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6 | VECTOR CALCULUS

Figure 6.1 Hurricanes form from rotating winds driven by warm temperatures over the ocean. Meteorologists forecast the
motion of hurricanes by studying the rotating vector fields of their wind velocity. Shown is Cyclone Catarina in the South
Atlantic Ocean in 2004, as seen from the International Space Station. (credit: modification of work by NASA)
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Introduction
Hurricanes are huge storms that can produce tremendous amounts of damage to life and property, especially when they
reach land. Predicting where and when they will strike and how strong the winds will be is of great importance for preparing
for protection or evacuation. Scientists rely on studies of rotational vector fields for their forecasts (see Example 6.3).

In this chapter, we learn to model new kinds of integrals over fields such as magnetic fields, gravitational fields, or velocity
fields. We also learn how to calculate the work done on a charged particle traveling through a magnetic field, the work done
on a particle with mass traveling through a gravitational field, and the volume per unit time of water flowing through a net
dropped in a river.

All these applications are based on the concept of a vector field, which we explore in this chapter. Vector fields have
many applications because they can be used to model real fields such as electromagnetic or gravitational fields. A deep
understanding of physics or engineering is impossible without an understanding of vector fields. Furthermore, vector fields
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have mathematical properties that are worthy of study in their own right. In particular, vector fields can be used to develop
several higher-dimensional versions of the Fundamental Theorem of Calculus.

6.1 | Vector Fields

Learning Objectives
6.1.1 Recognize a vector field in a plane or in space.

6.1.2 Sketch a vector field from a given equation.

6.1.3 Identify a conservative field and its associated potential function.

Vector fields are an important tool for describing many physical concepts, such as gravitation and electromagnetism, which
affect the behavior of objects over a large region of a plane or of space. They are also useful for dealing with large-scale
behavior such as atmospheric storms or deep-sea ocean currents. In this section, we examine the basic definitions and graphs
of vector fields so we can study them in more detail in the rest of this chapter.

Examples of Vector Fields
How can we model the gravitational force exerted by multiple astronomical objects? How can we model the velocity of
water particles on the surface of a river? Figure 6.2 gives visual representations of such phenomena.

Figure 6.2(a) shows a gravitational field exerted by two astronomical objects, such as a star and a planet or a planet and
a moon. At any point in the figure, the vector associated with a point gives the net gravitational force exerted by the two
objects on an object of unit mass. The vectors of largest magnitude in the figure are the vectors closest to the larger object.
The larger object has greater mass, so it exerts a gravitational force of greater magnitude than the smaller object.

Figure 6.2(b) shows the velocity of a river at points on its surface. The vector associated with a given point on the river’s
surface gives the velocity of the water at that point. Since the vectors to the left of the figure are small in magnitude, the
water is flowing slowly on that part of the surface. As the water moves from left to right, it encounters some rapids around
a rock. The speed of the water increases, and a whirlpool occurs in part of the rapids.
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Figure 6.2 (a) The gravitational field exerted by two astronomical bodies on a small object.
(b) The vector velocity field of water on the surface of a river shows the varied speeds of water.
Red indicates that the magnitude of the vector is greater, so the water flows more quickly; blue
indicates a lesser magnitude and a slower speed of water flow.

Each figure illustrates an example of a vector field. Intuitively, a vector field is a map of vectors. In this section, we study

vector fields in ℝ2 and ℝ3 .

Definition

A vector field F in ℝ2 is an assignment of a two-dimensional vector F(x, y) to each point (x, y) of a subset D

of ℝ2 . The subset D is the domain of the vector field.

A vector field F in ℝ3 is an assignment of a three-dimensional vector F(x, y, z) to each point (x, y, z) of a subset

D of ℝ3 . The subset D is the domain of the vector field.

Vector Fields in ℝ2

A vector field in ℝ2 can be represented in either of two equivalent ways. The first way is to use a vector with components

that are two-variable functions:
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6.1

(6.1)F(x, y) = 〈 P(x, y), Q(x, y) 〉 .

The second way is to use the standard unit vectors:

(6.2)F(x, y) = P(x, y)i + Q(x, y)j.

A vector field is said to be continuous if its component functions are continuous.

Example 6.1

Finding a Vector Associated with a Given Point

Let F(x, y) = (2y2 + x − 4)i + cos(x)j be a vector field in ℝ2 . Note that this is an example of a continuous

vector field since both component functions are continuous. What vector is associated with point (0, −1)?

Solution

Substitute the point values for x and y:

F(0, 1) = (2(−1)2 + 0 − 4)i + cos(0)j
= −2i + j.

Let G(x, y) = x2 yi − (x + y)j be a vector field in ℝ2 . What vector is associated with the point

(−2, 3)?

Drawing a Vector Field
We can now represent a vector field in terms of its components of functions or unit vectors, but representing it visually by

sketching it is more complex because the domain of a vector field is in ℝ2 , as is the range. Therefore the “graph” of a

vector field in ℝ2 lives in four-dimensional space. Since we cannot represent four-dimensional space visually, we instead

draw vector fields in ℝ2 in a plane itself. To do this, draw the vector associated with a given point at the point in a plane.

For example, suppose the vector associated with point (4, −1) is 〈 3, 1 〉 . Then, we would draw vector 〈 3, 1 〉 at

point (4, −1).

We should plot enough vectors to see the general shape, but not so many that the sketch becomes a jumbled mess. If we
were to plot the image vector at each point in the region, it would fill the region completely and is useless. Instead, we
can choose points at the intersections of grid lines and plot a sample of several vectors from each quadrant of a rectangular

coordinate system in ℝ2 .

There are two types of vector fields in ℝ2 on which this chapter focuses: radial fields and rotational fields. Radial fields

model certain gravitational fields and energy source fields, and rotational fields model the movement of a fluid in a vortex.
In a radial field, all vectors either point directly toward or directly away from the origin. Furthermore, the magnitude of
any vector depends only on its distance from the origin. In a radial field, the vector located at point (x, y) is perpendicular

to the circle centered at the origin that contains point (x, y), and all other vectors on this circle have the same magnitude.

Example 6.2

Drawing a Radial Vector Field
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Sketch the vector field F(x, y) = x
2 i + y

2 j.

Solution

To sketch this vector field, choose a sample of points from each quadrant and compute the corresponding vector.
The following table gives a representative sample of points in a plane and the corresponding vectors.

(x, y) F(x, y) (x, y) F(x, y) (x, y) F(x, y)

(1, 0) 〈 1
2, 0 〉 (2, 0) 〈 1, 0 〉 (1, 1) 〈 1

2, 1
2 〉

(0, 1) 〈 0, 1
2 〉 (0, 2) 〈 0, 1 〉 (−1, 1) 〈 −1

2, 1
2 〉

(−1, 0) 〈 −1
2, 0 〉 (−2, 0) 〈 −1, 0 〉 (−1, −1) 〈 −1

2, − 1
2 〉

(0, −1) 〈 0, − 1
2 〉 (0, −2) 〈 0, −1 〉 (1, −1) 〈 1

2, − 1
2 〉

Figure 6.3(a) shows the vector field. To see that each vector is perpendicular to the corresponding circle, Figure
6.3(b) shows circles overlain on the vector field.
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Figure 6.3 (a) A visual representation of the radial vector field F(x, y) = x
2 i + y

2 j. (b)

The radial vector field F(x, y) = x
2 i + y

2 j with overlaid circles. Notice that each vector is

perpendicular to the circle on which it is located.
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6.2 Draw the radial field F(x, y) = − x
3 i − y

3 j.

In contrast to radial fields, in a rotational field, the vector at point (x, y) is tangent (not perpendicular) to a circle with

radius r = x2 + y2. In a standard rotational field, all vectors point either in a clockwise direction or in a counterclockwise

direction, and the magnitude of a vector depends only on its distance from the origin. Both of the following examples are
clockwise rotational fields, and we see from their visual representations that the vectors appear to rotate around the origin.

Example 6.3

Chapter Opener: Drawing a Rotational Vector Field

Figure 6.4 (credit: modification of work by NASA)

Sketch the vector field F(x, y) = 〈 y, −x 〉 .

Solution

Create a table (see the one that follows) using a representative sample of points in a plane and their corresponding
vectors. Figure 6.6 shows the resulting vector field.

(x, y) F(x, y) (x, y) F(x, y) (x, y) F(x, y)

(1, 0) 〈 0, −1 〉 (2, 0) 〈 0, −2 〉 (1, 1) 〈 1, −1 〉

(0, 1) 〈 1, 0 〉 (0, 2) 〈 2, 0 〉 (−1, 1) 〈 1, 1 〉

(−1, 0) 〈 0, 1 〉 (−2, 0) 〈 0, 2 〉 (−1, −1) 〈 −1, 1 〉

(0, −1) 〈 −1, 0 〉 (0, −2) 〈 −2, 0 〉 (1, −1) 〈 −1, −1 〉
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Figure 6.5 (a) A visual representation of vector field F(x, y) = 〈 y, −x 〉 . (b) Vector field

F(x, y) = 〈 y, −x 〉 with circles centered at the origin. (c) Vector F(a, b) is perpendicular to

radial vector 〈 a, b 〉 at point (a, b).

Analysis
Note that vector F(a, b) = 〈 b, −a 〉 points clockwise and is perpendicular to radial vector 〈 a, b 〉 . (We can

verify this assertion by computing the dot product of the two vectors: 〈 a, b 〉 · 〈 −b, a 〉 = −ab + ab = 0.)

Furthermore, vector 〈 b, −a 〉 has length r = a2 + b2. Thus, we have a complete description of this

rotational vector field: the vector associated with point (a, b) is the vector with length r tangent to the circle with

radius r, and it points in the clockwise direction.

Sketches such as that in Figure 6.6 are often used to analyze major storm systems, including hurricanes and
cyclones. In the northern hemisphere, storms rotate counterclockwise; in the southern hemisphere, storms rotate
clockwise. (This is an effect caused by Earth’s rotation about its axis and is called the Coriolis Effect.)

Example 6.4

Sketching a Vector Field
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Sketch vector field F(x, y) = y
x2 + y2 i − x

x2 + y2 j.

Solution

To visualize this vector field, first note that the dot product F(a, b) · (ai + bj) is zero for any point (a, b).
Therefore, each vector is tangent to the circle on which it is located. Also, as (a, b) → (0, 0), the magnitude of

F(a, b) goes to infinity. To see this, note that

||F(a, b)|| = a2 + b2

⎛
⎝a2 + b2⎞

⎠
2 = 1

a2 + b2.

Since 1
a2 + b2 → ∞ as (a, b) → (0, 0), then ||F(a, b)|| → ∞ as (a, b) → (0, 0). This vector field looks

similar to the vector field in Example 6.3, but in this case the magnitudes of the vectors close to the origin are
large. Table 6.3 shows a sample of points and the corresponding vectors, and Figure 6.6 shows the vector field.
Note that this vector field models the whirlpool motion of the river in Figure 6.2(b). The domain of this vector

field is all of ℝ2 except for point (0, 0).

(x, y) F(x, y) (x, y) F(x, y) (x, y) F(x, y)

(1, 0) 〈 0, −1 〉 (2, 0) 〈 0, − 1
2 〉 (1, 1) 〈 1

2, − 1
2 〉

(0, 1) 〈 1, 0 〉 (0, 2) 〈 1
2, 0 〉 (−1, 1) 〈 1

2, 1
2 〉

(−1, 0) 〈 0, 1 〉 (−2, 0) 〈 0, 1
2 〉 (−1, −1) 〈 −1

2, 1
2 〉

(0, −1) 〈 −1, 0 〉 (0, −2) 〈 −1
2, 0 〉 (1, −1) 〈 −1

2, − 1
2 〉
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6.3

Figure 6.6 A visual representation of vector field

F(x, y) = y
x2 + y2 i − x

x2 + y2 j. This vector field could be

used to model whirlpool motion of a fluid.

Sketch vector field F(x, y) = 〈 −2y, 2x 〉 . Is the vector field radial, rotational, or neither?

Example 6.5

Velocity Field of a Fluid

Suppose that v(x, y) = − 2y
x2 + y2 i + 2x

x2 + y2 j is the velocity field of a fluid. How fast is the fluid moving at

point (1, −1)? (Assume the units of speed are meters per second.)

Solution

To find the velocity of the fluid at point (1, −1), substitute the point into v:

v(1, −1) = − 2(−1)
1 + 1 i + 2(1)

1 + 1 j = i + j.

The speed of the fluid at (1, −1) is the magnitude of this vector. Therefore, the speed is ||i + j|| = 2 m/sec.
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6.4

6.5

Vector field v(x, y) = 〈 4|x|, 1 〉 models the velocity of water on the surface of a river. What is the

speed of the water at point (2, 3)? Use meters per second as the units.

We have examined vector fields that contain vectors of various magnitudes, but just as we have unit vectors, we can also
have a unit vector field. A vector field F is a unit vector field if the magnitude of each vector in the field is 1. In a unit
vector field, the only relevant information is the direction of each vector.

Example 6.6

A Unit Vector Field

Show that vector field F(x, y) = 〈 y
x2 + y2

, − x
x2 + y2

〉 is a unit vector field.

Solution

To show that F is a unit field, we must show that the magnitude of each vector is 1. Note that

⎛

⎝
⎜ y

x2 + y2

⎞

⎠
⎟

2

+
⎛

⎝
⎜− x

x2 + y2

⎞

⎠
⎟

2

= y2

x2 + y2 + x2

x2 + y2

= x2 + y2

x2 + y2

= 1.

Therefore, F is a unit vector field.

Is vector field F(x, y) = 〈 −y, x 〉 a unit vector field?

Why are unit vector fields important? Suppose we are studying the flow of a fluid, and we care only about the direction in
which the fluid is flowing at a given point. In this case, the speed of the fluid (which is the magnitude of the corresponding
velocity vector) is irrelevant, because all we care about is the direction of each vector. Therefore, the unit vector field
associated with velocity is the field we would study.

If F = 〈 P, Q, R 〉 is a vector field, then the corresponding unit vector field is 〈 P
||F||,

Q
||F||,

R
||F|| 〉 . Notice that if

F(x, y) = 〈 y, −x 〉 is the vector field from Example 6.3, then the magnitude of F is x2 + y2, and therefore the

corresponding unit vector field is the field G from the previous example.

If F is a vector field, then the process of dividing F by its magnitude to form unit vector field F/||F|| is called normalizing

the field F.

Vector Fields in ℝ3

We have seen several examples of vector fields in ℝ2 ; let’s now turn our attention to vector fields in ℝ3 . These vector

fields can be used to model gravitational or electromagnetic fields, and they can also be used to model fluid flow or heat flow
in three dimensions. A two-dimensional vector field can really only model the movement of water on a two-dimensional
slice of a river (such as the river’s surface). Since a river flows through three spatial dimensions, to model the flow of the
entire depth of the river, we need a vector field in three dimensions.

The extra dimension of a three-dimensional field can make vector fields in ℝ3 more difficult to visualize, but the idea is
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6.6

the same. To visualize a vector field in ℝ3 , plot enough vectors to show the overall shape. We can use a similar method

to visualizing a vector field in ℝ2 by choosing points in each octant.

Just as with vector fields in ℝ2 , we can represent vector fields in ℝ3 with component functions. We simply need an

extra component function for the extra dimension. We write either

(6.3)F(x, y, z) = 〈 P(x, y, z), Q(x, y, z), R(x, y, z) 〉

or

(6.4)F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k.

Example 6.7

Sketching a Vector Field in Three Dimensions

Describe vector field F(x, y, z) = 〈 1, 1, z 〉 .

Solution

For this vector field, the x and y components are constant, so every point in ℝ3 has an associated vector with x

and y components equal to one. To visualize F, we first consider what the field looks like in the xy-plane. In the
xy-plane, z = 0. Hence, each point of the form (a, b, 0) has vector 〈 1, 1, 0 〉 associated with it. For points

not in the xy-plane but slightly above it, the associated vector has a small but positive z component, and therefore
the associated vector points slightly upward. For points that are far above the xy-plane, the z component is large,
so the vector is almost vertical. Figure 6.7 shows this vector field.

Figure 6.7 A visual representation of vector field
F(x, y, z) = 〈 1, 1, z 〉 .

Sketch vector field G(x, y, z) = 〈 2, z
2, 1 〉 .

In the next example, we explore one of the classic cases of a three-dimensional vector field: a gravitational field.
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6.7

Example 6.8

Describing a Gravitational Vector Field

Newton’s law of gravitation states that F = −G m1 m2
r2 r̂ , where G is the universal gravitational constant. It

describes the gravitational field exerted by an object (object 1) of mass m1 located at the origin on another object

(object 2) of mass m2 located at point (x, y, z). Field F denotes the gravitational force that object 1 exerts on

object 2, r is the distance between the two objects, and r̂ indicates the unit vector from the first object to the

second. The minus sign shows that the gravitational force attracts toward the origin; that is, the force of object 1
is attractive. Sketch the vector field associated with this equation.

Solution

Since object 1 is located at the origin, the distance between the objects is given by r = x2 + y2 + z2. The unit

vector from object 1 to object 2 is r̂ = 〈 x, y, z 〉
|| 〈 x, y, z 〉 ||, and hence r̂ = 〈 x

r , y
r , z

r 〉 . Therefore, gravitational

vector field F exerted by object 1 on object 2 is

F = −Gm1 m2 〈 x
r3, y

r3, z
r3 〉 .

This is an example of a radial vector field in ℝ3 .

Figure 6.8 shows what this gravitational field looks like for a large mass at the origin. Note that the magnitudes
of the vectors increase as the vectors get closer to the origin.

Figure 6.8 A visual representation of gravitational vector field

F = −Gm1 m2 〈 x
r3, y

r3, z
r3 〉 for a large mass at the origin.

The mass of asteroid 1 is 750,000 kg and the mass of asteroid 2 is 130,000 kg. Assume asteroid 1 is
located at the origin, and asteroid 2 is located at (15, −5, 10), measured in units of 10 to the eighth power

kilometers. Given that the universal gravitational constant is G = 6.67384 × 10−11 m3 kg−1 s−2, find the

gravitational force vector that asteroid 1 exerts on asteroid 2.
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Gradient Fields
In this section, we study a special kind of vector field called a gradient field or a conservative field. These vector fields
are extremely important in physics because they can be used to model physical systems in which energy is conserved.
Gravitational fields and electric fields associated with a static charge are examples of gradient fields.

Recall that if f is a (scalar) function of x and y, then the gradient of f is

grad f = ∇ f = fx(x, y)i + fy(x, y)j.

We can see from the form in which the gradient is written that ∇ f is a vector field in ℝ2 . Similarly, if f is a function

of x, y, and z, then the gradient of f is

grad f = ∇ f = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k.

The gradient of a three-variable function is a vector field in ℝ3 .

A gradient field is a vector field that can be written as the gradient of a function, and we have the following definition.

Definition

A vector field F in ℝ2 or in ℝ3 is a gradient field if there exists a scalar function f such that ∇ f = F.

Example 6.9

Sketching a Gradient Vector Field

Use technology to plot the gradient vector field of f (x, y) = x2 y2 f (x, y) = x2 y2.

Solution

The gradient of f is ∇ f = 〈 2xy2, 2x2 y 〉 ∇ f = 〈 2xy2, 2x2 y 〉 . To sketch the vector field, use a computer

algebra system such as Mathematica. Figure 6.9 shows ∇ f .

Figure 6.9 The gradient vector field is ∇ f , where f (x, y) = x2 y2.
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6.8 Use technology to plot the gradient vector field of f (x, y) = sin x cos y.

Consider the function f (x, y) = x2 y2 from Example 6.9. Figure 6.11 shows the level curves of this function overlaid

on the function’s gradient vector field. The gradient vectors are perpendicular to the level curves, and the magnitudes of the
vectors get larger as the level curves get closer together, because closely grouped level curves indicate the graph is steep,
and the magnitude of the gradient vector is the largest value of the directional derivative. Therefore, you can see the local
steepness of a graph by investigating the corresponding function’s gradient field.

Figure 6.10 The gradient field of f (x, y) = x2 y2 and several level curves of f .
Notice that as the level curves get closer together, the magnitude of the gradient vectors
increases.

As we learned earlier, a vector field F is a conservative vector field, or a gradient field if there exists a scalar function

f such that ∇ f = F. In this situation, f is called a potential function for F. Conservative vector fields arise in many

applications, particularly in physics. The reason such fields are called conservative is that they model forces of physical
systems in which energy is conserved. We study conservative vector fields in more detail later in this chapter.

You might notice that, in some applications, a potential function f for F is defined instead as a function such that

−∇ f = F. This is the case for certain contexts in physics, for example.

Example 6.10

Verifying a Potential Function

Is f (x, y, z) = x2 yz − sin(xy) a potential function for vector field

F(x, y, z) = 〈 2xyz − y cos(xy), x2 z − x cos(xy), x2 y 〉 ?

Solution

We need to confirm whether ∇ f = F. We have

fx = 2xyz − y cos(xy), fy = x2 z − x cos(xy), and fz = x2 y.
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6.9

6.10

Therefore, ∇ f = F and f is a potential function for F.

Is f (x, y, z) = x2 cos(yz) + y2 z2 a potential function for

F(x, y, z) = 〈 2x cos(yz), −x2 z sin(yz) + 2yz2, y2 〉 ?

Example 6.11

Verifying a Potential Function

The velocity of a fluid is modeled by field v(x, y) = 〈 xy, x2

2 − y 〉 . Verify that f (x, y) = x2 y
2 − y2

2 is a

potential function for v.

Solution

To show that f is a potential function, we must show that ∇ f = v. Note that fx = xy and fx = x2

2 − y.

Therefore, ∇ f = 〈 xy, x2

2 − y 〉 and f is a potential function for v (Figure 6.11).

Figure 6.11 Velocity field v(x, y) has a potential function and is a conservative field.

Verify that f (x, y) = x2 y2 + x is a potential function for velocity field

v(x, y) = 〈 3x2 y2 + 1, 2x3 y 〉 .
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If F is a conservative vector field, then there is at least one potential function f such that ∇ f = F. But, could there be

more than one potential function? If so, is there any relationship between two potential functions for the same vector field?
Before answering these questions, let’s recall some facts from single-variable calculus to guide our intuition. Recall that if
k(x) is an integrable function, then k has infinitely many antiderivatives. Furthermore, if F and G are both antiderivatives

of k, then F and G differ only by a constant. That is, there is some number C such that F(x) = G(x) + C.

Now let F be a conservative vector field and let f and g be potential functions for F. Since the gradient is like a derivative,

F being conservative means that F is “integrable” with “antiderivatives” f and g. Therefore, if the analogy with single-

variable calculus is valid, we expect there is some constant C such that f (x) = g(x) + C. The next theorem says that this

is indeed the case.

To state the next theorem with precision, we need to assume the domain of the vector field is connected and open. To be
connected means if P1 and P2 are any two points in the domain, then you can walk from P1 to P2 along a path that

stays entirely inside the domain.

Theorem 6.1: Uniqueness of Potential Functions

Let F be a conservative vector field on an open and connected domain and let f and g be functions such that ∇ f = F
and ∇g = F. Then, there is a constant C such that f = g + C.

Proof

Since f and g are both potential functions for F, then ∇ f = ⎛
⎝ f − g⎞

⎠ = ∇ f − ∇g = F − F = 0. Let h = f − g, then we

have ∇h = 0. We would like to show that h is a constant function.

Assume h is a function of x and y (the logic of this proof extends to any number of independent variables). Since ∇h = 0,
we have hx = 0 and hy = 0. The expression hx = 0 implies that h is a constant function with respect to x—that

is, h(x, y) = k1 (y) for some function k1. Similarly, hy = 0 implies h(x, y) = k2 (x) for some function k2. Therefore,

function h depends only on y and also depends only on x. Thus, h(x, y) = C for some constant C on the connected domain

of F. Note that we really do need connectedness at this point; if the domain of F came in two separate pieces, then k could
be a constant C1 on one piece but could be a different constant C2 on the other piece. Since f − g = h = C, we have that

f − g + C, as desired.

□

Conservative vector fields also have a special property called the cross-partial property. This property helps test whether a
given vector field is conservative.

Theorem 6.2: The Cross-Partial Property of Conservative Vector Fields

Let F be a vector field in two or three dimensions such that the component functions of F have continuous second-
order mixed-partial derivatives on the domain of F.

If F(x, y) = 〈 P(x, y), Q(x, y) 〉 is a conservative vector field in ℝ2 , then ∂P
∂ y = ∂Q

∂ x . If

F(x, y, z) = 〈 P(x, y, z), Q(x, y, z), R(x, y, z) 〉 is a conservative vector field in ℝ3 , then

∂P
∂ y = ∂Q

∂ x , ∂Q
∂z = ∂R

∂ y , and ∂R
∂ x = ∂P

∂z .

Proof

Since F is conservative, there is a function f (x, y) such that ∇ f = F. Therefore, by the definition of the gradient, fx = P
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6.12

and fy = Q. By Clairaut’s theorem, fxy = fyx, But, fxy = Py and fyx = Qx, and thus Py = Qx.

□

Clairaut’s theorem gives a fast proof of the cross-partial property of conservative vector fields in ℝ3 , just as it did for

vector fields in ℝ2 .

The Cross-Partial Property of Conservative Vector Fields shows that most vector fields are not conservative. The
cross-partial property is difficult to satisfy in general, so most vector fields won’t have equal cross-partials.

Example 6.12

Showing a Vector Field Is Not Conservative

Show that rotational vector field F(x, y) = 〈 y, −x 〉 is not conservative.

Solution

Let P(x, y) = y and Q(x, y) = −x. If F is conservative, then the cross-partials would be equal—that is, Py

would equal Qx. Therefore, to show that F is not conservative, check that Py ≠ Qx. Since Py = 1 and

Qx = −1, the vector field is not conservative.

Show that vector field F(x, y)xyi − x2 yj is not conservative.

Example 6.13

Showing a Vector Field Is Not Conservative

Is vector field F(x, y, z) = 〈 7, −2, x3 〉 conservative?

Solution

Let P(x, y, z) = 7, Q(x, y, z) = −2, and R(x, y, z) = x3. If F is conservative, then all three cross-partial

equations will be satisfied—that is, if F is conservative, then Py would equal Qx, Qz would equal Ry, and

Rx would equal Pz. Note that Py = Qx = Ry = Qz = 0, so the first two necessary equalities hold. However,

Rx = 3x3 and Pz = 0 so Rx ≠ Pz. Therefore, F is not conservative.

Is vector field G(x, y, z) = 〈 y, x, xyz 〉 conservative?

We conclude this section with a word of warning: The Cross-Partial Property of Conservative Vector Fields says
that if F is conservative, then F has the cross-partial property. The theorem does not say that, if F has the cross-partial
property, then F is conservative (the converse of an implication is not logically equivalent to the original implication).
In other words, The Cross-Partial Property of Conservative Vector Fields can only help determine that a field
is not conservative; it does not let you conclude that a vector field is conservative. For example, consider vector field
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F(x, y) = 〈 x2 y, x3

3 〉 . This field has the cross-partial property, so it is natural to try to use The Cross-Partial

Property of Conservative Vector Fields to conclude this vector field is conservative. However, this is a misapplication
of the theorem. We learn later how to conclude that F is conservative.
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6.1 EXERCISES
1. The domain of vector field F = F(x, y) is a set of

points (x, y) in a plane, and the range of F is a set of what

in the plane?

For the following exercises, determine whether the
statement is true or false.

2. Vector field F = 〈 3x2, 1 〉 is a gradient field for

both ϕ1 (x, y) = x3 + y and ϕ2 (x, y) = y + x3 + 100.

3. Vector field F = 〈 y, x 〉
x2 + y2

is constant in direction and

magnitude on a unit circle.

4. Vector field F = 〈 y, x 〉
x2 + y2

is neither a radial field nor

a rotation.

For the following exercises, describe each vector field by
drawing some of its vectors.

5. [T] F(x, y) = xi + yj

6. [T] F(x, y) = −yi + xj

7. [T] F(x, y) = xi − yj

8. [T] F(x, y) = i + j

9. [T] F(x, y) = 2xi + 3yj

10. [T] F(x, y) = 3i + xj

11. [T] F(x, y) = yi + sin xj

12. [T] F(x, y, z) = xi + yj + zk

13. [T] F(x, y, z) = 2xi − 2yj − 2zk

14. [T] F(x, y, z) = y
z i − x

z j

For the following exercises, find the gradient vector field of
each function f .

15. f (x, y) = x sin y + cos y

16. f (x, y, z) = ze−xy

17. f (x, y, z) = x2 y + xy + y2 z

18. f (x, y) = x2 sin(5y)

19. f (x, y) = ln⎛
⎝1 + x2 + 2y2⎞

⎠

20. f (x, y, z) = x cos⎛
⎝
y
z

⎞
⎠

21. What is vector field F(x, y) with a value at (x, y)
that is of unit length and points toward (1, 0)?

For the following exercises, write formulas for the vector
fields with the given properties.

22. All vectors are parallel to the x-axis and all vectors on
a vertical line have the same magnitude.

23. All vectors point toward the origin and have constant
length.

24. All vectors are of unit length and are perpendicular to
the position vector at that point.

25. Give a formula F(x, y) = M(x, y)i + N(x, y)j for

the vector field in a plane that has the properties that F = 0
at (0, 0) and that at any other point (a, b), F is tangent

to circle x2 + y2 = a2 + b2 and points in the clockwise

direction with magnitude |F| = a2 + b2.

26. Is vector field
F(x, y) = ⎛

⎝P(x, y), Q(x, y)⎞
⎠ = ⎛

⎝sin x + y⎞
⎠i + (cos y + x)j

a gradient field?

27. Find a formula for vector field
F(x, y) = M(x, y)i + N(x, y)j given the fact that for all

points (x, y), F points toward the origin and

|F| = 10
x2 + y2.

For the following exercises, assume that an electric field
in the xy-plane caused by an infinite line of charge along
the x-axis is a gradient field with potential function

V(x, y) = c ln
⎛

⎝
⎜ r0

x2 + y2

⎞

⎠
⎟, where c > 0 is a constant

and r0 is a reference distance at which the potential is

assumed to be zero.

28. Find the components of the electric field in the x- and
y-directions, where E(x, y) = −∇V(x, y).
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29. Show that the electric field at a point in the xy-plane
is directed outward from the origin and has magnitude

E| = c
r , where r = x2 = y2.

A flow line (or streamline) of a vector field F is a curve

r(t) such that dr/dt = F(r(t)). If F represents the

velocity field of a moving particle, then the flow lines
are paths taken by the particle. Therefore, flow lines are
tangent to the vector field. For the following exercises,
show that the given curve c(t) is a flow line of the given

velocity vector field F(x, y, z).

30.

c(t) = ⎛
⎝e

2t, ln|t|, 1
t

⎞
⎠, t ≠ 0; F(x, y, z) = 〈 2x, z, −z2 〉

31. c(t) = ⎛
⎝sin t, cos t, et⎞

⎠; F(x, y, z) = 〈 y, −x, z 〉

For the following exercises, let F = xi + yj,
G = −yi + xj, and H = xi − yj. Match F, G, and H

with their graphs.

32.

33.

34.

For the following exercises, let F = xi + yj,
G = −yi + xj, and H = −xj + yj. Match the vector

fields with their graphs in (I) − (IV).

a. F + G

b. F + H

c. G + H

d. −F + G

35.

36.
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37.

38.
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6.2 | Line Integrals

Learning Objectives
6.2.1 Calculate a scalar line integral along a curve.

6.2.2 Calculate a vector line integral along an oriented curve in space.

6.2.3 Use a line integral to compute the work done in moving an object along a curve in a vector
field.

6.2.4 Describe the flux and circulation of a vector field.

We are familiar with single-variable integrals of the form ∫
a

b
f (x)dx, where the domain of integration is an interval ⎡

⎣a, b⎤
⎦.

Such an interval can be thought of as a curve in the xy-plane, since the interval defines a line segment with endpoints (a, 0)
and (b, 0) —in other words, a line segment located on the x-axis. Suppose we want to integrate over any curve in the plane,

not just over a line segment on the x-axis. Such a task requires a new kind of integral, called a line integral.

Line integrals have many applications to engineering and physics. They also allow us to make several useful generalizations
of the Fundamental Theorem of Calculus. And, they are closely connected to the properties of vector fields, as we shall see.

Scalar Line Integrals
A line integral gives us the ability to integrate multivariable functions and vector fields over arbitrary curves in a plane or in
space. There are two types of line integrals: scalar line integrals and vector line integrals. Scalar line integrals are integrals
of a scalar function over a curve in a plane or in space. Vector line integrals are integrals of a vector field over a curve in a
plane or in space. Let’s look at scalar line integrals first.

A scalar line integral is defined just as a single-variable integral is defined, except that for a scalar line integral, the integrand
is a function of more than one variable and the domain of integration is a curve in a plane or in space, as opposed to a curve
on the x-axis.

For a scalar line integral, we let C be a smooth curve in a plane or in space and let f be a function with a domain that

includes C. We chop the curve into small pieces. For each piece, we choose point P in that piece and evaluate f at P. (We

can do this because all the points in the curve are in the domain of f . ) We multiply f (P) by the arc length of the piece

Δs, add the product f (P)Δs over all the pieces, and then let the arc length of the pieces shrink to zero by taking a limit.

The result is the scalar line integral of the function over the curve.

For a formal description of a scalar line integral, let C be a smooth curve in space given by the parameterization

r(t) = 〈 x(t), y(t), z(t) 〉 , a ≤ t ≤ b. Let f (x, y, z) be a function with a domain that includes curve C. To define the

line integral of the function f over C, we begin as most definitions of an integral begin: we chop the curve into small

pieces. Partition the parameter interval ⎡
⎣a, b⎤

⎦ into n subintervals ⎡
⎣ti − l, ti

⎤
⎦ of equal width for l ≤ i ≤ n, where t0 = a

and tn = b (Figure 6.12). Let ti* be a value in the ith interval ⎡
⎣ti − l, ti

⎤
⎦. Denote the endpoints of r(t0), r(t1),…, r(tn)

by P0 ,…, Pn. Points Pi divide curve C into n pieces C1, C2 ,…, Cn, with lengths Δs1, Δs2 ,…, Δsn, respectively.

Let Pi* denote the endpoint of r(ti* ) for 1 ≤ i ≤ n. Now, we evaluate the function f at point Pi* for 1 ≤ i ≤ n.

Note that Pi* is in piece C1, and therefore Pi* is in the domain of f . Multiply f ⎛
⎝Pi*

⎞
⎠ by the length Δs1 of C1,

which gives the area of the “sheet” with base C1, and height f ⎛
⎝Pi*

⎞
⎠. This is analogous to using rectangles to approximate

area in a single-variable integral. Now, we form the sum ∑
i = 1

n
f ⎛

⎝Pi*
⎞
⎠Δsi. Note the similarity of this sum versus a Riemann

sum; in fact, this definition is a generalization of a Riemann sum to arbitrary curves in space. Just as with Riemann sums

and integrals of form ∫
a

b
g(x)dx, we define an integral by letting the width of the pieces of the curve shrink to zero by

taking a limit. The result is the scalar line integral of f along C.
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Figure 6.12 Curve C has been divided into n pieces, and a point
inside each piece has been chosen.

You may have noticed a difference between this definition of a scalar line integral and a single-variable integral. In this
definition, the arc lengths Δs1, Δs2 ,…, Δsn aren’t necessarily the same; in the definition of a single-variable integral, the

curve in the x-axis is partitioned into pieces of equal length. This difference does not have any effect in the limit. As we
shrink the arc lengths to zero, their values become close enough that any small difference becomes irrelevant.

Definition

Let f be a function with a domain that includes the smooth curve C that is parameterized by

r(t) = 〈 x(t), y(t), z(t) 〉 , a ≤ t ≤ b. The scalar line integral of f along C is

(6.5)∫
C

f (x, y, z)ds = limn → ∞ ∑
i = 1

n
f ⎛

⎝Pi*
⎞
⎠Δsi

if this limit exists (ti* and Δsi are defined as in the previous paragraphs). If C is a planar curve, then C can be

represented by the parametric equations x = x(t), y = y(t), and a ≤ t ≤ b. If C is smooth and f (x, y) is a function

of two variables, then the scalar line integral of f along C is defined similarly as

∫
C

f (x, y)ds = limn → ∞ ∑
i = 1

n
f ⎛

⎝Pi*
⎞
⎠Δsi,

if this limit exists.

If f is a continuous function on a smooth curve C, then ∫
C

f ds always exists. Since ∫
C

f ds is defined as a limit of

Riemann sums, the continuity of f is enough to guarantee the existence of the limit, just as the integral ∫
a

b
g(x)dx exists

if g is continuous over ⎡
⎣a, b⎤

⎦.

Before looking at how to compute a line integral, we need to examine the geometry captured by these integrals. Suppose
that f (x, y) ≥ 0 for all points (x, y) on a smooth planar curve C. Imagine taking curve C and projecting it “up” to the

surface defined by f (x, y), thereby creating a new curve C′ that lies in the graph of f (x, y) (Figure 6.13). Now we

drop a “sheet” from C′ down to the xy-plane. The area of this sheet is ∫
C

f (x, y)ds. If f (x, y) ≤ 0 for some points in

C, then the value of ∫
C

f (x, y)ds is the area above the xy-plane less the area below the xy-plane. (Note the similarity

with integrals of the form ∫
a

b
g(x)dx.)
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Figure 6.13 The area of the blue sheet is ∫
C

f (x, y)ds.

From this geometry, we can see that line integral ∫
C

f (x, y)ds does not depend on the parameterization r(t) of C. As long

as the curve is traversed exactly once by the parameterization, the area of the sheet formed by the function and the curve is
the same. This same kind of geometric argument can be extended to show that the line integral of a three-variable function
over a curve in space does not depend on the parameterization of the curve.

Example 6.14

Finding the Value of a Line Integral

Find the value of integral ∫
C

2ds, where C is the upper half of the unit circle.

Solution

The integrand is f (x, y) = 2. Figure 6.14 shows the graph of f (x, y) = 2, curve C, and the sheet formed by

them. Notice that this sheet has the same area as a rectangle with width π and length 2. Therefore, ∫
C

2ds = 2π.

Figure 6.14 The sheet that is formed by the upper half of the
unit circle in a plane and the graph of f (x, y) = 2.
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To see that ∫
C

2ds = 2π using the definition of line integral, we let r(t) be a parameterization of C. Then,

f ⎛
⎝r(ti)

⎞
⎠ = 2 for any number ti in the domain of r. Therefore,

∫
C

f ds = limn → ∞ ∑
i = 1

n
f ⎛

⎝r⎛
⎝ti*

⎞
⎠
⎞
⎠Δsi

= limn → ∞ ∑
i = 1

n
2Δsi

= 2 limn → ∞ ∑
i = 1

n
2Δsi

= 2⎛
⎝length of C⎞

⎠

= 2π.

Find the value of ∫
C

(x + y)ds, where C is the curve parameterized by x = t, y = t, 0 ≤ t ≤ 1.

Note that in a scalar line integral, the integration is done with respect to arc length s, which can make a scalar line integral

difficult to calculate. To make the calculations easier, we can translate ∫
C

f ds to an integral with a variable of integration

that is t.

Let r(t) = 〈 x(t), y(t), z(t) 〉 for a ≤ t ≤ b be a parameterization of C. Since we are assuming that C is smooth,

r′(t) = 〈 x′ (t), y′ (t), z′ (t) 〉 is continuous for all t in ⎡
⎣a, b⎤

⎦. In particular, x′(t), y′(t), and z′(t) exist for all t in
⎡
⎣a, b⎤

⎦. According to the arc length formula, we have

length⎛
⎝Ci

⎞
⎠ = Δsi = ∫

ti − 1

ti
‖ r′(t) ‖ dt.

If width Δti = ti − ti − 1 is small, then function ∫
ti − 1

ti
‖ r′(t) ‖ dt ≈ ‖ r′ ⎛

⎝ti*
⎞
⎠ ‖ Δti, ‖ r′(t) ‖ is almost constant

over the interval ⎡
⎣ti − 1, ti

⎤
⎦. Therefore,

∫
ti − 1

ti
‖ r′(t) ‖ dt ≈ ‖ r′(ti* ) ‖ Δti,

and we have

(6.6)∑
i = 1

n
f (r(ti* ))Δsi = ∑

i = 1

n
f (r(ti* )) ‖ r′(ti* ) ‖ Δti.

See Figure 6.15.
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Figure 6.15 If we zoom in on the curve enough by making
Δti very small, then the corresponding piece of the curve is

approximately linear.

Note that

limn → ∞ ∑
i = 1

n
f (r(ti* )) ‖ r′(ti* ) ‖ Δti = ∫

a

b
f (r(t)) ‖ r′(t) ‖ dt.

In other words, as the widths of intervals [ti − 1, ti] shrink to zero, the sum ∑
i = 1

n
f (r(ti* )) ‖ r′(ti* ) ‖ Δti converges to

the integral ∫
a

b
f (r(t)) ‖ r′(t) ‖ dt. Therefore, we have the following theorem.

Theorem 6.3: Evaluating a Scalar Line Integral

Let f be a continuous function with a domain that includes the smooth curve C with parameterization

r(t), a ≤ t ≤ b. Then

(6.7)∫
C

f ds = ∫
a

b
f (r(t)) ‖ r′(t) ‖ dt.

Although we have labeled Equation 6.6 as an equation, it is more accurately considered an approximation because we can
show that the left-hand side of Equation 6.6 approaches the right-hand side as n → ∞. In other words, letting the widths

of the pieces shrink to zero makes the right-hand sum arbitrarily close to the left-hand sum. Since

‖ r′(t) ‖ = (x′(t))2 + ⎛
⎝y′(t)⎞

⎠
2 + (z′(t))2,

we obtain the following theorem, which we use to compute scalar line integrals.

Theorem 6.4: Scalar Line Integral Calculation

Let f be a continuous function with a domain that includes the smooth curve C with parameterization

r(t) = 〈 x(t), y(t), z(t) 〉 , a ≤ t ≤ b. Then

(6.8)∫
C

f (x, y, z)ds = ∫
a

b
f (r(t)) (x′ (t))2 + ⎛

⎝y′ (t)⎞
⎠
2 + (z′ (t))2dt.

Similarly,

∫
C

f (x, y)ds = ∫
a

b
f (r(t)) (x′ (t))2 + ⎛

⎝y′ (t)⎞
⎠
2dt

if C is a planar curve and f is a function of two variables.
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Note that a consequence of this theorem is the equation ds = ‖ r′(t) ‖ dt. In other words, the change in arc length can be

viewed as a change in the t domain, scaled by the magnitude of vector r′(t).

Example 6.15

Evaluating a Line Integral

Find the value of integral ∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds, where C is part of the helix parameterized by

r(t) = 〈 cos t, sin t, t 〉 , 0 ≤ t ≤ 2π.

Solution

To compute a scalar line integral, we start by converting the variable of integration from arc length s to t. Then, we

can use Equation 6.8 to compute the integral with respect to t. Note that f ⎛
⎝r(t)⎞

⎠ = cos2 t + sin2 t + t = 1 + t
and

(x′ (t))2 + ⎛
⎝y′ (t)⎞

⎠
2 + (z′ (t))2 = ⎛

⎝−sin(t)⎞
⎠
2 + cos2 (t) + 1

= 2.

Therefore,

∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds = ∫
0

2π
(1 + t) 2dt.

Notice that Equation 6.8 translated the original difficult line integral into a manageable single-variable integral.
Since

∫
0

2π
(1 + t) 2dt = ⎡

⎣ 2t + 2t2

2
⎤
⎦0

2π

= 2 2π + 2 2π2,

we have

∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds = 2 2π + 2 2π2.

Evaluate ∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds, where C is the curve with parameterization

r(t) = 〈 sin(3t), cos(3t) 〉 , 0 ≤ t ≤ π
4.

Example 6.16

Independence of Parameterization

Find the value of integral ∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds, where C is part of the helix parameterized by

r(t) = 〈 cos(2t), sin(2t), 2t 〉 , 0 ≤ t ≤ π. Notice that this function and curve are the same as in the previous

example; the only difference is that the curve has been reparameterized so that time runs twice as fast.
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Solution

As with the previous example, we use Equation 6.8 to compute the integral with respect to t. Note that

f ⎛
⎝r(t)⎞

⎠ = cos2 (2t) + sin2 (2t) + 2t = 2t + 1 and

(x′ (t))2 + ⎛
⎝y′ (t)⎞

⎠
2 + (z′(t))2 = (−sin t + cos t + 4)

= 2 2

so we have

∫
C

⎛
⎝x2 + y2 + z⎞

⎠ds = 2 2∫
0

π
(1 + 2t)dt

= 2 2⎡
⎣t + t2⎤

⎦0
π

= 2 2⎛
⎝π + π2⎞

⎠.

Notice that this agrees with the answer in the previous example. Changing the parameterization did not change
the value of the line integral. Scalar line integrals are independent of parameterization, as long as the curve is
traversed exactly once by the parameterization.

Evaluate line integral ∫
C

⎛
⎝x2 + yz⎞

⎠ds, where C is the line with parameterization

r(t) = 〈 2t, 5t, −t 〉 , 0 ≤ t ≤ 10. Reparameterize C with parameterization

s(t) = 〈 4t, 10t, −2t 〉 , 0 ≤ t ≤ 5, recalculate line integral ∫
C

⎛
⎝x2 + yz⎞

⎠ds, and notice that the change of

parameterization had no effect on the value of the integral.

Now that we can evaluate line integrals, we can use them to calculate arc length. If f (x, y, z) = 1, then

∫
C

f (x, y, z)ds = limn → ∞ ∑
i = 1

n
f ⎛

⎝ti*
⎞
⎠Δsi

= limn → ∞ ∑
i = 1

n
Δsi

= limn → ∞length(C)
= length(C).

Therefore, ∫
C

1ds is the arc length of C.

Example 6.17

Calculating Arc Length

A wire has a shape that can be modeled with the parameterization r(t) = 〈 cos t, sin t, t 〉 , 0 ≤ t ≤ 4π. Find

the length of the wire.

Solution
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The length of the wire is given by ∫
C

1ds, where C is the curve with parameterization r. Therefore,

The length of the wire = ∫
C

1ds

= ∫
0

4π
‖ r′(t) ‖ dt

= ∫
0

4π
(−sin t)2 + cos2 t + tdt

= ∫
0

4π
1 + tdt

= ⎡
⎣

2(1 + t)3/2

3
⎤
⎦0

4π

= 2
3

⎛
⎝(1 + 4π)3/2 − 1⎞

⎠.

Find the length of a wire with parameterization r(t) = 〈 3t + 1, 4 − 2t, 5 + 2t 〉 , 0 ≤ t ≤ 4.

Vector Line Integrals
The second type of line integrals are vector line integrals, in which we integrate along a curve through a vector field. For
example, let

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

be a continuous vector field in ℝ3 that represents a force on a particle, and let C be a smooth curve in ℝ3 contained in

the domain of F. How would we compute the work done by F in moving a particle along C?

To answer this question, first note that a particle could travel in two directions along a curve: a forward direction and a
backward direction. The work done by the vector field depends on the direction in which the particle is moving. Therefore,
we must specify a direction along curve C; such a specified direction is called an orientation of a curve. The specified
direction is the positive direction along C; the opposite direction is the negative direction along C. When C has been given
an orientation, C is called an oriented curve (Figure 6.16). The work done on the particle depends on the direction along
the curve in which the particle is moving.

A closed curve is one for which there exists a parameterization r(t), a ≤ t ≤ b, such that r(a) = r(b), and the curve

is traversed exactly once. In other words, the parameterization is one-to-one on the domain (a, b).

Figure 6.16 (a) An oriented curve between two points. (b) A
closed oriented curve.

Let r(t) be a parameterization of C for a ≤ t ≤ b such that the curve is traversed exactly once by the particle and
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the particle moves in the positive direction along C. Divide the parameter interval ⎡
⎣a, b⎤

⎦ into n subintervals
⎡
⎣ti − 1, ti

⎤
⎦, 0 ≤ i ≤ n, of equal width. Denote the endpoints of r(t0), r(t1),…, r(tn) by P0 ,…, Pn. Points Pi divide C

into n pieces. Denote the length of the piece from Pi−1 to Pi by Δsi. For each i, choose a value ti* in the subinterval

⎡
⎣ti − 1, ti

⎤
⎦. Then, the endpoint of r(ti* ) is a point in the piece of C between Pi − 1 and Pi (Figure 6.17). If Δsi is small,

then as the particle moves from Pi − 1 to Pi along C, it moves approximately in the direction of T⎛
⎝Pi

⎞
⎠, the unit tangent

vector at the endpoint of r(ti* ). Let Pi* denote the endpoint of r(ti* ). Then, the work done by the force vector field in

moving the particle from Pi − 1 to Pi is F⎛
⎝Pi*

⎞
⎠ · ⎛

⎝Δsi T⎛
⎝Pi*

⎞
⎠
⎞
⎠, so the total work done along C is

∑
i = 1

n
F⎛

⎝Pi*
⎞
⎠ · ⎛

⎝Δsi T⎛
⎝Pi*

⎞
⎠
⎞
⎠ = ∑

i = 1

n
F⎛

⎝Pi*
⎞
⎠ · T⎛

⎝Pi*
⎞
⎠Δsi.

Figure 6.17 Curve C is divided into n pieces, and a point
inside each piece is chosen. The dot product of any tangent
vector in the ith piece with the corresponding vector F is

approximated by F⎛
⎝Pi*

⎞
⎠ · T⎛

⎝Pi*
⎞
⎠.

Letting the arc length of the pieces of C get arbitrarily small by taking a limit as n → ∞ gives us the work done by the

field in moving the particle along C. Therefore, the work done by F in moving the particle in the positive direction along C
is defined as

W = ∫
C

f · ≤ Tds,

which gives us the concept of a vector line integral.

Definition

The vector line integral of vector field F along oriented smooth curve C is

∫
C

F · Tds = limn → ∞ ∑
i = 1

n
F⎛

⎝Pi*
⎞
⎠ · T⎛

⎝Pi*
⎞
⎠Δsi

if that limit exists.

With scalar line integrals, neither the orientation nor the parameterization of the curve matters. As long as the curve is
traversed exactly once by the parameterization, the value of the line integral is unchanged. With vector line integrals, the
orientation of the curve does matter. If we think of the line integral as computing work, then this makes sense: if you hike
up a mountain, then the gravitational force of Earth does negative work on you. If you walk down the mountain by the exact
same path, then Earth’s gravitational force does positive work on you. In other words, reversing the path changes the work
value from negative to positive in this case. Note that if C is an oriented curve, then we let −C represent the same curve but
with opposite orientation.
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As with scalar line integrals, it is easier to compute a vector line integral if we express it in terms of the parameterization

function r and the variable t. To translate the integral ∫
C

F · Tds in terms of t, note that unit tangent vector T along C is

given by T = r′(t)
‖ r′(t) ‖ (assuming ‖ r′(t) ‖ ≠ 0). Since ds = ‖ r′(t) ‖ dt, as we saw when discussing scalar line

integrals, we have

F · Tds = F⎛
⎝r(t)⎞

⎠ · r′(t)
‖ r′(t) ‖ ‖ r′(t) ‖ dt = F⎛

⎝r(t)⎞
⎠ · r′(t)dt.

Thus, we have the following formula for computing vector line integrals:

(6.9)∫
C

F · Tds = ∫
a

b
F(r(t)) · r′(t)dt.

Because of Equation 6.9, we often use the notation ∫
C

F · dr for the line integral ∫
C

F · Tds.

If r(t) = 〈 x(t), y(t), z(t) 〉 , then dr denotes vector 〈 x′ (t), y′ (t), z′ (t) 〉 .

Example 6.18

Evaluating a Vector Line Integral

Find the value of integral ∫
C

F · dr, where C is the semicircle parameterized by r(t) = 〈 cos t, sin t 〉 ,

0 ≤ t ≤ π and F = 〈 −y, x 〉 .

Solution

We can use Equation 6.9 to convert the variable of integration from s to t. We then have

F(r(t)) = 〈 −sin t, cos t 〉 and r′(t) = 〈 −sin t, cos t 〉 .

Therefore,

∫
C

F · dr = ∫
0

π
〈 −sin t, cos t 〉 · 〈 −sin t, cos t 〉 dt

= ∫
0

π
sin2 t + cos2 tdt

= ∫
0

π
1dt = π.

See Figure 6.18.
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Figure 6.18 This figure shows curve
r(t) = 〈 cos t, sin t 〉 , 0 ≤ t ≤ π in vector field

F = 〈 −y, x 〉 .

Example 6.19

Reversing Orientation

Find the value of integral ∫
C

F · dr, where C is the semicircle parameterized by

r(t) = 〈 cos t + π, sin t 〉 , 0 ≤ t ≤ π and F = 〈 −y, x 〉 .

Solution

Notice that this is the same problem as Example 6.18, except the orientation of the curve has been traversed. In
this example, the parameterization starts at r(0) = 〈 π, 0 〉 and ends at r(π) = 〈 0, 0 〉 . By Equation 6.9,

∫
C

F · dr = ∫
0

π
〈 −sin t, cos t + π 〉 · 〈 −sin t + π, cos t 〉 dt

= ∫
0

π
〈 −sin t, −cos t 〉 · 〈 sin t, cos t 〉 dt

= ∫
0

π
⎛
⎝−sin2 t − cos2 t⎞

⎠dt

= ∫
0

π
−1dt

= −π.
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Notice that this is the negative of the answer in Example 6.18. It makes sense that this answer is negative
because the orientation of the curve goes against the “flow” of the vector field.

Let C be an oriented curve and let −C denote the same curve but with the orientation reversed. Then, the previous two
examples illustrate the following fact:

∫
C

F · dr = −∫
C

F · dr.

That is, reversing the orientation of a curve changes the sign of a line integral.

Let F = xi + yj be a vector field and let C be the curve with parameterization 〈 t, t2 〉 for 0 ≤ t ≤ 2.

Which is greater: ∫
C

F · Tds or ∫
−C

F · Tds?

Another standard notation for integral ∫
C

F · dr is ∫
C

Pdx + Qdy + Rdz. In this notation, P, Q, and R are functions, and

we think of dr as vector 〈 dx, dy, dz 〉 . To justify this convention, recall that dr = Tds = r′(t)dt = 〈 dx
dt , dy

dt , dz
dt 〉 dt.

Therefore,

F · dr = 〈 P, Q, R 〉 · 〈 dx, dy, dz 〉 = Pdx + Qdy + Rdz.

If dr = 〈 dx, dy, dz 〉 , then dr
dt = 〈 dx

dt , dy
dt , dz

dt 〉 , which implies that dr
dt = 〈 dx

dt , dy
dt , dz

dt 〉 dt. Therefore

(6.10)∫
C

F · dr = ∫
C

Pdx + Qdy + Rdz

= ⌠
⌡
⎛
⎝P(r(t))dx

dt + Q(r(t))dy
dt + R(r(t))dz

dt
⎞
⎠dt.

Example 6.20

Finding the Value of an Integral of the Form ∫
C

Pdx + Qdy + Rdz

Find the value of integral ∫
C

zdx + xdy + ydz, where C is the curve parameterized by

r(t) = 〈 t2, t, t 〉 , 1 ≤ t ≤ 4.

Solution

As with our previous examples, to compute this line integral we should perform a change of variables to write
everything in terms of t. In this case, Equation 6.10 allows us to make this change:
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∫
C

zdx + xdy + ydz = ∫
1

4⎛
⎝t(2t) + t2 ⎛

⎝
1

2 t
⎞
⎠ + t⎞⎠dt

= ∫
1

4⎛
⎝2t2 + t3/2

2 + t⎞⎠dt

= ⎡
⎣

2t3

3 + t5/2

5 + 2t3/2

3
⎤
⎦t = 1

t = 4

= 793
15 .

Find the value of ∫
C

4xdx + zdy + 4y2 dz, where C is the curve parameterized by

r(t) = 〈 4 cos(2t), 2 sin(2t), 3 〉 , 0 ≤ t ≤ π
4.

We have learned how to integrate smooth oriented curves. Now, suppose that C is an oriented curve that is not smooth, but
can be written as the union of finitely many smooth curves. In this case, we say that C is a piecewise smooth curve. To
be precise, curve C is piecewise smooth if C can be written as a union of n smooth curves C1, C2 ,…, Cn such that the

endpoint of Ci is the starting point of Ci + 1 (Figure 6.19). When curves Ci satisfy the condition that the endpoint of

Ci is the starting point of Ci + 1, we write their union as C1 + C2 + ⋯ + Cn.

Figure 6.19 The union of C1, C2, C3 is a piecewise smooth

curve.

The next theorem summarizes several key properties of vector line integrals.

Theorem 6.5: Properties of Vector Line Integrals

Let F and G be continuous vector fields with domains that include the oriented smooth curve C. Then

i. ∫
C

(F + G) · dr = ∫
C

F · dr + ∫
C

G · dr

ii. ∫
C

kF · dr = k∫
C

F · dr, where k is a constant

iii. ∫
−C

F · dr = −∫
C

F · dr

iv. Suppose instead that C is a piecewise smooth curve in the domains of F and G, where
C = C1 + C2 + ⋯ + Cn and C1, C2 ,…, Cn are smooth curves such that the endpoint of Ci is the

Chapter 6 | Vector Calculus 675



starting point of Ci + 1. Then

∫
C

F · ds = ∫
C1

F · ds + ∫
C2

F · ds + ⋯ + ∫
Cn

F · ds.

Notice the similarities between these items and the properties of single-variable integrals. Properties i. and ii. say that line
integrals are linear, which is true of single-variable integrals as well. Property iii. says that reversing the orientation of a
curve changes the sign of the integral. If we think of the integral as computing the work done on a particle traveling along
C, then this makes sense. If the particle moves backward rather than forward, then the value of the work done has the

opposite sign. This is analogous to the equation ∫
a

b
f (x)dx = −∫

b

a
f (x)dx. Finally, if [a1, a2], [a2, a3],…, [an − 1, an]

are intervals, then

∫
a1

an
f (x)dx = ∫

a1

a2
f (x)dx + ∫

a1

a3
f (x)dx + ⋯ + ∫

an − 1

an
f (x)dx,

which is analogous to property iv.

Example 6.21

Using Properties to Compute a Vector Line Integral

Find the value of integral ∫
C

F · Tds, where C is the rectangle (oriented counterclockwise) in a plane with

vertices (0, 0), (2, 0), (2, 1), and (0, 1), and where F = 〈 x − 2y, y − x 〉 (Figure 6.20).

Figure 6.20 Rectangle and vector field for Example 6.21.

Solution

676 Chapter 6 | Vector Calculus

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



Note that curve C is the union of its four sides, and each side is smooth. Therefore C is piecewise smooth. Let C1

represent the side from (0, 0) to (2, 0), let C2 represent the side from (2, 0) to (2, 1), let C3 represent

the side from (2, 1) to (0, 1), and let C4 represent the side from (0, 1) to (0, 0) (Figure 6.20). Then,

∫
C

F · Tdr = ∫
C1

F · Tdr + ∫
C2

F · Tdr + ∫
C3

F · Tdr + ∫
C4

F · Tdr.

We want to compute each of the four integrals on the right-hand side using Equation 6.8. Before doing this, we
need a parameterization of each side of the rectangle. Here are four parameterizations (note that they traverse C
counterclockwise):

C1 : 〈 t, 0 〉 , 0 ≤ t ≤ 2
C2 : 〈 2, t 〉 , 0 ≤ t ≤ 1
C3 : 〈 2 − t, 1 〉 , 0 ≤ t ≤ 2
C4 : 〈 0, 1 − t 〉 , 0 ≤ t ≤ 1.

Therefore,

∫
C1

F · Tdr = ∫
0

2
F(r(t)) · r′(t)dt

= ∫
0

2
〈 t − 2(0), 0 − t 〉 · 〈 1, 0 〉 dt = ∫

0

1
tdt

= ⎡
⎣

t2

2
⎤
⎦0

2
= 2.

Notice that the value of this integral is positive, which should not be surprising. As we move along curve C1 from
left to right, our movement flows in the general direction of the vector field itself. At any point along C1, the
tangent vector to the curve and the corresponding vector in the field form an angle that is less than 90°. Therefore,
the tangent vector and the force vector have a positive dot product all along C1, and the line integral will have
positive value.

The calculations for the three other line integrals are done similarly:

∫
C2

F · dr = ∫
0

1
〈 2 − 2t, t − 2 〉 · 〈 0, 1 〉 dt

= ∫
0

1
(t − 2)dt

= ⎡
⎣

t2

2 − 2t⎤⎦0

1
= − 3

2,

∫
C3

F · Tds = ∫
0

2
〈 (2 − t) − 2, 1 − (2 − t) 〉 · 〈 −1, 0 〉 dt

= ∫
0

2
tdt = 2,

and
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∫
C4

F · dr = ∫
0

1
〈 −2(1 − t), 1 − t 〉 · 〈 0, −1 〉 dt

= ∫
0

1
(t − 1)dt

= ⎡
⎣

t2

2 − t⎤⎦0

1
= − 1

2.

Thus, we have ∫
C

F · dr = 2.

Calculate line integral ∫
C

F · dr, where F is vector field 〈 y2, 2xy + 1 〉 and C is a triangle with

vertices (0, 0), (4, 0), and (0, 5), oriented counterclockwise.

Applications of Line Integrals
Scalar line integrals have many applications. They can be used to calculate the length or mass of a wire, the surface area of
a sheet of a given height, or the electric potential of a charged wire given a linear charge density. Vector line integrals are
extremely useful in physics. They can be used to calculate the work done on a particle as it moves through a force field, or
the flow rate of a fluid across a curve. Here, we calculate the mass of a wire using a scalar line integral and the work done
by a force using a vector line integral.

Suppose that a piece of wire is modeled by curve C in space. The mass per unit length (the linear density) of the wire is a

continuous function ρ(x, y, z). We can calculate the total mass of the wire using the scalar line integral ∫
C

ρ(x, y, z)ds.

The reason is that mass is density multiplied by length, and therefore the density of a small piece of the wire can be
approximated by ρ⎛

⎝x * , y * , z * ⎞
⎠Δs for some point ⎛

⎝x * , y * , z * ⎞
⎠ in the piece. Letting the length of the pieces shrink to

zero with a limit yields the line integral ∫
C

ρ(x, y, z)ds.

Example 6.22

Calculating the Mass of a Wire

Calculate the mass of a spring in the shape of a curve parameterized by 〈 t, 2 cos t, 2 sin t 〉 , 0 ≤ t ≤ π
2,

with a density function given by ρ(x, y, z) = ex + yz kg/m (Figure 6.21).
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Figure 6.21 The wire from Example 6.22.

Solution

To calculate the mass of the spring, we must find the value of the scalar line integral ∫
C

⎛
⎝ex + yz⎞

⎠ds, where C is

the given helix. To calculate this integral, we write it in terms of t using Equation 6.8:

∫
C

ex + yzds = ∫
0

π/2⎛
⎝

⎛
⎝et + 4 cos t sin t⎞

⎠ 1 + (−2 cos t)2 + (2 sin t)2⎞
⎠dt

= ∫
0

π/2
⎛
⎝
⎛
⎝et + 4 cos t sin t⎞

⎠ 5⎞
⎠dt

= 5⎡
⎣et + 2 sin2 t⎤

⎦t = 0
t = π/2

= 5⎛
⎝e

π/2 + 1⎞
⎠.

Therefore, the mass is 5⎛
⎝e

π/2 + 1⎞
⎠ kg.

Calculate the mass of a spring in the shape of a helix parameterized by
r(t) = 〈 cos t, sin t, t 〉 , 0 ≤ t ≤ 6π, with a density function given by ρ(x, y, z) = x + y + z kg/m.

When we first defined vector line integrals, we used the concept of work to motivate the definition. Therefore, it is not
surprising that calculating the work done by a vector field representing a force is a standard use of vector line integrals.
Recall that if an object moves along curve C in force field F, then the work required to move the object is given by

∫
C

F · dr.
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Example 6.23

Calculating Work

How much work is required to move an object in vector force field F = 〈 yz, xy, xz 〉 along path

r(t) = 〈 t2, t, t4 〉 , 0 ≤ t ≤ 1? See Figure 6.22.

Solution

Let C denote the given path. We need to find the value of ∫
C

F · dr. To do this, we use Equation 6.9:

∫
C

F · dr = ∫
0

1
⎛
⎝ 〈 t5, t3, t6 〉 · 〈 2t, 1, 4t3 〉 ⎞

⎠dt

= ∫
0

1
⎛
⎝2t6 + t3 + 4t9⎞

⎠dt

= ⎡
⎣

2t7

7 + t4

4 + 2t10

5
⎤
⎦t = 0

t = 1
= 131

140.

Figure 6.22 The curve and vector field for Example 6.23.

Flux and Circulation
We close this section by discussing two key concepts related to line integrals: flux across a plane curve and circulation along
a plane curve. Flux is used in applications to calculate fluid flow across a curve, and the concept of circulation is important
for characterizing conservative gradient fields in terms of line integrals. Both these concepts are used heavily throughout
the rest of this chapter. The idea of flux is especially important for Green’s theorem, and in higher dimensions for Stokes’
theorem and the divergence theorem.
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Let C be a plane curve and let F be a vector field in the plane. Imagine C is a membrane across which fluid flows, but C does
not impede the flow of the fluid. In other words, C is an idealized membrane invisible to the fluid. Suppose F represents the
velocity field of the fluid. How could we quantify the rate at which the fluid is crossing C?

Recall that the line integral of F along C is ∫
C

F · Tds —in other words, the line integral is the dot product of the vector

field with the unit tangential vector with respect to arc length. If we replace the unit tangential vector with unit normal

vector N(t) and instead compute integral ∫
C

F · Nds, we determine the flux across C. To be precise, the definition of

integral ∫
C

F · Nds is the same as integral ∫
C

F · Tds, except the T in the Riemann sum is replaced with N. Therefore,

the flux across C is defined as

∫
C

F · Nds = limn → ∞ ∑
i = 1

n
F⎛

⎝Pi*
⎞
⎠ · N⎛

⎝Pi*
⎞
⎠Δsi,

where Pi* and Δsi are defined as they were for integral ∫
C

F · Tds. Therefore, a flux integral is an integral that is

perpendicular to a vector line integral, because N and T are perpendicular vectors.

If F is a velocity field of a fluid and C is a curve that represents a membrane, then the flux of F across C is the quantity of
fluid flowing across C per unit time, or the rate of flow.

More formally, let C be a plane curve parameterized by r(t) = 〈 x(t), y(t) 〉 , a ≤ t ≤ b. Let n(t) = 〈 y′(t), −x′(t) 〉
be the vector that is normal to C at the endpoint of r(t) and points to the right as we traverse C in the positive direction

(Figure 6.23). Then, N(t) = n(t)
‖ n(t) ‖ is the unit normal vector to C at the endpoint of r(t) that points to the right as we

traverse C.

Definition

The flux of F across C is line integral ∫
C

F · n(t)
‖ n(t) ‖ ds.

Figure 6.23 The flux of vector field F across curve C is computed
by an integral similar to a vector line integral.
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We now give a formula for calculating the flux across a curve. This formula is analogous to the formula used to calculate a
vector line integral (see Equation 6.9).

Theorem 6.6: Calculating Flux across a Curve

Let F be a vector field and let C be a smooth curve with parameterization r(t) = 〈 x(t), y(t) 〉 , a ≤ t ≤ b. Let

n(t) = 〈 y′(t), −x′(t) 〉 . The flux of F across C is

(6.11)∫
C

F · Nds = ∫
a

b
F(r(t)) · n(t)dt

Proof

The proof of Equation 6.11 is similar to the proof of Equation 6.8. Before deriving the formula, note that

‖ n(t) ‖ = ‖ 〈 y′(t), −x′(t) 〉 ‖ = ⎛
⎝y′(t)⎞

⎠
2 + ⎛

⎝x′(t)⎞
⎠
2 = ‖ r′(t) ‖ . Therefore,

∫
C

F · Nds = ∫
C

F · n(t)
‖ n(t) ‖ ds

= ∫
a

b
F · n(t)

‖ n(t) ‖ ‖ r′(t) ‖ dt

= ∫
a

b
F(r(t)) · n(t)dt.

□

Example 6.24

Flux across a Curve

Calculate the flux of F = 〈 2x, 2y 〉 across a unit circle oriented counterclockwise (Figure 6.24).

Figure 6.24 A unit circle in vector field F = 〈 2x, 2y 〉 .

Solution

To compute the flux, we first need a parameterization of the unit circle. We can use the standard parameterization
r(t) = 〈 cos t, sin t 〉 , 0 ≤ t ≤ 2π. The normal vector to a unit circle is 〈 cos t, sin t 〉 . Therefore, the flux

is
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∫
C

F · Nds = ∫
0

2π
〈 2 cos t, 2 sin t 〉 · 〈 cos t, sin t 〉 dt

= ∫
0

2π
⎛
⎝2 cos2 t + 2 sin2 t⎞

⎠ dt = 2∫
0

2π
⎛
⎝cos2 t + sin2 t⎞

⎠ dt

= 2∫
0

2π
dt = 4π.

Calculate the flux of F = 〈 x + y, 2y 〉 across the line segment from (0, 0) to (2, 3), where the

curve is oriented from left to right.

Let F(x, y) = 〈 P(x, y), Q(x, y) 〉 be a two-dimensional vector field. Recall that integral ∫
C

F · Tds is sometimes

written as ∫
C

Pdx + Qdy. Analogously, flux ∫
C

F · Nds is sometimes written in the notation ∫
C

−Qdx + Pdy, because

the unit normal vector N is perpendicular to the unit tangent T. Rotating the vector dr = 〈 dx, dy 〉 by 90° results in

vector 〈 dy, −dx 〉 . Therefore, the line integral in Example 6.21 can be written as ∫
C

−2ydx + 2xdy.

Now that we have defined flux, we can turn our attention to circulation. The line integral of vector field F along an oriented

closed curve is called the circulation of F along C. Circulation line integrals have their own notation: ∮
C

F · Tds. The

circle on the integral symbol denotes that C is “circular” in that it has no endpoints. Example 6.18 shows a calculation of
circulation.

To see where the term circulation comes from and what it measures, let v represent the velocity field of a fluid and let C be
an oriented closed curve. At a particular point P, the closer the direction of v(P) is to the direction of T(P), the larger the
value of the dot product v(P) · T(P). The maximum value of v(P) · T(P) occurs when the two vectors are pointing in the

exact same direction; the minimum value of v(P) · T(P) occurs when the two vectors are pointing in opposite directions.

Thus, the value of the circulation ∮
C

v · Tds measures the tendency of the fluid to move in the direction of C.

Example 6.25

Calculating Circulation

Let F = 〈 − y, x 〉 be the vector field from Example 6.16 and let C represent the unit circle oriented

counterclockwise. Calculate the circulation of F along C.

Solution

We use the standard parameterization of the unit circle: r(t) = 〈 cos t, sin t 〉 , 0 ≤ t ≤ 2π. Then,

F(r(t)) = 〈 −sin t, cos t 〉 and r′(t) = 〈 −sin t, cos t 〉 . Therefore, the circulation of F along C is
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∮
C

F · Tds = ∫
0

2π
〈 −sin t, cos t 〉 · 〈 −sin t, cos t 〉 dt

= ∫
0

2π
⎛
⎝sin2 t + cos2 t⎞

⎠ dt

= ∫
0

2π
dt = 2π.

Notice that the circulation is positive. The reason for this is that the orientation of C “flows” with the direction
of F. At any point along the circle, the tangent vector and the vector from F form an angle of less than 90°, and
therefore the corresponding dot product is positive.

In Example 6.25, what if we had oriented the unit circle clockwise? We denote the unit circle oriented clockwise by −C.
Then

∮
−C

F · Tds = −∮
C

F · Tds = −2π.

Notice that the circulation is negative in this case. The reason for this is that the orientation of the curve flows against the
direction of F.

Calculate the circulation of F(x, y) = 〈 − y
x2 + y2, x

x2 + y2 〉 along a unit circle oriented

counterclockwise.

Example 6.26

Calculating Work

Calculate the work done on a particle that traverses circle C of radius 2 centered at the origin, oriented
counterclockwise, by field F(x, y) = 〈 −2, y 〉 . Assume the particle starts its movement at (1, 0).

Solution

The work done by F on the particle is the circulation of F along C: ∮
C

F · Tds. We use the parameterization

r(t) = 〈 2 cos t, 2 sin t 〉 , 0 ≤ t ≤ 2π for C. Then, r′(t) = 〈 −2 sin t, 2 cos t 〉 and

F(r(t)) = 〈 −2, 2 sin t 〉 . Therefore, the circulation of F along C is

∮
C

F · Tds = ∫
0

2π
〈 −2, 2 sin t 〉 · 〈 −2 sin t, 2 cos t 〉 dt

= ∫
0

2π
(4 sin t + 4 sin t cos t)dt

= ⎡
⎣−4 cos t + 4 sin2 t⎤

⎦0
2π

= ⎛
⎝−4 cos(2π) + 2 sin2(2π)⎞

⎠ − ⎛
⎝−4 cos(0) + 4 sin2(0)⎞

⎠

= −4 + 4 = 0.
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The force field does zero work on the particle.

Notice that the circulation of F along C is zero. Furthermore, notice that since F is the gradient of

f (x, y) = −2x + y2

2 , F is conservative. We prove in a later section that under certain broad conditions, the

circulation of a conservative vector field along a closed curve is zero.

Calculate the work done by field F(x, y) = 〈 2x, 3y 〉 on a particle that traverses the unit circle.

Assume the particle begins its movement at (−1, 0).
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6.2 EXERCISES

39. True or False? Line integral ∫
C

f (x, y)ds is equal

to a definite integral if C is a smooth curve defined on
⎡
⎣a, b⎤

⎦ and if function f is continuous on some region that

contains curve C.

40. True or False? Vector functions r1 = ti + t2 j,

0 ≤ t ≤ 1, and r2 = (1 − t)i + (1 − t)2 j, 0 ≤ t ≤ 1,
define the same oriented curve.

41. True or False?

∫
−C

(Pdx + Qdy) = ∫
C

(Pdx − Qdy)

42. True or False? A piecewise smooth curve C consists
of a finite number of smooth curves that are joined together
end to end.

43. True or False? If C is given by

x(t) = t, y(t) = t, 0 ≤ t ≤ 1, then ∫
C

xyds = ∫
0

1
t2 dt.

For the following exercises, use a computer algebra system
(CAS) to evaluate the line integrals over the indicated path.

44. [T] ∫
C

(x + y)ds C: x = t, y = (1 − t), z = 0 from

(0, 1, 0) to (1, 0, 0)

45. [T] ∫
C

(x − y)ds C: r(t) = 4ti + 3tj when

0 ≤ t ≤ 2

46. [T] ∫
C

(x2 + y2 + z2)ds

C: r(t) = sin ti + cos tj + 8tk when 0 ≤ t ≤ π
2

47. [T] Evaluate ∫
C

xy4 ds, where C is the right half

of circle x2 + y2 = 16 and is traversed in the clockwise

direction.

48. [T] Evaluate ∫
C

4x3 ds, where C is the line segment

from (−2, −1) to (1, 2).

For the following exercises, find the work done.

49. Find the work done by vector field
F(x, y, z) = xi + 3xyj − (x + z)k on a particle moving

along a line segment that goes from (1, 4, 2) to (0, 5, 1).

50. Find the work done by a person weighing 150 lb
walking exactly one revolution up a circular, spiral
staircase of radius 3 ft if the person rises 10 ft.

51. Find the work done by force field

F(x, y, z) = − 1
2xi − 1

2yj + 1
4k on a particle as it moves

along the helix r(t) = cos ti + sin tj + tk from point

(1, 0, 0) to point (−1, 0, 3π).

52. Find the work done by vector field
F(x, y) = yi + 2xj in moving an object along path C,

which joins points (1, 0) and (0, 1).

53. Find the work done by force
F(x, y) = 2yi + 3xj + (x + y)k in moving an object

along curve r(t) = cos(t)i + sin(t)j + 1
6k, where

0 ≤ t ≤ 2π.

54. Find the mass of a wire in the shape of a circle of
radius 2 centered at (3, 4) with linear mass density

ρ(x, y) = y2.

For the following exercises, evaluate the line integrals.

55. Evaluate ∫
C

F · dr, where F(x, y) = −1j, and C

is the part of the graph of y = 1
2x3 − x from (2, 2) to

(−2, −2).

56. Evaluate ∫
γ
⎛
⎝x2 + y2 + z2⎞

⎠
−1

ds, where γ is the

helix x = cos t, y = sin t, z = t(0 ≤ t ≤ T).

57. Evaluate ∫
C

yzdx + xzdy + xydz over the line

segment from (1, 1, 1) to (3, 2, 0).

58. Let C be the line segment from point (0, 1, 1) to point

(2, 2, 3). Evaluate line integral ∫
C

yds.

59. [T] Use a computer algebra system to evaluate the

line integral ∫
C

y2 dx + xdy, where C is the arc of the

parabola x = 4 − y2 from (−5, −3) to (0, 2).
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60. [T] Use a computer algebra system to evaluate the

line integral ∫
C

⎛
⎝x + 3y2⎞

⎠dy over the path C given by

x = 2t, y = 10t, where 0 ≤ t ≤ 1.

61. [T] Use a CAS to evaluate line integral

∫
C

xydx + ydy over path C given by x = 2t, y = 10t,

where 0 ≤ t ≤ 1.

62. Evaluate line integral ∫
C

⎛
⎝2x − y⎞

⎠dx + ⎛
⎝x + 3y⎞

⎠dy,

where C lies along the x-axis from x = 0 to x = 5.

63. [T] Use a CAS to evaluate ∫
C

y
2x2 − y2ds, where C

is x = t, y = t, 1 ≤ t ≤ 5.

64. [T] Use a CAS to evaluate ∫
C

xyds, where C is

x = t2, y = 4t, 0 ≤ t ≤ 1.

In the following exercises, find the work done by force field
F on an object moving along the indicated path.

65. F(x, y) = −xi − 2yj

C: y = x3 from (0, 0) to (2, 8)

66. F(x, y) = 2xi + yj C: counterclockwise around the

triangle with vertices (0, 0), (1, 0), and (1, 1)

67. F(x, y, z) = xi + yj − 5zk
C: r(t) = 2 cos ti + 2 sin tj + tk, 0 ≤ t ≤ 2π

68. Let F be vector field

F(x, y) = ⎛
⎝y2 + 2xey + 1⎞

⎠i + ⎛
⎝2xy + x2 ey + 2y⎞

⎠j.

Compute the work of integral ∫
C

F · dr, where C is the

path r(t) = sin ti + cos tj, 0 ≤ t ≤ π
2.

69. Compute the work done by force
F(x, y, z) = 2xi + 3yj − zk along path

r(t) = ti + t2 j + t3 k, where 0 ≤ t ≤ 1.

70. Evaluate ∫
C

F · dr, where

F(x, y) = 1
x + yi + 1

x + y j and C is the segment of the

unit circle going counterclockwise from (1, 0) to (0, 1).

71. Force F(x, y, z) = zyi + xj + z2 xk acts on a particle

that travels from the origin to point (1, 2, 3). Calculate the
work done if the particle travels:

a. along the path
(0, 0, 0) → (1, 0, 0) → (1, 2, 0) → (1, 2, 3)
along straight-line segments joining each pair of
endpoints;

b. along the straight line joining the initial and final
points.

c. Is the work the same along the two paths?

72. Find the work done by vector field
F(x, y, z) = xi + 3xyj − (x + z)k on a particle moving

along a line segment that goes from (1, 4, 2) to (0, 5, 1).

73. How much work is required to move an object in
vector field F(x, y) = yi + 3xj along the upper part of

ellipse x2

4 + y2 = 1 from (2, 0) to (−2, 0)?

74. A vector field is given by
F(x, y) = (2x + 3y)i + (3x + 2y)j. Evaluate the line

integral of the field around a circle of unit radius traversed
in a clockwise fashion.

75. Evaluate the line integral of scalar function xy along

parabolic path y = x2 connecting the origin to point (1,

1).

76. Find ∫
C

y2 dx + ⎛
⎝xy − x2⎞

⎠dy along C: y = 3x from

(0, 0) to (1, 3).

77. Find ∫
C

y2 dx + ⎛
⎝xy − x2⎞

⎠dy along C: y2 = 9x from

(0, 0) to (1, 3).

For the following exercises, use a CAS to evaluate the
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given line integrals.

78. [T] Evaluate F(x, y, z) = x2 zi + 6yj + yz2 k,
where C is represented by

r(t) = ti + t2 j + ln tk, 1 ≤ t ≤ 3.

79. [T] Evaluate line integral ∫
γ
xey ds where, γ is the

arc of curve x = ey from (1, 0) to (e, 1).

80. [T] Evaluate the integral ∫
γ
xy2 ds, where γ is a

triangle with vertices (0, 1, 2), (1, 0, 3), and (0, −1, 0).

81. [T] Evaluate line integral ∫
γ
⎛
⎝y2 − xy⎞

⎠dx, where γ

is curve y = ln x from (1, 0) toward (e, 1).

82. [T] Evaluate line integral ∫
γ
xy4 ds, where γ is the

right half of circle x2 + y2 = 16.

83. [T] Evaluate ∫
C

F · dr, where

F(x, y, z) = x2 yi + (x − z)j + xyzk and C:

r(t) = ti + t2 j + 2k, 0 ≤ t ≤ 1.

84. Evaluate ∫
C

F · dr, where

F(x, y) = 2x sin(y)i + ⎛
⎝x2 cos(y) − 3y2⎞

⎠j and C is any

path from (−1, 0) to (5, 1).

85. Find the line integral of

F(x, y, z) = 12x2 i − 5xyj + xzk over path C defined by

y = x2, z = x3 from point (0, 0, 0) to point (2, 4, 8).

86. Find the line integral of ∫
C

⎛
⎝1 + x2 y⎞

⎠ds, where C is

ellipse r(t) = 2 cos ti + 3 sin tj from 0 ≤ t ≤ π.

For the following exercises, find the flux.

87. Compute the flux of F = x2 i + yj across a line

segment from (0, 0) to (1, 2).

88. Let F = 5i and let C be curve y = 0, 0 ≤ x ≤ 4.
Find the flux across C.

89. Let F = 5j and let C be curve y = 0, 0 ≤ x ≤ 4.
Find the flux across C.

90. Let F = −yi + xj and let C: r(t) = cos ti + sin tj
(0 ≤ t ≤ 2π). Calculate the flux across C.

91. Let F = ⎛
⎝x2 + y3⎞

⎠i + (2xy)j. Calculate flux F

orientated counterclockwise across curve C: x2 + y2 = 9.

92. Find the line integral of ∫
C

z2 dx + ydy + 2ydz,

where C consists of two parts: C1 and C2. C1 is the

intersection of cylinder x2 + y2 = 16 and plane z = 3
from (0, 4, 3) to (−4, 0, 3). C2 is a line segment from

(−4, 0, 3) to (0, 1, 5).

93. A spring is made of a thin wire twisted into the shape
of a circular helix x = 2 cos t, y = 2 sin t, z = t. Find the

mass of two turns of the spring if the wire has constant mass
density.

94. A thin wire is bent into the shape of a semicircle of
radius a. If the linear mass density at point P is directly
proportional to its distance from the line through the
endpoints, find the mass of the wire.

95. An object moves in force field

F(x, y, z) = y2 i + 2(x + 1)yj counterclockwise from

point (2, 0) along elliptical path x2 + 4y2 = 4 to

(−2, 0), and back to point (2, 0) along the x-axis. How

much work is done by the force field on the object?

96. Find the work done when an object moves in force
field F(x, y, z) = 2xi − (x + z)j + (y − x)k along the

path given by r(t) = t2 i + ⎛
⎝t2 − t⎞

⎠j + 3k, 0 ≤ t ≤ 1.

97. If an inverse force field F is given by

F(x, y, z) = k
‖ r ‖ 3r, where k is a constant, find the

work done by F as its point of application moves along the
x-axis from A(1, 0, 0) to B(2, 0, 0).

98. David and Sandra plan to evaluate line integral

∫
C

F · dr along a path in the xy-plane from (0, 0) to (1,

1). The force field is F(x, y) = (x + 2y)i + (−x + y2)j.
David chooses the path that runs along the x-axis from (0,
0) to (1, 0) and then runs along the vertical line x = 1 from

(1, 0) to the final point (1, 1). Sandra chooses the direct path
along the diagonal line y = x from (0, 0) to (1, 1). Whose

line integral is larger and by how much?
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6.3 | Conservative Vector Fields

Learning Objectives
6.3.1 Describe simple and closed curves; define connected and simply connected regions.

6.3.2 Explain how to find a potential function for a conservative vector field.

6.3.3 Use the Fundamental Theorem for Line Integrals to evaluate a line integral in a vector field.

6.3.4 Explain how to test a vector field to determine whether it is conservative.

In this section, we continue the study of conservative vector fields. We examine the Fundamental Theorem for Line
Integrals, which is a useful generalization of the Fundamental Theorem of Calculus to line integrals of conservative vector
fields. We also discover show how to test whether a given vector field is conservative, and determine how to build a
potential function for a vector field known to be conservative.

Curves and Regions
Before continuing our study of conservative vector fields, we need some geometric definitions. The theorems in the
subsequent sections all rely on integrating over certain kinds of curves and regions, so we develop the definitions of those
curves and regions here.

We first define two special kinds of curves: closed curves and simple curves. As we have learned, a closed curve is one that
begins and ends at the same point. A simple curve is one that does not cross itself. A curve that is both closed and simple is
a simple closed curve (Figure 6.25).

Definition

Curve C is a closed curve if there is a parameterization r(t), a ≤ t ≤ b of C such that the parameterization traverses

the curve exactly once and r(a) = r(b). Curve C is a simple curve if C does not cross itself. That is, C is simple

if there exists a parameterization r(t), a ≤ t ≤ b of C such that r is one-to-one over (a, b). It is possible for

r(a) = r(b), meaning that the simple curve is also closed.

Figure 6.25 Types of curves that are simple or not simple and closed or not closed.

Example 6.27

Determining Whether a Curve Is Simple and Closed
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Is the curve with parameterization r(t) = 〈 cos t, sin(2t)
2 〉 , 0 ≤ t ≤ 2π a simple closed curve?

Solution

Note that r(0) = 〈 1, 0 〉 = r(2π); therefore, the curve is closed. The curve is not simple, however. To see this,

note that r⎛
⎝
π
2

⎞
⎠ = 〈 0, 0 〉 = r⎛

⎝
3π
2

⎞
⎠, and therefore the curve crosses itself at the origin (Figure 6.26).

Figure 6.26 A curve that is closed but not simple.

Is the curve given by parameterization r(t) = 〈 2 cos t, 3 sin t 〉 , 0 ≤ t ≤ 6π, a simple closed curve?

Many of the theorems in this chapter relate an integral over a region to an integral over the boundary of the region, where
the region’s boundary is a simple closed curve or a union of simple closed curves. To develop these theorems, we need two
geometric definitions for regions: that of a connected region and that of a simply connected region. A connected region is
one in which there is a path in the region that connects any two points that lie within that region. A simply connected region
is a connected region that does not have any holes in it. These two notions, along with the notion of a simple closed curve,
allow us to state several generalizations of the Fundamental Theorem of Calculus later in the chapter. These two definitions
are valid for regions in any number of dimensions, but we are only concerned with regions in two or three dimensions.

Definition

A region D is a connected region if, for any two points P1 and P2, there is a path from P1 to P2 with a trace

contained entirely inside D. A region D is a simply connected region if D is connected for any simple closed curve C
that lies inside D, and curve C can be shrunk continuously to a point while staying entirely inside D. In two dimensions,
a region is simply connected if it is connected and has no holes.

All simply connected regions are connected, but not all connected regions are simply connected (Figure 6.27).
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6.25

Figure 6.27 Not all connected regions are simply connected. (a)
Simply connected regions have no holes. (b) Connected regions that are
not simply connected may have holes but you can still find a path in the
region between any two points. (c) A region that is not connected has
some points that cannot be connected by a path in the region.

Is the region in the below image connected? Is the region simply connected?

Fundamental Theorem for Line Integrals
Now that we understand some basic curves and regions, let’s generalize the Fundamental Theorem of Calculus to line
integrals. Recall that the Fundamental Theorem of Calculus says that if a function f has an antiderivative F, then the

integral of f from a to b depends only on the values of F at a and at b—that is,

∫
a

b
f (x)dx = F(b) − F(a).

If we think of the gradient as a derivative, then the same theorem holds for vector line integrals. We show how this works
using a motivational example.
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Example 6.28

Evaluating a Line Integral and the Antiderivatives of the Endpoints

Let F(x, y) = 〈 2x, 4y 〉 . Calculate ∫
C

F • dr, where C is the line segment from (0,0) to (2,2)(Figure 6.28).

Solution

We use Equation 6.9 to calculate ∫
C

F • dr. Curve C can be parameterized by r(t) = 〈 2t, 2t 〉 , 0 ≤ t ≤ 1.

Then, F⎛
⎝r(t)⎞

⎠ = 〈 4t, 8t 〉 and r′ (t) = 〈 2, 2 〉 , which implies that

∫
C

F · dr = ∫
0

1
〈 4t, 8t 〉 · 〈 2, 2 〉 dt

= ∫
0

1
(8t + 16t)dt = ∫

0

1
24t dt

= ⎡
⎣12t2⎤

⎦0
1

= 12.

Figure 6.28 The value of line integral ∫
C

F • dr depends

only on the value of the potential function of F at the endpoints
of the curve.

Notice that F = ∇ f , where f (x, y) = x2 + 2y2. If we think of the gradient as a derivative, then f is an

“antiderivative” of F. In the case of single-variable integrals, the integral of derivative g′ (x) is g(b) − g(a),
where a is the start point of the interval of integration and b is the endpoint. If vector line integrals work like
single-variable integrals, then we would expect integral F to be f ⎛

⎝P1
⎞
⎠ − f ⎛

⎝P0
⎞
⎠, where P1 is the endpoint of the

curve of integration and P0 is the start point. Notice that this is the case for this example:

∫
C

F • dr = ∫
C

∇ f • dr = 12

and

f (2, 2) − f (0, 0) = 4 + 8 − 0 = 12.
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In other words, the integral of a “derivative” can be calculated by evaluating an “antiderivative” at the endpoints
of the curve and subtracting, just as for single-variable integrals.

The following theorem says that, under certain conditions, what happened in the previous example holds for any gradient
field. The same theorem holds for vector line integrals, which we call the Fundamental Theorem for Line Integrals.

Theorem 6.7: The Fundamental Theorem for Line Integrals

Let C be a piecewise smooth curve with parameterization r(t), a ≤ t ≤ b. Let f be a function of two or three

variables with first-order partial derivatives that exist and are continuous on C. Then,

(6.12)∫
C

∇ f • dr = f ⎛
⎝r(b)⎞

⎠ − f (r(a)).

Proof

By Equation 6.9,

∫
C

∇ f • dr = ∫
a

b
∇ f (r(t)) • r′ (t)dt.

By the chain rule,

d
dt

⎛
⎝ f (r(t)) = ∇ f (r(t)) • r′ (t).

Therefore, by the Fundamental Theorem of Calculus,

∫
C

∇ f • dr = ∫
a

b
∇ f (r(t)) • r′ (t)dt

= ∫
a

b
d
dt

⎛
⎝ f (r(t))dt

= ⎡
⎣ f (r(t))⎤

⎦t = a
t = b

= f ⎛
⎝r(b)⎞

⎠ − f (r(a)).

□

We know that if F is a conservative vector field, there are potential functions f such that ∇ f = F. Therefore

∫
C

F · dr = ∫
C

∇ f · dr = f ⎛
⎝r(b)⎞

⎠ − f (r(a)). In other words, just as with the Fundamental Theorem of Calculus, computing

the line integral ∫
C

F · dr, where F is conservative, is a two-step process: (1) find a potential function (“antiderivative”)

f for F and (2) compute the value of f at the endpoints of C and calculate their difference f ⎛
⎝r(b)⎞

⎠ − f ⎛
⎝r(a)⎞

⎠. Keep in

mind, however, there is one major difference between the Fundamental Theorem of Calculus and the Fundamental Theorem
for Line Integrals. A function of one variable that is continuous must have an antiderivative. However, a vector field, even
if it is continuous, does not need to have a potential function.

Example 6.29

Applying the Fundamental Theorem
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Calculate integral ∫
C

F • dr, where F(x, y, z) = 〈 2x lny, x2
y + z2, 2yz 〉 and C is a curve with

parameterization r(t) = 〈 t2, t, t 〉 , 1 ≤ t ≤ e

a. without using the Fundamental Theorem of Line Integrals and

b. using the Fundamental Theorem of Line Integrals.

Solution

a. First, let’s calculate the integral without the Fundamental Theorem for Line Integrals and instead use
Equation 6.9:

∫
C

F • dr = ∫
1

e
F(r(t)) • r′ (t)dt

= ∫
1

e
〈 2t2 ln t, t4

t + t2, 2t2 〉 • 〈 2t, 1, 1 〉 dt

= ∫
1

e
⎛
⎝4t3 ln t + t3 + 3t2⎞

⎠dt

= ∫
1

e
4t3 ln tdt + ∫

1

e
⎛
⎝t

3 + 3t2⎞
⎠dt

= ∫
1

e
4t3 ln tdt + ⎡

⎣
t4

4 + t3⎤
⎦1

e

= r∫
1

e
t3 ln tdt + e4

4 + e3 − 5
4.

Integral ∫
1

e
t3 ln tdt requires integration by parts. Let u = ln t and dv = t3. Then u = ln t, dv = t3

and

du = 1
t dt, v = t4

4 .

Therefore,

∫
1

e
t3 ln tdt = ⎡

⎣
t4

4 ln t⎤⎦1

e
− 1

4∫
1

e
t3 dt

= e4

4 − 1
r
⎛
⎝
e4

4 − 1
4

⎞
⎠.

Thus,

∫
C

F • dr = 4∫
1

e
t3 ln tdt + e4

4 + e3 − 5
4

= 4⎛
⎝
e4

4 − 1
4

⎛
⎝
e4

4 − 1
4

⎞
⎠
⎞
⎠ + e4

4 + e3 − 5
4

= e4 − e4

4 + 1
4 + e4

4 + e3 − 5
4

= e4 + e3 − 1.
b. Given that f (x, y, z) = x2 lny + yz2 is a potential function for F, let’s use the Fundamental Theorem

for Line Integrals to calculate the integral. Note that
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∫
C

F • dr = ∫
C

∇ f • dr

= f (r(e)) − f (r(1))

= f ⎛
⎝e2, e, e⎞

⎠ − f (1, 1, 1)

= e4 + e3 − 1.

This calculation is much more straightforward than the calculation we did in (a). As long as we have a
potential function, calculating a line integral using the Fundamental Theorem for Line Integrals is much
easier than calculating without the theorem.

Example 6.29 illustrates a nice feature of the Fundamental Theorem of Line Integrals: it allows us to calculate more easily
many vector line integrals. As long as we have a potential function, calculating the line integral is only a matter of evaluating
the potential function at the endpoints and subtracting.

Given that f (x, y) = (x − 1)2 y + ⎛
⎝y + 1⎞

⎠
2 x is a potential function for

F = 〈 2xy − 2y + ⎛
⎝y + 1⎞

⎠
2, (x − 1)2 + 2yx + 2x 〉 , calculate integral ∫

C
F · dr, where C is the lower half

of the unit circle oriented counterclockwise.

The Fundamental Theorem for Line Integrals has two important consequences. The first consequence is that if F is

conservative and C is a closed curve, then the circulation of F along C is zero—that is, ∫
C

F · dr = 0. To see why this is

true, let f be a potential function for F. Since C is a closed curve, the terminal point r(b) of C is the same as the initial

point r(a) of C—that is, r(a) = r(b). Therefore, by the Fundamental Theorem for Line Integrals,

∮
C

F · dr = ∮
C

∇ f · dr

= f ⎛
⎝r(b)⎞

⎠ − f (r(a))
= f ⎛

⎝r(b)⎞
⎠ − f ⎛

⎝r(b)⎞
⎠

= 0.

Recall that the reason a conservative vector field F is called “conservative” is because such vector fields model forces in
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which energy is conserved. We have shown gravity to be an example of such a force. If we think of vector field F in integral

∮
C

F · dr as a gravitational field, then the equation ∮
C

F · dr = 0 follows. If a particle travels along a path that starts and

ends at the same place, then the work done by gravity on the particle is zero.

The second important consequence of the Fundamental Theorem for Line Integrals is that line integrals of conservative
vector fields are independent of path—meaning, they depend only on the endpoints of the given curve, and do not depend
on the path between the endpoints.

Definition

Let F be a vector field with domain D. The vector field F is independent of path (or path independent) if

∫
C1

F · dr = ∫
C2

F · dr for any paths C1 and C2 in D with the same initial and terminal points.

The second consequence is stated formally in the following theorem.

Theorem 6.8: Path Independence of Conservative Fields

If F is a conservative vector field, then F is independent of path.

Proof

Let D denote the domain of F and let C1 and C2 be two paths in D with the same initial and terminal points (Figure

6.29). Call the initial point P1 and the terminal point P2. Since F is conservative, there is a potential function f for F.

By the Fundamental Theorem for Line Integrals,

∫
C1

F · dr = f (P2) − f (P1) = ∫
C2

F · dr.

Therefore, ∫
C1

F · dr = ∫
C2

F · dr and F is independent of path.

□

Figure 6.29 The vector field is conservative, and therefore independent of path.

To visualize what independence of path means, imagine three hikers climbing from base camp to the top of a mountain.
Hiker 1 takes a steep route directly from camp to the top. Hiker 2 takes a winding route that is not steep from camp to the
top. Hiker 3 starts by taking the steep route but halfway to the top decides it is too difficult for him. Therefore he returns to
camp and takes the non-steep path to the top. All three hikers are traveling along paths in a gravitational field. Since gravity
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is a force in which energy is conserved, the gravitational field is conservative. By independence of path, the total amount
of work done by gravity on each of the hikers is the same because they all started in the same place and ended in the same
place. The work done by the hikers includes other factors such as friction and muscle movement, so the total amount of
energy each one expended is not the same, but the net energy expended against gravity is the same for all three hikers.

We have shown that if F is conservative, then F is independent of path. It turns out that if the domain of F is open and
connected, then the converse is also true. That is, if F is independent of path and the domain of F is open and connected,
then F is conservative. Therefore, the set of conservative vector fields on open and connected domains is precisely the set
of vector fields independent of path.

Theorem 6.9: The Path Independence Test for Conservative Fields

If F is a continuous vector field that is independent of path and the domain D of F is open and connected, then F is
conservative.

Proof

We prove the theorem for vector fields in ℝ2 . The proof for vector fields in ℝ3 is similar. To show that F = 〈 P, Q 〉
is conservative, we must find a potential function f for F. To that end, let X be a fixed point in D. For any point (x, y) in

D, let C be a path from X to (x, y). Define f (x, y) by f (x, y) = ∫
C

F · dr. (Note that this definition of f makes sense

only because F is independent of path. If F was not independent of path, then it might be possible to find another path C′

from X to (x, y) such that ∫
C

F · dr ≠ ∫
C

F · dr, and in such a case f (x, y) would not be a function.) We want to show

that f has the property ∇ f = F.

Since domain D is open, it is possible to find a disk centered at (x, y) such that the disk is contained entirely inside D. Let

(a, y) with a < x be a point in that disk. Let C be a path from X to (x, y) that consists of two pieces: C1 and C2. The

first piece, C1, is any path from C to (a, y) that stays inside D; C2 is the horizontal line segment from (a, y) to (x, y)
(Figure 6.30). Then

f (x, y) = ∫
C1

F · dr + ∫
C2

F · dr.

The first integral does not depend on x, so

fx = ∂
∂ x∫

C2
F • dr.

If we parameterize C2 by r(t) = 〈 t, y 〉 , a ≤ t ≤ x, then

fx = ∂
∂ x∫

C2
F • dr

= ∂
∂ x∫

a

x
F(r(t)) • r′ (t)dt

= ∂
∂ x∫

a

x
F(r(t)) • d

dt
⎛
⎝ 〈 t, y 〉 ⎞

⎠dt

= ∂
∂ x∫

a

x
F(r(t)) • 〈 1, 0 〉 dt

= ∂
∂ x∫

a

x
P(t, y)dt.

By the Fundamental Theorem of Calculus (part 1),

fx = ∂
∂ x∫

a

x
P(t, y)dt = P(x, y).
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Figure 6.30 Here, C1 is any path from C to (a, y) that

stays inside D, and C2 is the horizontal line segment from

(a, y) to (x, y).

A similar argument using a vertical line segment rather than a horizontal line segment shows that fy = Q(x, y).

Therefore ∇ f = F and F is conservative.

□

We have spent a lot of time discussing and proving Path Independence of Conservative Fields and The Path
Independence Test for Conservative Fields, but we can summarize them simply: a vector field F on an open and
connected domain is conservative if and only if it is independent of path. This is important to know because conservative
vector fields are extremely important in applications, and these theorems give us a different way of viewing what it means
to be conservative using path independence.

Example 6.30

Showing That a Vector Field Is Not Conservative

Use path independence to show that vector field F(x, y) = 〈 x2 y, y + 5 〉 is not conservative.

Solution

We can indicate that F is not conservative by showing that F is not path independent. We do so by giving two

different paths, C1 and C2, that both start at (0, 0) and end at (1, 1), and yet ∫
C1

F • dr ≠ ∫
C2

F • dr.

Let C1 be the curve with parameterization r1(t) = 〈 t, t 〉 , 0 ≤ t ≤ 1 and let C2 be the curve with

parameterization r2(t) = 〈 t, t2 〉 , 0 ≤ t ≤ 1 (Figure 6.31). Then
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∫
C1

F · dr = ∫
0

1
F⎛

⎝r1(t)⎞
⎠ · r1 ′(t)dt

= ∫
0

1
〈 t3, t + 5 〉 · 〈 1, 1 〉 dt = ∫

0

1
⎛
⎝t

3 + t + 5⎞
⎠dt

= ⎡
⎣

t4

4 + t2

2 + 5t⎤⎦0

1
= 23

4

and

∫
C2

F · dr = ∫
0

1
F⎛

⎝r2(t)⎞
⎠ · r2′(t)dt

= ∫
0

1
〈 t4, t2 + 5 〉 · 〈 1, 2t 〉 dt = ∫

0

1
⎛
⎝t4 + 2t3 + 10t⎞

⎠dt

= ⎡
⎣

t5

5 + t4

2 + 5t2⎤
⎦0

1
= 57

10.

Since ∫
C1

F • dr ≠ ∫
C2

F • dr, the value of a line integral of F depends on the path between two given points.

Therefore, F is not independent of path, and F is not conservative.

Figure 6.31 Curves C1 and C2 are both oriented from left

to right.

Show that F(x, y) = 〈 xy, x2 y2 〉 is not path independent by considering the line segment from

(0, 0) to (0, 2) and the piece of the graph of y = x2

2 that goes from (0, 0) to (0, 2).

Conservative Vector Fields and Potential Functions

As we have learned, the Fundamental Theorem for Line Integrals says that if F is conservative, then calculating ∫
C

F · dr

has two steps: first, find a potential function f for F and, second, calculate f (P1) − f (P0), where P1 is the endpoint of

C and P0 is the starting point. To use this theorem for a conservative field F, we must be able to find a potential function

f for F. Therefore, we must answer the following question: Given a conservative vector field F, how do we find a function
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f such that ∇ f = F? Before giving a general method for finding a potential function, let’s motivate the method with an

example.

Example 6.31

Finding a Potential Function

Find a potential function for F(x, y) = 〈 2xy3, 3x2 y2 + cos(y) 〉 , thereby showing that F is conservative.

Solution

Suppose that f (x, y) is a potential function for F. Then, ∇ f = F, and therefore

fx = 2xy3 and fy = 3x2 y2 + cosy.

Integrating the equation fx = 2xy3 with respect to x yields the equation

f (x, y) = x2 y3 + h(y).

Notice that since we are integrating a two-variable function with respect to x, we must add a constant of
integration that is a constant with respect to x, but may still be a function of y. The equation

f (x, y) = x2 y3 + h(y) can be confirmed by taking the partial derivative with respect to x:

∂ f
∂ x = ∂

∂ x
⎛
⎝x2 y3⎞

⎠ + ∂
∂ x

⎛
⎝h(y)⎞

⎠ = 2xy3 + 0 = 2xy3.

Since f is a potential function for F,

fy = 3x2 y2 + cos(y),

and therefore

3x2 y2 + g′ (y) = 3x2 y2 + cos(y).

This implies that h′(y) = cosy, so h(y) = siny + C. Therefore, any function of the form

f (x, y) = x2 y3 + sin(y) + C is a potential function. Taking, in particular, C = 0 gives the potential function

f (x, y) = x2 y3 + sin(y).

To verify that f is a potential function, note that ∇ f = 〈 2xy3, 3x2 y2 + cosy 〉 = F.

Find a potential function for F(x, y) = 〈 ex y3 + y, 3ex y2 + x 〉 .

The logic of the previous example extends to finding the potential function for any conservative vector field in ℝ2 . Thus,

we have the following problem-solving strategy for finding potential functions:

Problem-Solving Stragegy: Finding a Potential Function for a Conservative Vector Field
F(x, y) = 〈 P(x, y), Q(x, y) 〉

1. Integrate P with respect to x. This results in a function of the form g(x, y) + h(y), where h(y) is unknown.
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2. Take the partial derivative of g(x, y) + h(y) with respect to y, which results in the function gy (x, y) + h′ (y).

3. Use the equation gy (x, y) + h′ (y) = Q(x, y) to find h′ (y).

4. Integrate h′ (y) to find h(y).

5. Any function of the form f (x, y) = g(x, y) + h(y) + C, where C is a constant, is a potential function for F.

We can adapt this strategy to find potential functions for vector fields in ℝ3 , as shown in the next example.

Example 6.32

Finding a Potential Function in ℝ3

Find a potential function for F(x, y) = 〈 2xy, x2 + 2yz3, 3y2 z2 + 2z 〉 , thereby showing that F is

conservative.

Solution

Suppose that f is a potential function. Then, ∇ f = F and therefore fx = 2xy. Integrating this equation with

respect to x yields the equation f (x, y, z) = x2 y + g(y, z) for some function g. Notice that, in this case, the

constant of integration with respect to x is a function of y and z.

Since f is a potential function,

x2 + 2yz3 = fy = x2 + gy.

Therefore,

gy = 2yz3.

Integrating this function with respect to y yields

g(y, z) = y2 z3 + h(z)

for some function h(z) of z alone. (Notice that, because we know that g is a function of only y and z, we do not

need to write g(y, z) = y2 z3 + h(x, z).) Therefore,

f (x, y, z) = x2 y + g(y, z) = x2 y + y2 z3 + h(z).

To find f , we now must only find h. Since f is a potential function,

3y2 z2 + 2z = gz = 3y2 z2 + h′ (z).

This implies that h′ (z) = 2z, so h(z) = z2 + C. Letting C = 0 gives the potential function

f (x, y, z) = x2 y + y2 z3 + z2.

To verify that f is a potential function, note that ∇ f = 〈 2xy, x2 + 2yz3, 3y2 z2 + 2z 〉 = F.

Find a potential function for F(x, y, z) = 〈 12x2, cosy cos z, 1 − siny sinz 〉 .
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We can apply the process of finding a potential function to a gravitational force. Recall that, if an object has unit mass and

is located at the origin, then the gravitational force in ℝ2 that the object exerts on another object of unit mass at the point

(x, y) is given by vector field

F(x, y) = −G 〈 x
⎛
⎝x2 + y2⎞

⎠
3/2, y

⎛
⎝x2 + y2⎞

⎠
3/2 〉 ,

where G is the universal gravitational constant. In the next example, we build a potential function for F, thus confirming
what we already know: that gravity is conservative.

Example 6.33

Finding a Potential Function

Find a potential function f for F(x, y) = −G 〈 x
⎛
⎝x2 + y2⎞

⎠
3/2, y

⎛
⎝x2 + y2⎞

⎠
3/2 〉 .

Solution

Suppose that f is a potential function. Then, ∇ f = F and therefore

fx = −Gx
⎛
⎝x2 + y2⎞

⎠
3/2.

To integrate this function with respect to x, we can use u-substitution. If u = x2 + y2, then du
2 = xdx, so

∫ −Gx
⎛
⎝x2 + y2⎞

⎠
3/2dx = ∫ −G

2u3/2du

= G
u + h(y)

= G
x2 + y2

+ h(y)

for some function h(y). Therefore,

f (x, y) = G
x2 + y2

+ h(y).

Since f is a potential function for F,

fy = −Gy
⎛
⎝x2 + y2⎞

⎠
3/2.

Since f (x, y) = G
x2 + y2

+ h(y), fy also equals
−Gy

⎛
⎝x2 + y2⎞

⎠
3/2 + h′ (y).

Therefore,

−Gy
⎛
⎝x2 + y2⎞

⎠
3/2 + h′(y) = −Gy

⎛
⎝x2 + y2⎞

⎠
3/2,

which implies that h′(y) = 0. Thus, we can take h(y) to be any constant; in particular, we can let h(y) = 0.
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The function

f (x, y) = G
x2 + y2

is a potential function for the gravitational field F. To confirm that f is a potential function, note that

∇ f = 〈 −1
2

G
⎛
⎝x2 + y2⎞

⎠
3/2(2x), − 1

2
G

⎛
⎝x2 + y2⎞

⎠
3/2

⎛
⎝2y⎞

⎠ 〉

= 〈 −Gx
⎛
⎝x2 + y2⎞

⎠
3/2, −Gy

⎛
⎝x2 + y2⎞

⎠
3/2 〉

= F.

Find a potential function f for the three-dimensional gravitational force

F(x, y, z) = 〈 −Gx
⎛
⎝x2 + y2 + z2⎞

⎠
3/2, −Gy

⎛
⎝x2 + y2 + z2⎞

⎠
3/2, −Gz

⎛
⎝x2 + y2 + z2⎞

⎠
3/2 〉 .

Testing a Vector Field
Until now, we have worked with vector fields that we know are conservative, but if we are not told that a vector field is
conservative, we need to be able to test whether it is conservative. Recall that, if F is conservative, then F has the cross-
partial property (see The Cross-Partial Property of Conservative Vector Fields). That is, if F = 〈 P, Q, R 〉 is

conservative, then Py = Qx, Pz = Rx, and Qz = Ry. So, if F has the cross-partial property, then is F conservative? If

the domain of F is open and simply connected, then the answer is yes.

Theorem 6.10: The Cross-Partial Test for Conservative Fields

If F = 〈 P, Q, R 〉 is a vector field on an open, simply connected region D and Py = Qx, Pz = Rx, and Qz = Ry

throughout D, then F is conservative.

Although a proof of this theorem is beyond the scope of the text, we can discover its power with some examples. Later, we
see why it is necessary for the region to be simply connected.

Combining this theorem with the cross-partial property, we can determine whether a given vector field is conservative:

Theorem 6.11: Cross-Partial Property of Conservative Fields

Let F = 〈 P, Q, R 〉 be a vector field on an open, simply connected region D. Then Py = Qx, Pz = Rx, and

Qz = Ry throughout D if and only if F is conservative.

The version of this theorem in ℝ2 is also true. If F = 〈 P, Q 〉 is a vector field on an open, simply connected domain

in ℝ2 , then F is conservative if and only if Py = Qx.
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Example 6.34

Determining Whether a Vector Field Is Conservative

Determine whether vector field F(x, y, z) = 〈 xy2 z, x2 yz, z2 〉 is conservative.

Solution

Note that the domain of F is all of ℝ2 and ℝ3 is simply connected. Therefore, we can use Cross-Partial

Property of Conservative Fields to determine whether F is conservative. Let

P(x, y, z) = xy2 z, Q(x, y, z) = x2 yz, and R(x, y, z) = z2.

Since Qz = x2 y and Ry = 0, the vector field is not conservative.

Example 6.35

Determining Whether a Vector Field Is Conservative

Determine vector field F(x, y) = 〈 x ln(y), x2

2y 〉 is conservative.

Solution

Note that the domain of F is the part of ℝ2 in which y > 0. Thus, the domain of F is part of a plane

above the x-axis, and this domain is simply connected (there are no holes in this region and this region is
connected). Therefore, we can use Cross-Partial Property of Conservative Fields to determine whether F
is conservative. Let

P(x, y) = x ln(y) and Q(x, y) = x2

2y.

Then Py = x
y = Qx and thus F is conservative.

Determine whether F(x, y) = 〈 sinx cosy, cosx siny 〉 is conservative.

When using Cross-Partial Property of Conservative Fields, it is important to remember that a theorem is a tool, and
like any tool, it can be applied only under the right conditions. In the case of Cross-Partial Property of Conservative
Fields, the theorem can be applied only if the domain of the vector field is simply connected.

To see what can go wrong when misapplying the theorem, consider the vector field from Example 6.30:

F(x, y) = y
x2 + y2i + −x

x2 + y2 j.

This vector field satisfies the cross-partial property, since
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∂
∂ y

⎛

⎝
⎜ y
x2 + y2

⎞

⎠
⎟ =

⎛
⎝x2 + y2⎞

⎠ − y⎛
⎝2y⎞

⎠

⎛
⎝x2 + y2⎞

⎠
2 = x2 − y2

⎛
⎝x2 + y2⎞

⎠
2

and

∂
∂ x

⎛

⎝
⎜ −x
x2 + y2

⎞

⎠
⎟ =

−⎛
⎝x2 + y2⎞

⎠ + x(2x)
⎛
⎝x2 + y2⎞

⎠
2 = x2 − y2

⎛
⎝x2 + y2⎞

⎠
2.

Since F satisfies the cross-partial property, we might be tempted to conclude that F is conservative. However, F is not
conservative. To see this, let

r(t) = 〈 cos t, sin t 〉 , 0 ≤ t ≤ π

be a parameterization of the upper half of a unit circle oriented counterclockwise (denote this C1) and let

s(t) = 〈 cos t, −sin t 〉 , 0 ≤ t ≤ π

be a parameterization of the lower half of a unit circle oriented clockwise (denote this C2). Notice that C1 and C2 have

the same starting point and endpoint. Since sin2 t + cos2 t = 1,

F⎛
⎝r(t)⎞

⎠ • r′ (t) = 〈 sin(t), −cos(t) 〉 • 〈 −sin(t), cos(t) 〉 = −1

and

F(s(t)) · s′(t) = 〈 −sin t, −cos t 〉 · 〈 −sin t, −cos t 〉

= sin2 t + cos2 t
= 1.

Therefore,

∫
C1

F · dr = ∫
0

π
−1dt = −π and ∫

C2
F · dr = ∫

0

π
1dt = π.

Thus, C1 and C2 have the same starting point and endpoint, but ∫
C1

F · dr ≠ ∫
C2

F · dr. Therefore, F is not independent

of path and F is not conservative.

To summarize: F satisfies the cross-partial property and yet F is not conservative. What went wrong? Does this contradict

Cross-Partial Property of Conservative Fields? The issue is that the domain of F is all of ℝ2 except for the origin.

In other words, the domain of F has a hole at the origin, and therefore the domain is not simply connected. Since the domain
is not simply connected, Cross-Partial Property of Conservative Fields does not apply to F.

We close this section by looking at an example of the usefulness of the Fundamental Theorem for Line Integrals. Now
that we can test whether a vector field is conservative, we can always decide whether the Fundamental Theorem for Line

Integrals can be used to calculate a vector line integral. If we are asked to calculate an integral of the form ∫
C

F · dr, then

our first question should be: Is F conservative? If the answer is yes, then we should find a potential function and use the
Fundamental Theorem for Line Integrals to calculate the integral. If the answer is no, then the Fundamental Theorem for
Line Integrals can’t help us and we have to use other methods, such as using Equation 6.9.

Example 6.36

Using the Fundamental Theorem for Line Integrals

Calculate line integral ∫
C

F · dr, where F(x, y, z) = 〈 2xey z + ex z, x2 ey z, x2 ey + ex 〉 and C is any
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6.32

smooth curve that goes from the origin to (1, 1, 1).

Solution

Before trying to compute the integral, we need to determine whether F is conservative and whether the domain

of F is simply connected. The domain of F is all of ℝ3 , which is connected and has no holes. Therefore, the

domain of F is simply connected. Let

P(x, y, z) = 2xey z + ex z, Q(x, y, z) = x2 ey z, and R(x, y, z) = x2 ey + ex

so that F = 〈 P, Q, R 〉 . Since the domain of F is simply connected, we can check the cross partials to

determine whether F is conservative. Note that

Py = 2xey z = Qx

Pz = 2xey + ex = Rx

Qz = x2 ey = Ry.

Therefore, F is conservative.

To evaluate ∫
C

F · dr using the Fundamental Theorem for Line Integrals, we need to find a potential function

f for F. Let f be a potential function for F. Then, ∇ f = F, and therefore fx = 2xey z + ex z. Integrating

this equation with respect to x gives f (x, y, z) = x2 ey z + ex z + h(y, z) for some function h. Differentiating

this equation with respect to y gives x2 ey z + hy = Q = x2 ey z, which implies that hy = 0. Therefore,

h is a function of z only, and f (x, y, z) = x2 ey z + ex z + h(z). To find h, note that

fz = x2 ey + ex + h′(z) = R = x2 ey + ex. Therefore, h′(z) = 0 and we can take h(z) = 0. A potential

function for F is f (x, y, z) = x2 ey z + ex z.

Now that we have a potential function, we can use the Fundamental Theorem for Line Integrals to evaluate the
integral. By the theorem,

∫
C

F · dr = ∫
C

∇ f · dr

= f (1, 1, 1) − f (0, 0, 0)
= 2e.

Analysis
Notice that if we hadn’t recognized that F is conservative, we would have had to parameterize C and use
Equation 6.9. Since curve C is unknown, using the Fundamental Theorem for Line Integrals is much simpler.

Calculate integral ∫
C

F · dr, where F(x, y) = 〈 sinx siny, 5 − cosx cosy 〉 and C is a semicircle

with starting point (0, π) and endpoint (0, −π).

Example 6.37

Work Done on a Particle
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6.33

Let F(x, y) = 〈 2xy2, 2x2 y 〉 be a force field. Suppose that a particle begins its motion at the origin and ends

its movement at any point in a plane that is not on the x-axis or the y-axis. Furthermore, the particle’s motion can
be modeled with a smooth parameterization. Show that F does positive work on the particle.

Solution

We show that F does positive work on the particle by showing that F is conservative and then by using the
Fundamental Theorem for Line Integrals.

To show that F is conservative, suppose f (x, y) were a potential function for F. Then,

∇ f = F = 〈 2xy2, 2x2 y 〉 and therefore fx = 2xy2 and fy = 2x2 y. Equation fx = 2xy2 implies that

f (x, y) = x2 y2 + h(y). Deriving both sides with respect to y yields fy = 2x2 y + h′ (y). Therefore, h′(y) = 0

and we can take h(y) = 0.

If f (x, y) = x2 y2, then note that ∇ f = 〈 2xy2, 2x2 y 〉 = F, and therefore f is a potential function for F.

Let (a, b) be the point at which the particle stops is motion, and let C denote the curve that models the particle’s

motion. The work done by F on the particle is ∫
C

F · dr. By the Fundamental Theorem for Line Integrals,

∫
C

F · dr = ∫
C

∇ f · dr

= f (a, b) − f (0, 0)

= a2 b2.

Since a ≠ 0 and b ≠ 0, by assumption, a2 b2 > 0. Therefore, ∫
C

F · dr > 0, and F does positive work on

the particle.

Analysis
Notice that this problem would be much more difficult without using the Fundamental Theorem for Line
Integrals. To apply the tools we have learned, we would need to give a curve parameterization and use Equation
6.9. Since the path of motion C can be as exotic as we wish (as long as it is smooth), it can be very difficult to
parameterize the motion of the particle.

Let F(x, y) = 〈 4x3 y4, 4x4 y3 〉 , and suppose that a particle moves from point (4, 4) to (1, 1)
along any smooth curve. Is the work done by F on the particle positive, negative, or zero?
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6.3 EXERCISES
99. True or False? If vector field F is conservative on the
open and connected region D, then line integrals of F are
path independent on D, regardless of the shape of D.

100. True or False? Function r(t) = a + t(b − a),
where 0 ≤ t ≤ 1, parameterizes the straight-line segment

from a to b.

101. True or False? Vector field
F(x, y, z) = ⎛

⎝y sinz⎞
⎠i + (x sinz)j + (xy cosz)k is

conservative.

102. True or False? Vector field
F(x, y, z) = yi + (x + z)j − yk is conservative.

103. Justify the Fundamental Theorem of Line Integrals

for ∫
C

F · dr in the case when

F(x, y) = ⎛
⎝2x + 2y⎞

⎠i + ⎛
⎝2x + 2y⎞

⎠j and C is a portion of the

positively oriented circle x2 + y2 = 25 from (5, 0) to (3,

4).

104. [T] Find ∫
C

F · dr, ,] where

F(x, y) = ⎛
⎝yexy + cosx⎞

⎠i +
⎛

⎝
⎜xexy + 1

y2 + 1

⎞

⎠
⎟j and C is a

portion of curve y = sinx from x = 0 to x = π
2.

105. [T] Evaluate line integral ∫
C

F · dr, where

F(x, y) = ⎛
⎝ex siny − y⎞

⎠i + ⎛
⎝ex cosy − x − 2⎞

⎠j, and C is

the path given by r(t) = ⎡
⎣t

3 sin πt
2

⎤
⎦i − ⎡

⎣
π
2cos⎛

⎝
πt
2 + π

2
⎞
⎠
⎤
⎦j

for 0 ≤ t ≤ 1.

For the following exercises, determine whether the vector
field is conservative and, if it is, find the potential function.

106. F(x, y) = 2xy3 i + 3y2 x2 j

107. F(x, y) = ⎛
⎝−y + ex siny⎞

⎠i + ⎡
⎣(x + 2)ex cosy⎤

⎦j

108. F(x, y) = ⎛
⎝e2x siny⎞

⎠i + ⎡
⎣e2x cosy⎤

⎦j

109. F(x, y) = (6x + 5y)i + (5x + 4y)j

110.

F(x, y) = ⎡
⎣2x cos(y) − y cos(x)⎤

⎦i + ⎡
⎣−x2 sin(y) − sin(x)⎤

⎦j

111. F(x, y) = ⎡
⎣yex + sin(y)⎤

⎦i + ⎡
⎣ex + x cos(y)⎤

⎦j

For the following exercises, evaluate the line integrals
using the Fundamental Theorem of Line Integrals.

112. ∮
C

(yi + xj) · dr, where C is any path from (0, 0) to

(2, 4)

113. ∮
C

(2ydx + 2xdy), where C is the line segment

from (0, 0) to (4, 4)

114. [T]

∮
C

⎡

⎣
⎢arctan y

x − xy
x2 + y2

⎤

⎦
⎥dx +

⎡

⎣
⎢ x2

x2 + y2 + e−y(1 − y)
⎤

⎦
⎥dy,

where C is any smooth curve from (1, 1) to (−1, 2)

115. Find the conservative vector field for the potential
function

f (x, y) = 5x2 + 3xy + 10y2.

For the following exercises, determine whether the vector
field is conservative and, if so, find a potential function.

116. F(x, y) = ⎛
⎝12xy⎞

⎠i + 6⎛
⎝x2 + y2⎞

⎠j

117. F(x, y) = ⎛
⎝ex cosy⎞

⎠i + 6⎛
⎝ex siny⎞

⎠j

118. F(x, y) = ⎛
⎝2xyex2 y⎞

⎠i + 6⎛
⎝x2 ex2 y⎞

⎠j

119. F(x, y, z) = ⎛
⎝yez⎞

⎠i + (xez)j + ⎛
⎝xyez⎞

⎠k

120. F(x, y, z) = ⎛
⎝siny⎞

⎠i − (x cosy)j + k
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121. F(x, y, z) = ⎛
⎝
1
y

⎞
⎠i +

⎛

⎝
⎜ x
y2

⎞

⎠
⎟j + (2z − 1)k

122. F(x, y, z) = 3z2 i − cosyj + 2xzk

123. F(x, y, z) = ⎛
⎝2xy⎞

⎠i + ⎛
⎝x2 + 2yz⎞

⎠j + y2 k

For the following exercises, determine whether the given
vector field is conservative and find a potential function.

124. F(x, y) = ⎛
⎝ex cosy⎞

⎠i + 6⎛
⎝ex siny⎞

⎠j

125. F(x, y) = ⎛
⎝2xyex2 y⎞

⎠i + 6⎛
⎝x2 ex2 y⎞

⎠j

For the following exercises, evaluate the integral using the
Fundamental Theorem of Line Integrals.

126. Evaluate ∫
C

∇ f · dr, where

f (x, y, z) = cos(πx) + sin(πy) − xyz and C is any path

that starts at ⎛
⎝1, 1

2, 2⎞
⎠ and ends at (2, 1, −1).

127. [T] Evaluate ∫
C

∇ f · dr, where

f (x, y) = xy + ex and C is a straight line from (0, 0) to

(2, 1).

128. [T] Evaluate ∫
C

∇ f · dr, where

f (x, y) = x2 y − x and C is any path in a plane from (1, 2)

to (3, 2).

129. Evaluate ∫
C

∇ f · dr, where

f (x, y, z) = xyz2 − yz and C has initial point (1, 2) and

terminal point (3, 5).

For the following exercises, let

F(x, y) = 2xy2 i + ⎛
⎝2yx2 + 2y⎞

⎠j and

G(x, y) = (y + x)i + (y − x)j, and let C1 be the curve

consisting of the circle of radius 2, centered at the origin
and oriented counterclockwise, and C2 be the curve
consisting of a line segment from (0, 0) to (1, 1) followed
by a line segment from (1, 1) to (3, 1).

130. Calculate the line integral of F over C1.

131. Calculate the line integral of G over C1.

132. Calculate the line integral of F over C2.

133. Calculate the line integral of G over C2.

134. [T] Let F(x, y, z) = x2 i + z sin(yz)j + y sin(yz)k.

Calculate ∮
C

F · dr, where C is a path from

A = (0, 0, 1) to B = (3, 1, 2).

135. [T] Find line integral ∮
C

F · dr of vector field

F(x, y, z) = 3x2 zi + z2 j + ⎛
⎝x

3 + 2yz⎞
⎠k along curve C

parameterized by

r(t) = ⎛
⎝

ln t
ln 2

⎞
⎠i + t3/2 j + t cos(πt), 1 ≤ t ≤ 4.

For the following exercises, show that the following vector
fields are conservative by using a computer. Calculate

∫
C

F · dr for the given curve.

136. F = ⎛
⎝xy2 + 3x2 y⎞

⎠i + (x + y)x2 j; C is the curve

consisting of line segments from (1, 1) to (0, 2) to

(3, 0).
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137. F = 2x
y2 + 1

i −
2y⎛

⎝x2 + 1⎞
⎠

⎛
⎝y2 + 1⎞

⎠
2 j; C is parameterized by

x = t3 − 1, y = t6 − t, 0 ≤ t ≤ 1.

138. [T]

F = ⎡
⎣cos⎛

⎝xy2⎞
⎠ − xy2 sin⎛

⎝xy2⎞
⎠
⎤
⎦i − 2x2 y sin⎛

⎝xy2⎞
⎠j; C is

curve ⎛
⎝e

t, et + 1⎞
⎠, −1 ≤ t ≤ 0.

139. The mass of Earth is approximately 6 × 1027 g and

that of the Sun is 330,000 times as much. The gravitational

constant is 6.7 × 10−8 cm3/s2 · g. The distance of Earth

from the Sun is about 1.5 × 1012 cm. Compute,

approximately, the work necessary to increase the distance
of Earth from the Sun by 1 cm.

140. [T] Let

F = (x, y, z) = ⎛
⎝ex siny⎞

⎠i + ⎛
⎝ex cosy⎞

⎠j + z2 k. Evaluate

the integral ∫
C

F · ds, where

c(t) = ⎛
⎝ t, t3, e t⎞

⎠, 0 ≤ t ≤ 1.

141. [T] Let c : [1, 2] → ℝ2 be given by

x = et − 1, y = sin⎛
⎝
π
t

⎞
⎠. Use a computer to compute the

integral ∫
C

F · ds = ∫
C

2x cosydx − x2 sinydy, where

F = ⎛
⎝2x cosy⎞

⎠i − ⎛
⎝x2 siny⎞

⎠j.

142. [T] Use a computer algebra system to find the mass
of a wire that lies along curve

r(t) = ⎛
⎝t2 − 1⎞

⎠j + 2tk, 0 ≤ t ≤ 1, if the density is 3
2t.

143. Find the circulation and flux of field F = −yi + xj
around and across the closed semicircular path that consists
of semicircular arch
r1(t) = (acos t)i + (asin t)j, 0 ≤ t ≤ π, followed by line

segment r2(t) = ti, −a ≤ t ≤ a.

144. Compute ∫
C

cosx cosydx − sinx sinydy, where

c(t) = ⎛
⎝t, t2⎞

⎠, 0 ≤ t ≤ 1.

145. Complete the proof of The Path Independence
Test for Conservative Fields by showing that
fy = Q(x, y).
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6.4 | Green’s Theorem

Learning Objectives
6.4.1 Apply the circulation form of Green’s theorem.

6.4.2 Apply the flux form of Green’s theorem.

6.4.3 Calculate circulation and flux on more general regions.

In this section, we examine Green’s theorem, which is an extension of the Fundamental Theorem of Calculus to two
dimensions. Green’s theorem has two forms: a circulation form and a flux form, both of which require region D in the
double integral to be simply connected. However, we will extend Green’s theorem to regions that are not simply connected.

Put simply, Green’s theorem relates a line integral around a simply closed plane curve C and a double integral over the
region enclosed by C. The theorem is useful because it allows us to translate difficult line integrals into more simple double
integrals, or difficult double integrals into more simple line integrals.

Extending the Fundamental Theorem of Calculus
Recall that the Fundamental Theorem of Calculus says that

∫
a

b
F′(x)dx = F(b) − F(a).

As a geometric statement, this equation says that the integral over the region below the graph of F′(x) and above the line

segment [a, b] depends only on the value of F at the endpoints a and b of that segment. Since the numbers a and b are the

boundary of the line segment [a, b], the theorem says we can calculate integral ∫
a

b
F′(x)dx based on information about

the boundary of line segment [a, b] (Figure 6.32). The same idea is true of the Fundamental Theorem for Line Integrals:

∫
C

∇ f · dr = f (r(b)) − f (r(a)).

When we have a potential function (an “antiderivative”), we can calculate the line integral based solely on information
about the boundary of curve C.

Figure 6.32 The Fundamental Theorem of Calculus says that
the integral over line segment [a, b] depends only on the

values of the antiderivative at the endpoints of [a, b].

Green’s theorem takes this idea and extends it to calculating double integrals. Green’s theorem says that we can calculate
a double integral over region D based solely on information about the boundary of D. Green’s theorem also says we can
calculate a line integral over a simple closed curve C based solely on information about the region that C encloses. In
particular, Green’s theorem connects a double integral over region D to a line integral around the boundary of D.

Circulation Form of Green’s Theorem
The first form of Green’s theorem that we examine is the circulation form. This form of the theorem relates the vector line
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integral over a simple, closed plane curve C to a double integral over the region enclosed by C. Therefore, the circulation of
a vector field along a simple closed curve can be transformed into a double integral and vice versa.

Theorem 6.12: Green’s Theorem, Circulation Form

Let D be an open, simply connected region with a boundary curve C that is a piecewise smooth, simple closed curve
oriented counterclockwise (Figure 6.33). Let F = 〈 P, Q 〉 be a vector field with component functions that have

continuous partial derivatives on D. Then,

(6.13)∮
C

F · dr = ∮
C

Pdx + Qdy = ∬
D

(Qx − Py)dA.

Figure 6.33 The circulation form of Green’s theorem relates a
line integral over curve C to a double integral over region D.

Notice that Green’s theorem can be used only for a two-dimensional vector field F. If F is a three-dimensional field, then
Green’s theorem does not apply. Since

∫
C

Pdx + Qdy = ∫
C

F · Tds,

this version of Green’s theorem is sometimes referred to as the tangential form of Green’s theorem.

The proof of Green’s theorem is rather technical, and beyond the scope of this text. Here we examine a proof of the theorem
in the special case that D is a rectangle. For now, notice that we can quickly confirm that the theorem is true for the special
case in which F = 〈 P, Q 〉 is conservative. In this case,

∮
C

Pdx + Qdy = 0

because the circulation is zero in conservative vector fields. By Cross-Partial Property of Conservative Fields, F
satisfies the cross-partial condition, so Py = Qx. Therefore,

∬
D

(Qx − Py)dA = ∬
D

0dA = 0 = ∮
C

Pdx + Qdy,

which confirms Green’s theorem in the case of conservative vector fields.

Proof

Let’s now prove that the circulation form of Green’s theorem is true when the region D is a rectangle. Let D be the rectangle
⎡
⎣a, b⎤

⎦ × ⎡
⎣c, d⎤

⎦ oriented counterclockwise. Then, the boundary C of D consists of four piecewise smooth pieces C1, C2,
C3, and C4 (Figure 6.34). We parameterize each side of D as follows:
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C1 : r1 (t) = 〈 t, c 〉 , a ≤ t ≤ b
C2 : r2 (t) = 〈 b, t 〉 , c ≤ t ≤ d

−C3 : r3 (t) = 〈 t, d 〉 , a ≤ t ≤ b

−C4 : r4 (t) = 〈 a, t 〉 , c ≤ t ≤ d.

Figure 6.34 Rectangle D is oriented counterclockwise.

Then,

∫
C

F • dr = ∫
C1

F • dr + ∫
C2

F • dr + ∫
C3

F • dr + ∫
C4

F • dr

= ∫
C1

F • dr + ∫
C2

F • dr − ∫
−C3

F • dr − ∫
−C4

F • dr

= ∫
a

b
F⎛

⎝r1 (t)⎞
⎠ • r1 (t)dt + ∫

c

d
F⎛

⎝r2 (t)⎞
⎠ • r2 (t)dt

−∫
a

b
F⎛

⎝r3 (t)⎞
⎠ • r3 (t)dt − ∫

c

d
F⎛

⎝r4 (t)⎞
⎠ • r4 (t)dt

= ∫
a

b
P(t, c)dt + ∫

c

d
Q(b, t)dt − ∫

a

b
P(t, d)dt − ∫

c

d
Q(a, t)dt

= ∫
a

b
⎛
⎝P(t, c) − P(t, d)⎞

⎠dt + ∫
c

d
⎛
⎝Q(b, t) − Q(a, t)⎞

⎠dt

= −∫
a

b
⎛
⎝P(t, d) − P(t, c)⎞

⎠dt + ∫
c

d
⎛
⎝Q(b, t) − Q(a, t)⎞

⎠dt.

By the Fundamental Theorem of Calculus,

P(t, d) − P(t, c) = ∫
c

d
∂
∂ yP(t, y)dy and Q(b, t) − Q(a, t) = ∫

a

b
∂
∂ xQ(x, t)dx.

Therefore,

−∫
a

b
⎛
⎝P(t, d) − P(t, c)⎞

⎠dt + ∫
c

d
⎛
⎝Q(b, t) − Q(a, t)⎞

⎠dt

= −∫
a

b
∫

c

d
∂
∂ yP(t, y)dydt + ∫

c

d
∫

a

b
∂
∂ xQ(x, t)dxdt.

But,
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−∫
a

b
∫

c

d
∂
∂ yP(t, y)dydt + ∫

c

d
∫

a

b
∂
∂ xQ(x, t)dxdt = −∫

a

b
∫

c

d
∂
∂ yP(x, y)dydx + ∫

c

d
∫

a

b
∂
∂ xQ(x, y)dxdy

= ∫
a

b
∫

c

d
⎛
⎝Qx − Py

⎞
⎠dydx

= ∫ ∫
D

⎛
⎝Qx − Py

⎞
⎠dA.

Therefore, ∫
C

F • dr = ∫ ∫
D

⎛
⎝Qx − Py

⎞
⎠dA and we have proved Green’s theorem in the case of a rectangle.

To prove Green’s theorem over a general region D, we can decompose D into many tiny rectangles and use the proof that
the theorem works over rectangles. The details are technical, however, and beyond the scope of this text.

□

Example 6.38

Applying Green’s Theorem over a Rectangle

Calculate the line integral

∮
C

x2 ydx + (y − 3)dy,

where C is a rectangle with vertices (1, 1), (4, 1), (4, 5), and (1, 5) oriented counterclockwise.

Solution

Let F(x, y) = 〈 P(x, y), Q(x, y) 〉 = 〈 x2 y, y − 3 〉 . Then, Qx = 0 and Py = x2. Therefore,

Qx − Py = −x2.

Let D be the rectangular region enclosed by C (Figure 6.35). By Green’s theorem,

∮
C

x2 ydx + (y − 3)dy = ∬
D

⎛
⎝Qx − Py

⎞
⎠dA

= ∫ ∫
D

−x2 dA = ∫
1

5
∫

1

4
−x2 dxdy

= ∫
1

5
−21dy = −84.
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Figure 6.35 The line integral over the boundary of the rectangle can be transformed into a
double integral over the rectangle.

Analysis
If we were to evaluate this line integral without using Green’s theorem, we would need to parameterize each
side of the rectangle, break the line integral into four separate line integrals, and use the methods from Line
Integrals to evaluate each integral. Furthermore, since the vector field here is not conservative, we cannot apply
the Fundamental Theorem for Line Integrals. Green’s theorem makes the calculation much simpler.

Example 6.39

Applying Green’s Theorem to Calculate Work

Calculate the work done on a particle by force field

F(x, y) = 〈 y + sin x, ey − x 〉

as the particle traverses circle x2 + y2 = 4 exactly once in the counterclockwise direction, starting and ending

at point (2, 0).

Solution

Let C denote the circle and let D be the disk enclosed by C. The work done on the particle is
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W = ∮
C

⎛
⎝y + sin x⎞

⎠dx + (ey − x)dy.

As with Example 6.38, this integral can be calculated using tools we have learned, but it is easier to use the
double integral given by Green’s theorem (Figure 6.36).

Let F(x, y) = 〈 P(x, y), Q(x, y) 〉 = 〈 y + sin x, ey − x 〉 . Then, Qx = −1 and Py = 1. Therefore,

Qx − Py = −2.

By Green’s theorem,

W = ∮
C

(y + sin(x))dx + (ey − x)dy

= ∬
D

⎛
⎝Qx − Py

⎞
⎠dA = ∬

D
−2dA

= −2(area(D)) = −2π⎛
⎝22⎞

⎠ = −8π.

Figure 6.36 The line integral over the boundary circle can be transformed into a double
integral over the disk enclosed by the circle.

Use Green’s theorem to calculate line integral

∮
C

sin(x2)dx + (3x − y)dy,

where C is a right triangle with vertices (−1, 2), (4, 2), and (4, 5) oriented counterclockwise.

In the preceding two examples, the double integral in Green’s theorem was easier to calculate than the line integral, so we
used the theorem to calculate the line integral. In the next example, the double integral is more difficult to calculate than the
line integral, so we use Green’s theorem to translate a double integral into a line integral.
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Example 6.40

Applying Green’s Theorem over an Ellipse

Calculate the area enclosed by ellipse x2

a2 + y2

b2 = 1 (Figure 6.37).

Figure 6.37 Ellipse x2

a2 + y2

b2 = 1 is denoted by C.

Solution

Let C denote the ellipse and let D be the region enclosed by C. Recall that ellipse C can be parameterized by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

Calculating the area of D is equivalent to computing double integral ∬
D

dA. To calculate this integral without

Green’s theorem, we would need to divide D into two regions: the region above the x-axis and the region below.
The area of the ellipse is

∫
−a

a
∫

0

b2 − (bx/a)2

dydx + ∫
−a

a
∫

− b2 − (bx/a)2

0
dydx.

These two integrals are not straightforward to calculate (although when we know the value of the first integral,
we know the value of the second by symmetry). Instead of trying to calculate them, we use Green’s theorem to
transform ∬

D
dA into a line integral around the boundary C.

Consider vector field

F(x, y) = 〈 P, Q 〉 = 〈 − y
2, x

2 〉 .

Then, Qx = 1
2 and Py = − 1

2, and therefore Qx − Py = 1. Notice that F was chosen to have the property that

Qx − Py = 1. Since this is the case, Green’s theorem transforms the line integral of F over C into the double

integral of 1 over D.

By Green’s theorem,
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∬
D

dA = ∬
D

⎛
⎝Qx − Py

⎞
⎠dA

= ∫
C

F • dr = 1
2∫

C
−ydx + xdy

= 1
2∫

0

2π
−b sin t(−a sin t) + a(cos t)b cos tdt

= 1
2∫

0

2π
ab cos2 t + ab sin2 tdt = 1

2∫
0

2π
abdt = πab.

Therefore, the area of the ellipse is πab.

In Example 6.40, we used vector field F(x, y) = 〈 P, Q 〉 = 〈 − y
2, x

2 〉 to find the area of any ellipse. The logic of

the previous example can be extended to derive a formula for the area of any region D. Let D be any region with a boundary

that is a simple closed curve C oriented counterclockwise. If F(x, y) = 〈 P, Q 〉 = 〈 − y
2, x

2 〉 , then Qx − Py = 1.

Therefore, by the same logic as in Example 6.40,

(6.14)area of D = ∬
D

dA = 1
2∮

C
−ydx + xdy.

It’s worth noting that if F = 〈 P, Q 〉 is any vector field with Qx − Py = 1, then the logic of the previous paragraph

works. So. Equation 6.14 is not the only equation that uses a vector field’s mixed partials to get the area of a region.

Find the area of the region enclosed by the curve with parameterization
r(t) = 〈 sin t cos t, sin t 〉 , 0 ≤ t ≤ π.

Flux Form of Green’s Theorem

The circulation form of Green’s theorem relates a double integral over region D to line integral ∮
C

F · Tds, where C is the

boundary of D. The flux form of Green’s theorem relates a double integral over region D to the flux across boundary C. The
flux of a fluid across a curve can be difficult to calculate using the flux line integral. This form of Green’s theorem allows
us to translate a difficult flux integral into a double integral that is often easier to calculate.

Theorem 6.13: Green’s Theorem, Flux Form

Let D be an open, simply connected region with a boundary curve C that is a piecewise smooth, simple closed curve
that is oriented counterclockwise (Figure 6.38). Let F = 〈 P, Q 〉 be a vector field with component functions that

have continuous partial derivatives on an open region containing D. Then,
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(6.15)∮
C

F · Nds = ∬
D

Px + Qy dA.

Figure 6.38 The flux form of Green’s theorem relates a double
integral over region D to the flux across curve C.

Because this form of Green’s theorem contains unit normal vector N, it is sometimes referred to as the normal form of
Green’s theorem.

Proof

Recall that ∮
C

F · Nds = ∮
C

−Qdx + Pdy. Let M = −Q and N = P. By the circulation form of Green’s theorem,

∮
C

−Qdx + Pdy = ∮
C

Mdx + Ndy

= ∬
D

Nx − My dA

= ∬
D

Px − (−Q)y dA

= ∬
D

Px + Qy dA.

□

Example 6.41

Applying Green’s Theorem for Flux across a Circle

Let C be a circle of radius r centered at the origin (Figure 6.39) and let F(x, y) = 〈 x, y 〉 . Calculate the flux

across C.
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Figure 6.39 Curve C is a circle of radius r centered at the origin.

Solution

Let D be the disk enclosed by C. The flux across C is ∮
C

F · Nds. We could evaluate this integral using tools we

have learned, but Green’s theorem makes the calculation much more simple. Let P(x, y) = x and Q(x, y) = y
so that F = 〈 P, Q 〉 . Note that Px = 1 = Qy, and therefore Px + Qy = 2. By Green’s theorem,

∫
C

F • Nds = ∫ ∫
D

2dA = 2∫ ∫
D

dA.

Since ∫ ∫
D

dA is the area of the circle, ∫ ∫
D

dA = πr2. Therefore, the flux across C is 2πr2.

Example 6.42

Applying Green’s Theorem for Flux across a Triangle

Let S be the triangle with vertices (0, 0), (1, 0), and (0, 3) oriented clockwise (Figure 6.40). Calculate the

flux of F(x, y) = 〈 P(x, y), Q(x, y) 〉 = 〈 x2 + ey, x + y 〉 across S.
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Figure 6.40 Curve S is a triangle with vertices (0, 0), (1, 0), and (0, 3) oriented

clockwise.

Solution

To calculate the flux without Green’s theorem, we would need to break the flux integral into three line integrals,
one integral for each side of the triangle. Using Green’s theorem to translate the flux line integral into a single
double integral is much more simple.

Let D be the region enclosed by S. Note that Px = 2x and Qy = 1; therefore, Px + Qy = 2x + 1. Green’s

theorem applies only to simple closed curves oriented counterclockwise, but we can still apply the theorem

because ∮
C

F · Nds = −∮
−S

F · Nds and −S is oriented counterclockwise. By Green’s theorem, the flux is

∮
C

F · Nds = ∮
−S

F · Nds

= − ∬
D

⎛
⎝Px + Qy

⎞
⎠dA

= − ∬
D

(2x + 1)dA.

Notice that the top edge of the triangle is the line y = −3x + 3. Therefore, in the iterated double integral, the

y-values run from y = 0 to y = −3x + 3, and we have

− ∬
D

(2x + 1)dA = −∫
0

1
∫

0

−3x + 3
(2x + 1)dydx

= −∫
0

1
(2x + 1)(−3x + 3)dx = −∫

0

1
⎛
⎝−6x2 + 3x + 3⎞

⎠dx

= −⎡
⎣−2x3 + 3x2

2 + 3x⎤
⎦0

1
= − 5

2.
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6.36 Calculate the flux of F(x, y) = 〈 x3, y3 〉 across a unit circle oriented counterclockwise.

Example 6.43

Applying Green’s Theorem for Water Flow across a Rectangle

Water flows from a spring located at the origin. The velocity of the water is modeled by vector field
v(x, y) = 〈 5x + y, x + 3y 〉 m/sec. Find the amount of water per second that flows across the rectangle with

vertices (−1, −2), (1, −2), (1, 3), and (−1, 3), oriented counterclockwise (Figure 6.41).

Figure 6.41 Water flows across the rectangle with vertices
(−1, −2), (1, −2), (1, 3), and (−1, 3), oriented counterclockwise.

Solution

Let C represent the given rectangle and let D be the rectangular region enclosed by C. To find the amount

of water flowing across C, we calculate flux ∫
C

v • dr. Let P(x, y) = 5x + y and Q(x, y) = x + 3y so that

v = (P, Q). Then, Px = 5 and Qy = 3. By Green’s theorem,

∫
C

v • dr = ∬
D

⎛
⎝Px + Qy

⎞
⎠dA

= ∬
D

8dA

= 8(area of D) = 80.

Therefore, the water flux is 80 m2/sec.

Recall that if vector field F is conservative, then F does no work around closed curves—that is, the circulation of F around
a closed curve is zero. In fact, if the domain of F is simply connected, then F is conservative if and only if the circulation of
F around any closed curve is zero. If we replace “circulation of F” with “flux of F,” then we get a definition of a source-free
vector field. The following statements are all equivalent ways of defining a source-free field F = 〈 P, Q 〉 on a simply
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connected domain (note the similarities with properties of conservative vector fields):

1. The flux ∮
C

F · Nds across any closed curve C is zero.

2. If C1 and C2 are curves in the domain of F with the same starting points and endpoints, then

∫
C1

F · Nds = ∫
C2

F · Nds. In other words, flux is independent of path.

3. There is a stream function g(x, y) for F. A stream function for F = 〈 P, Q 〉 is a function g such that P = gy

and Q = −gx. Geometrically, F = (a, b) is tangential to the level curve of g at (a, b). Since the gradient of g is

perpendicular to the level curve of g at (a, b), stream function g has the property F(a, b) • ∇g(a, b) = 0 for any

point (a, b) in the domain of g. (Stream functions play the same role for source-free fields that potential functions

play for conservative fields.)

4. Px + Qy = 0

Example 6.44

Finding a Stream Function

Verify that rotation vector field F(x, y) = 〈 y, −x 〉 is source free, and find a stream function for F.

Solution

Note that the domain of F is all of ℝ2 , which is simply connected. Therefore, to show that F is source free, we

can show any of items 1 through 4 from the previous list to be true. In this example, we show that item 4 is true.
Let P(x, y) = y and Q(x, y) = −x. Then Px + 0 = Qy, and therefore Px + Qy = 0. Thus, F is source free.

To find a stream function for F, proceed in the same manner as finding a potential function for a conservative
field. Let g be a stream function for F. Then gy = y, which implies that

g(x, y) = y2

2 + h(x).

Since −gx = Q = −x, we have h′(x) = x. Therefore,

h(x) = x2

2 + C.

Letting C = 0 gives stream function

g(x, y) = x2

2 + y2

2 .

To confirm that g is a stream function for F, note that gy = y = P and −gx = −x = Q.

Notice that source-free rotation vector field F(x, y) = 〈 y, −x 〉 is perpendicular to conservative radial vector

field ∇g = 〈 x, y 〉 (Figure 6.42).
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Figure 6.42 (a) In this image, we see the three-level curves of g and vector field F. Note
that the F vectors on a given level curve are tangent to the level curve. (b) In this image, we
see the three-level curves of g and vector field ∇g. The gradient vectors are perpendicular to

the corresponding level curve. Therefore, F(a, b) • ∇g(a, b) = 0 for any point in the

domain of g.

Find a stream function for vector field F(x, y) = 〈 x sin y, cos y 〉 .

Vector fields that are both conservative and source free are important vector fields. One important feature of conservative
and source-free vector fields on a simply connected domain is that any potential function f of such a field satisfies

Laplace’s equation fxx + fyy = 0. Laplace’s equation is foundational in the field of partial differential equations because

it models such phenomena as gravitational and magnetic potentials in space, and the velocity potential of an ideal fluid. A
function that satisfies Laplace’s equation is called a harmonic function. Therefore any potential function of a conservative
and source-free vector field is harmonic.

To see that any potential function of a conservative and source-free vector field on a simply connected domain is harmonic,
let f be such a potential function of vector field F = 〈 P, Q 〉 . Then, fx = P and fx = Q because ∇ f = F. Therefore,

fxx = Px and fyy = Qy. Since F is source free, fxx + fyy = Px + Qy = 0, and we have that f is harmonic.

Example 6.45

Satisfying Laplace’s Equation

For vector field F(x, y) = 〈 ex sin y, ex cos y 〉 , verify that the field is both conservative and source free, find

a potential function for F, and verify that the potential function is harmonic.

Solution

Let P(x, y) = ex sin y and Q(x, y) = ex cos y. Notice that the domain of F is all of two-space, which is simply

connected. Therefore, we can check the cross-partials of F to determine whether F is conservative. Note that
Py = ex cos y = Qx, so F is conservative. Since Px = ex sin y and Qy = ex sin y, Px + Qy = 0 and the field

is source free.
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To find a potential function for F, let f be a potential function. Then, ∇ f = F, so fx = ex sin y. Integrating

this equation with respect to x gives f (x, y) = ex sin y + h(y). Since fy = ex cos y, differentiating f with

respect to y gives ex cos y = ex cos y + h′(y). Therefore, we can take h(y) = 0, and f (x, y) = ex sin y is a

potential function for f .

To verify that f is a harmonic function, note that fxx = ∂
∂ x

⎛
⎝ex sin y⎞

⎠ = ex sin y and

fyy = ∂
∂ x

⎛
⎝ex cos y⎞

⎠ = −ex sin y. Therefore, fxx + fyy = 0, and f satisfies Laplace’s equation.

Is the function f (x, y) = ex + 5y
harmonic?

Green’s Theorem on General Regions
Green’s theorem, as stated, applies only to regions that are simply connected—that is, Green’s theorem as stated so far
cannot handle regions with holes. Here, we extend Green’s theorem so that it does work on regions with finitely many holes
(Figure 6.43).

Figure 6.43 Green’s theorem, as stated, does not apply to a
nonsimply connected region with three holes like this one.

Before discussing extensions of Green’s theorem, we need to go over some terminology regarding the boundary of a region.
Let D be a region and let C be a component of the boundary of D. We say that C is positively oriented if, as we walk along
C in the direction of orientation, region D is always on our left. Therefore, the counterclockwise orientation of the boundary
of a disk is a positive orientation, for example. Curve C is negatively oriented if, as we walk along C in the direction of
orientation, region D is always on our right. The clockwise orientation of the boundary of a disk is a negative orientation,
for example.

Let D be a region with finitely many holes (so that D has finitely many boundary curves), and denote the boundary of D
by ∂D (Figure 6.44). To extend Green’s theorem so it can handle D, we divide region D into two regions, D1 and D2

(with respective boundaries ∂D1 and ∂D2), in such a way that D = D1 ∪ D2 and neither D1 nor D2 has any holes

(Figure 6.44).
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Figure 6.44 (a) Region D with an oriented boundary has three holes. (b) Region D
split into two simply connected regions has no holes.

Assume the boundary of D is oriented as in the figure, with the inner holes given a negative orientation and the outer
boundary given a positive orientation. The boundary of each simply connected region D1 and D2 is positively oriented.

If F is a vector field defined on D, then Green’s theorem says that

∮
∂D

F · dr = ∮
∂D1

F · dr + ∮
∂D2

F · dr

= ∬
D1

Qx − Py dA + ∬
D2

Qx − Py dA

= ∬
D

(Qx − Py)dA.

Therefore, Green’s theorem still works on a region with holes.

To see how this works in practice, consider annulus D in Figure 6.45 and suppose that F = 〈 P, Q 〉 is a vector

field defined on this annulus. Region D has a hole, so it is not simply connected. Orient the outer circle of the annulus
counterclockwise and the inner circle clockwise (Figure 6.45) so that, when we divide the region into D1 and D2, we

are able to keep the region on our left as we walk along a path that traverses the boundary. Let D1 be the upper half of

the annulus and D2 be the lower half. Neither of these regions has holes, so we have divided D into two simply connected

regions.

We label each piece of these new boundaries as Pi for some i, as in Figure 6.45. If we begin at P and travel along the

oriented boundary, the first segment is P1, then P2, P3, and P4. Now we have traversed D1 and returned to P. Next,

we start at P again and traverse D2. Since the first piece of the boundary is the same as P4 in D1, but oriented in the

opposite direction, the first piece of D2 is −P4. Next, we have P5, then −P2, and finally P6.
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Figure 6.45 Breaking the annulus into two separate regions gives us two simply connected regions.
The line integrals over the common boundaries cancel out.

Figure 6.45 shows a path that traverses the boundary of D. Notice that this path traverses the boundary of region D1,
returns to the starting point, and then traverses the boundary of region D2. Furthermore, as we walk along the path, the

region is always on our left. Notice that this traversal of the Pi paths covers the entire boundary of region D. If we had

only traversed one portion of the boundary of D, then we cannot apply Green’s theorem to D.

The boundary of the upper half of the annulus, therefore, is P1 ∪ P2 ∪ P3 ∪ P4 and the boundary of the lower half of the

annulus is −P4 ∪ P5 ∪ − P2 ∪ P6. Then, Green’s theorem implies

∫
∂D

F · dr = ∫
P1

F · dr + ∫
P2

F · dr + ∫
P3

F · dr + ∫
P4

F · dr + ∫
−P4

F · dr + ∫
P5

F · dr − ∫
P2

F · dr + ∫
P6

F · dr

= ∫
P1

F · dr + ∫
P2

F · dr + ∫
P3

F · dr + ∫
P4

F · dr − ∫
P4

F · dr + ∫
P5

F · dr − ∫
P2

F · dr + ∫
P6

F · dr

= ∫
P1

F · dr + ∫
P3

F · dr + ∫
P5

F · dr + ∫
P6

F · dr

= ∫
∂D1

F · dr + ∫
∂D2

F · dr

= ∬
D1

⎛
⎝Qx − Py

⎞
⎠dA + ∬

D2
⎛
⎝Qx − Py

⎞
⎠dA

= ∬
D

⎛
⎝Qx − Py

⎞
⎠dA.

Therefore, we arrive at the equation found in Green’s theorem—namely,

∮
∂D

F · dr = ∬
D

⎛
⎝Qx − Py

⎞
⎠dA.

The same logic implies that the flux form of Green’s theorem can also be extended to a region with finitely many holes:

∮
C

F · Nds = ∬
D

⎛
⎝Px + Qy

⎞
⎠dA.

Example 6.46

Using Green’s Theorem on a Region with Holes
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Calculate integral

∮
∂D

⎛

⎝
⎜sin x − y3

3
⎞

⎠
⎟dx +

⎛

⎝
⎜y3

3 + sin y
⎞

⎠
⎟dy,

where D is the annulus given by the polar inequalities 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

Solution

Although D is not simply connected, we can use the extended form of Green’s theorem to calculate the integral.
Since the integration occurs over an annulus, we convert to polar coordinates:

∮
∂D

⎛

⎝
⎜sin x − y3

3
⎞

⎠
⎟dx + ⎛

⎝
x3

3 + sin y⎞
⎠dy = ∬

D
⎛
⎝Qx − Py

⎞
⎠dA

= ∬
D

⎛
⎝x2 + y2⎞

⎠dA

= ∫
0

2π
∫

1

2
r3 drdθ = ∫

0

2π
15
4 dθ

= 15π
2 .

Example 6.47

Using the Extended Form of Green’s Theorem

Let F = 〈 P, Q 〉 = 〈 y
x2 + y2, − x

x2 + y2 〉 and let C be any simple closed curve in a plane oriented

counterclockwise. What are the possible values of ∮
C

F · dr?

Solution

We use the extended form of Green’s theorem to show that ∮
C

F · dr is either 0 or −2π —that is, no matter how

crazy curve C is, the line integral of F along C can have only one of two possible values. We consider two cases:
the case when C encompasses the origin and the case when C does not encompass the origin.

Case 1: C Does Not Encompass the Origin

In this case, the region enclosed by C is simply connected because the only hole in the domain of F is at the
origin. We showed in our discussion of cross-partials that F satisfies the cross-partial condition. If we restrict the
domain of F just to C and the region it encloses, then F with this restricted domain is now defined on a simply
connected domain. Since F satisfies the cross-partial property on its restricted domain, the field F is conservative

on this simply connected region and hence the circulation ∮
C

F · dr is zero.

Case 2: C Does Encompass the Origin

In this case, the region enclosed by C is not simply connected because this region contains a hole at the origin. Let
C1 be a circle of radius a centered at the origin so that C1 is entirely inside the region enclosed by C (Figure

6.46). Give C1 a clockwise orientation.
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Figure 6.46 Choose circle C1 centered at the origin that is

contained entirely inside C.

Let D be the region between C1 and C, and C is orientated counterclockwise. By the extended version of Green’s

theorem,

∫
C

F · dr + ∫
C1

F · dr = ∬
D

Qx − Py dA

= ∬
D

− y2 − x2

(x2 + y2)2 + y2 − x2

(x2 + y2)2dA

= 0,

and therefore

∫
C

F · dr = − ∫
C1

F · dr.

Since C1 is a specific curve, we can evaluate ∫
C1

F · dr. Let

x = a cos t, y = a sin t, 0 ≤ t ≤ 2π

be a parameterization of C1. Then,

∫
C1

F · dr = ∫
0

2π
F(r(t)) · r′(t)dt

= ∫
0

2π
〈 −sin(t)

a , − cos(t)
a 〉 · 〈 −a sin(t), −a cos(t) 〉 dt

= ∫
0

2π
sin2(t) + cos2(t)dt = ∫

0

2π
dt = 2π.

Therefore, ∫
C

F · ds = − 2π.

Calculate integral ∮
∂D

F · dr, where D is the annulus given by the polar inequalities

2 ≤ r ≤ 5, 0 ≤ θ ≤ 2π, and F(x, y) = 〈 x3, 5x + ey sin y 〉 .
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Measuring Area from a Boundary: The Planimeter

Figure 6.47 This magnetic resonance image of a patient’s
brain shows a tumor, which is highlighted in red. (credit:
modification of work by Christaras A, Wikimedia Commons)

Imagine you are a doctor who has just received a magnetic resonance image of your patient’s brain. The brain has a
tumor (Figure 6.47). How large is the tumor? To be precise, what is the area of the red region? The red cross-section
of the tumor has an irregular shape, and therefore it is unlikely that you would be able to find a set of equations or
inequalities for the region and then be able to calculate its area by conventional means. You could approximate the
area by chopping the region into tiny squares (a Riemann sum approach), but this method always gives an answer with
some error.

Instead of trying to measure the area of the region directly, we can use a device called a rolling planimeter to calculate
the area of the region exactly, simply by measuring its boundary. In this project you investigate how a planimeter
works, and you use Green’s theorem to show the device calculates area correctly.

A rolling planimeter is a device that measures the area of a planar region by tracing out the boundary of that region
(Figure 6.48). To measure the area of a region, we simply run the tracer of the planimeter around the boundary of
the region. The planimeter measures the number of turns through which the wheel rotates as we trace the boundary;
the area of the shape is proportional to this number of wheel turns. We can derive the precise proportionality equation
using Green’s theorem. As the tracer moves around the boundary of the region, the tracer arm rotates and the roller
moves back and forth (but does not rotate).

Figure 6.48 (a) A rolling planimeter. The pivot allows the tracer arm to rotate. The roller itself does not rotate; it
only moves back and forth. (b) An interior view of a rolling planimeter. Notice that the wheel cannot turn if the
planimeter is moving back and forth with the tracer arm perpendicular to the roller.
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Let C denote the boundary of region D, the area to be calculated. As the tracer traverses curve C, assume the roller
moves along the y-axis (since the roller does not rotate, one can assume it moves along a straight line). Use the
coordinates (x, y) to represent points on boundary C, and coordinates (0, Y) to represent the position of the pivot.

As the planimeter traces C, the pivot moves along the y-axis while the tracer arm rotates on the pivot.

Watch a short animation (http://www.openstaxcollege.org/l/20_planimeter) of a planimeter in
action.

Begin the analysis by considering the motion of the tracer as it moves from point (x, y) counterclockwise to point
⎛
⎝x + dx, y + dy⎞

⎠ that is close to (x, y) (Figure 6.49). The pivot also moves, from point (0, Y) to nearby point

(0, Y + dY). How much does the wheel turn as a result of this motion? To answer this question, break the motion into

two parts. First, roll the pivot along the y-axis from (0, Y) to (0, Y + dY) without rotating the tracer arm. The tracer

arm then ends up at point ⎛
⎝x, y + dY ⎞

⎠ while maintaining a constant angle ϕ with the x-axis. Second, rotate the tracer

arm by an angle dθ without moving the roller. Now the tracer is at point ⎛
⎝x + dx, y + dy⎞

⎠. Let l be the distance from

the pivot to the wheel and let L be the distance from the pivot to the tracer (the length of the tracer arm).

Figure 6.49 Mathematical analysis of the motion of the
planimeter.

1. Explain why the total distance through which the wheel rolls the small motion just described is
sin ϕdY + ldθ = x

LdY + ldθ.

2. Show that ∮
C

dθ = 0.

3. Use step 2 to show that the total rolling distance of the wheel as the tracer traverses curve C is

Total wheel roll = 1
L∮

C
xdY .

Now that you have an equation for the total rolling distance of the wheel, connect this equation to Green’s
theorem to calculate area D enclosed by C.

4. Show that x2 + ⎛
⎝y − Y ⎞

⎠
2 = L2.

5. Assume the orientation of the planimeter is as shown in Figure 6.49. Explain why Y ≤ y, and use this

inequality to show there is a unique value of Y for each point (x, y): Y = y = L2 − x2.
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6. Use step 5 to show that dY = dy + x
L2 − x2

dx.

7. Use Green’s theorem to show that ∮
C

x
L2 − x2

dx = 0.

8. Use step 7 to show that the total wheel roll is

Total wheel roll = 1
L∮

C
xdy.

It took a bit of work, but this equation says that the variable of integration Y in step 3 can be replaced with y.

9. Use Green’s theorem to show that the area of D is ∮
C

xdy. The logic is similar to the logic used to show that

the area of D = 1
2∮

C
−ydx + xdy.

10. Conclude that the area of D equals the length of the tracer arm multiplied by the total rolling distance of the
wheel.
You now know how a planimeter works and you have used Green’s theorem to justify that it works. To
calculate the area of a planar region D, use a planimeter to trace the boundary of the region. The area of the
region is the length of the tracer arm multiplied by the distance the wheel rolled.
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6.4 EXERCISES
For the following exercises, evaluate the line integrals by
applying Green’s theorem.

146. ∫
C

2xydx + (x + y)dy, where C is the path from

(0, 0) to (1, 1) along the graph of y = x3 and from (1,

1) to (0, 0) along the graph of y = x oriented in the

counterclockwise direction

147. ∫
C

2xydx + (x + y)dy, where C is the boundary

of the region lying between the graphs of y = 0 and

y = 4 − x2 oriented in the counterclockwise direction

148. ∫
C

2 arctan⎛
⎝
y
x

⎞
⎠dx + ln⎛

⎝x2 + y2⎞
⎠dy, where C is

defined by x = 4 + 2 cos θ, y = 4 sin θ oriented in the

counterclockwise direction

149. ∫
C

sin x cos ydx + (xy + cos x sin y)dy, where C is

the boundary of the region lying between the graphs of
y = x and y = x oriented in the counterclockwise

direction

150. ∫
C

xydx + (x + y)dy, where C is the boundary of

the region lying between the graphs of x2 + y2 = 1 and

x2 + y2 = 9 oriented in the counterclockwise direction

151. ∮
C

(−ydx + xdy), where C consists of line

segment C1 from (−1, 0) to (1, 0), followed by the

semicircular arc C2 from (1, 0) back to (1, 0)

For the following exercises, use Green’s theorem.

152. Let C be the curve consisting of line segments from
(0, 0) to (1, 1) to (0, 1) and back to (0, 0). Find the value of

∫
C

xydx + y2 + 1dy.

153. Evaluate line integral

∫
C

xe−2x dx + ⎛
⎝x4 + 2x2 y2⎞

⎠dy, where C is the boundary

of the region between circles x2 + y2 = 1 and

x2 + y2 = 4, and is a positively oriented curve.

154. Find the counterclockwise circulation of field

F(x, y) = xyi + y2 j around and over the boundary of the

region enclosed by curves y = x2 and y = x in the first

quadrant and oriented in the counterclockwise direction.

155. Evaluate ∮
C

y3 dx − x3 y2 dy, where C is the

positively oriented circle of radius 2 centered at the origin.

156. Evaluate ∮
C

y3 dx − x3 dy, where C includes the

two circles of radius 2 and radius 1 centered at the origin,
both with positive orientation.

157. Calculate ∮
C

−x2 ydx + xy2 dy, where C is a circle

of radius 2 centered at the origin and oriented in the
counterclockwise direction.

158. Calculate integral

∮
C

2⎡
⎣y + x sin(y)⎤

⎦dx + ⎡
⎣x2 cos(y) − 3y2⎤

⎦dy along triangle

C with vertices (0, 0), (1, 0) and (1, 1), oriented
counterclockwise, using Green’s theorem.
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159. Evaluate integral ∮
C

⎛
⎝x2 + y2⎞

⎠dx + 2xydy, where

C is the curve that follows parabola

y = x2 from (0, 0)(2, 4), then the line from (2, 4) to (2,

0), and finally the line from (2, 0) to (0, 0).

160. Evaluate line integral

∮
C

(y − sin(y)cos(y))dx + 2x sin2(y)dy, where C is

oriented in a counterclockwise path around the region

bounded by x = −1, x = 2, y = 4 − x2, and y = x − 2.

For the following exercises, use Green’s theorem to find the
area.

161. Find the area between ellipse x2

9 + y2

4 = 1 and

circle x2 + y2 = 25.

162. Find the area of the region enclosed by parametric
equation
p(θ) = ⎛

⎝cos(θ) − cos2(θ)⎞
⎠i + ⎛

⎝sin(θ) − cos(θ)sin(θ)⎞
⎠j for 0 ≤ θ ≤ 2π.

163. Find the area of the region bounded by hypocycloid

r(t) = cos3(t)i + sin3(t)j. The curve is parameterized by

t ∈ [0, 2π].

164. Find the area of a pentagon with vertices
(0, 4), (4, 1), (3, 0), (−1, −1), and (−2, 2).

165. Use Green’s theorem to evaluate

∫
C +

⎛
⎝y2 + x3⎞

⎠dx + x4 dy, where C+ is the perimeter of

square [0, 1] × [0, 1] oriented counterclockwise.

166. Use Green’s theorem to prove the area of a disk with

radius a is A = πa2.

167. Use Green’s theorem to find the area of one loop of a

four-leaf rose r = 3 sin 2θ. (Hint: xdy − ydx = r2 dθ).

168. Use Green’s theorem to find the area under one
arch of the cycloid given by parametric plane
x = t − sin t, y = 1 − cos t, t ≥ 0.

169. Use Green’s theorem to find the area of the region
enclosed by curve

r(t) = t2 i + ⎛
⎝
t3

3 − t⎞⎠j, − 3 ≤ t 3.
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170. [T] Evaluate Green’s theorem using a computer

algebra system to evaluate the integral ∫
C

xey dx + ex dy,

where C is the circle given by x2 + y2 = 4 and is oriented

in the counterclockwise direction.

171. Evaluate ∫
C

⎛
⎝x2 y − 2xy + y2⎞

⎠ds, where C is the

boundary of the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
traversed counterclockwise.

172. Evaluate ∫
C

−(y + 2)dx + (x − 1)dy
(x − 1)2 + (y + 2)2 , where C is

any simple closed curve with an interior that does not
contain point (1, −2) traversed counterclockwise.

173. Evaluate ∫
C

xdx + ydy
x2 + y2 , where C is any piecewise,

smooth simple closed curve enclosing the origin, traversed
counterclockwise.

For the following exercises, use Green’s theorem to
calculate the work done by force F on a particle that is
moving counterclockwise around closed path C.

174. F(x, y) = xyi + (x + y)j, C : x2 + y2 = 4

175. F(x, y) = ⎛
⎝x

3/2 − 3y⎞
⎠i + ⎛

⎝6x + 5 y⎞
⎠j, C : boundary

of a triangle with vertices (0, 0), (5, 0), and (0, 5)

176. Evaluate ∫
C

⎛
⎝2x3 − y3⎞

⎠dx + ⎛
⎝x

3 + y3⎞
⎠dy, where C

is a unit circle oriented in the counterclockwise direction.

177. A particle starts at point (−2, 0), moves along

the x-axis to (2, 0), and then travels along semicircle

y = 4 − x2 to the starting point. Use Green’s theorem

to find the work done on this particle by force field

F(x, y) = xi + ⎛
⎝x

3 + 3xy2⎞
⎠j.

178. David and Sandra are skating on a frictionless pond
in the wind. David skates on the inside, going along a
circle of radius 2 in a counterclockwise direction. Sandra
skates once around a circle of radius 3, also in the
counterclockwise direction. Suppose the force of the wind
at point (x, y) (x, y) (x, y) is

F(x, y) = ⎛
⎝x2 y + 10y⎞

⎠i + ⎛
⎝x

3 + 2xy2⎞
⎠j. Use Green’s

theorem to determine who does more work.

179. Use Green’s theorem to find the work done by force
field F(x, y) = (3y − 4x)i + (4x − y)j when an object

moves once counterclockwise around ellipse

4x2 + y2 = 4.

180. Use Green’s theorem to evaluate line integral

∮
C

e2x sin 2ydx + e2x cos 2ydy, where C is ellipse

9(x − 1)2 + 4(y − 3)2 = 36 oriented counterclockwise.

181. Evaluate line integral ∮
C

y2 dx + x2 dy, where C

is the boundary of a triangle with vertices
(0, 0), (1, 1), and (1, 0), with the counterclockwise

orientation.

182. Use Green’s theorem to evaluate line integral

∫
C

h · dr if h(x, y) = ey i − sin πxj, where C is a

triangle with vertices (1, 0), (0, 1), and (−1, 0) (−1, 0)
traversed counterclockwise.

183. Use Green’s theorem to evaluate line integral

∫
C

1 + x3dx + 2xydy where C is a triangle with vertices

(0, 0), (1, 0), and (1, 3) oriented clockwise.

184. Use Green’s theorem to evaluate line integral

∫
C

x2 ydx − xy2 dy where C is a circle x2 + y2 = 4

oriented counterclockwise.

185. Use Green’s theorem to evaluate line integral

∫
C

⎛
⎝3y − esin x⎞

⎠dx + ⎛
⎝7x + y4 + 1⎞

⎠dy where C is circle

x2 + y2 = 9 oriented in the counterclockwise direction.

186. Use Green’s theorem to evaluate line integral

∫
C

(3x − 5y)dx + (x − 6y)dy, where C is ellipse

x2

4 + y2 = 1 and is oriented in the counterclockwise

direction.

Chapter 6 | Vector Calculus 735



187. Let C be a triangular closed curve from (0, 0) to
(1, 0) to (1, 1) and finally back to (0, 0). Let

F(x, y) = 4yi + 6x2 j. Use Green’s theorem to evaluate

∮
C

F · ds.

188. Use Green’s theorem to evaluate line integral

∮
C

ydx − xdy, where C is circle x2 + y2 = a2 oriented

in the clockwise direction.

189. Use Green’s theorem to evaluate line integral

∮
C

(y + x)dx + (x + sin y)dy, where C is any smooth

simple closed curve joining the origin to itself oriented in
the counterclockwise direction.

190. Use Green’s theorem to evaluate line integral

∮
C

⎛
⎝y − ln⎛

⎝x2 + y2⎞
⎠
⎞
⎠dx + ⎛

⎝2 arctan y
x

⎞
⎠dy, where C is the

positively oriented circle (x − 2)2 + ⎛
⎝y − 3⎞

⎠
2 = 1.

191. Use Green’s theorem to evaluate

∮
C

xydx + x3 y3 dy, where C is a triangle with vertices

(0, 0), (1, 0), and (1, 2) with positive orientation.

192. Use Green’s theorem to evaluate line integral

∫
C

sin ydx + x cos ydy, where C is ellipse

x2 + xy + y2 = 1 oriented in the counterclockwise

direction.

193. Let F(x, y) = ⎛
⎝cos⎛

⎝x
5⎞

⎠
⎞
⎠ − 1

3y3 i + 1
3x3 j. Find the

counterclockwise circulation ∮
C

F · dr, where C is a

curve consisting of the line segment joining

(−2, 0) and (−1, 0), half circle y = 1 − x2, the line

segment joining (1, 0) and (2, 0), and half circle

y = 4 − x2.

194. Use Green’s theorem to evaluate line integral

∫
C

sin⎛
⎝x

3⎞
⎠dx + 2yex2

dy, where C is a triangular closed

curve that connects the points (0, 0), (2, 2), and (0, 2)
counterclockwise.

195. Let C be the boundary of square
0 ≤ x ≤ π, 0 ≤ y ≤ π, traversed counterclockwise. Use

Green’s theorem to find ∫
C

sin(x + y)dx + cos(x + y)dy.

196. Use Green’s theorem to evaluate line integral

∫
C

F · dr, where F(x, y) = ⎛
⎝y2 − x2⎞

⎠i + ⎛
⎝x2 + y2⎞

⎠j,

and C is a triangle bounded by y = 0, x = 3, and y = x,
oriented counterclockwise.

197. Use Green’s Theorem to evaluate integral

∫
C

F · dr, where F(x, y) = ⎛
⎝xy2⎞

⎠i + xj, and C is a unit

circle oriented in the counterclockwise direction.

198. Use Green’s theorem in a plane to evaluate line

integral ∮
C

⎛
⎝xy + y2⎞

⎠dx + x2 dy, where C is a closed

curve of a region bounded by y = x and y = x2 oriented

in the counterclockwise direction.

199. Calculate the outward flux of F = −xi + 2yj over

a square with corners (±1, ±1), where the unit normal

is outward pointing and oriented in the counterclockwise
direction.

200. [T] Let C be circle x2 + y2 = 4 oriented in the

counterclockwise direction. Evaluate

∮
C

⎡
⎣
⎛
⎝3y − etan − 1x⎞

⎠dx + ⎛
⎝7x + y4 + 1⎞

⎠dy⎤
⎦ using a

computer algebra system.

201. Find the flux of field F = −xi + yj across

x2 + y2 = 16 oriented in the counterclockwise direction.

202. Let F = ⎛
⎝y2 − x2⎞

⎠i + ⎛
⎝x2 + y2⎞

⎠j, and let C be a

triangle bounded by y = 0, x = 3, and y = x oriented in

the counterclockwise direction. Find the outward flux of F
through C.

203. [T] Let C be unit circle x2 + y2 = 1 traversed once

counterclockwise. Evaluate

∫
C

⎡
⎣−y3 + sin(xy) + xy cos(xy)⎤

⎦dx + ⎡
⎣x3 + x2 cos(xy)⎤

⎦dy

by using a computer algebra system.

204. [T] Find the outward flux of vector field

F = xy2 i + x2 yj across the boundary of annulus

R = ⎧

⎩
⎨(x, y) : 1 ≤ x2 + y2 ≤ 4⎫

⎭
⎬ = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

using a computer algebra system.

205. Consider region R bounded by parabolas

y = x2 and x = y2. Let C be the boundary of R oriented

counterclockwise. Use Green’s theorem to evaluate

∮
C

⎛
⎝y + e x⎞

⎠dx + ⎛
⎝2x + cos⎛

⎝y2⎞
⎠
⎞
⎠dy.
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6.5 | Divergence and Curl

Learning Objectives
6.5.1 Determine divergence from the formula for a given vector field.

6.5.2 Determine curl from the formula for a given vector field.

6.5.3 Use the properties of curl and divergence to determine whether a vector field is
conservative.

In this section, we examine two important operations on a vector field: divergence and curl. They are important to the field
of calculus for several reasons, including the use of curl and divergence to develop some higher-dimensional versions of the
Fundamental Theorem of Calculus. In addition, curl and divergence appear in mathematical descriptions of fluid mechanics,
electromagnetism, and elasticity theory, which are important concepts in physics and engineering. We can also apply curl
and divergence to other concepts we already explored. For example, under certain conditions, a vector field is conservative
if and only if its curl is zero.

In addition to defining curl and divergence, we look at some physical interpretations of them, and show their relationship to
conservative and source-free vector fields.

Divergence
Divergence is an operation on a vector field that tells us how the field behaves toward or away from a point. Locally, the

divergence of a vector field F in ℝ2 or ℝ3 at a particular point P is a measure of the “outflowing-ness” of the vector

field at P. If F represents the velocity of a fluid, then the divergence of F at P measures the net rate of change with respect to
time of the amount of fluid flowing away from P (the tendency of the fluid to flow “out of” P). In particular, if the amount
of fluid flowing into P is the same as the amount flowing out, then the divergence at P is zero.

Definition

If F = 〈 P, Q, R 〉 is a vector field in ℝ3 and Px, Qy, and Rz all exist, then the divergence of F is defined by

(6.16)div F = Px +Qy + Rz = ∂P
∂ x + ∂Q

∂ y + ∂R
∂z .

Note the divergence of a vector field is not a vector field, but a scalar function. In terms of the gradient operator

∇ = 〈 ∂
∂ x, ∂

∂ y, ∂
∂z 〉 , divergence can be written symbolically as the dot product

div F = ∇ · F.

Note this is merely helpful notation, because the dot product of a vector of operators and a vector of functions is not
meaningfully defined given our current definition of dot product.

If F = 〈 P, Q 〉 is a vector field in ℝ2 , and Px and Qy both exist, then the divergence of F is defined similarly as

div F = Px + Qy = ∂P
∂ x + ∂Q

∂ y = ∇ · F.

To illustrate this point, consider the two vector fields in Figure 6.50. At any particular point, the amount flowing in is
the same as the amount flowing out, so at every point the “outflowing-ness” of the field is zero. Therefore, we expect the
divergence of both fields to be zero, and this is indeed the case, as

div⎛
⎝ 〈 1, 2 〉 ⎞

⎠ = ∂
∂ x(1) + ∂

∂ y(2) = 0 and div⎛
⎝ 〈 −y, x 〉 ⎞

⎠ = ∂
∂ x(−y) + ∂

∂ y(x) = 0.
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Figure 6.50 (a) Vector field 〈 1, 2 〉 has zero divergence. (b) Vector field 〈 −y, x 〉 also has zero

divergence.

By contrast, consider radial vector field R(x, y) = 〈 −x, −y 〉 in Figure 6.51. At any given point, more fluid is flowing

in than is flowing out, and therefore the “outgoingness” of the field is negative. We expect the divergence of this field to be

negative, and this is indeed the case, as div(R) = ∂
∂ x(−x) + ∂

∂ y(−y) = −2.
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6.40

Figure 6.51 This vector field has negative divergence.

To get a global sense of what divergence is telling us, suppose that a vector field in ℝ2 represents the velocity of a fluid.

Imagine taking an elastic circle (a circle with a shape that can be changed by the vector field) and dropping it into a fluid.
If the circle maintains its exact area as it flows through the fluid, then the divergence is zero. This would occur for both
vector fields in Figure 6.50. On the other hand, if the circle’s shape is distorted so that its area shrinks or expands, then the
divergence is not zero. Imagine dropping such an elastic circle into the radial vector field in Figure 6.51 so that the center
of the circle lands at point (3, 3). The circle would flow toward the origin, and as it did so the front of the circle would travel
more slowly than the back, causing the circle to “scrunch” and lose area. This is how you can see a negative divergence.

Example 6.48

Calculating Divergence at a Point

If F(x, y, z) = ex i + yzj − y2 k, then find the divergence of F at (0, 2, −1).

Solution

The divergence of F is

∂
∂ x(ex) + ∂

∂ y(yz) − ∂
∂z

⎛
⎝yz2⎞

⎠ = ex + z − 2yz.

Therefore, the divergence at (0, 2, −1) is e0 − 1 + 4 = 4. If F represents the velocity of a fluid, then more

fluid is flowing out than flowing in at point (0, 2, −1).

Find div F for F(x, y, z) = 〈 xy, 5 − z2 y, x2 + y2 〉 .

One application for divergence occurs in physics, when working with magnetic fields. A magnetic field is a vector field that
models the influence of electric currents and magnetic materials. Physicists use divergence in Gauss’s law for magnetism,

Chapter 6 | Vector Calculus 739



which states that if B is a magnetic field, then ∇ · B = 0; in other words, the divergence of a magnetic field is zero.

Example 6.49

Determining Whether a Field Is Magnetic

Is it possible for F(x, y) = 〈 x2 y, y − xy2 〉 to be a magnetic field?

Solution

If F were magnetic, then its divergence would be zero. The divergence of F is

∂
∂ x

⎛
⎝x2 y⎞

⎠ + ∂
∂ y

⎛
⎝y − xy2⎞

⎠ = 2xy + 1 − 2xy = 1

and therefore F cannot model a magnetic field (Figure 6.52).

Figure 6.52 The divergence of vector field F(x, y) = 〈 x2 y, y − xy2 〉 is one, so it

cannot model a magnetic field.

Another application for divergence is detecting whether a field is source free. Recall that a source-free field is a vector
field that has a stream function; equivalently, a source-free field is a field with a flux that is zero along any closed curve.
The next two theorems say that, under certain conditions, source-free vector fields are precisely the vector fields with zero
divergence.

Theorem 6.14: Divergence of a Source-Free Vector Field

If F = 〈 P, Q 〉 is a source-free continuous vector field with differentiable component functions, then div F = 0.
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Proof

Since F is source free, there is a function g(x, y) with gy = P and −gx = Q. Therefore, F = 〈 gy, −gx 〉 and

div F = gyx − gxy = 0 by Clairaut’s theorem.

□

The converse of Divergence of a Source-Free Vector Field is true on simply connected regions, but the proof is too

technical to include here. Thus, we have the following theorem, which can test whether a vector field in ℝ2 is source

free.

Theorem 6.15: Divergence Test for Source-Free Vector Fields

Let F = 〈 P, Q 〉 be a continuous vector field with differentiable component functions with a domain that is simply

connected. Then, div F = 0 if and only if F is source free.

Example 6.50

Determining Whether a Field Is Source Free

Is field F(x, y) = 〈 x2 y, 5 − xy2 〉 source free?

Solution

Note the domain of F is ℝ2 , which is simply connected. Furthermore, F is continuous with differentiable

component functions. Therefore, we can use Divergence Test for Source-Free Vector Fields to analyze F.
The divergence of F is

∂
∂ x

⎛
⎝x2 y⎞

⎠ + ∂
∂ y

⎛
⎝5 − xy2⎞

⎠ = 2xy − 2xy = 0.

Therefore, F is source free by Divergence Test for Source-Free Vector Fields.

Let F(x, y) = 〈 −ay, bx 〉 be a rotational field where a and b are positive constants. Is F source free?

Recall that the flux form of Green’s theorem says that

∮
C

F · Nds = ∬
D

Px + Qy dA,

where C is a simple closed curve and D is the region enclosed by C. Since Px + Qy = div F, Green’s theorem is

sometimes written as

∮
C

F · Nds = ∬
D

div FdA.

Therefore, Green’s theorem can be written in terms of divergence. If we think of divergence as a derivative of sorts, then
Green’s theorem says the “derivative” of F on a region can be translated into a line integral of F along the boundary of
the region. This is analogous to the Fundamental Theorem of Calculus, in which the derivative of a function f on a line

segment [a, b] can be translated into a statement about f on the boundary of [a, b]. Using divergence, we can see that

Green’s theorem is a higher-dimensional analog of the Fundamental Theorem of Calculus.
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We can use all of what we have learned in the application of divergence. Let v be a vector field modeling the velocity of a
fluid. Since the divergence of v at point P measures the “outflowing-ness” of the fluid at P, div v(P) > 0 implies that more

fluid is flowing out of P than flowing in. Similarly, div v(P) < 0 implies the more fluid is flowing in to P than is flowing

out, and div v(P) = 0 implies the same amount of fluid is flowing in as flowing out.

Example 6.51

Determining Flow of a Fluid

Suppose v(x, y) = 〈 −xy, y 〉 , y > 0 models the flow of a fluid. Is more fluid flowing into point (1, 4) than

flowing out?

Solution

To determine whether more fluid is flowing into (1, 4) than is flowing out, we calculate the divergence of v at

(1, 4):

div(v) = ∂
∂ x(−xy) + ∂

∂ y(y) = −y + 1.

To find the divergence at (1, 4), substitute the point into the divergence: −4 + 1 = −3. Since the divergence

of v at (1, 4) is negative, more fluid is flowing in than flowing out (Figure 6.53).

Figure 6.53 Vector field v(x, y) = 〈 −xy, y 〉 has negative divergence at (1, 4).

For vector field v(x, y) = 〈 −xy, y 〉 , y > 0, find all points P such that the amount of fluid flowing

in to P equals the amount of fluid flowing out of P.

Curl
The second operation on a vector field that we examine is the curl, which measures the extent of rotation of the field about
a point. Suppose that F represents the velocity field of a fluid. Then, the curl of F at point P is a vector that measures the

742 Chapter 6 | Vector Calculus

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



tendency of particles near P to rotate about the axis that points in the direction of this vector. The magnitude of the curl
vector at P measures how quickly the particles rotate around this axis. In other words, the curl at a point is a measure of the
vector field’s “spin” at that point. Visually, imagine placing a paddlewheel into a fluid at P, with the axis of the paddlewheel
aligned with the curl vector (Figure 6.54). The curl measures the tendency of the paddlewheel to rotate.

Figure 6.54 To visualize curl at a point, imagine placing a
small paddlewheel into the vector field at a point.

Consider the vector fields in Figure 6.50. In part (a), the vector field is constant and there is no spin at any point. Therefore,
we expect the curl of the field to be zero, and this is indeed the case. Part (b) shows a rotational field, so the field has spin.
In particular, if you place a paddlewheel into a field at any point so that the axis of the wheel is perpendicular to a plane,
the wheel rotates counterclockwise. Therefore, we expect the curl of the field to be nonzero, and this is indeed the case (the
curl is 2k).

To see what curl is measuring globally, imagine dropping a leaf into the fluid. As the leaf moves along with the fluid flow,
the curl measures the tendency of the leaf to rotate. If the curl is zero, then the leaf doesn’t rotate as it moves through the
fluid.

Definition

If F = 〈 P, Q, R 〉 is a vector field in ℝ3 , and Px, Qy, and Rz all exist, then the curl of F is defined by

(6.17)curl F = ⎛
⎝Ry − Qz

⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k

= ⎛
⎝
∂R
∂ y − ∂Q

∂z
⎞
⎠i + ⎛

⎝
∂P
∂z − ∂R

∂ x
⎞
⎠j + ⎛

⎝
∂Q
∂ x − ∂P

∂ y
⎞
⎠k.

Note that the curl of a vector field is a vector field, in contrast to divergence.

The definition of curl can be difficult to remember. To help with remembering, we use the notation ∇ × F to stand for a

“determinant” that gives the curl formula:

| i j k
∂
∂ x

∂
∂ y

∂
∂z

P Q R |.
The determinant of this matrix is

⎛
⎝Ry − Qz

⎞
⎠i − ⎛

⎝Rx − Pz
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k = ⎛

⎝Ry − Qz
⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k = curl F.

Thus, this matrix is a way to help remember the formula for curl. Keep in mind, though, that the word determinant is used
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very loosely. A determinant is not really defined on a matrix with entries that are three vectors, three operators, and three
functions.

If F = 〈 P, Q 〉 is a vector field in ℝ2 , then the curl of F, by definition, is

curl F = ⎛
⎝Qx − Py

⎞
⎠k = ⎛

⎝
∂Q
∂ x − ∂P

∂ y
⎞
⎠k.

Example 6.52

Finding the Curl of a Three-Dimensional Vector Field

Find the curl of F(P, Q, R) = 〈 x2 z, ey + xz, xyz 〉 .

Solution

The curl is

curl F = ∇ × F

= | i j k
∂ /∂ x ∂ /∂ y ∂ /∂z

P Q R |
= ⎛

⎝Ry − Qz
⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k

= (xz − x)i + ⎛
⎝x2 − yz⎞

⎠j + zk.

Find the curl of F = 〈 sinx cosz, siny sinz, cosx cosy 〉 at point ⎛
⎝0, π

2, π
2

⎞
⎠.

Example 6.53

Finding the Curl of a Two-Dimensional Vector Field

Find the curl of F = 〈 P, Q 〉 = 〈 y, 0 〉 .

Solution

Notice that this vector field consists of vectors that are all parallel. In fact, each vector in the field is parallel to
the x-axis. This fact might lead us to the conclusion that the field has no spin and that the curl is zero. To test this
theory, note that

curl F = ⎛
⎝Qx − Py

⎞
⎠k = −k ≠ 0.

Therefore, this vector field does have spin. To see why, imagine placing a paddlewheel at any point in the first
quadrant (Figure 6.55). The larger magnitudes of the vectors at the top of the wheel cause the wheel to rotate.
The wheel rotates in the clockwise (negative) direction, causing the coefficient of the curl to be negative.
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Figure 6.55 Vector field F(x, y) = 〈 y, 0 〉 consists of

vectors that are all parallel.

Note that if F = 〈 P, Q 〉 is a vector field in a plane, then curl F · k = ⎛
⎝Qx − Py

⎞
⎠k · k = Qx − Py. Therefore, the

circulation form of Green’s theorem is sometimes written as

∮
C

F · dr = ∬
D

curl F · kdA,

where C is a simple closed curve and D is the region enclosed by C. Therefore, the circulation form of Green’s theorem can
be written in terms of the curl. If we think of curl as a derivative of sorts, then Green’s theorem says that the “derivative” of F
on a region can be translated into a line integral of F along the boundary of the region. This is analogous to the Fundamental
Theorem of Calculus, in which the derivative of a function f on line segment [a, b] can be translated into a statement

about f on the boundary of [a, b]. Using curl, we can see the circulation form of Green’s theorem is a higher-dimensional

analog of the Fundamental Theorem of Calculus.

We can now use what we have learned about curl to show that gravitational fields have no “spin.” Suppose there is an object
at the origin with mass m1 at the origin and an object with mass m2. Recall that the gravitational force that object 1 exerts

on object 2 is given by field

F(x, y, z) = −Gm2 m2 〈 x
⎛
⎝x2 + y2 + z2⎞

⎠
3/2, y

⎛
⎝x2 + y2 + z2⎞

⎠
3/2, z

⎛
⎝x2 + y2 + z2⎞

⎠
3/2 〉 .

Example 6.54

Determining the Spin of a Gravitational Field

Show that a gravitational field has no spin.
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Solution

To show that F has no spin, we calculate its curl. Let P(x, y, z) = x
⎛
⎝x2 + y2 + z2⎞

⎠
3/2,

Q(x, y, z) = y
⎛
⎝x2 + y2 + z2⎞

⎠
3/2, and R(x, y, z) = z

⎛
⎝x2 + y2 + z2⎞

⎠
3/2. Then,

curl F = −Gm1 m2
⎡
⎣
⎛
⎝Ry − Qz

⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k⎤

⎦

= −Gm1 m2

⎡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎛

⎝
⎜
⎜ −3yz

⎛
⎝x2 + y2 + z2⎞

⎠
5/2 −

⎛

⎝
⎜
⎜ −3yz

⎛
⎝x2 + y2 + z2⎞

⎠
5/2

⎞

⎠
⎟
⎟
⎞

⎠
⎟
⎟i

+
⎛

⎝
⎜
⎜ −3xz

⎛
⎝x2 + y2 + z2⎞

⎠
5/2 −

⎛

⎝
⎜
⎜ −3xz

⎛
⎝x2 + y2 + z2⎞

⎠
5/2

⎞

⎠
⎟
⎟
⎞

⎠
⎟
⎟j

+
⎛

⎝
⎜
⎜ −3xy

⎛
⎝x2 + y2 + z2⎞

⎠
5/2 −

⎛

⎝
⎜
⎜ −3xy

⎛
⎝x2 + y2 + z2⎞

⎠
5/2

⎞

⎠
⎟
⎟
⎞

⎠
⎟
⎟k

⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 0.

Since the curl of the gravitational field is zero, the field has no spin.

Field v(x, y) = 〈 − y
x2 + y2, x

x2 + y2 〉 models the flow of a fluid. Show that if you drop a leaf into

this fluid, as the leaf moves over time, the leaf does not rotate.

Using Divergence and Curl
Now that we understand the basic concepts of divergence and curl, we can discuss their properties and establish
relationships between them and conservative vector fields.

If F is a vector field in ℝ3 , then the curl of F is also a vector field in ℝ3 . Therefore, we can take the divergence of

a curl. The next theorem says that the result is always zero. This result is useful because it gives us a way to show that
some vector fields are not the curl of any other field. To give this result a physical interpretation, recall that divergence of a
velocity field v at point P measures the tendency of the corresponding fluid to flow out of P. Since div curl (v) = 0, the

net rate of flow in vector field curl(v) at any point is zero. Taking the curl of vector field F eliminates whatever divergence
was present in F.

Theorem 6.16: Divergence of the Curl

Let F = 〈 P, Q, R 〉 be a vector field in ℝ3 such that the component functions all have continuous second-order

partial derivatives. Then, div curl (F) = ∇ · (∇ × F) = 0.

Proof

By the definitions of divergence and curl, and by Clairaut’s theorem,
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div curl F = div⎡
⎣
⎛
⎝Ry − Qz

⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k⎤

⎦

= Ryx − Qxz + Pyz − Ryx + Qzx − Pzy

= 0.

□

Example 6.55

Showing That a Vector Field Is Not the Curl of Another

Show that F(x, y, z) = ex i + yzj + xz2 k is not the curl of another vector field. That is, show that there is no

other vector G with curl G = F.

Solution

Notice that the domain of F is all of ℝ3 and the second-order partials of F are all continuous. Therefore, we

can apply the previous theorem to F.

The divergence of F is ex + z + 2xz. If F were the curl of vector field G, then div F = div curl G = 0. But, the

divergence of F is not zero, and therefore F is not the curl of any other vector field.

Is it possible for G(x, y, z) = 〈 sinx, cosy, sin(xyz) 〉 to be the curl of a vector field?

With the next two theorems, we show that if F is a conservative vector field then its curl is zero, and if the domain of F is
simply connected then the converse is also true. This gives us another way to test whether a vector field is conservative.

Theorem 6.17: Curl of a Conservative Vector Field

If F = 〈 P, Q, R 〉 is conservative, then curl F = 0.

Proof

Since conservative vector fields satisfy the cross-partials property, all the cross-partials of F are equal. Therefore,

curl F = ⎛
⎝Ry − Qz

⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k

= 0.

□

The same theorem is true for vector fields in a plane.

Since a conservative vector field is the gradient of a scalar function, the previous theorem says that curl ⎛
⎝∇ f ⎞

⎠ = 0 for any

scalar function f . In terms of our curl notation, ∇ × ∇ ⎛
⎝ f ⎞

⎠ = 0. This equation makes sense because the cross product of a

vector with itself is always the zero vector. Sometimes equation ∇ × ∇ ⎛
⎝ f ⎞

⎠ = 0 is simplified as ∇ × ∇ = 0.

Theorem 6.18: Curl Test for a Conservative Field

Let F = 〈 P, Q, R 〉 be a vector field in space on a simply connected domain. If curl F = 0, then F is conservative.
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Proof

Since curl F = 0, we have that Ry = Qz, Pz = Rx, and Qx = Py. Therefore, F satisfies the cross-partials property on

a simply connected domain, and Cross-Partial Property of Conservative Fields implies that F is conservative.

□

The same theorem is also true in a plane. Therefore, if F is a vector field in a plane or in space and the domain is simply
connected, then F is conservative if and only if curl F = 0.

Example 6.56

Testing Whether a Vector Field Is Conservative

Use the curl to determine whether F(x, y, z) = 〈 yz, xz, xy 〉 is conservative.

Solution

Note that the domain of F is all of ℝ3 , which is simply connected (Figure 6.56). Therefore, we can test

whether F is conservative by calculating its curl.

Figure 6.56 The curl of vector field
F(x, y, z) = 〈 yz, xz, xy 〉 is zero.

The curl of F is

⎛
⎝

∂
∂ yxy − ∂

∂zxz⎞⎠i + ⎛
⎝

∂
∂ yyz − ∂

∂zxy⎞
⎠j + ⎛

⎝
∂
∂ yxz − ∂

∂zyz⎞⎠k = (x − x)i + (y − y)j + (z − z)k = 0.

Thus, F is conservative.

We have seen that the curl of a gradient is zero. What is the divergence of a gradient? If f is a function of two variables,

then div(∇ f ) = ∇ · (∇ f ) = fxx + fyy. We abbreviate this “double dot product” as ∇2 . This operator is called the

Laplace operator, and in this notation Laplace’s equation becomes ∇2 f = 0. Therefore, a harmonic function is a function

that becomes zero after taking the divergence of a gradient.

Similarly, if f is a function of three variables then
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div(∇ f ) = ∇ · (∇ f ) = fxx + fyy + fzz.

Using this notation we get Laplace’s equation for harmonic functions of three variables:

∇2 f = 0.

Harmonic functions arise in many applications. For example, the potential function of an electrostatic field in a region of
space that has no static charge is harmonic.

Example 6.57

Analyzing a Function

Is it possible for f (x, y) = x2 + x − y to be the potential function of an electrostatic field that is located in a

region of ℝ2 free of static charge?

Solution

If f were such a potential function, then f would be harmonic. Note that fxx = 2 and fyy = 0, and so

fxx + fyy ≠ 0. Therefore, f is not harmonic and f cannot represent an electrostatic potential.

Is it possible for function f (x, y) = x2 − y2 + x to be the potential function of an electrostatic field

located in a region of ℝ2 free of static charge?
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6.5 EXERCISES
For the following exercises, determine whether the
statement is true or false.

206. If the coordinate functions of F : ℝ3 → ℝ3 have

continuous second partial derivatives, then curl (div(F))
equals zero.

207. ∇ · ⎛
⎝xi + yj + zk⎞

⎠ = 1.

208. All vector fields of the form
F(x, y, z) = f (x)i + g(y)j + h(z)k are conservative.

209. If curl F = 0, then F is conservative.

210. If F is a constant vector field then div F = 0.

211. If F is a constant vector field then curl F = 0.

For the following exercises, find the curl of F.

212. F(x, y, z) = xy2 z4 i + ⎛
⎝2x2 y + z⎞

⎠j + y3 z2 k

213. F(x, y, z) = x2 zi + y2 xj + ⎛
⎝y + 2z⎞

⎠k

214. F(x, y, z) = 3xyz2 i + y2 sinzj + xe2z k

215. F(x, y, z) = x2 yzi + xy2 zj + xyz2 k

216. F(x, y, z) = (x cosy)i + xy2 j

217. F(x, y, z) = (x − y)i + (y − z)j + (z − x)k

218. F(x, y, z) = xyzi + x2 y2 z2 j + y2 z3 k

219. F(x, y, z) = xyi + yzj + xzk

220. F(x, y, z) = x2 i + y2 j + z2 k

221. F(x, y, z) = axi + byj + ck for constants a, b, c

For the following exercises, find the divergence of F.

222. F(x, y, z) = x2 zi + y2 xj + ⎛
⎝y + 2z⎞

⎠k

223. F(x, y, z) = 3xyz2 i + y2 sinzj + xe2z k

224. F(x, y) = (sinx)i + (cosy)j

225. F(x, y, z) = x2 i + y2 j + z2 k

226. F(x, y, z) = (x − y)i + (y − z)j + (z − x)k

227. F(x, y) = x
x2 + y2

i + y
x2 + y2

j

228. F(x, y) = xi − yj

229. F(x, y, z) = axi + byj + ck for constants a, b, c

230. F(x, y, z) = xyzi + x2 y2 z2 j + y2 z3 k

231. F(x, y, z) = xyi + yzj + xzk

For the following exercises, determine whether each of the
given scalar functions is harmonic.

232. u(x, y, z) = e−x(cosy − siny)

233. w(x, y, z) = ⎛
⎝x2 + y2 + z2⎞

⎠
−1/2

234. If F(x, y, z) = 2i + 2xj + 3yk and

G(x, y, z) = xi − yj + zk, find curl (F × G).

235. If F(x, y, z) = 2i + 2xj + 3yk and

G(x, y, z) = xi − yj + zk, find div (F × G).

236. Find div F, given that F = ∇ f , where

f (x, y, z) = xy3 z2.

237. Find the divergence of F for vector field
F(x, y, z) = ⎛

⎝y2 + z2⎞
⎠(x + y)i + ⎛

⎝z2 + x2⎞
⎠(y + z)j + ⎛

⎝x2 + y2⎞
⎠(z + x)k.

238. Find the divergence of F for vector field
F(x, y, z) = f1(y, z)i + f2(x, z)j + f3(x, y)k.

For the following exercises, use r = |r| and r = (x, y, z).

239. Find the curl r.

240. Find the curl r
r .

241. Find the curl r
r3.

242. Let F(x, y) = −yi + xj
x2 + y2 , where F is defined on

⎧

⎩
⎨(x, y) ∈ ℝ |(x, y) ≠ (0, 0)⎫

⎭
⎬. Find curl F.

For the following exercises, use a computer algebra system

750 Chapter 6 | Vector Calculus

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



to find the curl of the given vector fields.

243. [T] F(x, y, z) = arctan⎛
⎝
x
y

⎞
⎠i + ln x2 + y2j + k

244. [T]
F(x, y, z) = sin(x − y)i + sin(y − z)j + sin(z − x)k

For the following exercises, find the divergence of F at the
given point.

245. F(x, y, z) = i + j + k at (2, −1, 3)

246. F(x, y, z) = xyzi + yj + zk at (1, 2, 3)

247. F(x, y, z) = e−xy i + exz j + eyz k at (3, 2, 0)

248. F(x, y, z) = xyzi + yj + zk at (1, 2, 1)

249. F(x, y, z) = ex sinyi − ex cosyj at (0, 0, 3)

For the following exercises, find the curl of F at the given
point.

250. F(x, y, z) = i + j + k at (2, −1, 3)

251. F(x, y, z) = xyzi + yj + xk at (1, 2, 3)

252. F(x, y, z) = e−xy i + exz j + eyz k at (3, 2, 0)

253. F(x, y, z) = xyzi + yj + zk at (1, 2, 1)

254. F(x, y, z) = ex sinyi − ex cosyj at (0, 0, 3)

255. Let

F(x, y, z) = ⎛
⎝3x2 y + az⎞

⎠i + x3 j + ⎛
⎝3x + 3z2⎞

⎠k. For what

value of a is F conservative?

256. Given vector field F(x, y) = 1
x2 + y2(−y, x) on

domain D = ℝ2

{(0, 0)} = ⎧

⎩
⎨(x, y) ∈ ℝ2 |(x, y) ≠ (0, 0)⎫

⎭
⎬,

is F conservative?

257. Given vector field F(x, y) = 1
x2 + y2(x, y) on

domain D = ℝ2

{(0, 0)}, is F conservative?

258. Find the work done by force field

F(x, y) = e−y i − xe−y j in moving an object from P(0, 1)

to Q(2, 0). Is the force field conservative?

259. Compute divergence
F = (sinh x)i + ⎛

⎝cosh y⎞
⎠j − xyzk.

260. Compute curl F = (sinh x)i + ⎛
⎝cosh y⎞

⎠j − xyzk.

For the following exercises, consider a rigid body that is
rotating about the x-axis counterclockwise with constant
angular velocity ω = 〈 a, b, c 〉 . If P is a point in the

body located at r = xi + yj + zk, the velocity at P is given

by vector field F = ω × r.

261. Express F in terms of i, j, and k vectors.

262. Find div F.

263. Find curl F

In the following exercises, suppose that ∇ · F = 0 and

∇ · G = 0.

264. Does F + G necessarily have zero divergence?

265. Does F × G necessarily have zero divergence?

In the following exercises, suppose a solid object in ℝ3

has a temperature distribution given by T(x, y, z). The

heat flow vector field in the object is F = −k∇T , where

k > 0 is a property of the material. The heat flow vector

points in the direction opposite to that of the gradient,
which is the direction of greatest temperature decrease.
The divergence of the heat flow vector is

∇ · F = −k∇ · ∇T = −k∇2T .

266. Compute the heat flow vector field.

267. Compute the divergence.
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268. [T] Consider rotational velocity field
v = 〈 0, 10z, −10y 〉 . If a paddlewheel is placed in

plane x + y + z = 1 with its axis normal to this plane,

using a computer algebra system, calculate how fast the
paddlewheel spins in revolutions per unit time.
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6.6 | Surface Integrals

Learning Objectives
6.6.1 Find the parametric representations of a cylinder, a cone, and a sphere.

6.6.2 Describe the surface integral of a scalar-valued function over a parametric surface.

6.6.3 Use a surface integral to calculate the area of a given surface.

6.6.4 Explain the meaning of an oriented surface, giving an example.

6.6.5 Describe the surface integral of a vector field.

6.6.6 Use surface integrals to solve applied problems.

We have seen that a line integral is an integral over a path in a plane or in space. However, if we wish to integrate over
a surface (a two-dimensional object) rather than a path (a one-dimensional object) in space, then we need a new kind of
integral that can handle integration over objects in higher dimensions. We can extend the concept of a line integral to a
surface integral to allow us to perform this integration.

Surface integrals are important for the same reasons that line integrals are important. They have many applications to
physics and engineering, and they allow us to develop higher dimensional versions of the Fundamental Theorem of
Calculus. In particular, surface integrals allow us to generalize Green’s theorem to higher dimensions, and they appear in
some important theorems we discuss in later sections.

Parametric Surfaces
A surface integral is similar to a line integral, except the integration is done over a surface rather than a path. In this sense,
surface integrals expand on our study of line integrals. Just as with line integrals, there are two kinds of surface integrals: a
surface integral of a scalar-valued function and a surface integral of a vector field.

However, before we can integrate over a surface, we need to consider the surface itself. Recall that to calculate a scalar
or vector line integral over curve C, we first need to parameterize C. In a similar way, to calculate a surface integral over
surface S, we need to parameterize S. That is, we need a working concept of a parameterized surface (or a parametric
surface), in the same way that we already have a concept of a parameterized curve.

A parameterized surface is given by a description of the form

r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 .

Notice that this parameterization involves two parameters, u and v, because a surface is two-dimensional, and therefore two
variables are needed to trace out the surface. The parameters u and v vary over a region called the parameter domain, or
parameter space—the set of points in the uv-plane that can be substituted into r. Each choice of u and v in the parameter
domain gives a point on the surface, just as each choice of a parameter t gives a point on a parameterized curve. The entire
surface is created by making all possible choices of u and v over the parameter domain.

Definition

Given a parameterization of surface r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 , the parameter domain of the

parameterization is the set of points in the uv-plane that can be substituted into r.

Example 6.58

Parameterizing a Cylinder

Describe surface S parameterized by

r(u, v) = 〈 cos u, sin u, v 〉 , −∞ < u < ∞, −∞ < v < ∞.
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Solution

To get an idea of the shape of the surface, we first plot some points. Since the parameter domain is all

of ℝ2 , we can choose any value for u and v and plot the corresponding point. If u = v = 0, then

r(0, 0) = 〈 1, 0, 0 〉 , so point (1, 0, 0) is on S. Similarly, points r(π, 2) = (−1, 0, 2) and

r⎛
⎝
π
2, 4⎞

⎠ = (0, 1, 4) are on S.

Although plotting points may give us an idea of the shape of the surface, we usually need quite a few points to see
the shape. Since it is time-consuming to plot dozens or hundreds of points, we use another strategy. To visualize
S, we visualize two families of curves that lie on S. In the first family of curves we hold u constant; in the second
family of curves we hold v constant. This allows us to build a “skeleton” of the surface, thereby getting an idea of
its shape.

First, suppose that u is a constant K. Then the curve traced out by the parameterization is 〈 cos K, sin K, v 〉 ,
which gives a vertical line that goes through point (cos K, sin K, v) in the xy-plane.

Now suppose that v is a constant K. Then the curve traced out by the parameterization is 〈 cos u, sin u, K 〉 ,
which gives a circle in plane z = K with radius 1 and center (0, 0, K).

If u is held constant, then we get vertical lines; if v is held constant, then we get circles of radius 1 centered around
the vertical line that goes through the origin. Therefore the surface traced out by the parameterization is cylinder

x2 + y2 = 1 (Figure 6.57).

Figure 6.57 (a) Lines 〈 cos K, sin K, v 〉 for K = 0, π
2, π, and 3π

2 . (b) Circles 〈 cos u, sin u, K 〉 for

K = −2, −1, 1, and 2. (c) The lines and circles together. As u and v vary, they describe a cylinder.

Notice that if x = cos u and y = sin u, then x2 + y2 = 1, so points from S do indeed lie on the cylinder.

Conversely, each point on the cylinder is contained in some circle 〈 cos u, sin u, k 〉 for some k, and therefore

each point on the cylinder is contained in the parameterized surface (Figure 6.58).
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Figure 6.58 Cylinder x2 + y2 = r2 has parameterization

r(u, v) = 〈 r cos u, r sin u, v 〉 ,
0 ≤ u ≤ 2π, −∞ < v < ∞.

Analysis
Notice that if we change the parameter domain, we could get a different surface. For example, if we restricted the
domain to 0 ≤ u ≤ π, 0 < v < 6, then the surface would be a half-cylinder of height 6.

Describe the surface with parameterization
r(u, v) = 〈 2 cos u, 2 sin u, v 〉 , 0 ≤ u < 2π, −∞ < v < ∞.

It follows from Example 6.58 that we can parameterize all cylinders of the form x2 + y2 = R2. If S is a cylinder given

by equation x2 + y2 = R2, then a parameterization of S is

r(u, v) = 〈 R cos u, R sin u, v 〉 , 0 ≤ u < 2π, −∞ < v < ∞.

We can also find different types of surfaces given their parameterization, or we can find a parameterization when we are
given a surface.

Example 6.59

Describing a Surface

Describe surface S parameterized by

r(u, v) = 〈 u cos v, u sin v, u2 〉 , 0 ≤ u < ∞, 0 ≤ v < 2π.

Solution
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Notice that if u is held constant, then the resulting curve is a circle of radius u in plane z = u. Therefore, as u

increases, the radius of the resulting circle increases. If v is held constant, then the resulting curve is a vertical
parabola. Therefore, we expect the surface to be an elliptic paraboloid. To confirm this, notice that

x2 + y2 = (u cos v)2 + (u sin v)2

= u2 cos2 v + u2 sin2 v
= u2

= z.

Therefore, the surface is elliptic paraboloid x2 + y2 = z (Figure 6.59).

Figure 6.59 (a) Circles arise from holding u constant; the vertical parabolas
arise from holding v constant. (b) An elliptic paraboloid results from all choices of
u and v in the parameter domain.

Describe the surface parameterized by r(u, v) = 〈 u cos v, u sin v, u 〉 , −∞ < u < ∞, 0 ≤ v < 2π.

Example 6.60

Finding a Parameterization

Give a parameterization of the cone x2 + y2 = z2 lying on or above the plane z = −2.

Solution

The horizontal cross-section of the cone at height z = u is circle x2 + y2 = u2. Therefore, a point on the

cone at height u has coordinates (u cos v, u sin v, u) for angle v. Hence, a parameterization of the cone is

r(u, v) = 〈 u cos v, u sin v, u 〉 . Since we are not interested in the entire cone, only the portion on or above
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plane z = −2, the parameter domain is given by −2 ≤ u < ∞, 0 ≤ v < 2π (Figure 6.60).

Figure 6.60 Cone x2 + y2 = z2 has parameterization

r(u, v) = 〈 u cos v, u sin v, u 〉 , −∞ < u < ∞, 0 ≤ v ≤ 2π.

Give a parameterization for the portion of cone x2 + y2 = z2 lying in the first octant.

We have discussed parameterizations of various surfaces, but two important types of surfaces need a separate discussion:
spheres and graphs of two-variable functions. To parameterize a sphere, it is easiest to use spherical coordinates. The sphere
of radius ρ centered at the origin is given by the parameterization

r⎛
⎝ϕ, θ⎞

⎠ = 〈 ρ cos θ sin ϕ, ρ sin θ sin ϕ, ρ cos ϕ 〉 , 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

The idea of this parameterization is that as ϕ sweeps downward from the positive z-axis, a circle of radius ρ sin ϕ is traced

out by letting θ run from 0 to 2π. To see this, let ϕ be fixed. Then

x2 + y2 = ⎛
⎝ρ cos θ sin ϕ⎞

⎠
2 + ⎛

⎝ρ sin θ sin ϕ⎞
⎠
2

= ρ2 sin2 ϕ⎛
⎝cos2 θ + sin2 θ⎞

⎠

= ρ2 sin2 ϕ

= ⎛
⎝ρ sin ϕ⎞

⎠
2.

This results in the desired circle (Figure 6.61).
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Figure 6.61 The sphere of radius ρ has parameterization

r⎛
⎝ϕ, θ⎞

⎠ = 〈 ρ cos θ sin ϕ, ρ sin θ sin ϕ, ρ cos ϕ 〉 ,
0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

Finally, to parameterize the graph of a two-variable function, we first let z = f (x, y) be a function of two variables. The

simplest parameterization of the graph of f is r(x, y) = 〈 x, y, f (x, y) 〉 , where x and y vary over the domain of f

(Figure 6.62). For example, the graph of f (x, y) = x2 y can be parameterized by r(x, y) = 〈 x, y, x2 y 〉 , where the

parameters x and y vary over the domain of f . If we only care about a piece of the graph of f —say, the piece of the graph

over rectangle [1, 3] × ⎡
⎣2, 5⎤

⎦ —then we can restrict the parameter domain to give this piece of the surface:

r(x, y) = 〈 x, y, x2 y 〉 , 1 ≤ x ≤ 3, 2 ≤ y ≤ 5.

Similarly, if S is a surface given by equation x = g(y, z) or equation y = h(x, z), then a parameterization of S is

r(y, z) = 〈 g(y, z), y, z 〉 or r(x, z) = 〈 x, h(x, z), z 〉 , respectively. For example, the graph of paraboloid

2y = x2 + z2 can be parameterized by r(x, z) = 〈 x, x2 + z2

2 , z 〉 , 0 ≤ x < ∞, 0 ≤ z < ∞. Notice that we do not need

to vary over the entire domain of y because x and z are squared.
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Figure 6.62 The simplest parameterization of the graph of a
function is r(x, y) = 〈 x, y, f (x, y) 〉 .

Let’s now generalize the notions of smoothness and regularity to a parametric surface. Recall that curve parameterization
r(t), a ≤ t ≤ b is regular if r′(t) ≠ 0 for all t in [a, b]. For a curve, this condition ensures that the image of r really is

a curve, and not just a point. For example, consider curve parameterization r(t) = 〈 1, 2 〉 , 0 ≤ t ≤ 5. The image of this

parameterization is simply point (1, 2), which is not a curve. Notice also that r′(t) = 0. The fact that the derivative is

zero indicates we are not actually looking at a curve.

Analogously, we would like a notion of regularity for surfaces so that a surface parameterization really does trace out a
surface. To motivate the definition of regularity of a surface parameterization, consider parameterization

r(u, v) = 〈 0, cos v, 1 〉 , 0 ≤ u ≤ 1, 0 ≤ v ≤ π.

Although this parameterization appears to be the parameterization of a surface, notice that the image is actually a line
(Figure 6.63). How could we avoid parameterizations such as this? Parameterizations that do not give an actual surface?
Notice that ru = 〈 0, 0, 0 〉 and rv = 〈 0, −sin v, 0 〉 , and the corresponding cross product is zero. The analog

of the condition r′(t) = 0 is that ru × rv is not zero for point (u, v) in the parameter domain, which is a regular

parameterization.
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Figure 6.63 The image of parameterization
r(u, v) = 〈 0, cos v, 1 〉 , 0 ≤ u ≤ 1, 0 ≤ v ≤ π is a line.

Definition

Parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 is a regular parameterization if ru × rv is not zero for

point (u, v) in the parameter domain.

If parameterization r is regular, then the image of r is a two-dimensional object, as a surface should be. Throughout this
chapter, parameterizations r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 are assumed to be regular.

Recall that curve parameterization r(t), a ≤ t ≤ b is smooth if r′(t) is continuous and r′(t) ≠ 0 for all t in [a, b].
Informally, a curve parameterization is smooth if the resulting curve has no sharp corners. The definition of a smooth surface
parameterization is similar. Informally, a surface parameterization is smooth if the resulting surface has no sharp corners.

Definition

A surface parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 is smooth if vector ru × rv is not zero for any

choice of u and v in the parameter domain.

A surface may also be piecewise smooth if it has smooth faces but also has locations where the directional derivatives do
not exist.

Example 6.61

Identifying Smooth and Nonsmooth Surfaces

Which of the figures in Figure 6.64 is smooth?
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Figure 6.64 (a) This surface is smooth. (b) This surface is piecewise smooth.

Solution

The surface in Figure 6.64(a) can be parameterized by

r(u, v) = 〈 (2 + cos v)cos u, (2 + cos v)sin u, sin v 〉 , 0 ≤ u < 2π, 0 ≤ v < 2π

(we can use technology to verify). Notice that vectors

ru = 〈 −(2 + cos v)sin u, (2 + cos v)cos u, 0 〉 and rv = 〈 −sin v cos u, −sin v sin u, cos v 〉

exist for any choice of u and v in the parameter domain, and

ru × rv = | i j k
−(2 + cos v)sin u (2 + cos v)cos u 0

−sin v cos u −sin v sin u cos v|
= ⎡

⎣(2 + cos v)cos u cos v⎤
⎦i + ⎡

⎣(2 + cos v)sin u cos v⎤
⎦j

+⎡
⎣(2 + cos v)sin v sin2 u + (2 + cos v)sin v cos2 u⎤

⎦k
= ⎡

⎣(2 + cos v)cos u cos v⎤
⎦i + ⎡

⎣(2 + cos v)sin u cos v⎤
⎦j + ⎡

⎣(2 + cos v)sin v⎤
⎦k.

The k component of this vector is zero only if v = 0 or v = π. If v = 0 or v = π, then the only choices for u

that make the j component zero are u = 0 or u = π. But, these choices of u do not make the i component zero.

Therefore, ru × rv is not zero for any choice of u and v in the parameter domain, and the parameterization is

smooth. Notice that the corresponding surface has no sharp corners.

In the pyramid in Figure 6.64(b), the sharpness of the corners ensures that directional derivatives do not exist at
those locations. Therefore, the pyramid has no smooth parameterization. However, the pyramid consists of four
smooth faces, and thus this surface is piecewise smooth.

Is the surface parameterization r(u, v) = 〈 u2v, v + 1, sin u 〉 , 0 ≤ u ≤ 2, 0 ≤ v ≤ 3 smooth?

Surface Area of a Parametric Surface
Our goal is to define a surface integral, and as a first step we have examined how to parameterize a surface. The second step
is to define the surface area of a parametric surface. The notation needed to develop this definition is used throughout the
rest of this chapter.
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Let S be a surface with parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 over some parameter domain D. We

assume here and throughout that the surface parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 is continuously

differentiable—meaning, each component function has continuous partial derivatives. Assume for the sake of simplicity
that D is a rectangle (although the following material can be extended to handle nonrectangular parameter domains). Divide
rectangle D into subrectangles Di j with horizontal width Δu and vertical length Δv. Suppose that i ranges from 1 to

m and j ranges from 1 to n so that D is subdivided into mn rectangles. This division of D into subrectangles gives a
corresponding division of surface S into pieces Si j. Choose point Pi j in each piece Si j. Point Pi j corresponds to point

(ui, v j) in the parameter domain.

Note that we can form a grid with lines that are parallel to the u-axis and the v-axis in the uv-plane. These grid lines
correspond to a set of grid curves on surface S that is parameterized by r(u, v). Without loss of generality, we assume

that Pi j is located at the corner of two grid curves, as in Figure 6.65. If we think of r as a mapping from the uv-plane to

ℝ3 , the grid curves are the image of the grid lines under r. To be precise, consider the grid lines that go through point

(ui, v j). One line is given by x = ui, y = v; the other is given by x = u, y = v j. In the first grid line, the horizontal

component is held constant, yielding a vertical line through (ui, v j). In the second grid line, the vertical component is held

constant, yielding a horizontal line through (ui, v j). The corresponding grid curves are r(ui, v) and r(u, v j), and these

curves intersect at point Pi j.

Figure 6.65 Grid lines on a parameter domain correspond to grid curves on a surface.

Now consider the vectors that are tangent to these grid curves. For grid curve r(ui, v), the tangent vector at Pi j is

tv
⎛
⎝Pi j

⎞
⎠ = rv

⎛
⎝ui, v j

⎞
⎠ = 〈 xv

⎛
⎝ui, v j

⎞
⎠, yv

⎛
⎝ui, v j

⎞
⎠, zv

⎛
⎝ui, v j

⎞
⎠ 〉 .

For grid curve r(u, v j), the tangent vector at Pi j is

tu
⎛
⎝Pi j

⎞
⎠ = ru

⎛
⎝ui, v j

⎞
⎠ = 〈 xu

⎛
⎝ui, v j

⎞
⎠, yu

⎛
⎝ui, v j

⎞
⎠, zu

⎛
⎝ui, v j

⎞
⎠ 〉 .

If vector N = tu
⎛
⎝Pi j

⎞
⎠ × tv

⎛
⎝Pi j

⎞
⎠ exists and is not zero, then the tangent plane at Pi j exists (Figure 6.66). If piece Si j is

small enough, then the tangent plane at point Pi j is a good approximation of piece Si j.

762 Chapter 6 | Vector Calculus

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



Figure 6.66 If the cross product of vectors tu and tv exists, then there is a

tangent plane.

The tangent plane at Pi j contains vectors tu
⎛
⎝Pi j

⎞
⎠ and tv

⎛
⎝Pi j

⎞
⎠, and therefore the parallelogram spanned by tu

⎛
⎝Pi j

⎞
⎠ and

tv
⎛
⎝Pi j

⎞
⎠ is in the tangent plane. Since the original rectangle in the uv-plane corresponding to Si j has width Δu and length

Δv, the parallelogram that we use to approximate Si j is the parallelogram spanned by Δutu
⎛
⎝Pi j

⎞
⎠ and Δvtv

⎛
⎝Pi j

⎞
⎠. In

other words, we scale the tangent vectors by the constants Δu and Δv to match the scale of the original division of

rectangles in the parameter domain. Therefore, the area of the parallelogram used to approximate the area of Si j is

ΔSi j ≈ ‖ ⎛
⎝Δutu

⎛
⎝Pi j

⎞
⎠
⎞
⎠ × ⎛

⎝Δvtv
⎛
⎝Pi j

⎞
⎠
⎞
⎠ ‖ = ‖ tu

⎛
⎝Pi j

⎞
⎠ × tv

⎛
⎝Pi j

⎞
⎠ ‖ ΔuΔv.

Varying point Pi j over all pieces Si j and the previous approximation leads to the following definition of surface area of a

parametric surface (Figure 6.67).

Figure 6.67 The parallelogram spanned by tu and tv

approximates the piece of surface Si j.

Definition

Let r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 with parameter domain D be a smooth parameterization of surface S.

Furthermore, assume that S is traced out only once as (u, v) varies over D. The surface area of S is

(6.18)∬
D

‖ tu × tv ‖ dA,

where tu = 〈 ∂ x
∂u, ∂ y

∂u, ∂z
∂u 〉 and tv = 〈 ∂ x

∂v , ∂ y
∂v , ∂z

∂v 〉 .

Example 6.62
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Calculating Surface Area

Calculate the lateral surface area (the area of the “side,” not including the base) of the right circular cone with
height h and radius r.

Solution

Before calculating the surface area of this cone using Equation 6.18, we need a parameterization. We assume

this cone is in ℝ3 with its vertex at the origin (Figure 6.68). To obtain a parameterization, let α be the angle

that is swept out by starting at the positive z-axis and ending at the cone, and let k = tan α. For a height value v

with 0 ≤ v ≤ h, the radius of the circle formed by intersecting the cone with plane z = v is kv. Therefore, a

parameterization of this cone is

s(u, v) = 〈 kv cos u, kv sin u, v 〉 , 0 ≤ u < 2π, 0 ≤ v ≤ h.

The idea behind this parameterization is that for a fixed v value, the circle swept out by letting u vary is the circle
at height v and radius kv. As v increases, the parameterization sweeps out a “stack” of circles, resulting in the
desired cone.

Figure 6.68 The right circular cone with radius r = kh and
height h has parameterization
s(u, v) = 〈 kv cos u, kv sin u, v 〉 , 0 ≤ u < 2π, 0 ≤ v ≤ h.

With a parameterization in hand, we can calculate the surface area of the cone using Equation 6.18. The tangent
vectors are tu = 〈 −kv sin u, kv cos u, 0 〉 and tv = 〈 k cos u, k sin u, 1 〉 . Therefore,

tu × tv = | i j k
−kv sin u kv cos u 0
k cos u k sin u 1|

= 〈 kv cos u, kv sin u, −k2 v sin2 u − k2 v cos2 u 〉

= 〈 kv cos u, kv sin u, −k2 v 〉 .

The magnitude of this vector is
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‖ 〈 kv cos u, kv sin u, −k2 v 〉 ‖ = k2 v2 cos2 u + k2 v2 sin2 u + k4 v2

= k2 v2 + k4 v2

= kv 1 + k2.

By Equation 6.18, the surface area of the cone is

∬
D

‖ tu × tv ‖ dA = ∫
0

h
∫

0

2π
kv 1 + k2dudv

= 2πk 1 + k2∫
0

h
vdv

= 2πk 1 + k2⎡
⎣

v2

2
⎤
⎦0

h

= πkh2 1 + k2.

Since k = tan α = r/h,

πkh2 1 + k2 = π r
hh2 1 + r2

h2

= πrh 1 + r2

h2

= πr h2 + h2 ⎛
⎝

r2

h2
⎞
⎠

= πr h2 + r2.

Therefore, the lateral surface area of the cone is πr h2 + r2.

Analysis

The surface area of a right circular cone with radius r and height h is usually given as πr2 + πr h2 + r2. The

reason for this is that the circular base is included as part of the cone, and therefore the area of the base πr2 is

added to the lateral surface area πr h2 + r2 that we found.

Find the surface area of the surface with parameterization

r(u, v) = 〈 u + v, u2, 2v 〉 , 0 ≤ u ≤ 3, 0 ≤ v ≤ 2.

Example 6.63

Calculating Surface Area

Show that the surface area of the sphere x2 + y2 + z2 = r2 is 4πr2.

Solution

The sphere has parameterization
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〈 r cos θ sin ϕ, r sin θ sin ϕ, r cos ϕ 〉 , 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π.

The tangent vectors are

tθ = 〈 −r sin θ sin ϕ, r cos θ sin ϕ, 0 〉 and tϕ = 〈 r cos θ cos ϕ, r sin θ cos ϕ, −r sin ϕ 〉 .

Therefore,

tϕ × tθ = 〈 r2 cos θ sin2 ϕ, r2 sin θ sin2 ϕ, r2 sin2 θ sin ϕ cos ϕ + r2 cos2 θ sin ϕ cos ϕ 〉

= 〈 r2 cos θ sin2 ϕ, r2 sin θ sin2 ϕ, r2 sin ϕ cos ϕ 〉 .

Now,

‖ tϕ × tθ = r4 sin4 ϕ cos2 θ + r4 sin4 ϕ sin2 θ + r4 sin2 ϕ cos2 ϕ

= r4 sin4 ϕ + r4 sin2 ϕ cos2 ϕ

= r2 sin2 ϕ
= r sin ϕ.

Notice that sin ϕ ≥ 0 on the parameter domain because 0 ≤ ϕ < π, and this justifies equation

sin2 ϕ = sin ϕ. The surface area of the sphere is

∫
0

2π
∫

0

π
r2 sin ϕdϕdθ = r2 ∫

0

2π
2dθ = 4πr2.

We have derived the familiar formula for the surface area of a sphere using surface integrals.

Show that the surface area of cylinder x2 + y2 = r2, 0 ≤ z ≤ h is 2πrh. Notice that this cylinder does

not include the top and bottom circles.

In addition to parameterizing surfaces given by equations or standard geometric shapes such as cones and spheres, we can
also parameterize surfaces of revolution. Therefore, we can calculate the surface area of a surface of revolution by using the
same techniques. Let y = f (x) ≥ 0 be a positive single-variable function on the domain a ≤ x ≤ b and let S be the surface

obtained by rotating f about the x-axis (Figure 6.69). Let θ be the angle of rotation. Then, S can be parameterized with

parameters x and θ by

r(x, θ) = 〈 x, f (x)cos θ, f (x)sin θ 〉 , a ≤ x ≤ b, 0 ≤ x < 2π.
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Figure 6.69 We can parameterize a surface of revolution by
r(x, θ) = 〈 x, f (x)cos θ, f (x)sin θ 〉 , a ≤ x ≤ b, 0 ≤ x < 2π.

Example 6.64

Calculating Surface Area

Find the area of the surface of revolution obtained by rotating y = x2, 0 ≤ x ≤ b about the x-axis (Figure

6.70).

Figure 6.70 A surface integral can be used to calculate the
surface area of this solid of revolution.

Solution

This surface has parameterization

r(x, θ) = 〈 x, x2 cos θ, x2 sin θ 〉 , 0 ≤ x ≤ b, 0 ≤ x < 2π.

The tangent vectors are tx = 〈 1, 2x cos θ, 2x sin θ 〉 and tθ = 〈 0, −x2 sin θ, −x2 cos θ 〉 . Therefore,

tx × tθ = 〈 2x3 cos2 θ + 2x3 sin2 θ, −x2 cos θ, −x2 sin θ 〉

= 〈 2x3, −x2 cos θ, −x2 sin θ 〉
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and

tx × tθ = 4x6 + x4 cos2 θ + x4 sin2 θ

= 4x6 + x4

= x2 4x2 + 1.

The area of the surface of revolution is

∫
0

b
∫

0

π
x2 4x2 + 1dθdx = 2π∫

0

b
x2 4x2 + 1dx

= 2π⎡
⎣

1
64

⎛
⎝2 4x2 + 1⎛

⎝8x3 + x⎞
⎠sinh−1 (2x)⎞⎠

⎤
⎦0

b

= 2π⎡
⎣

1
64

⎛
⎝2 4b2 + 1⎛

⎝8b3 + b⎞
⎠sinh−1 (2b)⎞⎠

⎤
⎦.

Use Equation 6.18 to find the area of the surface of revolution obtained by rotating curve
y = sin x, 0 ≤ x ≤ π about the x-axis.

Surface Integral of a Scalar-Valued Function
Now that we can parameterize surfaces and we can calculate their surface areas, we are able to define surface integrals. First,
let’s look at the surface integral of a scalar-valued function. Informally, the surface integral of a scalar-valued function is an
analog of a scalar line integral in one higher dimension. The domain of integration of a scalar line integral is a parameterized
curve (a one-dimensional object); the domain of integration of a scalar surface integral is a parameterized surface (a two-
dimensional object). Therefore, the definition of a surface integral follows the definition of a line integral quite closely. For
scalar line integrals, we chopped the domain curve into tiny pieces, chose a point in each piece, computed the function at
that point, and took a limit of the corresponding Riemann sum. For scalar surface integrals, we chop the domain region (no
longer a curve) into tiny pieces and proceed in the same fashion.

Let S be a piecewise smooth surface with parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 with parameter domain

D and let f (x, y, z) be a function with a domain that contains S. For now, assume the parameter domain D is a rectangle,

but we can extend the basic logic of how we proceed to any parameter domain (the choice of a rectangle is simply to make
the notation more manageable). Divide rectangle D into subrectangles Di j with horizontal width Δu and vertical length

Δv. Suppose that i ranges from 1 to m and j ranges from 1 to n so that D is subdivided into mn rectangles. This division

of D into subrectangles gives a corresponding division of S into pieces Si j. Choose point Pi j in each piece Si j, evaluate

Pi j at f , and multiply by area ΔSi j to form the Riemann sum

∑
i = 1

m
∑
j = 1

n
f ⎛

⎝Pi j
⎞
⎠ΔSi j.

To define a surface integral of a scalar-valued function, we let the areas of the pieces of S shrink to zero by taking a limit.

Definition

The surface integral of a scalar-valued function of f over a piecewise smooth surface S is

∬
S

f (x, y, z)dS = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝Pi j
⎞
⎠ΔSi j.
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Again, notice the similarities between this definition and the definition of a scalar line integral. In the definition of a line
integral we chop a curve into pieces, evaluate a function at a point in each piece, and let the length of the pieces shrink to
zero by taking the limit of the corresponding Riemann sum. In the definition of a surface integral, we chop a surface into
pieces, evaluate a function at a point in each piece, and let the area of the pieces shrink to zero by taking the limit of the
corresponding Riemann sum. Thus, a surface integral is similar to a line integral but in one higher dimension.

The definition of a scalar line integral can be extended to parameter domains that are not rectangles by using the same logic
used earlier. The basic idea is to chop the parameter domain into small pieces, choose a sample point in each piece, and so
on. The exact shape of each piece in the sample domain becomes irrelevant as the areas of the pieces shrink to zero.

Scalar surface integrals are difficult to compute from the definition, just as scalar line integrals are. To develop a method
that makes surface integrals easier to compute, we approximate surface areas ΔSi j with small pieces of a tangent plane,

just as we did in the previous subsection. Recall the definition of vectors tu and tv :

tu = 〈 ∂ x
∂u, ∂ y

∂u, ∂z
∂u 〉 and tv = 〈 ∂ x

∂v , ∂ y
∂v , ∂z

∂v 〉 .

From the material we have already studied, we know that

ΔSi j ≈ ‖ tu
⎛
⎝Pi j

⎞
⎠ × tv

⎛
⎝Pi j

⎞
⎠ ‖ ΔuΔv.

Therefore,

∬
S

f (x, y, z)dS ≈ limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝Pi j
⎞
⎠ ‖ tu

⎛
⎝Pi j

⎞
⎠ × tv

⎛
⎝Pi j

⎞
⎠ ‖ ΔuΔv.

This approximation becomes arbitrarily close to limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
f ⎛

⎝Pi j
⎞
⎠ΔSi j as we increase the number of pieces Si j by

letting m and n go to infinity. Therefore, we have the following equation to calculate scalar surface integrals:

(6.19)∬
S

f (x, y, z)dS = ∬
D

f (r(u, v)) ‖ tu × tv ‖ dA.

Equation 6.19 allows us to calculate a surface integral by transforming it into a double integral. This equation for surface
integrals is analogous to Equation 6.20 for line integrals:

∬
C

f (x, y, z)ds = ∫
a

b
f (r(t)) ‖ r′(t) ‖ dt.

In this case, vector tu × tv is perpendicular to the surface, whereas vector r′(t) is tangent to the curve.

Example 6.65

Calculating a Surface Integral

Calculate surface integral ∬
S
5dS, where S is the surface with parameterization r(u, v) = 〈 u, u2, v 〉 for

0 ≤ u ≤ 2 and 0 ≤ v ≤ u.

Solution

Notice that this parameter domain D is a triangle, and therefore the parameter domain is not rectangular. This
is not an issue though, because Equation 6.19 does not place any restrictions on the shape of the parameter
domain.

To use Equation 6.19 to calculate the surface integral, we first find vector tu and tv. Note that

tu = 〈 1, 2u, 0 〉 and tv = 〈 0, 0, 1 〉 . Therefore,
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tu × tv = | i j k
1 2u 0
0 0 1| = 〈 2u, −1, 0 〉

and

‖ tu × tv ‖ = 1 + 4u2.

By Equation 6.19,

∬
S
5dS = 5 ∬

D
u 1 + 4u2dA

= 5∫
0

2
∫

0

u
1 + 4u2dvdu = 5∫

0

2
u 1 + 4u2du

= 5
⎡

⎣
⎢
⎢

⎛
⎝1 + 4u2⎞

⎠
3/2

3

⎤

⎦
⎥
⎥

0

2

=
5⎛

⎝173/2 − 1⎞
⎠

3 ≈ 115.15.

Example 6.66

Calculating the Surface Integral of a Cylinder

Calculate surface integral ∬
S

⎛
⎝x + y2⎞

⎠dS, where S is cylinder x2 + y2 = 4, 0 ≤ z ≤ 3 (Figure 6.71).

Figure 6.71 Integrating function f (x, y, z) = x + y2 over a

cylinder.

Solution

To calculate the surface integral, we first need a parameterization of the cylinder. Following Example 6.58, a
parameterization is

r(u, v) = 〈 cos u, sin u, v 〉 , 0 ≤ u ≤ 2π, 0 ≤ v ≤ 3.
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The tangent vectors are tu = 〈 sin u, cos u, 0 〉 and tv = 〈 0, 0, 1 〉 . Then,

tu × tv = | i j k
−sin u cos u 0

0 0 1| = 〈 cos u, sin u, 0 〉

and ‖ tu × tv ‖ = cos2 u + sin2 u = 1. By Equation 6.19,

∬
S

f (x, y, z)dS = ∬
D

f (r(u, v)) ‖ tu × tv ‖ dA

= ∫
0

3
∫

0

2π
⎛
⎝cos u + sin2 u⎞

⎠dudv

= ∫
0

3⎡
⎣sin u + u

2 − sin(2u)
4

⎤
⎦0

2π

dv = ∫
0

3
πdv = 3π.

Calculate ∬
S

⎛
⎝x2 − z⎞

⎠dS, where S is the surface with parameterization

r(u, v) = 〈 v, u2 + v2, 1 〉 , 0 ≤ u ≤ 2, 0 ≤ v ≤ 3.

Example 6.67

Calculating the Surface Integral of a Piece of a Sphere

Calculate surface integral ∬
S

f (x, y, z)dS, where f (x, y, z) = z2 and S is the surface that consists of the piece

of sphere x2 + y2 + z2 = 4 that lies on or above plane z = 1 and the disk that is enclosed by intersection plane

z = 1 and the given sphere (Figure 6.72).

Figure 6.72 Calculating a surface integral over surface S.

Solution
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Notice that S is not smooth but is piecewise smooth; S can be written as the union of its base S1 and its

spherical top S2, and both S1 and S2 are smooth. Therefore, to calculate ∬
S
z2 dS, we write this integral as

∬
S1

z2 dS + ∬
S2

z2 dS and we calculate integrals ∬
S1

z2 dS and ∬
S2

z2 dS.

First, we calculate ∬
S1

z2 dS. To calculate this integral we need a parameterization of S1. This surface is a

disk in plane z = 1 centered at (0, 0, 1). To parameterize this disk, we need to know its radius. Since the

disk is formed where plane z = 1 intersects sphere x2 + y2 + z2 = 4, we can substitute z = 1 into equation

x2 + y2 + z2 = 4:

x2 + y2 + 1 = 4 ⇒ x2 + y2 = 3.

Therefore, the radius of the disk is 3 and a parameterization of S1 is

r(u, v) = 〈 u cos v, u sin v, 1 〉 , 0 ≤ u ≤ 3, 0 ≤ v ≤ 2π. The tangent vectors are tu = 〈 cos v, sin v, 0 〉
and tv = 〈 −u sin v, ucosv, 0 〉 , and thus

tu × tv = | i j k
cos v sin v 0

−u sin v u cos v 0| = 〈 0, 0, u cos2 v + u sin2 v 〉 = 〈 0, 0, u 〉 .

The magnitude of this vector is u. Therefore,

∬
S1

z2 dS = ∫
0

3
∫

0

2π
f (r(u, v)) ‖ tu × tv ‖ dv du

= ∫
0

3
∫

0

2π
u dv du

= 2π∫
0

3
udu

= 2π 3.

Now we calculate ∬
S2

dS. To calculate this integral, we need a parameterization of S2. The parameterization

of full sphere x2 + y2 + z2 = 4 is

r⎛
⎝ϕ, θ⎞

⎠ = 〈 2 cos θ sin ϕ, 2 sin θ sin ϕ, 2 cos ϕ 〉 , 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

Since we are only taking the piece of the sphere on or above plane z = 1, we have to restrict the domain of ϕ.
To see how far this angle sweeps, notice that the angle can be located in a right triangle, as shown in Figure 6.73
(the 3 comes from the fact that the base of S is a disk with radius 3). Therefore, the tangent of ϕ is 3,
which implies that ϕ is π/6. We now have a parameterization of S2 :

r⎛
⎝ϕ, θ⎞

⎠ = 〈 2 cos θ sin ϕ, 2 sin θ sin ϕ, 2 cos ϕ 〉 , 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/3.
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Figure 6.73 The maximum value of ϕ has a tangent value of

3.

The tangent vectors are

tϕ = 〈 2 cos θ cos ϕ, 2 sin θ cos ϕ, −2 sin ϕ 〉 and tθ = 〈 −2 sin θ sin ϕ, u cos θ sin ϕ, 0 〉 ,

and thus

tϕ × tθ = | i j k
2 cos θ cos ϕ 2 sin θ cos ϕ −2 sin ϕ
−2 sin θ sin ϕ 2 cos θ sin ϕ 0 |

= 〈 4 cos θ sin2 ϕ, 4 sin θ sin2 ϕ, 4 cos2 θ cos ϕ sin ϕ + 4 sin2 θ cos ϕ sin ϕ 〉

= 〈 4 cos θ sin2 ϕ, 4 sin θ sin2 ϕ, 4 cos ϕ sin ϕ 〉 .

The magnitude of this vector is

‖ tϕ × tθ ‖ = 16 cos2 θ sin4 ϕ + 16 sin2 θ sin4 ϕ + 16 cos2 ϕ sin2 ϕ

= 4 sin4 ϕ + cos2 ϕ sin2 ϕ.

Therefore,

∬
S2

zdS = ∫
0

π/6
∫

0

2π
f ⎛

⎝r(ϕ, θ)⎞
⎠ ‖ tϕ × tθ ‖ dθ dϕ

= ∫
0

π/6
∫

0

2π
16 cos2 ϕ sin4 ϕ + cos2 ϕ sin2 ϕdθ dϕ

= 32π∫
0

π/6
cos2 ϕ sin4 ϕ + cos2 ϕ sin2 ϕ dϕ

= 32π∫
0

π/6
cos2 ϕ sin ϕ sin2 ϕ + cos2 ϕ dϕ

= 32π∫
0

π/6
cos2 ϕ sin ϕ dϕ

= 32π
⎡

⎣
⎢−cos3 ϕ

3
⎤

⎦
⎥0

π/6

= 32π⎡
⎣
1
3 − 3

8
⎤
⎦ = 32π

3 − 4 3.

Since ∬
S
z2 dS = ∬

S1
z2 dS + ∬

S2
z2 dS, we have ∬

S
z2 dS = (2π − 4) 3 + 32π

3 .
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6.56

Analysis
In this example we broke a surface integral over a piecewise surface into the addition of surface integrals over
smooth subsurfaces. There were only two smooth subsurfaces in this example, but this technique extends to
finitely many smooth subsurfaces.

Calculate line integral ∬
S
(x − y)dS, where S is cylinder x2 + y2 = 1, 0 ≤ z ≤ 2, including the

circular top and bottom.

Scalar surface integrals have several real-world applications. Recall that scalar line integrals can be used to compute the
mass of a wire given its density function. In a similar fashion, we can use scalar surface integrals to compute the mass of
a sheet given its density function. If a thin sheet of metal has the shape of surface S and the density of the sheet at point
(x, y, z) is ρ(x, y, z), then mass m of the sheet is m = ∬

S
ρ(x, y, z)dS.

Example 6.68

Calculating the Mass of a Sheet

A flat sheet of metal has the shape of surface z = 1 + x + 2y that lies above rectangle 0 ≤ x ≤ 4 and

0 ≤ y ≤ 2. If the density of the sheet is given by ρ(x, y, z) = x2 yz, what is the mass of the sheet?

Solution

Let S be the surface that describes the sheet. Then, the mass of the sheet is given by m = ∬
S
x2 yzdS.

To compute this surface integral, we first need a parameterization of S. Since S is given by the function
f (x, y) = 1 + x + 2y, a parameterization of S is r(x, y) = 〈 x, y, 1 + x + 2y 〉 , 0 ≤ x ≤ 4, 0 ≤ y ≤ 2.

The tangent vectors are tx = 〈 1, 0, 1 〉 and ty = 〈 1, 0, 2 〉 . Therefore, tx × ty = 〈 −1, −2, 1 〉 and

‖ tx × ty ‖ = 6. By Equation 6.5,

m = ∬
S
x2 yz dS

= 6∫
0

4
∫

0

2
x2 y⎛

⎝1 + x + 2y⎞
⎠dydx

= 6∫
0

4
22x2

3 + 2x3 dx

= 2560 6
9

≈ 696.74.

A piece of metal has a shape that is modeled by paraboloid z = x2 + y2, 0 ≤ z ≤ 4, and the density of

the metal is given by ρ(x, y, z) = z + 1. Find the mass of the piece of metal.

Orientation of a Surface
Recall that when we defined a scalar line integral, we did not need to worry about an orientation of the curve of integration.
The same was true for scalar surface integrals: we did not need to worry about an “orientation” of the surface of integration.
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On the other hand, when we defined vector line integrals, the curve of integration needed an orientation. That is, we
needed the notion of an oriented curve to define a vector line integral without ambiguity. Similarly, when we define a
surface integral of a vector field, we need the notion of an oriented surface. An oriented surface is given an “upward” or
“downward” orientation or, in the case of surfaces such as a sphere or cylinder, an “outward” or “inward” orientation.

Let S be a smooth surface. For any point (x, y, z) on S, we can identify two unit normal vectors N and −N. If it is

possible to choose a unit normal vector N at every point (x, y, z) on S so that N varies continuously over S, then S is

“orientable.” Such a choice of unit normal vector at each point gives the orientation of a surface S. If you think of the
normal field as describing water flow, then the side of the surface that water flows toward is the “negative” side and the side
of the surface at which the water flows away is the “positive” side. Informally, a choice of orientation gives S an “outer”
side and an “inner” side (or an “upward” side and a “downward” side), just as a choice of orientation of a curve gives the
curve “forward” and “backward” directions.

Closed surfaces such as spheres are orientable: if we choose the outward normal vector at each point on the surface of the
sphere, then the unit normal vectors vary continuously. This is called the positive orientation of the closed surface (Figure
6.74). We also could choose the inward normal vector at each point to give an “inward” orientation, which is the negative
orientation of the surface.

Figure 6.74 An oriented sphere with positive orientation.

A portion of the graph of any smooth function z = f (x, y) is also orientable. If we choose the unit normal vector that

points “above” the surface at each point, then the unit normal vectors vary continuously over the surface. We could also
choose the unit normal vector that points “below” the surface at each point. To get such an orientation, we parameterize
the graph of f in the standard way: r(x, y) = 〈 x, y, f (x, y) 〉 , where x and y vary over the domain of f . Then,

tx = 〈 1, 0, fx 〉 and ty = 〈 0, 1, fy 〉 , and therefore the cross product tx × ty (which is normal to the surface at

any point on the surface) is 〈 − fx, − fy, 1 〉 . Since the z component of this vector is one, the corresponding unit normal

vector points “upward,” and the upward side of the surface is chosen to be the “positive” side.

Let S be a smooth orientable surface with parameterization r(u, v). For each point r(a, b) on the surface, vectors tu and

tv lie in the tangent plane at that point. Vector tu × tv is normal to the tangent plane at r(a, b) and is therefore normal to

S at that point. Therefore, the choice of unit normal vector

N = tu × tv
‖ tu × tv ‖

gives an orientation of surface S.
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Example 6.69

Choosing an Orientation

Give an orientation of cylinder x2 + y2 = r2, 0 ≤ z ≤ h.

Solution

This surface has parameterization

r(u, v) = 〈 r cos u, r sin u, v 〉 , 0 ≤ u < 2π, 0 ≤ v ≤ h.

The tangent vectors are tu = 〈 −r sin u, r cos u, 0 〉 and tv = 〈 0, 0, 1 〉 . To get an orientation of the

surface, we compute the unit normal vector

N = tu × tv
‖ tu × tv ‖ .

In this case, tu × tv = 〈 r cos u, r sin u, 0 〉 and therefore

‖ tu × tv ‖ = r2 cos2 u + r2 sin2 u = r.

An orientation of the cylinder is

N(u, v) = 〈 r cos u, r sin u, 0 〉
r = 〈 cos u, sin u, 0 〉 .

Notice that all vectors are parallel to the xy-plane, which should be the case with vectors that are normal to the
cylinder. Furthermore, all the vectors point outward, and therefore this is an outward orientation of the cylinder
(Figure 6.75).

Figure 6.75 If all the vectors normal to a cylinder point
outward, then this is an outward orientation of the cylinder.

Give the “upward” orientation of the graph of f (x, y) = xy.

Since every curve has a “forward” and “backward” direction (or, in the case of a closed curve, a clockwise and
counterclockwise direction), it is possible to give an orientation to any curve. Hence, it is possible to think of every curve
as an oriented curve. This is not the case with surfaces, however. Some surfaces cannot be oriented; such surfaces are called
nonorientable. Essentially, a surface can be oriented if the surface has an “inner” side and an “outer” side, or an “upward”
side and a “downward” side. Some surfaces are twisted in such a fashion that there is no well-defined notion of an “inner”
or “outer” side.

The classic example of a nonorientable surface is the Möbius strip. To create a Möbius strip, take a rectangular strip of paper,
give the piece of paper a half-twist, and the glue the ends together (Figure 6.76). Because of the half-twist in the strip, the
surface has no “outer” side or “inner” side. If you imagine placing a normal vector at a point on the strip and having the
vector travel all the way around the band, then (because of the half-twist) the vector points in the opposite direction when it
gets back to its original position. Therefore, the strip really only has one side.
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Figure 6.76 The construction of a Möbius strip.

Since some surfaces are nonorientable, it is not possible to define a vector surface integral on all piecewise smooth surfaces.
This is in contrast to vector line integrals, which can be defined on any piecewise smooth curve.

Surface Integral of a Vector Field
With the idea of orientable surfaces in place, we are now ready to define a surface integral of a vector field. The definition
is analogous to the definition of the flux of a vector field along a plane curve. Recall that if F is a two-dimensional vector
field and C is a plane curve, then the definition of the flux of F along C involved chopping C into small pieces, choosing a
point inside each piece, and calculating F · N at the point (where N is the unit normal vector at the point). The definition of

a surface integral of a vector field proceeds in the same fashion, except now we chop surface S into small pieces, choose a
point in the small (two-dimensional) piece, and calculate F · N at the point.

To place this definition in a real-world setting, let S be an oriented surface with unit normal vector N. Let v be a velocity
field of a fluid flowing through S, and suppose the fluid has density ρ(x, y, z). Imagine the fluid flows through S, but S is

completely permeable so that it does not impede the fluid flow (Figure 6.77). The mass flux of the fluid is the rate of mass
flow per unit area. The mass flux is measured in mass per unit time per unit area. How could we calculate the mass flux of
the fluid across S?

Figure 6.77 Fluid flows across a completely permeable
surface S.

The rate of flow, measured in mass per unit time per unit area, is ρN. To calculate the mass flux across S, chop S into

small pieces Si j. If Si j is small enough, then it can be approximated by a tangent plane at some point P in Si j. Therefore,

the unit normal vector at P can be used to approximate N(x, y, z) across the entire piece Si j, because the normal vector

to a plane does not change as we move across the plane. The component of the vector ρv at P in the direction of N is

ρv · N at P. Since Si j is small, the dot product ρv · N changes very little as we vary across Si j, and therefore ρv · N

can be taken as approximately constant across Si j. To approximate the mass of fluid per unit time flowing across Si j

(and not just locally at point P), we need to multiply ⎛
⎝ρv · N⎞

⎠(P) by the area of Si j. Therefore, the mass of fluid per unit
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time flowing across Si j in the direction of N can be approximated by ⎛
⎝ρv · N⎞

⎠ΔSi j, where N, ρ, and v are all evaluated

at P (Figure 6.78). This is analogous to the flux of two-dimensional vector field F across plane curve C, in which we
approximated flux across a small piece of C with the expression (F · N)Δs. To approximate the mass flux across S, form

the sum ∑
i = 1

m
∑
j = 1

n
⎛
⎝ρv · N⎞

⎠ΔSi j. As pieces Si j get smaller, the sum ∑
i = 1

m
∑
j = 1

n
⎛
⎝ρv · N⎞

⎠ΔSi j gets arbitrarily close to the mass

flux. Therefore, the mass flux is

∬sρv · NdS = limm, n → ∞ ∑
i = 1

m
∑
j = 1

n
⎛
⎝ρv · N⎞

⎠ΔSi j.

This is a surface integral of a vector field. Letting the vector field ρv be an arbitrary vector field F leads to the following

definition.

Figure 6.78 The mass of fluid per unit time flowing across Si j

in the direction of N can be approximated by ⎛
⎝ρv · N⎞

⎠ΔSi j.

Definition

Let F be a continuous vector field with a domain that contains oriented surface S with unit normal vector N. The
surface integral of F over S is

(6.20)∬
S
F · dS = ∬

S
F · NdS.

Notice the parallel between this definition and the definition of vector line integral ∫
C

F · Nds. A surface integral of a

vector field is defined in a similar way to a flux line integral across a curve, except the domain of integration is a surface (a
two-dimensional object) rather than a curve (a one-dimensional object). Integral ∬

S
F · NdS is called the flux of F across

S, just as integral ∫
C

F · Nds is the flux of F across curve C. A surface integral over a vector field is also called a flux

integral.

Just as with vector line integrals, surface integral ∬
S
F · NdS is easier to compute after surface S has been parameterized.

Let r(u, v) be a parameterization of S with parameter domain D. Then, the unit normal vector is given by
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6.58

N = tu × tv
‖ tu × tv ‖ and, from Equation 6.20, we have

∬
S
F · NdS = ∬

S
F · NdS

= ∬
S
F · tu × tv

‖ tu × tv ‖ dS

= ∬
D

⎛
⎝F(r(u, v)) · tu × tv

‖ tu × tv ‖
⎞
⎠tu × tv ‖ dA

= ∬
D

⎛
⎝F(r(u, v)) · (tu × tv)⎞

⎠dA.

Therefore, to compute a surface integral over a vector field we can use the equation

(6.21)∬
S
F · NdS = ∬

D
⎛
⎝F(r(u, v)) · (tu × tv)⎞

⎠dA.

Example 6.70

Calculating a Surface Integral

Calculate the surface integral ∬
S
F · NdS, where F = 〈 −y, x, 0 〉 and S is the surface with parameterization

r(u, v) = 〈 u, v2 − u, u + v 〉 , 0 ≤ u < 3, 0 ≤ v ≤ 4.

Solution

The tangent vectors are tu = 〈 1, −1, 1 〉 and tv = 〈 0, 2v, 1 〉 . Therefore,

tu × tv = 〈 −1 − 2v, −1, 2v 〉 .

By Equation 6.21,

∬
S
F · dS = ∫

0

4
∫

0

3
F(r(u, v)) · (tu × tv)dudv

= ∫
0

4
∫

0

3
〈 u − v2, u, 0 〉 · 〈 −1 − 2v, −1, 2v 〉 dudv

= ∫
0

4
∫

0

3
⎡
⎣
⎛
⎝u − v2⎞

⎠(−1 − 2v) − u⎤
⎦dudv

= ∫
0

4
∫

0

3
⎛
⎝2v3 + v2 − 2uv − 2u⎞

⎠dudv

= ∫
0

4
⎡
⎣2v3 u + v2 u − vu2 − u2⎤

⎦0

3

dv

= ∫
0

4
⎛
⎝6v3 + 3v2 − 9v − 9⎞

⎠dv

= ⎡
⎣

3v4

2 + v3 − 9v2

2 − 9v⎤
⎦0

4

= 340.

Therefore, the flux of F across S is 340.

Calculate surface integral ∬
S
F · dS, where F = 〈 0, −z, y 〉 and S is the portion of the unit sphere

in the first octant with outward orientation.

Chapter 6 | Vector Calculus 779



6.59

Example 6.71

Calculating Mass Flow Rate

Let v(x, y, z) = 〈 2x, 2y, z 〉 represent a velocity field (with units of meters per second) of a fluid with

constant density 80 kg/m3. Let S be hemisphere x2 + y2 + z2 = 9 with z ≥ 0 such that S is oriented outward.

Find the mass flow rate of the fluid across S.

Solution

A parameterization of the surface is

r⎛
⎝ϕ, θ⎞

⎠ = 〈 3 cos θ sin ϕ, 3 sin θ sin ϕ, 3 cos ϕ 〉 , 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/2.

As in Example 6.64, the tangent vectors are

tθ 〈 −3 sin θ sin ϕ, 3 cos θ sin ϕ, 0 〉 and tϕ 〈 3 cos θ cos ϕ, 3 sin θ cos ϕ, −3 sin ϕ 〉 ,

and their cross product is

tϕ × tθ = 〈 9 cos θ sin2 ϕ, 9 sin θ sin2 ϕ, 9 sin ϕ cos ϕ 〉 .

Notice that each component of the cross product is positive, and therefore this vector gives the outward

orientation. Therefore we use the orientation N = 〈 9 cos θ sin2 ϕ, 9 sin θ sin2 ϕ, 9 sin ϕ cos ϕ 〉 for the

sphere.

By Equation 6.20,

∬
S
ρv · dS = 80∫

0

2π
∫

0

π/2
v⎛

⎝r⎛
⎝ϕ, θ⎞

⎠
⎞
⎠ · ⎛

⎝tϕ × tθ
⎞
⎠dϕdθ

= 80∫
0

2π
∫

0

π/2

= 80∫
0

2π
∫

o

π/2 〈 6 cos θ sin ϕ, 6 sin θ sin ϕ, 3 cos ϕ 〉

· 〈 9 cos θ sin2 ϕ, 9 sin θ sin2 ϕ, 9 sin ϕ cos ϕ 〉 dϕdθ

= 80∫
0

2π
∫

0

π/2
54 sin3 ϕ + 27 cos2 ϕ sin ϕdϕdθ

= 80∫
0

2π
∫

0

π/2
54⎛

⎝1 − cos2 ϕ⎞
⎠sin ϕ + 27 cos2 ϕ sin ϕdϕdθ

= 80∫
0

2π
∫

0

π/2
54 sin ϕ − 27 cos2 ϕ sin ϕdϕdθ

= 80∫
0

2π
⎡
⎣−54 cos ϕ + 9 cos3 ϕ⎤

⎦ϕ = 0

ϕ = 2π
dθ

= 80∫
0

2π
45dθ = 7200π.

Therefore, the mass flow rate is 7200π kg/sec/m2.

Let v(x, y, z) = 〈 x2 + y2, z, 4y 〉 m/sec represent a velocity field of a fluid with constant density

100 kg/m3. Let S be the half-cylinder r(u, v) = 〈 cos u, sin u, v 〉 , 0 ≤ u ≤ π, 0 ≤ v ≤ 2 oriented outward.

Calculate the mass flux of the fluid across S.
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In Example 6.70, we computed the mass flux, which is the rate of mass flow per unit area. If we want to find the flow

rate (measured in volume per time) instead, we can use flux integral ∫ ∫
S
v • NdS, which leaves out the density. Since

the flow rate of a fluid is measured in volume per unit time, flow rate does not take mass into account. Therefore, we have
the following characterization of the flow rate of a fluid with velocity v across a surface S:

Flow rate of fluid ac oss S = ∫ ∫
S
v • dS.

To compute the flow rate of the fluid in Example 6.68, we simply remove the density constant, which gives a flow rate of

90π m3 /sec.

Both mass flux and flow rate are important in physics and engineering. Mass flux measures how much mass is flowing
across a surface; flow rate measures how much volume of fluid is flowing across a surface.

In addition to modeling fluid flow, surface integrals can be used to model heat flow. Suppose that the temperature at point
(x, y, z) in an object is T(x, y, z). Then the heat flow is a vector field proportional to the negative temperature gradient

in the object. To be precise, the heat flow is defined as vector field F = −k∇T , where the constant k is the thermal

conductivity of the substance from which the object is made (this constant is determined experimentally). The rate of heat
flow across surface S in the object is given by the flux integral

∬
S
F · dS = ∬

S
−k∇T · dS.

Example 6.72

Calculating Heat Flow

A cast-iron solid cylinder is given by inequalities x2 + y2 ≤ 1, 1 ≤ z ≤ 4. The temperature at point (x, y, z)

in a region containing the cylinder is T(x, y, z) = ⎛
⎝x2 + y2⎞

⎠z. Given that the thermal conductivity of cast iron is

55, find the heat flow across the boundary of the solid if this boundary is oriented outward.

Solution

Let S denote the boundary of the object. To find the heat flow, we need to calculate flux integral ∬
S
−k∇T · dS.

Notice that S is not a smooth surface but is piecewise smooth, since S is the union of three smooth surfaces
(the circular top and bottom, and the cylindrical side). Therefore, we calculate three separate integrals, one
for each smooth piece of S. Before calculating any integrals, note that the gradient of the temperature is

∇T = 〈 2xz, 2yz, x2 + y2 〉 .

First we consider the circular bottom of the object, which we denote S1. We can see that S1 is a circle

of radius 1 centered at point (0, 0, 1), sitting in plane z = 1. This surface has parameterization

r(u, v) = 〈 v cos u, v sin u, 1 〉 , 0 ≤ u < 2π, 0 ≤ v ≤ 1. Therefore,

tu = 〈 −v sin u, v cos u, 0 〉 and tv = 〈 cos u, v sin u, 0 〉 ,

and

tu × tv = 〈 0, 0, −v sin2 u − v cos2 u 〉 = 〈 0, 0, −v 〉 .

Since the surface is oriented outward and S1 is the bottom of the object, it makes sense that this vector points

downward. By Equation 6.21, the heat flow across S1 is
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∬
S1

−k∇T · dS = −55∫
0

2π
∫

0

1
∇T(u, v) · (tu × tv)dvdu

= −55∫
0

2π
∫

0

1
〈 2v cos u, 2v sin u, v2 cos2 u + v2 sin2 u 〉 · 〈 0, 0, −v 〉 dvdu

= −55∫
0

2π
∫

0

1
〈 2v cos u, 2v sin u, v2 〉 · 〈 0, 0, −v 〉 dvdu

= −55∫
0

2π
∫

0

1
−v3dvdu = −55∫

0

2π
−1

4du = 55π
2 .

Now let’s consider the circular top of the object, which we denote S2. We see that S2 is a circle of radius

1 centered at point (0, 0, 4), sitting in plane z = 4. This surface has parameterization

r(u, v) = 〈 v cos u, v sin u, 4 〉 , 0 ≤ u < 2π, 0 ≤ v ≤ 1. Therefore,

tu = 〈 −v sin u, v cos u, 0 〉 and tv = 〈 cos u, v sin u, 0 〉 ,

and

tu × tv = 〈 0, 0, −v sin2 u − v cos2 u 〉 = 〈 0, 0, −v 〉 .

Since the surface is oriented outward and S1 is the top of the object, we instead take vector

tv × tu = 〈 0, 0, v 〉 . By Equation 6.21, the heat flow across S1 is

∫ ∫
S2

−k∇T • dS = −55∫
0

2π
∫

0

1
∇T(u, v) • (tv × tu)dvdu

= −55∫
0

2π
∫

0

1
〈 8v cos u, 8v sin u, v2 cos2 u + v2 sin2 u 〉 • 〈 0, 0, v 〉 dvdu

= −55∫
0

2π
∫

0

1
〈 8v cos u, 8v sin u, v2 〉 • 〈 0, 0, v 〉 dvdu

= −55∫
0

2π
∫

0

1
v3 dvdu = − 55π

2 .

Last, let’s consider the cylindrical side of the object. This surface has parameterization
r(u, v) = 〈 cos u, sin u, v 〉 , 0 ≤ u < 2π, 1 ≤ v ≤ 4. By Example 6.66, we know that

tu × tv = 〈 cos u, sin u, 0 〉 . By Equation 6.21,

∬
S3

−k∇T • dS = −55∫
0

2π
∫

1

4
∇T(u, v) • (tv × tu)dvdu

= −55∫
0

2π
∫

1

4
〈 2v cos u, 2v sin u, cos2 u + sin2 u 〉 • 〈 cos u, sin u, 0 〉 dvdu

= −55∫
0

2π
∫

0

1
〈 2v cos u, 2v sin u, 1 〉 • 〈 cos u, sin u, 0 〉 dvdu

= −55∫
0

2π
∫

0

1
⎛
⎝2v cos2 u + 2v sin2 u⎞

⎠dvdu

= −55∫
0

2π
∫

0

1
2vdvdu = −55∫

0

2π
du = −110π.

Therefore, the rate of heat flow across S is 55π
2 − 55π

2 − 110π = −110π.

782 Chapter 6 | Vector Calculus

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



6.60 A cast-iron solid ball is given by inequality x2 + y2 + z2 ≤ 1. The temperature at a point in a region

containing the ball is T(x, y, z) = 1
3

⎛
⎝x2 + y2 + z2⎞

⎠. Find the heat flow across the boundary of the solid if this

boundary is oriented outward.
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6.6 EXERCISES
For the following exercises, determine whether the
statements are true or false.

269. If surface S is given by
⎧

⎩
⎨(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 10⎫

⎭
⎬, then

∬
S

f (x, y, z)dS = ∫
0

1
∫

0

1
f ⎛

⎝x, y, 10⎞
⎠dxdy.

270. If surface S is given by
⎧

⎩
⎨(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = x⎫

⎭
⎬, then

∬
S

f (x, y, z)dS = ∫
0

1
∫

0

1
f (x, y, x)dxdy.

271. Surface

r = 〈 v cos u, v sin u, v2 〉 , for 0 ≤ u ≤ π, 0 ≤ v ≤ 2,
is the same as surface r = 〈 v cos 2u, v sin 2u, v 〉 ,

for 0 ≤ u ≤ π
2, 0 ≤ v ≤ 4.

272. Given the standard parameterization of a sphere,
normal vectors tu × tv are outward normal vectors.

For the following exercises, find parametric descriptions
for the following surfaces.

273. Plane 3x − 2y + z = 2

274. Paraboloid z = x2 + y2, for 0 ≤ z ≤ 9.

275. Plane 2x − 4y + 3z = 16

276. The frustum of cone z2 = x2 + y2, for 2 ≤ z ≤ 8

277. The portion of cylinder x2 + y2 = 9 in the first

octant, for 0 ≤ z ≤ 3

278. A cone with base radius r and height h, where r and
h are positive constants

For the following exercises, use a computer algebra system
to approximate the area of the following surfaces using a
parametric description of the surface.

279. [T] Half cylinder
{(r, θ, z) : r = 4, 0 ≤ θ ≤ π, 0 ≤ z ≤ 7}

280. [T] Plane z = 10 − x − y above square

|x| ≤ 2, |y| ≤ 2

For the following exercises, let S be the hemisphere

x2 + y2 + z2 = 4, with z ≥ 0, and evaluate each

surface integral, in the counterclockwise direction.

281. ∬
S
zdS

282. ∬
S
(x − 2y)dS

283. ∬
S

⎛
⎝x2 + y2⎞

⎠zdS

For the following exercises, evaluate ∫ ∫
S
F · Nds for

vector field F, where N is an outward normal vector to
surface S.
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284. F(x, y, z) = xi + 2yj − 3zk, and S is that part of

plane 15x − 12y + 3z = 6 that lies above unit square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

285. F(x, y, z) = xi + yj, and S is hemisphere

z = 1 − x2 − y2.

286. F(x, y, z) = x2 i + y2 j + z2 k, and S is the portion

of plane z = y + 1 that lies inside cylinder x2 + y2 = 1.

For the following exercises, approximate the mass of the
homogeneous lamina that has the shape of given surface S.
Round to four decimal places.

287. [T] S is surface
z = 4 − x − 2y, with z ≥ 0, x ≥ 0, y ≥ 0; ξ = x.

288. [T] S is surface z = x2 + y2, with z ≤ 1; ξ = z.

289. [T] S is surface

x2 + y2 + x2 = 5, with z ≥ 1; ξ = θ2.

290. Evaluate ∬
S

⎛
⎝y2 zi + y3 j + xzk⎞

⎠ · dS, where S is the

surface of cube
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and 0 ≤ z ≤ 2. in a

counterclockwise direction.

291. Evaluate surface integral ∬
S
gdS, where

g(x, y, z) = xz + 2x2 − 3xy and S is the portion of plane

2x − 3y + z = 6 that lies over unit square R:

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

292. Evaluate ∬
S
(x + y + z)dS, where S is the surface

defined parametrically by
R(u, v) = (2u + v)i + (u − 2v)j + (u + 3v)k for

0 ≤ u ≤ 1, and 0 ≤ v ≤ 2.

293. [T] Evaluate ∬
S
(x − y2 + z)dS, where S is the

surface defined by

R(u, v) = u2 i + vj + uk, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

294. [T] Evaluate where S is the surface defined by

R(u, v) = ui − u2 j + vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1. for

0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

295. Evaluate ∬
S

⎛
⎝x2 + y2⎞

⎠dS, where S is the surface

bounded above hemisphere z = 1 − x2 − y2, and below

by plane z = 0.
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296. Evaluate ∬
S

⎛
⎝x2 + y2 + z2⎞

⎠dS, where S is the

portion of plane z = x + 1 that lies inside cylinder

x2 + y2 = 1.

297. [T] Evaluate ∬
S
x2 zdS, where S is the portion of

cone z2 = x2 + y2 that lies between planes z = 1 and

z = 4.

298. [T] Evaluate ∬
S

⎛
⎝xz/y⎞

⎠dS, where S is the portion of

cylinder x = y2 that lies in the first octant between planes

z = 0, z = 5, y = 1, and y = 4.

299. [T] Evaluate ∬
S
(z + y)dS, where S is the part of

the graph of z = 1 − x2 in the first octant between the

xz-plane and plane y = 3.

300. Evaluate ∬
S
xyzdS if S is the part of plane

z = x + y that lies over the triangular region in the

xy-plane with vertices (0, 0, 0), (1, 0, 0), and (0, 2, 0).

301. Find the mass of a lamina of density ξ(x, y, z) = z

in the shape of hemisphere z = ⎛
⎝a2 − x2 − y2⎞

⎠
1/2

.

302. Compute ∫ ∫
S
F · NdS, where

F(x, y, z) = xi − 5yj + 4zk and N is an outward normal

vector S, where S is the union of two squares
S1 : x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and

S2 : z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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303. Compute ∫ ∫
S
F · NdS, where

F(x, y, z) = xyi + zj + (x + y)k and N is an outward

normal vector S, where S is the triangular region cut off
from plane x + y + z = 1 by the positive coordinate axes.

304. Compute ∫ ∫
S
F · NdS, where

F(x, y, z) = 2yzi + ⎛
⎝tan−1 xz⎞

⎠j + exy k and N is an

outward normal vector S, where S is the surface of sphere

x2 + y2 + z2 = 1.

305. Compute ∫ ∫
S
F · NdS, where

F(x, y, z) = xyzi + xyzj + xyzk and N is an outward

normal vector S, where S is the surface of the five faces
of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 missing

z = 0.

For the following exercises, express the surface integral as
an iterated double integral by using a projection on S on the
yz-plane.

306. ∬
S
xy2 z3 dS; S is the first-octant portion of plane

2x + 3y + 4z = 12.

307. ∬
S

⎛
⎝x2 − 2y + z⎞

⎠dS; S is the portion of the graph of

4x + y = 8 bounded by the coordinate planes and plane

z = 6.

For the following exercises, express the surface integral as
an iterated double integral by using a projection on S on the
xz-plane

308. ∬
S
xy2 z3 dS; S is the first-octant portion of plane

2x + 3y + 4z = 12.

309. ∬
S

⎛
⎝x2 − 2y + z⎞

⎠dS; S is the portion of the graph of

4x + y = 8 bounded by the coordinate planes and plane

z = 6.

310. Evaluate surface integral ∬
S
yzdS, where S is the

first-octant part of plane x + y + z = λ, where λ is a

positive constant.

311. Evaluate surface integral ∬
S

⎛
⎝x2 z + y2 z⎞

⎠dS,

where S is hemisphere x2 + y2 + z2 = a2, z ≥ 0.

312. Evaluate surface integral ∬
S
zdA, where S is

surface z = x2 + y2, 0 ≤ z ≤ 2.

313. Evaluate surface integral ∬
S
x2 yzdS, where S is

the part of plane z = 1 + 2x + 3y that lies above rectangle

0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.

314. Evaluate surface integral ∬
S
yzdS, where S is plane

x + y + z = 1 that lies in the first octant.

315. Evaluate surface integral ∬
S
yzdS, where S is the

part of plane z = y + 3 that lies inside cylinder

x2 + y2 = 1.

For the following exercises, use geometric reasoning to
evaluate the given surface integrals.

316. ∬
S

x2 + y2 + z2dS, where S is surface

x2 + y2 + z2 = 4, z ≥ 0

317. ∬
S
(xi + yj) · dS, where S is surface

x2 + y2 = 4, 1 ≤ z ≤ 3, oriented with unit normal

vectors pointing outward

318. ∬
S
(zk) · dS, where S is disc x2 + y2 ≤ 9 on

plane z = 4, oriented with unit normal vectors pointing

upward
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319. A lamina has the shape of a portion of sphere

x2 + y2 + z2 = a2 that lies within cone z = x2 + y2.
Let S be the spherical shell centered at the origin with
radius a, and let C be the right circular cone with a vertex
at the origin and an axis of symmetry that coincides with
the z-axis. Determine the mass of the lamina if

δ(x, y, z) = x2 y2 z.

320. A lamina has the shape of a portion of sphere

x2 + y2 + z2 = a2 that lies within cone z = x2 + y2.
Let S be the spherical shell centered at the origin with
radius a, and let C be the right circular cone with a vertex
at the origin and an axis of symmetry that coincides with
the z-axis. Suppose the vertex angle of the cone is
ϕ0, with 0 ≤ ϕ0 < π

2. Determine the mass of that portion

of the shape enclosed in the intersection of S and C.

Assume δ(x, y, z) = x2 y2 z.

321. A paper cup has the shape of an inverted right
circular cone of height 6 in. and radius of top 3 in. If the cup

is full of water weighing 62.5 lb/ft3, find the total force

exerted by the water on the inside surface of the cup.

For the following exercises, the heat flow vector field for

conducting objects i F = −k∇T , where T(x, y, z) is the

temperature in the object and k > 0 is a constant that

depends on the material. Find the outward flux of F across
the following surfaces S for the given temperature
distributions and assume k = 1.

322. T(x, y, z) = 100e−x − y; S consists of the faces of

cube |x| ≤ 1, |y| ≤ 1, |z| ≤ 1.

323. T(x, y, z) = −ln⎛
⎝x2 + y2 + z2⎞

⎠; S is sphere

x2 + y2 + z2 = a2.

For the following exercises, consider the radial fields

F = 〈 x, y, z 〉

⎛
⎝x2 + y2 + z2⎞

⎠

p
2

= r
|r| p, where p is a real number.

Let S consist of spheres A and B centered at the origin with
radii 0 < a < b. The total outward flux across S consists

of the outward flux across the outer sphere B less the flux
into S across inner sphere A.

324. Find the total flux across S with p = 0.

325. Show that for p = 3 the flux across S is independent

of a and b.
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6.7 | Stokes’ Theorem

Learning Objectives
6.7.1 Explain the meaning of Stokes’ theorem.

6.7.2 Use Stokes’ theorem to evaluate a line integral.

6.7.3 Use Stokes’ theorem to calculate a surface integral.

6.7.4 Use Stokes’ theorem to calculate a curl.

In this section, we study Stokes’ theorem, a higher-dimensional generalization of Green’s theorem. This theorem, like the
Fundamental Theorem for Line Integrals and Green’s theorem, is a generalization of the Fundamental Theorem of Calculus
to higher dimensions. Stokes’ theorem relates a vector surface integral over surface S in space to a line integral around the
boundary of S. Therefore, just as the theorems before it, Stokes’ theorem can be used to reduce an integral over a geometric
object S to an integral over the boundary of S.

In addition to allowing us to translate between line integrals and surface integrals, Stokes’ theorem connects the concepts of
curl and circulation. Furthermore, the theorem has applications in fluid mechanics and electromagnetism. We use Stokes’
theorem to derive Faraday’s law, an important result involving electric fields.

Stokes’ Theorem
Stokes’ theorem says we can calculate the flux of curl F across surface S by knowing information only about the values of
F along the boundary of S. Conversely, we can calculate the line integral of vector field F along the boundary of surface S
by translating to a double integral of the curl of F over S.

Let S be an oriented smooth surface with unit normal vector N. Furthermore, suppose the boundary of S is a simple closed
curve C. The orientation of S induces the positive orientation of C if, as you walk in the positive direction around C with
your head pointing in the direction of N, the surface is always on your left. With this definition in place, we can state Stokes’
theorem.

Theorem 6.19: Stokes’ Theorem

Let S be a piecewise smooth oriented surface with a boundary that is a simple closed curve C with positive orientation
(Figure 6.79). If F is a vector field with component functions that have continuous partial derivatives on an open
region containing S, then

∫
C

F · dr = ∬
S
curl F · dS.
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Figure 6.79 Stokes’ theorem relates the flux integral over the
surface to a line integral around the boundary of the surface.
Note that the orientation of the curve is positive.

Suppose surface S is a flat region in the xy-plane with upward orientation. Then the unit normal vector is k and surface
integral ∬

S
curl F · dS is actually the double integral ∬

S
curl F · kdA. In this special case, Stokes’ theorem gives

∫
C

F · dr = ∬
S
curl F · kdA. However, this is the flux form of Green’s theorem, which shows us that Green’s theorem is

a special case of Stokes’ theorem. Green’s theorem can only handle surfaces in a plane, but Stokes’ theorem can handle
surfaces in a plane or in space.

The complete proof of Stokes’ theorem is beyond the scope of this text. We look at an intuitive explanation for the truth of
the theorem and then see proof of the theorem in the special case that surface S is a portion of a graph of a function, and S,
the boundary of S, and F are all fairly tame.

Proof

First, we look at an informal proof of the theorem. This proof is not rigorous, but it is meant to give a general feeling for
why the theorem is true. Let S be a surface and let D be a small piece of the surface so that D does not share any points with
the boundary of S. We choose D to be small enough so that it can be approximated by an oriented square E. Let D inherit its
orientation from S, and give E the same orientation. This square has four sides; denote them El, Er, Eu, and Ed for

the left, right, up, and down sides, respectively. On the square, we can use the flux form of Green’s theorem:

∫
El + Ed + Er + Eu

F · dr = ∬
E

curl F · NdS = ∬
E

curl F · dS.

To approximate the flux over the entire surface, we add the values of the flux on the small squares approximating small
pieces of the surface (Figure 6.80). By Green’s theorem, the flux across each approximating square is a line integral over
its boundary. Let F be an approximating square with an orientation inherited from S and with a right side El (so F is to the

left of E). Let Fr denote the right side of F ; then, El = −Fr. In other words, the right side of F is the same curve as the

left side of E, just oriented in the opposite direction. Therefore,

∫
El

F · dr = −∫
Fr

F · dr.

As we add up all the fluxes over all the squares approximating surface S, line integrals ∫
El

F · dr and ∫
Fr

F · dr cancel

each other out. The same goes for the line integrals over the other three sides of E. These three line integrals cancel out with
the line integral of the lower side of the square above E, the line integral over the left side of the square to the right of E,
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and the line integral over the upper side of the square below E (Figure 6.81). After all this cancelation occurs over all the
approximating squares, the only line integrals that survive are the line integrals over sides approximating the boundary of
S. Therefore, the sum of all the fluxes (which, by Green’s theorem, is the sum of all the line integrals around the boundaries
of approximating squares) can be approximated by a line integral over the boundary of S. In the limit, as the areas of the
approximating squares go to zero, this approximation gets arbitrarily close to the flux.

Figure 6.80 Chop the surface into small pieces. The pieces
should be small enough that they can be approximated by a
square.

Figure 6.81 (a) The line integral along El cancels out the line integral along Fr

because El = −Fr. (b) The line integral along any of the sides of E cancels out with the

line integral along a side of an adjacent approximating square.

Let’s now look at a rigorous proof of the theorem in the special case that S is the graph of function z = f (x, y), where

x and y vary over a bounded, simply connected region D of finite area (Figure 6.82). Furthermore, assume that f has

continuous second-order partial derivatives. Let C denote the boundary of S and let C′ denote the boundary of D. Then, D
is the “shadow” of S in the plane and C′ is the “shadow” of C. Suppose that S is oriented upward. The counterclockwise
orientation of C is positive, as is the counterclockwise orientation of C′. Let F(x, y, z) = 〈 P, Q, R 〉 be a vector field

with component functions that have continuous partial derivatives.
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Figure 6.82 D is the “shadow,” or projection, of S in the plane
and C′ is the projection of C.

We take the standard parameterization of S : x = x, y = y, z = g(x, y). The tangent vectors are tx = 〈 1, 0, gx 〉 and

ty = 〈 0, 1, gy 〉 , and therefore, tx · ty = 〈 −gx, −gy, 1 〉 . By Equation 6.19,

∬
S

curl F · dS = ∬
D

⎡
⎣−⎛

⎝Ry − Qz
⎞
⎠zx − ⎛

⎝Pz − Rx
⎞
⎠zy + ⎛

⎝Qx − Py
⎞
⎠
⎤
⎦dA,

where the partial derivatives are all evaluated at ⎛
⎝x, y, g(x, y)⎞

⎠, making the integrand depend on x and y only. Suppose

〈 x(t), y(t) 〉 , a ≤ t ≤ b is a parameterization of C′. Then, a parameterization of C is

〈 x(t), y(t), g⎛
⎝x(t), y(t)⎞

⎠ 〉 , a ≤ t ≤ b. Armed with these parameterizations, the Chain rule, and Green’s theorem, and

keeping in mind that P, Q, and R are all functions of x and y, we can evaluate line integral ∫
C

F · dr:

∫
C

F · dr = ∫
a

b
⎛
⎝Px′ (t) + Qy′ (t) + Rz′ (t)⎞

⎠dt

= ∫
a

b⎡
⎣Px′ (t) + Qy′ (t) + R⎛

⎝
∂z
∂ x

dx
dt + ∂z

∂ y
dy
dt

⎞
⎠
⎤
⎦dt

= ∫
a

b⎡
⎣
⎛
⎝P + R∂z

∂ x
⎞
⎠x′ (t) + ⎛

⎝Q + R∂z
∂ y

⎞
⎠y′ (t)⎤⎦dt

= ∫
C′

⎛
⎝P + R∂z

∂ x
⎞
⎠dx + ⎛

⎝Q + R∂z
∂ y

⎞
⎠dy

= ∬
D

⎡
⎣

∂
∂ x

⎛
⎝Q + R∂z

∂ y
⎞
⎠ − ∂

∂ y
⎛
⎝P + R∂z

∂ x
⎞
⎠
⎤
⎦dA

= ∬
D

⎛
⎝

∂Q
∂ x + ∂Q

∂z
∂z
∂ x + ∂R

∂ x
∂z
∂ y + ∂R

∂z
∂z
∂ x

∂z
∂ y + R ∂2z

∂ x∂ y
⎞
⎠

−⎛
⎝

∂P
∂ y + ∂P

∂z
∂z
∂ y + ∂R

∂z
∂z
∂ y

∂z
∂ x + R ∂2z

∂ y∂ x
⎞
⎠

dA.

By Clairaut’s theorem, ∂2z
∂ x∂ y = ∂2z

∂ y∂ x. Therefore, four of the terms disappear from this double integral, and we are left

with

∬
D

⎡
⎣−⎛

⎝Ry − Qz
⎞
⎠zx − ⎛

⎝Pz − Rx
⎞
⎠zy + ⎛

⎝Qx − Py
⎞
⎠
⎤
⎦dA,

which equals ∬
S

curl F · dS.

□

We have shown that Stokes’ theorem is true in the case of a function with a domain that is a simply connected region of
finite area. We can quickly confirm this theorem for another important case: when vector field F is conservative. If F is
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conservative, the curl of F is zero, so ∬
S

curl F · dS = 0. Since the boundary of S is a closed curve, ∫
C

F · dr is also zero.

Example 6.73

Verifying Stokes’ Theorem for a Specific Case

Verify that Stokes’ theorem is true for vector field F(x, y, z) = 〈 y, 2z, x2 〉 and surface S, where S is the

paravbolid z = 4 - x2 - y2 .

Figure 6.83 Verifying Stokes’ theorem for a hemisphere in a
vector field.

Solution

As a surface integral, you have g⎛
⎝x, y⎞

⎠ = 4 - x2 - y2, gx = −2y and

curl F = | i j k
∂
∂ x

∂
∂ y

∂
∂z

y 2z x2 | = ⟨−2, −2x, −1⟩.

By Equation 6.19,

∬
S
curl F · dS = ∬

D
curl F⎛

⎝r⎛
⎝ϕ, θ⎞

⎠
⎞
⎠ · ⎛

⎝tϕ × tθ
⎞
⎠dA

= ∬
D

〈 −2, −2x, −1 〉 · 〈 2x, 2y, 1 〉 dA

= ∫
−2

2
∫

4 - x2

4 − x2
⎛
⎝−4x−4xy−1⎞

⎠dydx

= ∫
−2

2 ⎛
⎝−8x 4 - x2−2 4 - x2⎞

⎠dx

= −4π
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(6.22)

6.61

As a line integral, you can parameterize C by r(t) = 〈 2 cos t, 2 sin t, 0 〉 0 ≤ t ≤ 2π . By Equation 6.19,

∫
C

F · dr = ∫
0

2π
〈 2sin t, 0, 4cos2 t 〉 · 〈 −2sin t, 2cos t, 0 〉 dt

= ∫
0

2π
−4sin2 tdt = −4π

Therefore, we have verified Stokes' theorem for this example.

Verify that Stokes’ theorem is true for vector field F(x, y, z) = 〈 y, x, −z 〉 and surface S, where S is

the upwardly oriented portion of the graph of f (x, y) = x2 y over a triangle in the xy-plane with vertices

(0, 0), (2, 0), and (0, 2).

Applying Stokes’ Theorem
Stokes’ theorem translates between the flux integral of surface S to a line integral around the boundary of S. Therefore, the
theorem allows us to compute surface integrals or line integrals that would ordinarily be quite difficult by translating the
line integral into a surface integral or vice versa. We now study some examples of each kind of translation.

Example 6.74

Calculating a Surface Integral

Calculate surface integral ∬
S
curl F · dS, where S is the surface, oriented outward, in Figure 6.84 and

F = 〈 z, 2xy, x + y 〉 .
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Figure 6.84 A complicated surface in a vector field.

Solution

Note that to calculate ∬
S
curl F · dS without using Stokes’ theorem, we would need to use Equation 6.19. Use

of this equation requires a parameterization of S. Surface S is complicated enough that it would be extremely
difficult to find a parameterization. Therefore, the methods we have learned in previous sections are not useful
for this problem. Instead, we use Stokes’ theorem, noting that the boundary C of the surface is merely a single
circle with radius 1.

The curl of F is 〈 1, 1, 2y 〉 . By Stokes’ theorem,

∬
S
curl F · dS = ∫

C
F · dr,

where C has parameterization r (t) = 〈 −sin t, 0, 1 − cos t 〉 , 0 ≤ t < 2π. By Equation 6.9,
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∬
S
curl F · dS = ∫

C
F · dr

= ∫
0

2π
〈 1 − cos t , 0, − sin t 〉 · 〈 − cos t, 0, sin t 〉 dt

= ∫
0

2π
⎛
⎝−cos t + cos2 t − sin2 t⎞

⎠dt

= ⎡
⎣−sin t + 1

2sin(2t)⎤
⎦0
2π

= ( − sin(2π) + 1
2 sin(4 π ))−( − sin 0 + 1

2sin 0)

= 0.

An amazing consequence of Stokes’ theorem is that if S′ is any other smooth surface with boundary C and the same

orientation as S, then ∬
S
curl F · dS = ∫

C
F · dr = 0 because Stokes’ theorem says the surface integral depends on the line

integral around the boundary only.

In Example 6.74, we calculated a surface integral simply by using information about the boundary of the surface. In
general, let S1 and S2 be smooth surfaces with the same boundary C and the same orientation. By Stokes’ theorem,

(6.23)∬
S1

curl F · dS = ∫
C

F · dr = ∬
S2

curl F · dS.

Therefore, if ∬
S1

curl F · dS is difficult to calculate but ∬
S2

curl F · dS is easy to calculate, Stokes’ theorem allows

us to calculate the easier surface integral. In Example 6.74, we could have calculated ∬
S
curl F · dS by calculating

∬
S′

curl F · dS, where S′ is the disk enclosed by boundary curve C (a much more simple surface with which to work).

Equation 6.23 shows that flux integrals of curl vector fields are surface independent in the same way that line integrals
of gradient fields are path independent. Recall that if F is a two-dimensional conservative vector field defined on a simply

connected domain, f is a potential function for F, and C is a curve in the domain of F, then ∫
C

F · dr depends only on the

endpoints of C. Therefore if C′ is any other curve with the same starting point and endpoint as C (that is, C′ has the same

orientation as C), then ∫
C

F · dr = ∫
C′

F · dr. In other words, the value of the integral depends on the boundary of the path

only; it does not really depend on the path itself.

Analogously, suppose that S and S′ are surfaces with the same boundary and same orientation, and suppose that G is a three-
dimensional vector field that can be written as the curl of another vector field F (so that F is like a “potential field” of G).
By Equation 6.23,

∬
S
G · dS = ∬

S
curl F · dS = ∫

C
F · dr = ∬

S′
curl F · dS = ∬

S′
G · dS.

Therefore, the flux integral of G does not depend on the surface, only on the boundary of the surface. Flux integrals of
vector fields that can be written as the curl of a vector field are surface independent in the same way that line integrals of
vector fields that can be written as the gradient of a scalar function are path independent.
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6.62

6.63

Use Stokes’ theorem to calculate surface integral ∬
S
curl F · dS, where F = 〈 z, x, y 〉 and S is the

surface as shown in the following figure. The boundary curve, C, is oriented clockwise.

Example 6.75

Calculating a Line Integral

Calculate the line integral ∫
C

F · dr, where F = 〈 xy, x2 + y2 + z2, yz 〉 and C is the boundary of the

parallelogram with vertices (0, 0, 1), (0, 1, 0), (2, 0, −1), and (2, 1, −2).

Solution

To calculate the line integral directly, we need to parameterize each side of the parallelogram separately, calculate
four separate line integrals, and add the result. This is not overly complicated, but it is time-consuming.

By contrast, let’s calculate the line integral using Stokes’ theorem. Let S denote the surface of the parallelogram.
Note that S is the portion of the graph of z = 1 − x − y for (x, y) varying over the rectangular region

with vertices (0, 0), (0, 1), (2, 0), and (2, 1) in the xy-plane. Therefore, a parameterization of S is

〈 x, y, 1 − x − y 〉 , 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. The curl of F is − 〈 z, 0, x 〉 , and Stokes’ theorem and

Equation 6.19 give

∫
C

F · dr = ∬
S
curl F · dS

= ∫
0

2
∫

0

1
curl F(x, y) · ⎛

⎝tx×ty
⎞
⎠dydx

= ∫
0

2
∫

0

1
〈 −⎛

⎝1 − x − y⎞
⎠,0,x 〉 · ⎛

⎝ 〈 1, 0, −1 〉 × 〈 0, 1, −1 〉 ⎞
⎠dydx

= ∫
0

2
∫

0

1
〈 x + y − 1, 0, x 〉 · 〈 1, 1, 1 〉 dydx

∫
0

2
∫

0

1
2x + y − 1dydx

= 3.

Use Stokes’ theorem to calculate line integral ∫
C

F · dr, where F = 〈 z, x, y 〉 and C is oriented

clockwise and is the boundary of a triangle with vertices (0, 0, 1), (3, 0, −2), and (0, 1, 2).
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Interpretation of Curl
In addition to translating between line integrals and flux integrals, Stokes’ theorem can be used to justify the physical
interpretation of curl that we have learned. Here we investigate the relationship between curl and circulation, and we use
Stokes’ theorem to state Faraday’s law—an important law in electricity and magnetism that relates the curl of an electric
field to the rate of change of a magnetic field.

Recall that if C is a closed curve and F is a vector field defined on C, then the circulation of F around C is line integral

∫
C

F · dr. If F represents the velocity field of a fluid in space, then the circulation measures the tendency of the fluid to

move in the direction of C.

Let F be a continuous vector field and let Dr be a small disk of radius r with center P0 (Figure 6.85). If Dr is small

enough, then (curl F)(P) ≈ (curl F)(P0) for all points P in Dr because the curl is continuous. Let Cr be the boundary

circle of Dr. By Stokes’ theorem,

∫
Cr

F · dr = ∬
Dr

curl F · NdS ≈ ∬
Dr

(curl F)⎛
⎝P0

⎞
⎠ · N⎛

⎝P0
⎞
⎠dS.

Figure 6.85 Disk Dr is a small disk in a continuous vector

field.

The quantity (curl F)⎛
⎝P0

⎞
⎠ · N⎛

⎝P0
⎞
⎠ is constant, and therefore

∬
Dr

(curl F)⎛
⎝P0

⎞
⎠ · N⎛

⎝P0
⎞
⎠dS = πr2 ⎡

⎣(curl F)⎛
⎝P0

⎞
⎠ · N⎛

⎝P0
⎞
⎠
⎤
⎦.

Thus

∫
Cr

F · dr ≈ πr2 ⎡
⎣(curl F)⎛

⎝P0
⎞
⎠ · N⎛

⎝P0
⎞
⎠
⎤
⎦,

and the approximation gets arbitrarily close as the radius shrinks to zero. Therefore Stokes’ theorem implies that

(curl F)⎛
⎝P0

⎞
⎠ · N⎛

⎝P0
⎞
⎠ = lim

r → 0+
1

πr2∫Cr
F · dr.

This equation relates the curl of a vector field to the circulation. Since the area of the disk is πr2, this equation says we

can view the curl (in the limit) as the circulation per unit area. Recall that if F is the velocity field of a fluid, then circulation
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∮
Cr

F · dr = ∮
Cr

F · Tds is a measure of the tendency of the fluid to move around Cr. The reason for this is that F · T

is a component of F in the direction of T, and the closer the direction of F is to T, the larger the value of F · T (remember

that if a and b are vectors and b is fixed, then the dot product a · b is maximal when a points in the same direction as b).

Therefore, if F is the velocity field of a fluid, then curl F · N is a measure of how the fluid rotates about axis N. The effect

of the curl is largest about the axis that points in the direction of N, because in this case curl F · N is as large as possible.

To see this effect in a more concrete fashion, imagine placing a tiny paddlewheel at point P0 (Figure 6.86). The

paddlewheel achieves its maximum speed when the axis of the wheel points in the direction of curlF. This justifies the
interpretation of the curl we have learned: curl is a measure of the rotation in the vector field about the axis that points in
the direction of the normal vector N, and Stokes’ theorem justifies this interpretation.

Figure 6.86 To visualize curl at a point, imagine placing a
tiny paddlewheel at that point in the vector field.

Now that we have learned about Stokes’ theorem, we can discuss applications in the area of electromagnetism. In particular,
we examine how we can use Stokes’ theorem to translate between two equivalent forms of Faraday’s law. Before stating
the two forms of Faraday’s law, we need some background terminology.

Let C be a closed curve that models a thin wire. In the context of electric fields, the wire may be moving over time, so
we write C(t) to represent the wire. At a given time t, curve C(t) may be different from original curve C because of the

movement of the wire, but we assume that C(t) is a closed curve for all times t. Let D(t) be a surface with C(t) as its

boundary, and orient C(t) so that D(t) has positive orientation. Suppose that C(t) is in a magnetic field B(t) that can

also change over time. In other words, B has the form

B(x, y, z) = 〈 P(x, y, z), Q(x, y, z), R(x, y, z) 〉 ,

where P, Q, and R can all vary continuously over time. We can produce current along the wire by changing field B(t) (this

is a consequence of Ampere’s law). Flux ϕ(t) = ∬
D(t)

B(t) · dS creates electric field E(t) that does work. The integral

form of Faraday’s law states that

Work = ∫
C(t)

E(t) · dr = − ∂ϕ
∂ t .

In other words, the work done by E is the line integral around the boundary, which is also equal to the rate of change of the
flux with respect to time. The differential form of Faraday’s law states that

curl E = − ∂B
∂ t .

Using Stokes’ theorem, we can show that the differential form of Faraday’s law is a consequence of the integral form. By
Stokes’ theorem, we can convert the line integral in the integral form into surface integral
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−∂ϕ
∂ t = ∫

C(t)
E(t) · dr = ∬

D(t)
curl E(t) · dS.

Since ϕ(t) = ∬
D(t)

B(t) · dS, then as long as the integration of the surface does not vary with time we also have

−∂ϕ
∂ t = ∬

D(t)
−∂B

∂ t · dS.

Therefore,

∬
D(t)

−∂B
∂ t · dS = ∬

D(t)
curl E · dS.

To derive the differential form of Faraday’s law, we would like to conclude that curl E = − ∂B
∂ t . In general, the equation

∬
D(t)

−∂B
∂ t · dS = ∬

D(t)
curl E · dS

is not enough to conclude that curl E = − ∂B
∂ t . The integral symbols do not simply “cancel out,” leaving equality of the

integrands. To see why the integral symbol does not just cancel out in general, consider the two single-variable integrals

∫
0

1
xdx and ∫

0

1
f (x)dx, where

f (x) =
⎧

⎩
⎨0, 1/2 ≤ x ≤ 1.
1, 0 ≤ x ≤ 1/2

Both of these integrals equal 1
2, so ∫

0

1
xdx = ∫

0

1
f (x)dx. However, x ≠ f (x). Analogously, with our equation

∬
D(t)

−∂B
∂ t · dS = ∬

D(t)
curl E · dS, we cannot simply conclude that curl E = − ∂B

∂ t just because their integrals are

equal. However, in our context, equation ∬
D(t)

−∂B
∂ t · dS = ∬

D(t)
curl E · dS is true for any region, however small (this

is in contrast to the single-variable integrals just discussed). If F and G are three-dimensional vector fields such that
∬sF · dS = ∬sG · dS for any surface S, then it is possible to show that F = G by shrinking the area of S to zero by

taking a limit (the smaller the area of S, the closer the value of ∬sF · dS to the value of F at a point inside S). Therefore,

we can let area D(t) shrink to zero by taking a limit and obtain the differential form of Faraday’s law:

curl E = − ∂B
∂ t .

In the context of electric fields, the curl of the electric field can be interpreted as the negative of the rate of change of the
corresponding magnetic field with respect to time.

Example 6.76

Using Faraday’s Law

Calculate the curl of electric field E if the corresponding magnetic field is constant field B(t) = 〈 1, −4, 2 〉 .

Solution

Since the magnetic field does not change with respect to time, −∂B
∂ t = 0. By Faraday’s law, the curl of the

electric field is therefore also zero.

Analysis
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6.64

A consequence of Faraday’s law is that the curl of the electric field corresponding to a constant magnetic field is
always zero.

Calculate the curl of electric field E if the corresponding magnetic field is
B(t) = 〈 tx, ty, −2tz 〉 , 0 ≤ t < ∞.

Notice that the curl of the electric field does not change over time, although the magnetic field does change over time.
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6.7 EXERCISES
For the following exercises, without using Stokes’ theorem,
calculate directly both the flux of curl F · N over the given

surface and the circulation integral around its boundary,
assuming all boundaries are oriented clockwise as viewed
from above.

326. F(x, y, z) = y2 i + z2 j + x2 k; S is the first-octant

portion of plane x + y + z = 1.

327. F(x, y, z) = zi + xj + yk; S is hemisphere

z = ⎛
⎝a2 − x2 − y2⎞

⎠
1/2

.

328. F(x, y, z) = y2 i + 2xj + 5k; S is hemisphere

z = ⎛
⎝4 − x2 − y2⎞

⎠
1/2

.

329. F(x, y, z) = zi + 2xj + 3yk; S is upper hemisphere

z = 9 − x2 − y2.

330. F(x, y, z) = (x + 2z)i + (y − x)j + (z − y)k; S is a

triangular region with vertices (3, 0, 0), (0, 3/2, 0), and (0,
0, 3).

331. F(x, y, z) = 2yi − 6zj + 3xk; S is a portion of

paraboloid z = 4 − x2 − y2 and is above the xy-plane.

For the following exercises, use Stokes’ theorem to
evaluate ∬

S
(curl F · N)dS for the vector fields and

surface.

332. F(x, y, z) = xyi − zj and S is the surface of the

cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, except for the

face where z = 0, and using the outward unit normal

vector.

333. F(x, y, z) = xyi + x2 j + z2 k; and C is the

intersection of paraboloid z = x2 + y2 and plane z = y,
and using the outward normal vector.

334. F(x, y, z) = 4yi + zj + 2yk and C is the

intersection of sphere x2 + y2 + z2 = 4 with plane

z = 0, and using the outward normal vector

335. Use Stokes’ theorem to evaluate

∫
C

⎡
⎣2xy2 zdx + 2x2 yzdy + ⎛

⎝x2 y2 − 2z⎞
⎠dz⎤

⎦, where C is

the curve given by
x = cos t, y = sin t, z = sin t, 0 ≤ t ≤ 2π, traversed in

the direction of increasing t.

336. [T] Use a computer algebraic system (CAS) and
Stokes’ theorem to approximate line integral

∫
C

⎛
⎝ydx + zdy + xdz⎞

⎠, where C is the intersection of plane

x + y = 2 and surface x2 + y2 + z2 = 2(x + y),
traversed counterclockwise viewed from the origin.

337. [T] Use a CAS and Stokes’ theorem to approximate

line integral ∫
C

⎛
⎝3ydx + 2zdy − 5xdz⎞

⎠, where C is the

intersection of the xy-plane and hemisphere

z = 1 − x2 − y2, traversed counterclockwise viewed

from the top—that is, from the positive z-axis toward the
xy-plane.

338. [T] Use a CAS and Stokes’ theorem to approximate

line integral ∫
C

⎡
⎣
⎛
⎝1 + y⎞

⎠zdx + (1 + z)xdy + (1 + x)ydz⎤
⎦,

where C is a triangle with vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1) oriented counterclockwise.

339. Use Stokes’ theorem to evaluate ∬
S
curl F · dS,

where F(x, y, z) = exy cos zi + x2 zj + xyk, and S is half

of sphere x = 1 − y2 − z2, oriented out toward the

positive x-axis.
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340. [T] Use a CAS and Stokes’ theorem to evaluate
∬

S
(curl F · N)dS, where

F(x, y, z) = x2 yi + xy2 j + z3 k and C is the curve of

the intersection of plane 3x + 2y + z = 6 and cylinder

x2 + y2 = 4, oriented clockwise when viewed from

above.

341. [T] Use a CAS and Stokes’ theorem to evaluate
∬
S

curl F · dS, where

F(x, y, z) =
⎛

⎝
⎜sin(y + z) − yx2 − y3

3
⎞

⎠
⎟i + x cos(y + z)j + cos⎛

⎝2y⎞
⎠k

and S consists of the top and the four sides but not the
bottom of the cube with vertices (±1, ±1, ±1), oriented

outward.

342. [T] Use a CAS and Stokes’ theorem to evaluate
∬
S

curl F · dS, where

F(x, y, z) = z2 i − 3xyj + x3 y3 k and S is the top part of

z = 5 − x2 − y2 above plane z = 1, and S is oriented

upward.

343. Use Stokes’ theorem to evaluate ∬
S
(curl F · N)dS,

where F(x, y, z) = z2 i + y2 j + xk and S is a triangle

with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) with
counterclockwise orientation.

344. Use Stokes’ theorem to evaluate line integral

∫
C

⎛
⎝zdx + xdy + ydz⎞

⎠, where C is a triangle with vertices

(3, 0, 0), (0, 0, 2), and (0, 6, 0) traversed in the given order.

345. Use Stokes’ theorem to evaluate

∫
C

⎛
⎝
1
2y2 dx + zdy + xdz⎞

⎠, where C is the curve of

intersection of plane x + z = 1 and ellipsoid

x2 + 2y2 + z2 = 1, oriented clockwise from the origin.

346. Use Stokes’ theorem to evaluate ∬
S
(curl F · N)dS,

where F(x, y, z) = xi + y2 j + zexy k and S is the part

of surface z = 1 − x2 − 2y2 with z ≥ 0, oriented

counterclockwise.

347. Use Stokes’ theorem for vector field
F(x, y, z) = zi + 3xj + 2zk where S is surface

z = 1 − x2 − 2y2, z ≥ 0, C is boundary circle

x2 + y2 = 1, and S is oriented in the positive z-direction.

348. Use Stokes’ theorem for vector field

F(x, y, z) = − 3
2y2 i − 2xyj + yzk, where S is that part

of the surface of plane x + y + z = 1 contained within

triangle C with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1),
traversed counterclockwise as viewed from above.

349. A certain closed path C in plane 2x + 2y + z = 1

is known to project onto unit circle x2 + y2 = 1 in the

xy-plane. Let c be a constant and let
R(x, y, z) = xi + yj + zk. Use Stokes’ theorem to

evaluate ∫
C

(ck × R) · dS.
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350. Use Stokes’ theorem and let C be the boundary of

surface z = x2 + y2 with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,
oriented with upward facing normal. Define

F(x, y, z) = ⎡
⎣sin⎛

⎝x
3⎞

⎠ + xz⎤
⎦i + (x − yz)j + cos⎛

⎝z4⎞
⎠k and evaluate ∫

C
F · dS.

351. Let S be hemisphere x2 + y2 + z2 = 4 with z ≥ 0,
oriented upward. Let

F(x, y, z) = x2 eyz i + y2 exz j + z2 exy k be a vector

field. Use Stokes’ theorem to evaluate ∬
S
curl F · dS.

352. Let F(x, y, z) = xyi + ⎛
⎝ez2

+ y⎞
⎠j + (x + y)k and

let S be the graph of function y = x2

9 + z2

9 − 1 with

z ≤ 0 oriented so that the normal vector S has a positive

y component. Use Stokes’ theorem to compute integral
∬

S
curl F · dS.

353. Use Stokes’ theorem to evaluate ∮F · dS, where

F(x, y, z) = yi + zj + xk and C is a triangle with vertices

(0, 0, 0), (2, 0, 0) and (0, −2, 2) oriented

counterclockwise when viewed from above.

354. Use the surface integral in Stokes’ theorem to
calculate the circulation of field F,

F(x, y, z) = x2 y3 i + j + zk around C, which is the

intersection of cylinder x2 + y2 = 4 and hemisphere

x2 + y2 + z2 = 16, z ≥ 0, oriented counterclockwise

when viewed from above.

355. Use Stokes’ theorem to compute ∬
S
curl F · dS,

where F(x, y, z) = i + xy2 j + xy2 k and S is a part of

plane y + z = 2 inside cylinder x2 + y2 = 1 and oriented

counterclockwise.

356. Use Stokes’ theorem to evaluate ∬
S
curl F · dS,

where F(x, y, z) = −y2 i + xj + z2 k and S is the part of

plane x + y + z = 1 in the positive octant and oriented

counterclockwise x ≥ 0, y ≥ 0, z ≥ 0.

357. Let F(x, y, z) = xyi + 2zj − 2yk and let C be the

intersection of plane x + z = 5 and cylinder

x2 + y2 = 9, which is oriented counterclockwise when

viewed from the top. Compute the line integral of F over C
using Stokes’ theorem.

358. [T] Use a CAS and let

F(x, y, z) = xy2 i + (yz − x)j + eyxz k. Use Stokes’

theorem to compute the surface integral of curl F over
surface S with inward orientation consisting of cube
[0, 1] × [0, 1] × [0, 1] with the right side missing.

359. Let S be ellipsoid x2

4 + y2

9 + z2 = 1 oriented

counterclockwise and let F be a vector field with
component functions that have continuous partial
derivatives.

360. Let S be the part of paraboloid z = 9 − x2 − y2

with z ≥ 0. Verify Stokes’ theorem for vector field

F(x, y, z) = 3zi + 4xj + 2yk.
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361. [T] Use a CAS and Stokes’ theorem to evaluate

∮
C

F · dS, if

F(x, y, z) = (3z − sin x)i + ⎛
⎝x2 + ey⎞

⎠j + ⎛
⎝y

3 − cos z⎞
⎠k,

where C is the curve given by
x = cos t, y = sin t, z = 1; 0 ≤ t ≤ 2π.

362. [T] Use a CAS and Stokes’ theorem to evaluate
F(x, y, z) = 2yi + ez j − arctan xk with S as a portion of

paraboloid z = 4 − x2 − y2 cut off by the xy-plane

oriented counterclockwise.

363. [T] Use a CAS to evaluate ∬
S
curl(F) · dS, where

F(x, y, z) = 2zi + 3xj + 5yk and S is the surface

parametrically by

r(r, θ) = r cos θi + r sin θj + ⎛
⎝4 − r2⎞

⎠k

(0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3).

364. Let S be paraboloid z = a⎛
⎝1 − x2 − y2⎞

⎠, for

z ≥ 0, where a > 0 is a real number. Let

F = 〈 x − y, y + z, z − x 〉 . For what value(s) of a (if

any) does ∬
S
(∇ × F) · ndS have its maximum value?

For the following application exercises, the goal is to
evaluate A = ∬

S
(∇ × F) · ndS, where

F = 〈 xz, −xz, xy 〉 and S is the upper half of ellipsoid

x2 + y2 + 8z2 = 1, where z ≥ 0.

365. Evaluate a surface integral over a more convenient
surface to find the value of A.

366. Evaluate A using a line integral.

367. Take paraboloid z = x2 + y2, for 0 ≤ z ≤ 4, and

slice it with plane y = 0. Let S be the surface that remains

for y ≥ 0, including the planar surface in the xz-plane.

Let C be the semicircle and line segment that bounded the
cap of S in plane z = 4 with counterclockwise orientation.

Let F = 〈 2z + y, 2x + z, 2y + x 〉 . Evaluate

∬
S
(∇ × F) · ndS.

For the following exercises, let S be the disk enclosed by
curve

C : r(t) = 〈 cos φ cos t, sin t, sin φ cos t 〉 , for

0 ≤ t ≤ 2π, where 0 ≤ φ ≤ π
2 is a fixed angle.

368. What is the length of C in terms of φ?

369. What is the circulation of C of vector field
F = 〈 −y, −z, x 〉 as a function of φ?

370. For what value of φ is the circulation a maximum?

371. Circle C in plane x + y + z = 8 has radius 4 and

center (2, 3, 3). Evaluate ∮
C

F · dr for

F = 〈 0, −z, 2y 〉 , where C has a counterclockwise

orientation when viewed from above.

372. Velocity field v = 〈 0, 1 − x2, 0 〉 , for

|x| ≤ 1 and |z| ≤ 1, represents a horizontal flow in the

y-direction. Compute the curl of v in a clockwise rotation.

373. Evaluate integral ∬
S
(∇ × F) · ndS, where

F = −xzi + yzj + xyez k and S is the cap of paraboloid

z = 5 − x2 − y2 above plane z = 3, and n points in the

positive z-direction on S.
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For the following exercises, use Stokes’ theorem to find
the circulation of the following vector fields around any
smooth, simple closed curve C.

374. F = ∇ ⎛
⎝x sin yez⎞

⎠

375. F = 〈 y2 z3, z2xyz3, 3xy2 z2 〉
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6.8 | The Divergence Theorem

Learning Objectives
6.8.1 Explain the meaning of the divergence theorem.

6.8.2 Use the divergence theorem to calculate the flux of a vector field.

6.8.3 Apply the divergence theorem to an electrostatic field.

We have examined several versions of the Fundamental Theorem of Calculus in higher dimensions that relate the integral
around an oriented boundary of a domain to a “derivative” of that entity on the oriented domain. In this section, we state
the divergence theorem, which is the final theorem of this type that we will study. The divergence theorem has many uses
in physics; in particular, the divergence theorem is used in the field of partial differential equations to derive equations
modeling heat flow and conservation of mass. We use the theorem to calculate flux integrals and apply it to electrostatic
fields.

Overview of Theorems
Before examining the divergence theorem, it is helpful to begin with an overview of the versions of the Fundamental
Theorem of Calculus we have discussed:

1. The Fundamental Theorem of Calculus:

∫
a

b
f ′ (x)dx = f (b) − f (a).

This theorem relates the integral of derivative f ′ over line segment ⎡
⎣a, b⎤

⎦ along the x-axis to a difference of f
evaluated on the boundary.

2. The Fundamental Theorem for Line Integrals:

∫
C

∇ f · dr = f ⎛
⎝P1

⎞
⎠ − f ⎛

⎝P0
⎞
⎠,

where P0 is the initial point of C and P1 is the terminal point of C. The Fundamental Theorem for Line Integrals

allows path C to be a path in a plane or in space, not just a line segment on the x-axis. If we think of the gradient as
a derivative, then this theorem relates an integral of derivative ∇ f over path C to a difference of f evaluated on

the boundary of C.

3. Green’s theorem, circulation form:

∬
D

(Qx − Py)dA = ∫
C

F · dr.

Since Qx − Py = curl F · k and curl is a derivative of sorts, Green’s theorem relates the integral of derivative curlF

over planar region D to an integral of F over the boundary of D.

4. Green’s theorem, flux form:

∬
D

(Px + Qy)dA = ∫
C

F · Nds.

Since Px + Qy = div F and divergence is a derivative of sorts, the flux form of Green’s theorem relates the integral

of derivative divF over planar region D to an integral of F over the boundary of D.

5. Stokes’ theorem:

∬
S
curl F · dS = ∫

C
F · dr.

If we think of the curl as a derivative of sorts, then Stokes’ theorem relates the integral of derivative curlF over
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surface S (not necessarily planar) to an integral of F over the boundary of S.

Stating the Divergence Theorem
The divergence theorem follows the general pattern of these other theorems. If we think of divergence as a derivative of
sorts, then the divergence theorem relates a triple integral of derivative divF over a solid to a flux integral of F over the
boundary of the solid. More specifically, the divergence theorem relates a flux integral of vector field F over a closed surface
S to a triple integral of the divergence of F over the solid enclosed by S.

Theorem 6.20: The Divergence Theorem

Let S be a piecewise, smooth closed surface that encloses solid E in space. Assume that S is oriented outward, and let
F be a vector field with continuous partial derivatives on an open region containing E (Figure 6.87). Then

(6.24)∭
E

div FdV = ∬
S

F · dS.

Figure 6.87 The divergence theorem relates a flux integral
across a closed surface S to a triple integral over solid E
enclosed by the surface.

Recall that the flux form of Green’s theorem states that ∬
D

div FdA = ∫
C

F · Nds. Therefore, the divergence theorem is a

version of Green’s theorem in one higher dimension.

The proof of the divergence theorem is beyond the scope of this text. However, we look at an informal proof that gives
a general feel for why the theorem is true, but does not prove the theorem with full rigor. This explanation follows the
informal explanation given for why Stokes’ theorem is true.

Proof

Let B be a small box with sides parallel to the coordinate planes inside E (Figure 6.88). Let the center of B have coordinates
(x, y, z) and suppose the edge lengths are Δx, Δy, and Δz (Figure 6.88(b)). The normal vector out of the top of the

box is k and the normal vector out of the bottom of the box is −k. The dot product of F = 〈 P, Q, R 〉 with k is R and

the dot product with −k is −R. The area of the top of the box (and the bottom of the box) ΔS is ΔxΔy.
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Figure 6.88 (a) A small box B inside surface E has sides parallel to the coordinate planes. (b) Box B has
side lengths Δx, Δy, and Δz (c) If we look at the side view of B, we see that, since (x, y, z) is the

center of the box, to get to the top of the box we must travel a vertical distance of Δz/2 up from (x, y, z).
Similarly, to get to the bottom of the box we must travel a distance Δz/2 down from (x, y, z).

The flux out of the top of the box can be approximated by R⎛
⎝x, y, z + Δz

2
⎞
⎠ΔxΔy (Figure 6.88(c)) and the flux out of the

bottom of the box is −R⎛
⎝x, y, z − Δz

2
⎞
⎠ΔxΔy. If we denote the difference between these values as ΔR, then the net flux

in the vertical direction can be approximated by ΔRΔxΔy. However,

ΔRΔxΔy = ⎛
⎝
ΔR
Δz

⎞
⎠ΔxΔyΔz ≈ ⎛

⎝
∂R
∂z

⎞
⎠ΔV .

Therefore, the net flux in the vertical direction can be approximated by
⎛
⎝
∂R
∂z

⎞
⎠ΔV . Similarly, the net flux in the x-direction

can be approximated by ⎛
⎝
∂P
∂ x

⎞
⎠ΔV and the net flux in the y-direction can be approximated by

⎛
⎝
∂Q
∂ y

⎞
⎠ΔV . Adding the fluxes

in all three directions gives an approximation of the total flux out of the box:

Total flu ≈ ⎛
⎝
∂P
∂ x + ∂Q

∂ y + ∂R
∂z

⎞
⎠ΔV = div FΔV .

This approximation becomes arbitrarily close to the value of the total flux as the volume of the box shrinks to zero.

The sum of div FΔV over all the small boxes approximating E is approximately ∭
E

div FdV . On the other hand, the

sum of div FΔV over all the small boxes approximating E is the sum of the fluxes over all these boxes. Just as in the

informal proof of Stokes’ theorem, adding these fluxes over all the boxes results in the cancelation of a lot of the terms.
If an approximating box shares a face with another approximating box, then the flux over one face is the negative of the
flux over the shared face of the adjacent box. These two integrals cancel out. When adding up all the fluxes, the only flux
integrals that survive are the integrals over the faces approximating the boundary of E. As the volumes of the approximating
boxes shrink to zero, this approximation becomes arbitrarily close to the flux over S.

□

Example 6.77

Verifying the Divergence Theorem

Verify the divergence theorem for vector field F = 〈 x − y, x + z, z − y 〉 and surface S that consists of cone

x2 + y2 = z2, 0 ≤ z ≤ 1, and the circular top of the cone (see the following figure). Assume this surface is
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positively oriented.

Solution

Let E be the solid cone enclosed by S. To verify the theorem for this example, we show that
∭

E
div FdV = ∬

S
F · dS by calculating each integral separately.

To compute the triple integral, note that div F = Px + Qy + Rz = 2, and therefore the triple integral is

∭
E

div FdV = 2 ∭
E

dV

= 2(volume of E).

The volume of a right circular cone is given by πr2 h
3. In this case, h = r = 1. Therefore,

∭
E

div FdV = 2(volume of E) = 2π
3 .

To compute the flux integral, first note that S is piecewise smooth; S can be written as a union of smooth surfaces.
Therefore, we break the flux integral into two pieces: one flux integral across the circular top of the cone and one
flux integral across the remaining portion of the cone. Call the circular top S1 and the portion under the top S2.
We start by calculating the flux across the circular top of the cone. Notice that S1 has parameterization

r(u, v) = 〈 u cos v, u sin v, 1 〉 , 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

Then, the tangent vectors are tu = 〈 cos v, sin v, 0 〉 and tv = 〈 −u cos v, u sin v, 0 〉 . Therefore, the flux

across S1 is
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6.65

∬
S1

F · dS = ∫
0

1
∫

0

2π
F(r(u, v)) · (tu × tv)dA

= ∫
0

1
∫

0

2π
〈 u cos v − u sin v, u cos v + 1, 1 − u sin v 〉 · 〈 0, 0, u 〉 dvdu

= ∫
0

1
∫

0

2π
u − u2 sin v dvdu = π.

We now calculate the flux over S2. A parameterization of this surface is

r(u, v) = 〈 u cos v, u sin v, u 〉 , 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

The tangent vectors are tu = 〈 cos v, sin v, 1 〉 and tv = 〈 −u sin v, u cos v, 0 〉 , so the cross product is

tu × tv = 〈 −u cos v, −u sin v, u 〉 .

Notice that the negative signs on the x and y components induce the negative (or inward) orientation of the cone.
Since the surface is positively oriented, we use vector tv × tu = 〈 u cos v, u sin v, −u 〉 in the flux integral.

The flux across S2 is then

∬
S2

F · dS = ∫
0

1
∫

0

2π
F(r(u, v)) · (tv × tu)dA

= ∫
0

1
∫

0

2π
〈 u cos v − u sin v, u cos v + u, u − sin v 〉 · 〈 u cos v, u sin v, −u 〉

= ∫
0

1
∫

0

2π
u2cos2 v + 2u2 sin v − u2 dvdu = − π

3.

The total flux across S is

∬
S2

F · dS = ∬
S1

F · dS + ∬
S2

F · dS = 2π
3 = ∭

E
div FdV ,

and we have verified the divergence theorem for this example.

Verify the divergence theorem for vector field F(x, y, z) = 〈 x + y + z, y, 2x − y 〉 and surface S

given by the cylinder x2 + y2 = 1, 0 ≤ z ≤ 3 plus the circular top and bottom of the cylinder. Assume that S is

positively oriented.

Recall that the divergence of continuous field F at point P is a measure of the “outflowing-ness” of the field at P. If F
represents the velocity field of a fluid, then the divergence can be thought of as the rate per unit volume of the fluid flowing
out less the rate per unit volume flowing in. The divergence theorem confirms this interpretation. To see this, let P be a
point and let Br be a ball of small radius r centered at P (Figure 6.89). Let Sr be the boundary sphere of Br. Since the

radius is small and F is continuous, div F(Q) ≈ div F(P) for all other points Q in the ball. Therefore, the flux across Sr

can be approximated using the divergence theorem:

∬
Sr

F · dS = ∭
Br

div FdV ≈ ∭
Br

div F(P)dV .

Since div F(P) is a constant,

∭
Br

div F(P)dV = div F(P)V(Br).
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Therefore, flux ∬
Sr

F · dS can be approximated by div F(P)V(Br). This approximation gets better as the radius shrinks

to zero, and therefore

div F(P) = lim
r → 0

1
V(Br)

∬
Sr

F · dS.

This equation says that the divergence at P is the net rate of outward flux of the fluid per unit volume.

Figure 6.89 Ball Br of small radius r centered at P.

Using the Divergence Theorem
The divergence theorem translates between the flux integral of closed surface S and a triple integral over the solid enclosed
by S. Therefore, the theorem allows us to compute flux integrals or triple integrals that would ordinarily be difficult to
compute by translating the flux integral into a triple integral and vice versa.

Example 6.78

Applying the Divergence Theorem

Calculate the surface integral ∬
S
F · dS, where S is cylinder x2 + y2 = 1, 0 ≤ z ≤ 2, including the circular

top and bottom, and F = 〈 x3

3 + yz, y3

3 − sin(xz), z − x − y 〉 .

Solution

We could calculate this integral without the divergence theorem, but the calculation is not straightforward because
we would have to break the flux integral into three separate integrals: one for the top of the cylinder, one for the
bottom, and one for the side. Furthermore, each integral would require parameterizing the corresponding surface,
calculating tangent vectors and their cross product, and using Equation 6.19.

By contrast, the divergence theorem allows us to calculate the single triple integral ∭
E

div FdV , where E is

the solid enclosed by the cylinder. Using the divergence theorem and converting to cylindrical coordinates, we
have

∬sF · dS = ∭
E

div F dV

= ∭
E

⎛
⎝x2 + y2 + 1⎞

⎠dV

= ∫
0

2π
∫

0

1
∫

0

2
⎛
⎝r2 + 1⎞

⎠r dz dr dθ

= 3
2∫

0

2π
dθ = 3π.
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6.66 Use the divergence theorem to calculate flux integral ∬
S
F · dS, where S is the boundary of the box

given by 0 ≤ x ≤ 2, 1 ≤ y ≤ 4, 0 ≤ z ≤ 1, and F = 〈 x2 + yz, y - z, 2x + 2y + 2z 〉 (see the following

figure).

Example 6.79

Applying the Divergence Theorem

Let v = 〈 − y
z , x

z , 0 〉 be the velocity field of a fluid. Let C be the solid cube given by

1 ≤ x ≤ 4, 2 ≤ y ≤ 5, 1 ≤ z ≤ 4, and let S be the boundary of this cube (see the following figure). Find the

flow rate of the fluid across S.

Figure 6.90 Vector field v = 〈 − y
z , x

z , 0 〉 .

Solution
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6.67

The flow rate of the fluid across S is ∬
S
v · dS. Before calculating this flux integral, let’s discuss what the value

of the integral should be. Based on Figure 6.90, we see that if we place this cube in the fluid (as long as the
cube doesn’t encompass the origin), then the rate of fluid entering the cube is the same as the rate of fluid exiting
the cube. The field is rotational in nature and, for a given circle parallel to the xy-plane that has a center on the
z-axis, the vectors along that circle are all the same magnitude. That is how we can see that the flow rate is the
same entering and exiting the cube. The flow into the cube cancels with the flow out of the cube, and therefore
the flow rate of the fluid across the cube should be zero.

To verify this intuition, we need to calculate the flux integral. Calculating the flux integral directly requires
breaking the flux integral into six separate flux integrals, one for each face of the cube. We also need to find
tangent vectors, compute their cross product, and use Equation 6.19. However, using the divergence theorem
makes this calculation go much more quickly:

∬
S
v · dS = ∭

C
div(v)dV

= ∭
C

0 dV = 0.

Therefore the flux is zero, as expected.

Let v = 〈 x
z , y

z , 0 〉 be the velocity field of a fluid. Let C be the solid cube given by

1 ≤ x ≤ 4, 2 ≤ y ≤ 5, 1 ≤ z ≤ 4, and let S be the boundary of this cube (see the following figure). Find the

flow rate of the fluid across S.

Example 6.79 illustrates a remarkable consequence of the divergence theorem. Let S be a piecewise, smooth closed
surface and let F be a vector field defined on an open region containing the surface enclosed by S. If F has the form
F = 〈 f (y, z), g(x, z), h(x, y) 〉 , then the divergence of F is zero. By the divergence theorem, the flux of F across S is

also zero. This makes certain flux integrals incredibly easy to calculate. For example, suppose we wanted to calculate the
flux integral ∬

S
F · dS where S is a cube and
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F = 〈 sin(y)eyz, x2 z2, cos(xy)esin x 〉 .

Calculating the flux integral directly would be difficult, if not impossible, using techniques we studied previously. At the
very least, we would have to break the flux integral into six integrals, one for each face of the cube. But, because the
divergence of this field is zero, the divergence theorem immediately shows that the flux integral is zero.

We can now use the divergence theorem to justify the physical interpretation of divergence that we discussed earlier. Recall
that if F is a continuous three-dimensional vector field and P is a point in the domain of F, then the divergence of F at
P is a measure of the “outflowing-ness” of F at P. If F represents the velocity field of a fluid, then the divergence of F
at P is a measure of the net flow rate out of point P (the flow of fluid out of P less the flow of fluid in to P). To see
how the divergence theorem justifies this interpretation, let Br be a ball of very small radius r with center P, and assume

that Br is in the domain of F. Furthermore, assume that Br has a positive, outward orientation. Since the radius of Br

is small and F is continuous, the divergence of F is approximately constant on Br. That is, if P′ is any point in Br,
then div F(P) ≈ div F(P′). Let Sr denote the boundary sphere of Br. We can approximate the flux across Sr using the

divergence theorem as follows:

∬
Sr

F · dS = ∭
Br

div F dV

≈ ∭
Br

div F(P)dV

= div F(P)V(Br).

As we shrink the radius r to zero via a limit, the quantity div F(P)V(Br) gets arbitrarily close to the flux. Therefore,

div F(P) = lim
r → 0

1
V(Br)

∬
Sr

F · dS

and we can consider the divergence at P as measuring the net rate of outward flux per unit volume at P. Since “outflowing-
ness” is an informal term for the net rate of outward flux per unit volume, we have justified the physical interpretation of
divergence we discussed earlier, and we have used the divergence theorem to give this justification.

Application to Electrostatic Fields
The divergence theorem has many applications in physics and engineering. It allows us to write many physical laws in both
an integral form and a differential form (in much the same way that Stokes’ theorem allowed us to translate between an
integral and differential form of Faraday’s law). Areas of study such as fluid dynamics, electromagnetism, and quantum
mechanics have equations that describe the conservation of mass, momentum, or energy, and the divergence theorem allows
us to give these equations in both integral and differential forms.

One of the most common applications of the divergence theorem is to electrostatic fields. An important result in this subject
is Gauss’ law. This law states that if S is a closed surface in electrostatic field E, then the flux of E across S is the total
charge enclosed by S (divided by an electric constant). We now use the divergence theorem to justify the special case of this
law in which the electrostatic field is generated by a stationary point charge at the origin.

If (x, y, z) is a point in space, then the distance from the point to the origin is r = x2 + y2 + z2. Let Fr denote

radial vector field Fr = 1
r2 〈 x

r , y
r , z

r 〉 . The vector at a given position in space points in the direction of unit radial

vector 〈 x
r , y

r , z
r 〉 and is scaled by the quantity 1/r2. Therefore, the magnitude of a vector at a given point is inversely

proportional to the square of the vector’s distance from the origin. Suppose we have a stationary charge of q Coulombs at
the origin, existing in a vacuum. The charge generates electrostatic field E given by

E = q
4πε0

Fr,

where the approximation ε0 = 8.854 × 10−12 farad (F)/m is an electric constant. (The constant ε0 is a measure of the

resistance encountered when forming an electric field in a vacuum.) Notice that E is a radial vector field similar to the
gravitational field described in Example 6.6. The difference is that this field points outward whereas the gravitational field
points inward. Because

E = q
4πε0

Fr = q
4πε0

⎛
⎝

1
r2 〈 x

r , y
r , z

r 〉 ⎞
⎠,
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we say that electrostatic fields obey an inverse-square law. That is, the electrostatic force at a given point is inversely
proportional to the square of the distance from the source of the charge (which in this case is at the origin). Given this vector
field, we show that the flux across closed surface S is zero if the charge is outside of S, and that the flux is q/ε0 if the charge

is inside of S. In other words, the flux across S is the charge inside the surface divided by constant ε0. This is a special case

of Gauss’ law, and here we use the divergence theorem to justify this special case.

To show that the flux across S is the charge inside the surface divided by constant ε0, we need two intermediate steps.

First we show that the divergence of Fr is zero and then we show that the flux of Fr across any smooth surface S is either

zero or 4π. We can then justify this special case of Gauss’ law.

Example 6.80

The Divergence of Fr Is Zero

Verify that the divergence of Fr is zero where Fr is defined (away from the origin).

Solution

Since r = x2 + y2 + z2, the quotient rule gives us

∂
∂ x

⎛
⎝

x
r3

⎞
⎠ = ∂

∂ x

⎛

⎝
⎜
⎜ x

⎛
⎝x2 + y2 + z2⎞

⎠
3/2

⎞

⎠
⎟
⎟

=

⎛
⎝x2 + y2 + z2⎞

⎠
3/2

− x⎡
⎣

3
2

⎛
⎝x2 + y2 + z2⎞

⎠
1/2

2x⎤
⎦

⎛
⎝x2 + y2 + z2⎞

⎠
3

= r3 − 3x2 r
r6 = r2 − 3x2

r5 .

Similarly,

∂
∂ y

⎛
⎝

y
r3

⎞
⎠ = r2 − 3y2

r5 and ∂
∂z

⎛
⎝

z
r3

⎞
⎠ = r2 − 3z2

r5 .

Therefore,

div Fr = r2 − 3x2

r5 + r2 − 3y2

r5 + r2 − 3z2

r5

=
3r2 − 3⎛

⎝x2 + y2 + z2⎞
⎠

r5

= 3r2 − 3r2

r5 = 0.

Notice that since the divergence of Fr is zero and E is Fr scaled by a constant, the divergence of electrostatic field E is

also zero (except at the origin).

Theorem 6.21: Flux across a Smooth Surface

Let S be a connected, piecewise smooth closed surface and let Fr = 1
r2 〈 x

r , y
r , z

r 〉 . Then,
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∬
S
Fr · dS =

⎧

⎩
⎨
0 if S does not encompass the origin
4π if S encompasses the origin.

In other words, this theorem says that the flux of Fr across any piecewise smooth closed surface S depends only on whether

the origin is inside of S.

Proof

The logic of this proof follows the logic of Example 6.46, only we use the divergence theorem rather than Green’s
theorem.

First, suppose that S does not encompass the origin. In this case, the solid enclosed by S is in the domain of Fr, and since

the divergence of Fr is zero, we can immediately apply the divergence theorem and find that ∬
S
F · dS is zero.

Now suppose that S does encompass the origin. We cannot just use the divergence theorem to calculate the flux, because
the field is not defined at the origin. Let Sa be a sphere of radius a inside of S centered at the origin. The outward normal

vector field on the sphere, in spherical coordinates, is

tϕ × tθ = 〈 a2 cos θ sin2 ϕ, a2 sin θ sin2 ϕ, a2 sin ϕ cos ϕ 〉

(see Example 6.64). Therefore, on the surface of the sphere, the dot product Fr · N (in spherical coordinates) is

Fr · N = 〈 sin ϕ cos θ
a2 , sin ϕ sin θ

a2 , cos ϕ
a2 〉 · 〈 a2 cos θ sin2 ϕ, a2 sin θ sin2 ϕ, a2 sin ϕ cos ϕ 〉

= sin ϕ⎛
⎝ 〈 sin ϕ cos θ, sin ϕ sin θ, cos ϕ 〉 · 〈 sin ϕ cos θ, sin ϕ sin θ, cos ϕ 〉 ⎞

⎠

= sin ϕ.

The flux of Fr across Sa is

∬
Sa

Fr · NdS = ∫
0

2π
∫

0

π
sin ϕdϕdθ = 4π.

Now, remember that we are interested in the flux across S, not necessarily the flux across Sa. To calculate the flux across

S, let E be the solid between surfaces Sa and S. Then, the boundary of E consists of Sa and S. Denote this boundary

by S − Sa to indicate that S is oriented outward but now Sa is oriented inward. We would like to apply the divergence

theorem to solid E. Notice that the divergence theorem, as stated, can’t handle a solid such as E because E has a hole.
However, the divergence theorem can be extended to handle solids with holes, just as Green’s theorem can be extended to
handle regions with holes. This allows us to use the divergence theorem in the following way. By the divergence theorem,

∬
S − Sa

Fr · dS = ∬
S
Fr · dS − ∬

Sa
Fr · dS

= ∭
E

divFr dV

= ∭
E

0dV = 0.

Therefore,

∬
S
Fr · dS = ∬

Sa
Fr · dS = 4π,

and we have our desired result.

□

Now we return to calculating the flux across a smooth surface in the context of electrostatic field E = q
4πε0

Fr of a point

charge at the origin. Let S be a piecewise smooth closed surface that encompasses the origin. Then
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6.68

∬
S
E · dS = ∬

S
q

4πε0
Fr · dS

= q
4πε0

∬
S
Fr · dS

= q
ε0

.

If S does not encompass the origin, then

∬
S
E · dS = q

4πε0
∬

S
Fr · dS = 0.

Therefore, we have justified the claim that we set out to justify: the flux across closed surface S is zero if the charge is
outside of S, and the flux is q/ε0 if the charge is inside of S.

This analysis works only if there is a single point charge at the origin. In this case, Gauss’ law says that the flux of E across
S is the total charge enclosed by S. Gauss’ law can be extended to handle multiple charged solids in space, not just a single
point charge at the origin. The logic is similar to the previous analysis, but beyond the scope of this text. In full generality,
Gauss’ law states that if S is a piecewise smooth closed surface and Q is the total amount of charge inside of S, then the flux
of E across S is Q/ε0.

Example 6.81

Using Gauss’ law

Suppose we have four stationary point charges in space, all with a charge of 0.002 Coulombs (C). The charges are
located at (0, 1, 1), (1, 1, 4), (−1, 0, 0), and (−2, −2, 2). Let E denote the electrostatic field generated by

these point charges. If S is the sphere of radius 2 oriented outward and centered at the origin, then find ∬
S
E · dS.

Solution

According to Gauss’ law, the flux of E across S is the total charge inside of S divided by the electric constant.
Since S has radius 2, notice that only two of the charges are inside of S: the charge at (0, 1, 1) and the charge at

(−1, 0, 0). Therefore, the total charge encompassed by S is 0.004 and, by Gauss’ law,

∬
S
E · dS = 0.004

8.854 × 10−12 ≈ 4.518 × 109 V-m.

Work the previous example for surface S that is a sphere of radius 4 centered at the origin, oriented
outward.
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6.8 EXERCISES
For the following exercises, use a computer algebraic
system (CAS) and the divergence theorem to evaluate

surface integral ∫
S
F · nds for the given choice of F and

the boundary surface S. For each closed surface, assume N
is the outward unit normal vector.

376. [T] F(x, y, z) = xi + yj + zk; S is the surface of

cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < z ≤ 1.

377. [T] F(x, y, z) = (cos yz)i + exz j + 3z2 k; S is the

surface of hemisphere z = 4 − x2 − y2 together with

disk x2 + y2 ≤ 4 in the xy-plane.

378. [T] F(x, y, z) = ⎛
⎝x2 + y2 − x2⎞

⎠i + x2 yj + 3zk; S

is the surface of the five faces of unit cube
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < z ≤ 1.

379. [T] F(x, y, z) = xi + yj + zk; S is the surface of

paraboloid z = x2 + y2 for 0 ≤ z ≤ 9.

380. [T] F(x, y, z) = x2 i + y2 j + z2 k; S is the surface

of sphere x2 + y2 + z2 = 4.

381. [T] F(x, y, z) = xi + yj + ⎛
⎝z2 − 1⎞

⎠k; S is the

surface of the solid bounded by cylinder x2 + y2 = 4 and

planes z = 0 and z = 1.

382. [T] F(x, y, z) = xy2 i + yz2 j + x2 zk; S is the

surface bounded above by sphere ρ = 2 and below by

cone φ = π
4 in spherical coordinates. (Think of S as the

surface of an “ice cream cone.”)

383. [T]

F(x, y, z) = x3 i + y3 j + 3a2 zk (constant a > 0); S is

the surface bounded by cylinder x2 + y2 = a2 and planes

z = 0 and z = 1.

384. [T] Surface integral ∬
S
F · dS, where S is the solid

bounded by paraboloid z = x2 + y2 and plane z = 4,
and

F(x, y, z) = ⎛
⎝x + y2 z2⎞

⎠i + ⎛
⎝y + z2 x2⎞

⎠j + ⎛
⎝z + x2 y2⎞

⎠k

385. Use the divergence theorem to calculate surface
integral ∬

S
F · dS, where

F(x, y, z) = ⎛
⎝ey2⎞

⎠i + ⎛
⎝y + sin⎛

⎝z2⎞
⎠
⎞
⎠j + (z − 1)k and S is

upper hemisphere x2 + y2 + z2 = 1, z ≥ 0, oriented

upward.

386. Use the divergence theorem to calculate surface
integral ∬

S
F · dS, where

F(x, y, z) = x4 i − x3 z2 j + 4xy2 zk and S is the surface

bounded by cylinder x2 + y2 = 1 and planes z = x + 2
and z = 0.

387. Use the divergence theorem to calculate surface
integral ∬

S
F · dS when

F(x, y, z) = x2 z3 i + 2xyz3 j + xz4 k and S is the surface

of the box with vertices (±1, ±2, ±3).

388. Use the divergence theorem to calculate surface
integral ∬

S
F · dS when

F(x, y, z) = z tan−1 ⎛
⎝y2⎞

⎠i + z3 ln⎛
⎝x2 + 1⎞

⎠j + zk and S is a

part of paraboloid x2 + y2 + z = 2 that lies above plane

z = 1 and is oriented upward.

389. [T] Use a CAS and the divergence theorem to
calculate flux ∬

S
F · dS, where

F(x, y, z) = ⎛
⎝x

3 + y3⎞
⎠i + ⎛

⎝y
3 + z3⎞

⎠j + ⎛
⎝z

3 + x3⎞
⎠k and S is

a sphere with center (0, 0) and radius 2.
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390. Use the divergence theorem to compute the value
of flux integral ∬

S
F · dS, where

F(x, y, z) = ⎛
⎝y

3 + 3x⎞
⎠i + (xz + y)j + ⎡

⎣z + x4 cos⎛
⎝x2 y⎞

⎠
⎤
⎦k

and S is the area of the region bounded by

x2 + y2 = 1, x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 1.

391. Use the divergence theorem to compute flux integral
∬

S
F · dS, where F(x, y, z) = yj − zk and S consists of

the union of paraboloid y = x2 + z2, 0 ≤ y ≤ 1, and disk

x2 + z2 ≤ 1, y = 1, oriented outward. What is the flux

through just the paraboloid?

392. Use the divergence theorem to compute flux integral

∬
S
F · dS, where F(x, y, z) = x + yj + z4 k and S is a

part of cone z = x2 + y2 beneath top plane z = 1,
oriented downward.

393. Use the divergence theorem to calculate surface
integral ∬

S
F · dS for

F(x, y, z) = x4 i − x3 z2 j + 4xy2 zk, where S is the

surface bounded by cylinder x2 + y2 = 1 and planes

z = x + 2 and z = 0.

394. Consider F(x, y, z) = x2 i + xyj + (z + 1)k. Let E

be the solid enclosed by paraboloid z = 4 − x2 − y2 and

plane z = 0 with normal vectors pointing outside E.

Compute flux F across the boundary of E using the
divergence theorem.

For the following exercises, use a CAS along with the
divergence theorem to compute the net outward flux for the

fields across the given surfaces S.

395. [T] F = 〈 x, −2y, 3z 〉 ; S is sphere
⎧

⎩
⎨(x, y, z) : x2 + y2 + z2 = 6⎫

⎭
⎬.

396. [T] F = 〈 x, 2y, z 〉 ; S is the boundary of the

tetrahedron in the first octant formed by plane
x + y + z = 1.

397. [T] F = 〈 y − 2x, x3 − y, y2 − z 〉 ; S is sphere
⎧

⎩
⎨(x, y, z) : x2 + y2 + z2 = 4⎫

⎭
⎬.

398. [T] F = 〈 x, y, z 〉 ; S is the surface of paraboloid

z = 4 − x2 − y2, for z ≥ 0, plus its base in the

xy-plane.

For the following exercises, use a CAS and the divergence
theorem to compute the net outward flux for the vector
fields across the boundary of the given regions D.

399. [T] F = 〈 z − x, x − y, 2y − z 〉 ; D is the region

between spheres of radius 2 and 4 centered at the origin.

400. [T] F = r
|r| = 〈 x, y, z 〉

x2 + y2 + z2
; D is the region

between spheres of radius 1 and 2 centered at the origin.

401. [T] F = 〈 x2, −y2, z2 〉 ; D is the region in the

first octant between planes z = 4 − x − y and

z = 2 − x − y.

402. Let F(x, y, z) = 2xi − 3xyj + xz2 k. Use the

divergence theorem to calculate ∬
S
F · dS, where S is

the surface of the cube with corners at
(0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1),
oriented outward.

403. Use the divergence theorem to find the outward flux

of field F(x, y, z) = ⎛
⎝x

3 − 3y⎞
⎠i + ⎛

⎝2yz + 1⎞
⎠j + xyzk

through the cube bounded by planes
x = ±1, y = ±1, and z = ±1.

404. Let F(x, y, z) = 2xi − 3yj + 5zk and let S be

hemisphere z = 9 − x2 − y2 together with disk

x2 + y2 ≤ 9 in the xy-plane. Use the divergence theorem.
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405. Evaluate ∬
S
F · NdS, where

F(x, y, z) = x2 i + xyj + x3 y3 k and S is the surface

consisting of all faces except the tetrahedron bounded by
plane x + y + z = 1 and the coordinate planes, with

outward unit normal vector N.

406. Find the net outward flux of field
F = 〈 bz − cy, cx − az, ay − bx 〉 across any smooth

closed surface in R3, where a, b, and c are constants.

407. Use the divergence theorem to evaluate
∬

S
‖ R ‖ R · nds, where R(x, y, z) = xi + yj + zk

and S is sphere x2 + y2 + z2 = a2, with constant a > 0.

408. Use the divergence theorem to evaluate ∬
S
F · dS,

where F(x, y, z) = y2 zi + y3 j + xzk and S is the

boundary of the cube defined by
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and 0 ≤ z ≤ 2.

409. Let R be the region defined by x2 + y2 + z2 ≤ 1.

Use the divergence theorem to find ∭
R
z2 dV .

410. Let E be the solid bounded by the xy-plane and

paraboloid z = 4 − x2 − y2 so that S is the surface of

the paraboloid piece together with the disk in the xy-plane
that forms its bottom. If

F(x, y, z) = ⎛
⎝xz sin(yz) + x3⎞

⎠i + cos(yz)j + ⎛
⎝3zy2 − ex2 + y2⎞

⎠k,

find ∬
S
F · dS using the divergence theorem.

411. Let E be the solid unit cube with diagonally opposite
corners at the origin and (1, 1, 1), and faces parallel to the
coordinate planes. Let S be the surface of E, oriented with
the outward-pointing normal. Use a CAS to find ∬

S
F · dS

using the divergence theorem if
F(x, y, z) = 2xyi + 3yez j + x sin zk.

412. Use the divergence theorem to calculate the flux

of F(x, y, z) = x3 i + y3 j + z3 k through sphere

x2 + y2 + z2 = 1.

413. Find ∬
S
F · dS, where F(x, y, z) = xi + yj + zk

and S is the outwardly oriented surface obtained by
removing cube [1, 2] × [1, 2] × [1, 2] from cube

[0, 2] × [0, 2] × [0, 2].

414. Consider radial vector field

F = r
|r| = 〈 x, y, z 〉

⎛
⎝x2 + y2 + z2⎞

⎠
1/2. Compute the surface

integral, where S is the surface of a sphere of radius a
centered at the origin.
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415. Compute the flux of water through parabolic cylinder

S : y = x2, from 0 ≤ x ≤ 2, 0 ≤ z ≤ 3, if the velocity

vector is F(x, y, z) = 3z2 i + 6j + 6xzk.

416. [T] Use a CAS to find the flux of vector field

F(x, y, z) = zi + zj + x2 + y2k across the portion of

hyperboloid x2 + y2 = z2 + 1 between planes z = 0 and

z = 3
3 , oriented so the unit normal vector points away

from the z-axis.

417. [T] Use a CAS to find the flux of vector field
F(x, y, z) = (ey + x)i + ⎛

⎝3 cos(xz) − y⎞
⎠j + zk through

surface S, where S is given by z2 = 4x2 + 4y2 from

0 ≤ z ≤ 4, oriented so the unit normal vector points

downward.

418. [T] Use a CAS to compute ∬
S
F · dS, where

F(x, y, z) = xi + yj + 2zk and S is a part of sphere

x2 + y2 + z2 = 2 with 0 ≤ z ≤ 1.

419. Evaluate ∬
S
F · dS, where

F(x, y, z) = bxy2 i + bx2 yj + ⎛
⎝x2 + y2⎞

⎠z2 k and S is a

closed surface bounding the region and consisting of solid

cylinder x2 + y2 ≤ a2 and 0 ≤ z ≤ b.

420. [T] Use a CAS to calculate the flux of

F(x, y, z) = ⎛
⎝x

3 + y sin z⎞
⎠i + ⎛

⎝y
3 + z sin x⎞

⎠j + 3zk across

surface S, where S is the boundary of the solid bounded by

hemispheres z = 4 − x2 − y2 and z = 1 − x2 − y2,
and plane z = 0.

421. Use the divergence theorem to evaluate ∬
S
F · dS,

where F(x, y, z) = xyi − 1
2y2 j + zk and S is the surface

consisting of three pieces: z = 4 − 3x2 − 3y2, 1 ≤ z ≤ 4

on the top; x2 + y2 = 1, 0 ≤ z ≤ 1 on the sides; and

z = 0 on the bottom.

422. [T] Use a CAS and the divergence theorem to
evaluate ∬

S
F · dS, where

F(x, y, z) = ⎛
⎝2x + y cos z⎞

⎠i + ⎛
⎝x2 − y⎞

⎠j + y2 zk and S is

sphere x2 + y2 + z2 = 4 orientated outward.

423. Use the divergence theorem to evaluate ∬
S
F · dS,

where F(x, y, z) = xi + yj + zk and S is the boundary

of the solid enclosed by paraboloid y = x2 + z2 − 2,

cylinder x2 + z2 = 1, and plane x + y = 2, and S is

oriented outward.

For the following exercises, Fourier’s law of heat transfer
states that the heat flow vector F at a point is proportional
to the negative gradient of the temperature; that is,
F = −k∇T , which means that heat energy flows hot

regions to cold regions. The constant k > 0 is called the

conductivity, which has metric units of joules per meter
per second-kelvin or watts per meter-kelvin. A temperature
function for region D is given. Use the divergence theorem
to find net outward heat flux
∬

S
F · NdS = −k ∬

S
∇T · NdS across the boundary S of

D, where k = 1.

424. T(x, y, z) = 100 + x + 2y + z;
D = ⎧

⎩
⎨(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1⎫

⎭
⎬

425. T(x, y, z) = 100 + e−z;
D = ⎧

⎩
⎨(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1⎫

⎭
⎬

426. T(x, y, z) = 100e−x2 − y2 − z2
; D is the sphere of

radius a centered at the origin.
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circulation

closed curve

closed curve

connected region

conservative field

curl

divergence

divergence theorem

flux

flux integral

Fundamental Theorem for Line Integrals

Gauss’ law

gradient field

Green’s theorem

grid curves

heat flow

independence of path

inverse-square law

line integral

CHAPTER 6 REVIEW

KEY TERMS
the tendency of a fluid to move in the direction of curve C. If C is a closed curve, then the circulation of F

along C is line integral ∫
C

F · Tds, which we also denote ∮
C

F · Tds

a curve for which there exists a parameterization r(t), a ≤ t ≤ b, such that r(a) = r(b), and the

curve is traversed exactly once

a curve that begins and ends at the same point

a region in which any two points can be connected by a path with a trace contained entirely inside the
region

a vector field for which there exists a scalar function f such that ∇ f = F

the curl of vector field F = 〈 P, Q, R 〉 , denoted ∇ × F, is the “determinant” of the matrix | i j k
∂
∂ x

∂
∂ y

∂
∂z

P Q R | and is

given by the expression ⎛
⎝Ry − Qz

⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k; it measures the tendency of particles at a point to

rotate about the axis that points in the direction of the curl at the point

the divergence of a vector field F = 〈 P, Q, R 〉 , denoted ∇ × F, is Px + Qy + Rz; it measures the

“outflowing-ness” of a vector field

a theorem used to transform a difficult flux integral into an easier triple integral and vice versa

the rate of a fluid flowing across a curve in a vector field; the flux of vector field F across plane curve C is line

integral ∫
C

F · n(t)
‖ n(t) ‖ ds

another name for a surface integral of a vector field; the preferred term in physics and engineering

the value of line integral ∫
C

∇ f · dr depends only on the value of f at

the endpoints of C: ∫
C

∇ f · dr = f ⎛
⎝r(b⎞

⎠) − f (r(a))

if S is a piecewise, smooth closed surface in a vacuum and Q is the total stationary charge inside of S, then
the flux of electrostatic field E across S is Q/ε0

a vector field F for which there exists a scalar function f such that ∇ f = F; in other words, a vector

field that is the gradient of a function; such vector fields are also called conservative

relates the integral over a connected region to an integral over the boundary of the region

curves on a surface that are parallel to grid lines in a coordinate plane

a vector field proportional to the negative temperature gradient in an object

a vector field F has path independence if ∫
C1

F · dr = ∫
C2

F · dr for any curves C1 and C2

in the domain of F with the same initial points and terminal points

the electrostatic force at a given point is inversely proportional to the square of the distance from
the source of the charge

the integral of a function along a curve in a plane or in space
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mass flux

orientation of a curve

orientation of a surface

parameter domain (parameter space)

parameterized surface (parametric surface)

piecewise smooth curve

potential function

radial field

regular parameterization

rotational field

scalar line integral

simple curve

simply connected region

Stokes’ theorem

stream function

surface area

surface independent

surface integral

surface integral of a scalar-valued function

surface integral of a vector field

unit vector field

vector field

vector line integral

the rate of mass flow of a fluid per unit area, measured in mass per unit time per unit area

the orientation of a curve C is a specified direction of C

if a surface has an “inner” side and an “outer” side, then an orientation is a choice of the inner
or the outer side; the surface could also have “upward” and “downward” orientations

the region of the uv plane over which the parameters u and v vary for
parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉

a surface given by a description of the form
r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 , where the parameters u and v vary over a parameter domain in the

uv-plane

an oriented curve that is not smooth, but can be written as the union of finitely many smooth
curves

a scalar function f such that ∇ f = F

a vector field in which all vectors either point directly toward or directly away from the origin; the magnitude
of any vector depends only on its distance from the origin

parameterization r(u, v) = 〈 x(u, v), y(u, v), z(u, v) 〉 such that ru × rv is not zero for

point (u, v) in the parameter domain

a vector field in which the vector at point (x, y) is tangent to a circle with radius r = x2 + y2; in a

rotational field, all vectors flow either clockwise or counterclockwise, and the magnitude of a vector depends only on
its distance from the origin

the scalar line integral of a function f along a curve C with respect to arc length is the integral

∫
C

f ds, it is the integral of a scalar function f along a curve in a plane or in space; such an integral is defined in

terms of a Riemann sum, as is a single-variable integral

a curve that does not cross itself

a region that is connected and has the property that any closed curve that lies entirely inside
the region encompasses points that are entirely inside the region

relates the flux integral over a surface S to a line integral around the boundary C of the surface S

if F = 〈 P, Q 〉 is a source-free vector field, then stream function g is a function such that P = gy

and Q = −gx

the area of surface S given by the surface integral ∫ ∫
S
dS

flux integrals of curl vector fields are surface independent if their evaluation does not depend on
the surface but only on the boundary of the surface

an integral of a function over a surface

a surface integral in which the integrand is a scalar function

a surface integral in which the integrand is a vector field

a vector field in which the magnitude of every vector is 1

measured in ℝ2 , an assignment of a vector F(x, y) to each point (x, y) of a subset D of ℝ2 ; in

ℝ3 , an assignment of a vector F(x, y, z) to each point (x, y, z) of a subset D of ℝ3

the vector line integral of vector field F along curve C is the integral of the dot product of F with

unit tangent vector T of C with respect to arc length, ∫
C

F · Tds; such an integral is defined in terms of a Riemann
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sum, similar to a single-variable integral

KEY EQUATIONS

• Vector field in ℝ2

F(x, y) = 〈 P(x, y), Q(x, y) 〉
or
F(x, y) = P(x, y)i + Q(x, y)j

• Vector field in ℝ3

F(x, y, z) = 〈 P(x, y, z), Q(x, y, z), R(x, y, z) 〉
or
F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

• Calculating a scalar line integral

∫
C

f (x, y, z)ds = ∫
a

b
f (r(t)) ⎛

⎝x′(t)⎞
⎠
2 + ⎛

⎝y′(t)⎞
⎠
2 + ⎛

⎝z′(t)⎞
⎠
2dt

• Calculating a vector line integral

∫
C

F · ds = ∫
C

F · Tds = ∫
a

b
F(r(t)) · r′(t)dt

or

∫
C

Pdx + Qdy + Rdz = ∫
a

b⎛
⎝P(r(t))dx

dt + Q(r(t))dy
dt + R(r(t))dz

dt
⎞
⎠dt

• Calculating flux

∫
C

F · n(t)
‖ n(t) ‖ ds = ∫

a

b
F(r(t)) · n(t)dt

• Fundamental Theorem for Line Integrals

∫
C

∇ f · dr = f ⎛
⎝r(b)⎞

⎠ − f (r(a))

• Circulation of a conservative field over curve C that encloses a simply connected region

∮
C

∇ f · dr = 0

• Green’s theorem, circulation form

∮
C

Pdx + Qdy = ∬
D

Qx − Py dA, where C is the boundary of D

• Green’s theorem, flux form

∮
C

F · dr = ∬
D

Qx − Py dA, where C is the boundary of D

• Green’s theorem, extended version

∮
∂D

F · dr = ∬
D

Qx − Py dA

• Curl
∇ × F = ⎛

⎝Ry − Qz
⎞
⎠i + ⎛

⎝Pz − Rx
⎞
⎠j + ⎛

⎝Qx − Py
⎞
⎠k

• Divergence
∇ · F = Px + Qy + Rz

• Divergence of curl is zero
∇ · (∇ × F) = 0

• Curl of a gradient is the zero vector
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∇ × ⎛
⎝∇ f ⎞

⎠ = 0

• Scalar surface integral

∫ ∫
S

f (x, y, z)dS = ∫ ∫
D

f (r(u, v))||tu × tv||dA

• Flux integral
∬

S
F · NdS = ∬

S
F · dS = ∬

D
F(r(u, v)) · (tu × tv)dA

• Stokes’ theorem

∫
C

F · dr = ∬
S
curl F · dS

• Divergence theorem
∭

E
div FdV = ∬

S
F · dS

KEY CONCEPTS

6.1 Vector Fields

• A vector field assigns a vector F(x, y) to each point (x, y) in a subset D of ℝ2 or ℝ3 . F(x, y, z) to each point

(x, y, z) in a subset D of ℝ3 .

• Vector fields can describe the distribution of vector quantities such as forces or velocities over a region of the plane
or of space. They are in common use in such areas as physics, engineering, meteorology, oceanography.

• We can sketch a vector field by examining its defining equation to determine relative magnitudes in various
locations and then drawing enough vectors to determine a pattern.

• A vector field F is called conservative if there exists a scalar function f such that ∇ f = F.

6.2 Line Integrals

• Line integrals generalize the notion of a single-variable integral to higher dimensions. The domain of integration in
a single-variable integral is a line segment along the x-axis, but the domain of integration in a line integral is a curve
in a plane or in space.

• If C is a curve, then the length of C is ∫
C

ds.

• There are two kinds of line integral: scalar line integrals and vector line integrals. Scalar line integrals can be used
to calculate the mass of a wire; vector line integrals can be used to calculate the work done on a particle traveling
through a field.

• Scalar line integrals can be calculated using Equation 6.8; vector line integrals can be calculated using Equation
6.9.

• Two key concepts expressed in terms of line integrals are flux and circulation. Flux measures the rate that a field
crosses a given line; circulation measures the tendency of a field to move in the same direction as a given closed
curve.

6.3 Conservative Vector Fields

• The theorems in this section require curves that are closed, simple, or both, and regions that are connected or simply
connected.

• The line integral of a conservative vector field can be calculated using the Fundamental Theorem for Line Integrals.
This theorem is a generalization of the Fundamental Theorem of Calculus in higher dimensions. Using this theorem
usually makes the calculation of the line integral easier.

• Conservative fields are independent of path. The line integral of a conservative field depends only on the value of
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the potential function at the endpoints of the domain curve.

• Given vector field F, we can test whether F is conservative by using the cross-partial property. If F has the cross-
partial property and the domain is simply connected, then F is conservative (and thus has a potential function). If F
is conservative, we can find a potential function by using the Problem-Solving Strategy.

• The circulation of a conservative vector field on a simply connected domain over a closed curve is zero.

6.4 Green’s Theorem

• Green’s theorem relates the integral over a connected region to an integral over the boundary of the region. Green’s
theorem is a version of the Fundamental Theorem of Calculus in one higher dimension.

• Green’s Theorem comes in two forms: a circulation form and a flux form. In the circulation form, the integrand is
F · T. In the flux form, the integrand is F · N.

• Green’s theorem can be used to transform a difficult line integral into an easier double integral, or to transform a
difficult double integral into an easier line integral.

• A vector field is source free if it has a stream function. The flux of a source-free vector field across a closed curve
is zero, just as the circulation of a conservative vector field across a closed curve is zero.

6.5 Divergence and Curl

• The divergence of a vector field is a scalar function. Divergence measures the “outflowing-ness” of a vector field.
If v is the velocity field of a fluid, then the divergence of v at a point is the outflow of the fluid less the inflow at the
point.

• The curl of a vector field is a vector field. The curl of a vector field at point P measures the tendency of particles at
P to rotate about the axis that points in the direction of the curl at P.

• A vector field with a simply connected domain is conservative if and only if its curl is zero.

6.6 Surface Integrals

• Surfaces can be parameterized, just as curves can be parameterized. In general, surfaces must be parameterized with
two parameters.

• Surfaces can sometimes be oriented, just as curves can be oriented. Some surfaces, such as a Möbius strip, cannot
be oriented.

• A surface integral is like a line integral in one higher dimension. The domain of integration of a surface integral is
a surface in a plane or space, rather than a curve in a plane or space.

• The integrand of a surface integral can be a scalar function or a vector field. To calculate a surface integral with an
integrand that is a function, use Equation 6.19. To calculate a surface integral with an integrand that is a vector
field, use Equation 6.20.

• If S is a surface, then the area of S is ∫ ∫
S
dS.

6.7 Stokes’ Theorem

• Stokes’ theorem relates a flux integral over a surface to a line integral around the boundary of the surface. Stokes’
theorem is a higher dimensional version of Green’s theorem, and therefore is another version of the Fundamental
Theorem of Calculus in higher dimensions.

• Stokes’ theorem can be used to transform a difficult surface integral into an easier line integral, or a difficult line
integral into an easier surface integral.

• Through Stokes’ theorem, line integrals can be evaluated using the simplest surface with boundary C.

• Faraday’s law relates the curl of an electric field to the rate of change of the corresponding magnetic field. Stokes’
theorem can be used to derive Faraday’s law.
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6.8 The Divergence Theorem

• The divergence theorem relates a surface integral across closed surface S to a triple integral over the solid enclosed
by S. The divergence theorem is a higher dimensional version of the flux form of Green’s theorem, and is therefore
a higher dimensional version of the Fundamental Theorem of Calculus.

• The divergence theorem can be used to transform a difficult flux integral into an easier triple integral and vice versa.

• The divergence theorem can be used to derive Gauss’ law, a fundamental law in electrostatics.

CHAPTER 6 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

427. Vector field F(x, y) = x2 yi + y2 xj is

conservative.

428. For vector field F(x, y) = P(x, y)i + Q(x, y)j, if

Py(x, y) = Qx(x, y) in open region D, then

∫
∂D

Pdx + Qdy = 0.

429. The divergence of a vector field is a vector field.

430. If curl F = 0, then F is a conservative vector

field.

Draw the following vector fields.

431. F(x, y) = 1
2i + 2xj

432. F(x, y) = yi + 3xj
x2 + y2

Are the following the vector fields conservative? If so, find
the potential function f such that F = ∇ f .

433. F(x, y) = yi + (x − 2ey)j

434. F(x, y) = ⎛
⎝6xy⎞

⎠i + ⎛
⎝3x2 − yey⎞

⎠j

435.

F(x, y, z) = ⎛
⎝2xy + z2⎞

⎠i + ⎛
⎝x2 + 2yz⎞

⎠j + ⎛
⎝2xz + y2⎞

⎠k

436. F(x, y, z) = ⎛
⎝ex y⎞

⎠i + (ex + z)j + ⎛
⎝ex + y2⎞

⎠k

Evaluate the following integrals.

437. ∫
C

x2 dy + ⎛
⎝2x − 3xy⎞

⎠dx, along C : y = 1
2x from

(0, 0) to (4, 2)

438. ∫
C

ydx + xy2 dy, where

C : x = t, y = t − 1, 0 ≤ t ≤ 1

439. ∬
S
xy2 dS, where S is surface

z = x2 − y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 4

Find the divergence and curl for the following vector fields.

440. F(x, y, z) = 3xyzi + xyez j − 3xyk

441. F(x, y, z) = ex i + exy j + exyz k

Use Green’s theorem to evaluate the following integrals.

442. ∫
C

3xydx + 2xy2 dy, where C is a square with

vertices (0, 0), (0, 2), (2, 2) and (2, 0)

443. ∮
C

3ydx + (x + ey)dy, where C is a circle centered

at the origin with radius 3

Use Stokes’ theorem to evaluate ∫ ∫
S
curl F · dS.

444. F(x, y, z) = yi − xj + zk, where S is the upper

half of the unit sphere

445. F(x, y, z) = yi + xyzj − 2zxk, where S is the

upward-facing paraboloid z = x2 + y2 lying in cylinder

x2 + y2 = 1

Use the divergence theorem to evaluate ∫ ∫
S
F · dS.
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446. F(x, y, z) = ⎛
⎝x

3 y⎞
⎠i + ⎛

⎝3y − ex⎞
⎠j + (z + x)k, over

cube S defined by −1 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ 2

447. F(x, y, z) = ⎛
⎝2xy⎞

⎠i + ⎛
⎝−y2⎞

⎠j + ⎛
⎝2z3⎞

⎠k, where S is

bounded by paraboloid z = x2 + y2 and plane z = 2

448. Find the amount of work performed by a 50-kg
woman ascending a helical staircase with radius 2 m and
height 100 m. The woman completes five revolutions
during the climb.

449. Find the total mass of a thin wire in the shape of
a semicircle with radius 2, and a density function of

ρ(x, y) = y + x2.

450. Find the total mass of a thin sheet in the shape of a
hemisphere with radius 2 for z ≥ 0 with a density function

ρ(x, y, z) = x + y + z.

451. Use the divergence theorem to compute the value
of the flux integral over the unit sphere with
F(x, y, z) = 3zi + 2yj + 2xk.
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7 | SECOND-ORDER
DIFFERENTIAL EQUATIONS

Figure 7.1 A motorcycle suspension system is an example of a damped spring-mass system. The spring absorbs bumps and
keeps the tire in contact with the road. The shock absorber damps the motion so the motorcycle does not continue to bounce after
going over each bump. (credit: nSeika, Flickr)

Chapter Outline

7.1 Second-Order Linear Equations

7.2 Nonhomogeneous Linear Equations

7.3 Applications

7.4 Series Solutions of Differential Equations

Introduction
We have already studied the basics of differential equations, including separable first-order equations. In this chapter, we
go a little further and look at second-order equations, which are equations containing second derivatives of the dependent
variable. The solution methods we examine are different from those discussed earlier, and the solutions tend to involve
trigonometric functions as well as exponential functions. Here we concentrate primarily on second-order equations with
constant coefficients.

Such equations have many practical applications. The operation of certain electrical circuits, known as
resistor–inductor–capacitor (RLC) circuits, can be described by second-order differential equations with constant
coefficients. These circuits are found in all kinds of modern electronic devices—from computers to smartphones to
televisions. Such circuits can be used to select a range of frequencies from the entire radio wave spectrum, and are they
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commonly used for tuning AM/FM radios. We look at these circuits more closely in Applications.

Spring-mass systems, such as motorcycle shock absorbers, are a second common application of second-order differential
equations. For motocross riders, the suspension systems on their motorcycles are very important. The off-road courses on
which they ride often include jumps, and losing control of the motorcycle when landing could cost them the race. The
movement of the shock absorber depends on the amount of damping in the system. In this chapter, we model forced and
unforced spring-mass systems with varying amounts of damping.

7.1 | Second-Order Linear Equations

Learning Objectives
7.1.1 Recognize homogeneous and nonhomogeneous linear differential equations.

7.1.2 Determine the characteristic equation of a homogeneous linear equation.

7.1.3 Use the roots of the characteristic equation to find the solution to a homogeneous linear
equation.

7.1.4 Solve initial-value and boundary-value problems involving linear differential equations.

When working with differential equations, usually the goal is to find a solution. In other words, we want to find a function
(or functions) that satisfies the differential equation. The technique we use to find these solutions varies, depending on the
form of the differential equation with which we are working. Second-order differential equations have several important
characteristics that can help us determine which solution method to use. In this section, we examine some of these
characteristics and the associated terminology.

Homogeneous Linear Equations
Consider the second-order differential equation

xy″ + 2x2 y′ + 5x3 y = 0.

Notice that y and its derivatives appear in a relatively simple form. They are multiplied by functions of x, but are not raised
to any powers themselves, nor are they multiplied together. As discussed in Introduction to Differential Equations
(http://cnx.org/content/m53696/latest/) , first-order equations with similar characteristics are said to be linear. The
same is true of second-order equations. Also note that all the terms in this differential equation involve either y or one of its
derivatives. There are no terms involving only functions of x. Equations like this, in which every term contains y or one of
its derivatives, are called homogeneous.

Not all differential equations are homogeneous. Consider the differential equation

xy″ + 2x2 y′ + 5x3 y = x2.

The x2 term on the right side of the equal sign does not contain y or any of its derivatives. Therefore, this differential

equation is nonhomogeneous.

Definition

A second-order differential equation is linear if it can be written in the form

(7.1)a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x),

where a2(x), a1(x), a0(x), and r(x) are real-valued functions and a2(x) is not identically zero. If r(x) ≡ 0 —in

other words, if r(x) = 0 for every value of x—the equation is said to be a homogeneous linear equation. If r(x) ≠ 0
for some value of x, the equation is said to be a nonhomogeneous linear equation.

Visit this website (http://www.openstaxcollege.org/l/20_Secondord) to study more about second-order
linear differential equations.
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In linear differential equations, y and its derivatives can be raised only to the first power and they may not be multiplied

by one another. Terms involving y2 or y′ make the equation nonlinear. Functions of y and its derivatives, such as siny

or ey′, are similarly prohibited in linear differential equations.

Note that equations may not always be given in standard form (the form shown in the definition). It can be helpful to rewrite
them in that form to decide whether they are linear, or whether a linear equation is homogeneous.

Example 7.1

Classifying Second-Order Equations

Classify each of the following equations as linear or nonlinear. If the equation is linear, determine further whether
it is homogeneous or nonhomogeneous.

a. y″ + 3x4 y′ + x2 y2 = x3

b. (sinx)y″ + (cosx)y′ + 3y = 0

c. 4t2 x″ + 3txx′ + 4x = 0

d. 5y″ + y = 4x5

e. (cosx)y″ − siny′ + (sinx)y − cosx = 0

f. 8ty″ − 6t2 y′ + 4ty − 3t2 = 0

g. sin(x2)y″ − (cosx)y′ + x2 y = y′ − 3

h. y″ + 5xy′ − 3y = cosy

Solution

a. This equation is nonlinear because of the y2 term.

b. This equation is linear. There is no term involving a power or function of y, and the coefficients are

all functions of x. The equation is already written in standard form, and r(x) is identically zero, so the

equation is homogeneous.

c. This equation is nonlinear. Note that, in this case, x is the dependent variable and t is the independent
variable. The second term involves the product of x and x′, so the equation is nonlinear.

d. This equation is linear. Since r(x) = 4x5, the equation is nonhomogeneous.

e. This equation is nonlinear, because of the siny′ term.

f. This equation is linear. Rewriting it in standard form gives

8t2 y″ − 6t2 y′ + 4ty = 3t2.

With the equation in standard form, we can see that r(t) = 3t2, so the equation is nonhomogeneous.

g. This equation looks like it’s linear, but we should rewrite it in standard form to be sure. We get

sin(x2)y″ − (cosx + 1)y′ + x2 y = −3.
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7.2

This equation is, indeed, linear. With r(x) = −3, it is nonhomogeneous.

h. This equation is nonlinear because of the cosy term.

Visit this website (http://www.openstaxcollege.org/l/20_Secondord2) that discusses second-order
differential equations.

Classify each of the following equations as linear or nonlinear. If the equation is linear, determine further
whether it is homogeneous or nonhomogeneous.

a. (y″)2 − y′ + 8x3 y = 0

b. (sin t)y″ + cos t − 3ty′ = 0

Later in this section, we will see some techniques for solving specific types of differential equations. Before we get to
that, however, let’s get a feel for how solutions to linear differential equations behave. In many cases, solving differential
equations depends on making educated guesses about what the solution might look like. Knowing how various types of
solutions behave will be helpful.

Example 7.2

Verifying a Solution

Consider the linear, homogeneous differential equation

x2 y″ − xy′ − 3y = 0.

Looking at this equation, notice that the coefficient functions are polynomials, with higher powers of x
associated with higher-order derivatives of y. Show that y = x3 is a solution to this differential equation.

Solution

Let y = x3. Then y′ = 3x2 and y″ = 6x. Substituting into the differential equation, we see that

x2 y″ − xy′ − 3y = x2 (6x) − x⎛
⎝3x2⎞

⎠ − 3⎛
⎝x

3⎞
⎠

= 6x3 − 3x3 − 3x3

= 0.

Show that y = 2x2 is a solution to the differential equation

1
2x2 y″ − xy′ + y = 0.

Although simply finding any solution to a differential equation is important, mathematicians and engineers often want to
go beyond finding one solution to a differential equation to finding all solutions to a differential equation. In other words,
we want to find a general solution. Just as with first-order differential equations, a general solution (or family of solutions)
gives the entire set of solutions to a differential equation. An important difference between first-order and second-order
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equations is that, with second-order equations, we typically need to find two different solutions to the equation to find the
general solution. If we find two solutions, then any linear combination of these solutions is also a solution. We state this fact
as the following theorem.

Theorem 7.1: Superposition Principle

If y1(x) and y2(x) are solutions to a linear homogeneous differential equation, then the function

y(x) = c1 y1(x) + c2 y2(x),

where c1 and c2 are constants, is also a solution.

The proof of this superposition principle theorem is left as an exercise.

Example 7.3

Verifying the Superposition Principle

Consider the differential equation

y″ − 4y′ − 5y = 0.

Given that e−x and e5x are solutions to this differential equation, show that 4e−x + e5x is a solution.

Solution

We have

y(x) = 4e−x + e5x, so y′(x) = −4e−x + 5e5x and y″(x) = 4e−x + 25e5x.

Then

y″ − 4y′ − 5y = ⎛
⎝4e−x + 25e5x⎞

⎠ − 4⎛
⎝−4e−x + 5e5x⎞

⎠ − 5⎛
⎝4e−x + e5x⎞

⎠

= 4e−x + 25e5x + 16e−x − 20e5x − 20e−x − 5e5x

= 0.

Thus, y(x) = 4e−x + e5x is a solution.

Consider the differential equation

y″ + 5y′ + 6y = 0.

Given that e−2x and e−3x are solutions to this differential equation, show that 3e−2x + 6e−3x is a solution.

Unfortunately, to find the general solution to a second-order differential equation, it is not enough to find any two solutions
and then combine them. Consider the differential equation

x″ + 7x′ + 12x = 0.

Both e−3t and 2e−3t are solutions (check this). However, x(t) = c1 e−3t + c2
⎛
⎝2e−3t⎞

⎠ is not the general solution. This

expression does not account for all solutions to the differential equation. In particular, it fails to account for the function

e−4t, which is also a solution to the differential equation.

It turns out that to find the general solution to a second-order differential equation, we must find two linearly independent
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solutions. We define that terminology here.

Definition

A set of functions f1(x), f2(x),…, fn(x) is said to be linearly dependent if there are constants c1, c2 ,…cn, not all

zero, such that c1 f1(x) + c2 f2(x) + ⋯ + cn fn(x) = 0 for all x over the interval of interest. A set of functions that is

not linearly dependent is said to be linearly independent.

In this chapter, we usually test sets of only two functions for linear independence, which allows us to simplify this definition.
From a practical perspective, we see that two functions are linearly dependent if either one of them is identically zero or if
they are constant multiples of each other.

First we show that if the functions meet the conditions given previously, then they are linearly dependent. If one of the
functions is identically zero—say, f2(x) ≡ 0 —then choose c1 = 0 and c2 = 1, and the condition for linear dependence

is satisfied. If, on the other hand, neither f1(x) nor f2(x) is identically zero, but f1(x) = C f2(x) for some constant C,

then choose c1 = 1
C and c2 = −1, and again, the condition is satisfied.

Next, we show that if two functions are linearly dependent, then either one is identically zero or they are constant multiples
of one another. Assume f1(x) and f2(x) are linearly independent. Then, there are constants, c1 and c2, not both zero,

such that

c1 f1(x) + c2 f2(x) = 0

for all x over the interval of interest. Then,

c1 f1(x) = −c2 f2(x).

Now, since we stated that c1 and c2 can’t both be zero, assume c2 ≠ 0. Then, there are two cases: either c1 = 0 or

c1 ≠ 0. If c1 = 0, then

0 = −c2 f2(x)
0 = f2(x),

so one of the functions is identically zero. Now suppose c1 ≠ 0. Then,

f1(x) = ⎛
⎝−

c2
c1

⎞
⎠ f2(x)

and we see that the functions are constant multiples of one another.

Theorem 7.2: Linear Dependence of Two Functions

Two functions, f1(x) and f2(x), are said to be linearly dependent if either one of them is identically zero or if

f1(x) = C f2(x) for some constant C and for all x over the interval of interest. Functions that are not linearly dependent

are said to be linearly independent.

Example 7.4

Testing for Linear Dependence

Determine whether the following pairs of functions are linearly dependent or linearly independent.
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a. f1(x) = x2, f2(x) = 5x2

b. f1(x) = sinx, f2(x) = cosx

c. f1(x) = e3x, f2(x) = e−3x

d. f1(x) = 3x, f2(x) = 3x + 1

Solution

a. f2(x) = 5 f1(x), so the functions are linearly dependent.

b. There is no constant C such that f1(x) = C f2(x), so the functions are linearly independent.

c. There is no constant C such that f1(x) = C f2(x), so the functions are linearly independent. Don’t

get confused by the fact that the exponents are constant multiples of each other. With two exponential
functions, unless the exponents are equal, the functions are linearly independent.

d. There is no constant C such that f1(x) = C f2(x), so the functions are linearly independent.

Determine whether the following pairs of functions are linearly dependent or linearly independent:

f1(x) = ex, f2(x) = 3e3x.

If we are able to find two linearly independent solutions to a second-order differential equation, then we can combine them
to find the general solution. This result is formally stated in the following theorem.

Theorem 7.3: General Solution to a Homogeneous Equation

If y1(x) and y2(x) are linearly independent solutions to a second-order, linear, homogeneous differential equation,

then the general solution is given by

y(x) = c1 y1(x) + c2 y2(x),

where c1 and c2 are constants.

When we say a family of functions is the general solution to a differential equation, we mean that (1) every expression
of that form is a solution and (2) every solution to the differential equation can be written in that form, which makes
this theorem extremely powerful. If we can find two linearly independent solutions to a differential equation, we have,
effectively, found all solutions to the differential equation—quite a remarkable statement. The proof of this theorem is
beyond the scope of this text.

Example 7.5

Writing the General Solution

If y1(t) = e3t and y2(t) = e−3t are solutions to y″ − 9y = 0, what is the general solution?

Solution
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Note that y1 and y2 are not constant multiples of one another, so they are linearly independent. Then, the general

solution to the differential equation is y(t) = c1 e3t + c2 e−3t.

If y1(x) = e3x and y2(x) = xe3x are solutions to y″ − 6y′ + 9y = 0, what is the general solution?

Second-Order Equations with Constant Coefficients
Now that we have a better feel for linear differential equations, we are going to concentrate on solving second-order
equations of the form

(7.2)ay″ + by′ + cy = 0,

where a, b, and c are constants.

Since all the coefficients are constants, the solutions are probably going to be functions with derivatives that are constant
multiples of themselves. We need all the terms to cancel out, and if taking a derivative introduces a term that is not a constant
multiple of the original function, it is difficult to see how that term cancels out. Exponential functions have derivatives that

are constant multiples of the original function, so let’s see what happens when we try a solution of the form y(x) = eλx,
where λ (the lowercase Greek letter lambda) is some constant.

If y(x) = eλx, then y′(x) = λeλx and y″ = λ2 eλx. Substituting these expressions into Equation 7.1, we get

ay″ + by′ + cy = a(λ2 eλx) + b(λeλx) + ceλx

= eλx(aλ2 + bλ + c).

Since eλx is never zero, this expression can be equal to zero for all x only if

aλ2 + bλ + c = 0.

We call this the characteristic equation of the differential equation.

Definition

The characteristic equation of the differential equation ay″ + by′ + cy = 0 is aλ2 + bλ + c = 0.

The characteristic equation is very important in finding solutions to differential equations of this form. We can solve the
characteristic equation either by factoring or by using the quadratic formula

λ = −b ± b2 − 4ac
2a .

This gives three cases. The characteristic equation has (1) distinct real roots; (2) a single, repeated real root; or (3) complex
conjugate roots. We consider each of these cases separately.

Distinct Real Roots

If the characteristic equation has distinct real roots λ1 and λ2, then e
λ1 x

and e
λ2 x

are linearly independent solutions to

Example 7.1, and the general solution is given by

y(x) = c1 e
λ1 x

+ c2 e
λ2 x

,

838 Chapter 7 | Second-Order Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



where c1 and c2 are constants.

For example, the differential equation y″ + 9y′ + 14y = 0 has the associated characteristic equation λ2 + 9λ + 14 = 0.
This factors into (λ + 2)(λ + 7) = 0, which has roots λ1 = −2 and λ2 = −7. Therefore, the general solution to this

differential equation is

y(x) = c1 e−2x + c2 e−7x.
Single Repeated Real Root

Things are a little more complicated if the characteristic equation has a repeated real root, λ. In this case, we know eλx

is a solution to Equation 7.1, but it is only one solution and we need two linearly independent solutions to determine the

general solution. We might be tempted to try a function of the form keλx, where k is some constant, but it would not be

linearly independent of eλx. Therefore, let’s try xeλx as the second solution. First, note that by the quadratic formula,

λ = −b ± b2 − 4ac
2a .

But, λ is a repeated root, so b2 − 4ac = 0 and λ = −b
2a . Thus, if y = xeλx, we have

y′ = eλx + λxeλx and y″ = 2λeλx + λ2 xeλx.

Substituting these expressions into Equation 7.1, we see that

ay″ + by′ + cy = a(2λeλx + λ2 xeλx) + b(eλx + λxeλx) + cxeλx

= xeλx(aλ2 + bλ + c) + eλx(2aλ + b)

= xeλx(0) + eλx ⎛
⎝2a⎛

⎝
−b
2a

⎞
⎠ + b⎞

⎠

= 0 + eλx (0)
= 0.

This shows that xeλx is a solution to Equation 7.1. Since eλx and xeλx are linearly independent, when the characteristic

equation has a repeated root λ, the general solution to Equation 7.1 is given by

y(x) = c1 eλx + c2 xeλx,

where c1 and c2 are constants.

For example, the differential equation y″ + 12y′ + 36y = 0 has the associated characteristic equation

λ2 + 12λ + 36 = 0. This factors into (λ + 6)2 = 0, which has a repeated root λ = −6. Therefore, the general solution

to this differential equation is

y(x) = c1 e−6x + c2 xe−6x.
Complex Conjugate Roots

The third case we must consider is when b2 − 4ac < 0. In this case, when we apply the quadratic formula, we are taking

the square root of a negative number. We must use the imaginary number i = −1 to find the roots, which take the form

λ1 = α + βi and λ2 = α − βi. The complex number α + βi is called the conjugate of α − βi. Thus, we see that when

b2 − 4ac < 0, the roots of our characteristic equation are always complex conjugates.

This creates a little bit of a problem for us. If we follow the same process we used for distinct real roots—using the roots

of the characteristic equation as the coefficients in the exponents of exponential functions—we get the functions e(α + βi)x

and e(α − βi)x
as our solutions. However, there are problems with this approach. First, these functions take on complex

(imaginary) values, and a complete discussion of such functions is beyond the scope of this text. Second, even if we were
comfortable with complex-value functions, in this course we do not address the idea of a derivative for such functions. So,
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if possible, we’d like to find two linearly independent real-value solutions to the differential equation. For purposes of this

development, we are going to manipulate and differentiate the functions e(α + βi)x
and e(α − βi)x

as if they were real-value

functions. For these particular functions, this approach is valid mathematically, but be aware that there are other instances
when complex-value functions do not follow the same rules as real-value functions. Those of you interested in a more in-
depth discussion of complex-value functions should consult a complex analysis text.

Based on the roots α ± βi of the characteristic equation, the functions e(α + βi)x
and e(α − βi)x

are linearly independent

solutions to the differential equation. and the general solution is given by

y(x) = c1 e(α + βi)x + c2 e(α − βi)x.

Using some smart choices for c1 and c2, and a little bit of algebraic manipulation, we can find two linearly independent,

real-value solutions to Equation 7.1 and express our general solution in those terms.

We encountered exponential functions with complex exponents earlier. One of the key tools we used to express these
exponential functions in terms of sines and cosines was Euler’s formula, which tells us that

eiθ = cosθ + isinθ

for all real numbers θ.

Going back to the general solution, we have

y(x) = c1 e(α + βi)x + c2 e(α − βi)x

= c1 eαx eβix + c2 eαx e−βix

= eαx ⎛
⎝c1 eβix + c2 e−βix⎞

⎠.

Applying Euler’s formula together with the identities cos(−x) = cosx and sin(−x) = −sinx, we get

y(x) = eαx ⎡
⎣c1

⎛
⎝cos βx + isin βx⎞

⎠ + c2
⎛
⎝cos(−βx) + isin(−βx)⎞

⎠
⎤
⎦

= eαx ⎡
⎣(c1 + c2)cos βx + (c1 − c2)isin βx⎤

⎦.

Now, if we choose c1 = c2 = 1
2, the second term is zero and we get

y(x) = eαx cos βx

as a real-value solution to Equation 7.1. Similarly, if we choose c1 = − i
2 and c2 = i

2, the first term is zero and we get

y(x) = eαx sin βx

as a second, linearly independent, real-value solution to Equation 7.1.

Based on this, we see that if the characteristic equation has complex conjugate roots α ± βi, then the general solution to

Equation 7.1 is given by

y(x) = c1 eαx cos βx + c2 eαx sin βx

= eαx ⎛
⎝c1 cos βx + c2 sin βx⎞

⎠,

where c1 and c2 are constants.

For example, the differential equation y″ − 2y′ + 5y = 0 has the associated characteristic equation λ2 − 2λ + 5 = 0. By

the quadratic formula, the roots of the characteristic equation are 1 ± 2i. Therefore, the general solution to this differential

equation is

y(x) = ex ⎛
⎝c1 cos2x + c2 sin2x⎞

⎠.
Summary of Results

We can solve second-order, linear, homogeneous differential equations with constant coefficients by finding the roots of the
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associated characteristic equation. The form of the general solution varies, depending on whether the characteristic equation
has distinct, real roots; a single, repeated real root; or complex conjugate roots. The three cases are summarized in Table
7.1.

Characteristic Equation Roots General Solution to the Differential Equation

Distinct real roots, λ1 and λ2 y(x) = c1 e
λ1 x

+ c2 e
λ2 x

A repeated real root, λ y(x) = c1 eλx + c2 xeλx

Complex conjugate roots α ± βi y(x) = eαx ⎛
⎝c1 cos βx + c2 sin βx⎞

⎠

Table 7.1 Summary of Characteristic Equation Cases

Problem-Solving Strategy: Using the Characteristic Equation to Solve Second-Order
Differential Equations with Constant Coefficients

1. Write the differential equation in the form ay″ + by′ + cy = 0.

2. Find the corresponding characteristic equation aλ2 + bλ + c = 0.

3. Either factor the characteristic equation or use the quadratic formula to find the roots.

4. Determine the form of the general solution based on whether the characteristic equation has distinct, real roots;
a single, repeated real root; or complex conjugate roots.

Example 7.6

Solving Second-Order Equations with Constant Coefficients

Find the general solution to the following differential equations. Give your answers as functions of x.

a. y″ + 3y′ − 4y = 0

b. y″ + 6y′ + 13y = 0

c. y″ + 2y′ + y = 0

d. y″ − 5y′ = 0

e. y″ − 16y = 0

f. y″ + 16y = 0

Solution

Note that all these equations are already given in standard form (step 1).

a. The characteristic equation is λ2 + 3λ − 4 = 0 (step 2). This factors into (λ + 4)(λ − 1) = 0, so the

roots of the characteristic equation are λ1 = −4 and λ2 = 1 (step 3). Then the general solution to the

differential equation is
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y(x) = c1 e−4x + c2 ex (step 4).

b. The characteristic equation is λ2 + 6λ + 13 = 0 (step 2). Applying the quadratic formula, we see this

equation has complex conjugate roots −3 ± 2i (step 3). Then the general solution to the differential

equation is

y(t) = e−3t ⎛
⎝c1 cos2t + c2 sin2t⎞

⎠ (step 4).

c. The characteristic equation is λ2 + 2λ + 1 = 0 (step 2). This factors into (λ + 1)2 = 0, so the

characteristic equation has a repeated real root λ = −1 (step 3). Then the general solution to the

differential equation is

y(t) = c1 e−t + c2 te−t (step 4).

d. The characteristic equation is λ2 − 5λ (step 2). This factors into λ(λ − 5) = 0, so the roots of the

characteristic equation are λ1 = 0 and λ2 = 5 (step 3). Note that e0x = e0 = 1, so our first solution

is just a constant. Then the general solution to the differential equation is

y(x) = c1 + c2 e5x (step 4).

e. The characteristic equation is λ2 − 16 = 0 (step 2). This factors into (λ + 4)(λ − 4) = 0, so the roots

of the characteristic equation are λ1 = 4 and λ2 = −4 (step 3). Then the general solution to the

differential equation is

y(x) = c1 e4x + c2 e−4x (step 4).

f. The characteristic equation is λ2 + 16 = 0 (step 2). This has complex conjugate roots ±4i (step 3).

Note that e0x = e0 = 1, so the exponential term in our solution is just a constant. Then the general

solution to the differential equation is

y(t) = c1 cos4t + c2 sin4t (step 4).

Find the general solution to the following differential equations:

a. y″ − 2y′ + 10y = 0

b. y″ + 14y′ + 49y = 0

Initial-Value Problems and Boundary-Value Problems
So far, we have been finding general solutions to differential equations. However, differential equations are often used to
describe physical systems, and the person studying that physical system usually knows something about the state of that
system at one or more points in time. For example, if a constant-coefficient differential equation is representing how far a
motorcycle shock absorber is compressed, we might know that the rider is sitting still on his motorcycle at the start of a
race, time t = t0. This means the system is at equilibrium, so y(t0) = 0, and the compression of the shock absorber is

not changing, so y′(t0) = 0. With these two initial conditions and the general solution to the differential equation, we can

find the specific solution to the differential equation that satisfies both initial conditions. This process is known as solving
an initial-value problem. (Recall that we discussed initial-value problems in Introduction to Differential Equations
(http://cnx.org/content/m53696/latest/) .) Note that second-order equations have two arbitrary constants in the general
solution, and therefore we require two initial conditions to find the solution to the initial-value problem.

Sometimes we know the condition of the system at two different times. For example, we might know y(t0) = y0 and
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7.7

y(t1) = y1. These conditions are called boundary conditions, and finding the solution to the differential equation that

satisfies the boundary conditions is called solving a boundary-value problem.

Mathematicians, scientists, and engineers are interested in understanding the conditions under which an initial-value
problem or a boundary-value problem has a unique solution. Although a complete treatment of this topic is beyond the
scope of this text, it is useful to know that, within the context of constant-coefficient, second-order equations, initial-value
problems are guaranteed to have a unique solution as long as two initial conditions are provided. Boundary-value problems,
however, are not as well behaved. Even when two boundary conditions are known, we may encounter boundary-value
problems with unique solutions, many solutions, or no solution at all.

Example 7.7

Solving an Initial-Value Problem

Solve the following initial-value problem: y″ + 3y′ − 4y = 0, y(0) = 1, y′(0) = −9.

Solution

We already solved this differential equation in Example 7.6a. and found the general solution to be

y(x) = c1 e−4x + c2 ex.

Then

y′(x) = −4c1 e−4x + c2 ex.

When x = 0, we have y(0) = c1 + c2 and y′(0) = −4c1 + c2. Applying the initial conditions, we have

c1 + c2 = 1
−4c1 + c2 = −9.

Then c1 = 1 − c2. Substituting this expression into the second equation, we see that

−4(1 − c2) + c2 = −9
−4 + 4c2 + c2 = −9

5c2 = −5
c2 = −1.

So, c1 = 2 and the solution to the initial-value problem is

y(x) = 2e−4x − ex.

Solve the initial-value problem y″ − 3y′ − 10y = 0, y(0) = 0, y′(0) = 7.

Example 7.8

Solving an Initial-Value Problem and Graphing the Solution

Solve the following initial-value problem and graph the solution:

y″ + 6y′ + 13y = 0, y(0) = 0, y′(0) = 2
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Solution

We already solved this differential equation in Example 7.6b. and found the general solution to be

y(x) = e−3x ⎛
⎝c1 cos2x + c2 sin2x⎞

⎠.

Then

y′(x) = e−3x ⎛
⎝−2c1 sin2x + 2c2 cos2x⎞

⎠ − 3e−3x ⎛
⎝c1 cos2x + c2 sin2x⎞

⎠.

When x = 0, we have y(0) = c1 and y′(0) = 2c2 − 3c1. Applying the initial conditions, we obtain

c1 = 0
−3c1 + 2c2 = 2.

Therefore, c1 = 0, c2 = 1, and the solution to the initial value problem is shown in the following graph.

y = e−3x sin2x.

Solve the following initial-value problem and graph the solution:
y″ − 2y′ + 10y = 0, y(0) = 2, y′(0) = −1

Example 7.9

Initial-Value Problem Representing a Spring-Mass System

The following initial-value problem models the position of an object with mass attached to a spring. Spring-mass
systems are examined in detail in Applications. The solution to the differential equation gives the position of
the mass with respect to a neutral (equilibrium) position (in meters) at any given time. (Note that for spring-mass
systems of this type, it is customary to define the downward direction as positive.)

y″ + 2y′ + y = 0, y(0) = 1, y′(0) = 0

Solve the initial-value problem and graph the solution. What is the position of the mass at time t = 2 sec? How

fast is the mass moving at time t = 1 sec? In what direction?

Solution

In Example 7.6c. we found the general solution to this differential equation to be

y(t) = c1 e−t + c2 te−t.
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7.9

Then

y′(t) = −c1 e−t + c2
⎛
⎝−te−t + e−t⎞

⎠.

When t = 0, we have y(0) = c1 and y′(0) = −c1 + c2. Applying the initial conditions, we obtain

c1 = 1
−c1 + c2 = 0.

Thus, c1 = 1, c2 = 1, and the solution to the initial value problem is

y(t) = e−t + te−t.

This solution is represented in the following graph. At time t = 2, the mass is at position

y(2) = e−2 + 2e−2 = 3e−2 ≈ 0.406 m below equilibrium.

To calculate the velocity at time t = 1, we need to find the derivative. We have y(t) = e−t + te−t, so

y′(t) = −e−t + e−t − te−t = −te−t.

Then y′(1) = −e−1 ≈ − 0.3679. At time t = 1, the mass is moving upward at 0.3679 m/sec.

Suppose the following initial-value problem models the position (in feet) of a mass in a spring-mass
system at any given time. Solve the initial-value problem and graph the solution. What is the position of the
mass at time t = 0.3 sec? How fast is it moving at time t = 0.1 sec? In what direction?

y″ + 14y′ + 49y = 0, y(0) = 0, y′(0) = 1

Example 7.10

Solving a Boundary-Value Problem

In Example 7.6f. we solved the differential equation y″ + 16y = 0 and found the general solution to be

y(t) = c1 cos4t + c2 sin4t. If possible, solve the boundary-value problem if the boundary conditions are the

following:

a. y(0) = 0, y⎛
⎝
π
4

⎞
⎠ = 0

b. y(0) = 1, y⎛
⎝
π
8

⎞
⎠ = 0

Chapter 7 | Second-Order Differential Equations 845



c. y⎛
⎝
π
8

⎞
⎠ = 0, y⎛

⎝
3π
8

⎞
⎠ = 2

Solution

We have

y(x) = c1 cos4t + c2 sin4t.
a. Applying the first boundary condition given here, we get y(0) = c1 = 0. So the solution is of the

form y(t) = c2 sin4t. When we apply the second boundary condition, though, we get

y⎛
⎝
π
4

⎞
⎠ = c2 sin⎛

⎝4
⎛
⎝
π
4

⎞
⎠
⎞
⎠ = c2 sinπ = 0 for all values of c2. The boundary conditions are not sufficient

to determine a value for c2, so this boundary-value problem has infinitely many solutions. Thus,

y(t) = c2 sin4t is a solution for any value of c2.

b. Applying the first boundary condition given here, we get y(0) = c1 = 1. Applying the second boundary

condition gives y⎛
⎝
π
8

⎞
⎠ = c2 = 0, so c2 = 0. In this case, we have a unique solution: y(t) = cos4t.

c. Applying the first boundary condition given here, we get y⎛
⎝
π
8

⎞
⎠ = c2 = 0. However, applying the second

boundary condition gives y⎛
⎝
3π
8

⎞
⎠ = −c2 = 2, so c2 = −2. We cannot have c2 = 0 = −2, so this

boundary value problem has no solution.
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7.1 EXERCISES
Classify each of the following equations as linear or
nonlinear. If the equation is linear, determine whether it is
homogeneous or nonhomogeneous.

1. x3 y″ + (x − 1)y′ − 8y = 0

2. ⎛
⎝1 + y2⎞

⎠y″ + xy′ − 3y = cosx

3. xy″ + ey y′ = x

4. y″ + 4
xy′ − 8xy = 5x2 + 1

5. y″ + (sinx)y′ − xy = 4y

6. y″ + ⎛
⎝
x + 3

y
⎞
⎠y′ = 0

For each of the following problems, verify that the given
function is a solution to the differential equation. Use a
graphing utility to graph the particular solutions for several
values of c1 and c2. What do the solutions have in common?

7. [T] y″ + 2y′ − 3y = 0; y(x) = c1 ex + c2 e−3x

8. [T] x2 y″ − 2y − 3x2 + 1 = 0;

y(x) = c1 x2 + c2 x−1 + x2 ln(x) + 1
2

9. [T] y″ + 14y′ + 49y = 0; y(x) = c1 e−7x + c2 xe−7x

10. [T] 6y″ − 49y′ + 8y = 0; y(x) = c1 ex/6 + c2 e8x

Find the general solution to the linear differential equation.

11. y″ − 3y′ − 10y = 0

12. y″ − 7y′ + 12y = 0

13. y″ + 4y′ + 4y = 0

14. 4y″ − 12y′ + 9y = 0

15. 2y″ − 3y′ − 5y = 0

16. 3y″ − 14y′ + 8y = 0

17. y″ + y′ + y = 0

18. 5y″ + 2y′ + 4y = 0

19. y″ − 121y = 0

20. 8y″ + 14y′ − 15y = 0

21. y″ + 81y = 0

22. y″ − y′ + 11y = 0

23. 2y″ = 0

24. y″ − 6y′ + 9y = 0

25. 3y″ − 2y′ − 7y = 0

26. 4y″ − 10y′ = 0

27. 36d2 y
dx2 + 12dy

dx + y = 0

28. 25d2 y
dx2 − 80dy

dx + 64y = 0

29.
d2 y
dx2 − 9dy

dx = 0

30. 4d2 y
dx2 + 8y = 0

Solve the initial-value problem.

31. y″ + 5y′ + 6y = 0, y(0) = 0, y′(0) = −2

32. y″ + 2y′ − 8y = 0, y(0) = 5, y′(0) = 4

33. y″ + 4y = 0, y(0) = 3, y′(0) = 10

34. y″ − 18y′ + 81y = 0, y(0) = 1, y′(0) = 5

35. y″ − y′ − 30y = 0, y(0) = 1, y′(0) = −16

36. 4y″ + 4y′ − 8y = 0, y(0) = 2, y′(0) = 1

37. 25y″ + 10y′ + y = 0, y(0) = 2, y′(0) = 1

38. y″ + y = 0, y(π) = 1, y′(π) = −5

Solve the boundary-value problem, if possible.

39. y″ + y′ − 42y = 0, y(0) = 0, y(1) = 2

40. 9y″ + y = 0, y(3π
2 ) = 6, y(0) = −8

41. y″ + 10y′ + 34y = 0, y(0) = 6, y(π) = 2
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42. y″ + 7y′ − 60y = 0, y(0) = 4, y(2) = 0

43. y″ − 4y′ + 4y = 0, y(0) = 2, y(1) = −1

44. y″ − 5y′ = 0, y(0) = 3, y(−1) = 2

45. y″ + 9y = 0, y(0) = 4, y⎛
⎝
π
3

⎞
⎠ = −4

46. 4y″ + 25y = 0, y(0) = 2, y(2π) = −2

47. Find a differential equation with a general solution that

is y = c1 ex/5 + c2 e−4x.

48. Find a differential equation with a general solution that

is y = c1 ex + c2 e−4x/3.

For each of the following differential equations:

a. Solve the initial value problem.

b. [T] Use a graphing utility to graph the particular
solution.

49. y″ + 64y = 0; y(0) = 3, y′(0) = 16

50. y″ − 2y′ + 10y = 0 y(0) = 1, y′(0) = 13

51. y″ + 5y′ + 15y = 0 y(0) = −2, y′(0) = 7

52. (Principle of superposition) Prove that if y1(x) and

y2(x) are solutions to a linear homogeneous differential

equation, y″ + p(x)y′ + q(x)y = 0, then the function

y(x) = c1 y1(x) + c2 y2(x), where c1 and c2 are

constants, is also a solution.

53. Prove that if a, b, and c are positive constants, then
all solutions to the second-order linear differential equation
ay″ + by′ + cy = 0 approach zero as x → ∞. (Hint:

Consider three cases: two distinct roots, repeated real roots,
and complex conjugate roots.)
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7.2 | Nonhomogeneous Linear Equations

Learning Objectives
7.2.1 Write the general solution to a nonhomogeneous differential equation.

7.2.2 Solve a nonhomogeneous differential equation by the method of undetermined
coefficients.

7.2.3 Solve a nonhomogeneous differential equation by the method of variation of parameters.

In this section, we examine how to solve nonhomogeneous differential equations. The terminology and methods are
different from those we used for homogeneous equations, so let’s start by defining some new terms.

General Solution to a Nonhomogeneous Linear Equation
Consider the nonhomogeneous linear differential equation

a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x).

The associated homogeneous equation

(7.3)a2 (x)y″ + a1 (x)y′ + a0 (x)y = 0

is called the complementary equation. We will see that solving the complementary equation is an important step in solving
a nonhomogeneous differential equation.

Definition

A solution y p(x) of a differential equation that contains no arbitrary constants is called a particular solution to the

equation.

Theorem 7.4: General Solution to a Nonhomogeneous Equation

Let y p(x) be any particular solution to the nonhomogeneous linear differential equation

a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x).

Also, let c1 y1(x) + c2 y2(x) denote the general solution to the complementary equation. Then, the general solution to

the nonhomogeneous equation is given by

(7.4)y(x) = c1 y1(x) + c2 y2(x) + y p(x).

Proof

To prove y(x) is the general solution, we must first show that it solves the differential equation and, second, that any

solution to the differential equation can be written in that form. Substituting y(x) into the differential equation, we have

a2(x)y″ + a1(x)y′ + a0(x)y = a2(x)⎛
⎝c1 y1 + c2 y2 + y p

⎞
⎠″ + a1(x)⎛

⎝c1 y1 + c2 y2 + y p
⎞
⎠′

+a0(x)⎛
⎝c1 y1 + c2 y2 + y p

⎞
⎠

= ⎡
⎣a2(x)(c1 y1 + c2 y2)″ + a1(x)(c1 y1 + c2 y2)′ + a0(x)(c1 y1 + c2 y2)⎤

⎦

+a2(x)y p ″ + a1(x)y p ′ + a0(x)y p

= 0 + r(x)
= r(x).

So y(x) is a solution.
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Now, let z(x) be any solution to a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x). Then

a2(x)(z − y p)″ + a1(x)(z − y p)′ + a0(x)(z − y p) = ⎛
⎝a2(x)z″ + a1(x)z′ + a0(x)z⎞

⎠

−⎛
⎝a2(x)y p ″ + a1(x)y p ′ + a0(x)y p

⎞
⎠

= r(x) − r(x)
= 0,

so z(x) − y p(x) is a solution to the complementary equation. But, c1 y1(x) + c2 y2(x) is the general solution to the

complementary equation, so there are constants c1 and c2 such that

z(x) − y p(x) = c1 y1(x) + c2 y2(x).

Hence, we see that z(x) = c1 y1(x) + c2 y2(x) + y p(x).

□

Example 7.11

Verifying the General Solution

Given that y p(x) = x is a particular solution to the differential equation y″ + y = x, write the general solution

and check by verifying that the solution satisfies the equation.

Solution

The complementary equation is y″ + y = 0, which has the general solution c1 cosx + c2 sinx. So, the general

solution to the nonhomogeneous equation is

y(x) = c1 cosx + c2 sinx + x.

To verify that this is a solution, substitute it into the differential equation. We have

y′(x) = −c1 sinx + c2 cosx + 1 and y″(x) = −c1 cosx − c2 sinx.

Then

y″(x) + y(x) = −c1 cosx − c2 sinx + c1 cosx + c2 sinx + x
= x.

So, y(x) is a solution to y″ + y = x.

Given that y p(x) = −2 is a particular solution to y″ − 3y′ − 4y = 8, write the general solution and

verify that the general solution satisfies the equation.

In the preceding section, we learned how to solve homogeneous equations with constant coefficients. Therefore, for
nonhomogeneous equations of the form ay″ + by′ + cy = r(x), we already know how to solve the complementary

equation, and the problem boils down to finding a particular solution for the nonhomogeneous equation. We now examine
two techniques for this: the method of undetermined coefficients and the method of variation of parameters.

Undetermined Coefficients
The method of undetermined coefficients involves making educated guesses about the form of the particular solution
based on the form of r(x). When we take derivatives of polynomials, exponential functions, sines, and cosines, we get

polynomials, exponential functions, sines, and cosines. So when r(x) has one of these forms, it is possible that the solution
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to the nonhomogeneous differential equation might take that same form. Let’s look at some examples to see how this works.

Example 7.12

Undetermined Coefficients When r(x) Is a Polynomial

Find the general solution to y″ + 4y′ + 3y = 3x.

Solution

The complementary equation is y″ + 4y′ + 3y = 0, with general solution c1 e−x + c2 e−3x. Since

r(x) = 3x, the particular solution might have the form y p(x) = Ax + B. If this is the case, then we have

y p ′(x) = A and y p ″(x) = 0. For y p to be a solution to the differential equation, we must find values for A

and B such that

y″ + 4y′ + 3y = 3x
0 + 4(A) + 3(Ax + B) = 3x

3Ax + (4A + 3B) = 3x.

Setting coefficients of like terms equal, we have

3A = 3
4A + 3B = 0.

Then, A = 1 and B = − 4
3, so y p(x) = x − 4

3 and the general solution is

y(x) = c1 e−x + c2 e−3x + x − 4
3.

In Example 7.12, notice that even though r(x) did not include a constant term, it was necessary for us to include the

constant term in our guess. If we had assumed a solution of the form y p = Ax (with no constant term), we would not have

been able to find a solution. (Verify this!) If the function r(x) is a polynomial, our guess for the particular solution should

be a polynomial of the same degree, and it must include all lower-order terms, regardless of whether they are present in
r(x).

Example 7.13

Undetermined Coefficients When r(x) Is an Exponential

Find the general solution to y″ − y′ − 2y = 2e3x.

Solution

The complementary equation is y″ − y′ − 2y = 0, with the general solution c1 e−x + c2 e2x. Since

r(x) = 2e3x, the particular solution might have the form y p(x) = Ae3x. Then, we have y p ′(x) = 3Ae3x and

y p ″(x) = 9Ae3x. For y p to be a solution to the differential equation, we must find a value for A such that
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y″ − y′ − 2y = 2e3x

9Ae3x − 3Ae3x − 2Ae3x = 2e3x

4Ae3x = 2e3x.

So, 4A = 2 and A = 1/2. Then, y p(x) = ⎛
⎝
1
2

⎞
⎠e

3x, and the general solution is

y(x) = c1 e−x + c2 e2x + 1
2e3x.

Find the general solution to y″ − 4y′ + 4y = 7sin t − cos t.

In the previous checkpoint, r(x) included both sine and cosine terms. However, even if r(x) included a sine term only

or a cosine term only, both terms must be present in the guess. The method of undetermined coefficients also works with
products of polynomials, exponentials, sines, and cosines. Some of the key forms of r(x) and the associated guesses for

y p(x) are summarized in Table 7.2.
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r(x) Initial guess for y p(x)

k (a constant) A (a constant)

ax + b Ax + B (Note: The guess must include both terms even if b = 0. )

ax2 + bx + c
Ax2 + Bx + C (Note: The guess must include all three terms even if b
or c are zero.)

Higher-order polynomials Polynomial of the same order as r(x)

aeλx Aeλx

acos βx + bsin βx
Acos βx + Bsin βx (Note: The guess must include both terms even if

either a = 0 or b = 0. )

aeαx cos βx + beαx sin βx Aeαx cos βx + Beαx sin βx

⎛
⎝ax2 + bx + c⎞

⎠eλx ⎛
⎝Ax2 + Bx + C⎞

⎠eλx

⎛
⎝a2 x2 + a1 x + a0

⎞
⎠cos βx

+⎛
⎝b2 x2 + b1 x + b0

⎞
⎠sin βx

⎛
⎝A2 x2 + A1 x + A0

⎞
⎠cos βx

+⎛
⎝B2 x2 + B1 x + B0

⎞
⎠sin βx

⎛
⎝a2 x2 + a1 x + a0

⎞
⎠eαx cos βx

+⎛
⎝b2 x2 + b1 x + b0

⎞
⎠eαx sin βx

⎛
⎝A2 x2 + A1 x + A0

⎞
⎠eαx cos βx

+⎛
⎝B2 x2 + B1 x + B0

⎞
⎠eαx sin βx

Table 7.2 Key Forms for the Method of Undetermined Coefficients

Keep in mind that there is a key pitfall to this method. Consider the differential equation y″ + 5y′ + 6y = 3e−2x. Based on

the form of r(x), we guess a particular solution of the form y p(x) = Ae−2x. But when we substitute this expression into

the differential equation to find a value for A, we run into a problem. We have

y p ′(x) = −2Ae−2x

and

y p ″ = 4Ae−2x,

so we want
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y″ + 5y′ + 6y = 3e−2x

4Ae−2x + 5⎛
⎝−2Ae−2x⎞

⎠ + 6Ae−2x = 3e−2x

4Ae−2x − 10Ae−2x + 6Ae−2x = 3e−2x

0 = 3e−2x,

which is not possible.

Looking closely, we see that, in this case, the general solution to the complementary equation is c1 e−2x + c2 e−3x. The

exponential function in r(x) is actually a solution to the complementary equation, so, as we just saw, all the terms on the

left side of the equation cancel out. We can still use the method of undetermined coefficients in this case, but we have to

alter our guess by multiplying it by x. Using the new guess, y p(x) = Axe−2x, we have

y p ′(x) = A⎛
⎝e−2x − 2xe−2x⎞

⎠

and

y p ″(x) = −4Ae−2x + 4Axe−2x.

Substitution gives

y″ + 5y′ + 6y = 3e−2x

⎛
⎝−4Ae−2x + 4Axe−2x⎞

⎠ + 5⎛
⎝Ae−2x − 2Axe−2x⎞

⎠ + 6Axe−2x = 3e−2x

−4Ae−2x + 4Axe−2x + 5Ae−2x − 10Axe−2x + 6Axe−2x = 3e−2x

Ae−2x = 3e−2x.

So, A = 3 and y p(x) = 3xe−2x. This gives us the following general solution

y(x) = c1 e−2x + c2 e−3x + 3xe−2x.

Note that if xe−2x were also a solution to the complementary equation, we would have to multiply by x again, and we

would try y p(x) = Ax2 e−2x.

Problem-Solving Strategy: Method of Undetermined Coefficients

1. Solve the complementary equation and write down the general solution.

2. Based on the form of r(x), make an initial guess for y p(x).

3. Check whether any term in the guess for y p(x) is a solution to the complementary equation. If so, multiply

the guess by x. Repeat this step until there are no terms in y p(x) that solve the complementary equation.

4. Substitute y p(x) into the differential equation and equate like terms to find values for the unknown

coefficients in y p(x).

5. Add the general solution to the complementary equation and the particular solution you just found to obtain
the general solution to the nonhomogeneous equation.

Example 7.14
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Solving Nonhomogeneous Equations

Find the general solutions to the following differential equations.

a. y″ − 9y = −6cos3x

b. x″ + 2x′ + x = 4e−t

c. y″ − 2y′ + 5y = 10x2 − 3x − 3

d. y″ − 3y′ = −12t

Solution

a. The complementary equation is y″ − 9y = 0, which has the general solution c1 e3x + c2 e−3x (step

1). Based on the form of r(x) = −6cos3x, our initial guess for the particular solution is

y p(x) = Acos3x + Bsin3x (step 2). None of the terms in y p(x) solve the complementary equation, so

this is a valid guess (step 3).
Now we want to find values for A and B, so substitute y p into the differential equation. We have

y p ′(x) = −3Asin3x + 3Bcos3x and y p ″(x) = −9Acos3x − 9Bsin3x,

so we want to find values of A and B such that

y″ − 9y = −6cos3x
−9Acos3x − 9Bsin3x − 9(Acos3x + Bsin3x) = −6cos3x

−18Acos3x − 18Bsin3x = −6cos3x.

Therefore,

−18A = −6
−18B = 0.

This gives A = 1
3 and B = 0, so y p(x) = ⎛

⎝
1
3

⎞
⎠cos3x (step 4).

Putting everything together, we have the general solution

y(x) = c1 e3x + c2 e−3x + 1
3 cos3x.

b. The complementary equation is x″ + 2x′ + x = 0, which has the general solution c1 e−t + c2 te−t

(step 1). Based on the form r(t) = 4e−t, our initial guess for the particular solution is x p(t) = Ae−t

(step 2). However, we see that this guess solves the complementary equation, so we must multiply by t,
which gives a new guess: x p(t) = Ate−t (step 3). Checking this new guess, we see that it, too, solves the

complementary equation, so we must multiply by t again, which gives x p(t) = At2 e−t (step 3 again).

Now, checking this guess, we see that x p(t) does not solve the complementary equation, so this is a valid

guess (step 3 yet again).
We now want to find a value for A, so we substitute x p into the differential equation. We have

x p(t) = At2 e−t, so

x p ′(t) = 2Ate−t − At2 e−t
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and x p ″(t) = 2Ae−t − 2Ate−t − ⎛
⎝2Ate−t − At2 e−t⎞

⎠ = 2Ae−t − 4Ate−t + At2 e−t.

Substituting into the differential equation, we want to find a value of A so that

x″ + 2x′ + x = 4e−t

2Ae−t − 4Ate−t + At2 e−t + 2⎛
⎝2Ate−t − At2 e−t⎞

⎠ + At2 e−t = 4e−t

2Ae−t = 4e−t.

This gives A = 2, so x p(t) = 2t2 e−t (step 4). Putting everything together, we have the general solution

x(t) = c1 e−t + c2 te−t + 2t2 e−t.
c. The complementary equation is y″ − 2y′ + 5y = 0, which has the general solution

c1 ex cos2x + c2 ex sin2x (step 1). Based on the form r(x) = 10x2 − 3x − 3, our initial guess for

the particular solution is y p(x) = Ax2 + Bx + C (step 2). None of the terms in y p(x) solve the

complementary equation, so this is a valid guess (step 3). We now want to find values for A, B, and

C, so we substitute y p into the differential equation. We have y p ′(x) = 2Ax + B and y p ″(x) = 2A,

so we want to find values of A, B, and C such that

y″ − 2y′ + 5y = 10x2 − 3x − 3

2A − 2(2Ax + B) + 5⎛
⎝Ax2 + Bx + C⎞

⎠ = 10x2 − 3x − 3

5Ax2 + (5B − 4A)x + (5C − 2B + 2A) = 10x2 − 3x − 3.

Therefore,

5A = 10
5B − 4A = −3

5C − 2B + 2A = −3.

This gives A = 2, B = 1, and C = −1, so y p(x) = 2x2 + x − 1 (step 4). Putting everything

together, we have the general solution

y(x) = c1 ex cos2x + c2 ex sin2x + 2x2 + x − 1.

d. The complementary equation is y″ − 3y′ = 0, which has the general solution c1 e3t + c2 (step 1).

Based on the form r(t) = −12t, our initial guess for the particular solution is y p(t) = At + B (step

2). However, we see that the constant term in this guess solves the complementary equation, so we must

multiply by t, which gives a new guess: y p(t) = At2 + Bt (step 3). Checking this new guess, we see

that none of the terms in y p(t) solve the complementary equation, so this is a valid guess (step 3 again).

We now want to find values for A and B, so we substitute y p into the differential equation. We have

y p ′(t) = 2At + B and y p ″(t) = 2A, so we want to find values of A and B such that
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7.12

y″ − 3y′ = −12t
2A − 3(2At + B) = −12t

−6At + (2A − 3B) = −12t.

Therefore,

−6A = −12
2A − 3B = 0.

This gives A = 2 and B = 4/3, so y p(t) = 2t2 + (4/3)t (step 4). Putting everything together, we have

the general solution

y(t) = c1 e3t + c2 + 2t2 + 4
3t.

Find the general solution to the following differential equations.

a. y″ − 5y′ + 4y = 3ex

b. y″ + y′ − 6y = 52cos2t

Variation of Parameters
Sometimes, r(x) is not a combination of polynomials, exponentials, or sines and cosines. When this is the case, the method

of undetermined coefficients does not work, and we have to use another approach to find a particular solution to the
differential equation. We use an approach called the method of variation of parameters.

To simplify our calculations a little, we are going to divide the differential equation through by a, so we have a leading

coefficient of 1. Then the differential equation has the form

y″ + py′ + qy = r(x),

where p and q are constants.

If the general solution to the complementary equation is given by c1 y1(x) + c2 y2(x), we are going to look for a particular

solution of the form y p(x) = u(x)y1(x) + v(x)y2(x). In this case, we use the two linearly independent solutions to the

complementary equation to form our particular solution. However, we are assuming the coefficients are functions of x,
rather than constants. We want to find functions u(x) and v(x) such that y p(x) satisfies the differential equation. We have

y p = uy1 + vy2
y p ′ = u′ y1 + uy1 ′ + v′ y2 + vy2 ′

y p ″ = ⎛
⎝u′ y1 + v′ y2

⎞
⎠′ + u′ y1 ′ + uy1 ″ + v′ y2 ′ + vy2 ″.

Substituting into the differential equation, we obtain

y p ″ + py p ′ + qy p = ⎡
⎣
⎛
⎝u′ y1 + v′ y2

⎞
⎠′ + u′ y1 ′ + uy1 ″ + v′ y2 ′ + vy2 ″⎤

⎦

+ p⎡
⎣u′ y1 + uy1 ′ + v′ y2 + vy2 ′⎤

⎦ + q[uy1 + vy2]
= u⎡

⎣y1 ″ + py1 ′ + qy1
⎤
⎦ + v⎡

⎣y2 ″ + py2 ′ + qy2
⎤
⎦

+⎛
⎝u′ y1 + v′ y2

⎞
⎠′ + p⎛

⎝u′ y1 + v′ y2
⎞
⎠ + ⎛

⎝u′ y1 ′ + v′ y2 ′⎞
⎠.

Note that y1 and y2 are solutions to the complementary equation, so the first two terms are zero. Thus, we have
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⎛
⎝u′ y1 + v′ y2

⎞
⎠′ + p⎛

⎝u′ y1 + v′ y2
⎞
⎠ + ⎛

⎝u′ y1 ′ + v′ y2 ′⎞
⎠ = r(x).

If we simplify this equation by imposing the additional condition u′ y1 + v′ y2 = 0, the first two terms are zero, and this

reduces to u′ y1 ′ + v′ y2 ′ = r(x). So, with this additional condition, we have a system of two equations in two unknowns:

u′ y1 + v′ y2 = 0
u′ y1 ′ + v′ y2 ′ = r(x).

Solving this system gives us u′ and v′, which we can integrate to find u and v.

Then, y p(x) = u(x)y1(x) + v(x)y2(x) is a particular solution to the differential equation. Solving this system of equations

is sometimes challenging, so let’s take this opportunity to review Cramer’s rule, which allows us to solve the system of
equations using determinants.

Rule: Cramer’s Rule

The system of equations

a1 z1 + b1 z2 = r1
a2 z1 + b2 z2 = r2

has a unique solution if and only if the determinant of the coefficients is not zero. In this case, the solution is given by

z1 = |r1 b1
r2 b2|

|a1 b1
a2 b2| and z2 = |a1 r1

a2 r2|
|a1 b1
a2 b2|.

Example 7.15

Using Cramer’s Rule

Use Cramer’s rule to solve the following system of equations.

x2 z1 + 2xz2 = 0
z1 − 3x2 z2 = 2x

Solution

We have

a1(x) = x2

a2(x) = 1

b1(x) = 2x

b2(x) = −3x2

r1(x) = 0

r2(x) = 2x.

Then,
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|a1 b1
a2 b2| = |x2 2x

1 −3x2| = −3x4 − 2x

and

|r1 b1
r2 b2| = |0 2x

2x −3x2| = 0 − 4x2 = −4x2.

Thus,

z1 = |r1 b1
r2 b2|

|a1 b1
a2 b2| = −4x2

−3x4 − 2x
= 4x

3x3 + 2
.

In addition,

|a1 r1
a2 r2| = |x2 0

1 2x| = 2x3 − 0 = 2x3.

Thus,

z2 = |a1 r1
a2 r2|

|a1 b1
a2 b2| = 2x3

−3x4 − 2x
= −2x2

3x3 + 2
.

Use Cramer’s rule to solve the following system of equations.

2xz1 − 3z2 = 0

x2 z1 + 4xz2 = x + 1

Problem-Solving Strategy: Method of Variation of Parameters

1. Solve the complementary equation and write down the general solution

c1 y1(x) + c2 y2(x).
2. Use Cramer’s rule or another suitable technique to find functions u′(x) and v′(x) satisfying

u′ y1 + v′ y2 = 0
u′ y1 ′ + v′ y2 ′ = r(x).

3. Integrate u′ and v′ to find u(x) and v(x). Then, y p(x) = u(x)y1(x) + v(x)y2(x) is a particular solution to

the equation.

4. Add the general solution to the complementary equation and the particular solution found in step 3 to obtain
the general solution to the nonhomogeneous equation.

Example 7.16

Using the Method of Variation of Parameters
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Find the general solution to the following differential equations.

a. y″ − 2y′ + y = et

t2

b. y″ + y = 3sin2 x

Solution

a. The complementary equation is y″ − 2y′ + y = 0 with associated general solution c1 et + c2 tet.

Therefore, y1(t) = et and y2(t) = tet. Calculating the derivatives, we get y1 ′(t) = et and

y2 ′(t) = et + tet (step 1). Then, we want to find functions u′(t) and v′(t) so that

u′ et + v′ tet = 0

u′ et + v′ ⎛
⎝et + tet⎞

⎠ = et

t2.

Applying Cramer’s rule, we have

u′ = |0 tet

et

t2 et + tet|
|et tet

et et + tet| =
0 − tet ⎛

⎝
et

t2
⎞
⎠

et ⎛
⎝et + tet⎞

⎠ − et tet =
− e2t

t
e2t = − 1

t

and

v′ = |et 0
et et

t2 |
|et tet

et et + tet| =
et ⎛

⎝
et

t2
⎞
⎠

e2t = 1
t2 (step 2).

Integrating, we get

u = −∫ 1
t dt = −ln|t|

v = ⌠
⌡

1
t2dt = − 1

t (step 3).

Then we have

y p = −et ln|t| − 1
t tet

= −et ln|t| − et (step 4).

The et term is a solution to the complementary equation, so we don’t need to carry that term into our

general solution explicitly. The general solution is

y(t) = c1 et + c2 tet − et ln|t| (step 5).
b. The complementary equation is y″ + y = 0 with associated general solution c1 cosx + c2 sinx. So,

y1(x) = cosx and y2(x) = sinx (step 1). Then, we want to find functions u′(x) and v′(x) such that
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u′ cosx + v′ sinx = 0
−u′ sinx + v′ cosx = 3sin x.

Applying Cramer’s rule, we have

u′ = | 0 sinx
3sin2 x cosx|
|cosx sinx
−sinx cosx| = 0 − 3sin3 x

cos2 x + sin2 x
= −3sin3 x

and

v′ = |cosx 0
−sinx 3sin2 x|
|cosx sinx
−sinx cosx| = 3sin2 xcosx

1 = 3sin2 xcosx (step 2).

Integrating first to find u, we get

u = ∫ −3sin3 xdx = −3⎡
⎣−1

3sin2 xcosx + 2
3∫ sinxdx⎤

⎦ = sin2 xcosx + 2cosx.

Now, we integrate to find v. Using substitution (with w = sinx ), we get

v = ∫ 3sin2 xcosxdx = ∫ 3w2 dw = w3 = sin3 x.

Then,

y p = ⎛
⎝sin2 xcosx + 2cosx⎞

⎠cosx + ⎛
⎝sin3 x⎞

⎠sinx
= sin xcos x + 2cos x + sin x
= 2cos x + sin x⎛

⎝cos2 x + sin2 x⎞
⎠ (step 4).

= 2cos x + sin x
= cos x + 1

The general solution is

y(x) = c1 cosx + c2 sinx + 1 + cos2 x (step 5).

Find the general solution to the following differential equations.

a. y″ + y = secx

b. x″ − 2x′ + x = et
t
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7.2 EXERCISES
Solve the following equations using the method of
undetermined coefficients.

54. 2y″ − 5y′ − 12y = 6

55. 3y″ + y′ − 4y = 8

56. y″ − 6y′ + 5y = e−x

57. y″ + 16y = e−2x

58. y″ − 4y = x2 + 1

59. y″ − 4y′ + 4y = 8x2 + 4x

60. y″ − 2y′ − 3y = sin2x

61. y″ + 2y′ + y = sinx + cosx

62. y″ + 9y = ex cosx

63. y″ + y = 3sin2x + xcos2x

64. y″ + 3y′ − 28y = 10e4x

65. y″ + 10y′ + 25y = xe−5x + 4

In each of the following problems,

a. Write the form for the particular solution y p(x) for

the method of undetermined coefficients.

b. [T] Use a computer algebra system to find a
particular solution to the given equation.

66. y″ − y′ − y = x + e−x

67. y″ − 3y = x2 − 4x + 11

68. y″ − y′ − 4y = ex cos3x

69. 2y″ − y′ + y = ⎛
⎝x2 − 5x⎞

⎠e−x

70. 4y″ + 5y′ − 2y = e2x + xsinx

71. y″ − y′ − 2y = x2 ex sinx

Solve the differential equation using either the method of
undetermined coefficients or the variation of parameters.

72. y″ + 3y′ − 4y = 2ex

73. y″ + 2y′ = e3x

74. y″ + 6y′ + 9y = e−x

75. y″ + 2y′ − 8y = 6e2x

Solve the differential equation using the method of
variation of parameters.

76. 4y″ + y = 2sinx

77. y″ − 9y = 8x

78. y″ + y = secx, 0 < x < π/2

79. y″ + 4y = 3csc2x, 0 < x < π/2

Find the unique solution satisfying the differential equation
and the initial conditions given, where y p(x) is the

particular solution.

80. y″ − 2y′ + y = 12ex, y p(x) = 6x2 ex,

y(0) = 6, y′(0) = 0

81. y″ − 7y′ = 4xe7x, y p(x) = 2
7x2 e7x − 4

49xe7x,

y(0) = −1, y′(0) = 0

82. y″ + y = cosx − 4sinx,

y p(x) = 2xcosx + 1
2xsinx, y(0) = 8, y′(0) = −4

83. y″ − 5y′ = e5x + 8e−5x,

y p(x) = 1
5xe5x + 4

25e−5x, y(0) = −2, y′(0) = 0

In each of the following problems, two linearly
independent solutions— y1 and y2 —are given that satisfy

the corresponding homogeneous equation. Use the method
of variation of parameters to find a particular solution to
the given nonhomogeneous equation. Assume x > 0 in each
exercise.

84. x2 y″ + 2xy′ − 2y = 3x,

y1(x) = x, y2(x) = x−2

85. x2 y″ − 2y = 10x2 − 1,

y1(x) = x2, y2(x) = x−1

862 Chapter 7 | Second-Order Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



7.3 | Applications

Learning Objectives
7.3.1 Solve a second-order differential equation representing simple harmonic motion.

7.3.2 Solve a second-order differential equation representing damped simple harmonic motion.

7.3.3 Solve a second-order differential equation representing forced simple harmonic motion.

7.3.4 Solve a second-order differential equation representing charge and current in an RLC
series circuit.

We saw in the chapter introduction that second-order linear differential equations are used to model many situations in
physics and engineering. In this section, we look at how this works for systems of an object with mass attached to a vertical
spring and an electric circuit containing a resistor, an inductor, and a capacitor connected in series. Models such as these
can be used to approximate other more complicated situations; for example, bonds between atoms or molecules are often
modeled as springs that vibrate, as described by these same differential equations.

Simple Harmonic Motion
Consider a mass suspended from a spring attached to a rigid support. (This is commonly called a spring-mass system.)
Gravity is pulling the mass downward and the restoring force of the spring is pulling the mass upward. As shown in Figure
7.2, when these two forces are equal, the mass is said to be at the equilibrium position. If the mass is displaced from
equilibrium, it oscillates up and down. This behavior can be modeled by a second-order constant-coefficient differential
equation.

Figure 7.2 A spring in its natural position (a), at equilibrium with a mass m attached (b), and
in oscillatory motion (c).

Let x(t) denote the displacement of the mass from equilibrium. Note that for spring-mass systems of this type, it is

customary to adopt the convention that down is positive. Thus, a positive displacement indicates the mass is below the
equilibrium point, whereas a negative displacement indicates the mass is above equilibrium. Displacement is usually given
in feet in the English system or meters in the metric system.

Consider the forces acting on the mass. The force of gravity is given by mg. In the English system, mass is in slugs and

the acceleration resulting from gravity is in feet per second squared. The acceleration resulting from gravity is constant, so
in the English system, g = 32 ft/sec2. Recall that 1 slug-foot/sec2 is a pound, so the expression mg can be expressed in

pounds. Metric system units are kilograms for mass and m/sec2 for gravitational acceleration. In the metric system, we have
g = 9.8 m/sec2.

According to Hooke’s law, the restoring force of the spring is proportional to the displacement and acts in the opposite
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direction from the displacement, so the restoring force is given by −k(s + x). The spring constant is given in pounds per

foot in the English system and in newtons per meter in the metric system.

Now, by Newton’s second law, the sum of the forces on the system (gravity plus the restoring force) is equal to mass times
acceleration, so we have

mx″ = −k(s + x) + mg
= −ks − kx + mg.

However, by the way we have defined our equilibrium position, mg = ks, the differential equation becomes

mx″ + kx = 0.

It is convenient to rearrange this equation and introduce a new variable, called the angular frequency, ω. Letting

ω = k/m, we can write the equation as

(7.5)x″ + ω2 x = 0.

This differential equation has the general solution

(7.6)x(t) = c1 cosωt + c2 sinωt,

which gives the position of the mass at any point in time. The motion of the mass is called simple harmonic motion. The

period of this motion (the time it takes to complete one oscillation) is T = 2π
ω and the frequency is f = 1

T = ω
2π (Figure

7.3).

Figure 7.3 A graph of vertical displacement versus time for simple harmonic motion.

Example 7.17

Simple Harmonic Motion

Assume an object weighing 2 lb stretches a spring 6 in. Find the equation of motion if the spring is released from
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the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion?

Solution

We first need to find the spring constant. We have

mg = ks

2 = k⎛
⎝
1
2

⎞
⎠

k = 4.

We also know that weight W equals the product of mass m and the acceleration due to gravity g. In English units,
the acceleration due to gravity is 32 ft/sec2.

W = mg
2 = m(32)

m = 1
16

Thus, the differential equation representing this system is

1
16x″ + 4x = 0.

Multiplying through by 16, we get x″ + 64x = 0, which can also be written in the form x″ + (82)x = 0. This

equation has the general solution

x(t) = c1 cos(8t) + c2 sin(8t).

The mass was released from the equilibrium position, so x(0) = 0, and it had an initial upward velocity of 16

ft/sec, so x′(0) = −16. Applying these initial conditions to solve for c1 and c2. gives

x(t) = −2sin8t.

The period of this motion is 2π
8 = π

4 sec.

A 200-g mass stretches a spring 5 cm. Find the equation of motion of the mass if it is released from rest
from a position 10 cm below the equilibrium position. What is the frequency of this motion?

Writing the general solution in the form x(t) = c1 cos(ωt) + c2 sin(ωt) has some advantages. It is easy to see the link

between the differential equation and the solution, and the period and frequency of motion are evident. This form of the
function tells us very little about the amplitude of the motion, however. In some situations, we may prefer to write the
solution in the form

(7.7)x(t) = Asin ⎛
⎝ωt + ϕ⎞

⎠.

Although the link to the differential equation is not as explicit in this case, the period and frequency of motion are still
evident. Furthermore, the amplitude of the motion, A, is obvious in this form of the function. The constant ϕ is called a

phase shift and has the effect of shifting the graph of the function to the left or right.

To convert the solution to this form, we want to find the values of A and ϕ such that

c1 cos(ωt) + c2 sin(ωt) = Asin ⎛
⎝ωt + ϕ⎞

⎠.

We first apply the trigonometric identity

sin(α + β) = sinαcos β + cosαsin β
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to get

c1 cos(ωt) + c2 sin(ωt) = A⎛
⎝sin(ωt)cosϕ + cos(ωt)sinϕ⎞

⎠

= Asinϕ(cos(ωt)) + Acosϕ⎛
⎝sin(ωt)⎞

⎠.

Thus,

c1 = Asinϕ and c2 = Acosϕ.

If we square both of these equations and add them together, we get

c1
2 + c2

2 = A2 sin ϕ + A2 cos ϕ

= A2 ⎛
⎝sin2 ϕ + cos2 ϕ⎞

⎠

= A2.

Thus,

A = c1
2 + c2

2.

Now, to find ϕ, go back to the equations for c1 and c2, but this time, divide the first equation by the second equation

to get

c1
c2

= Asinϕ
Acosϕ

= tanϕ.

Then,

tanϕ = c1
c2

.

We summarize this finding in the following theorem.

Theorem 7.5: Solution to the Equation for Simple Harmonic Motion

The function x(t) = c1 cos(ωt) + c2 sin(ωt) can be written in the form x(t) = Asin ⎛
⎝ωt + ϕ⎞

⎠, where A = c1
2 + c2

2

and tanϕ = c1
c2

.

Note that when using the formula tanϕ = c1
c2

to find ϕ, we must take care to ensure ϕ is in the right quadrant (Figure

7.4).
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Figure 7.4 A graph of vertical displacement versus time for simple harmonic
motion with a phase change.

Example 7.18

Expressing the Solution with a Phase Shift

Express the following functions in the form Asin ⎛
⎝ωt + ϕ⎞

⎠. What is the frequency of motion? The amplitude?

a. x(t) = 2cos(3t) + sin(3t)

b. x(t) = 3cos(2t) − 2sin(2t)

Solution

a. We have

A = c1
2 + c2

2 = 22 + 12 = 5

and

tanϕ = c1
c2

= 2
1 = 2.

Note that both c1 and c2 are positive, so ϕ is in the first quadrant. Thus,

ϕ ≈ 1.107 rad,

so we have

x(t) = 2cos(3t) + sin(3t) = 5sin(3t + 1.107).

The frequency is ω
2π = 3

2π ≈ 0.477. The amplitude is 5.

b. We have

A = c1
2 + c2

2 = 32 + 22 = 13
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and

tanϕ = c1
c2

= 3
−2 = − 3

2.

Note that c1 is positive but c2 is negative, so ϕ is in the fourth quadrant. Thus,

ϕ ≈ − 0.983 rad,

so we have

x(t) = 3cos(2t) − 2sin(2t)

= 13sin(2t − 0.983).

The frequency is ω
2π = 2

2π ≈ 0.318. The amplitude is 13.

Express the function x(t) = cos(4t) + 4sin(4t) in the form Asin ⎛
⎝ωt + ϕ⎞

⎠. What is the frequency of

motion? The amplitude?

Damped Vibrations
With the model just described, the motion of the mass continues indefinitely. Clearly, this doesn’t happen in the real world.
In the real world, there is almost always some friction in the system, which causes the oscillations to die off slowly—an
effect called damping. So now let’s look at how to incorporate that damping force into our differential equation.

Physical spring-mass systems almost always have some damping as a result of friction, air resistance, or a physical damper,
called a dashpot (a pneumatic cylinder; see Figure 7.5).

Figure 7.5 A dashpot is a pneumatic cylinder that dampens
the motion of an oscillating system.

Because damping is primarily a friction force, we assume it is proportional to the velocity of the mass and acts in the
opposite direction. So the damping force is given by −bx′ for some constant b > 0. Again applying Newton’s second law,

the differential equation becomes
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mx″ + bx′ + kx = 0.

Then the associated characteristic equation is

mλ2 + bλ + k = 0.

Applying the quadratic formula, we have

λ = −b ± b2 − 4mk
2m .

Just as in Second-Order Linear Equations we consider three cases, based on whether the characteristic equation has
distinct real roots, a repeated real root, or complex conjugate roots.

Case 1: b2 > 4mk

In this case, we say the system is overdamped. The general solution has the form

x(t) = c1 e
λ1 t

+ c2 e
λ2 t

,

where both λ1 and λ2 are less than zero. Because the exponents are negative, the displacement decays to zero over time,

usually quite quickly. Overdamped systems do not oscillate (no more than one change of direction), but simply move back
toward the equilibrium position. Figure 7.6 shows what typical critically damped behavior looks like.

Figure 7.6 Behavior of an overdamped spring-mass system, with no change in direction (a) and only one change
in direction (b).

Example 7.19

Overdamped Spring-Mass System

A 16-lb mass is attached to a 10-ft spring. When the mass comes to rest in the equilibrium position, the spring

measures 15 ft 4 in. The system is immersed in a medium that imparts a damping force equal to 5
2 times the

instantaneous velocity of the mass. Find the equation of motion if the mass is pushed upward from the equilibrium
position with an initial upward velocity of 5 ft/sec. What is the position of the mass after 10 sec? Its velocity?

Solution

The mass stretches the spring 5 ft 4 in., or 16
3 ft. Thus, 16 = ⎛

⎝
16
3

⎞
⎠k, so k = 3. We also have m = 16

32 = 1
2,

so the differential equation is
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1
2x″ + 5

2x′ + 3x = 0.

Multiplying through by 2 gives x″ + 5x′ + 6x = 0, which has the general solution

x(t) = c1 e−2t + c2 e−3t.

Applying the initial conditions, x(0) = 0 and x′(0) = −5, we get

x(t) = −5e−2t + 5e−3t.

After 10 sec the mass is at position

x(10) = −5e−20 + 5e−30 ≈ − 1.0305 × 10−8 ≈ 0,

so it is, effectively, at the equilibrium position. We have x′(t) = 10e−2t − 15e−3t, so after 10 sec the mass is

moving at a velocity of

x′(10) = 10e−20 − 15e−30 ≈ 2.061 × 10−8 ≈ 0.

After only 10 sec, the mass is barely moving.

A 2-kg mass is attached to a spring with spring constant 24 N/m. The system is then immersed in a
medium imparting a damping force equal to 16 times the instantaneous velocity of the mass. Find the equation
of motion if it is released from rest at a point 40 cm below equilibrium.

Case 2: b2 = 4mk

In this case, we say the system is critically damped. The general solution has the form

x(t) = c1 e
λ1 t

+ c2 te
λ1 t

,

where λ1 is less than zero. The motion of a critically damped system is very similar to that of an overdamped system. It

does not oscillate. However, with a critically damped system, if the damping is reduced even a little, oscillatory behavior
results. From a practical perspective, physical systems are almost always either overdamped or underdamped (case 3, which

we consider next). It is impossible to fine-tune the characteristics of a physical system so that b2 and 4mk are exactly

equal. Figure 7.7 shows what typical critically damped behavior looks like.
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Figure 7.7 Behavior of a critically damped spring-mass system. The system graphed in part (a) has more damping
than the system graphed in part (b).

Example 7.20

Critically Damped Spring-Mass System

A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that imparts a damping force equal to 14
times the instantaneous velocity of the mass. Find the equation of motion if the mass is released from equilibrium
with an upward velocity of 3 m/sec.

Solution

We have mg = 1(9.8) = 0.2k, so k = 49. Then, the differential equation is

x″ + 14x′ + 49x = 0,

which has general solution

x(t) = c1 e−7t + c2 te−7t.

Applying the initial conditions x(0) = 0 and x′(0) = −3 gives

x(t) = −3te−7t.

A 1-lb weight stretches a spring 6 in., and the system is attached to a dashpot that imparts a damping
force equal to half the instantaneous velocity of the mass. Find the equation of motion if the mass is released
from rest at a point 6 in. below equilibrium.

Case 3: b2 < 4mk

In this case, we say the system is underdamped. The general solution has the form

x(t) = eαt ⎛
⎝c1 cos ⎛

⎝βt⎞
⎠ + c2 sin ⎛

⎝βt⎞
⎠
⎞
⎠,

where α is less than zero. Underdamped systems do oscillate because of the sine and cosine terms in the solution. However,

the exponential term dominates eventually, so the amplitude of the oscillations decreases over time. Figure 7.8 shows what
typical underdamped behavior looks like.
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Figure 7.8 Behavior of an underdamped spring-mass system.

Note that for all damped systems, lim
t → ∞

x(t) = 0. The system always approaches the equilibrium position over time.

Example 7.21

Underdamped Spring-Mass System

A 16-lb weight stretches a spring 3.2 ft. Assume the damping force on the system is equal to the instantaneous
velocity of the mass. Find the equation of motion if the mass is released from rest at a point 9 in. below
equilibrium.

Solution

We have k = 16
3.2 = 5 and m = 16

32 = 1
2, so the differential equation is

1
2x″ + x′ + 5x = 0, or x″ + 2x′ + 10x = 0.

This equation has the general solution

x(t) = e−t ⎛
⎝c1 cos(3t) + c2 sin(3t)⎞

⎠.

Applying the initial conditions, x(0) = 3
4 and x′(0) = 0, we get

x(t) = e−t ⎛
⎝
3
4 cos(3t) + 1

4 sin(3t)⎞
⎠.

A 1-kg mass stretches a spring 49 cm. The system is immersed in a medium that imparts a damping
force equal to four times the instantaneous velocity of the mass. Find the equation of motion if the mass is
released from rest at a point 24 cm above equilibrium.

Example 7.22

Chapter Opener: Modeling a Motorcycle Suspension System
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Figure 7.9 (credit: modification of work by nSeika, Flickr)

For motocross riders, the suspension systems on their motorcycles are very important. The off-road courses on
which they ride often include jumps, and losing control of the motorcycle when they land could cost them the
race.

This suspension system can be modeled as a damped spring-mass system. We define our frame of reference with
respect to the frame of the motorcycle. Assume the end of the shock absorber attached to the motorcycle frame is
fixed. Then, the “mass” in our spring-mass system is the motorcycle wheel. We measure the position of the wheel
with respect to the motorcycle frame. This may seem counterintuitive, since, in many cases, it is actually the
motorcycle frame that moves, but this frame of reference preserves the development of the differential equation
that was done earlier. As with earlier development, we define the downward direction to be positive.

When the motorcycle is lifted by its frame, the wheel hangs freely and the spring is uncompressed. This is the
spring’s natural position. When the motorcycle is placed on the ground and the rider mounts the motorcycle, the
spring compresses and the system is in the equilibrium position (Figure 7.10).

Figure 7.10 We can use a spring-mass system to model a motorcycle suspension.
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This system can be modeled using the same differential equation we used before:

mx″ + bx′ + kx = 0.

A motocross motorcycle weighs 204 lb, and we assume a rider weight of 180 lb. When the rider mounts the
motorcycle, the suspension compresses 4 in., then comes to rest at equilibrium. The suspension system provides
damping equal to 240 times the instantaneous vertical velocity of the motorcycle (and rider).

a. Set up the differential equation that models the behavior of the motorcycle suspension system.

b. We are interested in what happens when the motorcycle lands after taking a jump. Let time t = 0 denote

the time when the motorcycle first contacts the ground. If the motorcycle hits the ground with a velocity
of 10 ft/sec downward, find the equation of motion of the motorcycle after the jump.

c. Graph the equation of motion over the first second after the motorcycle hits the ground.

Solution

a. We have defined equilibrium to be the point where mg = ks, so we have

mg = ks

384 = k⎛
⎝
1
3

⎞
⎠

k = 1152.

We also have

W = mg
384 = m(32)

m = 12.

Therefore, the differential equation that models the behavior of the motorcycle suspension is

12x″ + 240x′ + 1152x = 0.

Dividing through by 12, we get

x″ + 20x′ + 96x = 0.
b. The differential equation found in part a. has the general solution

x(t) = c1 e−8t + c2 e−12t.

Now, to determine our initial conditions, we consider the position and velocity of the motorcycle wheel
when the wheel first contacts the ground. Since the motorcycle was in the air prior to contacting the
ground, the wheel was hanging freely and the spring was uncompressed. Therefore the wheel is 4 in.
⎛
⎝
1
3 ft⎞⎠ below the equilibrium position (with respect to the motorcycle frame), and we have x(0) = 1

3.

According to the problem statement, the motorcycle has a velocity of 10 ft/sec downward when the

motorcycle contacts the ground, so x′(0) = 10. Applying these initial conditions, we get c1 = 7
2 and

c2 = −⎛
⎝
19
6

⎞
⎠, so the equation of motion is

x(t) = 7
2e−8t − 19

6 e−12t.

c. The graph is shown in Figure 7.11.
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Figure 7.11 Graph of the equation of motion over a time of one second.
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Landing Vehicle

NASA is planning a mission to Mars. To save money, engineers have decided to adapt one of the moon landing
vehicles for the new mission. However, they are concerned about how the different gravitational forces will affect the
suspension system that cushions the craft when it touches down. The acceleration resulting from gravity on the moon
is 1.6 m/sec2, whereas on Mars it is 3.7 m/sec2.

The suspension system on the craft can be modeled as a damped spring-mass system. In this case, the spring is below
the moon lander, so the spring is slightly compressed at equilibrium, as shown in Figure 7.12.

Figure 7.12 The landing craft suspension can be represented as a damped spring-mass system. (credit “lander”:
NASA)

We retain the convention that down is positive. Despite the new orientation, an examination of the forces affecting
the lander shows that the same differential equation can be used to model the position of the landing craft relative to
equilibrium:

mx″ + bx′ + kx = 0,

where m is the mass of the lander, b is the damping coefficient, and k is the spring constant.

1. The lander has a mass of 15,000 kg and the spring is 2 m long when uncompressed. The lander is designed
to compress the spring 0.5 m to reach the equilibrium position under lunar gravity. The dashpot imparts a
damping force equal to 48,000 times the instantaneous velocity of the lander. Set up the differential equation
that models the motion of the lander when the craft lands on the moon.

2. Let time t = 0 denote the instant the lander touches down. The rate of descent of the lander can be controlled

by the crew, so that it is descending at a rate of 2 m/sec when it touches down. Find the equation of motion of
the lander on the moon.

3. If the lander is traveling too fast when it touches down, it could fully compress the spring and “bottom out.”
Bottoming out could damage the landing craft and must be avoided at all costs. Graph the equation of motion
found in part 2. If the spring is 0.5 m long when fully compressed, will the lander be in danger of bottoming
out?

4. Assuming NASA engineers make no adjustments to the spring or the damper, how far does the lander compress
the spring to reach the equilibrium position under Martian gravity?

5. If the lander crew uses the same procedures on Mars as on the moon, and keeps the rate of descent to 2 m/sec,
will the lander bottom out when it lands on Mars?

6. What adjustments, if any, should the NASA engineers make to use the lander safely on Mars?
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Forced Vibrations
The last case we consider is when an external force acts on the system. In the case of the motorcycle suspension system, for
example, the bumps in the road act as an external force acting on the system. Another example is a spring hanging from a
support; if the support is set in motion, that motion would be considered an external force on the system. We model these
forced systems with the nonhomogeneous differential equation

(7.8)mx″ + bx′ + kx = f (t),

where the external force is represented by the f (t) term. As we saw in Nonhomogenous Linear Equations,

differential equations such as this have solutions of the form

x(t) = c1 x1(t) + c2 x2(t) + x p(t),

where c1 x1(t) + c2 x2(t) is the general solution to the complementary equation and x p(t) is a particular solution to the

nonhomogeneous equation. If the system is damped, lim
t → ∞

c1 x1(t) + c2 x2(t) = 0. Since these terms do not affect the long-

term behavior of the system, we call this part of the solution the transient solution. The long-term behavior of the system is
determined by x p(t), so we call this part of the solution the steady-state solution.

This website (http://www.openstaxcollege.org/l/20_Oscillations) shows a simulation of forced
vibrations.

Example 7.23

Forced Vibrations

A mass of 1 slug stretches a spring 2 ft and comes to rest at equilibrium. The system is attached to a dashpot
that imparts a damping force equal to eight times the instantaneous velocity of the mass. Find the equation of
motion if an external force equal to f (t) = 8sin(4t) is applied to the system beginning at time t = 0. What is

the transient solution? What is the steady-state solution?

Solution

We have mg = 1(32) = 2k, so k = 16 and the differential equation is

x″ + 8x′ + 16x = 8sin(4t).

The general solution to the complementary equation is

c1 e−4t + c2 te−4t.

Assuming a particular solution of the form x p(t) = Acos(4t) + Bsin(4t) and using the method of undetermined

coefficients, we find x p(t) = − 1
4 cos(4t), so

x(t) = c1 e−4t + c2 te−4t − 1
4 cos(4t).

At t = 0, the mass is at rest in the equilibrium position, so x(0) = x′(0) = 0. Applying these initial conditions

to solve for c1 and c2, we get

x(t) = 1
4e−4t + te−4t − 1

4 cos(4t).

The transient solution is 1
4e−4t + te−4t. The steady-state solution is −1

4 cos(4t).
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7.20 A mass of 2 kg is attached to a spring with constant 32 N/m and comes to rest in the equilibrium

position. Beginning at time t = 0, an external force equal to f (t) = 68e−2t cos(4t) is applied to the system.

Find the equation of motion if there is no damping. What is the transient solution? What is the steady-state
solution?
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Resonance

Consider an undamped system exhibiting simple harmonic motion. In the real world, we never truly have an undamped
system; –some damping always occurs. For theoretical purposes, however, we could imagine a spring-mass system
contained in a vacuum chamber. With no air resistance, the mass would continue to move up and down indefinitely.

The frequency of the resulting motion, given by f = 1
T = ω

2π , is called the natural frequency of the system. If an

external force acting on the system has a frequency close to the natural frequency of the system, a phenomenon called
resonance results. The external force reinforces and amplifies the natural motion of the system.

1. Consider the differential equation x″ + x = 0. Find the general solution. What is the natural frequency of the

system?

2. Now suppose this system is subjected to an external force given by f (t) = 5cos t. Solve the initial-value

problem x″ + x = 5cos t, x(0) = 0, x′(0) = 1.

3. Graph the solution. What happens to the behavior of the system over time?

4. In the real world, there is always some damping. However, if the damping force is weak, and the external
force is strong enough, real-world systems can still exhibit resonance. One of the most famous examples of
resonance is the collapse of the Tacoma Narrows Bridge on November 7, 1940. The bridge had exhibited
strange behavior ever since it was built. The roadway had a strange “bounce” to it. On the day it collapsed, a
strong windstorm caused the roadway to twist and ripple violently. The bridge was unable to withstand these
forces and it ultimately collapsed. Experts believe the windstorm exerted forces on the bridge that were very
close to its natural frequency, and the resulting resonance ultimately shook the bridge apart.

This website (http://www.openstaxcollege.org/l/20_TacomaNarrow) contains more
information about the collapse of the Tacoma Narrows Bridge.

During the short time the Tacoma Narrows Bridge stood, it became quite a tourist attraction. Several
people were on site the day the bridge collapsed, and one of them caught the collapse on film. Watch
the video (http://www.openstaxcollege.org/l/20_TacomaNarro2) to see the collapse.

5. Another real-world example of resonance is a singer shattering a crystal wineglass when she sings just the right
note. When someone taps a crystal wineglass or wets a finger and runs it around the rim, a tone can be heard.
That note is created by the wineglass vibrating at its natural frequency. If a singer then sings that same note at
a high enough volume, the glass shatters as a result of resonance.

The TV show Mythbusters aired an episode on this phenomenon. Visit this website
(http://www.openstaxcollege.org/l/20_glass) to learn more about it. Adam Savage also
described the experience. Watch this video (http://www.openstaxcollege.org/l/20_glass2) for
his account.

The RLC Series Circuit
Consider an electrical circuit containing a resistor, an inductor, and a capacitor, as shown in Figure 7.10. Such a circuit is
called an RLC series circuit. RLC circuits are used in many electronic systems, most notably as tuners in AM/FM radios.
The tuning knob varies the capacitance of the capacitor, which in turn tunes the radio. Such circuits can be modeled by
second-order, constant-coefficient differential equations.
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Let I(t) denote the current in the RLC circuit and q(t) denote the charge on the capacitor. Furthermore, let L denote

inductance in henrys (H), R denote resistance in ohms (Ω), and C denote capacitance in farads (F). Last, let E(t) denote

electric potential in volts (V).

Kirchhoff’s voltage rule states that the sum of the voltage drops around any closed loop must be zero. So, we need to
consider the voltage drops across the inductor (denoted EL ), the resistor (denoted ER ), and the capacitor (denoted EC

). Because the RLC circuit shown in Figure 7.10 includes a voltage source, E(t), which adds voltage to the circuit, we

have EL + ER + EC = E(t).

We present the formulas below without further development. Those of you interested in the derivation of these formulas
should consult a physics text. Using Faraday’s law and Lenz’s law, the voltage drop across an inductor can be shown to be
proportional to the instantaneous rate of change of current, with proportionality constant L. Thus,

EL = LdI
dt .

Next, according to Ohm’s law, the voltage drop across a resistor is proportional to the current passing through the resistor,
with proportionality constant R. Therefore,

ER = RI.

Last, the voltage drop across a capacitor is proportional to the charge, q, on the capacitor, with proportionality constant
1/C. Thus,

EC = 1
Cq.

Adding these terms together, we get

LdI
dt + RI + 1

Cq = E(t).

Noting that I = ⎛
⎝dq⎞

⎠/(dt), this becomes

(7.9)
Ld2 q

dt2 + Rdq
dt + 1

Cq = E(t).

Mathematically, this system is analogous to the spring-mass systems we have been examining in this section.

Figure 7.13 An RLC series circuit can be modeled by the
same differential equation as a mass-spring system.

Example 7.24

The RLC Series Circuit

Find the charge on the capacitor in an RLC series circuit where L = 5/3 H, R = 10Ω, C = 1/30 F, and

E(t) = 300 V. Assume the initial charge on the capacitor is 0 C and the initial current is 9 A. What happens to

the charge on the capacitor over time?
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Solution

We have

Ld2 q
dt2 + Rdq

dt + 1
Cq = E(t)

5
3

d2 q
dt2 + 10dq

dt + 30q = 300

d2 q
dt2 + 6dq

dt + 18q = 180.

The general solution to the complementary equation is

e−3t ⎛
⎝c1 cos(3t) + c2 sin(3t)⎞

⎠.

Assume a particular solution of the form q p = A, where A is a constant. Using the method of undetermined

coefficients, we find A = 10. So,

q(t) = e−3t ⎛
⎝c1 cos(3t) + c2 sin(3t)⎞

⎠ + 10.

Applying the initial conditions q(0) = 0 and i(0) = ⎛
⎝
⎛
⎝dq⎞

⎠/(dt)⎞
⎠(0) = 9, we find c1 = −10 and c2 = −7. So

the charge on the capacitor is

q(t) = −10e−3t cos(3t) − 7e−3t sin(3t) + 10.

Looking closely at this function, we see the first two terms will decay over time (as a result of the negative
exponent in the exponential function). Therefore, the capacitor eventually approaches a steady-state charge of 10
C.

Find the charge on the capacitor in an RLC series circuit where L = 1/5 H, R = 2/5Ω, C = 1/2 F,

and E(t) = 50 V. Assume the initial charge on the capacitor is 0 C and the initial current is 4 A.
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7.3 EXERCISES
86. A mass weighing 4 lb stretches a spring 8 in. Find
the equation of motion if the spring is released from the
equilibrium position with a downward velocity of 12 ft/sec.
What is the period and frequency of the motion?

87. A mass weighing 2 lb stretches a spring 2 ft. Find the
equation of motion if the spring is released from 2 in. below
the equilibrium position with an upward velocity of 8 ft/sec.
What is the period and frequency of the motion?

88. A 100-g mass stretches a spring 0.1 m. Find the
equation of motion of the mass if it is released from rest
from a position 20 cm below the equilibrium position. What
is the frequency of this motion?

89. A 400-g mass stretches a spring 5 cm. Find the
equation of motion of the mass if it is released from rest
from a position 15 cm below the equilibrium position. What
is the frequency of this motion?

90. A block has a mass of 9 kg and is attached to a
vertical spring with a spring constant of 0.25 N/m. The
block is stretched 0.75 m below its equilibrium position and
released.

a. Find the position function x(t) of the block.

b. Find the period and frequency of the vibration.
c. Sketch a graph of x(t).
d. At what time does the block first pass through the

equilibrium position?

91. A block has a mass of 5 kg and is attached to a
vertical spring with a spring constant of 20 N/m. The block
is released from the equilibrium position with a downward
velocity of 10 m/sec.

a. Find the position function x(t) of the block.

b. Find the period and frequency of the vibration.
c. Sketch a graph of x(t).
d. At what time does the block first pass through the

equilibrium position?

92. A 1-kg mass is attached to a vertical spring with a
spring constant of 21 N/m. The resistance in the spring-
mass system is equal to 10 times the instantaneous velocity
of the mass.

a. Find the equation of motion if the mass is released
from a position 2 m below its equilibrium position
with a downward velocity of 2 m/sec.

b. Graph the solution and determine whether the
motion is overdamped, critically damped, or
underdamped.

93. An 800-lb weight (25 slugs) is attached to a vertical
spring with a spring constant of 226 lb/ft. The system is
immersed in a medium that imparts a damping force equal
to 10 times the instantaneous velocity of the mass.

a. Find the equation of motion if it is released from a
position 20 ft below its equilibrium position with a
downward velocity of 41 ft/sec.

b. Graph the solution and determine whether the
motion is overdamped, critically damped, or
underdamped.

94. A 9-kg mass is attached to a vertical spring with a
spring constant of 16 N/m. The system is immersed in a
medium that imparts a damping force equal to 24 times the
instantaneous velocity of the mass.

a. Find the equation of motion if it is released from its
equilibrium position with an upward velocity of 4
m/sec.

b. Graph the solution and determine whether the
motion is overdamped, critically damped, or
underdamped.

95. A 1-kg mass stretches a spring 6.25 cm. The resistance
in the spring-mass system is equal to eight times the
instantaneous velocity of the mass.

a. Find the equation of motion if the mass is released
from a position 5 m below its equilibrium position
with an upward velocity of 10 m/sec.

b. Determine whether the motion is overdamped,
critically damped, or underdamped.

96. A 32-lb weight (1 slug) stretches a vertical spring 4
in. The resistance in the spring-mass system is equal to four
times the instantaneous velocity of the mass.

a. Find the equation of motion if it is released from its
equilibrium position with a downward velocity of
12 ft/sec.

b. Determine whether the motion is overdamped,
critically damped, or underdamped.

97. A 64-lb weight is attached to a vertical spring with a
spring constant of 4.625 lb/ft. The resistance in the spring-
mass system is equal to the instantaneous velocity. The
weight is set in motion from a position 1 ft below its
equilibrium position with an upward velocity of 2 ft/sec. Is
the mass above or below the equation position at the end of
π sec? By what distance?

98. A mass that weighs 8 lb stretches a spring 6 inches.
The system is acted on by an external force of 8sin8t
lb. If the mass is pulled down 3 inches and then released,
determine the position of the mass at any time.

99. A mass that weighs 6 lb stretches a spring 3 in. The
system is acted on by an external force of 8sin(4t) lb. If

the mass is pulled down 1 inch and then released, determine
the position of the mass at any time.
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100. Find the charge on the capacitor in an RLC series
circuit where L = 40 H, R = 30Ω, C = 1/200 F, and

E(t) = 200 V. Assume the initial charge on the capacitor

is 7 C and the initial current is 0 A.

101. Find the charge on the capacitor in an RLC series
circuit where L = 2 H, R = 24Ω, C = 0.005 F, and

E(t) = 12sin10t V. Assume the initial charge on the

capacitor is 0.001 C and the initial current is 0 A.

102. A series circuit consists of a device where L = 1
H, R = 20Ω, C = 0.002 F, and E(t) = 12 V. If the

initial charge and current are both zero, find the charge and
current at time t.

103. A series circuit consists of a device where L = 1
2 H,

R = 10Ω, C = 1
50 F, and E(t) = 250 V. If the initial

charge on the capacitor is 0 C and the initial current is 18
A, find the charge and current at time t.
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7.4 | Series Solutions of Differential Equations

Learning Objectives
7.4.1 Use power series to solve first-order and second-order differential equations.

In Introduction to Power Series (http://cnx.org/content/m53760/latest/) , we studied how functions can be

represented as power series, y(x) = ∑
n = 0

∞
an xn. We also saw that we can find series representations of the derivatives

of such functions by differentiating the power series term by term. This gives y′(x) = ∑
n = 1

∞
nan xn − 1 and

y″(x) = ∑
n = 2

∞
n(n − 1)an xn − 2. In some cases, these power series representations can be used to find solutions to

differential equations.

Be aware that this subject is given only a very brief treatment in this text. Most introductory differential equations textbooks
include an entire chapter on power series solutions. This text has only a single section on the topic, so several important
issues are not addressed here, particularly issues related to existence of solutions. The examples and exercises in this section
were chosen for which power solutions exist. However, it is not always the case that power solutions exist. Those of you
interested in a more rigorous treatment of this topic should consult a differential equations text.

Problem-Solving Strategy: Finding Power Series Solutions to Differential Equations

1. Assume the differential equation has a solution of the form y(x) = ∑
n = 0

∞
an xn.

2. Differentiate the power series term by term to get y′(x) = ∑
n = 1

∞
nan xn − 1 and

y″(x) = ∑
n = 2

∞
n(n − 1)an xn − 2.

3. Substitute the power series expressions into the differential equation.

4. Re-index sums as necessary to combine terms and simplify the expression.

5. Equate coefficients of like powers of x to determine values for the coefficients an in the power series.

6. Substitute the coefficients back into the power series and write the solution.

Example 7.25

Series Solutions to Differential Equations

Find a power series solution for the following differential equations.

a. y″ − y = 0

b. (x2 − 1)y″ + 6xy′ + 4y = −4

Solution
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a. Assume y(x) = ∑
n = 0

∞
an xn (step 1). Then, y′(x) = ∑

n = 1

∞
nan xn − 1 and

y″(x) = ∑
n = 2

∞
n(n − 1)an xn − 2 (step 2). We want to find values for the coefficients an such that

y″ − y = 0

∑
n = 2

∞
n(n − 1)an xn − 2 − ∑

n = 0

∞
an xn = 0 (step 3).

We want the indices on our sums to match so that we can express them using a single summation. That is,
we want to rewrite the first summation so that it starts with n = 0.
To re-index the first term, replace n with n + 2 inside the sum, and change the lower summation limit to

n = 0. We get

∑
n = 2

∞
n(n − 1)an xn − 2 = ∑

n = 0

∞
(n + 2)(n + 1)an + 2 xn.

This gives

∑
n = 0

∞
(n + 2)(n + 1)an + 2 xn − ∑

n = 0

∞
an xn = 0

∑
n = 0

∞
⎡
⎣(n + 2)(n + 1)an + 2 − an

⎤
⎦xn = 0 (step 4).

Because power series expansions of functions are unique, this equation can be true only if the coefficients
of each power of x are zero. So we have

(n + 2)(n + 1)an + 2 − an = 0 for n = 0, 1, 2,….

This recurrence relationship allows us to express each coefficient an in terms of the coefficient two

terms earlier. This yields one expression for even values of n and another expression for odd values of n.
Looking first at the equations involving even values of n, we see that

a2 = a0
2

a4 = a2
4 ⋅ 3 = a0

4!
a6 = a4

6 ⋅ 5 = a0
6!

⋮.

Thus, in general, when n is even, an = a0
n ! (step 5).

For the equations involving odd values of n, we see that

a3 = a1
3 ⋅ 2 = a1

3!
a5 = a3

5 ⋅ 4 = a1
5!

a7 = a5
7 ⋅ 6 = a1

7!
⋮.
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Therefore, in general, when n is odd, an = a1
n ! (step 5 continued).

Putting this together, we have

y(x) = ∑
n = 0

∞
anxn

= a0 + a1 x + a0
2 x2 + a1

3!x3 + a0
4!x4 + a1

5!x5 + ⋯.

Re-indexing the sums to account for the even and odd values of n separately, we obtain

y(x) = a0 ∑
k = 0

∞
1

(2k) !x2k + a1 ∑
k = 0

∞
1

(2k + 1)!x2k + 1 (step 6).

Analysis for part a.
As expected for a second-order differential equation, this solution depends on two arbitrary constants.
However, note that our differential equation is a constant-coefficient differential equation, yet the power
series solution does not appear to have the familiar form (containing exponential functions) that we are
used to seeing. Furthermore, since y(x) = c1 ex + c2 e−x is the general solution to this equation, we must

be able to write any solution in this form, and it is not clear whether the power series solution we just
found can, in fact, be written in that form.
Fortunately, after writing the power series representations of ex and e−x, and doing some algebra, we

find that if we choose

c0 = (a0 + a1)
2 ,  c1 = (a0 − a1)

2 ,

we then have a0 = c0 + c1 and a1 = c0 − c1, and

y(x) = a0 + a1 x + a0
2 x2 + a1

3!x3 + a0
4!x4 + a1

5!x5 + ⋯

= (c0 + c1) + (c0 − c1)x + (c0 + c1)
2 x2 + (c0 − c1)

3! x3 + (c0 + c1)
4! x4 + (c0 − c1)

5! x5 + ⋯

= c0 ∑
n = 0

∞
xn

n ! + c1 ∑
n = 0

∞ (−x)n

n !

= c0 ex + c1 e−x.

So we have, in fact, found the same general solution. Note that this choice of c1 and c2 is not obvious.

This is a case when we know what the answer should be, and have essentially “reverse-engineered” our
choice of coefficients.

b. Assume y(x) = ∑
n = 0

∞
an xn (step 1). Then, y′(x) = ∑

n = 1

∞
nan xn − 1 and

y″(x) = ∑
n = 2

∞
n(n − 1)an xn − 2 (step 2). We want to find values for the coefficients an such that
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(x2 − 1)y″ + 6xy′ + 4y = −4
⎛
⎝x2 − 1⎞

⎠ ∑
n = 2

∞
n(n − 1)an xn − 2 + 6x ∑

n = 1

∞
nan xn − 1 + 4 ∑

n = 0

∞
anxn = −4

x2 ∑
n = 2

∞
n(n − 1)an xn − 2 − ∑

n = 2

∞
n(n − 1)an xn − 2 + 6x ∑

n = 1

∞
nan xn − 1 + 4 ∑

n = 0

∞
anxn = −4.

Taking the external factors inside the summations, we get

∑
n = 2

∞
n(n − 1)an xn − ∑

n = 2

∞
n(n − 1)an xn − 2 + ∑

n = 1

∞
6nan xn + ∑

n = 0

∞
4anxn = −4 (step 3).

Now, in the first summation, we see that when n = 0 or n = 1, the term evaluates to zero, so we can

add these terms back into our sum to get

∑
n = 2

∞
n(n − 1)an xn = ∑

n = 0

∞
n(n − 1)an xn.

Similarly, in the third term, we see that when n = 0, the expression evaluates to zero, so we can add

that term back in as well. We have

∑
n = 1

∞
6nan xn = ∑

n = 0

∞
6nan xn.

Then, we need only shift the indices in our second term. We get

∑
n = 2

∞
n(n − 1)an xn − 2 = ∑

n = 0

∞
(n + 2)(n + 1)an + 2 xn.

Thus, we have

∑
n = 0

∞
n(n − 1)an xn − ∑

n = 0

∞
(n + 2)(n + 1)an + 2 xn + ∑

n = 0

∞
6nan xn + ∑

n = 0

∞
4anxn = −4 (step 4).

∑
n = 0

∞
⎡
⎣n(n − 1)an − (n + 2)(n + 1)an + 2 + 6nan + 4an

⎤
⎦xn = −4

∑
n = 0

∞
⎡
⎣(n2 − n)an + 6nan + 4an − (n + 2)(n + 1)an + 2

⎤
⎦xn = −4

∑
n = 0

∞
⎡
⎣n2 an + 5nan + 4an − (n + 2)(n + 1)an + 2

⎤
⎦xn = −4

∑
n = 0

∞
⎡
⎣(n2 + 5n + 4)an − (n + 2)(n + 1)an + 2

⎤
⎦xn = −4

∑
n = 0

∞
⎡
⎣(n + 4)(n + 1)an − (n + 2)(n + 1)an + 2

⎤
⎦xn = −4

Looking at the coefficients of each power of x, we see that the constant term must be equal to −4, and

the coefficients of all other powers of x must be zero. Then, looking first at the constant term,
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7.22

4a0 − 2a2 = −4
a2 = 2a0 + 2 (step 3).

For n ≥ 1, we have

(n + 4)(n + 1)an − (n + 2)(n + 1)an + 2 = 0
(n + 1)⎡

⎣(n + 4)an − (n + 2)an + 2
⎤
⎦ = 0.

Since n ≥ 1, n + 1 ≠ 0, we see that

(n + 4)an − (n + 2)an + 2 = 0

and thus

an + 2 = n + 4
n + 2 an.

For even values of n, we have

a4 = 6
4

⎛
⎝2a0 + 2⎞

⎠ = 3a0 + 3

a6 = 8
6

⎛
⎝3a0 + 3⎞

⎠ = 4a0 + 4

⋮.

In general, a2k = (k + 1)⎛
⎝a0 + 1⎞

⎠ (step 5).

For odd values of n, we have

a3 = 5
3 a1

a5 = 7
5 a3 = 7

3 a1

a7 = 9
7 a5 = 9

3 a1 = 3a1

⋮.

In general, a2k + 1 = 2k + 3
3 a1 (step 5 continued).

Putting this together, we have

y(x) = ∑
k = 0

∞
(k + 1)(a0 + 1)x2k + ∑

k = 0

∞
⎛
⎝
2k + 3

3
⎞
⎠a1x2k + 1 (step 6).

Find a power series solution for the following differential equations.

a. y′ + 2xy = 0

b. (x + 1)y′ = 3y

We close this section with a brief introduction to Bessel functions. Complete treatment of Bessel functions is well beyond
the scope of this course, but we get a little taste of the topic here so we can see how series solutions to differential equations
are used in real-world applications. The Bessel equation of order n is given by
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x2 y″ + xy′ + (x2 − n2)y = 0.

This equation arises in many physical applications, particularly those involving cylindrical coordinates, such as the vibration
of a circular drum head and transient heating or cooling of a cylinder. In the next example, we find a power series solution
to the Bessel equation of order 0.

Example 7.26

Power Series Solution to the Bessel Equation

Find a power series solution to the Bessel equation of order 0 and graph the solution.

Solution

The Bessel equation of order 0 is given by

x2 y″ + xy′ + x2 y = 0.

We assume a solution of the form y = ∑
n = 0

∞
an xn. Then y′(x) = ∑

n = 1

∞
nan xn − 1 and

y″(x) = ∑
n = 2

∞
n(n − 1)an xn − 2. Substituting this into the differential equation, we get

x2 ∑
n = 2

∞
n(n − 1)an xn − 2 + x ∑

n = 1

∞
nan xn − 1 + x2 ∑

n = 0

∞
an xn = 0 Substitution.

∑
n = 2

∞
n(n − 1)an xn + ∑

n = 1

∞
nan xn + ∑

n = 0

∞
an xn + 2 = 0 Bring external factors within sums.

∑
n = 2

∞
n(n − 1)an xn + ∑

n = 1

∞
nan xn + ∑

n = 2

∞
an − 2 xn = 0 Re-index third sum.

∑
n = 2

∞
n(n − 1)an xn + a1 x + ∑

n = 2

∞
nan xn + ∑

n = 2

∞
an − 2 xn = 0 Separate n = 1 term from second sum.

a1 x + ∑
n = 2

∞
⎡
⎣n(n − 1)an + nan + an − 2

⎤
⎦xn = 0 Collect summation terms.

a1 x + ∑
n = 2

∞
⎡
⎣(n2 − n)an + nan + an − 2

⎤
⎦xn = 0 Multiply through in fir t term.

a1 x + ∑
n = 2

∞
⎡
⎣n2 an + an − 2

⎤
⎦xn = 0. Simplify.

Then, a1 = 0, and for n ≥ 2,

n2 an + an − 2 = 0

an = − 1
n2 an − 2.

Because a1 = 0, all odd terms are zero. Then, for even values of n, we have
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(7.10)

7.23

a2 = − 1
22 a0

a4 = − 1
42 a2 = 1

42 ⋅ 22 a0.

a6 = − 1
62 a4 = − 1

62 ⋅ 42 ⋅ 22 a0

In general,

a2k = (−1)k

(2)2k (k !)2 a0.

Thus, we have

y(x) = a0 ∑
k = 0

∞ (−1)k

(2)2k (k !)2x2k.

The graph appears below.

Verify that the expression found in Example 7.26 is a solution to the Bessel equation of order 0.
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7.4 EXERCISES
Find a power series solution for the following differential
equations.

104. y″ + 6y′ = 0

105. 5y″ + y′ = 0

106. y″ + 25y = 0

107. y″ − y = 0

108. 2y′ + y = 0

109. y′ − 2xy = 0

110. (x − 7)y′ + 2y = 0

111. y″ − xy′ − y = 0

112. ⎛
⎝1 + x2⎞

⎠y″ − 4xy′ + 6y = 0

113. x2 y″ − xy′ − 3y = 0

114. y″ − 8y′ = 0, y(0) = −2, y′ (0) = 10

115. y″ − 2xy = 0, y(0) = 1, y′ (0) = −3

116. The differential equation

x2 y″ + xy′ + ⎛
⎝x2 − 1⎞

⎠y = 0 is a Bessel equation of order

1. Use a power series of the form y = ∑
n = 0

∞
an xn to find

the solution.
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boundary conditions

boundary-value problem

characteristic equation

complementary equation

homogeneous linear equation

linearly dependent

linearly independent

method of undetermined coefficients

method of variation of parameters

nonhomogeneous linear equation

particular solution

RLC series circuit

simple harmonic motion

steady-state solution

CHAPTER 7 REVIEW

KEY TERMS
the conditions that give the state of a system at different times, such as the position of a spring-

mass system at two different times

a differential equation with associated boundary conditions

the equation aλ2 + bλ + c = 0 for the differential equation ay″ + by′ + cy = 0

for the nonhomogeneous linear differential equation

a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x),

the associated homogeneous equation, called the complementary equation, is

a2 (x)y″ + a1 (x)y′ + a0 (x)y = 0

a second-order differential equation that can be written in the form
a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x), but r(x) = 0 for every value of x

a set of functions f1(x), f2(x),…, fn(x) for which there are constants c1, c2 ,…cn, not all zero,

such that c1 f1(x) + c2 f2(x) + ⋯ + cn fn(x) = 0 for all x in the interval of interest

a set of functions f1(x), f2(x),…, fn(x) for which there are no constants c1, c2 ,…cn, such

that c1 f1(x) + c2 f2(x) + ⋯ + cn fn(x) = 0 for all x in the interval of interest

a method that involves making a guess about the form of the particular
solution, then solving for the coefficients in the guess

a method that involves looking for particular solutions in the form
y p(x) = u(x)y1(x) + v(x)y2(x), where y1 and y2 are linearly independent solutions to the complementary

equations, and then solving a system of equations to find u(x) and v(x)

a second-order differential equation that can be written in the form
a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x), but r(x) ≠ 0 for some value of x

a solution y p(x) of a differential equation that contains no arbitrary constants

a complete electrical path consisting of a resistor, an inductor, and a capacitor; a second-order,
constant-coefficient differential equation can be used to model the charge on the capacitor in an RLC series circuit

motion described by the equation x(t) = c1 cos(ωt) + c2 sin(ωt), as exhibited by an

undamped spring-mass system in which the mass continues to oscillate indefinitely

a solution to a nonhomogeneous differential equation related to the forcing function; in the long
term, the solution approaches the steady-state solution

KEY EQUATIONS
• Linear second-order differential equation

a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x)

• Second-order equation with constant coefficients
ay″ + by′ + cy = 0

• Complementary equation
a2 (x)y″ + a1 (x)y′ + a0 (x)y = 0
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• General solution to a nonhomogeneous linear differential equation
y(x) = c1 y1(x) + c2 y2(x) + y p(x)

• Equation of simple harmonic motion

x″ + ω2 x = 0

• Solution for simple harmonic motion
x(t) = c1 cos(ωt) + c2 sin(ωt)

• Alternative form of solution for SHM
x(t) = Asin ⎛

⎝ωt + ϕ⎞
⎠

• Forced harmonic motion
mx″ + bx′ + kx = f (t)

• Charge in a RLC series circuit

Ld2 q
dt2 + Rdq

dt + 1
Cq = E(t)

KEY CONCEPTS

7.1 Second-Order Linear Equations

• Second-order differential equations can be classified as linear or nonlinear, homogeneous or nonhomogeneous.

• To find a general solution for a homogeneous second-order differential equation, we must find two linearly
independent solutions. If y1(x) and y2(x) are linearly independent solutions to a second-order, linear,

homogeneous differential equation, then the general solution is given by

y(x) = c1 y1(x) + c2 y2(x).
• To solve homogeneous second-order differential equations with constant coefficients, find the roots of the

characteristic equation. The form of the general solution varies depending on whether the characteristic equation
has distinct, real roots; a single, repeated real root; or complex conjugate roots.

• Initial conditions or boundary conditions can then be used to find the specific solution to a differential equation that
satisfies those conditions, except when there is no solution or infinitely many solutions.

7.2 Nonhomogeneous Linear Equations

• To solve a nonhomogeneous linear second-order differential equation, first find the general solution to the
complementary equation, then find a particular solution to the nonhomogeneous equation.

• Let y p(x) be any particular solution to the nonhomogeneous linear differential equation

a2 (x)y″ + a1 (x)y′ + a0 (x)y = r(x),

and let c1 y1(x) + c2 y2(x) denote the general solution to the complementary equation. Then, the general solution

to the nonhomogeneous equation is given by

y(x) = c1 y1(x) + c2 y2(x) + y p(x).

• When r(x) is a combination of polynomials, exponential functions, sines, and cosines, use the method of

undetermined coefficients to find the particular solution. To use this method, assume a solution in the same form as
r(x), multiplying by x as necessary until the assumed solution is linearly independent of the general solution to

the complementary equation. Then, substitute the assumed solution into the differential equation to find values for
the coefficients.

• When r(x) is not a combination of polynomials, exponential functions, or sines and cosines, use the method of

variation of parameters to find the particular solution. This method involves using Cramer’s rule or another suitable
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technique to find functions u′(x) and v′(x) satisfying

u′ y1 + v′ y2 = 0
u′ y1 ′ + v′ y2 ′ = r(x).

Then, y p(x) = u(x)y1(x) + v(x)y2(x) is a particular solution to the differential equation.

7.3 Applications

• Second-order constant-coefficient differential equations can be used to model spring-mass systems.

• An examination of the forces on a spring-mass system results in a differential equation of the form

mx″ + bx′ + kx = f (t),

where m represents the mass, b is the coefficient of the damping force, k is the spring constant, and f (t)
represents any net external forces on the system.

• If b = 0, there is no damping force acting on the system, and simple harmonic motion results. If b ≠ 0, the

behavior of the system depends on whether b2 − 4mk > 0, b2 − 4mk = 0, or b2 − 4mk < 0.

• If b2 − 4mk > 0, the system is overdamped and does not exhibit oscillatory behavior.

• If b2 − 4mk = 0, the system is critically damped. It does not exhibit oscillatory behavior, but any slight reduction

in the damping would result in oscillatory behavior.

• If b2 − 4mk < 0, the system is underdamped. It exhibits oscillatory behavior, but the amplitude of the oscillations

decreases over time.

• If f (t) ≠ 0, the solution to the differential equation is the sum of a transient solution and a steady-state solution.

The steady-state solution governs the long-term behavior of the system.

• The charge on the capacitor in an RLC series circuit can also be modeled with a second-order constant-coefficient
differential equation of the form

Ld2 q
dt2 + Rdq

dt + 1
Cq = E(t),

where L is the inductance, R is the resistance, C is the capacitance, and E(t) is the voltage source.

7.4 Series Solutions of Differential Equations

• Power series representations of functions can sometimes be used to find solutions to differential equations.

• Differentiate the power series term by term and substitute into the differential equation to find relationships between
the power series coefficients.

CHAPTER 7 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

117. If y and z are both solutions to y″ + 2y′ + y = 0,
then y + z is also a solution.

118. The following system of algebraic equations has a
unique solution:

6z1 + 3z2 = 8
4z1 + 2z2 = 4.

119. y = ex cos(3x) + ex sin(2x) is a solution to the

second-order differential equation y″ + 2y′ + 10 = 0.
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120. To find the particular solution to a second-order
differential equation, you need one initial condition.

Classify the differential equation. Determine the order,
whether it is linear and, if linear, whether the differential
equation is homogeneous or nonhomogeneous. If the
equation is second-order homogeneous and linear, find the
characteristic equation.

121. y″ − 2y = 0

122. y″ − 3y + 2y = cos(t)

123.
⎛
⎝
dy
dt

⎞
⎠

2
+ yy′ = 1

124.
d2 y
dt2 + tdy

dt + sin2 (t)y = et

For the following problems, find the general solution.

125. y″ + 9y = 0

126. y″ + 2y′ + y = 0

127. y″ − 2y′ + 10y = 4x

128. y″ = cos(x) + 2y′ + y

129. y″ + 5y + y = x + e2x

130. y″ = 3y′ + xe−x

131. y″ − x2 = −3y′ − 9
4y + 3x

132. y″ = 2cosx + y′ − y

For the following problems, find the solution to the initial-
value problem, if possible.

133. y″ + 4y′ + 6y = 0, y(0) = 0, y′ (0) = 2

134. y″ = 3y − cos(x), y(0) = 9
4, y′ (0) = 0

For the following problems, find the solution to the
boundary-value problem.

135. 4y′ = −6y + 2y″, y(0) = 0, y(1) = 1

136. y″ = 3x − y − y′, y(0) = −3, y(1) = 0

For the following problem, set up and solve the differential
equation.

137. The motion of a swinging pendulum for small angles

θ can be approximated by d2 θ
dt2 + g

Lθ = 0, where θ is

the angle the pendulum makes with respect to a vertical
line, g is the acceleration resulting from gravity, and L is
the length of the pendulum. Find the equation describing
the angle of the pendulum at time t, assuming an initial

displacement of θ0 and an initial velocity of zero.

The following problems consider the “beats” that occur
when the forcing term of a differential equation causes
“slow” and “fast” amplitudes. Consider the general
differential equation ay″ + by = cos(ωt) that governs

undamped motion. Assume that b
a ≠ ω.

138. Find the general solution to this equation (Hint: call
ω0 = b/a ).

139. Assuming the system starts from rest, show that the
particular solution can be written as

y = 2
a⎛

⎝ω0
2 − ω2⎞

⎠
sin⎛

⎝
ω0 − ωt

2
⎞
⎠sin⎛

⎝
ω0 + ωt

2
⎞
⎠.

140. [T] Using your solutions derived earlier, plot the
solution to the system 2y″ + 9y = cos(2t) over the

interval t = [−50, 50]. Find, analytically, the period of

the fast and slow amplitudes.

For the following problem, set up and solve the differential
equations.

141. An opera singer is attempting to shatter a glass by
singing a particular note. The vibrations of the glass can
be modeled by y″ + ay = cos(bt), where y″ + ay = 0
represents the natural frequency of the glass and the singer
is forcing the vibrations at cos(bt). For what value b
would the singer be able to break that glass? (Note: in order
for the glass to break, the oscillations would need to get
higher and higher.)
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APPENDIX A | TABLE OF

INTEGRALS
Basic Integrals

1. ∫ un du = un + 1

n + 1 + C, n ≠ −1

2. ∫ du
u = ln|u| + C

3. ∫ eu du = eu + C

4. ∫ au du = au

lna + C

5. ∫ sin u du = −cos u + C

6. ∫ cos u du = sin u + C

7. ∫ sec2 u du = tan u + C

8. ∫ csc2 u du = −cot u + C

9. ∫ sec u tan u du = sec u + C

10. ∫ csc u cot u du = −csc u + C

11. ∫ tan u du = ln|sec u| + C

12. ∫ cot u du = ln|sin u| + C

13. ∫ sec u du = ln|sec u + tan u| + C

14. ∫ csc u du = ln|csc u − cot u| + C

15. ∫ du
a2 − u2

= sin−1 u
a + C

16. ∫ du
a2 + u2 = 1

atan−1 u
a + C

17. ∫ du
u u2 − a2

= 1
asec−1 u

a + C

Trigonometric Integrals
18. ∫ sin2 u du = 1

2u − 1
4sin 2u + C
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19. ∫ cos2 u du = 1
2u + 1

4sin 2u + C

20. ∫ tan2 u du = tan u − u + C

21. ∫ cot2 u du = −cot u − u + C

22. ∫ sin3 u du = − 1
3

⎛
⎝2 + sin2 u⎞

⎠cos u + C

23. ∫ cos3 u du = 1
3

⎛
⎝2 + cos2 u⎞

⎠sin u + C

24. ∫ tan3 u du = 1
2tan2 u + ln|cos u| + C

25. ∫ cot3 u du = − 1
2cot2 u − ln|sin u| + C

26. ∫ sec3 u du = 1
2sec u tan u + 1

2ln |sec u + tan u| + C

27. ∫ csc3 u du = − 1
2csc u cot u + 1

2ln |csc u − cot u| + C

28. ∫ sinn u du = − 1
nsinn − 1 u cos u + n − 1

n ∫ sinn − 2 u du

29. ∫ cosn u du = 1
ncosn − 1 u sin u + n − 1

n ∫ cosn − 2 u du

30. ∫ tann u du = 1
n − 1tann − 1 u − ∫ tann − 2 u du

31. ∫ cotn u du = −1
n − 1cotn − 1 u − ∫ cotn − 2 u du

32. ∫ secn u du = 1
n − 1tan u secn − 2 u + n − 2

n − 1∫ secn − 2 u du

33. ∫ cscn u du = −1
n − 1cot u cscn − 2 u + n − 2

n − 1∫ cscn − 2 u du

34. ∫ sin au sin bu du = sin(a − b)u
2(a − b) − sin(a + b)u

2(a + b) + C

35. ∫ cos au cos bu du = sin(a − b)u
2(a − b) + sin(a + b)u

2(a + b) + C

36. ∫ sin au cos bu du = − cos(a − b)u
2(a − b) − cos(a + b)u

2(a + b) + C

37. ∫ u sin u du = sin u − u cos u + C

38. ∫ u cos u du = cos u + u sin u + C

39. ∫ un sin u du = −un cos u + n∫ un − 1 cos u du

40. ∫ un cos u du = un sin u − n∫ un − 1 sin u du

41.
∫ sinnu cosm u du = − sinn − 1 u cosm + 1 u

n + m + n − 1
n + m∫ sinn − 2 u cosm u du

= sinn + 1 u cosm − 1 u
n + m + m − 1

n + m∫ sinn u cosm − 2 u du
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Exponential and Logarithmic Integrals
42. ∫ ueau du = 1

a2(au − 1)eau + C

43. ∫ un eau du = 1
aun eau − n

a∫ un − 1 eau du

44. ∫ eau sin bu du = eau

a2 + b2(asin bu − b cos bu) + C

45. ∫ eau cos bu du = eau

a2 + b2(a cos bu + b sin bu) + C

46. ∫ lnu du = u lnu − u + C

47. ∫ unlnu du = un + 1

(n + 1)2
⎡
⎣(n + 1)lnu − 1⎤

⎦ + C

48. ∫ 1
u lnu du = ln|lnu| + C

Hyperbolic Integrals
49. ∫ sinh u du = cosh u + C

50. ∫ cosh u du = sinh u + C

51. ∫ tanh u du = lncosh u + C

52. ∫ coth u du = ln|sinh u| + C

53. ∫ sech u du = tan−1 |sinh u| + C

54. ∫ csch u du = ln|tanh 1
2u| + C

55. ∫ sech2 u du = tanh u + C

56. ∫ csch2 u du = −coth u + C

57. ∫ sech u tanh u du = −sech u + C

58. ∫ csch u coth u du = −csch u + C

Inverse Trigonometric Integrals
59. ∫ sin−1 u du = u sin−1 u + 1 − u2 + C

60. ∫ cos−1 u du = u cos−1 u − 1 − u2 + C

61. ∫ tan−1 u du = u tan−1 u − 1
2ln ⎛

⎝1 + u2⎞
⎠ + C

62. ∫ u sin−1 u du = 2u2 − 1
4 sin−1 u + u 1 − u2

4 + C
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63. ∫ u cos−1 u du = 2u2 − 1
4 cos−1 u − u 1 − u2

4 + C

64. ∫ u tan−1 u du = u2 + 1
2 tan−1 u − u

2 + C

65. ∫ un sin−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 sin−1 u − ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

66. ∫ un cos−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 cos−1 u + ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

67. ∫ un tan−1 u du = 1
n + 1

⎡
⎣un + 1 tan−1 u − ∫ un + 1 du

1 + u2
⎤
⎦, n ≠ −1

Integrals Involving a2 + u2, a > 0

68. ∫ a2 + u2 du = u
2 a2 + u2 + a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

69. ∫ u2 a2 + u2 du = u
8

⎛
⎝a2 + 2u2⎞

⎠ a2 + u2 − a4

8 ln⎛
⎝u + a2 + u2⎞

⎠ + C

70. ∫ a2 + u2
u du = a2 + u2 − a ln |a + a2 + u2

u | + C

71. ∫ a2 + u2

u2 du = − a2 + u2
u + ln⎛

⎝u + a2 + u2⎞
⎠ + C

72. ∫ du
a2 + u2

= ln⎛
⎝u + a2 + u2⎞

⎠ + C

73. ∫ u2 du
a2 + u2

= u
2

⎛
⎝ a2 + u2⎞

⎠ − a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

74. ∫ du
u a2 + u2

= − 1
aln | a2 + u2 + a

u | + C

75. ∫ du
u2 a2 + u2

= − a2 + u2

a2 u
+ C

76. ∫ du
⎛
⎝a2 + u2⎞

⎠
3/2 = u

a2 a2 + u2
+ C

Integrals Involving u2 − a2, a > 0

77. ∫ u2 − a2 du = u
2 u2 − a2 − a2

2 ln |u + u2 − a2| + C

78. ∫ u2 u2 − a2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ u2 − a2 − a4

8 ln |u + u2 − a2| + C

79. ∫ u2 − a2
u du = u2 − a2 − acos−1 a

|u| + C

80. ∫ u2 − a2

u2 du = − u2 − a2
u + ln|u + u2 − a2| + C
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81. ∫ du
u2 − a2

= ln|u + u2 − a2| + C

82. ∫ u2 du
u2 − a2

= u
2 u2 − a2 + a2

2 ln |u + u2 − a2| + C

83. ∫ du
u2 u2 − a2

= u2 − a2

a2 u
+ C

84. ∫ du
⎛
⎝u2 − a2⎞

⎠
3/2 = − u

a2 u2 − a2
+ C

Integrals Involving a2 − u2, a > 0

85. ∫ a2 − u2 du = u
2 a2 − u2 + a2

2 sin−1 u
a + C

86. ∫ u2 a2 − u2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ a2 − u2 + a4

8 sin−1 u
a + C

87. ∫ a2 − u2
u du = a2 − u2 − aln |a + a2 − u2

u | + C

88. ∫ a2 − u2

u2 du = − 1
u a2 − u2 − sin−1 u

a + C

89. ∫ u2 du
a2 − u2

= − u
u a2 − u2 + a2

2 sin−1 u
a + C

90. ∫ du
u a2 − u2

= − 1
aln |a + a2 − u2

u | + C

91. ∫ du
u2 a2 − u2

= − 1
a2 u

a2 − u2 + C

92. ∫ ⎛
⎝a2 − u2⎞

⎠
3/2

du = − u
8

⎛
⎝2u2 − 5a2⎞

⎠ a2 − u2 + 3a4

8 sin−1 u
a + C

93. ∫ du
⎛
⎝a2 − u2⎞

⎠
3/2 = − u

a2 a2 − u2
+ C

Integrals Involving 2au − u2, a > 0

94. ∫ 2au − u2 du = u − a
2 2au − u2 + a2

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

95. ∫ du
2au − u2

= cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

96. ∫ u 2au − u2 du = 2u2 − au − 3a2

6 2au − u2 + a3

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

97. ∫ du
u 2au − u2

= − 2au − u2
au + C
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Integrals Involving a + bu, a ≠ 0
98. ∫ u du

a + bu = 1
b2

⎛
⎝a + bu − aln |a + bu|⎞

⎠ + C

99. ∫ u2 du
a + bu = 1

2b3
⎡
⎣(a + bu)2 − 4a(a + bu) + 2a2 ln |a + bu|⎤⎦ + C

100. ∫ du
u(a + bu) = 1

aln | u
a + bu | + C

101. ∫ du
u2 (a + bu)

= − 1
au + b

a2ln |a + bu
u | + C

102. ∫ u du
(a + bu)2 = a

b2 (a + bu)
+ 1

b2ln |a + bu| + C

103. ∫ u du
u (a + bu)2 = 1

a(a + bu) − 1
a2ln |a + bu

u | + C

104. ∫ u2 du
(a + bu)2 = 1

b3
⎛
⎝a + bu − a2

a + bu − 2aln |a + bu|⎞⎠ + C

105. ∫ u a + bu du = 2
15b2(3bu − 2a)(a + bu)3/2 + C

106. ∫ u du
a + bu

= 2
3b2(bu − 2a) a + bu + C

107. ∫ u2 du
a + bu

= 2
15b3

⎛
⎝8a2 + 3b2 u2 − 4abu⎞

⎠ a + bu + C

108.
∫ du

u a + bu
= 1

aln | a + bu − a
a + bu + a | + C, if a > 0

= 2
−atan − 1 a + bu

−a + C, if a < 0

109. ∫ a + bu
u du = 2 a + bu + a∫ du

u a + bu

110. ∫ a + bu
u2 du = − a + bu

u + b
2∫ du

u a + bu

111. ∫ un a + bu du = 2
b(2n + 3)

⎡
⎣un (a + bu)3/2 − na∫ un − 1 a + bu du⎤

⎦

112. ∫ un du
a + bu

= 2un a + bu
b(2n + 1) − 2na

b(2n + 1)∫
un − 1 du

a + bu

113. ∫ du
un a + bu

= − a + bu
a(n − 1)un − 1 − b(2n − 3)

2a(n − 1)∫
du

un − 1 a + bu
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APPENDIX B | TABLE OF

DERIVATIVES
General Formulas
1. d

dx(c) = 0

2. d
dx

⎛
⎝ f (x) + g(x)⎞

⎠ = f ′ (x) + g′ (x)

3. d
dx

⎛
⎝ f (x)g(x)⎞

⎠ = f ′ (x)g(x) + f (x)g′ (x)

4. d
dx(xn) = nxn − 1, for real numbers n

5. d
dx

⎛
⎝c f (x)⎞

⎠ = c f ′ (x)

6. d
dx

⎛
⎝ f (x) − g(x)⎞

⎠ = f ′ (x) − g′ (x)

7. d
dx

⎛
⎝

f (x)
g(x)

⎞
⎠ = g(x) f ′ (x) − f (x)g′ (x)

⎛
⎝g(x)⎞

⎠
2

8. d
dx

⎡
⎣ f ⎛

⎝g(x)⎞
⎠
⎤
⎦ = f ′ ⎛

⎝g(x)⎞
⎠ · g′ (x)

Trigonometric Functions
9. d

dx(sinx) = cosx

10. d
dx(tanx) = sec2 x

11. d
dx(secx) = secx tanx

12. d
dx(cosx) = −sinx

13. d
dx(cotx) = −csc2 x

14. d
dx(cscx) = −cscxcot x

Inverse Trigonometric Functions
15. d

dx
⎛
⎝sin−1 x⎞

⎠ = 1
1 − x2

16. d
dx

⎛
⎝tan−1 x⎞

⎠ = 1
1 + x2

17. d
dx

⎛
⎝sec−1 x⎞

⎠ = 1
|x| x2 − 1
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18. d
dx

⎛
⎝cos−1 x⎞

⎠ = − 1
1 − x2

19. d
dx

⎛
⎝cot−1 x⎞

⎠ = − 1
1 + x2

20. d
dx

⎛
⎝csc−1 x⎞

⎠ = − 1
|x| x2 − 1

Exponential and Logarithmic Functions
21. d

dx(ex) = ex

22. d
dx(ln |x|) = 1

x

23. d
dx(bx) = bx lnb

24. d
dx

⎛
⎝logb x⎞

⎠ = 1
x lnb

Hyperbolic Functions
25. d

dx(sinhx) = coshx

26. d
dx(tanhx) = sech2 x

27. d
dx(sech x) = −sech x tanhx

28. d
dx(coshx) = sinhx

29. d
dx(cothx) = −csch2 x

30. d
dx(csch x) = −csch x cothx

Inverse Hyperbolic Functions
31. d

dx
⎛
⎝sinh−1 x⎞

⎠ = 1
x2 + 1

32. d
dx

⎛
⎝tanh−1 x⎞

⎠ = 1
1 − x2(|x| < 1)

33. d
dx

⎛
⎝sech−1 x⎞

⎠ = − 1
x 1 − x2

(0 < x < 1)

34. d
dx

⎛
⎝cosh−1 x⎞

⎠ = 1
x2 − 1

(x > 1)

35. d
dx

⎛
⎝coth−1 x⎞

⎠ = 1
1 − x2 (|x| > 1)

36. d
dx

⎛
⎝csch−1 x⎞

⎠ = − 1
|x| 1 + x2

(x ≠ 0)
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APPENDIX C | REVIEW OF

PRE-CALCULUS
Formulas from Geometry
A = area, V = Volume, and S = lateral surface area

Formulas from Algebra
Laws of Exponents

xm xn = xm + n xm

xn = xm − n (xm)n = xmn

x−n = 1
xn (xy)n = xn yn ⎛

⎝
x
y

⎞
⎠
n

= xn

yn

x1/n = xn xyn = xn yn x
y

n = xn

yn

xm/n = xmn
= ( xn )m

Special Factorizations
x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)⎛
⎝x2 − xy + y2⎞

⎠

x3 − y3 = (x − y)⎛
⎝x2 + xy + y2⎞

⎠

Quadratic Formula

If ax2 + bx + c = 0, then x = −b ± b2 − 4ca
2a .
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Binomial Theorem

(a + b)n = an + ⎛
⎝
n
1

⎞
⎠a

n − 1 b + ⎛
⎝
n
2

⎞
⎠a

n − 2 b2 + ⋯ + ⎛
⎝

n
n − 1

⎞
⎠abn − 1 + bn,

where ⎛
⎝
n
k

⎞
⎠ = n(n − 1)(n − 2) ⋯ (n − k + 1)

k(k − 1)(k − 2) ⋯ 3 ⋅ 2 ⋅ 1 = n !
k !(n − k) !

Formulas from Trigonometry
Right-Angle Trigonometry

sinθ = opp
hyp cscθ = hyp

opp

cosθ = adj
hyp secθ = hyp

adj

tanθ = opp
adj cotθ = adj

opp

Trigonometric Functions of Important Angles

θ Radians sinθ cosθ tanθ

0° 0 0 1 0

30° π/6 1/2 3/2 3/3

45° π/4 2/2 2/2 1

60° π/3 3/2 1/2 3

90° π/2 1 0 —
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Fundamental Identities
sin2 θ + cos2 θ = 1 sin(−θ) = −sinθ

1 + tan2 θ = sec2 θ cos(−θ) = cosθ

1 + cot2 θ = csc2 θ tan(−θ) = −tanθ
sin⎛

⎝
π
2 − θ⎞

⎠ = cosθ sin(θ + 2π) = sinθ

cos⎛
⎝
π
2 − θ⎞

⎠ = sinθ cos(θ + 2π) = cosθ

tan⎛
⎝
π
2 − θ⎞

⎠ = cotθ tan(θ + π) = tanθ

Law of Sines
sin A

a = sinB
b = sinC

c

Law of Cosines
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C

Addition and Subtraction Formulas
sin (x + y) = sin x cos y + cos x sin y
sin(x − y) = sin x cos y − cos x sin y
cos(x + y) = cos x cos y − sin x sin y
cos(x − y) = cos x cos y + sin x sin y

tan(x + y) = tan x + tany
1 − tan x tany

tan(x − y) = tan x − tany
1 + tan x tany

Double-Angle Formulas
sin 2x = 2sin x cos x
cos 2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x

tan 2x = 2tan x
1 − tan2 x
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Half-Angle Formulas

sin2 x = 1 − cos 2x
2

cos2 x = 1 + cos 2x
2
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ANSWER KEY
Chapter 1

Checkpoint

1.1.

1.2. x = 2 + 3
y + 1, or y = −1 + 3

x − 2. This equation describes a portion of a rectangular hyperbola centered at (2, −1).

1.3. One possibility is x(t) = t, y(t) = t2 + 2t. Another possibility is

x(t) = 2t − 3, y(t) = (2t − 3)2 + 2(2t − 3) = 4t2 − 8t + 3. There are, in fact, an infinite number of possibilities.

1.4. x′ (t) = 2t − 4 and y′ (t) = 6t2 − 6, so
dy
dx = 6t2 − 6

2t − 4 = 3t2 − 3
t − 2 .

This expression is undefined when t = 2 and equal to zero when t = ±1.

Answer Key 909



1.5. The equation of the tangent line is y = 24x + 100.

1.6.
d2 y
dx2 = 3t2 − 12t + 3

2(t − 2)3 . Critical points (5, 4), (−3, −4), and (−4, 6).

1.7. A = 3π (Note that the integral formula actually yields a negative answer. This is due to the fact that x(t) is a decreasing

function over the interval [0, 2π]; that is, the curve is traced from right to left.)

1.8. s = 2⎛
⎝103/2 − 23/2⎞

⎠ ≈ 57.589

1.9. A =
π⎛

⎝494 13 + 128⎞
⎠

1215

1.10.
⎛
⎝8 2, 5π

4
⎞
⎠ and

⎛
⎝−2, 2 3⎞

⎠

1.11.

1.12.

910 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



The name of this shape is a cardioid, which we will study further later in this section.

1.13. y = x2, which is the equation of a parabola opening upward.

1.14. Symmetric with respect to the polar axis.

1.15. A = 3π/2

1.16. A = 4π
3 + 4 3

1.17. s = 3π

Answer Key 911



1.18. x = 2⎛
⎝y + 3⎞

⎠
2 − 2

1.19. (x + 1)2

16 +
⎛
⎝y − 2⎞

⎠
2

9 = 1

1.20.
⎛
⎝y + 2⎞

⎠
2

9 − (x − 1)2

4 = 1. This is a vertical hyperbola. Asymptotes y = −2 ± 3
2(x − 1).
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1.21. e = c
a = 74

7 ≈ 1.229

1.22. Here e = 0.8 and p = 5. This conic section is an ellipse.

1.23. The conic is a hyperbola and the angle of rotation of the axes is θ = 22.5°.
Section Exercises

1.

orientation: bottom to top
3.

orientation: left to right

Answer Key 913



5. y = x2

4 + 1

7.

9.

11.

13.
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15.

Asymptotes are y = x and y = −x
17.

19.
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21. x = 4y2 − 1; domain: x ∈ [1, ∞).

23. x2

16 + y2

9 = 1; domain x ∈ [−4, 4].

25. y = 3x + 2; domain: all real numbers.

27. (x − 1)2 + (y − 3)2 = 1; domain: x ∈ [0, 2].

29. y = x2 − 1; domain: x ∈ [−1, 1].

31. y2 = 1 − x
2 ; domain: x ∈ [2, ∞) ∪ (−∞, −2].

33. y = ln x; domain: x ∈ (0, ∞).
35. y = ln x; domain: x ∈ (0, ∞).

37. x2 + y2 = 4; domain: x ∈ [−2, 2].
39. line
41. parabola
43. circle
45. ellipse
47. hyperbola
51. The equations represent a cycloid.

53.

916 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2



55. 22,092 meters at approximately 51 seconds.
57.

59.

61.
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63. 0

65. −3
5

67. Slope = 0; y = 8.
69. Slope is undefined; x = 2.

71. t = arctan(−2); ⎛
⎝

4
5

, −8
5

⎞
⎠.

73. No points possible; undefined expression.

75. y = −⎛
⎝
2
e

⎞
⎠x + 3

77. y = 2x − 7

79. π
4, 5π

4 , 3π
4 , 7π

4

81.
dy
dx = −tan(t)

83.
dy
dx = 3

4 and
d2 y
dx2 = 0, so the curve is neither concave up nor concave down at t = 3. Therefore the graph is linear and

has a constant slope but no concavity.

85.
dy
dx = 4, d2 y

dx2 = −6 3; the curve is concave down at θ = π
6.

87. No horizontal tangents. Vertical tangents at (1, 0), (−1, 0).

89. −sec3 (πt)
91. Horizontal (0, −9); vertical (±2, −6).
93. 1
95. 0
97. 4
99. Concave up on t > 0.
101. 1

103. 3π
2

105. 6πa2

107. 2πab

109. 1
3(2 2 − 1)

111. 7.075
113. 6a
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115. 6 2

119.
2π⎛

⎝247 13 + 64⎞
⎠

1215
121. 59.101

123. 8π
3 (17 17 − 1)

125.

127.

129.
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131.

133. B⎛
⎝3, −π

3
⎞
⎠ B⎛

⎝−3, 2π
3

⎞
⎠

135. D⎛
⎝5, 7π

6
⎞
⎠D

⎛
⎝−5, π

6
⎞
⎠

137. (5, −0.927) (−5, −0.927 + π)
139. (10, −0.927)(−10, −0.927 + π)

141.
⎛
⎝2 3, −0.524⎞

⎠
⎛
⎝−2 3, −0.524 + π⎞

⎠

143. ⎛
⎝− 3, −1⎞

⎠

145.
⎛
⎝−

3
2 , −1

2
⎞
⎠

147. (0, 0)
149. Symmetry with respect to the x-axis, y-axis, and origin.
151. Symmetric with respect to x-axis only.
153. Symmetry with respect to x-axis only.
155. Line y = x
157. y = 1

159. Hyperbola; polar form r2 cos(2θ) = 16 or r2 = 16 sec θ.
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161. r = 2
3 cos θ − sin θ

163. x2 + y2 = 4y

165. x tan x2 + y2 = y
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167.

y-axis symmetry
169.
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y-axis symmetry
171.

x- and y-axis symmetry and symmetry about the pole
173.
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x-axis symmetry
175.

x- and y-axis symmetry and symmetry about the pole
177.
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no symmetry
179.

a line
181.
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183.

185.
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187. Answers vary. One possibility is the spiral lines become closer together and the total number of spirals increases.

189. 9
2∫

0

π
sin2 θ dθ

191. 32∫
0

π/2
sin2(2θ)dθ

193. 1
2∫

π

2π
(1 − sin θ)2 dθ

195. ∫
sin−1 (2/3)

π/2
(2 − 3 sin θ)2dθ

197. ∫
0

π
(1 − 2 cos θ)2 dθ − ∫

0

π/3
(1 − 2 cos θ)2dθ

199. 4∫
0

π/3
dθ + 16∫

π/3

π/2
⎛
⎝cos2 θ⎞

⎠dθ

201. 9π

203. 9π
4

205. 9π
8

207. 18π − 27 3
2

209. 4
3

⎛
⎝4π − 3 3⎞

⎠

211. 3
2

⎛
⎝4π − 3 3⎞

⎠

213. 2π − 4

215. ∫
0

2π
(1 + sin θ)2 + cos2 θdθ

217. 2∫
0

1
eθ dθ

219. 10
3

⎛
⎝e

6 − 1⎞
⎠

221. 32
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223. 6.238
225. 2
227. 4.39

229. A = π⎛
⎝

2
2

⎞
⎠

2
= π

2 and 1
2∫

0

π
(1 + 2 sin θ cos θ)dθ = π

2

231. C = 2π⎛
⎝
3
2

⎞
⎠ = 3π and ∫

0

π
3dθ = 3π

233. C = 2π(5) = 10π and ∫
0

π
10 dθ = 10π

235.
dy
dx = f ′(θ)sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ)sin θ

237. The slope is
1
3

.

239. The slope is 0.

241. At (4, 0), the slope is undefined. At
⎛
⎝−4, π

2
⎞
⎠, the slope is 0.

243. The slope is undefined at θ = π
4.

245. Slope = −1.

247. Slope is −2
π .

249. Calculator answer: −0.836.

251. Horizontal tangent at
⎛
⎝± 2, π

6
⎞
⎠,

⎛
⎝± 2, − π

6
⎞
⎠.

253. Horizontal tangents at π
2, 7π

6 , 11π
6 . Vertical tangents at π

6, 5π
6 and also at the pole (0, 0).

255. y2 = 16x

257. x2 = 2y

259. x2 = −4⎛
⎝y − 3⎞

⎠

261. (x + 3)2 = 8⎛
⎝y − 3⎞

⎠

263. x2

16 + y2

12 = 1

265. x2

13 + y2

4 = 1

267.
⎛
⎝y − 1⎞

⎠
2

16 + (x + 3)2

12 = 1

269. x2

16 + y2

12 = 1

271. x2

25 − y2

11 = 1

273. x2

7 − y2

9 = 1

275.
⎛
⎝y + 2⎞

⎠
2

4 − (x + 2)2

32 = 1

277. x2

4 − y2

32 = 1

279. e = 1, parabola

281. e = 1
2, ellipse

283. e = 3, hyperbola
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285. r = 4
5 + cos θ

287. r = 4
1 + 2 sin θ

289.

291.

293.

295.
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297.

299.

301.
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303.

305.

307. Hyperbola
309. Ellipse
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311. Ellipse
313. At the point 2.25 feet above the vertex.
315. 0.5625 feet
317. Length is 96 feet and height is approximately 26.53 feet.

319. r = 2.616
1 + 0.995 cos θ

321. r = 5.192
1 + 0.0484 cos θ

Review Exercises

323. True.
325. False. Imagine y = t + 1, x = −t + 1.
327.

y = 1 − x3

329.

x2

16 + (y − 1)2 = 1

331.
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Symmetric about polar axis

333. r2 = 4
sin2 θ − cos2 θ

335.

y = 3 2
2 + 1

5
⎛
⎝x + 3 2

2
⎞
⎠

337. e2

2
339. 9 10
341. ⎛

⎝y + 5⎞
⎠
2 = −8x + 32

343.
⎛
⎝y + 1⎞

⎠
2

16 − (x + 2)2

9 = 1

345. e = 2
3, ellipse
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347.
y2

19.032 + x2

19.632 = 1, e = 0.2447

Chapter 2

Checkpoint

2.1.

2.2.

2.3. Vectors a, b, and e are equivalent.

2.4. 〈 3, 7 〉

2.5. a. ‖ a ‖ = 5 2, b. b = 〈 −4, −3 〉 , c. 3a − 4b = 〈 37, 15 〉

2.7. v = 〈 −5, 5 3 〉

2.8. 〈 − 45
85

, − 10
85

〉

2.9. a = 16i − 11j, b = − 2
2 i − 2

2 j

2.10. Approximately 516 mph
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2.11.

2.12. 5 2
2.13. z = −4
2.14. (x + 2)2 + ⎛

⎝y − 4⎞
⎠
2 + (z + 5)2 = 52

2.15. x2 + ⎛
⎝y − 2⎞

⎠
2 + (z + 2)2 = 14

2.16. The set of points forms the two planes y = −2 and z = 3.

2.17. A cylinder of radius 4 centered on the line with x = 0 and z = 2.
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2.18. ST
→

= 〈 −1, −9, 1 〉 = −i − 9j + k

2.19. 〈 1
3 10

, − 5
3 10

, 8
3 10

〉

2.20. v = 〈 16 2, 12 2, 20 2 〉
2.21. 7

2.22. a. (r · p)q = 〈 12, −12, 12 〉 ; b. ‖ p ‖ 2 = 53
2.23. θ ≈ 0.22 rad

2.24. x = 5
2.25. a. α ≈ 1.04 rad; b. β ≈ 2.58 rad; c. γ ≈ 1.40 rad

2.26. Sales = $15,685.50; profit = $14,073.15

2.27. v = p + q, where p = 18
5 i + 9

5 j and q = 7
5i − 14

5 j

2.28. 21 knots
2.29. 150 ft-lb
2.30. i − 9j + 2k
2.31. Up (the positive z-direction)
2.32. −i
2.33. −k
2.34. 16
2.35. 40
2.36. 8i − 35j + 2k

2.37. 〈 −3
194

, −13
194

, 4
194

〉

2.38. 6 13
2.39. 17
2.40. 8 units3

2.41. No, the triple scalar product is −4 ≠ 0, so the three vectors form the adjacent edges of a parallelepiped. They are not

coplanar.
2.42. 20 N

2.43. Possible set of parametric equations: x = 1 + 4t, y = −3 + t, z = 2 + 6t; related set of symmetric equations:

x − 1
4 = y + 3 = z − 2

6
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2.44. x = −1 − 7t, y = 3 − t, z = 6 − 2t, 0 ≤ t ≤ 1

2.45. 10
7

2.46. These lines are skew because their direction vectors are not parallel and there is no point (x, y, z) that lies on both lines.

2.47. −2(x − 1) + ⎛
⎝y + 1⎞

⎠ + 3(z − 1) = 0 or −2x + y + 3z = 0

2.48.
15
21

2.49. x = t, y = 7 − 3t, z = 4 − 2t
2.50. 1.44 rad

2.51.
9
30

2.52.

2.53. The traces parallel to the xy-plane are ellipses and the traces parallel to the xz- and yz-planes are hyperbolas. Specifically, the

trace in the xy-plane is ellipse x2

32 + y2

22 = 1, the trace in the xz-plane is hyperbola x2

32 − z2

52 = 1, and the trace in the yz-plane

is hyperbola
y2

22 − z2

52 = 1 (see the following figure).
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2.54. Hyperboloid of one sheet, centered at (0, 0, 1)

2.55. The rectangular coordinates of the point are
⎛
⎝
5 3
2 , 5

2, 4⎞
⎠.
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2.56.
⎛
⎝8 2, 3π

4 , −7⎞
⎠

2.57. This surface is a cylinder with radius 6.

2.58.
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Cartesian:
⎛
⎝− 3

2 , − 1
2, 3⎞

⎠, cylindrical:
⎛
⎝1, − 5π

6 , 3⎞
⎠

2.59. a. This is the set of all points 13 units from the origin. This set forms a sphere with radius 13. b. This set of points forms a

half plane. The angle between the half plane and the positive x-axis is θ = 2π
3 . c. Let P be a point on this surface. The position

vector of this point forms an angle of φ = π
4 with the positive z-axis, which means that points closer to the origin are closer to

the axis. These points form a half-cone.
2.60. (4000, 151°, 124°)
2.61. Spherical coordinates with the origin located at the center of the earth, the z-axis aligned with the North Pole, and the x-axis
aligned with the prime meridian

Section Exercises

1. a. PQ
→

= 〈 2, 2 〉 ; b. PQ
→

= 2i + 2j

3. a. QP
→

= 〈 −2, −2 〉 ; b. QP
→

= −2i − 2j

5. a. PQ
→

+ PR→ = 〈 0, 6 〉 ; b. PQ
→

+ PR→ = 6j

7. a. 2PQ
→

− 2PR→ = 〈 8, −4 〉 ; b. 2PQ
→

− 2PR→ = 8i − 4j

9. a. 〈 1
2

, 1
2

〉 ; b.
1
2

i + 1
2

j

11. 〈 3
5, 4

5 〉

13. Q(0, 2)
15. a. a + b = 3i + 4j, a + b = 〈 3, 4 〉 ; b. a − b = i − 2j, a − b = 〈 1, −2 〉 ; c. Answers will vary; d.

2a = 4i + 2j, 2a = 〈 4, 2 〉 , −b = −i − 3j, −b = 〈 −1, −3 〉 , 2a − b = 3i − j, 2a − b = 〈 3, −1 〉
17. 15
19. λ = −3
21. a. a(0) = 〈 1, 0 〉 , a(π) = 〈 −1, 0 〉 ; b. Answers may vary; c. Answers may vary

23. Answers may vary

25. v = 〈 21
5 , 28

5 〉

27. v = 〈 21 34
34 , − 35 34

34 〉

29. u = 〈 3, 1 〉
31. u = 〈 0, 5 〉

33. u = 〈 −5 3, 5 〉

35. θ = 7π
4

37. Answers may vary

39. a. z0 = f (x0) + f ′(x0); b. u = 1
1 + ⎡

⎣ f ′(x0)⎤
⎦
2

〈 1, f ′(x0) 〉

43. D(6, 1)
45. 〈 60.62, 35 〉
47. The horizontal and vertical components are 750 ft/sec and 1299.04 ft/sec, respectively.

49. The magnitude of resultant force is 94.71 lb; the direction angle is 13.42°.
51. The magnitude of the third vector is 60.03 N; the direction angle is 259.38°.
53. The new ground speed of the airplane is 572.19 mph; the new direction is N41.82E.
55. ‖ T1 ‖ = 30.13 lb, ‖ T2 ‖ = 38.35 lb

57. ‖ v1 ‖ = 750 lb, ‖ v2 ‖ = 1299 lb

59. The two horizontal and vertical components of the force of tension are 28 lb and 42 lb, respectively.
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61. a. (2, 0, 5), (2, 0, 0), (2, 3, 0), (0, 3, 0), (0, 3, 5), (0, 0, 5); b. 38
63. A union of two planes: y = 5 (a plane parallel to the xz-plane) and z = 6 (a plane parallel to the xy-plane)

65. A cylinder of radius 1 centered on the line y = 1, z = 1

67. z = 1
69. z = −2
71. (x + 1)2 + (y − 7)2 + (z − 4)2 = 16

73. (x + 3)2 + (y − 3.5)2 + (z − 8)2 = 29
4

75. Center C(0, 0, 2) and radius 1

77. a. PQ
→

= 〈 −4, −1, 2 〉 ; b. PQ
→

= −4i − j + 2k

79. a. PQ
→

= 〈 6, −24, 24 〉 ; b. PQ
→

= 6i − 24j + 24k
81. Q(5, 2, 8)
83. a + b = 〈 −6, 4, −3 〉 , 4a = 〈 −4, −8, 16 〉 , −5a + 3b = 〈 −10, 28, −41 〉
85. a + b = 〈 −1, 0, −1 〉 , 4a = 〈 0, 0, −4 〉 , −5a + 3b = 〈 −3, 0, 5 〉

87. ‖ u − v ‖ = 38, ‖ −2u ‖ = 2 29

89. ‖ u − v ‖ = 2, ‖ −2u ‖ = 2 13

91. a = 3
5i − 4

5 j

93. 〈 2
62

, − 7
62

, 3
62

〉

95. 〈 − 2
6

, 1
6

, 1
6

〉
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97. Equivalent vectors

99. u = 〈 70
59

, − 10
59

, 30
59

〉

101. u = 〈 − 4
5

sin t, − 4
5

cos t, − 2
5

〉

103. 〈 5
154

, 15
154

, − 60
154

〉

105. α = − 7, β = − 15
111. a. F = 〈 30, 40, 0 〉 ; b. 53°
113. D = 10k
115. F4 = 〈 −20, −7, −3 〉

117. a. F = −19.6k, ‖ F ‖ = 19.6 N; b. T = 19.6k, ‖ T ‖ = 19.6 N

119. a. F = −294k N; b. F1 = 〈 −49 3
3 , 49, −98 〉 , F2 = 〈 −49 3

3 , −49, −98 〉 , and F3 = 〈 98 3
3 , 0, −98 〉

(each component is expressed in newtons)
121. a. v(1) = 〈 −0.84, 0.54, 2 〉 (each component is expressed in centimeters per second); ‖ v(1) ‖ = 2.24 (expressed

in centimeters per second); a(1) = 〈 −0.54, −0.84, 0 〉 (each component expressed in centimeters per second squared); b.

123. 6
125. 0
127. (a · b)c = 〈 −11, −11, 11 〉 ; (a · c)b = 〈 −20, −35, 5 〉
129. (a · b)c = 〈 1, 0, −2 〉 ; (a · c)b = 〈 1, 0, −1 〉
131. a. θ = 2.82 rad; b. θ is not acute.

133. a. θ = π
4 rad; b. θ is acute.

135. θ = π
2

137. θ = π
3

139. θ = 2 rad

141. Orthogonal
143. Not orthogonal

145. a = 〈 −4α
3 , α 〉 , where α ≠ 0 is a real number

147. u = −αi + αj + βk, where α and β are real numbers such that α2 + β2 ≠ 0
149. α = −6
151. a. OP

→
= 4i + 5j, OQ

→
= 5i − 7j; b. 105.8°

153. 68.33°
155. u and v are orthogonal; v and w are orthogonal.

161. a. cos α = 2
3, cos β = 2

3, and cos γ = 1
3; b. α = 48°, β = 48°, and γ = 71°
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163. a. cos α = − 1
30

, cos β = 5
30

, and cos γ = 2
30

; b. α = 101°, β = 24°, and γ = 69°

167. a. w = 〈 80
29, 32

29 〉 ; b. compu v = 16
29

169. a. w = 〈 24
13, 0, 16

13 〉 ; b. compu v = 8
13

171. a. w = 〈 24
25, − 18

25 〉 ; b. q = 〈 51
25, 68

25 〉 , v = w + q = 〈 24
25, − 18

25 〉 + 〈 51
25, 68

25 〉

173. a. 2 2; b. 109.47°
175. 17N · m
177. 1175 ft · lb
179. 4330.13 ft-lb
181. a. ‖ F1 + F2 ‖ = 52.9 lb; b. The direction angles are α = 74.5°, β = 36.7°, and γ = 57.7°.

183. a. u × v = 〈 0, 0, 4 〉 ;
b.

185. a. u × v = 〈 6, −4, 2 〉 ;
b.

187. −2j − 4k
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189. w = − 1
3 6

i − 7
3 6

j − 2
3 6

k

191. w = − 4
21

i − 2
21

j − 1
21

k

193. α = 10
197. −3i + 11j + 2k

199. w = 〈 −1, et, −e−t 〉
201. −26i + 17j + 9k
203. 72°
209. 7

211. a. 5 6; b. 5 6
2 ; c. 5 6

59
213. a. 2; b. 2
215. v · (u × w) = −1, w · (u × v) = 1
217. a = 〈 1, 2, 3 〉 , b = 〈 0, 2, 5 〉 , c = 〈 8, 9, 2 〉 ; a · (b × c) = −9
219. a. α = 1; b. h = 1,

225. Yes, AD
→

= α AB
→

+ βAC
→

, where α = −1 and β = 1.

227. −k
229. 〈 0, ±4 5, 2 5 〉

233. w = 〈 w3 − 1, w3 + 1, w3 〉 , where w3 is any real number

235. 8.66 ft-lb
237. 250 N

239. F = 4.8 × 10−15 k N

241. a. B(t) = 〈 2 sin t
5

, − 2 cos t
5

, 1
5

〉 ;

b.
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243. a. r = 〈 −3, 5, 9 〉 + t 〈 7, −12, −7 〉 , t ∈ ℝ ; b. x = −3 + 7t, y = 5 − 12t, z = 9 − 7t, t ∈ ℝ ; c.

x + 3
7 = y − 5

−12 = z − 9
−7 ; d. x = −3 + 7t, y = 5 − 12t, z = 9 − 7t, t ∈ [0, 1]

245. a. r = 〈 −1, 0, 5 〉 + t 〈 5, 0, −2 〉 , t ∈ ℝ ; b. x = −1 + 5t, y = 0, z = 5 − 2t, t ∈ ℝ ; c.

x + 1
5 = z − 5

−2 , y = 0; d. x = −1 + 5t, y = 0, z = 5 − 2t, t ∈ [0, 1]

247. a. x = 1 + t, y = −2 + 2t, z = 3 + 3t, t ∈ ℝ ; b. x − 1
1 = y + 2

2 = z − 3
3 ; c. (0, −4, 0)

249. a. x = 3 + t, y = 1, z = 5, t ∈ ℝ ; b. y = 1, z = 5; c. The line does not intersect the xy-plane.

251. a. P(1, 3, 5), v = 〈 1, 1, 4 〉 ; b. 3

253. 2 2
3

255. a. Parallel; b. 2
3

259. (−12, 6, −4)
261. The lines are skew.
263. The lines are equal.
265. a. x = 1 + t, y = 1 − t, z = 1 + 2t, t ∈ ℝ ; b. For instance, the line passing through A with direction vector

j : x = 1, z = 1; c. For instance, the line passing through A and point (2, 0, 0) that belongs to L is a line that intersects;

L : x − 1
−1 = y − 1 = z − 1

267. a. 3x − 2y + 4z = 0; b. 3x − 2y + 4z = 0
269. a. (x − 1) + 2⎛

⎝y − 2⎞
⎠ + 3(z − 3) = 0; b. x + 2y + 3z − 14 = 0

271. a. n = 4i + 5j + 10k; b. (5, 0, 0), (0, 4, 0), and (0, 0, 2);
c.
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273. a. n = 3i − 2j + 4k; b. (0, 0, 0);
c.

275. (3, 0, 0)
277. x = −2 + 2t, y = 1 − 3t, z = 3 + t, t ∈ ℝ
281. a. −2y + 3z − 1 = 0; b. 〈 0, −2, 3 〉 · 〈 x − 1, y − 1, z − 1 〉 = 0; c. x = 0, y = −2t, z = 3t, t ∈ ℝ

283. a. Answers may vary; b. x − 1
1 = z − 6

−1 , y = 4

285. 2x − 5y − 3z + 15 = 0
287. The line intersects the plane at point P(−3, 4, 0).

289.
16
14

291. a. The planes are neither parallel nor orthogonal; b. 62°
293. a. The planes are parallel.

295.
1
6

297. a.
18
29

; b. P⎛
⎝−

51
29, 130

29 , 62
29

⎞
⎠

299. 4x − 3y = 0
301. a. v(1) = 〈 cos 1, −sin 1, 2 〉 ; b. (cos 1)(x − sin 1) − (sin 1)(y − cos 1) + 2(z − 2) = 0;
c.

303. The surface is a cylinder with the rulings parallel to the y-axis.
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305. The surface is a cylinder with rulings parallel to the y-axis.

307. The surface is a cylinder with rulings parallel to the x-axis.

309. a. Cylinder; b. The x-axis
311. a. Hyperboloid of two sheets; b. The x-axis
313. b.
315. d.
317. a.

319. − x2

9 + y2

1
4

+ z2
1
4

= 1, hyperboloid of one sheet with the x-axis as its axis of symmetry

321. − x2
10
3

+ y2

2 − z2

10 = 1, hyperboloid of two sheets with the y-axis as its axis of symmetry
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323. y = − z2

5 + x2

5 , hyperbolic paraboloid with the y-axis as its axis of symmetry

325. x2

15 + y2

3 + z2

5 = 1, ellipsoid

327. x2

40 + y2

8 − z2

5 = 0, elliptic cone with the z-axis as its axis of symmetry

329. x = y2

2 + z2

3 , elliptic paraboloid with the x-axis as its axis of symmetry

331. Parabola y = − x2

4 ,

333. Ellipse y2

4 + z2

100 = 1,

335. Ellipse y2

4 + z2

100 = 1,
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337. a. Ellipsoid; b. The third equation; c. x2

100 + y2

400 + z2

225 = 1

339. a. (x + 3)2

16 + (z − 2)2

8 = 1; b. Cylinder centered at (−3, 2) with rulings parallel to the y-axis

341. a. (x − 3)2

4 + ⎛
⎝y − 2⎞

⎠
2 − (z + 2)2 = 1; b. Hyperboloid of one sheet centered at (3, 2, −2), with the z-axis as its axis of

symmetry

343. a. (x + 3)2 + y2

4 − z2

3 = 0; b. Elliptic cone centered at (−3, 0, 0), with the z-axis as its axis of symmetry

345. x2

4 + y2

16 + z2 = 1

347. (1, −1, 0) and
⎛
⎝
13
3 , 4, 5

3
⎞
⎠

349. x2 + z2 + 4y = 0, elliptic paraboloid

351. (0, 0, 100)

355. a. x = 2 − z2

2 , y = ± z
2 4 − z2, where z ∈ [−2, 2];

b.

357.
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two ellipses of equations
x2

2 + y2

9
2

= 1 in planes z = ±2 2

359. a. x2

39632 + y2

39632 + z2

39502 = 1;

b.

;

c. The intersection curve is the ellipse of equation x2

39632 + y2

39632 = (2950)(4950)
39502 , and the intersection is an ellipse.; d. The

intersection curve is the ellipse of equation
2y2

39632 + z2

39502 = 1.

361. a.

b. The intersection curve is ⎛
⎝x2 + z2 − 1⎞

⎠
3

− x2 z3 = 0.

363.
⎛
⎝2 3, 2, 3⎞

⎠
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365.
⎛
⎝−2 3, −2, 3⎞

⎠

367.
⎛
⎝2, π

3, 2⎞
⎠

369.
⎛
⎝3 2, − π

4, 7⎞
⎠

371. A cylinder of equation x2 + y2 = 16, with its center at the origin and rulings parallel to the z-axis,

373. Hyperboloid of two sheets of equation −x2 + y2 − z2 = 1, with the y-axis as the axis of symmetry,

375. Cylinder of equation x2 − 2x + y2 = 0, with a center at (1, 0, 0) and radius 1, with rulings parallel to the z-axis,

377. Plane of equation x = 2,
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379. z = 3
381. r2 + z2 = 9
383. r = 16 cos θ, r = 0
385. (0, 0, −3)

387.
⎛
⎝6, −6, 2⎞

⎠

389. (4, 0, 90°)
391. (3, 90°, 90°)

393. Sphere of equation x2 + y2 + z2 = 9 centered at the origin with radius 3,

395. Sphere of equation x2 + y2 + (z − 1)2 = 1 centered at (0, 0, 1) with radius 1,

397. The xy-plane of equation z = 0,
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399. φ = π
3 or φ = 2π

3 ; Elliptic cone

401. ρ cos φ = 6; Plane at z = 6

403.
⎛
⎝ 10, π

4, 0.3218⎞
⎠

405.
⎛
⎝3 2, π

2, π
4

⎞
⎠

407.
⎛
⎝2, − π

4, 0⎞
⎠

409.
⎛
⎝8, π

3, 0⎞
⎠

411. Cartesian system,
⎧

⎩
⎨(x, y, z)|0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a⎫

⎭
⎬

413. Cylindrical system,
⎧

⎩
⎨(r, θ, z)|r2 + z2 ≤ 9, r ≥ 3 cos θ, 0 ≤ θ ≤ 2π⎫

⎭
⎬

415. The region is described by the set of points
⎧

⎩
⎨(r, θ, z)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ r⎫

⎭
⎬.

417. (4000, −77°, 51°)
419. 43.17°W, 22.91°S
421. a. ρ = 0, ρ + R2 − r2 − 2R sin φ = 0;
c.
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Review Exercises

423. True
425. False

427. a. 〈 24, −5 〉 ; b. 85; c. Can’t dot a vector with a scalar; d. −29
429. a = ±2

431. 〈 1
14

, − 2
14

, − 3
14

〉

433. 27
435. x = 1 − 3t, y = 3 + 3t, z = 5 − 8t, r(t) = (1 − 3t)i + 3(1 + t)j + (5 − 8t)k
437. −x + 3y + 8z = 43

439. x = k trace: k2 = y2 + z2 is a circle, y = k trace: x2 − z2 = k2 is a hyperbola (or a pair of lines if k = 0), z = k

trace: x2 − y2 = k2 is a hyperbola (or a pair of lines if k = 0). The surface is a cone.

441. Cylindrical: z = r2 − 1, spherical: cos φ = ρ sin2 φ − 1
ρ

443. x2 − 2x + y2 + z2 = 1, sphere

445. 331 N, and 244 N
447. 15 J
449. More, 59.09 J

Chapter 3

Checkpoint

3.1. r(0) = j, r(1) = −2 i + 5 j, r(−4) = 28 i − 15 j The domain of r(t) = ⎛
⎝t2 − 3t⎞

⎠i + (4t + 1) j is all real numbers.

3.2.

3.3. lim
t → −2

r(t) = 3 i − 5 j − k

3.4. r′(t) = 4t i + 5 j
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3.5. r′(t) = (1 + ln t) i + 5et j − (sin t + cos t)k

3.6. d
dt

⎡
⎣r(t) · r′(t)⎤

⎦ = 8e4t
d
dt

⎡
⎣u(t) × r(t)⎤

⎦

= − ⎛
⎝e2t (cos t + 2sin t) + cos2t⎞

⎠i + ⎛
⎝e2t (2t + 1) − sin2t⎞

⎠ j + (tcos t + sin t − cos2t)k

3.7. T(t) = 2t
4t2 + 5

i + 2
4t2 + 5

j + 1
4t2 + 5

k

3.8. ∫
1

3
⎡
⎣(2t + 4) i + ⎛

⎝3t2 − 4t⎞
⎠ j⎤

⎦dt = 16 i + 10 j

3.9. r′(t) = 〈 4t, 4t, 3t2 〉 , so s = 1
27

⎛
⎝1133/2 − 323/2⎞

⎠ ≈ 37.785

3.10. s = 5t, or t = s/5. Substituting this into r(t) = 〈 3cos t, 3sin t, 4t 〉 gives

r(s) = 〈 3cos⎛
⎝
s
5

⎞
⎠, 3sin⎛

⎝
s
5

⎞
⎠,

4s
5 〉 , s ≥ 0.

3.11. κ = 6
1013/2 ≈ 0.0059

3.12. N(2) = 2
2

⎛
⎝i − j⎞

⎠

3.13.
κ = 4

⎡
⎣1 + (4x − 4)2⎤

⎦
3/2 At the point x = 1, the curvature is equal to 4. Therefore, the radius of the osculating circle is

1
4. A graph of this function appears next:

The vertex of this parabola is located at the point (1, 3). Furthermore, the

center of the osculating circle is directly above the vertex. Therefore, the coordinates of the center are
⎛
⎝1, 13

4
⎞
⎠. The equation of

the osculating circle is (x − 1)2 + ⎛
⎝y − 13

4
⎞
⎠
2

= 1
16.

3.14.

v(t) = r′(t) = (2t − 3) i + 2j + k
a(t) = v′(t) = 2i
v(t) = ‖ r′(t) ‖ = (2t − 3)2 + 22 + 12 = 4t2 − 12t + 14

The units for velocity and speed are feet per second, and

the units for acceleration are feet per second squared.
3.15.

a.

v(t) = r′(t) = 4i + 2t j
a(t) = v′(t) = 2j

aT = 2t
t2 + 4

, aN = 2
t2 + 4
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b. aT (−3) = − 6 13
13 , aN (−3) = 2 13

13
3.16. 967.15 m

3.17. a = 1.224 × 109 m ≈ 1,224,000 km

Section Exercises

1. f (t) = 3sec t, g(t) = 2tan t
3.

5. a. 〈 2
2 , 2

2 〉 , b. 〈 1
2, 3

2 〉 , c. Yes, the limit as t approaches π/3 is equal to r(π/3), d.

7. a. 〈 eπ/4, 2
2 , ln⎛

⎝
π
4

⎞
⎠ 〉 ; b. 〈 eπ/4, 2

2 , ln⎛
⎝
π
4

⎞
⎠ 〉 ; c. Yes

9. 〈 eπ/2, 1, ln⎛
⎝
π
2

⎞
⎠ 〉

11. 2e2 i + 2
e4 j + 2k

13. The limit does not exist because the limit of ln(t − 1) as t approaches infinity does not exist.

15. t > 0, t ≠ (2k + 1)π
2, where k is an integer

17. t > 3, t ≠ nπ, where n is an integer

19.
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21. All t such that t ∈ (1, ∞)

23. y = 2 x3 , a variation of the cube-root function
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25. x2 + y2 = 9, a circle centered at (0, 0) with radius 3, and a counterclockwise orientation

27.

29.
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Find a vector-valued function that traces out the given curve in the indicated direction.

31. For left to right, y = x2, where t increases

33. (50, 0, 0)
35.
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37.

39. One possibility is r(t) = cos t i + sin t j + sin(4t)k. By increasing the coefficient of t in the third component, the number of

turning points will increase.
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41. 〈 3t2, 6t, 1
2t2 〉

43. 〈 −e−t, 3cos(3t), 5
t 〉

45. 〈 0, 0, 0 〉

47. 〈 −1
(t + 1)2, 1

1 + t2, 3
t 〉

49. 〈 0, 12cos(3t), cos t − t sin t 〉

51.
1
2

〈 1, −1, 0 〉

53.
1

1060.5625
〈 6, − 3

4, 32 〉

55.
1

9sin2(3t) + 144cos2(4t)
〈 0, −3sin(3t), 12cos(4t) 〉

57. T(t) = −12
13 sin(4t) i + 12

13cos(4t) j + 5
13 k

59. 〈 2t, 4t3, −8t7 〉

61. sin(t) + 2tet − 4t3 cos(t) + tcos(t) + t2 et + t4 sin(t)
63. 900t7 + 16t
65.

a.
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b. Undefined or infinite
67. r '(t) = − bωsin(ωt) i + bωcos(ωt) j. To show orthogonality, note that r '(t) · r(t) = 0.
69. 0 i + 2 j + 4t j

71. 1
3

⎛
⎝103/2 − 1⎞

⎠

73.
‖v(t)‖ = k

v(t) · v(t) = k
d
dt(v(t) · v(t)) = d

dtk = 0

v(t) · v '(t) + v '(t) · v(t) = 0
2v(t) · v '(t) = 0

v(t) · v '(t) = 0.

The last statement implies that the velocity and acceleration are perpendicular or orthogonal.

75. v(t) = 〈 1 − sin t, 1 − cos t 〉 , speed = − v(t)‖ = 4 − 2(sin t + cos t)
77. x − 1 = t, y − 1 = − t, z − 0 = 0
79. r(t) = 〈 18, 9 〉 at t = 3
81. 593
83. v(t) = 〈 −sin t, cos t, 1 〉
85. a(t) = − cos t i − sin t j + 0 j
87. v(t) = 〈 −sin t, 2cos t, 0 〉

89. a(t) = 〈 − 2
2 , − 2, 0 〉

91. ‖v(t)‖ = sec4 t + sec2 t tan2 t = sec2 t(sec2 t + tan2 t)
93. 2

95. 〈 0, 2sin t⎛⎝t − 1
t

⎞
⎠ − 2cos t⎛⎝1 + 1

t2
⎞
⎠, 2sin t⎛⎝1 + 1

t2
⎞
⎠ + 2cos t⎛⎝t − 2

t
⎞
⎠ 〉

97. T(t) = 〈 t2

t4 + 1
, −1

t4 + 1
〉

99. T(t) = 1
3 〈 1, 2, 2 〉

101. 3
4 i + ln(2) j + ⎛

⎝1 − 1
e

⎞
⎠ j

103. 8 5

105. 1
54

⎛
⎝373/2 − 1⎞

⎠

107. Length = 2π
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109. 6π

111. e − 1
e

113. T(0) = j, N(0) = − i
115. T(t) = 〈 2et, et cos t − et sin t, et cos t + et sin t 〉

117. N(0) = 〈 2
2 , 0, 2

2 〉

119. T(t) = 1
4t2 + 2

< 1, 2t, 1 >

121. T(t) = 1
100t2 + 13

⎛
⎝3i + 10tj + 2k⎞

⎠

123. T(t) = 1
9t4 + 76t2 + 16

⎛
⎝
⎡
⎣3t2 − 4⎤

⎦i + 10tj⎞
⎠

125. N(t) = 〈 −sin t, 0, − cos t 〉

127. Arc-length function: s(t) = 5t; r as a parameter of s: r(s) = ⎛
⎝3 − 3s

5
⎞
⎠i + 4s

5 j

129. r(s) = ⎛
⎝1 + s

2
⎞
⎠ sin⎛

⎝ln(1 + s
2

)⎞⎠i + ⎛
⎝1 + s

2
⎞
⎠ cos⎡

⎣ln⎛
⎝1 + s

2
⎞
⎠
⎤
⎦j

131. The maximum value of the curvature occurs at x = 54 .

133. 1
2

135.
κ ≈ 49.477

⎛
⎝17 + 144t2⎞

⎠
3/2

137.
1

2 2
139. The curvature approaches zero.
141. y = 6x + π and x + 6 = 6π

143. x + 2z = π
2

145.
a4 b4

⎛
⎝b4 x2 + a4 y2⎞

⎠
3/2

147. 10 10
3

149. 38
3

151. The curvature is decreasing over this interval.

153. κ = 6
x2/5 ⎛

⎝25 + 4x6/5⎞
⎠

155. v(t) = (6t)i + (2 − cos(t))j

157. v(t) = 〈 −3sin t, 3cos t, 2t 〉 , a(t) = 〈 −3cos t, −3sin t, 2 〉 , speed = 9 + 4t2

159. v(t) = −2sin t j + 3cos t k, a(t) = −2cos t j − 3sin tk, speed = 4sin2(t) + 9 cos(t)

161. v(t) = et i − e−t j, a(t) = et i + e−t j, ‖ v(t) ‖ e2t + e−2t

163. t = 4
165. v(t) = (ω − ωcos(ωt)) i + ⎛

⎝ωsin(ωt)⎞
⎠ j,

a(t) = ⎛
⎝ω2 sin(ωt)⎞

⎠i + ⎛
⎝ω2 cos(ωt)⎞

⎠ j,

speed = ω2 − 2ω2 cos(ωt) + ω2 cos2(ωt) + ω2 sin2(ωt) = 2ω2(1 − cos(ωt))

167. ‖ v(t) ‖ = 9 + 4t2
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169. v(t) = 〈 e−5t(cos t − 5sin t), −e−5t(sin t + 5cos t), −20e−5t 〉

171. a(t) = 〈 e−5t (−sin t − 5cos t) − 5e−5t (cos t − 5sin t),

−e−5t (cos t − 5sin t) + 5e−5t (sin t + 5cos t), 100e−5t 〉
173. 44.185 sec
175. t = 88.37 sec

177. 88.37 sec
179. The range is approximately 886.29 m.
181. v = 42.16 m/sec

183. r(t) = 0i + ⎛
⎝
1
6t3 + 4.5t − 14

3
⎞
⎠ j + ⎛

⎝
t3

6 − 1
2t + 1

3
⎞
⎠k

185. aT = 0, aN = aω2

187. aT = 3et, aN = 2et

189. aT = 2t, aN = 4 + 2t2

191. aT
6t + 12t3

1 + t4 + t2
, aN = 6 1 + 4t2 + t4

1 + t2 + t4

193. aT = 0, aN = 2 3π

195. r(t) = ⎛
⎝
−1
m cos t + c + 1

m
⎞
⎠i + ⎛

⎝
−sin t

m + ⎛
⎝v0 + 1

m
⎞
⎠t

⎞
⎠ j

197. 10.94 km/sec

201. aT = 0.43 m/sec2,

aN = 2.46 m/sec2

Review Exercises

203. False, d
dt

⎡
⎣u(t) × u(t)⎤

⎦ = 0

205. False, it is |r′(t)|
207. t < 4, t ≠ nπ

2
209.

211. r(t) = 〈 t, 2 − t2

8 , −2 − t2

8 〉

213. u′(t) = 〈 2t, 2, 20t4 〉 , u″(t) = 〈 2, 0, 80t3 〉 , d
dt

⎡
⎣u′(t) × u(t)⎤

⎦ = 〈 −480t3 − 160t4, 24 + 75t2, 12 + 4t 〉 ,

d
dt

⎡
⎣u(t) × u′(t)⎤

⎦ = 〈 480t3 + 160t4, −24 − 75t2, −12 − 4t 〉 , d
dt

⎡
⎣u(t) · u′(t)⎤

⎦ = 720t8 − 9600t3 + 6t2 + 4, unit
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tangent vector: T(t) = 2t
400t8 + 4t2 + 4

i + 2
400t8 + 4t2 + 4

j + 20t4

400t8 + 4t2 + 4
k

215. ln(4)2

2 i + 2j +
2⎛

⎝2 + 2⎞
⎠

π k

217. 37
2 + 1

12sinh−1(6)

219. r(t(s)) = cos⎛⎝
2s
65

⎞
⎠i + 8s

65
j − sin⎛

⎝
2s
65

⎞
⎠k

221.
e2t

⎛
⎝e2t + 1⎞

⎠
2

223. aT = e2t

1 + e2t
, aN = 2e2t + 4e2t sin tcos t + 1

1 + e2t

225. v(t) = 〈 2t, 1
t , cos(πt) 〉 m/sec, a(t) = 〈 2, − 1

t2, −sin(πt) 〉 m/sec2, speed = 4t2 + 1
t2 + cos2 (πt) m/sec; at

t = 1, r(1) = 〈 1, 0, 0 〉 m, v(1) = 〈 2, −1, 1 〉 m/sec, a(1) = 〈 2, −1, 0 〉 m/sec2, and speed = 6 m/sec

227. r(t) = v0 t − g
2t2 j, r(t) = 〈 v0(cosθ)t, v0(sinθ)t, − g

2t2 〉

Chapter 4

Checkpoint

4.1. The domain is the shaded circle defined by the inequality 9x2 + 9y2 ≤ 36, which has a circle of radius 2 as its boundary.

The range is ⎡
⎣0, 6⎤

⎦.

4.2. The equation of the level curve can be written as (x − 3)2 + ⎛
⎝y + 1⎞

⎠
2 = 25, which is a circle with radius 5 centered at

(3, −1).
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4.3. z = 3 − (x − 1)2. This function describes a parabola opening downward in the plane y = 3.

4.4. domain(h) = ⎧

⎩
⎨(x, y, t) ∈ ℝ3|y ≥ 4x2 − 4⎫

⎭
⎬

4.5. (x − 1)2 + ⎛
⎝y + 2⎞

⎠
2 + (z − 3)2 = 16 describes a sphere of radius 4 centered at the point (1, −2, 3).

4.6. lim
(x, y) → (5, −2)

x2 − y
y2 + x − 1

3
= 3

2

4.7. If y = k(x − 2) + 1, then lim
(x, y) → (2, 1)

(x − 2)⎛
⎝y − 1⎞

⎠

(x − 2)2 + ⎛
⎝y − 1⎞

⎠
2 = k

1 + k2. Since the answer depends on k, the limit fails to

exist.

4.8. lim
(x, y) → (5, −2)

29 − x2 − y2

4.9.

1. The domain of f contains the ordered pair (2, −3) because f (a, b) = f (2, −3) = 16 − 2(2)2 − (−3)2 = 3

2. lim
(x, y) → (a, b)

f (x, y) = 3

3. lim
(x, y) → (a, b)

f (x, y) = f (a, b) = 3

4.10. The polynomials g(x) = 2x2 and h(y) = y3 are continuous at every real number; therefore, by the product of continuous

functions theorem, f (x, y) = 2x2 y3 is continuous at every point (x, y) in the xy-plane. Furthermore, any constant function is

continuous everywhere, so g(x, y) = 3 is continuous at every point (x, y) in the xy-plane. Therefore, f (x, y) = 2x2 y3 + 3

is continuous at every point (x, y) in the xy-plane. Last, h(x) = x4 is continuous at every real number x, so by the continuity

of composite functions theorem g(x, y) = ⎛
⎝2x2 y3 + 3⎞

⎠
4

is continuous at every point (x, y) in the xy-plane.

4.11. lim
(x, y, z) → (4, −1, 3)

13 − x2 − 2y2 + z2 = 2

4.12.
∂ f
∂ x = 8x + 2y + 3, ∂ f

∂ y = 2x − 2y − 2
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4.13.

∂ f
∂ x = ⎛

⎝3x2 − 6xy2⎞
⎠sec2 ⎛

⎝x
3 − 3x2 y2 + 2y4⎞

⎠

∂ f
∂ y = ⎛

⎝−6x2 y + 8y3⎞
⎠sec2 ⎛

⎝x
3 − 3x2 y2 + 2y4⎞

⎠

4.14. Using the curves corresponding to c = −2 and c = −3, we obtain

∂ f
∂ y |(x, y) = ⎛

⎝0, 2⎞
⎠
≈

f ⎛
⎝0, 3⎞

⎠ − f ⎛
⎝0, 2⎞

⎠

3 − 2
= −3 − (−2)

3 − 2
· 3 + 2

3 + 2
= − 3 − 2 ≈ −3.146. The exact answer is

∂ f
∂ y |(x, y) = ⎛

⎝0, 2⎞
⎠
= (−2y|(x, y) = ⎛

⎝0, 2⎞
⎠
= −2 2 ≈ −2.828.

4.15.
∂ f
∂ x = 4x − 8xy + 5z2 − 6, ∂ f

∂ y = −4x2 + 4y, ∂ f
∂z = 10xz + 3

4.16.

∂ f
∂ x = 2xy sec⎛

⎝x2 y⎞
⎠tan⎛

⎝x2 y⎞
⎠ − 3x2 yz2 sec2 ⎛

⎝x
3 yz2⎞

⎠

∂ f
∂ y = x2 sec⎛

⎝x2 y⎞
⎠tan⎛

⎝x2 y⎞
⎠ − x3 z2 sec2 ⎛

⎝x
3 yz2⎞

⎠

∂ f
∂z = −2x3 yz sec2 ⎛

⎝x
3 yz2⎞

⎠

4.17.

∂2 f
∂ x2 = −9 sin⎛

⎝3x − 2y⎞
⎠ − cos⎛

⎝x + 4y⎞
⎠

∂2 f
∂ x∂ y = 6 sin⎛

⎝3x − 2y⎞
⎠ − 4 cos⎛

⎝x + 4y⎞
⎠

∂2 f
∂ y∂ x = 6 sin⎛

⎝3x − 2y⎞
⎠ − 4 cos⎛

⎝x + 4y⎞
⎠

∂2 f
∂ y2 = −4 sin⎛

⎝3x − 2y⎞
⎠ − 16 cos⎛

⎝x + 4y⎞
⎠

4.19. z = 7x + 8y − 3
4.20. L(x, y) = 6 − 2x + 3y, so L(4.1, 0.9) = 6 − 2(4.1) + 3(0.9) = 0.5

f (4.1, 0.9) = e5 − 2(4.1) + 3(0.9) = e−0.5 ≈ 0.6065.

4.21. f (−1, 2) = −19, fx (−1, 2) = 3, fy (−1, 2) = −16, E(x, y) = −4⎛
⎝y − 2⎞

⎠
2.

lim
(x, y) → (x0, y0)

E(x, y)
(x − x0)2 + (y − y0)2

= lim
(x, y) → (−1, 2)

−4(y − 2)2

(x + 1)2 + ⎛
⎝y − 2⎞

⎠
2

≤ lim
(x, y) → (−1, 2)

−4⎛
⎝(x + 1)2 + ⎛

⎝y − 2⎞
⎠
2⎞

⎠

(x + 1)2 + ⎛
⎝y − 2⎞

⎠
2

= lim
(x, y) → (2, −3)

− 4 (x + 1)2 + ⎛
⎝y − 2⎞

⎠
2

= 0.

4.22.
dz = 0.18
Δz = f (1.03, −1.02) − f (1, −1) = 0.180682

4.23.

dz
dt = ∂ f

∂ x
dx
dt + ∂ f

∂ y
dy
dt

= ⎛
⎝2x − 3y⎞

⎠(6 cos 2t) + ⎛
⎝−3x + 4y⎞

⎠(−8 sin 2t)

= −92 sin 2t cos 2t − 72⎛
⎝cos2 2t − sin2 2t⎞

⎠

= −46 sin 4t − 72 cos 4t.

4.24.
∂z
∂u = 0, ∂z

∂v = −21
(3 sin 3v + cos 3v)2

Answer Key 967



4.25.

∂w
∂u = 0

∂w
∂v = 15 − 33 sin 3v + 6 cos 3v

(3 + 2 cos 3v − sin 3v)2

4.26.

∂w
∂ t = ∂w

∂ x
∂ x
∂ t + ∂w

∂ y
∂ y
∂ t

∂w
∂u = ∂w

∂ x
∂ x
∂u + ∂w

∂ y
∂ y
∂u

∂w
∂v = ∂w

∂ x
∂ x
∂v + ∂w

∂ y
∂ y
∂v

4.27.
dy
dx = 2x + y + 7

2y − x + 3|(3, −2) = 2(3) + (−2) + 7
2(−2) − (3) + 3 = − 11

4

Equation of the tangent line: y = − 11
4 x + 25

4

4.28.

Du f (x, y) = (6xy − 4y3 − 4)(1)
2 +

⎛
⎝3x2 − 12xy2 + 6y⎞

⎠ 3
2

Du f (3, 4) = 72 − 256 − 4
2 + (27 − 576 + 24) 3

2 = −94 − 525 3
2

4.29. ∇ f (x, y) = 2x2 + 2xy + 6y2

⎛
⎝2x + y⎞

⎠
2 i − x2 + 12xy + 3y2

⎛
⎝2x + y⎞

⎠
2 j

4.30. The gradient of g at (−2, 3) is ∇g(−2, 3) = i + 14j. The unit vector that points in the same direction as ∇g(−2, 3)

is
∇g(−2, 3)

‖ ∇g(−2, 3) ‖ = 1
197

i + 14
197

j = 197
197 i + 14 197

197 j, which gives an angle of

θ = arcsin⎛
⎝
⎛
⎝14 197⎞

⎠/197⎞
⎠ ≈ 1.499 rad. The maximum value of the directional derivative is ‖ ∇g(−2, 3) ‖ = 197.

4.31. ∇ f (x, y) = ⎛
⎝2x − 2y + 3⎞

⎠i + ⎛
⎝−2x + 10y − 2⎞

⎠j
∇ f (1, 1) = 3i + 6j
Tangent vector: 6i − 3j or −6i + 3j
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4.32.

∇ f (x, y, z) = 2x2 + 2xy + 6y2 − 8xz − 2z2

⎛
⎝2x + y − 4z⎞

⎠
2 i − x2 + 12xy + 3y2 − 24yz + z2

⎛
⎝2x + y − 4z⎞

⎠
2 j

+4x2 − 12y2 − 4z2 + 4xz + 2yz
⎛
⎝2x + y − 4z⎞

⎠
2 k.

4.33.
Du f (x, y, z) = − 3

13
⎛
⎝6x + y + 2z⎞

⎠ + 12
13

⎛
⎝x − 4y + 4z⎞

⎠ − 4
13

⎛
⎝2x + 4y − 2z⎞

⎠

Du f (0, −2, 5) = 384
13

4.34. (2, −5)

4.35.
⎛
⎝
4
3, 1

3
⎞
⎠ is a saddle point,

⎛
⎝−

3
2, − 3

8
⎞
⎠ is a local maximum.

4.36. The absolute minimum occurs at (1, 0): f (1, 0) = −1. The absolute maximum occurs at (0, 3): f (0, 3) = 63.
4.37. f has a maximum value of 976 at the point (8, 2).
4.38. A maximum production level of 13890 occurs with 5625 labor hours and $5500 of total capital input.

4.39.

f ⎛
⎝

3
3 , 3

3 , 3
3

⎞
⎠ = 3

3 + 3
3 + 3

3 = 3

f ⎛
⎝− 3

3 , − 3
3 , − 3

3
⎞
⎠ = − 3

3 − 3
3 − 3

3 = − 3.

4.40. f (2, 1, 2) = 9 is a minimum.

Section Exercises

1. 17, 72
3. 20π. This is the volume when the radius is 2 and the height is 5.
5. All points in the xy-plane

7. x < y2

9. All real ordered pairs in the xy-plane of the form (a, b)
11. {z|0 ≤ z ≤ 4}
13. The set ℝ
15. y2 − x2 = 4, a hyperbola

17. 4 = x + y, a line; x + y = 0, line through the origin

19. 2x − y = 0, 2x − y = −2, 2x − y = 2; three lines

21.
x

x + y = −1, x
x + y = 0, x

x + y = 2

23. exy = 1
2, exy = 3
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25. xy − x = −2, xy − x = 0, xy − x = 2

27. e−2 x2 = y, y = x2, y = e2 x2

29. The level curves are parabolas of the form y = cx2 − 2.

31. z = 3 + y3, a curve in the zy-plane with rulings parallel to the x-axis

33. x2

25 + y2

4 ≤ 1

35. x2

9 + y2

4 + z2

36 < 1

37. All points in xyz-space
39.

41.

43.
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45.

47. The contour lines are circles.

49. x2 + y2 + z2 = 9, a sphere of radius 3

51. x2 + y2 − z2 = 4, a hyperboloid of one sheet

53. 4x2 + y2 = 1,

55. 1 = exy(x2 + y2)

57. T(x, y) = k
x2 + y2

59. x2 + y2 = k
40, x2 + y2 = k

100. The level curves represent circles of radii 10k/20 and k/10

61. 2.0

63. 2
3

65. 1

67. 1
2

69. −1
2

71. e−32

73. 11.0
75. 1.0
77. The limit does not exist because when x and y both approach zero, the function approaches ln 0, which is undefined

(approaches negative infinity).
79. every open disk centered at (x0, y0) contains points inside R and outside R
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81. 0.0
83. 0.00
85. The limit does not exist.
87. The limit does not exist. The function approaches two different values along different paths.
89. The limit does not exist because the function approaches two different values along the paths.
91. The function f is continuous in the region y > −x.

93. The function f is continuous at all points in the xy-plane except at (0, 0).
95. The function is continuous at (0, 0) since the limit of the function at (0, 0) is 0, the same value of f (0, 0).
97. The function is discontinuous at (0, 0). The limit at (0, 0) fails to exist and g(0, 0) does not exist.

99. Since the function arctan x is continuous over (−∞, ∞), g(x, y) = arctan
⎛

⎝
⎜ xy2

x + y
⎞

⎠
⎟ is continuous where z = xy2

x + y

is continuous. The inner function z is continuous on all points of the xy-plane except where y = −x. Thus,

g(x, y) = arctan
⎛

⎝
⎜ xy2

x + y
⎞

⎠
⎟ is continuous on all points of the coordinate plane except at points at which y = −x.

101. All points P(x, y, z) in space

103. The graph increases without bound as x and y both approach zero.

105. a.

b. The level curves are circles centered at (0, 0) with radius 9 − c. c. x2 + y2 = 9 − c d. z = 3 e.
⎧

⎩
⎨(x, y) ∈ ℝ2 |x2 + y2 ≤ 9⎫

⎭
⎬ f. {z|0 ≤ z ≤ 3}

107. 1.0
109. f (g(x, y)) is continuous at all points (x, y) that are not on the line 2x − 5y = 0.
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111. 2.0

113.
∂z
∂ y = −3x + 2y

115. The sign is negative.
117. The partial derivative is zero at the origin.

119.
∂z
∂ y = −3 sin(3x)sin(3y)

121.
∂z
∂ x = 6x5

x6 + y4; ∂z
∂ y = 4y3

x6 + y4

123.
∂z
∂ x = yexy; ∂z

∂ y = xexy

125.
∂z
∂ x = 2 sec2 ⎛

⎝2x − y⎞
⎠, ∂z

∂ y = −sec2 ⎛
⎝2x − y⎞

⎠

127. fx(2, −2) = 1
4 = fy(2, −2)

129. ∂z
∂ x = −cos(1)

131. fx = 0, fy = 0, fz = 0

133. a. V(r, h) = πr2 h b. ∂V
∂r = 2πrh c. ∂V

∂h = πr2

135. fxy = 1
(x − y)2

137.
∂2z
∂ x2 = 2, ∂2z

∂ y2 = 4

139. fxyy = fyxy = fyyx = 0

141.

d2 z
dx2 = −1

2
⎛
⎝ey − e−y⎞

⎠sin x

d2 z
dy2 = 1

2
⎛
⎝ey − e−y⎞

⎠sin x

d2 z
dx2 + d2 z

dy2 = 0

143. fxyz = 6y2 x − 18yz2

145.
⎛
⎝
1
4, 1

2
⎞
⎠, (1, 1)

147. (0, 0), (0, 2), ( 3, −1), ⎛
⎝− 3, −1⎞

⎠

149.
∂2z
∂ x2 + ∂2z

∂ y2 = ex sin(y) − ex sin y = 0

151. c2 ∂2z
∂ x2 = e−t cos⎛

⎝
x
c

⎞
⎠

153.
∂ f
∂ y = −2x + 7

155.
∂ f
∂ x = y cos xy

159. ∂F
∂θ = 6, ∂F

∂ x = 4 − 3 3

161.
δ f
δx at (500, 1000) = 172.36, δ f

δy at (500, 1000) = 36.93

163.
⎛
⎝

145
145

⎞
⎠(12i − k)
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165. Normal vector: i + j, tangent vector: i − j
167. Normal vector: 7i − 17j, tangent vector: 17i + 7j
169. −1.094i − 0.18238j
171. −36x − 6y − z = −39
173. z = 0
175. 5x + 4y + 3z − 22 = 0
177. 4x − 5y + 4z = 0
179. 2x + 2y − z = 0
181. −2(x − 1) + 2⎛

⎝y − 2⎞
⎠ − (z − 1) = 0

183. x = 20t + 2, y = −4t + 1, z = −t + 18
185. x = 0, y = 0, z = t
187. x − 1 = 2t; y − 2 = −2t; z − 1 = t

189. The differential of the function z(x, y) = dz = fx dx + fy dy

191. Using the definition of differentiability, we have exy x ≈ x + y.

193. Δz = 2xΔx + 3Δy + (Δx)2. (Δx)2 → 0 for small Δx and z satisfies the definition of differentiability.

195. Δz ≈ 1.185422 and dz ≈ 1.108. They are relatively close.

197. 16 cm3

199. Δz = exact change = 0.6449, approximate change is dz = 0.65. The two values are close.

201. 13% or 0.13
203. 0.025
205. 0.3%

207. 2x + 1
4y − 1

209. 1
2x + y + 1

4π − 1
2

211. 3
7x + 2

7y + 6
7z

213. z = 0

215.
dw
dt = y cos z + x cos z(2t) − xy sin z

1 − t2

217. ∂w
∂s = −30x + 4y, ∂w

∂ t = 10x − 16y

219.
∂ f
∂r = r sin(2θ)

221.
d f
dt = 2t + 4t3

223.
d f
dt = −1
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225.
d f
dt = 1

227. dw
dt = 2e2t

in both cases

229. 2 2t + 2π = du
dt

231.
dy
dx = − 3x2 + y2

2xy

233.
dy
dx = y − x

−x + 2y3

235.
dy
dx = − y

x
3

237.
dy
dx = − yexy

xexy + ey(1 + y)

239. dz
dt = 42t13

241. dz
dt = − 10

3 t7/3 × e1 − t10/3

243.
∂z
∂u = −2 sin u

3 sin v and
∂z
∂v = −2 cos u cos v

3 sin2 v

245. ∂z
∂r = 3e 3, ∂z

∂θ = ⎛
⎝2 − 4 3⎞

⎠e 3

247. ∂w
∂ t = cos(xyz) × yz × (−3) − cos(xyz)xze1 − t + cos(xyz)xy × 4

249. f (tx, ty) = t2 x2 + t2 y2 = t1 f (x, y),
∂ f
∂ y = x1

2
⎛
⎝x2 + y2⎞

⎠
−1/2

× 2x + y1
2

⎛
⎝x2 + y2⎞

⎠
−1/2

× 2y = 1 f (x, y)

251. 34π
3

253. dV
dt = 1066π

3 cm3 /min

255. dA
dt = 12 in.2/min

257. 2°C/sec

259.

∂u
∂r = ∂u

∂ x
⎛
⎝

∂ x
∂w

∂w
∂r + ∂ x

∂ t
∂ t
∂r

⎞
⎠ + ∂u

∂ y
⎛
⎝

∂ y
∂w

∂w
∂r + ∂ y

∂ t
∂ t
∂r

⎞
⎠

+∂u
∂z

⎛
⎝

∂z
∂w

∂w
∂r + ∂z

∂ t
∂ t
∂r

⎞
⎠

261. −3 3
263. −1

265.
2
6

267. 3
269. −1.0

271. 22
25

273. 2
3

275.
− 2(x + y)
2⎛

⎝x + 2y⎞
⎠
2

277.
ex ⎛

⎝y + 3⎞
⎠

2
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279. 1 + 2 3
2(x + 2y)

281. 〈 5, 4, 3 〉
283. −320

285.
3
11

287. 31
255

289.

291. 4
3i − 3j

293. 2i + 2j + 2k

295. 1.6(1019)

297. 5 2
99

299. 5, 〈 1, 2 〉

301. 13
2 , 〈 −3, −2 〉

303. a. x + y + z = 3, b. x − 1 = y − 1 = z − 1
305. a. x + y − z = 1, b. x − 1 = y = −z

307. a.
32
3

, b. 〈 38, 6, 12 〉 , c. 2 406

309. 〈 u, v 〉 = 〈 π cos(πx)sin(2πy), 2π sin(πx)cos(2πy) 〉

311.
⎛
⎝
2
3, 4⎞

⎠

313. (0, 0) ⎛
⎝

1
15, 1

15
⎞
⎠

315. Maximum at (4, −1, 8)
317. Relative minimum at (0, 0, 1)

319. The second derivative test fails. Since x2 y2 > 0 for all x and y different from zero, and x2 y2 = 0 when either x or y

equals zero (or both), then the absolute minimum occurs at (0, 0).

321. f ⎛
⎝−2, − 3

2
⎞
⎠ = −6 is a saddle point.

323. f (0, 0) = 0; (0, 0, 0) is a saddle point.

325. f (0, 0) = 9 is a local maximum.

327. Relative minimum located at (2, 6).
329. (1, −2) is a saddle point.
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331. (2, 1) and (−2, 1) are saddle points; (0, 0) is a relative minimum.

333. (−1, 0) is a relative maximum.

335. (0, 0) is a saddle point.

337. The relative maximum is at (40, 40).

339.
⎛
⎝
1
4, 1

2
⎞
⎠ is a saddle point and (1, 1) is the relative minimum.

341. A saddle point is located at (0, 0).

343. There is a saddle point at (π, π), local maxima at
⎛
⎝
π
2, π

2
⎞
⎠ and ⎛

⎝
3π
2 , 3π

2
⎞
⎠, and local minima at

⎛
⎝
π
2, 3π

2
⎞
⎠ and ⎛

⎝
3π
2 , π

2
⎞
⎠.

345. (0, 1, 0) is the absolute minimum and (0, −2, 9) is the absolute maximum.

347. There is an absolute minimum at (0, 1, −1) and an absolute maximum at (0, −1, 1).

349.
⎛
⎝ 5, 0, 0⎞

⎠, ⎛
⎝− 5, 0, 0⎞

⎠

351. 18 by 36 by 18 in.

353.
⎛
⎝
47
24, 47

12, 235
24

⎞
⎠

355. x = 3 and y = 6

357. V = 64,000
π ≈ 20, 372 cm3

359. maximum: 2 3
3 , minimum: −2 3

3

361. maximum:
⎛
⎝

2
2 , 0, 2⎞

⎠, minimum:
⎛
⎝
− 2

2 , 0, − 2⎞
⎠

363. maximum: 3
2, minimum = 1
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365. maxima: f ⎛
⎝
3 2

2 , 2 2⎞
⎠ = 24, f ⎛

⎝−3 2
2 , −2 2⎞

⎠ = 24; minima: f ⎛
⎝−3 2

2 , 2 2⎞
⎠ = −24, f ⎛

⎝
3 2
2 , −2 2⎞

⎠ = −24

367. maximum: 2 11 at f ⎛
⎝

2
11

, 6
11

, −2
11

⎞
⎠; minimum: −2 11 at f ⎛

⎝
−2
11

, −6
11

, 2
11

⎞
⎠

369. 2.0
371. 19 2

373.
⎛

⎝
⎜ 1

23 , −1
23

⎞

⎠
⎟

375. f (1, 2) = 5

377. f ⎛
⎝
1
3, 1

3, 1
3

⎞
⎠ = 1

3
379. minimum: f (2, 3, 4) = 29
381. The maximum volume is 4 ft3. The dimensions are 1 × 2 × 2 ft.

383.
⎛
⎝1, 1

2, −3⎞
⎠

385. 1.0
387. 3

389.
⎛
⎝
2
5, 19

5
⎞
⎠

391. 1
2

393. Roughly 3365 watches at the critical point (80, 60)

Review Exercises

395. True, by Clairaut’s theorem
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397. False
399. Answers may vary
401. Does not exist

403. Continuous at all points on the x, y-plane, except where x2 + y2 > 4.

405. ∂u
∂ x = 4x3 − 3y, ∂u

∂ y = −3x, ∂u
∂ t = 2, ∂u

∂ t = 3t2, ∂u
∂ t = 8x3 − 6y − 9xt2

407. hxx (x, y, z) = 6xe2y
z , hxy(x, y, z) = 6x2 e2y

z , hxz (x, y, z) = − 3x2 e2y

z2 , hyx (x, y, z) = 6x2 e2y
z ,

hyy (x, y, z) = 4x3 e2y
z , hyz (x, y, z) = − 2x3 e2y

z2 , hzx (x, y, z) = − 3x2 e2y

z2 , hzy (x, y, z) = − 2x3 e2y

z2 ,

hzz (x, y, z) = 2x3 e2y

z3

409. z = 1
9x − 2

9y + 29
9

411. dz = 4dx − dy, dz(0.1, 0.01) = 0.39, Δz = 0.432
413. 3 85, 〈 27, 6 〉

415. ∇ f (x, y) = − x + 2y2

2x2 y
i +

⎛

⎝
⎜1
x − 1

xy2

⎞

⎠
⎟j

417. maximum:
16
3 3

, minimum: − 16
3 3

419. 2.3228 cm3

Chapter 5

Checkpoint

5.1. V = ∑
i = 1

2
∑
j = 1

2
f (xi j* , yi j* )ΔA = 0

5.2. a. 26 b. Answers may vary.

5.3. −1340
3

5.4. 4 − ln 5
ln 5

5.5.
π
2

5.6. Answers to both parts a. and b. may vary.

5.7. Type I and Type II are expressed as
⎧

⎩
⎨(x, y)|0 ≤ x ≤ 2, x2 ≤ y ≤ 2x⎫

⎭
⎬ and

⎧

⎩
⎨(x, y)|0 ≤ y ≤ 4, 1

2y ≤ x ≤ y
⎫

⎭
⎬,

respectively.
5.8. π/4

5.9.
⎧

⎩
⎨(x, y)|0 ≤ y ≤ 1, 1 ≤ x ≤ ey⎫

⎭
⎬ ∪ ⎧

⎩
⎨(x, y)|1 ≤ y ≤ e, 1 ≤ x ≤ 2⎫

⎭
⎬ ∪ ⎧

⎩
⎨(x, y)|e ≤ y ≤ e2, ln y ≤ x ≤ 2⎫

⎭
⎬

5.10. Same as in the example shown.

5.11. 216
35

5.12. e2

4 + 10e − 49
4 cubic units

5.13. 81
4 square units

5.14. 3
4

5.15.
π
4

5.16. 55
72 ≈ 0.7638
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5.17. 14
3

5.18. 8π
5.19. π/8

5.20. V = ∫
0

2π
∫
0

2 2
⎛
⎝16 − 2r2⎞

⎠r dr dθ = 64π cubic units

5.21. A = 2 ∫
−π/2

π/6
∫

1 + sin θ

3 − 3 sin θ
r dr dθ = 8π + 9 3

5.22.
π
4

5.23. ∭
B

z sin x cos y dV = 8

5.24. ∭
E

1dV = 8∫
x = −3

x = 3
∫

y = − 9 − x2

y = 9 − x2

∫
z = − 9 − x2 − y2

z = 9 − x2 − y2

1dz dy dx = 36π.

5.25. (i) ∫
z = 0

z = 4

∫
x = 0

x = 4 − z

∫
y = x2

y = 4 − z

f (x, y, z)dy dx dz, (ii) ∫
y = 0

y = 4

∫
z = 0

z = 4 − y

∫
x = 0

x = y

f (x, y, z)dx dz dy, (iii)

∫
y = 0

y = 4

∫
x = 0

x = y

∫
z = 0

z = 4 − y

f (x, y, z)dz dx dy, (iv) ∫
x = 0

x = 2
∫

y = x2

y = 4

∫
z = 0

z = 4 − y

f (x, y, z)dz dy dx, (v)

∫
x = 0

x = 2
∫

z = 0

z = 4 − x2

∫
y = x2

y = 4 − z

f (x, y, z)dy dz dx

5.26. fave = 8
5.27. 8

5.28. ∭
E

f (r, θ, z)r dz dr dθ = ∫
θ = 0

θ = π
∫

r = 0

r = 2 sin θ
∫

z = 0

z = 4 − r sin θ

f (r, θ, z)r dz dr dθ.

5.29. E = ⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, z ≤ r ≤ 2 − z2⎫

⎭
⎬ and V = ∫

r = 0

r = 1
∫

z = r

z = 2 − r2

∫
θ = 0

θ = 2π
r dθ dz dr.

5.30. E2 =
⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ 4 − r2⎫

⎭
⎬ and V = ∫

r = 0

r = 1
∫

z = r

z = 4 − r2

∫
θ = 0

θ = 2π
r dθ dz dr.

5.31. V(E) = ∫
θ = 0

θ = 2π
∫

ϕ = 0

φ = π/3

∫
ρ = 0

ρ = 2

ρ2 sin φ dρ dφ dθ

5.32. Rectangular: ∫
x = −2

x = 2
∫

y = − 4 − x2

y = 4 − x2

∫
z = − 4 − x2 − y2

z = 4 − x2 − y2

dz dy dx − ∫
x = −1

x = 1
∫

y = − 1 − x2

y = 1 − x2

∫
z = − 4 − x2 − y2

z = 4 − x2 − y2

dz dy dx.

Cylindrical: ∫
θ = 0

θ = 2π
∫

r = 1

r = 2
∫

z = − 4 − r2

z = 4 − r2

r dz dr dθ.

Spherical: ∫
φ = π/6

φ = 5π/6

∫
θ = 0

θ = 2π
∫

ρ = csc φ

ρ = 2

ρ2 sin φ dρ dθ dφ.

5.33. 9π
8 kg
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5.34. Mx = 81π
64 and My = 81π

64

5.35. x− =
My
m = 81π/64

9π/8 = 9
8 and y− = Mx

m = 81π/64
9π/8 = 9

8.

5.36. x− =
My
m = 1/20

1/12 = 3
5 and y− = Mx

m = 1/24
1/12 = 1

2

5.37. xc =
My
m = 1/15

1/6 = 2
5 and yc = Mx

m = 1/12
1/6 = 1

2

5.38. Ix = ∫
x = 0

x = 2
∫

y = 0

y = x

y2 xy dy dx = 64
35 and Iy = ∫

x = 0

x = 2
∫

y = 0

y = x

x2 xy dy dx = 64
35. Also,

I0 = ∫
x = 0

x = 2
∫

y = 0

y = x
⎛
⎝x2 + y2⎞

⎠ xy dy dx = 128
21 .

5.39. Rx = 6 35
35 , Ry = 6 15

15 , and R0 = 4 42
7 .

5.40. 54
35 = 1.543

5.41.
⎛
⎝
3
2, 9

8, 1
2

⎞
⎠

5.42. The moments of inertia of the tetrahedron Q about the yz-plane, the xz-plane, and the xy-plane are

99/35, 36/7, and 243/35, respectively.

5.43. T −1(x, y) = (u, v) where u = 3x − y
3 and v = y

3

5.44. J(u, v) = ∂(x, y)
∂ (u, v) = |∂ x

∂u
∂ x
∂v

∂ y
∂u

∂ y
∂v | = |1 1

0 2| = 2

5.45. ∫
0

π/2
∫
0

1
r3 dr dθ

5.46. x = 1
2(v + u) and y = 1

2(v − u) and ∫
−4

4
∫
−2

2
4
u2

⎛
⎝
1
2

⎞
⎠du dv.

5.47. 1
2(sin 2 − 2)

5.48. ∫
0

3
∫
0

2
∫
1

2
⎛
⎝
v
3 + vw

3u
⎞
⎠du dv dw = 2 + ln 8

Section Exercises

1. 27.
3. 0.
5. 21.3.
7. a. 28 ft3 b. 1.75 ft.

9. a. 0.112 b. fave ≃ 0.175; here f (0.4, 0.2) ≃ 0.1, f (0.2, 0.6) ≃ −0.2, f (0.8, 0.2) ≃ 0.6, and

f (0.8, 0.6) ≃ 0.2.
11. 2π.
13. 40.

15. 81
2 + 39 23 .

17. e − 1.

19. 15 − 10 2
9 .

21. 0.
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23. (e − 1)(1 + sin 1 − cos 1).

25. 3
4ln⎛

⎝
5
3

⎞
⎠ + 2 ln2 2 − ln 2.

27. 1
8

⎡
⎣
⎛
⎝2 3 − 3⎞

⎠π + 6 ln 2⎤
⎦.

29. 1
4e4 ⎛

⎝e4 − 1⎞
⎠.

31. 4(e − 1)(2 − e).

33. −π
4 + ln⎛

⎝
5
4

⎞
⎠ − 1

2ln 2 + arctan 2.

35. 1
2.

37. 1
2(2 cosh 1 + cosh 2 − 3).

49. a. f (x, y) = 1
2xy⎛

⎝x2 + y2⎞
⎠ b. V = ∫

0

1
∫
0

1
f (x, y)dx dy = 1

8 c. fave = 1
8;

d.

53. a. For m = n = 2, I = 4e−0.5 ≈ 2.43 b. fave = e−0.5 ≃ 0.61;
c.
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55. a. 2
n + 1 + 1

4 b. 1
4

59. 56.5° F; here f (x1* , y1* ) = 71, f (x2* , y1* ) = 72, f (x2* , y1* ) = 40, f (x2* , y2* ) = 43, where xi* and y j*

are the midpoints of the subintervals of the partitions of [a, b] and [c, d], respectively.

61. 27
20

63. Type I but not Type II

65.
π
2

67. 1
6(8 + 3π)

69. 1000
3

71. Type I and Type II
73. The region D is not of Type I: it does not lie between two vertical lines and the graphs of two continuous functions g1(x) and

g2(x). The region D is not of Type II: it does not lie between two horizontal lines and the graphs of two continuous functions

h1(y) and h2(y).

75.
π
2

77. 0

79. 2
3

81. 41
20

83. −63
85. π

87. a. Answers may vary; b. 2
3

89. a. Answers may vary; b. 8
12

91. 8π
3

93. e − 3
2

95. 2
3
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97. ∫
0

1
∫

x − 1

1 − x
x dy dx = ∫

−1

0
∫
0

y + 1

x dx dy + ∫
0

1
∫
0

1 − y

x dxdy = 1
3

99. ∫
−1/2

1/2
∫

− y2 + 1

y2 + 1

y dx dy = ∫
1

2
∫

− x2 − 1

x2 − 1
y dy dx = 0

101. ∬
D

⎛
⎝x2 − y2⎞

⎠dA = ∫
−1

1
∫

y4 − 1

1 − y4
⎛
⎝x2 − y2⎞

⎠dx dy = 464
4095

103. 4
5

105. 5π
32

109. 1
111. 2

113. a. 1
3; b. 1

6; c. 1
6

115. a. 4
3; b. 2π; c. 6π − 4

3
117. 0 and 0.865474; A(D) = 0.621135

119. P[X + Y ≤ 6] = 1 + 3
2e2 − 5

e6/5 ≈ 0.45; there is a 45% chance that a customer will spend 6 minutes in the drive-thru

line.

123. D =
⎧

⎩
⎨(r, θ)|4 ≤ r ≤ 5, π

2 ≤ θ ≤ π
⎫

⎭
⎬

125. D = ⎧

⎩
⎨(r, θ)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π⎫

⎭
⎬

127. D = {(r, θ)|0 ≤ r ≤ 4 sin θ, 0 ≤ θ ≤ π}

129. D =
⎧

⎩
⎨(r, θ)|3 ≤ r ≤ 5, π

4 ≤ θ ≤ π
2

⎫

⎭
⎬

131. D =
⎧

⎩
⎨(r, θ)|3 ≤ r ≤ 5, 3π

4 ≤ θ ≤ 5π
4

⎫

⎭
⎬

133. D =
⎧

⎩
⎨(r, θ)|0 ≤ r ≤ tan θ sec θ, 0 ≤ θ ≤ π

4
⎫

⎭
⎬

135. 0

137. 63π
16

139. 3367π
18

141. 35π2

576

143. 7
576π2 ⎛

⎝21 − e + e4⎞
⎠

145. 5
4ln⎛

⎝3 + 2 2⎞
⎠

147. 1
6(2 − 2)

149. ∫
0

π
∫
0

2
r5 dr dθ = 32π

3

151. ∫
−π/2

π/2
∫
0

4
r sin⎛

⎝r2⎞
⎠dr dθ = π sin2 8

153. 3π
4
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155.
π
2

157. 1
3

⎛
⎝4π − 3 3⎞

⎠

159. 16
3π

161.
π
18

163. a. 2π
3 ; b.

π
2; c.

π
6

165. 256π
3 cm3

167. 3π
32

169. 4π

171.
π
4

173. 1
2πe(e − 1)

175. 3 − π
4

177. 133π3

864
181. 192
183. 0

185. ∫
1

2
∫
2

3
∫
0

1
⎛
⎝x2 + ln y + z⎞

⎠dz dx dy = 35
6 + 2 ln 2

187. ∫
1

3
∫
0

4
∫
−1

2
⎛
⎝x

2 z + 1
y

⎞
⎠dz dx dy = 64 + 12 ln 3

191. 77
12

193. 2

195. 439
120

197. 0

199. − 64
105

201. 11
26

203. 113
450

205. 1
160

⎛
⎝6 3 − 41⎞

⎠

207. 3π
2

209. 1250

211. ∫
0

5
∫
−3

3
∫
0

9 − y2

z dz dy dx = 90

213. V = 5.33
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215. ∫
0

1
∫
1

3
∫
2

4
⎛
⎝y2 z2 + 1⎞

⎠dz dx dy; ∫
0

1
∫
1

3
∫
2

4
⎛
⎝x2 y2 + 1⎞

⎠dy dz dx

219. V = ∫
−a

a
∫

− a2 − z2

a2 − z2

∫
x2 + z2

a2

dy dx dz

221. 9
2

223. 156
5

225. a. Answers may vary; b. 128
3

227. a. ∫
0

4
∫
0

r2 − x2

∫
0

r2 − x2 − y2

dz dy dx; b. ∫
0

2
∫
0

r2 − y2

∫
0

r2 − x2 − y2

dz dx dy, ∫
0

r
∫
0

r2 − z2

∫
0

r2 − x2 − z2

dy dx dz,

∫
0

r
∫
0

r2 − x2

∫
0

r2 − x2 − z2

dy dz dx, ∫
0

r
∫
0

r2 − z2

∫
0

r2 − y2 − z2

dx dy dz, ∫
0

r
∫
0

r2 − y2

∫
0

r2 − y2 − z2

dx dz dy

229. 3

231. 250
3

233. 5
16 ≈ 0.313

235. 35
2

241. 9π
8

243. 1
8

245. πe2

6

249. a. E =
⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ π, 0 ≤ r ≤ 4 sin θ, 0 ≤ z ≤ 16 − r2⎫

⎭
⎬; b. ∫

0

π
∫
0

4 sin θ
∫
0

16 − r2

f (r, θ, z)r dz dr dθ
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251. a. E =
⎧

⎩
⎨(r, θ, z)|0 ≤ θ ≤ π

2, 0 ≤ r ≤ 3, 9 − r2 ≤ z ≤ 10 − r(cos θ + sin θ)
⎫

⎭
⎬; b.

∫
0

π/2
∫
0

3
∫

9 − r2

10 − r(cos θ + sin θ)

f (r, θ, z)r dz dr dθ

253. a. E =
⎧

⎩
⎨(r, θ, z)|0 ≤ r ≤ 3, 0 ≤ θ ≤ π

2, 0 ≤ z ≤ r cos θ + 3
⎫

⎭
⎬, f (r, θ, z) = 1

r cos θ + 3; b.

∫
0

3
∫
0

π/2
∫
0

r cos θ + 3
r

r cos θ + 3dz dθ dr = 9π
4

255. a. y = r cos θ, z = r sin θ, x = z, E = ⎧

⎩
⎨(r, θ, z)|1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1 − r2⎫

⎭
⎬, f (r, θ, z) = z; b.

∫
1

3
∫
0

2π
∫
0

1 − r2

zr dz dθ dr = 356π
3

257. π

259.
π
3

261. π

263. 4π
3

265. V = π
12 ≈ 0.2618

267. ∫
0

1
∫
0

π
∫
r2

r
zr2 cos θ dz dθ dr

269. 180π 10

271.
81π(π − 2)

16

277. a. f ⎛
⎝ρ, θ, φ⎞

⎠ = ρ sin φ(cos θ + sin θ), E =
⎧

⎩
⎨⎛

⎝ρ, θ, φ⎞
⎠|1 ≤ ρ ≤ 2, 0 ≤ θ ≤ π, 0 ≤ φ ≤ π

2
⎫

⎭
⎬; b.

∫
0

π
∫
0

π/2
∫
1

2
ρ3 cos φ sin φ dρ dφ dθ = 15π

8

279. a. f ⎛
⎝ρ, θ, φ⎞

⎠ = ρ cos φ; E =
⎧

⎩
⎨⎛

⎝ρ, θ, φ⎞
⎠|0 ≤ ρ ≤ 2 cos φ, 0 ≤ θ ≤ π

2, 0 ≤ φ ≤ π
4

⎫

⎭
⎬; b.

∫
0

π/2
∫
0

π/4
∫
0

2 cos φ

ρ3 sin φcos φ dρ dφ dθ = 7π
24
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281.
π
4

283. 9π( 2 − 1)

285. ∫
0

π/2
∫
0

π/2
∫
0

4
ρ6 sin φ dρ dφ dθ

287. V = 4π 3
3 ≈ 7.255

289. 343π
32

291. ∫
0

2π
∫
2

4
∫

− 16 − r2

16 − r2

r dz dr dθ; ∫
π/6

5π/6
∫
0

2π
∫

2 csc φ

4
ρ2 sin ρ dρ dθ dφ

293. P = 32P0 π
3 watts

295. Q = kr4 πµC

297. 27
2

299. 24 2
301. 76
303. 8π

305.
π
2

307. 2

309. a. Mx = 81
5 , My = 162

5 ; b. x− = 12
5 , y− = 6

5;

c.

311. a. Mx = 216 2
5 , My = 432 2

5 ; b. x− = 18
5 , y− = 9

5;

c.
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313. a. Mx = 368
5 , My = 1552

5 ; b. x− = 92
95, y− = 388

95 ;

c.

315. a. Mx = 16π, My = 8π; b. x− = 1, y− = 2;
c.

317. a. Mx = 0, My = 0; b. x− = 0, y− = 0;
c.

319. a. Mx = 2, My = 0; b. x− = 0, y− = 1;
c.
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321. a. Ix = 243
10 , Iy = 486

5 , and I0 = 243
2 ; b. Rx = 3 5

5 , Ry = 6 5
5 , and R0 = 3

323. a. Ix = 2592 2
7 , Iy = 648 2

7 , and I0 = 3240 2
7 ; b. Rx = 6 21

7 , Ry = 3 21
7 , and R0 = 3 105

7

325. a. Ix = 88, Iy = 1560, and I0 = 1648; b. Rx = 418
19 , Ry = 7410

19 , and R0 = 2 1957
19

327. a. Ix = 128π
3 , Iy = 56π

3 , and I0 = 184π
3 ; b. Rx = 4 3

3 , Ry = 21
3 , and R0 = 69

3

329. a. Ix = π
32, Iy = π

8, and I0 = 5π
32; b. Rx = 1

4, Ry = 1
2, and R0 = 5

4

331. a. Ix = 7
3, Iy = 1

3, and I0 = 8
3; b. Rx = 42

6 , Ry = 6
6 , and R0 = 2 3

3

333. m = 1
3

337. a. m = 9π
4 ; b. Mxy = 3π

2 , Mxz = 81
8 , Myz = 81

8 ; c. x− = 9
2π , y− = 9

2π , z− = 2
3; d. the solid Q and its center of mass

are shown in the following figure.

339. a. x− = 3 2
2π , y− = 3(2 − 2)

2π , z− = 0; b. the solid Q and its center of mass are shown in the following figure.
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343. n = −2

349. a. ρ(x, y, z) = x2 + y2; b. 16π
7

351. Mxy = π⎛
⎝ f (0) − f (a) + a f ′ (a)⎞

⎠

355. Ix = Iy = Iz ≃ 0.84

357. a. T(u, v) = ⎛
⎝g(u, v), h(u, v)⎞

⎠, x = g(u, v) = u
2 and y = h(u, v) = v

3. The functions g and h are continuous and

differentiable, and the partial derivatives gu (u, v) = 1
2, gv (u, v) = 0, hu (u, v) = 0 and hv (u, v) = 1

3 are continuous on

S; b. T(0, 0) = (0, 0), T(1, 0) = ⎛
⎝
1
2, 0⎞

⎠, T(0, 1) = ⎛
⎝0, 1

3
⎞
⎠, and T(1, 1) = ⎛

⎝
1
2, 1

3
⎞
⎠; c. R is the rectangle of vertices

(0, 0), ⎛
⎝
1
2, 0⎞

⎠,
⎛
⎝
1
2, 1

3
⎞
⎠, and ⎛

⎝0, 1
3

⎞
⎠ in the xy-plane; the following figure.

359. a. T(u, v) = ⎛
⎝g(u, v), h(u, v)⎞

⎠, x = g(u, v) = 2u − v, and y = h(u, v) = u + 2v. The functions g and h are

continuous and differentiable, and the partial derivatives gu (u, v) = 2, gv (u, v) = −1, hu (u, v) = 1, and hv (u, v) = 2
are continuous on S; b. T(0, 0) = (0, 0), T(1, 0) = (2, 1), T(0, 1) = (−1, 2), and T(1, 1) = (1, 3); c. R is the

parallelogram of vertices (0, 0), (2, 1), (1, 3), and (−1, 2) in the xy-plane; see the following figure.
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361. a. T(u, v) = ⎛
⎝g(u, v), h(u, v)⎞

⎠, x = g(u, v) = u3, and y = h(u, v) = v3. The functions g and h are continuous

and differentiable, and the partial derivatives gu (u, v) = 3u2, gv (u, v) = 0, hu (u, v) = 0, and hv (u, v) = 3v2 are

continuous on S; b. T(0, 0) = (0, 0), T(1, 0) = (1, 0), T(0, 1) = (0, 1), and T(1, 1) = (1, 1); c. R is the unit

square in the xy-plane; see the figure in the answer to the previous exercise.

363. T is not one-to-one: two points of S have the same image. Indeed, T(−2, 0) = T(2, 0) = (16, 4).
365. T is one-to-one: We argue by contradiction. T(u1, v1) = T(u2, v2) implies 2u1 − v1 = 2u2 − v2 and u1 = u2. Thus,
u1 = u2 and v1 = v2.
367. T is not one-to-one: T(1, v, w) = (−1, v, w)

369. u = x − 2y
3 , v = x + y

3
371. u = ex, v = e−x + y

373. u = x − y + z
2 , v = x + y − z

2 , w = −x + y + z
2

375. S = ⎧

⎩
⎨(u, v)|u2 + v2 ≤ 1⎫

⎭
⎬

377. R = ⎧

⎩
⎨(u, v, w)|u2 − v2 − w2 ≤ 1, w > 0⎫

⎭
⎬

379. 3
2

381. −1
383. 2uv

385.
v

u2

387. 2
389. a. T(u, v) = (2u + v, 3v); b. The area of R is

A(R) = ∫
0

3
∫
y/3

⎛
⎝6 − y⎞

⎠/3

dx dy = ∫
0

1
∫
0

1 − u

|∂ (x, y)
∂ (u, v)|dv du = ∫

0

1
∫
0

1 − u
6dv du = 3.

391. −1
4

393. −1 + cos 2

395.
π
15

397. 31
5

399. T(r, θ, z) = (r cos θ, r sin θ, z); S = [0, 3] × ⎡
⎣0, π

2
⎤
⎦ × [0, 1] in the rθz-space

403. The area of R is 10 − 4 6; the boundary curves of R are graphed in the following figure.
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405. 8

409. a. R = ⎧

⎩
⎨(x, y)|y2 + x2 − 2y − 4x + 1 ≤ 0⎫

⎭
⎬; b. R is graphed in the following figure;

c. 3.16
411. a. T0, 2 ∘T3, 0 (u, v) = (u + 3v, 2u + 7v); b. The image S is the quadrilateral of vertices

(0, 0), (3, 7), (2, 4), and (4, 9); c. S is graphed in the following figure;

d. 3
2

413. 2662
3π ≃ 282.45 in3
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415. A(R) ≃ 83,999.2

Review Exercises

417. True.
419. False.
421. 0

423. 1
4

425. 1.475

427. 52
3 π

429.
π
16

431. 93.291

433.
⎛
⎝

8
15, 8

15
⎞
⎠

435.
⎛
⎝0, 0, 8

5
⎞
⎠

437. 1.452π × 1015 ft-lb

439. y = −1.238 × 10−7 x3 + 0.001196x2 − 3.666x + 7208; average temperature approximately 2800°C

441.
π
3

Chapter 6

Checkpoint

6.1. 12i − j
6.2.

6.3. Rotational
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6.4. 65 m/sec

6.5. No.
6.6.

6.7. 1.49063 × 10−18, 4.96876 × 10−19, 9.93752 × 10−19 N
6.8.
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6.9. No
6.10. ∇ f = v
6.11. Py = x ≠ Qx = −2xy
6.12. No
6.13. 2

6.14. 1
3 + 2

6 + 3π
4

6.15. Both line integrals equal −1000 30
3 .

6.16. 4 17

6.17. ∫
C

F · Tds

6.18. −26
6.19. 0
6.20. 18 2π2 kg

6.21. 3/2
6.22. 2π
6.23. 0
6.24. Yes
6.25. The region in the figure is connected. The region in the figure is not simply connected.
6.26. 2

6.27. If C1 and C2 represent the two curves, then ∫
C1

F • dr ≠ ∫
C2

F • dr.

6.28. f (x, y) = ex y3 + xy

6.29. f (x, y, z) = 4x3 + siny cos z + z

6.30. f (x, y, z) = G
x2 + y2 + z2

6.31. It is conservative.
6.32. −10π
6.33. Negative

6.34. 45
2
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6.35. 4
3

6.36. 3π
2

6.37. g(x, y) = −x cos y
6.38. No
6.39. 105π
6.40. y − z2

6.41. Yes
6.42. All points on line y = 1.
6.43. −i
6.44. curl v = 0
6.45. No
6.46. Yes

6.47. Cylinder x2 + y2 = 4

6.48. Cone x2 + y2 = z2

6.49. r(u, v) = 〈 u cos v, u sin v, u 〉 , 0 < u < ∞, 0 ≤ v < π
2

6.50. Yes
6.51. ≈ 43.02
6.52. With the standard parameterization of a cylinder, Equation 6.201 shows that the surface area is 2πrh.

6.53. 2π⎛
⎝ 2 + sinh−1(1)⎞

⎠

6.54. 24
6.55. 0
6.56. 38.401π ≈ 120.640

6.57. N(x, y) = 〈 −y
1 + x2 + y2

, −x
1 + x2 + y2

, 1
1 + x2 + y2

〉

6.58. 0
6.59. 400 kg/sec/m

6.60. −440π
3

6.61. Both integrals give −136
45 .

6.62. −π

6.63. 3
2

6.64. curl E = 〈 x, y, −2z 〉
6.65. Both integrals equal 6π.
6.66. 30
6.67. 9 ln(16)
6.68. ≈ 6.777 × 109

Section Exercises

1. Vectors
3. False
5.
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7.

9.

11.
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13.

15. F(x, y) = sin(y)i + (x cos y − sin y)j

17. F(x, y, z) = (2xy + y)i + (x2 + x + 2yz)j + y2 k

19. F(x, y) =
⎛

⎝
⎜ 2x
1 + x2 + 2y2

⎞

⎠
⎟i +

⎛

⎝
⎜ 4y
1 + x2 + 2y2

⎞

⎠
⎟j

21. F(x, y) = (1 − x)i − yj
(1 − x)2 + y2

23. F(x, y) = (yi − xj)
x2 + y2

25. F(x, y) = yi − xj

27.
F(x, y) = −10

⎛
⎝x2 + y2⎞

⎠
3/2

⎛
⎝xi + yj⎞

⎠

29. E = c
|r|2

r = c
|r|

r
|r|

31. c′(t) = ⎛
⎝cos t, −sin t, e−t⎞

⎠ = F⎛
⎝c(t)⎞

⎠

33. H
35. d. −F + G
37. a. F + G
39. True
41. False
43. False
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45. ∫
C

(x − y)ds = 10

47. ∫
C

xy4 ds = 8192
5

49. W = 8

51. W = 3π
4

53. W = π

55. ∫
C

F · dr = 4

57. ∫
C

yzdx + xzdy + xydz = −1

59. ∫
C

⎛
⎝y2⎞

⎠dx + (x)dy = 245
6

61. ∫
C

xydx + ydy = 190
3

63. ∫
C

y
2x2 − y2ds = 2 ln 5

65. W = −66
67. W = −10π2

69. W = 2
71. a. W = 11; b. W = 11; c. Yes

73. W = 2π

75. ∫
C

F · dr = 25 5 + 1
120

77. ∫
C

y2 dx + ⎛
⎝xy − x2⎞

⎠dy = 6.15

79. ∫
γ
xey ds ≈ 7.157

81. ∫
γ
⎛
⎝y2 − xy⎞

⎠dx ≈ −1.379

83. ∫
C

F · dr ≈ −1.133

85. ∫
C

F · dr ≈ 22.857

87. flu = − 1
3

89. flu = −20
91. flu = 0
93. m = 4πρ 5
95. W = 0

97. W = k
2

99. True
101. True

103. ∫
C

F · dr = 24

105. ∫
C

F · dr = e − 3π
2

107. Not conservative

109. Conservative, f (x, y) = 3x2 + 5xy + 2y2
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111. Conservative, f (x, y) = yex + x sin(y)

113. ∮
C

(2ydx + 2xdy) = 32

115. F(x, y) = (10x + 3y)i + (3x + 10y)j
117. F is not conservative.
119. F is conservative and a potential function is f (x, y, z) = xyez.
121. F is conservative and a potential function is f (x, y, z) = z.

123. F is conservative and a potential function is f (x, y, z) = x2 y + y2 z.

125. F is conservative and a potential function is f (x, y) = ex2 y

127. ∫
C

F · dr = e2 + 1

129. ∫
C

F · dr = 41

131. ∮
C1

G · dr = −8π

133. ∮
C2

F · dr = 7

135. ∫
C

F · dr = 150

137. ∫
C

F · dr = −1

139. 4 × 1031 erg

141. ∫
C

F · ds = 0.4687

143. circulation = πa2 and flu = 0

147. ∫
C

2xydx + (x + y)dy = 32
3

149. ∫
C

sin x cos ydx + (xy + cos x sin y)dy = 1
12

151. ∮
C

(−ydx + xdy) = π

153. ∫
C

xe−2x dx + ⎛
⎝x4 + 2x2 y2⎞

⎠dy = 0

155. ∮
C

y3 dx − x3 dy = −24π

157. ∮
C

−x2 ydx + xy2 dy = 8π

159. ∮
C

⎛
⎝x2 + y2⎞

⎠dx + 2xydy = 0

161. A = 19π

163. A = 3
8π

165. ∫
C +

⎛
⎝y2 + x3⎞

⎠dx + x4 dy = 0

167. A = 9π
8

169. A = 8 3
5

171. ∫
C

⎛
⎝x2 y − 2xy + y2⎞

⎠ds = 3
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173. ∫
C

xdx + ydy
x2 + y2 = 2π

175. W = 225
2

177. W = 12π
179. W = 2π

181. ∮
C

y2 dx + x2 dy = 1
3

183. ∫
C

1 + x3dx + 2xydy = 3

185. ∫
C

⎛
⎝3y − esin x⎞

⎠dx + ⎛
⎝7x + y4 + 1⎞

⎠dy = 36π

187. ∮
C

F · dr = 2

189. ∮
C

(y + x)dx + (x + sin y)dy = 0

191. ∮
C

xydx + x3 y3 dy = 22
21

193. ∮
C

F · dr = 15π
4

195. ∫
C

sin(x + y)dx + cos(x + y)dy = 4

197. ∫
C

F · dr = π

199. ∮
C

F · n̂ds = 4

201. ∮
C

F · nds = 32π

203. ∫
C

⎡
⎣−y3 + sin(xy) + xy cos(xy)⎤

⎦dx + ⎡
⎣x3 + x2 cos(xy)⎤

⎦dy = 4.7124

205. ∮
C

⎛
⎝y + e x⎞

⎠dx + ⎛
⎝2x + cos⎛

⎝y2⎞
⎠
⎞
⎠dy = 1

3
207. False
209. True
211. True

213. curl F = i + x2 j + y2 k

215. curl F = ⎛
⎝xz2 − xy2⎞

⎠i + ⎛
⎝x2 y − yz2⎞

⎠j + ⎛
⎝y2 z − x2 z⎞

⎠k

217. curl F = i + j + k
219. curl F = −yi − zj − xk
221. curl F = 0
223. div F = 3yz2 + 2y sinz + 2xe2z

225. div F = 2(x + y + z)

227. div F = 1
x2 + y2

229. div F = a + b
231. div F = x + y + z
233. Harmonic
235. div (F × G) = 2z + 3x
237. div F = 2r2

239. curl r = 0
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241. curl r
r3 = 0

243. curl F = 2x
x2 + y2k

245. div F = 0
247. div F = 2 − 2e−6

249. div F = 0
251. curl F = j − 3k
253. curl F = 2j − k
255. a = 3
257. F is conservative.
259. div F = cosh x + sinh y − xy
261. (bz − cy)i(cx − az)j + (ay − bx)k
263. curl F = 2ω
265. F × G does not have zero divergence.

267. ∇ · F = −200k⎡
⎣1 + 2⎛

⎝x2 + y2 + z2⎞
⎠
⎤
⎦e

−x2 + y2 + z2

269. True
271. True
273. r(u, v) = 〈 u, v, 2 − 3u + 2v 〉 for −∞ ≤ u < ∞ and −∞ ≤ v < ∞.

275. r(u, v) = 〈 u, v, 1
3(16 − 2u + 4v) 〉 for |u| < ∞ and |v| < ∞.

277. r(u, v) = 〈 3 cos u, 3 sin u, v 〉 for 0 ≤ u ≤ π
2, 0 ≤ v ≤ 3

279. A = 87.9646

281. ∬
S
zdS = 8π

283. ∬
S

⎛
⎝x2 + y2⎞

⎠zdS = 16π

285. ∬
S
F · NdS = 4π

3
287. m ≈ 13.0639
289. m ≈ 228.5313

291. ∬
S
gdS = 3 4

293. ∬
S

⎛
⎝x2 + y − z⎞

⎠dS ≈ 0.9617

295. ∬
S

⎛
⎝x2 + y2⎞

⎠dS = 4π
3

297. ∬
S
x2 zdS = 1023 2π

5

299. ∬
S
(z + y)dS ≈ 10.1

301. m = πa3

303. ∬
S
F · NdS = 13

24

305. ∬
S
F · NdS = 3

4

307. ∫
0

8
∫
0

6
⎛
⎝4 − 3y + 1

16y2 + z⎞
⎠
⎛
⎝
1
4 17⎞

⎠dzdy

309. ∫
0

2
∫
0

6
⎡
⎣x2 − 2(8 − 4x) + z⎤

⎦ 17dzdx
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311. ∬
S

⎛
⎝x2 z + y2 z⎞

⎠dS = πa5

2

313. ∬
S
x2 yzdS = 171 14

315. ∬
S
yzdS = 2π

4

317. ∬
S
(xi + yj) · dS = 16π

319. m = πa7

192
321. F ≈ 4.57 lb.
323. 8πa
325. The net flux is zero.

327. ∬
S
(curl F · N)dS = πa2

329. ∬
S
(curl F · N)dS = 18π

331. ∬
S
(curl F · N)dS = −8π

333. ∬
S
(curl F · N)dS = 0

335. ∫
C

F · dS = 0

337. ∫
C

F · dS = −9.4248

339. ∬
S

curl F · dS = 0

341. ∬
S
curl F · dS = 2.6667

343. ∬
S
(curl F · N)dS = − 1

6

345. ∫
C

⎛
⎝
1
2y2 dx + zdy + xdz⎞

⎠ = − π
4

347. ∬
S
(curl F · N)dS = −3π

349. ∫
C

(ck × R) · dS = 2πc

351. ∬
S
curl F · dS = 0

353. ∮F · dS = −4

355. ∬
S
curl F · dS = 0

357. ∬
S
curl F · dS = −36π

359. ∬
S
curl F · N = 0

361. ∮
C

F · dr = 0

363. ∬
S
curl(F) · dS = 84.8230

365. A = ∬
S
(∇ × F) · ndS = 0

367. ∬
S
(∇ × F) · ndS = 2π

369. C = π⎛
⎝cos φ − sin φ⎞

⎠

371. ∮
C

F · dr = 48π
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373. ∬
S
(∇ × F) · n = 0

375. 0

377. ∫
S
F · nds = 75.3982

379. ∫
S
F · nds = 127.2345

381. ∫
S
F · nds = 37.6991

383. ∫
S
F · nds = 9πa4

2

385. ∬
S
F · dS = π

3

387. ∬
S
F · dS = 0

389. ∬
S
F · dS = 241.2743

391. ∬
D

F · dS = −π

393. ∬
S
F · dS = 2π

3
395. 16 6π

397. −128
3 π

399. −703.7168
401. 20

403. ∬
S
F · dS = 8

405. ∬
S
F · NdS = 1

8

407. ∬
S

‖ R ‖ R · nds = 4πa4

409. ∭
R
z2 dV = 4π

15

411. ∬
S
F · dS = 6.5759

413. ∬
S
F · dS = 21

415. ∬
S
F · dS = 72

417. ∬
S
F · dS = −33.5103

419. ∬
S
F · dS = πa4 b2

421. ∬
S
F · dS = 5

2π

423. ∬
S
F · dS = 21π

2

425. −⎛
⎝1 − e−1⎞

⎠

Review Exercises

427. False
429. False
431.
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433. Conservative, f (x, y) = xy − 2ey

435. Conservative, f (x, y, z) = x2 y + y2 z + z2 x

437. −16
3

439. 32 2
9

⎛
⎝3 3 − 1⎞

⎠

441. Divergence: ex + xexy + xyexyz, curl: xzexyz i − yzexyz j + yexy k
443. −2π
445. −π
447. 31π/2
449. 2(2 + π)
451. 2π/3
Chapter 7

Checkpoint

7.1.
a. Nonlinear
b. Linear, nonhomogeneous

7.4. Linearly independent

7.5. y(x) = c1 e3x + c2 xe3x

7.6.

a. y(x) = ex ⎛
⎝c1 cos3x + c2 sin3x⎞

⎠

b. y(x) = c1 e−7x + c2 xe−7x

7.7. y(x) = −e−2x + e5x

7.8. y(x) = ex(2cos3x − sin3x)
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7.9. y(t) = te−7t

At time t = 0.3, y(0.3) = 0.3e(−7 * 0.3) = 0.3e−2.1 ≈ 0.0367. The mass is 0.0367 ft below equilibrium. At time t = 0.1,

y′(0.1) = 0.3e−0.7 ≈ 0.1490. The mass is moving downward at a speed of 0.1490 ft/sec.

7.10. y(x) = c1 e−x + c2 e4x − 2
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7.11. y(t) = c1 e2t + c2 te2t + sin t + cos t
7.12.

a. y(x) = c1 e4x + c2 ex − xex

b. y(t) = c1 e−3t + c2 e2t − 5cos2t + sin2t

7.13. z1 = 3x + 3
11x2 , z2 = 2x + 2

11x
7.14.

a. y(x) = c1 cosx + c2 sinx + cosx ln|cosx| + xsinx

b. x(t) = c1 et + c2 tet + tet ln|t|

7.15. x(t) = 0.1cos(14t) (in meters); frequency is 14
2π Hz.

7.16. x(t) = 17sin(4t + 0.245), frequency = 4
2π ≈ 0.637, A = 17

7.17. x(t) = 0.6e−2t − 0.2e−6t

7.18. x(t) = 1
2e−8t + 4te−8t

7.19. x(t) = −0.24e−2t cos(4t) − 0.12e−2t sin(4t)

7.20. x(t) = − 1
2 cos(4t) + 9

4 sin(4t) + 1
2e−2t cos(4t) − 2e−2t sin(4t)

Transient solution: 1
2e−2t cos(4t) − 2e−2t sin(4t)

Steady-state solution: − 1
2 cos(4t) + 9

4 sin(4t)

7.21. q(t) = −25e−t cos(3t) − 7e−t sin(3t) + 25
7.22.

a. y(x) = a0 ∑
n = 0

∞ (−1)n

n ! x2n = a0 e−x2

b. y(x) = a0 (x + 1)3

Section Exercises

1. linear, homogenous
3. nonlinear
5. linear, homogeneous

11. y = c1 e5x + c2 e−2x

13. y = c1 e−2x + c2 xe−2x

15. y = c1 e5x/2 + c2 e−x

17. y = e−x/2 ⎛
⎝c1 cos 3x

2 + c2 sin 3x
2

⎞
⎠

19. y = c1 e−11x + c2 e11x

21. y = c1 cos9x + c2 sin9x

23. y = c1 + c2 x

25. y = c1 e
⎛
⎝
⎛
⎝1 + 22⎞

⎠/3⎞
⎠x + c2 e

⎛
⎝
⎛
⎝1 − 22⎞

⎠/3⎞
⎠x

27. y = c1 e−x/6 + c2 xe−x/6

29. y = c1 + c2 e9x

31. y = −2e−2x + 2e−3x

33. y = 3cos(2x) + 5sin(2x)
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35. y = −e6x + 2e−5x

37. y = 2e−x/5 + 7
5xe−x/5

39. y = ⎛
⎝

2
e6 − e−7

⎞
⎠e6x − ⎛

⎝
2

e6 − e−7
⎞
⎠e−7x

41. No solutions exist.

43. y = 2e2x − 2e2 + 1
e2 xe2x

45. y = 4cos3x + c2 sin3x, infinite y many solutions

47. 5y″ + 19y′ − 4y = 0
49. a. y = 3cos(8x) + 2sin(8x)
b.

51. a. y = e(−5/2)x ⎡
⎣−2cos⎛

⎝
35
2 x⎞

⎠ + 4 35
35 sin⎛

⎝
35
2 x⎞

⎠
⎤
⎦

b.

55. y = c1 e−4x/3 + c2 ex − 2

57. y = c1 cos4x + c2 sin4x + 1
20e−2x

59. y = c1 e2x + c2 xe2x + 2x2 + 5x

61. y = c1 e−x + c2 xe−x + 1
2 sinx − 1

2 cosx
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63. y = c1 cosx + c2 sinx − 1
3xcos2x − 5

9 sin2x

65. y = c1 e−5x + c2 xe−5x + 1
6x3 e−5x + 4

25
67. a. y p(x) = Ax2 + Bx + C

b. y p(x) = − 1
3x2 + 4

3x − 35
9

69. a. y p(x) = ⎛
⎝Ax2 + Bx + C⎞

⎠e−x

b. y p(x) = ⎛
⎝
1
4x2 − 5

8x − 33
32

⎞
⎠e

−x

71. a. y p(x) = ⎛
⎝Ax2 + Bx + C⎞

⎠ex cosx +⎛
⎝Dx2 + Ex + F⎞

⎠ex sinx

b. y p(x) = ⎛
⎝−

1
10x2 − 11

25x − 27
250

⎞
⎠e

x cosx +⎛
⎝−

3
10x2 + 2

25x + 39
250

⎞
⎠e

x sinx

73. y = c1 + c2 e−2x + 1
15e3x

75. y = c1 e2x + c2 e−4x + xe2x

77. y = c1 e3x + c2 e−3x − 8x
9

79. y = c1 cos2x + c2 sin2x − 3
2xcos2x + 3

4 sin2x ln(sin2x)

81. y = − 347
343 + 4

343e7x + 2
7x2 e7x − 4

49xe7x

83. y = − 57
25 + 3

25e5x + 1
5xe5x + 4

25e−5x

85. y p = 1
2 + 10

3 x2 lnx

87. x″ + 16x = 0, x(t) = 1
6 cos(4t) − 2sin(4t), period = π

2 sec, frequency = 2
π Hz

89. x″ + 196x = 0, x(t) = 0.15cos(14t), period = π
7 sec, frequency = 7

π Hz

91. a. x(t) = 5sin(2t)

b. period = π sec, frequency = 1
π Hz

c.

d. t = π
2 sec

93. a. x(t) = e−t/5 ⎛
⎝20cos(3t) + 15sin(3t)⎞

⎠

b. underdamped

95. a. x(t) = 5e−4t + 10te−4t
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b. critically damped

97. x(π) = 7e−π/4

6 ft below

99. x(t) = 32
9 sin(4t) + cos ⎛

⎝ 128t⎞
⎠ − 16

9 2
sin ⎛

⎝ 128t⎞
⎠

101. q(t) = e−6t ⎛
⎝0.051cos(8t) + 0.03825sin(8t)⎞

⎠ − 1
20 cos(10t)

103. q(t) = e−10t (−32t − 5) + 5, I(t) = 2e−10t (160t + 9)

105. y = c0 + 5c1 ∑
n = 1

∞ (−x/5)n

n ! = c0 + 5c1 e−x/5

107. y = c0 ∑
n = 0

∞ (x)2n

(2n) ! + c1 ∑
n = 0

∞ (x)2n + 1

(2n + 1)!

109. y = c0 ∑
n = 0

∞
x2n

n ! = c0 ex2

111. y = c0 ∑
n = 0

∞
x2n

2n n !
+ c1 ∑

n = 0

∞
x2n + 1

1 ⋅ 3 ⋅ 5 ⋅ 7 ⋯ (2n + 1)

113. y = c1 x3 + c2
x

115. y = 1 − 3x + 2x3

3! − 12x4

4! + 16x6

6! − 120x7

7! + ⋯

Review Exercises

117. True
119. False
121. second order, linear, homogeneous, λ2 − 2 = 0
123. first order, nonlinear, nonhomogeneous
125. y = c1 sin(3x) + c2 cos(3x)

127. y = c1 ex sin(3x) + c2 ex cos(3x) + 2
5x + 2

25

129. y = c1 e−x + c2 e−4x + x
4 + e2x

18 − 5
16

131. y = c1 e(−3/2)x + c2 xe(−3/2)x + 4
9x2 + 4

27x − 16
27

133. y = e−2x sin ⎛
⎝ 2x⎞

⎠

135. y = e1 − x

e4 − 1
⎛
⎝e4x − 1⎞

⎠

137. θ(t) = θ0 cos⎛
⎝

g
l t⎞⎠

141. b = a
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INDEX
Symbols
δ ball, 364, 472

δ disk, 352, 472

A
acceleration vector, 305, 327
angular coordinate, 44, 96
angular frequency, 864
arc-length function, 285, 327
arc-length parameterization,
286, 327
Archimedean spiral, 56

B
Bessel functions, 888
binormal vector, 292, 327
boundary conditions, 843, 892
boundary point, 358, 471
boundary-value problem, 843,
892
Brahe, 315

C
cardioid, 54, 96
chain rule, 272
chambered nautilus, 8, 56
characteristic equation, 838,
892
circulation, 683, 823
cissoid of Diocles, 72
Clairaut’s theorem, 658
closed curve, 670, 689, 823,
823
closed set, 359, 471
Cobb-Douglas function, 464
Cobb-Douglas production
function, 388
complementary equation, 849,
892
complex conjugates, 839
complex number, 839
component, 249
component functions, 260, 327
components, 109
conic section, 73, 96
connected region, 690, 823
connected set, 359, 471
conservative field, 654, 823
constant multiple rule, 272
constraint, 471
constraints, 458
contour map, 342, 373, 471
coordinate plane, 249
coordinate planes, 125

critical point of a function of two
variables, 438, 471
cross product, 165, 249
cross-partial property, 657
curl, 743, 823
curtate cycloid, 22
curvature, 288, 327
cusp, 96
cusps, 18
cycloid, 17, 96
cylinder, 211, 249
cylindrical coordinate system,
228, 249

D
definite integral of a vector-
valued function, 276, 327
derivative, 270
derivative of a vector-valued
function, 270, 327
determinant, 171, 249
differentiable, 396, 471
direction angles, 153, 249
direction cosines, 153, 249
direction vector, 186, 249
directional cosines, 434
directional derivative, 423, 471
directrix, 74, 96
discriminant, 90, 96, 443, 471
divergence, 737, 823
divergence theorem, 808, 823
domain, 643
dot product, 146
dot product or scalar product,
249
double integral, 480, 633
double Riemann sum, 480, 633

E
Earth’s orbit, 9
eccentricity, 87, 96
electrical potential, 437
Electrical power, 405
electrical resistance, 404
electrostatic fields, 815
ellipsoid, 215, 249
Elliptic Cone, 222
elliptic cone, 249
elliptic paraboloid, 217, 249
Elliptic Paraboloid, 222
epitrochoid, 26
equivalent vectors, 102, 249
Ernest Rutherford, 385
error term, 396
Euler’s formula, 840

expected values, 518

F
Faraday’s law, 799
flow line, 661
flux, 681, 823
flux integral, 778, 823
focal parameter, 88, 96
focus, 74, 96
force, 116
Fourier’s law of heat transfer,
822
Frenet frame of reference, 297,
327
Fubini’s theorem, 484, 633
Fubini’s thereom, 548
function of two variables, 334,
471
Fundamental Theorem for Line
Integrals, 807, 823
Fundamental Theorem for Line
Integrals., 693
Fundamental Theorem of
Calculus, 807

G
Gauss’ law, 815, 823
Gauss’s law for magnetism, 739
general bounded region, 550
general form, 76, 96
general form of the equation of
a plane, 195, 249
general solution to a differential
equation, 837
generalized chain rule, 412, 471
gradient, 427, 471
gradient field, 654, 823
graph of a function of two
variables, 344, 471
gravitational force, 702
Green’s theorem, 711, 807, 823
grid curves, 762, 823

H
harmonic function, 724
heat equation, 379
heat flow, 781, 823
helix, 264, 265, 327
higher-order partial derivatives,
377, 471
homogeneous functions, 420
homogeneous linear equation,
832, 892
Hooke’s law, 863
hurricanes, 648
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Hyperboloid of One Sheet, 221
hyperboloid of one sheet, 249
Hyperboloid of Two Sheets, 221
hyperboloid of two sheets, 249
hypocycloid, 18

I
implicit differentiation, 415
improper double integral, 514,
633
indefinite integral of a vector-
valued function, 276, 327
independence of path, 823
independent of path, 696
independent random variables,
517
independent variables, 410
initial point, 102, 249, 261
initial-value problems, 842
interior point, 358, 471
intermediate variable, 471
intermediate variables, 407
inverse-square law, 816, 823
iterated integral, 484, 633

J
Jacobian, 614, 633
joint density function, 517

K
Kepler, 315
Kepler’s laws of planetary
motion, 315, 327

L
Lagrange multiplier, 459, 471
Laplace operator, 748
Laplace’s equation, 379, 724
level curve of a function of two
variables, 341, 471
level surface of a function of
three variables, 348, 472
limaçon, 54, 96
limit of a function of two
variables, 353
limit of a vector-valued function,
265, 327
line integral, 663, 823
linear approximation, 394, 472
linearly dependent, 836, 892
linearly independent, 836, 892
local extremum, 441
lunes of Alhazen, 525

M
magnitude, 102, 110, 249
major axis, 79, 96

mass flux, 777, 824
mass of a wire, 678
method of Lagrange multipliers,
459, 472
method of undetermined
coefficients, 850, 892
method of variation of
parameters, 857, 892
minor axis, 79, 96
mixed partial derivatives, 378,
472

N
nappe, 96
nappes, 73
nonhomogeneous linear
equation, 832, 892
normal, 151
normal component of
acceleration, 308, 327
normal form of Green’s
theorem, 719
normal plane, 297, 327
normal vector, 195, 249
normalization, 114, 249

O
objective function, 458, 472
octants, 125, 249
one-to-one transformation, 611,
633
open set, 359, 472
optimization problem, 458, 472
orientation, 10, 96
orientation of a curve, 670, 824
orientation of a surface, 775,
824
orthogonal, 151
orthogonal vectors, 151, 250
osculating circle, 298, 327
osculating plane, 327
overdamped, 869

P
parallelepiped, 177, 250
parallelogram method, 104, 250
parameter, 9, 96
parameter domain, 753
parameter domain (parameter
space), 824
parameter space, 753
parameterization of a curve, 16,
96
parameterized surface, 753
parameterized surface
(parametric surface), 824
parametric curve, 10, 96

parametric equations, 9, 96
parametric equations of a line,
187, 250
parametric surface, 753
partial derivative, 369, 472
partial differential equation, 379,
472
particular solution, 849, 892
path independent, 696
perpendicular, 151
piecewise smooth curve, 675,
824
planar transformation, 610, 633
plane curve, 262, 327
polar axis, 47, 96
polar coordinate system, 44, 96
polar equation, 96
polar equations, 52
polar rectangle, 526, 633
pole, 47, 96
potential function, 655, 824
power series, 884
principal unit normal vector, 292,
327
principal unit tangent vector,
275, 327
product rule, 272
projectile motion, 311, 327
prolate cycloid, 23

Q
Quadric surfaces, 215
quadric surfaces, 250

R
radial coordinate, 44, 97
radial field, 644, 824
radius of curvature, 298, 327
radius of gyration, 600, 633
region, 359, 472
regular parameterization, 760,
824
reparameterization, 265, 327
resolution of a vector into
components, 157
resonance, 879
Reuleaux triangle, 525
right-hand rule, 123, 250
RLC series circuit, 879, 892
rose, 54, 97
rotational field, 647, 824
rulings, 211, 250

S
saddle point, 442, 472
scalar, 104, 250
scalar equation of a plane, 195,
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250
scalar line integral, 664, 824
scalar multiplication, 104, 250
scalar projection, 156, 250
simple curve, 689, 824
simple harmonic motion, 864,
892
simple pendulum, 404
simply connected region, 690,
824
skew lines, 192, 250
smooth, 292, 327
space curve, 262, 328
space-filling curve, 55, 97
space-filling curves, 18
speed, 121
sphere, 130, 250
spherical coordinate system,
235, 250
spring-mass system, 863
standard equation of a sphere,
131, 250
standard form, 75, 97
standard position, 262
standard unit vectors, 115, 250
standard-position vector, 109,
250
steady-state solution, 877, 892
Stokes’ theorem, 789, 807, 824
stream function, 723, 824
sum and difference rules, 272
superposition principle, 835
surface, 337, 472
surface area, 763, 824
surface independent, 796, 824
surface integral, 778, 824
surface integral of a scalar-
valued function, 768, 824
surface integral of a vector field,
777, 824
symmetric equations of a line,

250
symmetric equations of a line,
187
symmetry, 57, 537

T
Tacoma Narrows Bridge, 879
tangent plane, 389, 472
tangent vector, 275, 328
tangential component of
acceleration, 308, 328
tangential form of Green’s
theorem, 712
terminal point, 102, 250, 261
three-dimensional rectangular

coordinate system, 123, 250
topographical map, 340
Torque, 180
torque, 250
total differential, 400, 472
trace, 250
traces, 214
transformation, 610, 634
transient solution, 877
tree diagram, 410, 472
triangle inequality, 105, 250
triangle method, 104, 250
triple integral, 547, 634
triple integral in cylindrical
coordinates, 568, 634
triple integral in spherical
coordinates, 575, 634
triple scalar product, 175, 251
Type I, 502, 634
Type II, 502, 634

U
unit vector, 114, 251
unit vector field, 651, 824

V
vector, 102, 251
vector addition, 105, 251
vector difference, 105, 251
vector equation of a line, 187,
251
vector equation of a plane, 195,
251
vector field, 643, 824
vector line integral, 671, 824
vector parameterization, 262,
328
vector product, 169, 251
vector projection, 156, 251
vector sum, 104, 251
vector-valued function, 260, 328
vector-valued functions, 305
velocity vector, 305, 328
vertex, 74, 97
vertical trace, 344, 472

W
wave equation, 379
William Thomson (Lord Kelvin),
383
witch of Agnesi, 20
work done by a force, 251
work done by a vector field, 679
work done by the force, 160

Z
zero vector, 102, 251
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