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4 | DIFFERENTIATION OF
FUNCTIONS OF SEVERAL
VARIABLES

Figure 4.1 Americans use (and lose) millions of golf balls a year, which keeps golf ball manufacturers in business. In this
chapter, we study a profit model and learn methods for calculating optimal production levels for a typical golf ball manufacturing
company. (credit: modification of work by oatsy40, Flickr)
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Introduction
In Introduction to Applications of Derivatives (http://cnx.org/content/m53602/latest/) , we studied how to
determine the maximum and minimum of a function of one variable over a closed interval. This function might represent
the temperature over a given time interval, the position of a car as a function of time, or the altitude of a jet plane as it travels
from New York to San Francisco. In each of these examples, the function has one independent variable.

Suppose, however, that we have a quantity that depends on more than one variable. For example, temperature can depend
on location and the time of day, or a company’s profit model might depend on the number of units sold and the amount
of money spent on advertising. In this chapter, we look at a company that produces golf balls. We develop a profit model
and, under various restrictions, we find that the optimal level of production and advertising dollars spent determines the
maximum possible profit. Depending on the nature of the restrictions, both the method of solution and the solution itself
changes (see Example 4.41).

When dealing with a function of more than one independent variable, several questions naturally arise. For example, how
do we calculate limits of functions of more than one variable? The definition of derivative we used before involved a limit.
Does the new definition of derivative involve limits as well? Do the rules of differentiation apply in this context? Can we
find relative extrema of functions using derivatives? All these questions are answered in this chapter.

4.1 | Functions of Several Variables

Learning Objectives
4.1.1 Recognize a function of two variables and identify its domain and range.

4.1.2 Sketch a graph of a function of two variables.

4.1.3 Sketch several traces or level curves of a function of two variables.

4.1.4 Recognize a function of three or more variables and identify its level surfaces.

Our first step is to explain what a function of more than one variable is, starting with functions of two independent variables.
This step includes identifying the domain and range of such functions and learning how to graph them. We also examine
ways to relate the graphs of functions in three dimensions to graphs of more familiar planar functions.

Functions of Two Variables
The definition of a function of two variables is very similar to the definition for a function of one variable. The main
difference is that, instead of mapping values of one variable to values of another variable, we map ordered pairs of variables
to another variable.

Definition

A function of two variables z = f ⎛
⎝x, y⎞

⎠ maps each ordered pair (x, y) in a subset D of the real plane ℝ2 to a

unique real number z. The set D is called the domain of the function. The range of f is the set of all real numbers
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z that has at least one ordered pair (x, y) ∈ D such that f (x, y) = z as shown in the following figure.

Figure 4.2 The domain of a function of two variables consists
of ordered pairs (x, y).

Determining the domain of a function of two variables involves taking into account any domain restrictions that may exist.
Let’s take a look.

Example 4.1

Domains and Ranges for Functions of Two Variables

Find the domain and range of each of the following functions:

a. f (x, y) = 3x + 5y + 2

b. g(x, y) = 9 − x2 − y2

Solution

a. This is an example of a linear function in two variables. There are no values or combinations of x and

y that cause f (x, y) to be undefined, so the domain of f is ℝ2. To determine the range, first pick

a value for z. We need to find a solution to the equation f (x, y) = z, or 3x − 5y + 2 = z. One such

solution can be obtained by first setting y = 0, which yields the equation 3x + 2 = z. The solution

to this equation is x = z − 2
3 , which gives the ordered pair ⎛

⎝
z − 2

3 , 0⎞
⎠ as a solution to the equation

f (x, y) = z for any value of z. Therefore, the range of the function is all real numbers, or ℝ.

b. For the function g(x, y) to have a real value, the quantity under the square root must be nonnegative:

9 − x2 − y2 ≥ 0.

This inequality can be written in the form

x2 + y2 ≤ 9.

Therefore, the domain of g(x, y) is
⎧

⎩
⎨(x, y) ∈ ℝ2|x2 + y2 ≤ 9⎫

⎭
⎬. The graph of this set of points can be

described as a disk of radius 3 centered at the origin. The domain includes the boundary circle as shown

in the following graph.
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4.1

Figure 4.3 The domain of the function

g(x, y) = 9 − x2 − y2 is a closed disk of radius 3.

To determine the range of g(x, y) = 9 − x2 − y2 we start with a point (x0, y0) on the boundary of the

domain, which is defined by the relation x2 + y2 = 9. It follows that x0
2 + y0

2 = 9 and

g(x0, y0) = 9 − x0
2 − y0

2 = 9 − ⎛
⎝x0

2 + y0
2⎞

⎠ = 9 − 9 = 0.

If x0
2 + y0

2 = 0 (in other words, x0 = y0 = 0), then

g(x0, y0) = 9 − x0
2 − y0

2 = 9 − ⎛
⎝x0

2 + y0
2⎞

⎠ = 9 − 0 = 3.

This is the maximum value of the function. Given any value c between 0 and 3, we can find an entire

set of points inside the domain of g such that g(x, y) = c:

9 − x2 − y2 = c

9 − x2 − y2 = c2

x2 + y2 = 9 − c2.

Since 9 − c2 > 0, this describes a circle of radius 9 − c2 centered at the origin. Any point on this

circle satisfies the equation g(x, y) = c. Therefore, the range of this function can be written in interval

notation as [0, 3].

Find the domain and range of the function f (x, y) = 36 − 9x2 − 9y2.
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Graphing Functions of Two Variables
Suppose we wish to graph the function z = (x, y). This function has two independent variables ⎛

⎝x and y⎞
⎠ and one

dependent variable (z). When graphing a function y = f (x) of one variable, we use the Cartesian plane. We are able to

graph any ordered pair (x, y) in the plane, and every point in the plane has an ordered pair (x, y) associated with it. With a

function of two variables, each ordered pair (x, y) in the domain of the function is mapped to a real number z. Therefore,

the graph of the function f consists of ordered triples (x, y, z). The graph of a function z = (x, y) of two variables is

called a surface.

To understand more completely the concept of plotting a set of ordered triples to obtain a surface in three-dimensional
space, imagine the (x, y) coordinate system laying flat. Then, every point in the domain of the function f has a unique

z-value associated with it. If z is positive, then the graphed point is located above the xy-plane, if z is negative, then the

graphed point is located below the xy-plane. The set of all the graphed points becomes the two-dimensional surface that is

the graph of the function f .

Example 4.2

Graphing Functions of Two Variables

Create a graph of each of the following functions:

a. g(x, y) = 9 − x2 − y2

b. f (x, y) = x2 + y2

Solution

a. In Example 4.1, we determined that the domain of g(x, y) = 9 − x2 − y2 is
⎧

⎩
⎨(x, y) ∈ ℝ2|x2 + y2 ≤ 9⎫

⎭
⎬ and the range is

⎧

⎩
⎨z ∈ ℝ2|0 ≤ z ≤ 3⎫

⎭
⎬. When x2 + y2 = 9 we have

g(x, y) = 0. Therefore any point on the circle of radius 3 centered at the origin in the x, y-plane maps

to z = 0 in ℝ3. If x2 + y2 = 8, then g(x, y) = 1, so any point on the circle of radius 2 2 centered

at the origin in the x, y-plane maps to z = 1 in ℝ3. As x2 + y2 gets closer to zero, the value of z

approaches 3. When x2 + y2 = 0, then g(x, y) = 3. This is the origin in the x, y-plane. If x2 + y2 is

equal to any other value between 0 and 9, then g(x, y) equals some other constant between 0 and 3.
The surface described by this function is a hemisphere centered at the origin with radius 3 as shown in

the following graph.
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Figure 4.4 Graph of the hemisphere represented by the given function of
two variables.

b. This function also contains the expression x2 + y2. Setting this expression equal to various values

starting at zero, we obtain circles of increasing radius. The minimum value of f (x, y) = x2 + y2 is

zero (attained when x = y = 0.). When x = 0, the function becomes z = y2, and when y = 0,

then the function becomes z = x2. These are cross-sections of the graph, and are parabolas. Recall from

Introduction to Vectors in Space that the name of the graph of f (x, y) = x2 + y2 is a paraboloid.

The graph of f appears in the following graph.
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Figure 4.5 A paraboloid is the graph of the given function of two
variables.

Example 4.3

Nuts and Bolts

A profit function for a hardware manufacturer is given by

f (x, y) = 16 − (x − 3)2 − ⎛
⎝y − 2⎞

⎠
2,

where x is the number of nuts sold per month (measured in thousands) and y represents the number of bolts sold

per month (measured in thousands). Profit is measured in thousands of dollars. Sketch a graph of this function.

Solution

This function is a polynomial function in two variables. The domain of f consists of (x, y) coordinate pairs that

yield a nonnegative profit:

16 − (x − 3)2 − ⎛
⎝y − 2⎞

⎠
2 ≥ 0

(x − 3)2 + ⎛
⎝y − 2⎞

⎠
2 ≤ 16.

This is a disk of radius 4 centered at (3, 2). A further restriction is that both x and y must be nonnegative.

When x = 3 and y = 2, f (x, y) = 16. Note that it is possible for either value to be a noninteger; for example,

it is possible to sell 2.5 thousand nuts in a month. The domain, therefore, contains thousands of points, so we
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can consider all points within the disk. For any z < 16, we can solve the equation f (x, y) = 16:

16 − (x − 3)2 − ⎛
⎝y − 2⎞

⎠
2 = z

(x − 3)2 + ⎛
⎝y − 2⎞

⎠
2 = 16 − z.

Since z < 16, we know that 16 − z > 0, so the previous equation describes a circle with radius 16 − z
centered at the point (3, 2). Therefore. the range of f (x, y) is {z ∈ ℝ|z ≤ 16}. The graph of f (x, y) is also a

paraboloid, and this paraboloid points downward as shown.

Figure 4.6 The graph of the given function of two variables is
also a paraboloid.

Level Curves
If hikers walk along rugged trails, they might use a topographical map that shows how steeply the trails change. A
topographical map contains curved lines called contour lines. Each contour line corresponds to the points on the map that
have equal elevation (Figure 4.7). A level curve of a function of two variables f (x, y) is completely analogous to a

contour line on a topographical map.
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Figure 4.7 (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A
perspective photo of Devil’s Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the
center of the topographical map.

Definition

Given a function f (x, y) and a number c in the range of f , a level curve of a function of two variables for the

value c is defined to be the set of points satisfying the equation f (x, y) = c.

Returning to the function g(x, y) = 9 − x2 − y2, we can determine the level curves of this function. The range of g is

the closed interval [0, 3]. First, we choose any number in this closed interval—say, c = 2. The level curve corresponding

to c = 2 is described by the equation

9 − x2 − y2 = 2.

To simplify, square both sides of this equation:

9 − x2 − y2 = 4.

Now, multiply both sides of the equation by −1 and add 9 to each side:

x2 + y2 = 5.

This equation describes a circle centered at the origin with radius 5. Using values of c between 0 and 3 yields other

circles also centered at the origin. If c = 3, then the circle has radius 0, so it consists solely of the origin. Figure 4.8

is a graph of the level curves of this function corresponding to c = 0, 1, 2, and 3. Note that in the previous derivation it

may be possible that we introduced extra solutions by squaring both sides. This is not the case here because the range of the
square root function is nonnegative.
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Figure 4.8 Level curves of the function

g(x, y) = 9 − x2 − y2, using c = 0, 1, 2, and 3 (c = 3
corresponds to the origin).

A graph of the various level curves of a function is called a contour map.

Example 4.4

Making a Contour Map

Given the function f (x, y) = 8 + 8x − 4y − 4x2 − y2, find the level curve corresponding to c = 0. Then

create a contour map for this function. What are the domain and range of f ?

Solution

To find the level curve for c = 0, we set f (x, y) = 0 and solve. This gives

0 = 8 + 8x − 4y − 4x2 − y2.

We then square both sides and multiply both sides of the equation by −1:

4x2 + y2 − 8x + 4y − 8 = 0.

Now, we rearrange the terms, putting the x terms together and the y terms together, and add 8 to each side:

4x2 − 8x + y2 + 4y = 8.

Next, we group the pairs of terms containing the same variable in parentheses, and factor 4 from the first pair:

4⎛
⎝x2 − 2x⎞

⎠ + ⎛
⎝y2 + 4y⎞

⎠ = 8.

Then we complete the square in each pair of parentheses and add the correct value to the right-hand side:

4⎛
⎝x2 − 2x + 1⎞

⎠ + ⎛
⎝y2 + 4y + 4⎞

⎠ = 8 + 4(1) + 4.

Next, we factor the left-hand side and simplify the right-hand side:

4(x − 1)2 + ⎛
⎝y + 2⎞

⎠
2 = 16.

Last, we divide both sides by 16:
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(4.1)(x − 1)2

4 +
⎛
⎝y + 2⎞

⎠
2

16 = 1.

This equation describes an ellipse centered at (1, −2). The graph of this ellipse appears in the following graph.

Figure 4.9 Level curve of the function

f (x, y) = 8 + 8x − 4y − 4x2 − y2 corresponding to

c = 0.

We can repeat the same derivation for values of c less than 4. Then, Equation 4.1 becomes

4(x − 1)2

16 − c2 +
⎛
⎝y + 2⎞

⎠
2

16 − c2 = 1

for an arbitrary value of c. Figure 4.10 shows a contour map for f (x, y) using the values c = 0, 1, 2, and 3.
When c = 4, the level curve is the point (−1, 2).
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4.2

Figure 4.10 Contour map for the function

f (x, y) = 8 + 8x − 4y − 4x2 − y2 using the values

c = 0, 1, 2, 3, and 4.

Find and graph the level curve of the function g(x, y) = x2 + y2 − 6x + 2y corresponding to c = 15.

Another useful tool for understanding the graph of a function of two variables is called a vertical trace. Level curves are
always graphed in the xy-plane, but as their name implies, vertical traces are graphed in the xz - or yz-planes.

Definition

Consider a function z = f (x, y) with domain D ⊆ ℝ2. A vertical trace of the function can be either the set of points

that solves the equation f (a, y) = z for a given constant x = a or f (x, b) = z for a given constant y = b.

Example 4.5

Finding Vertical Traces

Find vertical traces for the function f (x, y) = sin x cos y corresponding to x = − π
4, 0, and π

4, and

y = − π
4, 0, and π

4.

Solution

First set x = − π
4 in the equation z = sin x cos y:
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z = sin⎛
⎝−

π
4

⎞
⎠cos y = − 2 cos y

2 ≈ −0.7071 cos y.

This describes a cosine graph in the plane x = − π
4. The other values of z appear in the following table.

c Vertical Trace for x = c

−π
4 z = − 2 cos y

2

0 z = 0

π
4 z = 2 cos y

2

Table 4.1
Vertical Traces Parallel to the xz-Plane
for the Function f (x, y) = sin x cos y

In a similar fashion, we can substitute the y-values in the equation f (x, y) to obtain the traces in the yz-plane,
as listed in the following table.

d Vertical Trace for y = d

−π
4 z = − 2 sin x

2

0 z = sin x

π
4 z = 2 sin x

2

Table 4.2
Vertical Traces Parallel to the yz-Plane
for the Function f (x, y) = sin x cos y

The three traces in the xz-plane are cosine functions; the three traces in the yz-plane are sine functions.

These curves appear in the intersections of the surface with the planes x = − π
4, x = 0, x = π

4 and

y = − π
4, y = 0, y = π

4 as shown in the following figure.
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4.3

Figure 4.11 Vertical traces of the function f (x, y) are cosine curves in the xz-planes (a) and sine curves in the

yz-planes (b).

Determine the equation of the vertical trace of the function g(x, y) = −x2 − y2 + 2x + 4y − 1
corresponding to y = 3, and describe its graph.

Functions of two variables can produce some striking-looking surfaces. The following figure shows two examples.

Figure 4.12 Examples of surfaces representing functions of two variables: (a) a combination of a power function and a sine
function and (b) a combination of trigonometric, exponential, and logarithmic functions.

Functions of More Than Two Variables
So far, we have examined only functions of two variables. However, it is useful to take a brief look at functions of more
than two variables. Two such examples are
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f (x, y, z) = x2 − 2xy + y2 + 3yz − z2 + 4x − 2y + 3x − 6 (a polynomial in three variables)

and

g(x, y, t) = ⎛
⎝x2 − 4xy + y2⎞

⎠sin t − ⎛
⎝3x + 5y⎞

⎠cos t.

In the first function, (x, y, z) represents a point in space, and the function f maps each point in space to a fourth quantity,

such as temperature or wind speed. In the second function, (x, y) can represent a point in the plane, and t can represent

time. The function might map a point in the plane to a third quantity (for example, pressure) at a given time t. The method

for finding the domain of a function of more than two variables is analogous to the method for functions of one or two
variables.

Example 4.6

Domains for Functions of Three Variables

Find the domain of each of the following functions:

a. f (x, y, z) = 3x − 4y + 2z
9 − x2 − y2 − z2

b. g(x, y, t) = 2t − 4
x2 − y2

Solution

a. For the function f (x, y, z) = 3x − 4y + 2z
9 − x2 − y2 − z2

to be defined (and be a real value), two conditions must

hold:

1. The denominator cannot be zero.

2. The radicand cannot be negative.

Combining these conditions leads to the inequality

9 − x2 − y2 − z2 > 0.

Moving the variables to the other side and reversing the inequality gives the domain as

domain⎛
⎝ f ⎞

⎠ = ⎧

⎩
⎨(x, y, z) ∈ ℝ3|x2 + y2 + z2 < 9⎫

⎭
⎬,

which describes a ball of radius 3 centered at the origin. (Note: The surface of the ball is not included in

this domain.)

b. For the function g(x, y, t) = 2t − 4
x2 − y2 to be defined (and be a real value), two conditions must hold:

1. The radicand cannot be negative.

2. The denominator cannot be zero.

Since the radicand cannot be negative, this implies 2t − 4 ≥ 0, and therefore that t ≥ 2. Since the

denominator cannot be zero, x2 − y2 ≠ 0, or x2 ≠ y2, Which can be rewritten as y = ±x, which

are the equations of two lines passing through the origin. Therefore, the domain of g is

domain(g) = ⎧

⎩
⎨(x, y, t)|y ≠ ±x, t ≥ 2⎫

⎭
⎬.
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4.4 Find the domain of the function h(x, y, t) = (3t − 6) y − 4x2 + 4.

Functions of two variables have level curves, which are shown as curves in the xy-plane. However, when the function has

three variables, the curves become surfaces, so we can define level surfaces for functions of three variables.

Definition

Given a function f (x, y, z) and a number c in the range of f , a level surface of a function of three variables is

defined to be the set of points satisfying the equation f (x, y, z) = c.

Example 4.7

Finding a Level Surface

Find the level surface for the function f (x, y, z) = 4x2 + 9y2 − z2 corresponding to c = 1.

Solution

The level surface is defined by the equation 4x2 + 9y2 − z2 = 1. This equation describes a hyperboloid of one

sheet as shown in the following figure.

348 Chapter 4 | Differentiation of Functions of Several Variables

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



4.5

Figure 4.13 A hyperboloid of one sheet with some of its level surfaces.

Find the equation of the level surface of the function

g(x, y, z) = x2 + y2 + z2 − 2x + 4y − 6z

corresponding to c = 2, and describe the surface, if possible.
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4.1 EXERCISES
For the following exercises, evaluate each function at the
indicated values.

1. W(x, y) = 4x2 + y2. Find W(2, −1), W(−3, 6).

2. W(x, y) = 4x2 + y2. Find W(2 + h, 3 + h).

3. The volume of a right circular cylinder is calculated by

a function of two variables, V(x, y) = πx2 y, where x is

the radius of the right circular cylinder and y represents the

height of the cylinder. Evaluate V(2, 5) and explain what

this means.

4. An oxygen tank is constructed of a right cylinder of
height y and radius x with two hemispheres of radius x
mounted on the top and bottom of the cylinder. Express
the volume of the cylinder as a function of two variables,
x and y, find V(10, 2), and explain what this means.

For the following exercises, find the domain of the
function.

5. V(x, y) = 4x2 + y2

6. f (x, y) = x2 + y2 − 4

7. f (x, y) = 4 ln(y2 − x)

8. g(x, y) = 16 − 4x2 − y2

9. z(x, y) = y2 − x2

10. f (x, y) = y + 2
x2

Find the range of the functions.

11. g(x, y) = 16 − 4x2 − y2

12. V(x, y) = 4x2 + y2

13. z = y2 − x2

For the following exercises, find the level curves of each
function at the indicated value of c to visualize the given

function.

14. z(x, y) = y2 − x2, c = 1

15. z(x, y) = y2 − x2, c = 4

16. g(x, y) = x2 + y2; c = 4, c = 9

17. g(x, y) = 4 − x − y; c = 0, 4

18. f (x, y) = xy; c = 1; c = −1

19. h(x, y) = 2x − y; c = 0, −2, 2

20. f (x, y) = x2 − y; c = 1, 2

21. g(x, y) = x
x + y; c = −1, 0, 2

22. g(x, y) = x3 − y; c = −1, 0, 2

23. g(x, y) = exy; c = 1
2, 3

24. f (x, y) = x2; c = 4, 9

25. f (x, y) = xy − x; c = −2, 0, 2

26. h(x, y) = ln(x2 + y2); c = −1, 0, 1

27. g(x, y) = ln⎛
⎝

y
x2

⎞
⎠; c = −2, 0, 2

28. z = f (x, y) = x2 + y2, c = 3

29. f (x, y) = y + 2
x2 , c = any constant

For the following exercises, find the vertical traces of the
functions at the indicated values of x and y, and plot the

traces.

30. z = 4 − x − y; x = 2

31. f (x, y) = 3x + y3, x = 1

32. z = cos x2 + y2 x = 1

Find the domain of the following functions.

33. z = 100 − 4x2 − 25y2

34. z = ln⎛
⎝x − y2⎞

⎠
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35. f (x, y, z) = 1
36 − 4x2 − 9y2 − z2

36. f (x, y, z) = 49 − x2 − y2 − z2

37. f (x, y, z) = 16 − x2 − y2 − z23

38. f (x, y) = cos x2 + y2

For the following exercises, plot a graph of the function.

39. z = f (x, y) = x2 + y2

40. z = x2 + y2

41. Use technology to graph z = x2 y.

Sketch the following by finding the level curves. Verify the
graph using technology.

42. f (x, y) = 4 − x2 − y2

43. f (x, y) = 2 − x2 + y2

44. z = 1 + e−x2 − y2

45. z = cos x2 + y2

46. z = y2 − x2

47. Describe the contour lines for several values of c for

z = x2 + y2 − 2x − 2y.

Find the level surface for the functions of three variables
and describe it.

48. w(x, y, z) = x − 2y + z, c = 4

49. w(x, y, z) = x2 + y2 + z2, c = 9

50. w(x, y, z) = x2 + y2 − z2, c = −4

51. w(x, y, z) = x2 + y2 − z2, c = 4

52. w(x, y, z) = 9x2 − 4y2 + 36z2, c = 0

For the following exercises, find an equation of the level
curve of f that contains the point P.

53. f (x, y) = 1 − 4x2 − y2, P(0, 1)

54. g(x, y) = y2 arctan x, P(1, 2)

55. g(x, y) = exy(x2 + y2), P(1, 0)

56. The strength E of an electric field at point (x, y, z)
resulting from an infinitely long charged wire lying along

the y-axis is given by E(x, y, z) = k/ x2 + y2, where k
is a positive constant. For simplicity, let k = 1 and find the

equations of the level surfaces for E = 10 and E = 100.

57. A thin plate made of iron is located in the xy-plane.
The temperature T in degrees Celsius at a point P(x, y) is

inversely proportional to the square of its distance from the
origin. Express T as a function of x and y.

58. Refer to the preceding problem. Using the temperature
function found there, determine the proportionality
constant if the temperature at point P(1, 2) is 50°C. Use

this constant to determine the temperature at point
Q(3, 4).

59. Refer to the preceding problem. Find the level curves
for T = 40°C and T = 100°C, and describe what the

level curves represent.
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4.2 | Limits and Continuity

Learning Objectives
4.2.1 Calculate the limit of a function of two variables.

4.2.2 Learn how a function of two variables can approach different values at a boundary point,
depending on the path of approach.

4.2.3 State the conditions for continuity of a function of two variables.

4.2.4 Verify the continuity of a function of two variables at a point.

4.2.5 Calculate the limit of a function of three or more variables and verify the continuity of the
function at a point.

We have now examined functions of more than one variable and seen how to graph them. In this section, we see how to take
the limit of a function of more than one variable, and what it means for a function of more than one variable to be continuous
at a point in its domain. It turns out these concepts have aspects that just don’t occur with functions of one variable.

Limit of a Function of Two Variables
Recall from Section 2.2 the definition of a limit of a function of one variable:

Let f (x) be defined for all x ≠ a in an open interval containing a. Let L be a real number. Then

limx → a f (x) = L

if for every ε > 0, there exists a δ > 0, such that if 0 < |x − a| < δ for all x in the domain of f , then

| f (x) − L| > ε.

Before we can adapt this definition to define a limit of a function of two variables, we first need to see how to extend the
idea of an open interval in one variable to an open interval in two variables.

Definition

Consider a point (a, b) ∈ ℝ2. A δ disk centered at point (a, b) is defined to be an open disk of radius δ centered

at point (a, b) —that is,

⎧

⎩
⎨(x, y) ∈ ℝ2|(x − a)2 + (y − b)2 < δ2⎫

⎭
⎬

as shown in the following graph.

Figure 4.14 A δ disk centered around the point (2, 1).

The idea of a δ disk appears in the definition of the limit of a function of two variables. If δ is small, then all the points

(x, y) in the δ disk are close to (a, b). This is completely analogous to x being close to a in the definition of a limit of

a function of one variable. In one dimension, we express this restriction as

a − δ < x < a + δ.
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In more than one dimension, we use a δ disk.

Definition

Let f be a function of two variables, x and y. The limit of f (x, y) as (x, y) approaches (a, b) is L, written

lim
(x, y) → (a, b)

f (x, y) = L

if for each ε > 0 there exists a small enough δ > 0 such that for all points (x, y) in a δ disk around (a, b), except

possibly for (a, b) itself, the value of f (x, y) is no more than ε away from L (Figure 4.15). Using symbols, we

write the following: For any ε > 0, there exists a number δ > 0 such that

| f (x, y) − L| < ε whenever 0 < (x − a)2 + ⎛
⎝y − b⎞

⎠
2 < δ.

Figure 4.15 The limit of a function involving two variables requires that f (x, y)
be within ε of L whenever (x, y) is within δ of (a, b). The smaller the value of

ε, the smaller the value of δ.

Proving that a limit exists using the definition of a limit of a function of two variables can be challenging. Instead, we use
the following theorem, which gives us shortcuts to finding limits. The formulas in this theorem are an extension of the
formulas in the limit laws theorem in The Limit Laws (http://cnx.org/content/m53492/latest/) .

Theorem 4.1: Limit laws for functions of two variables

Let f (x, y) and g(x, y) be defined for all (x, y) ≠ (a, b) in a neighborhood around (a, b), and assume the

neighborhood is contained completely inside the domain of f . Assume that L and M are real numbers such

that lim
(x, y) → (a, b)

f (x, y) = L and lim
(x, y) → (a, b)

g(x, y) = M, and let c be a constant. Then each of the following
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statements holds:

Constant Law:

(4.2)lim
(x, y) → (a, b)

c = c

Identity Laws:

(4.3)lim
(x, y) → (a, b)

x = a

(4.4)lim
(x, y) → (a, b)

y = b

Sum Law:

(4.5)lim
(x, y) → (a, b)

⎛
⎝ f (x, y) + g(x, y)⎞

⎠ = L + M

Difference Law:

(4.6)lim
(x, y) → (a, b)

⎛
⎝ f (x, y) − g(x, y)⎞

⎠ = L − M

Constant Multiple Law:

(4.7)lim
(x, y) → (a, b)

⎛
⎝c f (x, y)⎞

⎠ = cL

Product Law:

(4.8)lim
(x, y) → (a, b)

⎛
⎝ f (x, y)g(x, y)⎞

⎠ = LM

Quotient Law:

(4.9)lim
(x, y) → (a, b)

f (x, y)
g(x, y) = L

M for M ≠ 0

Power Law:

(4.10)lim
(x, y) → (a, b)

⎛
⎝ f (x, y)⎞

⎠
n = Ln

for any positive integer n.

Root Law:

(4.11)lim
(x, y) → (a, b)

f (x, y)n = Ln

for all L if n is odd and positive, and for L ≥ 0 if n is even and positive.

The proofs of these properties are similar to those for the limits of functions of one variable. We can apply these laws to
finding limits of various functions.

Example 4.8

Finding the Limit of a Function of Two Variables

Find each of the following limits:

a. lim
(x, y) → (2, −1)

⎛
⎝x2 − 2xy + 3y2 − 4x + 3y − 6⎞

⎠

b. lim
(x, y) → (2, −1)

2x + 3y
4x − 3y
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Solution

a. First use the sum and difference laws to separate the terms:

lim
(x, y) → (2, −1)

⎛
⎝x2 − 2xy + 3y2 − 4x + 3y − 6⎞

⎠

= ⎛
⎝ lim

(x, y) → (2, −1)
x2⎞

⎠ − ⎛
⎝ lim

(x, y) → (2, −1)
2xy⎞

⎠ + ⎛
⎝ lim

(x, y) → (2, −1)
3y2⎞

⎠ − ⎛
⎝ lim

(x, y) → (2, −1)
4x⎞

⎠
+ ⎛

⎝ lim
(x, y) → (2, −1)

3y⎞
⎠ − ⎛

⎝ lim
(x, y) → (2, −1)

6⎞
⎠.

Next, use the constant multiple law on the second, third, fourth, and fifth limits:

= ⎛
⎝ lim

(x, y) → (2, −1)
x2⎞

⎠ − 2⎛
⎝ lim

(x, y) → (2, −1)
xy⎞

⎠ + 3⎛
⎝ lim

(x, y) → (2, −1)
y2⎞

⎠ − 4⎛
⎝ lim

(x, y) → (2, −1)
x⎞
⎠

+3⎛
⎝ lim

(x, y) → (2, −1)
y⎞
⎠ − lim

(x, y) → (2, −1)
6.

Now, use the power law on the first and third limits, and the product law on the second limit:

= ⎛
⎝ lim

(x, y) → (2, −1)
x⎞
⎠

2
− 2⎛

⎝ lim
(x, y) → (2, −1)

x⎞
⎠
⎛
⎝ lim

(x, y) → (2, −1)
y⎞
⎠ + 3⎛

⎝ lim
(x, y) → (2, −1)

y⎞
⎠

2

−4⎛
⎝ lim

(x, y) → (2, −1)
x⎞
⎠ + 3⎛

⎝ lim
(x, y) → (2, −1)

y⎞
⎠ − lim

(x, y) → (2, −1)
6.

Last, use the identity laws on the first six limits and the constant law on the last limit:

lim
(x, y) → (2, −1)

⎛
⎝x2 − 2xy + 3y2 − 4x + 3y − 6⎞

⎠ = (2)2 − 2(2)(−1) + 3(−1)2 − 4(2) + 3(−1) − 6

= −6.

b. Before applying the quotient law, we need to verify that the limit of the denominator is nonzero. Using
the difference law, constant multiple law, and identity law,

lim
(x, y) → (2, −1)

⎛
⎝4x − 3y⎞

⎠ = lim
(x, y) → (2, −1)

4x − lim
(x, y) → (2, −1)

3y

= 4⎛
⎝ lim

(x, y) → (2, −1)
x⎞
⎠ − 3⎛

⎝ lim
(x, y) → (2, −1)

y⎞
⎠

= 4(2) − 3(−1) = 11.

Since the limit of the denominator is nonzero, the quotient law applies. We now calculate the limit of the
numerator using the difference law, constant multiple law, and identity law:

lim
(x, y) → (2, −1)

⎛
⎝2x + 3y⎞

⎠ = lim
(x, y) → (2, −1)

2x + lim
(x, y) → (2, −1)

3y

= 2⎛
⎝ lim

(x, y) → (2, −1)
x⎞
⎠ + 3⎛

⎝ lim
(x, y) → (2, −1)

y⎞
⎠

= 2(2) + 3(−1)
= 1.

Therefore, according to the quotient law we have

Chapter 4 | Differentiation of Functions of Several Variables 355



4.6

lim
(x, y) → (2, −1)

2x + 3y
4x − 3y =

lim
(x, y) → (2, −1)

⎛
⎝2x + 3y⎞

⎠

lim
(x, y) → (2, −1)

⎛
⎝4x − 3y⎞

⎠
= 1

11.

Evaluate the following limit:

lim
(x, y) → (5, −2)

x2 − y
y2 + x − 1

3
.

Since we are taking the limit of a function of two variables, the point (a, b) is in ℝ2, and it is possible to approach this

point from an infinite number of directions. Sometimes when calculating a limit, the answer varies depending on the path
taken toward (a, b). If this is the case, then the limit fails to exist. In other words, the limit must be unique, regardless of

path taken.

Example 4.9

Limits That Fail to Exist

Show that neither of the following limits exist:

a. lim
(x, y) → (0, 0)

2xy
3x2 + y2

b. lim
(x, y) → (0, 0)

4xy2

x2 + 3y4

Solution

a. The domain of the function f (x, y) = 2xy
3x2 + y2 consists of all points in the xy-plane except for the

point (0, 0) (Figure 4.16). To show that the limit does not exist as (x, y) approaches (0, 0), we note

that it is impossible to satisfy the definition of a limit of a function of two variables because of the fact
that the function takes different values along different lines passing through point (0, 0). First, consider

the line y = 0 in the xy-plane. Substituting y = 0 into f (x, y) gives

f (x, 0) = 2x(0)
3x2 + 02 = 0

for any value of x. Therefore the value of f remains constant for any point on the x-axis, and as y
approaches zero, the function remains fixed at zero.
Next, consider the line y = x. Substituting y = x into f (x, y) gives

f (x, x) = 2x(x)
3x2 + x2 = 2x2

4x2 = 1
2.

This is true for any point on the line y = x. If we let x approach zero while staying on this line, the
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value of the function remains fixed at 1
2, regardless of how small x is.

Choose a value for ε that is less than 1/2 —say, 1/4. Then, no matter how small a δ disk we

draw around (0, 0), the values of f (x, y) for points inside that δ disk will include both 0 and 1
2.

Therefore, the definition of limit at a point is never satisfied and the limit fails to exist.

Figure 4.16 Graph of the function

f (x, y) = ⎛
⎝2xy⎞

⎠/⎛
⎝3x2 + y2⎞

⎠. Along the line y = 0, the

function is equal to zero; along the line y = x, the function is

equal to 1
2.

In a similar fashion to a., we can approach the origin along any straight line passing through the origin. If
we try the x-axis (i.e., y = 0), then the function remains fixed at zero. The same is true for the y-axis.
Suppose we approach the origin along a straight line of slope k. The equation of this line is y = kx.
Then the limit becomes

lim
(x, y) → (0, 0)

4xy2

x2 + 3y4 = lim
(x, y) → (0, 0)

4x(kx)2

x2 + 3(kx)4

= lim
(x, y) → (0, 0)

4k2 x3

x2 + 3k4 x4

= lim
(x, y) → (0, 0)

4k2 x
1 + 3k4 x2

=
lim

(x, y) → (0, 0)
⎛
⎝4k2 x⎞

⎠

lim
(x, y) → (0, 0)

⎛
⎝1 + 3k4 x2⎞

⎠

= 0

regardless of the value of k. It would seem that the limit is equal to zero. What if we chose a curve

passing through the origin instead? For example, we can consider the parabola given by the equation

x = y2. Substituting y2 in place of x in f (x, y) gives
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lim
(x, y) → (0, 0)

4xy2

x2 + 3y4 = lim
(x, y) → (0, 0)

4⎛
⎝y2⎞

⎠y2

⎛
⎝y2⎞

⎠
2

+ 3y4

= lim
(x, y) → (0, 0)

4y4

y4 + 3y4

= lim
(x, y) → (0, 0)

1

= 1.

By the same logic in a., it is impossible to find a δ disk around the origin that satisfies the definition of

the limit for any value of ε < 1. Therefore, lim
(x, y) → (0, 0)

4xy2

x2 + 3y4 does not exist.

Show that

lim
(x, y) → (2, 1)

(x − 2)⎛
⎝y − 1⎞

⎠

(x − 2)2 + ⎛
⎝y − 1⎞

⎠
2

does not exist.

Interior Points and Boundary Points
To study continuity and differentiability of a function of two or more variables, we first need to learn some new terminology.

Definition

Let S be a subset of ℝ2 (Figure 4.17).

1. A point P0 is called an interior point of S if there is a δ disk centered around P0 contained completely in

S.

2. A point P0 is called a boundary point of S if every δ disk centered around P0 contains points both inside

and outside S.
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Figure 4.17 In the set S shown, (−1, 1) is an interior point

and (2, 3) is a boundary point.

Definition

Let S be a subset of ℝ2 (Figure 4.17).

1. S is called an open set if every point of S is an interior point.

2. S is called a closed set if it contains all its boundary points.

An example of an open set is a δ disk. If we include the boundary of the disk, then it becomes a closed set. A set that

contains some, but not all, of its boundary points is neither open nor closed. For example if we include half the boundary of
a δ disk but not the other half, then the set is neither open nor closed.

Definition

Let S be a subset of ℝ2 (Figure 4.17).

1. An open set S is a connected set if it cannot be represented as the union of two or more disjoint, nonempty

open subsets.

2. A set S is a region if it is open, connected, and nonempty.

The definition of a limit of a function of two variables requires the δ disk to be contained inside the domain of the function.

However, if we wish to find the limit of a function at a boundary point of the domain, the δ disk is not contained inside

the domain. By definition, some of the points of the δ disk are inside the domain and some are outside. Therefore, we need

only consider points that are inside both the δ disk and the domain of the function. This leads to the definition of the limit

of a function at a boundary point.

Definition

Let f be a function of two variables, x and y, and suppose (a, b) is on the boundary of the domain of f . Then,

the limit of f (x, y) as (x, y) approaches (a, b) is L, written

lim
(x, y) → (a, b)

f (x, y) = L,
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if for any ε > 0, there exists a number δ > 0 such that for any point (x, y) inside the domain of f and within a

suitably small distance positive δ of (a, b), the value of f (x, y) is no more than ε away from L (Figure 4.15).

Using symbols, we can write: For any ε > 0, there exists a number δ > 0 such that

| f (x, y) − L| < ε whenever 0 < (x − a)2 + ⎛
⎝y − b⎞

⎠
2 < δ.

Example 4.10

Limit of a Function at a Boundary Point

Prove lim
(x, y) → (4, 3)

25 − x2 − y2 = 0.

Solution

The domain of the function f (x, y) = 25 − x2 − y2 is
⎧

⎩
⎨(x, y) ∈ ℝ2 |x2 + y2 ≤ 25⎫

⎭
⎬, which is a circle of

radius 5 centered at the origin, along with its interior as shown in the following graph.

Figure 4.18 Domain of the function

f (x, y) = 25 − x2 − y2.

We can use the limit laws, which apply to limits at the boundary of domains as well as interior points:

lim
(x, y) → (4, 3)

25 − x2 − y2 = lim
(x, y) → (4, 3)

⎛
⎝25 − x2 − y2⎞

⎠

= lim
(x, y) → (4, 3)

25 − lim
(x, y) → (4, 3)

x2 − lim
(x, y) → (4, 3)

y2

= 25 − 42 − 32

= 0.

See the following graph.
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4.8

Figure 4.19 Graph of the function

f (x, y) = 25 − x2 − y2.

Evaluate the following limit:

lim
(x, y) → (5, −2)

29 − x2 − y2.

Continuity of Functions of Two Variables
In Continuity (http://cnx.org/content/m53489/latest/) , we defined the continuity of a function of one variable and
saw how it relied on the limit of a function of one variable. In particular, three conditions are necessary for f (x) to be

continuous at point x = a:

1. f (a) exists.

2. limx → a f (x) exists.

3. limx → a f (x) = f (a).

These three conditions are necessary for continuity of a function of two variables as well.

Definition

A function f (x, y) is continuous at a point (a, b) in its domain if the following conditions are satisfied:

1. f (a, b) exists.

2. lim
(x, y) → (a, b)

f (x, y) exists.

3. lim
(x, y) → (a, b)

f (x, y) = f (a, b).
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Example 4.11

Demonstrating Continuity for a Function of Two Variables

Show that the function f (x, y) = 3x + 2y
x + y + 1 is continuous at point (5, −3).

Solution

There are three conditions to be satisfied, per the definition of continuity. In this example, a = 5 and b = −3.

1. f (a, b) exists. This is true because the domain of the function f consists of those ordered pairs

for which the denominator is nonzero (i.e., x + y + 1 ≠ 0). Point (5, −3) satisfies this condition.

Furthermore,

f (a, b) = f (5, −3) = 3(5) + 2(−3)
5 + (−3) + 1 = 15 − 6

2 + 1 = 3.

2. lim
(x, y) → (a, b)

f (x, y) exists. This is also true:

lim
(x, y) → (a, b)

f (x, y) = lim
(x, y) → (5, −3)

3x + 2y
x + y + 1

=
lim

(x, y) → (5, −3)
⎛
⎝3x + 2y⎞

⎠

lim
(x, y) → (5, −3)

⎛
⎝x + y + 1⎞

⎠

= 15 − 6
5 − 3 + 1

= 3.
3. lim

(x, y) → (a, b)
f (x, y) = f (a, b). This is true because we have just shown that both sides of this equation

equal three.

Show that the function f (x, y) = 26 − 2x2 − y2 is continuous at point (2, −3).

Continuity of a function of any number of variables can also be defined in terms of delta and epsilon. A function of two
variables is continuous at a point (x0, y0) in its domain if for every ε > 0 there exists a δ > 0 such that, whenever

(x − x0)2 + (y − y0)2 < δ it is true, | f (x, y) − f (a, b)| < ε. This definition can be combined with the formal definition

(that is, the epsilon–delta definition) of continuity of a function of one variable to prove the following theorems:

Theorem 4.2: The Sum of Continuous Functions Is Continuous

If f (x, y) is continuous at (x0, y0), and g(x, y) is continuous at (x0, y0), then f (x, y) + g(x, y) is continuous

at (x0, y0).

Theorem 4.3: The Product of Continuous Functions Is Continuous

If g(x) is continuous at x0 and h(y) is continuous at y0, then f (x, y) = g(x)h(y) is continuous at (x0, y0).
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4.10

Theorem 4.4: The Composition of Continuous Functions Is Continuous

Let g be a function of two variables from a domain D ⊆ ℝ2 to a range R ⊆ ℝ. Suppose g is continuous at some

point (x0, y0) ∈ D and define z0 = g(x0, y0). Let f be a function that maps ℝ to ℝ such that z0 is in the domain

of f . Last, assume f is continuous at z0. Then f ∘g is continuous at (x0, y0) as shown in the following figure.

Figure 4.20 The composition of two continuous functions is continuous.

Let’s now use the previous theorems to show continuity of functions in the following examples.

Example 4.12

More Examples of Continuity of a Function of Two Variables

Show that the functions f (x, y) = 4x3 y2 and g(x, y) = cos⎛
⎝4x3 y2⎞

⎠ are continuous everywhere.

Solution

The polynomials g(x) = 4x3 and h(y) = y2 are continuous at every real number, and therefore by the product

of continuous functions theorem, f (x, y) = 4x3 y2 is continuous at every point (x, y) in the xy-plane. Since

f (x, y) = 4x3 y2 is continuous at every point (x, y) in the xy-plane and g(x) = cos x is continuous at every

real number x, the continuity of the composition of functions tells us that g(x, y) = cos⎛
⎝4x3 y2⎞

⎠ is continuous

at every point (x, y) in the xy-plane.

Show that the functions f (x, y) = 2x2 y3 + 3 and g(x, y) = ⎛
⎝2x2 y3 + 3⎞

⎠
4

are continuous everywhere.

Functions of Three or More Variables
The limit of a function of three or more variables occurs readily in applications. For example, suppose we have a
function f (x, y, z) that gives the temperature at a physical location (x, y, z) in three dimensions. Or perhaps a function

g(x, y, z, t) can indicate air pressure at a location (x, y, z) at time t. How can we take a limit at a point in ℝ3? What

does it mean to be continuous at a point in four dimensions?

The answers to these questions rely on extending the concept of a δ disk into more than two dimensions. Then, the ideas of

the limit of a function of three or more variables and the continuity of a function of three or more variables are very similar
to the definitions given earlier for a function of two variables.
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Definition

Let (x0, y0, z0) be a point in ℝ3. Then, a δ ball in three dimensions consists of all points in ℝ3 lying at a distance

of less than δ from (x0, y0, z0) —that is,

⎧

⎩
⎨(x, y, z) ∈ ℝ3| (x − x0)2 + (y − y0)2 + (z − z0)2 < δ

⎫

⎭
⎬.

To define a δ ball in higher dimensions, add additional terms under the radical to correspond to each additional

dimension. For example, given a point P = (w0, x0, y0, z0) in ℝ4, a δ ball around P can be described by

⎧

⎩
⎨(w, x, y, z) ∈ ℝ4| (w − w0)2 + (x − x0)2 + (y − y0)2 + (z − z0)2 < δ

⎫

⎭
⎬.

To show that a limit of a function of three variables exists at a point (x0, y0, z0), it suffices to show that for any point in a

δ ball centered at (x0, y0, z0), the value of the function at that point is arbitrarily close to a fixed value (the limit value).

All the limit laws for functions of two variables hold for functions of more than two variables as well.

Example 4.13

Finding the Limit of a Function of Three Variables

Find lim
(x, y, z) → (4, 1, −3)

x2 y − 3z
2x + 5y − z.

Solution

Before we can apply the quotient law, we need to verify that the limit of the denominator is nonzero. Using the
difference law, the identity law, and the constant law,

lim
(x, y, z) → (4, 1, −3)

⎛
⎝2x + 5y − z⎞

⎠ = 2⎛
⎝ lim

(x, y, z) → (4, 1, −3)
x⎞
⎠ + 5⎛

⎝ lim
(x, y, z) → (4, 1, −3)

y⎞
⎠ − ⎛

⎝ lim
(x, y, z) → (4, 1, −3)

z⎞⎠
= 2(4) + 5(1) − (−3)
= 16.

Since this is nonzero, we next find the limit of the numerator. Using the product law, difference law, constant
multiple law, and identity law,

lim
(x, y, z) → (4, 1, −3)

⎛
⎝x2 y − 3z⎞

⎠ = ⎛
⎝ lim

(x, y, z) → (4, 1, −3)
x⎞
⎠

2 ⎛
⎝ lim

(x, y, z) → (4, 1, −3)
y⎞
⎠ − 3 lim

(x, y, z) → (4, 1, −3)
z

= ⎛
⎝42⎞

⎠(1) − 3(−3)
= 16 + 9
= 25.

Last, applying the quotient law:

lim
(x, y, z) → (4, 1, −3)

x2 y − 3z
2x + 5y − z =

lim
(x, y, z) → (4, 1, −3)

⎛
⎝x2 y − 3z⎞

⎠

lim
(x, y, z) → (4, 1, −3)

⎛
⎝2x + 5y − z⎞

⎠

= 25
16.
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4.11 Find lim
(x, y, z) → (4, −1, 3)

13 − x2 − 2y2 + z2.
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4.2 EXERCISES
For the following exercises, find the limit of the function.

60. lim
(x, y) → (1, 2)

x

61. lim
(x, y) → (1, 2)

5x2 y
x2 + y2

62. Show that the limit lim
(x, y) → (0, 0)

5x2 y
x2 + y2 exists and is

the same along the paths: y-axis and x-axis, and along

y = x.

For the following exercises, evaluate the limits at the
indicated values of x and y. If the limit does not exist, state

this and explain why the limit does not exist.

63. lim
(x, y) → (0, 0)

4x2 + 10y2 + 4
4x2 − 10y2 + 6

64. lim
(x, y) → (11, 13)

1
xy

65. lim
(x, y) → (0, 1)

y2 sin x
x

66. lim
(x, y) → (0, 0)

sin
⎛

⎝
⎜ x8 + y7

x − y + 10
⎞

⎠
⎟

67. lim
(x, y) → (π/4, 1)

y tan x
y + 1

68. lim
(x, y) → (0, π/4)

sec x + 2
3x − tan y

69. lim
(x, y) → (2, 5)

⎛
⎝
1
x − 5

y
⎞
⎠

70. lim
(x, y) → (4, 4)

x ln y

71. lim
(x, y) → (4, 4)

e−x2 − y2

72. lim
(x, y) → (0, 0)

9 − x2 − y2

73. lim
(x, y) → (1, 2)

⎛
⎝x2 y3 − x3 y2 + 3x + 2y⎞

⎠

74. lim
(x, y) → (π, π)

x sin⎛
⎝
x + y

4
⎞
⎠

75. lim
(x, y) → (0, 0)

xy + 1
x2 + y2 + 1

76. lim
(x, y) → (0, 0)

x2 + y2

x2 + y2 + 1 − 1

77. lim
(x, y) → (0, 0)

ln⎛
⎝x2 + y2⎞

⎠

For the following exercises, complete the statement.

78. A point (x0, y0) in a plane region R is an interior

point of R if _________________.

79. A point (x0, y0) in a plane region R is called a

boundary point of R if ___________.

For the following exercises, use algebraic techniques to
evaluate the limit.

80. lim
(x, y) → (2, 1)

x − y − 1
x − y − 1

81. lim
(x, y) → (0, 0)

x4 − 4y4

x2 + 2y2

82. lim
(x, y) → (0, 0)

x3 − y3

x − y

83. lim
(x, y) → (0, 0)

x2 − xy
x − y

For the following exercises, evaluate the limits of the
functions of three variables.

84. lim
(x, y, z) → (1, 2, 3)

xz2 − y2 z
xyz − 1

85. lim
(x, y, z) → (0, 0, 0)

x2 − y2 − z2

x2 + y2 − z2

For the following exercises, evaluate the limit of the
function by determining the value the function approaches
along the indicated paths. If the limit does not exist, explain
why not.
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86. lim
(x, y) → (0, 0)

xy + y3

x2 + y2

a. Along the x-axis (y = 0)
b. Along the y-axis (x = 0)
c. Along the path y = 2x

87. Evaluate lim
(x, y) → (0, 0)

xy + y3

x2 + y2 using the results of

previous problem.

88. lim
(x, y) → (0, 0)

x2 y
x4 + y2

a. Along the x-axis (y = 0)
b. Along the y-axis (x = 0)

c. Along the path y = x2

89. Evaluate lim
(x, y) → (0, 0)

x2 y
x4 + y2 using the results of

previous problem.

Discuss the continuity of the following functions. Find the
largest region in the xy-plane in which the following

functions are continuous.

90. f (x, y) = sin(xy)

91. f (x, y) = ln(x + y)

92. f (x, y) = e3xy

93. f (x, y) = 1
xy

For the following exercises, determine the region in which
the function is continuous. Explain your answer.

94. f (x, y) = x2 y
x2 + y2

95. f (x, y) =

⎧

⎩

⎨
⎪

⎪

x2 y
x2 + y2 if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)

⎫

⎭

⎬
⎪

⎪
(Hint:

Show that the function approaches different values along
two different paths.)

96. f (x, y) = sin(x2 + y2)
x2 + y2

97. Determine whether g(x, y) = x2 − y2

x2 + y2 is continuous

at (0, 0).

98. Create a plot using graphing software to determine
where the limit does not exist. Determine the region of

the coordinate plane in which f (x, y) = 1
x2 − y

is

continuous.

99. Determine the region of the xy-plane in which the

composite function g(x, y) = arctan
⎛

⎝
⎜ xy2

x + y
⎞

⎠
⎟ is

continuous. Use technology to support your conclusion.

100. Determine the region of the xy-plane in which

f (x, y) = ln(x2 + y2 − 1) is continuous. Use technology

to support your conclusion. (Hint: Choose the range of
values for x and y carefully!)

101. At what points in space is

g(x, y, z) = x2 + y2 − 2z2 continuous?

102. At what points in space is g(x, y, z) = 1
x2 + z2 − 1

continuous?

103. Show that lim
(x, y) → (0, 0)

1
x2 + y2 does not exist at

(0, 0) by plotting the graph of the function.

104. [T] Evaluate lim
(x, y) → (0, 0)

−xy2

x2 + y4 by plotting the

function using a CAS. Determine analytically the limit

along the path x = y2.

105. [T]
a. Use a CAS to draw a contour map of

z = 9 − x2 − y2.
b. What is the name of the geometric shape of the

level curves?
c. Give the general equation of the level curves.
d. What is the maximum value of z?
e. What is the domain of the function?
f. What is the range of the function?

106. True or False: If we evaluate lim
(x, y) → (0, 0)

f (x)

along several paths and each time the limit is 1, we can

conclude that lim
(x, y) → (0, 0)

f (x) = 1.
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107. Use polar coordinates to find

lim
(x, y) → (0, 0)

sin x2 + y2

x2 + y2
. You can also find the limit using

L’Hôpital’s rule.

108. Use polar coordinates to find

lim
(x, y) → (0, 0)

cos⎛
⎝x2 + y2⎞

⎠.

109. Discuss the continuity of f (g(x, y)) where

f (t) = 1/t and g(x, y) = 2x − 5y.

110. Given f (x, y) = x2 − 4y, find

lim
h → 0

f (x + h, y) − f (x, y)
h .

111. Given f (x, y) = x2 − 4y, find

lim
h → 0

f (1 + h, y) − f (1, y)
h .
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4.3 | Partial Derivatives

Learning Objectives
4.3.1 Calculate the partial derivatives of a function of two variables.

4.3.2 Calculate the partial derivatives of a function of more than two variables.

4.3.3 Determine the higher-order derivatives of a function of two variables.

4.3.4 Explain the meaning of a partial differential equation and give an example.

Now that we have examined limits and continuity of functions of two variables, we can proceed to study derivatives.
Finding derivatives of functions of two variables is the key concept in this chapter, with as many applications in
mathematics, science, and engineering as differentiation of single-variable functions. However, we have already seen that
limits and continuity of multivariable functions have new issues and require new terminology and ideas to deal with them.
This carries over into differentiation as well.

Derivatives of a Function of Two Variables
When studying derivatives of functions of one variable, we found that one interpretation of the derivative is an instantaneous
rate of change of y as a function of x. Leibniz notation for the derivative is dy/dx, which implies that y is the dependent

variable and x is the independent variable. For a function z = f (x, y) of two variables, x and y are the independent

variables and z is the dependent variable. This raises two questions right away: How do we adapt Leibniz notation for

functions of two variables? Also, what is an interpretation of the derivative? The answer lies in partial derivatives.

Definition

Let f (x, y) be a function of two variables. Then the partial derivative of f with respect to x, written as ∂ f /∂ x,
or fx, is defined as

(4.12)∂ f
∂ x = lim

h → 0
f ⎛

⎝x + h, y⎞
⎠ − f (x, y)
h .

The partial derivative of f with respect to y, written as ∂ f /∂ y, or fy, is defined as

(4.13)∂ f
∂ y = lim

k → 0
f ⎛

⎝x, y + k⎞
⎠ − f (x, y)
k .

This definition shows two differences already. First, the notation changes, in the sense that we still use a version of Leibniz
notation, but the d in the original notation is replaced with the symbol ∂ . (This rounded “d” is usually called “partial,” so

∂ f /∂ x is spoken as the “partial of f with respect to x.”) This is the first hint that we are dealing with partial derivatives.

Second, we now have two different derivatives we can take, since there are two different independent variables. Depending
on which variable we choose, we can come up with different partial derivatives altogether, and often do.

Example 4.14

Calculating Partial Derivatives from the Definition

Use the definition of the partial derivative as a limit to calculate ∂ f /∂ x and ∂ f /∂ y for the function

f (x, y) = x2 − 3xy + 2y2 − 4x + 5y − 12.

Solution
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4.12

First, calculate f ⎛
⎝x + h, y⎞

⎠.

f ⎛
⎝x + h, y⎞

⎠ = (x + h)2 − 3(x + h)y + 2y2 − 4(x + h) + 5y − 12

= x2 + 2xh + h2 − 3xy − 3hy + 2y2 − 4x − 4h + 5y − 12.

Next, substitute this into Equation 4.12 and simplify:

∂ f
∂ x = lim

h → 0
f ⎛

⎝x + h, y⎞
⎠ − f (x, y)
h

= lim
h → 0

⎛
⎝x2 + 2xh + h2 − 3xy − 3hy + 2y2 − 4x − 4h + 5y − 12⎞

⎠ − ⎛
⎝x2 − 3xy + 2y2 − 4x + 5y − 12⎞

⎠
h

= lim
h → 0

x2 + 2xh + h2 − 3xy − 3hy + 2y2 − 4x − 4h + 5y − 12 − x2 + 3xy − 2y2 + 4x − 5y + 12
h

= lim
h → 0

2xh + h2 − 3hy − 4h
h

= lim
h → 0

h⎛
⎝2x + h − 3y − 4⎞

⎠

h
= lim

h → 0
⎛
⎝2x + h − 3y − 4⎞

⎠

= 2x − 3y − 4.

To calculate
∂ f
∂ y , first calculate f ⎛

⎝x, y + h⎞
⎠:

f ⎛
⎝x + h, y⎞

⎠ = x2 − 3x⎛
⎝y + h⎞

⎠ + 2⎛
⎝y + h⎞

⎠
2 − 4x + 5⎛

⎝y + h⎞
⎠ − 12

= x2 − 3xy − 3xh + 2y2 + 4yh + 2h2 − 4x + 5y + 5h − 12.

Next, substitute this into Equation 4.13 and simplify:

∂ f
∂ y = lim

h → 0
f (x, y + h) − f (x, y)

h

= lim
h → 0

⎛
⎝x2 − 3xy − 3xh + 2y2 + 4yh + 2h2 − 4x + 5y + 5h − 12⎞

⎠ − ⎛
⎝x2 − 3xy + 2y2 − 4x + 5y − 12⎞

⎠
h

= lim
h → 0

x2 − 3xy − 3xh + 2y2 + 4yh + 2h2 − 4x + 5y + 5h − 12 − x2 + 3xy − 2y2 + 4x − 5y + 12
h

= lim
h → 0

−3xh + 4yh + 2h2 + 5h
h

= lim
h → 0

h⎛
⎝−3x + 4y + 2h + 5⎞

⎠

h
= lim

h → 0
⎛
⎝−3x + 4y + 2h + 5⎞

⎠

= −3x + 4y + 5.

Use the definition of the partial derivative as a limit to calculate ∂ f /∂ x and ∂ f /∂ y for the function

f (x, y) = 4x2 + 2xy − y2 + 3x − 2y + 5.

The idea to keep in mind when calculating partial derivatives is to treat all independent variables, other than the variable
with respect to which we are differentiating, as constants. Then proceed to differentiate as with a function of a single
variable. To see why this is true, first fix y and define g(x) = f (x, y) as a function of x. Then
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g′ (x) = lim
h → 0

g(x + h) − g(x)
h = lim

h → 0
f ⎛

⎝x + h, y⎞
⎠ − f (x, y)
h = ∂ f

∂ x .

The same is true for calculating the partial derivative of f with respect to y. This time, fix x and define h(y) = f (x, y)
as a function of y. Then

h′ (x) = lim
k → 0

h(x + k) − h(x)
k = lim

k → 0
f ⎛

⎝x, y + k⎞
⎠ − f (x, y)
k = ∂ f

∂ y .

All differentiation rules from Introduction to Derivatives (http://cnx.org/content/m53494/latest/) apply.

Example 4.15

Calculating Partial Derivatives

Calculate ∂ f /∂ x and ∂ f /∂ y for the following functions by holding the opposite variable constant then

differentiating:

a. f (x, y) = x2 − 3xy + 2y2 − 4x + 5y − 12

b. g(x, y) = sin⎛
⎝x2 y − 2x + 4⎞

⎠

Solution

a. To calculate ∂ f /∂ x, treat the variable y as a constant. Then differentiate f (x, y) with respect to x
using the sum, difference, and power rules:

∂ f
∂ x = ∂

∂ x
⎡
⎣x2 − 3xy + 2y2 − 4x + 5y − 12⎤

⎦

= ∂
∂ x

⎡
⎣x2⎤

⎦ − ∂
∂ x

⎡
⎣3xy⎤

⎦ + ∂
∂ x

⎡
⎣2y2⎤

⎦ − ∂
∂ x[4x] + ∂

∂ x
⎡
⎣5y⎤

⎦ − ∂
∂ x[12]

= 2x − 3y + 0 − 4 + 0 − 0
= 2x − 3y − 4.

The derivatives of the third, fifth, and sixth terms are all zero because they do not contain the variable x,
so they are treated as constant terms. The derivative of the second term is equal to the coefficient of x,
which is −3y. Calculating ∂ f /∂ y:

∂ f
∂ y = ∂

∂ y
⎡
⎣x2 − 3xy + 2y2 − 4x + 5y − 12⎤

⎦

= ∂
∂ y

⎡
⎣x2⎤

⎦ − ∂
∂ y

⎡
⎣3xy⎤

⎦ + ∂
∂ y

⎡
⎣2y2⎤

⎦ − ∂
∂ y[4x] + ∂

∂ y
⎡
⎣5y⎤

⎦ − ∂
∂ y[12]

= −3x + 4y − 0 + 5 − 0
= −3x + 4y + 5.

These are the same answers obtained in Example 4.14.

b. To calculate ∂g/∂ x, treat the variable y as a constant. Then differentiate g(x, y) with respect to x using

the chain rule and power rule:

∂g
∂ x = ∂

∂ x
⎡
⎣sin⎛

⎝x2 y − 2x + 4⎞
⎠
⎤
⎦

= cos⎛
⎝x2 y − 2x + 4⎞

⎠
∂
∂ x

⎡
⎣x2 y − 2x + 4⎤

⎦

= ⎛
⎝2xy − 2⎞

⎠cos⎛
⎝x2 y − 2x + 4⎞

⎠.
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4.13

To calculate ∂g/∂ y, treat the variable x as a constant. Then differentiate g(x, y) with respect to y
using the chain rule and power rule:

∂g
∂ y = ∂

∂ y
⎡
⎣sin⎛

⎝x2 y − 2x + 4⎞
⎠
⎤
⎦

= cos⎛
⎝x2 y − 2x + 4⎞

⎠
∂
∂ y

⎡
⎣x2 y − 2x + 4⎤

⎦

= x2 cos⎛
⎝x2 y − 2x + 4⎞

⎠.

Calculate ∂ f /∂ x and ∂ f /∂ y for the function f (x, y) = tan⎛
⎝x

3 − 3x2 y2 + 2y4⎞
⎠ by holding the

opposite variable constant, then differentiating.

How can we interpret these partial derivatives? Recall that the graph of a function of two variables is a surface in ℝ3. If

we remove the limit from the definition of the partial derivative with respect to x, the difference quotient remains:

f ⎛
⎝x + h, y⎞

⎠ − f (x, y)
h .

This resembles the difference quotient for the derivative of a function of one variable, except for the presence of the y
variable. Figure 4.21 illustrates a surface described by an arbitrary function z = f (x, y).

Figure 4.21 Secant line passing through the points
⎛
⎝x, y, f (x, y)⎞

⎠ and ⎛
⎝x + h, y, f ⎛

⎝x + h, y⎞
⎠
⎞
⎠.

In Figure 4.21, the value of h is positive. If we graph f (x, y) and f ⎛
⎝x + h, y⎞

⎠ for an arbitrary point (x, y), then the

slope of the secant line passing through these two points is given by

f ⎛
⎝x + h, y⎞

⎠ − f (x, y)
h .

This line is parallel to the x-axis. Therefore, the slope of the secant line represents an average rate of change of the function

f as we travel parallel to the x-axis. As h approaches zero, the slope of the secant line approaches the slope of the tangent

line.
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If we choose to change y instead of x by the same incremental value h, then the secant line is parallel to the y-axis and

so is the tangent line. Therefore, ∂ f /∂ x represents the slope of the tangent line passing through the point ⎛
⎝x, y, f (x, y)⎞

⎠

parallel to the x-axis and ∂ f /∂ y represents the slope of the tangent line passing through the point ⎛
⎝x, y, f (x, y)⎞

⎠ parallel

to the y-axis. If we wish to find the slope of a tangent line passing through the same point in any other direction, then we

need what are called directional derivatives, which we discuss in Directional Derivatives and the Gradient.

We now return to the idea of contour maps, which we introduced in Functions of Several Variables. We can use a
contour map to estimate partial derivatives of a function g(x, y).

Example 4.16

Partial Derivatives from a Contour Map

Use a contour map to estimate ∂g/∂ x at the point ⎛
⎝ 5, 0⎞

⎠ for the function g(x, y) = 9 − x2 − y2.

Solution

The following graph represents a contour map for the function g(x, y) = 9 − x2 − y2.

Figure 4.22 Contour map for the function

g(x, y) = 9 − x2 − y2, using c = 0, 1, 2, and 3
(c = 3 corresponds to the origin).

The inner circle on the contour map corresponds to c = 2 and the next circle out corresponds to c = 1. The first

circle is given by the equation 2 = 9 − x2 − y2; the second circle is given by the equation 1 = 9 − x2 − y2.

The first equation simplifies to x2 + y2 = 5 and the second equation simplifies to x2 + y2 = 8. The

x-intercept of the first circle is ⎛
⎝ 5, 0⎞

⎠ and the x-intercept of the second circle is ⎛
⎝2 2, 0⎞

⎠. We can estimate

the value of ∂g/∂ x evaluated at the point ⎛
⎝ 5, 0⎞

⎠ using the slope formula:

∂g
∂ x |(x, y) = ⎛

⎝ 5, 0⎞
⎠
≈

g⎛
⎝ 5, 0⎞

⎠ − g⎛
⎝2 2, 0⎞

⎠

5 − 2 2
= 2 − 1

5 − 2 2
= 1

5 − 2 2
≈ −1.688.

To calculate the exact value of ∂g/∂ x evaluated at the point ⎛
⎝ 5, 0⎞

⎠, we start by finding ∂g/∂ x using the
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chain rule. First, we rewrite the function as g(x, y) = 9 − x2 − y2 = ⎛
⎝9 − x2 − y2⎞

⎠
1/2

and then differentiate

with respect to x while holding y constant:

∂g
∂ x = 1

2
⎛
⎝9 − x2 − y2⎞

⎠
−1/2

(−2x) = − x
9 − x2 − y2

.

Next, we evaluate this expression using x = 5 and y = 0:

∂g
∂ x |(x, y) = ⎛

⎝ 5, 0⎞
⎠
= − 5

9 − ⎛
⎝ 5⎞

⎠
2 − (0)2

= − 5
4

= − 5
2 ≈ −1.118.

The estimate for the partial derivative corresponds to the slope of the secant line passing through the points
⎛
⎝ 5, 0, g⎛

⎝ 5, 0⎞
⎠
⎞
⎠ and ⎛

⎝2 2, 0, g⎛
⎝2 2, 0⎞

⎠
⎞
⎠. It represents an approximation to the slope of the tangent line to the

surface through the point ⎛
⎝ 5, 0, g⎛

⎝ 5, 0⎞
⎠
⎞
⎠, which is parallel to the x-axis.

Use a contour map to estimate ∂ f /∂ y at point ⎛
⎝0, 2⎞

⎠ for the function

f (x, y) = x2 − y2.

Compare this with the exact answer.

Functions of More Than Two Variables
Suppose we have a function of three variables, such as w = f (x, y, z). We can calculate partial derivatives of w with

respect to any of the independent variables, simply as extensions of the definitions for partial derivatives of functions of two
variables.

Definition

Let f (x, y, z) be a function of three variables. Then, the partial derivative of f with respect to x, written as ∂ f /∂ x,
or fx, is defined to be

(4.14)∂ f
∂ x = lim

h → 0
f ⎛

⎝x + h, y, z⎞
⎠ − f (x, y, z)
h .

The partial derivative of f with respect to y, written as ∂ f /∂ y, or fy, is defined to be

(4.15)∂ f
∂ y = lim

k → 0
f ⎛

⎝x, y + k, z⎞
⎠ − f (x, y, z)
k .

The partial derivative of f with respect to z, written as ∂ f /∂z, or fz, is defined to be

(4.16)∂ f
∂z = lim

m → 0
f (x, y, z + m) − f (x, y, z)

m .

We can calculate a partial derivative of a function of three variables using the same idea we used for a function of two
variables. For example, if we have a function f of x, y, and z, and we wish to calculate ∂ f /∂ x, then we treat the other

two independent variables as if they are constants, then differentiate with respect to x.
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Example 4.17

Calculating Partial Derivatives for a Function of Three Variables

Use the limit definition of partial derivatives to calculate ∂ f /∂ x for the function

f (x, y, z) = x2 − 3xy + 2y2 − 4xz + 5yz2 − 12x + 4y − 3z.

Then, find ∂ f /∂ y and ∂ f /∂z by setting the other two variables constant and differentiating accordingly.

Solution

We first calculate ∂ f /∂ x using Equation 4.14, then we calculate the other two partial derivatives by holding

the remaining variables constant. To use the equation to find ∂ f /∂ x, we first need to calculate f ⎛
⎝x + h, y, z⎞

⎠:

f ⎛
⎝x + h, y, z⎞

⎠ = (x + h)2 − 3(x + h)y + 2y2 − 4(x + h)z + 5yz2 − 12(x + h) + 4y − 3z

= x2 + 2xh + h2 − 3xy − 3xh + 2y2 − 4xz − 4hz + 5yz2 − 12x − 12h + 4y − 3z

and recall that f (x, y, z) = x2 − 3xy + 2y2 − 4zx + 5yz2 − 12x + 4y − 3z. Next, we substitute these two

expressions into the equation:

∂ f
∂ x = lim

h → 0

⎡

⎣
⎢ x2 + 2xh + h2 − 3xy − 3hy + 2y2 − 4xz − 4hz + 5yz2 − 12x − 12h + 4y − 3z

h

− x2 − 3xy + 2y2 − 4xz + 5yz2 − 12x + 4y − 3z
h

⎤

⎦
⎥

= lim
h → 0

⎡

⎣
⎢ 2xh + h2 − 3hy − 4hz − 12h

h
⎤

⎦
⎥

= lim
h → 0

⎡
⎣
h⎛

⎝2x + h − 3y − 4z − 12⎞
⎠

h
⎤
⎦

= lim
h → 0

⎛
⎝2x + h − 3y − 4z − 12⎞

⎠

= 2x − 3y − 4z − 12.

Then we find ∂ f /∂ y by holding x and z constant. Therefore, any term that does not include the variable y
is constant, and its derivative is zero. We can apply the sum, difference, and power rules for functions of one
variable:

∂
∂ y

⎡
⎣x2 − 3xy + 2y2 − 4xz + 5yz2 − 12x + 4y − 3z⎤

⎦

= ∂
∂ y

⎡
⎣x2⎤

⎦ − ∂
∂ y

⎡
⎣3xy⎤

⎦ + ∂
∂ y

⎡
⎣2y2⎤

⎦ − ∂
∂ y[4xz] + ∂

∂ y
⎡
⎣5yz2⎤

⎦ − ∂
∂ y[12x] + ∂

∂ y
⎡
⎣4y⎤

⎦ − ∂
∂ y[3z]

= 0 − 3x + 4y − 0 + 5z2 − 0 + 4 − 0

= −3x + 4y + 5z2 + 4.

To calculate ∂ f /∂z, we hold x and y constant and apply the sum, difference, and power rules for functions of

one variable:

∂
∂z

⎡
⎣x2 − 3xy + 2y2 − 4xz + 5yz2 − 12x + 4y − 3z⎤

⎦

= ∂
∂z

⎡
⎣x2⎤

⎦ − ∂
∂z

⎡
⎣3xy⎤

⎦ + ∂
∂z

⎡
⎣2y2⎤

⎦ − ∂
∂z[4xz] + ∂

∂z
⎡
⎣5yz2⎤

⎦ − ∂
∂z[12x] + ∂

∂z
⎡
⎣4y⎤

⎦ − ∂
∂z[3z]

= 0 − 0 + 0 − 4x + 10yz − 0 + 0 − 3
= −4x + 10yz − 3.
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4.15 Use the limit definition of partial derivatives to calculate ∂ f /∂ x for the function

f (x, y, z) = 2x2 − 4x2 y + 2y2 + 5xz2 − 6x + 3z − 8.

Then find ∂ f /∂ y and ∂ f /∂z by setting the other two variables constant and differentiating accordingly.

Example 4.18

Calculating Partial Derivatives for a Function of Three Variables

Calculate the three partial derivatives of the following functions.

a. f (x, y, z) = x2 y − 4xz + y2

x − 3yz

b. g(x, y, z) = sin⎛
⎝x2 y − z⎞

⎠ + cos⎛
⎝x2 − yz⎞

⎠

Solution

In each case, treat all variables as constants except the one whose partial derivative you are calculating.

a.

∂ f
∂ x = ∂

∂ x
⎡

⎣
⎢ x2 y − 4xz + y2

x − 3yz
⎤

⎦
⎥

=
∂
∂ x

⎛
⎝x2 y − 4xz + y2⎞

⎠
⎛
⎝x − 3yz⎞

⎠ − ⎛
⎝x2 y − 4xz + y2⎞

⎠
∂
∂ x

⎛
⎝x − 3yz⎞

⎠

⎛
⎝x − 3yz⎞

⎠
2

=
⎛
⎝2xy − 4z⎞

⎠
⎛
⎝x − 3yz⎞

⎠ − ⎛
⎝x2 y − 4xz + y2⎞

⎠(1)
⎛
⎝x − 3yz⎞

⎠
2

= 2x2 y − 6xy2 z − 4xz + 12yz2 − x2 y + 4xz − y2

⎛
⎝x − 3yz⎞

⎠
2

= x2 y − 6xy2 z − 4xz + 12yz2 + 4xz − y2

⎛
⎝x − 3yz⎞

⎠
2

∂ f
∂ y = ∂

∂ y
⎡

⎣
⎢ x2 y − 4xz + y2

x − 3yz
⎤

⎦
⎥

=
∂
∂ y

⎛
⎝x2 y − 4xz + y2⎞

⎠
⎛
⎝x − 3yz⎞

⎠ − ⎛
⎝x2 y − 4xz + y2⎞

⎠
∂
∂ y

⎛
⎝x − 3yz⎞

⎠

⎛
⎝x − 3yz⎞

⎠
2

=
⎛
⎝x2 + 2y⎞

⎠
⎛
⎝x − 3yz⎞

⎠ − ⎛
⎝x2 y − 4xz + y2⎞

⎠(−3z)
⎛
⎝x − 3yz⎞

⎠
2

= x3 − 3x2 yz + 2xy − 6y2 z + 3x2 yz − 12xz2 + 3y2 z
⎛
⎝x − 3yz⎞

⎠
2

= x3 + 2xy − 3y2 z − 12xz2

⎛
⎝x − 3yz⎞

⎠
2
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∂ f
∂z = ∂

∂z
⎡

⎣
⎢ x2 y − 4xz + y2

x − 3yz
⎤

⎦
⎥

=
∂
∂z

⎛
⎝x2 y − 4xz + y2⎞

⎠
⎛
⎝x − 3yz⎞

⎠ − ⎛
⎝x2 y − 4xz + y2⎞

⎠
∂
∂z

⎛
⎝x − 3yz⎞

⎠

⎛
⎝x − 3yz⎞

⎠
2

=
(−4x)⎛

⎝x − 3yz⎞
⎠ − ⎛

⎝x2 y − 4xz + y2⎞
⎠

⎛
⎝−3y⎞

⎠

⎛
⎝x − 3yz⎞

⎠
2

= −4x2 + 12xyz + 3x2 y2 − 12xyz + 3y3

⎛
⎝x − 3yz⎞

⎠
2

= −4x2 + 3x2 y2 + 3y3

⎛
⎝x − 3yz⎞

⎠
2

b.

∂ f
∂ x = ∂

∂ x
⎡
⎣sin⎛

⎝x2 y − z⎞
⎠ + cos⎛

⎝x2 − yz⎞
⎠
⎤
⎦

= ⎛
⎝cos⎛

⎝x2 y − z⎞
⎠
⎞
⎠

∂
∂ x

⎛
⎝x2 y − z⎞

⎠ − ⎛
⎝sin⎛

⎝x2 − yz⎞
⎠
⎞
⎠

∂
∂ x

⎛
⎝x2 − yz⎞

⎠

= 2xy cos⎛
⎝x2 y − z⎞

⎠ − 2x sin⎛
⎝x2 − yz⎞

⎠

∂ f
∂ y = ∂

∂ y
⎡
⎣sin⎛

⎝x2 y − z⎞
⎠ + cos⎛

⎝x2 − yz⎞
⎠
⎤
⎦

= ⎛
⎝cos⎛

⎝x2 y − z⎞
⎠
⎞
⎠

∂
∂ y

⎛
⎝x2 y − z⎞

⎠ − ⎛
⎝sin⎛

⎝x2 − yz⎞
⎠
⎞
⎠

∂
∂ y

⎛
⎝x2 − yz⎞

⎠

= x2 cos⎛
⎝x2 y − z⎞

⎠ + z sin⎛
⎝x2 − yz⎞

⎠

∂ f
∂z = ∂

∂z
⎡
⎣sin⎛

⎝x2 y − z⎞
⎠ + cos⎛

⎝x2 − yz⎞
⎠
⎤
⎦

= ⎛
⎝cos⎛

⎝x2 y − z⎞
⎠
⎞
⎠

∂
∂z

⎛
⎝x2 y − z⎞

⎠ − ⎛
⎝sin⎛

⎝x2 − yz⎞
⎠
⎞
⎠

∂
∂z

⎛
⎝x2 − yz⎞

⎠

= −cos⎛
⎝x2 y − z⎞

⎠ + y sin⎛
⎝x2 − yz⎞

⎠

Calculate ∂ f /∂ x, ∂ f /∂ y, and ∂ f /∂z for the function f (x, y, z) = sec⎛
⎝x2 y⎞

⎠ − tan⎛
⎝x

3 yz2⎞
⎠.

Higher-Order Partial Derivatives
Consider the function

f (x, y) = 2x3 − 4xy2 + 5y3 − 6xy + 5x − 4y + 12.

Its partial derivatives are

∂ f
∂ x = 6x2 − 4y2 − 6y + 5 and ∂ f

∂ y = −8xy + 15y2 − 6x − 4.

Each of these partial derivatives is a function of two variables, so we can calculate partial derivatives of these functions.
Just as with derivatives of single-variable functions, we can call these second-order derivatives, third-order derivatives, and
so on. In general, they are referred to as higher-order partial derivatives. There are four second-order partial derivatives
for any function (provided they all exist):

∂2 f
∂ x2 = ∂

∂ x
⎡
⎣
∂ f
∂ x

⎤
⎦, ∂2 f

∂ x∂ y = ∂
∂ x

⎡
⎣
∂ f
∂ y

⎤
⎦, ∂2 f

∂ y∂ x = ∂
∂ y

⎡
⎣
∂ f
∂ x

⎤
⎦, ∂2 f

∂ y2 = ∂
∂ y

⎡
⎣
∂ f
∂ y

⎤
⎦.
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An alternative notation for each is fxx, fyx, fxy, and fyy, respectively. Higher-order partial derivatives calculated with

respect to different variables, such as fxy and fyx, are commonly called mixed partial derivatives.

Example 4.19

Calculating Second Partial Derivatives

Calculate all four second partial derivatives for the function

f (x, y) = xe−3y + sin⎛
⎝2x − 5y⎞

⎠.

Solution

To calculate ∂2 f /dx2 and ∂2 f /∂ y∂ x, we first calculate ∂ f /∂ x:

∂ f
∂ x = e−3y + 2 cos⎛

⎝2x − 5y⎞
⎠.

To calculate ∂2 f /dx2, differentiate ∂ f /∂ x with respect to x:

∂2 f
∂ x2 = ∂

∂ x
⎡
⎣
∂ f
∂ x

⎤
⎦

= ∂
∂ x

⎡
⎣e

−3y + 2 cos⎛
⎝2x − 5y⎞

⎠
⎤
⎦

= −4 sin⎛
⎝2x − 5y⎞

⎠.

To calculate ∂2 f /∂ y∂ x, differentiate ∂ f /∂ x with respect to y:

∂2 f
∂ y∂ x = ∂

∂ y
⎡
⎣
∂ f
∂ x

⎤
⎦

= ∂
∂ y

⎡
⎣e

−3y + 2 cos⎛
⎝2x − 5y⎞

⎠
⎤
⎦

= −3e−3y + 10 sin⎛
⎝2x − 5y⎞

⎠.

To calculate ∂2 f /∂ x∂ y and ∂2 f /dy2, first calculate ∂ f /∂ y:

∂ f
∂ y = −3xe−3y − 5 cos⎛

⎝2x − 5y⎞
⎠.

To calculate ∂2 f /∂ x∂ y, differentiate ∂ f /∂ y with respect to x:

∂2 f
∂ x∂ y = ∂

∂ x
⎡
⎣
∂ f
∂ y

⎤
⎦

= ∂
∂ x

⎡
⎣−3xe−3y − 5 cos⎛

⎝2x − 5y⎞
⎠
⎤
⎦

= −3e−3y + 10 sin⎛
⎝2x − 5y⎞

⎠.

To calculate ∂2 f /∂ y2, differentiate ∂ f /∂ y with respect to y:
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∂2 f
∂ y2 = ∂

∂ y
⎡
⎣
∂ f
∂ y

⎤
⎦

= ∂
∂ y

⎡
⎣−3xe−3y − 5 cos⎛

⎝2x − 5y⎞
⎠
⎤
⎦

= 9xe−3y − 25 sin⎛
⎝2x − 5y⎞

⎠.

Calculate all four second partial derivatives for the function

f (x, y) = sin⎛
⎝3x − 2y⎞

⎠ + cos⎛
⎝x + 4y⎞

⎠.

At this point we should notice that, in both Example 4.19 and the checkpoint, it was true that ∂2 f /∂ x∂ y = ∂2 f /∂ y∂ x.
Under certain conditions, this is always true. In fact, it is a direct consequence of the following theorem.

Theorem 4.5: Equality of Mixed Partial Derivatives (Clairaut’s Theorem)

Suppose that f (x, y) is defined on an open disk D that contains the point (a, b). If the functions fxy and fyx are

continuous on D, then fxy = fyx.

Clairaut’s theorem guarantees that as long as mixed second-order derivatives are continuous, the order in which we choose
to differentiate the functions (i.e., which variable goes first, then second, and so on) does not matter. It can be extended to
higher-order derivatives as well. The proof of Clairaut’s theorem can be found in most advanced calculus books.

Two other second-order partial derivatives can be calculated for any function f (x, y). The partial derivative fxx is equal

to the partial derivative of fx with respect to x, and fyy is equal to the partial derivative of fy with respect to y.

Partial Differential Equations
In Introduction to Differential Equations (http://cnx.org/content/m53696/latest/) , we studied differential
equations in which the unknown function had one independent variable. A partial differential equation is an equation that
involves an unknown function of more than one independent variable and one or more of its partial derivatives. Examples
of partial differential equations are

(4.17)ut = c2 ⎛
⎝uxx + uyy

⎞
⎠

( heat equation in two dimensions)

(4.18)utt = c2 ⎛
⎝uxx + uyy

⎞
⎠

( wave equation in two dimensions)

(4.19)uxx + uyy = 0

( Laplace’s equation in two dimensions)

In the first two equations, the unknown function u has three independent variables— t, x, and y —and c is an arbitrary

constant. The independent variables x and y are considered to be spatial variables, and the variable t represents time. In

Laplace’s equation, the unknown function u has two independent variables x and y.
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(4.20)

4.18

Example 4.20

A Solution to the Wave Equation

Verify that

u(x, y, t) = 5 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt)

is a solution to the wave equation

utt = 4⎛
⎝uxx + uyy

⎞
⎠.

Solution

First, we calculate utt, uxx, and uyy :

utt = ∂
∂ t

⎡
⎣
∂u
∂ t

⎤
⎦

= ∂
∂ t

⎡
⎣5 sin(3πx)sin⎛

⎝4πy⎞
⎠
⎛
⎝−10π sin(10πt)⎞

⎠
⎤
⎦

= ∂
∂ t

⎡
⎣−50π sin(3πx)sin⎛

⎝4πy⎞
⎠sin(10πt)⎤

⎦

= −500π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt)

uxx = ∂
∂ x

⎡
⎣
∂u
∂ x

⎤
⎦

= ∂
∂ x

⎡
⎣15π cos(3πx)sin⎛

⎝4πy⎞
⎠cos(10πt)⎤

⎦

= −45π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt)

uyy = ∂
∂ y

⎡
⎣
∂u
∂ y

⎤
⎦

= ∂
∂ y

⎡
⎣5 sin(3πx)⎛

⎝4π cos⎛
⎝4πy⎞

⎠
⎞
⎠cos(10πt)⎤

⎦

= ∂
∂ y

⎡
⎣20π sin(3πx)cos⎛

⎝4πy⎞
⎠cos(10πt)⎤

⎦

= −80π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt).

Next, we substitute each of these into the right-hand side of Equation 4.20 and simplify:

4⎛
⎝uxx + uyy

⎞
⎠ = 4⎛

⎝−45π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt) + − 80π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt)⎞
⎠

= 4⎛
⎝−125π2 sin(3πx)sin⎛

⎝4πy⎞
⎠cos(10πt)⎞

⎠

= −500π2 sin(3πx)sin⎛
⎝4πy⎞

⎠cos(10πt)
= utt.

This verifies the solution.

Verify that u(x, y, t) = 2 sin⎛
⎝
x
3

⎞
⎠sin⎛

⎝
y
4

⎞
⎠e

−25t/16 is a solution to the heat equation

(4.21)ut = 9⎛
⎝uxx + uyy

⎞
⎠.

Since the solution to the two-dimensional heat equation is a function of three variables, it is not easy to create a visual
representation of the solution. We can graph the solution for fixed values of t, which amounts to snapshots of the heat
distributions at fixed times. These snapshots show how the heat is distributed over a two-dimensional surface as time
progresses. The graph of the preceding solution at time t = 0 appears in the following figure. As time progresses, the

extremes level out, approaching zero as t approaches infinity.
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Figure 4.23

If we consider the heat equation in one dimension, then it is possible to graph the solution over time. The heat equation in
one dimension becomes

ut = c2 uxx,

where c2 represents the thermal diffusivity of the material in question. A solution of this differential equation can be written

in the form

(4.22)um (x, t) = e−π2 m2 c2 t sin(mπx)

where m is any positive integer. A graph of this solution using m = 1 appears in Figure 4.24, where the initial

temperature distribution over a wire of length 1 is given by u(x, 0) = sin πx. Notice that as time progresses, the wire

cools off. This is seen because, from left to right, the highest temperature (which occurs in the middle of the wire) decreases
and changes color from red to blue.
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Figure 4.24 Graph of a solution of the heat equation in one dimension over time.
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Lord Kelvin and the Age of Earth

Figure 4.25 (a) William Thomson (Lord Kelvin), 1824-1907, was a British physicist and
electrical engineer; (b) Kelvin used the heat diffusion equation to estimate the age of Earth
(credit: modification of work by NASA).

During the late 1800s, the scientists of the new field of geology were coming to the conclusion that Earth must be
“millions and millions” of years old. At about the same time, Charles Darwin had published his treatise on evolution.
Darwin’s view was that evolution needed many millions of years to take place, and he made a bold claim that the
Weald chalk fields, where important fossils were found, were the result of 300 million years of erosion.

At that time, eminent physicist William Thomson (Lord Kelvin) used an important partial differential equation, known
as the heat diffusion equation, to estimate the age of Earth by determining how long it would take Earth to cool from
molten rock to what we had at that time. His conclusion was a range of 20 to 400 million years, but most likely

about 50 million years. For many decades, the proclamations of this irrefutable icon of science did not sit well with

geologists or with Darwin.

Read Kelvin’s paper (http://www.openstaxcollege.org/l/20_KelEarthAge) on estimating the age of
the Earth.

Kelvin made reasonable assumptions based on what was known in his time, but he also made several assumptions
that turned out to be wrong. One incorrect assumption was that Earth is solid and that the cooling was therefore
via conduction only, hence justifying the use of the diffusion equation. But the most serious error was a forgivable
one—omission of the fact that Earth contains radioactive elements that continually supply heat beneath Earth’s mantle.
The discovery of radioactivity came near the end of Kelvin’s life and he acknowledged that his calculation would have
to be modified.

Kelvin used the simple one-dimensional model applied only to Earth’s outer shell, and derived the age from graphs
and the roughly known temperature gradient near Earth’s surface. Let’s take a look at a more appropriate version of
the diffusion equation in radial coordinates, which has the form

(4.23)∂T
∂ t = K⎡

⎣
∂2T
∂2r

+ 2
r

∂T
∂r

⎤
⎦.
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Here, T(r, t) is temperature as a function of r (measured from the center of Earth) and time t. K is the heat

conductivity—for molten rock, in this case. The standard method of solving such a partial differential equation is by
separation of variables, where we express the solution as the product of functions containing each variable separately.
In this case, we would write the temperature as

T(r, t) = R(r) f (t).
1. Substitute this form into Equation 4.13 and, noting that f (t) is constant with respect to distance (r) and

R(r) is constant with respect to time (t), show that

1
f

∂ f
∂ t = K

R
⎡
⎣

∂2 R
∂r2 + 2

r
∂R
∂r

⎤
⎦.

2. This equation represents the separation of variables we want. The left-hand side is only a function of t and

the right-hand side is only a function of r, and they must be equal for all values of r and t. Therefore, they

both must be equal to a constant. Let’s call that constant −λ2. (The convenience of this choice is seen on

substitution.) So, we have

1
f

∂ f
∂ t = −λ2 and K

R
⎡
⎣

∂2 R
∂r2 + 2

r
∂R
∂r

⎤
⎦ = −λ2.

Now, we can verify through direct substitution for each equation that the solutions are f (t) = Ae−λ2 t and

R(r) = B⎛
⎝
sin αr

r
⎞
⎠ + C⎛

⎝
cos αr

r
⎞
⎠, where α = λ/ K. Note that f (t) = Ae+λn2 t is also a valid solution, so we

could have chosen +λ2 for our constant. Can you see why it would not be valid for this case as time increases?

3. Let’s now apply boundary conditions.

a. The temperature must be finite at the center of Earth, r = 0. Which of the two constants, B or C,
must therefore be zero to keep R finite at r = 0? (Recall that sin(αr)/r → α = as r → 0, but

cos(αr)/r behaves very differently.)

b. Kelvin argued that when magma reaches Earth’s surface, it cools very rapidly. A person can often touch
the surface within weeks of the flow. Therefore, the surface reached a moderate temperature very early
and remained nearly constant at a surface temperature Ts. For simplicity, let’s set T = 0 at r = RE

and find α such that this is the temperature there for all time t. (Kelvin took the value to be

300 K ≈ 80°F. We can add this 300 K constant to our solution later.) For this to be true, the sine

argument must be zero at r = RE. Note that α has an infinite series of values that satisfies this

condition. Each value of α represents a valid solution (each with its own value for A). The total or

general solution is the sum of all these solutions.

c. At t = 0, we assume that all of Earth was at an initial hot temperature T0 (Kelvin took this to be

about 7000 K.) The application of this boundary condition involves the more advanced application of

Fourier coefficients. As noted in part b. each value of αn represents a valid solution, and the general

solution is a sum of all these solutions. This results in a series solution:

T(r, t) = ⎛
⎝
T0 RE

π
⎞
⎠∑n

(−1)n − 1
n e−λn2 t sin(αn r)

r , where αn = nπ/RE.

Note how the values of αn come from the boundary condition applied in part b. The term −1n − 1
n is the constant

An for each term in the series, determined from applying the Fourier method. Letting β = π
RE

, examine the first

few terms of this solution shown here and note how λ2 in the exponential causes the higher terms to decrease quickly

as time progresses:
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T(r, t) = T0 RE
πr

⎛

⎝
⎜
⎜
⎜e

−Kβ2 t ⎛
⎝sin βr⎞

⎠ − 1
2e−4Kβ2 t ⎛

⎝sin 2βr⎞
⎠ + 1

3e−9Kβ2 t ⎛
⎝sin 3βr⎞

⎠

−1
4e−16Kβ2 t ⎛

⎝sin 4βr⎞
⎠ + 1

5e−25Kβ2 t ⎛
⎝sin 5βr⎞

⎠...

⎞

⎠
⎟
⎟
⎟
.

Near time t = 0, many terms of the solution are needed for accuracy. Inserting values for the conductivity K and

β = π/RE for time approaching merely thousands of years, only the first few terms make a significant contribution.

Kelvin only needed to look at the solution near Earth’s surface (Figure 4.26) and, after a long time, determine what
time best yielded the estimated temperature gradient known during his era (1°F increase per 50 ft). He simply chose

a range of times with a gradient close to this value. In Figure 4.26, the solutions are plotted and scaled, with the
300 − K surface temperature added. Note that the center of Earth would be relatively cool. At the time, it was thought

Earth must be solid.

Figure 4.26 Temperature versus radial distance from the center of Earth. (a) Kelvin’s results, plotted to scale. (b) A
close-up of the results at a depth of 4.0 mi below Earth’s surface.

Epilog

On May 20, 1904, physicist Ernest Rutherford spoke at the Royal Institution to announce a revised calculation that

included the contribution of radioactivity as a source of Earth’s heat. In Rutherford’s own words:

“I came into the room, which was half-dark, and presently spotted Lord Kelvin in the audience, and realised that I was
in for trouble at the last part of my speech dealing with the age of the Earth, where my views conflicted with his. To
my relief, Kelvin fell fast asleep, but as I came to the important point, I saw the old bird sit up, open an eye and cock a
baleful glance at me.

Then a sudden inspiration came, and I said Lord Kelvin had limited the age of the Earth, provided no new source [of
heat] was discovered. That prophetic utterance referred to what we are now considering tonight, radium! Behold! The
old boy beamed upon me.”

Rutherford calculated an age for Earth of about 500 million years. Today’s accepted value of Earth’s age is about 4.6
billion years.
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4.3 EXERCISES
For the following exercises, calculate the partial derivative
using the limit definitions only.

112. ∂z
∂ x for z = x2 − 3xy + y2

113. ∂z
∂ y for z = x2 − 3xy + y2

For the following exercises, calculate the sign of the partial
derivative using the graph of the surface.

114. fx(1, 1)

115. fx(−1, 1)

116. fy(1, 1)

117. fx(0, 0)

For the following exercises, calculate the partial
derivatives.

118. ∂z
∂ x for z = sin(3x)cos(3y)

119. ∂z
∂ y for z = sin(3x)cos(3y)

120. ∂z
∂ x and ∂z

∂ y for z = x8 e3y

121. ∂z
∂ x and ∂z

∂ y for z = ln⎛
⎝x

6 + y4⎞
⎠

122. Find fy(x, y) for f (x, y) = exy cos(x)sin(y).

123. Let z = exy. Find ∂z
∂ x and ∂z

∂ y.

124. Let z = ln⎛
⎝
x
y

⎞
⎠. Find ∂z

∂ x and ∂z
∂ y.

125. Let z = tan(2x − y). Find ∂z
∂ x and ∂z

∂ y.

126. Let z = sinh⎛
⎝2x + 3y⎞

⎠. Find ∂z
∂ x and ∂z

∂ y.

127. Let f (x, y) = arctan⎛
⎝
y
x

⎞
⎠. Evaluate fx(2, −2) and

fy(2, −2).

128. Let f (x, y) = xy
x − y. Find fx(2, −2) and

fy(2, −2).

Evaluate the partial derivatives at point P(0, 1).

129. Find ∂z
∂ x at (0, 1) for z = e−x cos(y).

130. Given f (x, y, z) = x3 yz2, find
∂2 f
∂ x∂ y and

fz(1, 1, 1).

131. Given f (x, y, z) = 2 sin(x + y), find

fx
⎛
⎝0, π

2, −4⎞
⎠, fy

⎛
⎝0, π

2, −4⎞
⎠, and fz

⎛
⎝0, π

2, −4⎞
⎠.

132. The area of a parallelogram with adjacent side
lengths that are a and b, and in which the angle between

these two sides is θ, is given by the function

A(a, b, θ) = ba sin(θ). Find the rate of change of the area

of the parallelogram with respect to the following:
a. Side a
b. Side b
c. Angle θ

133. Express the volume of a right circular cylinder as a
function of two variables:

a. its radius r and its height h.
b. Show that the rate of change of the volume of the

cylinder with respect to its radius is the product of
its circumference multiplied by its height.

c. Show that the rate of change of the volume of the
cylinder with respect to its height is equal to the
area of the circular base.

134. Calculate ∂w
∂z for w = z sin(xy2 + 2z).

Find the indicated higher-order partial derivatives.

135. fxy for z = ln(x − y)
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136. fyx for z = ln(x − y)

137. Let z = x2 + 3xy + 2y2. Find ∂2z
∂ x2 and ∂2z

∂ y2.

138. Given z = ex tan y, find ∂2z
∂ x∂ y and ∂2z

∂ y∂ x.

139. Given f (x, y, z) = xyz, find fxyy, fyxy, and

fyyx.

140. Given f (x, y, z) = e−2x sin⎛
⎝z2 y⎞

⎠, show that

fxyy = fyxy.

141. Show that z = 1
2

⎛
⎝ey − e−y⎞

⎠sin x is a solution of the

differential equation ∂2z
∂ x2 + ∂2z

∂ y2 = 0.

142. Find fxx(x, y) for f (x, y) = 4x2
y + y2

2x.

143. Let f (x, y, z) = x2 y3 z − 3xy2 z3 + 5x2 z − y3 z.
Find fxyz.

144. Let F(x, y, z) = x3 yz2 − 2x2 yz + 3xz − 2y3 z.
Find Fxyz.

145. Given f (x, y) = x2 + x − 3xy + y3 − 5, find all

points at which fx = fy = 0 simultaneously.

146. Given f (x, y) = 2x2 + 2xy + y2 + 2x − 3, find

all points at which
∂ f
∂ x = 0 and

∂ f
∂ y = 0 simultaneously.

147. Given f (x, y) = y3 − 3yx2 − 3y2 − 3x2 + 1, find

all points on f at which fx = fy = 0 simultaneously.

148. Given f (x, y) = 15x3 − 3xy + 15y3, find all

points at which fx(x, y) = fy(x, y) = 0 simultaneously.

149. Show that z = ex sin y satisfies the equation

∂2z
∂ x2 + ∂2z

∂ y2 = 0.

150. Show that f (x, y) = ln⎛
⎝x2 + y2⎞

⎠ solves Laplace’s

equation ∂2z
∂ x2 + ∂2z

∂ y2 = 0.

151. Show that z = e−t cos⎛
⎝
x
c

⎞
⎠ satisfies the heat equation

∂z
∂ t = −e−t cos⎛

⎝
x
c

⎞
⎠.

152. Find lim
Δx → 0

f (x + Δx) − f (x, y)
Δx for

f (x, y) = −7x − 2xy + 7y.

153. Find lim
Δy → 0

f (x, y + Δy) − f (x, y)
Δy for

f (x, y) = −7x − 2xy + 7y.

154. Find lim
Δx → 0

Δ f
Δx = lim

Δx → 0
f (x + Δx, y) − f (x, y)

Δx

for f (x, y) = x2 y2 + xy + y.

155. Find lim
Δx → 0

Δ f
Δx = lim

Δx → 0
f (x + Δx, y) − f (x, y)

Δx
for f (x, y) = sin(xy).

156. The function P(T , V) = nRT
V gives the pressure at

a point in a gas as a function of temperature T and volume

V . The letters n and R are constants. Find ∂P
∂V and ∂P

∂T ,

and explain what these quantities represent.

157. The equation for heat flow in the xy-plane is

∂ f
∂ t = ∂2 f

∂ x2 + ∂2 f
∂ y2 . Show that

f (x, y, t) = e−2t sin x sin y is a solution.

158. The basic wave equation is ftt = fxx. Verify that

f (x, t) = sin(x + t) and f (x, t) = sin(x − t) are

solutions.

159. The law of cosines can be thought of as a function
of three variables. Let x, y, and θ be two sides of any

triangle where the angle θ is the included angle between

the two sides. Then, F(x, y, θ) = x2 + y2 − 2xy cos θ

gives the square of the third side of the triangle. Find ∂F
∂θ

and ∂F
∂ x when x = 2, y = 3, and θ = π

6.
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160. Suppose the sides of a rectangle are changing with
respect to time. The first side is changing at a rate of 2
in./sec whereas the second side is changing at the rate of 4
in/sec. How fast is the diagonal of the rectangle changing
when the first side measures 16 in. and the second side

measures 20 in.? (Round answer to three decimal places.)

161. A Cobb-Douglas production function is

f (x, y) = 200x0.7 y0.3, where x and y represent the

amount of labor and capital available. Let x = 500 and

y = 1000. Find
δ f
δx and

δ f
δy at these values, which

represent the marginal productivity of labor and capital,
respectively.

162. The apparent temperature index is a measure of how
the temperature feels, and it is based on two variables:
h, which is relative humidity, and t, which is the air

temperature. A = 0.885t − 22.4h + 1.20th − 0.544. Find

∂ A
∂ t and ∂ A

∂h when t = 20°F and h = 0.90.
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4.4 | Tangent Planes and Linear Approximations

Learning Objectives
4.4.1 Determine the equation of a plane tangent to a given surface at a point.

4.4.2 Use the tangent plane to approximate a function of two variables at a point.

4.4.3 Explain when a function of two variables is differentiable.

4.4.4 Use the total differential to approximate the change in a function of two variables.

In this section, we consider the problem of finding the tangent plane to a surface, which is analogous to finding the equation
of a tangent line to a curve when the curve is defined by the graph of a function of one variable, y = f (x). The slope of the

tangent line at the point x = a is given by m = f ′(a); what is the slope of a tangent plane? We learned about the equation

of a plane in Equations of Lines and Planes in Space; in this section, we see how it can be applied to the problem at
hand.

Tangent Planes
Intuitively, it seems clear that, in a plane, only one line can be tangent to a curve at a point. However, in three-dimensional
space, many lines can be tangent to a given point. If these lines lie in the same plane, they determine the tangent plane at
that point. A tangent plane at a regular point contains all of the lines tangent to that point. A more intuitive way to think of
a tangent plane is to assume the surface is smooth at that point (no corners). Then, a tangent line to the surface at that point
in any direction does not have any abrupt changes in slope because the direction changes smoothly.

Definition

Let P0 = (x0, y0, z0) be a point on a surface S, and let C be any curve passing through P0 and lying entirely in

S. If the tangent lines to all such curves C at P0 lie in the same plane, then this plane is called the tangent plane to

S at P0 (Figure 4.27).
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Figure 4.27 The tangent plane to a surface S at a point P0 contains all the tangent lines

to curves in S that pass through P0.

For a tangent plane to a surface to exist at a point on that surface, it is sufficient for the function that defines the surface to
be differentiable at that point. We define the term tangent plane here and then explore the idea intuitively.

Definition

Let S be a surface defined by a differentiable function z = f (x, y), and let P0 = (x0, y0) be a point in the domain

of f . Then, the equation of the tangent plane to S at P0 is given by

(4.24)z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0).

To see why this formula is correct, let’s first find two tangent lines to the surface S. The equation of the tangent

line to the curve that is represented by the intersection of S with the vertical trace given by x = x0 is

z = f (x0, y0) + fy (x0, y0)(y − y0). Similarly, the equation of the tangent line to the curve that is represented by the

intersection of S with the vertical trace given by y = y0 is z = f (x0, y0) + fx (x0, y0)(x − x0). A parallel vector to the

first tangent line is a = j + fy (x0, y0)k; a parallel vector to the second tangent line is b = i + fx (x0, y0)k. We can take

the cross product of these two vectors:
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a × b = ⎛
⎝j + fy (x0, y0)k⎞

⎠ × ⎛
⎝i + fx (x0, y0)k⎞

⎠

= |i j k
0 1 fy (x0, y0)
1 0 fx (x0, y0)|

= fx (x0, y0)i + fy (x0, y0)j − k.

This vector is perpendicular to both lines and is therefore perpendicular to the tangent plane. We can use this vector as a
normal vector to the tangent plane, along with the point P0 = ⎛

⎝x0, y0, f (x0, y0)⎞
⎠ in the equation for a plane:

n · ⎛
⎝(x − x0)i + (y − y0)j + ⎛

⎝z − f (x0, y0)⎞
⎠k⎞

⎠ = 0
⎛
⎝ fx (x0, y0)i + fy (x0, y0)j-k⎞

⎠ · ⎛
⎝(x − x0)i + (y − y0)j + ⎛

⎝z − f (x0, y0)⎞
⎠k⎞

⎠ = 0
fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0) − ⎛

⎝z − f (x0, y0)⎞
⎠ = 0.

Solving this equation for z gives Equation 4.24.

Example 4.21

Finding a Tangent Plane

Find the equation of the tangent plane to the surface defined by the function

f (x, y) = 2x2 − 3xy + 8y2 + 2x − 4y + 4 at point (2, −1).

Solution

First, we must calculate fx (x, y) and fy (x, y), then use Equation 4.24 with x0 = 2 and y0 = −1:

fx (x, y) = 4x − 3y + 2
fy (x, y) = −3x + 16y − 4

f (2, −1) = 2(2)2 − 3(2)(−1) + 8(−1)2 + 2(2) − 4(−1) + 4 = 34.
fx (2, −1) = 4(2) − 3(−1) + 2 = 13
fy (2, −1) = −3(2) + 16(−1) − 4 = −26.

Then Equation 4.24 becomes

z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)
z = 34 + 13(x − 2) − 26⎛

⎝y − (−1)⎞
⎠

z = 34 + 13x − 26 − 26y − 26
z = 13x − 26y − 18.

(See the following figure).

Chapter 4 | Differentiation of Functions of Several Variables 391



4.19

Figure 4.28 Calculating the equation of a tangent plane to a given surface at a given point.

Find the equation of the tangent plane to the surface defined by the function

f (x, y) = x3 − x2 y + y2 − 2x + 3y − 2 at point (−1, 3).

Example 4.22

Finding Another Tangent Plane

Find the equation of the tangent plane to the surface defined by the function f (x, y) = sin(2x)cos⎛
⎝3y⎞

⎠ at the point

(π/3, π/4).

Solution

First, calculate fx (x, y) and fy (x, y), then use Equation 4.24 with x0 = π/3 and y0 = π/4:

fx (x, y) = 2 cos(2x)cos⎛
⎝3y⎞

⎠

fy (x, y) = −3 sin(2x)sin⎛
⎝3y⎞

⎠

f ⎛
⎝
π
3, π

4
⎞
⎠ = sin⎛

⎝2
⎛
⎝
π
3

⎞
⎠
⎞
⎠cos⎛

⎝3
⎛
⎝
π
4

⎞
⎠
⎞
⎠ = ⎛

⎝
3

2
⎞
⎠
⎛
⎝− 2

2
⎞
⎠ = − 6

4

fx
⎛
⎝
π
3, π

4
⎞
⎠ = 2 cos⎛

⎝2
⎛
⎝
π
3

⎞
⎠
⎞
⎠cos⎛

⎝3
⎛
⎝
π
4

⎞
⎠
⎞
⎠ = 2⎛

⎝−
1
2

⎞
⎠
⎛
⎝− 2

2
⎞
⎠ = 2

2

fy
⎛
⎝
π
3, π

4
⎞
⎠ = −3 sin⎛

⎝2
⎛
⎝
π
3

⎞
⎠
⎞
⎠sin⎛

⎝3
⎛
⎝
π
4

⎞
⎠
⎞
⎠ = −3⎛

⎝
3

2
⎞
⎠
⎛
⎝

2
2

⎞
⎠ = − 3 6

4 .

Then Equation 4.24 becomes
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z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)

z = − 6
4 + 2

2
⎛
⎝x − π

3
⎞
⎠ − 3 6

4
⎛
⎝y − π

4
⎞
⎠

z = 2
2 x − 3 6

4 y − 6
4 − π 2

6 + 3π 6
16 .

A tangent plane to a surface does not always exist at every point on the surface. Consider the function

f (x, y) =
⎧

⎩
⎨

xy
x2 + y2

(x, y) ≠ (0, 0)

0 (x, y) = (0, 0).

The graph of this function follows.

Figure 4.29 Graph of a function that does not have a tangent plane at the
origin.

If either x = 0 or y = 0, then f (x, y) = 0, so the value of the function does not change on either the x- or y-axis.

Therefore, fx (x, 0) = fy
⎛
⎝0, y⎞

⎠ = 0, so as either x or y approach zero, these partial derivatives stay equal to zero.

Substituting them into Equation 4.24 gives z = 0 as the equation of the tangent line. However, if we approach the origin

from a different direction, we get a different story. For example, suppose we approach the origin along the line y = x. If

we put y = x into the original function, it becomes

f (x, x) = x(x)
x2 + (x)2

= x2

2x2
= |x|

2
.

When x > 0, the slope of this curve is equal to 2/2; when x < 0, the slope of this curve is equal to −⎛
⎝ 2/2⎞

⎠. This

presents a problem. In the definition of tangent plane, we presumed that all tangent lines through point P (in this case, the

origin) lay in the same plane. This is clearly not the case here. When we study differentiable functions, we will see that this
function is not differentiable at the origin.

Linear Approximations
Recall from Linear Approximations and Differentials (http://cnx.org/content/m53605/latest/) that the formula
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for the linear approximation of a function f (x) at the point x = a is given by

y ≈ f (a) + f ′(a)(x − a).

The diagram for the linear approximation of a function of one variable appears in the following graph.

Figure 4.30 Linear approximation of a function in one
variable.

The tangent line can be used as an approximation to the function f (x) for values of x reasonably close to x = a. When

working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much
the same.

Definition

Given a function z = f (x, y) with continuous partial derivatives that exist at the point (x0, y0), the linear

approximation of f at the point (x0, y0) is given by the equation

(4.25)L(x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0).

Notice that this equation also represents the tangent plane to the surface defined by z = f (x, y) at the point (x0, y0). The

idea behind using a linear approximation is that, if there is a point (x0, y0) at which the precise value of f (x, y) is known,

then for values of (x, y) reasonably close to (x0, y0), the linear approximation (i.e., tangent plane) yields a value that

is also reasonably close to the exact value of f (x, y) (Figure 4.31). Furthermore the plane that is used to find the linear

approximation is also the tangent plane to the surface at the point (x0, y0).
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Figure 4.31 Using a tangent plane for linear approximation at a point.

Example 4.23

Using a Tangent Plane Approximation

Given the function f (x, y) = 41 − 4x2 − y2, approximate f (2.1, 2.9) using point (2, 3) for (x0, y0).
What is the approximate value of f (2.1, 2.9) to four decimal places?

Solution

To apply Equation 4.25, we first must calculate f (x0, y0), fx (x0, y0), and fy (x0, y0) using x0 = 2 and

y0 = 3:

f (x0, y0) = f (2, 3) = 41 − 4(2)2 − (3)2 = 41 − 16 − 9 = 16 = 4

fx (x, y) = − 4x
41 − 4x2 − y2

so fx (x0, y0) = − 4(2)
41 − 4(2)2 − (3)2

= −2

fy (x, y) = − y
41 − 4x2 − y2

so fy (x0, y0) = − 3
41 − 4(2)2 − (3)2

= − 3
4.

Now we substitute these values into Equation 4.25:
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L(x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)

= 4 − 2(x − 2) − 3
4

⎛
⎝y − 3⎞

⎠

= 41
4 − 2x − 3

4y.

Last, we substitute x = 2.1 and y = 2.9 into L(x, y):

L(2.1, 2.9) = 41
4 − 2(2.1) − 3

4(2.9) = 10.25 − 4.2 − 2.175 = 3.875.

The approximate value of f (2.1, 2.9) to four decimal places is

f (2.1, 2.9) = 41 − 4(2.1)2 − (2.9)2 = 14.95 ≈ 3.8665,

which corresponds to a 0.2% error in approximation.

Given the function f (x, y) = e5 − 2x + 3y, approximate f (4.1, 0.9) using point (4, 1) for (x0, y0).

What is the approximate value of f (4.1, 0.9) to four decimal places?

Differentiability
When working with a function y = f (x) of one variable, the function is said to be differentiable at a point x = a if f ′ (a)
exists. Furthermore, if a function of one variable is differentiable at a point, the graph is “smooth” at that point (i.e., no
corners exist) and a tangent line is well-defined at that point.

The idea behind differentiability of a function of two variables is connected to the idea of smoothness at that point. In this
case, a surface is considered to be smooth at point P if a tangent plane to the surface exists at that point. If a function is

differentiable at a point, then a tangent plane to the surface exists at that point. Recall the formula for a tangent plane at a
point (x0, y0) is given by

z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0),

For a tangent plane to exist at the point (x0, y0), the partial derivatives must therefore exist at that point. However, this is

not a sufficient condition for smoothness, as was illustrated in Figure 4.29. In that case, the partial derivatives existed at
the origin, but the function also had a corner on the graph at the origin.

Definition

A function f (x, y) is differentiable at a point P(x0, y0) if, for all points (x, y) in a δ disk around P, we can

write

(4.26)f (x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0) + E(x, y),

where the error term E satisfies

lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= 0.

The last term in Equation 4.26 is referred to as the error term and it represents how closely the tangent plane comes to the
surface in a small neighborhood (δ disk) of point P. For the function f to be differentiable at P, the function must be

smooth—that is, the graph of f must be close to the tangent plane for points near P.
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Example 4.24

Demonstrating Differentiability

Show that the function f (x, y) = 2x2 − 4y is differentiable at point (2, −3).

Solution

First, we calculate f (x0, y0), fx (x0, y0), and fy (x0, y0) using x0 = 2 and y0 = −3, then we use Equation

4.26:

f (2, −3) = 2(2)2 − 4(−3) = 8 + 12 = 20
fx (2, −3) = 4(2) = 8
fy (2, −3) = −4.

Therefore m1 = 8 and m2 = −4, and Equation 4.26 becomes

f (x, y) = f (2, −3) + fx (2, −3)(x − 2) + fy (2, −3)⎛
⎝y + 3⎞

⎠ + E(x, y)
2x2 − 4y = 20 + 8(x − 2) − 4⎛

⎝y + 3⎞
⎠ + E(x, y)

2x2 − 4y = 20 + 8x − 16 − 4y − 12 + E(x, y)

2x2 − 4y = 8x − 4y − 8 + E(x, y)

E(x, y) = 2x2 − 8x + 8.

Next, we calculate lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

:

lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= lim
(x, y) → (2, −3)

2x2 − 8x + 8
(x − 2)2 + ⎛

⎝y + 3⎞
⎠
2

= lim
(x, y) → (2, −3)

2⎛
⎝x2 − 4x + 4⎞

⎠

(x − 2)2 + ⎛
⎝y + 3⎞

⎠
2

= lim
(x, y) → (2, −3)

2(x − 2)2

(x − 2)2 + ⎛
⎝y + 3⎞

⎠
2

≤ lim
(x, y) → (2, −3)

2⎛
⎝(x − 2)2 + ⎛

⎝y + 3⎞
⎠
2⎞

⎠

(x − 2)2 + ⎛
⎝y + 3⎞

⎠
2

= lim
(x, y) → (2, −3)

2 (x − 2)2 + ⎛
⎝y + 3⎞

⎠
2

= 0.

Since E(x, y) ≥ 0 for any value of x or y, the original limit must be equal to zero. Therefore,

f (x, y) = 2x2 − 4y is differentiable at point (2, −3).

Show that the function f (x, y) = 3x − 4y2 is differentiable at point (−1, 2).
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The function f (x, y) =
⎧

⎩
⎨

xy
x2 + y2

(x, y) ≠ (0, 0)

0 (x, y) = (0, 0)
is not differentiable at the origin. We can see this by calculating

the partial derivatives. This function appeared earlier in the section, where we showed that fx (0, 0) = fy (0, 0) = 0.

Substituting this information into Equation 4.26 using x0 = 0 and y0 = 0, we get

f (x, y) = f (0, 0) + fx (0, 0)(x − 0) + fy (0, 0)⎛
⎝y − 0⎞

⎠ + E(x, y)

E(x, y) = xy
x2 + y2

.

Calculating lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

gives

lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= lim
(x, y) → (0, 0)

xy

x2 + y2

x2 + y2

= lim
(x, y) → (0, 0)

xy
x2 + y2.

Depending on the path taken toward the origin, this limit takes different values. Therefore, the limit does not exist and the
function f is not differentiable at the origin as shown in the following figure.

Figure 4.32 This function f (x, y) is not differentiable at the origin.

Differentiability and continuity for functions of two or more variables are connected, the same as for functions of one
variable. In fact, with some adjustments of notation, the basic theorem is the same.

Theorem 4.6: Differentiability Implies Continuity

Let z = f (x, y) be a function of two variables with (x0, y0) in the domain of f . If f (x, y) is differentiable at

(x0, y0), then f (x, y) is continuous at (x0, y0).
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Differentiability Implies Continuity shows that if a function is differentiable at a point, then it is continuous there.
However, if a function is continuous at a point, then it is not necessarily differentiable at that point. For example,

f (x, y) =
⎧

⎩
⎨

xy
x2 + y2

(x, y) ≠ (0, 0)

0 (x, y) = (0, 0)

is continuous at the origin, but it is not differentiable at the origin. This observation is also similar to the situation in single-
variable calculus.

Continuity of First Partials Implies Differentiability further explores the connection between continuity and
differentiability at a point. This theorem says that if the function and its partial derivatives are continuous at a point, the
function is differentiable.

Theorem 4.7: Continuity of First Partials Implies Differentiability

Let z = f (x, y) be a function of two variables with (x0, y0) in the domain of f . If f (x, y), fx (x, y), and

fy (x, y) all exist in a neighborhood of (x0, y0) and are continuous at (x0, y0), then f (x, y) is differentiable there.

Recall that earlier we showed that the function

f (x, y) =
⎧

⎩
⎨

xy
x2 + y2

(x, y) ≠ (0, 0)

0 (x, y) = (0, 0)

was not differentiable at the origin. Let’s calculate the partial derivatives fx and fy :

∂ f
∂ x = y3

⎛
⎝x2 + y2⎞

⎠
3/2 and ∂ f

∂ y = x3

⎛
⎝x2 + y2⎞

⎠
3/2.

The contrapositive of the preceding theorem states that if a function is not differentiable, then at least one of the hypotheses
must be false. Let’s explore the condition that fx (0, 0) must be continuous. For this to be true, it must be true that

lim
(x, y) → (0, 0)

fx (0, 0) = fx (0, 0):

lim
(x, y) → (0, 0)

fx (x, y) = lim
(x, y) → (0, 0)

y3

⎛
⎝x2 + y2⎞

⎠
3/2.

Let x = ky. Then

lim
(x, y) → (0, 0)

y3

⎛
⎝x2 + y2⎞

⎠
3/2 = lim

y → 0
y3

⎛
⎝

⎛
⎝ky⎞

⎠
2 + y2⎞

⎠
3/2

= lim
y → 0

y3

⎛
⎝k2 y2 + y2⎞

⎠
3/2

= lim
y → 0

y3

|y|3 ⎛
⎝k2 + 1⎞

⎠
3/2

= 1
⎛
⎝k2 + 1⎞

⎠
3/2 lim

y → 0
|y|
y .

If y > 0, then this expression equals 1/⎛
⎝k2 + 1⎞

⎠
3/2

; if y < 0, then it equals −⎛
⎝1/⎛

⎝k2 + 1⎞
⎠
3/2⎞

⎠. In either case, the value

Chapter 4 | Differentiation of Functions of Several Variables 399



depends on k, so the limit fails to exist.

Differentials
In Linear Approximations and Differentials (http://cnx.org/content/m53605/latest/) we first studied the concept
of differentials. The differential of y, written dy, is defined as f ′ (x)dx. The differential is used to approximate

Δy = f (x + Δx) − f (x), where Δx = dx. Extending this idea to the linear approximation of a function of two variables

at the point (x0, y0) yields the formula for the total differential for a function of two variables.

Definition

Let z = f (x, y) be a function of two variables with (x0, y0) in the domain of f , and let Δx and Δy be chosen so

that ⎛
⎝x0 + Δx, y0 + Δy⎞

⎠ is also in the domain of f . If f is differentiable at the point (x0, y0), then the differentials

dx and dy are defined as

dx = Δx and dy = Δy.

The differential dz, also called the total differential of z = f (x, y) at (x0, y0), is defined as

(4.27)dz = fx (x0, y0)dx + fy (x0, y0)dy.

Notice that the symbol ∂ is not used to denote the total differential; rather, d appears in front of z. Now, let’s define

Δz = f ⎛
⎝x + Δx, y + Δy⎞

⎠ − f (x, y). We use dz to approximate Δz, so

Δz ≈ dz = fx (x0, y0)dx + fy (x0, y0)dy.

Therefore, the differential is used to approximate the change in the function z = f (x0, y0) at the point (x0, y0) for

given values of Δx and Δy. Since Δz = f ⎛
⎝x + Δx, y + Δy⎞

⎠ − f (x, y), this can be used further to approximate

f ⎛
⎝x + Δx, y + Δy⎞

⎠:

f ⎛
⎝x + Δx, y + Δy⎞

⎠ = f (x, y) + Δz
≈ f (x, y) + fx (x0, y0)Δx + fy (x0, y0)Δy.

See the following figure.

Figure 4.33 The linear approximation is calculated via the
formula
f ⎛

⎝x + Δx, y + Δy⎞
⎠ ≈ f (x, y) + fx (x0, y0)Δx + fy (x0, y0)Δy.

One such application of this idea is to determine error propagation. For example, if we are manufacturing a gadget and are
off by a certain amount in measuring a given quantity, the differential can be used to estimate the error in the total volume
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4.22

of the gadget.

Example 4.25

Approximation by Differentials

Find the differential dz of the function f (x, y) = 3x2 − 2xy + y2 and use it to approximate Δz at point

(2, −3). Use Δx = 0.1 and Δy = −0.05. What is the exact value of Δz?

Solution

First, we must calculate f (x0, y0), fx (x0, y0), and fy (x0, y0) using x0 = 2 and y0 = −3:

f (x0, y0) = f (2, −3) = 3(2)2 − 2(2)(−3) + (−3)2 = 12 + 12 + 9 = 33
fx (x, y) = 6x − 2y
fy (x, y) = −2x + 2y

fx (x0, y0) = fx (2, −3) = 6(2) − 2(−3) = 12 + 6 = 18
fy (x0, y0) = fy (2, −3) = −2(2) + 2(−3) = −4 − 6 = −10.

Then, we substitute these quantities into Equation 4.27:

dz = fx (x0, y0)dx + fy (x0, y0)dy
dz = 18(0.1) − 10(−0.05) = 1.8 + 0.5 = 2.3.

This is the approximation to Δz = f ⎛
⎝x0 + Δx, y0 + Δy⎞

⎠ − f (x0, y0). The exact value of Δz is given by

Δz = f ⎛
⎝x0 + Δx, y0 + Δy⎞

⎠ − f (x0, y0)
= f (2 + 0.1, −3 − 0.05) − f (2, −3)
= f (2.1, −3.05) − f (2, −3)
= 2.3425.

Find the differential dz of the function f (x, y) = 4y2 + x2 y − 2xy and use it to approximate Δz at

point (1, −1). Use Δx = 0.03 and Δy = −0.02. What is the exact value of Δz?

Differentiability of a Function of Three Variables
All of the preceding results for differentiability of functions of two variables can be generalized to functions of three
variables. First, the definition:

Definition

A function f (x, y, z) is differentiable at a point P(x0, y0, z0) if for all points (x, y, z) in a δ disk around P we

can write

(4.28)f (x, y) = f (x0, y0, z0) + fx (x0, y0, z0)(x − x0) + fy (x0, y0, z0)(y − y0)
+ fz (x0, y0, z0)(z − z0) + E(x, y, z),

where the error term E satisfies
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lim
(x, y, z) → (x0, y0, z0)

E(x, y, z)
(x − x0)2 + (y − y0)2 + (z − z0)2

= 0.

If a function of three variables is differentiable at a point (x0, y0, z0), then it is continuous there. Furthermore, continuity

of first partial derivatives at that point guarantees differentiability.
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4.4 EXERCISES
For the following exercises, find a unit normal vector to the
surface at the indicated point.

163. f (x, y) = x3, (2, −1, 8)

164. ln⎛
⎝

x
y − z

⎞
⎠ = 0 when x = y = 1

For the following exercises, as a useful review for
techniques used in this section, find a normal vector and a
tangent vector at point P.

165. x2 + xy + y2 = 3, P(−1, −1)

166. ⎛
⎝x2 + y2⎞

⎠
2

= 9⎛
⎝x2 − y2⎞

⎠, P( 2, 1)

167. xy2 − 2x2 + y + 5x = 6, P(4, 2)

168. 2x3 − x2 y2 = 3x − y − 7, P(1, −2)

169. zex2 − y2
− 3 = 0, P(2, 2, 3)

For the following exercises, find the equation for the
tangent plane to the surface at the indicated point. (Hint:
Solve for z in terms of x and y.)

170. −8x − 3y − 7z = −19, P(1, −1, 2)

171. z = −9x2 − 3y2, P(2, 1, −39)

172. x2 + 10xyz + y2 + 8z2 = 0, P(−1, −1, −1)

173. z = ln(10x2 + 2y2 + 1), P(0, 0, 0)

174. z = e7x2 + 4y2
, P(0, 0, 1)

175. xy + yz + zx = 11, P(1, 2, 3)

176. x2 + 4y2 = z2, P(3, 2, 5)

177. x3 + y3 = 3xyz, P⎛
⎝1, 2, 3

2
⎞
⎠

178. z = axy, P⎛
⎝1, 1

a, 1⎞
⎠

179. z = sin x + sin y + sin(x + y), P(0, 0, 0)

180. h(x, y) = ln x2 + y2, P(3, 4)

181. z = x2 − 2xy + y2, P(1, 2, 1)

For the following exercises, find parametric equations for
the normal line to the surface at the indicated point. (Recall
that to find the equation of a line in space, you need a
point on the line, P0 (x0, y0, z0), and a vector

n = 〈 a, b, c 〉 that is parallel to the line. Then the

equation of the line is
x − x0 = at, y − y0 = bt, z − z0 = ct.)

182. −3x + 9y + 4z = −4, P(1, −1, 2)

183. z = 5x2 − 2y2, P(2, 1, 18)

184. x2 − 8xyz + y2 + 6z2 = 0, P(1, 1, 1)

185. z = ln⎛
⎝3x2 + 7y2 + 1⎞

⎠, P(0, 0, 0)

186. z = e4x2 + 6y2
, P(0, 0, 1)

187. z = x2 − 2xy + y2 at point P(1, 2, 1)

For the following exercises, use the figure shown here.

188. The length of line segment AC is equal to what

mathematical expression?

189. The length of line segment BC is equal to what

mathematical expression?

190. Using the figure, explain what the length of line
segment AB represents.
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For the following exercises, complete each task.

191. Show that f (x, y) = exy x is differentiable at point

(1, 0).

192. Find the total differential of the function

w = ey cos(x) + z2.

193. Show that f (x, y) = x2 + 3y is differentiable at

every point. In other words, show that
Δz = f (x + Δx, y + Δy) − f (x, y) = fx Δx + fy Δy + ε1 Δx + ε2 Δy,

where both ε1 and ε2 approach zero as ⎛
⎝Δx, Δy⎞

⎠

approaches (0, 0).

194. Find the total differential of the function z = xy
y + x

where x changes from 10 to 10.5 and y changes from

15 to 13.

195. Let z = f (x, y) = xey. Compute Δz from P(1, 2)
to Q(1.05, 2.1) and then find the approximate change

in z from point P to point Q. Recall

Δz = f (x + Δx, y + Δy) − f (x, y), and dz and Δz are

approximately equal.

196. The volume of a right circular cylinder is given by

V(r, h) = πr2 h. Find the differential dV . Interpret the

formula geometrically.

197. See the preceding problem. Use differentials to
estimate the amount of aluminum in an enclosed aluminum
can with diameter 8.0 cm and height 12 cm if the

aluminum is 0.04 cm thick.

198. Use the differential dz to approximate the change in

z = 4 − x2 − y2 as (x, y) moves from point (1, 1) to

point (1.01, 0.97). Compare this approximation with the

actual change in the function.

199. Let z = f (x, y) = x2 + 3xy − y2. Find the exact

change in the function and the approximate change in the
function as x changes from 2.00 to 2.05 and y changes

from 3.00 to 2.96.

200. The centripetal acceleration of a particle moving

in a circle is given by a(r, v) = v2
r , where v is the

velocity and r is the radius of the circle. Approximate

the maximum percent error in measuring the acceleration
resulting from errors of 3% in v and 2% in r. (Recall

that the percentage error is the ratio of the amount of error
over the original amount. So, in this case, the percentage

error in a is given by da
a .)

201. The radius r and height h of a right circular

cylinder are measured with possible errors of 4% and 5%,
respectively. Approximate the maximum possible
percentage error in measuring the volume (Recall that the
percentage error is the ratio of the amount of error over the
original amount. So, in this case, the percentage error in V

is given by dV
V .)

202. The base radius and height of a right circular cone
are measured as 10 in. and 25 in., respectively, with

a possible error in measurement of as much as 0.1 in.

each. Use differentials to estimate the maximum error in the
calculated volume of the cone.

203. The electrical resistance R produced by wiring

resistors R1 and R2 in parallel can be calculated from the

formula 1
R = 1

R1
+ 1

R2
. If R1 and R2 are measured to be

7Ω and 6Ω, respectively, and if these measurements are

accurate to within 0.05Ω, estimate the maximum possible

error in computing R. (The symbol Ω represents an ohm,

the unit of electrical resistance.)

204. The area of an ellipse with axes of length 2a and

2b is given by the formula A = πab. Approximate the

percent change in the area when a increases by 2% and

b increases by 1.5%.

205. The period T of a simple pendulum with small

oscillations is calculated from the formula T = 2π L
g ,

where L is the length of the pendulum and g is the

acceleration resulting from gravity. Suppose that L and g
have errors of, at most, 0.5% and 0.1%, respectively.

Use differentials to approximate the maximum percentage
error in the calculated value of T .
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206. Electrical power P is given by P = V 2

R , where

V is the voltage and R is the resistance. Approximate

the maximum percentage error in calculating power if 120
V is applied to a 2000 − Ω resistor and the possible

percent errors in measuring V and R are 3% and 4%,
respectively.

For the following exercises, find the linear approximation
of each function at the indicated point.

207. f (x, y) = x y, P(1, 4)

208. f (x, y) = ex cos y; P(0, 0)

209. f (x, y) = arctan(x + 2y), P(1, 0)

210. f (x, y) = 20 − x2 − 7y2, P(2, 1)

211. f (x, y, z) = x2 + y2 + z2, P(3, 2, 6)

212. [T] Find the equation of the tangent plane to the

surface f (x, y) = x2 + y2 at point (1, 2, 5), and graph

the surface and the tangent plane at the point.

213. [T] Find the equation for the tangent plane to the
surface at the indicated point, and graph the surface and the

tangent plane: z = ln(10x2 + 2y2 + 1), P(0, 0, 0).

214. [T] Find the equation of the tangent plane to the

surface z = f (x, y) = sin(x + y2) at point
⎛
⎝
π
4, 0, 2

2
⎞
⎠,

and graph the surface and the tangent plane.
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4.5 | The Chain Rule

Learning Objectives
4.5.1 State the chain rules for one or two independent variables.

4.5.2 Use tree diagrams as an aid to understanding the chain rule for several independent and
intermediate variables.

4.5.3 Perform implicit differentiation of a function of two or more variables.

In single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which allows us to
find the derivative of the composition of two functions. The same thing is true for multivariable calculus, but this time we
have to deal with more than one form of the chain rule. In this section, we study extensions of the chain rule and learn how
to take derivatives of compositions of functions of more than one variable.

Chain Rules for One or Two Independent Variables
Recall that the chain rule for the derivative of a composite of two functions can be written in the form

d
dx

⎛
⎝ f ⎛

⎝g(x)⎞
⎠
⎞
⎠ = f ′⎛

⎝g(x)⎞
⎠g′(x).

In this equation, both f (x) and g(x) are functions of one variable. Now suppose that f is a function of two variables and

g is a function of one variable. Or perhaps they are both functions of two variables, or even more. How would we calculate

the derivative in these cases? The following theorem gives us the answer for the case of one independent variable.

Theorem 4.8: Chain Rule for One Independent Variable

Suppose that x = g(t) and y = h(t) are differentiable functions of t and z = f (x, y) is a differentiable function of

x and y. Then z = f ⎛
⎝x(t), y(t)⎞

⎠ is a differentiable function of t and

(4.29)dz
dt = ∂z

∂ x · dx
dt + ∂z

∂ y · dy
dt ,

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

Proof

The proof of this theorem uses the definition of differentiability of a function of two variables. Suppose that f is
differentiable at the point P(x0, y0), where x0 = g(t0) and y0 = h(t0) for a fixed value of t0. We wish to prove that

z = f ⎛
⎝x(t), y(t)⎞

⎠ is differentiable at t = t0 and that Equation 4.29 holds at that point as well.

Since f is differentiable at P, we know that

(4.30)z(t) = f (x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0) + E(x, y),

where lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= 0. We then subtract z0 = f (x0, y0) from both sides of this equation:

z(t) − z(t0) = f ⎛
⎝x(t), y(t)⎞

⎠ − f ⎛
⎝x(t0), y(t0)⎞

⎠

= fx (x0, y0)⎛
⎝x(t) − x(t0)⎞

⎠ + fy (x0, y0)⎛
⎝y(t) − y(t0)⎞

⎠ + E⎛
⎝x(t), y(t)⎞

⎠.

Next, we divide both sides by t − t0 :

z(t) − z(t0)
t − t0

= fx (x0, y0)⎛⎝
x(t) − x(t0)

t − t0
⎞
⎠ + fy (x0, y0)⎛⎝

y(t) − y(t0)
t − t0

⎞
⎠ + E⎛

⎝x(t), y(t)⎞
⎠

t − t0
.
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Then we take the limit as t approaches t0 :

lim
t → t0

z(t) − z(t0)
t − t0

= fx (x0, y0) lim
t → t0

⎛
⎝

x(t) − x(t0)
t − t0

⎞
⎠ + fy (x0, y0) lim

t → t0

⎛
⎝

y(t) − y(t0)
t − t0

⎞
⎠

+ lim
t → t0

E⎛
⎝x(t), y(t)⎞

⎠

t − t0
.

The left-hand side of this equation is equal to dz/dt, which leads to

dz
dt = fx (x0, y0)dx

dt + fy (x0, y0)dy
dt + lim

t → t0

E⎛
⎝x(t), y(t)⎞

⎠

t − t0
.

The last term can be rewritten as

lim
t → t0

E⎛
⎝x(t), y(t)⎞

⎠

t − t0
= lim

t → t0

⎛

⎝
⎜ E(x, y)

(x − x0)2 + (y − y0)2
(x − x0)2 + (y − y0)2

t − t0

⎞

⎠
⎟

= lim
t → t0

⎛

⎝
⎜ E(x, y)

(x − x0)2 + (y − y0)2

⎞

⎠
⎟ lim

t → t0

⎛

⎝
⎜ (x − x0)2 + (y − y0)2

t − t0

⎞

⎠
⎟.

As t approaches t0, ⎛
⎝x(t), y(t)⎞

⎠ approaches ⎛
⎝x(t0), y(t0)⎞

⎠, so we can rewrite the last product as

lim
(x, y) → (x0, y0)

⎛

⎝
⎜ E(x, y)

(x − x0)2 + (y − y0)2

⎞

⎠
⎟ lim

(x, y) → (x0, y0)

⎛

⎝
⎜ (x − x0)2 + (y − y0)2

t − t0

⎞

⎠
⎟.

Since the first limit is equal to zero, we need only show that the second limit is finite:

lim
(x, y) → (x0, y0)

⎛

⎝
⎜ (x − x0)2 + (y − y0)2

t − t0

⎞

⎠
⎟ = lim

(x, y) → (x0, y0)

⎛

⎝
⎜ (x − x0)2 + (y − y0)2

(t − t0)2

⎞

⎠
⎟

= lim
(x, y) → (x0, y0)

⎛

⎝
⎜ ⎛

⎝
x − x0
t − t0

⎞
⎠

2
+ ⎛

⎝
y − y0
t − t0

⎞
⎠

2⎞

⎠
⎟

= ⎛
⎝ lim

(x, y) → (x0, y0)
⎛
⎝
x − x0
t − t0

⎞
⎠
⎞
⎠

2
+ ⎛

⎝ lim
(x, y) → (x0, y0)

⎛
⎝
y − y0
t − t0

⎞
⎠
⎞
⎠

2
.

Since x(t) and y(t) are both differentiable functions of t, both limits inside the last radical exist. Therefore, this value

is finite. This proves the chain rule at t = t0; the rest of the theorem follows from the assumption that all functions are

differentiable over their entire domains.

□

Closer examination of Equation 4.29 reveals an interesting pattern. The first term in the equation is
∂ f
∂ x · dx

dt and the

second term is
∂ f
∂ y · dy

dt . Recall that when multiplying fractions, cancelation can be used. If we treat these derivatives

as fractions, then each product “simplifies” to something resembling ∂ f /dt. The variables x and y that disappear in

this simplification are often called intermediate variables: they are independent variables for the function f , but are

dependent variables for the variable t. Two terms appear on the right-hand side of the formula, and f is a function of two

variables. This pattern works with functions of more than two variables as well, as we see later in this section.

Example 4.26
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Using the Chain Rule

Calculate dz/dt for each of the following functions:

a. z = f (x, y) = 4x2 + 3y2, x = x(t) = sin t, y = y(t) = cos t

b. z = f (x, y) = x2 − y2, x = x(t) = e2t, y = y(t) = e−t

Solution

a. To use the chain rule, we need four quantities— ∂z/∂ x, ∂z/∂ y, dx/dt, and dy/dt:

∂z
∂ x = 8x ∂z

∂ y = 6y

dx
dt = cos t dy

dt = −sin t

Now, we substitute each of these into Equation 4.29:

dz
dt = ∂z

∂ x · dx
dt + ∂z

∂ y · dy
dt

= (8x)(cos t) + ⎛
⎝6y⎞

⎠(−sin t)
= 8x cos t − 6y sin t.

This answer has three variables in it. To reduce it to one variable, use the fact that
x(t) = sin t and y(t) = cos t. We obtain

dz
dt = 8x cos t − 6y sin t

= 8(sin t)cos t − 6(cos t)sin t
= 2 sin t cos t.

This derivative can also be calculated by first substituting x(t) and y(t) into f (x, y), then

differentiating with respect to t:

z = f (x, y)
= f ⎛

⎝x(t), y(t)⎞
⎠

= 4(x(t))2 + 3⎛
⎝y(t)⎞

⎠
2

= 4sin2 t + 3cos2 t.

Then

dz
dt = 2(4 sin t)(cos t) + 2(3 cos t)(−sin t)

= 8 sin t cos t − 6 sin t cos t
= 2 sin t cos t,

which is the same solution. However, it may not always be this easy to differentiate in this form.

b. To use the chain rule, we again need four quantities— ∂z/∂ x, ∂z/dy, dx/dt, and dy/dt:
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∂z
∂ x = x

x2 − y2
∂z
∂ y = −y

x2 − y2

dx
dt = 2e2t dx

dt = −e−t.

We substitute each of these into Equation 4.29:

dz
dt = ∂z

∂ x · dx
dt + ∂z

∂ y · dy
dt

=
⎛

⎝
⎜ x

x2 − y2

⎞

⎠
⎟⎛

⎝2e2t⎞
⎠ +

⎛

⎝
⎜ −y

x2 − y2

⎞

⎠
⎟⎛

⎝−e−t⎞
⎠

= 2xe2t − ye−t

x2 − y2
.

To reduce this to one variable, we use the fact that x(t) = e2t and y(t) = e−t. Therefore,

dz
dt = 2xe2t + ye−t

x2 − y2

=
2⎛

⎝e2t⎞
⎠e2t + ⎛

⎝e−t⎞
⎠e−t

e4t − e−2t

= 2e4t + e−2t

e4t − e−2t
.

To eliminate negative exponents, we multiply the top by e2t and the bottom by e4t:

dz
dt = 2e4t + e−2t

e4t − e−2t
· e2t

e4t

= 2e6t + 1
e8t − e2t

= 2e6t + 1
e2t ⎛

⎝e
6t − 1⎞

⎠

= 2e6t + 1
et e6t − 1

.

Again, this derivative can also be calculated by first substituting x(t) and y(t) into f (x, y), then

differentiating with respect to t:

z = f (x, y)
= f ⎛

⎝x(t), y(t)⎞
⎠

= (x(t))2 − ⎛
⎝y(t)⎞

⎠
2

= e4t − e−2t

= ⎛
⎝e4t − e−2t⎞

⎠
1/2

.

Then
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dz
dt = 1

2
⎛
⎝e4t − e−2t⎞

⎠
−1/2 ⎛

⎝4e4t + 2e−2t⎞
⎠

= 2e4t + e−2t

e4t − e−2t
.

This is the same solution.

Calculate dz/dt given the following functions. Express the final answer in terms of t.

z = f (x, y) = x2 − 3xy + 2y2, x = x(t) = 3 sin 2t, y = y(t) = 4 cos 2t

It is often useful to create a visual representation of Equation 4.29 for the chain rule. This is called a tree diagram for the
chain rule for functions of one variable and it provides a way to remember the formula (Figure 4.34). This diagram can be
expanded for functions of more than one variable, as we shall see very shortly.

Figure 4.34 Tree diagram for the case
dz
dt = ∂z

∂ x · dx
dt + ∂z

∂ y · dy
dt .

In this diagram, the leftmost corner corresponds to z = f (x, y). Since f has two independent variables, there are two lines

coming from this corner. The upper branch corresponds to the variable x and the lower branch corresponds to the variable

y. Since each of these variables is then dependent on one variable t, one branch then comes from x and one branch

comes from y. Last, each of the branches on the far right has a label that represents the path traveled to reach that branch.

The top branch is reached by following the x branch, then the t branch; therefore, it is labeled (∂z/∂ x) × (dx/dt). The

bottom branch is similar: first the y branch, then the t branch. This branch is labeled ⎛
⎝∂z/∂ y⎞

⎠ × ⎛
⎝dy/dt⎞

⎠. To get the formula

for dz/dt, add all the terms that appear on the rightmost side of the diagram. This gives us Equation 4.29.

In Chain Rule for Two Independent Variables, z = f (x, y) is a function of x and y, and both x = g(u, v) and

y = h(u, v) are functions of the independent variables u and v.

Theorem 4.9: Chain Rule for Two Independent Variables

Suppose x = g(u, v) and y = h(u, v) are differentiable functions of u and v, and z = f (x, y) is a differentiable

function of x and y. Then, z = f ⎛
⎝g(u, v), h(u, v)⎞

⎠ is a differentiable function of u and v, and
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(4.31)∂z
∂u = ∂z

∂ x
∂ x
∂u + ∂z

∂ y
∂ x
∂u

and

(4.32)∂z
∂v = ∂z

∂ x
∂ x
∂v + ∂z

∂ y
∂ y
∂v .

We can draw a tree diagram for each of these formulas as well as follows.

Figure 4.35 Tree diagram for ∂z
∂u = ∂z

∂ x · ∂ x
∂u + ∂z

∂ y · ∂ y
∂u and

∂z
∂v = ∂z

∂ x · ∂ x
∂v + ∂z

∂ y · ∂ y
∂v .

To derive the formula for ∂z/∂u, start from the left side of the diagram, then follow only the branches that end with u
and add the terms that appear at the end of those branches. For the formula for ∂z/∂v, follow only the branches that end

with v and add the terms that appear at the end of those branches.

There is an important difference between these two chain rule theorems. In Chain Rule for One Independent Variable,
the left-hand side of the formula for the derivative is not a partial derivative, but in Chain Rule for Two Independent
Variables it is. The reason is that, in Chain Rule for One Independent Variable, z is ultimately a function of t
alone, whereas in Chain Rule for Two Independent Variables, z is a function of both u and v.

Example 4.27

Using the Chain Rule for Two Variables

Calculate ∂z/∂u and ∂z/∂v using the following functions:

z = f (x, y) = 3x2 − 2xy + y2, x = x(u, v) = 3u + 2v, y = y(u, v) = 4u − v.

Solution

To implement the chain rule for two variables, we need six partial derivatives—
∂z/∂ x, ∂z/∂ y, ∂ x/∂u, ∂ x/∂v, ∂ y/∂u, and ∂ y/∂v:
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∂z
∂ x = 6x − 2y ∂z

∂ y = −2x + 2y

∂ x
∂u = 3 ∂ x

∂v = 2

∂ y
∂u = 4 ∂ y

∂v = −1.

To find ∂z/∂u, we use Equation 4.31:

∂z
∂u = ∂z

∂ x · ∂ x
∂u + ∂z

∂ y · ∂ y
∂u

= 3⎛
⎝6x − 2y⎞

⎠ + 4⎛
⎝−2x + 2y⎞

⎠

= 10x + 2y.

Next, we substitute x(u, v) = 3u + 2v and y(u, v) = 4u − v:

∂z
∂u = 10x + 2y

= 10(3u + 2v) + 2(4u − v)
= 38u + 18v.

To find ∂z/∂v, we use Equation 4.32:

∂z
∂v = ∂z

∂ x
∂ x
∂v + ∂z

∂ y
∂ y
∂v

= 2⎛
⎝6x − 2y⎞

⎠ + (−1)⎛
⎝−2x + 2y⎞

⎠

= 14x − 6y.

Then we substitute x(u, v) = 3u + 2v and y(u, v) = 4u − v:

∂z
∂v = 14x − 6y

= 14(3u + 2v) − 6(4u − v)
= 18u + 34v.

Calculate ∂z/∂u and ∂z/∂v given the following functions:

z = f (x, y) = 2x − y
x + 3y, x(u, v) = e2u cos 3v, y(u, v) = e2u sin 3v.

The Generalized Chain Rule
Now that we’ve see how to extend the original chain rule to functions of two variables, it is natural to ask: Can we extend
the rule to more than two variables? The answer is yes, as the generalized chain rule states.

Theorem 4.10: Generalized Chain Rule

Let w = f (x1, x2 ,…, xm) be a differentiable function of m independent variables, and for each i ∈ {1,…, m}, let

xi = xi(t1, t2 ,…, tn) be a differentiable function of n independent variables. Then

(4.33)∂w
∂ t j

= ∂w
∂ x1

∂ x1
∂ t j

+ ∂w
∂ x2

∂ x2
∂ t j

+ ⋯ + ∂w
∂ xm

∂ xm
∂ t j
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for any j ∈ ⎧

⎩
⎨1, 2,…, n⎫

⎭
⎬.

In the next example we calculate the derivative of a function of three independent variables in which each of the three
variables is dependent on two other variables.

Example 4.28

Using the Generalized Chain Rule

Calculate ∂w/∂u and ∂w/∂v using the following functions:

w = f (x, y, z) = 3x2 − 2xy + 4z2

x = x(u, v) = eu sin v
y = y(u, v) = eu cos v
z = z(u, v) = eu.

Solution

The formulas for ∂w/∂u and ∂w/∂v are

∂w
∂u = ∂w

∂ x · ∂ x
∂u + ∂w

∂ y · ∂ y
∂u + ∂w

∂z · ∂z
∂u

∂w
∂v = ∂w

∂ x · ∂ x
∂v + ∂w

∂ y · ∂ y
∂v + ∂w

∂z · ∂z
∂v.

Therefore, there are nine different partial derivatives that need to be calculated and substituted. We need to
calculate each of them:

∂w
∂ x = 6x − 2y ∂w

∂ y = −2x ∂w
∂z = 8z

∂ x
∂u = eu sin v ∂ y

∂u = eu cos v ∂z
∂u = eu

∂ x
∂v = eu cos v ∂ y

∂v = −eu sin v ∂z
∂v = 0.

Now, we substitute each of them into the first formula to calculate ∂w/∂u:

∂w
∂u = ∂w

∂ x · ∂ x
∂u + ∂w

∂ y · ∂ y
∂u + ∂w

∂z · ∂z
∂u

= ⎛
⎝6x − 2y⎞

⎠eu sin v − 2xeu cos v + 8zeu,

then substitute x(u, v) = eu sin v, y(u, v) = eu cos v, and z(u, v) = eu into this equation:

∂w
∂u = ⎛

⎝6x − 2y⎞
⎠eu sin v − 2xeu cos v + 8zeu

= (6eu sin v − 2eu cos v)eu sin v − 2(eu sin v)eu cos v + 8e2u

= 6e2u sin2 v − 4e2u sin v cos v + 8e2u

= 2e2u ⎛
⎝3 sin2 v − 2 sin v cos v + 4⎞

⎠.

Next, we calculate ∂w/∂v:
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∂w
∂v = ∂w

∂ x · ∂ x
∂v + ∂w

∂ y · ∂ y
∂v + ∂w

∂z · ∂z
∂v

= ⎛
⎝6x − 2y⎞

⎠eu cos v − 2x(−eu sin v) + 8z(0),

then we substitute x(u, v) = eu sin v, y(u, v) = eu cos v, and z(u, v) = eu into this equation:

∂w
∂v = ⎛

⎝6x − 2y⎞
⎠eu cos v − 2x(−eu sin v)

= (6eu sin v − 2eu cos v)eu cos v + 2(eu sin v)(eu sin v)
= 2e2u sin2 v + 6e2u sin v cos v − 2e2u cos2 v
= 2e2u ⎛

⎝sin2 v + sin v cos v − cos2 v⎞
⎠.

Calculate ∂w/∂u and ∂w/∂v given the following functions:

w = f (x, y, z) = x + 2y − 4z
2x − y + 3z

x = x(u, v) = e2u cos 3v
y = y(u, v) = e2u sin 3v

z = z(u, v) = e2u.

Example 4.29

Drawing a Tree Diagram

Create a tree diagram for the case when

w = f (x, y, z), x = x(t, u, v), y = y(t, u, v), z = z(t, u, v)

and write out the formulas for the three partial derivatives of w.

Solution

Starting from the left, the function f has three independent variables: x, y, and z. Therefore, three branches

must be emanating from the first node. Each of these three branches also has three branches, for each of the
variables t, u, and v.
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4.26

Figure 4.36 Tree diagram for a function of three variables, each of which is
a function of three independent variables.

The three formulas are

∂w
∂ t = ∂w

∂ x
∂ x
∂ t + ∂w

∂ y
∂ y
∂ t + ∂w

∂z
∂z
∂ t

∂w
∂u = ∂w

∂ x
∂ x
∂u + ∂w

∂ y
∂ y
∂u + ∂w

∂z
∂z
∂u

∂w
∂v = ∂w

∂ x
∂ x
∂v + ∂w

∂ y
∂ y
∂v + ∂w

∂z
∂z
∂v.

Create a tree diagram for the case when

w = f (x, y), x = x(t, u, v), y = y(t, u, v)

and write out the formulas for the three partial derivatives of w.

Implicit Differentiation
Recall from Implicit Differentiation (http://cnx.org/content/m53585/latest/) that implicit differentiation provides a
method for finding dy/dx when y is defined implicitly as a function of x. The method involves differentiating both sides

of the equation defining the function with respect to x, then solving for dy/dx. Partial derivatives provide an alternative

to this method.

Consider the ellipse defined by the equation x2 + 3y2 + 4y − 4 = 0 as follows.
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Figure 4.37 Graph of the ellipse defined by

x2 + 3y2 + 4y − 4 = 0.

This equation implicitly defines y as a function of x. As such, we can find the derivative dy/dx using the method of

implicit differentiation:

d
dx

⎛
⎝x2 + 3y2 + 4y − 4⎞

⎠ = d
dx(0)

2x + 6ydy
dx + 4dy

dx = 0

⎛
⎝6y + 4⎞

⎠
dy
dx = −2x

dy
dx = − x

3y + 2.

We can also define a function z = f (x, y) by using the left-hand side of the equation defining the ellipse. Then

f (x, y) = x2 + 3y2 + 4y − 4. The ellipse x2 + 3y2 + 4y − 4 = 0 can then be described by the equation f (x, y) = 0.
Using this function and the following theorem gives us an alternative approach to calculating dy/dx.

Theorem 4.11: Implicit Differentiation of a Function of Two or More Variables

Suppose the function z = f (x, y) defines y implicitly as a function y = g(x) of x via the equation f (x, y) = 0.
Then

(4.34)dy
dx = − ∂ f /∂ x

∂ f /∂ y

provided fy (x, y) ≠ 0.

If the equation f (x, y, z) = 0 defines z implicitly as a differentiable function of x and y, then

(4.35)∂z
∂x = − ∂ f /∂ x

∂ f /∂z and ∂z
∂y = − ∂ f /∂ y

∂ f /∂z

as long as fz (x, y, z) ≠ 0.

Equation 4.34 is a direct consequence of Equation 4.31. In particular, if we assume that y is defined implicitly as a

function of x via the equation f (x, y) = 0, we can apply the chain rule to find dy/dx:
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d
dx f (x, y) = d

dx(0)

∂ f
∂ x · dx

dx + ∂ f
∂ y · dy

dx = 0

∂ f
∂ x + ∂ f

∂ y · dy
dx = 0.

Solving this equation for dy/dx gives Equation 4.34. Equation 4.35 can be derived in a similar fashion.

Let’s now return to the problem that we started before the previous theorem. Using Implicit Differentiation of a

Function of Two or More Variables and the function f (x, y) = x2 + 3y2 + 4y − 4, we obtain

∂ f
∂ x = 2x

∂ f
∂ y = 6y + 4.

Then Equation 4.34 gives

dy
dx = − ∂ f /∂ x

∂ f /∂ y = − 2x
6y + 4 = − x

3y + 2,

which is the same result obtained by the earlier use of implicit differentiation.

Example 4.30

Implicit Differentiation by Partial Derivatives

a. Calculate dy/dx if y is defined implicitly as a function of x via the equation

3x2 − 2xy + y2 + 4x − 6y − 11 = 0. What is the equation of the tangent line to the graph of this curve

at point (2, 1)?

b. Calculate ∂z/∂ x and ∂z/∂ y, given x2 ey − yzex = 0.

Solution

a. Set f (x, y) = 3x2 − 2xy + y2 + 4x − 6y − 11 = 0, then calculate fx and fy :
fx = 6x − 2y + 4
fy = −2x + 2y − 6.

The derivative is given by

dy
dx = − ∂ f /∂ x

∂ f /∂ y = − 6x − 2y + 4
−2x + 2y − 6 = 3x − y + 2

x − y + 3 .

The slope of the tangent line at point (2, 1) is given by

dy
dx |(x, y) = (2, 1) = 3(2) − 1 + 2

2 − 1 + 3 = 7
4.

To find the equation of the tangent line, we use the point-slope form (Figure 4.38):

y − y0 = m(x − x0)

y − 1 = 7
4(x − 2)

y = 7
4x − 7

2 + 1

y = 7
4x − 5

2.
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4.27

Figure 4.38 Graph of the rotated ellipse defined by

3x2 − 2xy + y2 + 4x − 6y − 11 = 0.

b. We have f (x, y, z) = x2 ey − yzex. Therefore,

∂ f
∂ x = 2xey − yzex

∂ f
∂ y = x2 ey − zex

∂ f
∂z = −yex.

Using Equation 4.35,

∂z
∂ x = − ∂ f /∂ x

∂ f /∂ y

= − 2xey − yzex

−yex

= 2xey − yzex

yex

and

∂z
∂ y = − ∂ f /∂ y

∂ f /∂z

= − x2 ey − zex

−yex

= x2 ey − zex

yex .

Find dy/dx if y is defined implicitly as a function of x by the equation

x2 + xy − y2 + 7x − 3y − 26 = 0. What is the equation of the tangent line to the graph of this curve at point

(3, −2)?
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4.5 EXERCISES
For the following exercises, use the information provided
to solve the problem.

215. Let w(x, y, z) = xy cos z, where x = t, y = t2,

and z = arcsin t. Find dw
dt .

216. Let w(t, v) = etv where t = r + s and v = rs.

Find ∂w
∂r and ∂w

∂s .

217. If w = 5x2 + 2y2, x = −3s + t, and y = s − 4t,

find ∂w
∂s and ∂w

∂ t .

218. If w = xy2, x = 5 cos(2t), and y = 5 sin(2t),

find ∂w
∂ t .

219. If f (x, y) = xy, x = r cos θ, and y = r sin θ,

find
∂ f
∂r and express the answer in terms of r and θ.

220. Suppose f (x, y) = x + y, u = ex sin y, x = t2,
and y = πt, where x = r cos θ and y = r sin θ. Find

∂ f
∂θ .

For the following exercises, find
d f
dt using the chain rule

and direct substitution.

221. f (x, y) = x2 + y2, x = t, y = t2

222. f (x, y) = x2 + y2, y = t2, x = t

223. f (x, y) = xy, x = 1 − t, y = 1 + t

224. f (x, y) = x
y, x = et, y = 2et

225. f (x, y) = ln(x + y), x = et, y = et

226. f (x, y) = x4, x = t, y = t

227. Let w(x, y, z) = x2 + y2 + z2,

x = cos t, y = sin t, and z = et. Express w as a

function of t and find dw
dt directly. Then, find dw

dt using

the chain rule.

228. Let z = x2 y, where x = t2 and y = t3. Find dz
dt .

229. Let u = ex sin y, where x = t2 and y = πt. Find

du
dt when x = ln 2 and y = π

4.

For the following exercises, find
dy
dx using partial

derivatives.

230. sin(6x) + tan⎛
⎝8y⎞

⎠ + 5 = 0

231. x3 + y2 x − 3 = 0

232. sin(x + y) + cos(x − y) = 4

233. x2 − 2xy + y4 = 4

234. xey + yex − 2x2 y = 0

235. x2/3 + y2/3 = a2/3

236. x cos(xy) + y cos x = 2

237. exy + yey = 1

238. x2 y3 + cos y = 0

239. Find dz
dt using the chain rule where

z = 3x2 y3, x = t4, and y = t2.

240. Let z = 3 cos x − sin(xy), x = 1
t , and y = 3t.

Find dz
dt .

241. Let z = e1 − xy, x = t1/3, and y = t3. Find dz
dt .

242. Find dz
dt by the chain rule where

z = cosh2(xy), x = 1
2t, and y = et.

243. Let z = x
y, x = 2 cos u, and y = 3 sin v. Find ∂z

∂u

and ∂z
∂v.
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244. Let z = ex2 y, where x = uv and y = 1
v . Find

∂z
∂u and ∂z

∂v.

245. If z = xyex/y, x = r cos θ, and y = r sin θ, find

∂z
∂r and ∂z

∂θ when r = 2 and θ = π
6.

246. Find ∂w
∂s if

w = 4x + y2 + z3, x = ers2
, y = ln⎛

⎝
r + s

t
⎞
⎠, and

z = rst2.

247. If w = sin(xyz), x = 1 − 3t, y = e1 − t, and

z = 4t, find ∂w
∂ t .

For the following exercises, use this information: A
function f (x, y) is said to be homogeneous of degree n
if f (tx, ty) = tn f (x, y). For all homogeneous functions

of degree n, the following equation is true:

x∂ f
∂ x + y∂ f

∂ y = n f (x, y). Show that the given function is

homogeneous and verify that x∂ f
∂ x + y∂ f

∂ y = n f (x, y).

248. f (x, y) = 3x2 + y2

249. f (x, y) = x2 + y2

250. f (x, y) = x2 y − 2y3

251. The volume of a right circular cylinder is given by

V(x, y) = πx2 y, where x is the radius of the cylinder

and y is the cylinder height. Suppose x and y are

functions of t given by x = 1
2t and y = 1

3t so that

x and y are both increasing with time. How fast is the

volume increasing when x = 2 and y = 5?

252. The pressure P of a gas is related to the volume and

temperature by the formula PV = kT , where temperature

is expressed in kelvins. Express the pressure of the gas as

a function of both V and T . Find dP
dt when k = 1,

dV
dt = 2 cm3/min, dT

dt = 1
2 K/min, V = 20 cm3, and

T = 20°F.

253. The radius of a right circular cone is increasing at 3
cm/min whereas the height of the cone is decreasing at 2
cm/min. Find the rate of change of the volume of the cone
when the radius is 13 cm and the height is 18 cm.

254. The volume of a frustum of a cone is given by the

formula V = 1
3πz⎛

⎝x2 + y2 + xy⎞
⎠, where x is the radius

of the smaller circle, y is the radius of the larger circle,

and z is the height of the frustum (see figure). Find the

rate of change of the volume of this frustum when
x = 10 in., y = 12 in., and z = 18 in.

255. A closed box is in the shape of a rectangular solid
with dimensions x, y, and z. (Dimensions are in inches.)

Suppose each dimension is changing at the rate of 0.5
in./min. Find the rate of change of the total surface area of
the box when x = 2 in., y = 3 in., and z = 1 in.

256. The total resistance in a circuit that has three
individual resistances represented by x, y, and z is given

by the formula R(x, y, z) = xyz
yz + xz + xy. Suppose at a

given time the x resistance is 100Ω, the y resistance

is 200Ω, and the z resistance is 300Ω. Also, suppose

the x resistance is changing at a rate of 2Ω/min, the y
resistance is changing at the rate of 1Ω/min, and the z
resistance has no change. Find the rate of change of the
total resistance in this circuit at this time.

257. The temperature T at a point (x, y) is T(x, y) and

is measured using the Celsius scale. A fly crawls so that
its position after t seconds is given by x = 1 + t and

y = 2 + 1
3t, where x and y are measured in centimeters.

The temperature function satisfies Tx (2, 3) = 4 and

Ty (2, 3) = 3. How fast is the temperature increasing on

the fly’s path after 3 sec?
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258. The x and y components of a fluid moving in two

dimensions are given by the following functions:
u(x, y) = 2y and v(x, y) = −2x; x ≥ 0; y ≥ 0. The

speed of the fluid at the point (x, y) is

s(x, y) = u(x, y)2 + v(x, y)2. Find ∂s
∂ x and ∂s

∂ y using

the chain rule.

259. Let u = u(x, y, z), where

x = x(w, t), y = y(w, t), z = z(w, t), w = w(r, s), and t = t(r, s).

Use a tree diagram and the chain rule to find an expression

for ∂u
∂r .
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4.6 | Directional Derivatives and the Gradient

Learning Objectives
4.6.1 Determine the directional derivative in a given direction for a function of two variables.

4.6.2 Determine the gradient vector of a given real-valued function.

4.6.3 Explain the significance of the gradient vector with regard to direction of change along a
surface.

4.6.4 Use the gradient to find the tangent to a level curve of a given function.

4.6.5 Calculate directional derivatives and gradients in three dimensions.

In Partial Derivatives we introduced the partial derivative. A function z = f (x, y) has two partial derivatives: ∂z/∂ x
and ∂z/∂ y. These derivatives correspond to each of the independent variables and can be interpreted as instantaneous rates

of change (that is, as slopes of a tangent line). For example, ∂z/∂ x represents the slope of a tangent line passing through

a given point on the surface defined by z = f (x, y), assuming the tangent line is parallel to the x-axis. Similarly, ∂z/∂ y
represents the slope of the tangent line parallel to the y-axis. Now we consider the possibility of a tangent line parallel to

neither axis.

Directional Derivatives
We start with the graph of a surface defined by the equation z = f (x, y). Given a point (a, b) in the domain of

f , we choose a direction to travel from that point. We measure the direction using an angle θ, which is measured

counterclockwise in the x, y-plane, starting at zero from the positive x-axis (Figure 4.39). The distance we travel is h and

the direction we travel is given by the unit vector u = (cos θ)i + (sin θ)j. Therefore, the z-coordinate of the second point

on the graph is given by z = f (a + h cos θ, b + h sin θ).
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Figure 4.39 Finding the directional derivative at a point on the graph of z = f (x, y). The

slope of the black arrow on the graph indicates the value of the directional derivative at that
point.

We can calculate the slope of the secant line by dividing the difference in z-values by the length of the line segment

connecting the two points in the domain. The length of the line segment is h. Therefore, the slope of the secant line is

msec = f (a + h cos θ, b + h sin θ) − f (a, b)
h .

To find the slope of the tangent line in the same direction, we take the limit as h approaches zero.

Definition

Suppose z = f (x, y) is a function of two variables with a domain of D. Let (a, b) ∈ D and define

u = cos θi + sin θj. Then the directional derivative of f in the direction of u is given by

(4.36)Du f (a, b) = lim
h → 0

f (a + h cos θ, b + h sin θ) − f (a, b)
h ,

provided the limit exists.

Equation 4.36 provides a formal definition of the directional derivative that can be used in many cases to calculate a
directional derivative.

Example 4.31

Finding a Directional Derivative from the Definition
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Let θ = arccos(3/5). Find the directional derivative Du f (x, y) of f (x, y) = x2 − xy + 3y2 in the direction of

u = (cos θ)i + (sin θ)j. What is Du f (−1, 2)?

Solution

First of all, since cos θ = 3/5 and θ is acute, this implies

sin θ = 1 − ⎛
⎝
3
5

⎞
⎠

2
= 16

25 = 4
5.

Using f (x, y) = x2 − xy + 3y2, we first calculate f ⎛
⎝x + h cos θ, y + h sin θ⎞

⎠:

f ⎛
⎝x + h cos θ, y + h sin θ⎞

⎠ = (x + h cos θ)2 − (x + h cos θ)⎛
⎝y + h sin θ⎞

⎠ + 3⎛
⎝y + h sin θ⎞

⎠
2

= x2 + 2xh cos θ + h2 cos2 θ − xy − xh sin θ − yh cos θ

−h2 sin θ cos θ + 3y2 + 6yh sin θ + 3h2 sin2 θ

= x2 + 2xh⎛
⎝
3
5

⎞
⎠ + 9h2

25 − xy − 4xh
5 − 3yh

5 − 12h2

25 + 3y2

+6yh⎛
⎝
4
5

⎞
⎠ + 3h2 ⎛

⎝
16
25

⎞
⎠

= x2 − xy + 3y2 + 2xh
5 + 9h2

5 + 21yh
5 .

We substitute this expression into Equation 4.36:

Du f (a, b) = lim
h → 0

f (a + h cos θ, b + h sin θ) − f (a, b)
h

= lim
h → 0

⎛
⎝x2 − xy + 3y2 + 2xh

5 + 9h2
5 + 21yh

5
⎞
⎠ − ⎛

⎝x2 − xy + 3y2⎞
⎠

h

= lim
h → 0

2xh
5 + 9h2

5 + 21yh
5

h

= lim
h → 0

2x
5 + 9h

5 + 21y
5

= 2x + 21y
5 .

To calculate Du f (−1, 2), we substitute x = −1 and y = 2 into this answer:

Du f (−1, 2) = 2(−1) + 21(2)
5

= −2 + 42
5

= 8.

(See the following figure.)
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Figure 4.40 Finding the directional derivative in a given direction u at a given point on a surface.

The plane is tangent to the surface at the given point (−1, 2, 15).

Another approach to calculating a directional derivative involves partial derivatives, as outlined in the following theorem.

Theorem 4.12: Directional Derivative of a Function of Two Variables

Let z = f (x, y) be a function of two variables x and y, and assume that fx and fy exist. Then the directional

derivative of f in the direction of u = cos θi + sin θj is given by

(4.37)Du f (x, y) = fx (x, y)cos θ + fy (x, y)sin θ.

Proof

Equation 4.36 states that the directional derivative of f in the direction of u = cos θi + sin θj is given by

Du f (a, b) = lim
t → 0

f (a + t cos θ, b + t sin θ) − f (a, b)
t .

Let x = a + t cos θ and y = b + t sin θ, and define g(t) = f (x, y). Since fx and fy both exist, we can use the chain

rule for functions of two variables to calculate g′ (t):

g′ (t) = ∂ f
∂ x

dx
dt + ∂ f

∂ y
dy
dt

= fx (x, y)cos θ + fy (x, y)sin θ.

If t = 0, then x = x0 and y = y0, so

g′ (0) = fx (x0, y0)cos θ + fy (x0, y0)sin θ.
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4.28

By the definition of g′ (t), it is also true that

g′ (0) = lim
t → 0

g(t) − g(0)
t

= lim
t → 0

f ⎛
⎝x0 + t cos θ, y0 + t sin θ⎞

⎠ − f (x0, y0)
t .

Therefore, Du f (x0, y0) = fx (x, y)cos θ + fy (x, y)sin θ.

□

Example 4.32

Finding a Directional Derivative: Alternative Method

Let θ = arccos(3/5). Find the directional derivative Du f (x, y) of f (x, y) = x2 − xy + 3y2 in the direction of

u = (cos θ)i + (sin θ)j. What is Du f (−1, 2)?

Solution

First, we must calculate the partial derivatives of f :

fx = 2x − y
fy = −x + 6y,

Then we use Equation 4.37 with θ = arccos(3/5):

Du f (x, y) = fx (x, y)cos θ + fy (x, y)sin θ

= ⎛
⎝2x − y⎞

⎠
3
5 + ⎛

⎝−x + 6y⎞
⎠
4
5

= 6x
5 − 3y

5 − 4x
5 + 24y

5

= 2x + 21y
5 .

To calculate Du f (−1, 2), let x = −1 and y = 2:

Du f (−1, 2) = 2(−1) + 21(2)
5 = −2 + 42

5 = 8.

This is the same answer obtained in Example 4.31.

Find the directional derivative Du f (x, y) of f (x, y) = 3x2 y − 4xy3 + 3y2 − 4x in the direction of

u = ⎛
⎝cos π

3
⎞
⎠i + ⎛

⎝sin π
3

⎞
⎠j using Equation 4.37. What is Du f (3, 4)?

If the vector that is given for the direction of the derivative is not a unit vector, then it is only necessary to divide by the norm
of the vector. For example, if we wished to find the directional derivative of the function in Example 4.32 in the direction
of the vector 〈 −5, 12 〉 , we would first divide by its magnitude to get u. This gives us u = 〈 −(5/13), 12/13 〉 .
Then
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Du f (x, y) = ∇ f (x, y) · u

= − 5
13

⎛
⎝2x − y⎞

⎠ + 12
13

⎛
⎝−x + 6y⎞

⎠

= − 22
13x + 17

13y.

Gradient
The right-hand side of Equation 4.37 is equal to fx (x, y)cos θ + fy (x, y)sin θ, which can be written as the dot

product of two vectors. Define the first vector as ∇ f (x, y) = fx (x, y)i + fy (x, y)j and the second vector as

u = (cos θ)i + (sin θ)j. Then the right-hand side of the equation can be written as the dot product of these two vectors:

(4.38)Du f (x, y) = ∇ f (x, y) · u.

The first vector in Equation 4.38 has a special name: the gradient of the function f . The symbol ∇ is called nabla and

the vector ∇ f is read “del f .”

Definition

Let z = f (x, y) be a function of x and y such that fx and fy exist. The vector ∇ f (x, y) is called the gradient of

f and is defined as

(4.39)∇ f (x, y) = fx (x, y)i + fy (x, y)j.

The vector ∇ f (x, y) is also written as “grad f .”

Example 4.33

Finding Gradients

Find the gradient ∇ f (x, y) of each of the following functions:

a. f (x, y) = x2 − xy + 3y2

b. f (x, y) = sin 3x cos 3y

Solution

For both parts a. and b., we first calculate the partial derivatives fx and fy, then use Equation 4.39.

a.
fx (x, y) = 2x − y and fy (x, y) = −x + 6y, so

∇ f (x, y) = fx (x, y)i + fy (x, y)j
= ⎛

⎝2x − y⎞
⎠i + ⎛

⎝−x + 6y⎞
⎠j.

b.
fx (x, y) = 3 cos 3x cos 3y and fy (x, y) = −3 sin 3x sin 3y, so

∇ f (x, y) = fx (x, y)i + fy (x, y)j
= ⎛

⎝3 cos 3x cos 3y⎞
⎠i − ⎛

⎝3 sin 3x sin 3y⎞
⎠j.
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4.29 Find the gradient ∇ f (x, y) of f (x, y) = ⎛
⎝x2 − 3y2⎞

⎠/⎛
⎝2x + y⎞

⎠.

The gradient has some important properties. We have already seen one formula that uses the gradient: the formula for
the directional derivative. Recall from The Dot Product that if the angle between two vectors a and b is φ, then

a · b = ‖ a ‖ ‖ b ‖ cos φ. Therefore, if the angle between ∇ f (x0, y0) and u = (cos θ)i + (sin θ)j is φ, we have

Du f (x0, y0) = ∇ f (x0, y0) · u = ‖ ∇ f (x0, y0) ‖ ‖ u ‖ cos φ = ‖ ∇ f (x0, y0) ‖ cos φ.

The ‖ u ‖ disappears because u is a unit vector. Therefore, the directional derivative is equal to the magnitude of the

gradient evaluated at (x0, y0) multiplied by cos φ. Recall that cos φ ranges from −1 to 1. If φ = 0, then cos φ = 1
and ∇ f (x0, y0) and u both point in the same direction. If φ = π, then cos φ = −1 and ∇ f (x0, y0) and u point in

opposite directions. In the first case, the value of Du f (x0, y0) is maximized; in the second case, the value of Du f (x0, y0)
is minimized. If ∇ f (x0, y0) = 0, then Du f (x0, y0) = ∇ f (x0, y0) · u = 0 for any vector u. These three cases are

outlined in the following theorem.

Theorem 4.13: Properties of the Gradient

Suppose the function z = f (x, y) is differentiable at (x0, y0) (Figure 4.41).

i. If ∇ f (x0, y0) = 0, then Du f (x0, y0) = 0 for any unit vector u.

ii. If ∇ f (x0, y0) ≠ 0, then Du f (x0, y0) is maximized when u points in the same direction as ∇ f (x0, y0).
The maximum value of Du f (x0, y0) is ‖ ∇ f (x0, y0) ‖ .

iii. If ∇ f (x0, y0) ≠ 0, then Du f (x0, y0) is minimized when u points in the opposite direction from

∇ f (x0, y0). The minimum value of Du f (x0, y0) is − ‖ ∇ f (x0, y0) ‖ .
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Figure 4.41 The gradient indicates the maximum and minimum values of the
directional derivative at a point.

Example 4.34

Finding a Maximum Directional Derivative

Find the direction for which the directional derivative of f (x, y) = 3x2 − 4xy + 2y2 at (−2, 3) is a maximum.

What is the maximum value?

Solution

The maximum value of the directional derivative occurs when ∇ f and the unit vector point in the same direction.

Therefore, we start by calculating ∇ f (x, y):

fx (x, y) = 6x − 4y and fy (x, y) = −4x + 4y, so
∇ f (x, y) = fx (x, y)i + fy (x, y)j = ⎛

⎝6x − 4y⎞
⎠i + ⎛

⎝−4x + 4y⎞
⎠j.

Next, we evaluate the gradient at (−2, 3):

∇ f (−2, 3) = ⎛
⎝6(−2) − 4(3)⎞

⎠i + ⎛
⎝−4(−2) + 4(3)⎞

⎠j = −24i + 20j.

We need to find a unit vector that points in the same direction as ∇ f (−2, 3), so the next step is to divide

∇ f (−2, 3) by its magnitude, which is (−24)2 + (20)2 = 976 = 4 61. Therefore,

∇ f (−2, 3)
‖ ∇ f (−2, 3) ‖ = −24

4 61
i + 20

4 61
j = −6 61

61 i + 5 61
61 j.

This is the unit vector that points in the same direction as ∇ f (−2, 3). To find the angle corresponding to this
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unit vector, we solve the equations

cos θ = −6 61
61 and sin θ = 5 61

61

for θ. Since cosine is negative and sine is positive, the angle must be in the second quadrant. Therefore,

θ = π − arcsin⎛
⎝
⎛
⎝5 61⎞

⎠/61⎞
⎠ ≈ 2.45 rad.

The maximum value of the directional derivative at (−2, 3) is ‖ ∇ f (−2, 3) ‖ = 4 61 (see the following

figure).

Figure 4.42 The maximum value of the directional derivative at
(−2, 3) is in the direction of the gradient.

Find the direction for which the directional derivative of g(x, y) = 4x − xy + 2y2 at (−2, 3) is a

maximum. What is the maximum value?

Figure 4.43 shows a portion of the graph of the function f (x, y) = 3 + sin x sin y. Given a point (a, b) in the domain

of f , the maximum value of the gradient at that point is given by ‖ ∇ f (a, b) ‖ . This would equal the rate of greatest

ascent if the surface represented a topographical map. If we went in the opposite direction, it would be the rate of greatest
descent.
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Figure 4.43 A typical surface in ℝ3. Given a point on the surface, the directional derivative

can be calculated using the gradient.

When using a topographical map, the steepest slope is always in the direction where the contour lines are closest together
(see Figure 4.44). This is analogous to the contour map of a function, assuming the level curves are obtained for equally
spaced values throughout the range of that function.

Figure 4.44 Contour map for the function

f (x, y) = x2 − y2 using level values between −5 and 5.

Gradients and Level Curves
Recall that if a curve is defined parametrically by the function pair ⎛

⎝x(t), y(t)⎞
⎠, then the vector x′ (t)i + y′ (t)j is tangent

to the curve for every value of t in the domain. Now let’s assume z = f (x, y) is a differentiable function of x and y, and

(x0, y0) is in its domain. Let’s suppose further that x0 = x(t0) and y0 = y(t0) for some value of t, and consider the

level curve f (x, y) = k. Define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠ and calculate g′ (t) on the level curve. By the chain Rule,

g′ (t) = fx
⎛
⎝x(t), y(t)⎞

⎠x′ (t) + fy
⎛
⎝x(t), y(t)⎞

⎠y′ (t).
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But g′ (t) = 0 because g(t) = k for all t. Therefore, on the one hand,

fx
⎛
⎝x(t), y(t)⎞

⎠x′ (t) + fy
⎛
⎝x(t), y(t)⎞

⎠y′ (t) = 0;

on the other hand,

fx
⎛
⎝x(t), y(t)⎞

⎠x′ (t) + fy
⎛
⎝x(t), y(t)⎞

⎠y′ (t) = ∇ f (x, y) · 〈 x′ (t), y′ (t) 〉 .

Therefore,

∇ f (x, y) · 〈 x′ (t), y′ (t) 〉 = 0.

Thus, the dot product of these vectors is equal to zero, which implies they are orthogonal. However, the second vector is
tangent to the level curve, which implies the gradient must be normal to the level curve, which gives rise to the following
theorem.

Theorem 4.14: Gradient Is Normal to the Level Curve

Suppose the function z = f (x, y) has continuous first-order partial derivatives in an open disk centered at a point

(x0, y0). If ∇ f (x0, y0) ≠ 0, then ∇ f (x0, y0) is normal to the level curve of f at (x0, y0).

We can use this theorem to find tangent and normal vectors to level curves of a function.

Example 4.35

Finding Tangents to Level Curves

For the function f (x, y) = 2x2 − 3xy + 8y2 + 2x − 4y + 4, find a tangent vector to the level curve at point

(−2, 1). Graph the level curve corresponding to f (x, y) = 18 and draw in ∇ f (−2, 1) and a tangent vector.

Solution

First, we must calculate ∇ f (x, y):

fx (x, y) = 4x − 3y + 2 and fy = −3x + 16y − 4 so ∇ f (x, y) = ⎛
⎝4x − 3y + 2⎞

⎠i + ⎛
⎝−3x + 16y − 4⎞

⎠j.

Next, we evaluate ∇ f (x, y) at (−2, 1):

∇ f (−2, 1) = ⎛
⎝4(−2) − 3(1) + 2⎞

⎠i + ⎛
⎝−3(−2) + 16(1) − 4⎞

⎠j = −9i + 18j.

This vector is orthogonal to the curve at point (−2, 1). We can obtain a tangent vector by reversing the

components and multiplying either one by −1. Thus, for example, −18i − 9j is a tangent vector (see the

following graph).
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Figure 4.45 Tangent and normal vectors to

2x2 − 3xy + 8y2 + 2x − 4y + 4 = 18 at point (−2, 1).

For the function f (x, y) = x2 − 2xy + 5y2 + 3x − 2y + 4, find the tangent to the level curve at point

(1, 1). Draw the graph of the level curve corresponding to f (x, y) = 8 and draw ∇ f (1, 1) and a tangent

vector.

Three-Dimensional Gradients and Directional Derivatives
The definition of a gradient can be extended to functions of more than two variables.

Definition

Let w = f (x, y, z) be a function of three variables such that fx, fy, and fz exist. The vector ∇ f (x, y, z) is called

the gradient of f and is defined as

(4.40)∇ f (x, y, z) = fx (x, y, z)i + fy (x, y, z)j + fz (x, y, z)k.

∇ f (x, y, z) can also be written as grad f (x, y, z).

Calculating the gradient of a function in three variables is very similar to calculating the gradient of a function in two
variables. First, we calculate the partial derivatives fx, fy, and fz, and then we use Equation 4.40.

Example 4.36

Finding Gradients in Three Dimensions

Find the gradient ∇ f (x, y, z) of each of the following functions:

a. f (x, y) = 5x2 − 2xy + y2 − 4yz + z2 + 3xz

b. f (x, y, z) = e−2z sin 2x cos 2y

Solution
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For both parts a. and b., we first calculate the partial derivatives fx, fy, and fz, then use Equation 4.40.

a.
fz (x, y, z) = 10x − 2y + 3z, fy (x, y, z) = −2x + 2y − 4z and fz (x, y, z) = 3x − 4y + 2z, so

∇ f (x, y, z) = fx (x, y, z)i + fy (x, y, z)j + fz (x, y, z)k
= ⎛

⎝10x − 2y + 3z⎞
⎠i + ⎛

⎝−2x + 2y − 4z⎞
⎠j + ⎛

⎝−4x + 3y + 2z⎞
⎠k.

b.

fx (x, y, z) = −2e−2z cos 2x cos 2y, fy (x, y, z) = −2e−2z sin 2x sin 2y and

fz (x, y, z) = −2e−2z sin 2x cos 2y, so
∇ f (x, y, z) = fx (x, y, z)i + fy (x, y, z)j + fz (x, y, z)k

= ⎛
⎝2e−2z cos 2x cos 2y⎞

⎠i + ⎛
⎝−2e−2z⎞

⎠j + ⎛
⎝−2e−2z⎞

⎠

= 2e−2z ⎛
⎝cos 2x cos 2y i − sin 2x sin 2y j − sin 2x cos 2y k⎞

⎠.

Find the gradient ∇ f (x, y, z) of f (x, y, z) = x2 − 3y2 + z2

2x + y − 4z .

The directional derivative can also be generalized to functions of three variables. To determine a direction in three
dimensions, a vector with three components is needed. This vector is a unit vector, and the components of the unit vector are
called directional cosines. Given a three-dimensional unit vector u in standard form (i.e., the initial point is at the origin),

this vector forms three different angles with the positive x − , y − , and z-axes. Let’s call these angles α, β, and γ.
Then the directional cosines are given by cos α, cos β, and cos γ. These are the components of the unit vector u; since

u is a unit vector, it is true that cos2 α + cos2 β + cos2 γ = 1.

Definition

Suppose w = f (x, y, z) is a function of three variables with a domain of D. Let (x0, y0, z0) ∈ D and let

u = cos αi + cos βj + cos γk be a unit vector. Then, the directional derivative of f in the direction of u is given by

(4.41)
Du f (x0, y0, z0) = lim

t → 0
f ⎛

⎝x0 + t cos α, y0 + t cos β, z0 + t cos γ⎞
⎠ − f (x0, y0, z0)

t ,

provided the limit exists.

We can calculate the directional derivative of a function of three variables by using the gradient, leading to a formula that is
analogous to Equation 4.38.

Theorem 4.15: Directional Derivative of a Function of Three Variables

Let f (x, y, z) be a differentiable function of three variables and let u = cos αi + cos βj + cos γk be a unit vector.

Then, the directional derivative of f in the direction of u is given by

(4.42)Du f (x, y, z) = ∇ f (x, y, z) · u
= fx (x, y, z)cos α + fy (x, y, z)cos β + fz (x, y, z)cos γ.

434 Chapter 4 | Differentiation of Functions of Several Variables

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



4.33

The three angles α, β, and γ determine the unit vector u. In practice, we can use an arbitrary (nonunit) vector, then divide

by its magnitude to obtain a unit vector in the desired direction.

Example 4.37

Finding a Directional Derivative in Three Dimensions

Calculate Du f (1, −2, 3) in the direction of v = −i + 2j + 2k for the function

f (x, y, z) = 5x2 − 2xy + y2 − 4yz + z2 + 3xz.

Solution

First, we find the magnitude of v:

‖ v ‖ = (−1)2 + (2)2 = 3.

Therefore, v
‖ v ‖ = −i + 2j + 2k

3 = − 1
3i + 2

3 j + 2
3k is a unit vector in the direction of v, so

cos α = − 1
3, cos β = 2

3, and cos γ = 2
3. Next, we calculate the partial derivatives of f :

fx (x, y, z) = 10x − 2y + 3z
fy (x, y, z) = −2x + 2y − 4z
fz (x, y, z) = −4y + 2z + 3x,

then substitute them into Equation 4.42:

Du f (x, y, z) = fx (x, y, z)cos α + fy (x, y, z)cos β + fz (x, y, z)cos γ

= ⎛
⎝10x − 2y + 3z⎞

⎠
⎛
⎝−

1
3

⎞
⎠ + ⎛

⎝−2x + 2y − 4z⎞
⎠
⎛
⎝
2
3

⎞
⎠ + ⎛

⎝−4y + 2z + 3x⎞
⎠
⎛
⎝
2
3

⎞
⎠

= − 10x
3 + 2y

3 − 3z
3 − 4x

3 + 4y
3 − 8z

3 − 8y
3 + 4z

3 + 6x
3

= − 8x
3 − 2y

3 − 7z
3 .

Last, to find Du f (1, −2, 3), we substitute x = 1, y = −2, and z = 3:

Du f (1, −2, 3) = − 8(1)
3 − 2(−2)

3 − 7(3)
3

= − 8
3 + 4

3 − 21
3

= − 25
3 .

Calculate Du f (x, y, z) and Du f (0, −2, 5) in the direction of v = −3i + 12j − 4k for the function

f (x, y, z) = 3x2 + xy − 2y2 + 4yz − z2 + 2xz.
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4.6 EXERCISES
For the following exercises, find the directional derivative
using the limit definition only.

260. f (x, y) = 5 − 2x2 − 1
2y2 at point P(3, 4) in the

direction of u = ⎛
⎝cos π

4
⎞
⎠i + ⎛

⎝sin π
4

⎞
⎠j

261. f (x, y) = y2 cos(2x) at point P⎛
⎝
π
3, 2⎞

⎠ in the

direction of u = ⎛
⎝cos π

4
⎞
⎠i + ⎛

⎝sin π
4

⎞
⎠j

262. Find the directional derivative of

f (x, y) = y2 sin(2x) at point P⎛
⎝
π
4, 2⎞

⎠ in the direction of

u = 5i + 12j.

For the following exercises, find the directional derivative
of the function at point P in the direction of v.

263. f (x, y) = xy, P(0, −2), v = 1
2i + 3

2 j

264. h(x, y) = ex sin y, P⎛
⎝1, π

2
⎞
⎠, v = −i

265. h(x, y, z) = xyz, P(2, 1, 1), v = 2i + j − k

266. f (x, y) = xy, P(1, 1), u = 〈 2
2 , 2

2 〉

267. f (x, y) = x2 − y2, u = 〈 3
2 , 1

2 〉 , P(1, 0)

268. f (x, y) = 3x + 4y + 7, u = 〈 3
5, 4

5 〉 , P⎛
⎝0, π

2
⎞
⎠

269. f (x, y) = ex cos y, u = 〈 0, 1 〉 , P = ⎛
⎝0, π

2
⎞
⎠

270. f (x, y) = y10, u = 〈 0, −1 〉 , P = (1, −1)

271. f (x, y) = ln(x2 + y2), u = 〈 3
5, 4

5 〉 , P(1, 2)

272. f (x, y) = x2 y, P(−5, 5), v = 3i − 4j

273. f (x, y) = y2 + xz, P(1, 2, 2), v = 〈 2, −1, 2 〉

For the following exercises, find the directional derivative
of the function in the direction of the unit vector
u = cos θi + sin θj.

274. f (x, y) = x2 + 2y2, θ = π
6

275. f (x, y) = y
x + 2y, θ = − π

4

276. f (x, y) = cos⎛
⎝3x + y⎞

⎠, θ = π
4

277. w(x, y) = yex, θ = π
3

278. f (x, y) = x arctan(y), θ = π
2

279. f (x, y) = ln(x + 2y), θ = π
3

For the following exercises, find the gradient.

280. Find the gradient of f (x, y) = 14 − x2 − y2

3 . Then,

find the gradient at point P(1, 2).

281. Find the gradient of f (x, y, z) = xy + yz + xz at

point P(1, 2, 3).

282. Find the gradient of f (x, y, z) at P and in the

direction of u:
f (x, y, z) = ln(x2 + 2y2 + 3z2), P(2, 1, 4), u = −3

13 i − 4
13 j − 12

13k.

283.

f (x, y, z) = 4x5 y2 z3, P(2, −1, 1), u = 1
3i + 2

3 j − 2
3k

For the following exercises, find the directional derivative
of the function at point P in the direction of Q.

284. f (x, y) = x2 + 3y2, P(1, 1), Q(4, 5)

285. f (x, y, z) = y
x + z, P(2, 1, −1), Q(−1, 2, 0)

For the following exercises, find the derivative of the
function at P in the direction of u.

286. f (x, y) = −7x + 2y, P(2, −4), u = 4i − 3j

287. f (x, y) = ln(5x + 4y), P(3, 9), u = 6i + 8j

288. [T] Use technology to sketch the level curve of
f (x, y) = 4x − 2y + 3 that passes through P(1, 2) and

draw the gradient vector at P.
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289. [T] Use technology to sketch the level curve of

f (x, y) = x2 + 4y2 that passes through P(−2, 0) and

draw the gradient vector at P.

For the following exercises, find the gradient vector at the
indicated point.

290. f (x, y) = xy2 − yx2, P(−1, 1)

291. f (x, y) = xey − ln(x), P(−3, 0)

292. f (x, y, z) = xy − ln(z), P(2, −2, 2)

293. f (x, y, z) = x y2 + z2, P(−2, −1, −1)

For the following exercises, find the derivative of the
function.

294. f (x, y) = x2 + xy + y2 at point (−5, −4) in the

direction the function increases most rapidly

295. f (x, y) = exy
at point (6, 7) in the direction the

function increases most rapidly

296. f (x, y) = arctan⎛
⎝
y
x

⎞
⎠ at point (−9, 9) in the

direction the function increases most rapidly

297. f (x, y, z) = ln(xy + yz + zx) at point

(−9, −18, −27) in the direction the function increases

most rapidly

298. f (x, y, z) = x
y + y

z + z
x at point (5, −5, 5) in the

direction the function increases most rapidly

For the following exercises, find the maximum rate of
change of f at the given point and the direction in which

it occurs.

299. f (x, y) = xe−y, (1, 0)

300. f (x, y) = x2 + 2y, (4, 10)

301. f (x, y) = cos(3x + 2y), ⎛
⎝
π
6, − π

8
⎞
⎠

For the following exercises, find equations of

a. the tangent plane and

b. the normal line to the given surface at the given
point.

302. The level curve f (x, y, z) = 12 for

f (x, y, z) = 4x2 − 2y2 + z2 at point (2, 2, 2).

303. f (x, y, z) = xy + yz + xz = 3 at point (1, 1, 1)

304. f (x, y, z) = xyz = 6 at point (1, 2, 3)

305. f (x, y, z) = xey cos z − z = 1 at point (1, 0, 0)

For the following exercises, solve the problem.

306. The temperature T in a metal sphere is inversely

proportional to the distance from the center of the sphere
(the origin: (0, 0, 0)). The temperature at point (1, 2, 2)
is 120°C.

a. Find the rate of change of the temperature at point
(1, 2, 2) in the direction toward point (2, 1, 3).

b. Show that, at any point in the sphere, the direction
of greatest increase in temperature is given by a
vector that points toward the origin.

307. The electrical potential (voltage) in a certain region
of space is given by the function

V(x, y, z) = 5x2 − 3xy + xyz.
a. Find the rate of change of the voltage at point

(3, 4, 5) in the direction of the vector

〈 1, 1, −1 〉 .
b. In which direction does the voltage change most

rapidly at point (3, 4, 5)?
c. What is the maximum rate of change of the voltage

at point (3, 4, 5)?

308. If the electric potential at a point (x, y) in the

xy-plane is V(x, y) = e−2x cos(2y), then the electric

intensity vector at (x, y) is E = −∇V(x, y).

a. Find the electric intensity vector at ⎛
⎝
π
4, 0⎞

⎠.

b. Show that, at each point in the plane, the electric
potential decreases most rapidly in the direction of
the vector E.

309. In two dimensions, the motion of an ideal fluid is
governed by a velocity potential φ. The velocity

components of the fluid u in the x-direction and v in

the y-direction, are given by 〈 u, v 〉 = ∇φ. Find the

velocity components associated with the velocity potential
φ(x, y) = sin πx sin 2πy.
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4.7 | Maxima/Minima Problems

Learning Objectives
4.7.1 Use partial derivatives to locate critical points for a function of two variables.

4.7.2 Apply a second derivative test to identify a critical point as a local maximum, local minimum,
or saddle point for a function of two variables.

4.7.3 Examine critical points and boundary points to find absolute maximum and minimum values
for a function of two variables.

One of the most useful applications for derivatives of a function of one variable is the determination of maximum and/or
minimum values. This application is also important for functions of two or more variables, but as we have seen in earlier
sections of this chapter, the introduction of more independent variables leads to more possible outcomes for the calculations.
The main ideas of finding critical points and using derivative tests are still valid, but new wrinkles appear when assessing
the results.

Critical Points
For functions of a single variable, we defined critical points as the values of the function when the derivative equals zero
or does not exist. For functions of two or more variables, the concept is essentially the same, except for the fact that we are
now working with partial derivatives.

Definition

Let z = f (x, y) be a function of two variables that is defined on an open set containing the point (x0, y0). The point

(x0, y0) is called a critical point of a function of two variables f if one of the two following conditions holds:

1. fx (x0, y0) = fy (x0, y0) = 0

2. Either fx (x0, y0) or fy (x0, y0) does not exist.

Example 4.38

Finding Critical Points

Find the critical points of each of the following functions:

a. f (x, y) = 4y2 − 9x2 + 24y + 36x + 36

b. g(x, y) = x2 + 2xy − 4y2 + 4x − 6y + 4

Solution

a. First, we calculate fx (x, y) and fy (x, y):
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fx (x, y) = 1
2(−18x + 36)⎛

⎝4y2 − 9x2 + 24y + 36x + 36⎞
⎠
−1/2

= −9x + 18
4y2 − 9x2 + 24y + 36x + 36

fy (x, y) = 1
2

⎛
⎝8y + 24⎞

⎠
⎛
⎝4y2 − 9x2 + 24y + 36x + 36⎞

⎠
−1/2

= 4y + 12
4y2 − 9x2 + 24y + 36x + 36

.

Next, we set each of these expressions equal to zero:

−9x + 18
4y2 − 9x2 + 24y + 36x + 36

= 0

4y + 12
4y2 − 9x2 + 24y + 36x + 36

= 0.

Then, multiply each equation by its common denominator:

−9x + 18 = 0
4y + 12 = 0.

Therefore, x = 2 and y = −3, so (2, −3) is a critical point of f .
We must also check for the possibility that the denominator of each partial derivative can equal zero, thus
causing the partial derivative not to exist. Since the denominator is the same in each partial derivative, we
need only do this once:

4y2 − 9x2 + 24y + 36x + 36 = 0.

This equation represents a hyperbola. We should also note that the domain of f consists of points

satisfying the inequality

4y2 − 9x2 + 24y + 36x + 36 ≥ 0.

Therefore, any points on the hyperbola are not only critical points, they are also on the boundary of the
domain. To put the hyperbola in standard form, we use the method of completing the square:

4y2 − 9x2 + 24y + 36x + 36 = 0

4y2 − 9x2 + 24y + 36x = −36

4y2 + 24y − 9x2 + 36x = −36

4⎛
⎝y2 + 6y⎞

⎠ − 9⎛
⎝x2 − 4x⎞

⎠ = −36

4⎛
⎝y2 + 6y + 9⎞

⎠ − 9⎛
⎝x2 − 4x + 4⎞

⎠ = −36 + 36 − 36

4⎛
⎝y + 3⎞

⎠
2 − 9(x − 2)2 = −36.

Dividing both sides by −36 puts the equation in standard form:
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4⎛
⎝y + 3⎞

⎠
2

−36 − 9(x − 2)2

−36 = 1

(x − 2)2

4 −
⎛
⎝y + 3⎞

⎠
2

9 = 1.

Notice that point (2, −3) is the center of the hyperbola.

b. First, we calculate gx (x, y) and gy (x, y):

gx (x, y) = 2x + 2y + 4
gy (x, y) = 2x − 8y − 6.

Next, we set each of these expressions equal to zero, which gives a system of equations in x and y:

2x + 2y + 4 = 0
2x − 8y − 6 = 0.

Subtracting the second equation from the first gives 10y + 10 = 0, so y = −1. Substituting this into

the first equation gives 2x + 2(−1) + 4 = 0, so x = −1. Therefore (−1, −1) is a critical point of g

(Figure 4.46). There are no points in ℝ2 that make either partial derivative not exist.

Figure 4.46 The function g(x, y) has a critical point at (−1, −1, 6).

Find the critical point of the function f (x, y) = x3 + 2xy − 2x − 4y.

The main purpose for determining critical points is to locate relative maxima and minima, as in single-variable calculus.
When working with a function of one variable, the definition of a local extremum involves finding an interval around the
critical point such that the function value is either greater than or less than all the other function values in that interval.
When working with a function of two or more variables, we work with an open disk around the point.
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Definition

Let z = f (x, y) be a function of two variables that is defined and continuous on an open set containing the point

(x0, y0). Then f has a local maximum at (x0, y0) if

f (x0, y0) ≥ f (x, y)

for all points (x, y) within some disk centered at (x0, y0). The number f (x0, y0) is called a local maximum value.

If the preceding inequality holds for every point (x, y) in the domain of f , then f has a global maximum (also

called an absolute maximum) at (x0, y0).

The function f has a local minimum at (x0, y0) if

f (x0, y0) ≤ f (x, y)

for all points (x, y) within some disk centered at (x0, y0). The number f (x0, y0) is called a local minimum value. If

the preceding inequality holds for every point (x, y) in the domain of f , then f has a global minimum (also called

an absolute minimum) at (x0, y0).

If f (x0, y0) is either a local maximum or local minimum value, then it is called a local extremum (see the following

figure).

Figure 4.47 The graph of z = 16 − x2 − y2 has a

maximum value when (x, y) = (0, 0). It attains its minimum

value at the boundary of its domain, which is the circle

x2 + y2 = 16.

In Maxima and Minima (http://cnx.org/content/m53611/latest/) , we showed that extrema of functions of one
variable occur at critical points. The same is true for functions of more than one variable, as stated in the following theorem.

Theorem 4.16: Fermat’s Theorem for Functions of Two Variables

Let z = f (x, y) be a function of two variables that is defined and continuous on an open set containing the point
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(x0, y0). Suppose fx and fy each exists at (x0, y0). If f has a local extremum at (x0, y0), then (x0, y0) is a

critical point of f .

Second Derivative Test

Consider the function f (x) = x3. This function has a critical point at x = 0, since f ′(0) = 3(0)2 = 0. However, f
does not have an extreme value at x = 0. Therefore, the existence of a critical value at x = x0 does not guarantee a local

extremum at x = x0. The same is true for a function of two or more variables. One way this can happen is at a saddle

point. An example of a saddle point appears in the following figure.

Figure 4.48 Graph of the function z = x2 − y2. This graph

has a saddle point at the origin.

In this graph, the origin is a saddle point. This is because the first partial derivatives of f (x, y) = x2 − y2 are both equal to

zero at this point, but it is neither a maximum nor a minimum for the function. Furthermore the vertical trace corresponding

to y = 0 is z = x2 (a parabola opening upward), but the vertical trace corresponding to x = 0 is z = −y2 (a parabola

opening downward). Therefore, it is both a global maximum for one trace and a global minimum for another.

Definition

Given the function z = f (x, y), the point ⎛
⎝x0, y0, f (x0, y0)⎞

⎠ is a saddle point if both f0 (x0, y0) = 0 and

fy (x0, y0) = 0, but f does not have a local extremum at (x0, y0).
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The second derivative test for a function of one variable provides a method for determining whether an extremum occurs at
a critical point of a function. When extending this result to a function of two variables, an issue arises related to the fact that
there are, in fact, four different second-order partial derivatives, although equality of mixed partials reduces this to three.
The second derivative test for a function of two variables, stated in the following theorem, uses a discriminant D that

replaces f ″(x0) in the second derivative test for a function of one variable.

Theorem 4.17: Second Derivative Test

Let z = f (x, y) be a function of two variables for which the first- and second-order partial derivatives are continuous

on some disk containing the point (x0, y0). Suppose fx (x0, y0) = 0 and fy (x0, y0) = 0. Define the quantity

(4.43)D = fxx (x0, y0) fyy (x0, y0) − ⎛
⎝ fxy (x0, y0)⎞

⎠
2.

i. If D > 0 and fxx (x0, y0) > 0, then f has a local minimum at (x0, y0).

ii. If D > 0 and fxx (x0, y0) < 0, then f has a local maximum at (x0, y0).

iii. If D < 0, , then f has a saddle point at (x0, y0).

iv. If D = 0, then the test is inconclusive.

See Figure 4.49.

Figure 4.49 The second derivative test can often determine whether a function of two variables has a local minima (a), a
local maxima (b), or a saddle point (c).

To apply the second derivative test, it is necessary that we first find the critical points of the function. There are several
steps involved in the entire procedure, which are outlined in a problem-solving strategy.

Problem-Solving Strategy: Using the Second Derivative Test for Functions of Two Variables

Let z = f (x, y) be a function of two variables for which the first- and second-order partial derivatives are continuous

on some disk containing the point (x0, y0). To apply the second derivative test to find local extrema, use the following

steps:

1. Determine the critical points (x0, y0) of the function f where fx (x0, y0) = fy (x0, y0) = 0. Discard any

points where at least one of the partial derivatives does not exist.

2. Calculate the discriminant D = fxx (x0, y0) fyy (x0, y0) − ⎛
⎝ fxy (x0, y0)⎞

⎠
2 for each critical point of f .
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3. Apply Second Derivative Test to determine whether each critical point is a local maximum, local
minimum, or saddle point, or whether the theorem is inconclusive.

Example 4.39

Using the Second Derivative Test

Find the critical points for each of the following functions, and use the second derivative test to find the local
extrema:

a. f (x, y) = 4x2 + 9y2 + 8x − 36y + 24

b. g(x, y) = 1
3x3 + y2 + 2xy − 6x − 3y + 4

Solution

a. Step 1 of the problem-solving strategy involves finding the critical points of f . To do this, we first

calculate fx (x, y) and fy (x, y), then set each of them equal to zero:

fx (x, y) = 8x + 8
fy (x, y) = 18y − 36.

Setting them equal to zero yields the system of equations

8x + 8 = 0
18y − 36 = 0.

The solution to this system is x = −1 and y = 2. Therefore (−1, 2) is a critical point of f .
Step 2 of the problem-solving strategy involves calculating D. To do this, we first calculate the second

partial derivatives of f :

fxx (x, y) = 8
fxy (x, y) = 0
fyy (x, y) = 18.

Therefore, D = fxx (−1, 2) fyy (−1, 2) − ⎛
⎝ fxy (−1, 2)⎞

⎠
2 = (8)(18) − (0)2 = 144.

Step 3 states to check Fermat’s Theorem for Functions of Two Variables. Since D > 0 and

fxx (−1, 2) > 0, this corresponds to case 1. Therefore, f has a local minimum at (−1, 2) as shown in

the following figure.
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Figure 4.50 The function f (x, y) has a local minimum at (−1, 2, −16).

b. For step 1, we first calculate gx (x, y) and gy (x, y), then set each of them equal to zero:

gx (x, y) = x2 + 2y − 6
gy (x, y) = 2y + 2x − 3.

Setting them equal to zero yields the system of equations

x2 + 2y − 6 = 0
2y + 2x − 3 = 0.

To solve this system, first solve the second equation for y. This gives y = 3 − 2x
2 . Substituting this into

the first equation gives

x2 + 3 − 2x − 6 = 0
x2 − 2x − 3 = 0

(x − 3)(x + 1) = 0.

Therefore, x = −1 or x = 3. Substituting these values into the equation y = 3 − 2x
2 yields the critical

points ⎛
⎝−1, 5

2
⎞
⎠ and ⎛

⎝3, − 3
2

⎞
⎠.

Step 2 involves calculating the second partial derivatives of g:

gxx (x, y) = 2x
gxy (x, y) = 2

gyy (x, y) = 2.

Then, we find a general formula for D:
D = gxx (x0, y0)gyy (x0, y0) − ⎛

⎝gxy (x0, y0)⎞
⎠
2

= ⎛
⎝2x0

⎞
⎠(2) − 22

= 4x0 − 4.
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Next, we substitute each critical point into this formula:

D⎛
⎝−1, 5

2
⎞
⎠ = ⎛

⎝2(−1)⎞
⎠(2) − (2)2 = −4 − 4 = −8

D⎛
⎝3, − 3

2
⎞
⎠ = ⎛

⎝2(3)⎞
⎠(2) − (2)2 = 12 − 4 = 8.

In step 3, we note that, applying Fermat’s Theorem for Functions of Two Variables to point
⎛
⎝−1, 5

2
⎞
⎠ leads to case 3, which means that ⎛

⎝−1, 5
2

⎞
⎠ is a saddle point. Applying the theorem to point

⎛
⎝3, − 3

2
⎞
⎠ leads to case 1, which means that ⎛

⎝3, − 3
2

⎞
⎠ corresponds to a local minimum as shown in the

following figure.

Figure 4.51 The function g(x, y) has a local minimum and a saddle point.

Use the second derivative to find the local extrema of the function

f (x, y) = x3 + 2xy − 6x − 4y2.

Absolute Maxima and Minima
When finding global extrema of functions of one variable on a closed interval, we start by checking the critical values over
that interval and then evaluate the function at the endpoints of the interval. When working with a function of two variables,
the closed interval is replaced by a closed, bounded set. A set is bounded if all the points in that set can be contained within
a ball (or disk) of finite radius. First, we need to find the critical points inside the set and calculate the corresponding critical
values. Then, it is necessary to find the maximum and minimum value of the function on the boundary of the set. When
we have all these values, the largest function value corresponds to the global maximum and the smallest function value
corresponds to the absolute minimum. First, however, we need to be assured that such values exist. The following theorem
does this.
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Theorem 4.18: Extreme Value Theorem

A continuous function f (x, y) on a closed and bounded set D in the plane attains an absolute maximum value at

some point of D and an absolute minimum value at some point of D.

Now that we know any continuous function f defined on a closed, bounded set attains its extreme values, we need to know

how to find them.

Theorem 4.19: Finding Extreme Values of a Function of Two Variables

Assume z = f (x, y) is a differentiable function of two variables defined on a closed, bounded set D. Then f will

attain the absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest
values found among the following:

i. The values of f at the critical points of f in D.

ii. The values of f on the boundary of D.

The proof of this theorem is a direct consequence of the extreme value theorem and Fermat’s theorem. In particular, if
either extremum is not located on the boundary of D, then it is located at an interior point of D. But an interior point

(x0, y0) of D that’s an absolute extremum is also a local extremum; hence, (x0, y0) is a critical point of f by Fermat’s

theorem. Therefore the only possible values for the global extrema of f on D are the extreme values of f on the interior

or boundary of D.

Problem-Solving Strategy: Finding Absolute Maximum and Minimum Values

Let z = f (x, y) be a continuous function of two variables defined on a closed, bounded set D, and assume f is

differentiable on D. To find the absolute maximum and minimum values of f on D, do the following:

1. Determine the critical points of f in D.

2. Calculate f at each of these critical points.

3. Determine the maximum and minimum values of f on the boundary of its domain.

4. The maximum and minimum values of f will occur at one of the values obtained in steps 2 and 3.

Finding the maximum and minimum values of f on the boundary of D can be challenging. If the boundary is a rectangle

or set of straight lines, then it is possible to parameterize the line segments and determine the maxima on each of these
segments, as seen in Example 4.40. The same approach can be used for other shapes such as circles and ellipses.

If the boundary of the set D is a more complicated curve defined by a function g(x, y) = c for some constant c, and

the first-order partial derivatives of g exist, then the method of Lagrange multipliers can prove useful for determining the

extrema of f on the boundary. The method of Lagrange multipliers is introduced in Lagrange Multipliers.

Example 4.40

Finding Absolute Extrema
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Use the problem-solving strategy for finding absolute extrema of a function to determine the absolute extrema of
each of the following functions:

a. f (x, y) = x2 − 2xy + 4y2 − 4x − 2y + 24 on the domain defined by 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2

b. g(x, y) = x2 + y2 + 4x − 6y on the domain defined by x2 + y2 ≤ 16

Solution

a. Using the problem-solving strategy, step 1 involves finding the critical points of f on its domain.

Therefore, we first calculate fx (x, y) and fy (x, y), then set them each equal to zero:

fx (x, y) = 2x − 2y − 4
fy (x, y) = −2x + 8y − 2.

Setting them equal to zero yields the system of equations

2x − 2y − 4 = 0
−2x + 8y − 2 = 0.

The solution to this system is x = 3 and y = 1. Therefore (3, 1) is a critical point of f . Calculating

f (3, 1) gives f (3, 1) = 17.
The next step involves finding the extrema of f on the boundary of its domain. The boundary of its

domain consists of four line segments as shown in the following graph:

Figure 4.52 Graph of the domain of the function

f (x, y) = x2 − 2xy + 4y2 − 4x − 2y + 24.

L1 is the line segment connecting (0, 0) and (4, 0), and it can be parameterized by the equations

x(t) = t, y(t) = 0 for 0 ≤ t ≤ 4. Define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠. This gives g(t) = t2 − 4t + 24.
Differentiating g leads to g′ (t) = 2t − 4. Therefore, g has a critical value at t = 2, which corresponds

to the point (2, 0). Calculating f (2, 0) gives the z-value 20.
L2 is the line segment connecting (4, 0) and (4, 2), and it can be parameterized by the equations

x(t) = 4, y(t) = t for 0 ≤ t ≤ 2. Again, define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠. This gives g(t) = 4t2 − 10t + 24.

Then, g′ (t) = 8t − 10. g has a critical value at t = 5
4, which corresponds to the point ⎛

⎝0, 5
4

⎞
⎠.
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Calculating f ⎛
⎝0, 5

4
⎞
⎠ gives the z-value 27.75.

L3 is the line segment connecting (0, 2) and (4, 2), and it can be parameterized by the equations

x(t) = t, y(t) = 2 for 0 ≤ t ≤ 4. Again, define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠. This gives g(t) = t2 − 8t + 36.
The critical value corresponds to the point (4, 2). So, calculating f (4, 2) gives the z-value 20.
L4 is the line segment connecting (0, 0) and (0, 2), and it can be parameterized by the equations

x(t) = 0, y(t) = t for 0 ≤ t ≤ 2. This time, g(t) = 4t2 − 2t + 24 and the critical value t = 1
4

correspond to the point ⎛
⎝0, 1

4
⎞
⎠. Calculating f ⎛

⎝0, 1
4

⎞
⎠ gives the z-value 23.75.

We also need to find the values of f (x, y) at the corners of its domain. These corners are located at

(0, 0), (4, 0), (4, 2) and (0, 2):

f (0, 0) = (0)2 − 2(0)(0) + 4(0)2 − 4(0) − 2(0) + 24 = 24

f (4, 0) = (4)2 − 2(4)(0) + 4(0)2 − 4(4) − 2(0) + 24 = 24

f (4, 2) = (4)2 − 2(4)(2) + 4(2)2 − 4(4) − 2(2) + 24 = 20

f (0, 2) = (0)2 − 2(0)(2) + 4(2)2 − 4(0) − 2(2) + 24 = 36.

The absolute maximum value is 36, which occurs at (0, 2), and the global minimum value is 20,
which occurs at both (4, 2) and (2, 0) as shown in the following figure.

Figure 4.53 The function f (x, y) has two global minima and one global maximum over its

domain.
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b. Using the problem-solving strategy, step 1 involves finding the critical points of g on its domain.

Therefore, we first calculate gx (x, y) and gy (x, y), then set them each equal to zero:

gx (x, y) = 2x + 4
gy (x, y) = 2y − 6.

Setting them equal to zero yields the system of equations

2x + 4 = 0
2y − 6 = 0.

The solution to this system is x = −2 and y = 3. Therefore, (−2, 3) is a critical point of g.
Calculating g(−2, 3), we get

g(−2, 3) = (−2)2 + 32 + 4(−2) − 6(3) = 4 + 9 − 8 − 18 = −13.

The next step involves finding the extrema of g on the boundary of its domain. The boundary of its
domain consists of a circle of radius 4 centered at the origin as shown in the following graph.

Figure 4.54 Graph of the domain of the function

g(x, y) = x2 + y2 + 4x − 6y.

The boundary of the domain of g can be parameterized using the functions x(t) = 4 cos t, y(t) = 4 sin t
for 0 ≤ t ≤ 2π. Define h(t) = g⎛

⎝x(t), y(t)⎞
⎠:

h(t) = g⎛
⎝x(t), y(t)⎞

⎠

= (4 cos t)2 + (4 sin t)2 + 4(4 cos t) − 6(4 sin t)
= 16cos2 t + 16sin2 t + 16 cos t − 24 sin t
= 16 + 16 cos t − 24 sin t.
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Setting h′ (t) = 0 leads to

−16 sin t − 24 cos t = 0
−16 sin t = 24 cos t
−16 sin t
−16 cos t = 24 cos t

−16 cos t
tan t = −3

2.

This equation has two solutions over the interval 0 ≤ t ≤ 2π. One is t = π − arctan⎛
⎝
3
2

⎞
⎠ and the other is

t = 2π − arctan⎛
⎝
3
2

⎞
⎠. For the first angle,

sin t = sin⎛
⎝π − arctan⎛

⎝
3
2

⎞
⎠
⎞
⎠ = sin⎛

⎝arctan⎛
⎝
3
2

⎞
⎠
⎞
⎠ = 3 13

13

cos t = cos⎛
⎝π − arctan⎛

⎝
3
2

⎞
⎠
⎞
⎠ = −cos⎛

⎝arctan⎛
⎝
3
2

⎞
⎠
⎞
⎠ = − 2 13

13 .

Therefore, x(t) = 4 cos t = − 8 13
13 and y(t) = 4 sin t = 12 13

13 , so
⎛
⎝−8 13

13 , 12 13
13

⎞
⎠ is a critical

point on the boundary and

g⎛
⎝−8 13

13 , 12 13
13

⎞
⎠ = ⎛

⎝−8 13
13

⎞
⎠

2
+ ⎛

⎝
12 13

13
⎞
⎠

2
+ 4⎛

⎝−8 13
13

⎞
⎠ − 6⎛

⎝
12 13

13
⎞
⎠

= 144
13 + 64

13 − 32 13
13 − 72 13

13

= 208 − 104 13
13 ≈ −12.844.

For the second angle,

sin t = sin⎛
⎝2π − arctan⎛

⎝
3
2

⎞
⎠
⎞
⎠ = −sin⎛

⎝arctan⎛
⎝
3
2

⎞
⎠
⎞
⎠ = − 3 13

13

cos t = cos⎛
⎝2π − arctan⎛

⎝
3
2

⎞
⎠
⎞
⎠ = cos⎛

⎝arctan⎛
⎝
3
2

⎞
⎠
⎞
⎠ = 2 13

13 .

Therefore, x(t) = 4 cos t = 8 13
13 and y(t) = 4 sin t = − 12 13

13 , so
⎛
⎝
8 13
13 , − 12 13

13
⎞
⎠ is a critical

point on the boundary and

g⎛
⎝
8 13
13 , − 12 13

13
⎞
⎠ = ⎛

⎝
8 13
13

⎞
⎠

2
+ ⎛

⎝−12 13
13

⎞
⎠

2
+ 4⎛

⎝
8 13
13

⎞
⎠ − 6⎛

⎝−12 13
13

⎞
⎠

= 144
13 + 64

13 + 32 13
13 + 72 13

13

= 208 + 104 13
13 ≈ 44.844.

The absolute minimum of g is −13, which is attained at the point (−2, 3), which is an interior point

of D. The absolute maximum of g is approximately equal to 44.844, which is attained at the boundary
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point
⎛
⎝
8 13
13 , − 12 13

13
⎞
⎠. These are the absolute extrema of g on D as shown in the following figure.

Figure 4.55 The function f (x, y) has a local minimum and a local maximum.

Use the problem-solving strategy for finding absolute extrema of a function to find the absolute extrema
of the function

f (x, y) = 4x2 − 2xy + 6y2 − 8x + 2y + 3

on the domain defined by 0 ≤ x ≤ 2 and −1 ≤ y ≤ 3.

Example 4.41

Chapter Opener: Profitable Golf Balls

Figure 4.56 (credit: modification of work by oatsy40, Flickr)

Pro- T company has developed a profit model that depends on the number x of golf balls sold per month
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(measured in thousands), and the number of hours per month of advertising y, according to the function

z = f (x, y) = 48x + 96y − x2 − 2xy − 9y2,

where z is measured in thousands of dollars. The maximum number of golf balls that can be produced and sold

is 50,000, and the maximum number of hours of advertising that can be purchased is 25. Find the values of x
and y that maximize profit, and find the maximum profit.

Solution

Using the problem-solving strategy, step 1 involves finding the critical points of f on its domain. Therefore, we

first calculate fx (x, y) and fy (x, y), then set them each equal to zero:

fx (x, y) = 48 − 2x − 2y
fy (x, y) = 96 − 2x − 18y.

Setting them equal to zero yields the system of equations

48 − 2x − 2y = 0
96 − 2x − 18y = 0.

The solution to this system is x = 21 and y = 3. Therefore (21, 3) is a critical point of f . Calculating

f (21, 3) gives f (21, 3) = 48(21) + 96(3) − 212 − 2(21)(3) − 9(3)2 = 648.

The domain of this function is 0 ≤ x ≤ 50 and 0 ≤ y ≤ 25 as shown in the following graph.

Figure 4.57 Graph of the domain of the function

f (x, y) = 48x + 96y − x2 − 2xy − 9y2.

L1 is the line segment connecting (0, 0) and (50, 0), and it can be parameterized by the equations

x(t) = t, y(t) = 0 for 0 ≤ t ≤ 50. We then define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠:

g(t) = f ⎛
⎝x(t), y(t)⎞

⎠

= f (t, 0)

= 48t + 96(0) − y2 − 2(t)(0) − 9(0)2

= 48t − t2.

Setting g′ (t) = 0 yields the critical point t = 24, which corresponds to the point (24, 0) in the domain of f .
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Calculating f (24, 0) gives 576.

L2 is the line segment connecting and (50, 25), and it can be parameterized by the equations

x(t) = 50, y(t) = t for 0 ≤ t ≤ 25. Once again, we define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠:

g(t) = f ⎛
⎝x(t), y(t)⎞

⎠

= f (50, t)

= 48(50) + 96t − 502 − 2(50)t − 9t2

= −9t2 − 4t − 100.

This function has a critical point at t = − 2
9, which corresponds to the point ⎛

⎝50, − 2
9

⎞
⎠. This point is not in

the domain of f .

L3 is the line segment connecting (0, 25) and (50, 25), and it can be parameterized by the equations

x(t) = t, y(t) = 25 for 0 ≤ t ≤ 50. We define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠:

g(t) = f ⎛
⎝x(t), y(t)⎞

⎠

= f (t, 25)

= 48t + 96(25) − t2 − 2t(25) − 9⎛
⎝252⎞

⎠

= −t2 − 2t − 3225.

This function has a critical point at t = −1, which corresponds to the point (−1, 25), which is not in the

domain.

L4 is the line segment connecting (0, 0) to (0, 25), and it can be parameterized by the equations

x(t) = 0, y(t) = t for 0 ≤ t ≤ 25. We define g(t) = f ⎛
⎝x(t), y(t)⎞

⎠:

g(t) = f ⎛
⎝x(t), y(t)⎞

⎠

= f (0, t)

= 48(0) + 96t − (0)2 − 2(0)t − 9t2

= 96t − t2.

This function has a critical point at t = 16
3 , which corresponds to the point ⎛

⎝0, 16
3

⎞
⎠, which is on the boundary

of the domain. Calculating f ⎛
⎝0, 16

3
⎞
⎠ gives 256.

We also need to find the values of f (x, y) at the corners of its domain. These corners are located at

(0, 0), (50, 0), (50, 25) and (0, 25):

f (0, 0) = 48(0) + 96(0) − (0)2 − 2(0)(0) − 9(0)2 = 0

f (50, 0) = 48(50) + 96(0) − (50)2 − 2(50)(0) − 9(0)2 = −100

f (50, 25) = 48(50) + 96(25) − (50)2 − 2(50)(25) − 9(25)2 = −5825

f (0, 25) = 48(0) + 96(25) − (0)2 − 2(0)(25) − 9(25)2 = −3225.

The maximum critical value is 648, which occurs at (21, 3). Therefore, a maximum profit of $648,000 is

realized when 21,000 golf balls are sold and 3 hours of advertising are purchased per month as shown in the

following figure.
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Figure 4.58 The profit function f (x, y) has a maximum at (21, 3, 648).
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4.7 EXERCISES
For the following exercises, find all critical points.

310. f (x, y) = 1 + x2 + y2

311. f (x, y) = (3x − 2)2 + (y − 4)2

312. f (x, y) = x4 + y4 − 16xy

313. f (x, y) = 15x3 − 3xy + 15y3

For the following exercises, find the critical points of the
function by using algebraic techniques (completing the
square) or by examining the form of the equation. Verify
your results using the partial derivatives test.

314. f (x, y) = x2 + y2 + 1

315. f (x, y) = −x2 − 5y2 + 8x − 10y − 13

316. f (x, y) = x2 + y2 + 2x − 6y + 6

317. f (x, y) = x2 + y2 + 1

For the following exercises, use the second derivative test
to identify any critical points and determine whether each
critical point is a maximum, minimum, saddle point, or
none of these.

318. f (x, y) = −x3 + 4xy − 2y2 + 1

319. f (x, y) = x2 y2

320. f (x, y) = x2 − 6x + y2 + 4y − 8

321. f (x, y) = 2xy + 3x + 4y

322. f (x, y) = 8xy(x + y) + 7

323. f (x, y) = x2 + 4xy + y2

324. f (x, y) = x3 + y3 − 300x − 75y − 3

325. f (x, y) = 9 − x4 y4

326. f (x, y) = 7x2 y + 9xy2

327. f (x, y) = 3x2 − 2xy + y2 − 8y

328. f (x, y) = 3x2 + 2xy + y2

329. f (x, y) = y2 + xy + 3y + 2x + 3

330. f (x, y) = x2 + xy + y2 − 3x

331. f (x, y) = x2 + 2y2 − x2 y

332. f (x, y) = x2 + y − ey

333. f (x, y) = e−(x2 + y2 + 2x)

334. f (x, y) = x2 + xy + y2 − x − y + 1

335. f (x, y) = x2 + 10xy + y2

336. f (x, y) = −x2 − 5y2 + 10x − 30y − 62

337. f (x, y) = 120x + 120y − xy − x2 − y2

338. f (x, y) = 2x2 + 2xy + y2 + 2x − 3

339. f (x, y) = x2 + x − 3xy + y3 − 5

340. f (x, y) = 2xye−x2 − y2

For the following exercises, determine the extreme values
and the saddle points. Use a CAS to graph the function.

341. [T] f (x, y) = yex − ey

342. [T] f (x, y) = x sin(y)

343. [T]
f (x, y) = sin(x)sin(y), x ∈ (0, 2π), y ∈ (0, 2π)

Find the absolute extrema of the given function on the
indicated closed and bounded set R.

344. f (x, y) = xy − x − 3y; R is the triangular region

with vertices (0, 0), (0, 4), and (5, 0).

345. Find the absolute maximum and minimum values

of f (x, y) = x2 + y2 − 2y + 1 on the region

R = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ 4⎫

⎭
⎬.

346. f (x, y) = x3 − 3xy − y3 on

R = ⎧

⎩
⎨(x, y): −2 ≤ x ≤ 2, −2 ≤ y ≤ 2⎫

⎭
⎬
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347. f (x, y) = −2y
x2 + y2 + 1

on

R = ⎧

⎩
⎨(x, y): x2 + y2 ≤ 4⎫

⎭
⎬

348. Find three positive numbers the sum of which is
27, such that the sum of their squares is as small as

possible.

349. Find the points on the surface x2 − yz = 5 that are

closest to the origin.

350. Find the maximum volume of a rectangular box with
three faces in the coordinate planes and a vertex in the first
octant on the plane x + y + z = 1.

351. The sum of the length and the girth (perimeter of a
cross-section) of a package carried by a delivery service
cannot exceed 108 in. Find the dimensions of the

rectangular package of largest volume that can be sent.

352. A cardboard box without a lid is to be made with
a volume of 4 ft3. Find the dimensions of the box that

requires the least amount of cardboard.

353. Find the point on the surface

f (x, y) = x2 + y2 + 10 nearest the plane

x + 2y − z = 0. Identify the point on the plane.

354. Find the point in the plane 2x − y + 2z = 16 that is

closest to the origin.

355. A company manufactures two types of athletic shoes:
jogging shoes and cross-trainers. The total revenue from
x units of jogging shoes and y units of cross-trainers

is given by R(x, y) = −5x2 − 8y2 − 2xy + 42x + 102y,
where x and y are in thousands of units. Find the values

of x and y to maximize the total revenue.

356. A shipping company handles rectangular boxes
provided the sum of the length, width, and height of the box
does not exceed 96 in. Find the dimensions of the box that

meets this condition and has the largest volume.

357. Find the maximum volume of a cylindrical soda can
such that the sum of its height and circumference is 120
cm.
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4.8 | Lagrange Multipliers

Learning Objectives
4.8.1 Use the method of Lagrange multipliers to solve optimization problems with one constraint.

4.8.2 Use the method of Lagrange multipliers to solve optimization problems with two
constraints.

Solving optimization problems for functions of two or more variables can be similar to solving such problems in single-
variable calculus. However, techniques for dealing with multiple variables allow us to solve more varied optimization
problems for which we need to deal with additional conditions or constraints. In this section, we examine one of the more
common and useful methods for solving optimization problems with constraints.

Lagrange Multipliers
Example 4.41 was an applied situation involving maximizing a profit function, subject to certain constraints. In that
example, the constraints involved a maximum number of golf balls that could be produced and sold in 1 month (x),
and a maximum number of advertising hours that could be purchased per month (y). Suppose these were combined

into a budgetary constraint, such as 20x + 4y ≤ 216, that took into account the cost of producing the golf balls

and the number of advertising hours purchased per month. The goal is, still, be to maximize profit, but now there
is a different type of constraint on the values of x and y. This constraint, when combined with the profit function

f (x, y) = 48x + 96y − x2 − 2xy − 9y2, is an example of an optimization problem, and the function f (x, y) is called

the objective function. A graph of various level curves of the function f (x, y) follows.

Figure 4.59 Graph of level curves of the function

f (x, y) = 48x + 96y − x2 − 2xy − 9y2 corresponding to

c = 150, 250, 350, and 400.

In Figure 4.59, the value c represents different profit levels (i.e., values of the function f ). As the value of c increases,

the curve shifts to the right. Since our goal is to maximize profit, we want to choose a curve as far to the right as possible.
If there was no restriction on the number of golf balls the company could produce, or the number of units of advertising
available, then we could produce as many golf balls as we want, and advertise as much as we want, and there would be
not be a maximum profit for the company. Unfortunately, we have a budgetary constraint that is modeled by the inequality
20x + 4y ≤ 216. To see how this constraint interacts with the profit function, Figure 4.60 shows the graph of the line

20x + 4y = 216 superimposed on the previous graph.
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Figure 4.60 Graph of level curves of the function

f (x, y) = 48x + 96y − x2 − 2xy − 9y2 corresponding to

c = 150, 250, 350, and 395. The red graph is the constraint

function.

As mentioned previously, the maximum profit occurs when the level curve is as far to the right as possible. However, the
level of production corresponding to this maximum profit must also satisfy the budgetary constraint, so the point at which
this profit occurs must also lie on (or to the left of) the red line in Figure 4.60. Inspection of this graph reveals that this
point exists where the line is tangent to the level curve of f . Trial and error reveals that this profit level seems to be

around 395, when x and y are both just less than 5. We return to the solution of this problem later in this section.

From a theoretical standpoint, at the point where the profit curve is tangent to the constraint line, the gradient of both of
the functions evaluated at that point must point in the same (or opposite) direction. Recall that the gradient of a function
of more than one variable is a vector. If two vectors point in the same (or opposite) directions, then one must be a constant
multiple of the other. This idea is the basis of the method of Lagrange multipliers.

Theorem 4.20: Method of Lagrange Multipliers: One Constraint

Let f and g be functions of two variables with continuous partial derivatives at every point of some open set

containing the smooth curve g(x, y) = 0. Suppose that f , when restricted to points on the curve g(x, y) = 0,
has a local extremum at the point (x0, y0) and that ∇g(x0, y0) ≠ 0. Then there is a number λ called a Lagrange

multiplier, for which

∇ f (x0, y0) = λ∇g(x0, y0).

Proof

Assume that a constrained extremum occurs at the point (x0, y0). Furthermore, we assume that the equation g(x, y) = 0
can be smoothly parameterized as

x = x(s) and y = y(s)

where s is an arc length parameter with reference point (x0, y0) at s = 0. Therefore, the quantity z = f ⎛
⎝x(s), y(s)⎞

⎠ has a

relative maximum or relative minimum at s = 0, and this implies that dz
ds = 0 at that point. From the chain rule,

dz
ds = ∂ f

∂ x · ∂ x
∂s + ∂ f

∂ y · ∂ y
∂s = ⎛

⎝
∂ f
∂ x i + j∂ x

∂s
⎞
⎠ + ⎛

⎝
∂ f
∂ y · ∂ y

∂s
⎞
⎠ = 0,

where the derivatives are all evaluated at s = 0. However, the first factor in the dot product is the gradient of f , and the

second factor is the unit tangent vector T(0) to the constraint curve. Since the point (x0, y0) corresponds to s = 0, it

follows from this equation that
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∇ f (x0, y0) · T(0) = 0,

which implies that the gradient is either 0 or is normal to the constraint curve at a constrained relative extremum. However,

the constraint curve g(x, y) = 0 is a level curve for the function g(x, y) so that if ∇g(x0, y0) ≠ 0 then ∇g(x0, y0) is

normal to this curve at (x0, y0) It follows, then, that there is some scalar λ such that

∇ f (x0, y0) = λ∇g(x0, y0)

□

To apply Method of Lagrange Multipliers: One Constraint to an optimization problem similar to that for the golf
ball manufacturer, we need a problem-solving strategy.

Problem-Solving Strategy: Steps for Using Lagrange Multipliers

1. Determine the objective function f (x, y) and the constraint function g(x, y). Does the optimization problem

involve maximizing or minimizing the objective function?

2. Set up a system of equations using the following template:

∇ f (x0, y0) = λ∇g(x0, y0)
g(x0, y0) = 0.

3. Solve for x0 and y0.

4. The largest of the values of f at the solutions found in step 3 maximizes f ; the smallest of those values

minimizes f .

Example 4.42

Using Lagrange Multipliers

Use the method of Lagrange multipliers to find the minimum value of f (x, y) = x2 + 4y2 − 2x + 8y subject to

the constraint x + 2y = 7.

Solution

Let’s follow the problem-solving strategy:

1. The optimization function is f (x, y) = x2 + 4y2 − 2x + 8y. To determine the constraint function, we

must first subtract 7 from both sides of the constraint. This gives x + 2y − 7 = 0. The constraint

function is equal to the left-hand side, so g(x, y) = x + 2y − 7. The problem asks us to solve for the

minimum value of f , subject to the constraint (see the following graph).
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Figure 4.61 Graph of level curves of the function

f (x, y) = x2 + 4y2 − 2x + 8y corresponding to c = 10 and

26. The red graph is the constraint function.

2. We then must calculate the gradients of both f and g:

∇ f (x, y) = (2x − 2)i + ⎛
⎝8y + 8⎞

⎠j
∇g(x, y) = i + 2j.

The equation ∇ f (x0, y0) = λ∇g(x0, y0) becomes

⎛
⎝2x0 − 2⎞

⎠i + ⎛
⎝8y0 + 8⎞

⎠j = λ⎛
⎝i + 2j⎞

⎠,

which can be rewritten as
⎛
⎝2x0 − 2⎞

⎠i + ⎛
⎝8y0 + 8⎞

⎠j = λi + 2λj.

Next, we set the coefficients of i and j equal to each other:

2x0 − 2 = λ
8y0 + 8 = 2λ.

The equation g(x0, y0) = 0 becomes x0 + 2y0 − 7 = 0. Therefore, the system of equations that needs

to be solved is

2x0 − 2 = λ
8y0 + 8 = 2λ

x0 + 2y0 − 7 = 0.

3. This is a linear system of three equations in three variables. We start by solving the second equation for
λ and substituting it into the first equation. This gives λ = 4y0 + 4, so substituting this into the first

equation gives

2x0 − 2 = 4y0 + 4.

Solving this equation for x0 gives x0 = 2y0 + 3. We then substitute this into the third equation:
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4.37

⎛
⎝2y0 + 3⎞

⎠ + 2y0 − 7 = 0
4y0 − 4 = 0

y0 = 1.

Since x0 = 2y0 + 3, this gives x0 = 5.

4. Next, we substitute (5, 1) into f (x, y) = x2 + 4y2 − 2x + 8y, gives

f (5, 1) = 52 + 4(1)2 − 2(5) + 8(1) = 27. To ensure this corresponds to a minimum value on the

constraint function, let’s try some other values, such as the intercepts of g(x, y) = 0, Which are (7, 0)
and (0, 3.5). We get f (7, 0) = 35 and f (0, 3.5) = 77, so it appears f has a minimum at (5, 1).

Use the method of Lagrange multipliers to find the maximum value of

f (x, y) = 9x2 + 36xy − 4y2 − 18x − 8y subject to the constraint 3x + 4y = 32.

Let’s now return to the problem posed at the beginning of the section.

Example 4.43

Golf Balls and Lagrange Multipliers

The golf ball manufacturer, Pro-T, has developed a profit model that depends on the number x of golf balls sold

per month (measured in thousands), and the number of hours per month of advertising y, according to the function

z = f (x, y) = 48x + 96y − x2 − 2xy − 9y2,

where z is measured in thousands of dollars. The budgetary constraint function relating the cost of the production

of thousands golf balls and advertising units is given by 20x + 4y = 216. Find the values of x and y that

maximize profit, and find the maximum profit.

Solution

Again, we follow the problem-solving strategy:

1. The optimization function is f (x, y) = 48x + 96y − x2 − 2xy − 9y2. To determine the constraint

function, we first subtract 216 from both sides of the constraint, then divide both sides by 4, which gives

5x + y − 54 = 0. The constraint function is equal to the left-hand side, so g(x, y) = 5x + y − 54. The

problem asks us to solve for the maximum value of f , subject to this constraint.

2. So, we calculate the gradients of both f and g:

∇ f (x, y) = ⎛
⎝48 − 2x − 2y⎞

⎠i + ⎛
⎝96 − 2x − 18y⎞

⎠j
∇g(x, y) = 5i + j.

The equation ∇ f (x0, y0) = λ∇g(x0, y0) becomes

⎛
⎝48 − 2x0 − 2y0

⎞
⎠i + ⎛

⎝96 − 2x0 − 18y0
⎞
⎠j = λ⎛

⎝5i + j⎞
⎠,
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which can be rewritten as
⎛
⎝48 − 2x0 − 2y0

⎞
⎠i + ⎛

⎝96 − 2x0 − 18y0
⎞
⎠j = λ5i + λj.

We then set the coefficients of i and j equal to each other:

48 − 2x0 − 2y0 = 5λ
96 − 2x0 − 18y0 = λ.

The equation g(x0, y0) = 0 becomes 5x0 + y0 − 54 = 0. Therefore, the system of equations that needs

to be solved is

48 − 2x0 − 2y0 = 5λ
96 − 2x0 − 18y0 = λ

5x0 + y0 − 54 = 0.
3. We use the left-hand side of the second equation to replace λ in the first equation:

48 − 2x0 − 2y0 = 5⎛
⎝96 − 2x0 − 18y0

⎞
⎠

48 − 2x0 − 2y0 = 480 − 10x0 − 90y0
8x0 = 432 − 88y0

x0 = 54 − 11y0.

Then we substitute this into the third equation:

5⎛
⎝54 − 11y0

⎞
⎠ + y0 − 54 = 0

270 − 55y0 + y0 = 0
216 − 54y0 = 0

y0 = 4.

Since x0 = 54 − 11y0, this gives x0 = 10.

4. We then substitute (10, 4) into f (x, y) = 48x + 96y − x2 − 2xy − 9y2, which gives

f (10, 4) = 48(10) + 96(4) − (10)2 − 2(10)(4) − 9(4)2

= 480 + 384 − 100 − 80 − 144 = 540.

Therefore the maximum profit that can be attained, subject to budgetary constraints, is $540,000 with

a production level of 10,000 golf balls and 4 hours of advertising bought per month. Let’s check to

make sure this truly is a maximum. The endpoints of the line that defines the constraint are (10.8, 0) and

(0, 54) Let’s evaluate f at both of these points:

f (10.8, 0) = 48(10.8) + 96(0) − 10.82 − 2(10.8)(0) − 9⎛
⎝02⎞

⎠ = 401.76

f (0, 54) = 48(0) + 96(54) − 02 − 2(0)(54) − 9⎛
⎝542⎞

⎠ = −21, 060.

The second value represents a loss, since no golf balls are produced. Neither of these values exceed 540,
so it seems that our extremum is a maximum value of f .
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4.38 A company has determined that its production level is given by the Cobb-Douglas function

f (x, y) = 2.5x0.45 y0.55 where x represents the total number of labor hours in 1 year and y represents the total

capital input for the company. Suppose 1 unit of labor costs $40 and 1 unit of capital costs $50. Use the

method of Lagrange multipliers to find the maximum value of f (x, y) = 2.5x0.45 y0.55 subject to a budgetary

constraint of $500,000 per year.

In the case of an optimization function with three variables and a single constraint function, it is possible to use the method
of Lagrange multipliers to solve an optimization problem as well. An example of an optimization function with three

variables could be the Cobb-Douglas function in the previous example: f (x, y, z) = x0.2 y0.4 z0.4, where x represents

the cost of labor, y represents capital input, and z represents the cost of advertising. The method is the same as for the

method with a function of two variables; the equations to be solved are

∇ f (x, y, z) = λ∇g(x, y, z)
g(x, y, z) = 0.

Example 4.44

Lagrange Multipliers with a Three-Variable Optimization Function

Maximize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint x + y + z = 1.

Solution

1. The optimization function is f (x, y, z) = x2 + y2 + z2. To determine the constraint function, we

subtract 1 from each side of the constraint: x + y + z − 1 = 0 which gives the constraint function as

g(x, y, z) = x + y + z − 1.

2. Next, we calculate ∇ f (x, y, z) and ∇g(x, y, z):

∇ f (x, y, z) = 〈 2x, 2y, 2z 〉
∇g(x, y, z) = 〈 1, 1, 1 〉 .

This leads to the equations

〈 2x0, 2y0, 2z0 〉 = λ 〈 1, 1, 1 〉
x0 + y0 + z0 − 1 = 0

which can be rewritten in the following form:

2x0 = λ
2y0 = λ
2z0 = λ

x0 + y0 + z0 − 1 = 0.

3. Since each of the first three equations has λ on the right-hand side, we know that 2x0 = 2y0 = 2z0

and all three variables are equal to each other. Substituting y0 = x0 and z0 = x0 into the last equation

yields 3x0 − 1 = 0, so x0 = 1
3 and y0 = 1

3 and z0 = 1
3 which corresponds to a critical point on the

constraint curve.
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4.39

4. Then, we evaluate f at the point ⎛
⎝
1
3, 1

3, 1
3

⎞
⎠:

f ⎛
⎝
1
3, 1

3, 1
3

⎞
⎠ = ⎛

⎝
1
3

⎞
⎠

2
+ ⎛

⎝
1
3

⎞
⎠

2
+ ⎛

⎝
1
3

⎞
⎠

2
= 3

9 = 1
3.

Therefore, an extremum of the function is 1
3. To verify it is a minimum, choose other points that satisfy

the constraint and calculate f at that point. For example,

f (1, 0, 0) = 12 + 02 + 02 = 1

f (0, −2, 3) = 02 + + (−2)2 + 32 = 13.

Both of these values are greater than 1
3, leading us to believe the extremum is a minimum.

Use the method of Lagrange multipliers to find the minimum value of the function

f (x, y, z) = x + y + z

subject to the constraint x2 + y2 + z2 = 1.

Problems with Two Constraints
The method of Lagrange multipliers can be applied to problems with more than one constraint. In this case the optimization
function, w is a function of three variables:

w = f (x, y, z)

and it is subject to two constraints:

g(x, y, z) = 0 and h(x, y, z) = 0.

There are two Lagrange multipliers, λ1 and λ2, and the system of equations becomes

∇ f (x0, y0, z0) = λ1∇g(x0, y0, z0) + λ2∇h(x0, y0, z0)
g(x0, y0, z0) = 0

h(x0, y0, z0) = 0.

Example 4.45

Lagrange Multipliers with Two Constraints

Find the maximum and minimum values of the function

f (x, y, z) = x2 + y2 + z2

subject to the constraints z2 = x2 + y2 and x + y − z + 1 = 0.

Solution
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Let’s follow the problem-solving strategy:

1. The optimization function is f (x, y, z) = x2 + y2 + z2. To determine the constraint functions, we

first subtract z2 from both sides of the first constraint, which gives x2 + y2 − z2 = 0, so

g(x, y, z) = x2 + y2 − z2. The second constraint function is h(x, y, z) = x + y − z + 1.

2. We then calculate the gradients of f , g, and h:

∇ f (x, y, z) = 2xi + 2yj + 2zk
∇g(x, y, z) = 2xi + 2yj − 2zk
∇h(x, y, z) = i + j − k.

The equation ∇ f (x0, y0, z0) = λ1∇g(x0, y0, z0) + λ2∇h(x0, y0, z0) becomes

2x0 i + 2y0 j + 2z0 k = λ1
⎛
⎝2x0 i + 2y0 j − 2z0 k⎞

⎠ + λ2
⎛
⎝i + j − k⎞

⎠,

which can be rewritten as

2x0 i + 2y0 j + 2z0 k = ⎛
⎝2λ1 x0 + λ2

⎞
⎠i + ⎛

⎝2λ1 y0 + λ2
⎞
⎠j − ⎛

⎝2λ1 z0 + λ2
⎞
⎠k.

Next, we set the coefficients of i and j equal to each other:

2x0 = 2λ1 x0 + λ2
2y0 = 2λ1 y0 + λ2
2z0 = −2λ1 z0 − λ2.

The two equations that arise from the constraints are z0
2 = x0

2 + y0
2 and x0 + y0 − z0 + 1 = 0.

Combining these equations with the previous three equations gives

2x0 = 2λ1 x0 + λ2
2y0 = 2λ1 y0 + λ2
2z0 = −2λ1 z0 − λ2

z0
2 = x0

2 + y0
2

x0 + y0 − z0 + 1 = 0.

3. The first three equations contain the variable λ2. Solving the third equation for λ2 and replacing into

the first and second equations reduces the number of equations to four:

2x0 = 2λ1 x0 − 2λ1 z0 − 2z0
2y0 = 2λ1 y0 − 2λ1 z0 − 2z0

z0
2 = x0

2 + y0
2

x0 + y0 − z0 + 1 = 0.

Next, we solve the first and second equation for λ1. The first equation gives λ1 = x0 + z0
x0 − z0

, the second

equation gives λ1 = y0 + z0
y0 − z0

. We set the right-hand side of each equation equal to each other and cross-

multiply:
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x0 + z0
x0 − z0

= y0 + z0
y0 − z0

(x0 + z0)(y0 − z0) = (x0 − z0)(y0 + z0)
x0 y0 − x0 z0 + y0 z0 − z0

2 = x0 y0 + x0 z0 − y0 z0 − z0 2

2y0 z0 − 2x0 z0 = 0
2z0 (y0 − x0) = 0.

.

Therefore, either z0 = 0 or y0 = x0. If z0 = 0, then the first constraint becomes 0 = x0
2 + y0

2.
The only real solution to this equation is x0 = 0 and y0 = 0, which gives the ordered triple (0, 0, 0).
This point does not satisfy the second constraint, so it is not a solution.
Next, we consider y0 = x0, which reduces the number of equations to three:

y0 = x0

z0
2 = x0

2 + y0
2

x0 + y0 − z0 + 1 = 0.

We substitute the first equation into the second and third equations:

z0
2 = x0

2 + x0
2

x0 + x0 − z0 + 1 = 0.

Then, we solve the second equation for z0, which gives z0 = 2x0 + 1. We then substitute this into the

first equation,

z0
2 = 2x0

2

⎛
⎝2x0 + 1⎞

⎠
2 = 2x0

2

4x0
2 + 4x0 + 1 = 2x0

2

2x0
2 + 4x0 + 1 = 0,

and use the quadratic formula to solve for x0 :

x0 = −4 ± 42 − 4(2)(1)
2(2) = −4 ± 8

4 = −4 ± 2 2
4 = −1 ± 2

2 .

Recall y0 = x0, so this solves for y0 as well. Then, z0 = 2x0 + 1, so

z0 = 2x0 + 1 = 2⎛
⎝−1 ± 2

2
⎞
⎠ + 1 = −2 + 1 ± 2 = −1 ± 2.

Therefore, there are two ordered triplet solutions:

⎛
⎝−1 + 2

2 , −1 + 2
2 , −1 + 2⎞

⎠ and ⎛
⎝−1 − 2

2 , −1 − 2
2 , −1 − 2⎞

⎠.

4. We substitute
⎛
⎝−1 + 2

2 , −1 + 2
2 , −1 + 2⎞

⎠ into f (x, y, z) = x2 + y2 + z2, which gives
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f ⎛
⎝−1 + 2

2 , −1 + 2
2 , −1 + 2⎞

⎠ = ⎛
⎝−1 + 2

2
⎞
⎠

2
+ ⎛

⎝−1 + 2
2

⎞
⎠

2
+ ⎛

⎝−1 + 2⎞
⎠
2

= ⎛
⎝1 − 2 + 1

2
⎞
⎠ + ⎛

⎝1 − 2 + 1
2

⎞
⎠ + ⎛

⎝1 − 2 2 + 2⎞
⎠

= 6 − 4 2.

Then, we substitute
⎛
⎝−1 − 2

2 , −1 − 2
2 , −1 − 2⎞

⎠ into f (x, y, z) = x2 + y2 + z2, which gives

f ⎛
⎝−1 − 2

2 , −1 − 2
2 , −1 − 2⎞

⎠ = ⎛
⎝−1 − 2

2
⎞
⎠

2
+ ⎛

⎝−1 − 2
2

⎞
⎠

2
+ (−1 − 2)2

= ⎛
⎝1 + 2 + 1

2
⎞
⎠ + ⎛

⎝1 + 2 + 1
2

⎞
⎠ + ⎛

⎝1 + 2 2 + 2⎞
⎠

= 6 + 4 2.

6 + 4 2 is the maximum value and 6 − 4 2 is the minimum value of f (x, y, z), subject to the given

constraints.

Use the method of Lagrange multipliers to find the minimum value of the function

f (x, y, z) = x2 + y2 + z2

subject to the constraints 2x + y + 2z = 9 and 5x + 5y + 7z = 29.
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4.8 EXERCISES
For the following exercises, use the method of Lagrange
multipliers to find the maximum and minimum values of
the function subject to the given constraints.

358. f (x, y) = x2 y; x2 + 2y2 = 6

359. f (x, y, z) = xyz, x2 + 2y2 + 3z2 = 6

360. f (x, y) = xy; 4x2 + 8y2 = 16

361. f (x, y) = 4x3 + y2; 2x2 + y2 = 1

362. f (x, y, z) = x2 + y2 + z2, x4 + y4 + z4 = 1

363. f (x, y, z) = yz + xy, xy = 1, y2 + z2 = 1

364. f (x, y) = x2 + y2, (x − 1)2 + 4y2 = 4

365. f (x, y) = 4xy, x2

9 + y2

16 = 1

366. f (x, y, z) = x + y + z, 1
x + 1

y + 1
z = 1

367. f (x, y, z) = x + 3y − z, x2 + y2 + z2 = 4

368. f (x, y, z) = x2 + y2 + z2, xyz = 4

369. Minimize f (x, y) = x2 + y2 on the hyperbola

xy = 1.

370. Minimize f (x, y) = xy on the ellipse

b2 x2 + a2 y2 = a2 b2.

371. Maximize f (x, y, z) = 2x + 3y + 5z on the sphere

x2 + y2 + z2 = 19.

372. Maximize
f (x, y) = x2 − y2; x > 0, y > 0;
g(x, y) = y − x2 = 0

373. The curve x3 − y3 = 1 is asymptotic to the line

y = x. Find the point(s) on the curve x3 − y3 = 1 farthest

from the line y = x.

374. Maximize U(x, y) = 8x4/5 y1/5; 4x + 2y = 12

375. Minimize f (x, y) = x2 + y2, x + 2y − 5 = 0.

376. Maximize f (x, y) = 6 − x2 − y2, x + y − 2 = 0.

377. Minimize

f (x, y, z) = x2 + y2 + z2, x + y + z = 1.

378. Minimize f (x, y) = x2 − y2 subject to the

constraint x − 2y + 6 = 0.

379. Minimize f (x, y, z) = x2 + y2 + z2 when

x + y + z = 9 and x + 2y + 3z = 20.

For the next group of exercises, use the method of Lagrange
multipliers to solve the following applied problems.

380. A pentagon is formed by placing an isosceles triangle
on a rectangle, as shown in the diagram. If the perimeter of
the pentagon is 10 in., find the lengths of the sides of the

pentagon that will maximize the area of the pentagon.

381. A rectangular box without a top (a topless box) is
to be made from 12 ft2 of cardboard. Find the maximum

volume of such a box.

382. Find the minimum and maximum distances between

the ellipse x2 + xy + 2y2 = 1 and the origin.

383. Find the point on the surface

x2 − 2xy + y2 − x + y = 0 closest to the point

(1, 2, −3).
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384. Show that, of all the triangles inscribed in a circle
of radius R (see diagram), the equilateral triangle has the

largest perimeter.

385. Find the minimum distance from point (0, 1) to the

parabola x2 = 4y.

386. Find the minimum distance from the parabola

y = x2 to point (0, 3).

387. Find the minimum distance from the plane
x + y + z = 1 to point (2, 1, 1).

388. A large container in the shape of a rectangular solid
must have a volume of 480 m3. The bottom of the

container costs $5/m2 to construct whereas the top and
sides cost $3/m2 to construct. Use Lagrange multipliers to
find the dimensions of the container of this size that has the
minimum cost.

389. Find the point on the line y = 2x + 3 that is closest

to point (4, 2).

390. Find the point on the plane 4x + 3y + z = 2 that is

closest to the point (1, −1, 1).

391. Find the maximum value of f (x, y) = sin x sin y,
where x and y denote the acute angles of a right triangle.

Draw the contours of the function using a CAS.

392. A rectangular solid is contained within a tetrahedron
with vertices at (1, 0, 0), (0, 1, 0), (0, 0, 1), and the

origin. The base of the box has dimensions x, y, and

the height of the box is z. If the sum of x, y, and z is

1.0, find the dimensions that maximizes the volume of the
rectangular solid.

393. [T] By investing x units of labor and y units of
capital, a watch manufacturer can produce

P(x, y) = 50x0.4 y0.6 watches. Find the maximum

number of watches that can be produced on a budget of
$20,000 if labor costs $100/unit and capital costs $200/

unit. Use a CAS to sketch a contour plot of the function.
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boundary point

closed set

connected set

constraint

contour map

critical point of a function of two variables

differentiable

directional derivative

discriminant

function of two variables

generalized chain rule

gradient

graph of a function of two variables

higher-order partial derivatives

interior point

intermediate variable

Lagrange multiplier

level curve of a function of two variables

CHAPTER 4 REVIEW

KEY TERMS
a point P0 of R is a boundary point if every δ disk centered around P0 contains points both inside

and outside R

a set S that contains all its boundary points

an open set S that cannot be represented as the union of two or more disjoint, nonempty open subsets

an inequality or equation involving one or more variables that is used in an optimization problem; the
constraint enforces a limit on the possible solutions for the problem

a plot of the various level curves of a given function f (x, y)

the point (x0, y0) is called a critical point of f (x, y) if one of the two

following conditions holds:

1. fx (x0, y0) = fy (x0, y0) = 0

2. At least one of fx (x0, y0) and fy (x0, y0) do not exist

a function f (x, y) is differentiable at (x0, y0) if f (x, y) can be expressed in the form

f (x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + E(x, y),

where the error term E(x, y) satisfies lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= 0

the derivative of a function in the direction of a given unit vector

the discriminant of the function f (x, y) is given by the formula

D = fxx(x0, y0) fyy(x0, y0) − ⎛
⎝ fxy(x0, y0)⎞

⎠
2

a function z = f (x, y) that maps each ordered pair (x, y) in a subset D of ℝ2 to a unique

real number z

the chain rule extended to functions of more than one independent variable, in which each
independent variable may depend on one or more other variables

the gradient of the function f (x, y) is defined to be ∇ f (x, y) = ⎛
⎝∂ f /∂ x⎞

⎠i + ⎛
⎝∂ f /∂ y⎞

⎠j, which can be

generalized to a function of any number of independent variables

a set of ordered triples (x, y, z) that satisfies the equation z = f (x, y) plotted

in three-dimensional Cartesian space

second-order or higher partial derivatives, regardless of whether they are mixed
partial derivatives

a point P0 of R is a boundary point if there is a δ disk centered around P0 contained completely in R

given a composition of functions (e.g., f ⎛
⎝x(t), y(t)⎞

⎠), the intermediate variables are the

variables that are independent in the outer function but dependent on other variables as well; in the function
f ⎛

⎝x(t), y(t)⎞
⎠, the variables x and y are examples of intermediate variables

the constant (or constants) used in the method of Lagrange multipliers; in the case of one constant,
it is represented by the variable λ

the set of points satisfying the equation f (x, y) = c for some real
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level surface of a function of three variables

linear approximation

method of Lagrange multipliers

mixed partial derivatives

objective function

open set

optimization problem

partial derivative

partial differential equation

region

saddle point

surface

tangent plane

total differential

tree diagram

vertical trace

δ ball

δ disk

number c in the range of f

the set of points satisfying the equation f (x, y, z) = c for some real

number c in the range of f

given a function f (x, y) and a tangent plane to the function at a point (x0, y0), we can

approximate f (x, y) for points near (x0, y0) using the tangent plane formula

a method of solving an optimization problem subject to one or more constraints

second-order or higher partial derivatives, in which at least two of the differentiations are
with respect to different variables

the function that is to be maximized or minimized in an optimization problem

a set S that contains none of its boundary points

calculation of a maximum or minimum value of a function of several variables, often using
Lagrange multipliers

a derivative of a function of more than one independent variable in which all the variables but one are
held constant

an equation that involves an unknown function of more than one independent variable
and one or more of its partial derivatives

an open, connected, nonempty subset of ℝ2

given the function z = f (x, y), the point ⎛
⎝x0, y0, f (x0, y0)⎞

⎠ is a saddle point if both fx (x0, y0) = 0
and fy (x0, y0) = 0, but f does not have a local extremum at (x0, y0)

the graph of a function of two variables, z = f (x, y)

given a function f (x, y) that is differentiable at a point (x0, y0), the equation of the tangent plane to

the surface z = f (x, y) is given by z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)

the total differential of the function f (x, y) at (x0, y0) is given by the formula

dz = fx (x0, y0)dx + fy (x0, y0)dy

illustrates and derives formulas for the generalized chain rule, in which each independent variable is
accounted for

the set of ordered triples (c, y, z) that solves the equation f (c, y) = z for a given constant x = c or the

set of ordered triples (x, d, z) that solves the equation f (x, d) = z for a given constant y = d

all points in ℝ3 lying at a distance of less than δ from (x0, y0, z0)

an open disk of radius δ centered at point (a, b)

KEY EQUATIONS
• Vertical trace

f (a, y) = z for x = a or f (x, b) = z for y = b

• Level surface of a function of three variables
f (x, y, z) = c

• Partial derivative of f with respect to x
∂ f
∂ x = lim

h → 0
f ⎛

⎝x + h, y⎞
⎠ − f (x, y)
h
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• Partial derivative of f with respect to y
∂ f
∂ y = lim

k → 0
f ⎛

⎝x, y + k⎞
⎠ − f (x, y)
k

• Tangent plane
z = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)

• Linear approximation
L(x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0)

• Total differential
dz = fx (x0, y0)dx + fy (x0, y0)dy.

• Differentiability (two variables)
f (x, y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0) + E(x, y),

where the error term E satisfies

lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= 0.

• Differentiability (three variables)
f (x, y) = f (x0, y0, z0) + fx (x0, y0, z0)(x − x0) + fy (x0, y0, z0)(y − y0)

+ fz (x0, y0, z0)(z − z0) + E(x, y, z),
where the error term E satisfies

lim
(x, y, z) → (x0, y0, z0)

E(x, y, z)
(x − x0)2 + (y − y0)2 + (z − z0)2

= 0.

• Chain rule, one independent variable
dz
dt = ∂z

∂ x · dx
dt + ∂z

∂ y · dy
dt

• Chain rule, two independent variables
dz
du = ∂z

∂ x · ∂ x
∂u + ∂z

∂ y · ∂ y
∂u

dz
dv = ∂z

∂ x · ∂ x
∂v + ∂z

∂ y · ∂ y
∂v

• Generalized chain rule

∂w
∂ t j

= ∂w
∂ x1

∂ x1
∂ t j

+ ∂w
∂ x2

∂ x1
∂ t j

+ ⋯ + ∂w
∂ xm

∂ xm
∂ t j

• directional derivative (two dimensions)

Du f (a, b) = lim
h → 0

f (a + h cos θ, b + h sin θ) − f (a, b)
h

or
Du f (x, y) = fx (x, y)cos θ + fy (x, y)sin θ

• gradient (two dimensions)
∇ f (x, y) = fx (x, y)i + fy (x, y)j

• gradient (three dimensions)
∇ f (x, y, z) = fx (x, y, z)i + fy (x, y, z)j + fz (x, y, z)k

• directional derivative (three dimensions)
Du f (x, y, z) = ∇ f (x, y, z) · u

= fx (x, y, z)cos α + fy (x, y, z)cos β + fx (x, y, z)cos γ

• Discriminant
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D = fxx (x0, y0) fyy (x0, y0) − ⎛
⎝ fxy (x0, y0)⎞

⎠
2

• Method of Lagrange multipliers, one constraint
∇ f (x0, y0) = λ∇g(x0, y0)

g(x0, y0) = 0

• Method of Lagrange multipliers, two constraints
∇ f (x0, y0, z0) = λ1∇g(x0, y0, z0) + λ2∇h(x0, y0, z0)

g(x0, y0, z0) = 0

h(x0, y0, z0) = 0

KEY CONCEPTS

4.1 Functions of Several Variables

• The graph of a function of two variables is a surface in ℝ3 and can be studied using level curves and vertical traces.

• A set of level curves is called a contour map.

4.2 Limits and Continuity

• To study limits and continuity for functions of two variables, we use a δ disk centered around a given point.

• A function of several variables has a limit if for any point in a δ ball centered at a point P, the value of the

function at that point is arbitrarily close to a fixed value (the limit value).

• The limit laws established for a function of one variable have natural extensions to functions of more than one
variable.

• A function of two variables is continuous at a point if the limit exists at that point, the function exists at that point,
and the limit and function are equal at that point.

4.3 Partial Derivatives

• A partial derivative is a derivative involving a function of more than one independent variable.

• To calculate a partial derivative with respect to a given variable, treat all the other variables as constants and use the
usual differentiation rules.

• Higher-order partial derivatives can be calculated in the same way as higher-order derivatives.

4.4 Tangent Planes and Linear Approximations

• The analog of a tangent line to a curve is a tangent plane to a surface for functions of two variables.

• Tangent planes can be used to approximate values of functions near known values.

• A function is differentiable at a point if it is ”smooth” at that point (i.e., no corners or discontinuities exist at that
point).

• The total differential can be used to approximate the change in a function z = f (x0, y0) at the point (x0, y0) for

given values of Δx and Δy.

4.5 The Chain Rule

• The chain rule for functions of more than one variable involves the partial derivatives with respect to all the
independent variables.

• Tree diagrams are useful for deriving formulas for the chain rule for functions of more than one variable, where
each independent variable also depends on other variables.
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4.6 Directional Derivatives and the Gradient

• A directional derivative represents a rate of change of a function in any given direction.

• The gradient can be used in a formula to calculate the directional derivative.

• The gradient indicates the direction of greatest change of a function of more than one variable.

4.7 Maxima/Minima Problems

• A critical point of the function f (x, y) is any point (x0, y0) where either fx (x0, y0) = fy (x0, y0) = 0, or at

least one of fx (x0, y0) and fy (x0, y0) do not exist.

• A saddle point is a point (x0, y0) where fx (x0, y0) = fy (x0, y0) = 0, but (x0, y0) is neither a maximum nor a

minimum at that point.

• To find extrema of functions of two variables, first find the critical points, then calculate the discriminant and apply
the second derivative test.

4.8 Lagrange Multipliers

• An objective function combined with one or more constraints is an example of an optimization problem.

• To solve optimization problems, we apply the method of Lagrange multipliers using a four-step problem-solving
strategy.

CHAPTER 4 REVIEW EXERCISES
For the following exercises, determine whether the
statement is true or false. Justify your answer with a proof
or a counterexample.

394. The domain of f (x, y) = x3 sin−1 (y) is x = all

real numbers, and −π ≤ y ≤ π.

395. If the function f (x, y) is continuous everywhere,

then fxy = fyx.

396. The linear approximation to the function of

f (x, y) = 5x2 + x tan(y) at (2, π) is given by

L(x, y) = 22 + 21(x − 2) + (y − π).

397. ⎛
⎝
3
4, 9

16
⎞
⎠ is a critical point of

g(x, y) = 4x3 − 2x2 y + y2 − 2.

For the following exercises, sketch the function in one
graph and, in a second, sketch several level curves.

398. f (x, y) = e
−⎛

⎝x
2 + 2y2⎞

⎠.

399. f (x, y) = x + 4y2.

For the following exercises, evaluate the following limits,
if they exist. If they do not exist, prove it.

400. lim
(x, y) → (1, 1)

4xy
x − 2y2

401. lim
(x, y) → (0, 0)

4xy
x − 2y2

For the following exercises, find the largest interval of
continuity for the function.

402. f (x, y) = x3 sin−1 (y)

403. g(x, y) = ln⎛
⎝4 − x2 − y2⎞

⎠

For the following exercises, find all first partial derivatives.

404. f (x, y) = x2 − y2

405. u(x, y) = x4 − 3xy + 1, x = 2t, y = t3

For the following exercises, find all second partial
derivatives.

406. g(t, x) = 3t2 − sin(x + t)
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407. h(x, y, z) = x3 e2y
z

For the following exercises, find the equation of the tangent
plane to the specified surface at the given point.

408. z = x3 − 2y2 + y − 1 at point (1, 1, −1)

409. 3z3 = ex + 2
y at point (0, 1, 3)

410. Approximate f (x, y) = ex2
+ y at (0.1, 9.1).

Write down your linear approximation function L(x, y).
How accurate is the approximation to the exact answer,
rounded to four digits?

411. Find the differential dz of

h(x, y) = 4x2 + 2xy − 3y and approximate Δz at the

point (1, −2). Let Δx = 0.1 and Δy = 0.01.

412. Find the directional derivative of

f (x, y) = x2 + 6xy − y2 in the direction v = i + 4j.

413. Find the maximal directional derivative magnitude
and direction for the function

f (x, y) = x3 + 2xy − cos(πy) at point (3, 0).

For the following exercises, find the gradient.

414. c(x, t) = e(t − x)2 + 3 cos(t)

415. f (x, y) = x + y2
xy

For the following exercises, find and classify the critical
points.

416. z = x3 − xy + y2 − 1

For the following exercises, use Lagrange multipliers to
find the maximum and minimum values for the functions
with the given constraints.

417. f (x, y) = x2 y, x2 + y2 = 4

418. f (x, y) = x2 − y2, x + 6y = 4

419. A machinist is constructing a right circular cone out
of a block of aluminum. The machine gives an error of 5%
in height and 2% in radius. Find the maximum error in the

volume of the cone if the machinist creates a cone of height
6 cm and radius 2 cm.

420. A trash compactor is in the shape of a cuboid.
Assume the trash compactor is filled with incompressible
liquid. The length and width are decreasing at rates of 2
ft/sec and 3 ft/sec, respectively. Find the rate at which the

liquid level is rising when the length is 14 ft, the width is

10 ft, and the height is 4 ft.
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5 | MULTIPLE INTEGRATION

Figure 5.1 The City of Arts and Sciences in Valencia, Spain, has a unique structure along an axis of just two kilometers that
was formerly the bed of the River Turia. The l’Hemisfèric has an IMAX cinema with three systems of modern digital projections
onto a concave screen of 900 square meters. An oval roof over 100 meters long has been made to look like a huge human eye that
comes alive and opens up to the world as the “Eye of Wisdom.” (credit: modification of work by Javier Yaya Tur, Wikimedia
Commons)

Chapter Outline

5.1 Double Integrals over Rectangular Regions

5.2 Double Integrals over General Regions

5.3 Double Integrals in Polar Coordinates

5.4 Triple Integrals

5.5 Triple Integrals in Cylindrical and Spherical Coordinates

5.6 Calculating Centers of Mass and Moments of Inertia

5.7 Change of Variables in Multiple Integrals

Introduction
In this chapter we extend the concept of a definite integral of a single variable to double and triple integrals of functions
of two and three variables, respectively. We examine applications involving integration to compute volumes, masses, and
centroids of more general regions. We will also see how the use of other coordinate systems (such as polar, cylindrical,
and spherical coordinates) makes it simpler to compute multiple integrals over some types of regions and functions. As an
example, we will use polar coordinates to find the volume of structures such as l’Hemisfèric. (See Example 5.51.)
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In the preceding chapter, we discussed differential calculus with multiple independent variables. Now we examine integral
calculus in multiple dimensions. Just as a partial derivative allows us to differentiate a function with respect to one variable
while holding the other variables constant, we will see that an iterated integral allows us to integrate a function with respect
to one variable while holding the other variables constant.

5.1 | Double Integrals over Rectangular Regions

Learning Objectives
5.1.1 Recognize when a function of two variables is integrable over a rectangular region.

5.1.2 Recognize and use some of the properties of double integrals.

5.1.3 Evaluate a double integral over a rectangular region by writing it as an iterated integral.

5.1.4 Use a double integral to calculate the area of a region, volume under a surface, or average
value of a function over a plane region.

In this section we investigate double integrals and show how we can use them to find the volume of a solid over a
rectangular region in the xy -plane. Many of the properties of double integrals are similar to those we have already

discussed for single integrals.

Volumes and Double Integrals
We begin by considering the space above a rectangular region R. Consider a continuous function f (x, y) ≥ 0 of two

variables defined on the closed rectangle R:

R = [a, b] × [c, d] = ⎧

⎩
⎨(x, y) ∈ ℝ2 |a ≤ x ≤ b, c ≤ y ≤ d⎫

⎭
⎬

Here [a, b] × [c, d] denotes the Cartesian product of the two closed intervals [a, b] and [c, d]. It consists of rectangular

pairs (x, y) such that a ≤ x ≤ b and c ≤ y ≤ d. The graph of f represents a surface above the xy -plane with equation

z = f (x, y) where z is the height of the surface at the point (x, y). Let S be the solid that lies above R and under the

graph of f (Figure 5.2). The base of the solid is the rectangle R in the xy -plane. We want to find the volume V of the

solid S.

Figure 5.2 The graph of f (x, y) over the rectangle R in the

xy -plane is a curved surface.

We divide the region R into small rectangles Ri j, each with area ΔA and with sides Δx and Δy (Figure 5.3). We
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do this by dividing the interval [a, b] into m subintervals and dividing the interval [c, d] into n subintervals. Hence

Δx = b − a
m , Δy = d − c

n , and ΔA = ΔxΔy.

Figure 5.3 Rectangle R is divided into small rectangles Ri j, each with area ΔA.

The volume of a thin rectangular box above Ri j is f (xi j* , yi j* )ΔA, where (xi j* , yi j* ) is an arbitrary sample point in each

Ri j as shown in the following figure.

Figure 5.4 A thin rectangular box above Ri j with height

f ⎛
⎝xi j* , yi j* ⎞

⎠.
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Using the same idea for all the subrectangles, we obtain an approximate volume of the solid S as

V ≈ ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA. This sum is known as a double Riemann sum and can be used to approximate the value

of the volume of the solid. Here the double sum means that for each subrectangle we evaluate the function at the chosen
point, multiply by the area of each rectangle, and then add all the results.

As we have seen in the single-variable case, we obtain a better approximation to the actual volume if m and n become larger.

V = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA or V = lim

Δx, Δy → 0
∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA.

Note that the sum approaches a limit in either case and the limit is the volume of the solid with the base R. Now we are
ready to define the double integral.

Definition

The double integral of the function f (x, y) over the rectangular region R in the xy -plane is defined as

(5.1)
∬
R

f (x, y)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA.

If f (x, y) ≥ 0, then the volume V of the solid S, which lies above R in the xy -plane and under the graph of f, is the

double integral of the function f (x, y) over the rectangle R. If the function is ever negative, then the double integral can

be considered a “signed” volume in a manner similar to the way we defined net signed area in The Definite Integral
(http://cnx.org/content/m53631/latest/) .

Example 5.1

Setting up a Double Integral and Approximating It by Double Sums

Consider the function z = f (x, y) = 3x2 − y over the rectangular region R = [0, 2] × [0, 2] (Figure 5.5).

a. Set up a double integral for finding the value of the signed volume of the solid S that lies above R and

“under” the graph of f .

b. Divide R into four squares with m = n = 2, and choose the sample point as the upper right corner point

of each square (1, 1), (2, 1), (1, 2), and (2, 2) (Figure 5.6) to approximate the signed volume of the

solid S that lies above R and “under” the graph of f .

c. Divide R into four squares with m = n = 2, and choose the sample point as the midpoint of each square:

(1/2, 1/2), (3/2, 1/2), (1/2, 3/2), and (3/2, 3/2) to approximate the signed volume.

480 Chapter 5 | Multiple Integration

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2

http://cnx.org/content/m53631/latest/
http://cnx.org/content/m53631/latest/


Figure 5.5 The function z = f (x, y) graphed over the

rectangular region R = [0, 2] × [0, 2].

Solution

a. As we can see, the function z = f (x, y) = 3x2 − y is above the plane. To find the signed volume of S,

we need to divide the region R into small rectangles Ri j, each with area ΔA and with sides Δx and

Δy, and choose (xi j* , yi j* ) as sample points in each Ri j. Hence, a double integral is set up as

V = ∬
R

⎛
⎝3x2 − y⎞

⎠dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n ⎡
⎣3⎛

⎝xi j* ⎞
⎠
2

− yi j* ⎤
⎦ΔA.

b. Approximating the signed volume using a Riemann sum with m = n = 2 we have

ΔA = ΔxΔy = 1 × 1 = 1. Also, the sample points are (1, 1), (2, 1), (1, 2), and (2, 2) as shown in the

following figure.

Figure 5.6 Subrectangles for the rectangular region
R = [0, 2] × [0, 2].

Chapter 5 | Multiple Integration 481



5.1

Hence,

V = ∑
i = 1

2
∑
j = 1

2
f (xi j* , yi j* )ΔA

= ∑
i = 1

2
( f (xi1* , yi1* ) + f (xi2* , yi2* ))ΔA

= f (x11* , y11* )ΔA + f (x21* , y21* )ΔA + f (x12* , y12* )ΔA + f (x22* , y22* )ΔA
= f (1, 1)(1) + f (2, 1)(1) + f (1, 2)(1) + f (2, 2)(1)
= (3 − 1)(1) + (12 − 1)(1) + (3 − 2)(1) + (12 − 2)(1)
= 2 + 11 + 1 + 10 = 24.

c. Approximating the signed volume using a Riemann sum with m = n = 2, we have

ΔA = ΔxΔy = 1 × 1 = 1. In this case the sample points are (1/2, 1/2), (3/2, 1/2), (1/2, 3/2),

and (3/2, 3/2).
Hence

V = ∑
i = 1

2
∑
j = 1

2
f (xi j* , yi j* )ΔA

= f (x11* , y11* )ΔA + f (x21* , y21* )ΔA + f (x12* , y12* )ΔA + f (x22* , y22* )ΔA
= f (1/2, 1/2)(1) + f (3/2, 1/2)(1) + f (1/2, 3/2)(1) + f (3/2, 3/2)(1)

= ⎛
⎝
3
4 − 1

4
⎞
⎠(1) + ⎛

⎝
27
4 − 1

2
⎞
⎠(1) + ⎛

⎝
3
4 − 3

2
⎞
⎠(1) + ⎛

⎝
27
4 − 3

2
⎞
⎠(1)

= 2
4 + 25

4 + ⎛
⎝−

3
4

⎞
⎠ + 21

4 = 45
4 = 11.

Analysis
Notice that the approximate answers differ due to the choices of the sample points. In either case, we are
introducing some error because we are using only a few sample points. Thus, we need to investigate how we can
achieve an accurate answer.

Use the same function z = f (x, y) = 3x2 − y over the rectangular region R = [0, 2] × [0, 2].

Divide R into the same four squares with m = n = 2, and choose the sample points as the upper left corner

point of each square (0, 1), (1, 1), (0, 2), and (1, 2) (Figure 5.6) to approximate the signed volume of the

solid S that lies above R and “under” the graph of f .

Note that we developed the concept of double integral using a rectangular region R. This concept can be extended to any
general region. However, when a region is not rectangular, the subrectangles may not all fit perfectly into R, particularly if
the base area is curved. We examine this situation in more detail in the next section, where we study regions that are not
always rectangular and subrectangles may not fit perfectly in the region R. Also, the heights may not be exact if the surface
z = f (x, y) is curved. However, the errors on the sides and the height where the pieces may not fit perfectly within the

solid S approach 0 as m and n approach infinity. Also, the double integral of the function z = f (x, y) exists provided that

the function f is not too discontinuous. If the function is bounded and continuous over R except on a finite number of

smooth curves, then the double integral exists and we say that f is integrable over R.

Since ΔA = ΔxΔy = ΔyΔx, we can express dA as dx dy or dy dx. This means that, when we are using rectangular

coordinates, the double integral over a region R denoted by ∬
R

f (x, y)dA can be written as ∬
R

f (x, y)dx dy or
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∬
R

f (x, y)dy dx.

Now let’s list some of the properties that can be helpful to compute double integrals.

Properties of Double Integrals
The properties of double integrals are very helpful when computing them or otherwise working with them. We list here six
properties of double integrals. Properties 1 and 2 are referred to as the linearity of the integral, property 3 is the additivity of
the integral, property 4 is the monotonicity of the integral, and property 5 is used to find the bounds of the integral. Property
6 is used if f (x, y) is a product of two functions g(x) and h(y).

Theorem 5.1: Properties of Double Integrals

Assume that the functions f (x, y) and g(x, y) are integrable over the rectangular region R; S and T are subregions of

R; and assume that m and M are real numbers.

i. The sum f (x, y) + g(x, y) is integrable and

∬
R

⎡
⎣ f (x, y) + g(x, y)⎤

⎦dA = ∬
R

f (x, y)dA + ∬
R

g(x, y)dA.

ii. If c is a constant, then c f (x, y) is integrable and

∬
R

c f (x, y)dA = c ∬
R

f (x, y)dA.

iii. If R = S ∪ T and S ∩ T = ∅ except an overlap on the boundaries, then

∬
R

f (x, y)dA = ∬
S

f (x, y)dA + ∬
T

f (x, y)dA.

iv. If f (x, y) ≥ g(x, y) for (x, y) in R, then

∬
R

f (x, y)dA ≥ ∬
R

g(x, y)dA.

v. If m ≤ f (x, y) ≤ M, then

m × A(R) ≤ ∬
R

f (x, y)dA ≤ M × A(R).

vi. In the case where f (x, y) can be factored as a product of a function g(x) of x only and a function h(y) of

y only, then over the region R = ⎧

⎩
⎨(x, y)|a ≤ x ≤ b, c ≤ y ≤ d⎫

⎭
⎬, the double integral can be written as

∬
R

f (x, y)dA =
⎛

⎝
⎜∫

a

b
g(x)dx

⎞

⎠
⎟
⎛

⎝
⎜∫

c

d
h(y)dy

⎞

⎠
⎟.

These properties are used in the evaluation of double integrals, as we will see later. We will become skilled in using these
properties once we become familiar with the computational tools of double integrals. So let’s get to that now.

Iterated Integrals
So far, we have seen how to set up a double integral and how to obtain an approximate value for it. We can also imagine that
evaluating double integrals by using the definition can be a very lengthy process if we choose larger values for m and n.
Therefore, we need a practical and convenient technique for computing double integrals. In other words, we need to learn
how to compute double integrals without employing the definition that uses limits and double sums.

The basic idea is that the evaluation becomes easier if we can break a double integral into single integrals by integrating
first with respect to one variable and then with respect to the other. The key tool we need is called an iterated integral.
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Definition

Assume a, b, c, and d are real numbers. We define an iterated integral for a function f (x, y) over the rectangular

region R = [a, b] × [c, d] as

a.

(5.2)
∫
a

b
∫
c

d
f (x, y)dy dx = ∫

a

b ⎡

⎣
⎢∫

c

d
f (x, y)dy

⎤

⎦
⎥dx

b.

(5.3)
∫
c

d
∫
a

b
f (x, y)dx dy = ∫

c

d ⎡

⎣
⎢∫

a

b
f (x, y)dx

⎤

⎦
⎥dy.

The notation ∫
a

b ⎡

⎣
⎢∫

c

d
f (x, y)dy

⎤

⎦
⎥dx means that we integrate f (x, y) with respect to y while holding x constant. Similarly,

the notation ∫
c

d ⎡

⎣
⎢∫

a

b
f (x, y)dx

⎤

⎦
⎥dy means that we integrate f (x, y) with respect to x while holding y constant. The fact that

double integrals can be split into iterated integrals is expressed in Fubini’s theorem. Think of this theorem as an essential
tool for evaluating double integrals.

Theorem 5.2: Fubini’s Theorem

Suppose that f (x, y) is a function of two variables that is continuous over a rectangular region

R = ⎧

⎩
⎨(x, y) ∈ ℝ2 |a ≤ x ≤ b, c ≤ y ≤ d⎫

⎭
⎬. Then we see from Figure 5.7 that the double integral of f over the region

equals an iterated integral,

∬
R

f (x, y)dA = ∬
R

f (x, y)dx dy = ∫
a

b
∫
c

d
f (x, y)dy dx = ∫

c

d
∫
a

b
f (x, y)dx dy.

More generally, Fubini’s theorem is true if f is bounded on R and f is discontinuous only on a finite number of

continuous curves. In other words, f has to be integrable over R.
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Figure 5.7 (a) Integrating first with respect to y and then with respect to x to find the area A(x) and then the volume V;

(b) integrating first with respect to x and then with respect to y to find the area A(y) and then the volume V.

Example 5.2

Using Fubini’s Theorem

Use Fubini’s theorem to compute the double integral ∬
R

f (x, y)dA where f (x, y) = x and

R = [0, 2] × [0, 1].

Solution

Fubini’s theorem offers an easier way to evaluate the double integral by the use of an iterated integral. Note how
the boundary values of the region R become the upper and lower limits of integration.

∬
R

f (x, y)dA = ∬
R

f (x, y)dx dy

= ∫
y = 0

y = 1
∫

x = 0

x = 2
x dx dy

= ∫
y = 0

y = 1⎡

⎣
⎢x2

2 |x = 0

x = 2⎤

⎦
⎥dy

= ∫
y = 0

y = 1
2dy = 2y|y = 0

y = 1 = 2.

The double integration in this example is simple enough to use Fubini’s theorem directly, allowing us to convert a double
integral into an iterated integral. Consequently, we are now ready to convert all double integrals to iterated integrals and
demonstrate how the properties listed earlier can help us evaluate double integrals when the function f (x, y) is more

complex. Note that the order of integration can be changed (see Example 5.7).
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Example 5.3

Illustrating Properties i and ii

Evaluate the double integral ∬
R

⎛
⎝xy − 3xy2⎞

⎠dA where R = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 2, 1 ≤ y ≤ 2⎫

⎭
⎬.

Solution

This function has two pieces: one piece is xy and the other is 3xy2. Also, the second piece has a constant 3.
Notice how we use properties i and ii to help evaluate the double integral.

∬
R

⎛
⎝xy − 3xy2⎞

⎠dA

= ∬
R

xy dA + ∬
R

⎛
⎝−3xy2⎞

⎠dA Property i: Integral of a sum is the sum of the integrals.

= ∫
y = 1

y = 2
∫

x = 0

x = 2
xy dx dy − ∫

y = 1

y = 2
∫

x = 0

x = 2
3xy2 dx dy Convert double integrals to iterated integrals.

= ∫
y = 1

y = 2
⎛
⎝

x2
2 y⎞

⎠|x = 0

x = 2
dy − 3∫

y = 1

y = 2
⎛
⎝

x2
2 y2⎞

⎠|x = 0

x = 2
dy Integrate with respect to x, holding y constant.

= ∫
y = 1

y = 2
2y dy − ∫

y = 1

y = 2
6y2 dy Property ii: Placing the constant before the integral.

= ∫
1

2
y dy − 6∫

1

2
y2 dy Integrate with respect to y.

= 2y2
2 |12 − 6y3

3 |12
= y2|12 − 2y3|12
= (4 − 1) − 2(8 − 1)
= 3 − 2(7) = 3 − 14 = −11.

Example 5.4

Illustrating Property v.

Over the region R = ⎧

⎩
⎨(x, y)|1 ≤ x ≤ 3, 1 ≤ y ≤ 2⎫

⎭
⎬, we have 2 ≤ x2 + y2 ≤ 13. Find a lower and an upper

bound for the integral ∬
R

⎛
⎝x2 + y2⎞

⎠dA.

Solution

For a lower bound, integrate the constant function 2 over the region R. For an upper bound, integrate the constant

function 13 over the region R.
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5.2

∫
1

2
∫

1

3
2dx dy = ∫

1

2
⎡
⎣2x|1

3⎤
⎦dy = ∫

1

2
2(2)dy = 4y|12 = 4(2 − 1) = 4

∫
1

2
∫

1

3
13dx dy = ∫

1

2
⎡
⎣13x|1

3⎤
⎦dy = ∫

1

2
13(2)dy = 26y|12 = 26(2 − 1) = 26.

Hence, we obtain 4 ≤ ∬
R

⎛
⎝x2 + y2⎞

⎠dA ≤ 26.

Example 5.5

Illustrating Property vi

Evaluate the integral ∬
R

ey cos x dA over the region R =
⎧

⎩
⎨(x, y)|0 ≤ x ≤ π

2, 0 ≤ y ≤ 1
⎫

⎭
⎬.

Solution

This is a great example for property vi because the function f (x, y) is clearly the product of two single-variable

functions ey and cos x. Thus we can split the integral into two parts and then integrate each one as a single-

variable integration problem.

∬
R

ey cos x dA = ∫
0

1
∫

0

π/2
ey cos x dx dy

=
⎛

⎝
⎜∫

0

1
ey dy

⎞

⎠
⎟
⎛

⎝
⎜∫

0

π/2
cos x dx

⎞

⎠
⎟

= ⎛
⎝ey|01⎞

⎠
⎛
⎝sin x|0π/2⎞

⎠

= e − 1.

a. Use the properties of the double integral and Fubini’s theorem to evaluate the integral

∫
0

1
∫

−1

3
⎛
⎝3 − x + 4y⎞

⎠dy dx.

b. Show that 0 ≤ ∬
R

sin πx cos πy dA ≤ 1
32 where R = ⎛

⎝0, 1
4

⎞
⎠
⎛
⎝
1
4, 1

2
⎞
⎠.

As we mentioned before, when we are using rectangular coordinates, the double integral over a region R denoted by

∬
R

f (x, y)dA can be written as ∬
R

f (x, y)dx dy or ∬
R

f (x, y)dy dx. The next example shows that the results are the

same regardless of which order of integration we choose.

Example 5.6

Evaluating an Iterated Integral in Two Ways
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5.3

Let’s return to the function f (x, y) = 3x2 − y from Example 5.1, this time over the rectangular region

R = [0, 2] × [0, 3]. Use Fubini’s theorem to evaluate ∬
R

f (x, y)dA in two different ways:

a. First integrate with respect to y and then with respect to x;

b. First integrate with respect to x and then with respect to y.

Solution

Figure 5.7 shows how the calculation works in two different ways.

a. First integrate with respect to y and then integrate with respect to x:

∬
R

f (x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = 3
(3x2 − y)dy dx

= ∫
x = 0

x = 2⎛

⎝
⎜ ∫

y = 0

y = 3

(3x2 − y)dy
⎞

⎠
⎟dx = ∫

x = 0

x = 2⎡

⎣
⎢
⎢3x2 y − y2

2 |y = 0

y = 3⎤

⎦
⎥
⎥dx

= ∫
x = 0

x = 2
⎛
⎝9x2 − 9

2
⎞
⎠dx = 3x3 − 9

2x|x = 0
x = 2

= 15.

b. First integrate with respect to x and then integrate with respect to y:

∬
R

f (x, y)dA = ∫
y = 0

y = 3
∫

x = 0

x = 2
(3x2 − y)dx dy

= ∫
y = 0

y = 3⎛

⎝
⎜∫

x = 0

x = 2
(3x2 − y)dx

⎞

⎠
⎟dy = ∫

y = 0

y = 3⎡
⎣x3 − xy|x = 0

x = 2⎤
⎦dy

= ∫
y = 0

y = 3
⎛
⎝8 − 2y⎞

⎠dy = 8y − y2|y = 0

y = 3
= 15.

Analysis
With either order of integration, the double integral gives us an answer of 15. We might wish to interpret

this answer as a volume in cubic units of the solid S below the function f (x, y) = 3x2 − y over the region

R = [0, 2] × [0, 3]. However, remember that the interpretation of a double integral as a (non-signed) volume

works only when the integrand f is a nonnegative function over the base region R.

Evaluate ∫
y = −3

y = 2
∫

x = 3

x = 5
⎛
⎝2 − 3x2 + y2⎞

⎠dx dy.

In the next example we see that it can actually be beneficial to switch the order of integration to make the computation
easier. We will come back to this idea several times in this chapter.

Example 5.7

Switching the Order of Integration

Consider the double integral ∬
R

x sin(xy)dA over the region R = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2⎫

⎭
⎬ (Figure 5.8).
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a. Express the double integral in two different ways.

b. Analyze whether evaluating the double integral in one way is easier than the other and why.

c. Evaluate the integral.

Figure 5.8 The function z = f (x, y) = x sin(xy) over the rectangular region

R = [0, π] × [1, 2].

Solution

a. We can express ∬
R

x sin(xy)dA in the following two ways: first by integrating with respect to y and

then with respect to x; second by integrating with respect to x and then with respect to y.

∬
R

x sin(xy)dA

= ∫
x = 0

x = π
∫

y = 1

y = 2

x sin(xy)dy dx Integrate fir t with respect to y.

= ∫
y = 1

y = 2

∫
x = 0

x = π
x sin(xy)dx dy Integrate fir t with respect to x.

b. If we want to integrate with respect to y first and then integrate with respect to x, we see that we can use

the substitution u = xy, which gives du = x dy. Hence the inner integral is simply ∫ sin u du and we

can change the limits to be functions of x,

∬
R

x sin(xy)dA = ∫
x = 0

x = π
∫

y = 1

y = 2

x sin(xy)dy dx = ∫
x = 0

x = π⎡

⎣
⎢ ∫

u = x

u = 2x
sin(u)du

⎤

⎦
⎥dx.
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5.4

However, integrating with respect to x first and then integrating with respect to y requires integration

by parts for the inner integral, with u = x and dv = sin(xy)dx.

Then du = dx and v = − cos(xy)
y , so

∬
R

x sin(xy)dA = ∫
y = 1

y = 2

∫
x = 0

x = π
x sin(xy)dx dy = ∫

y = 1

y = 2⎡

⎣
⎢− x cos(xy)

y |x = 0

x = π
+ 1

y ∫
x = 0

x = π
cos(xy)dx

⎤

⎦
⎥dy.

Since the evaluation is getting complicated, we will only do the computation that is easier to do, which is
clearly the first method.

c. Evaluate the double integral using the easier way.

∬
R

x sin(xy)dA = ∫
x = 0

x = π
∫

y = 1

y = 2

x sin(xy)dy dx

= ∫
x = 0

x = π⎡

⎣
⎢ ∫

u = x

u = 2x
sin(u)du

⎤

⎦
⎥dx = ∫

x = 0

x = π
⎡
⎣−cos u|u = x

u = 2x⎤
⎦dx = ∫

x = 0

x = π
(−cos 2x + cos x)dx

= − 1
2sin 2x + sin x|x = 0

x = π
= 0.

Evaluate the integral ∬
R

xexy dA where R = [0, 1] × [0, ln 5].

Applications of Double Integrals
Double integrals are very useful for finding the area of a region bounded by curves of functions. We describe this situation
in more detail in the next section. However, if the region is a rectangular shape, we can find its area by integrating the
constant function f (x, y) = 1 over the region R.

Definition

The area of the region R is given by A(R) = ∬
R

1dA.

This definition makes sense because using f (x, y) = 1 and evaluating the integral make it a product of length and width.

Let’s check this formula with an example and see how this works.

Example 5.8

Finding Area Using a Double Integral

Find the area of the region R = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2⎫

⎭
⎬ by using a double integral, that is, by integrating

1 over the region R.
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Solution

The region is rectangular with length 3 and width 2, so we know that the area is 6. We get the same answer when
we use a double integral:

A(R) = ∫
0

2
∫
0

3
1dx dy = ∫

0

2
⎡
⎣x|0

3⎤
⎦dy = ∫

0

2
3dy = 3∫

0

2
dy = 3y|0

2 = 3(2) = 6.

We have already seen how double integrals can be used to find the volume of a solid bounded above by a function f (x, y)
over a region R provided f (x, y) ≥ 0 for all (x, y) in R. Here is another example to illustrate this concept.

Example 5.9

Volume of an Elliptic Paraboloid

Find the volume V of the solid S that is bounded by the elliptic paraboloid 2x2 + y2 + z = 27, the planes

x = 3 and y = 3, and the three coordinate planes.

Solution

First notice the graph of the surface z = 27 − 2x2 − y2 in Figure 5.9(a) and above the square region

R1 = [−3, 3] × [−3, 3]. However, we need the volume of the solid bounded by the elliptic paraboloid

2x2 + y2 + z = 27, the planes x = 3 and y = 3, and the three coordinate planes.

Figure 5.9 (a) The surface z = 27 − 2x2 − y2 above the square region R1 = [−3, 3] × [−3, 3]. (b) The

solid S lies under the surface z = 27 − 2x2 − y2 above the square region R2 = [0, 3] × [0, 3].

Now let’s look at the graph of the surface in Figure 5.9(b). We determine the volume V by evaluating the double
integral over R2 :
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V = ∬
R

z dA = ∬
R

⎛
⎝27 − 2x2 − y2⎞

⎠dA

= ∫
y = 0

y = 3

∫
x = 0

x = 3
⎛
⎝27 − 2x2 − y2⎞

⎠dx dy Convert to iterated integral.

= ∫
y = 0

y = 3
⎡
⎣27x − 2

3x3 − y2 x⎤
⎦|x = 0

x = 3
dy Integrate with respect to x.

= ∫
y = 0

y = 3
⎛
⎝64 − 3y2⎞

⎠dy = 63y − y3|y = 0

y = 3
= 162.

Find the volume of the solid bounded above by the graph of f (x, y) = xy sin(x2 y) and below by the xy
-plane on the rectangular region R = [0, 1] × [0, π].

Recall that we defined the average value of a function of one variable on an interval [a, b] as

fave = 1
b − a∫

a

b
f (x)dx.

Similarly, we can define the average value of a function of two variables over a region R. The main difference is that we
divide by an area instead of the width of an interval.

Definition

The average value of a function of two variables over a region R is

(5.4)fave = 1
Area R ∬

R
f (x, y)dA.

In the next example we find the average value of a function over a rectangular region. This is a good example of obtaining
useful information for an integration by making individual measurements over a grid, instead of trying to find an algebraic
expression for a function.

Example 5.10

Calculating Average Storm Rainfall

The weather map in Figure 5.10 shows an unusually moist storm system associated with the remnants of
Hurricane Karl, which dumped 4–8 inches (100–200 mm) of rain in some parts of the Midwest on September
22–23, 2010. The area of rainfall measured 300 miles east to west and 250 miles north to south. Estimate the
average rainfall over the entire area in those two days.
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Figure 5.10 Effects of Hurricane Karl, which dumped 4–8 inches (100–200 mm) of rain in some parts of southwest
Wisconsin, southern Minnesota, and southeast South Dakota over a span of 300 miles east to west and 250 miles north
to south.

Solution

Place the origin at the southwest corner of the map so that all the values can be considered as being in the first
quadrant and hence all are positive. Now divide the entire map into six rectangles (m = 2 and n = 3), as shown

in Figure 5.11. Assume f (x, y) denotes the storm rainfall in inches at a point approximately x miles to the

east of the origin and y miles to the north of the origin. Let R represent the entire area of 250 × 300 = 75000
square miles. Then the area of each subrectangle is

ΔA = 1
6(75000) = 12500.

Assume (xi j* , yi j* ) are approximately the midpoints of each subrectangle Ri j. Note the color-coded region at

each of these points, and estimate the rainfall. The rainfall at each of these points can be estimated as:

At (x11, y11) the rainfall is 0.08.

At (x12, y12) the rainfall is 0.08.

At (x13, y13) the rainfall is 0.01.

At (x21, y21) the rainfall is 1.70.

At (x22, y22) the rainfall is 1.74.

At (x23, y23) the rainfall is 3.00.
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Figure 5.11 Storm rainfall with rectangular axes and showing the midpoints of each
subrectangle.

According to our definition, the average storm rainfall in the entire area during those two days was

fave = 1
Area R ∬

R
f (x, y)dx dy = 1

75000 ∬
R

f (x, y)dx dy

≅ 1
75,000 ∑

i = 1

3
∑
j = 1

2
f (xi j* , yi j* )ΔA

≅ 1
75,000

⎡
⎣ f (x11* , y11* )ΔA + f (x12* , y12* )ΔA

+ f (x13* , y13* )ΔA + f (x21* , y21* )ΔA + f (x22* , y22* )ΔA + f (x23* , y23* )ΔA⎤
⎦

≅ 1
75,000[0.08 + 0.08 + 0.01 + 1.70 + 1.74 + 3.00]ΔA

≅ 1
75,000[0.08 + 0.08 + 0.01 + 1.70 + 1.74 + 3.00]12500

≅ 5
30[0.08 + 0.08 + 0.01 + 1.70 + 1.74 + 3.00]

≅ 1.10.

During September 22–23, 2010 this area had an average storm rainfall of approximately 1.10 inches.
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5.6 A contour map is shown for a function f (x, y) on the rectangle R = [−3, 6] × [−1, 4].

a. Use the midpoint rule with m = 3 and n = 2 to estimate the value of ∬
R

f (x, y)dA.

b. Estimate the average value of the function f (x, y).
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5.1 EXERCISES
In the following exercises, use the midpoint rule with
m = 4 and n = 2 to estimate the volume of the solid

bounded by the surface z = f (x, y), the vertical planes

x = 1, x = 2, y = 1, and y = 2, and the horizontal

plane z = 0.

1. f (x, y) = 4x + 2y + 8xy

2. f (x, y) = 16x2 + y
2

In the following exercises, estimate the volume of the solid
under the surface z = f (x, y) and above the rectangular

region R by using a Riemann sum with m = n = 2 and

the sample points to be the lower left corners of the
subrectangles of the partition.

3. f (x, y) = sin x − cos y, R = [0, π] × [0, π]

4. f (x, y) = cos x + cos y, R = [0, π] × ⎡
⎣0, π

2
⎤
⎦

5. Use the midpoint rule with m = n = 2 to estimate

∬
R

f (x, y)dA, where the values of the function f on

R = [8, 10] × [9, 11] are given in the following table.

y

x 9 9.5 10 10.5 11

8 9.8 5 6.7 5 5.6

8.5 9.4 4.5 8 5.4 3.4

9 8.7 4.6 6 5.5 3.4

9.5 6.7 6 4.5 5.4 6.7

10 6.8 6.4 5.5 5.7 6.8

6. The values of the function f on the rectangle
R = [0, 2] × [7, 9] are given in the following table.

Estimate the double integral ∬
R

f (x, y)dA by using a

Riemann sum with m = n = 2. Select the sample points to

be the upper right corners of the subsquares of R.

y0 = 7 y1 = 8 y2 = 9

x0 = 0 10.22 10.21 9.85

x1 = 1 6.73 9.75 9.63

x2 = 2 5.62 7.83 8.21

7. The depth of a children’s 4-ft by 4-ft swimming pool,
measured at 1-ft intervals, is given in the following table.

a. Estimate the volume of water in the swimming pool
by using a Riemann sum with m = n = 2. Select

the sample points using the midpoint rule on
R = [0, 4] × [0, 4].

b. Find the average depth of the swimming pool.

y

x 0 1 2 3 4

0 1 1.5 2 2.5 3

1 1 1.5 2 2.5 3

2 1 1.5 1.5 2.5 3

3 1 1 1.5 2 2.5

4 1 1 1 1.5 2
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8. The depth of a 3-ft by 3-ft hole in the ground, measured
at 1-ft intervals, is given in the following table.

a. Estimate the volume of the hole by using a
Riemann sum with m = n = 3 and the sample

points to be the upper left corners of the subsquares
of R.

b. Find the average depth of the hole.

y

x 0 1 2 3

0 6 6.5 6.4 6

1 6.5 7 7.5 6.5

2 6.5 6.7 6.5 6

3 6 6.5 5 5.6

9. The level curves f (x, y) = k of the function f are given

in the following graph, where k is a constant.
a. Apply the midpoint rule with m = n = 2 to

estimate the double integral ∬
R

f (x, y)dA, where

R = [0.2, 1] × [0, 0.8].
b. Estimate the average value of the function f on R.

10. The level curves f (x, y) = k of the function f are

given in the following graph, where k is a constant.
a. Apply the midpoint rule with m = n = 2 to

estimate the double integral ∬
R

f (x, y)dA, where

R = [0.1, 0.5] × [0.1, 0.5].
b. Estimate the average value of the function f on R.

11. The solid lying under the surface z = 4 − y2 and

above the rectangular region R = [0, 2] × [0, 2] is

illustrated in the following graph. Evaluate the double

integral ∬
R

f (x, y)dA, where f (x, y) = 4 − y2, by

finding the volume of the corresponding solid.
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12. The solid lying under the plane z = y + 4 and above

the rectangular region R = [0, 2] × [0, 4] is illustrated

in the following graph. Evaluate the double integral
∬
R

f (x, y)dA, where f (x, y) = y + 4, by finding the

volume of the corresponding solid.

In the following exercises, calculate the integrals by
interchanging the order of integration.

13. ∫
−1

1 ⎛

⎝
⎜∫

−2

2
⎛
⎝2x + 3y + 5⎞

⎠dx
⎞

⎠
⎟dy

14. ∫
0

2 ⎛

⎝
⎜∫

0

1
(x + 2ey − 3)dx

⎞

⎠
⎟dy

15. ∫
1

27⎛

⎝
⎜∫

1

2
⎛
⎝ x3 + y3 ⎞

⎠dy
⎞

⎠
⎟dx

16. ∫
1

16⎛

⎝
⎜∫

1

8
⎛
⎝ x4 + 2 y3 ⎞

⎠dy
⎞

⎠
⎟dx

17. ∫
ln 2

ln 3⎛

⎝
⎜∫

0

l
ex + y dy

⎞

⎠
⎟dx

18. ∫
0

2 ⎛

⎝
⎜∫

0

1
3x + y dy

⎞

⎠
⎟dx

19. ∫
1

6 ⎛

⎝
⎜∫

2

9
y

x2dy
⎞

⎠
⎟dx

20. ∫
1

9 ⎛

⎝
⎜∫

4

2
x

y2dy
⎞

⎠
⎟dx

In the following exercises, evaluate the iterated integrals by
choosing the order of integration.

21. ∫
0

π
∫
0

π/2
sin(2x)cos(3y)dx dy

22. ∫
π/12

π/8
∫
π/4

π/3
⎡
⎣cot x + tan(2y)⎤

⎦dx dy

23. ∫
1

e
∫
1

e
⎡
⎣
1
xsin(ln x) + 1

ycos(ln y)⎤
⎦dx dy

24. ∫
1

e
∫
1

e
sin(ln x)cos(ln y)

xy dx dy

25. ∫
1

2
∫
1

2 ⎛
⎝
ln y

x + x
2y + 1

⎞
⎠dy dx

26. ∫
1

e
∫
1

2
x2 ln(x)dy dx

27. ∫
1

3
∫
1

2
y arctan⎛

⎝
1
x

⎞
⎠dy dx

28. ∫
0

1
∫
0

1/2
⎛
⎝arcsin x + arcsin y⎞

⎠dy dx

29. ∫
0

1
∫
1

2
xex + 4ydy dx

30. ∫
1

2
∫
0

1
xex − ydy dx

31. ∫
1

e
∫
1

e
⎛
⎝
ln y

y + ln x
x

⎞
⎠dy dx

32. ∫
1

e
∫
1

e
⎛
⎝
x ln y

y + y ln x
x

⎞
⎠dy dx

33. ∫
0

1
∫
1

2 ⎛

⎝
⎜ x
x2 + y2

⎞

⎠
⎟dy dx

34. ∫
0

1
∫
1

2
y

x + y2dy dx

In the following exercises, find the average value of the
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function over the given rectangles.

35. f (x, y) = −x + 2y, R = [0, 1] × [0, 1]

36. f (x, y) = x4 + 2y3, R = [1, 2] × [2, 3]

37. f (x, y) = sinh x + sinh y, R = [0, 1] × [0, 2]

38. f (x, y) = arctan(xy), R = [0, 1] × [0, 1]

39. Let f and g be two continuous functions such that
0 ≤ m1 ≤ f (x) ≤ M1 for any x ∈ [a, b] and

0 ≤ m2 ≤ g(y) ≤ M2 for any y ∈ [c, d]. Show that the

following inequality is true:

m1 m2(b − a)(c − d) ≤ ∫
a

b
∫
c

d
f (x)g(y)dy dx ≤ M1 M2(b − a)(c − d).

In the following exercises, use property v. of double
integrals and the answer from the preceding exercise to
show that the following inequalities are true.

40. 1
e2 ≤ ∬

R
e−x2 − y2

dA ≤ 1, where

R = [0, 1] × [0, 1]

41. π2

144 ≤ ∬
R

sin x cos y dA ≤ π2

48, where

R = ⎡
⎣
π
6, π

3
⎤
⎦ × ⎡

⎣
π
6, π

3
⎤
⎦

42. 0 ≤ ∬
R

e−y cos x dA ≤ π
2, where

R = ⎡
⎣0, π

2
⎤
⎦ × ⎡

⎣0, π
2

⎤
⎦

43. 0 ≤ ∬
R

(ln x)⎛
⎝ln y⎞

⎠dA ≤ (e − 1)2, where

R = [1, e] × [1, e]

44. Let f and g be two continuous functions such that
0 ≤ m1 ≤ f (x) ≤ M1 for any x ∈ [a, b] and

0 ≤ m2 ≤ g(y) ≤ M2 for any y ∈ [c, d]. Show that the

following inequality is true:

(m1 + m2)(b − a)(c − d) ≤ ∫
a

b
∫
c

d
⎡
⎣ f (x) + g(y)⎤

⎦dy dx ≤ ⎛
⎝M1 + M2

⎞
⎠(b − a)(c − d).

In the following exercises, use property v. of double
integrals and the answer from the preceding exercise to
show that the following inequalities are true.

45. 2
e ≤ ∬

R

⎛
⎝e−x2

+ e−y2⎞
⎠dA ≤ 2, where

R = [0, 1] × [0, 1]

46. π2

36 ≤ ∬
R

⎛
⎝sin x + cos y⎞

⎠dA ≤ π2 3
36 , where

R = ⎡
⎣
π
6, π

3
⎤
⎦ × ⎡

⎣
π
6, π

3
⎤
⎦

47. π
2e−π/2 ≤ ∬

R

⎛
⎝cos x + e−y⎞

⎠dA ≤ π, where

R = ⎡
⎣0, π

2
⎤
⎦ × ⎡

⎣0, π
2

⎤
⎦

48. 1
e ≤ ∬

R

⎛
⎝e

−y − ln x⎞
⎠dA ≤ 2, where

R = [0, 1] × [0, 1]

In the following exercises, the function f is given in terms
of double integrals.

a. Determine the explicit form of the function f.

b. Find the volume of the solid under the surface
z = f (x, y) and above the region R.

c. Find the average value of the function f on R.

d. Use a computer algebra system (CAS) to plot
z = f (x, y) and z = fave in the same system of

coordinates.

49. [T] f (x, y) = ∫
0

y

∫
0

x
(xs + yt)ds dt, where

(x, y) ∈ R = [0, 1] × [0, 1]

50. [T] f (x, y) = ∫
0

x
∫
0

y
⎡
⎣cos(s) + cos(t)⎤

⎦dt ds, where

(x, y) ∈ R = [0, 3] × [0, 3]

51. Show that if f and g are continuous on [a, b] and

[c, d], respectively, then

∫
a

b
∫
c

d
⎡
⎣ f (x) + g(y)⎤

⎦dy dx = (d − c)∫
a

b
f (x)dx

+∫
a

b
∫
c

d
g(y)dy dx = (b − a)∫

c

d
g(y)dy + ∫

c

d
∫
a

b
f (x)dx dy.

52. Show that

∫
a

b
∫
c

d
y f (x) + xg(y)dy dx = 1

2
⎛
⎝d2 − c2⎞

⎠

⎛

⎝
⎜∫

a

b
f (x)dx

⎞

⎠
⎟ + 1

2
⎛
⎝b2 − a2⎞

⎠

⎛

⎝
⎜∫

c

d
g(y)dy

⎞

⎠
⎟.
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53. [T] Consider the function f (x, y) = e−x2 − y2
,

where (x, y) ∈ R = [−1, 1] × [−1, 1].
a. Use the midpoint rule with m = n = 2, 4,…, 10

to estimate the double integral

I = ∬
R

e−x2 − y2
dA. Round your answers to the

nearest hundredths.
b. For m = n = 2, find the average value of f over

the region R. Round your answer to the nearest
hundredths.

c. Use a CAS to graph in the same coordinate system
the solid whose volume is given by

∬
R

e−x2 − y2
dA and the plane z = fave.

54. [T] Consider the function f (x, y) = sin⎛
⎝x2⎞

⎠cos⎛
⎝y2⎞

⎠,

where (x, y) ∈ R = [−1, 1] × [−1, 1].
a. Use the midpoint rule with m = n = 2, 4,…, 10

to estimate the double integral

I = ∬
R

sin⎛
⎝x2⎞

⎠cos⎛
⎝y2⎞

⎠dA. Round your answers to

the nearest hundredths.
b. For m = n = 2, find the average value of f over

the region R. Round your answer to the nearest
hundredths.

c. Use a CAS to graph in the same coordinate system
the solid whose volume is given by

∬
R

sin⎛
⎝x2⎞

⎠cos⎛
⎝y2⎞

⎠dA and the plane z = fave.

In the following exercises, the functions fn are given,

where n ≥ 1 is a natural number.

a. Find the volume of the solids Sn under the

surfaces z = fn(x, y) and above the region R.

b. Determine the limit of the volumes of the solids Sn

as n increases without bound.

55.
f (x, y) = xn + yn + xy, (x, y) ∈ R = [0, 1] × [0, 1]

56. f (x, y) = 1
xn + 1

yn, (x, y) ∈ R = [1, 2] × [1, 2]

57. Show that the average value of a function f on a
rectangular region R = [a, b] × [c, d] is

fave ≈ 1
mn ∑

i = 1

m
∑
j = 1

n
f ⎛

⎝xi j* , yi j* ⎞
⎠, where

⎛
⎝xi j* , yi j* ⎞

⎠ are

the sample points of the partition of R, where 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

58. Use the midpoint rule with m = n to show that the

average value of a function f on a rectangular region
R = [a, b] × [c, d] is approximated by

fave ≈ 1
n2 ∑

i, j = 1

n
f ⎛
⎝
1
2(xi − 1 + xi), 1

2
⎛
⎝y j − 1 + y j

⎞
⎠
⎞
⎠.

59. An isotherm map is a chart connecting points having
the same temperature at a given time for a given period of
time. Use the preceding exercise and apply the midpoint
rule with m = n = 2 to find the average temperature over

the region given in the following figure.
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5.2 | Double Integrals over General Regions

Learning Objectives
5.2.1 Recognize when a function of two variables is integrable over a general region.

5.2.2 Evaluate a double integral by computing an iterated integral over a region bounded by two
vertical lines and two functions of x, or two horizontal lines and two functions of y.

5.2.3 Simplify the calculation of an iterated integral by changing the order of integration.

5.2.4 Use double integrals to calculate the volume of a region between two surfaces or the area
of a plane region.

5.2.5 Solve problems involving double improper integrals.

In Double Integrals over Rectangular Regions, we studied the concept of double integrals and examined the tools
needed to compute them. We learned techniques and properties to integrate functions of two variables over rectangular
regions. We also discussed several applications, such as finding the volume bounded above by a function over a rectangular
region, finding area by integration, and calculating the average value of a function of two variables.

In this section we consider double integrals of functions defined over a general bounded region D on the plane. Most of

the previous results hold in this situation as well, but some techniques need to be extended to cover this more general case.

General Regions of Integration
An example of a general bounded region D on a plane is shown in Figure 5.12. Since D is bounded on the plane, there

must exist a rectangular region R on the same plane that encloses the region D, that is, a rectangular region R exists

such that D is a subset of R(D ⊆ R).

Figure 5.12 For a region D that is a subset of R, we can

define a function g(x, y) to equal f (x, y) at every point in D
and 0 at every point of R not in D.

Suppose z = f (x, y) is defined on a general planar bounded region D as in Figure 5.12. In order to develop double

integrals of f over D, we extend the definition of the function to include all points on the rectangular region R and then

use the concepts and tools from the preceding section. But how do we extend the definition of f to include all the points

on R? We do this by defining a new function g(x, y) on R as follows:

g(x, y) =
⎧

⎩
⎨

f (x, y) if (x, y) is in D
0 if (x, y) is in R but not in D

Note that we might have some technical difficulties if the boundary of D is complicated. So we assume the boundary to

be a piecewise smooth and continuous simple closed curve. Also, since all the results developed in Double Integrals
over Rectangular Regions used an integrable function f (x, y), we must be careful about g(x, y) and verify that
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g(x, y) is an integrable function over the rectangular region R. This happens as long as the region D is bounded by

simple closed curves. For now we will concentrate on the descriptions of the regions rather than the function and extend our
theory appropriately for integration.

We consider two types of planar bounded regions.

Definition

A region D in the (x, y) -plane is of Type I if it lies between two vertical lines and the graphs of two continuous

functions g1 (x) and g2 (x). That is (Figure 5.13),

D = ⎧

⎩
⎨(x, y)|a ≤ x ≤ b, g1 (x) ≤ y ≤ g2 (x)⎫

⎭
⎬.

A region D in the xy plane is of Type II if it lies between two horizontal lines and the graphs of two continuous

functions h1 (y) and h2 (y). That is (Figure 5.14),

D = ⎧

⎩
⎨(x, y)|c ≤ y ≤ d, h1 (y) ≤ x ≤ h2 (y)⎫

⎭
⎬.

Figure 5.13 A Type I region lies between two vertical lines and the graphs of two functions of x.

Figure 5.14 A Type II region lies between two horizontal lines and the graphs of two
functions of y.

Example 5.11

Describing a Region as Type I and Also as Type II

Consider the region in the first quadrant between the functions y = x and y = x3 (Figure 5.15). Describe the

region first as Type I and then as Type II.
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5.7

Figure 5.15 Region D can be described as Type I or as Type

II.

Solution

When describing a region as Type I, we need to identify the function that lies above the region and the function

that lies below the region. Here, region D is bounded above by y = x and below by y = x3 in the interval for

x in [0, 1]. Hence, as Type I, D is described as the set
⎧

⎩
⎨(x, y)|0 ≤ x ≤ 1, x3 ≤ y ≤ x⎫

⎭
⎬.

However, when describing a region as Type II, we need to identify the function that lies on the left of the region

and the function that lies on the right of the region. Here, the region D is bounded on the left by x = y2

and on the right by x = y3 in the interval for y in [0, 1]. Hence, as Type II, D is described as the set
⎧

⎩
⎨(x, y)|0 ≤ y ≤ 1, y2 ≤ x ≤ y3 ⎫

⎭
⎬.

Consider the region in the first quadrant between the functions y = 2x and y = x2. Describe the region

first as Type I and then as Type II.

Double Integrals over Nonrectangular Regions
To develop the concept and tools for evaluation of a double integral over a general, nonrectangular region, we need to first
understand the region and be able to express it as Type I or Type II or a combination of both. Without understanding the
regions, we will not be able to decide the limits of integrations in double integrals. As a first step, let us look at the following
theorem.

Theorem 5.3: Double Integrals over Nonrectangular Regions

Suppose g(x, y) is the extension to the rectangle R of the function f (x, y) defined on the regions D and R as

shown in Figure 5.12 inside R. Then g(x, y) is integrable and we define the double integral of f (x, y) over D by

∬
D

f (x, y)dA = ∬
R

g(x, y)dA.

The right-hand side of this equation is what we have seen before, so this theorem is reasonable because R is a rectangle

and ∬
R

g(x, y)dA has been discussed in the preceding section. Also, the equality works because the values of g(x, y)

are 0 for any point (x, y) that lies outside D, and hence these points do not add anything to the integral. However, it is

important that the rectangle R contains the region D.
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As a matter of fact, if the region D is bounded by smooth curves on a plane and we are able to describe it as Type I or Type

II or a mix of both, then we can use the following theorem and not have to find a rectangle R containing the region.

Theorem 5.4: Fubini’s Theorem (Strong Form)

For a function f (x, y) that is continuous on a region D of Type I, we have

(5.5)

∬
D

f (x, y)dA = ∬
D

f (x, y)dy dx = ∫
a

b ⎡

⎣
⎢
⎢ ∫
g1(x)

g2(x)

f (x, y)dy
⎤

⎦
⎥
⎥dx.

Similarly, for a function f (x, y) that is continuous on a region D of Type II, we have

(5.6)

∬
D

f (x, y)dA = ∬
D

f (x, y)dx dy = ∫
c

d ⎡

⎣
⎢
⎢ ∫
h1(y)

h2(y)

f (x, y)dx
⎤

⎦
⎥
⎥dy.

The integral in each of these expressions is an iterated integral, similar to those we have seen before. Notice that, in the
inner integral in the first expression, we integrate f (x, y) with x being held constant and the limits of integration being

g1 (x) and g2 (x). In the inner integral in the second expression, we integrate f (x, y) with y being held constant and the

limits of integration are h1 (x) and h2 (x).

Example 5.12

Evaluating an Iterated Integral over a Type I Region

Evaluate the integral ∬
D

x2 exy dA where D is shown in Figure 5.16.

Solution

First construct the region D as a Type I region (Figure 5.16). Here D =
⎧

⎩
⎨(x, y)|0 ≤ x ≤ 2, 1

2x ≤ y ≤ 1
⎫

⎭
⎬. Then

we have

∬
D

x2 exy dA = ∫
x = 0

x = 2
∫

y = 1/2x

y = 1

x2 exy dy dx.

Figure 5.16 We can express region D as a Type I region and

integrate from y = 1
2x to y = 1, between the lines

x = 0 and x = 2.

Therefore, we have
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∫
x = 0

x = 2
∫

y = 1
2x

y = 1

x2 exy dy dx = ∫
x = 0

x = 2⎡

⎣
⎢ ∫

y = 1/2x

y = 1

x2 exy dy
⎤

⎦
⎥dx Iterated integral for a Type I region.

= ∫
x = 0

x = 2⎡
⎣x2 exy

x
⎤
⎦|y = 1/2x

y = 1

dx
Integrate with respect to y using
u-substitution with u = xy where x is held
constant.

= ∫
x = 0

x = 2⎡
⎣xex − xex2 /2⎤

⎦dx
Integrate with respect to x using

u-substitution with u = 1
2x2.

=
⎡

⎣
⎢xex − ex − e

1
2x2⎤

⎦
⎥|x = 0

x = 2

= 2

In Example 5.12, we could have looked at the region in another way, such as D = ⎧

⎩
⎨(x, y)|0 ≤ y ≤ 1, 0 ≤ x ≤ 2y⎫

⎭
⎬

(Figure 5.17).

Figure 5.17

This is a Type II region and the integral would then look like

∬
D

x2 exy dA = ∫
y = 0

y = 1

∫
x = 0

x = 2y

x2 exy dx dy.

However, if we integrate first with respect to x, this integral is lengthy to compute because we have to use integration by

parts twice.

Example 5.13

Evaluating an Iterated Integral over a Type II Region

Evaluate the integral ∬
D

⎛
⎝3x2 + y2⎞

⎠dA where = ⎧

⎩
⎨(x, y)| − 2 ≤ y ≤ 3, y2 − 3 ≤ x ≤ y + 3⎫

⎭
⎬.

Solution

Notice that D can be seen as either a Type I or a Type II region, as shown in Figure 5.18. However, in this case

describing D as Type I is more complicated than describing it as Type II. Therefore, we use D as a Type II

region for the integration.
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5.8

Figure 5.18 The region D in this example can be either (a) Type I or (b) Type II.

Choosing this order of integration, we have

∬
D

⎛
⎝3x2 + y2⎞

⎠dA = ∫
y = −2

y = 3

∫
x = y2 − 3

x = y + 3
⎛
⎝3x2 + y2⎞

⎠dx dy Iterated integral, Type II region.

= ∫
y = −2

y = 3
⎛
⎝x

3 + xy2⎞
⎠|y2 − 3

y + 3

dy Integrate with respect to x.

= ∫
y = −2

y = 3 ⎛
⎝

⎛
⎝y + 3⎞

⎠
3 + ⎛

⎝y + 3⎞
⎠y2 − ⎛

⎝y2 − 3⎞
⎠
3

− ⎛
⎝y2 − 3⎞

⎠y2⎞
⎠dy

= ∫
−2

3
⎛
⎝54 + 27y − 12y2 + 2y3 + 8y4 − y6⎞

⎠dy Integrate with respect to y.

=
⎡

⎣
⎢54y + 27y2

2 − 4y3 + y4

2 + 8y5

5 − y7

7
⎤

⎦
⎥|−2

3

= 2375
7 .

Sketch the region D and evaluate the iterated integral ∬
D

xy dy dx where D is the region bounded by

the curves y = cos x and y = sin x in the interval [−3π/4, π/4].

Recall from Double Integrals over Rectangular Regions the properties of double integrals. As we have seen from
the examples here, all these properties are also valid for a function defined on a nonrectangular bounded region on a plane.
In particular, property 3 states:

If R = S ∪ T and S ∩ T = ∅ except at their boundaries, then

∬
R

f (x, y)dA = ∬
S

f (x, y)dA + ∬
T

f (x, y)dA.

Similarly, we have the following property of double integrals over a nonrectangular bounded region on a plane.
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Theorem 5.5: Decomposing Regions into Smaller Regions

Suppose the region D can be expressed as D = D1 ∪ D2 where D1 and D2 do not overlap except at their

boundaries. Then

(5.7)∬
D

f (x, y)dA = ∬
D1

f (x, y)dA + ∬
D2

f (x, y)dA.

This theorem is particularly useful for nonrectangular regions because it allows us to split a region into a union of regions
of Type I and Type II. Then we can compute the double integral on each piece in a convenient way, as in the next example.

Example 5.14

Decomposing Regions

Express the region D shown in Figure 5.19 as a union of regions of Type I or Type II, and evaluate the integral

∬
D

⎛
⎝2x + 5y⎞

⎠dA.

Figure 5.19 This region can be decomposed into a union of
three regions of Type I or Type II.

Solution

The region D is not easy to decompose into any one type; it is actually a combination of different types. So we

can write it as a union of three regions D1, D2, and D3 where, D1 = ⎧

⎩
⎨(x, y)| − 2 ≤ x ≤ 0, 0 ≤ y ≤ (x + 2)2⎫

⎭
⎬,

D2 =
⎧

⎩
⎨(x, y)|0 ≤ y ≤ 4, 0 ≤ x ≤ ⎛

⎝y − 1
16y3⎞

⎠
⎫

⎭
⎬. These regions are illustrated more clearly in Figure 5.20.
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5.9

5.10

Figure 5.20 Breaking the region into three subregions makes
it easier to set up the integration.

Here D1 is Type I and D2 and D3 are both of Type II. Hence,

∬
D

(2x + 5y)dA = ∬
D1

(2x + 5y)dA + ∬
D2

(2x + 5y)dA + ∬
D3

(2x + 5y)dA

= ∫
x = −2

x = 0
∫

y = 0

y = (x + 2)2

(2x + 5y)dy dx + ∫
y = 0

y = 4

∫
x = 0

x = y − (1/16)y3

(2 + 5y)dx dy + ∫
y = −4

y = 0

∫
x = −2

x = y − (1/16)y3

(2x + 5y)dx dy

= ∫
x = −2

x = 0
⎡
⎣
1
2(2 + x)2(20 + 24x + 5x2)⎤

⎦ + ∫
y = 0

y = 4
⎡
⎣

1
256y6 − 7

16y4 + 6y2⎤
⎦

+ ∫
y = −4

y = 0
⎡
⎣

1
256y6 − 7

16y4 + 6y2 + 10y − 4⎤
⎦

= 40
3 + 1664

35 − 1696
35 = 1304

105 .

Now we could redo this example using a union of two Type II regions (see the Checkpoint).

Consider the region bounded by the curves y = ln x and y = ex in the interval [1, 2]. Decompose the

region into smaller regions of Type II.

Redo Example 5.14 using a union of two Type II regions.

Changing the Order of Integration
As we have already seen when we evaluate an iterated integral, sometimes one order of integration leads to a computation
that is significantly simpler than the other order of integration. Sometimes the order of integration does not matter, but it is
important to learn to recognize when a change in order will simplify our work.

Example 5.15
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Changing the Order of Integration

Reverse the order of integration in the iterated integral ∫
x = 0

x = 2
∫

y = 0

y = 2 − x2

xex2
dy dx. Then evaluate the new

iterated integral.

Solution

The region as presented is of Type I. To reverse the order of integration, we must first express the region as Type
II. Refer to Figure 5.21.

Figure 5.21 Converting a region from Type I to Type II.

We can see from the limits of integration that the region is bounded above by y = 2 − x2 and below by y = 0,

where x is in the interval ⎡
⎣0, 2⎤

⎦. By reversing the order, we have the region bounded on the left by x = 0 and

on the right by x = 2 − y where y is in the interval [0, 2]. We solved y = 2 − x2 in terms of x to obtain

x = 2 − y.

Hence

∫
0

2
∫
0

2 − x2

xex2
dy dx = ∫

0

2
∫
0

2 − y

xex2
dx dy

Reverse the order of
integration then use
substitution.

= ∫
0

2 ⎡

⎣
⎢1
2ex2|0

2 − y⎤

⎦
⎥dy = ∫

0

2
1
2

⎛
⎝e

2 − y − 1⎞
⎠dy = −1

2
⎛
⎝e

2 − y + y⎞
⎠|02

= 1
2

⎛
⎝e2 − 3⎞

⎠.

Example 5.16

Evaluating an Iterated Integral by Reversing the Order of Integration

Consider the iterated integral ∬
R

f (x, y)dx dy where z = f (x, y) = x − 2y over a triangular region R that has

sides on x = 0, y = 0, and the line x + y = 1. Sketch the region, and then evaluate the iterated integral by
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5.11

a. integrating first with respect to y and then

b. integrating first with respect to x.

Solution

A sketch of the region appears in Figure 5.22.

Figure 5.22 A triangular region R for integrating in two

ways.

We can complete this integration in two different ways.

a. One way to look at it is by first integrating y from y = 0 to y = 1 − x vertically and then integrating x
from x = 0 to x = 1:

∬
R

f (x, y)dx dy = ∫
x = 0

x = 1
∫

y = 0

y = 1 − x
⎛
⎝x − 2y⎞

⎠dy dx = ∫
x = 0

x = 1
⎡
⎣xy − 2y2⎤

⎦y = 0

y = 1 − x
dx

= ∫
x = 0

x = 1
⎡
⎣x(1 − x) − (1 − x)2⎤

⎦dx = ∫
x = 0

x = 1
⎡
⎣−1 + 3x − 2x2⎤

⎦dx = ⎡
⎣−x + 3

2x2 − 2
3x3⎤

⎦x = 0

x = 1
= − 1

6.

b. The other way to do this problem is by first integrating x from x = 0 to x = 1 − y horizontally and then

integrating y from y = 0 to y = 1:

∬
R

f (x, y)dx dy = ∫
y = 0

y = 1

∫
x = 0

x = 1 − y
⎛
⎝x − 2y⎞

⎠dx dy = ∫
y = 0

y = 1
⎡
⎣
1
2x2 − 2xy⎤

⎦x = 0

x = 1 − y
dy

= ∫
y = 0

y = 1
⎡
⎣
1
2

⎛
⎝1 − y⎞

⎠
2 − 2y⎛

⎝1 − y⎞
⎠
⎤
⎦dy = ∫

y = 0

y = 1
⎡
⎣
1
2 − 3y + 5

2y2⎤
⎦dy

= ⎡
⎣
1
2y − 3

2y2 + 5
6y3⎤

⎦y = 0

y = 1
= − 1

6.

Evaluate the iterated integral ∬
D

⎛
⎝x2 + y2⎞

⎠dA over the region D in the first quadrant between the

functions y = 2x and y = x2. Evaluate the iterated integral by integrating first with respect to y and then

integrating first with resect to x.

Calculating Volumes, Areas, and Average Values
We can use double integrals over general regions to compute volumes, areas, and average values. The methods are the same
as those in Double Integrals over Rectangular Regions, but without the restriction to a rectangular region, we can
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now solve a wider variety of problems.

Example 5.17

Finding the Volume of a Tetrahedron

Find the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and 2x + 3y + z = 6.

Solution

The solid is a tetrahedron with the base on the xy -plane and a height z = 6 − 2x − 3y. The base is the region D
bounded by the lines, x = 0, y = 0 and 2x + 3y = 6 where z = 0 (Figure 5.23). Note that we can consider

the region D as Type I or as Type II, and we can integrate in both ways.

Figure 5.23 A tetrahedron consisting of the three coordinate planes and the plane z = 6 − 2x − 3y, with

the base bound by x = 0, y = 0, and 2x + 3y = 6.

First, consider D as a Type I region, and hence D =
⎧

⎩
⎨(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2 − 2

3x
⎫

⎭
⎬.

Therefore, the volume is

V = ∫
x = 0

x = 3
∫

y = 0

y = 2 − (2x/3)

(6 − 2x − 3y)dy dx = ∫
x = 0

x = 3⎡

⎣
⎢⎛
⎝6y − 2xy − 3

2y2⎞
⎠|y = 0

y = 2 − (2x/3)⎤

⎦
⎥dx

= ∫
x = 0

x = 3
⎡
⎣
2
3(x − 3)2⎤

⎦dx = 6.

Now consider D as a Type II region, so D =
⎧

⎩
⎨(x, y)|0 ≤ y ≤ 2, 0 ≤ x ≤ 3 − 3

2y
⎫

⎭
⎬. In this calculation, the

volume is
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V = ∫
y = 0

y = 2

∫
x = 0

x = 3 − (3y/2)

(6 − 2x − 3y)dx dy = ∫
y = 0

y = 2⎡

⎣
⎢⎛

⎝6x − x2 − 3xy⎞
⎠|x = 0

x = 3 − (3y/2)⎤

⎦
⎥dy

= ∫
y = 0

y = 2
⎡
⎣
9
4(y − 2)2⎤

⎦dy = 6.

Therefore, the volume is 6 cubic units.

Find the volume of the solid bounded above by f (x, y) = 10 − 2x + y over the region enclosed by the

curves y = 0 and y = ex, where x is in the interval [0, 1].

Finding the area of a rectangular region is easy, but finding the area of a nonrectangular region is not so easy. As we have
seen, we can use double integrals to find a rectangular area. As a matter of fact, this comes in very handy for finding the
area of a general nonrectangular region, as stated in the next definition.

Definition

The area of a plane-bounded region D is defined as the double integral ∬
D

1dA.

We have already seen how to find areas in terms of single integration. Here we are seeing another way of finding areas by
using double integrals, which can be very useful, as we will see in the later sections of this chapter.

Example 5.18

Finding the Area of a Region

Find the area of the region bounded below by the curve y = x2 and above by the line y = 2x in the first quadrant

(Figure 5.24).

Figure 5.24 The region bounded by y = x2 and y = 2x.

Solution
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5.13

We just have to integrate the constant function f (x, y) = 1 over the region. Thus, the area A of the bounded

region is ∫
x = 0

x = 2
∫

y = x2

y = 2x

dy dx or ∫
y = 0

x = 4
∫

x = y/2

x = y

dx dy:

A = ∬
D

1dx dy = ∫
x = 0

x = 2
∫

y = x2

y = 2x

1dy dx = ∫
x = 0

x = 2
⎡
⎣y|y = x2

y = 2x⎤
⎦dx = ∫

x = 0

x = 2
⎛
⎝2x − x2⎞

⎠dx = x2 − x3

3 |02 = 4
3.

Find the area of a region bounded above by the curve y = x3 and below by y = 0 over the interval

[0, 3].

We can also use a double integral to find the average value of a function over a general region. The definition is a direct
extension of the earlier formula.

Definition

If f (x, y) is integrable over a plane-bounded region D with positive area A(D), then the average value of the

function is

fave = 1
A(D) ∬

D
f (x, y)dA.

Note that the area is A(D) = ∬
D

1dA.

Example 5.19

Finding an Average Value

Find the average value of the function f (x, y) = 7xy2 on the region bounded by the line x = y and the curve

x = y (Figure 5.25).
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Figure 5.25 The region bounded by x = y and x = y.

Solution

First find the area A(D) where the region D is given by the figure. We have

A(D) = ∬
D

1dA = ∫
y = 0

y = 1

∫
x = y

x = y

1dx dy = ∫
y = 0

y = 1
⎡
⎣x|x = y

x = y⎤
⎦dy = ∫

y = 0

y = 1

( y − y)dy = 2
3y3/2 − y2

2 |01 = 1
6.

Then the average value of the given function over this region is

fave = 1
A(D) ∬

D
f (x, y)dA = 1

A(D) ∫
y = 0

y = 1

∫
x = y

x = y

7xy2 dx dy = 1
1/6 ∫

y = 0

y = 1⎡

⎣
⎢7
2x2 y2|x = y

x = y⎤

⎦
⎥dy

= 6 ∫
y = 0

y = 1
⎡
⎣
7
2y2 ⎛

⎝y − y2⎞
⎠
⎤
⎦dy = 6 ∫

y = 0

y = 1
⎡
⎣
7
2

⎛
⎝y

3 − y4⎞
⎠
⎤
⎦dy = 42

2
⎛

⎝
⎜y4

4 − y5

5
⎞

⎠
⎟|01 = 42

40 = 21
20.

Find the average value of the function f (x, y) = xy over the triangle with vertices

(0, 0), (1, 0) and (1, 3).

Improper Double Integrals
An improper double integral is an integral ∬

D
f dA where either D is an unbounded region or f is an unbounded

function. For example, D = ⎧

⎩
⎨(x, y)||x − y| ≥ 2⎫

⎭
⎬ is an unbounded region, and the function f (x, y) = 1/⎛

⎝1 − x2 − 2y2⎞
⎠ over

the ellipse x2 + 3y2 ≤ 1 is an unbounded function. Hence, both of the following integrals are improper integrals:

i. ∬
D

xy dA where D = ⎧

⎩
⎨(x, y)||x − y| ≥ 2⎫

⎭
⎬;

ii. ∬
D

1
1 − x2 − 2y2dA where D = ⎧

⎩
⎨(x, y)|x2 + 3y2 ≤ 1⎫

⎭
⎬.

In this section we would like to deal with improper integrals of functions over rectangles or simple regions such that f has

only finitely many discontinuities. Not all such improper integrals can be evaluated; however, a form of Fubini’s theorem
does apply for some types of improper integrals.
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Theorem 5.6: Fubini’s Theorem for Improper Integrals

If D is a bounded rectangle or simple region in the plane defined by ⎧

⎩
⎨(x, y): a ≤ x ≤ b, g(x) ≤ y ≤ h(x)⎫

⎭
⎬ and also by

⎧

⎩
⎨(x, y): c ≤ y ≤ d, j(y) ≤ x ≤ k(y)⎫

⎭
⎬ and f is a nonnegative function on D with finitely many discontinuities in the

interior of D, then

∬
D

f dA = ∫
x = a

x = b
∫

y = g(x)

y = h(x)

f (x, y)dy dx = ∫
y = c

y = d

∫
x = j(y)

x = k(y)

f (x, y)dx dy.

It is very important to note that we required that the function be nonnegative on D for the theorem to work. We consider

only the case where the function has finitely many discontinuities inside D.

Example 5.20

Evaluating a Double Improper Integral

Consider the function f (x, y) = ey
y over the region D = ⎧

⎩
⎨(x, y): 0 ≤ x ≤ 1, x ≤ y ≤ x⎫

⎭
⎬.

Notice that the function is nonnegative and continuous at all points on D except (0, 0). Use Fubini’s theorem

to evaluate the improper integral.

Solution

First we plot the region D (Figure 5.26); then we express it in another way.

Figure 5.26 The function f is continuous at all points of the

region D except (0, 0).

The other way to express the same region D is

D = ⎧

⎩
⎨(x, y): 0 ≤ y ≤ 1, y2 ≤ x ≤ y⎫

⎭
⎬.
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Thus we can use Fubini’s theorem for improper integrals and evaluate the integral as

∫
y = 0

y = 1

∫
x = y2

x = y
ey
y dx dy.

Therefore, we have

∫
y = 0

y = 1

∫
x = y2

x = y
ey
y dx dy = ∫

y = 0

y = 1
ey
y x|x = y2

x = y dy = ∫
y = 0

y = 1
ey
y

⎛
⎝y − y2⎞

⎠dy = ∫
0

1
⎛
⎝ey − yey⎞

⎠dy = e − 2.

As mentioned before, we also have an improper integral if the region of integration is unbounded. Suppose now that the
function f is continuous in an unbounded rectangle R.

Theorem 5.7: Improper Integrals on an Unbounded Region

If R is an unbounded rectangle such as R = ⎧

⎩
⎨(x, y): a ≤ x ≤ ∞, c ≤ y ≤ ∞⎫

⎭
⎬, then when the limit exists, we have

∬
R

f (x, y)dA = lim
(b, d) → (∞, ∞)

∫
a

b ⎛

⎝
⎜∫

c

d
f (x, y)dy

⎞

⎠
⎟dx = lim

(b, d) → (∞, ∞)
∫
c

d ⎛

⎝
⎜∫

a

b
f (x, y)dy

⎞

⎠
⎟dy.

The following example shows how this theorem can be used in certain cases of improper integrals.

Example 5.21

Evaluating a Double Improper Integral

Evaluate the integral ∬
R

xye−x2 − y2
dA where R is the first quadrant of the plane.

Solution

The region R is the first quadrant of the plane, which is unbounded. So

∬
R

xye−x2 − y2
dA = lim

(b, d) → (∞, ∞)
∫

x = 0

x = b⎛

⎝
⎜ ∫

y = 0

y = d

xye−x2 − y2
dy

⎞

⎠
⎟dx = lim

(b, d) → (∞, ∞)
∫

y = 0

y = d⎛

⎝
⎜ ∫

x = 0

x = b
xye−x2 − y2

dy
⎞

⎠
⎟dy

= lim
(b, d) → (∞, ∞)

1
4

⎛
⎝1 − e−b2⎞

⎠
⎛
⎝1 − e−d2⎞

⎠ = 1
4

Thus, ∬
R

xye−x2 − y2
dA is convergent and the value is 1

4.

Evaluate the improper integral ∬
D

y
1 − x2 − y2

dA where D = ⎧

⎩
⎨(x, y)x ≥ 0, y ≥ 0, x2 + y2 ≤ 1⎫

⎭
⎬.
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In some situations in probability theory, we can gain insight into a problem when we are able to use double integrals over
general regions. Before we go over an example with a double integral, we need to set a few definitions and become familiar
with some important properties.

Definition

Consider a pair of continuous random variables X and Y , such as the birthdays of two people or the number of

sunny and rainy days in a month. The joint density function f of X and Y satisfies the probability that (X, Y) lies

in a certain region D:

P⎛
⎝(X, Y) ∈ D⎞

⎠ = ∬
D

f (x, y)dA.

Since the probabilities can never be negative and must lie between 0 and 1, the joint density function satisfies the

following inequality and equation:

f (x, y) ≥ 0 and ∬
R2

f (x, y)dA = 1.

Definition

The variables X and Y are said to be independent random variables if their joint density function is the product of

their individual density functions:

f (x, y) = f1 (x) f2 (y).

Example 5.22

Application to Probability

At Sydney’s Restaurant, customers must wait an average of 15 minutes for a table. From the time they are seated

until they have finished their meal requires an additional 40 minutes, on average. What is the probability that a

customer spends less than an hour and a half at the diner, assuming that waiting for a table and completing the
meal are independent events?

Solution

Waiting times are mathematically modeled by exponential density functions, with m being the average waiting

time, as

f (t) =
⎧

⎩
⎨

0 if t < 0,
1
me−t/m if t ≥ 0.

If X and Y are random variables for ‘waiting for a table’ and ‘completing the meal,’ then the probability density

functions are, respectively,

f1(x) =
⎧

⎩
⎨

0 if x < 0,
1
15e−x/15 if x ≥ 0. and f2(y) =

⎧

⎩
⎨

0 if y < 0,
1
40e−y/40 if y ≥ 0.

Clearly, the events are independent and hence the joint density function is the product of the individual functions

f (x, y) = f1(x) f2(y) =
⎧

⎩
⎨

0 if x < 0 or y < 0,
1

600e−x/15 e−y/60 if x, y ≥ 0.
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We want to find the probability that the combined time X + Y is less than 90 minutes. In terms of geometry, it

means that the region D is in the first quadrant bounded by the line x + y = 90 (Figure 5.27).

Figure 5.27 The region of integration for a joint probability
density function.

Hence, the probability that (X, Y) is in the region D is

P(X + Y ≤ 90) = P⎛
⎝(X, Y) ∈ D⎞

⎠ = ∬
D

f (x, y)dA = ∬
D

1
600e−x/15 e−y/40 dA.

Since x + y = 90 is the same as y = 90 − x, we have a region of Type I, so

D = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 90, 0 ≤ y ≤ 90 − x⎫

⎭
⎬,

P(X + Y ≤ 90) = 1
600 ∫

x = 0

x = 90
∫

y = 0

y = 90 − x

e−x/15e−y/40 dx dy = 1
600 ∫

x = 0

x = 90
∫

y = 0

y = 90 − x

e−x/15e−y/40 dx dy

= 1
600 ∫

x = 0

x = 90
∫

y = 0

y = 90 − x

e−⎛
⎝x/15 + y/40⎞

⎠dx dy = 0.8328.

Thus, there is an 83.2% chance that a customer spends less than an hour and a half at the restaurant.

Another important application in probability that can involve improper double integrals is the calculation of expected
values. First we define this concept and then show an example of a calculation.

Definition

In probability theory, we denote the expected values E(X) and E(Y), respectively, as the most likely outcomes of

the events. The expected values E(X) and E(Y) are given by

E(X) = ∬
S

x f (x, y)dA and E(Y) = ∬
S

y f (x, y)dA,
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where S is the sample space of the random variables X and Y .

Example 5.23

Finding Expected Value

Find the expected time for the events ‘waiting for a table’ and ‘completing the meal’ in Example 5.22.

Solution

Using the first quadrant of the rectangular coordinate plane as the sample space, we have improper integrals for
E(X) and E(Y). The expected time for a table is

E(X) = ∬
S

x 1
600e−x/15 e−y/40 dA = 1

600 ∫
x = 0

x = ∞
∫

y = 0

y = ∞

xe−x/15 e−y/40 dA

= 1
600 lim

(a, b) → (∞, ∞)
∫

x = 0

x = a
∫

y = 0

y = b

xe−x/15 e−y/40 dx dy

= 1
600

⎛

⎝
⎜ lima → ∞ ∫

x = 0

x = a
xe−x/15 dx

⎞

⎠
⎟
⎛

⎝
⎜ lim

b → ∞
∫

y = 0

y = b

e−y/40 dy
⎞

⎠
⎟

= 1
600

⎛
⎝

⎛
⎝ lima → ∞

⎛
⎝−15e−x/15 (x + 15)⎞

⎠
⎞
⎠|x = 0

x = a⎞
⎠
⎛

⎝
⎜⎛
⎝ lim
b → ∞

⎛
⎝−40e−y/40⎞

⎠
⎞
⎠|y = 0

y = b⎞

⎠
⎟

= 1
600

⎛
⎝ lima → ∞

⎛
⎝−15e−a/15 (x + 15) + 225⎞

⎠
⎞
⎠
⎛
⎝ lim
b → ∞

⎛
⎝−40e−b/40 + 40⎞

⎠
⎞
⎠

= 1
600(225)(40)

= 15.

A similar calculation shows that E(Y) = 40. This means that the expected values of the two random events are

the average waiting time and the average dining time, respectively.

The joint density function for two random variables X and Y is given by

f (x, y) =
⎧

⎩
⎨

1
600

⎛
⎝x2 + y2⎞

⎠ if 0 ≤ x ≤ 15, 0 ≤ y ≤ 10

0 otherwise

Find the probability that X is at most 10 and Y is at least 5.
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5.2 EXERCISES
In the following exercises, specify whether the region is of
Type I or Type II.

60. The region D bounded by y = x3, y = x3 + 1,
x = 0, and x = 1 as given in the following figure.

61. Find the average value of the function f (x, y) = 3xy
on the region graphed in the previous exercise.

62. Find the area of the region D given in the previous

exercise.

63. The region D bounded by

y = sin x, y = 1 + sin x, x = 0, and x = π
2 as given in

the following figure.

64. Find the average value of the function
f (x, y) = cos x on the region graphed in the previous

exercise.

65. Find the area of the region D given in the previous

exercise.

66. The region D bounded by x = y2 − 1 and

x = 1 − y2 as given in the following figure.

67. Find the volume of the solid under the graph of the
function f (x, y) = xy + 1 and above the region in the

figure in the previous exercise.

68. The region D bounded by

y = 0, x = −10 + y, and x = 10 − y as given in the

following figure.
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69. Find the volume of the solid under the graph of the
function f (x, y) = x + y and above the region in the

figure from the previous exercise.

70. The region D bounded by y = 0, x = y − 1,

x = π
2 as given in the following figure.

71. The region D bounded by y = 0 and y = x2 − 1 as

given in the following figure.

72. Let D be the region bounded by the curves of

equations y = x, y = −x, and y = 2 − x2. Explain why

D is neither of Type I nor II.

73. Let D be the region bounded by the curves of

equations y = cos x and y = 4 − x2 and the x -axis.

Explain why D is neither of Type I nor II.

In the following exercises, evaluate the double integral
∬
D

f (x, y)dA over the region D.

74. f (x, y) = 2x + 5y and

D = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 1, x3 ≤ y ≤ x3 + 1⎫

⎭
⎬

75. f (x, y) = 1 and

D =
⎧

⎩
⎨(x, y)|0 ≤ x ≤ π

2, sin x ≤ y ≤ 1 + sin x
⎫

⎭
⎬

76. f (x, y) = 2 and

D = ⎧

⎩
⎨(x, y)|0 ≤ y ≤ 1, y − 1 ≤ x ≤ arccos y⎫

⎭
⎬

77. f (x, y) = xy and

D =
⎧

⎩
⎨(x, y)| − 1 ≤ y ≤ 1, y2 − 1 ≤ x ≤ 1 − y2⎫

⎭
⎬

78. f (x, y) = sin y and D is the triangular region with

vertices (0, 0), (0, 3), and (3, 0)

79. f (x, y) = −x + 1 and D is the triangular region

with vertices (0, 0), (0, 2), and (2, 2)

Evaluate the iterated integrals.

80. ∫
0

1
∫
2x

3x
⎛
⎝x + y2⎞

⎠dy dx

81. ∫
0

1
∫
2 x

2 x + 1
⎛
⎝xy + 1⎞

⎠dy dx

82. ∫
e

e2

∫
ln u

2
(v + ln u)dv du

83. ∫
1

2
∫

−u2 − 1

−u
(8uv)dv du

84. ∫
0

1
∫

− 1 − y2

1 − y2
⎛
⎝2x + 4x3⎞

⎠dx dy

85. ∫
0

1/2
∫

− 1 − 4y2

1 − 4y2

4dx dy

86. Let D be the region bounded by

y = 1 − x2, y = 4 − x2, and the x - and y -axes.

a. Show that

∬
D

x dA = ∫
0

1
∫

1 − x2

4 − x2

x dy dx + ∫
1

2
∫
0

4 − x2

x dy dx by

dividing the region D into two regions of Type I.

b. Evaluate the integral ∬
D

x dA.
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87. Let D be the region bounded by y = 1, y = x,
y = ln x, and the x -axis.

a. Show that

∬
D

y dA = ∫
0

1
∫
0

x
y dy dx + ∫

1

e
∫
ln x

1
y dy dx by

dividing D into two regions of Type I.

b. Evaluate the integral ∬
D

y dA.

88.
a. Show that

∬
D

y2 dA = ∫
−1

0
∫
−x

2 − x2

y2 dy dx + ∫
0

1
∫
x

2 − x2

y2 dy dx

by dividing the region D into two regions of Type

I, where

D = ⎧

⎩
⎨(x, y)|y ≥ x, y ≥ − x, y ≤ 2 − x2⎫

⎭
⎬.

b. Evaluate the integral ∬
D

y2dA.

89. Let D be the region bounded by y = x2, y = x + 2,
and y = −x.

a. Show that

∬
D

x dA = ∫
0

1
∫
−y

y

x dx dy + ∫
1

2
∫

y − 2

y

x dx dy by

dividing the region D into two regions of Type II,

where D = ⎧

⎩
⎨(x, y)|y ≥ x2, y ≥ − x, y ≤ x + 2⎫

⎭
⎬.

b. Evaluate the integral ∬
D

x dA.

90. The region D bounded by x = 0, y = x5 + 1, and

y = 3 − x2 is shown in the following figure. Find the area

A(D) of the region D.

91. The region D bounded by y = cos x, y = 4 cos x,

and x = ± π
3 is shown in the following figure. Find the

area A(D) of the region D.

92. Find the area A(D) of the region

D = ⎧

⎩
⎨(x, y)|y ≥ 1 − x2, y ≤ 4 − x2, y ≥ 0, x ≥ 0⎫

⎭
⎬.

93. Let D be the region bounded by

y = 1, y = x, y = ln x, and the x -axis. Find the area

A(D) of the region D.

94. Find the average value of the function
f (x, y) = sin y on the triangular region with vertices

(0, 0), (0, 3), and (3, 0).

95. Find the average value of the function
f (x, y) = −x + 1 on the triangular region with vertices

(0, 0), (0, 2), and (2, 2).

In the following exercises, change the order of integration
and evaluate the integral.

96. ∫
−1

π/2
∫
0

x + 1
sin x dy dx

97. ∫
0

1
∫

x − 1

1 − x
x dy dx

98. ∫
−1

0
∫

− y + 1

y + 1

y2 dx dy

99. ∫
−1/2

1/2
∫

− y2 + 1

y2 + 1

y dx dy
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100. The region D is shown in the following figure.

Evaluate the double integral ∬
D

⎛
⎝x2 + y⎞

⎠dA by using the

easier order of integration.

101. The region D is given in the following figure.

Evaluate the double integral ∬
D

⎛
⎝x2 − y2⎞

⎠dA by using the

easier order of integration.

102. Find the volume of the solid under the surface

z = 2x + y2 and above the region bounded by y = x5

and y = x.

103. Find the volume of the solid under the plane

z = 3x + y and above the region determined by y = x7

and y = x.

104. Find the volume of the solid under the plane
z = x − y and above the region bounded by

x = tan y, x = −tan y, and x = 1.

105. Find the volume of the solid under the surface

z = x3 and above the plane region bounded by

x = sin y, x = −sin y, and x = 1.

106. Let g be a positive, increasing, and differentiable

function on the interval ⎡
⎣a, b⎤

⎦. Show that the volume of

the solid under the surface z = g′(x) and above the region

bounded by y = 0, y = g(x), x = a, and x = b is

given by 1
2

⎛
⎝g2 (b) − g2 (a)⎞

⎠.

107. Let g be a positive, increasing, and differentiable

function on the interval ⎡
⎣a, b⎤

⎦, and let k be a positive

real number. Show that the volume of the solid under the
surface z = g′(x) and above the region bounded by

y = g(x), y = g(x) + k, x = a, and x = b is given by

k⎛
⎝g(b) − g(a)⎞

⎠.

108. Find the volume of the solid situated in the first
octant and determined by the planes z = 2,
z = 0, x + y = 1, x = 0, and y = 0.

109. Find the volume of the solid situated in the first
octant and bounded by the planes x + 2y = 1,
x = 0, y = 0, z = 4, and z = 0.

110. Find the volume of the solid bounded by the planes
x + y = 1, x − y = 1, x = 0, z = 0, and z = 10.

111. Find the volume of the solid bounded by the planes
x + y = 1, x − y = 1, x + y = −1,
x − y = −1, z = 1 and z = 0.

112. Let S1 and S2 be the solids situated in the first

octant under the planes x + y + z = 1 and

x + y + 2z = 1, respectively, and let S be the solid

situated between S1, S2, x = 0, and y = 0.
a. Find the volume of the solid S1.
b. Find the volume of the solid S2.
c. Find the volume of the solid S by subtracting the

volumes of the solids S1 and S2.

113. Let S1 and S2 be the solids situated in the first

octant under the planes 2x + 2y + z = 2 and

x + y + z = 1, respectively, and let S be the solid

situated between S1, S2, x = 0, and y = 0.
a. Find the volume of the solid S1.
b. Find the volume of the solid S2.
c. Find the volume of the solid S by subtracting the

volumes of the solids S1 and S2.

114. Let S1 and S2 be the solids situated in the first

octant under the plane x + y + z = 2 and under the sphere

x2 + y2 + z2 = 4, respectively. If the volume of the solid

S2 is 4π
3 , determine the volume of the solid S situated

between S1 and S2 by subtracting the volumes of these

solids.
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115. Let S1 and S2 be the solids situated in the first

octant under the plane x + y + z = 2 and bounded by the

cylinder x2 + y2 = 4, respectively.

a. Find the volume of the solid S1.
b. Find the volume of the solid S2.
c. Find the volume of the solid S situated between

S1 and S2 by subtracting the volumes of the

solids S1 and S2.

116. [T] The following figure shows the region D
bounded by the curves y = sin x, x = 0, and y = x4.
Use a graphing calculator or CAS to find the x -coordinates

of the intersection points of the curves and to determine the
area of the region D. Round your answers to six decimal

places.

117. [T] The region D bounded by the curves

y = cos x, x = 0, and y = x3 is shown in the following

figure. Use a graphing calculator or CAS to find the
x-coordinates of the intersection points of the curves and to
determine the area of the region D. Round your answers to

six decimal places.

118. Suppose that (X, Y) is the outcome of an

experiment that must occur in a particular region S in

the xy -plane. In this context, the region S is called the

sample space of the experiment and X and Y are random

variables. If D is a region included in S, then the

probability of (X, Y) being in D is defined as

P[(X, Y) ∈ D] = ∬
D

p(x, y)dx dy, where p(x, y) is the

joint probability density of the experiment. Here, p(x, y)

is a nonnegative function for which ∬
S

p(x, y)dx dy = 1.

Assume that a point (X, Y) is chosen arbitrarily in the

square [0, 3] × [0, 3] with the probability density

p(x, y) =
⎧

⎩
⎨

1
9 (x, y) ∈ [0, 3] × [0, 3],

0 otherwise.
Find the

probability that the point (X, Y) is inside the unit square

and interpret the result.

119. Consider X and Y two random variables of

probability densities p1(x) and p2(x), respectively. The

random variables X and Y are said to be independent if

their joint density function is given by
p(x, y) = p1(x)p2(y). At a drive-thru restaurant,

customers spend, on average, 3 minutes placing their

orders and an additional 5 minutes paying for and picking

up their meals. Assume that placing the order and paying
for/picking up the meal are two independent events X and

Y . If the waiting times are modeled by the exponential

probability densities

p1(x) =
⎧

⎩
⎨

1
3e−x/3 x ≥ 0,

0 otherwise,
and p2(y) =

⎧

⎩
⎨

1
5e−y/5 y ≥ 0,

0 otherwise,

respectively, the probability that a customer will spend less
than 6 minutes in the drive-thru line is given by
P[X + Y ≤ 6] = ∬

D
p(x, y)dx dy, where

D = ⎧

⎩
⎨(x, y)⎫

⎭
⎬|x ≥ 0, y ≥ 0, x + y ≤ 6⎫

⎭
⎬. Find

P[X + Y ≤ 6] and interpret the result.
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120. [T] The Reuleaux triangle consists of an equilateral
triangle and three regions, each of them bounded by a side
of the triangle and an arc of a circle of radius s centered at
the opposite vertex of the triangle. Show that the area of the
Reuleaux triangle in the following figure of side length s

is s2

2
⎛
⎝π − 3⎞

⎠.

121. [T] Show that the area of the lunes of Alhazen,
the two blue lunes in the following figure, is the same as
the area of the right triangle ABC. The outer boundaries
of the lunes are semicircles of diameters AB and AC,
respectively, and the inner boundaries are formed by the
circumcircle of the triangle ABC.
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5.3 | Double Integrals in Polar Coordinates

Learning Objectives
5.3.1 Recognize the format of a double integral over a polar rectangular region.

5.3.2 Evaluate a double integral in polar coordinates by using an iterated integral.

5.3.3 Recognize the format of a double integral over a general polar region.

5.3.4 Use double integrals in polar coordinates to calculate areas and volumes.

Double integrals are sometimes much easier to evaluate if we change rectangular coordinates to polar coordinates. However,
before we describe how to make this change, we need to establish the concept of a double integral in a polar rectangular
region.

Polar Rectangular Regions of Integration
When we defined the double integral for a continuous function in rectangular coordinates—say, g over a region R in the

xy -plane—we divided R into subrectangles with sides parallel to the coordinate axes. These sides have either constant

x -values and/or constant y -values. In polar coordinates, the shape we work with is a polar rectangle, whose sides have

constant r -values and/or constant θ -values. This means we can describe a polar rectangle as in Figure 5.28(a), with

R = ⎧

⎩
⎨(r, θ)|a ≤ r ≤ b, α ≤ θ ≤ β⎫

⎭
⎬.

In this section, we are looking to integrate over polar rectangles. Consider a function f (r, θ) over a polar rectangle R. We

divide the interval ⎡
⎣a, b⎤

⎦ into m subintervals [ri − 1, ri] of length Δr = (b − a)/m and divide the interval ⎡
⎣α, β⎤

⎦ into n

subintervals ⎡
⎣θi − 1, θi

⎤
⎦ of width Δθ = ⎛

⎝β − α⎞
⎠/n. This means that the circles r = ri and rays θ = θi for 1 ≤ i ≤ m and

1 ≤ j ≤ n divide the polar rectangle R into smaller polar subrectangles Ri j (Figure 5.28(b)).

Figure 5.28 (a) A polar rectangle R (b) divided into subrectangles Ri j. (c) Close-up of a subrectangle.

As before, we need to find the area ΔA of the polar subrectangle Ri j and the “polar” volume of the thin box above Ri j.

Recall that, in a circle of radius r, the length s of an arc subtended by a central angle of θ radians is s = rθ. Notice that

the polar rectangle Ri j looks a lot like a trapezoid with parallel sides ri − 1 Δθ and ri Δθ and with a width Δr. Hence

the area of the polar subrectangle Ri j is

ΔA = 1
2Δr⎛

⎝ri − 1 Δθ + r1 Δθ⎞
⎠.

Simplifying and letting ri j* = 1
2(ri − 1 + ri), we have ΔA = ri j* ΔrΔθ. Therefore, the polar volume of the thin box
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above Ri j (Figure 5.29) is

f (ri j* , θi j* )ΔA = f (ri j* , θi j* )ri j* ΔrΔθ.

Figure 5.29 Finding the volume of the thin box above polar
rectangle Ri j.

Using the same idea for all the subrectangles and summing the volumes of the rectangular boxes, we obtain a double
Riemann sum as

∑
i = 1

m
∑
j = 1

n
f (ri j* , θi j* )ri j* ΔrΔθ.

As we have seen before, we obtain a better approximation to the polar volume of the solid above the region R when we let

m and n become larger. Hence, we define the polar volume as the limit of the double Riemann sum,

V = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (ri j* , θi j* )ri j* ΔrΔθ.

This becomes the expression for the double integral.

Definition

The double integral of the function f (r, θ) over the polar rectangular region R in the rθ -plane is defined as

(5.8)
∬
R

f (r, θ)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (ri j* , θi j* )ΔA = limm, n → ∞ ∑

i = 1

m
∑
j = 1

n
f (ri j* , θi j* )ri j* ΔrΔθ.

Again, just as in Double Integrals over Rectangular Regions, the double integral over a polar rectangular region can
be expressed as an iterated integral in polar coordinates. Hence,

∬
R

f (r, θ)dA = ∬
R

f (r, θ)r dr dθ = ∫
θ = α

θ = β

∫
r = a

r = b
f (r, θ)r dr dθ.

Notice that the expression for dA is replaced by r dr dθ when working in polar coordinates. Another way to look at the

polar double integral is to change the double integral in rectangular coordinates by substitution. When the function f is

given in terms of x and y, using x = r cos θ, y = r sin θ, and dA = r dr dθ changes it to

∬
R

f (x, y)dA = ∬
R

f (r cos θ, r sin θ)r dr dθ.

Note that all the properties listed in Double Integrals over Rectangular Regions for the double integral in rectangular
coordinates hold true for the double integral in polar coordinates as well, so we can use them without hesitation.
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5.17

Example 5.24

Sketching a Polar Rectangular Region

Sketch the polar rectangular region R = {(r, θ)|1 ≤ r ≤ 3, 0 ≤ θ ≤ π}.

Solution

As we can see from Figure 5.30, r = 1 and r = 3 are circles of radius 1 and 3 and 0 ≤ θ ≤ π covers the

entire top half of the plane. Hence the region R looks like a semicircular band.

Figure 5.30 The polar region R lies between two

semicircles.

Now that we have sketched a polar rectangular region, let us demonstrate how to evaluate a double integral over this region
by using polar coordinates.

Example 5.25

Evaluating a Double Integral over a Polar Rectangular Region

Evaluate the integral ∬
R

3x dA over the region R = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.

Solution

First we sketch a figure similar to Figure 5.30 but with outer radius 2. From the figure we can see that we have

∬
R

3x dA = ∫
θ = 0

θ = π
∫

r = 1

r = 2
3r cos θr dr dθ

Use an iterated integral with correct limits
of integration.

= ∫
θ = 0

θ = π
cos θ⎡

⎣r3|r = 1
r = 2⎤

⎦dθ Integrate fir t with respect to r.

= ∫
θ = 0

θ = π
7 cos θ dθ = 7 sin θ|θ = 0

θ = π = 0.

Sketch the region R =
⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, − π

2 ≤ θ ≤ π
2

⎫

⎭
⎬, and evaluate ∬

R
x dA.
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Example 5.26

Evaluating a Double Integral by Converting from Rectangular Coordinates

Evaluate the integral ∬
R

⎛
⎝1 − x2 − y2⎞

⎠dA where R is the unit circle on the xy -plane.

Solution

The region R is a unit circle, so we can describe it as R = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.

Using the conversion x = r cos θ, y = r sin θ, and dA = r dr dθ, we have

∬
R

⎛
⎝1 − x2 − y2⎞

⎠dA = ∫
0

2π
∫
0

1
⎛
⎝1 − r2⎞

⎠r dr dθ = ∫
0

2π
∫
0

1
⎛
⎝r − r3⎞

⎠dr dθ

= ∫
0

2π⎡
⎣

r2

2 − r4

4
⎤
⎦0

1
dθ = ∫

0

2π
1
4dθ = π

2.

Example 5.27

Evaluating a Double Integral by Converting from Rectangular Coordinates

Evaluate the integral ∬
R

(x + y)dA where R = ⎧

⎩
⎨(x, y)|1 ≤ x2 + y2 ≤ 4, x ≤ 0⎫

⎭
⎬.

Solution

We can see that R is an annular region that can be converted to polar coordinates and described as

R =
⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, π

2 ≤ θ ≤ 3π
2

⎫

⎭
⎬ (see the following graph).

Figure 5.31 The annular region of integration R.

Hence, using the conversion x = r cos θ, y = r sin θ, and dA = r dr dθ, we have
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5.18

∬
R

(x + y)dA = ∫
θ = π/2

θ = 3π/2
∫

r = 1

r = 2
(r cos θ + r sin θ)r dr dθ

=
⎛

⎝
⎜ ∫

r = 1

r = 2
r2dr

⎞

⎠
⎟
⎛

⎝
⎜ ∫

π/2

3π/2
(cos θ + sin θ)dθ

⎞

⎠
⎟

= ⎡
⎣

r3

3
⎤
⎦1

2
[sin θ − cos θ]|π/2

3π/2

= − 14
3 .

Evaluate the integral ∬
R

⎛
⎝4 − x2 − y2⎞

⎠dA where R is the circle of radius 2 on the xy -plane.

General Polar Regions of Integration
To evaluate the double integral of a continuous function by iterated integrals over general polar regions, we consider two
types of regions, analogous to Type I and Type II as discussed for rectangular coordinates in Double Integrals over
General Regions. It is more common to write polar equations as r = f (θ) than θ = f (r), so we describe a general

polar region as R = ⎧

⎩
⎨(r, θ)|α ≤ θ ≤ β, h1 (θ) ≤ r ≤ h2 (θ)⎫

⎭
⎬ (see the following figure).

Figure 5.32 A general polar region between α < θ < β and

h1 (θ) < r < h2 (θ).

Theorem 5.8: Double Integrals over General Polar Regions

If f (r, θ) is continuous on a general polar region D as described above, then

(5.9)

∬
D

f (r, θ)r dr dθ = ∫
θ = α

θ = β

∫
r = h1 (θ)

r = h2 (θ)

f (r, θ)r dr dθ
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5.19

Example 5.28

Evaluating a Double Integral over a General Polar Region

Evaluate the integral ∬
D

r2sin θr dr dθ where D is the region bounded by the polar axis and the upper half of

the cardioid r = 1 + cos θ.

Solution

We can describe the region D as {(r, θ)|0 ≤ θ ≤ π, 0 ≤ r ≤ 1 + cos θ} as shown in the following figure.

Figure 5.33 The region D is the top half of a cardioid.

Hence, we have

∬
D

r2 sin θr dr dθ = ∫
θ = 0

θ = π
∫

r = 0

r = 1 + cos θ
⎛
⎝r2 sin θ⎞

⎠r dr dθ

= 1
4 ∫

θ = 0

θ = π
⎡
⎣r4⎤

⎦r = 0

r = 1 + cos θ

sin θ dθ

= 1
4 ∫

θ = 0

θ = π
(1 + cos θ)4sin θ dθ

= − 1
4

⎡

⎣
⎢ (1 + cos θ)5

5
⎤

⎦
⎥ 0

π

= 8
5.

Evaluate the integral

∬
D

r2 sin2 2θr dr dθ where D = ⎧

⎩
⎨(r, θ)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 cos 2θ⎫

⎭
⎬.

Polar Areas and Volumes
As in rectangular coordinates, if a solid S is bounded by the surface z = f (r, θ), as well as by the surfaces

r = a, r = b, θ = α, and θ = β, we can find the volume V of S by double integration, as
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V = ∬
R

f (r, θ)r dr dθ = ∫
θ = α

θ = β

∫
r = a

r = b
f (r, θ)r dr dθ.

If the base of the solid can be described as D = ⎧

⎩
⎨(r, θ)|α ≤ θ ≤ β, h1 (θ) ≤ r ≤ h2 (θ)⎫

⎭
⎬, then the double integral for the

volume becomes

V = ∬
D

f (r, θ)r dr dθ = ∫
θ = α

θ = β

∫
r = h1 (θ)

r = h2 (θ)

f (r, θ)r dr dθ.

We illustrate this idea with some examples.

Example 5.29

Finding a Volume Using a Double Integral

Find the volume of the solid that lies under the paraboloid z = 1 − x2 − y2 and above the unit circle on the xy
-plane (see the following figure).

Figure 5.34 The paraboloid z = 1 − x2 − y2 .

Solution

By the method of double integration, we can see that the volume is the iterated integral of the form

∬
R

⎛
⎝1 − x2 − y2⎞

⎠dA where R = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.

This integration was shown before in Example 5.26, so the volume is π
2 cubic units.

Example 5.30

Finding a Volume Using Double Integration

Find the volume of the solid that lies under the paraboloid z = 4 − x2 − y2 and above the disk
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(x − 1)2 + y2 = 1 on the xy -plane. See the paraboloid in Figure 5.35 intersecting the cylinder

(x − 1)2 + y2 = 1 above the xy -plane.

Figure 5.35 Finding the volume of a solid with a paraboloid
cap and a circular base.

Solution

First change the disk (x − 1)2 + y2 = 1 to polar coordinates. Expanding the square term, we have

x2 − 2x + 1 + y2 = 1. Then simplify to get x2 + y2 = 2x, which in polar coordinates becomes r2 = 2r cos θ

and then either r = 0 or r = 2 cos θ. Similarly, the equation of the paraboloid changes to z = 4 − r2.

Therefore we can describe the disk (x − 1)2 + y2 = 1 on the xy -plane as the region

D = {(r, θ)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 cos θ}.

Hence the volume of the solid bounded above by the paraboloid z = 4 − x2 − y2 and below by r = 2 cos θ is

V = ∬
D

f (r, θ)r dr dθ = ∫
θ = 0

θ = π
∫

r = 0

r = 2 cos θ
⎛
⎝4 − r2⎞

⎠r dr dθ

= ∫
θ = 0

θ = π⎡

⎣
⎢4r2

2 − r4

4 |02 cos θ⎤

⎦
⎥dθ

= ∫
0

π
⎡
⎣8 cos2 θ − 4 cos2 θ⎤

⎦dθ = ⎡
⎣
5
2θ + 5

2sin θ cos θ − sin θ cos3 θ⎤
⎦0
π

= 5
2π.

Notice in the next example that integration is not always easy with polar coordinates. Complexity of integration depends
on the function and also on the region over which we need to perform the integration. If the region has a more natural
expression in polar coordinates or if f has a simpler antiderivative in polar coordinates, then the change in polar

coordinates is appropriate; otherwise, use rectangular coordinates.
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Example 5.31

Finding a Volume Using a Double Integral

Find the volume of the region that lies under the paraboloid z = x2 + y2 and above the triangle enclosed by the

lines y = x, x = 0, and x + y = 2 in the xy -plane (Figure 5.36).

Solution

First examine the region over which we need to set up the double integral and the accompanying paraboloid.

Figure 5.36 Finding the volume of a solid under a paraboloid and above a given triangle.

The region D is ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 1, x ≤ y ≤ 2 − x⎫

⎭
⎬. Converting the lines y = x, x = 0, and x + y = 2 in the

xy -plane to functions of r and θ, we have θ = π/4, θ = π/2, and r = 2/(cos θ + sin θ), respectively.

Graphing the region on the xy -plane, we see that it looks like

D = {(r, θ)|π/4 ≤ θ ≤ π/2, 0 ≤ r ≤ 2/(cos θ + sin θ)}. Now converting the equation of the surface gives

z = x2 + y2 = r2. Therefore, the volume of the solid is given by the double integral

V = ∬
D

f (r, θ)r dr dθ = ∫
θ = π/4

θ = π/2
∫

r = 0

r = 2/(cos θ + sin θ)

r2 r dr dθ = ∫
π/4

π/2⎡
⎣

r4

4
⎤
⎦0

2/(cos θ + sin θ)

dθ

= 1
4∫

π/4

π/2
⎛
⎝

2
cos θ + sin θ

⎞
⎠

4

dθ = 16
4 ∫

π/4

π/2
⎛
⎝

1
cos θ + sin θ

⎞
⎠

4

dθ = 4∫
π/4

π/2
⎛
⎝

1
cos θ + sin θ

⎞
⎠

4

dθ.

As you can see, this integral is very complicated. So, we can instead evaluate this double integral in rectangular
coordinates as

V = ∫
0

1
∫
x

2 − x
⎛
⎝x2 + y2⎞

⎠dy dx.

Evaluating gives
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V = ∫
0

1
∫
x

2 − x
⎛
⎝x2 + y2⎞

⎠dy dx = ∫
0

1 ⎡

⎣
⎢x2 y + y3

3
⎤

⎦
⎥|x

2 − x

dx

= ∫
0

1
8
3 − 4x + 4x2 − 8x3

3 dx

= ⎡
⎣

8x
3 − 2x2 + 4x3

3 − 2x4

3
⎤
⎦|01 = 4

3.

To answer the question of how the formulas for the volumes of different standard solids such as a sphere, a cone, or a
cylinder are found, we want to demonstrate an example and find the volume of an arbitrary cone.

Example 5.32

Finding a Volume Using a Double Integral

Use polar coordinates to find the volume inside the cone z = 2 − x2 + y2 and above the xy-plane.

Solution

The region D for the integration is the base of the cone, which appears to be a circle on the xy-plane (see the

following figure).

Figure 5.37 Finding the volume of a solid inside the cone and above
the xy -plane.
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We find the equation of the circle by setting z = 0:

0 = 2 − x2 + y2

2 = x2 + y2

x2 + y2 = 4.

This means the radius of the circle is 2, so for the integration we have 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2. Substituting

x = r cos θ and y = r sin θ in the equation z = 2 − x2 + y2 we have z = 2 − r. Therefore, the volume of

the cone is

∫
θ = 0

θ = 2π
∫

r = 0

r = 2
(2 − r)r dr dθ = 2π4

3 = 8π
3 cubic units.

Analysis
Note that if we were to find the volume of an arbitrary cone with radius a units and height h units, then the

equation of the cone would be z = h − h
a x2 + y2.

We can still use Figure 5.37 and set up the integral as ∫
θ = 0

θ = 2π
∫

r = 0

r = a
⎛
⎝h − h

ar⎞
⎠r dr dθ.

Evaluating the integral, we get 1
3πa2 h.

Use polar coordinates to find an iterated integral for finding the volume of the solid enclosed by the

paraboloids z = x2 + y2 and z = 16 − x2 − y2.

As with rectangular coordinates, we can also use polar coordinates to find areas of certain regions using a double integral.
As before, we need to understand the region whose area we want to compute. Sketching a graph and identifying the region
can be helpful to realize the limits of integration. Generally, the area formula in double integration will look like

Area A = ∫
α

β

∫
h1 (θ)

h2 (θ)

1r dr dθ.

Example 5.33

Finding an Area Using a Double Integral in Polar Coordinates

Evaluate the area bounded by the curve r = cos 4θ.

Solution

Sketching the graph of the function r = cos 4θ reveals that it is a polar rose with eight petals (see the following

figure).
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Figure 5.38 Finding the area of a polar rose with eight petals.

Using symmetry, we can see that we need to find the area of one petal and then multiply it by 8. Notice that

the values of θ for which the graph passes through the origin are the zeros of the function cos 4θ, and these

are odd multiples of π/8. Thus, one of the petals corresponds to the values of θ in the interval [−π/8, π/8].
Therefore, the area bounded by the curve r = cos 4θ is

A = 8 ∫
θ = −π/8

θ = π/8
∫

r = 0

r = cos 4θ
1r dr dθ

= 8 ∫
−π/8

π/8 ⎡
⎣

1
2r2|0cos 4θ⎤

⎦dθ = 8 ∫
−π/8

π/8
1
2cos2 4θ dθ = 8

⎡

⎣
⎢1
4θ + 1

16sin 4θ cos 4θ|−π/8

π/8 ⎤

⎦
⎥ = 8⎡

⎣
π
16

⎤
⎦ = π

2.

Example 5.34

Finding Area Between Two Polar Curves

Find the area enclosed by the circle r = 3 cos θ and the cardioid r = 1 + cos θ.

Solution

First and foremost, sketch the graphs of the region (Figure 5.39).
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Figure 5.39 Finding the area enclosed by both a circle and a cardioid.

We can from see the symmetry of the graph that we need to find the points of intersection. Setting the two
equations equal to each other gives

3 cos θ = 1 + cos θ.

One of the points of intersection is θ = π/3. The area above the polar axis consists of two parts, with one

part defined by the cardioid from θ = 0 to θ = π/3 and the other part defined by the circle from θ = π/3 to

θ = π/2. By symmetry, the total area is twice the area above the polar axis. Thus, we have

A = 2
⎡

⎣
⎢ ∫

θ = 0

θ = π/3
∫

r = 0

r = 1 + cos θ
1r dr dθ + ∫

θ = π/3

θ = π/2
∫

r = 0

r = 3 cos θ
1r dr dθ

⎤

⎦
⎥.

Evaluating each piece separately, we find that the area is

A = 2⎛
⎝
1
4π + 9

16 3 + 3
8π − 9

16 3⎞
⎠ = 2⎛

⎝
5
8π⎞

⎠ = 5
4π square units.

Find the area enclosed inside the cardioid r = 3 − 3 sin θ and outside the cardioid r = 1 + sin θ.

Example 5.35
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5.22

Evaluating an Improper Double Integral in Polar Coordinates

Evaluate the integral ∬
R2

e
−10⎛

⎝x
2 + y2⎞

⎠dx dy.

Solution

This is an improper integral because we are integrating over an unbounded region R2. In polar coordinates, the

entire plane R2 can be seen as 0 ≤ θ ≤ 2π, 0 ≤ r ≤ ∞.

Using the changes of variables from rectangular coordinates to polar coordinates, we have

∬
R2

e
−10⎛

⎝x
2 + y2⎞

⎠dx dy = ∫
θ = 0

θ = 2π
∫

r = 0

r = ∞
e−10r2

r dr dθ = ∫
θ = 0

θ = 2π⎛

⎝
⎜ lima → ∞ ∫

r = 0

r = a
e−10r2

r dr
⎞

⎠
⎟dθ

=
⎛

⎝
⎜ ∫

θ = 0

θ = 2π
dθ

⎞

⎠
⎟
⎛

⎝
⎜ lima → ∞ ∫

r = 0

r = a
e−10r2

r dr
⎞

⎠
⎟

= 2π
⎛

⎝
⎜ lima → ∞ ∫

r = 0

r = a
e−10r2

r dr
⎞

⎠
⎟

= 2π lima → ∞
⎛
⎝−

1
20

⎞
⎠
⎛

⎝
⎜ e−10r2|0a⎞

⎠
⎟

= 2π⎛
⎝−

1
20

⎞
⎠ lima → ∞

⎛
⎝e−10a2

− 1⎞
⎠

= π
10.

Evaluate the integral ∬
R2

e
−4⎛

⎝x
2 + y2⎞

⎠ dx dy.
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5.3 EXERCISES
In the following exercises, express the region D in polar

coordinates.

122. D is the region of the disk of radius 2 centered at

the origin that lies in the first quadrant.

123. D is the region between the circles of radius 4
and radius 5 centered at the origin that lies in the second

quadrant.

124. D is the region bounded by the y -axis and

x = 1 − y2.

125. D is the region bounded by the x -axis and

y = 2 − x2.

126. D = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ 4x⎫

⎭
⎬

127. D = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ 4y⎫

⎭
⎬

In the following exercises, the graph of the polar
rectangular region D is given. Express D in polar

coordinates.

128.

129.

130.

131.
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132. In the following graph, the region D is situated

below y = x and is bounded by x = 1, x = 5, and

y = 0.

133. In the following graph, the region D is bounded by

y = x and y = x2.

In the following exercises, evaluate the double integral
∬
R

f (x, y)dA over the polar rectangular region D.

134.

f (x, y) = x2 + y2, D = {(r, θ)|3 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}

135.
f (x, y) = x + y, D = {(r, θ)|3 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}

136.

f (x, y) = x2 + xy, D = {(r, θ)|1 ≤ r ≤ 2, π ≤ θ ≤ 2π}

137.

f (x, y) = x4 + y4, D =
⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, 3π

2 ≤ θ ≤ 2π
⎫

⎭
⎬

138. f (x, y) = x2 + y23
, where

D =
⎧

⎩
⎨(r, θ)|0 ≤ r ≤ 1, π

2 ≤ θ ≤ π
⎫

⎭
⎬.

139. f (x, y) = x4 + 2x2 y2 + y4, where

D =
⎧

⎩
⎨(r, θ)|3 ≤ r ≤ 4, π

3 ≤ θ ≤ 2π
3

⎫

⎭
⎬.

140. f (x, y) = sin⎛
⎝arctan y

x
⎞
⎠, where

D =
⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, π

6 ≤ θ ≤ π
3

⎫

⎭
⎬

141. f (x, y) = arctan⎛
⎝
y
x

⎞
⎠, where

D =
⎧

⎩
⎨(r, θ)|2 ≤ r ≤ 3, π

4 ≤ θ ≤ π
3

⎫

⎭
⎬

142.

∬
D

ex2 + y2 ⎡
⎣1 + 2 arctan⎛

⎝
y
x

⎞
⎠
⎤
⎦dA, D =

⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, π

6 ≤ θ ≤ π
3

⎫

⎭
⎬

143.

∬
D

⎛
⎝ex2 + y2

+ x4 + 2x2 y2 + y4⎞
⎠arctan⎛

⎝
y
x

⎞
⎠dA, D =

⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, π

4 ≤ θ ≤ π
3

⎫

⎭
⎬

In the following exercises, the integrals have been
converted to polar coordinates. Verify that the identities are
true and choose the easiest way to evaluate the integrals, in
rectangular or polar coordinates.

144. ∫
1

2
∫
0

x
⎛
⎝x2 + y2⎞

⎠dy dx = ∫
0

π
4

∫
sec θ

2 sec θ
r3 dr dθ

145. ∫
2

3
∫
0

x
x

x2 + y2
dy dx = ∫

0

π/4
∫
0

tan θ sec θ
r cos θ dr dθ

146. ∫
0

1
∫
x2

x
1

x2 + y2
dy dx = ∫

0

π/4
∫
0

tan θ sec θ
dr dθ

147. ∫
0

1
∫
x2

x
y

x2 + y2
dy dx = ∫

0

π/4
∫
0

tan θ sec θ
r sin θ dr dθ

In the following exercises, convert the integrals to polar
coordinates and evaluate them.
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148. ∫
0

3
∫
0

9 − y2
⎛
⎝x2 + y2⎞

⎠dx dy

149. ∫
0

2
∫

− 4 − y2

4 − y2
⎛
⎝x2 + y2⎞

⎠
2

dx dy

150. ∫
0

1
∫
0

1 − x2

(x + y)dy dx

151. ∫
0

4
∫

− 16 − x2

16 − x2

sin⎛
⎝x2 + y2⎞

⎠dy dx

152. Evaluate the integral ∬
D

r dA where D is the

region bounded by the polar axis and the upper half of the
cardioid r = 1 + cos θ.

153. Find the area of the region D bounded by the polar

axis and the upper half of the cardioid r = 1 + cos θ.

154. Evaluate the integral ∬
D

r dA, where D is the

region bounded by the part of the four-leaved rose
r = sin 2θ situated in the first quadrant (see the following

figure).

155. Find the total area of the region enclosed by the
four-leaved rose r = sin 2θ (see the figure in the previous

exercise).

156. Find the area of the region D, which is the region

bounded by y = 4 − x2, x = 3, x = 2, and y = 0.

157. Find the area of the region D, which is the region

inside the disk x2 + y2 ≤ 4 and to the right of the line

x = 1.

158. Determine the average value of the function

f (x, y) = x2 + y2 over the region D bounded by the

polar curve r = cos 2θ, where −π
4 ≤ θ ≤ π

4 (see the

following graph).

159. Determine the average value of the function

f (x, y) = x2 + y2 over the region D bounded by the

polar curve r = 3 sin 2θ, where 0 ≤ θ ≤ π
2 (see the

following graph).

160. Find the volume of the solid situated in the first

octant and bounded by the paraboloid z = 1 − 4x2 − 4y2

and the planes x = 0, y = 0, and z = 0.
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161. Find the volume of the solid bounded by the

paraboloid z = 2 − 9x2 − 9y2 and the plane z = 1.

162.
a. Find the volume of the solid S1 bounded by the

cylinder x2 + y2 = 1 and the planes z = 0 and

z = 1.
b. Find the volume of the solid S2 outside the double

cone z2 = x2 + y2, inside the cylinder

x2 + y2 = 1, and above the plane z = 0.
c. Find the volume of the solid inside the cone

z2 = x2 + y2 and below the plane z = 1 by

subtracting the volumes of the solids S1 and S2.

163.
a. Find the volume of the solid S1 inside the unit

sphere x2 + y2 + z2 = 1 and above the plane

z = 0.
b. Find the volume of the solid S2 inside the double

cone (z − 1)2 = x2 + y2 and above the plane

z = 0.
c. Find the volume of the solid outside the double

cone (z − 1)2 = x2 + y2 and inside the sphere

x2 + y2 + z2 = 1.

For the following two exercises, consider a spherical ring,
which is a sphere with a cylindrical hole cut so that the axis
of the cylinder passes through the center of the sphere (see
the following figure).

164. If the sphere has radius 4 and the cylinder has radius

2, find the volume of the spherical ring.

165. A cylindrical hole of diameter 6 cm is bored through

a sphere of radius 5 cm such that the axis of the cylinder

passes through the center of the sphere. Find the volume of
the resulting spherical ring.

166. Find the volume of the solid that lies under the

double cone z2 = 4x2 + 4y2, inside the cylinder

x2 + y2 = x, and above the plane z = 0.

167. Find the volume of the solid that lies under the

paraboloid z = x2 + y2, inside the cylinder

x2 + y2 = x, and above the plane z = 0.

168. Find the volume of the solid that lies under the plane

x + y + z = 10 and above the disk x2 + y2 = 4x.

169. Find the volume of the solid that lies under the plane

2x + y + 2z = 8 and above the unit disk x2 + y2 = 1.

170. A radial function f is a function whose value at

each point depends only on the distance between that point
and the origin of the system of coordinates; that is,

f (x, y) = g(r), where r = x2 + y2. Show that if f
is a continuous radial function, then
∬
D

f (x, y)dA = ⎛
⎝θ2 − θ1

⎞
⎠
⎡
⎣G(R2) − G(R1)⎤

⎦, where

G′(r) = rg(r) and

(x, y) ∈ D = ⎧

⎩
⎨(r, θ)|R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π⎫

⎭
⎬, with

0 ≤ R1 < R2 and 0 ≤ θ1 < θ2 ≤ 2π.

171. Use the information from the preceding exercise to

calculate the integral ∬
D

⎛
⎝x2 + y2⎞

⎠
3
dA, where D is the

unit disk.

172. Let f (x, y) = F′(r)
r be a continuous radial function

defined on the annular region
D = ⎧

⎩
⎨(r, θ)|R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π⎫

⎭
⎬, where

r = x2 + y2, 0 < R1 < R2, and F is a differentiable

function. Show that ∬
D

f (x, y)dA = 2π⎡
⎣F(R2) − F(R1)⎤

⎦.

173. Apply the preceding exercise to calculate the integral

∬
D

e x2 + y2

x2 + y2
dx dy, where D is the annular region

between the circles of radii 1 and 2 situated in the third

quadrant.
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174. Let f be a continuous function that can be expressed

in polar coordinates as a function of θ only; that is,

f (x, y) = h(θ), where

(x, y) ∈ D = ⎧

⎩
⎨(r, θ)|R1 ≤ r ≤ R2, θ1 ≤ θ ≤ θ2

⎫

⎭
⎬, with

0 ≤ R1 < R2 and 0 ≤ θ1 < θ2 ≤ 2π. Show that

∬
D

f (x, y)dA = 1
2

⎛
⎝R2

2 − R1
2⎞

⎠
⎡
⎣H(θ2) − H(θ1)⎤

⎦, where H

is an antiderivative of h.

175. Apply the preceding exercise to calculate the integral

∬
D

y2

x2dA, where D =
⎧

⎩
⎨(r, θ)|1 ≤ r ≤ 2, π

6 ≤ θ ≤ π
3

⎫

⎭
⎬.

176. Let f be a continuous function that can be expressed

in polar coordinates as a function of θ only; that is,

f (x, y) = g(r)h(θ), where

(x, y) ∈ D = ⎧

⎩
⎨(r, θ)|R1 ≤ r ≤ R2, θ1 ≤ θ ≤ θ2

⎫

⎭
⎬ with

0 ≤ R1 < R2 and 0 ≤ θ1 < θ2 ≤ 2π. Show that

∬
D

f (x, y)dA = ⎡
⎣G(R2) − G(R1)⎤

⎦
⎡
⎣H(θ2) − H(θ1)⎤

⎦,

where G and H are antiderivatives of g and h,
respectively.

177. Evaluate ∬
D

arctan⎛
⎝
y
x

⎞
⎠ x2 + y2dA, where

D =
⎧

⎩
⎨(r, θ)|2 ≤ r ≤ 3, π

4 ≤ θ ≤ π
3

⎫

⎭
⎬.

178. A spherical cap is the region of a sphere that lies
above or below a given plane.

a. Show that the volume of the spherical cap in the

figure below is 1
6πh⎛

⎝3a2 + h2⎞
⎠.

b. A spherical segment is the solid defined by
intersecting a sphere with two parallel planes. If the
distance between the planes is h, show that the

volume of the spherical segment in the figure below

is 1
6πh⎛

⎝3a2 + 3b2 + h2⎞
⎠.
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179. In statistics, the joint density for two independent,
normally distributed events with a mean µ = 0 and a

standard distribution σ is defined by

p(x, y) = 1
2πσ2e

− x2 + y2

2σ2
. Consider (X, Y), the

Cartesian coordinates of a ball in the resting position after
it was released from a position on the z-axis toward the
xy -plane. Assume that the coordinates of the ball are

independently normally distributed with a mean µ = 0 and

a standard deviation of σ (in feet). The probability that

the ball will stop no more than a feet from the origin

is given by P⎡
⎣X2 + Y 2 ≤ a2⎤

⎦ = ∬
D

p(x, y)dy dx, where

D is the disk of radius a centered at the origin. Show that

P⎡
⎣X2 + Y 2 ≤ a2⎤

⎦ = 1 − e−a2/2σ2
.

180. The double improper integral

∫
−∞

∞
∫
−∞

∞
e

⎛
⎝−x2 + y2/2⎞

⎠dy dx may be defined as the limit

value of the double integrals ∬
Da

e
⎛
⎝−x2 + y2/2⎞

⎠dA over

disks Da of radii a centered at the origin, as a increases

without bound; that is,

∫
−∞

∞
∫
−∞

∞
e

⎛
⎝−x2 + y2/2⎞

⎠dy dx = lima → ∞ ∬
Da

e
⎛
⎝−x2 + y2/2⎞

⎠dA.

a. Use polar coordinates to show that

∫
−∞

∞
∫
−∞

∞
e

⎛
⎝−x2 + y2/2⎞

⎠dy dx = 2π.

b. Show that ∫
−∞

∞
e−x2/2dx = 2π, by using the

relation

∫
−∞

∞
∫
−∞

∞
e

⎛
⎝−x2 + y2/2⎞

⎠dy dx =
⎛

⎝
⎜∫
−∞

∞
e−x2/2 dx

⎞

⎠
⎟
⎛

⎝
⎜∫
−∞

∞
e−y2/2dy

⎞

⎠
⎟.
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5.4 | Triple Integrals

Learning Objectives
5.4.1 Recognize when a function of three variables is integrable over a rectangular box.

5.4.2 Evaluate a triple integral by expressing it as an iterated integral.

5.4.3 Recognize when a function of three variables is integrable over a closed and bounded
region.

5.4.4 Simplify a calculation by changing the order of integration of a triple integral.

5.4.5 Calculate the average value of a function of three variables.

In Double Integrals over Rectangular Regions, we discussed the double integral of a function f (x, y) of two

variables over a rectangular region in the plane. In this section we define the triple integral of a function f (x, y, z) of three

variables over a rectangular solid box in space, ℝ3. Later in this section we extend the definition to more general regions

in ℝ3.

Integrable Functions of Three Variables

We can define a rectangular box B in ℝ3 as B = ⎧

⎩
⎨(x, y, z)|a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f ⎫

⎭
⎬. We follow a similar

procedure to what we did in Double Integrals over Rectangular Regions. We divide the interval [a, b] into l

subintervals [xi − 1, xi] of equal length Δx = xi − xi − 1
l , divide the interval [c, d] into m subintervals [yi − 1, yi]

of equal length Δy =
y j − y j − 1

m , and divide the interval [e, f ] into n subintervals [zi − 1, zi] of equal length

Δz = zk − zk − 1
n . Then the rectangular box B is subdivided into lmn subboxes

Bi jk = [xi − 1, xi] × [yi − 1, yi] × [zi − 1, zi], as shown in Figure 5.40.
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Figure 5.40 A rectangular box in ℝ3 divided into subboxes by planes

parallel to the coordinate planes.

For each i, j, and k, consider a sample point (xi jk* , yi jk* , zi jk* ) in each sub-box Bi jk. We see that its volume is

ΔV = ΔxΔyΔz. Form the triple Riemann sum

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (xi jk* , yi jk* , zi jk* )ΔxΔyΔz.

We define the triple integral in terms of the limit of a triple Riemann sum, as we did for the double integral in terms of a
double Riemann sum.

Definition

The triple integral of a function f (x, y, z) over a rectangular box B is defined as

(5.10)
lim

l, m, n → ∞
∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (xi jk* , yi jk* , zi jk* )ΔxΔyΔz = ∭

B
f (x, y, z)dV

if this limit exists.

When the triple integral exists on B, the function f (x, y, z) is said to be integrable on B. Also, the triple integral exists

if f (x, y, z) is continuous on B. Therefore, we will use continuous functions for our examples. However, continuity is

sufficient but not necessary; in other words, f is bounded on B and continuous except possibly on the boundary of B.
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The sample point (xi jk* , yi jk* , zi jk* ) can be any point in the rectangular sub-box Bi jk and all the properties of a double

integral apply to a triple integral. Just as the double integral has many practical applications, the triple integral also has
many applications, which we discuss in later sections.

Now that we have developed the concept of the triple integral, we need to know how to compute it. Just as in the case of the
double integral, we can have an iterated triple integral, and consequently, a version of Fubini’s thereom for triple integrals
exists.

Theorem 5.9: Fubini’s Theorem for Triple Integrals

If f (x, y, z) is continuous on a rectangular box B = [a, b] × [c, d] × [e, f ], then

∭
B

f (x, y, z)dV = ∫
e

f

∫
c

d
∫
a

b
f (x, y, z)dx dy dz.

This integral is also equal to any of the other five possible orderings for the iterated triple integral.

For a, b, c, d, e, and f real numbers, the iterated triple integral can be expressed in six different orderings:

∫
e

f

∫
c

d
∫
a

b
f (x, y, z)dx dy dz = ∫

e

f

(∫
c

d
(∫

a

b
f (x, y, z)dx)dy)dz = ∫

c

d
(∫

e

f

(∫
a

b
f (x, y, z)dx)dz)dy

= ∫
a

b
(∫

e

f

(∫
c

d
f (x, y, z)dy)dz)dx = ∫

e

f

(∫
a

b
(∫

c

d
f (x, y, z)dy)dx)dz

= ∫
c

e
(∫

a

b
(∫

e

f

f (x, y, z)dz)dx)dy = ∫
a

b
(∫

c

e
(∫

e

f

f (x, y, z)dz)dy)dx.

For a rectangular box, the order of integration does not make any significant difference in the level of difficulty in
computation. We compute triple integrals using Fubini’s Theorem rather than using the Riemann sum definition. We follow
the order of integration in the same way as we did for double integrals (that is, from inside to outside).

Example 5.36

Evaluating a Triple Integral

Evaluate the triple integral ∫
z = 0

z = 1
∫

y = 2

y = 4
∫

x = −1

x = 5
(x + yz2)dx dy dz.

Solution

The order of integration is specified in the problem, so integrate with respect to x first, then y, and then z.
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∫
z = 0

z = 1
∫

y = 2

y = 4
∫

x = −1

x = 5
(x + yz2)dx dy dz

= ∫
z = 0

z = 1
∫

y = 2

y = 4⎡

⎣
⎢x2

2 + xyz2|x = −1

x = 5 ⎤

⎦
⎥dy dz Integrate with respect to x.

= ∫
z = 0

z = 1
∫

y = 2

y = 4
⎡
⎣12 + 6yz2⎤

⎦dy dz Evaluate.

= ∫
z = 0

z = 1⎡

⎣
⎢
⎢12y + 6y2

2 z2|y = 2

y = 4⎤

⎦
⎥
⎥dz Integrate with respect to y.

= ∫
z = 0

z = 1
⎡
⎣24 + 36z2⎤

⎦dz Evaluate.

= ⎡
⎣24z + 36z3

3
⎤
⎦z = 0

z = 1
= 36. Integrate with respect to z.

Example 5.37

Evaluating a Triple Integral

Evaluate the triple integral ∭
B

x2 yz dV where B = ⎧

⎩
⎨(x, y, z)| − 2 ≤ x ≤ 1, 0 ≤ y ≤ 3, 1 ≤ z ≤ 5⎫

⎭
⎬ as shown

in the following figure.

Figure 5.41 Evaluating a triple integral over a given
rectangular box.

Solution

The order is not specified, but we can use the iterated integral in any order without changing the level of difficulty.
Choose, say, to integrate y first, then x, and then z.
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5.23

∭
B

x2 yz dV = ∫
1

5
∫
−2

1
∫
0

3
⎡
⎣x2 yz⎤

⎦dy dx dz = ∫
1

5
∫
−2

1 ⎡

⎣
⎢x2 y2

2 z|03⎤

⎦
⎥dx dz

= ∫
1

5
∫
−2

1
9
2x2 z dx dz = ∫

1

5 ⎡

⎣
⎢9

2
x3
3 z|−2

1 ⎤

⎦
⎥dz = ∫

1

5
27
2 z dz = 27

2
z2
2 |15 = 162.

Now try to integrate in a different order just to see that we get the same answer. Choose to integrate with respect
to x first, then z, and then y.

∭
B

x2 yz dV = ∫
0

3
∫
1

5
∫
−2

1
⎡
⎣x2 yz⎤

⎦dx dz dy = ∫
0

3
∫
1

5 ⎡

⎣
⎢x3

3 yz|−2

1 ⎤

⎦
⎥dz dy

= ∫
0

3
∫
1

5
3yz dz dy = ∫

0

3 ⎡

⎣
⎢3yz2

2 |15⎤

⎦
⎥dy = ∫

0

3
36y dy = 36y2

2 |03 = 18(9 − 0) = 162.

Evaluate the triple integral ∭
B

z sin x cos y dV where

B =
⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ π, 3π

2 ≤ y ≤ 2π, 1 ≤ z ≤ 3
⎫

⎭
⎬.

Triple Integrals over a General Bounded Region
We now expand the definition of the triple integral to compute a triple integral over a more general bounded region E in

ℝ3. The general bounded regions we will consider are of three types. First, let D be the bounded region that is a projection

of E onto the xy -plane. Suppose the region E in ℝ3 has the form

E = ⎧

⎩
⎨(x, y, z)|(x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)⎫

⎭
⎬.

For two functions z = u1(x, y) and z = u2(x, y), such that u1(x, y) ≤ u2(x, y) for all (x, y) in D as shown in the

following figure.

Figure 5.42 We can describe region E as the space between

u1(x, y) and u2(x, y) above the projection D of E onto the

xy -plane.
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Theorem 5.10: Triple Integral over a General Region

The triple integral of a continuous function f (x, y, z) over a general three-dimensional region

E = ⎧

⎩
⎨(x, y, z)|(x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)⎫

⎭
⎬

in ℝ3, where D is the projection of E onto the xy -plane, is

∭
E

f (x, y, z)dV = ∬
D

⎡

⎣
⎢
⎢ ∫
u1(x, y)

u2(x, y)

f (x, y, z)dz
⎤

⎦
⎥
⎥dA.

Similarly, we can consider a general bounded region D in the xy -plane and two functions y = u1(x, z) and y = u2(x, z)

such that u1(x, z) ≤ u2(x, z) for all (x, z) in D. Then we can describe the solid region E in ℝ3 as

E = ⎧

⎩
⎨(x, y, z)|(x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)⎫

⎭
⎬

where D is the projection of E onto the xy -plane and the triple integral is

∭
E

f (x, y, z)dV = ∬
D

⎡

⎣
⎢
⎢ ∫
u1(x, z)

u2(x, z)

f (x, y, z)dy
⎤

⎦
⎥
⎥dA.

Finally, if D is a general bounded region in the yz -plane and we have two functions x = u1(y, z) and x = u2(y, z) such

that u1(y, z) ≤ u2(y, z) for all (y, z) in D, then the solid region E in ℝ3 can be described as

E = ⎧

⎩
⎨(x, y, z)|(y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)⎫

⎭
⎬

where D is the projection of E onto the yz -plane and the triple integral is

∭
E

f (x, y, z)dV = ∬
D

⎡

⎣
⎢
⎢ ∫
u1(y, z)

u2(y, z)

f (x, y, z)dx
⎤

⎦
⎥
⎥dA.

Note that the region D in any of the planes may be of Type I or Type II as described in Double Integrals over General

Regions. If D in the xy -plane is of Type I (Figure 5.43), then

E = ⎧

⎩
⎨(x, y, z)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)⎫

⎭
⎬.
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Figure 5.43 A box E where the projection D in the xy -plane is of

Type I.

Then the triple integral becomes

∭
E

f (x, y, z)dV = ∫
a

b
∫

g1(x)

g2(x)

∫
u1(x, y)

u2(x, y)

f (x, y, z)dz dy dx.

If D in the xy -plane is of Type II (Figure 5.44), then

E = ⎧

⎩
⎨(x, y, z)|c ≤ x ≤ d, h1(x) ≤ y ≤ h2(x), u1(x, y) ≤ z ≤ u2(x, y)⎫

⎭
⎬.

Figure 5.44 A box E where the projection D in the xy
-plane is of Type II.

Then the triple integral becomes

∭
E

f (x, y, z)dV = ∫
y = c

y = d
∫

x = h1 (y)

x = h2 (y)
∫

z = u1 (x, y)

z = u2 (x, y)
f (x, y, z)dz dx dy.
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Example 5.38

Evaluating a Triple Integral over a General Bounded Region

Evaluate the triple integral of the function f (x, y, z) = 5x − 3y over the solid tetrahedron bounded by the planes

x = 0, y = 0, z = 0, and x + y + z = 1.

Solution

Figure 5.45 shows the solid tetrahedron E and its projection D on the xy -plane.

Figure 5.45 The solid E has a projection D on the xy -plane of Type I.

We can describe the solid region tetrahedron as

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y⎫

⎭
⎬.

Hence, the triple integral is

∭
E

f (x, y, z)dV = ∫
x = 0

x = 1
∫

y = 0

y = 1 − x
∫

z = 0

z = 1 − x − y
⎛
⎝5x − 3y⎞

⎠dz dy dx.

To simplify the calculation, first evaluate the integral ∫
z = 0

z = 1 − x − y
(5x − 3y)dz. We have

∫
z = 0

z = 1 − x − y
(5x − 3y)dz = ⎛

⎝5x − 3y⎞
⎠
⎛
⎝1 − x − y⎞

⎠.

Now evaluate the integral ∫
y = 0

y = 1 − x
⎛
⎝5x − 3y⎞

⎠
⎛
⎝1 − x − y⎞

⎠dy, obtaining

∫
y = 0

y = 1 − x
⎛
⎝5x − 3y⎞

⎠
⎛
⎝1 − x − y⎞

⎠dy = 1
2(x − 1)2(6x − 1).

Finally, evaluate

∫
x = 0

x = 1
1
2(x − 1)2(6x − 1)dx = 1

12.
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Putting it all together, we have

∭
E

f (x, y, z)dV = ∫
x = 0

x = 1
∫

y = 0

y = 1 − x
∫

z = 0

z = 1 − x − y
⎛
⎝5x − 3y⎞

⎠dz dy dx = 1
12.

Just as we used the double integral ∬
D

1dA to find the area of a general bounded region D, we can use ∭
E

1dV to find

the volume of a general solid bounded region E. The next example illustrates the method.

Example 5.39

Finding a Volume by Evaluating a Triple Integral

Find the volume of a right pyramid that has the square base in the xy -plane [−1, 1] × [−1, 1] and vertex at the

point (0, 0, 1) as shown in the following figure.

Figure 5.46 Finding the volume of a pyramid with a square base.

Solution

In this pyramid the value of z changes from 0 to 1, and at each height z, the cross section of the pyramid for

any value of z is the square [−1 + z, 1 − z] × [−1 + z, 1 − z]. Hence, the volume of the pyramid is ∭
E

1dV

where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ z ≤ 1, −1 + z ≤ y ≤ 1 − z, −1 + z ≤ x ≤ 1 − z⎫

⎭
⎬.

Thus, we have
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5.24

∭
E

1dV = ∫
z = 0

z = 1
∫

y = 1 + z

y = 1 − z
∫

x = 1 + z

x = 1 − z
1dx dy dz = ∫

z = 0

z = 1
∫

y = 1 + z

y = 1 − z
(2 − 2z)dy dz = ∫

z = 0

z = 1
(2 − 2z)2 dz = 4

3.

Hence, the volume of the pyramid is 4
3 cubic units.

Consider the solid sphere E = ⎧

⎩
⎨(x, y, z)|x2 + y2 + z2 = 9⎫

⎭
⎬. Write the triple integral ∭

E
f (x, y, z)dV

for an arbitrary function f as an iterated integral. Then evaluate this triple integral with f (x, y, z) = 1. Notice

that this gives the volume of a sphere using a triple integral.

Changing the Order of Integration
As we have already seen in double integrals over general bounded regions, changing the order of the integration is done
quite often to simplify the computation. With a triple integral over a rectangular box, the order of integration does not
change the level of difficulty of the calculation. However, with a triple integral over a general bounded region, choosing an
appropriate order of integration can simplify the computation quite a bit. Sometimes making the change to polar coordinates
can also be very helpful. We demonstrate two examples here.

Example 5.40

Changing the Order of Integration

Consider the iterated integral

∫
x = 0

x = 1
∫

y = 0

y = x2

∫
z = 0

z = y

f (x, y, z)dz dy dx.

The order of integration here is first with respect to z, then y, and then x. Express this integral by changing the
order of integration to be first with respect to x, then z, and then y. Verify that the value of the integral is the

same if we let f (x, y, z) = xyz.

Solution

The best way to do this is to sketch the region E and its projections onto each of the three coordinate planes.

Thus, let

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x2, 0 ≤ z ≤ y⎫

⎭
⎬.

and

∫
x = 0

x = 1
∫

y = 0

y = x2

∫
z = 0

z = y2

f (x, y, z)dz dy dx = ∭
E

f (x, y, z)dV .

We need to express this triple integral as
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∫
y = c

y = d

∫
z = v1 (y)

z = v2 (y)

∫
x = u1 (y, z)

x = u2 (y, z)

f (x, y, z)dx dz dy.

Knowing the region E we can draw the following projections (Figure 5.47):

on the xy -plane is D1 = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x2⎫

⎭
⎬ = ⎧

⎩
⎨(x, y)|0 ≤ y ≤ 1, y ≤ x ≤ 1⎫

⎭
⎬,

on the yz -plane is D2 = ⎧

⎩
⎨(y, z)|0 ≤ y ≤ 1, 0 ≤ z ≤ y2⎫

⎭
⎬, and

on the xz -plane is D3 = ⎧

⎩
⎨(x, z)|0 ≤ x ≤ 1, 0 ≤ z ≤ x2⎫

⎭
⎬.

Figure 5.47 The three cross sections of E on the three coordinate planes.

Now we can describe the same region E as
⎧

⎩
⎨(x, y, z)|0 ≤ y ≤ 1, 0 ≤ z ≤ y2, y ≤ x ≤ 1⎫

⎭
⎬, and consequently,

the triple integral becomes

∫
y = c

y = d

∫
z = v1 (y)

z = v2 (y)

∫
x = u1 (y, z)

x = u2 (y, z)

f (x, y, z)dx dz dy = ∫
y = 0

y = 1

∫
z = 0

z = x2

∫
x = y

x = 1
f (x, y, z)dx dz dy.

Now assume that f (x, y, z) = xyz in each of the integrals. Then we have
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5.25

∫
x = 0

x = 1
∫

y = 0

y = x2

∫
z = 0

z = y2

xyz dz dy dx

= ∫
x = 0

x = 1
∫

y = 0

y = x2⎡

⎣
⎢
⎢xyz2

2 |z = 0

z = y2⎤

⎦
⎥
⎥dy dx = ∫

x = 0

x = 1
∫

y = 0

y = x2
⎛

⎝
⎜xy5

2
⎞

⎠
⎟dy dx = ∫

x = 0

x = 1⎡

⎣
⎢
⎢x y6

12|y = 0

y = x2⎤

⎦
⎥
⎥dx = ∫

x = 0

x = 1
x13

12 dx = 1
168,

∫
y = 0

y = 1

∫
z = 0

z = y2

∫
x = y

x = 1
xyz dx dz dy

= ∫
y = 0

y = 1

∫
z = 0

z = y2⎡

⎣
⎢yzx2

2 | y

1 ⎤

⎦
⎥dz dy

= ∫
y = 0

y = 1

∫
z = 0

z = y2
⎛

⎝
⎜ yz

2 − y2 z
2

⎞

⎠
⎟ dz dy = ∫

y = 0

y = 1⎡

⎣
⎢
⎢yz2

4 − y2 z2

4 |z = 0

z = y2⎤

⎦
⎥
⎥dy = ∫

y = 0

y = 1⎛

⎝
⎜y5

4 − y6

4
⎞

⎠
⎟dy = 1

168.

The answers match.

Write five different iterated integrals equal to the given integral

∫
z = 0

z = 4

∫
y = 0

y = 4 − z

∫
x = 0

x = y

f (x, y, z)dx dy dz.

Example 5.41

Changing Integration Order and Coordinate Systems

Evaluate the triple integral ∭
E

x2 + z2dV , where E is the region bounded by the paraboloid y = x2 + z2

(Figure 5.48) and the plane y = 4.
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Figure 5.48 Integrating a triple integral over a paraboloid.

Solution

The projection of the solid region E onto the xy -plane is the region bounded above by y = 4 and below by the

parabola y = x2 as shown.

Figure 5.49 Cross section in the xy -plane of the paraboloid

in Figure 5.48.

Thus, we have

E =
⎧

⎩
⎨(x, y, z)| − 2 ≤ x ≤ 2, x2 ≤ y ≤ 4, − y − x2 ≤ z ≤ y − x2⎫

⎭
⎬.

The triple integral becomes

∭
E

x2 + z2dV = ∫
x = −2

x = 2
∫

y = x2

y = 4

∫
z = − y − x2

z = y − x2

x2 + z2dz dy dx.

This expression is difficult to compute, so consider the projection of E onto the xz -plane. This is a circular disc

x2 + z2 ≤ 4. So we obtain

∭
E

x2 + z2dV = ∫
x = −2

x = 2
∫

y = x2

y = 4

∫
z = − y − x2

z = y − x2

x2 + z2dz dy dx = ∫
x = −2

x = 2
∫

z = − 4 − x2

z = 4 − x2

∫
y = x2 + z2

y = 4

x2 + z2dy dz dx.
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Here the order of integration changes from being first with respect to z, then y, and then x to being first with

respect to y, then to z, and then to x. It will soon be clear how this change can be beneficial for computation.

We have

∫
x = −2

x = 2
∫

z = − 4 − x2

z = 4 − x2

∫
y = x2 + z2

y = 4

x2 + z2dy dz dx = ∫
x = −2

x = 2
∫

z = − 4 − x2

z = 4 − x2
⎛
⎝4 − x2 − z2⎞

⎠ x2 + z2dz dx.

Now use the polar substitution x = r cos θ, z = r sin θ, and dz dx = r dr dθ in the xz -plane. This is

essentially the same thing as when we used polar coordinates in the xy -plane, except we are replacing y by z.

Consequently the limits of integration change and we have, by using r2 = x2 + z2,

∫
x = −2

x = 2
∫

z = − 4 − x2

z = 4 − x2
⎛
⎝4 − x2 − z2⎞

⎠ x2 + z2dz dx = ∫
θ = 0

θ = 2π
∫

r = 0

r = 2
⎛
⎝4 − r2⎞

⎠rr dr dθ

= ∫
0

2π⎡

⎣
⎢4r3

3 − r5

5 |02⎤

⎦
⎥dθ = ∫

0

2π
64
15dθ = 128π

15 .

Average Value of a Function of Three Variables
Recall that we found the average value of a function of two variables by evaluating the double integral over a region on the
plane and then dividing by the area of the region. Similarly, we can find the average value of a function in three variables
by evaluating the triple integral over a solid region and then dividing by the volume of the solid.

Theorem 5.11: Average Value of a Function of Three Variables

If f (x, y, z) is integrable over a solid bounded region E with positive volume V(E), then the average value of the

function is

fave = 1
V(E) ∭

E
f (x, y, z)dV .

Note that the volume is V(E) = ∭
E

1dV .

Example 5.42

Finding an Average Temperature

The temperature at a point (x, y, z) of a solid E bounded by the coordinate planes and the plane x + y + z = 1
is T(x, y, z) = (xy + 8z + 20)°C. Find the average temperature over the solid.

Solution

Use the theorem given above and the triple integral to find the numerator and the denominator. Then do the

Chapter 5 | Multiple Integration 559



5.26

division. Notice that the plane x + y + z = 1 has intercepts (1, 0, 0), (0, 1, 0), and (0, 0, 1). The region E
looks like

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y⎫

⎭
⎬.

Hence the triple integral of the temperature is

∭
E

f (x, y, z)dV = ∫
x = 0

x = 1
∫

y = 0

y = 1 − x

∫
z = 0

z = 1 − x − y
⎛
⎝xy + 8z + 20⎞

⎠dz dy dx = 147
40 .

The volume evaluation is V(E) = ∭
E

1dV = ∫
x = 0

x = 1
∫

y = 0

y = 1 − x

∫
z = 0

z = 1 − x − y

1dz dy dx = 1
6.

Hence the average value is Tave = 147/40
1/6 = 6(147)

40 = 441
20 degrees Celsius.

Find the average value of the function f (x, y, z) = xyz over the cube with sides of length 4 units in the

first octant with one vertex at the origin and edges parallel to the coordinate axes.
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5.4 EXERCISES
In the following exercises, evaluate the triple integrals over
the rectangular solid box B.

181. ∭
B

⎛
⎝2x + 3y2 + 4z3⎞

⎠dV , where

B = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3⎫

⎭
⎬

182. ∭
B

(xy + yz + xz)dV , where

B = ⎧

⎩
⎨(x, y, z)|1 ≤ x ≤ 2, 0 ≤ y ≤ 2, 1 ≤ z ≤ 3⎫

⎭
⎬

183. ∭
B

(x cos y + z)dV , where

B = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ π, −1 ≤ z ≤ 1⎫

⎭
⎬

184. ∭
B

⎛
⎝z sin x + y2⎞

⎠dV , where

B = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ π, 0 ≤ y ≤ 1, −1 ≤ z ≤ 2⎫

⎭
⎬

In the following exercises, change the order of integration
by integrating first with respect to z, then x, then y.

185. ∫
0

1
∫
1

2
∫
2

3
⎛
⎝x2 + ln y + z⎞

⎠dx dy dz

186. ∫
0

1
∫
−1

1
∫
0

3
⎛
⎝zex + 2y⎞

⎠dx dy dz

187. ∫
−1

2
∫
1

3
∫
0

4
⎛
⎝x

2 z + 1
y

⎞
⎠dx dy dz

188. ∫
1

2
∫
−2

−1
∫
0

1
x + y

z dx dy dz

189. Let F, G, and H be continuous functions on
⎡
⎣a, b⎤

⎦, ⎡
⎣c, d⎤

⎦, and ⎡
⎣e, f ⎤

⎦, respectively, where

a, b, c, d, e, and f are real numbers such that

a < b, c < d, and e < f . Show that

∫
a

b
∫
c

d
∫
e

f

F(x)G(y)H(z)dz dy dx =
⎛

⎝
⎜∫

a

b
F(x)dx

⎞

⎠
⎟
⎛

⎝
⎜∫

c

d
G(y)dy

⎞

⎠
⎟
⎛

⎝
⎜∫

e

f

H(z)dz
⎞

⎠
⎟.

190. Let F, G, and H be differential functions on
⎡
⎣a, b⎤

⎦, ⎡
⎣c, d⎤

⎦, and ⎡
⎣e, f ⎤

⎦, respectively, where

a, b, c, d, e, and f are real numbers such that

a < b, c < d, and e < f . Show that

∫
a

b
∫
c

d
∫
e

f

F′ (x)G′ (y)H′ (z)dz dy dx = ⎡
⎣F(b) − F(a)⎤

⎦
⎡
⎣G(d) − G(c)⎤

⎦
⎡
⎣H⎛

⎝ f ⎞
⎠ − H(e)⎤

⎦.

In the following exercises, evaluate the triple integrals over
the bounded region
E = ⎧

⎩
⎨(x, y, z)|a ≤ x ≤ b, h1 (x) ≤ y ≤ h2 (x), e ≤ z ≤ f ⎫

⎭
⎬.

191. ∭
E

⎛
⎝2x + 5y + 7z⎞

⎠dV , where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ − x + 1, 1 ≤ z ≤ 2⎫

⎭
⎬

192. ∭
E

⎛
⎝y ln x + z⎞

⎠dV , where

E = ⎧

⎩
⎨(x, y, z)|1 ≤ x ≤ e, 0 ≤ y ≤ ln x, 0 ≤ z ≤ 1⎫

⎭
⎬

193. ∭
E

⎛
⎝sin x + sin y⎞

⎠dV , where

E =
⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ π

2, −cos x ≤ y ≤ cos x, −1 ≤ z ≤ 1
⎫

⎭
⎬

194. ∭
E

(xy + yz + xz)dV , where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, −x2 ≤ y ≤ x2, 0 ≤ z ≤ 1⎫

⎭
⎬

In the following exercises, evaluate the triple integrals over
the indicated bounded region E.

195. ∭
E

⎛
⎝x + 2yz⎞

⎠dV , where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 5 − x − y⎫

⎭
⎬

196. ∭
E

⎛
⎝x

3 + y3 + z3⎞
⎠dV , where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 2, 0 ≤ y ≤ 2x, 0 ≤ z ≤ 4 − x − y⎫

⎭
⎬

197. ∭
E

y dV , where

E =
⎧

⎩
⎨(x, y, z)| − 1 ≤ x ≤ 1, − 1 − x2 ≤ y ≤ 1 − x2, 0 ≤ z ≤ 1 − x2 − y2⎫

⎭
⎬

198. ∭
E

x dV , where

E =
⎧

⎩
⎨(x, y, z)| − 2 ≤ x ≤ 2, −4 1 − x2 ≤ y ≤ 4 − x2, 0 ≤ z ≤ 4 − x2 − y2⎫

⎭
⎬

In the following exercises, evaluate the triple integrals over
the bounded region E of the form

E = ⎧

⎩
⎨(x, y, z)|g1 (y) ≤ x ≤ g2 (y), c ≤ y ≤ d, e ≤ z ≤ f ⎫

⎭
⎬.
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199. ∭
E

x2 dV , where

E = ⎧

⎩
⎨(x, y, z)|1 − y2 ≤ x ≤ y2 − 1, −1 ≤ y ≤ 1, 1 ≤ z ≤ 2⎫

⎭
⎬

200. ∭
E

⎛
⎝sin x + y⎞

⎠dV , where

E = ⎧

⎩
⎨(x, y, z)| − y4 ≤ x ≤ y4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4⎫

⎭
⎬

201. ∭
E

(x − yz)dV , where

E = ⎧

⎩
⎨(x, y, z)| − y6 ≤ x ≤ y, 0 ≤ y ≤ 1x, −1 ≤ z ≤ 1⎫

⎭
⎬

202. ∭
E

zdV , where

E = ⎧

⎩
⎨(x, y, z)|2 − 2y ≤ x ≤ 2 + y, 0 ≤ y ≤ 1x, 2 ≤ z ≤ 3⎫

⎭
⎬

In the following exercises, evaluate the triple integrals over
the bounded region

E = ⎧

⎩
⎨(x, y, z)|g1 (y) ≤ x ≤ g2 (y), c ≤ y ≤ d, u1 (x, y) ≤ z ≤ u2 (x, y)⎫

⎭
⎬.

203. ∭
E

zdV , where

E = ⎧

⎩
⎨(x, y, z)| − y ≤ x ≤ y, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 − x4 − y4⎫

⎭
⎬

204. ∭
E

(xz + 1)dV , where

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ y, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1 − x2 − y2⎫

⎭
⎬

205. ∭
E

(x − z)dV , where

E =
⎧

⎩
⎨(x, y, z)| − 1 − y2 ≤ x ≤ y, 0 ≤ y ≤ 1

2x, 0 ≤ z ≤ 1 − x2 − y2⎫

⎭
⎬

206. ∭
E

(x + y)dV , where

E =
⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1 − y2, 0 ≤ y ≤ 1x, 0 ≤ z ≤ 1 − x

⎫

⎭
⎬

In the following exercises, evaluate the triple integrals over
the bounded region

E = ⎧

⎩
⎨(x, y, z)|(x, y) ∈ D, u1 (x, y)x ≤ z ≤ u2 (x, y)⎫

⎭
⎬,

where D is the projection of E onto the xy -plane.

207. ∬
D

⎛

⎝
⎜∫

1

2
(x + z)dz

⎞

⎠
⎟dA, where

D = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ 1⎫

⎭
⎬

208. ∬
D

⎛

⎝
⎜∫

1

3
x(z + 1)dz

⎞

⎠
⎟dA, where

D = ⎧

⎩
⎨(x, y)|x2 − y2 ≥ 1, x ≤ 5⎫

⎭
⎬

209. ∬
D

⎛

⎝
⎜ ∫

0

10 − x − y

(x + 2z)dz
⎞

⎠
⎟dA, where

D = ⎧

⎩
⎨(x, y)|y ≥ 0, x ≥ 0, x + y ≤ 10⎫

⎭
⎬

210. ∬
D

⎛

⎝
⎜
⎜ ∫

0

4x2 + 4y2

y dz
⎞

⎠
⎟
⎟dA, where

D = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ 4, y ≥ 1, x ≥ 0⎫

⎭
⎬

211. The solid E bounded by y2 + z2 = 9, z = 0, and

x = 5 is shown in the following figure. Evaluate the

integral ∭
E

z dV by integrating first with respect to z,

then y, and then x.
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212. The solid E bounded by y = x, x = 4, y = 0,
and z = 1 is given in the following figure. Evaluate the

integral ∭
E

xyz dV by integrating first with respect to x,

then y, and then z.

213. [T] The volume of a solid E is given by the integral

∫
−2

0
∫
x

0
∫
0

x2 + y2

dz dy dx. Use a computer algebra system

(CAS) to graph E and find its volume. Round your answer

to two decimal places.

214. [T] The volume of a solid E is given by the integral

∫
−1

0
∫

−x2

0
∫
0

1 + x2 + y2

dz dy dx. Use a CAS to graph E and

find its volume V . Round your answer to two decimal

places.

In the following exercises, use two circular permutations
of the variables x, y, and z to write new integrals whose

values equal the value of the original integral. A circular
permutation of x, y, and z is the arrangement of the

numbers in one of the following orders:
y, z, and x or z, x, and y.

215. ∫
0

1
∫
1

3
∫
2

4
⎛
⎝x2 z2 + 1⎞

⎠dx dy dz

216. ∫
1

3
∫
0

1
∫
0

−x + 1
⎛
⎝2x + 5y + 7z⎞

⎠dy dx dz

217. ∫
0

1
∫
−y

y

∫
0

1 − x4 − y4

ln x dz dx dy

218. ∫
−1

1
∫
0

1
∫

−y6

y

(x + yz)dx dy dz

219. Set up the integral that gives the volume of the solid

E bounded by y2 = x2 + z2 and y = a2, where a > 0.

220. Set up the integral that gives the volume of the solid

E bounded by x = y2 + z2 and x = a2, where a > 0.

221. Find the average value of the function
f (x, y, z) = x + y + z over the parallelepiped determined

by x = 0, x = 1, y = 0, y = 3, z = 0, and z = 5.

222. Find the average value of the function
f (x, y, z) = xyz over the solid

E = [0, 1] × [0, 1] × [0, 1] situated in the first octant.

223. Find the volume of the solid E that lies under the

plane x + y + z = 9 and whose projection onto the xy

-plane is bounded by x = y − 1, x = 0, and x + y = 7.

224. Find the volume of the solid E that lies under the
plane 2x + y + z = 8 and whose projection onto the xy

-plane is bounded by x = sin−1 y, y = 0, and x = π
2.

225. Consider the pyramid with the base in the xy -plane

of [−2, 2] × [−2, 2] and the vertex at the point (0, 0, 8).
a. Show that the equations of the planes of the lateral

faces of the pyramid are 4y + z = 8,
4y − z = −8, 4x + z = 8, and −4x + z = 8.

b. Find the volume of the pyramid.

226. Consider the pyramid with the base in the xy -plane

of [−3, 3] × [−3, 3] and the vertex at the point (0, 0, 9).
a. Show that the equations of the planes of the side

faces of the pyramid are 3y + z = 9,
3y + z = 9, y = 0 and x = 0.

b. Find the volume of the pyramid.
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227. The solid E bounded by the sphere of equation

x2 + y2 + z2 = r2 with r > 0 and located in the first

octant is represented in the following figure.

a. Write the triple integral that gives the volume of
E by integrating first with respect to z, then with

y, and then with x.
b. Rewrite the integral in part a. as an equivalent

integral in five other orders.

228. The solid E bounded by the equation

9x2 + 4y2 + z2 = 1 and located in the first octant is

represented in the following figure.

a. Write the triple integral that gives the volume of
E by integrating first with respect to z, then with

y, and then with x.
b. Rewrite the integral in part a. as an equivalent

integral in five other orders.

229. Find the volume of the prism with vertices
(0, 0, 0), (2, 0, 0), (2, 3, 0),
(0, 3, 0), (0, 0, 1), and (2, 0, 1).

230. Find the volume of the prism with vertices
(0, 0, 0), (4, 0, 0), (4, 6, 0),
(0, 6, 0), (0, 0, 1), and (4, 0, 1).

231. The solid E bounded by z = 10 − 2x − y and

situated in the first octant is given in the following figure.
Find the volume of the solid.

232. The solid E bounded by z = 1 − x2 and situated

in the first octant is given in the following figure. Find the
volume of the solid.
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233. The midpoint rule for the triple integral
∭
B

f (x, y, z)dV over the rectangular solid box B is a

generalization of the midpoint rule for double integrals.
The region B is divided into subboxes of equal sizes and

the integral is approximated by the triple Riemann sum

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f ⎛

⎝ xi
– , y j

– , zk
– ⎞

⎠ΔV , where ⎛
⎝ xi

– , y j
– , zk

– ⎞
⎠ is

the center of the box Bi jk and ΔV is the volume of

each subbox. Apply the midpoint rule to approximate

∭
B

x2 dV over the solid

B = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1⎫

⎭
⎬ by using

a partition of eight cubes of equal size. Round your answer
to three decimal places.

234. [T]
a. Apply the midpoint rule to approximate

∭
B

e−x2
dV over the solid

B = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1⎫

⎭
⎬

by using a partition of eight cubes of equal size.
Round your answer to three decimal places.

b. Use a CAS to improve the above integral

approximation in the case of a partition of n3

cubes of equal size, where n = 3, 4,…, 10.

235. Suppose that the temperature in degrees Celsius at
a point (x, y, z) of a solid E bounded by the coordinate

planes and x + y + z = 5 is T(x, y, z) = xz + 5z + 10.
Find the average temperature over the solid.

236. Suppose that the temperature in degrees Fahrenheit
at a point (x, y, z) of a solid E bounded by the coordinate

planes and x + y + z = 5 is T(x, y, z) = x + y + xy.
Find the average temperature over the solid.

237. Show that the volume of a right square pyramid of

height h and side length a is v = ha2

3 by using triple

integrals.

238. Show that the volume of a regular right hexagonal

prism of edge length a is 3a3 3
2 by using triple

integrals.

239. Show that the volume of a regular right hexagonal

pyramid of edge length a is a3 3
2 by using triple

integrals.

240. If the charge density at an arbitrary point (x, y, z)
of a solid E is given by the function ρ(x, y, z), then the

total charge inside the solid is defined as the triple integral
∭
E

ρ(x, y, z)dV . Assume that the charge density of the

solid E enclosed by the paraboloids x = 5 − y2 − z2 and

x = y2 + z2 − 5 is equal to the distance from an arbitrary

point of E to the origin. Set up the integral that gives the

total charge inside the solid E.
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5.5 | Triple Integrals in Cylindrical and Spherical

Coordinates

Learning Objectives
5.5.1 Evaluate a triple integral by changing to cylindrical coordinates.

5.5.2 Evaluate a triple integral by changing to spherical coordinates.

Earlier in this chapter we showed how to convert a double integral in rectangular coordinates into a double integral in polar
coordinates in order to deal more conveniently with problems involving circular symmetry. A similar situation occurs with
triple integrals, but here we need to distinguish between cylindrical symmetry and spherical symmetry. In this section we
convert triple integrals in rectangular coordinates into a triple integral in either cylindrical or spherical coordinates.

Also recall the chapter opener, which showed the opera house l’Hemisphèric in Valencia, Spain. It has four sections with
one of the sections being a theater in a five-story-high sphere (ball) under an oval roof as long as a football field. Inside is
an IMAX screen that changes the sphere into a planetarium with a sky full of 9000 twinkling stars. Using triple integrals

in spherical coordinates, we can find the volumes of different geometric shapes like these.

Review of Cylindrical Coordinates
As we have seen earlier, in two-dimensional space ℝ2, a point with rectangular coordinates (x, y) can be identified

with (r, θ) in polar coordinates and vice versa, where x = r cos θ, y = r sin θ, r2 = x2 + y2 and tan θ = ⎛
⎝
y
x

⎞
⎠ are the

relationships between the variables.

In three-dimensional space ℝ3, a point with rectangular coordinates (x, y, z) can be identified with cylindrical

coordinates (r, θ, z) and vice versa. We can use these same conversion relationships, adding z as the vertical distance to

the point from the xy -plane as shown in the following figure.

Figure 5.50 Cylindrical coordinates are similar to polar
coordinates with a vertical z coordinate added.

To convert from rectangular to cylindrical coordinates, we use the conversion x = r cos θ and y = r sin θ. To convert

from cylindrical to rectangular coordinates, we use r2 = x2 + y2 and θ = tan−1 ⎛
⎝
y
x

⎞
⎠. The z -coordinate remains the same

in both cases.

In the two-dimensional plane with a rectangular coordinate system, when we say x = k (constant) we mean an unbounded

vertical line parallel to the y -axis and when y = l (constant) we mean an unbounded horizontal line parallel to the x -axis.
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With the polar coordinate system, when we say r = c (constant), we mean a circle of radius c units and when θ = α
(constant) we mean an infinite ray making an angle α with the positive x -axis.

Similarly, in three-dimensional space with rectangular coordinates (x, y, z), the equations x = k, y = l, and z = m,
where k, l, and m are constants, represent unbounded planes parallel to the yz -plane, xz -plane and xy -plane,

respectively. With cylindrical coordinates (r, θ, z), by r = c, θ = α, and z = m, where c, α, and m are constants,

we mean an unbounded vertical cylinder with the z -axis as its radial axis; a plane making a constant angle α with

the xy -plane; and an unbounded horizontal plane parallel to the xy -plane, respectively. This means that the circular

cylinder x2 + y2 = c2 in rectangular coordinates can be represented simply as r = c in cylindrical coordinates. (Refer to

Cylindrical and Spherical Coordinates for more review.)

Integration in Cylindrical Coordinates
Triple integrals can often be more readily evaluated by using cylindrical coordinates instead of rectangular coordinates.
Some common equations of surfaces in rectangular coordinates along with corresponding equations in cylindrical
coordinates are listed in Table 5.1. These equations will become handy as we proceed with solving problems using triple
integrals.

Circular cylinder Circular cone Sphere Paraboloid

Rectangular x2 + y2 = c2 z2 = c2 ⎛
⎝x2 + y2⎞

⎠ x2 + y2 + z2 = c2 z = c⎛
⎝x2 + y2⎞

⎠

Cylindrical r = c z = cr r2 + z2 = c2 z = cr2

Table 5.1 Equations of Some Common Shapes

As before, we start with the simplest bounded region B in ℝ3, to describe in cylindrical coordinates, in the form

of a cylindrical box, B = ⎧

⎩
⎨(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d⎫

⎭
⎬ (Figure 5.51). Suppose we divide each interval

into l, m and n subdivisions such that Δr = b − a
l , Δθ = β − α

m , and Δz = d − c
n . Then we can state the following

definition for a triple integral in cylindrical coordinates.

Figure 5.51 A cylindrical box B described by cylindrical

coordinates.
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Definition

Consider the cylindrical box (expressed in cylindrical coordinates)

B = ⎧

⎩
⎨(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d⎫

⎭
⎬.

If the function f (r, θ, z) is continuous on B and if (ri jk* , θi jk* , zi jk* ) is any sample point in the cylindrical subbox

Bi jk = [ri − 1, ri] × ⎡
⎣θ j − 1, θ j

⎤
⎦ × [zk − 1, zk] (Figure 5.51), then we can define the triple integral in cylindrical

coordinates as the limit of a triple Riemann sum, provided the following limit exists:

lim
l, m, n → ∞

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (ri jk* , θi jk* , zi jk* )ri jk* ΔrΔθΔz.

Note that if g(x, y, z) is the function in rectangular coordinates and the box B is expressed in rectangular coordinates,

then the triple integral ∭
B

g(x, y, z)dV is equal to the triple integral ∭
B

g(r cos θ, r sin θ, z)r dr dθ dz and we have

(5.11)∭
B

g(x, y, z)dV = ∭
B

g(r cos θ, r sin θ, z)r dr dθ dz = ∭
B

f (r, θ, z)r dr dθ dz.

As mentioned in the preceding section, all the properties of a double integral work well in triple integrals, whether
in rectangular coordinates or cylindrical coordinates. They also hold for iterated integrals. To reiterate, in cylindrical
coordinates, Fubini’s theorem takes the following form:

Theorem 5.12: Fubini’s Theorem in Cylindrical Coordinates

Suppose that g(x, y, z) is continuous on a rectangular box B, which when described in cylindrical coordinates looks

like B = ⎧

⎩
⎨(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d⎫

⎭
⎬.

Then g(x, y, z) = g(r cos θ, r sin θ, z) = f (r, θ, z) and

∭
B

g(x, y, z)dV = ∫
c

d
∫
α

β

∫
a

b
f (r, θ, z)r dr dθ dz.

The iterated integral may be replaced equivalently by any one of the other five iterated integrals obtained by integrating
with respect to the three variables in other orders.

Cylindrical coordinate systems work well for solids that are symmetric around an axis, such as cylinders and cones. Let us
look at some examples before we define the triple integral in cylindrical coordinates on general cylindrical regions.

Example 5.43

Evaluating a Triple Integral over a Cylindrical Box

Evaluate the triple integral ∭
B

(zr sin θ)r dr dθ dz where the cylindrical box B is

B = {(r, θ, z)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, 0 ≤ z ≤ 4}.

Solution

As stated in Fubini’s theorem, we can write the triple integral as the iterated integral
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∭
B

(zr sin θ)r dr dθ dz = ∫
θ = 0

θ = π/2
∫

r = 0

r = 2
∫

z = 0

z = 4
(zr sin θ)r dz dr dθ.

The evaluation of the iterated integral is straightforward. Each variable in the integral is independent of the others,
so we can integrate each variable separately and multiply the results together. This makes the computation much
easier:

∫
θ = 0

θ = π/2
∫

r = 0

r = 2
∫

z = 0

z = 4
(zr sin θ)r dz dr dθ

=
⎛

⎝
⎜∫

0

π/2
sin θ dθ

⎞

⎠
⎟
⎛

⎝
⎜∫

0

2
r2 dr

⎞

⎠
⎟
⎛

⎝
⎜∫

0

4
z dz

⎞

⎠
⎟ = ⎛

⎝−cos θ|0
π/2⎞

⎠

⎛

⎝
⎜r3

3 |02⎞

⎠
⎟
⎛

⎝
⎜z2

2 |04⎞

⎠
⎟ = 64

3 .

Evaluate the triple integral ∫
θ = 0

θ = π
∫

r = 0

r = 1
∫

z = 0

z = 4

rz sin θr dz dr dθ.

If the cylindrical region over which we have to integrate is a general solid, we look at the projections onto the coordinate
planes. Hence the triple integral of a continuous function f (r, θ, z) over a general solid region

E = ⎧

⎩
⎨(r, θ, z)|(r, θ) ∈ D, u1 (r, θ) ≤ z ≤ u2 (r, θ)⎫

⎭
⎬ in ℝ3, where D is the projection of E onto the rθ -plane, is

∭
E

f (r, θ, z)r dr dθ dz = ∬
D

⎡

⎣
⎢
⎢ ∫
u1 (r, θ)

u2 (r, θ)

f (r, θ, z)dz
⎤

⎦
⎥
⎥r dr dθ.

In particular, if D = ⎧

⎩
⎨(r, θ)|g1 (θ) ≤ r ≤ g2 (θ), α ≤ θ ≤ β⎫

⎭
⎬, then we have

∭
E

f (r, θ, z)r dr dθ = ∫
θ = α

θ = β

∫
r = g1 (θ)

r = g2 (θ)

∫
z = u1 (r, θ)

z = u2 (r, θ)

f (r, θ, z)r dz dr dθ.

Similar formulas exist for projections onto the other coordinate planes. We can use polar coordinates in those planes if
necessary.

Example 5.44

Setting up a Triple Integral in Cylindrical Coordinates over a General Region

Consider the region E inside the right circular cylinder with equation r = 2 sin θ, bounded below by the rθ
-plane and bounded above by the sphere with radius 4 centered at the origin (Figure 5.52). Set up a triple

integral over this region with a function f (r, θ, z) in cylindrical coordinates.
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Figure 5.52 Setting up a triple integral in cylindrical
coordinates over a cylindrical region.

Solution

First, identify that the equation for the sphere is r2 + z2 = 16. We can see that the limits for z are from 0 to

z = 16 − r2. Then the limits for r are from 0 to r = 2 sin θ. Finally, the limits for θ are from 0 to π.
Hence the region is

E =
⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, 0 ≤ z ≤ 16 − r2⎫

⎭
⎬.

Therefore, the triple integral is

∭
E

f (r, θ, z)r dz dr dθ = ∫
θ = 0

θ = π
∫

r = 0

r = 2 sin θ
∫

z = 0

z = 16 − r2

f (r, θ, z)r dz dr dθ.

Consider the region E inside the right circular cylinder with equation r = 2 sin θ, bounded below by

the rθ -plane and bounded above by z = 4 − y. Set up a triple integral with a function f (r, θ, z) in cylindrical

coordinates.

Example 5.45

Setting up a Triple Integral in Two Ways

Let E be the region bounded below by the cone z = x2 + y2 and above by the paraboloid z = 2 − x2 − y2.
(Figure 5.53). Set up a triple integral in cylindrical coordinates to find the volume of the region, using the
following orders of integration:

a. dz dr dθ

b. dr dz dθ.
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Figure 5.53 Setting up a triple integral in cylindrical coordinates
over a conical region.

Solution

a. The cone is of radius 1 where it meets the paraboloid. Since z = 2 − x2 − y2 = 2 − r2 and

z = x2 + y2 = r (assuming r is nonnegative), we have 2 − r2 = r. Solving, we have

r2 + r − 2 = (r + 2)(r − 1) = 0. Since r ≥ 0, we have r = 1. Therefore z = 1. So the intersection

of these two surfaces is a circle of radius 1 in the plane z = 1. The cone is the lower bound for z and

the paraboloid is the upper bound. The projection of the region onto the xy -plane is the circle of radius

1 centered at the origin.

Thus, we can describe the region as

E = ⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ 2 − r2⎫

⎭
⎬.

Hence the integral for the volume is

V = ∫
θ = 0

θ = 2π
∫

r = 0

r = 1
∫

z = r

z = 2 − r2

r dz dr dθ.

b. We can also write the cone surface as r = z and the paraboloid as r2 = 2 − z. The lower bound for r is

zero, but the upper bound is sometimes the cone and the other times it is the paraboloid. The plane z = 1
divides the region into two regions. Then the region can be described as

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ z}
∪ ⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ 2π, 1 ≤ z ≤ 2, 0 ≤ r ≤ 2 − z⎫

⎭
⎬.

Now the integral for the volume becomes

V = ∫
θ = 0

θ = 2π
∫

z = 0

z = 1

∫
r = 0

r = z

r dr dz dθ + ∫
θ = 0

θ = 2π
∫

z = 1

z = 2

∫
r = 0

r = 2 − z

r dr dz dθ.

Redo the previous example with the order of integration dθ dz dr.

Chapter 5 | Multiple Integration 571



Example 5.46

Finding a Volume with Triple Integrals in Two Ways

Let E be the region bounded below by the rθ -plane, above by the sphere x2 + y2 + z2 = 4, and on the sides by

the cylinder x2 + y2 = 1 (Figure 5.54). Set up a triple integral in cylindrical coordinates to find the volume of

the region using the following orders of integration, and in each case find the volume and check that the answers
are the same:

a. dz dr dθ

b. dr dz dθ.

Figure 5.54 Finding a cylindrical volume with a triple
integral in cylindrical coordinates.

Solution

a. Note that the equation for the sphere is

x2 + y2 + z2 = 4 or r2 + z2 = 4

and the equation for the cylinder is

x2 + y2 = 1 or r2 = 1.

Thus, we have for the region E

E =
⎧

⎩
⎨(r, θ, z)|0 ≤ z ≤ 4 − r2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

⎫

⎭
⎬

Hence the integral for the volume is
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V(E) = ∫
θ = 0

θ = 2π
∫

r = 0

r = 1
∫

z = 0

z = 4 − r2

r dz dr dθ

= ∫
θ = 0

θ = 2π
∫

r = 0

r = 1⎡

⎣
⎢ rz|z = 0

z = 4 − r2⎤

⎦
⎥ dr dθ = ∫

θ = 0

θ = 2π
∫

r = 0

r = 1
⎛
⎝r 4 − r2⎞

⎠dr dθ

= ∫
0

2π
⎛
⎝
8
3 − 3⎞

⎠dθ = 2π⎛
⎝
8
3 − 3⎞

⎠ cubic units.

b. Since the sphere is x2 + y2 + z2 = 4, which is r2 + z2 = 4, and the cylinder is x2 + y2 = 1, which

is r2 = 1, we have 1 + z2 = 4, that is, z2 = 3. Thus we have two regions, since the sphere and the

cylinder intersect at ⎛
⎝1, 3⎞

⎠ in the rz -plane

E1 =
⎧

⎩
⎨(r, θ, z)|0 ≤ r ≤ 4 − r2, 3 ≤ z ≤ 2, 0 ≤ θ ≤ 2π

⎫

⎭
⎬

and

E2 = ⎧

⎩
⎨(r, θ, z)|0 ≤ r ≤ 1, 0 ≤ z ≤ 3, 0 ≤ θ ≤ 2π⎫

⎭
⎬.

Hence the integral for the volume is

V(E) = ∫
θ = 0

θ = 2π
∫

z = 3

z = 2

∫
r = 0

r = 4 − r2

r dr dz dθ + ∫
θ = 0

θ = 2π
∫

z = 0

z = 3

∫
r = 0

r = 1
r dr dz dθ

= 3π + ⎛
⎝
16
3 − 3 3⎞

⎠π = 2π⎛
⎝
8
3 − 3⎞

⎠ cubic units.

Redo the previous example with the order of integration dθ dz dr.

Review of Spherical Coordinates

In three-dimensional space ℝ3 in the spherical coordinate system, we specify a point P by its distance ρ from the origin,

the polar angle θ from the positive x-axis (same as in the cylindrical coordinate system), and the angle φ from the

positive z-axis and the line OP (Figure 5.55). Note that ρ ≥ 0 and 0 ≤ φ ≤ π. (Refer to Cylindrical and Spherical

Coordinates for a review.) Spherical coordinates are useful for triple integrals over regions that are symmetric with
respect to the origin.
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Figure 5.55 The spherical coordinate system locates points
with two angles and a distance from the origin.

Recall the relationships that connect rectangular coordinates with spherical coordinates.

From spherical coordinates to rectangular coordinates:

x = ρ sin φ cos θ, y = ρ sin φ sin θ, and z = ρ cos φ.

From rectangular coordinates to spherical coordinates:

ρ2 = x2 + y2 + z2, tan θ = y
x, φ = arccos

⎛

⎝
⎜ z

x2 + y2 + z2

⎞

⎠
⎟.

Other relationships that are important to know for conversions are

• r = ρ sin φ

• θ = θ
These equations are used to convert from
spherical coordinates to cylindrical coordinates

• z = ρ cos φ

and

• ρ = r2 + z2

• θ = θ
These equations are used to convert from
cylindrical coordinates to spherical
coordinates.

• φ = arccos
⎛

⎝
⎜ z

r2 + z2

⎞

⎠
⎟

The following figure shows a few solid regions that are convenient to express in spherical coordinates.
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Figure 5.56 Spherical coordinates are especially convenient for working with solids bounded by these types of surfaces.
(The letter c indicates a constant.)

Integration in Spherical Coordinates
We now establish a triple integral in the spherical coordinate system, as we did before in the cylindrical coordinate system.
Let the function f ⎛

⎝ρ, θ, φ⎞
⎠ be continuous in a bounded spherical box, B = ⎧

⎩
⎨⎛
⎝ρ, θ, φ⎞

⎠|a ≤ ρ ≤ b, α ≤ θ ≤ β, γ ≤ φ ≤ ψ ⎫

⎭
⎬.

We then divide each interval into l, m and n subdivisions such that Δρ = b − a
l , Δθ = β − α

m , Δφ = ψ − γ
n .

Now we can illustrate the following theorem for triple integrals in spherical coordinates with (ρi jk* , θi jk* , φi jk* ) being any

sample point in the spherical subbox Bi jk. For the volume element of the subbox ΔV in spherical coordinates, we have

ΔV = ⎛
⎝Δρ⎞

⎠
⎛
⎝ρΔφ⎞

⎠
⎛
⎝ρ sin φΔθ⎞

⎠, , as shown in the following figure.

Figure 5.57 The volume element of a box in spherical coordinates.

Definition

The triple integral in spherical coordinates is the limit of a triple Riemann sum,

lim
l, m, n → ∞

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (ρi jk* , θi jk* , φi jk* )(ρi jk* )2 sin φΔρΔθΔφ

provided the limit exists.

As with the other multiple integrals we have examined, all the properties work similarly for a triple integral in the spherical
coordinate system, and so do the iterated integrals. Fubini’s theorem takes the following form.
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Theorem 5.13: Fubini’s Theorem for Spherical Coordinates

If f ⎛
⎝ρ, θ, φ⎞

⎠ is continuous on a spherical solid box B = ⎡
⎣a, b⎤

⎦ × ⎡
⎣α, β⎤

⎦ × [γ, ψ], then

(5.12)
∭
B

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dρ dφ dθ = ∫
φ = γ

φ = ψ

∫
θ = α

θ = β

∫
ρ = a

ρ = b

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dρ dφ dθ.

This iterated integral may be replaced by other iterated integrals by integrating with respect to the three variables in
other orders.

As stated before, spherical coordinate systems work well for solids that are symmetric around a point, such as spheres
and cones. Let us look at some examples before we consider triple integrals in spherical coordinates on general spherical
regions.

Example 5.47

Evaluating a Triple Integral in Spherical Coordinates

Evaluate the iterated triple integral ∫
θ = 0

θ = 2π
∫

φ = 0

φ = π/2

∫
p = 0

ρ = 1

ρ2 sin φ dρ dφ dθ.

Solution

As before, in this case the variables in the iterated integral are actually independent of each other and hence we
can integrate each piece and multiply:

∫
0

2π
∫
0

π/2
∫
0

1
ρ2 sin φ dρ dφ dθ = ∫

0

2π
dθ∫

0

π/2
sin φ dφ∫

0

1
ρ2 dρ = (2π)(1)⎛⎝

1
3

⎞
⎠ = 2π

3 .

The concept of triple integration in spherical coordinates can be extended to integration over a general solid, using the
projections onto the coordinate planes. Note that dV and dA mean the increments in volume and area, respectively. The

variables V and A are used as the variables for integration to express the integrals.

The triple integral of a continuous function f ⎛
⎝ρ, θ, φ⎞

⎠ over a general solid region

E = ⎧

⎩
⎨⎛
⎝ρ, θ, φ⎞

⎠|⎛⎝ρ, θ⎞
⎠ ∈ D, u1

⎛
⎝ρ, θ⎞

⎠ ≤ φ ≤ u2
⎛
⎝ρ, θ⎞

⎠
⎫

⎭
⎬

in ℝ3, where D is the projection of E onto the ρθ -plane, is

∭
E

f ⎛
⎝ρ, θ, φ⎞

⎠dV = ∬
D

⎡

⎣
⎢
⎢ ∫
u1

⎛
⎝ρ, θ⎞

⎠

u2
⎛
⎝ρ, θ⎞

⎠

f ⎛
⎝ρ, θ, φ⎞

⎠dφ
⎤

⎦
⎥
⎥dA.

In particular, if D = ⎧

⎩
⎨⎛
⎝ρ, θ⎞

⎠|g1 (θ) ≤ ρ ≤ g2 (θ), α ≤ θ ≤ β⎫

⎭
⎬, then we have

∭
E

f ⎛
⎝ρ, θ, φ⎞

⎠dV = ∫
α

β

∫
g1 (θ)

g2 (θ)

∫
u1

⎛
⎝ρ, θ⎞

⎠

u2
⎛
⎝ρ, θ⎞

⎠

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dφ dρ dθ.

Similar formulas occur for projections onto the other coordinate planes.
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Example 5.48

Setting up a Triple Integral in Spherical Coordinates

Set up an integral for the volume of the region bounded by the cone z = 3⎛
⎝x2 + y2⎞

⎠ and the hemisphere

z = 4 − x2 − y2 (see the figure below).

Figure 5.58 A region bounded below by a cone and above by
a hemisphere.

Solution

Using the conversion formulas from rectangular coordinates to spherical coordinates, we have:

For the cone: z = 3⎛
⎝x2 + y2⎞

⎠ or ρ cos φ = 3ρ sin φ or tan φ = 1
3

or φ = π
6.

For the sphere: z = 4 − x2 − y2 or z2 + x2 + y2 = 4 or ρ2 = 4 or ρ = 2.

Thus, the triple integral for the volume is V(E) = ∫
θ = 0

θ = 2π
∫

ϕ = 0

φ = π/6

∫
ρ = 0

ρ = 2

ρ2 sin φ dρ dφ dθ.

Set up a triple integral for the volume of the solid region bounded above by the sphere ρ = 2 and

bounded below by the cone φ = π/3.

Example 5.49

Interchanging Order of Integration in Spherical Coordinates

Let E be the region bounded below by the cone z = x2 + y2 and above by the sphere z = x2 + y2 + z2

(Figure 5.59). Set up a triple integral in spherical coordinates and find the volume of the region using the
following orders of integration:

a. dρ dϕ dθ,
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b. dφ dρ dθ.

Figure 5.59 A region bounded below by a cone and above by
a sphere.

Solution

a. Use the conversion formulas to write the equations of the sphere and cone in spherical coordinates.
For the sphere:

x2 + y2 + z2 = z

ρ2 = ρ cos φ
ρ = cos φ.

For the cone:

z = x2 + y2

ρ cos φ = ρ2 sin2 φ cos2 ϕ + ρ2 sin2 φ sin2 ϕ

ρ cos φ = ρ2 sin2 φ⎛
⎝cos2 ϕ + sin2 ϕ⎞

⎠

ρ cos φ = ρ sin φ
cos φ = sin φ

φ = π/4.

Hence the integral for the volume of the solid region E becomes

V(E) = ∫
θ = 0

θ = 2π
∫

φ = 0

φ = π/4

∫
ρ = 0

ρ = cos φ

ρ2 sin φ dρ dφ dθ.

b. Consider the φρ -plane. Note that the ranges for φ and ρ (from part a.) are

0 ≤ φ ≤ π/4
0 ≤ ρ ≤ cos φ.

The curve ρ = cos φ meets the line φ = π/4 at the point ⎛
⎝π/4, 2/2⎞

⎠. Thus, to change the order of

integration, we need to use two pieces:

0 ≤ ρ ≤ 2/2
0 ≤ φ ≤ π/4

and
2/2 ≤ ρ ≤ 1

0 ≤ φ ≤ cos−1 ρ.
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Hence the integral for the volume of the solid region E becomes

V(E) = ∫
θ = 0

θ = 2π
∫

ρ = 0

ρ = 2/2

∫
φ = 0

φ = π/4

ρ2 sin φ dφ dρ dθ + ∫
θ = 0

θ = 2π
∫

ρ = 2/2

ρ = 1

∫
φ = 0

φ = cos−1 ρ

ρ2 sin φ dφ dρ dθ.

In each case, the integration results in V(E) = π
8.

Before we end this section, we present a couple of examples that can illustrate the conversion from rectangular coordinates
to cylindrical coordinates and from rectangular coordinates to spherical coordinates.

Example 5.50

Converting from Rectangular Coordinates to Cylindrical Coordinates

Convert the following integral into cylindrical coordinates:

∫
y = −1

y = 1

∫
x = 0

x = 1 − y2

∫
z = x2 + y2

z = x2 + y2

xyz dz dx dy.

Solution

The ranges of the variables are

−1 ≤ y ≤ 1

0 ≤ x ≤ 1 − y2

x2 + y2 ≤ z ≤ x2 + y2.

The first two inequalities describe the right half of a circle of radius 1. Therefore, the ranges for θ and r are

−π
2 ≤ θ ≤ π

2 and 0 ≤ r ≤ 1.

The limits of z are r2 ≤ z ≤ r, hence

∫
y = −1

y = 1

∫
x = 0

x = 1 − y2

∫
z = x2 + y2

z = x2 + y2

xyz dz dx dy = ∫
θ = −π/2

θ = π/2
∫

r = 0

r = 1
∫

z = r2

z = r

r(r cos θ)(r sin θ)z dz dr dθ.

Example 5.51

Converting from Rectangular Coordinates to Spherical Coordinates

Convert the following integral into spherical coordinates:

Chapter 5 | Multiple Integration 579



∫
y = 0

y = 3

∫
x = 0

x = 9 − y2

∫
z = x2 + y2

z = 18 − x2 − y2
⎛
⎝x2 + y2 + z2⎞

⎠dz dx dy.

Solution

The ranges of the variables are

0 ≤ y ≤ 3

0 ≤ x ≤ 9 − y2

x2 + y2 ≤ z ≤ 18 − x2 − y2.

The first two ranges of variables describe a quarter disk in the first quadrant of the xy -plane. Hence the range for

θ is 0 ≤ θ ≤ π
2.

The lower bound z = x2 + y2 is the upper half of a cone and the upper bound z = 18 − x2 − y2 is the upper

half of a sphere. Therefore, we have 0 ≤ ρ ≤ 18, which is 0 ≤ ρ ≤ 3 2.

For the ranges of φ, we need to find where the cone and the sphere intersect, so solve the equation

r2 + z2 = 18
⎛
⎝ x2 + y2⎞

⎠
2

+ z2 = 18

z2 + z2 = 18
2z2 = 18

z2 = 9
z = 3.

This gives

3 2 cos φ = 3

cos φ = 1
2

φ = π
4.

Putting this together, we obtain

∫
y = 0

y = 3

∫
x = 0

x = 9 − y2

∫
z = x2 + y2

z = 18 − x2 − y2
⎛
⎝x2 + y2 + z2⎞

⎠dz dx dy = ∫
φ = 0

φ = π/4

∫
θ = 0

θ = π/2
∫

ρ = 0

ρ = 3 2

ρ4 sin φ dρ dθ dφ.
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5.32 Use rectangular, cylindrical, and spherical coordinates to set up triple integrals for finding the volume of

the region inside the sphere x2 + y2 + z2 = 4 but outside the cylinder x2 + y2 = 1.

Now that we are familiar with the spherical coordinate system, let’s find the volume of some known geometric figures, such
as spheres and ellipsoids.

Example 5.52

Chapter Opener: Finding the Volume of l’Hemisphèric

Find the volume of the spherical planetarium in l’Hemisphèric in Valencia, Spain, which is five stories tall and

has a radius of approximately 50 ft, using the equation x2 + y2 + z2 = r2.

Figure 5.60 (credit: modification of work by Javier Yaya Tur,
Wikimedia Commons)

Solution

We calculate the volume of the ball in the first octant, where x ≥ 0, y ≥ 0, and z ≥ 0, using spherical

coordinates, and then multiply the result by 8 for symmetry. Since we consider the region D as the first octant

in the integral, the ranges of the variables are

0 ≤ φ ≤ π
2, 0 ≤ ρ ≤ r, 0 ≤ θ ≤ π

2.

Therefore,
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V = ∭
D

dx dy dz = 8 ∫
θ = 0

θ = π/2
∫

ρ = 0

ρ = π

∫
φ = 0

φ = π/2

ρ2 sin θ dφ dρ dθ

= 8 ∫
φ = 0

φ = π/2

dφ ∫
ρ = 0

ρ = r

ρ2 dρ ∫
θ = 0

θ = π/2
sin θ dθ

= 8⎛
⎝
π
2

⎞
⎠
⎛
⎝
r3

3
⎞
⎠(1)

= 4
3πr3.

This exactly matches with what we knew. So for a sphere with a radius of approximately 50 ft, the volume is

4
3π(50)3 ≈ 523,600 ft3.

For the next example we find the volume of an ellipsoid.

Example 5.53

Finding the Volume of an Ellipsoid

Find the volume of the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1.

Solution

We again use symmetry and evaluate the volume of the ellipsoid using spherical coordinates. As before, we use
the first octant x ≥ 0, y ≥ 0, and z ≥ 0 and then multiply the result by 8.

In this case the ranges of the variables are

0 ≤ φ ≤ π
2, 0 ≤ ρ ≤ π

2, 0 ≤ ρ ≤ 1, and 0 ≤ θ ≤ π
2.

Also, we need to change the rectangular to spherical coordinates in this way:

x = aρ cos φ sin θ, y = bρ sin φ sin θ, and z = cρ cos θ.

Then the volume of the ellipsoid becomes

V = ∭
D

dx dy dz

= 8 ∫
θ = 0

θ = π/2
∫

ρ = 0

ρ = 1

∫
φ = 0

φ = π/2

abcρ2 sin θ dφ dρ dθ

= 8abc ∫
φ = 0

φ = π/2

dφ ∫
ρ = 0

ρ = 1

ρ2 dρ ∫
θ = 0

θ = π/2
sin θ dθ

= 8abc⎛
⎝
π
2

⎞
⎠
⎛
⎝
1
3

⎞
⎠(1)

= 4
3πabc.
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Example 5.54

Finding the Volume of the Space Inside an Ellipsoid and Outside a Sphere

Find the volume of the space inside the ellipsoid x2

752 + y2

802 + z2

902 = 1 and outside the sphere

x2 + y2 + z2 = 502.

Solution

This problem is directly related to the l’Hemisphèric structure. The volume of space inside the ellipsoid and
outside the sphere might be useful to find the expense of heating or cooling that space. We can use the preceding
two examples for the volume of the sphere and ellipsoid and then substract.

First we find the volume of the ellipsoid using a = 75 ft, b = 80 ft, and c = 90 ft in the result from Example

5.53. Hence the volume of the ellipsoid is

Vellipsoid = 4
3π(75)(80)(90) ≈ 2,262,000 ft3.

From Example 5.52, the volume of the sphere is

Vsphere ≈ 523,600 ft3.

Therefore, the volume of the space inside the ellipsoid x2

752 + y2

802 + z2

902 = 1 and outside the sphere

x2 + y2 + z2 = 502 is approximately

VHemisferic = Vellipsoid − Vsphere = 1,738,400 ft3.
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Hot air balloons

Hot air ballooning is a relaxing, peaceful pastime that many people enjoy. Many balloonist gatherings take place
around the world, such as the Albuquerque International Balloon Fiesta. The Albuquerque event is the largest hot air
balloon festival in the world, with over 500 balloons participating each year.

Figure 5.61 Balloons lift off at the 2001 Albuquerque International Balloon Fiesta. (credit: David Herrera, Flickr)

As the name implies, hot air balloons use hot air to generate lift. (Hot air is less dense than cooler air, so the balloon
floats as long as the hot air stays hot.) The heat is generated by a propane burner suspended below the opening of the
basket. Once the balloon takes off, the pilot controls the altitude of the balloon, either by using the burner to heat the
air and ascend or by using a vent near the top of the balloon to release heated air and descend. The pilot has very little
control over where the balloon goes, however—balloons are at the mercy of the winds. The uncertainty over where we
will end up is one of the reasons balloonists are attracted to the sport.

In this project we use triple integrals to learn more about hot air balloons. We model the balloon in two pieces. The top
of the balloon is modeled by a half sphere of radius 28 feet. The bottom of the balloon is modeled by a frustum of

a cone (think of an ice cream cone with the pointy end cut off). The radius of the large end of the frustum is 28 feet

and the radius of the small end of the frustum is 6 feet. A graph of our balloon model and a cross-sectional diagram

showing the dimensions are shown in the following figure.
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Figure 5.62 (a) Use a half sphere to model the top part of the balloon and a frustum of a cone to model
the bottom part of the balloon. (b) A cross section of the balloon showing its dimensions.

We first want to find the volume of the balloon. If we look at the top part and the bottom part of the balloon separately,
we see that they are geometric solids with known volume formulas. However, it is still worthwhile to set up and
evaluate the integrals we would need to find the volume. If we calculate the volume using integration, we can use the
known volume formulas to check our answers. This will help ensure that we have the integrals set up correctly for the
later, more complicated stages of the project.

1. Find the volume of the balloon in two ways.

a. Use triple integrals to calculate the volume. Consider each part of the balloon separately. (Consider
using spherical coordinates for the top part and cylindrical coordinates for the bottom part.)

b. Verify the answer using the formulas for the volume of a sphere, V = 4
3πr3, and for the volume of a

cone, V = 1
3πr2 h.

In reality, calculating the temperature at a point inside the balloon is a tremendously complicated endeavor.
In fact, an entire branch of physics (thermodynamics) is devoted to studying heat and temperature. For the
purposes of this project, however, we are going to make some simplifying assumptions about how temperature
varies from point to point within the balloon. Assume that just prior to liftoff, the temperature (in degrees
Fahrenheit) of the air inside the balloon varies according to the function

T0(r, θ, z) = z − r
10 + 210.

2. What is the average temperature of the air in the balloon just prior to liftoff? (Again, look at each part of the
balloon separately, and do not forget to convert the function into spherical coordinates when looking at the top
part of the balloon.)
Now the pilot activates the burner for 10 seconds. This action affects the temperature in a 12 -foot-wide

column 20 feet high, directly above the burner. A cross section of the balloon depicting this column in shown

in the following figure.
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Figure 5.63 Activating the burner heats the air in a 20 -foot-

high, 12 -foot-wide column directly above the burner.

Assume that after the pilot activates the burner for 10 seconds, the temperature of the air in the column

described above increases according to the formula

H(r, θ, z) = −2z − 48.

Then the temperature of the air in the column is given by

T1(r, θ, z) = z − r
10 + 210 + (−2z − 48),

while the temperature in the remainder of the balloon is still given by

T0(r, θ, z) = z − r
10 + 210.

3. Find the average temperature of the air in the balloon after the pilot has activated the burner for 10 seconds.
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5.5 EXERCISES
In the following exercises, evaluate the triple integrals
∭
E

f (x, y, z)dV over the solid E.

241. f (x, y, z) = z,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 ≤ 9, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 1⎫

⎭
⎬

242. f (x, y, z) = xz2,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 ≤ 16, x ≥ 0, y ≤ 0, −1 ≤ z ≤ 1⎫

⎭
⎬

243. f (x, y, z) = xy,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 ≤ 1, x ≥ 0, x ≥ y, −1 ≤ z ≤ 1⎫

⎭
⎬

244. f (x, y, z) = x2 + y2,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 ≤ 4, x ≥ 0, x ≤ y, 0 ≤ z ≤ 3⎫

⎭
⎬

245. f (x, y, z) = e x2 + y2
,

B = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + y2 ≤ 4, y ≤ 0, x ≤ y 3, 2 ≤ z ≤ 3⎫

⎭
⎬

246. f (x, y, z) = x2 + y2,

B = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + y2 ≤ 9, y ≤ 0, 0 ≤ z ≤ 1⎫

⎭
⎬

247.
a. Let B be a cylindrical shell with inner radius a,

outer radius b, and height c, where 0 < a < b
and c > 0. Assume that a function F defined on

B can be expressed in cylindrical coordinates as

F(x, y, z) = f (r) + h(z), where f and h are

differentiable functions. If ∫
a

b
f̃ (r)dr = 0 and

h̃(0) = 0, where f̃ and h̃ are antiderivatives of

f and h, respectively, show that

∭
B

F(x, y, z)dV = 2πc⎛
⎝b f̃ (b) − a f̃ (a)⎞

⎠ + π⎛
⎝b2 − a2⎞

⎠h̃(c).

b. Use the previous result to show that

∭
B

⎛
⎝z + sin x2 + y2⎞

⎠dx dy dz = 6π2 (π − 2),

where B is a cylindrical shell with inner radius

π, outer radius 2π, and height 2.

248.
a. Let B be a cylindrical shell with inner radius a,

outer radius b, and height c, where 0 < a < b
and c > 0. Assume that a function F defined on

B can be expressed in cylindrical coordinates as

F(x, y, z) = f (r)g(θ)h(z), where f , g, and h

are differentiable functions. If ∫
a

b
f̃ (r)dr = 0,

where f̃ is an antiderivative of f , show that

∭
B

F(x, y, z)dV = ⎡
⎣b f̃ (b) − a f̃ (a)⎤

⎦
⎡
⎣g̃(2π) − g̃(0)⎤

⎦
⎡
⎣h̃(c) − h̃(0)⎤

⎦,

where g̃ and h̃ are antiderivatives of g and h,
respectively.

b. Use the previous result to show that

∭
B

z sin x2 + y2dx dy dz = −12π2, where B

is a cylindrical shell with inner radius π, outer

radius 2π, and height 2.
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In the following exercises, the boundaries of the solid E
are given in cylindrical coordinates.

a. Express the region E in cylindrical coordinates.

b. Convert the integral ∭
E

f (x, y, z)dV to

cylindrical coordinates.

249. E is bounded by the right circular cylinder

r = 4 sin θ, the rθ -plane, and the sphere r2 + z2 = 16.

250. E is bounded by the right circular cylinder

r = cos θ, the rθ -plane, and the sphere r2 + z2 = 9.

251. E is located in the first octant and is bounded by the

circular paraboloid z = 9 − 3r2, the cylinder r = 3,
and the plane r(cos θ + sin θ) = 20 − z.

252. E is located in the first octant outside the circular

paraboloid z = 10 − 2r2 and inside the cylinder r = 5
and is bounded also by the planes z = 20 and θ = π

4.

In the following exercises, the function f and region E
are given.

a. Express the region E and the function f in

cylindrical coordinates.

b. Convert the integral ∭
B

f (x, y, z)dV into

cylindrical coordinates and evaluate it.

253. f (x, y, z) = 1
x + 3,

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x2 + y2 ≤ 9, x ≥ 0, y ≥ 0, 0 ≤ z ≤ x + 3⎫

⎭
⎬

254. f (x, y, z) = x2 + y2,

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x2 + y2 ≤ 4, y ≥ 0, 0 ≤ z ≤ 3 − x⎫

⎭
⎬

255. f (x, y, z) = x,

E = ⎧

⎩
⎨(x, y, z)|1 ≤ y2 + z2 ≤ 9, 0 ≤ x ≤ 1 − y2 − z2⎫

⎭
⎬

256. f (x, y, z) = y,

E = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + z2 ≤ 9, 0 ≤ y ≤ 1 − x2 − z2⎫

⎭
⎬

In the following exercises, find the volume of the solid E
whose boundaries are given in rectangular coordinates.

257. E is above the xy -plane, inside the cylinder

x2 + y2 = 1, and below the plane z = 1.

258. E is below the plane z = 1 and inside the

paraboloid z = x2 + y2.

259. E is bounded by the circular cone z = x2 + y2

and z = 1.

260. E is located above the xy -plane, below z = 1,

outside the one-sheeted hyperboloid x2 + y2 − z2 = 1,

and inside the cylinder x2 + y2 = 2.

261. E is located inside the cylinder x2 + y2 = 1 and

between the circular paraboloids z = 1 − x2 − y2 and

z = x2 + y2.

262. E is located inside the sphere x2 + y2 + z2 = 1,
above the xy -plane, and inside the circular cone

z = x2 + y2.

263. E is located outside the circular cone

x2 + y2 = (z − 1)2 and between the planes z = 0 and

z = 2.

264. E is located outside the circular cone

z = 1 − x2 + y2, above the xy -plane, below the

circular paraboloid, and between the planes
z = 0 and z = 2.

265. [T] Use a computer algebra system (CAS) to graph
the solid whose volume is given by the iterated integral

in cylindrical coordinates ∫
−π/2

π/2
∫
0

1
∫
r2

r
r dz dr dθ. Find the

volume V of the solid. Round your answer to four decimal

places.

266. [T] Use a CAS to graph the solid whose volume
is given by the iterated integral in cylindrical coordinates

∫
0

π/2
∫
0

1
∫
r4

r
r dz dr dθ. Find the volume V of the solid

Round your answer to four decimal places.

267. Convert the integral ∫
0

1
∫

− 1 − y2

1 − y2

∫
x2 + y2

x2 + y2

xz dz dx dy

into an integral in cylindrical coordinates.
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268. Convert the integral ∫
0

2
∫
0

x
∫
0

1
(xy + z)dz dx dy into

an integral in cylindrical coordinates.

In the following exercises, evaluate the triple integral
∭
B

f (x, y, z)dV over the solid B.

269. f (x, y, z) = 1,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 + z2 ≤ 90, z ≥ 0⎫

⎭
⎬

270. f (x, y, z) = 1 − x2 + y2 + z2,

B = ⎧

⎩
⎨(x, y, z)|x2 + y2 + z2 ≤ 9, y ≥ 0, z ≥ 0⎫

⎭
⎬

271. f (x, y, z) = x2 + y2, B is bounded above by the

half-sphere x2 + y2 + z2 = 9 with z ≥ 0 and below by

the cone 2z2 = x2 + y2.

272. f (x, y, z) = z, B is bounded above by the half-

sphere x2 + y2 + z2 = 16 with z ≥ 0 and below by the

cone 2z2 = x2 + y2.

273. Show that if F⎛
⎝ρ, θ, φ⎞

⎠ = f (ρ)g(θ)h(φ) is a

continuous function on the spherical box
B = ⎧

⎩
⎨⎛
⎝ρ, θ, φ⎞

⎠|a ≤ ρ ≤ b, α ≤ θ ≤ β, γ ≤ φ ≤ ψ ⎫

⎭
⎬, then

∭
B

F dV =
⎛

⎝
⎜∫

a

b
ρ2 f (ρ)dr

⎞

⎠
⎟
⎛

⎝
⎜∫

α

β

g(θ)dθ
⎞

⎠
⎟
⎛

⎝
⎜∫

γ

ψ

h(φ)sin φ dφ
⎞

⎠
⎟.

274.
a. A function F is said to have spherical symmetry

if it depends on the distance to the origin only,
that is, it can be expressed in spherical coordinates

as F(x, y, z) = f (ρ), where ρ = x2 + y2 + z2.
Show that

∭
B

F(x, y, z)dV = 2π∫
a

b
ρ2 f (ρ)dρ,

where B is the region between the upper

concentric hemispheres of radii a and b centered

at the origin, with 0 < a < b and F a spherical

function defined on B.
b. Use the previous result to show that

∭
B

⎛
⎝x2 + y2 + z2⎞

⎠ x2 + y2 + z2 dV = 21π,

where

B = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + y2 + z2 ≤ 2, z ≥ 0⎫

⎭
⎬.

275.
a. Let B be the region between the upper concentric

hemispheres of radii a and b centered at the origin
and situated in the first octant, where 0 < a < b.
Consider F a function defined on B whose form
in spherical coordinates ⎛

⎝ρ, θ, φ⎞
⎠ is

F(x, y, z) = f (ρ)cos φ. Show that if

g(a) = g(b) = 0 and ∫
a

b
h(ρ)dρ = 0, then

∭
B

F(x, y, z)dV = π2

4
⎡
⎣ah(a) − bh(b)⎤

⎦,

where g is an antiderivative of f and h is an

antiderivative of g.
b. Use the previous result to show that

∭
B

z cos x2 + y2 + z2

x2 + y2 + z2
dV = 3π2

2 , where B is

the region between the upper concentric
hemispheres of radii π and 2π centered at the

origin and situated in the first octant.

In the following exercises, the function f and region E
are given.
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a. Express the region E and function f in

cylindrical coordinates.

b. Convert the integral ∭
B

f (x, y, z)dV into

cylindrical coordinates and evaluate it.

276. f (x, y, z) = z;

E = ⎧

⎩
⎨(x, y, z)|0 ≤ x2 + y2 + z2 ≤ 1, z ≥ 0⎫

⎭
⎬

277. f (x, y, z) = x + y;

E = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + y2 + z2 ≤ 2, z ≥ 0, y ≥ 0⎫

⎭
⎬

278. f (x, y, z) = 2xy;

E =
⎧

⎩
⎨(x, y, z)| x2 + y2 ≤ z ≤ 1 − x2 − y2, x ≥ 0, y ≥ 0

⎫

⎭
⎬

279. f (x, y, z) = z;

E =
⎧

⎩
⎨(x, y, z)|x2 + y2 + z2 − 2z ≤ 0, x2 + y2 ≤ z

⎫

⎭
⎬

In the following exercises, find the volume of the solid E
whose boundaries are given in rectangular coordinates.

280.

E =
⎧

⎩
⎨(x, y, z)| x2 + y2 ≤ z ≤ 16 − x2 − y2, x ≥ 0, y ≥ 0

⎫

⎭
⎬

281.

E =
⎧

⎩
⎨(x, y, z)|x2 + y2 + z2 − 2z ≤ 0, x2 + y2 ≤ z

⎫

⎭
⎬

282. Use spherical coordinates to find the volume of the
solid situated outside the sphere ρ = 1 and inside the

sphere ρ = cos φ, with φ ∈ ⎡
⎣0, π

2
⎤
⎦.

283. Use spherical coordinates to find the volume of the
ball ρ ≤ 3 that is situated between the cones

φ = π
4 and φ = π

3.

284. Convert the integral

∫
−4

4
∫

− 16 − y2

16 − y2

∫
− 16 − x2 − y2

16 − x2 − y2
⎛
⎝x2 + y2 + z2⎞

⎠dz dx dy into an

integral in spherical coordinates.

285. Convert the integral

∫
0

4
∫
0

16 − x2

∫
− 16 − x2 − y2

16 − x2 − y2
⎛
⎝x2 + y2 + z2⎞

⎠
2
dz dy dx into an

integral in spherical coordinates.

286. Convert the integral

∫
−2

2
∫

− 4 − x2

4 − x2

∫
x2 + y2

16 − x2 − y2

dz dy dx into an integral in

spherical coordinates and evaluate it.

287. [T] Use a CAS to graph the solid whose volume
is given by the iterated integral in spherical coordinates

∫
π/2

π
∫

5π/6

π/6
∫
0

2
ρ2 sin φ dρ dφ dθ. Find the volume V of the

solid. Round your answer to three decimal places.

288. [T] Use a CAS to graph the solid whose volume is
given by the iterated integral in spherical coordinates as

∫
0

2π
∫

3π/4

π/4
∫
0

1
ρ2 sin φ dρ dφ dθ. Find the volume V of the

solid. Round your answer to three decimal places.

289. [T] Use a CAS to evaluate the integral

∭
E

⎛
⎝x2 + y2⎞

⎠dV where E lies above the paraboloid

z = x2 + y2 and below the plane z = 3y.

290. [T]

a. Evaluate the integral ∭
E

e x2 + y2 + z2
dV ,

where E is bounded by the spheres

4x2 + 4y2 + 4z2 = 1 and x2 + y2 + z2 = 1.
b. Use a CAS to find an approximation of the previous

integral. Round your answer to two decimal places.

291. Express the volume of the solid inside the sphere

x2 + y2 + z2 = 16 and outside the cylinder x2 + y2 = 4
as triple integrals in cylindrical coordinates and spherical
coordinates, respectively.

292. Express the volume of the solid inside the sphere

x2 + y2 + z2 = 16 and outside the cylinder x2 + y2 = 4
that is located in the first octant as triple integrals in
cylindrical coordinates and spherical coordinates,
respectively.

590 Chapter 5 | Multiple Integration

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



293. The power emitted by an antenna has a power density
per unit volume given in spherical coordinates by

p⎛
⎝ρ, θ, φ⎞

⎠ = P0
ρ2cos2 θ sin4 φ, where P0 is a constant

with units in watts. The total power within a sphere B of

radius r meters is defined as P = ∭
B

p⎛
⎝ρ, θ, φ⎞

⎠dV . Find

the total power P.

294. Use the preceding exercise to find the total power
within a sphere B of radius 5 meters when the power

density per unit volume is given by

p⎛
⎝ρ, θ, φ⎞

⎠ = 30
ρ2cos2 θ sin4 φ.

295. A charge cloud contained in a sphere B of radius

r centimeters centered at the origin has its charge density

given by q(x, y, z) = k x2 + y2 + z2 µ C
cm3, where

k > 0. The total charge contained in B is given by

Q = ∭
B

q(x, y, z)dV . Find the total charge Q.

296. Use the preceding exercise to find the total charge
cloud contained in the unit sphere if the charge density is

q(x, y, z) = 20 x2 + y2 + z2 µ C
cm3.
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5.6 | Calculating Centers of Mass and Moments of Inertia

Learning Objectives
5.6.1 Use double integrals to locate the center of mass of a two-dimensional object.

5.6.2 Use double integrals to find the moment of inertia of a two-dimensional object.

5.6.3 Use triple integrals to locate the center of mass of a three-dimensional object.

We have already discussed a few applications of multiple integrals, such as finding areas, volumes, and the average value
of a function over a bounded region. In this section we develop computational techniques for finding the center of mass and
moments of inertia of several types of physical objects, using double integrals for a lamina (flat plate) and triple integrals
for a three-dimensional object with variable density. The density is usually considered to be a constant number when the
lamina or the object is homogeneous; that is, the object has uniform density.

Center of Mass in Two Dimensions
The center of mass is also known as the center of gravity if the object is in a uniform gravitational field. If the object has
uniform density, the center of mass is the geometric center of the object, which is called the centroid. Figure 5.64 shows a
point P as the center of mass of a lamina. The lamina is perfectly balanced about its center of mass.

Figure 5.64 A lamina is perfectly balanced on a spindle if the
lamina’s center of mass sits on the spindle.

To find the coordinates of the center of mass P(x−, y−) of a lamina, we need to find the moment Mx of the lamina about the

x-axis and the moment My about the y-axis. We also need to find the mass m of the lamina. Then

x− =
My
m and y− = Mx

m .

Refer to Moments and Centers of Mass (http://cnx.org/content/m53649/latest/) for the definitions and the
methods of single integration to find the center of mass of a one-dimensional object (for example, a thin rod). We are going
to use a similar idea here except that the object is a two-dimensional lamina and we use a double integral.

If we allow a constant density function, then x− =
My
m and y− = Mx

m give the centroid of the lamina.

Suppose that the lamina occupies a region R in the xy-plane, and let ρ(x, y) be its density (in units of mass per unit

area) at any point (x, y). Hence, ρ(x, y) = lim
ΔA → 0

Δm
ΔA , where Δm and ΔA are the mass and area of a small rectangle

containing the point (x, y) and the limit is taken as the dimensions of the rectangle go to 0 (see the following figure).
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Figure 5.65 The density of a lamina at a point is the limit of
its mass per area in a small rectangle about the point as the area
goes to zero.

Just as before, we divide the region R into tiny rectangles Ri j with area ΔA and choose
⎛
⎝xi j* , yi j* ⎞

⎠ as sample points.

Then the mass mi j of each Ri j is equal to ρ⎛
⎝xi j* , yi j* ⎞

⎠ΔA (Figure 5.66). Let k and l be the number of subintervals in

x and y, respectively. Also, note that the shape might not always be rectangular but the limit works anyway, as seen in

previous sections.

Figure 5.66 Subdividing the lamina into tiny rectangles
Ri j, each containing a sample point (xi j* , yi j* ).

Hence, the mass of the lamina is

(5.13)
m = lim

k, l → ∞
∑
i = 1

k
∑
j = 1

l
mi j = lim

k, l → ∞
∑
i = 1

k
∑
j = 1

l
ρ(xi j* , yi j* )ΔA = ∬

R
ρ(x, y)dA.

Let’s see an example now of finding the total mass of a triangular lamina.

Chapter 5 | Multiple Integration 593



5.33

Example 5.55

Finding the Total Mass of a Lamina

Consider a triangular lamina R with vertices (0, 0), (0, 3), (3, 0) and with density ρ(x, y) = xy kg/m2. Find

the total mass.

Solution

A sketch of the region R is always helpful, as shown in the following figure.

Figure 5.67 A lamina in the xy-plane with density

ρ(x, y) = xy.

Using the expression developed for mass, we see that

m = ∬
R

dm = ∬
R

ρ(x, y)dA = ∫
x = 0

x = 3
∫

y = 0

y = 3 − x

xy dy dx = ∫
x = 0

x = 3⎡

⎣
⎢
⎢xy2

2 |y = 0

y = 3 − x⎤

⎦
⎥
⎥dx

= ∫
x = 0

x = 3
1
2x(3 − x)2 dx = ⎡

⎣
9x2

4 − x3 + x4

8
⎤
⎦|x = 0

x = 3

= 27
8 .

The computation is straightforward, giving the answer m = 27
8 kg.

Consider the same region R as in the previous example, and use the density function ρ(x, y) = xy.
Find the total mass.

Now that we have established the expression for mass, we have the tools we need for calculating moments and centers of
mass. The moment Mx about the x-axis for R is the limit of the sums of moments of the regions Ri j about the x-axis.

Hence

(5.14)
Mx = lim

k, l → ∞
∑
i = 1

k
∑
j = 1

l ⎛
⎝y

i j
* ⎞

⎠mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l ⎛
⎝y

i j
* ⎞

⎠ρ⎛
⎝x

i j
* , y

i j
* ⎞

⎠ΔA = ∬
R

yρ(x, y)dA.
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Similarly, the moment My about the y-axis for R is the limit of the sums of moments of the regions Ri j about the

y-axis. Hence

(5.15)
My = lim

k, l → ∞
∑
i = 1

k
∑
j = 1

l ⎛
⎝x

i j
* ⎞

⎠mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l ⎛
⎝y

i j
* ⎞

⎠ρ⎛
⎝x

i j
* , y

i j
* ⎞

⎠ΔA = ∬
R

xρ(x, y)dA.

Example 5.56

Finding Moments

Consider the same triangular lamina R with vertices (0, 0), (0, 3), (3, 0) and with density ρ(x, y) = xy. Find

the moments Mx and My.

Solution

Use double integrals for each moment and compute their values:

Mx = ∬
R

yρ(x, y)dA = ∫
x = 0

x = 3
∫

y = 0

y = 3 − x

xy2 dy dx = 81
20,

My = ∬
R

xρ(x, y)dA = ∫
x = 0

x = 3
∫

y = 0

y = 3 − x

x2 yd y dx = 81
20.

The computation is quite straightforward.

Consider the same lamina R as above, and use the density function ρ(x, y) = xy. Find the moments

Mx and My.

Finally we are ready to restate the expressions for the center of mass in terms of integrals. We denote the x-coordinate of
the center of mass by x− and the y-coordinate by y−. Specifically,

(5.16)

x− =
My
m =

∬
R

xρ(x, y)dA

∬
R

ρ(x, y)dA
and y− = Mx

m

∬
R

yρ(x, y)dA

∬
R

ρ(x, y)dA
.

Example 5.57

Finding the Center of Mass

Again consider the same triangular region R with vertices (0, 0), (0, 3), (3, 0) and with density function

ρ(x, y) = xy. Find the center of mass.

Solution

Using the formulas we developed, we have

Chapter 5 | Multiple Integration 595



5.35

x− =
My
m =

∬
R

xρ(x, y)dA

∬
R

ρ(x, y)dA
= 81/20

27/8 = 6
5,

y− = Mx
m =

∬
R

yρ(x, y)dA

∬
R

ρ(x, y)dA
= 81/20

27/8 = 6
5.

Therefore, the center of mass is the point ⎛
⎝
6
5, 6

5
⎞
⎠.

Analysis
If we choose the density ρ(x, y) instead to be uniform throughout the region (i.e., constant), such as the value 1

(any constant will do), then we can compute the centroid,

xc =
My
m =

∬
R

x dA

∬
R

dA
= 9/2

9/2 = 1,

yc = Mx
m

∬
R

y dA

∬
R

dA
= 9/2

9/2 = 1.

Notice that the center of mass ⎛
⎝
6
5, 6

5
⎞
⎠ is not exactly the same as the centroid (1, 1) of the triangular region.

This is due to the variable density of R. If the density is constant, then we just use ρ(x, y) = c (constant). This

value cancels out from the formulas, so for a constant density, the center of mass coincides with the centroid of
the lamina.

Again use the same region R as above and the density function ρ(x, y) = xy. Find the center of mass.

Once again, based on the comments at the end of Example 5.57, we have expressions for the centroid of a region on the
plane:

xc =
My
m =

∬
R

x dA

∬
R

dA
and yc = Mx

m

∬
R

y dA

∬
R

dA
.

We should use these formulas and verify the centroid of the triangular region R referred to in the last three examples.

Example 5.58

Finding Mass, Moments, and Center of Mass

Find the mass, moments, and the center of mass of the lamina of density ρ(x, y) = x + y occupying the region

R under the curve y = x2 in the interval 0 ≤ x ≤ 2 (see the following figure).
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Figure 5.68 Locating the center of mass of a lamina R with

density ρ(x, y) = x + y.

Solution

First we compute the mass m. We need to describe the region between the graph of y = x2 and the vertical lines

x = 0 and x = 2:

m = ∬
R

dm = ∬
R

ρ(x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = x2

(x + y)dy dx = ∫
x = 0

x = 2⎡

⎣
⎢
⎢xy + y2

2 |y = 0

y = x2⎤

⎦
⎥
⎥dx

= ∫
x = 0

x = 2⎡
⎣x3 + x4

2
⎤
⎦dx = ⎡

⎣
x4

4 + x5

10
⎤
⎦|x = 0

x = 2
= 36

5 .

Now compute the moments Mx and My :

Mx = ∬
R

yρ(x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = x2

y(x + y)dy dx = 80
7 ,

My = ∬
R

xρ(x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = x2

x(x + y)dy dx = 176
15 .

Finally, evaluate the center of mass,

x− =
My
m =

∬
R

xρ(x, y)dA

∬
R

ρ(x, y)dA
= 176/15

36/5 = 44
27,

y− = Mx
m =

∬
R

yρ(x, y)dA

∬
R

ρ(x, y)dA
= 80/7

36/5 = 100
63 .
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Hence the center of mass is (x−, y−) = ⎛
⎝
44
27, 100

63
⎞
⎠.

Calculate the mass, moments, and the center of mass of the region between the curves y = x and

y = x2 with the density function ρ(x, y) = x in the interval 0 ≤ x ≤ 1.

Example 5.59

Finding a Centroid

Find the centroid of the region under the curve y = ex over the interval 1 ≤ x ≤ 3 (see the following figure).

Figure 5.69 Finding a centroid of a region below the curve
y = ex.

Solution

To compute the centroid, we assume that the density function is constant and hence it cancels out:
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xc =
My
m =

∬
R

x dA

∬
R

dA
and yc = Mx

m =
∬
R

y dA

∬
R

dA
,

xc =
My
m =

∬
R

x dA

∬
R

dA
=

∫
x = 1

x = 3
∫

y = 0

y = ex

x dy dx

∫
x = 1

x = 3
∫

y = 0

y = ex

dy dx

=
∫

x = 1

x = 3
xex dx

∫
x = 1

x = 3
ex dx

= 2e3

e3 − e
= 2e2

e2 − 1
,

yc = Mx
m =

∬
R

y dA

∬
R

dA
=

∫
x = 1

x = 3
∫

y = 0

y = ex

y dy dx

∫
x = 1

x = 3
∫

y = 0

y = ex

dy dx

=
∫

x = 1

x = 3
e2x

2 dx

∫
x = 1

x = 3
ex dx

=
1
4e2 ⎛

⎝e4 − 1⎞
⎠

e⎛
⎝e2 − 1⎞

⎠
= 1

4e⎛
⎝e2 + 1⎞

⎠.

Thus the centroid of the region is

(xc, yc) = ⎛
⎝

2e2

e2 − 1
, 1

4e⎛
⎝e2 + 1⎞

⎠
⎞
⎠.

Calculate the centroid of the region between the curves y = x and y = x with uniform density in the

interval 0 ≤ x ≤ 1.

Moments of Inertia
For a clear understanding of how to calculate moments of inertia using double integrals, we need to go back to the

general definition in Section 6.6. The moment of inertia of a particle of mass m about an axis is mr2, where r is the

distance of the particle from the axis. We can see from Figure 5.66 that the moment of inertia of the subrectangle Ri j

about the x-axis is (yi j* )2 ρ(xi j* , yi j* )ΔA. Similarly, the moment of inertia of the subrectangle Ri j about the y-axis is

(xi j* )2 ρ(xi j* , yi j* )ΔA. The moment of inertia is related to the rotation of the mass; specifically, it measures the tendency

of the mass to resist a change in rotational motion about an axis.

The moment of inertia Ix about the x-axis for the region R is the limit of the sum of moments of inertia of the regions

Ri j about the x-axis. Hence

Ix = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝yi j* ⎞

⎠

2

mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝yi j* ⎞

⎠

2

ρ⎛
⎝xi j* , yi j* ⎞

⎠ΔA = ∬
R

y2 ρ(x, y)dA.

Similarly, the moment of inertia Iy about the y-axis for R is the limit of the sum of moments of inertia of the regions

Ri j about the y-axis. Hence

Iy = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝xi j* ⎞

⎠

2

mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝xi j* ⎞

⎠

2

ρ⎛
⎝xi j* , yi j* ⎞

⎠ΔA = ∬
R

x2 ρ(x, y)dA.
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Sometimes, we need to find the moment of inertia of an object about the origin, which is known as the polar moment of
inertia. We denote this by I0 and obtain it by adding the moments of inertia Ix and Iy. Hence

I0 = Ix + Iy = ∬
R

⎛
⎝x2 + y2⎞

⎠ρ(x, y)dA.

All these expressions can be written in polar coordinates by substituting x = r cos θ, y = r sin θ, and dA = r dr dθ.

For example, I0 = ∬
R

r2 ρ(r cos θ, r sin θ)dA.

Example 5.60

Finding Moments of Inertia for a Triangular Lamina

Use the triangular region R with vertices (0, 0), (2, 2), and (2, 0) and with density ρ(x, y) = xy as in

previous examples. Find the moments of inertia.

Solution

Using the expressions established above for the moments of inertia, we have

Ix = ∬
R

y2 ρ(x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = x

xy3 dy dx = 8
3,

Iy = ∬
R

x2 ρ(x, y)dA = ∫
x = 0

x = 2
∫

y = 0

y = x

x3 y dy dx = 16
3 ,

I0 = ∬
R

⎛
⎝x2 + y2⎞

⎠ρ(x, y)dA = ∫
0

2
∫
0

x
⎛
⎝x2 + y2⎞

⎠xy dy dx

= Ix + Iy = 8.

Again use the same region R as above and the density function ρ(x, y) = xy. Find the moments of

inertia.

As mentioned earlier, the moment of inertia of a particle of mass m about an axis is mr2 where r is the distance of the

particle from the axis, also known as the radius of gyration.

Hence the radii of gyration with respect to the x-axis, the y-axis, and the origin are

Rx = Ix
m , Ry =

Iy
m , and R0 = I0

m ,

respectively. In each case, the radius of gyration tells us how far (perpendicular distance) from the axis of rotation the entire
mass of an object might be concentrated. The moments of an object are useful for finding information on the balance and
torque of the object about an axis, but radii of gyration are used to describe the distribution of mass around its centroidal
axis. There are many applications in engineering and physics. Sometimes it is necessary to find the radius of gyration, as in
the next example.

Example 5.61

Finding the Radius of Gyration for a Triangular Lamina

600 Chapter 5 | Multiple Integration

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



5.39

Consider the same triangular lamina R with vertices (0, 0), (2, 2), and (2, 0) and with density ρ(x, y) = xy
as in previous examples. Find the radii of gyration with respect to the x-axis, the y-axis, and the origin.

Solution

If we compute the mass of this region we find that m = 2. We found the moments of inertia of this lamina in

Example 5.58. From these data, the radii of gyration with respect to the x-axis, y-axis, and the origin are,

respectively,

Rx = Ix
m = 8/3

2 = 8
6 = 2 3

3 ,

Ry =
Iy
m = 16/3

2 = 8
3 = 2 6

3 ,

R0 = I0
m = 8

2 = 4 = 2.

Use the same region R from Example 5.61 and the density function ρ(x, y) = xy. Find the radii of

gyration with respect to the x-axis, the y-axis, and the origin.

Center of Mass and Moments of Inertia in Three Dimensions
All the expressions of double integrals discussed so far can be modified to become triple integrals.

Definition

If we have a solid object Q with a density function ρ(x, y, z) at any point (x, y, z) in space, then its mass is

m = ∭
Q

ρ(x, y, z)dV .

Its moments about the xy-plane, the xz-plane, and the yz-plane are

Mxy = ∭
Q

zρ(x, y, z)dV , Mxz = ∭
Q

yρ(x, y, z)dV ,

Myz = ∭
Q

xρ(x, y, z)dV .

If the center of mass of the object is the point ⎛
⎝x−, y−, z−⎞

⎠, then

x− =
Myz
m , y− = Mxz

m , z− =
Mxy
m .

Also, if the solid object is homogeneous (with constant density), then the center of mass becomes the centroid of the
solid. Finally, the moments of inertia about the yz-plane, the xz-plane, and the xy-plane are

Ix = ∭
Q

⎛
⎝y2 + z2⎞

⎠ρ(x, y, z)dV ,

Iy = ∭
Q

⎛
⎝x2 + z2⎞

⎠ρ(x, y, z)dV ,

Iz = ∭
Q

⎛
⎝x2 + y2⎞

⎠ρ(x, y, z)dV .

Chapter 5 | Multiple Integration 601



5.40

Example 5.62

Finding the Mass of a Solid

Suppose that Q is a solid region bounded by x + 2y + 3z = 6 and the coordinate planes and has density

ρ(x, y, z) = x2 yz. Find the total mass.

Solution

The region Q is a tetrahedron (Figure 5.70) meeting the axes at the points (6, 0, 0), (0, 3, 0), and (0, 0, 2).

To find the limits of integration, let z = 0 in the slanted plane z = 1
3

⎛
⎝6 − x − 2y⎞

⎠. Then for x and y find the

projection of Q onto the xy-plane, which is bounded by the axes and the line x + 2y = 6. Hence the mass is

m = ∭
Q

ρ(x, y, z)dV = ∫
x = 0

x = 6
∫

y = 0

y = 1/2(6 − x)

∫
z = 0

z = 1/3⎛
⎝6 − x − 2y⎞

⎠

x2 yz dz dy dx = 108
35 ≈ 3.086.

Figure 5.70 Finding the mass of a three-dimensional solid
Q.

Consider the same region Q (Figure 5.70), and use the density function ρ(x, y, z) = xy2 z. Find the

mass.

Example 5.63

Finding the Center of Mass of a Solid

Suppose Q is a solid region bounded by the plane x + 2y + 3z = 6 and the coordinate planes with density

ρ(x, y, z) = x2 yz (see Figure 5.70). Find the center of mass using decimal approximation.

Solution

We have used this tetrahedron before and know the limits of integration, so we can proceed to the computations
right away. First, we need to find the moments about the xy-plane, the xz-plane, and the yz-plane:
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Mxy = ∭
Q

zρ(x, y, z)dV = ∫
x = 0

x = 6
∫

y = 0

y = 1/2(6 − x)

∫
z = 0

z = 1/3⎛
⎝6 − x − 2y⎞

⎠

x2 yz2 dz dy dx = 54
35 ≈ 1.543,

Mxz = ∭
Q

yρ(x, y, z)dV = ∫
x = 0

x = 6
∫

y = 0

y = 1/2(6 − x)

∫
z = 0

z = 1/3⎛
⎝6 − x − 2y⎞

⎠

x2 y2 z dz dy dx = 81
35 ≈ 2.314,

Myz = ∭
Q

xρ(x, y, z)dV = ∫
x = 0

x = 6
∫

y = 0

y = 1/2(6 − x)

∫
z = 0

z = 1/3⎛
⎝6 − x − 2y⎞

⎠

x3 yz dz dy dx = 243
35 ≈ 6.943.

Hence the center of mass is

x− =
Myz
m , y− = Mxz

m , z− =
Mxy
m ,

x− =
Myz
m = 243/35

108/35 = 243
108 = 2.25,

y− = Mxz
m = 81/35

108/35 = 81
108 = 0.75,

z− =
Mxy
m = 54/35

108/35 = 54
108 = 0.5.

The center of mass for the tetrahedron Q is the point (2.25, 0.75, 0.5).

Consider the same region Q (Figure 5.70) and use the density function ρ(x, y, z) = xy2 z. Find the

center of mass.

We conclude this section with an example of finding moments of inertia Ix, Iy, and Iz.

Example 5.64

Finding the Moments of Inertia of a Solid

Suppose that Q is a solid region and is bounded by x + 2y + 3z = 6 and the coordinate planes with density

ρ(x, y, z) = x2 yz (see Figure 5.70). Find the moments of inertia of the tetrahedron Q about the yz-plane,
the xz-plane, and the xy-plane.

Solution

Once again, we can almost immediately write the limits of integration and hence we can quickly proceed to
evaluating the moments of inertia. Using the formula stated before, the moments of inertia of the tetrahedron Q
about the xy-plane, the xz-plane, and the yz-plane are
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Ix = ∭
Q

⎛
⎝y2 + z2⎞

⎠ρ(x, y, z)dV ,

Iy = ∭
Q

⎛
⎝x2 + z2⎞

⎠ρ(x, y, z)dV ,

and

Iz = ∭
Q

⎛
⎝x2 + y2⎞

⎠ρ(x, y, z)dV with ρ(x, y, z) = x2 yz.

Proceeding with the computations, we have

Ix = ∭
Q

⎛
⎝y2 + z2⎞

⎠x2 yz dV = ∫
x = 0

x = 6
∫

y = 0

y = 1
2(6 − x)

∫
z = 0

z = 1
3

⎛
⎝6 − x − 2y⎞

⎠

⎛
⎝y2 + z2⎞

⎠x2 yz dz dy dx = 117
35 ≈ 3.343,

Iy = ∭
Q

⎛
⎝x2 + z2⎞

⎠x2 yz dV = ∫
x = 0

x = 6
∫

y = 0

y = 1
2(6 − x)

∫
z = 0

z = 1
3

⎛
⎝6 − x − 2y⎞

⎠

⎛
⎝x2 + z2⎞

⎠x2 yz dz dy dx = 684
35 ≈ 19.543,

Iz = ∭
Q

⎛
⎝x2 + y2⎞

⎠x2 yz dV = ∫
x = 0

x = 6
∫

y = 0

y = 1
2(6 − x)

∫
z = 0

z = 1
3

⎛
⎝6 − x − 2y⎞

⎠

⎛
⎝x2 + y2⎞

⎠x2 yz dz dy dx = 729
35 ≈ 20.829.

Thus, the moments of inertia of the tetrahedron Q about the yz-plane, the xz-plane, and the xy-plane are

117/35, 684/35, and 729/35, respectively.

Consider the same region Q (Figure 5.70), and use the density function ρ(x, y, z) = xy2 z. Find the

moments of inertia about the three coordinate planes.
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5.6 EXERCISES
In the following exercises, the region R occupied by a

lamina is shown in a graph. Find the mass of R with the

density function ρ.

297. R is the triangular region with vertices

(0, 0), (0, 3), and (6, 0); ρ(x, y) = xy.

298. R is the triangular region with vertices

(0, 0), (1, 1), (0, 5); ρ(x, y) = x + y.

299. R is the rectangular region with vertices

(0, 0), (0, 3), (6, 3), and (6, 0); ρ(x, y) = xy.

300. R is the rectangular region with vertices

(0, 1), (0, 3), (3, 3), and (3, 1); ρ(x, y) = x2 y.

301. R is the trapezoidal region determined by the lines

y = − 1
4x + 5

2, y = 0, y = 2, and x = 0;

ρ(x, y) = 3xy.

302. R is the trapezoidal region determined by the lines

y = 0, y = 1, y = x, and

y = −x + 3; ρ(x, y) = 2x + y.

303. R is the disk of radius 2 centered at (1, 2);

ρ(x, y) = x2 + y2 − 2x − 4y + 5.
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304. R is the unit disk; ρ(x, y) = 3x4 + 6x2 y2 + 3y4.

305. R is the region enclosed by the ellipse

x2 + 4y2 = 1; ρ(x, y) = 1.

306. R = ⎧

⎩
⎨(x, y)|9x2 + y2 ≤ 1, x ≥ 0, y ≥ 0⎫

⎭
⎬;

ρ(x, y) = 9x2 + y2.

307. R is the region bounded by

y = x, y = −x, y = x + 2, y = −x + 2; ρ(x, y) = 1.

308. R is the region bounded by y = 1
x , y = 2

x , y = 1,

and y = 2; ρ(x, y) = 4(x + y).

In the following exercises, consider a lamina occupying
the region R and having the density function ρ given in

the preceding group of exercises. Use a computer algebra
system (CAS) to answer the following questions.

a. Find the moments Mx and My about the x-axis

and y-axis, respectively.

b. Calculate and plot the center of mass of the lamina.

c. [T] Use a CAS to locate the center of mass on the
graph of R.

309. [T] R is the triangular region with vertices

(0, 0), (0, 3), and (6, 0); ρ(x, y) = xy.

310. [T] R is the triangular region with vertices

(0, 0), (1, 1), and (0, 5); ρ(x, y) = x + y.

311. [T] R is the rectangular region with vertices

(0, 0), (0, 3), (6, 3), and (6, 0); ρ(x, y) = xy.

312. [T] R is the rectangular region with vertices

(0, 1), (0, 3), (3, 3), and (3, 1); ρ(x, y) = x2 y.
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313. [T] R is the trapezoidal region determined by the

lines y = − 1
4x + 5

2, y = 0, y = 2, and x = 0;

ρ(x, y) = 3xy.

314. [T] R is the trapezoidal region determined by the

lines y = 0, y = 1, y = x, and

y = −x + 3; ρ(x, y) = 2x + y.

315. [T] R is the disk of radius 2 centered at (1, 2);

ρ(x, y) = x2 + y2 − 2x − 4y + 5.

316. [T] R is the unit disk;

ρ(x, y) = 3x4 + 6x2 y2 + 3y4.

317. [T] R is the region enclosed by the ellipse

x2 + 4y2 = 1; ρ(x, y) = 1.

318. [T] R = ⎧

⎩
⎨(x, y)|9x2 + y2 ≤ 1, x ≥ 0, y ≥ 0⎫

⎭
⎬;

ρ(x, y) = 9x2 + y2.

319. [T] R is the region bounded by

y = x, y = −x, y = x + 2, and y = −x + 2;
ρ(x, y) = 1.

320. [T] R is the region bounded by y = 1
x ,

y = 2
x , y = 1, and y = 2; ρ(x, y) = 4(x + y).

In the following exercises, consider a lamina occupying the
region R and having the density function ρ given in the

first two groups of Exercises.

a. Find the moments of inertia Ix, Iy, and I0 about

the x-axis, y-axis, and origin, respectively.

b. Find the radii of gyration with respect to the
x-axis, y-axis, and origin, respectively.

321. R is the triangular region with vertices

(0, 0), (0, 3), and (6, 0); ρ(x, y) = xy.

322. R is the triangular region with vertices

(0, 0), (1, 1), and (0, 5); ρ(x, y) = x + y.

323. R is the rectangular region with vertices

(0, 0), (0, 3), (6, 3), and (6, 0); ρ(x, y) = xy.

324. R is the rectangular region with vertices

(0, 1), (0, 3), (3, 3), and (3, 1); ρ(x, y) = x2 y.

325. R is the trapezoidal region determined by the lines

y = − 1
4x + 5

2, y = 0, y = 2, and

x = 0; ρ(x, y) = 3xy.

326. R is the trapezoidal region determined by the lines

y = 0, y = 1, y = x, and

y = −x + 3; ρ(x, y) = 2x + y.

327. R is the disk of radius 2 centered at (1, 2);

ρ(x, y) = x2 + y2 − 2x − 4y + 5.

328. R is the unit disk; ρ(x, y) = 3x4 + 6x2 y2 + 3y4.

329. R is the region enclosed by the ellipse

x2 + 4y2 = 1; ρ(x, y) = 1.

330.

R = ⎧

⎩
⎨(x, y)|9x2 + y2 ≤ 1, x ≥ 0, y ≥ 0⎫

⎭
⎬; ρ(x, y) = 9x2 + y2.

331. R is the region bounded by

y = x, y = −x, y = x + 2, and y = −x + 2;
ρ(x, y) = 1.

332. R is the region bounded by

y = 1
x , y = 2

x , y = 1, and y = 2; ρ(x, y) = 4(x + y).

333. Let Q be the solid unit cube. Find the mass of the

solid if its density ρ is equal to the square of the distance

of an arbitrary point of Q to the xy-plane.

334. Let Q be the solid unit hemisphere. Find the mass of

the solid if its density ρ is proportional to the distance of

an arbitrary point of Q to the origin.

335. The solid Q of constant density 1 is situated inside

the sphere x2 + y2 + z2 = 16 and outside the sphere

x2 + y2 + z2 = 1. Show that the center of mass of the

solid is not located within the solid.

336. Find the mass of the solid

Q = ⎧

⎩
⎨(x, y, z)|1 ≤ x2 + z2 ≤ 25, y ≤ 1 − x2 − z2⎫

⎭
⎬

whose density is ρ(x, y, z) = k, where k > 0.
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337. [T] The solid

Q = ⎧

⎩
⎨(x, y, z)|x2 + y2 ≤ 9, 0 ≤ z ≤ 1, x ≥ 0, y ≥ 0⎫

⎭
⎬

has density equal to the distance to the xy-plane. Use a

CAS to answer the following questions.
a. Find the mass of Q.
b. Find the moments Mxy, Mxz, and Myz about the

xy-plane, xz-plane, and yz-plane, respectively.

c. Find the center of mass of Q.
d. Graph Q and locate its center of mass.

338. Consider the solid
Q = ⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3⎫

⎭
⎬ with the

density function ρ(x, y, z) = x + y + 1.
a. Find the mass of Q.
b. Find the moments Mxy, Mxz, and Myz about the

xy-plane, xz-plane, and yz-plane, respectively.

c. Find the center of mass of Q.

339. [T] The solid Q has the mass given by the triple

integral ∫
−1

1
∫
0

π
4

∫
0

1
r2 dr dθ dz. Use a CAS to answer the

following questions.
a. Show that the center of mass of Q is located in the

xy-plane.
b. Graph Q and locate its center of mass.

340. The solid Q is bounded by the planes

x + 4y + z = 8, x = 0, y = 0, and z = 0. Its density at

any point is equal to the distance to the xz-plane. Find the

moments of inertia Iy of the solid about the xz-plane.

341. The solid Q is bounded by the planes

x + y + z = 3, x = 0, y = 0, and z = 0. Its density is

ρ(x, y, z) = x + ay, where a > 0. Show that the center

of mass of the solid is located in the plane z = 3
5 for any

value of a.

342. Let Q be the solid situated outside the sphere

x2 + y2 + z2 = z and inside the upper hemisphere

x2 + y2 + z2 = R2, where R > 1. If the density of the

solid is ρ(x, y, z) = 1
x2 + y2 + z2

, find R such that the

mass of the solid is 7π
2 .

343. The mass of a solid Q is given by

∫
0

2
∫
0

4 − x2

∫
x2 + y2

16 − x2 − y2
⎛
⎝x2 + y2 + z2⎞

⎠
n
dz dy dx, where n

is an integer. Determine n such the mass of the solid is

(2 − 2)π.

344. Let Q be the solid bounded above the cone

x2 + y2 = z2 and below the sphere

x2 + y2 + z2 − 4z = 0. Its density is a constant k > 0.
Find k such that the center of mass of the solid is situated

7 units from the origin.

345. The solid

Q = ⎧

⎩
⎨(x, y, z)|0 ≤ x2 + y2 ≤ 16, x ≥ 0, y ≥ 0, 0 ≤ z ≤ x⎫

⎭
⎬

has the density ρ(x, y, z) = k. Show that the moment

Mxy about the xy-plane is half of the moment Myz about

the yz-plane.

346. The solid Q is bounded by the cylinder

x2 + y2 = a2, the paraboloid b2 − z = x2 + y2, and

the xy-plane, where 0 < a < b. Find the mass of the

solid if its density is given by ρ(x, y, z) = x2 + y2.

347. Let Q be a solid of constant density k, where

k > 0, that is located in the first octant, inside the circular

cone x2 + y2 = 9(z − 1)2, and above the plane z = 0.
Show that the moment Mxy about the xy-plane is the

same as the moment Myz about the xz-plane.

348. The solid Q has the mass given by the triple integral

∫
0

1
∫
0

π/2
∫
0

r2
⎛
⎝r4 + r⎞

⎠dz dθ dr.

a. Find the density of the solid in rectangular
coordinates.

b. Find the moment Mxy about the xy-plane.

349. The solid Q has the moment of inertia Ix about

the yz-plane given by the triple integral

∫
0

2
∫

− 4 − y2

4 − y2

∫
1
2

⎛
⎝x

2 + y2⎞
⎠

x2 + y2
⎛
⎝y2 + z2⎞

⎠
⎛
⎝x2 + y2⎞

⎠dz dx dy.

a. Find the density of Q.
b. Find the moment of inertia Iz about the xy-plane.
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350. The solid Q has the mass given by the triple integral

∫
0

π/4
∫
0

2 sec θ
∫
0

1
⎛
⎝r

3 cos θ sin θ + 2r⎞
⎠dz dr dθ.

a. Find the density of the solid in rectangular
coordinates.

b. Find the moment Mxz about the xz-plane.

351. Let Q be the solid bounded by the xy-plane,

the cylinder x2 + y2 = a2, and the plane z = 1, where

a > 1 is a real number. Find the moment Mxy of the

solid about the xy-plane if its density given in cylindrical

coordinates is ρ(r, θ, z) = d2 f
dr2 (r), where f is a

differentiable function with the first and second derivatives
continuous and differentiable on (0, a).

352. A solid Q has a volume given by ∬
D

∫
a

b
dA dz,

where D is the projection of the solid onto the xy-plane
and a < b are real numbers, and its density does not

depend on the variable z. Show that its center of mass lies

in the plane z = a + b
2 .

353. Consider the solid enclosed by the cylinder

x2 + z2 = a2 and the planes y = b and y = c, where

a > 0 and b < c are real numbers. The density of Q
is given by ρ(x, y, z) = f ′(y), where f is a differential

function whose derivative is continuous on (b, c). Show

that if f (b) = f (c), then the moment of inertia about the

xz-plane of Q is null.

354. [T] The average density of a solid Q is defined

as ρave = 1
V(Q) ∭

Q
ρ(x, y, z)dV = m

V(Q), where V(Q)

and m are the volume and the mass of Q, respectively.

If the density of the unit ball centered at the origin is

ρ(x, y, z) = e−x2 − y2 − z2
, use a CAS to find its average

density. Round your answer to three decimal places.

355. Show that the moments of inertia Ix, Iy, and Iz

about the yz-plane, xz-plane, and xy-plane,
respectively, of the unit ball centered at the origin whose

density is ρ(x, y, z) = e−x2 − y2 − z2
are the same. Round

your answer to two decimal places.
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5.7 | Change of Variables in Multiple Integrals

Learning Objectives
5.7.1 Determine the image of a region under a given transformation of variables.

5.7.2 Compute the Jacobian of a given transformation.

5.7.3 Evaluate a double integral using a change of variables.

5.7.4 Evaluate a triple integral using a change of variables.

Recall from Substitution Rule (http://cnx.org/content/m53634/latest/) the method of integration by substitution.

When evaluating an integral such as ∫
2

3
x(x2 − 4)5 dx, we substitute u = g(x) = x2 − 4. Then du = 2x dx or

x dx = 1
2du and the limits change to u = g(2) = 22 − 4 = 0 and u = g(3) = 9 − 4 = 5. Thus the integral becomes

∫
0

5
1
2u5 du and this integral is much simpler to evaluate. In other words, when solving integration problems, we make

appropriate substitutions to obtain an integral that becomes much simpler than the original integral.

We also used this idea when we transformed double integrals in rectangular coordinates to polar coordinates and
transformed triple integrals in rectangular coordinates to cylindrical or spherical coordinates to make the computations
simpler. More generally,

∫
a

b
f (x)dx = ∫

c

d
f ⎛

⎝g(u)⎞
⎠g′(u)du,

Where x = g(u), dx = g′(u)du, and u = c and u = d satisfy c = g(a) and d = g(b).

A similar result occurs in double integrals when we substitute x = f (r, θ) = r cos θ, y = g(r, θ) = r sin θ, and

dA = dx dy = r dr dθ. Then we get

∬
R

f (x, y)dA = ∬
S

f (r cos θ, r sin θ)r dr dθ

where the domain R is replaced by the domain S in polar coordinates. Generally, the function that we use to change the

variables to make the integration simpler is called a transformation or mapping.

Planar Transformations
A planar transformation T is a function that transforms a region G in one plane into a region R in another plane by

a change of variables. Both G and R are subsets of R2. For example, Figure 5.71 shows a region G in the uv-plane
transformed into a region R in the xy-plane by the change of variables x = g(u, v) and y = h(u, v), or sometimes

we write x = x(u, v) and y = y(u, v). We shall typically assume that each of these functions has continuous first partial

derivatives, which means gu, gv, hu, and hv exist and are also continuous. The need for this requirement will become

clear soon.
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Figure 5.71 The transformation of a region G in the uv-plane into a region R in the

xy-plane.

Definition

A transformation T: G → R, defined as T(u, v) = (x, y), is said to be a one-to-one transformation if no two

points map to the same image point.

To show that T is a one-to-one transformation, we assume T(u1, v1) = T(u2, v2) and show that as a consequence we

obtain (u1, v1) = (u2, v2). If the transformation T is one-to-one in the domain G, then the inverse T −1 exists with the

domain R such that T −1 ∘T and T ∘T −1 are identity functions.

Figure 5.71 shows the mapping T(u, v) = (x, y) where x and y are related to u and v by the equations x = g(u, v)
and y = h(u, v). The region G is the domain of T and the region R is the range of T , also known as the image of G
under the transformation T .

Example 5.65

Determining How the Transformation Works

Suppose a transformation T is defined as T(r, θ) = (x, y) where x = r cos θ, y = r sin θ. Find the image of

the polar rectangle G = {(r, θ)|0 < r ≤ 1, 0 ≤ θ ≤ π/2} in the rθ-plane to a region R in the xy-plane. Show

that T is a one-to-one transformation in G and find T −1 (x, y).

Solution

Since r varies from 0 to 1 in the rθ-plane, we have a circular disc of radius 0 to 1 in the xy-plane. Because

θ varies from 0 to π/2 in the rθ-plane, we end up getting a quarter circle of radius 1 in the first quadrant of

the xy-plane (Figure 5.72). Hence R is a quarter circle bounded by x2 + y2 = 1 in the first quadrant.
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Figure 5.72 A rectangle in the rθ-plane is mapped into a quarter circle in the xy-plane.

In order to show that T is a one-to-one transformation, assume T ⎛
⎝r1, θ1

⎞
⎠ = T ⎛

⎝r2, θ2
⎞
⎠ and show as a consequence

that ⎛
⎝r1, θ1

⎞
⎠ = ⎛

⎝r2, θ2
⎞
⎠. In this case, we have

T ⎛
⎝r1, θ1

⎞
⎠ = T ⎛

⎝r2, θ2
⎞
⎠,

(x1, y1) = (x1, y1),
⎛
⎝r1 cos θ1, r1 sin θ1

⎞
⎠ = ⎛

⎝r2 cos θ2, r2 sin θ2
⎞
⎠,

r1 cos θ1 = r2 cos θ2, r1 sin θ1 = r2 sin θ2.

Dividing, we obtain

r1 cos θ1
r1 sin θ1

= r2 cos θ2
r2 sin θ2

cos θ1
sin θ1

= cos θ2
sin θ2

tan θ1 = tan θ2
θ1 = θ2

since the tangent function is one-one function in the interval 0 ≤ θ ≤ π/2. Also, since 0 < r ≤ 1, we have

r1 = r2, θ1 = θ2. Therefore, ⎛
⎝r1, θ1

⎞
⎠ = ⎛

⎝r2, θ2
⎞
⎠ and T is a one-to-one transformation from G into R.

To find T −1 (x, y) solve for r, θ in terms of x, y. We already know that r2 = x2 + y2 and tan θ = y
x. Thus

T −1 (x, y) = (r, θ) is defined as r = x2 + y2 and θ = tan−1 ⎛
⎝
y
x

⎞
⎠.

Example 5.66

Finding the Image under T

Let the transformation T be defined by T(u, v) = (x, y) where x = u2 − v2 and y = uv. Find the image of

the triangle in the uv-plane with vertices (0, 0), (0, 1), and (1, 1).

Solution
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5.43

The triangle and its image are shown in Figure 5.73. To understand how the sides of the triangle transform, call
the side that joins (0, 0) and (0, 1) side A, the side that joins (0, 0) and (1, 1) side B, and the side that

joins (1, 1) and (0, 1) side C.

Figure 5.73 A triangular region in the uv-plane is transformed into an image in the xy-plane.

For the side A: u = 0, 0 ≤ v ≤ 1 transforms to x = −v2, y = 0 so this is the side A′ that joins (−1, 0) and

(0, 0).

For the side B: u = v, 0 ≤ u ≤ 1 transforms to x = 0, y = u2 so this is the side B′ that joins (0, 0) and

(0, 1).

For the side C: 0 ≤ u ≤ 1, v = 1 transforms to x = u2 − 1, y = u (hence x = y2 − 1) so this is the side C′
that makes the upper half of the parabolic arc joining (−1, 0) and (0, 1).

All the points in the entire region of the triangle in the uv-plane are mapped inside the parabolic region in the

xy-plane.

Let a transformation T be defined as T(u, v) = (x, y) where x = u + v, y = 3v. Find the image of the

rectangle G = {(u, v): 0 ≤ u ≤ 1, 0 ≤ v ≤ 2} from the uv-plane after the transformation into a region R in

the xy-plane. Show that T is a one-to-one transformation and find T −1 (x, y).

Jacobians
Recall that we mentioned near the beginning of this section that each of the component functions must have continuous
first partial derivatives, which means that gu, gv, hu, and hv exist and are also continuous. A transformation that has this

property is called a C1 transformation (here C denotes continuous). Let T(u, v) = ⎛
⎝g(u, v), h(u, v)⎞

⎠, where x = g(u, v)

and y = h(u, v), be a one-to-one C1 transformation. We want to see how it transforms a small rectangular region S,
Δu units by Δv units, in the uv-plane (see the following figure).
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Figure 5.74 A small rectangle S in the uv-plane is transformed into a region R in the

xy-plane.

Since x = g(u, v) and y = h(u, v), we have the position vector r(u, v) = g(u, v)i + h(u, v)j of the image of the point

(u, v). Suppose that (u0, v0) is the coordinate of the point at the lower left corner that mapped to (x0, y0) = T(u0, v0).
The line v = v0 maps to the image curve with vector function r(u, v0), and the tangent vector at (x0, y0) to the image

curve is

ru = gu (u0, v0)i + hu (u0, v0)j = ∂ x
∂ui + ∂ y

∂u j.

Similarly, the line u = u0 maps to the image curve with vector function r(u0, v), and the tangent vector at (x0, y0) to

the image curve is

rv = gv (u0, v0)i + hv (u0, v0)j = ∂ x
∂vi + ∂ y

∂v j.

Now, note that

ru = lim
Δu → 0

r⎛
⎝u0 + Δu, v0

⎞
⎠ − r(u0, v0)

Δu so r⎛
⎝u0 + Δu, v0

⎞
⎠ − r(u0, v0) ≈ Δuru.

Similarly,

rv = lim
Δv → 0

r⎛
⎝u0, v0 + Δv⎞

⎠ − r(u0, v0)
Δv so r⎛

⎝u0, v0 + Δv⎞
⎠ − r(u0, v0) ≈ Δvrv.

This allows us to estimate the area ΔA of the image R by finding the area of the parallelogram formed by the sides Δvrv

and Δuru. By using the cross product of these two vectors by adding the kth component as 0, the area ΔA of the image

R (refer to The Cross Product) is approximately |Δuru × Δvrv| = |ru × rv|ΔuΔv. In determinant form, the cross

product is

ru × rv = | i j k
∂ x
∂u

∂ y
∂u 0

∂ x
∂v

∂ y
∂v 0| = |∂ x

∂u
∂ y
∂u

∂ x
∂v

∂ y
∂v |k = ⎛

⎝
∂ x
∂u

∂ y
∂v − ∂ x

∂v
∂ y
∂u

⎞
⎠k.

Since |k| = 1, we have ΔA ≈ |ru × rv|ΔuΔv = ⎛
⎝
∂ x
∂u

∂ y
∂v − ∂ x

∂v
∂ y
∂u

⎞
⎠ΔuΔv.

Definition

The Jacobian of the C1 transformation T(u, v) = ⎛
⎝g(u, v), h(u, v)⎞

⎠ is denoted by J(u, v) and is defined by the

2 × 2 determinant
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J(u, v) = |∂(x, y)
∂ (u, v)| = |∂ x

∂u
∂ y
∂u

∂ x
∂v

∂ y
∂v | = ⎛

⎝
∂ x
∂u

∂ y
∂v − ∂ x

∂v
∂ y
∂u

⎞
⎠.

Using the definition, we have

ΔA ≈ J(u, v)ΔuΔv = |∂(x, y)
∂ (u, v)|ΔuΔv.

Note that the Jacobian is frequently denoted simply by

J(u, v) = ∂(x, y)
∂ (u, v).

Note also that

|∂ x
∂u

∂ y
∂u

∂ x
∂v

∂ y
∂v | = ⎛

⎝
∂ x
∂u

∂ y
∂v − ∂ x

∂v
∂ y
∂u

⎞
⎠ = |∂ x

∂u
∂ x
∂v

∂ y
∂u

∂ y
∂v |.

Hence the notation J(u, v) = ∂(x, y)
∂ (u, v) suggests that we can write the Jacobian determinant with partials of x in the first

row and partials of y in the second row.

Example 5.67

Finding the Jacobian

Find the Jacobian of the transformation given in Example 5.65.

Solution

The transformation in the example is T(r, θ) = (r cos θ, r sin θ) where x = r cos θ and y = r sin θ. Thus the

Jacobian is

J(r, θ) = ∂(x, y)
∂ (r, θ) = |∂ x

∂r
∂ x
∂θ

∂ y
∂r

∂ y
∂θ | = |cos θ −r sin θ

sin θ r cos θ|
= r cos2 θ + r sin2 θ = r⎛

⎝cos2 θ + sin2 θ⎞
⎠ = r.

Example 5.68

Finding the Jacobian

Find the Jacobian of the transformation given in Example 5.66.

Solution

The transformation in the example is T(u, v) = ⎛
⎝u2 − v2, uv⎞

⎠ where x = u2 − v2 and y = uv. Thus the

Jacobian is
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J(u, v) = ∂(x, y)
∂ (u, v) = |∂ x

∂u
∂ x
∂v

∂ y
∂u

∂ y
∂v | = |2u v

−2v u| = 2u2 + 2v2.

Find the Jacobian of the transformation given in the previous checkpoint: T(u, v) = (u + v, 2v).

Change of Variables for Double Integrals
We have already seen that, under the change of variables T(u, v) = (x, y) where x = g(u, v) and y = h(u, v), a small

region ΔA in the xy-plane is related to the area formed by the product ΔuΔv in the uv-plane by the approximation

ΔA ≈ J(u, v)Δu, Δv.

Now let’s go back to the definition of double integral for a minute:

∬
R

f (x, y)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝xi j, yi j
⎞
⎠ΔA.

Referring to Figure 5.75, observe that we divided the region S in the uv-plane into small subrectangles Si j and we let

the subrectangles Ri j in the xy-plane be the images of Si j under the transformation T(u, v) = (x, y).

Figure 5.75 The subrectangles Si j in the uv-plane transform into subrectangles Ri j in the

xy-plane.

Then the double integral becomes

∬
R

f (x, y)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝xi j, yi j
⎞
⎠ΔA = limm, n → ∞ ∑

i = 1

m
∑
j = 1

n
f ⎛

⎝g
⎛
⎝ui j, vi j

⎞
⎠, h⎛

⎝ui j, vi j
⎞
⎠
⎞
⎠|J⎛

⎝ui j, vi j
⎞
⎠|ΔuΔv.

Notice this is exactly the double Riemann sum for the integral

∬
S

f ⎛
⎝g(u, v), h(u, v)⎞

⎠|∂ (x, y)
∂ (u, v)|du dv.
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Theorem 5.14: Change of Variables for Double Integrals

Let T(u, v) = (x, y) where x = g(u, v) and y = h(u, v) be a one-to-one C1 transformation, with a nonzero

Jacobian on the interior of the region S in the uv-plane; it maps S into the region R in the xy-plane. If f is

continuous on R, then

∬
R

f (x, y)dA = ∬
S

f ⎛
⎝g(u, v), h(u, v)⎞

⎠|∂ (x, y)
∂ (u, v)|du dv.

With this theorem for double integrals, we can change the variables from (x, y) to (u, v) in a double integral simply by

replacing

dA = dx dy = |∂(x, y)
∂ (u, v)|du dv

when we use the substitutions x = g(u, v) and y = h(u, v) and then change the limits of integration accordingly. This

change of variables often makes any computations much simpler.

Example 5.69

Changing Variables from Rectangular to Polar Coordinates

Consider the integral

∫
0

2
∫
0

2x − x2

x2 + y2 dy dx.

Use the change of variables x = r cos θ and y = r sin θ, and find the resulting integral.

Solution

First we need to find the region of integration. This region is bounded below by y = 0 and above by

y = 2x − x2 (see the following figure).

Figure 5.76 Changing a region from rectangular to polar
coordinates.

Squaring and collecting terms, we find that the region is the upper half of the circle x2 + y2 − 2x = 0, that

is, y2 + (x − 1)2 = 1. In polar coordinates, the circle is r = 2 cos θ so the region of integration in polar

coordinates is bounded by 0 ≤ r ≤ cos θ and 0 ≤ θ ≤ π
2.
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The Jacobian is J(r, θ) = r, as shown in Example 5.67. Since r ≥ 0, we have |J(r, θ)| = r.

The integrand x2 + y2 changes to r in polar coordinates, so the double iterated integral is

∫
0

2
∫
0

2x − x2

x2 + y2dy dx = ∫
0

π/2
∫
0

2 cos θ
r|J(r, θ)|dr dθ = ∫

0

π/2
∫
0

2 cos θ
r2dr dθ.

Considering the integral ∫
0

1
∫
0

1 − x2
⎛
⎝x2 + y2⎞

⎠dy dx, use the change of variables x = r cos θ and

y = r sin θ, and find the resulting integral.

Notice in the next example that the region over which we are to integrate may suggest a suitable transformation for the
integration. This is a common and important situation.

Example 5.70

Changing Variables

Consider the integral ∬
R

(x − y)dy dx, where R is the parallelogram joining the points (1, 2),

(3, 4), (4, 3), and (6, 5) (Figure 5.77). Make appropriate changes of variables, and write the resulting

integral.

Figure 5.77 The region of integration for the given integral.

Solution

First, we need to understand the region over which we are to integrate. The sides of the parallelogram are
x − y + 1 = 0, x − y − 1 = 0, x − 3y + 5 = 0, and x − 3y + 9 = 0 (Figure 5.78). Another way to look at

them is x − y = −1, x − y = 1, x − 3y = −5, and x − 3y = 9.

Clearly the parallelogram is bounded by the lines y = x + 1, y = x − 1, y = 1
3(x + 5), and y = 1

3(x + 9).

Notice that if we were to make u = x − y and v = x − 3y, then the limits on the integral would be
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−1 ≤ u ≤ 1 and −9 ≤ v ≤ − 5.

To solve for x and y, we multiply the first equation by 3 and subtract the second equation,

3u − v = ⎛
⎝3x − 3y⎞

⎠ − ⎛
⎝x − 3y⎞

⎠ = 2x. Then we have x = 3u − v
2 . Moreover, if we simply subtract the second

equation from the first, we get u − v = (x − y) − ⎛
⎝x − 3y⎞

⎠ = 2y and y = u − v
2 .

Figure 5.78 A parallelogram in the xy-plane that we want to transform by a

change in variables.

Thus, we can choose the transformation

T(u, v) = ⎛
⎝
3u − v

2 , u − v
2

⎞
⎠

and compute the Jacobian J(u, v). We have

J(u, v) = ∂(x, y)
∂ (u, v) = |∂ x

∂u
∂ x
∂v

∂ y
∂u

∂ y
∂v | = |3/2 −1/2

1/2 −1/2| = − 3
4 + 1

4 = − 1
2.

Therefore, |J(u, v)| = 1
2. Also, the original integrand becomes

x − y = 1
2[3u − v − u + v] = 1

2[3u − u] = 1
2[2u] = u.

Therefore, by the use of the transformation T , the integral changes to

∬
R

(x − y)dy dx = ∫
−9

−5
∫
−1

1
J(u, v)u du dv = ∫

−9

−5
∫
−1

1
⎛
⎝
1
2

⎞
⎠u du dv,

which is much simpler to compute.

Make appropriate changes of variables in the integral ∬
R

4
(x − y)2dy dx, where R is the trapezoid

bounded by the lines x − y = 2, x − y = 4, x = 0, and y = 0. Write the resulting integral.
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We are ready to give a problem-solving strategy for change of variables.

Problem-Solving Strategy: Change of Variables

1. Sketch the region given by the problem in the xy-plane and then write the equations of the curves that form

the boundary.

2. Depending on the region or the integrand, choose the transformations x = g(u, v) and y = h(u, v).

3. Determine the new limits of integration in the uv-plane.

4. Find the Jacobian J(u, v).

5. In the integrand, replace the variables to obtain the new integrand.

6. Replace dy dx or dx dy, whichever occurs, by J(u, v)du dv.

In the next example, we find a substitution that makes the integrand much simpler to compute.

Example 5.71

Evaluating an Integral

Using the change of variables u = x − y and v = x + y, evaluate the integral

∬
R

(x − y)ex2 − y2
dA,

where R is the region bounded by the lines x + y = 1 and x + y = 3 and the curves x2 − y2 = −1 and

x2 − y2 = 1 (see the first region in Figure 5.79).

Solution

As before, first find the region R and picture the transformation so it becomes easier to obtain the limits of

integration after the transformations are made (Figure 5.79).

Figure 5.79 Transforming the region R into the region S to simplify the computation of an integral.

Given u = x − y and v = x + y, we have x = u + v
2 and y = v − u

2 and hence the transformation to use is

T(u, v) = ⎛
⎝
u + v

2 , v − u
2

⎞
⎠. The lines x + y = 1 and x + y = 3 become v = 1 and v = 3, respectively. The
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curves x2 − y2 = 1 and x2 − y2 = −1 become uv = 1 and uv = −1, respectively.

Thus we can describe the region S (see the second region Figure 5.79) as

S =
⎧

⎩
⎨(u, v)|1 ≤ v ≤ 3, −1

v ≤ u ≤ 1
v

⎫

⎭
⎬.

The Jacobian for this transformation is

J(u, v) = ∂(x, y)
∂ (u, v) = |∂ x

∂u
∂ x
∂v

∂ y
∂u

∂ y
∂v | = |1/2 −1/2

1/2 1/2 | = 1
2.

Therefore, by using the transformation T , the integral changes to

∬
R

(x − y)ex2 − y2
dA = 1

2∫
1

3
∫

−1/v

1/v
ueuv du dv.

Doing the evaluation, we have

1
2∫

1

3
∫

−1/v

1/v
ueuv du dv = 4

3e ≈ 0.490.

Using the substitutions x = v and y = u + v, evaluate the integral ∬
R

y sin⎛
⎝y2 − x⎞

⎠dA where R is

the region bounded by the lines y = x, x = 2, and y = 0.

Change of Variables for Triple Integrals
Changing variables in triple integrals works in exactly the same way. Cylindrical and spherical coordinate substitutions are
special cases of this method, which we demonstrate here.

Suppose that G is a region in uvw-space and is mapped to D in xyz-space (Figure 5.80) by a one-to-one C1

transformation T(u, v, w) = (x, y, z) where x = g(u, v, w), y = h(u, v, w), and z = k(u, v, w).

Figure 5.80 A region G in uvw-space mapped to a region D in xyz-space.
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Then any function F(x, y, z) defined on D can be thought of as another function H(u, v, w) that is defined on G:

F(x, y, z) = F⎛
⎝g(u, v, w), h(u, v, w), k(u, v, w)⎞

⎠ = H(u, v, w).

Now we need to define the Jacobian for three variables.

Definition

The Jacobian determinant J(u, v, w) in three variables is defined as follows:

J(u, v, w) = |∂ x
∂u

∂ y
∂u

∂z
∂u

∂ x
∂v

∂ y
∂v

∂z
∂v

∂ x
∂w

∂ y
∂w

∂z
∂w |.

This is also the same as

J(u, v, w) = |∂ x
∂u

∂ x
∂v

∂ x
∂w

∂ y
∂u

∂ y
∂v

∂ y
∂w

∂z
∂u

∂z
∂v

∂z
∂w |.

The Jacobian can also be simply denoted as
∂(x, y, z)
∂ (u, v, w).

With the transformations and the Jacobian for three variables, we are ready to establish the theorem that describes change
of variables for triple integrals.

Theorem 5.15: Change of Variables for Triple Integrals

Let T(u, v, w) = (x, y, z) where x = g(u, v, w), y = h(u, v, w), and z = k(u, v, w), be a one-to-one C1

transformation, with a nonzero Jacobian, that maps the region G in the uvw-plane into the region D in the

xyz-plane. As in the two-dimensional case, if F is continuous on D, then

∭
R

F(x, y, z)dV = ∭
G

F⎛
⎝g(u, v, w), h(u, v, w), k(u, v, w)⎞

⎠| ∂ (x, y, z)
∂ (u, v, w)|du dv dw

= ∭
G

H(u, v, w)|J(u, v, w)|du dv dw.

Let us now see how changes in triple integrals for cylindrical and spherical coordinates are affected by this theorem. We
expect to obtain the same formulas as in Triple Integrals in Cylindrical and Spherical Coordinates.

Example 5.72

Obtaining Formulas in Triple Integrals for Cylindrical and Spherical Coordinates

Derive the formula in triple integrals for

a. cylindrical and

b. spherical coordinates.
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Solution

a. For cylindrical coordinates, the transformation is T(r, θ, z) = (x, y, z) from the Cartesian rθz-plane to

the Cartesian xyz-plane (Figure 5.81). Here x = r cos θ, y = r sin θ, and z = z. The Jacobian for

the transformation is

J(r, θ, z) = ∂(x, y, z)
∂ (r, θ, z) = |∂ x

∂r
∂ x
∂θ

∂ x
∂z

∂ y
∂r

∂ y
∂θ

∂ y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z |

= |cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1| = r cos2 θ + r sin2 θ = r⎛
⎝cos2 θ + sin2 θ⎞

⎠ = r.

We know that r ≥ 0, so |J(r, θ, z)| = r. Then the triple integral is

∭
D

f (x, y, z)dV = ∭
G

f (r cos θ, r sin θ, z)r dr dθ dz.

Figure 5.81 The transformation from rectangular coordinates to cylindrical coordinates can be treated as a change of
variables from region G in rθz-space to region D in xyz-space.

b. For spherical coordinates, the transformation is T ⎛
⎝ρ, θ, φ⎞

⎠ = (x, y, z) from the Cartesian pθφ-plane to

the Cartesian xyz-plane (Figure 5.82). Here x = ρ sin φ cos θ, y = ρ sin φ sin θ, and z = ρ cos φ.
The Jacobian for the transformation is

J⎛
⎝ρ, θ, φ⎞

⎠ = ∂(x, y, z)
∂ ⎛

⎝ρ, θ, φ⎞
⎠

= |∂ x
∂ ρ

∂ x
∂θ

∂ x
∂φ

∂ y
∂ ρ

∂ y
∂θ

∂ y
∂φ

∂z
∂ ρ

∂z
∂θ

∂z
∂φ | = |sin φ cos θ −ρ sin φ sin θ ρ cos φ cos θ

sin φ sin θ −ρ sin φ cos θ ρ cos φ sin θ
cos θ 0 −ρ sin φ |.

Expanding the determinant with respect to the third row:
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= cos φ|−ρ sin φ sin θ ρ cos φ cos θ
ρ sin φ sin θ ρ cos φ sin θ | − ρ sin φ|sin φ cos θ −ρ sin φ sin θ

sin φ sin θ ρ sin φ cos θ |
= cos φ⎛

⎝−ρ2 sin φ cos φ sin2 θ − ρ2 sin φ cos φ cos2 θ⎞
⎠

−ρ sin φ⎛
⎝ρ sin2 φ cos2 θ + ρ sin2 φ sin2 θ⎞

⎠

= −ρ2 sin φ cos2 φ⎛
⎝sin2 θ + cos2 θ⎞

⎠ − ρ2 sin φ sin2 φ⎛
⎝sin2 θ + cos2 θ⎞

⎠

= −ρ2 sin φ cos2 φ − ρ2 sin φ sin2 φ

= −ρ2 sin φ⎛
⎝cos2 φ + sin2 φ⎞

⎠ = −ρ2 sin φ.

Since 0 ≤ φ ≤ π, we must have sin φ ≥ 0. Thus |J⎛
⎝ρ, θ, φ⎞

⎠| = |−ρ2 sin φ| = ρ2 sin φ.

Figure 5.82 The transformation from rectangular coordinates to spherical coordinates can be treated as a change of
variables from region G in ρθφ-space to region D in xyz-space.

Then the triple integral becomes

∭
D

f (x, y, z)dV = ∭
G

f ⎛
⎝ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ⎞

⎠ρ2 sin φ dρ dφ dθ.

Let’s try another example with a different substitution.

Example 5.73

Evaluating a Triple Integral with a Change of Variables

Evaluate the triple integral

∫
0

3
∫
0

4
∫
y/2

⎛
⎝y/2⎞

⎠ + 1
⎛
⎝x + z

3
⎞
⎠dx dy dz
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in xyz-space by using the transformation

u = ⎛
⎝2x − y⎞

⎠/2, v = y/2, and w = z/3.

Then integrate over an appropriate region in uvw-space.

Solution

As before, some kind of sketch of the region G in xyz-space over which we have to perform the integration

can help identify the region D in uvw-space (Figure 5.83). Clearly G in xyz-space is bounded by

the planes x = y/2, x = ⎛
⎝y/2⎞

⎠ + 1, y = 0, y = 4, z = 0, and z = 4. We also know that we have to use

u = ⎛
⎝2x − y⎞

⎠/2, v = y/2, and w = z/3 for the transformations. We need to solve for x, y, and z. Here we find

that x = u + v, y = 2v, and z = 3w.

Using elementary algebra, we can find the corresponding surfaces for the region G and the limits of integration

in uvw-space. It is convenient to list these equations in a table.

Equations in xyz for the

region D
Corresponding equations in uvw for

the region G
Limits for the
integration in uvw

x = y/2 u + v = 2v/2 = v u = 0

x = y/2 u + v = (2v/2) + 1 = v + 1 u = 1

y = 0 2v = 0 v = 0

y = 4 2v = 4 v = 2

z = 0 3w = 0 w = 0

z = 3 3w = 3 w = 1
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Figure 5.83 The region G in uvw-space is transformed to region D in xyz-space.

Now we can calculate the Jacobian for the transformation:

J(u, v, w) = |∂ x
∂u

∂ x
∂v

∂ x
∂w

∂ y
∂u

∂ y
∂v

∂ y
∂w

∂z
∂u

∂z
∂v

∂z
∂w | = |1 1 0

0 2 0
0 0 3| = 6.

The function to be integrated becomes

f (x, y, z) = x + z
3 = u + v + 3w

3 = u + v + w.

We are now ready to put everything together and complete the problem.

∫
0

3
∫
0

4
∫
y/2

⎛
⎝y/2⎞

⎠ + 1
⎛
⎝x + z

3
⎞
⎠dx dy dz

= ∫
0

1
∫
0

2
∫
0

1
(u + v + w)|J(u, v, w)|du dv dw = ∫

0

1
∫
0

2
∫
0

1
(u + v + w)|6|du dv dw

= 6∫
0

1
∫
0

2
∫
0

1
(u + v + w)du dv dw = 6∫

0

1
∫
0

2 ⎡
⎣

u2

2 + vu + wu⎤
⎦0

1

dv dw

= 6∫
0

1
∫
0

2
⎛
⎝
1
2 + v + w⎞

⎠dv dw = 6∫
0

1 ⎡
⎣

1
2v + v2

2 + wv⎤
⎦0

2

dw

= 6∫
0

1
(3 + 2w)dw = 6⎡

⎣3w + w2⎤
⎦0
1

= 24.
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5.48 Let D be the region in xyz-space defined by 1 ≤ x ≤ 2, 0 ≤ xy ≤ 2, and 0 ≤ z ≤ 1.

Evaluate ∭
D

⎛
⎝x2 y + 3xyz⎞

⎠dx dy dz by using the transformation u = x, v = xy, and w = 3z.
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5.7 EXERCISES
In the following exercises, the function
T : S → R, T(u, v) = (x, y) on the region

S = {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1} bounded by the unit

square is given, where R ⊂ R2 is the image of S under

T .

a. Justify that the function T is a C1 transformation.

b. Find the images of the vertices of the unit square S
through the function T .

c. Determine the image R of the unit square S and

graph it.

356. x = 2u, y = 3v

357. x = u
2, y = v

3

358. x = u − v, y = u + v

359. x = 2u − v, y = u + 2v

360. x = u2, y = v2

361. x = u3, y = v3

In the following exercises, determine whether the
transformations T : S → R are one-to-one or not.

362. x = u2, y = v2, where S is the rectangle of vertices

(−1, 0), (1, 0), (1, 1), and (−1, 1).

363. x = u4, y = u2 + v, where S is the triangle of

vertices (−2, 0), (2, 0), and (0, 2).

364. x = 2u, y = 3v, where S is the square of vertices

(−1, 1), (−1, −1), (1, −1), and (1, 1).

365. T(u, v) = (2u − v, u), where S is the triangle of

vertices (−1, 1), (−1, −1), and (1, −1).

366. x = u + v + w, y = u + v, z = w, where

S = R = R3.

367. x = u2 + v + w, y = u2 + v, z = w, where

S = R = R3.

In the following exercises, the transformations T : S → R
are one-to-one. Find their related inverse transformations

T −1 : R → S.

368. x = 4u, y = 5v, where S = R = R2.

369. x = u + 2v, y = −u + v, where S = R = R2.

370. x = e2u + v, y = eu − v, where S = R2 and

R = ⎧

⎩
⎨(x, y)|x > 0, y > 0⎫

⎭
⎬

371. x = ln u, y = ln(uv), where

S = {(u, v)|u > 0, v > 0} and R = R2.

372. x = u + v + w, y = 3v, z = 2w, where

S = R = R3.

373. x = u + v, y = v + w, z = u + w, where

S = R = R3.

In the following exercises, the transformation

T : S → R, T(u, v) = (x, y) and the region R ⊂ R2 are

given. Find the region S ⊂ R2.

374. x = au, y = bv, R = ⎧

⎩
⎨(x, y)|x2 + y2 ≤ a2 b2⎫

⎭
⎬,

where a, b > 0

375. x = au, y = bv, R =
⎧

⎩
⎨(x, y)|x

2

a2 + y2

b2 ≤ 1
⎫

⎭
⎬,

where a, b > 0

376. x = u
a, y = v

b, z = w
c ,

R = ⎧

⎩
⎨(x, y)|x2 + y2 + z2 ≤ 1⎫

⎭
⎬, where a, b, c > 0

377.

x = au, y = bv, z = cw, R =
⎧

⎩
⎨(x, y)|x

2

a2 − y2

b2 − z2

c2 ≤ 1, z > 0
⎫

⎭
⎬,

where a, b, c > 0

In the following exercises, find the Jacobian J of the

transformation.

378. x = u + 2v, y = −u + v

379. x = u3

2 , y = v
u2

380. x = e2u − v, y = eu + v
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381. x = uev, y = e−v

382. x = u cos(ev), y = u sin(ev)

383. x = v sin⎛
⎝u2⎞

⎠, y = v cos⎛
⎝u2⎞

⎠

384. x = u cosh v, y = u sinh v, z = w

385. x = v cosh⎛
⎝
1
u

⎞
⎠, y = v sinh⎛

⎝
1
u

⎞
⎠, z = u + w2

386. x = u + v, y = v + w, z = u

387. x = u − v, y = u + v, z = u + v + w

388. The triangular region R with the vertices

(0, 0), (1, 1), and (1, 2) is shown in the following

figure.

a. Find a transformation T : S → R,
T(u, v) = (x, y) = (au + bv, cu + dv), where

a, b, c, and d are real numbers with

ad − bc ≠ 0 such that

T −1 (0, 0) = (0, 0), T −1 (1, 1) = (1, 0), and

T −1 (1, 2) = (0, 1).
b. Use the transformation T to find the area A(R) of

the region R.

389. The triangular region R with the vertices

(0, 0), (2, 0), and (1, 3) is shown in the following

figure.

a. Find a transformation T : S → R,
T(u, v) = (x, y) = (au + bv, cu + dv), where

a, b, c and d are real numbers with ad − bc ≠ 0

such that T −1 (0, 0) = (0, 0),

T −1 (2, 0) = (1, 0), and T −1 (1, 3) = (0, 1).
b. Use the transformation T to find the area A(R) of

the region R.

In the following exercises, use the transformation
u = y − x, v = y, to evaluate the integrals on the

parallelogram R of vertices

(0, 0), (1, 0), (2, 1), and (1, 1) shown in the following

figure.

390. ∬
R

(y − x)dA

391. ∬
R

⎛
⎝y2 − xy⎞

⎠dA

In the following exercises, use the transformation
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y − x = u, x + y = v to evaluate the integrals on the

square R determined by the lines

y = x, y = −x + 2, y = x + 2, and y = −x shown in

the following figure.

392. ∬
R

ex + y dA

393. ∬
R

sin(x − y)dA

In the following exercises, use the transformation
x = u, 5y = v to evaluate the integrals on the region R

bounded by the ellipse x2 + 25y2 = 1 shown in the

following figure.

394. ∬
R

x2 + 25y2 dA

395. ∬
R

⎛
⎝x2 + 25y2⎞

⎠
2

dA

In the following exercises, use the transformation
u = x + y, v = x − y to evaluate the integrals on the

trapezoidal region R determined by the points

(1, 0), (2, 0), (0, 2), and (0, 1) shown in the following

figure.

396. ∬
R

⎛
⎝x2 − 2xy + y2⎞

⎠e
x + y dA

397. ∬
R

⎛
⎝x

3 + 3x2 y + 3xy2 + y3⎞
⎠dA

398. The circular annulus sector R bounded by the circles

4x2 + 4y2 = 1 and 9x2 + 9y2 = 64, the line x = y 3,
and the y-axis is shown in the following figure. Find

a transformation T from a rectangular region S in the

rθ-plane to the region R in the xy-plane. Graph S.
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399. The solid R bounded by the circular cylinder

x2 + y2 = 9 and the planes z = 0, z = 1,
x = 0, and y = 0 is shown in the following figure. Find a

transformation T from a cylindrical box S in rθz-space
to the solid R in xyz-space.

400. Show that

∬
R

f
⎛

⎝
⎜ x2

3 + y2

3
⎞

⎠
⎟dA = 2π 15∫

0

1
f (ρ)ρ dρ, where f is a

continuous function on [0, 1] and R is the region

bounded by the ellipse 5x2 + 3y2 = 15.

401. Show that

∭
R

f ⎛
⎝ 16x2 + 4y2 + z2⎞

⎠dV = π
2∫

0

1
f (ρ)ρ2 dρ, where

f is a continuous function on [0, 1] and R is the region

bounded by the ellipsoid 16x2 + 4y2 + z2 = 1.

402. [T] Find the area of the region bounded by the curves
xy = 1, xy = 3, y = 2x, and y = 3x by using the

transformation u = xy and v = y
x. Use a computer

algebra system (CAS) to graph the boundary curves of the
region R.

403. [T] Find the area of the region bounded by the curves

x2 y = 2, x2 y = 3, y = x, and y = 2x by using the

transformation u = x2 y and v = y
x. Use a CAS to graph

the boundary curves of the region R.

404. Evaluate the triple integral ∫
0

1
∫
1

2
∫
z

z + 1
⎛
⎝y + 1⎞

⎠dx dy dz

by using the transformation u = x − z,

v = 3y, and w = z
2.

405. Evaluate the triple integral

∫
0

2
∫
4

6
∫
3z

3z + 2
⎛
⎝5 − 4y⎞

⎠dx dz dy by using the transformation

u = x − 3z, v = 4y, and w = z.

406. A transformation T : R2 → R2, T(u, v) = (x, y) of

the form x = au + bv, y = cu + dv, where

a, b, c, and d are real numbers, is called linear. Show

that a linear transformation for which ad − bc ≠ 0 maps

parallelograms to parallelograms.

407. The transformation

Tθ : R2 → R2, Tθ (u, v) = (x, y), where

x = u cos θ − v sin θ, y = u sin θ + v cos θ, is called a

rotation of angle θ. Show that the inverse transformation

of Tθ satisfies Tθ
−1 = T−θ, where T−θ is the rotation

of angle −θ.

408. [T] Find the region S in the uv-plane whose image

through a rotation of angle π
4 is the region R enclosed

by the ellipse x2 + 4y2 = 1. Use a CAS to answer the

following questions.
a. Graph the region S.
b. Evaluate the integral ∬

S
e−2uv du dv. Round your

answer to two decimal places.

409. [T] The transformations Ti : ℝ2 → ℝ2,
i = 1,…, 4, defined by T1 (u, v) = (u, −v),
T2 (u, v) = (−u, v), T3 (u, v) = (−u, −v), and

T4 (u, v) = (v, u) are called reflections about the

x-axis, y-axis, origin, and the line y = x, respectively.

a. Find the image of the region

S = ⎧

⎩
⎨(u, v)|u2 + v2 − 2u − 4v + 1 ≤ 0⎫

⎭
⎬ in the

xy-plane through the transformation

T1 ∘T2 ∘T3 ∘T4.
b. Use a CAS to graph R.
c. Evaluate the integral ∬

S
sin(u2)du dv by using a

CAS. Round your answer to two decimal places.
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410. [T] The transformation

Tk, 1, 1 : ℝ3 → ℝ3, Tk, 1, 1 (u, v, w) = (x, y, z) of the

form x = ku, y = v, z = w, where k ≠ 1 is a positive

real number, is called a stretch if k > 1 and a compression

if 0 < k < 1 in the x-direction. Use a CAS to evaluate

the integral ∭
S

e
−⎛

⎝4x2 + 9y2 + 25z2⎞
⎠dx dy dz on the solid

S = ⎧

⎩
⎨(x, y, z)|4x2 + 9y2 + 25z2 ≤ 1⎫

⎭
⎬ by considering the

compression T2, 3, 5 (u, v, w) = (x, y, z) defined by

x = u
2, y = v

3, and z = w
5 . Round your answer to four

decimal places.

411. [T] The transformation

Ta, 0 : ℝ2 → ℝ2, Ta, 0 (u, v) = (u + av, v), where

a ≠ 0 is a real number, is called a shear in the

x-direction. The transformation,

Tb, 0 : R2 → R2, To, b (u, v) = (u, bu + v), where

b ≠ 0 is a real number, is called a shear in the

y-direction.
a. Find transformations T0, 2 ∘T3, 0.

b. Find the image R of the trapezoidal region S
bounded by u = 0, v = 0, v = 1, and v = 2 − u
through the transformation T0, 2 ∘T3, 0.

c. Use a CAS to graph the image R in the xy-plane.
d. Find the area of the region R by using the area of

region S.

412. Use the transformation, x = au, y = av, z = cw
and spherical coordinates to show that the volume of a

region bounded by the spheroid
x2 + y2

a2 + z2

c2 = 1 is

4πa2 c
3 .

413. Find the volume of a football whose shape is a

spheroid
x2 + y2

a2 + z2

c2 = 1 whose length from tip to tip is

11 inches and circumference at the center is 22 inches.

Round your answer to two decimal places.

414. [T] Lamé ovals (or superellipses) are plane curves of

equations ⎛
⎝
x
a

⎞
⎠
n

+ ⎛
⎝
y
b

⎞
⎠

n
= 1, where a, b, and n are positive

real numbers.
a. Use a CAS to graph the regions R bounded by

Lamé ovals for a = 1, b = 2, n = 4 and n = 6,
respectively.

b. Find the transformations that map the region R
bounded by the Lamé oval x4 + y4 = 1, also

called a squircle and graphed in the following
figure, into the unit disk.

c. Use a CAS to find an approximation of the area

A(R) of the region R bounded by x4 + y4 = 1.
Round your answer to two decimal places.

415. [T] Lamé ovals have been consistently used by
designers and architects. For instance, Gerald Robinson,
a Canadian architect, has designed a parking garage in a
shopping center in Peterborough, Ontario, in the shape of a

superellipse of the equation ⎛
⎝
x
a

⎞
⎠
n

+ ⎛
⎝
y
b

⎞
⎠

n
= 1 with a

b = 9
7

and n = e. Use a CAS to find an approximation of the area

of the parking garage in the case a = 900 yards, b = 700
yards, and n = 2.72 yards.
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double integral

double Riemann sum

Fubini’s theorem

improper double integral

iterated integral

Jacobian

one-to-one transformation

planar transformation

polar rectangle

radius of gyration

CHAPTER 5 REVIEW

KEY TERMS
of the function f (x, y) over the region R in the xy -plane is defined as the limit of a double Riemann

sum, ∬
R

f (x, y)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA.

of the function f (x, y) over a rectangular region R is ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA where R is

divided into smaller subrectangles Ri j and (xi j* , yi j* ) is an arbitrary point in Ri j

if f (x, y) is a function of two variables that is continuous over a rectangular region

R = ⎧

⎩
⎨(x, y) ∈ ℝ2 |a ≤ x ≤ b, c ≤ y ≤ d⎫

⎭
⎬, then the double integral of f over the region equals an iterated integral,

∬
R

f (x, y)dy dx = ∫
a

b
∫

c

d
f (x, y)dx dy = ∫

c

d
∫

a

b
f (x, y)dx dy

a double integral over an unbounded region or of an unbounded function

for a function f (x, y) over the region R is

a. ∫
a

b
∫

c

d
f (x, y)dx dy = ∫

a

b⎡

⎣
⎢∫

c

d
f (x, y)dy

⎤

⎦
⎥dx,

b. ∫
c

d
∫

b

a
f (x, y)dx dy = ∫

c

d⎡

⎣
⎢∫

a

b
f (x, y)dx

⎤

⎦
⎥dy,

where a, b, c, and d are any real numbers and R = [a, b] × [c, d]

the Jacobian J(u, v) in two variables is a 2 × 2 determinant:

J(u, v) = |∂ x
∂u

∂ y
∂u

∂ x
∂v

∂ y
∂v |;

the Jacobian J(u, v, w) in three variables is a 3 × 3 determinant:

J(u, v, w) = |∂ x
∂u

∂ y
∂u

∂z
∂u

∂ x
∂v

∂ y
∂v

∂z
∂v

∂ x
∂w

∂ y
∂w

∂z
∂w |

a transformation T : G → R defined as T(u, v) = (x, y) is said to be one-to-one if no

two points map to the same image point

a function T that transforms a region G in one plane into a region R in another plane by a

change of variables

the region enclosed between the circles r = a and r = b and the angles θ = α and θ = β; it is

described as R = ⎧

⎩
⎨(r, θ)|a ≤ r ≤ b, α ≤ θ ≤ β⎫

⎭
⎬

the distance from an object’s center of mass to its axis of rotation
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transformation

triple integral

triple integral in cylindrical coordinates

triple integral in spherical coordinates

Type I

Type II

a function that transforms a region G in one plane into a region R in another plane by a change of

variables

the triple integral of a continuous function f (x, y, z) over a rectangular solid box B is the limit of a

Riemann sum for a function of three variables, if this limit exists

the limit of a triple Riemann sum, provided the following limit exists:

lim
l, m, n → ∞

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (ri jk* , θi jk* , zi jk* )ri jk* ΔrΔθΔz

the limit of a triple Riemann sum, provided the following limit exists:

lim
l, m, n → ∞

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (ρi jk* , θi jk* , φi jk* )(ρi jk* )2 sin φΔρΔθΔφ

a region D in the xy -plane is Type I if it lies between two vertical lines and the graphs of two continuous

functions g1 (x) and g2 (x)

a region D in the xy -plane is Type II if it lies between two horizontal lines and the graphs of two continuous

functions h1 (y) and h2 (y)

KEY EQUATIONS
• Double integral

∬
R

f (x, y)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f (xi j* , yi j* )ΔA

• Iterated integral

∫
a

b
∫

c

d
f (x, y)dx dy = ∫

a

b⎡

⎣
⎢∫

c

d
f (x, y)dy

⎤

⎦
⎥dx

or

∫
c

d
∫

b

a
f (x, y)dx dy = ∫

c

d⎡

⎣
⎢∫

a

b
f (x, y)dx

⎤

⎦
⎥dy

• Average value of a function of two variables

fave = 1
Area R ∬

R
f (x, y)dx dy

• Iterated integral over a Type I region

∬
D

f (x, y)dA = ∬
D

f (x, y)dy dx = ∫
a

b ⎡

⎣
⎢
⎢ ∫
g1(x)

g2(x)

f (x, y)dy
⎤

⎦
⎥
⎥dx

• Iterated integral over a Type II region

∬
D

f (x, y)dA = ∬
D

f (x, y)dx dy = ∫
c

d ⎡

⎣
⎢
⎢ ∫
h1(y)

h2(y)

f (x, y)dx
⎤

⎦
⎥
⎥dy

• Double integral over a polar rectangular region R

∬
R

f (r, θ)dA = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝ri j * , θi j * ⎞
⎠ΔA = limm, n → ∞ ∑

i = 1

m
∑
j = 1

n
f ⎛

⎝ri j * , θi j * ⎞
⎠ri j * ΔrΔθ

• Double integral over a general polar region
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∬
D

f (r, θ)r dr dθ = ∫
θ = α

θ = β

∫
r = h1 (θ)

r = h2 (θ)

f (r, θ)r dr dθ

• Triple integral

lim
l, m, n → ∞

∑
i = 1

l
∑
j = 1

m
∑

k = 1

n
f (xi jk* , yi jk* , zi jk* )ΔxΔyΔz = ∭

B
f (x, y, z)dV

• Triple integral in cylindrical coordinates
∭
B

g(x, y, z)dV = ∭
B

g(r cos θ, r sin θ, z)r dr dθ dz = ∭
B

f (r, θ, z)r dr dθ dz

• Triple integral in spherical coordinates

∭
B

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dρ dφ dθ = ∫
φ = γ

φ = ψ

∫
θ = α

θ = β

∫
ρ = a

ρ = b

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dρ dφ dθ

• Mass of a lamina

m = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
mi j = lim

k, l → ∞
∑
i = 1

k
∑
j = 1

l
ρ(xi j* , yi j* )ΔA = ∬

R
ρ(x, y)dA

• Moment about the x-axis

Mx = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝yi j* ⎞

⎠mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝yi j* ⎞

⎠ρ(xi j* , yi j* )ΔA = ∬
R

yρ(x, y)dA

• Moment about the y-axis

My = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝xi j* ⎞

⎠mi j = lim
k, l → ∞

∑
i = 1

k
∑
j = 1

l
⎛
⎝xi j* ⎞

⎠ρ(xi j* , yi j* )ΔA = ∬
R

xρ(x, y)dA

• Center of mass of a lamina

x− =
My
m =

∬
R

xρ(x, y)dA

∬
R

ρ(x, y)dA
and y− = Mx

m =
∬
R

yρ(x, y)dA

∬
R

ρ(x, y)dA

KEY CONCEPTS

5.1 Double Integrals over Rectangular Regions

• We can use a double Riemann sum to approximate the volume of a solid bounded above by a function of two
variables over a rectangular region. By taking the limit, this becomes a double integral representing the volume of
the solid.

• Properties of double integral are useful to simplify computation and find bounds on their values.

• We can use Fubini’s theorem to write and evaluate a double integral as an iterated integral.

• Double integrals are used to calculate the area of a region, the volume under a surface, and the average value of a
function of two variables over a rectangular region.

5.2 Double Integrals over General Regions

• A general bounded region D on the plane is a region that can be enclosed inside a rectangular region. We can use

this idea to define a double integral over a general bounded region.

• To evaluate an iterated integral of a function over a general nonrectangular region, we sketch the region and express
it as a Type I or as a Type II region or as a union of several Type I or Type II regions that overlap only on their
boundaries.
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• We can use double integrals to find volumes, areas, and average values of a function over general regions, similarly
to calculations over rectangular regions.

• We can use Fubini’s theorem for improper integrals to evaluate some types of improper integrals.

5.3 Double Integrals in Polar Coordinates

• To apply a double integral to a situation with circular symmetry, it is often convenient to use a double integral in
polar coordinates. We can apply these double integrals over a polar rectangular region or a general polar region,
using an iterated integral similar to those used with rectangular double integrals.

• The area dA in polar coordinates becomes r dr dθ.

• Use x = r cos θ, y = r sin θ, and dA = r dr dθ to convert an integral in rectangular coordinates to an integral

in polar coordinates.

• Use r2 = x2 + y2 and θ = tan−1 ⎛
⎝
y
x

⎞
⎠ to convert an integral in polar coordinates to an integral in rectangular

coordinates, if needed.

• To find the volume in polar coordinates bounded above by a surface z = f (r, θ) over a region on the xy -plane,

use a double integral in polar coordinates.

5.4 Triple Integrals

• To compute a triple integral we use Fubini’s theorem, which states that if f (x, y, z) is continuous on a rectangular

box B = ⎡
⎣a, b⎤

⎦ × ⎡
⎣c, d⎤

⎦ × ⎡
⎣e, f ⎤

⎦, then

∭
B

f (x, y, z)dV = ∫
e

f

∫
c

d
∫
a

b
f (x, y, z)dx dy dz

and is also equal to any of the other five possible orderings for the iterated triple integral.

• To compute the volume of a general solid bounded region E we use the triple integral

V(E) = ∭
E

1dV .

• Interchanging the order of the iterated integrals does not change the answer. As a matter of fact, interchanging the
order of integration can help simplify the computation.

• To compute the average value of a function over a general three-dimensional region, we use

fave = 1
V(E) ∭

E
f (x, y, z)dV .

5.5 Triple Integrals in Cylindrical and Spherical Coordinates

• To evaluate a triple integral in cylindrical coordinates, use the iterated integral

∫
θ = α

θ = β

∫
r = g1 (θ)

r = g2 (θ)

∫
z = u1 (r, θ)

z = u2 (r, θ)

f (r, θ, z)r dz dr dθ.

• To evaluate a triple integral in spherical coordinates, use the iterated integral

∫
θ = α

θ = β

∫
ρ = g1 (θ)

ρ = g2 (θ)

∫
φ = u1 (r, θ)

φ = u2 (r, θ)

f ⎛
⎝ρ, θ, φ⎞

⎠ρ2 sin φ dφ dρ dθ.

5.6 Calculating Centers of Mass and Moments of Inertia

Finding the mass, center of mass, moments, and moments of inertia in double integrals:
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• For a lamina R with a density function ρ(x, y) at any point (x, y) in the plane, the mass is m = ∬
R

ρ(x, y)dA.

• The moments about the x-axis and y-axis are

Mx = ∬
R

yρ(x, y)dA and My = ∬
R

xρ(x, y)dA.

• The center of mass is given by x− =
My
m , y− = Mx

m .

• The center of mass becomes the centroid of the plane when the density is constant.

• The moments of inertia about the x − axis, y − axis, and the origin are

Ix = ∬
R

y2 ρ(x, y)dA, Iy = ∬
R

x2 ρ(x, y)dA, and I0 = Ix + Iy = ∬
R

⎛
⎝x2 + y2⎞

⎠ρ(x, y)dA.

Finding the mass, center of mass, moments, and moments of inertia in triple integrals:

• For a solid object Q with a density function ρ(x, y, z) at any point (x, y, z) in space, the mass is

m = ∭
Q

ρ(x, y, z)dV .

• The moments about the xy-plane, the xz-plane, and the yz-plane are

Mxy = ∭
Q

zρ(x, y, z)dV , Mxz = ∭
Q

yρ(x, y, z)dV , Myz = ∭
Q

xρ(x, y, z)dV .

• The center of mass is given by x− =
Myz
m , y− = Mxz

m , z− =
Mxy
m .

• The center of mass becomes the centroid of the solid when the density is constant.

• The moments of inertia about the yz-plane, the xz-plane, and the xy-plane are

Ix = ∭
Q

⎛
⎝y2 + z2⎞

⎠ρ(x, y, z)dV , Iy = ∭
Q

⎛
⎝x2 + z2⎞

⎠ρ(x, y, z)dV ,

Iz = ∭
Q

⎛
⎝x2 + y2⎞

⎠ρ(x, y, z)dV .

5.7 Change of Variables in Multiple Integrals

• A transformation T is a function that transforms a region G in one plane (space) into a region R in another plane

(space) by a change of variables.

• A transformation T : G → R defined as T(u, v) = (x, y) ⎛
⎝or T(u, v, w) = (x, y, z)⎞

⎠ is said to be a one-to-one

transformation if no two points map to the same image point.

• If f is continuous on R, then ∬
R

f (x, y)dA = ∬
S

f ⎛
⎝g(u, v), h(u, v)⎞

⎠|∂ (x, y)
∂ (u, v)|du dv.

• If F is continuous on R, then

∭
R

F(x, y, z)dV = ∭
G

F⎛
⎝g(u, v, w), h(u, v, w), k(u, v, w)⎞

⎠| ∂ (x, y, z)
∂ (u, v, w)|du dv dw

= ∭
G

H(u, v, w)|J(u, v, w)|du dv dw.

CHAPTER 5 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample. 416. ∫

a

b
∫
c

d
f (x, y)dy dx = ∫

c

d
∫
a

b
f (x, y)dy dx
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417. Fubini’s theorem can be extended to three
dimensions, as long as f is continuous in all variables.

418. The integral ∫
0

2π
∫
0

1
∫
r

1
dz dr dθ represents the volume

of a right cone.

419. The Jacobian of the transformation for

x = u2 − 2v, y = 3v − 2uv is given by −4u2 + 6u + 4v.

Evaluate the following integrals.

420.

∬
R

⎛
⎝5x3 y2 − y2⎞

⎠dA, R = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 2, 1 ≤ y ≤ 4⎫

⎭
⎬

421.

∬
D

y
3x2 + 1

dA, D = ⎧

⎩
⎨(x, y)|0 ≤ x ≤ 1, −x ≤ y ≤ x⎫

⎭
⎬

422. ∬
D

sin⎛
⎝x2 + y2⎞

⎠dA where D is a disk of radius 2

centered at the origin

423. ∫
0

1
∫
y

1
xyex2

dx dy

424. ∫
−1

1
∫
0

z

∫
0

x − z

6dy dx dz

425. ∭
R

3y dV , where

R =
⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 9 − y2⎫

⎭
⎬

426. ∫
0

2
∫
0

2π
∫
r

1
r dz dθ dr

427. ∫
0

2π
∫
0

π/2
∫
1

3
ρ2 sin(φ)dρ dφ dθ

428. ∫
0

1
∫

− 1 − x2

1 − x2

∫
− 1 − x2 − y2

1 − x2 − y2

dz dy dx

For the following problems, find the specified area or
volume.

429. The area of region enclosed by one petal of
r = cos(4θ).

430. The volume of the solid that lies between the

paraboloid z = 2x2 + 2y2 and the plane z = 8.

431. The volume of the solid bounded by the cylinder

x2 + y2 = 16 and from z = 1 to z + x = 2.

432. The volume of the intersection between two spheres
of radius 1, the top whose center is (0, 0, 0.25) and the

bottom, which is centered at (0, 0, 0).

For the following problems, find the center of mass of the
region.

433. ρ(x, y) = xy on the circle with radius 1 in the first

quadrant only.

434. ρ(x, y) = (y + 1) x in the region bounded by

y = ex, y = 0, and x = 1.

435. ρ(x, y, z) = z on the inverted cone with radius 2
and height 2.

436. The volume an ice cream cone that is given by the

solid above z = ⎛
⎝x2 + y2⎞

⎠ and below z2 + x2 + y2 = z.

The following problems examine Mount Holly in the state
of Michigan. Mount Holly is a landfill that was converted
into a ski resort. The shape of Mount Holly can be
approximated by a right circular cone of height 1100 ft

and radius 6000 ft.

437. If the compacted trash used to build Mount Holly on

average has a density 400 lb/ft3, find the amount of work

required to build the mountain.

438. In reality, it is very likely that the trash at the bottom
of Mount Holly has become more compacted with all the
weight of the above trash. Consider a density function with
respect to height: the density at the top of the mountain

is still density 400 lb/ft3 and the density increases. Every

100 feet deeper, the density doubles. What is the total

weight of Mount Holly?

The following problems consider the temperature and
density of Earth’s layers.
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439. [T] The temperature of Earth’s layers is exhibited in
the table below. Use your calculator to fit a polynomial of
degree 3 to the temperature along the radius of the Earth.

Then find the average temperature of Earth. (Hint: begin
at 0 in the inner core and increase outward toward the

surface)

Layer Depth from
center (km)

Temperature
°C

Rocky
Crust

0 to 40 0

Upper
Mantle

40 to 150 870

Mantle 400 to 650 870

Inner
Mantel

650 to 2700 870

Molten
Outer Core

2890 to 5150 4300

Inner Core 5150 to 6378 7200

Source: http://www.enchantedlearning.com/subjects/
astronomy/planets/earth/Inside.shtml

440. [T] The density of Earth’s layers is displayed in the
table below. Using your calculator or a computer program,
find the best-fit quadratic equation to the density. Using this
equation, find the total mass of Earth.

Layer Depth from
center (km)

Density (g/
cm3)

Inner
Core

0 12.95

Outer
Core

1228 11.05

Mantle 3488 5.00

Upper
Mantle

6338 3.90

Crust 6378 2.55

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/
geophys/earthstruct.html

The following problems concern the Theorem of Pappus
(see Moments and Centers of Mass (http://cnx.org/
content/m53649/latest/) for a refresher), a method for
calculating volume using centroids. Assuming a region R,
when you revolve around the x-axis the volume is given

by Vx = 2πA y– , and when you revolve around the

y-axis the volume is given by Vy = 2πA x– , where A

is the area of R. Consider the region bounded by

x2 + y2 = 1 and above y = x + 1.

441. Find the volume when you revolve the region around
the x-axis.

442. Find the volume when you revolve the region around
the y-axis.
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