.
an + 1

an
= 1

2
⎛
⎝
n + 1

n
⎞
⎠
2

→ 1/2 < 1. Converges.
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321.
an + 1

an
→ 1/27 < 1. Converges.

323.
an + 1

an
→ 4/e2 < 1. Converges.

325.
an + 1

an
→ 1. Ratio test is inconclusive.

327.
an

an + 1
→ 1/e2. Converges.

329. (ak)1/k → 2 > 1. Diverges.

331. (an)1/n → 1/2 < 1. Converges.

333. (ak)1/k → 1/e < 1. Converges.

335. an
1/n = 1

e + 1
n → 1

e < 1. Converges.

337. an
1/n =

⎛
⎝ln(1 + ln n)⎞

⎠

(ln n) → 0 by L’Hôpital’s rule. Converges.

339.
ak + 1

ak
= 1

2k + 1 → 0. Converges by ratio test.

341. (an)1/n → 1/e. Converges by root test.

343. ak
1/k → ln(3) > 1. Diverges by root test.

345.
an + 1

an
= 32n + 1

23n2 + 3n + 1
→ 0. Converge.

347. Converges by root test and limit comparison test since xn → 2.
349. Converges absolutely by limit comparison with p − series, p = 2.

351. limn → ∞an = 1/e2 ≠ 0. Series diverges.

353. Terms do not tend to zero: ak ≥ 1/2, since sin2 x ≤ 1.

355. an = 2
(n + 1)(n + 2), which converges by comparison with p − series for p = 2.

357. ak = 2k 1 · 2⋯k
(2k + 1)(2k + 2)⋯3k ≤ (2/3)k converges by comparison with geometric series.

359. ak ≈ e−lnk2
= 1/k2. Series converges by limit comparison with p − series, p = 2.

361. If bk = c1 − k /(c − 1) and ak = k, then bk + 1 − bk = −c−k and ∑
n = 1

∞
k
ck = a1 b1 + 1

c − 1 ∑
k = 1

∞
c−k = c

(c − 1)2.

363. 6 + 4 + 1 = 11
365. |x| ≤ 1
367. |x| < ∞
369. All real numbers p by the ratio test.

371. r < 1/p
373. 0 < r < 1. Note that the ratio and root tests are inconclusive. Using the hint, there are 2k terms r n for

k2 ≤ n < (k + 1)2, and for r < 1 each term is at least rk. Thus, ∑
n = 1

∞
r n = ∑

k = 1

∞
∑

n = k2

(k + 1)2 − 1
r n ≥ ∑

k = 1

∞
2krk, which

converges by the ratio test for r < 1. For r ≥ 1 the series diverges by the divergence test.

375. One has a1 = 1, a2 = a3 = 1/2,… a2n = a2n + 1 = 1/2n. The ratio test does not apply because an + 1 /an = 1 if n

is even. However, an + 2 /an = 1/2, so the series converges according to the previous exercise. Of course, the series is just a

duplicated geometric series.

377. a2n /an = 1
2 · n + 1

n + 1 + x
n + 2

n + 2 + x⋯ 2n
2n + x. The inverse of the kth factor is (n + k + x)/(n + k) > 1 + x/(2n) so the
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product is less than ⎛
⎝1 + x/(2n)⎞

⎠
−n ≈ e−x/2. Thus for x > 0, a2n

an
≤ 1

2e−x/2. The series converges for x > 0.

Review Exercises

379. false
381. true
383. unbounded, not monotone, divergent
385. bounded, monotone, convergent, 0
387. unbounded, not monotone, divergent
389. diverges
391. converges
393. converges, but not absolutely
395. converges absolutely
397. converges absolutely

399. 1
2

401. ∞, 0, x0

403. S10 ≈ 383, limn → ∞Sn = 400

Chapter 6

Checkpoint

6.1. The interval of convergence is [−1, 1). The radius of convergence is R = 1.
6.2.

6.3. ∑
n = 0

∞
xn + 3

2n + 1 with interval of convergence (−2, 2)

6.4. Interval of convergence is (−2, 2).

6.5. ∑
n = 0

∞ ⎛
⎝−1 + 1

2n + 1
⎞
⎠xn. The interval of convergence is (−1, 1).

6.6. f (x) = 3
3 − x. The interval of convergence is (−3, 3).

6.7. 1 + 2x + 3x2 + 4x3 + ⋯

6.8. ∑
n = 0

∞
(n + 2)(n + 1)xn

6.9. ∑
n = 2

∞ (−1)n xn

n(n − 1)

6.10.

p0 (x) = 1; p1 (x) = 1 − 2(x − 1); p2 (x) = 1 − 2(x − 1) + 3(x − 1)2; p3 (x) = 1 − 2(x − 1) + 3(x − 1)2 − 4(x − 1)3

6.11.
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p0 (x) = 1; p1 (x) = 1 − x; p2 (x) = 1 − x + x2; p3 (x) = 1 − x + x2 − x3; pn (x) = 1 − x + x2 − x3 + ⋯ + (−1)n xn = ∑
k = 0

n
(−1)k xk

6.12.

p1 (x) = 2 + 1
4(x − 4); p2 (x) = 2 + 1

4(x − 4) − 1
64(x − 4)2; p1 (6) = 2.5; p2 (6) = 2.4375;

|R1 (6)| ≤ 0.0625; |R2 (6)| ≤ 0.015625
6.13. 0.96593

6.14. 1
2 ∑

n = 0

∞
⎛
⎝
2 − x

2
⎞
⎠
n
. The interval of convergence is (0, 4).

6.15. ∑
n = 0

∞ (−1)n x2n

(2n)! By the ratio test, the interval of convergence is (−∞, ∞). Since |Rn (x)| ≤ |x|n + 1

(n + 1)!, the series

converges to cosx for all real x.

6.16. ∑
n = 0

∞
(−1)n (n + 1)xn

6.17. ∑
n = 0

∞ (−1)n x4n + 2

(2n + 1)!

6.18. ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn

6.19. y = 5e2x

6.20. y = a⎛
⎝1 − x4

3 · 4 + x8

3 · 4 · 7 · 8 − ⋯⎞
⎠ + b⎛

⎝x − x5

4 · 5 + x9

4 · 5 · 8 · 9 − ⋯⎞
⎠

6.21. C + ∑
n = 1

∞
(−1)n + 1 xn

n(2n − 2)! The definite integral is approximately 0.514 to within an error of 0.01.

6.22. The estimate is approximately 0.3414. This estimate is accurate to within 0.0000094.
Section Exercises

1. True. If a series converges then its terms tend to zero.
3. False. It would imply that an xn → 0 for |x| < R. If an = nn, then an xn = (nx)n does not tend to zero for any x ≠ 0.
5. It must converge on (0, 6⎤

⎦ and hence at: a. x = 1; b. x = 2; c. x = 3; d. x = 0; e. x = 5.99; and f. x = 0.000001.

7. |an + 1 2n + 1 xn + 1

an 2n xn | = 2|x||an + 1
an | → 2|x| so R = 1

2

9. |an + 1
⎛
⎝
π
e

⎞
⎠
n + 1 xn + 1

an
⎛
⎝
π
e

⎞
⎠
n xn | = π|x|

e |an + 1
an | → π|x|

e so R = e
π

11. |an + 1 (−1)n + 1 x2n + 2

an (−1)n x2n | = |x2||an + 1
an | → |x2| so R = 1

13. an = 2n
n so

an + 1 x
an

→ 2x. so R = 1
2. When x = 1

2 the series is harmonic and diverges. When x = − 1
2 the series is

alternating harmonic and converges. The interval of convergence is I = ⎡
⎣−

1
2, 1

2
⎞
⎠.

15. an = n
2n so

an + 1 x
an

→ x
2 so R = 2. When x = ±2 the series diverges by the divergence test. The interval of

convergence is I = (−2, 2).

17. an = n2

2n so R = 2. When x = ±2 the series diverges by the divergence test. The interval of convergence is

I = (−2, 2).

19. ak = πk

kπ so R = 1
π . When x = ±1

π the series is an absolutely convergent p-series. The interval of convergence is

780 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



I = ⎡
⎣− 1

π , 1
π

⎤
⎦.

21. an = 10n

n! , an + 1 x
an

= 10x
n + 1 → 0 < 1 so the series converges for all x by the ratio test and I = (−∞, ∞).

23. ak = (k!)2

(2k)! so
ak + 1

ak
= (k + 1)2

(2k + 2)(2k + 1) → 1
4 so R = 4

25. ak = k!
1 · 3 · 5⋯(2k − 1) so

ak + 1
ak

= k + 1
2k + 1 → 1

2 so R = 2

27.
an = 1

⎛
⎝
2n
n

⎞
⎠

so
an + 1

an
= ((n + 1)!)2

(2n + 2)!
2n!

(n!)2 = (n + 1)2

(2n + 2)(2n + 1) → 1
4 so R = 4

29.
an + 1

an
= (n + 1)3

(3n + 3)(3n + 2)(3n + 1) → 1
27 so R = 27

31. an = n!
nn so

an + 1
an

= (n + 1)!
n!

nn

(n + 1)n + 1 = ⎛
⎝

n
n + 1

⎞
⎠

n
→ 1

e so R = e

33. f (x) = ∑
n = 0

∞
(1 − x)n on I = (0, 2)

35. ∑
n = 0

∞
x2n + 1

on I = (−1, 1)

37. ∑
n = 0

∞
(−1)n x2n + 2

on I = (−1, 1)

39. ∑
n = 0

∞
2n xn on

⎛
⎝−

1
2, 1

2
⎞
⎠

41. ∑
n = 0

∞
4n x2n + 2

on
⎛
⎝−

1
2, 1

2
⎞
⎠

43. |an xn|1/n = |an|1/n |x| → |x|r as n → ∞ and |x|r < 1 when |x| < 1
r . Therefore, ∑

n = 1

∞
an xn converges when |x| < 1

r

by the nth root test.

45. ak = ⎛
⎝

k − 1
2k + 3

⎞
⎠

k
so (ak)1/k → 1

2 < 1 so R = 2

47. an = ⎛
⎝n

1/n − 1⎞
⎠
n

so (an)1/n → 0 so R = ∞

49. We can rewrite p(x) = ∑
n = 0

∞
a2n + 1 x2n + 1

and p(x) = p(−x) since x2n + 1 = −(−x)2n + 1.

51. If x ∈ [0, 1], then y = 2x − 1 ∈ [−1, 1] so p(2x − 1) = p(y) = ∑
n = 0

∞
an yn converges.

53. Converges on (−1, 1) by the ratio test

55. Consider the series ∑ bk xk where bk = ak if k = n2 and bk = 0 otherwise. Then bk ≤ ak and so the series converges

on (−1, 1) by the comparison test.

57.
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The approximation is more accurate near x = −1. The partial sums follow 1
1 − x more closely as N increases but are never

accurate near x = 1 since the series diverges there.

59.

The approximation appears to stabilize quickly near both x = ±1.
61.

The polynomial curves have roots close to those of sinx up to their degree and then the polynomials diverge from sinx.
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63. 1
2

⎛
⎝ f (x) + g(x)⎞

⎠ = ∑
n = 0

∞
x2n

(2n)! and 1
2

⎛
⎝ f (x) − g(x)⎞

⎠ = ∑
n = 0

∞
x2n + 1

(2n + 1)!.

65.

4
(x − 3)(x + 1) = 1

x − 3 − 1
x + 1 = − 1

3⎛
⎝1 − x

3
⎞
⎠

− 1
1 − (−x) = − 1

3 ∑
n = 0

∞
⎛
⎝
x
3

⎞
⎠

n
− ∑

n = 0

∞
(−1)n xn = ∑

n = 0

∞ ⎛
⎝(−1)n + 1 − 1

3n + 1
⎞
⎠xn

67.
5

⎛
⎝x2 + 4⎞

⎠
⎛
⎝x2 − 1⎞

⎠
= 1

x2 − 1
− 1

4
1

1 + ⎛
⎝
x
2

⎞
⎠
2 = − ∑

n = 0

∞
x2n − 1

4 ∑
n = 0

∞
(−1)n ⎛

⎝
x
2

⎞
⎠
n

= ∑
n = 0

∞ ⎛
⎝(−1) + (−1)n + 1 1

2n + 2
⎞
⎠x2n

69. 1
x ∑

n = 0

∞
1
xn = 1

x
1

1 − 1
x

= 1
x − 1

71.
1

x − 3
1

1 − 1
(x − 3)2

= x − 3
(x − 3)2 − 1

73. P = P1 + ⋯ + P20 where Pk = 10,000 1
(1 + r)k . Then P = 10,000 ∑

k = 1

20
1

(1 + r)k = 10,0001 − (1 + r)−20
r . When

r = 0.03, P ≈ 10,000 × 14.8775 = 148,775. When r = 0.05, P ≈ 10,000 × 12.4622 = 124,622. When

r = 0.07, P ≈ 105,940.

75. In general, P =
C⎛

⎝1 − (1 + r)−N⎞
⎠

r
for N years of payouts, or C = Pr

1 − (1 + r)−N . For N = 20 and P = 100,000, one

has C = 6721.57 when r = 0.03; C = 8024.26 when r = 0.05; and C ≈ 9439.29 when r = 0.07.

77. In general, P = C
r . Thus, r = C

P = 5 × 104

106 = 0.05.

79.
⎛
⎝x + x2 − x3⎞

⎠
⎛
⎝1 + x3 + x6 + ⋯⎞

⎠ = x + x2 − x3

1 − x3

81.
⎛
⎝x − x2 − x3⎞

⎠
⎛
⎝1 + x3 + x6 + ⋯⎞

⎠ = x − x2 − x3

1 − x3

83. an = 2, bn = n so cn = ∑
k = 0

n
bk an − k = 2 ∑

k = 0

n
k = (n)(n + 1) and f (x)g(x) = ∑

n = 1

∞
n(n + 1)xn

85. an = bn = 2−n so cn = ∑
k = 1

n
bk an − k = 2−n ∑

k = 1

n
1 = n

2n and f (x)g(x) = ∑
n = 1

∞
n⎛

⎝
x
2

⎞
⎠
n

87. The derivative of f is − 1
(1 + x)2 = − ∑

n = 0

∞
(−1)n (n + 1)xn.

89. The indefinite integral of f is 1
1 + x2 = ∑

n = 0

∞
(−1)n x2n.

91. f (x) = ∑
n = 0

∞
xn = 1

1 − x; f ′ ⎛
⎝
1
2

⎞
⎠ = ∑

n = 1

∞
n

2n − 1 = d
dx(1 − x)−1|x = 1/2 = 1

(1 − x)2 |x = 1/2 = 4 so ∑
n = 1

∞
n
2n = 2.

93. f (x) = ∑
n = 0

∞
xn = 1

1 − x; f ″⎛
⎝
1
2

⎞
⎠ = ∑

n = 2

∞ n(n − 1)
2n − 2 = d2

dx2(1 − x)−1|x = 1/2 = 2
(1 − x)3 |x = 1/2 = 16 so

∑
n = 2

∞ n(n − 1)
2n = 4.

95. ∫ ∑ (1 − x)ndx = ∫ ∑ (−1)n(x − 1)n dx = ∑ (−1)n (x − 1)n + 1

n + 1

97. −⌠
⌡t = 0

x2
1

1 − tdt = − ∑
n = 0

∞
∫

0

x2
tn dx − ∑

n = 0

∞
x2(n + 1)

n + 1 = − ∑
n = 1

∞
x2n
n
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99. ⌠
⌡0

x2
dt

1 + t2 = ∑
n = 0

∞
(−1)n ∫

0

x2
t2n dt = ∑

n = 0

∞
(−1)n t2n + 1

2n + 1|t = 0

x2

= ∑
n = 0

∞
(−1)n x4n + 2

2n + 1

101. Term-by-term integration gives

∫
0

x
ln tdt = ∑

n = 1

∞
(−1)n − 1 (x − 1)n + 1

n(n + 1) = ∑
n = 1

∞
(−1)n − 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠(x − 1)n + 1 = (x − 1)lnx + ∑

n = 2

∞
(−1)n (x − 1)n

n = x lnx − x.

103. We have ln(1 − x) = − ∑
n = 1

∞
xn
n so ln(1 + x) = ∑

n = 1

∞
(−1)n − 1 xn

n . Thus,

ln⎛
⎝
1 + x
1 − x

⎞
⎠ = ∑

n = 1

∞
⎛
⎝1 + (−1)n − 1⎞

⎠
xn
n = 2 ∑

n = 1

∞
x2n − 1

2n − 1. When x = 1
3 we obtain ln(2) = 2 ∑

n = 1

∞
1

32n − 1 (2n − 1)
. We have

2 ∑
n = 1

3
1

32n − 1(2n − 1)
= 0.69300…, while 2 ∑

n = 1

4
1

32n − 1 (2n − 1)
= 0.69313… and ln(2) = 0.69314…; therefore,

N = 4.

105. ∑
k = 1

∞
xk

k = −ln(1 − x) so ∑
k = 1

∞
x3k

6k = − 1
6 ln ⎛

⎝1 − x3⎞
⎠. The radius of convergence is equal to 1 by the ratio test.

107. If y = 2−x, then ∑
k = 1

∞
yk = y

1 − y = 2−x

1 − 2−x = 1
2x − 1

. If ak = 2−kx, then
ak + 1

ak
= 2−x < 1 when x > 0. So

the series converges for all x > 0.
109. Answers will vary.
111.

The solid curve is S5. The dashed curve is S2, dotted is S3, and dash-dotted is S4

113. When x = − 1
2, −ln(2) = ln⎛

⎝
1
2

⎞
⎠ = − ∑

n = 1

∞
1

n2n. Since ∑
n = 11

∞
1

n2n < ∑
n = 11

∞
1
2n = 1

210, one has

∑
n = 1

10
1

n2n = 0.69306… whereas ln(2) = 0.69314…; therefore, N = 10.

115. 6SN
⎛
⎝

1
3

⎞
⎠ = 2 3 ∑

n = 0

N
(−1)n 1

3n (2n + 1). One has π − 6S4
⎛
⎝

1
3

⎞
⎠ = 0.00101… and π − 6S5

⎛
⎝

1
3

⎞
⎠ = 0.00028…

so N = 5 is the smallest partial sum with accuracy to within 0.001. Also, π − 6S7
⎛
⎝

1
3

⎞
⎠ = 0.00002… while

π − 6S8
⎛
⎝

1
3

⎞
⎠ = −0.000007… so N = 8 is the smallest N to give accuracy to within 0.00001.

117. f (−1) = 1; f ′ (−1) = −1; f ″(−1) = 2; f (x) = 1 − (x + 1) + (x + 1)2

119. f ′ (x) = 2cos(2x); f ″(x) = −4sin(2x); p2 (x) = −2⎛
⎝x − π

2
⎞
⎠

121. f ′ (x) = 1
x; f ″(x) = − 1

x2; p2 (x) = 0 + (x − 1) − 1
2(x − 1)2
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123. p2 (x) = e + e(x − 1) + e
2(x − 1)2

125. d2

dx2x1/3 = − 2
9x5/3 ≥ −0.00092… when x ≥ 28 so the remainder estimate applies to the linear approximation

x1/3 ≈ p1 (27) = 3 + x − 27
27 , which gives (28)1/3 ≈ 3 + 1

27 = 3.037, while (28)1/3 ≈ 3.03658.

127. Using the estimate 210

10! < 0.000283 we can use the Taylor expansion of order 9 to estimate ex at x = 2. as

e2 ≈ p9 (2) = 1 + 2 + 22

2 + 23

6 + ⋯ + 29

9! = 7.3887… whereas e2 ≈ 7.3891.

129. Since dn

dxn(lnx) = (−1)n − 1 (n − 1)!
xn , R1000 ≈ 1

1001. One has p1000 (1) = ∑
n = 1

1000 (−1)n − 1
n ≈ 0.6936 whereas

ln(2) ≈ 0.6931⋯.

131. ⌠
⌡0

1⎛
⎝1 − x2 + x4

2 − x6

6 + x8

24 − x10

120 + x12

720
⎞
⎠dx = 1 − 13

3 + 15

10 − 17

42 + 19

9 · 24 − 111

120 · 11 + 113

720 · 13 ≈ 0.74683

whereas ∫
0

1
e−x2

dx ≈ 0.74682.

133. Since f (n + 1) (z) is sinz or cosz, we have M = 1. Since |x − 0| ≤ π
2, we seek the smallest n such that

πn + 1

2n + 1 (n + 1)!
≤ 0.001. The smallest such value is n = 7. The remainder estimate is R7 ≤ 0.00092.

135. Since f (n + 1) (z) = ±e−z one has M = e3. Since |x − 0| ≤ 3, one seeks the smallest n such that 3n + 1 e3

(n + 1)! ≤ 0.001.

The smallest such value is n = 14. The remainder estimate is R14 ≤ 0.000220.
137.

Since sinx is increasing for small x and since sin″x = −sinx, the estimate applies whenever R2 sin(R) ≤ 0.2, which applies

up to R = 0.596.
139.
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Since the second derivative of cosx is −cosx and since cosx is decreasing away from x = 0, the estimate applies when

R2 cosR ≤ 0.2 or R ≤ 0.447.

141. (x + 1)3 − 2(x + 1)2 + 2(x + 1)

143. Values of derivatives are the same as for x = 0 so cosx = ∑
n = 0

∞
(−1)

n
(x − 2π)2n

(2n)!

145. cos⎛
⎝
π
2

⎞
⎠ = 0, −sin⎛

⎝
π
2

⎞
⎠ = −1 so cosx = ∑

n = 0

∞
(−1)n + 1

⎛
⎝x − π

2
⎞
⎠
2n + 1

(2n + 1)! , which is also −cos⎛
⎝x − π

2
⎞
⎠.

147. The derivatives are f (n) (1) = e so ex = e ∑
n = 0

∞ (x − 1)n

n! .

149. 1
(x − 1)3 = −⎛

⎝
1
2

⎞
⎠

d2

dx2
1

1 − x = − ∑
n = 0

∞ ⎛
⎝
(n + 2)(n + 1)xn

2
⎞
⎠

151. 2 − x = 1 − (x − 1)

153. ⎛
⎝(x − 1) − 1⎞

⎠
2 = (x − 1)2 − 2(x − 1) + 1

155. 1
1 − (1 − x) = ∑

n = 0

∞
(−1)n (x − 1)n

157. x ∑
n = 0

∞
2n (1 − x)2n = ∑

n = 0

∞
2n (x − 1)2n + 1 + ∑

n = 0

∞
2n (x − 1)2n

159. e2x = e2(x − 1) + 2 = e2 ∑
n = 0

∞ 2n (x − 1)n

n!

161. x = e2; S10 = 34,913
4725 ≈ 7.3889947

163. sin(2π) = 0; S10 = 8.27 × 10−5

165.
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The difference is small on the interior of the interval but approaches 1 near the endpoints. The remainder estimate is

|R4| = π5

120 ≈ 2.552.

167.

The difference is on the order of 10−4 on [−1, 1] while the Taylor approximation error is around 0.1 near ±1. The top curve

is a plot of tan2 x − ⎛
⎝

S5 (x)
C4 (x)

⎞
⎠

2
and the lower dashed plot shows t2 − ⎛

⎝
S5
C4

⎞
⎠

2
.

169. a. Answers will vary. b. The following are the xn values after 10 iterations of Newton’s method to approximation

a root of pN (x) − 2 = 0: for N = 4, x = 0.6939...; for N = 5, x = 0.6932...; for N = 6, x = 0.69315...; . (Note:

ln(2) = 0.69314...) c. Answers will vary.

171.
ln ⎛

⎝1 − x2⎞
⎠

x2 → −1

173. cos( x) − 1
2x ≈

⎛
⎝1 − x

2 + x2
4! − ⋯⎞

⎠ − 1

2x → − 1
4

175.
⎛
⎝1 + x2⎞

⎠
−1/3

= ∑
n = 0

∞ ⎛

⎝
⎜−

1
3

n

⎞

⎠
⎟x2n

177. (1 − 2x)2/3 = ∑
n = 0

∞
(−1)n 2n

⎛

⎝
⎜
2
3
n

⎞

⎠
⎟xn
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179. 2 + x2 = ∑
n = 0

∞
2(1/2) − n⎛

⎝
⎜
1
2
n

⎞

⎠
⎟x2n; ⎛

⎝|x2| < 2⎞
⎠

181. 2x − x2 = 1 − (x − 1)2 so 2x − x2 = ∑
n = 0

∞
(−1)n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 1)2n

183. x = 2 1 + x − 4
4 so x = ∑

n = 0

∞
21 − 2n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 4)n

185. x = ∑
n = 0

∞
31 − 3n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 9)n

187. 10⎛
⎝1 + x

1000
⎞
⎠

1/3
= ∑

n = 0

∞
101 − 3n

⎛

⎝
⎜
1
3
n

⎞

⎠
⎟xn. Using, for example, a fourth-degree estimate at x = 1 gives

(1001)1/3 ≈ 10
⎛

⎝
⎜1 +

⎛

⎝
⎜
1
3
1

⎞

⎠
⎟10−3 +

⎛

⎝
⎜
1
3
2

⎞

⎠
⎟10−6 +

⎛

⎝
⎜
1
3
3

⎞

⎠
⎟10−9 +

⎛

⎝
⎜
1
3
4

⎞

⎠
⎟10−12

⎞

⎠
⎟

= 10⎛
⎝1 + 1

3.103 − 1
9.106 + 5

81.109 − 10
243.1012

⎞
⎠ = 10.00333222...

whereas

(1001)1/3 = 10.00332222839093.... Two terms would suffice for three-digit accuracy.

189. The approximation is 2.3152; the CAS value is 2.23….
191. The approximation is 2.583…; the CAS value is 2.449….
193.

1 − x2 = 1 − x2

2 − x4

8 − x6

16 − 5x8

128 + ⋯. Thus

∫
−1

1
1 − x2dx = x − x3

6 − x5

40 − x7

7 · 16 − 5x9

9 · 128 + ⋯|−1

1

≈ 2 − 1
3 − 1

20 − 1
56 − 10

9 · 128 + error = 1.590... whereas

π
2 = 1.570...

195. (1 + x)4/3 = (1 + x)⎛⎝1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯⎞
⎠ = 1 + 4x

3 + 2x2

9 − 4x3

81 + 5x4

243 + ⋯

197. ⎛
⎝1 + (x + 3)2⎞

⎠
1/3

= 1 + 1
3(x + 3)2 − 1

9(x + 3)4 + 5
81(x + 3)6 − 10

243(x + 3)8 + ⋯

199. Twice the approximation is 1.260… whereas 21/3 = 1.2599....
201. f (99) (0) = 0

203. ∑
n = 0

∞ ⎛
⎝ln(2)x⎞

⎠
n

n!

205. For x > 0, sin( x) = ∑
n = 0

∞
(−1)n x(2n + 1)/2

x(2n + 1)! = ∑
n = 0

∞
(−1)n xn

(2n + 1)!.

207. ex3
= ∑

n = 0

∞
x3n

n!

209. sin2 x = − ∑
k = 1

∞ (−1)k 22k − 1 x2k

(2k)!

211. tan−1 x = ∑
k = 0

∞ (−1)k x2k + 1

2k + 1

213. sin−1 x = ∑
n = 0

∞ ⎛

⎝
⎜
1
2
n

⎞

⎠
⎟ x2n + 1

(2n + 1)n!

215. F(x) = ∑
n = 0

∞
(−1)n xn + 1

(n + 1)(2n)!
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217. F(x) = ∑
n = 1

∞
(−1)n + 1 xn

n2

219. x + x3

3 + 2x5

15 + ⋯

221. 1 + x − x3

3 − x4

6 + ⋯

223. 1 + x2 + 2x4

3 + 17x6

45 + ⋯

225. Using the expansion for tanx gives 1 + x
3 + 2x2

15 .

227. 1
1 + x2 = ∑

n = 0

∞
(−1)n x2n so R = 1 by the ratio test.

229. ln ⎛
⎝1 + x2⎞

⎠ = ∑
n = 1

∞ (−1)n − 1
n x2n so R = 1 by the ratio test.

231. Add series of ex and e−x term by term. Odd terms cancel and coshx = ∑
n = 0

∞
x2n

(2n)!.

233.

The ratio
Sn (x)
Cn (x) approximates tanx better than does p7 (x) = x + x3

3 + 2x5

15 + 17x7

315 for N ≥ 3. The dashed curves are

Sn
Cn

− tan for n = 1, 2. The dotted curve corresponds to n = 3, and the dash-dotted curve corresponds to n = 4. The solid

curve is p7 − tanx.

235. By the term-by-term differentiation theorem, y′ = ∑
n = 1

∞
nan xn − 1 so y′ = ∑

n = 1

∞
nan xn − 1 xy′ = ∑

n = 1

∞
nan xn,

whereas y′ = ∑
n = 2

∞
n(n − 1)an xn − 2 so xy″ = ∑

n = 2

∞
n(n − 1)an xn.

237. The probability is p = 1
2π∫

(a − µ)/σ

⎛
⎝b − µ⎞

⎠/σ
e−x2 /2 dx where a = 90 and b = 100, that is,

p = 1
2π∫

−1

1
e−x2 /2 dx = 1

2π
⌠
⌡−1

1

∑
n = 0

5
(−1)n x2n

2n n!
dx = 2

2π
∑

n = 0

5
(−1)n 1

(2n + 1)2n n!
≈ 0.6827.
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239.

As in the previous problem one obtains an = 0 if n is odd and an = −(n + 2)(n + 1)an + 2 if n is even, so a0 = 1 leads to

a2n = (−1)n

(2n)! .

241. y″ = ∑
n = 0

∞
(n + 2)(n + 1)an + 2 xn and y′ = ∑

n = 0

∞
(n + 1)an + 1 xn so y″ − y′ + y = 0 implies that

(n + 2)(n + 1)an + 2 − (n + 1)an + 1 + an = 0 or an = an − 1
n − an − 2

n(n − 1) for all n · y(0) = a0 = 1 and

y′ (0) = a1 = 0, so a2 = 1
2, a3 = 1

6, a4 = 0, and a5 = − 1
120.

243. a. (Proof) b. We have Rs ≤ 0.1
(9)!π9 ≈ 0.0082 < 0.01. We have

⌠
⌡0

π⎛
⎝1 − x2

3! + x4

5! − x6

7! + x8

9!
⎞
⎠dx = π − π3

3 · 3! + π5

5 · 5! − π7

7 · 7! + π9

9 · 9! = 1.852..., whereas ∫
0

πsin t
t dt = 1.85194..., so

the actual error is approximately 0.00006.
245.

Since cos⎛
⎝t2⎞

⎠ = ∑
n = 0

∞
(−1)n t4n

(2n)! and sin⎛
⎝t2⎞

⎠ = ∑
n = 0

∞
(−1)n t4n + 2

(2n + 1)!, one has S(x) = ∑
n = 0

∞
(−1)n x4n + 3

(4n + 3)(2n + 1)!

and C(x) = ∑
n = 0

∞
(−1)n x4n + 1

(4n + 1)(2n)!. The sums of the first 50 nonzero terms are plotted below with C50 (x) the solid curve

and S50 (x) the dashed curve.

247. ∫
0

1/4
x⎛
⎝1 − x

2 − x2

8 − x3

16 − 5x4

128 − 7x5

256
⎞
⎠dx
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= 2
32−3 − 1

2
2
52−5 − 1

8
2
72−7 − 1

16
2
92−9 − 5

128
2
112−11 − 7

256
2
132−13 = 0.0767732... whereas

∫
0

1/4
x − x2dx = 0.076773.

249. T ≈ 2π 10
9.8

⎛
⎝1 + sin2 (θ/12)

4
⎞
⎠ ≈ 6.453 seconds. The small angle estimate is T ≈ 2π 10

9.8 ≈ 6.347. The relative error

is around 2 percent.

251. ∫
0

π/2
sin4 θdθ = 3π

16. Hence T ≈ 2π L
g

⎛
⎝1 + k2

4 + 9
256k4⎞

⎠.

Review Exercises

253. True
255. True
257. ROC: 1; IOC: (0, 2)
259. ROC: 12; IOC: (−16, 8)

261. ∑
n = 0

∞ (−1)n

3n + 1 xn; ROC: 3; IOC: (−3, 3)

263. integration: ∑
n = 0

∞ (−1)n

2n + 1(2x)2n + 1

265. p4 (x) = (x + 3)3 − 11(x + 3)2 + 39(x + 3) − 41; exact

267. ∑
n = 0

∞ (−1)n (3x)2n

2n!

269. ∑
n = 0

∞ (−1)n

(2n)!
⎛
⎝x − π

2
⎞
⎠
2n

271. ∑
n = 1

∞ (−1)n

n! x2n

273. F(x) = ∑
n = 0

∞ (−1)n

(2n + 1)(2n + 1)!x2n + 1

275. Answers may vary.
277. 2.5%
Chapter 7

Checkpoint

7.1.
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7.2. x = 2 + 3
y + 1, or y = −1 + 3

x − 2. This equation describes a portion of a rectangular hyperbola centered at (2, −1).

7.3. One possibility is x(t) = t, y(t) = t2 + 2t. Another possibility is

x(t) = 2t − 3, y(t) = (2t − 3)2 + 2(2t − 3) = 4t2 − 8t + 3. There are, in fact, an infinite number of possibilities.

7.4. x′ (t) = 2t − 4 and y′ (t) = 6t2 − 6, so
dy
dx = 6t2 − 6

2t − 4 = 3t2 − 3
t − 2 .

This expression is undefined when t = 2 and equal to zero when t = ±1.
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7.5. The equation of the tangent line is y = 24x + 100.

7.6.
d2 y
dx2 = 3t2 − 12t + 3

2(t − 2)3 . Critical points (5, 4), (−3, −4), and (−4, 6).

7.7. A = 3π (Note that the integral formula actually yields a negative answer. This is due to the fact that x(t) is a decreasing

function over the interval [0, 2π]; that is, the curve is traced from right to left.)

7.8. s = 2⎛
⎝103/2 − 23/2⎞

⎠ ≈ 57.589

7.9. A =
π⎛

⎝494 13 + 128⎞
⎠

1215

7.10.
⎛
⎝8 2, 5π

4
⎞
⎠ and

⎛
⎝−2, 2 3⎞

⎠

7.11.

7.12.

Answer Key 793



The name of this shape is a cardioid, which we will study further later in this section.

7.13. y = x2, which is the equation of a parabola opening upward.

7.14. Symmetric with respect to the polar axis.

7.15. A = 3π/2

7.16. A = 4π
3 + 4 3

7.17. s = 3π

794 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



7.18. x = 2⎛
⎝y + 3⎞

⎠
2 − 2

7.19. (x + 1)2

16 +
⎛
⎝y − 2⎞

⎠
2

9 = 1

7.20.
⎛
⎝y + 2⎞

⎠
2

9 − (x − 1)2

4 = 1. This is a vertical hyperbola. Asymptotes y = −2 ± 3
2(x − 1).
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7.21. e = c
a = 74

7 ≈ 1.229

7.22. Here e = 0.8 and p = 5. This conic section is an ellipse.

7.23. The conic is a hyperbola and the angle of rotation of the axes is θ = 22.5°.
Section Exercises

1.

orientation: bottom to top
3.

orientation: left to right
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5. y = x2

4 + 1

7.

9.

11.

13.
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15.

Asymptotes are y = x and y = −x
17.

19.
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21. x = 4y2 − 1; domain: x ∈ [1, ∞).

23. x2

16 + y2

9 = 1; domain x ∈ [−4, 4].

25. y = 3x + 2; domain: all real numbers.

27. (x − 1)2 + (y − 3)2 = 1; domain: x ∈ [0, 2].

29. y = x2 − 1; domain: x ∈ [−1, 1].

31. y2 = 1 − x
2 ; domain: x ∈ [2, ∞) ∪ (−∞, −2].

33. y = ln x; domain: x ∈ (0, ∞).
35. y = ln x; domain: x ∈ (0, ∞).

37. x2 + y2 = 4; domain: x ∈ [−2, 2].
39. line
41. parabola
43. circle
45. ellipse
47. hyperbola
51. The equations represent a cycloid.

53.
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55. 22,092 meters at approximately 51 seconds.
57.

59.

61.
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63. 0

65. −3
5

67. Slope = 0; y = 8.
69. Slope is undefined; x = 2.

71. t = arctan(−2); ⎛
⎝

4
5

, −8
5

⎞
⎠.

73. No points possible; undefined expression.

75. y = −⎛
⎝
2
e

⎞
⎠x + 3

77. y = 2x − 7

79. π
4, 5π

4 , 3π
4 , 7π

4

81.
dy
dx = −tan(t)

83.
dy
dx = 3

4 and
d2 y
dx2 = 0, so the curve is neither concave up nor concave down at t = 3. Therefore the graph is linear and

has a constant slope but no concavity.

85.
dy
dx = 4, d2 y

dx2 = −6 3; the curve is concave down at θ = π
6.

87. No horizontal tangents. Vertical tangents at (1, 0), (−1, 0).

89. −sec3 (πt)
91. Horizontal (0, −9); vertical (±2, −6).
93. 1
95. 0
97. 4
99. Concave up on t > 0.
101. 1

103. 3π
2

105. 6πa2

107. 2πab

109. 1
3(2 2 − 1)

111. 7.075
113. 6a
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115. 6 2

119.
2π⎛

⎝247 13 + 64⎞
⎠

1215
121. 59.101

123. 8π
3 (17 17 − 1)

125.

127.

129.
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131.

133. B⎛
⎝3, −π

3
⎞
⎠ B⎛

⎝−3, 2π
3

⎞
⎠

135. D⎛
⎝5, 7π

6
⎞
⎠D

⎛
⎝−5, π

6
⎞
⎠

137. (5, −0.927) (−5, −0.927 + π)
139. (10, −0.927)(−10, −0.927 + π)

141.
⎛
⎝2 3, −0.524⎞

⎠
⎛
⎝−2 3, −0.524 + π⎞

⎠

143. ⎛
⎝− 3, −1⎞

⎠

145.
⎛
⎝−

3
2 , −1

2
⎞
⎠

147. (0, 0)
149. Symmetry with respect to the x-axis, y-axis, and origin.
151. Symmetric with respect to x-axis only.
153. Symmetry with respect to x-axis only.
155. Line y = x
157. y = 1

159. Hyperbola; polar form r2 cos(2θ) = 16 or r2 = 16 sec θ.
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161. r = 2
3 cos θ − sin θ

163. x2 + y2 = 4y

165. x tan x2 + y2 = y
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167.

y-axis symmetry
169.
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y-axis symmetry
171.

x- and y-axis symmetry and symmetry about the pole
173.
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x-axis symmetry
175.

x- and y-axis symmetry and symmetry about the pole
177.

Answer Key 807



no symmetry
179.

a line
181.
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183.

185.
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187. Answers vary. One possibility is the spiral lines become closer together and the total number of spirals increases.

189. 9
2∫

0

π
sin2 θ dθ

191. 32∫
0

π/2
sin2(2θ)dθ

193. 1
2∫

π

2π
(1 − sin θ)2 dθ

195. ∫
sin−1 (2/3)

π/2
(2 − 3 sin θ)2dθ

197. ∫
0

π
(1 − 2 cos θ)2 dθ − ∫

0

π/3
(1 − 2 cos θ)2dθ

199. 4∫
0

π/3
dθ + 16∫

π/3

π/2
⎛
⎝cos2 θ⎞

⎠dθ

201. 9π

203. 9π
4

205. 9π
8

207. 18π − 27 3
2

209. 4
3

⎛
⎝4π − 3 3⎞

⎠

211. 3
2

⎛
⎝4π − 3 3⎞

⎠

213. 2π − 4

215. ∫
0

2π
(1 + sin θ)2 + cos2 θdθ

217. 2∫
0

1
eθ dθ

219. 10
3

⎛
⎝e

6 − 1⎞
⎠

221. 32
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223. 6.238
225. 2
227. 4.39

229. A = π⎛
⎝

2
2

⎞
⎠

2
= π

2 and 1
2∫

0

π
(1 + 2 sin θ cos θ)dθ = π

2

231. C = 2π⎛
⎝
3
2

⎞
⎠ = 3π and ∫

0

π
3dθ = 3π

233. C = 2π(5) = 10π and ∫
0

π
10 dθ = 10π

235.
dy
dx = f ′(θ)sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ)sin θ

237. The slope is
1
3

.

239. The slope is 0.

241. At (4, 0), the slope is undefined. At
⎛
⎝−4, π

2
⎞
⎠, the slope is 0.

243. The slope is undefined at θ = π
4.

245. Slope = −1.

247. Slope is −2
π .

249. Calculator answer: −0.836.

251. Horizontal tangent at
⎛
⎝± 2, π

6
⎞
⎠,

⎛
⎝± 2, − π

6
⎞
⎠.

253. Horizontal tangents at π
2, 7π

6 , 11π
6 . Vertical tangents at π

6, 5π
6 and also at the pole (0, 0).

255. y2 = 16x

257. x2 = 2y

259. x2 = −4⎛
⎝y − 3⎞

⎠

261. (x + 3)2 = 8⎛
⎝y − 3⎞

⎠

263. x2

16 + y2

12 = 1

265. x2

13 + y2

4 = 1

267.
⎛
⎝y − 1⎞

⎠
2

16 + (x + 3)2

12 = 1

269. x2

16 + y2

12 = 1

271. x2

25 − y2

11 = 1

273. x2

7 − y2

9 = 1

275.
⎛
⎝y + 2⎞

⎠
2

4 − (x + 2)2

32 = 1

277. x2

4 − y2

32 = 1

279. e = 1, parabola

281. e = 1
2, ellipse

283. e = 3, hyperbola
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285. r = 4
5 + cos θ

287. r = 4
1 + 2 sin θ

289.

291.

293.

295.
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297.

299.

301.
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303.

305.

307. Hyperbola
309. Ellipse
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311. Ellipse
313. At the point 2.25 feet above the vertex.
315. 0.5625 feet
317. Length is 96 feet and height is approximately 26.53 feet.

319. r = 2.616
1 + 0.995 cos θ

321. r = 5.192
1 + 0.0484 cos θ

Review Exercises

323. True.
325. False. Imagine y = t + 1, x = −t + 1.
327.

y = 1 − x3

329.

x2

16 + (y − 1)2 = 1

331.
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Symmetric about polar axis

333. r2 = 4
sin2 θ − cos2 θ

335.

y = 3 2
2 + 1

5
⎛
⎝x + 3 2

2
⎞
⎠

337. e2

2
339. 9 10
341. ⎛

⎝y + 5⎞
⎠
2 = −8x + 32

343.
⎛
⎝y + 1⎞

⎠
2

16 − (x + 2)2

9 = 1

345. e = 2
3, ellipse
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347.
y2

19.032 + x2

19.632 = 1, e = 0.2447
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INDEX
A
absolute convergence, 500, 525
absolute error, 320, 346
air resistance, 408
Airy’s equation, 588
algebraic function, 264
alternating series, 496, 525
alternating series test, 498, 525
angular coordinate, 642, 694
annuities, 558
annuity payments, 603
aphelion, 63
arc length, 169, 254
Archimedean spiral, 654
Archimedes, 6
area density, 184
area under the curve, 17
arithmetic sequence, 429, 525
asymptotically semi-stable
solution, 369, 422
asymptotically stable solution,
369, 422
asymptotically unstable solution,
369, 422
autonomous differential
equation, 381, 422
average value of a function, 114
average value of the function,
40

B
bald eagle, 78
binomial series, 581, 600
bounded above, 440, 525
bounded below, 440, 525
bounded sequence, 440, 525

C
carbon dating, 239
cardioid, 652, 694
carrying capacity, 394, 422
catenary, 250, 254
center of mass, 202, 254
centroid, 205, 254
chambered nautilus, 606, 654
change of variables, 82, 114
cissoid of Diocles, 670
comparison test, 485, 525
compound interest, 234
computer algebra system
(CAS), 346
computer algebra systems
(CAS), 311
conditional convergence, 500,
525

conic section, 671, 694
convergence of a series, 452,
525
convergent sequence, 432, 525
coupon collector’s problem, 484
cross-section, 134, 254
curtate cycloid, 620
cusp, 694
cusps, 616
cycloid, 615, 694

D
deceleration, 77
definite integral, 27, 114
density function, 183, 254
differential equation, 352, 422
direction field (slope field), 366,
422
directrix, 672, 694
discriminant, 688, 694
disease epidemics, 380
disk method, 140, 254
displacement, 32, 65
divergence of a series, 452, 525
divergence test, 471, 525
divergent sequence, 432, 525
doubling time, 236, 254
drugs in the bloodstream, 391
dummy variable, 7, 27

E
Earth’s orbit, 607
eccentricity, 685, 694
elliptic integral, 593
epitrochoid, 624
equilibrium solution, 368, 422
Euler transform, 508
Euler’s constant, 465
Euler’s formula, 603
Euler’s Method, 373, 422
evaluation theorem, 53
even function, 70
explicit formula, 525
explicit formulas, 428
exponential decay, 237, 254
exponential growth, 232, 254

F
fave, 40
federal income tax, 78
Fibonacci numbers, 445
focal parameter, 686, 694
focus, 672, 694
Fresnel integrals, 598
fruit flies, 98

frustum, 174, 254
Fundamental Theorem of
Calculus, 47
fundamental theorem of
calculus, 114
Fundamental Theorem of
Calculus, Part 1, 50
fundamental theorem of
calculus, part 1, 114
Fundamental Theorem of
Calculus, Part 2, 53
fundamental theorem of
calculus, part 2, 114

G
Gabriel’s Horn, 333
general form, 674, 694
general solution, 354
general solution (or family of
solutions), 422
geometric sequence, 429, 525
geometric series, 456, 525
golden ratio, 445
Gompertz equation, 406
growth of bacteria, 97
growth rate, 393, 422

H
half-life, 239, 254
hanging cables, 250
harmonic series, 454, 525
Hooke’s law, 187, 254
Hoover Dam, 196
hydrostatic pressure, 193, 254
hypocycloid, 616

I
iceboat, 69
improper integral, 330, 346
indefinite integrals, 267
index, 6
index variable, 428, 526
infinite sequence, 428
infinite series, 452, 526
initial population, 393, 422
initial value, 355
initial value(s), 422
initial velocity, 359, 422
initial-value problem, 355, 422
integrable function, 27, 114
integral test, 472, 526
integrand, 27, 114
integrating factor, 411, 422
integration by parts, 262, 346
integration by substitution, 82,
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114
integration table, 346
integration tables, 311
interval of convergence, 534,
600

J
joule, 186

K
Koch’s snowflake, 459

L
lamina, 205, 254
Laplace transform, 341, 344
left-endpoint approximation, 11,
114
Leibniz, 27
limaçon, 652, 694
limit comparison test, 489, 526
limit of a sequence, 526
limit of the sequence, 432
limits of integration, 27, 114
linear, 409, 422
logarithmic function, 264
logistic differential equation,
394, 422
lower sum, 18, 114

M
Maclaurin polynomial, 600
Maclaurin polynomials, 563
Maclaurin series, 562, 600
major axis, 677, 694
Mean Value Theorem for
Integrals, 47
mean value theorem for
integrals, 114
method of cylindrical shells, 254
method of cylindrical shells.,
156
method of equating coefficients,
300
method of exhaustion, 6
method of strategic substitution,
300
midpoint rule, 316, 346
minor axis, 677, 694
moment, 202, 254
monotone sequence, 441, 526

N
nappe, 694
nappes, 671
net change theorem, 65, 114
net signed area, 31, 114
Newton, 47

Newton’s law of cooling, 237,
387
Newton’s second law of motion,
358
nonelementary integral, 590,
600
numerical integration, 316, 346

O
odd function, 70
order of a differential equation,
353, 422
orientation, 608, 694

P
p-series, 477, 526
parameter, 607, 694
parameterization of a curve,
614, 694
parametric curve, 608, 694
parametric equations, 607, 694
partial fraction decomposition,
298, 346
partial sum, 452, 526
particular solution, 355, 422
partition, 10, 114
pascals, 193
Pascal’s principle, 193
perihelion, 63
phase line, 394, 422
polar axis, 645, 694
polar coordinate system, 642,
694
polar equation, 694
polar equations, 650
pole, 645, 694
Population growth, 232
power reduction formula, 346
power reduction formulas, 281
power series, 532, 600
power-reducing identities, 274
present value, 549
price–demand function, 95
probability, 333
probability density function, 345
prolate cycloid, 621

R
radial coordinate, 642, 695
radial density, 184
radius of convergence, 534, 600
Ramanujan, 520
rate of change, 65
ratio test, 509, 526
rational functions, 298
RC circuit, 417
recurrence relation, 428, 428,

526
regular partition, 10, 114
relative error, 320, 346
remainder estimate, 479, 526
Riemann sum, 17
riemann sum, 114
Riemann sums, 316
right-endpoint approximation,
11, 114
root test, 512, 527
rose, 652, 695

S
separable differential equation,
381, 422
separation of variables, 381,
422
sequence, 527
Sierpinski triangle, 469
sigma notation, 6, 114
simple interest, 234
Simpson’s rule, 322, 346
skydiver, 58
slicing method, 136, 254
smooth, 169
solid of revolution, 137, 254
solution concentrations, 385
solution curve, 367, 422
solution to a differential
equation, 352, 422
space-filling curve, 653, 695
space-filling curves, 616
spring constant, 187
standard form, 409, 423, 673,
695
step size, 372, 423
summation notation, 6
sums and powers of integers, 8
Surface area, 173
surface area, 255
symmetry, 655
symmetry principle, 205, 255

T
Taylor polynomials, 562, 600
Taylor series, 562, 600
Taylor’s theorem with
remainder, 568, 600
telescoping series, 463, 527
term, 428, 527
term-by-term differentiation of a
power series, 552, 600
term-by-term integration of a
power series, 552, 600
theorem of Pappus for volume,
214, 255
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threshold population, 404, 423
total area, 34, 114
Tour de France, 75
traffic accidents, 333
trapezoidal rule, 318
trigonometric integral, 346
trigonometric integrals, 273
trigonometric substitution, 285,
346

U
unbounded sequence, 440, 527
upper sum, 18, 114

V
variable of integration, 27, 114
velocity, 65
vertex, 672, 695
von Bertalanffy growth, 469

W
washer method, 146, 255
wingsuits, 59
witch of Agnesi, 618
work, 187, 255
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