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Introduction to Linear Functions
Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later. Although it
may seem incredible, this can happen with certain types of bamboo species. These members of the grass family are the
fastest-growing plants in the world. One species of bamboo has been observed to grow nearly 1.5 inches every hour. 1

In a twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3 feet! A constant rate of
change, such as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the domain
exactly one element in the range. Linear functions are a specific type of function that can be used to model many real-
world applications, such as plant growth over time. In this chapter, we will explore linear functions, their graphs, and
how to relate them to data.

4.1 Linear Functions
Learning Objectives
In this section, you will:

Represent a linear function.
Determine whether a linear function is increasing, decreasing, or constant.
Interpret slope as a rate of change.
Write and interpret an equation for a linear function.
Graph linear functions.
Determine whether lines are parallel or perpendicular.
Write the equation of a line parallel or perpendicular to a given line.

LINEAR FUNCTIONS4

1 http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/
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COREQUISITE SKILLS

Learning Objectives
Find the slope of a line (IA 3.2.1)
Find an equation of the line given two points (IA 3.3.3)

Objective 1: Find the slope of a line. (IA 3.2.1)
Linear functions are a specific type of function that can be used to model many real-world applications, such as the
growth of a plant, earned salary, the distance a train travels over time, or the costs to start a new business. In this
section, we will explore linear functions, their graphs, and how to find them using data points.

Linear Function
A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a line

where is the initial or starting value of the function (when input, ), and is the constant rate of change, or slope
of the function. The -intercept is at ( ).

When interpreting slope, it will be important to consider the units of measurement. Make sure to always attach these
units to both the numerator and denominator when they are provided to you.

Quick Guide to Slopes of Lines

EXAMPLE 1

Find the slope of the line shown.

Solution
Locate two points on the graph whose coordinates are integers. Label the coordinates of these points.

It may help to visualize this change as Count the rise between the points. Since the line goes down, the slope

is negative. Then count the run, or horizontal change. Using the slope formula:

Practice Makes Perfect
Find the slope of the line.

1. Find the slope of the line below:
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2. Find the slope of the following line:

3. Find the slope of the following line:

4. Find the slope of the following line:

5. Find the slope of the following line:

6. Use the slope formula to find the slope of the line between the following pair of points.

7. Use the slope formula to find the slope of the linear function satisfying the condition below.

Objective 2: Find an equation of the line given two points. (IA 3.3.3)
Find an Equation of the Line Given Two Points
When data is collected, a linear model can be created from two data points. In the next example we’ll see how to find an
equation of a line when two points are given by following the steps below.

HOW TO

Step 1. Find the slope using the given points.
Step 2. Choose one point and label its coordinates .
Step 3. Plug and into point-slope form, .
Step 4. Write the equation in slope-intercept form, .

EXAMPLE 2

Find an equation of the line given two points.

Find the equation of a line containing the points (−4, −3) and (1, −5)
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Solution
Step 1. Find the slope of the line using the given points.

Step 2. Choose one point and label these coordinates
Step 3. Plug and into point-slope for, .

Step 4. Write the equation in slope-intercept form, .

Practice Makes Perfect
Find an equation of the line given two points.

8. Find the equation of a line containing the given points. Write the equation in slope-intercept form. and

9. Find the equation of a line containing the given points. Write the equation in slope-intercept form. and

10. Find the equation of a line containing the given points. Write the equation in slope-intercept form.

11. Derek notices the amount he receives in tips each night is a linear function of the number of tables he waits on. On
Friday evening he waits on 22 tables and receives $87 in tips, and on Tuesday evening he waits on 18 tables and
receives $73 in tips.

ⓐ Record the information given above as two data points.

ⓑ Find the slope of this linear function in terms of .

ⓒ Write a linear function S(t) that will let him estimate the amount in $ in tips he will receive as a function of
tables, t, waited on.

12. Complete the following:

Verbal Description Formula

Slope between two points

Point-slope form of a line

Slope-intercept form of a line
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Figure 1 Shanghai MagLev Train (credit: "kanegen"/Flickr)

Just as with the growth of a bamboo plant, there are many situations that involve constant change over time. Consider,
for example, the first commercial maglev train in the world, the Shanghai MagLev Train (Figure 1). It carries passengers
comfortably for a 30-kilometer trip from the airport to the subway station in only eight minutes2 .

Suppose a maglev train travels a long distance, and maintains a constant speed of 83 meters per second for a period of
time once it is 250 meters from the station. How can we analyze the train’s distance from the station as a function of
time? In this section, we will investigate a kind of function that is useful for this purpose, and use it to investigate real-
world situations such as the train’s distance from the station at a given point in time.

Representing Linear Functions
The function describing the train’s motion is a linear function, which is defined as a function with a constant rate of
change. This is a polynomial of degree 1. There are several ways to represent a linear function, including word form,
function notation, tabular form, and graphical form. We will describe the train’s motion as a function using each method.

Representing a Linear Function in Word Form
Let’s begin by describing the linear function in words. For the train problem we just considered, the following word
sentence may be used to describe the function relationship.

• The train’s distance from the station is a function of the time during which the train moves at a constant speed plus
its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent variable changes
with respect to the independent variable. The rate of change for this example is constant, which means that it is the
same for each input value. As the time (input) increases by 1 second, the corresponding distance (output) increases by
83 meters. The train began moving at this constant speed at a distance of 250 meters from the station.

Representing a Linear Function in Function Notation
Another approach to representing linear functions is by using function notation. One example of function notation is an
equation written in the slope-intercept form of a line, where is the input value, is the rate of change, and is the
initial value of the dependent variable.

In the example of the train, we might use the notation where the total distance is a function of the time The
rate, is 83 meters per second. The initial value of the dependent variable is the original distance from the station,
250 meters. We can write a generalized equation to represent the motion of the train.

Representing a Linear Function in Tabular Form
A third method of representing a linear function is through the use of a table. The relationship between the distance
from the station and the time is represented in Figure 2. From the table, we can see that the distance changes by 83
meters for every 1 second increase in time.

2 http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm
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Figure 2 Tabular representation of the function showing selected input and output values

Q&A Can the input in the previous example be any real number?

No. The input represents time so while nonnegative rational and irrational numbers are possible, negative
real numbers are not possible for this example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form
Another way to represent linear functions is visually, using a graph. We can use the function relationship from above,

to draw a graph as represented in Figure 3. Notice the graph is a line. When we plot a linear function,
the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input value is zero
is the vertical intercept, or y-intercept, of the line. We can see from the graph that the y-intercept in the train example we
just saw is and represents the distance of the train from the station when it began moving at a constant speed.

Figure 3 The graph of . Graphs of linear functions are lines because the rate of change is constant.

Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of the line
Ask yourself what numbers can be input to the function. In other words, what is the domain of the

function? The domain is comprised of all real numbers because any number may be doubled, and then have one added
to the product.

Linear Function

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a
line

where is the initial or starting value of the function (when input, ), and is the constant rate of change, or
slope of the function. The y-intercept is at

EXAMPLE 1

Using a Linear Function to Find the Pressure on a Diver
The pressure, in pounds per square inch (PSI) on the diver in Figure 4 depends upon her depth below the water
surface, in feet. This relationship may be modeled by the equation, Restate this function in
words.
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Figure 4 (credit: Ilse Reijs and Jan-Noud Hutten)

Solution
To restate the function in words, we need to describe each part of the equation. The pressure as a function of depth
equals four hundred thirty-four thousandths times depth plus fourteen and six hundred ninety-six thousandths.

Analysis
The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the water. The rate
of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver increases 0.434 PSI for each foot her
depth increases.

Determining Whether a Linear Function Is Increasing, Decreasing, or Constant
The linear functions we used in the two previous examples increased over time, but not every linear function does. A
linear function may be increasing, decreasing, or constant. For an increasing function, as with the train example, the
output values increase as the input values increase. The graph of an increasing function has a positive slope. A line with
a positive slope slants upward from left to right as in Figure 5(a). For a decreasing function, the slope is negative. The
output values decrease as the input values increase. A line with a negative slope slants downward from left to right as in
Figure 5(b). If the function is constant, the output values are the same for all input values so the slope is zero. A line with
a slope of zero is horizontal as in Figure 5(c).

Figure 5

Increasing and Decreasing Functions

The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant
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function.

is an increasing function if
is a decreasing function if
is a constant function if

EXAMPLE 2

Deciding Whether a Function Is Increasing, Decreasing, or Constant
Studies from the early 2010s indicated that teens sent about 60 texts a day, while more recent data indicates much
higher messaging rates among all users, particularly considering the various apps with which people can
communicate.3 . For each of the following scenarios, find the linear function that describes the relationship between the
input value and the output value. Then, determine whether the graph of the function is increasing, decreasing, or
constant.

ⓐ The total number of texts a teen sends is considered a function of time in days. The input is the number of days,
and output is the total number of texts sent.

ⓑ A person has a limit of 500 texts per month in their data plan. The input is the number of days, and output is the
total number of texts remaining for the month.

ⓒ A person has an unlimited number of texts in their data plan for a cost of $50 per month. The input is the number
of days, and output is the total cost of texting each month.

Solution
Analyze each function.

ⓐ The function can be represented as where is the number of days. The slope, 60, is positive so the
function is increasing. This makes sense because the total number of texts increases with each day.

ⓑ The function can be represented as where is the number of days. In this case, the slope is
negative so the function is decreasing. This makes sense because the number of texts remaining decreases each day
and this function represents the number of texts remaining in the data plan after days.

ⓒ The cost function can be represented as because the number of days does not affect the total cost. The
slope is 0 so the function is constant.

Interpreting Slope as a Rate of Change
In the examples we have seen so far, the slope was provided to us. However, we often need to calculate the slope given
input and output values. Recall that given two values for the input, and and two corresponding values for the
output, and —which can be represented by a set of points, and —we can calculate the slope

Note that in function notation we can obtain two corresponding values for the output and for the function
and so we could equivalently write

Figure 6 indicates how the slope of the line between the points, and is calculated. Recall that the slope
measures steepness, or slant. The greater the absolute value of the slope, the steeper the slant is.

3 http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/
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Figure 6 The slope of a function is calculated by the change in divided by the change in It does not matter which
coordinate is used as the and which is the as long as each calculation is started with the elements from
the same coordinate pair.

Q&A Are the units for slope always

Yes. Think of the units as the change of output value for each unit of change in input value. An example of
slope could be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output
per units for the input.

Calculate Slope

The slope, or rate of change, of a function can be calculated according to the following:

where and are input values, and are output values.

HOW TO

Given two points from a linear function, calculate and interpret the slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input value.

EXAMPLE 3

Finding the Slope of a Linear Function
If is a linear function, and and are points on the line, find the slope. Is this function increasing or
decreasing?

Solution
The coordinate pairs are and To find the rate of change, we divide the change in output by the change in
input.

We could also write the slope as The function is increasing because
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Analysis
As noted earlier, the order in which we write the points does not matter when we compute the slope of the line as long
as the first output value, or y-coordinate, used corresponds with the first input value, or x-coordinate, used. Note that if
we had reversed them, we would have obtained the same slope.

TRY IT #1 If is a linear function, and and are points on the line, find the slope. Is this
function increasing or decreasing?

EXAMPLE 4

Finding the Population Change from a Linear Function
The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per year
if we assume the change was constant from 2008 to 2012.

Solution
The rate of change relates the change in population to the change in time. The population increased by

people over the four-year time interval. To find the rate of change, divide the change in the
number of people by the number of years.

So the population increased by 1,100 people per year.

Analysis
Because we are told that the population increased, we would expect the slope to be positive. This positive slope we
calculated is therefore reasonable.

TRY IT #2 The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the
change of population per year if we assume the change was constant from 2009 to 2012.

Writing and Interpreting an Equation for a Linear Function
Recall from Equations and Inequalities that we wrote equations in both the slope-intercept form and the point-slope
form. Now we can choose which method to use to write equations for linear functions based on the information we are
given. That information may be provided in the form of a graph, a point and a slope, two points, and so on. Look at the
graph of the function in Figure 7.

Figure 7
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We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s choose
and

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.

If we want to rewrite the equation in the slope-intercept form, we would find

If we want to find the slope-intercept form without first writing the point-slope form, we could have recognized that the
line crosses the y-axis when the output value is 7. Therefore, We now have the initial value and the slope so
we can substitute and into the slope-intercept form of a line.

So the function is and the linear equation would be

HOW TO

Given the graph of a linear function, write an equation to represent the function.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

EXAMPLE 5

Writing an Equation for a Linear Function
Write an equation for a linear function given a graph of shown in Figure 8.
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Figure 8

Solution
Identify two points on the line, such as and Use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.

We can use algebra to rewrite the equation in the slope-intercept form.

Analysis
This makes sense because we can see from Figure 9 that the line crosses the y-axis at the point which is the
y-intercept, so

386 4 • Linear Functions

Access for free at openstax.org



Figure 9

EXAMPLE 6

Writing an Equation for a Linear Cost Function
Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead, which includes his
office rent. His production costs are $37.50 per item. Write a linear function where is the cost for items
produced in a given month.

Solution
The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each item, which is
$37.50. The variable cost, called the marginal cost, is represented by The cost Ben incurs is the sum of these two
costs, represented by

Analysis
If Ben produces 100 items in a month, his monthly cost is found by substituting 100 for

So his monthly cost would be $5,000.

EXAMPLE 7

Writing an Equation for a Linear Function Given Two Points
If is a linear function, with and find an equation for the function in slope-intercept form.

Solution
We can write the given points using coordinates.

We can then use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.
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We can use algebra to rewrite the equation in the slope-intercept form.

TRY IT #3 If is a linear function, with and write an equation for the function in
slope-intercept form.

Modeling Real-World Problems with Linear Functions
In the real world, problems are not always explicitly stated in terms of a function or represented with a graph.
Fortunately, we can analyze the problem by first representing it as a linear function and then interpreting the
components of the function. As long as we know, or can figure out, the initial value and the rate of change of a linear
function, we can solve many different kinds of real-world problems.

HOW TO

Given a linear function and the initial value and rate of change, evaluate

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into
3. Evaluate the function at

EXAMPLE 8

Using a Linear Function to Determine the Number of Songs in a Music Collection
Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a formula for the
number of songs, in his collection as a function of time, the number of months. How many songs will he own at the
end of one year?

Solution
The initial value for this function is 200 because he currently owns 200 songs, so which means that

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month. Therefore we know
that We can substitute the initial value and the rate of change into the slope-intercept form of a line.

Figure 10

We can write the formula

With this formula, we can then predict how many songs Marcus will have at the end of one year (12 months). In other
words, we can evaluate the function at
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Marcus will have 380 songs in 12 months.

Analysis
Notice that N is an increasing linear function. As the input (the number of months) increases, the output (number of
songs) increases as well.

EXAMPLE 9

Using a Linear Function to Calculate Salary Based on Commission
Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy. Therefore, Ilya’s
weekly income depends on the number of new policies, he sells during the week. Last week he sold 3 new policies,
and earned $760 for the week. The week before, he sold 5 new policies and earned $920. Find an equation for and
interpret the meaning of the components of the equation.

Solution
The given information gives us two input-output pairs: and We start by finding the rate of change.

Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of policies
increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80 for each policy sold
during the week.

We can then solve for the initial value.

 

The value of is the starting value for the function and represents Ilya’s income when or when no new policies
are sold. We can interpret this as Ilya’s base salary for the week, which does not depend upon the number of policies
sold.

We can now write the final equation.

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80 commission for each
policy sold.

EXAMPLE 10

Using Tabular Form to Write an Equation for a Linear Function
Table 1 relates the number of rats in a population to time, in weeks. Use the table to write a linear equation.

number of weeks, w 0 2 4 6

number of rats, P(w) 1000 1080 1160 1240

Table 1

Solution
We can see from the table that the initial value for the number of rats is 1000, so
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Rather than solving for we can tell from looking at the table that the population increases by 80 for every 2 weeks that
pass. This means that the rate of change is 80 rats per 2 weeks, which can be simplified to 40 rats per week.

If we did not notice the rate of change from the table we could still solve for the slope using any two points from the
table. For example, using and

Q&A Is the initial value always provided in a table of values like Table 1?

No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input
of 0, then the initial value would be the corresponding output. If the initial value is not provided because
there is no value of input on the table equal to 0, find the slope, substitute one coordinate pair and the
slope into and solve for

TRY IT #4 A new plant food was introduced to a young tree to test its effect on the height of the tree. Table 2
shows the height of the tree, in feet, months since the measurements began. Write a linear
function, where is the number of months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Table 2

Graphing Linear Functions
Now that we’ve seen and interpreted graphs of linear functions, let’s take a look at how to create the graphs. There are
three basic methods of graphing linear functions. The first is by plotting points and then drawing a line through the
points. The second is by using the y-intercept and slope. And the third method is by using transformations of the identity
function

Graphing a Function by Plotting Points
To find points of a function, we can choose input values, evaluate the function at these input values, and calculate output
values. The input values and corresponding output values form coordinate pairs. We then plot the coordinate pairs on a
grid. In general, we should evaluate the function at a minimum of two inputs in order to find at least two points on the
graph. For example, given the function, we might use the input values 1 and 2. Evaluating the function for an
input value of 1 yields an output value of 2, which is represented by the point Evaluating the function for an input
value of 2 yields an output value of 4, which is represented by the point Choosing three points is often advisable
because if all three points do not fall on the same line, we know we made an error.

HOW TO

Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.
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EXAMPLE 11

Graphing by Plotting Points
Graph by plotting points.

Solution
Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose multiples of 3
as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the output value to identify coordinate pairs.

Plot the coordinate pairs and draw a line through the points. Figure 11 represents the graph of the function

Figure 11 The graph of the linear function

Analysis
The graph of the function is a line as expected for a linear function. In addition, the graph has a downward slant, which
indicates a negative slope. This is also expected from the negative, constant rate of change in the equation for the
function.

TRY IT #5 Graph by plotting points.

Graphing a Function Using y-intercept and Slope
Another way to graph linear functions is by using specific characteristics of the function rather than plotting points. The
first characteristic is its y-intercept, which is the point at which the input value is zero. To find the y-intercept, we can set

in the equation.

The other characteristic of the linear function is its slope.

Let’s consider the following function.

The slope is Because the slope is positive, we know the graph will slant upward from left to right. The y-intercept is
the point on the graph when The graph crosses the y-axis at Now we know the slope and the y-intercept.
We can begin graphing by plotting the point We know that the slope is the change in the y-coordinate over the
change in the x-coordinate. This is commonly referred to as rise over run, From our example, we have
which means that the rise is 1 and the run is 2. So starting from our y-intercept we can rise 1 and then run 2, or
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run 2 and then rise 1. We repeat until we have a few points, and then we draw a line through the points as shown in
Figure 12.

Figure 12

Graphical Interpretation of a Linear Function

In the equation

• is the y-intercept of the graph and indicates the point at which the graph crosses the y-axis.
• is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run)

between each successive pair of points. Recall the formula for the slope:

Q&A Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line is parallel to
the y-axis does not have a y-intercept, but it is not a function.)

HOW TO

Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.
4. Use to determine at least two more points on the line.
5. Sketch the line that passes through the points.

EXAMPLE 12

Graphing by Using the y-intercept and Slope
Graph using the y-intercept and slope.

Solution
Evaluate the function at to find the y-intercept. The output value when is 5, so the graph will cross the y-axis
at

According to the equation for the function, the slope of the line is This tells us that for each vertical decrease in the
“rise” of units, the “run” increases by 3 units in the horizontal direction. We can now graph the function by first
plotting the y-intercept on the graph in Figure 13. From the initial value we move down 2 units and to the right 3
units. We can extend the line to the left and right by repeating, and then drawing a line through the points.
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Figure 13 Graph of and shows how to calculate the rise over run for the slope.

Analysis
The graph slants downward from left to right, which means it has a negative slope as expected.

TRY IT #6 Find a point on the graph we drew in Example 12 that has a negative x-value.

Graphing a Function Using Transformations
Another option for graphing is to use a transformation of the identity function A function may be transformed
by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical Stretch or Compression
In the equation the is acting as the vertical stretch or compression of the identity function. When is
negative, there is also a vertical reflection of the graph. Notice in Figure 14 that multiplying the equation of by

stretches the graph of by a factor of units if and compresses the graph of by a factor of units if
This means the larger the absolute value of the steeper the slope.

Figure 14 Vertical stretches and compressions and reflections on the function

Vertical Shift
In the acts as the vertical shift, moving the graph up and down without affecting the slope of the line.
Notice in Figure 15 that adding a value of to the equation of shifts the graph of a total of units up if is
positive and units down if is negative.
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Figure 15 This graph illustrates vertical shifts of the function

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types of
linear functions. Although this may not be the easiest way to graph this type of function, it is still important to practice
each method.

HOW TO

Given the equation of a linear function, use transformations to graph the linear function in the form

1. Graph
2. Vertically stretch or compress the graph by a factor
3. Shift the graph up or down units.

EXAMPLE 13

Graphing by Using Transformations
Graph using transformations.

Solution
The equation for the function shows that so the identity function is vertically compressed by The equation for
the function also shows that so the identity function is vertically shifted down 3 units. First, graph the identity
function, and show the vertical compression as in Figure 16.

Figure 16 The function, compressed by a factor of .

Then show the vertical shift as in Figure 17.
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Figure 17 The function shifted down 3 units.

TRY IT #7 Graph using transformations.

Q&A In Example 15, could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a
given input, the corresponding output is calculated by following the order of operations. This is why we
performed the compression first. For example, following the order: Let the input be 2.

Writing the Equation for a Function from the Graph of a Line
Earlier, we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing
linear functions to analyze graphs a little more closely. Begin by taking a look at Figure 18. We can see right away that
the graph crosses the y-axis at the point so this is the y-intercept.

Figure 18

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point
To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2 units (run). So the

slope must be

Substituting the slope and y-intercept into the slope-intercept form of a line gives
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HOW TO

Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the slope-intercept form of a line.

EXAMPLE 14

Matching Linear Functions to Their Graphs
Match each equation of the linear functions with one of the lines in Figure 19.

ⓐ ⓑ ⓒ ⓓ

Figure 19

Solution
Analyze the information for each function.

ⓐ This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant upward from
left to right. We can use two points to find the slope, or we can compare it with the other functions listed. Function
has the same slope, but a different y-intercept. Lines I and III have the same slant because they have the same slope.
Line III does not pass through so must be represented by line I.

ⓑ This function also has a slope of 2, but a y-intercept of It must pass through the point and slant
upward from left to right. It must be represented by line III.

ⓒ This function has a slope of –2 and a y-intercept of 3. This is the only function listed with a negative slope, so it
must be represented by line IV because it slants downward from left to right.

ⓓ This function has a slope of and a y-intercept of 3. It must pass through the point (0, 3) and slant upward from
left to right. Lines I and II pass through but the slope of is less than the slope of so the line for must be
flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 20.
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Figure 20

Finding the x-intercept of a Line
So far we have been finding the y-intercepts of a function: the point at which the graph of the function crosses the y-axis.
Recall that a function may also have an x-intercept, which is the x-coordinate of the point where the graph of the
function crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function equal to zero and solve for the value of For example, consider the function
shown.

Set the function equal to 0 and solve for

The graph of the function crosses the x-axis at the point

Q&A Do all linear functions have x-intercepts?

No. However, linear functions of the form where is a nonzero real number are the only examples
of linear functions with no x-intercept. For example, is a horizontal line 5 units above the x-axis. This
function has no x-intercepts, as shown in Figure 21.
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Figure 21

x-intercept

The x-intercept of the function is value of when It can be solved by the equation

EXAMPLE 15

Finding an x-intercept
Find the x-intercept of

Solution
Set the function equal to zero to solve for

The graph crosses the x-axis at the point

Analysis
A graph of the function is shown in Figure 22. We can see that the x-intercept is as we expected.
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Figure 22

TRY IT #8 Find the x-intercept of

Describing Horizontal and Vertical Lines
There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a constant
output, or y-value. In Figure 23, we see that the output has a value of 2 for every input value. The change in outputs
between any two points, therefore, is 0. In the slope formula, the numerator is 0, so the slope is 0. If we use in the
equation the equation simplifies to In other words, the value of the function is a constant. This
graph represents the function

Figure 23 A horizontal line representing the function

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the line is 2, but
the output value varies. Because this input value is mapped to more than one output value, a vertical line does not
represent a function. Notice that between any two points, the change in the input values is zero. In the slope formula,
the denominator will be zero, so the slope of a vertical line is undefined.
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Figure 24 Example of how a line has a vertical slope. 0 in the denominator of the slope.

A vertical line, such as the one in Figure 25, has an x-intercept, but no y-intercept unless it’s the line This graph
represents the line

Figure 25 The vertical line, which does not represent a function

Horizontal and Vertical Lines

Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in the form

A vertical line is a line defined by an equation in the form

EXAMPLE 16

Writing the Equation of a Horizontal Line
Write the equation of the line graphed in Figure 26.
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Figure 26

Solution
For any x-value, the y-value is so the equation is

EXAMPLE 17

Writing the Equation of a Vertical Line
Write the equation of the line graphed in Figure 27.

Figure 27

Solution
The constant x-value is so the equation is

Determining Whether Lines are Parallel or Perpendicular
The two lines in Figure 28 are parallel lines: they will never intersect. They have exactly the same steepness, which means
their slopes are identical. The only difference between the two lines is the y-intercept. If we shifted one line vertically
toward the other, they would become coincident.

4.1 • Linear Functions 401



Figure 28 Parallel lines

We can determine from their equations whether two lines are parallel by comparing their slopes. If the slopes are the
same and the y-intercepts are different, the lines are parallel. If the slopes are different, the lines are not parallel.

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle. The two lines
in Figure 29 are perpendicular.

Figure 29 Perpendicular lines

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one another in a
specific way. The slope of one line is the negative reciprocal of the slope of the other line. The product of a number and
its reciprocal is So, if are negative reciprocals of one another, they can be multiplied together to yield

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is and the reciprocal of is 8. To
find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes, assuming that
the lines are neither horizontal nor vertical. The slope of each line below is the negative reciprocal of the other so the
lines are perpendicular.
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The product of the slopes is –1.

Parallel and Perpendicular Lines

Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.

If and only if and we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines if they intersect to form a right angle.

EXAMPLE 18

Identifying Parallel and Perpendicular Lines
Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of perpendicular
lines.

Solution
Parallel lines have the same slope. Because the functions and each have a slope of 2, they
represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because −2 and are negative reciprocals,
the functions and represent perpendicular lines.

Analysis
A graph of the lines is shown in Figure 30.

Figure 30

The graph shows that the lines and are parallel, and the lines and
are perpendicular.

Writing the Equation of a Line Parallel or Perpendicular to a Given Line
If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either
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parallel or perpendicular to the given line.

Writing Equations of Parallel Lines
Suppose for example, we are given the equation shown.

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is Any other line
with a slope of 3 will be parallel to So the lines formed by all of the following functions will be parallel to

Suppose then we want to write the equation of a line that is parallel to and passes through the point This type of
problem is often described as a point-slope problem because we have a point and a slope. In our example, we know that
the slope is 3. We need to determine which value of will give the correct line. We can begin with the point-slope form of
an equation for a line, and then rewrite it in the slope-intercept form.

So is parallel to and passes through the point

HOW TO

Given the equation of a function and a point through which its graph passes, write the equation of a line
parallel to the given line that passes through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept equation for a line.
3. Simplify.

EXAMPLE 19

Finding a Line Parallel to a Given Line
Find a line parallel to the graph of that passes through the point

Solution
The slope of the given line is 3. If we choose the slope-intercept form, we can substitute and into
the slope-intercept form to find the y-intercept.

The line parallel to that passes through is

Analysis
We can confirm that the two lines are parallel by graphing them. Figure 31 shows that the two lines will never intersect.
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Figure 31

Writing Equations of Perpendicular Lines
We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the same
slope, however, we use the negative reciprocal of the given slope. Suppose we are given the function shown.

The slope of the line is 2, and its negative reciprocal is Any function with a slope of will be perpendicular to
So the lines formed by all of the following functions will be perpendicular to

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a given
point. Suppose then we want to write the equation of a line that is perpendicular to and passes through the point

We already know that the slope is Now we can use the point to find the y-intercept by substituting the given
values into the slope-intercept form of a line and solving for

The equation for the function with a slope of and a y-intercept of 2 is

So is perpendicular to and passes through the point Be aware that perpendicular
lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

Q&A A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are
perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the definition of
perpendicular lines?

No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical line is not
a function so the definition is not contradicted.

HOW TO

Given the equation of a function and a point through which its graph passes, write the equation of a line
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perpendicular to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for and from the coordinate pair provided into
4. Solve for
5. Write the equation of the line.

EXAMPLE 20

Finding the Equation of a Perpendicular Line
Find the equation of a line perpendicular to that passes through the point

Solution
The original line has slope so the slope of the perpendicular line will be its negative reciprocal, or Using this
slope and the given point, we can find the equation of the line.

The line perpendicular to that passes through is

Analysis
A graph of the two lines is shown in Figure 32.

Figure 32

Note that that if we graph perpendicular lines on a graphing calculator using standard zoom, the lines may not appear
to be perpendicular. Adjusting the window will make it possible to zoom in further to see the intersection more closely.

TRY IT #9 Given the function write an equation for the line passing through that is

ⓐ parallel to ⓑ perpendicular to

HOW TO

Given two points on a line and a third point, write the equation of the perpendicular line that passes through
the point.

1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
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3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.
4. Simplify.

EXAMPLE 21

Finding the Equation of a Line Perpendicular to a Given Line Passing through a Point
A line passes through the points and Find the equation of a perpendicular line that passes through the
point

Solution
From the two points of the given line, we can calculate the slope of that line.

Find the negative reciprocal of the slope.

We can then solve for the y-intercept of the line passing through the point

The equation for the line that is perpendicular to the line passing through the two given points and also passes through
point is

TRY IT #10 A line passes through the points, and Find the equation of a perpendicular line
that passes through the point,

MEDIA

Access this online resource for additional instruction and practice with linear functions.

Linear Functions (http://openstax.org/l/linearfunctions)
Finding Input of Function from the Output and Graph (http://openstax.org/l/findinginput)
Graphing Functions using Tables (http://openstax.org/l/graphwithtable)
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4.1 SECTION EXERCISES
Verbal

1. Terry is skiing down a steep
hill. Terry's elevation,
in feet after seconds is
given by
Write a complete sentence
describing Terry’s starting
elevation and how it is
changing over time.

2. Jessica is walking home
from a friend’s house. After
2 minutes she is 1.4 miles
from home. Twelve minutes
after leaving, she is 0.9 miles
from home. What is her rate
in miles per hour?

3. A boat is 100 miles away
from the marina, sailing
directly toward it at 10 miles
per hour. Write an equation
for the distance of the boat
from the marina after t
hours.

4. If the graphs of two linear
functions are perpendicular,
describe the relationship
between the slopes and the
y-intercepts.

5. If a horizontal line has the
equation and a
vertical line has the
equation what is the
point of intersection?
Explain why what you found
is the point of intersection.

Algebraic

For the following exercises, determine whether the equation of the curve can be written as a linear function.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, determine whether each function is increasing or decreasing.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, find the slope of the line that passes through the two given points.

24. and 25. and 26. and

27. and 28. and
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For the following exercises, given each set of information, find a linear equation satisfying the conditions, if possible.

29. and 30. and 31. Passes through and

32. Passes through and 33. Passes through and 34. Passes through and

35. x intercept at and y
intercept at

36. x intercept at and y
intercept at

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither.

37. 38. 39.

40.

For the following exercises, find the x- and y-intercepts of each equation.

41. 42. 43.

44. 45. 46.

For the following exercises, use the descriptions of each pair of lines given below to find the slopes of Line 1 and Line 2.
Is each pair of lines parallel, perpendicular, or neither?

47. Line 1: Passes through
and

Line 2: Passes through
and

48. Line 1: Passes through
and

Line 2: Passes through
and

49. Line 1: Passes through
and

Line 2: Passes through
and

50. Line 1: Passes through
and

Line 2: Passes through
and

51. Line 1: Passes through
and

Line 2: Passes through
and

For the following exercises, write an equation for the line described.

52. Write an equation for a line
parallel to
and passing through the
point

53. Write an equation for a line
parallel to
and passing through the
point

54. Write an equation for a line
perpendicular to

and passing
through the point

55. Write an equation for a line
perpendicular to

and passing
through the point
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Graphical

For the following exercises, find the slope of the line graphed.

56. 57.

For the following exercises, write an equation for the line graphed.

58. 59. 60.

61. 62. 63.
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For the following exercises, match the given linear equation with its graph in Figure 33.

Figure 33

64. 65. 66.

67. 68. 69.

For the following exercises, sketch a line with the given features.

70. An x-intercept of
and y-intercept of

71. An x-intercept and
y-intercept of

72. A y-intercept of and
slope

73. A y-intercept of and
slope

74. Passing through the points
and

75. Passing through the points
and

For the following exercises, sketch the graph of each equation.

76. 77. 78.

79. 80. 81.

82. 83. 84.
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For the following exercises, write the equation of the line shown in the graph.

85. 86. 87.

88.

Numeric

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a
linear equation that models the data.

89.
0 5 10 15

5 –10 –25 –40

90.
0 5 10 15

5 30 105 230

91.
0 5 10 15

–5 20 45 70

92.
5 10 20 25

13 28 58 73

93.
0 2 4 6

6 –19 –44 –69

94.
2 4 8 10

13 23 43 53

95.
2 4 6 8

–4 16 36 56

96.
0 2 6 8

6 31 106 231
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Technology

For the following exercises, use a calculator or graphing technology to complete the task.

97. If is a linear function,
, and
, find an

equation for the function.

98. Graph the function on a
domain of

Enter the function in a graphing
utility. For the viewing window,
set the minimum value of to
be and the maximum
value of to be .

99. Graph the function on a
domain of

ⓐ Fill in the missing values of
the table.

ⓑ Write the linear function

100. Table 3 shows the input,
and output, for a linear
function

round to 3 decimal places.

w –10 5.5 67.5 b

k 30 –26 a –44

Table 3

ⓐ Fill in the missing values of the
table.

ⓑ Write the linear function

101. Table 4 shows the input, and
output, for a linear function

p 0.5 0.8 12 b

q 400 700 a 1,000,000

Table 4

102. Graph the linear function
on a domain of

for the function
whose slope is and

y-intercept is Label
the points for the input
values of and

103. Graph the linear function
on a domain of

for the
function whose slope is 75
and y-intercept is
Label the points for the
input values of and ⓐ

ⓑ
ⓒ
ⓓ

104. Graph the linear function
where

on the same set of axes
on a domain of for
the following values of
and

Extensions

105. Find the value of if a
linear function goes
through the following
points and has the
following slope:

106. Find the value of y if a
linear function goes
through the following
points and has the
following slope:

107. Find the equation of the
line that passes through
the following points:

and

108. Find the equation of the
line that passes through
the following points:

and

109. Find the equation of the
line that passes through
the following points:

and

110. Find the equation of the
line parallel to the line

through the point
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111. Find the equation of the
line perpendicular to the
line
through the point

For the following exercises, use the functions

112. Find the point of
intersection of the lines
and

113. Where is greater
than Where is
greater than

Real-World Applications

114. At noon, a barista notices
that they have $20 in her
tip jar. If they maks an
average of $0.50 from
each customer, how much
will the barista have in the
tip jar if they serve more
customers during the
shift?

115. A gym membership with
two personal training
sessions costs $125, while
gym membership with
five personal training
sessions costs $260. What
is cost per session?

116. A clothing business finds
there is a linear
relationship between the
number of shirts, it can
sell and the price, it can
charge per shirt. In
particular, historical data
shows that 1,000 shirts
can be sold at a price of

while 3,000 shirts can
be sold at a price of $22.
Find a linear equation in
the form
that gives the price they
can charge for shirts.

117. A phone company
charges for service
according to the formula:

where
is the number of

minutes talked, and
is the monthly charge, in
dollars. Find and interpret
the rate of change and
initial value.

118. A farmer finds there is a
linear relationship
between the number of
bean stalks, she plants
and the yield, each
plant produces. When she
plants 30 stalks, each
plant yields 30 oz of
beans. When she plants
34 stalks, each plant
produces 28 oz of beans.
Find a linear relationships
in the form
that gives the yield when

stalks are planted.

119. A city’s population in the
year 1960 was 287,500. In
1989 the population was
275,900. Compute the rate
of growth of the
population and make a
statement about the
population rate of change
in people per year.
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120. A town’s population has
been growing linearly. In
2003, the population was
45,000, and the
population has been
growing by 1,700 people
each year. Write an
equation, for the
population years after
2003.

ⓐ As of 1990, average
annual income was
$23,286.

ⓑ In the ten-year period
from 1990–1999, average
annual income increased
by a total of $1,054.

ⓒ Each year in the
decade of the 1990s,
average annual income
increased by $1,054.

ⓓ Average annual
income rose to a level of
$23,286 by the end of
1999.

121. Suppose that average
annual income (in dollars)
for the years 1990
through 1999 is given by
the linear function:

,
where is the number of
years after 1990. Which of
the following interprets
the slope in the context of
the problem?

ⓐ Find the rate of
change of Fahrenheit
temperature for each unit
change temperature of
Celsius.

ⓑ Find and interpret

ⓒ Find and interpret

122. When temperature is 0
degrees Celsius, the
Fahrenheit temperature is
32. When the Celsius
temperature is 100, the
corresponding Fahrenheit
temperature is 212.
Express the Fahrenheit
temperature as a linear
function of the Celsius
temperature,

4.2 Modeling with Linear Functions
Learning Objectives
In this section, you will:

Build linear models from verbal descriptions.
Model a set of data with a linear function.

COREQUISITE SKILLS

Learning Objectives
Graph and interpret applications of slope–intercept form of a linear function. (IA 3.2.5)

Objective 1: Graph and interpret applications of slope–intercept form of a linear function. (IA 3.2.5)
Graph and Interpret Applications of Slope–Intercept form of linear equations.
Many real-world applications are modeled by linear functions. We will take a look at a few applications here so you can
see how equations written in slope–intercept form describe real world situations.

Usually, when a linear function uses real-world data, different letters are used to represent the variables, instead of
using only and . The variables used remind us of what quantities are being measured.

Also, we often will need to adjust the axes in our rectangular coordinate system to different scales to accommodate the
data in the application. Since many applications have both independent and dependent variables that are positive our
graphs will lie primarily in Quadrant I.

Linear Functions
A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a line

where b is the initial or starting value of the function (when input, x=0), and m is the constant rate of change, or slope of
the function. The y-intercept is at (0,b),
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When interpreting slope, it will be important to consider the units of measurement. Make sure to always attach these
units to both the numerator and denominator when they are provided to you.

EXAMPLE 1

The equation is used to convert temperatures, C, on the Celsius scale to temperatures, F, on the
Fahrenheit scale.

ⓐ Find the Fahrenheit temperature for a Celsius temperature of 0.

ⓑ Find the Fahrenheit temperature for a Celsius temperature of 20.

ⓒ Interpret the slope and F-intercept of the equation.

ⓓ Graph the equation.

Solution

ⓐ

ⓑ

ⓒ
Interpret the slope and F-intercept of the equation.
Even though this equation uses F and C, it is still in slope–intercept form.

The slope, means that the temperature Fahrenheit (F) increases 9 degrees when the temperature Celsius (C)
increases 5 degrees.
The F-intercept means that when the temperature is on the Celsius scale, it is on the Fahrenheit scale.

ⓓ Graph the equation.
We’ll need to use a larger scale than our usual. Start at the F-intercept , and then count out the rise of 9 and the
run of 5 to get a second point as shown in the graph.
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Practice Makes Perfect
Graph and interpret applications of slope–intercept form of a linear function.

1. Janis is planning to rent a car while on vacation. The equation C(m)=.25m+10 models the relationship between the
cost in dollars, C, per day and the number of miles,m, she drives in one day.

ⓐ Find the cost if Janis drives the car 20 miles one day.

ⓑ Find the cost on a day when Janis drives the car 400 miles.

ⓒ Interpret the slope and y-intercept (or C intercept) of the equation in terms of the variables and units used in
this problem.

ⓓ Graph the linear function below. Be sure to show the scale you are using on your coordinate system.

2. A function that will convert women’s dress sizes in the US, x, to dress sizes in Italy, I(x), is given by:

ⓐ
x, US women’s size Italian women’s size

4

10

16

ⓑ Interpret the slope and y-intercept (or I intercept) for this linear function in terms of the variables used in the
problem.

ⓒ Graph the function below. Be sure to show the scale you are using.

3. Edwin pays a monthly fee for water service on his apartment of $18 plus an additional $0.30 for each HCF
(hundred cubic feet) of water used.

ⓐ Write a cost function, C(w), which will give his monthly cost as a function of water used, w, in hundred cubic
feet.
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ⓑ
w (in HCF) C(w) (in $)

65

80

ⓒ On a certain month Edwin’s bill seems high at $50. How many HCF’s of water did Edwin use that month.

ⓓ Graph the function below. Be sure to show the scale you are using.

4. Cassandra is a botanist who is studying the growth of pea plants under a variety of conditions. One experiment
yields the following results. For a seedling starting off at 3 inches the growth rate each week 1.25 inches.

ⓐ Write a height function, H(t), which will give the plant height as a function of time in weeks, t.

ⓑ Estimate the plant height for each of the following amounts of time paying attention to units provided.

t H(t)

7 days

14 days

2.5 weeks

ⓒ Her plants will need to be secured to a stick when they reach 12 inches in height. Estimate the time when her
samples will need to be secured.

ⓓ Graph the function below. Be sure to show the scale you are using.

Figure 1 (credit: EEK Photography/Flickr)

Elan is a college student who plans to spend a summer in Seattle. Elan has saved $3,500 for their trip and anticipates
spending $400 each week on rent, food, and activities. How can we write a linear model to represent this situation? What
would be the x-intercept, and what can Elan learn from it? To answer these and related questions, we can create a model
using a linear function. Models such as this one can be extremely useful for analyzing relationships and making
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predictions based on those relationships. In this section, we will explore examples of linear function models.

Building Linear Models from Verbal Descriptions
When building linear models to solve problems involving quantities with a constant rate of change, we typically follow
the same problem strategies that we would use for any type of function. Let’s briefly review them:

1. Identify changing quantities, and then define descriptive variables to represent those quantities. When appropriate,
sketch a picture or define a coordinate system.

2. Carefully read the problem to identify important information. Look for information that provides values for the
variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.
4. Identify a solution pathway from the provided information to what we are trying to find. Often this will involve

checking and tracking units, building a table, or even finding a formula for the function being used to model the
problem.

5. When needed, write a formula for the function.
6. Solve or evaluate the function using the formula.
7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.
8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

Now let’s take a look at the student in Seattle. In Elan’s situation, there are two changing quantities: time and money.
The amount of money they have remaining while on vacation depends on how long they stay. We can use this
information to define our variables, including units.

So, the amount of money remaining depends on the number of weeks: .

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also,
because the slope is negative, the linear function is decreasing. This should make sense because she is spending money
each week.

The rate of change is constant, so we can start with the linear model Then we can substitute the
intercept and slope provided.

To find the t-intercept (horizontal axis intercept), we set the output to zero, and solve for the input.

The t-intercept (horizontal axis intercept) is 8.75 weeks. Because this represents the input value when the output will be
zero, we could say that Elan will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that model will be
valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks. In this case, it doesn’t
make sense to talk about input values less than zero. A negative input value could refer to a number of weeks before
Elan saved $3,500, but the scenario discussed poses the question once they saved $3,500 because this is when the trip
and subsequent spending starts. It is also likely that this model is not valid after the t-intercept (horizontal axis
intercept), unless Elan uses a credit card and goes into debt. The domain represents the set of input values, so the
reasonable domain for this function is

In this example, we were given a written description of the situation. We followed the steps of modeling a problem to
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analyze the information. However, the information provided may not always be the same. Sometimes we might be
provided with an intercept. Other times we might be provided with an output value. We must be careful to analyze the
information we are given, and use it appropriately to build a linear model.

Using a Given Intercept to Build a Model
Some real-world problems provide the vertical axis intercept, which is the constant or initial value. Once the vertical axis
intercept is known, the t-intercept (horizontal axis intercept) can be calculated. Suppose, for example, that Hannah plans
to pay off a no-interest loan from her parents. Her loan balance is $1,000. She plans to pay $250 per month until her
balance is $0. The y-intercept is the initial amount of her debt, or $1,000. The rate of change, or slope, is -$250 per
month. We can then use the slope-intercept form and the given information to develop a linear model.

Now we can set the function equal to 0, and solve for to find the x-intercept.

The x-intercept is the number of months it takes her to reach a balance of $0. The x-intercept is 4 months, so it will take
Hannah four months to pay off her loan.

Using a Given Input and Output to Build a Model
Many real-world applications are not as direct as the ones we just considered. Instead they require us to identify some
aspect of a linear function. We might sometimes instead be asked to evaluate the linear model at a given input or set the
equation of the linear model equal to a specified output.

HOW TO

Given a word problem that includes two pairs of input and output values, use the linear function to solve a
problem.

1. Identify the input and output values.
2. Convert the data to two coordinate pairs.
3. Find the slope.
4. Write the linear model.
5. Use the model to make a prediction by evaluating the function at a given x-value.
6. Use the model to identify an x-value that results in a given y-value.
7. Answer the question posed.

EXAMPLE 1

Using a Linear Model to Investigate a Town’s Population
A town’s population has been growing linearly. In 2004, the population was 6,200. By 2009, the population had grown to
8,100. Assume this trend continues.

ⓐ Predict the population in 2013. ⓑ Identify the year in which the population will reach 15,000.
Solution

The two changing quantities are the population size and time. While we could use the actual year value as the input
quantity, doing so tends to lead to very cumbersome equations because the y-intercept would correspond to the year 0,
more than 2000 years ago!

To make computation a little nicer, we will define our input as the number of years since 2004.
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To predict the population in 2013 ( ), we would first need an equation for the population. Likewise, to find when the
population would reach 15,000, we would need to solve for the input that would provide an output of 15,000. To write an
equation, we need the initial value and the rate of change, or slope.

To determine the rate of change, we will use the change in output per change in input.

The problem gives us two input-output pairs. Converting them to match our defined variables, the year 2004 would
correspond to giving the point Notice that through our clever choice of variable definition, we have
“given” ourselves the y-intercept of the function. The year 2009 would correspond to giving the point

The two coordinate pairs are and Recall that we encountered examples in which we were provided
two points earlier in the chapter. We can use these values to calculate the slope.

We already know the y-intercept of the line, so we can immediately write the equation:

To predict the population in 2013, we evaluate our function at

If the trend continues, our model predicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we can set and solve for

Our model predicts the population will reach 15,000 in a little more than 23 years after 2004, or somewhere around the
year 2027.

TRY IT #1 A company sells doughnuts. They incur a fixed cost of $25,000 for rent, insurance, and other
expenses. It costs $0.25 to produce each doughnut.

ⓐ Write a linear model to represent the cost of the company as a function of the number of
doughnuts produced.

ⓑ Find and interpret the y-intercept.

TRY IT #2 A city’s population has been growing linearly. In 2008, the population was 28,200. By 2012, the
population was 36,800. Assume this trend continues.

ⓐ Predict the population in 2014.

ⓑ Identify the year in which the population will reach 54,000.

Using a Diagram to Build a Model
It is useful for many real-world applications to draw a picture to gain a sense of how the variables representing the input
and output may be used to answer a question. To draw the picture, first consider what the problem is asking for. Then,
determine the input and the output. The diagram should relate the variables. Often, geometrical shapes or figures are
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drawn. Distances are often traced out. If a right triangle is sketched, the Pythagorean Theorem relates the sides. If a
rectangle is sketched, labeling width and height is helpful.

EXAMPLE 2

Using a Diagram to Model Distance Walked
Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour while Emanuel walks south at 3
miles per hour. They are communicating with a two-way radio that has a range of 2 miles. How long after they start
walking will they fall out of radio contact?

Solution
In essence, we can partially answer this question by saying they will fall out of radio contact when they are 2 miles apart,
which leads us to ask a new question:

"How long will it take them to be 2 miles apart"?

In this problem, our changing quantities are time and position, but ultimately we need to know how long will it take for
them to be 2 miles apart. We can see that time will be our input variable, so we’ll define our input and output variables.

Because it is not obvious how to define our output variable, we’ll start by drawing a picture such as Figure 2.

Figure 2

Initial Value: They both start at the same intersection so when the distance traveled by each person should also be
0. Thus the initial value for each is 0.

Rate of Change: Anna is walking 4 miles per hour and Emanuel is walking 3 miles per hour, which are both rates of
change. The slope for is 4 and the slope for is 3.

Using those values, we can write formulas for the distance each person has walked.

For this problem, the distances from the starting point are important. To notate these, we can define a coordinate
system, identifying the “starting point” at the intersection where they both started. Then we can use the variable,
which we introduced above, to represent Anna’s position, and define it to be a measurement from the starting point in
the eastward direction. Likewise, can use the variable, to represent Emanuel’s position, measured from the starting
point in the southward direction. Note that in defining the coordinate system, we specified both the starting point of the
measurement and the direction of measure.

We can then define a third variable, to be the measurement of the distance between Anna and Emanuel. Showing the
variables on the diagram is often helpful, as we can see from Figure 3.

Recall that we need to know how long it takes for the distance between them, to equal 2 miles. Notice that for any
given input the outputs and represent distances.
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Figure 3

Figure 2 shows us that we can use the Pythagorean Theorem because we have drawn a right angle.

Using the Pythagorean Theorem, we get:

In this scenario we are considering only positive values of so our distance will always be positive. We can simplify
this answer to This means that the distance between Anna and Emanuel is also a linear function. Because is
a linear function, we can now answer the question of when the distance between them will reach 2 miles. We will set the
output and solve for

They will fall out of radio contact in 0.4 hour, or 24 minutes.

Q&A Should I draw diagrams when given information based on a geometric shape?

Yes. Sketch the figure and label the quantities and unknowns on the sketch.

EXAMPLE 3

Using a Diagram to Model Distance Between Cities
There is a straight road leading from the town of Westborough to Agritown 30 miles east and 10 miles north. Partway
down this road, it junctions with a second road, perpendicular to the first, leading to the town of Eastborough. If the
town of Eastborough is located 20 miles directly east of the town of Westborough, how far is the road junction from
Westborough?

Solution
It might help here to draw a picture of the situation. See Figure 4. It would then be helpful to introduce a coordinate
system. While we could place the origin anywhere, placing it at Westborough seems convenient. This puts Agritown at
coordinates and Eastborough at
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Figure 4

Using this point along with the origin, we can find the slope of the line from Westborough to Agritown.

Now we can write an equation to describe the road from Westborough to Agritown.

From this, we can determine the perpendicular road to Eastborough will have slope Because the town of
Eastborough is at the point (20, 0), we can find the equation.

We can now find the coordinates of the junction of the roads by finding the intersection of these lines. Setting them
equal,

The roads intersect at the point (18, 6). Using the distance formula, we can now find the distance from Westborough to
the junction.

Analysis
One nice use of linear models is to take advantage of the fact that the graphs of these functions are lines. This means
real-world applications discussing maps need linear functions to model the distances between reference points.

TRY IT #3 There is a straight road leading from the town of Timpson to Ashburn 60 miles east and 12 miles
north. Partway down the road, it junctions with a second road, perpendicular to the first, leading
to the town of Garrison. If the town of Garrison is located 22 miles directly east of the town of
Timpson, how far is the road junction from Timpson?

Modeling a Set of Data with Linear Functions
Real-world situations including two or more linear functions may be modeled with a system of linear equations.
Remember, when solving a system of linear equations, we are looking for points the two lines have in common. Typically,
there are three types of answers possible, as shown in Figure 5.
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Figure 5

HOW TO

Given a situation that represents a system of linear equations, write the system of equations and identify the
solution.

1. Identify the input and output of each linear model.
2. Identify the slope and y-intercept of each linear model.
3. Find the solution by setting the two linear functions equal to another and solving for or find the point of

intersection on a graph.

EXAMPLE 4

Building a System of Linear Models to Choose a Truck Rental Company
Jamal is choosing between two truck-rental companies. The first, Keep on Trucking, Inc., charges an up-front fee of $20,
then 59 cents a mile. The second, Move It Your Way, charges an up-front fee of $16, then 63 cents a mile4 . When will
Keep on Trucking, Inc. be the better choice for Jamal?

Solution
The two important quantities in this problem are the cost and the number of miles driven. Because we have two
companies to consider, we will define two functions in Table 1.

Input distance driven in miles

Outputs cost, in dollars, for renting from Keep on Trucking

cost, in dollars, for renting from Move It Your Way

Initial Value Up-front fee: and

Rate of Change /mile and /mile

Table 1

A linear function is of the form Using the rates of change and initial charges, we can write the equations

Using these equations, we can determine when Keep on Trucking, Inc., will be the better choice. Because all we have to
make that decision from is the costs, we are looking for when Move It Your Way, will cost less, or when
The solution pathway will lead us to find the equations for the two functions, find the intersection, and then see where

4 Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/
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the function is smaller.

These graphs are sketched in Figure 6, with in blue.

Figure 6

To find the intersection, we set the equations equal and solve:

This tells us that the cost from the two companies will be the same if 100 miles are driven. Either by looking at the graph,
or noting that is growing at a slower rate, we can conclude that Keep on Trucking, Inc. will be the cheaper price
when more than 100 miles are driven, that is .

MEDIA

Access this online resource for additional instruction and practice with linear function models.

Interpreting a Linear Function (http://openstax.org/l/interpretlinear)

4.2 SECTION EXERCISES
Verbal

1. Explain how to find the
input variable in a word
problem that uses a linear
function.

2. Explain how to find the
output variable in a word
problem that uses a linear
function.

3. Explain how to interpret the
initial value in a word
problem that uses a linear
function.

4. Explain how to determine
the slope in a word problem
that uses a linear function.
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Algebraic

5. Find the area of a
parallelogram bounded by
the y-axis, the line the
line and the
line parallel to passing
through

6. Find the area of a triangle
bounded by the x-axis, the
line and the
line perpendicular to
that passes through the
origin.

7. Find the area of a triangle
bounded by the y-axis, the
line and the
line perpendicular to
that passes through the
origin.

8. Find the area of a parallelogram bounded by the
x-axis, the line the line and the
line parallel to passing through

For the following exercises, consider this scenario: A town’s population has been decreasing at a constant rate. In 2010
the population was 5,900. By 2012 the population had dropped to 4,700. Assume this trend continues.

9. Predict the population in
2016.

10. Identify the year in which
the population will reach 0.

For the following exercises, consider this scenario: A town’s population has been increased at a constant rate. In 2010
the population was 46,020. By 2012 the population had increased to 52,070. Assume this trend continues.

11. Predict the population in
2016.

12. Identify the year in which
the population will reach
75,000.

For the following exercises, consider this scenario: A town has an initial population of 75,000. It grows at a constant rate
of 2,500 per year for 5 years.

13. Find the linear function
that models the town’s
population as a function
of the year, where is the
number of years since the
model began.

14. Find a reasonable domain
and range for the function

15. If the function is
graphed, find and interpret
the x- and y-intercepts.

16. If the function is
graphed, find and interpret
the slope of the function.

17. When will the population
reach 100,000?

18. What is the population in
the year 12 years from the
onset of the model?

For the following exercises, consider this scenario: The weight of a newborn is 7.5 pounds. The baby gained one-half
pound a month for its first year.

19. Find the linear function
that models the baby’s
weight as a function of
the age of the baby, in
months,

20. Find a reasonable domain
and range for the function

21. If the function is
graphed, find and interpret
the x- and y-intercepts.

22. If the function W is
graphed, find and interpret
the slope of the function.

23. When did the baby weight
10.4 pounds?

24. What is the output when
the input is 6.2?
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For the following exercises, consider this scenario: The number of people afflicted with the common cold in the winter
months steadily decreased by 205 each year from 2005 until 2010. In 2005, 12,025 people were inflicted.

25. Find the linear function
that models the number of
people inflicted with the
common cold as a
function of the year,

26. Find a reasonable domain
and range for the function

27. If the function is
graphed, find and interpret
the x- and y-intercepts.

28. If the function is
graphed, find and interpret
the slope of the function.

29. When will the output reach
0?

30. In what year will the
number of people be
9,700?

Graphical

For the following exercises, use the graph in Figure 7, which shows the profit, in thousands of dollars, of a company in
a given year, where represents the number of years since 1980.

Figure 7

31. Find the linear function
where depends on the
number of years since
1980.

32. Find and interpret the
y-intercept.

33. Find and interpret the
x-intercept.

34. Find and interpret the
slope.

For the following exercises, use the graph in Figure 8, which shows the profit, in thousands of dollars, of a company in
a given year, where represents the number of years since 1980.

Figure 8
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35. Find the linear function
where depends on the
number of years since
1980.

36. Find and interpret the
y-intercept.

37. Find and interpret the
x-intercept.

38. Find and interpret the
slope.

Numeric

For the following exercises, use the median home values in Mississippi and Hawaii (adjusted for inflation) shown in Table
2. Assume that the house values are changing linearly.

Year Mississippi Hawaii

1950 $25,200 $74,400

2000 $71,400 $272,700

Table 2

39. In which state have home
values increased at a
higher rate?

40. If these trends were to
continue, what would be
the median home value in
Mississippi in 2010?

41. If we assume the linear
trend existed before 1950
and continues after 2000,
the two states’ median
house values will be (or
were) equal in what year?
(The answer might be
absurd.)

For the following exercises, use the median home values in Indiana and Alabama (adjusted for inflation) shown in Table
3. Assume that the house values are changing linearly.

Year Indiana Alabama

1950 $37,700 $27,100

2000 $94,300 $85,100

Table 3

42. In which state have home
values increased at a
higher rate?

43. If these trends were to
continue, what would be
the median home value in
Indiana in 2010?

44. If we assume the linear
trend existed before 1950
and continues after 2000,
the two states’ median
house values will be (or
were) equal in what year?
(The answer might be
absurd.)
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Real-World Applications

ⓐ How much did the
population grow between
the year 2004 and 2008?

ⓑ How long did it take the
population to grow from
1001 students to 1697
students?

ⓒ What is the average
population growth per
year?

ⓓ What was the
population in the year
2000?

ⓔ Find an equation for the
population, of the
school t years after 2000.

ⓕ Using your equation,
predict the population of
the school in 2011.

45. In 2004, a school
population was 1001. By
2008 the population had
grown to 1697. Assume the
population is changing
linearly.

ⓐ How much did the
population grow between
the year 2003 and 2007?

ⓑ How long did it take the
population to grow from
1431 people to 2134
people?

ⓒ What is the average
population growth per
year?

ⓓ What was the
population in the year
2000?

ⓔ Find an equation for the
population, of the town

years after 2000.

ⓕ Using your equation,
predict the population of
the town in 2014.

46. In 2003, a town’s
population was 1431. By
2007 the population had
grown to 2134. Assume the
population is changing
linearly.

ⓐ Find a linear equation
for the monthly cost of the
cell plan as a function of x,
the number of monthly
minutes used.

ⓑ Interpret the slope and
y-intercept of the equation.

ⓒ Use your equation to
find the total monthly cost
if 687 minutes are used.

47. A phone company has a
monthly cellular plan
where a customer pays a
flat monthly fee and then a
certain amount of money
per minute used for voice
or video calling. If a
customer uses 410
minutes, the monthly cost
will be $71.50. If the
customer uses 720
minutes, the monthly cost
will be $118.

ⓐ Find a linear equation
for the monthly cost of the
data plan as a function of

the number of MB used.

ⓑ Interpret the slope and
y-intercept of the equation.

ⓒ Use your equation to
find the total monthly cost
if 250 MB are used.

48. A phone company has a
monthly cellular data plan
where a customer pays a
flat monthly fee of $10 and
then a certain amount of
money per megabyte (MB)
of data used on the phone.
If a customer uses 20 MB,
the monthly cost will be
$11.20. If the customer
uses 130 MB, the monthly
cost will be $17.80.

ⓐ Find a formula for the
moose population, P since
1990.

ⓑ What does your model
predict the moose
population to be in 2003?

49. In 1991, the moose
population in a park was
measured to be 4,360. By
1999, the population was
measured again to be
5,880. Assume the
population continues to
change linearly.

ⓐ Find a formula for the
owl population, Let the
input be years since 2003.

ⓑ What does your model
predict the owl population
to be in 2012?

50. In 2003, the owl population
in a park was measured to
be 340. By 2007, the
population was measured
again to be 285. The
population changes
linearly. Let the input be
years since 2003.
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ⓐ Give a linear equation
for the remaining federal
helium reserves, in
terms of the number of
years since 2010.

ⓑ In 2015, what will the
helium reserves be?

ⓒ If the rate of depletion
doesn’t change, in what
year will the Federal
Helium Reserve be
depleted?

51. The Federal Helium
Reserve held about 16
billion cubic feet of helium
in 2010 and is being
depleted by about 2.1
billion cubic feet each year.

ⓐ Give a linear equation
for the remaining oil
reserves, in terms of
the number of years since
now.

ⓑ Seven years from now,
what will the oil reserves
be?

ⓒ If the rate at which the
reserves are decreasing is
constant, when will the
world’s oil reserves be
depleted?

52. Suppose the world’s oil
reserves in 2014 are 1,820
billion barrels. If, on
average, the total reserves
are decreasing by 25 billion
barrels of oil each year:

53. You are choosing between
two different prepaid cell
phone plans. The first plan
charges a rate of 26 cents
per minute. The second
plan charges a monthly fee
of $19.95 plus 11 cents per
minute. How many
minutes would you have to
use in a month in order for
the second plan to be
preferable?

54. You are choosing between
two different window
washing companies. The
first charges $5 per
window. The second
charges a base fee of $40
plus $3 per window. How
many windows would you
need to have for the
second company to be
preferable?

55. When hired at a new job
selling jewelry, you are
given two pay options:

Option A: Base salary of
$17,000 a year with a
commission of 12% of your
sales

Option B: Base salary of
$20,000 a year with a
commission of 5% of your
sales

How much jewelry would
you need to sell for option
A to produce a larger
income?

56. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$14,000 a year with a
commission of 10% of your
sales

Option B: Base salary of
$19,000 a year with a
commission of 4% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?

57. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$20,000 a year with a
commission of 12% of your
sales

Option B: Base salary of
$26,000 a year with a
commission of 3% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?

58. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$10,000 a year with a
commission of 9% of your
sales

Option B: Base salary of
$20,000 a year with a
commission of 4% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?
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4.3 Fitting Linear Models to Data
Learning Objectives
In this section, you will:

Draw and interpret scatter diagrams.
Use a graphing utility to find the line of best fit.
Distinguish between linear and nonlinear relations.
Fit a regression line to a set of data and use the linear model to make predictions.

COREQUISITE SKILLS

Learning Objectives
Plot points in a rectangular coordinate system (IA 3.1.1).
Find an equation of the line given two points (IA 3.3.3).

Objectives: Plot points in a rectangular coordinate system (IA 3.1.1) and find an equation of the line
given two points. (IA 3.3.3)
In this section we will be plotting collections of data points and looking for patterns in these data sets. A scatterplot is a
collection of points plotted on the same coordinate system. When trying to fit a function to a data set it is important to
note if there is a pattern to the data set and whether that pattern is linear or nonlinear. If the dependent variable
increases as the independent variable increases, we call this a positive association. If the dependent variable decreases
as the independent variable increases, we call this a negative association.

TRY IT #1 Plot points in a rectangular coordinate system, then find a line through two of the data points.

A precalculus instructor is looking at a random sample of students to see if there is a
relationship between the number of hours spent working in a homework platform for a given
chapter, and the score for the chapter exam.

Hours spent doing homework, x 10 8 0 13 21 11 5 9 18

Exam score, y 72 68 38 80 93 76 62 71 85

ⓐ Plot each of the data points on a coordinate system below. You may either plot the points
by hand or using a graphing utility. Be sure to label your x and y axes.

ⓑ Observe any patterns in the data points. Do you think the association between the
variables is positive or negative? Is the pattern linear or nonlinear?

ⓒ What would you suggest to a friend enrolled in this course based on the data set you
graphed?

ⓓ Choose two points that seem to represent the general pattern in the data set. Write these
points as ordered pairs below.

432 4 • Linear Functions

Access for free at openstax.org



ⓔ Find the slope of a line passing through these two points. Interpret its value in terms of the
variables being measured.

ⓕ Use point-slope form or slope intercept form to write the equation of the line passing
through these data points.

or

ⓖ Write this equation in slope-intercept form.

ⓗ Rewrite this equation using function notation.

ⓘ This equation is a linear model. Sketch the line on the graph created in part a.

ⓙ Use this mathematical linear model to predict the exam score for a student who spent 15
hours working on this chapter in their homework system. Show your work below.

Practice Makes Perfect
1. The data below shows the relationship between the mass of an automobile (measured in kg) and the fuel

efficiency of the car (measured in miles per gallon) for 7 automobiles.

Mass (kg), x 1305 1150 1925 1628 1506 1452 1835

Fuel Efficiency (MPG), y 27 28 15 24 23 25 19

ⓐ Draw a scatter plot (by hand or using a graphing utility) for the data provided being sure to label your axes.

ⓑ Does the data appear to be linearly related? Is the association between the variables positive or negative?

ⓒ Choose two points that seem to represent the general pattern in the data set. Write these points as ordered
pairs below.

ⓓ Write the equation of the line passing through the points you listed in part c. in slope intercept form. Show
your work below.

ⓔ Use the linear function you found in part d. to predict the fuel efficiency of an Audi A5 Quattro whose mass is
1610 kg.

2. The data set below shows the relationship between the number of hours worked and the tips received by Nyla, a
server at Pi Pizzeria.

Hours worked in a week, x 10 15 20 25 30 35 40

Tips received, y $66 $100 $118 $160 $190 $235 $272

ⓐ Draw a scatter plot (by hand or using a graphing utility) for the data provided being sure to label your axes.

ⓑ Does the data appear to be linearly related? Is the association between the variables positive or negative?

ⓒ Choose two points that seem to represent the general pattern in the data set. Write these points as ordered
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pairs below.

ⓓ Write the equation of the line passing through the points you listed in part c. in slope intercept form. Show
your work below.

ⓔ Based on the linear function you found in part d, how much could Nyla expect to make in tips if they work 38
hours in a given week?

A professor is attempting to identify trends among final exam scores. His class has a mixture of students, so he wonders
if there is any relationship between age and final exam scores. One way for him to analyze the scores is by creating a
diagram that relates the age of each student to the exam score received. In this section, we will examine one such
diagram known as a scatter plot.

Drawing and Interpreting Scatter Plots
A scatter plot is a graph of plotted points that may show a relationship between two sets of data. If the relationship is
from a linear model, or a model that is nearly linear, the professor can draw conclusions using his knowledge of linear
functions. Figure 1 shows a sample scatter plot.

Figure 1 A scatter plot of age and final exam score variables

Notice this scatter plot does not indicate a linear relationship. The points do not appear to follow a trend. In other words,
there does not appear to be a relationship between the age of the student and the score on the final exam.

EXAMPLE 1

Using a Scatter Plot to Investigate Cricket Chirps
The table below shows the number of cricket chirps in 15 seconds, for several different air temperatures, in degrees
Fahrenheit5 . Plot this data, and determine whether the data appears to be linearly related.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Table 1 Cricket Chirps vs Air Temperature

Solution
Plotting this data, as depicted in Figure 2 suggests that there may be a trend. We can see from the trend in the data that
the number of chirps increases as the temperature increases. The trend appears to be roughly linear, though certainly
not perfectly so.

5 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010
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Figure 2

Finding the Line of Best Fit
Once we recognize a need for a linear function to model that data, the natural follow-up question is “what is that linear
function?” One way to approximate our linear function is to sketch the line that seems to best fit the data. Then we can
extend the line until we can verify the y-intercept. We can approximate the slope of the line by extending it until we can
estimate the

EXAMPLE 2

Finding a Line of Best Fit
Find a linear function that fits the data in Table 1 by “eyeballing” a line that seems to fit.

Solution
On a graph, we could try sketching a line. Using the starting and ending points of our hand drawn line, points (0, 30) and
(50, 90), this graph has a slope of

and a y-intercept at 30. This gives an equation of

where is the number of chirps in 15 seconds, and is the temperature in degrees Fahrenheit. The resulting
equation is represented in Figure 3.
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Figure 3

Analysis
This linear equation can then be used to approximate answers to various questions we might ask about the trend.

Recognizing Interpolation or Extrapolation
While the data for most examples does not fall perfectly on the line, the equation is our best guess as to how the
relationship will behave outside of the values for which we have data. We use a process known as interpolation when
we predict a value inside the domain and range of the data. The process of extrapolation is used when we predict a
value outside the domain and range of the data.

Figure 4 compares the two processes for the cricket-chirp data addressed in Example 2. We can see that interpolation
would occur if we used our model to predict temperature when the values for chirps are between 18.5 and 44.
Extrapolation would occur if we used our model to predict temperature when the values for chirps are less than 18.5 or
greater than 44.

There is a difference between making predictions inside the domain and range of values for which we have data and
outside that domain and range. Predicting a value outside of the domain and range has its limitations. When our model
no longer applies after a certain point, it is sometimes called model breakdown. For example, predicting a cost function
for a period of two years may involve examining the data where the input is the time in years and the output is the cost.
But if we try to extrapolate a cost when that is in 50 years, the model would not apply because we could not
account for factors fifty years in the future.
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Figure 4 Interpolation occurs within the domain and range of the provided data whereas extrapolation occurs outside.

Interpolation and Extrapolation

Different methods of making predictions are used to analyze data.

The method of interpolation involves predicting a value inside the domain and/or range of the data.
The method of extrapolation involves predicting a value outside the domain and/or range of the data.
Model breakdown occurs at the point when the model no longer applies.

EXAMPLE 3

Understanding Interpolation and Extrapolation
Use the cricket data from Table 1 to answer the following questions:

ⓐ Would predicting the temperature when crickets are chirping 30 times in 15 seconds be interpolation or
extrapolation? Make the prediction, and discuss whether it is reasonable.

ⓑ Would predicting the number of chirps crickets will make at 40 degrees be interpolation or extrapolation? Make
the prediction, and discuss whether it is reasonable.

Solution

ⓐ The number of chirps in the data provided varied from 18.5 to 44. A prediction at 30 chirps per 15 seconds is
inside the domain of our data, so would be interpolation. Using our model:

Based on the data we have, this value seems reasonable.

ⓑ The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40 degrees is extrapolation
because 40 is outside the range of our data. Using our model:

We can compare the regions of interpolation and extrapolation using Figure 5.
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...

Figure 5

Analysis
Our model predicts the crickets would chirp 8.33 times in 15 seconds. While this might be possible, we have no reason to
believe our model is valid outside the domain and range. In fact, generally crickets stop chirping altogether below
around 50 degrees.

TRY IT #2 According to the data from Table 1, what temperature can we predict it is if we counted 20 chirps
in 15 seconds?

Finding the Line of Best Fit Using a Graphing Utility
While eyeballing a line works reasonably well, there are statistical techniques for fitting a line to data that minimize the
differences between the line and data values6 . One such technique is called least squares regression and can be
computed by many graphing calculators, spreadsheet software, statistical software, and many web-based calculators7 .
Least squares regression is one means to determine the line that best fits the data, and here we will refer to this method
as linear regression.

HOW TO

Given data of input and corresponding outputs from a linear function, find the best fit line using linear
regression.

1. Enter the input in List 1 (L1).
2. Enter the output in List 2 (L2).
3. On a graphing utility, select Linear Regression (LinReg).

EXAMPLE 4

Finding a Least Squares Regression Line
Find the least squares regression line using the cricket-chirp data in Table 2.

Solution
1. Enter the input (chirps) in List 1 (L1).

6 Technically, the method minimizes the sum of the squared differences in the vertical direction between the line and the data values.

7 For example, http://www.shodor.org/unchem/math/lls/leastsq.html
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2. Enter the output (temperature) in List 2 (L2). See Table 2.

L1 44 35 20.4 33 31 35 18.5 37 26

L2 80.5 70.5 57 66 68 72 52 73.5 53

Table 2

3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with technology
we obtain the equation:

Analysis
Notice that this line is quite similar to the equation we “eyeballed” but should fit the data better. Notice also that using
this equation would change our prediction for the temperature when hearing 30 chirps in 15 seconds from 66 degrees
to:

The graph of the scatter plot with the least squares regression line is shown in Figure 6.

Figure 6

Q&A Will there ever be a case where two different lines will serve as the best fit for the data?

No. There is only one best fit line.

Distinguishing Between Linear and Nonlinear Models
As we saw above with the cricket-chirp model, some data exhibit strong linear trends, but other data, like the final exam
scores plotted by age, are clearly nonlinear. Most calculators and computer software can also provide us with the
correlation coefficient, which is a measure of how closely the line fits the data. Many graphing calculators require the
user to turn a "diagnostic on" selection to find the correlation coefficient, which mathematicians label as The
correlation coefficient provides an easy way to get an idea of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the degree to
which a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a linear regression is
meaningless. To get a sense for the relationship between the value of and the graph of the data, Figure 7 shows some
large data sets with their correlation coefficients. Remember, for all plots, the horizontal axis shows the input and the
vertical axis shows the output.
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Figure 7 Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

Correlation Coefficient

The correlation coefficient is a value, between –1 and 1.

• suggests a positive (increasing) relationship
• suggests a negative (decreasing) relationship
• The closer the value is to 0, the more scattered the data.
• The closer the value is to 1 or –1, the less scattered the data is.

EXAMPLE 5

Finding a Correlation Coefficient
Calculate the correlation coefficient for cricket-chirp data in Table 1.

Solution
Because the data appear to follow a linear pattern, we can use technology to calculate Enter the inputs and
corresponding outputs and select the Linear Regression. The calculator will also provide you with the correlation
coefficient, This value is very close to 1, which suggests a strong increasing linear relationship.

Note: For some calculators, the Diagnostics must be turned "on" in order to get the correlation coefficient when linear
regression is performed: [2nd]>[0]>[alpha][x–1], then scroll to DIAGNOSTICSON.

Fitting a Regression Line to a Set of Data
Once we determine that a set of data is linear using the correlation coefficient, we can use the regression line to make
predictions. As we learned above, a regression line is a line that is closest to the data in the scatter plot, which means
that only one such line is a best fit for the data.

EXAMPLE 6

Using a Regression Line to Make Predictions
Gasoline consumption in the United States has been steadily increasing. Consumption data from 1994 to 2004 is shown
in Table 3.8 Determine whether the trend is linear, and if so, find a model for the data. Use the model to predict the
consumption in 2008.

8 http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html
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Year '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04

Consumption (billions of gallons) 113 116 118 119 123 125 126 128 131 133 136

Table 3

The scatter plot of the data, including the least squares regression line, is shown in Figure 8.

Figure 8

Solution
We can introduce a new input variable, representing years since 1994.

The least squares regression equation is:

Using technology, the correlation coefficient was calculated to be 0.9965, suggesting a very strong increasing linear
trend.

Using this to predict consumption in 2008

The model predicts 144.244 billion gallons of gasoline consumption in 2008.

TRY IT #3 Use the model we created using technology in Example 6 to predict the gas consumption in 2011.
Is this an interpolation or an extrapolation?

MEDIA

Access these online resources for additional instruction and practice with fitting linear models to data.

Introduction to Regression Analysis (http://openstax.org/l/introregress)
Linear Regression (http://openstax.org/l/linearregress)
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4.3 SECTION EXERCISES
Verbal

1. Describe what it means if
there is a model breakdown
when using a linear model.

2. What is interpolation when
using a linear model?

3. What is extrapolation when
using a linear model?

4. Explain the difference
between a positive and a
negative correlation
coefficient.

5. Explain how to interpret the
absolute value of a
correlation coefficient.

Algebraic

6. A regression was run to determine whether there is
a relationship between hours of TV watched per
day and number of sit-ups a person can do
The results of the regression are given below. Use
this to predict the number of sit-ups a person who
watches 11 hours of TV can do.

7. A regression was run to determine whether there is
a relationship between the diameter of a tree ( ,
in inches) and the tree’s age ( , in years). The
results of the regression are given below. Use this
to predict the age of a tree with diameter 10 inches.

For the following exercises, draw a scatter plot for the data provided. Does the data appear to be linearly related?

8.
0 2 4 6 8 10

–22 –19 –15 –11 –6 –2

9.
1 2 3 4 5 6

46 50 59 75 100 136

10.
100 250 300 450 600 750

12 12.6 13.1 14 14.5 15.2

11.
1 3 5 7 9 11

1 9 28 65 125 216
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12. For the following data, draw a scatter plot. If we
wanted to know when the population would reach
15,000, would the answer involve interpolation or
extrapolation? Eyeball the line, and estimate the
answer.

Year Population

1990 11,500

1995 12,100

2000 12,700

2005 13,000

2010 13,750

13. For the following data, draw a scatter plot. If
we wanted to know when the temperature
would reach 28°F, would the answer involve
interpolation or extrapolation? Eyeball the line
and estimate the answer.

Temperature,°F 16 18 20 25 30

Time, seconds 46 50 54 55 62

Graphical

For the following exercises, match each scatterplot with one of the four specified correlations in Figure 9 and Figure 10.

Figure 9

Figure 10

14. 15. 16.

17.
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For the following exercises, draw a best-fit line for the plotted data.

18.

19.

20.

21.
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Numeric

22. The U.S. Census tracks the
percentage of persons 25
years or older who are
college graduates. That
data for several years is
given in Table 4.9

Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
the percentage exceed
35%?

Year
Percent

Graduates

1990 21.3

1992 21.4

1994 22.2

1996 23.6

1998 24.4

2000 25.6

2002 26.7

2004 27.7

2006 28

2008 29.4

Table 4

23. The U.S. import of wine (in
hectoliters) for several
years is given in Table 5.
Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
imports exceed 12,000
hectoliters?

Year Imports

1992 2665

1994 2688

1996 3565

1998 4129

2000 4584

2002 5655

2004 6549

2006 7950

2008 8487

2009 9462

Table 5

24. Table 6 shows the year and
the number of people
unemployed in a particular
city for several years.
Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
the number of unemployed
reach 5?

Year
Number

Unemployed

1990 750

1992 670

1994 650

1996 605

1998 550

2000 510

2002 460

2004 420

2006 380

2008 320

Table 6

Technology

For the following exercises, use each set of data to calculate the regression line using a calculator or other technology
tool, and determine the correlation coefficient to 3 decimal places of accuracy.

25.
8 15 26 31 56

23 41 53 72 103

26.
5 7 10 12 15

4 12 17 22 24

9 Based on data from http://www.census.gov/hhes/socdemo/education/data/cps/historical/index.html. Accessed 5/1/2014.
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27.

3 21.9 10 18.54

4 22.22 11 15.76

5 22.74 12 13.68

6 22.26 13 14.1

7 20.78 14 14.02

8 17.6 15 11.94

9 16.52 16 12.76

28.

4 44.8

5 43.1

6 38.8

7 39

8 38

9 32.7

10 30.1

11 29.3

12 27

13 25.8

29.
21 25 30 31 40 50

17 11 2 –1 –18 –40

30.

100 2000

80 1798

60 1589

55 1580

40 1390

20 1202

31.
900 988 1000 1010 1200 1205

70 80 82 84 105 108
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Extensions

32. Graph Pick a set of five ordered
pairs using inputs and use linear
regression to verify that the function is a good fit
for the data.

33. Graph Pick a set of five ordered
pairs using inputs and use linear
regression to verify the function.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The
following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of over the
ten-year span, (number of units sold, profit) for specific recorded years:

34. Use linear regression to
determine a function
where the profit in
thousands of dollars
depends on the number of
units sold in hundreds.

35. Find to the nearest tenth
and interpret the
x-intercept.

36. Find to the nearest tenth
and interpret the
y-intercept.

Real-World Applications

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific
recorded years:

37. Use linear regression to determine a function
where the year depends on the population. Round
to three decimal places of accuracy.

38. Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The
following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten year
span, (number of units sold, profit) for specific recorded years:

39. Use linear regression to determine a function y,
where the profit in thousands of dollars depends
on the number of units sold in hundreds.

40. Predict when the profit will exceed one million
dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The
following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of over the
ten-year span (number of units sold, profit) for specific recorded years:

41. Use linear regression to determine a function y,
where the profit in thousands of dollars depends
on the number of units sold in hundreds.

42. Predict when the profit will dip below the $25,000
threshold.

4.3 • Fitting Linear Models to Data 447



Chapter Review
Key Terms
correlation coefficient a value, between –1 and 1 that indicates the degree of linear correlation of variables, or how

closely a regression line fits a data set.
decreasing linear function a function with a negative slope: If
extrapolation predicting a value outside the domain and range of the data
horizontal line a line defined by where is a real number. The slope of a horizontal line is 0.
increasing linear function a function with a positive slope: If
interpolation predicting a value inside the domain and range of the data
least squares regression a statistical technique for fitting a line to data in a way that minimizes the differences

between the line and data values
linear function a function with a constant rate of change that is a polynomial of degree 1, and whose graph is a

straight line
model breakdown when a model no longer applies after a certain point
parallel lines two or more lines with the same slope
perpendicular lines two lines that intersect at right angles and have slopes that are negative reciprocals of each other
point-slope form the equation for a line that represents a linear function of the form
slope the ratio of the change in output values to the change in input values; a measure of the steepness of a line
slope-intercept form the equation for a line that represents a linear function in the form
vertical line a line defined by where is a real number. The slope of a vertical line is undefined.

Key Concepts
4.1 Linear Functions

• Linear functions can be represented in words, function notation, tabular form, and graphical form. See Example 1.
• An increasing linear function results in a graph that slants upward from left to right and has a positive slope. A

decreasing linear function results in a graph that slants downward from left to right and has a negative slope. A
constant linear function results in a graph that is a horizontal line. See Example 2.

• Slope is a rate of change. The slope of a linear function can be calculated by dividing the difference between
y-values by the difference in corresponding x-values of any two points on the line. See Example 3 and Example 4.

• An equation for a linear function can be written from a graph. See Example 5.
• The equation for a linear function can be written if the slope and initial value are known. See Example 6 and

Example 7.
• A linear function can be used to solve real-world problems given information in different forms. See Example 8,

Example 9, and Example 10.
• Linear functions can be graphed by plotting points or by using the y-intercept and slope. See Example 11 and

Example 12.
• Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as through stretches,

compressions, and reflections. See Example 13.
• The equation for a linear function can be written by interpreting the graph. See Example 14.
• The x-intercept is the point at which the graph of a linear function crosses the x-axis. See Example 15.
• Horizontal lines are written in the form, See Example 16.
• Vertical lines are written in the form, See Example 17.
• Parallel lines have the same slope. Perpendicular lines have negative reciprocal slopes, assuming neither is vertical.

See Example 18.
• A line parallel to another line, passing through a given point, may be found by substituting the slope value of the

line and the x- and y-values of the given point into the equation, and using the that results.
Similarly, the point-slope form of an equation can also be used. See Example 19.

• A line perpendicular to another line, passing through a given point, may be found in the same manner, with the
exception of using the negative reciprocal slope. See Example 20 and Example 21.

4.2 Modeling with Linear Functions

• We can use the same problem strategies that we would use for any type of function.
• When modeling and solving a problem, identify the variables and look for key values, including the slope and

y-intercept. See Example 1.
• Draw a diagram, where appropriate. See Example 2 and Example 3.
• Check for reasonableness of the answer.
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• Linear models may be built by identifying or calculating the slope and using the y-intercept.
◦ The x-intercept may be found by setting which is setting the expression equal to 0.
◦ The point of intersection of a system of linear equations is the point where the x- and y-values are the same. See

Example 4.
◦ A graph of the system may be used to identify the points where one line falls below (or above) the other line.

4.3 Fitting Linear Models to Data

• Scatter plots show the relationship between two sets of data. See Example 1.
• Scatter plots may represent linear or non-linear models.
• The line of best fit may be estimated or calculated, using a calculator or statistical software. See Example 2.
• Interpolation can be used to predict values inside the domain and range of the data, whereas extrapolation can be

used to predict values outside the domain and range of the data. See Example 3.
• The correlation coefficient, indicates the degree of linear relationship between data. See Example 4.
• A regression line best fits the data. See Example 5.
• The least squares regression line is found by minimizing the squares of the distances of points from a line passing

through the data and may be used to make predictions regarding either of the variables. See Example 6.

Exercises
Review Exercises
Linear Functions
1. Determine whether the

algebraic equation is linear.
2. Determine whether the

algebraic equation is linear.
3. Determine whether the

function is increasing or
decreasing.

4. Determine whether the
function is increasing or
decreasing.

5. Given each set of
information, find a linear
equation that satisfies the
given conditions, if possible.

Passes through and

6. Given each set of
information, find a linear
equation that satisfies the
given conditions, if possible.

x-intercept at and
y-intercept at

7. Find the slope of the line shown in the graph. 8. Find the slope of the line graphed.
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9. Write an equation in slope-intercept form for the
line shown.

10. Does the following table
represent a linear function? If
so, find the linear equation
that models the data.

x –4 0 2 10

g(x) 18 –2 –12 –52

11. Does the following table
represent a linear function? If
so, find the linear equation that
models the data.

x 6 8 12 26

g(x) –8 –12 –18 –46

12. On June 1st, a company has
$4,000,000 profit. If the
company then loses
150,000 dollars per day
thereafter in the month of
June, what is the
company’s profit nth day
after June 1st?

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular:

13. 14.

For the following exercises, find the x- and y- intercepts of the given equation

15. 16.

For the following exercises, use the descriptions of the pairs of lines to find the slopes of Line 1 and Line 2. Is each pair of
lines parallel, perpendicular, or neither?

17. Line 1: Passes through
and

Line 2: Passes through
and

18. Line 1: Passes through
and

Line 2: Passes through
and

19. Write an equation for a line
perpendicular to

and passing
through the point (5, 20).

450 4 • Exercises

Access for free at openstax.org



20. Find the equation of a line
with a y- intercept of
and slope

21. Sketch a graph of the linear
function

22. Find the point of
intersection for the 2 linear

functions:

23. A car rental company
offers two plans for renting
a car.

Plan A: 25 dollars per day
and 10 cents per mile

Plan B: 50 dollars per day
with free unlimited mileage

How many miles would you
need to drive for plan B to
save you money?

Modeling with Linear Functions
24. Find the area of a triangle

bounded by the y axis, the
line and
the line perpendicular to
that passes through the
origin.

25. A town’s population
increases at a constant
rate. In 2010 the
population was 55,000. By
2012 the population had
increased to 76,000. If this
trend continues, predict
the population in 2016.

26. The number of people
afflicted with the common
cold in the winter months
dropped steadily by 50
each year since 2004 until
2010. In 2004, 875 people
were inflicted.

Find the linear function
that models the number of
people afflicted with the
common cold C as a
function of the year,
When will no one be
afflicted?

For the following exercises, use the graph in Figure 1 showing the profit, in thousands of dollars, of a company in a
given year, where represents years since 1980.

Figure 1

27. Find the linear function y, where y depends on
the number of years since 1980.

28. Find and interpret the y-intercept.
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For the following exercise, consider this scenario: In 2004, a school population was 1,700. By 2012 the population had
grown to 2,500.

ⓐ How much did the population grow between
the year 2004 and 2012?

ⓑ What is the average population growth per
year?

ⓒ Find an equation for the population, P, of the
school t years after 2004.

29. Assume the population is changing linearly.

For the following exercises, consider this scenario: In 2000, the moose population in a park was measured to be 6,500. By
2010, the population was measured to be 12,500. Assume the population continues to change linearly.

30. Find a formula for the
moose population, .

31. What does your model
predict the moose
population to be in 2020?

For the following exercises, consider this scenario: The median home values in subdivisions Pima Central and East Valley
(adjusted for inflation) are shown in Table 1. Assume that the house values are changing linearly.

Year Pima Central East Valley

1970 32,000 120,250

2010 85,000 150,000

Table 1

32. In which subdivision have
home values increased at a
higher rate?

33. If these trends were to
continue, what would be
the median home value in
Pima Central in 2015?
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Fitting Linear Models to Data
34. Draw a scatter plot for the

data in Table 2. Then
determine whether the
data appears to be linearly
related.

0 -105

2 -50

4 1

6 55

8 105

10 160

Table 2

35. Draw a scatter plot for the
data in Table 3. If we
wanted to know when the
population would reach
15,000, would the answer
involve interpolation or
extrapolation?

Year Population

1990 5,600

1995 5,950

2000 6,300

2005 6,600

2010 6,900

Table 3

36. Eight students were asked
to estimate their score on a
10-point quiz. Their
estimated and actual
scores are given in Table 4.
Plot the points, then sketch
a line that fits the data.

Predicted Actual

6 6

7 7

7 8

8 8

7 9

9 10

10 10

10 9

Table 4

37. Draw a best-fit line for the plotted
data.

For the following exercises, consider the data in Table 5, which shows the percent of unemployed in a city of people 25
years or older who are college graduates is given below, by year.

Year 2000 2002 2005 2007 2010

Percent Graduates 6.5 7.0 7.4 8.2 9.0

Table 5
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38. Determine whether the
trend appears to be linear.
If so, and assuming the
trend continues, find a
linear regression model to
predict the percent of
unemployed in a given
year to three decimal
places.

39. In what year will the
percentage exceed 12%?

40. Based on the set of data given
in Table 6, calculate the
regression line using a
calculator or other technology
tool, and determine the
correlation coefficient to three
decimal places.

17 20 23 26 29

15 25 31 37 40

Table 6

41. Based on the set of data given
in Table 7, calculate the
regression line using a
calculator or other technology
tool, and determine the
correlation coefficient to three
decimal places.

10 12 15 18 20

36 34 30 28 22

Table 7

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs show the population and the year over the ten-year span (population, year) for specific recorded
years:

42. Use linear regression to
determine a function
where the year depends on
the population, to three
decimal places of accuracy.

43. Predict when the
population will hit 12,000.

44. What is the correlation
coefficient for this model to
three decimal places of
accuracy?

45. According to the model,
what is the population in
2014?

Practice Test
1. Determine whether the

following algebraic equation
can be written as a linear
function.

2. Determine whether the
following function is
increasing or decreasing.

3. Determine whether the
following function is
increasing or decreasing.
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4. Find a linear equation that
passes through (5, 1) and (3,
–9), if possible.

5. Find a linear equation, that
has an x intercept at (–4, 0)
and a y-intercept at (0, –6), if
possible.

6. Find the slope of the line in Figure
1.

Figure 1

7. Write an equation for line in Figure 2.

Figure 2

8. Does Table 1 represent a linear function? If so, find
a linear equation that models the data.

–6 0 2 4

14 32 38 44

Table 1

9. Does Table 2 represent a linear function? If so, find
a linear equation that models the data.

x 1 3 7 11

g(x) 4 9 19 12

Table 2

10. At 6 am, an online
company has sold 120
items that day. If the
company sells an average
of 30 items per hour for
the remainder of the day,
write an expression to
represent the number of
items that were sold after
6 am.
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For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular.

11. 12. 13. Find the x- and y-intercepts
of the equation

14. Given below are
descriptions of two lines.
Find the slopes of Line 1
and Line 2. Is the pair of
lines parallel,
perpendicular, or neither?

Line 1: Passes through
and

Line 2: Passes through
and

15. Write an equation for a line
perpendicular to

and passing
through the point

16. Sketch a line with a
y-intercept of and
slope

17. Graph of the linear
function

18. For the two linear
functions, find the point of
intersection:

19. A car rental company
offers two plans for renting
a car.

Plan A: $25 per day and
$0.10 per mile

Plan B: $40 per day with
free unlimited mileage

How many miles would you
need to drive for plan B to
save you money?

20. Find the area of a triangle
bounded by the y axis, the
line and
the line perpendicular to
that passes through the
origin.

21. A town’s population
increases at a constant
rate. In 2010 the
population was 65,000. By
2012 the population had
increased to 90,000.
Assuming this trend
continues, predict the
population in 2018.

22. The number of people
afflicted with the common
cold in the winter months
dropped steadily by 25
each year since 2002 until
2012. In 2002, 8,040 people
were inflicted. Find the
linear function that models
the number of people
afflicted with the common
cold as a function of the
year, When will less than
6,000 people be afflicted?
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For the following exercises, use the graph in Figure 3, showing the profit, in thousands of dollars, of a company in a
given year, where represents years since 1980.

Figure 3

23. Find the linear function
where depends on the
number of years since
1980.

24. Find and interpret the
y-intercept.

ⓐ How much did the
population drop between
the year 2004 and 2012?

ⓑ What is the average
population decline per
year?

ⓒ Find an equation for the
population, P, of the school
t years after 2004.

25. In 2004, a school
population was 1250. By
2012 the population had
dropped to 875. Assume
the population is changing
linearly.

26. Draw a scatter plot for the data provided in Table
3. Then determine whether the data appears to be
linearly related.

0 2 4 6 8 10

–450 –200 10 265 500 755

Table 3

27. Draw a best-fit line for the plotted data.

For the following exercises, use Table 4, which shows the percent of unemployed persons 25 years or older who are
college graduates in a particular city, by year.

Year 2000 2002 2005 2007 2010

Percent Graduates 8.5 8.0 7.2 6.7 6.4

Table 4
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28. Determine whether the
trend appears linear. If so,
and assuming the trend
continues, find a linear
regression model to
predict the percent of
unemployed in a given
year to three decimal
places.

29. In what year will the
percentage drop below
4%?

30. Based on the set of data given in
Table 5, calculate the regression line
using a calculator or other
technology tool, and determine the
correlation coefficient. Round to
three decimal places of accuracy.

x 16 18 20 24 26

y 106 110 115 120 125

Table 5

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs shows the population (in hundreds) and the year over the ten-year span, (population, year) for
specific recorded years:

31. Use linear regression to
determine a function y,
where the year depends on
the population. Round to
three decimal places of
accuracy.

32. Predict when the
population will hit 20,000.

33. What is the correlation
coefficient for this model?
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Whether they think about it in mathematical terms or not, scuba divers must consider the impact of functional
relationships in order to remain safe. The gas laws, which are a series of relations and equations that describe the
behavior of most gases, play a core role in diving. This diver, near the wreck of a World War II Japanese ocean liner
turned troop transport, must remain attentive to gas laws during their dive and as they ascend to the surface. (credit:
"Aikoku - Aft Gun": modification of work by montereydiver/flickr)

Chapter Outline
5.1 Quadratic Functions
5.2 Power Functions and Polynomial Functions
5.3 Graphs of Polynomial Functions
5.4 Dividing Polynomials
5.5 Zeros of Polynomial Functions
5.6 Rational Functions
5.7 Inverses and Radical Functions
5.8 Modeling Using Variation

Introduction to Polynomial and Rational Functions
You don't need to dive very deep to feel the effects of pressure. As a person in their neighborhood pool moves eight,
ten, twelve feet down, they often feel pain in their ears as a result of water and air pressure differentials. Pressure plays
a much greater role at ocean diving depths.

id="scuban">Scuba and free divers are constantly negotiating the effects of pressure in order to experience enjoyable,
safe, and productive dives. Gases in a person's respiratory system and diving apparatus interact according to certain
physical properties, which upon discovery and evaluation are collectively known as the gas laws. Some are conceptually
simple, such as the inverse relationship regarding pressure and volume, and others are more complex. While their
formulas seem more straightforward than many you will encounter in this chapter, the gas laws are generally
polynomial expressions.

POLYNOMIAL AND RATIONAL FUNCTIONS5
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5.1 Quadratic Functions
Learning Objectives
In this section, you will:

Recognize characteristics of parabolas.
Understand how the graph of a parabola is related to its quadratic function.
Determine a quadratic function’s minimum or maximum value.
Solve problems involving a quadratic function’s minimum or maximum value.

COREQUISITE SKILLS

Learning Objectives
Graph quadratic functions using properties. (IA 9.6.4)

Objective 1: Graph quadratic functions using properties. (IA 9.6.4)
A quadratic function is a function that can be written in the general form , where a, b, and c are
real numbers and a≠0. The graph of quadratic function is called a parabola. Parabolas are symmetric around a line
(also called an axis) and have the highest (maximum) or the lowest (minimum) point that is called a vertex.

Making a Table
We can graph quadratic function by making a table and plotting points.

Figure 1

Practice Makes Perfect
Graph quadratic function by making a table and plotting points.

1. Graph

ⓐ Choose integer values for , substitute them into the equation and simplify to find . Record the values of
the ordered pairs in the chart.

ⓑ Plot the points, and then connect them with a smooth curve. The result will be the graph of the function.

x f(x)

ⓒ In what direction does it open?
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Figure 2

ⓓ Find the vertex.

ⓔ Find the axis of symmetry.

2. Graph

ⓐ Choose integer values for , substitute them into the equation and simplify to find . Record the values of
the ordered pairs in the chart.

x f(x)

ⓑ Plot the points, and then connect them with a smooth curve. The result will be the graph of the function.

Figure 3

ⓒ In what direction does it open?

ⓓ Find the vertex.

ⓔ Find the axis of symmetry.

3. Fill in the blanks based on your observations in parts ⓐ and ⓑ .

ⓐ Parabola opens _______ if a < 0. ⓑ Parabola opens _______ if a > 0.

Graphing of quadratic functions is much easier when we know the vertex and the axis of symmetry. The vertex of the
graph of the quadratic function in the form .
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The line or axis of symmetry of the parabola is the vertical line .

EXAMPLE 1

Find the vertex and the axis of symmetry of the graph.

Solution
Notice that

First, find the x-coordinate of the vertex by evaluating

Now we can find the y-coordinate by evaluating

The vertex is at the point (1, -5) and the axis of symmetry is

HOW TO

Using a vertex to graph a quadratic function in the form

Step 1. Determine if parabola opens up or down
Step 2. Find the vertex and axis of symmetry
Step 3. Pick two x-values right next to the vertex and find corresponding y-values
Step 4. Plot the vertex and the two points you found
Step 5. Plot two symmetrical points using the axis of symmetry
Step 6. Draw a smooth curve through the points

Practice Makes Perfect
Graphing quadratic functions using a vertex.

4. Graph

ⓐ Determine the direction of opening.

Figure 4

ⓑ Find and plot the vertex.

ⓒ Find the axis of symmetry.

ⓓ Find and plot 2 more points and symmetrical points.

x f(x)
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ⓔ Does it have a maximum or a minimum? Find this point.

ⓕ Find domain and range.

5. Graph

ⓐ Complete the following table and plot the points.

x f(x)

Figure 5

ⓑ Find the vertex of the graph.
(___, ___)

ⓒ Is there a connection between the equation of the function and coordinates of the vertex? Explain.

ⓓ We call this form of quadratic function a vertex, or standard form. Why do you think it is called vertex form?
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Figure 1 An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)

Curved antennas, such as the ones shown in Figure 1, are commonly used to focus microwaves and radio waves to
transmit television and telephone signals, as well as satellite and spacecraft communication. The cross-section of the
antenna is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile
motion. Working with quadratic functions can be less complex than working with higher degree functions, so they
provide a good opportunity for a detailed study of function behavior.

Recognizing Characteristics of Parabolas
The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph is that it has
an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest point on the graph, or
the minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on the
graph, or the maximum value. In either case, the vertex is a turning point on the graph. The graph is also symmetric with
a vertical line drawn through the vertex, called the axis of symmetry. These features are illustrated in Figure 2.

Figure 2

The y-intercept is the point at which the parabola crosses the y-axis. The x-intercepts are the points at which the
parabola crosses the x-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic function, the
values of at which

EXAMPLE 1

Identifying the Characteristics of a Parabola
Determine the vertex, axis of symmetry, zeros, and intercept of the parabola shown in Figure 3.
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Figure 3

Solution
The vertex is the turning point of the graph. We can see that the vertex is at Because this parabola opens upward,
the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry is This
parabola does not cross the axis, so it has no zeros. It crosses the axis at so this is the y-intercept.

Understanding How the Graphs of Parabolas are Related to Their Quadratic
Functions
The general form of a quadratic function presents the function in the form

where and are real numbers and If the parabola opens upward. If the parabola opens
downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by If we use the quadratic formula, to solve

for the intercepts, or zeros, we find the value of halfway between them is always the
equation for the axis of symmetry.

Figure 4 represents the graph of the quadratic function written in general form as In this form,
and Because the parabola opens upward. The axis of symmetry is This also

makes sense because we can see from the graph that the vertical line divides the graph in half. The vertex
always occurs along the axis of symmetry. For a parabola that opens upward, the vertex occurs at the lowest point on
the graph, in this instance, The intercepts, those points where the parabola crosses the axis, occur at

and

Figure 4

The standard form of a quadratic function presents the function in the form
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where is the vertex. Because the vertex appears in the standard form of the quadratic function, this form is also
known as the vertex form of a quadratic function.

As with the general form, if the parabola opens upward and the vertex is a minimum. If the parabola opens
downward, and the vertex is a maximum. Figure 5 represents the graph of the quadratic function written in standard
form as Since in this example, In this form, and
Because the parabola opens downward. The vertex is at

Figure 5

The standard form is useful for determining how the graph is transformed from the graph of Figure 6 is the
graph of this basic function.

Figure 6

If the graph shifts upward, whereas if the graph shifts downward. In Figure 5, so the graph is shifted
4 units upward. If the graph shifts toward the right and if the graph shifts to the left. In Figure 5, so
the graph is shifted 2 units to the left. The magnitude of indicates the stretch of the graph. If the point
associated with a particular value shifts farther from the x-axis, so the graph appears to become narrower, and there
is a vertical stretch. But if the point associated with a particular value shifts closer to the x-axis, so the graph
appears to become wider, but in fact there is a vertical compression. In Figure 5, so the graph becomes
narrower.

The standard form and the general form are equivalent methods of describing the same function. We can see this by
expanding out the general form and setting it equal to the standard form.

For the linear terms to be equal, the coefficients must be equal.

This is the axis of symmetry we defined earlier. Setting the constant terms equal:
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In practice, though, it is usually easier to remember that k is the output value of the function when the input is so

Forms of Quadratic Functions

A quadratic function is a polynomial function of degree two. The graph of a quadratic function is a parabola.

The general form of a quadratic function is where and are real numbers and

The standard form of a quadratic function is where

The vertex is located at

HOW TO

Given a graph of a quadratic function, write the equation of the function in general form.

1. Identify the horizontal shift of the parabola; this value is Identify the vertical shift of the parabola; this value is

2. Substitute the values of the horizontal and vertical shift for and in the function
3. Substitute the values of any point, other than the vertex, on the graph of the parabola for and
4. Solve for the stretch factor,
5. Expand and simplify to write in general form.

EXAMPLE 2

Writing the Equation of a Quadratic Function from the Graph
Write an equation for the quadratic function in Figure 7 as a transformation of and then expand the
formula, and simplify terms to write the equation in general form.
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Figure 7

Solution
We can see the graph of g is the graph of shifted to the left 2 and down 3, giving a formula in the form

Substituting the coordinates of a point on the curve, such as we can solve for the stretch factor.

In standard form, the algebraic model for this graph is

To write this in general polynomial form, we can expand the formula and simplify terms.

Notice that the horizontal and vertical shifts of the basic graph of the quadratic function determine the location of the
vertex of the parabola; the vertex is unaffected by stretches and compressions.

Analysis
We can check our work using the table feature on a graphing utility. First enter Next, select

then use and and select See Table 1.

–6 –4 –2 0 2

5 –1 –3 –1 5

Table 1

The ordered pairs in the table correspond to points on the graph.

TRY IT #1 A coordinate grid has been superimposed over the quadratic path of a basketball in Figure 8. Find
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an equation for the path of the ball. Does the shooter make the basket?

Figure 8 (credit: modification of work by Dan Meyer)

HOW TO

Given a quadratic function in general form, find the vertex of the parabola.

1. Identify
2. Find the x-coordinate of the vertex, by substituting and into

3. Find the y-coordinate of the vertex, by evaluating

EXAMPLE 3

Finding the Vertex of a Quadratic Function
Find the vertex of the quadratic function Rewrite the quadratic in standard form (vertex form).

Solution

Rewriting into standard form, the stretch factor will be the same as the in the original quadratic. First, find the
horizontal coordinate of the vertex. Then find the vertical coordinate of the vertex. Substitute the values into standard
form, using the " " from the general form.
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The standard form of a quadratic function prior to writing the function then becomes the following:

Analysis
One reason we may want to identify the vertex of the parabola is that this point will inform us where the maximum or
minimum value of the output occurs, and where it occurs,

TRY IT #2 Given the equation write the equation in general form and then in standard
form.

Finding the Domain and Range of a Quadratic Function
Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function is all real
numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since the vertex of a
parabola will be either a maximum or a minimum, the range will consist of all y-values greater than or equal to the
y-coordinate at the turning point or less than or equal to the y-coordinate at the turning point, depending on whether
the parabola opens up or down.

Domain and Range of a Quadratic Function

The domain of any quadratic function is all real numbers unless the context of the function presents some
restrictions.

The range of a quadratic function written in general form with a positive value is

or ∞ the range of a quadratic function written in general form with a negative value

is or ∞

The range of a quadratic function written in standard form with a positive value is
the range of a quadratic function written in standard form with a negative value is

HOW TO

Given a quadratic function, find the domain and range.

1. Identify the domain of any quadratic function as all real numbers.
2. Determine whether is positive or negative. If is positive, the parabola has a minimum. If is negative, the

parabola has a maximum.
3. Determine the maximum or minimum value of the parabola,

4. If the parabola has a minimum, the range is given by or ∞ If the parabola has a maximum, the

range is given by or ∞

EXAMPLE 4

Finding the Domain and Range of a Quadratic Function
Find the domain and range of
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Solution
As with any quadratic function, the domain is all real numbers.

Because is negative, the parabola opens downward and has a maximum value. We need to determine the maximum
value. We can begin by finding the value of the vertex.

The maximum value is given by

The range is or ∞

TRY IT #3 Find the domain and range of

Determining the Maximum and Minimum Values of Quadratic Functions
The output of the quadratic function at the vertex is the maximum or minimum value of the function, depending on the
orientation of the parabola. We can see the maximum and minimum values in Figure 9.

Figure 9

There are many real-world scenarios that involve finding the maximum or minimum value of a quadratic function, such
as applications involving area and revenue.

EXAMPLE 5

Finding the Maximum Value of a Quadratic Function
A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has
purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the fourth
side.

ⓐ Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have
length

ⓑ What dimensions should she make her garden to maximize the enclosed area?
Solution

Let’s use a diagram such as Figure 10 to record the given information. It is also helpful to introduce a temporary
variable, to represent the width of the garden and the length of the fence section parallel to the backyard fence.
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Figure 10

ⓐ We know we have only 80 feet of fence available, and or more simply, This
allows us to represent the width, in terms of

Now we are ready to write an equation for the area the fence encloses. We know the area of a rectangle is length
multiplied by width, so

This formula represents the area of the fence in terms of the variable length The function, written in general form,
is

ⓑ The quadratic has a negative leading coefficient, so the graph will open downward, and the vertex will be the
maximum value for the area. In finding the vertex, we must be careful because the equation is not written in standard
polynomial form with decreasing powers. This is why we rewrote the function in general form above. Since is the
coefficient of the squared term, and

To find the vertex:

The maximum value of the function is an area of 800 square feet, which occurs when feet. When the shorter
sides are 20 feet, there is 40 feet of fencing left for the longer side. To maximize the area, she should enclose the garden
so the two shorter sides have length 20 feet and the longer side parallel to the existing fence has length 40 feet.

Analysis
This problem also could be solved by graphing the quadratic function. We can see where the maximum area occurs on a
graph of the quadratic function in Figure 11.
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Figure 11

HOW TO

Given an application involving revenue, use a quadratic equation to find the maximum.

1. Write a quadratic equation for a revenue function.
2. Find the vertex of the quadratic equation.
3. Determine the y-value of the vertex.

EXAMPLE 6

Finding Maximum Revenue
The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will
usually decrease. For example, a local newspaper currently has 84,000 subscribers at a quarterly charge of $30. Market
research has suggested that if the owners raise the price to $32, they would lose 5,000 subscribers. Assuming that
subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to
maximize their revenue?

Solution
Revenue is the amount of money a company brings in. In this case, the revenue can be found by multiplying the price
per subscription times the number of subscribers, or quantity. We can introduce variables, for price per subscription
and for quantity, giving us the equation

Because the number of subscribers changes with the price, we need to find a relationship between the variables. We
know that currently and We also know that if the price rises to $32, the newspaper would lose 5,000
subscribers, giving a second pair of values, and From this we can find a linear equation relating the
two quantities. The slope will be

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price. We can then solve for the
y-intercept.

This gives us the linear equation relating cost and subscribers. We now return to our revenue
equation.
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We now have a quadratic function for revenue as a function of the subscription charge. To find the price that will
maximize revenue for the newspaper, we can find the vertex.

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a subscription. To find what
the maximum revenue is, we evaluate the revenue function.

Analysis
This could also be solved by graphing the quadratic as in Figure 12. We can see the maximum revenue on a graph of the
quadratic function.

Figure 12

Finding the x- and y-Intercepts of a Quadratic Function
Much as we did in the application problems above, we also need to find intercepts of quadratic equations for graphing
parabolas. Recall that we find the intercept of a quadratic by evaluating the function at an input of zero, and we find
the intercepts at locations where the output is zero. Notice in Figure 13 that the number of intercepts can vary
depending upon the location of the graph.

Figure 13 Number of x-intercepts of a parabola

HOW TO

Given a quadratic function find the and x-intercepts.

1. Evaluate to find the y-intercept.
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2. Solve the quadratic equation to find the x-intercepts.

EXAMPLE 7

Finding the y- and x-Intercepts of a Parabola
Find the y- and x-intercepts of the quadratic

Solution
We find the y-intercept by evaluating

So the y-intercept is at

For the x-intercepts, we find all solutions of

In this case, the quadratic can be factored easily, providing the simplest method for solution.

So the x-intercepts are at and

Analysis
By graphing the function, we can confirm that the graph crosses the y-axis at We can also confirm that the graph
crosses the x-axis at and See Figure 14

Figure 14

Rewriting Quadratics in Standard Form
In Example 7, the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored.
We can solve these quadratics by first rewriting them in standard form.

HOW TO

Given a quadratic function, find the intercepts by rewriting in standard form.

1. Substitute and into

2. Substitute into the general form of the quadratic function to find
3. Rewrite the quadratic in standard form using and
4. Solve for when the output of the function will be zero to find the intercepts.
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EXAMPLE 8

Finding the x-Intercepts of a Parabola
Find the intercepts of the quadratic function

Solution
We begin by solving for when the output will be zero.

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic in
standard form.

We know that Then we solve for and

So now we can rewrite in standard form.

We can now solve for when the output will be zero.

The graph has x-intercepts at and

We can check our work by graphing the given function on a graphing utility and observing the intercepts. See Figure
15.

Figure 15

Analysis
We could have achieved the same results using the quadratic formula. Identify and

476 5 • Polynomial and Rational Functions

Access for free at openstax.org



So the x-intercepts occur at and

TRY IT #4 In a Try It, we found the standard and general form for the function Now
find the y- and x-intercepts (if any).

EXAMPLE 9

Applying the Vertex and x-Intercepts of a Parabola
A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above
ground can be modeled by the equation

ⓐ When does the ball reach the maximum height? ⓑ What is the maximum height of the ball?

ⓒ When does the ball hit the ground?
Solution

ⓐ The ball reaches the maximum height at the vertex of the parabola.

The ball reaches a maximum height after 2.5 seconds.

ⓑ To find the maximum height, find the coordinate of the vertex of the parabola.

The ball reaches a maximum height of 140 feet.
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ⓒ To find when the ball hits the ground, we need to determine when the height is zero,
We use the quadratic formula.

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions.

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after
about 5.458 seconds. See Figure 16.

Figure 16

Note that the graph does not represent the physical path of the ball upward and downward. Keep the quantities on
each axis in mind while interpreting the graph.

TRY IT #5 A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of
96 feet per second. The rock’s height above ocean can be modeled by the equation

ⓐ When does the rock reach the maximum height?

ⓑ What is the maximum height of the rock? ⓒ When does the rock hit the ocean?

MEDIA

Access these online resources for additional instruction and practice with quadratic equations.

Graphing Quadratic Functions in General Form (http://openstax.org/l/graphquadgen)
Graphing Quadratic Functions in Standard Form (http://openstax.org/l/graphquadstan)
Quadratic Function Review (http://openstax.org/l/quadfuncrev)
Characteristics of a Quadratic Function (http://openstax.org/l/characterquad)
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5.1 SECTION EXERCISES
Verbal

1. Explain the advantage of
writing a quadratic function
in standard form.

2. How can the vertex of a
parabola be used in solving
real-world problems?

3. Explain why the condition of
is imposed in the

definition of the quadratic
function.

4. What is another name for
the standard form of a
quadratic function?

5. What two algebraic methods
can be used to find the
horizontal intercepts of a
quadratic function?

Algebraic

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find
the value and the axis of symmetry.

14. 15. 16.

17. 18. 19.

20.

For the following exercises, determine the domain and range of the quadratic function.

21. 22. 23.

24. 25.

For the following exercises, use the vertex and a point on the graph to find the general form of the equation
of the quadratic function.

26. 27. 28.

29. 30. 31.

32. 33.
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Graphical

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and
intercepts.

34. 35. 36.

37. 38. 39.

For the following exercises, write the equation for the graphed quadratic function.

40. 41. 42.

43. 44. 45.

Numeric

For the following exercises, use the table of values that represent points on the graph of a quadratic function. By
determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

46.
–2 –1 0 1 2

5 2 1 2 5

47.
–2 –1 0 1 2

1 0 1 4 9

48.
–2 –1 0 1 2

–2 1 2 1 –2
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49.
–2 –1 0 1 2

–8 –3 0 1 0

50.
–2 –1 0 1 2

8 2 0 2 8

Technology

For the following exercises, use a calculator to find the answer.

51. Graph on the same set of axes the functions
, , and .

What appears to be the effect of changing the
coefficient?

52. Graph on the same set of axes
and
and

What appears to be the effect of adding a
constant?

53. Graph on the same set of axes
, and

What appears to be the effect of adding or
subtracting those numbers?

54. The path of an object projected at a 45 degree
angle with initial velocity of 80 feet per second is
given by the function where

is the horizontal distance traveled and is the
height in feet. Use the TRACE feature of your
calculator to determine the height of the object
when it has traveled 100 feet away horizontally.

55. A suspension bridge can be modeled by the
quadratic function with

where is the number of
feet from the center and is height in feet.
Use the TRACE feature of your calculator to
estimate how far from the center does the bridge
have a height of 100 feet.

Extensions

For the following exercises, use the vertex of the graph of the quadratic function and the direction the graph opens to
find the domain and range of the function.

56. Vertex opens up. 57. Vertex opens down. 58. Vertex opens
down.

59. Vertex opens
up.

For the following exercises, write the equation of the quadratic function that contains the given point and has the same
shape as the given function.

60. Contains and has
shape of
Vertex is on the axis.

61. Contains and has
the shape of
Vertex is on the axis.

62. Contains and has the
shape of
Vertex is on the axis.
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63. Contains and has
the shape of
Vertex is on the axis.

64. Contains and has the
shape of
Vertex is on the axis.

65. Contains has the
shape of
Vertex has x-coordinate of

Real-World Applications

66. Find the dimensions of the
rectangular dog park
producing the greatest
enclosed area given 200
feet of fencing.

67. Find the dimensions of the
rectangular dog park split
into 2 pens of the same
size producing the greatest
possible enclosed area
given 300 feet of fencing.

68. Find the dimensions of the
rectangular dog park
producing the greatest
enclosed area split into 3
sections of the same size
given 500 feet of fencing.

69. Among all of the pairs of
numbers whose sum is 6,
find the pair with the
largest product. What is
the product?

70. Among all of the pairs of
numbers whose difference
is 12, find the pair with the
smallest product. What is
the product?

71. Suppose that the price per
unit in dollars of a cell
phone production is
modeled by

where
is in thousands of phones

produced, and the revenue
represented by thousands
of dollars is Find
the production level that
will maximize revenue.

72. A rocket is launched in the
air. Its height, in meters
above sea level, as a
function of time, in seconds,
is given by

Find the maximum height
the rocket attains.

73. A ball is thrown in the air
from the top of a building.
Its height, in meters above
ground, as a function of
time, in seconds, is given
by
How long does it take to
reach maximum height?

74. A soccer stadium holds
62,000 spectators. With a
ticket price of $11, the
average attendance has
been 26,000. When the
price dropped to $9, the
average attendance rose to
31,000. Assuming that
attendance is linearly
related to ticket price, what
ticket price would
maximize revenue?

75. A farmer finds that if she
plants 75 trees per acre,
each tree will yield 20
bushels of fruit. She
estimates that for each
additional tree planted per
acre, the yield of each tree
will decrease by 3 bushels.
How many trees should
she plant per acre to
maximize her harvest?
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5.2 Power Functions and Polynomial Functions
Learning Objectives
In this section, you will:

Identify power functions.
Identify end behavior of power functions.
Identify polynomial functions.
Identify the degree and leading coefficient of polynomial functions.

COREQUISITE SKILLS

Learning Objectives
Determine the degree of polynomials (IA 5.1.1).
Simplify expressions using properties of exponents (IA 5.2.1).

Objective 1: Simplify expressions using the properties of exponents (IA 5.2.1).
An exponential expression is an expression that has exponents (or powers).

Properties of Exponents

Name of the Property Property Meaning

Product Property Keep the base, add the exponents

Power Property Keep the base, multiply the exponents

Quotient Property Keep the base, subtract the exponents (top minus
bottom).

Power Property for
products and quotients

Raise each base to the power.

Zero Exponent Any non-zero number or variable raised to the
power 0 is equal to 1.

Negative exponent Move the base from numerator to denominator or
vice versa to make an exponent positive.

EXAMPLE 1

Use the property of exponents to simplify each of the following:

Solution

Use the product to a power to break the exponent into a product of three exponents
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Simplify by applying the power property

Simplify

Practice Makes Perfect
1. Use properties of exponents to simplify.

Objective 2: Determine the degree of polynomials (IA 5.1.1).
A term can be a number like -2, a variable like x, or a product of numbers and variables like .

A polynomial is an expression with more than one term with no variables in the denominator and no negative
exponents. Any exponent on the variables must be whole numbers.

For example are polynomials.

There are three particular types of polynomials:

A monomial is a one term polynomial like or 2.

A binomial is a two term polynomial like .

A trinomial is a three term polynomial like .

The degree of a polynomial in one variable is the highest exponent that appears on the variable in the polynomial. For
example, the polynomial has only one variable, . The highest exponent on is 2.

EXAMPLE 2

Determine the degree of polynomials.
If the expression is a polynomial, identify it as a monomial, binomial, trinomial, or other polynomial, and then find the
degree of each polynomial. If it is not a polynomial, state this and give a reason why.

Solution
•
•
•
•
•

Expression How
many

variables

Classification

Polynomial? If
not, why?

If it is a polynomial, how many terms are
there? Classify as a monomial, binomial

or trinomial.

Degree of
polynomial?

1 yes 3, trinomial 2

1 yes 2, binomial 1
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2 yes 1, monomial 3

1 No, there is a
variable in the
denominator

1 yes 4, polynomial or quadrinomial 3

1 No, there is a
negative

exponent on x

Power Functions
A power function is a function with a single term that is the product of a real number, a coefficient, and a variable
raised to a fixed real number.

A power function is a function that can be represented in the form where k and p are real numbers, and k is
known as the coefficient.

EXAMPLE 3

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

ⓐ is a power function ⓑ is a power function ⓒ is a power function

ⓓ is not a power function because we do not have a variable raised to a fixed real number

ⓔ is a power function

Practice Makes Perfect
Determine whether each polynomial is a monomial, binomial, trinomial, or other polynomial, then find the degree of
each polynomial.

2.
Expression How

many
variables

Classification

Polynomial?
If not, why?

If it is a polynomial, how many terms are
there? Classify as a monomial, binomial

or trinomial.

Degree of
polynomial?
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Determine whether the following functions are power functions. If they are not, state it and the reason why.

3.

4.

5.

6.

7.

Graph of Power Functions and End Behavior

Graphs of even power functions Graphs of odd power functions

Graphs of

Graphs of

ⓐ What are the similarities in the graphs of even power functions?
ⓑ What are the similarities in the graphs of the odd power functions?
ⓒ What are the differences between the graphs of the even power functions and the odd power functions?
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Figure 1 (credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in Table 1.

Year

Bird Population

Table 1

The population can be estimated using the function where represents the bird
population on the island years after 2009. We can use this model to estimate the maximum bird population and when it
will occur. We can also use this model to predict when the bird population will disappear from the island. In this section,
we will examine functions that we can use to estimate and predict these types of changes.

Identifying Power Functions
Before we can understand the bird problem, it will be helpful to understand a different type of function. A power
function is a function with a single term that is the product of a real number, a coefficient, and a variable raised to a
fixed real number.

As an example, consider functions for area or volume. The function for the area of a circle with radius is

and the function for the volume of a sphere with radius is

Both of these are examples of power functions because they consist of a coefficient, or multiplied by a variable
raised to a power.

Power Function

A power function is a function that can be represented in the form

where and are real numbers, and is known as the coefficient.

Q&A Is a power function?

No. A power function contains a variable base raised to a fixed power. This function has a constant base
raised to a variable power. This is called an exponential function, not a power function.
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EXAMPLE 1

Identifying Power Functions
Which of the following functions are power functions?

Solution
All of the listed functions are power functions.

The constant and identity functions are power functions because they can be written as and
respectively.

The quadratic and cubic functions are power functions with whole number powers and

The reciprocal and reciprocal squared functions are power functions with negative whole number powers because they
can be written as and

The square and cube root functions are power functions with fractional powers because they can be written as

or

TRY IT #1 Which functions are power functions?

Identifying End Behavior of Power Functions
Figure 2 shows the graphs of and which are all power functions with even, whole-
number powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the
toolkit. However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from
the origin.

Figure 2 Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol ∞ for

positive infinity and for negative infinity. When we say that “ approaches infinity,” which can be symbolically
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written as ∞ we are describing a behavior; we are saying that is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become
very large, positive numbers. Equivalently, we could describe this behavior by saying that as approaches positive or
negative infinity, the values increase without bound. In symbolic form, we could write

∞ ∞

Figure 3 shows the graphs of and which are all power functions with odd, whole-
number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases,
the graphs flatten near the origin and become steeper away from the origin.

Figure 3 Odd-power functions

These examples illustrate that functions of the form reveal symmetry of one kind or another. First, in Figure 2
we see that even functions of the form even, are symmetric about the axis. In Figure 3 we see that odd
functions of the form odd, are symmetric about the origin.

For these odd power functions, as approaches negative infinity, decreases without bound. As approaches
positive infinity, increases without bound. In symbolic form we write

∞ ∞

∞ ∞

The behavior of the graph of a function as the input values get very small ( ∞ ) and get very large ( ∞ ) is

referred to as the end behavior of the function. We can use words or symbols to describe end behavior.

Figure 4 shows the end behavior of power functions in the form where is a non-negative integer
depending on the power and the constant.
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...

Figure 4

HOW TO

Given a power function where is a non-negative integer, identify the end behavior.

1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use Figure 4 to identify the end behavior.

EXAMPLE 2

Identifying the End Behavior of a Power Function
Describe the end behavior of the graph of

Solution
The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As approaches infinity, the

output (value of ) increases without bound. We write as ∞ ∞ As approaches negative infinity, the

output increases without bound. In symbolic form, as ∞ ∞ We can graphically represent the function as

shown in Figure 5.
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Figure 5

EXAMPLE 3

Identifying the End Behavior of a Power Function.
Describe the end behavior of the graph of

Solution
The exponent of the power function is 9 (an odd number). Because the coefficient is (negative), the graph is the
reflection about the axis of the graph of Figure 6 shows that as approaches infinity, the output decreases
without bound. As approaches negative infinity, the output increases without bound. In symbolic form, we would write

∞ ∞

∞ ∞

Figure 6

Analysis
We can check our work by using the table feature on a graphing utility.

–10 1,000,000,000

Table 2
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–5 1,953,125

0 0

5 –1,953,125

10 –1,000,000,000

Table 2

We can see from Table 2 that, when we substitute very small values for the output is very large, and when we
substitute very large values for the output is very small (meaning that it is a very large negative value).

TRY IT #2 Describe in words and symbols the end behavior of

Identifying Polynomial Functions
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is currently 24 miles
in radius, but that radius is increasing by 8 miles each week. We want to write a formula for the area covered by the oil
slick by combining two functions. The radius of the spill depends on the number of weeks that have passed. This
relationship is linear.

We can combine this with the formula for the area of a circle.

Composing these functions gives a formula for the area in terms of weeks.

Multiplying gives the formula.

This formula is an example of a polynomial function. A polynomial function consists of either zero or the sum of a finite
number of non-zero terms, each of which is a product of a number, called the coefficient of the term, and a variable
raised to a non-negative integer power.

Polynomial Functions

Let be a non-negative integer. A polynomial function is a function that can be written in the form

This is called the general form of a polynomial function. Each is a coefficient and can be any real number, but ≠ .

Each expression is a term of a polynomial function.

EXAMPLE 4

Identifying Polynomial Functions
Which of the following are polynomial functions?
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...

Solution
The first two functions are examples of polynomial functions because they can be written in the form

where the powers are non-negative integers and the coefficients are real
numbers.

• can be written as
• can be written as
• cannot be written in this form and is therefore not a polynomial function.

Identifying the Degree and Leading Coefficient of a Polynomial Function
Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the power of the
variable. Although the order of the terms in the polynomial function is not important for performing operations, we
typically arrange the terms in descending order of power, or in general form. The degree of the polynomial is the
highest power of the variable that occurs in the polynomial; it is the power of the first variable if the function is in
general form. The leading term is the term containing the highest power of the variable, or the term with the highest
degree. The leading coefficient is the coefficient of the leading term.

Terminology of Polynomial Functions

We often rearrange polynomials so that the powers are descending.

When a polynomial is written in this way, we say that it is in general form.

HOW TO

Given a polynomial function, identify the degree and leading coefficient.

1. Find the highest power of to determine the degree of the function.
2. Identify the term containing the highest power of to find the leading term.
3. Identify the coefficient of the leading term.

EXAMPLE 5

Identifying the Degree and Leading Coefficient of a Polynomial Function
Identify the degree, leading term, and leading coefficient of the following polynomial functions.

Solution
For the function the highest power of is 3, so the degree is 3. The leading term is the term containing that
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degree, The leading coefficient is the coefficient of that term,

For the function the highest power of is so the degree is The leading term is the term containing that degree,
The leading coefficient is the coefficient of that term,

For the function the highest power of is so the degree is The leading term is the term containing that
degree, The leading coefficient is the coefficient of that term,

TRY IT #3 Identify the degree, leading term, and leading coefficient of the polynomial

Identifying End Behavior of Polynomial Functions
Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its end
behavior, look at the leading term of the polynomial function. Because the power of the leading term is the highest, that
term will grow significantly faster than the other terms as gets very large or very small, so its behavior will dominate
the graph. For any polynomial, the end behavior of the polynomial will match the end behavior of the power function
consisting of the leading term. See Table 3.

Polynomial Function Leading Term Graph of Polynomial Function

Table 3
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Polynomial Function Leading Term Graph of Polynomial Function

Table 3

EXAMPLE 6

Identifying End Behavior and Degree of a Polynomial Function
Describe the end behavior and determine a possible degree of the polynomial function in Figure 7.
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Figure 7

Solution
As the input values get very large, the output values increase without bound. As the input values get very small,
the output values decrease without bound. We can describe the end behavior symbolically by writing

∞ ∞

∞ ∞

In words, we could say that as values approach infinity, the function values approach infinity, and as values approach
negative infinity, the function values approach negative infinity.

We can tell this graph has the shape of an odd degree power function that has not been reflected, so the degree of the
polynomial creating this graph must be odd and the leading coefficient must be positive.

TRY IT #4 Describe the end behavior, and determine a possible degree of the polynomial function in Figure
8.

Figure 8

EXAMPLE 7

Identifying End Behavior and Degree of a Polynomial Function
Given the function express the function as a polynomial in general form, and determine the
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leading term, degree, and end behavior of the function.

Solution
Obtain the general form by expanding the given expression for

The general form is The leading term is therefore, the degree of the polynomial is 4.
The degree is even (4) and the leading coefficient is negative (–3), so the end behavior is

∞ ∞

∞ ∞

TRY IT #5 Given the function express the function as a polynomial in
general form and determine the leading term, degree, and end behavior of the function.

Identifying Local Behavior of Polynomial Functions
In addition to the end behavior of polynomial functions, we are also interested in what happens in the “middle” of the
function. In particular, we are interested in locations where graph behavior changes. A turning point is a point at which
the function values change from increasing to decreasing or decreasing to increasing.

We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph intersects
the vertical axis. The point corresponds to the coordinate pair in which the input value is zero. Because a polynomial is a
function, only one output value corresponds to each input value so there can be only one y-intercept The
x-intercepts occur at the input values that correspond to an output value of zero. It is possible to have more than one
x-intercept. See Figure 9.

Figure 9

Intercepts and Turning Points of Polynomial Functions

A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or
decreasing to increasing. The y-intercept is the point at which the function has an input value of zero. The x-intercepts
are the points at which the output value is zero.
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HOW TO

Given a polynomial function, determine the intercepts.

1. Determine the y-intercept by setting and finding the corresponding output value.
2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

EXAMPLE 8

Determining the Intercepts of a Polynomial Function
Given the polynomial function written in factored form for your convenience, determine
the y- and x-intercepts.

Solution
The y-intercept occurs when the input is zero so substitute 0 for

The y-intercept is (0, 8).

The x-intercepts occur when the output is zero.

The x-intercepts are and

We can see these intercepts on the graph of the function shown in Figure 10.

Figure 10

EXAMPLE 9

Determining the Intercepts of a Polynomial Function with Factoring
Given the polynomial function determine the y- and x-intercepts.
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Solution
The y-intercept occurs when the input is zero.

The y-intercept is

The x-intercepts occur when the output is zero. To determine when the output is zero, we will need to factor the
polynomial.

The x-intercepts are and

We can see these intercepts on the graph of the function shown in Figure 11. We can see that the function is even
because

Figure 11

TRY IT #6 Given the polynomial function determine the y- and x-intercepts.

Comparing Smooth and Continuous Graphs
The degree of a polynomial function helps us to determine the number of x-intercepts and the number of turning points.
A polynomial function of degree is the product of factors, so it will have at most roots or zeros, or x-intercepts.
The graph of the polynomial function of degree must have at most turning points. This means the graph has at
most one fewer turning point than the degree of the polynomial or one fewer than the number of factors.

A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the paper. A
smooth curve is a graph that has no sharp corners. The turning points of a smooth graph must always occur at rounded
curves. The graphs of polynomial functions are both continuous and smooth.

Intercepts and Turning Points of Polynomials

A polynomial of degree will have, at most, x-intercepts and turning points.
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EXAMPLE 10

Determining the Number of Intercepts and Turning Points of a Polynomial
Without graphing the function, determine the local behavior of the function by finding the maximum number of
x-intercepts and turning points for

Solution
The polynomial has a degree of so there are at most 10 x-intercepts and at most 9 turning points.

TRY IT #7 Without graphing the function, determine the maximum number of x-intercepts and turning
points for

EXAMPLE 11

Drawing Conclusions about a Polynomial Function from the Graph
What can we conclude about the polynomial represented by the graph shown in Figure 12 based on its intercepts and
turning points?

Figure 12

Solution
The end behavior of the graph tells us this is the graph of an even-degree polynomial. See Figure 13.

Figure 13

The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a degree of 4 or
greater. Based on this, it would be reasonable to conclude that the degree is even and at least 4.
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TRY IT #8 What can we conclude about the polynomial represented by the graph shown in Figure 14 based
on its intercepts and turning points?

Figure 14

EXAMPLE 12

Drawing Conclusions about a Polynomial Function from the Factors
Given the function determine the local behavior.

Solution
The y-intercept is found by evaluating

The y-intercept is

The x-intercepts are found by determining the zeros of the function.

The x-intercepts are and

The degree is 3 so the graph has at most 2 turning points.

TRY IT #9 Given the function determine the local behavior.

MEDIA

Access these online resources for additional instruction and practice with power and polynomial functions.

Find Key Information about a Given Polynomial Function (http://openstax.org/l/keyinfopoly)
End Behavior of a Polynomial Function (http://openstax.org/l/endbehavior)
Turning Points and intercepts of Polynomial Functions (http://openstax.org/l/turningpoints)
Least Possible Degree of a Polynomial Function (http://openstax.org/l/leastposdegree)
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5.2 SECTION EXERCISES
Verbal

1. Explain the difference
between the coefficient of a
power function and its
degree.

2. If a polynomial function is in
factored form, what would
be a good first step in order
to determine the degree of
the function?

3. In general, explain the end
behavior of a power
function with odd degree if
the leading coefficient is
positive.

4. What is the relationship
between the degree of a
polynomial function and the
maximum number of
turning points in its graph?

5. What can we conclude if, in
general, the graph of a
polynomial function exhibits
the following end behavior?

As ∞ ∞
and as

∞ ∞

Algebraic

For the following exercises, identify the function as a power function, a polynomial function, or neither.

6. 7. 8.

9. 10. 11.

For the following exercises, find the degree and leading coefficient for the given polynomial.

12. 13. 14.

15. 16.

For the following exercises, determine the end behavior of the functions.

17. 18. 19.

20. 21. 22.

23. 24.

For the following exercises, find the intercepts of the functions.

25. 26. 27.

28. 29. 30.
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Graphical

For the following exercises, determine the least possible degree of the polynomial function shown.

31. 32. 33.

34. 35. 36.

37. 38.
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For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function. If
so, determine the number of turning points and the least possible degree for the function.

39. 40. 41.

42. 43. 44.

45.

Numeric

For the following exercises, make a table to confirm the end behavior of the function.

46. 47. 48.

49. 50.
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Technology

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine the
intercepts and the end behavior.

51. 52. 53.

54. 55. 56.

57. 58. 59.

60.

Extensions

For the following exercises, use the information about the graph of a polynomial function to determine the function.
Assume the leading coefficient is 1 or –1. There may be more than one correct answer.

61. The intercept is The intercepts are
, Degree is 2.

End behavior: as ∞ , ∞ ; as ∞ ,

∞

62. The intercept is The intercepts are
, Degree is 2.

End behavior: as ∞ , ∞ , as

∞ , ∞

63. The intercept is The intercepts are
, Degree is 3.

End behavior: as ∞ , ∞ , as

∞ , ∞

64. The intercept is The intercept is
Degree is 3.

End behavior: as ∞ , ∞ , as ∞ ,

∞

65. The intercept is There is no intercept.
Degree is 4.

End behavior: as ∞ , ∞ , as ∞ ,

∞

Real-World Applications

For the following exercises, use the written statements to construct a polynomial function that represents the required
information.

66. An oil slick is expanding as
a circle. The radius of the
circle is increasing at the
rate of 20 meters per day.
Express the area of the
circle as a function of the
number of days elapsed.

67. A cube has an edge of 3
feet. The edge is increasing
at the rate of 2 feet per
minute. Express the
volume of the cube as a
function of the number
of minutes elapsed.

68. A rectangle has a length of
10 inches and a width of 6
inches. If the length is
increased by inches and
the width increased by
twice that amount, express
the area of the rectangle as
a function of
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69. An open box is to be
constructed by cutting out
square corners of inch
sides from a piece of
cardboard 8 inches by 8
inches and then folding up
the sides. Express the
volume of the box as a
function of

70. A rectangle is twice as long
as it is wide. Squares of
side 2 feet are cut out from
each corner. Then the sides
are folded up to make an
open box. Express the
volume of the box as a
function of the width ( ).

5.3 Graphs of Polynomial Functions
Learning Objectives
In this section, you will:

Recognize characteristics of graphs of polynomial functions.
Use factoring to find zeros of polynomial functions.
Identify zeros and their multiplicities.
Determine end behavior.
Understand the relationship between degree and turning points.
Graph polynomial functions.
Use the Intermediate Value Theorem.

COREQUISITE SKILLS

Learning Objectives
Recognize and use the appropriate method to factor a polynomial completely (IA 6.4.1)
Solve a quadratic equation by factoring (IA 6.5.2)

Objective 1: Recognize and use the appropriate method to factor a polynomial completely (IA 6.4.1).
The following outline provides a good strategy for factoring polynomials.

Practice Makes Perfect
Recognize and use the appropriate method to factor a polynomial completely.
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1.

2.

3.

4.

5.

6.

7.

Objective 2: Solve a quadratic equation by factoring (IA 6.5.2)
If , where and represent real numbers. What can you say about and ?

The Zero Product Property states that if , then , or , or both.

We can use this property to solve equations.

HOW TO

How To Use the Zero Product Property

Step 1. Set each factor equal to zero.
Step 2. Solve the linear equations.
Step 3. Check.

EXAMPLE 1

Solve a quadratic equation by factoring
Solve

Solution

Practice Makes Perfect
Solve

8.

9.

5.3 • Graphs of Polynomial Functions 507



EXAMPLE 2

Solve a quadratic equation by factoring

Solution
How is this problem different from practice problems 8 and 9 above? What should be our first step?

Write the equation in standard form so that one side of the equation is
0.

Factor the quadratic expression completely.

Set each factor containing a variable equal to 0.

Solve the resulting equations.

Check each solution in the original equation.

Practice Makes Perfect
Solve a quadratic equation by factoring.

Use the zero factor property to solve each of the following exercises.

10.

11.

12.

13.

14.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in Table 1.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

Table 1

The revenue can be modeled by the polynomial function

where represents the revenue in millions of dollars and represents the year, with corresponding to 2006. Over
which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company
decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial
function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we will
explore the local behavior of polynomials in general.
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Recognizing Characteristics of Graphs of Polynomial Functions
Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs
are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are called
continuous. Figure 1 shows a graph that represents a polynomial function and a graph that represents a function that is
not a polynomial.

Figure 1

EXAMPLE 1

Recognizing Polynomial Functions
Which of the graphs in Figure 2 represents a polynomial function?
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Figure 2

Solution
The graphs of and are graphs of polynomial functions. They are smooth and continuous.

The graphs of and are graphs of functions that are not polynomials. The graph of function has a sharp corner. The
graph of function is not continuous.

Q&A Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions
Recall that if is a polynomial function, the values of for which are called zeros of If the equation of the
polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

We can use this method to find intercepts because at the intercepts we find the input values when the output value
is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively
simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough
to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves to
three cases:

1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
2. The polynomial is given in factored form.
3. Technology is used to determine the intercepts.
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HOW TO

Given a polynomial function find the x-intercepts by factoring.

1. Set
2. If the polynomial function is not given in factored form:
a. Factor out any common monomial factors.
b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the intercepts.

EXAMPLE 2

Finding the x-Intercepts of a Polynomial Function by Factoring
Find the x-intercepts of

Solution
We can attempt to factor this polynomial to find solutions for

This gives us five x-intercepts: and See Figure 3. We can see that this is an even
function because it is symmetric about the y-axis.

Figure 3
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EXAMPLE 3

Finding the x-Intercepts of a Polynomial Function by Factoring
Find the x-intercepts of

Solution
Find solutions for by factoring.

There are three x-intercepts: and See Figure 4.

Figure 4

EXAMPLE 4

Finding the y- and x-Intercepts of a Polynomial in Factored Form
Find the y- and x-intercepts of

Solution
The y-intercept can be found by evaluating

So the y-intercept is

The x-intercepts can be found by solving

So the x-intercepts are and
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Analysis
We can always check that our answers are reasonable by using a graphing calculator to graph the polynomial as shown
in Figure 5.

Figure 5

EXAMPLE 5

Finding the x-Intercepts of a Polynomial Function Using a Graph
Find the x-intercepts of

Solution
This polynomial is not in factored form, has no common factors, and does not appear to be factorable using techniques
previously discussed. Fortunately, we can use technology to find the intercepts. Keep in mind that some values make
graphing difficult by hand. In these cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in Figure 6, it appears that there are x-intercepts at and

Figure 6

We can check whether these are correct by substituting these values for and verifying that
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Since we have:

Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can now write the
polynomial in factored form.

TRY IT #1 Find the y- and x-intercepts of the function

Identifying Zeros and Their Multiplicities
Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at an
intercept. Other times, the graph will touch the horizontal axis and "bounce" off.

Suppose, for example, we graph the function shown.

Notice in Figure 7 that the behavior of the function at each of the x-intercepts is different.

Figure 7 Identifying the behavior of the graph at an x-intercept by examining the multiplicity of the zero.

The x-intercept is the solution of equation The graph passes directly through the x-intercept at
The factor is linear (has a degree of 1), so the behavior near the intercept is like that of a line—it passes directly

through the intercept. We call this a single zero because the zero corresponds to a single factor of the function.

The x-intercept is the repeated solution of equation The graph touches the axis at the intercept and
changes direction. The factor is quadratic (degree 2), so the behavior near the intercept is like that of a quadratic—it
bounces off of the horizontal axis at the intercept.

The factor is repeated, that is, the factor appears twice. The number of times a given factor appears in the
factored form of the equation of a polynomial is called the multiplicity. The zero associated with this factor, has
multiplicity 2 because the factor occurs twice.

The x-intercept is the repeated solution of factor The graph passes through the axis at the
intercept, but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is like that of a
cubic—with the same S-shape near the intercept as the toolkit function We call this a triple zero, or a zero
with multiplicity 3.
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For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd multiplicities, the
graphs cross or intersect the x-axis. See Figure 8 for examples of graphs of polynomial functions with multiplicity 1, 2,
and 3.

Figure 8

For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the horizontal axis but, for each
increasing even power, the graph will appear flatter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each increasing
odd power, the graph will appear flatter as it approaches and leaves the x-axis.

Graphical Behavior of Polynomials at x-Intercepts

If a polynomial contains a factor of the form the behavior near the intercept is determined by the power
We say that is a zero of multiplicity

The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will cross the
x-axis at zeros with odd multiplicities.

The sum of the multiplicities is the degree of the polynomial function.

HOW TO

Given a graph of a polynomial function of degree identify the zeros and their multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.
2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity.
3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.
4. The sum of the multiplicities is

EXAMPLE 6

Identifying Zeros and Their Multiplicities
Use the graph of the function of degree 6 in Figure 9 to identify the zeros of the function and their possible multiplicities.
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Figure 9

Solution
The polynomial function is of degree 6. The sum of the multiplicities must be 6.

Starting from the left, the first zero occurs at The graph touches the x-axis, so the multiplicity of the zero must
be even. The zero of most likely has multiplicity

The next zero occurs at The graph looks almost linear at this point. This is a single zero of multiplicity 1.

The last zero occurs at The graph crosses the x-axis, so the multiplicity of the zero must be odd. We know that the
multiplicity is likely 3 and that the sum of the multiplicities is 6.

TRY IT #2 Use the graph of the function of degree 9 in Figure 10 to identify the zeros of the function and
their multiplicities.

Figure 10

Determining End Behavior
As we have already learned, the behavior of a graph of a polynomial function of the form

will either ultimately rise or fall as increases without bound and will either rise or fall as decreases without bound.
This is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the output. The same is
true for very small inputs, say –100 or –1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic equations,
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when the leading term of a polynomial function, is an even power function, as increases or decreases without
bound, increases without bound. When the leading term is an odd power function, as decreases without bound,

also decreases without bound; as increases without bound, also increases without bound. If the leading
term is negative, it will change the direction of the end behavior. Figure 11 summarizes all four cases.

Figure 11

Understanding the Relationship between Degree and Turning Points
In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have a turning
point where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to
rising). Look at the graph of the polynomial function in Figure 12. The graph has three
turning points.
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Figure 12

This function is a 4th degree polynomial function and has 3 turning points. The maximum number of turning points of
a polynomial function is always one less than the degree of the function.

Interpreting Turning Points

A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) or
decreasing to increasing (falling to rising).

A polynomial of degree will have at most turning points.

EXAMPLE 7

Finding the Maximum Number of Turning Points Using the Degree of a Polynomial Function
Find the maximum number of turning points of each polynomial function.

ⓐ ⓑ
Solution

ⓐ
First, rewrite the polynomial function in descending order:

Identify the degree of the polynomial function. This polynomial function is of degree 5.

The maximum number of turning points is

ⓑ
First, identify the leading term of the polynomial function if the function were expanded.

Then, identify the degree of the polynomial function. This polynomial function is of degree 4.

The maximum number of turning points is

Graphing Polynomial Functions
We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of polynomial
functions. Let us put this all together and look at the steps required to graph polynomial functions.
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HOW TO

Given a polynomial function, sketch the graph.

1. Find the intercepts.
2. Check for symmetry. If the function is an even function, its graph is symmetrical about the axis, that is,

If a function is an odd function, its graph is symmetrical about the origin, that is,

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the intercepts.
4. Determine the end behavior by examining the leading term.
5. Use the end behavior and the behavior at the intercepts to sketch a graph.
6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.
7. Optionally, use technology to check the graph.

EXAMPLE 8

Sketching the Graph of a Polynomial Function
Sketch a graph of

Solution
This graph has two x-intercepts. At the factor is squared, indicating a multiplicity of 2. The graph will bounce at
this x-intercept. At the function has a multiplicity of one, indicating the graph will cross through the axis at this
intercept.

The y-intercept is found by evaluating

The y-intercept is

Additionally, we can see the leading term, if this polynomial were multiplied out, would be so the end behavior is
that of a vertically reflected cubic, with the outputs decreasing as the inputs approach infinity, and the outputs
increasing as the inputs approach negative infinity. See Figure 13.

Figure 13

To sketch this, we consider that:

• As ∞ the function ∞ so we know the graph starts in the second quadrant and is decreasing toward

the axis.
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• Since is not equal to the graph does not display symmetry.
• At the graph bounces off of the x-axis, so the function must start increasing.

At the graph crosses the y-axis at the y-intercept. See Figure 14.

Figure 14

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis because the
graph passes through the next intercept at See Figure 15.

Figure 15

As ∞ the function so we know the graph continues to decrease, and we can stop drawing the graph in

the fourth quadrant.

Using technology, we can create the graph for the polynomial function, shown in Figure 16, and verify that the resulting
graph looks like our sketch in Figure 15.
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Figure 16 The complete graph of the polynomial function

TRY IT #3 Sketch a graph of

Using the Intermediate Value Theorem
In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides of
the x-axis, we can confirm that there is a zero between them. Consider a polynomial function whose graph is smooth
and continuous. The Intermediate Value Theorem states that for two numbers and in the domain of if and

then the function takes on every value between and (While the theorem is intuitive, the
proof is actually quite complicated and requires higher mathematics.) We can apply this theorem to a special case that is
useful in graphing polynomial functions. If a point on the graph of a continuous function at lies above the axis
and another point at lies below the axis, there must exist a third point between and where the
graph crosses the axis. Call this point This means that we are assured there is a solution where

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes from a negative value
to a positive value, the function must cross the axis. Figure 17 shows that there is a zero between and

Figure 17 Using the Intermediate Value Theorem to show there exists a zero.

Intermediate Value Theorem

Let be a polynomial function. The Intermediate Value Theorem states that if and have opposite signs,
then there exists at least one value between and for which
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EXAMPLE 9

Using the Intermediate Value Theorem
Show that the function has at least two real zeros between and

Solution
As a start, evaluate at the integer values and See Table 2.

1 2 3 4

5 0 –3 2

Table 2

We see that one zero occurs at Also, since is negative and is positive, by the Intermediate Value
Theorem, there must be at least one real zero between 3 and 4.

We have shown that there are at least two real zeros between and

Analysis
We can also see on the graph of the function in Figure 18 that there are two real zeros between and

Figure 18

TRY IT #4 Show that the function has at least one real zero between and

Writing Formulas for Polynomial Functions
Now that we know how to find zeros of polynomial functions, we can use them to write formulas based on graphs.
Because a polynomial function written in factored form will have an x-intercept where each factor is equal to zero, we
can form a function that will pass through a set of x-intercepts by introducing a corresponding set of factors.

Factored Form of Polynomials

If a polynomial of lowest degree has horizontal intercepts at then the polynomial can be written
in the factored form: where the powers on each factor can be
determined by the behavior of the graph at the corresponding intercept, and the stretch factor can be determined
given a value of the function other than the x-intercept.

HOW TO

Given a graph of a polynomial function, write a formula for the function.
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1. Identify the x-intercepts of the graph to find the factors of the polynomial.
2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.
3. Find the polynomial of least degree containing all the factors found in the previous step.
4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.

EXAMPLE 10

Writing a Formula for a Polynomial Function from the Graph
Write a formula for the polynomial function shown in Figure 19.

Figure 19

Solution
This graph has three x-intercepts: and The y-intercept is located at At and the graph
passes through the axis linearly, suggesting the corresponding factors of the polynomial will be linear. At the
graph bounces at the intercept, suggesting the corresponding factor of the polynomial will be second degree
(quadratic). Together, this gives us

To determine the stretch factor, we utilize another point on the graph. We will use the intercept to solve for

The graphed polynomial appears to represent the function

TRY IT #5 Given the graph shown in Figure 20, write a formula for the function shown.
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Figure 20

Using Local and Global Extrema
With quadratics, we were able to algebraically find the maximum or minimum value of the function by finding the vertex.
For general polynomials, finding these turning points is not possible without more advanced techniques from calculus.
Even then, finding where extrema occur can still be algebraically challenging. For now, we will estimate the locations of
turning points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or lowest point
on the entire graph. In these cases, we say that the turning point is a global maximum or a global minimum. These are
also referred to as the absolute maximum and absolute minimum values of the function.

Local and Global Extrema

A local maximum or local minimum at (sometimes called the relative maximum or minimum, respectively) is
the output at the highest or lowest point on the graph in an open interval around If a function has a local
maximum at then for all in an open interval around If a function has a local minimum at
then for all in an open interval around

A global maximum or global minimum is the output at the highest or lowest point of the function. If a function has
a global maximum at then for all If a function has a global minimum at then for all

We can see the difference between local and global extrema in Figure 21.

Figure 21

Q&A Do all polynomial functions have a global minimum or maximum?

No. Only polynomial functions of even degree have a global minimum or maximum. For example,
has neither a global maximum nor a global minimum.
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EXAMPLE 11

Using Local Extrema to Solve Applications
An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet of plastic and
then folding up the sides. Find the size of squares that should be cut out to maximize the volume enclosed by the box.

Solution
We will start this problem by drawing a picture like that in Figure 22, labeling the width of the cut-out squares with a
variable,

Figure 22

Notice that after a square is cut out from each end, it leaves a cm by cm rectangle for the base of
the box, and the box will be cm tall. This gives the volume

Notice, since the factors are and the three zeros are 10, 7, and 0, respectively. Because a height of 0
cm is not reasonable, we consider the only the zeros 10 and 7. The shortest side is 14 and we are cutting off two squares,
so values may take on are greater than zero or less than 7. This means we will restrict the domain of this function to

Using technology to sketch the graph of on this reasonable domain, we get a graph like that in Figure
23. We can use this graph to estimate the maximum value for the volume, restricted to values for that are reasonable
for this problem—values from 0 to 7.

Figure 23

From this graph, we turn our focus to only the portion on the reasonable domain, We can estimate the
maximum value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on each side. To improve
this estimate, we could use advanced features of our technology, if available, or simply change our window to zoom in
on our graph to produce Figure 24.
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Figure 24

From this zoomed-in view, we can refine our estimate for the maximum volume to about 339 cubic cm, when the squares
measure approximately 2.7 cm on each side.

TRY IT #6 Use technology to find the maximum and minimum values on the interval of the function

MEDIA

Access the following online resource for additional instruction and practice with graphing polynomial functions.

Intermediate Value Theorem (http://openstax.org/l/ivt)

5.3 SECTION EXERCISES
Verbal

1. What is the difference
between an intercept and
a zero of a polynomial
function

2. If a polynomial function of
degree has distinct
zeros, what do you know
about the graph of the
function?

3. Explain how the
Intermediate Value
Theorem can assist us in
finding a zero of a function.

4. Explain how the factored
form of the polynomial
helps us in graphing it.

5. If the graph of a polynomial
just touches the x-axis and
then changes direction,
what can we conclude about
the factored form of the
polynomial?
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Algebraic

For the following exercises, find the or t-intercepts of the polynomial functions.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21. 22. 23.

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one
zero within the given interval.

24. between
and

25. between
and

26. between
and

27. between
and .

28. between
and

29.
between and

For the following exercises, find the zeros and give the multiplicity of each.

30. 31. 32.

33. 34. 35.

36. 37.

38. 39. 40.

41.

Graphical

For the following exercises, graph the polynomial functions. Note and intercepts, multiplicity, and end behavior.

42. 43. 44.

45. 46. 47.
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For the following exercises, use the graphs to write the formula for a polynomial function of least degree.

48. 49. 50.

51. 52.

For the following exercises, use the graph to identify zeros and multiplicity.

53. 54. 55.
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56.

For the following exercises, use the given information about the polynomial graph to write the equation.

57. Degree 3. Zeros at
and

y-intercept at

58. Degree 3. Zeros at
and

y-intercept at

59. Degree 5. Roots of
multiplicity 2 at and

, and a root of
multiplicity 1 at
y-intercept at

60. Degree 4. Root of
multiplicity 2 at and
a roots of multiplicity 1 at

and
y-intercept at

61. Degree 5. Double zero at
and triple zero at
Passes through the

point

62. Degree 3. Zeros at
and

y-intercept at

63. Degree 3. Zeros at
and

y-intercept at

64. Degree 5. Roots of
multiplicity 2 at and

and a root of
multiplicity 1 at

y-intercept at

65. Degree 4. Roots of
multiplicity 2 at and
roots of multiplicity 1 at

and

y-intercept at

66. Double zero at and
triple zero at Passes
through the point

Technology

For the following exercises, use a calculator to approximate local minima and maxima or the global minimum and
maximum.

67. 68. 69.

70. 71.
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Extensions

For the following exercises, use the graphs to write a polynomial function of least degree.

72. 73. 74.

Real-World Applications

For the following exercises, write the polynomial function that models the given situation.

75. A rectangle has a length of
10 units and a width of 8
units. Squares of by
units are cut out of each
corner, and then the sides
are folded up to create an
open box. Express the
volume of the box as a
polynomial function in
terms of

76. Consider the same
rectangle of the preceding
problem. Squares of by

units are cut out of each
corner. Express the volume
of the box as a polynomial
in terms of

77. A square has sides of 12
units. Squares by

units are cut out of
each corner, and then the
sides are folded up to
create an open box.
Express the volume of the
box as a function in terms
of

78. A cylinder has a radius of
units and a height of

3 units greater. Express the
volume of the cylinder as a
polynomial function.

79. A right circular cone has a
radius of and a
height 3 units less. Express
the volume of the cone as a
polynomial function. The
volume of a cone is

for radius
and height

5.4 Dividing Polynomials
Learning Objectives
In this section, you will:

Use long division to divide polynomials.
Use synthetic division to divide polynomials.

COREQUISITE SKILLS

Learning Objectives
Dividing polynomials using long division (IA 5.4.3)
Dividing polynomials using synthetic division (IA 5.4.4)
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Objective 1: Dividing polynomials using long division (IA 5.4.3)
To divide a polynomial by a binomial, we follow a procedure very similar to long division of numbers. So, let’s look
carefully at the steps we take when we divide a 3-digit number, 875, by a 2-digit number, 25.

EXAMPLE 1

Long division of numbers

When we divided 875 by 25, we had no remainder. But sometimes division of numbers does leave a remainder.

Practice Makes Perfect
Vocabulary of the example.

Fill in the blanks.

1. When dividing 69 by 4,

the dividend is_________,

the divisor is________,

the quotient is________,

and the remainder is________.

We check division by multiplying the quotient by the divisor and adding the remainder.

EXAMPLE 2

Dividing of polynomials has very similar steps to the numerical example above.
Find the quotient:

Solution

Write it as a long division problem.
Be sure the dividend is written in descending order of powers, with no missing terms.

Divide by It may help to ask yourself, “What do I need
to multiply by to get ?”

Put the answer, in the quotient over the term.
Multiply times Line up the like terms under the dividend.

Subtract from
You may find it easier to change the signs and then add.
Then bring down the last term, 20.
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Divide by It may help to ask yourself, “What do I
need to multiply by to get ?”
Put the answer, , in the quotient over the constant term.

Multiply 4 times

Subtract from

Check:
Multiply the quotient by the divisor.
You should get the dividend.

Practice Makes Perfect
2. Divide using long division of polynomials:

Sometimes division of polynomials, just like division of numbers, leaves a remainder. We write the remainder as a
fraction with the divisor as the denominator.

Also, if you look back at the dividends in previous examples, you will notice that the terms were written in descending
order of degrees, and there were no missing degrees.

EXAMPLE 3

Dividing polynomials using long division.

Solution
Notice, this polynomial is not in descending order and it is missing term. We need to write it in the correct order and
add as a placeholder.

Figure 1

To check, multiply divisor by the quotient and add remainder

The result should be
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Practice Makes Perfect
Dividing polynomials using long division.

3.

4.

Objective 2: Dividing polynomials using synthetic division (IA 5.4.4)
As you probably noticed, long division can be tedious. Synthetic division uses the patterns from long division as a basis
to make a process much simpler by leaving the variable terms out. The same example in synthetic division format is
shown next.

Figure 2

Synthetic division only works when the divisor is of the form (x−c).

EXAMPLE 4

Use synthetic division to find the quotient and remainder when is divided by x+4. Note that the
divisor is in the form x-(-4), so use c as the divisor.

Solution
The polynomial has its term in order with descending degree but we notice there is no x3term.
We will add a 0 as a placeholder for the term.

Figure 3

We divided a 4th degree polynomial by a 1st degree polynomial so the quotient will be a 3rd degree polynomial.
Reading from the third row, the quotient has the coefficients 1,−4,0, and 3, which is . The remainder
is 0.

Practice Makes Perfect
Dividing polynomials using synthetic division.

5. Let

ⓐ Find ⓑ Divide by . What is the quotient? What is the remainder?

6. Let

ⓐ Find ⓑ Divide by . What is the quotient? What is the remainder?
What is the connection between and the remainder when is divided by ? Summarize your
findings.
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Figure 1 Lincoln Memorial, Washington, D.C. (credit: Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters (m), width
40 m, and height 30 m.1 We can easily find the volume using elementary geometry.

So the volume is 73,800 cubic meters Suppose we knew the volume, length, and width. We could divide to find the
height.

As we can confirm from the dimensions above, the height is 30 m. We can use similar methods to find any of the missing
dimensions. We can also use the same method if any, or all, of the measurements contain variable expressions. For
example, suppose the volume of a rectangular solid is given by the polynomial The length of
the solid is given by the width is given by To find the height of the solid, we can use polynomial division, which
is the focus of this section.

Using Long Division to Divide Polynomials
We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits of the
dividend that have the greatest place value. We divide, multiply, subtract, include the digit in the next place value
position, and repeat. For example, let’s divide 178 by 3 using long division.

Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same method used to
check division in elementary arithmetic.

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers. We can write

1 National Park Service. "Lincoln Memorial Building Statistics." http://www.nps.gov/linc/historyculture/lincoln-memorial-building-statistics.htm.

Accessed 4/3/2014
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a polynomial dividend as the product of the divisor and the quotient added to the remainder. The terms of the
polynomial division correspond to the digits (and place values) of the whole number division. This method allows us to
divide two polynomials. For example, if we were to divide by using the long division algorithm,
it would look like this:

We have found

or

We can identify the dividend, the divisor, the quotient, and the remainder.

Writing the result in this manner illustrates the Division Algorithm.

The Division Algorithm

The Division Algorithm states that, given a polynomial dividend and a non-zero polynomial divisor where
the degree of is less than or equal to the degree of , there exist unique polynomials and such that

is the quotient and is the remainder. The remainder is either equal to zero or has degree strictly less than

If then divides evenly into This means that, in this case, both and are factors of
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HOW TO

Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.

1. Set up the division problem.
2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term of the

divisor.
3. Multiply the answer by the divisor and write it below the like terms of the dividend.
4. Subtract the bottom binomial from the top binomial.
5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of the dividend.
7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

EXAMPLE 1

Using Long Division to Divide a Second-Degree Polynomial
Divide by

Solution

The quotient is The remainder is 0. We write the result as

or

Analysis
This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor, and that the
divisor is a factor of the dividend.

EXAMPLE 2

Using Long Division to Divide a Third-Degree Polynomial
Divide by
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Solution

There is a remainder of 1. We can express the result as:

Analysis
We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.

Notice, as we write our result,

• the dividend is
• the divisor is
• the quotient is
• the remainder is

TRY IT #1 Divide by

Using Synthetic Division to Divide Polynomials
As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a
shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient is
1.

To illustrate the process, recall the example at the beginning of the section.

Divide by using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns
under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up to
fill any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying and
subtracting the middle product, we change the sign of the “divisor” to –2, multiply and add. The process starts by
bringing down the leading coefficient.
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We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The
bottom row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case,
the quotient is and the remainder is The process will be made more clear in Example 3.

Synthetic Division

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form where is a real
number. In synthetic division, only the coefficients are used in the division process.

HOW TO

Given two polynomials, use synthetic division to divide.

1. Write for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by Write the product in the next column.
5. Add the terms of the second column.
6. Multiply the result by Write the product in the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has degree

0, the next number from the right has degree 1, the next number from the right has degree 2, and so on.

EXAMPLE 3

Using Synthetic Division to Divide a Second-Degree Polynomial
Use synthetic division to divide by

Solution
Begin by setting up the synthetic division. Write and the coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by

Continue by adding the numbers in the second column. Multiply the resulting number by Write the result in the next
column. Then add the numbers in the third column.

The result is The remainder is 0. So is a factor of the original polynomial.

Analysis
Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the remainder.
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EXAMPLE 4

Using Synthetic Division to Divide a Third-Degree Polynomial
Use synthetic division to divide by

Solution
The binomial divisor is so Add each column, multiply the result by –2, and repeat until the last column is
reached.

The result is The remainder is 0. Thus, is a factor of

Analysis
The graph of the polynomial function in Figure 2 shows a zero at This
confirms that is a factor of

Figure 2

EXAMPLE 5

Using Synthetic Division to Divide a Fourth-Degree Polynomial
Use synthetic division to divide by

Solution
Notice there is no x-term. We will use a zero as the coefficient for that term.

The result is
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TRY IT #2 Use synthetic division to divide by

Using Polynomial Division to Solve Application Problems
Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We
looked at an application at the beginning of this section. Now we will solve that problem in the following example.

EXAMPLE 6

Using Polynomial Division in an Application Problem
The volume of a rectangular solid is given by the polynomial The length of the solid is given by

and the width is given by Find the height, of the solid.

Solution
There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by the
expressions for the length and width. Let us create a sketch as in Figure 3.

Figure 3

We can now write an equation by substituting the known values into the formula for the volume of a rectangular solid.

To solve for first divide both sides by

Now solve for using synthetic division.

The quotient is and the remainder is 0. The height of the solid is

TRY IT #3 The area of a rectangle is given by The width of the rectangle is given by
Find an expression for the length of the rectangle.

MEDIA

Access these online resources for additional instruction and practice with polynomial division.

Dividing a Trinomial by a Binomial Using Long Division (http://openstax.org/l/dividetribild)
Dividing a Polynomial by a Binomial Using Long Division (http://openstax.org/l/dividepolybild)
Ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/dividepolybisd2)
Ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/dividepolybisd4)
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5.4 SECTION EXERCISES
Verbal

1. If division of a polynomial by a binomial results in a
remainder of zero, what can be conclude?

2. If a polynomial of degree is divided by a binomial
of degree 1, what is the degree of the quotient?

Algebraic

For the following exercises, use long division to divide. Specify the quotient and the remainder.

3. 4. 5.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, use synthetic division to find the quotient. Ensure the equation is in the form required by
synthetic division. (Hint: divide the dividend and divisor by the coefficient of the linear term in the divisor.)

14. 15. 16.

17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37.
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For the following exercises, use synthetic division to determine whether the first expression is a factor of the second. If it
is, indicate the factorization.

38. 39. 40.

41. 42. 43.

Graphical

For the following exercises, use the graph of the third-degree polynomial and one factor to write the factored form of
the polynomial suggested by the graph. The leading coefficient is one.

44. Factor is 45. Factor is 46. Factor is

47. Factor is 48. Factor is

For the following exercises, use synthetic division to find the quotient and remainder.

49. 50. 51.

52. 53.

Technology

For the following exercises, use a calculator with CAS to answer the questions.

54. Consider with What do you
expect the result to be if

55. Consider for What do you
expect the result to be if
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56. Consider for What do you
expect the result to be if

57. Consider with What do you
expect the result to be if

58. Consider with What do you
expect the result to be if

Extensions

For the following exercises, use synthetic division to determine the quotient involving a complex number.

59. 60. 61.

62. 63.

Real-World Applications

For the following exercises, use the given length and area of a rectangle to express the width algebraically.

64. Length is area is 65. Length is area is 66. Length is area is

For the following exercises, use the given volume of a box and its length and width to express the height of the box
algebraically.

67. Volume is length is
width is

68. Volume is length is
width is

69. Volume is length is
width is

70. Volume is length is
width is

For the following exercises, use the given volume and radius of a cylinder to express the height of the cylinder
algebraically.

71. Volume is radius is 72. Volume is radius is

73. Volume is
radius is
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5.5 Zeros of Polynomial Functions
Learning Objectives
In this section, you will:

Evaluate a polynomial using the Remainder Theorem.
Use the Factor Theorem to solve a polynomial equation.
Use the Rational Zero Theorem to find rational zeros.
Find zeros of a polynomial function.
Use the Linear Factorization Theorem to find polynomials with given zeros.
Use Descartes’ Rule of Signs.
Solve real-world applications of polynomial equations

COREQUISITE SKILLS

Learning Objectives
Solve quadratic and higher order equations by factoring (IA 6.5.2)

Objective 1: Solve quadratic and higher order equations by factoring (IA 6.5.2)
In Section 5.3 we have reviewed how to solve quadratic equations by factoring. Now we will discuss how to use factoring
to solve polynomial equations.

A polynomial equation is an equation that contains a polynomial expression. The degree of the polynomial equation
is the highest power on any one term of the polynomial.

Vocabulary of Polynomial Functions

Fill in the blanks for the polynomial:

The leading coefficient is ________ and the degree of this polynomial is _________.

EXAMPLE 1

Solve:

Solution

Practice Makes Perfect
Solve quadratic and higher order equations by factoring.

1.

2.

544 5 • Polynomial and Rational Functions

Access for free at openstax.org



EXAMPLE 2

Solve quadratic and higher order equations by factoring.

Solution

TRY IT #1 Check the work in the above example using a graph.

Graph below.

What are the x-intercepts of this function?

What is the connection between these x-intercepts and the solutions of the equation in part b?

The x-intercepts are called solutions or Zeros of the Function. Explain why.

Practice Makes Perfect
Solve quadratic and higher order equations by factoring.

3. ⓐ Solve .

ⓑ Use your graphing calculator to graph below.

ⓒ What are the x-intercepts of this function?

ⓓ What is the connection between these x-intercepts and the solutions of the equation in part a?
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4.

ⓐ Use factoring to find the zeros of the function. These are the x-intercepts of f(x). Plot these points by hand on
the graph below.

Figure 1

ⓑ What is the end behavior of this polynomial function?

ⓒ Using the x-intercepts and the end behavior, sketch the graph of this function.

5. Find the zeros of the function algebraically. Check by graphing a function on a graphing calculator.

ⓐ ⓑ ⓒ

A new bakery offers decorated, multi-tiered cakes for display and cutting at Quinceañera and wedding celebrations, as
well as sheet cakes for children’s birthday parties and other special occasions to serve most of the guests. The bakery
wants the volume of a small sheet cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want
the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of
the width. What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In this
section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a Polynomial Using the Remainder Theorem
In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials
using the Remainder Theorem. If the polynomial is divided by the remainder may be found quickly by evaluating
the polynomial function at that is, Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend and a non-zero polynomial divisor ,
there exist unique polynomials and such that

and either or the degree of is less than the degree of . In practice divisors, will have degrees less
than or equal to the degree of . If the divisor, is this takes the form

Since the divisor is linear, the remainder will be a constant, And, if we evaluate this for we have

In other words, is the remainder obtained by dividing by

The Remainder Theorem

If a polynomial is divided by then the remainder is the value
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...

HOW TO

Given a polynomial function evaluate at using the Remainder Theorem.

1. Use synthetic division to divide the polynomial by
2. The remainder is the value

EXAMPLE 1

Using the Remainder Theorem to Evaluate a Polynomial
Use the Remainder Theorem to evaluate at

Solution
To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by

The remainder is 25. Therefore,

Analysis
We can check our answer by evaluating

TRY IT #2 Use the Remainder Theorem to evaluate at

Using the Factor Theorem to Solve a Polynomial Equation
The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a
polynomial are related to the factors. Recall that the Division Algorithm.

If is a zero, then the remainder is and or

Notice, written in this form, is a factor of We can conclude if is a zero of then is a factor of

Similarly, if is a factor of then the remainder of the Division Algorithm is 0. This tells
us that is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree in the complex number
system will have zeros. We can use the Factor Theorem to completely factor a polynomial into the product of factors.
Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

The Factor Theorem

According to the Factor Theorem, is a zero of if and only if is a factor of

HOW TO

Given a factor and a third-degree polynomial, use the Factor Theorem to factor the polynomial.
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1. Use synthetic division to divide the polynomial by
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of and the quadratic quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

EXAMPLE 2

Using the Factor Theorem to Find the Zeros of a Polynomial Expression
Show that is a factor of Find the remaining factors. Use the factors to determine the zeros of
the polynomial.

Solution
We can use synthetic division to show that is a factor of the polynomial.

The remainder is zero, so is a factor of the polynomial. We can use the Division Algorithm to write the polynomial
as the product of the divisor and the quotient:

We can factor the quadratic factor to write the polynomial as

By the Factor Theorem, the zeros of are –2, 3, and 5.

TRY IT #3 Use the Factor Theorem to find the zeros of given that is a
factor of the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros
Another use for the Remainder Theorem is to test whether a rational number is a zero for a given polynomial. But first
we need a pool of rational numbers to test. The Rational Zero Theorem helps us to narrow down the number of
possible rational zeros using the ratio of the factors of the constant term and factors of the leading coefficient of the
polynomial

Consider a quadratic function with two zeros, and By the Factor Theorem, these zeros have factors
associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its
stretching factor.

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 and 3.
Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the original rational roots: 5
and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators
will be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is a means to give us a pool
of possible rational zeros.
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The Rational Zero Theorem

The Rational Zero Theorem states that, if the polynomial has integer
coefficients, then every rational zero of has the form where is a factor of the constant term and is a

factor of the leading coefficient

When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

HOW TO

Given a polynomial function use the Rational Zero Theorem to find rational zeros.

1. Determine all factors of the constant term and all factors of the leading coefficient.
2. Determine all possible values of where is a factor of the constant term and is a factor of the leading

coefficient. Be sure to include both positive and negative candidates.
3. Determine which possible zeros are actual zeros by evaluating each case of

EXAMPLE 3

Listing All Possible Rational Zeros
List all possible rational zeros of

Solution
The only possible rational zeros of are the quotients of the factors of the last term, –4, and the factors of the leading
coefficient, 2.

The constant term is –4; the factors of –4 are

The leading coefficient is 2; the factors of 2 are

If any of the four real zeros are rational zeros, then they will be of one of the following factors of –4 divided by one of the
factors of 2.

Note that and which have already been listed. So we can shorten our list.

EXAMPLE 4

Using the Rational Zero Theorem to Find Rational Zeros
Use the Rational Zero Theorem to find the rational zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of 1 and is a factor of 2.

The factors of 1 are and the factors of 2 are and The possible values for are and These are the

possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by substituting
these values for in

5.5 • Zeros of Polynomial Functions 549



...

Of those, are not zeros of 1 is the only rational zero of

TRY IT #4 Use the Rational Zero Theorem to find the rational zeros of

Finding the Zeros of Polynomial Functions
The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once
we have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.

HOW TO

Given a polynomial function use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all possible rational zeros of the function.
2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the

polynomial. If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.
3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is a

quadratic.
4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and using the

quadratic formula.

EXAMPLE 5

Finding the Zeros of a Polynomial Function with Repeated Real Zeros
Find the zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of –1 and is a factor of 4.

The factors of are and the factors of are and The possible values for are and These

are the possible rational zeros for the function. We will use synthetic division to evaluate each possible zero until we find
one that gives a remainder of 0. Let’s begin with 1.

Dividing by gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as

The quadratic is a perfect square. can be written as

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared. To find the
other zero, we can set the factor equal to 0.
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The zeros of the function are 1 and with multiplicity 2.

Analysis
Look at the graph of the function in Figure 1. Notice, at the graph bounces off the x-axis, indicating the even
multiplicity (2,4,6…) for the zero At the graph crosses the x-axis, indicating the odd multiplicity (1,3,5…) for
the zero

Figure 1

Using the Fundamental Theorem of Algebra
Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number of
complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial function
has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose is a polynomial function of degree four, and The Fundamental Theorem of Algebra states that there
is at least one complex solution, call it By the Factor Theorem, we can write as a product of and a
polynomial quotient. Since is linear, the polynomial quotient will be of degree three. Now we apply the
Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call it

So we can write the polynomial quotient as a product of and a new polynomial quotient of degree two.
Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them and
each one will yield a factor of

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra states that, if is a polynomial of degree n > 0, then has at least one
complex zero.

We can use this theorem to argue that, if is a polynomial of degree and is a non-zero real number, then
has exactly linear factors

where are complex numbers. Therefore, has roots if we allow for multiplicities.

Q&A Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is
not necessarily imaginary. Real numbers are also complex numbers.
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EXAMPLE 6

Finding the Zeros of a Polynomial Function with Complex Zeros
Find the zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of 3 and is a factor of 3.

The factors of 3 are and The possible values for and therefore the possible rational zeros for the function, are

We will use synthetic division to evaluate each possible zero until we find one that gives a remainder of
0. Let’s begin with –3.

Dividing by gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written as

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

The zeros of are –3 and

Analysis
Look at the graph of the function in Figure 2. Notice that, at the graph crosses the x-axis, indicating an odd
multiplicity (1) for the zero Also note the presence of the two turning points. This means that, since there is a 3rd

degree polynomial, we are looking at the maximum number of turning points. So, the end behavior of increasing
without bound to the right and decreasing without bound to the left will continue. Thus, all the x-intercepts for the
function are shown. So either the multiplicity of is 1 and there are two complex solutions, which is what we
found, or the multiplicity at is three. Either way, our result is correct.

Figure 2

TRY IT #5 Find the zeros of

Using the Linear Factorization Theorem to Find Polynomials with Given Zeros
A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial function of degree
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will have zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the
polynomial function into factors. The Linear Factorization Theorem tells us that a polynomial function will have the
same number of factors as its degree, and that each factor will be in the form where is a complex number.

Let be a polynomial function with real coefficients, and suppose is a zero of Then, by the Factor
Theorem, is a factor of For to have real coefficients, must also be a factor of This is
true because any factor other than when multiplied by will leave imaginary components in the
product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real coefficients. In
other words, if a polynomial function with real coefficients has a complex zero then the complex conjugate

must also be a zero of This is called the Complex Conjugate Theorem.

Complex Conjugate Theorem

According to the Linear Factorization Theorem, a polynomial function will have the same number of factors as its
degree, and each factor will be in the form , where is a complex number.

If the polynomial function has real coefficients and a complex zero in the form then the complex conjugate
of the zero, is also a zero.

HOW TO

Given the zeros of a polynomial function and a point (c, f(c)) on the graph of use the Linear Factorization
Theorem to find the polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.
2. Multiply the linear factors to expand the polynomial.
3. Substitute into the function to determine the leading coefficient.
4. Simplify.

EXAMPLE 7

Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros
Find a fourth degree polynomial with real coefficients that has zeros of –3, 2, such that

Solution
Because is a zero, by the Complex Conjugate Theorem is also a zero. The polynomial must have factors of

and Since we are looking for a degree 4 polynomial, and now have four zeros, we have
all four factors. Let’s begin by multiplying these factors.

We need to find a to ensure Substitute and into

So the polynomial function is

or
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Analysis
We found that both and were zeros, but only one of these zeros needed to be given. If is a zero of a polynomial
with real coefficients, then must also be a zero of the polynomial because is the complex conjugate of

Q&A If were given as a zero of a polynomial with real coefficients, would also need to be a
zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real
coefficients, the conjugate must also be a zero of the polynomial.

TRY IT #6 Find a third degree polynomial with real coefficients that has zeros of 5 and such that

Using Descartes’ Rule of Signs
There is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial
function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between the
number of sign changes in and the number of positive real zeros. For example, the polynomial function below has
one sign change.

This tells us that the function must have 1 positive real zero.

There is a similar relationship between the number of sign changes in and the number of negative real zeros.

In this case, has 3 sign changes. This tells us that could have 3 or 1 negative real zeros.

Descartes’ Rule of Signs

According to Descartes’ Rule of Signs, if we let be a polynomial function
with real coefficients:

• The number of positive real zeros is either equal to the number of sign changes of or is less than the
number of sign changes by an even integer.

• The number of negative real zeros is either equal to the number of sign changes of or is less than the
number of sign changes by an even integer.

EXAMPLE 8

Using Descartes’ Rule of Signs
Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for

Solution
Begin by determining the number of sign changes.

Figure 3

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine to determine the
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number of negative real roots.

Figure 4

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

There are four possibilities, as we can see in Table 1.

Positive Real Zeros Negative Real Zeros Complex Zeros Total Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

Table 1

Analysis
We can confirm the numbers of positive and negative real roots by examining a graph of the function. See Figure 5. We
can see from the graph that the function has 0 positive real roots and 2 negative real roots.

Figure 5

TRY IT #7 Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and
negative real zeros for Use a graph to verify the numbers
of positive and negative real zeros for the function.

Solving Real-World Applications
We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery
problem from the beginning of the section.

EXAMPLE 9

Solving Polynomial Equations
A new bakery offers decorated, multi-tiered cakes for display and cutting at Quinceañera and wedding celebrations, as
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well as sheet cakes for children’s birthday parties and other special occasions to serve most of the guests. The bakery
wants the volume of a small sheet cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want
the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of
the width. What should the dimensions of the cake pan be?

Solution
Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by We were
given that the length must be four inches longer than the width, so we can express the length of the cake as
We were given that the height of the cake is one-third of the width, so we can express the height of the cake as
Let’s write the volume of the cake in terms of width of the cake.

Substitute the given volume into this equation.

Descartes' rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the possible
rational zeros are and We can use synthetic division to
test these possible zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative
values. Let’s begin by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic
division to check

Since 1 is not a solution, we will check

Since 3 is not a solution either, we will test

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the
width and the other dimensions to determine the length and height of the sheet cake pan.

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

TRY IT #8 A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters.
The client tells the manufacturer that, because of the contents, the length of the container must
be one meter longer than the width, and the height must be one meter greater than twice the
width. What should the dimensions of the container be?

MEDIA

Access these online resources for additional instruction and practice with zeros of polynomial functions.

Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstax.org/l/realzeros)
Complex Factorization Theorem (http://openstax.org/l/factortheorem)
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Find the Zeros of a Polynomial Function (http://openstax.org/l/findthezeros)
Find the Zeros of a Polynomial Function 2 (http://openstax.org/l/findthezeros2)
Find the Zeros of a Polynomial Function 3 (http://openstax.org/l/findthezeros3)

5.5 SECTION EXERCISES
Verbal

1. Describe a use for the
Remainder Theorem.

2. Explain why the Rational
Zero Theorem does not
guarantee finding zeros of a
polynomial function.

3. What is the difference
between rational and real
zeros?

4. If Descartes’ Rule of Signs
reveals a no change of signs
or one sign of changes,
what specific conclusion can
be drawn?

5. If synthetic division reveals a
zero, why should we try that
value again as a possible
solution?

Algebraic

For the following exercises, use the Remainder Theorem to find the remainder.

6. 7. 8.

9. 10.

11. 12.

13.

For the following exercises, use the Factor Theorem to find all real zeros for the given polynomial function and one
factor.

14. 15.

16. 17.

18. 19.

20. 21.

For the following exercises, use the Rational Zero Theorem to find the real solution(s) to each equation.

22. 23. 24.

25. 26. 27.
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28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

For the following exercises, find all complex solutions (real and non-real).

40. 41. 42.

43. 44. 45.

Graphical

For the following exercises, use Descartes’ Rule to determine the possible number of positive and negative solutions.
Confirm with the given graph.

46. 47. 48.

49. 50. 51.

52. 53.

54. 55.

Numeric

For the following exercises, list all possible rational zeros for the functions.

56. 57. 58.

59. 60.

Technology

For the following exercises, use your calculator to graph the polynomial function. Based on the graph, find the rational
zeros. All real solutions are rational.

61. 62. 63.

64. 65.
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Extensions

For the following exercises, construct a polynomial function of least degree possible using the given information.

66. Real roots: –1, 1, 3 and 67. Real roots: –1, 1 (with
multiplicity 2 and 1) and

68. Real roots: –2, (with
multiplicity 2) and

69. Real roots: , 0, and 70. Real roots: –4, –1, 1, 4 and

Real-World Applications

For the following exercises, find the dimensions of the box described.

71. The length is twice as long
as the width. The height is
2 inches greater than the
width. The volume is 192
cubic inches.

72. The length, width, and
height are consecutive
whole numbers. The
volume is 120 cubic inches.

73. The length is one inch
more than the width, which
is one inch more than the
height. The volume is
86.625 cubic inches.

74. The length is three times
the height and the height
is one inch less than the
width. The volume is 108
cubic inches.

75. The length is 3 inches more
than the width. The width
is 2 inches more than the
height. The volume is 120
cubic inches.

For the following exercises, find the dimensions of the right circular cylinder described.

76. The radius is 3 inches more
than the height. The
volume is cubic
meters.

77. The height is one less than
one half the radius. The
volume is cubic
meters.

78. The radius and height
differ by one meter. The
radius is larger and the
volume is cubic
meters.

79. The radius and height
differ by two meters. The
height is greater and the
volume is cubic
meters.

80. The radius is meter
greater than the height.
The volume is cubic
meters.

5.6 Rational Functions
Learning Objectives
In this section, you will:

Use arrow notation.
Solve applied problems involving rational functions.
Find the domains of rational functions.
Identify vertical asymptotes.
Identify horizontal asymptotes.
Graph rational functions.
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COREQUISITE SKILLS

Learning Objectives
Determine the values for which a rational expression is undefined (IA 7.1.1)
Find x- and y-intercepts (IA 3.1.4)

Objective 1: Determine the values for which a rational expression is undefined (IA 7.1.1)

Rational Expression

A rational expression is an expression of the form where p and q are polynomials and

Here are some examples of rational expressions:

Practice Makes Perfect
Evaluate the following expression for the given values

1.

2.

3.

4. Why do we have a problem with evaluating this expression for but not for ?

We say that this rational expression is undefined because its denominator equals 0.

HOW TO

Determine the values for which a rational expression is undefined.

Step 1. Set the denominator equal to zero.
Step 2. Solve the equation.

EXAMPLE 1

Determine the value for which the rational expression is undefined

Solution

Set the denominator equal to zero

Solve the equation

We will solve this quadratic equation by factoring
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Answer: Rational expression is undefined when and

Practice Makes Perfect
Determine the value for which each rational expression is undefined.

5.

6.

7.

8.

9. Determine the value for which the function is undefined.

What is the connection between the value you found and the graph of this function?

Because function is not defined at , we say that the Domain of this function is

The domain of a rational function includes all real numbers except those that cause the denominator to
equal zero.

10. Determine the domain of the function and express using interval notation.

ⓐ ⓑ

Objective 2: Find - and -intercepts (IA 3.1.4)

Vocabulary

The -intercept is a point where the graph intersects the ________ axis. The -coordinate at this point is always ________.

The -intercept is a point where the graph intersects the ________ axis. The -coordinate at this point is always ________.

HOW TO

Find the x-intercept and y-intercept of a line.
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Example:

Find the -intercept and -intercept of a line.

To find the -intercept, replace with zero and find -int: , , (3, 0)

To find the -intercept, replace with zero and find -int: , , (0, )

Practice Makes Perfect
Find - and -intercept of each of the following functions. Express each as an ordered pair.

11.

12.

13.

Suppose we know that the cost of making a product is dependent on the number of items, produced. This is given by
the equation If we want to know the average cost for producing items, we would
divide the cost function by the number of items,

The average cost function, which yields the average cost per item for items produced, is

Many other application problems require finding an average value in a similar way, giving us variables in the
denominator. Written without a variable in the denominator, this function will contain a negative integer power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers for
exponents. In this section, we explore rational functions, which have variables in the denominator.

Using Arrow Notation
We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit
functions. Examine these graphs, as shown in Figure 1, and notice some of their features.
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Figure 1

Several things are apparent if we examine the graph of

1. On the left branch of the graph, the curve approaches the x-axis ∞
2. As the graph approaches from the left, the curve drops, but as we approach zero from the right, the curve

rises.

3. Finally, on the right branch of the graph, the curves approaches the x-axis ∞

To summarize, we use arrow notation to show that or is approaching a particular value. See Table 1.

Symbol Meaning

approaches from the left ( but close to )

approaches from the right ( but close to )

∞ approaches infinity ( increases without bound)

∞ approaches negative infinity ( decreases without bound)

∞ the output approaches infinity (the output increases without bound)

∞ the output approaches negative infinity (the output decreases without bound)

the output approaches

Table 1

Local Behavior of
Let’s begin by looking at the reciprocal function, We cannot divide by zero, which means the function is
undefined at so zero is not in the domain. As the input values approach zero from the left side (becoming very
small, negative values), the function values decrease without bound (in other words, they approach negative infinity). We
can see this behavior in Table 2.
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–0.1 –0.01 –0.001 –0.0001

–10 –100 –1000 –10,000

Table 2

We write in arrow notation

∞

As the input values approach zero from the right side (becoming very small, positive values), the function values increase
without bound (approaching infinity). We can see this behavior in Table 3.

0.1 0.01 0.001 0.0001

10 100 1000 10,000

Table 3

We write in arrow notation

∞

See Figure 2.

Figure 2

This behavior creates a vertical asymptote, which is a vertical line that the graph approaches but never crosses. In this
case, the graph is approaching the vertical line as the input becomes close to zero. See Figure 3.

564 5 • Polynomial and Rational Functions

Access for free at openstax.org



Figure 3

Vertical Asymptote

A vertical asymptote of a graph is a vertical line where the graph tends toward positive or negative infinity as
the inputs approach We write

∞

End Behavior of
As the values of approach infinity, the function values approach 0. As the values of approach negative infinity, the
function values approach 0. See Figure 4. Symbolically, using arrow notation

∞ ∞

Figure 4

Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually reaches 0; it
seems to level off as the inputs become large. This behavior creates a horizontal asymptote, a horizontal line that the
graph approaches as the input increases or decreases without bound. In this case, the graph is approaching the
horizontal line See Figure 5.
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Figure 5

Horizontal Asymptote

A horizontal asymptote of a graph is a horizontal line where the graph approaches the line as the inputs
increase or decrease without bound. We write

∞ ∞

EXAMPLE 1

Using Arrow Notation
Use arrow notation to describe the end behavior and local behavior of the function graphed in Figure 6.

Figure 6

Solution
Notice that the graph is showing a vertical asymptote at which tells us that the function is undefined at

∞ ∞

And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4, indicating a
horizontal asymptote at As the inputs increase without bound, the graph levels off at 4.

∞ ∞
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TRY IT #1 Use arrow notation to describe the end behavior and local behavior for the reciprocal squared
function.

EXAMPLE 2

Using Transformations to Graph a Rational Function
Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the horizontal and
vertical asymptotes of the graph, if any.

Solution
Shifting the graph left 2 and up 3 would result in the function

or equivalently, by giving the terms a common denominator,

The graph of the shifted function is displayed in Figure 7.

Figure 7

Notice that this function is undefined at and the graph also is showing a vertical asymptote at

∞ ∞

As the inputs increase and decrease without bound, the graph appears to be leveling off at output values of 3, indicating
a horizontal asymptote at

∞

Analysis
Notice that horizontal and vertical asymptotes are shifted left 2 and up 3 along with the function.

TRY IT #2 Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared
function that has been shifted right 3 units and down 4 units.

Solving Applied Problems Involving Rational Functions
In Example 2, we shifted a toolkit function in a way that resulted in the function This is an example of a
rational function. A rational function is a function that can be written as the quotient of two polynomial functions. Many
real-world problems require us to find the ratio of two polynomial functions. Problems involving rates and
concentrations often involve rational functions.
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Rational Function

A rational function is a function that can be written as the quotient of two polynomial functions

EXAMPLE 3

Solving an Applied Problem Involving a Rational Function
After running out of pre-packaged supplies, a nurse in a refugee camp is preparing an intravenous sugar solution for
patients in the camp hospital. A large mixing tank currently contains 100 gallons of distilled water into which 5 pounds of
sugar have been mixed. A tap will open pouring 10 gallons per minute of water into the tank at the same time sugar is
poured into the tank at a rate of 1 pound per minute. Find the ratio of sugar to water, in pounds per gallon in the tank
after 12 minutes. Is that a greater ratio of sugar to water, in pounds per gallon than at the beginning?

Solution
Let be the number of minutes since the tap opened. Since the water increases at 10 gallons per minute, and the sugar
increases at 1 pound per minute, these are constant rates of change. This tells us the amount of water in the tank is
changing linearly, as is the amount of sugar in the tank. We can write an equation independently for each:

The ratio of sugar to water, in pounds per gallon, , will be the ratio of pounds of sugar to gallons of water

The ratio of sugar to water, in pounds per gallon after 12 minutes is given by evaluating at

This means the ratio of sugar to water, in pounds per gallon is 17 pounds of sugar to 220 gallons of water.

At the beginning, the ratio of sugar to water, in pounds per gallon is

Since the ratio of sugar to water, in pounds per gallon is greater after 12 minutes than at the
beginning.

TRY IT #3 There are 1,200 first-year and 1,500 second-year students at a rally at noon. After 12 p.m., 20 first-
year students arrive at the rally every five minutes while 15 second-year students leave the rally.
Find the ratio of first-year to second-year students at 1 p.m.

Finding the Domains of Rational Functions
A vertical asymptote represents a value at which a rational function is undefined, so that value is not in the domain of
the function. A reciprocal function cannot have values in its domain that cause the denominator to equal zero. In
general, to find the domain of a rational function, we need to determine which inputs would cause division by zero.

Domain of a Rational Function

The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.
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...
HOW TO

Given a rational function, find the domain.

1. Set the denominator equal to zero.
2. Solve to find the x-values that cause the denominator to equal zero.
3. The domain is all real numbers except those found in Step 2.

EXAMPLE 4

Finding the Domain of a Rational Function
Find the domain of

Solution
Begin by setting the denominator equal to zero and solving.

The denominator is equal to zero when The domain of the function is all real numbers except

Analysis
A graph of this function, as shown in Figure 8, confirms that the function is not defined when

Figure 8

There is a vertical asymptote at and a hole in the graph at We will discuss these types of holes in greater
detail later in this section.

TRY IT #4 Find the domain of

Identifying Vertical Asymptotes of Rational Functions
By looking at the graph of a rational function, we can investigate its local behavior and easily see whether there are
asymptotes. We may even be able to approximate their location. Even without the graph, however, we can still
determine whether a given rational function has any asymptotes, and calculate their location.

Vertical Asymptotes
The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not
common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.
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HOW TO

Given a rational function, identify any vertical asymptotes of its graph.

1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the function.
3. Reduce the expression by canceling common factors in the numerator and the denominator.
4. Note any values that cause the denominator to be zero in this simplified version. These are where the vertical

asymptotes occur.
5. Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities, or

“holes.”

EXAMPLE 5

Identifying Vertical Asymptotes

Find the vertical asymptotes of the graph of

Solution
First, factor the numerator and denominator.

To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal to
zero:

Neither nor are zeros of the numerator, so the two values indicate two vertical asymptotes. The graph in
Figure 9 confirms the location of the two vertical asymptotes.

Figure 9

Removable Discontinuities
Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. We
call such a hole a removable discontinuity.

For example, the function may be re-written by factoring the numerator and the denominator.
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Notice that is a common factor to the numerator and the denominator. The zero of this factor, is the
location of the removable discontinuity. Notice also that is not a factor in both the numerator and denominator. The
zero of this factor, is the vertical asymptote. See Figure 10. [Note that removable discontinuities may not be visible
when we use a graphing calculator, depending upon the window selected.]

Figure 10

Removable Discontinuities of Rational Functions

A removable discontinuity occurs in the graph of a rational function at if is a zero for a factor in the
denominator that is common with a factor in the numerator. We factor the numerator and denominator and check
for common factors. If we find any, we set the common factor equal to 0 and solve. This is the location of the
removable discontinuity. This is true if the multiplicity of this factor is greater than or equal to that in the
denominator. If the multiplicity of this factor is greater in the denominator, then there is still an asymptote at that
value.

EXAMPLE 6

Identifying Vertical Asymptotes and Removable Discontinuities for a Graph
Find the vertical asymptotes and removable discontinuities of the graph of

Solution
Factor the numerator and the denominator.

Notice that there is a common factor in the numerator and the denominator, The zero for this factor is This
is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the numerator, The zero for this factor is The
vertical asymptote is See Figure 11.
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Figure 11

The graph of this function will have the vertical asymptote at but at the graph will have a hole.

TRY IT #5 Find the vertical asymptotes and removable discontinuities of the graph of

Identifying Horizontal Asymptotes of Rational Functions
While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal
asymptotes help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s
end behavior will mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the ratio
of the function that is the ratio of the leading terms.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at

In this case, the end behavior is This tells us that, as the inputs increase or decrease without bound, this

function will behave similarly to the function and the outputs will approach zero, resulting in a horizontal
asymptote at See Figure 12. Note that this graph crosses the horizontal asymptote.

Figure 12 Horizontal asymptote when

Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.

572 5 • Polynomial and Rational Functions

Access for free at openstax.org



In this case, the end behavior is This tells us that as the inputs increase or decrease without bound,
this function will behave similarly to the function As the inputs grow large, the outputs will grow and not level
off, so this graph has no horizontal asymptote. However, the graph of looks like a diagonal line, and since
will behave similarly to it will approach a line close to This line is a slant asymptote.

To find the equation of the slant asymptote, divide The quotient is and the remainder is 2. The slant
asymptote is the graph of the line See Figure 13.

Figure 13 Slant asymptote when where degree of

Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at where

and are the leading coefficients of and for

In this case, the end behavior is This tells us that as the inputs grow large, this function will behave like

the function which is a horizontal line. As ∞ resulting in a horizontal asymptote at See

Figure 14. Note that this graph crosses the horizontal asymptote.

Figure 14 Horizontal asymptote when
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Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross a
horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, the
graph will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one,
the end behavior of the graph will mimic the behavior of the reduced end behavior fraction. For instance, if we had the
function

with end behavior

the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.

∞ ∞

Horizontal Asymptotes of Rational Functions

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and
denominator.

• Degree of numerator is less than degree of denominator: horizontal asymptote at
• Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.
• Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.

EXAMPLE 7

Identifying Horizontal and Slant Asymptotes
For the functions listed, identify the horizontal or slant asymptote.

ⓐ ⓑ ⓒ
Solution

For these solutions, we will use

ⓐ The degree of so we can find the horizontal asymptote by taking the ratio

of the leading terms. There is a horizontal asymptote at or

ⓑ The degree of and degree of Since by 1, there is a slant asymptote found at

The quotient is and the remainder is 13. There is a slant asymptote at

ⓒ The degree of degree of so there is a horizontal asymptote

EXAMPLE 8

Identifying Horizontal Asymptotes
In the sugar concentration problem earlier, we created the equation

Find the horizontal asymptote and interpret it in context of the problem.
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Solution
Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a horizontal
asymptote at the ratio of the leading coefficients. In the numerator, the leading term is with coefficient 1. In the
denominator, the leading term is with coefficient 10. The horizontal asymptote will be at the ratio of these values:

∞

This function will have a horizontal asymptote at

This tells us that as the values of t increase, the values of will approach In context, this means that, as more time

goes by, the concentration of sugar in the tank will approach one-tenth of a pound of sugar per gallon of water or
pounds per gallon.

EXAMPLE 9

Identifying Horizontal and Vertical Asymptotes
Find the horizontal and vertical asymptotes of the function

Solution
First, note that this function has no common factors, so there are no potential removable discontinuities.

The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined. The
denominator will be zero at indicating vertical asymptotes at these values.

The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is greater than
the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to tend towards

zero as the inputs get large, and so as ∞ This function will have a horizontal asymptote at See

Figure 15.

Figure 15

TRY IT #6 Find the vertical and horizontal asymptotes of the function:
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Intercepts of Rational Functions

A rational function will have a y-intercept at , if the function is defined at zero. A rational function will not have a
y-intercept if the function is not defined at zero.

Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a fraction is
only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of the rational
function is equal to zero.

EXAMPLE 10

Finding the Intercepts of a Rational Function
Find the intercepts of

Solution
We can find the y-intercept by evaluating the function at zero

The x-intercepts will occur when the function is equal to zero:

The y-intercept is the x-intercepts are and See Figure 16.

Figure 16
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TRY IT #7 Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a
rational function. Then, find the x- and y-intercepts and the horizontal and vertical asymptotes.

Graphing Rational Functions
In Example 9, we see that the numerator of a rational function reveals the x-intercepts of the graph, whereas the
denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator may have
integer powers greater than one. Fortunately, the effect on the shape of the graph at those intercepts is the same as we
saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit reciprocal
functions. When the degree of the factor in the denominator is odd, the distinguishing characteristic is that on one side
of the vertical asymptote the graph heads towards positive infinity, and on the other side the graph heads towards
negative infinity. See Figure 17.

Figure 17

When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph either heads
toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity on both sides. See
Figure 18.

Figure 18

For example, the graph of is shown in Figure 19.
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Figure 19

• At the x-intercept corresponding to the factor of the numerator, the graph "bounces", consistent
with the quadratic nature of the factor.

• At the x-intercept corresponding to the factor of the numerator, the graph passes through the axis as
we would expect from a linear factor.

• At the vertical asymptote corresponding to the factor of the denominator, the graph heads towards
positive infinity on both sides of the asymptote, consistent with the behavior of the function

• At the vertical asymptote corresponding to the factor of the denominator, the graph heads towards
positive infinity on the left side of the asymptote and towards negative infinity on the right side.

HOW TO

Given a rational function, sketch a graph.

1. Evaluate the function at 0 to find the y-intercept.
2. Factor the numerator and denominator.
3. For factors in the numerator not common to the denominator, determine where each factor of the numerator is

zero to find the x-intercepts.
4. Find the multiplicities of the x-intercepts to determine the behavior of the graph at those points.
5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For those

factors not common to the numerator, find the vertical asymptotes by setting those factors equal to zero and
then solve.

6. For factors in the denominator common to factors in the numerator, find the removable discontinuities by
setting those factors equal to 0 and then solve.

7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant asymptotes.
8. Sketch the graph.
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EXAMPLE 11

Graphing a Rational Function
Sketch a graph of

Solution
We can start by noting that the function is already factored, saving us a step.

Next, we will find the intercepts. Evaluating the function at zero gives the y-intercept:

To find the x-intercepts, we determine when the numerator of the function is zero. Setting each factor equal to zero, we
find x-intercepts at and At each, the behavior will be linear (multiplicity 1), with the graph passing through
the intercept.

We have a y-intercept at and x-intercepts at and

To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when and
when giving us vertical asymptotes at and

There are no common factors in the numerator and denominator. This means there are no removable discontinuities.

Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a horizontal
asymptote at

To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x-intercepts between the
vertical asymptotes, and the y-intercept is positive, we know the function must remain positive between the asymptotes,
letting us fill in the middle portion of the graph as shown in Figure 20.

Figure 20

The factor associated with the vertical asymptote at was squared, so we know the behavior will be the same on
both sides of the asymptote. The graph heads toward positive infinity as the inputs approach the asymptote on the right,
so the graph will head toward positive infinity on the left as well.

For the vertical asymptote at the factor was not squared, so the graph will have opposite behavior on either side
of the asymptote. See Figure 21. After passing through the x-intercepts, the graph will then level off toward an output of
zero, as indicated by the horizontal asymptote.
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Figure 21

TRY IT #8 Given the function use the characteristics of polynomials and rational

functions to describe its behavior and sketch the function.

Writing Rational Functions
Now that we have analyzed the equations for rational functions and how they relate to a graph of the function, we can
use information given by a graph to write the function. A rational function written in factored form will have an
x-intercept where each factor of the numerator is equal to zero. (An exception occurs in the case of a removable
discontinuity.) As a result, we can form a numerator of a function whose graph will pass through a set of x-intercepts by
introducing a corresponding set of factors. Likewise, because the function will have a vertical asymptote where each
factor of the denominator is equal to zero, we can form a denominator that will produce the vertical asymptotes by
introducing a corresponding set of factors.

Writing Rational Functions from Intercepts and Asymptotes

If a rational function has x-intercepts at vertical asymptotes at and no
then the function can be written in the form:

where the powers or on each factor can be determined by the behavior of the graph at the corresponding
intercept or asymptote, and the stretch factor can be determined given a value of the function other than the
x-intercept or by the horizontal asymptote if it is nonzero.

HOW TO

Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x-intercepts to determine the
zeroes and their multiplicities. (This is easy to do when finding the “simplest” function with small
multiplicities—such as 1 or 3—but may be difficult for larger multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical asymptote to
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determine the factors and their powers.
3. Use any clear point on the graph to find the stretch factor.

EXAMPLE 12

Writing a Rational Function from Intercepts and Asymptotes
Write an equation for the rational function shown in Figure 22.

Figure 22

Solution
The graph appears to have x-intercepts at and At both, the graph passes through the intercept,
suggesting linear factors. The graph has two vertical asymptotes. The one at seems to exhibit the basic behavior
similar to with the graph heading toward positive infinity on one side and heading toward negative infinity on the
other. The asymptote at is exhibiting a behavior similar to with the graph heading toward negative infinity on

both sides of the asymptote. See Figure 23.

Figure 23

We can use this information to write a function of the form

To find the stretch factor, we can use another clear point on the graph, such as the y-intercept
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This gives us a final function of

MEDIA

Access these online resources for additional instruction and practice with rational functions.

Graphing Rational Functions (http://openstax.org/l/graphrational)
Find the Equation of a Rational Function (http://openstax.org/l/equatrational)
Determining Vertical and Horizontal Asymptotes (http://openstax.org/l/asymptote)
Find the Intercepts, Asymptotes, and Hole of a Rational Function (http://openstax.org/l/interasymptote)

5.6 SECTION EXERCISES
Verbal

1. What is the fundamental
difference in the algebraic
representation of a
polynomial function and a
rational function?

2. What is the fundamental
difference in the graphs of
polynomial functions and
rational functions?

3. If the graph of a rational
function has a removable
discontinuity, what must be
true of the functional rule?

4. Can a graph of a rational
function have no vertical
asymptote? If so, how?

5. Can a graph of a rational
function have no
x-intercepts? If so, how?

Algebraic

For the following exercises, find the domain of the rational functions.

6. 7. 8.

9.

For the following exercises, find the domain, vertical asymptotes, and horizontal asymptotes of the functions.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19.
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For the following exercises, find the x- and y-intercepts for the functions.

20. 21. 22.

23. 24.

For the following exercises, describe the local and end behavior of the functions.

25. 26. 27.

28. 29.

For the following exercises, find the slant asymptote of the functions.

30. 31. 32.

33. 34.

Graphical

For the following exercises, use the given transformation to graph the function. Note the vertical and horizontal
asymptotes.

35. The reciprocal function
shifted up two units.

36. The reciprocal function
shifted down one unit and
left three units.

37. The reciprocal squared
function shifted to the
right 2 units.

38. The reciprocal squared
function shifted down 2
units and right 1 unit.

For the following exercises, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the
horizontal or slant asymptote of the functions. Use that information to sketch a graph.

39. 40. 41.

42. 43. 44.

45. 46. 47.

48. 49. 50.
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For the following exercises, write an equation for a rational function with the given characteristics.

51. Vertical asymptotes at and
x-intercepts at and y-intercept at

52. Vertical asymptotes at and
x-intercepts at and y-intercept at

53. Vertical asymptotes at and
x-intercepts at and Horizontal
asymptote at

54. Vertical asymptotes at and
x-intercepts at and Horizontal
asymptote at

55. Vertical asymptote at Double zero at
y-intercept at

56. Vertical asymptote at Double zero at
y-intercept at

For the following exercises, use the graphs to write an equation for the function.

57. 58. 59.

60. 61. 62.

63. 64.
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Numeric

For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting
the horizontal asymptote

65. 66. 67.

68. 69.

Technology

For the following exercises, use a calculator to graph Use the graph to solve

70. 71. 72.

73. 74.

Extensions

For the following exercises, identify the removable discontinuity.

75. 76. 77.

78. 79.

Real-World Applications

For the following exercises, express a rational function that describes the situation.

80. In the refugee camp hospital, a large mixing tank
currently contains 200 gallons of water, into which
10 pounds of sugar have been mixed. A tap will
open, pouring 10 gallons of water per minute into
the tank at the same time sugar is poured into the
tank at a rate of 3 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the
tank after minutes.

81. In the refugee camp hospital, a large mixing tank
currently contains 300 gallons of water, into which
8 pounds of sugar have been mixed. A tap will
open, pouring 20 gallons of water per minute into
the tank at the same time sugar is poured into the
tank at a rate of 2 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the
tank after minutes.

For the following exercises, use the given rational function to answer the question.

82. The concentration of a drug in a patient’s
bloodstream hours after injection is given by

What happens to the concentration

of the drug as increases?

83. The concentration of a drug in a patient’s
bloodstream hours after injection is given by

Use a calculator to approximate

the time when the concentration is highest.
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For the following exercises, construct a rational function that will help solve the problem. Then, use a calculator to
answer the question.

84. An open box with a square
base is to have a volume of
108 cubic inches. Find the
dimensions of the box that
will have minimum surface
area. Let = length of the
side of the base.

85. A rectangular box with a
square base is to have a
volume of 20 cubic feet.
The material for the base
costs 30 cents/ square foot.
The material for the sides
costs 10 cents/square foot.
The material for the top
costs 20 cents/square foot.
Determine the dimensions
that will yield minimum
cost. Let = length of the
side of the base.

86. A right circular cylinder has
volume of 100 cubic inches.
Find the radius and height
that will yield minimum
surface area. Let =
radius.

87. A right circular cylinder
with no top has a volume
of 50 cubic meters. Find the
radius that will yield
minimum surface area. Let

= radius.

88. A right circular cylinder is
to have a volume of 40
cubic inches. It costs 4
cents/square inch to
construct the top and
bottom and 1 cent/square
inch to construct the rest of
the cylinder. Find the
radius to yield minimum
cost. Let = radius.

5.7 Inverses and Radical Functions
Learning Objectives
In this section, you will:

Find the inverse of an invertible polynomial function.
Restrict the domain to find the inverse of a polynomial function.

COREQUISITE SKILLS

Learning Objectives
Given function, find the inverse function (IA 10.1.3)
Find the domain of a radical function (IA 8.7.2)

Objective 1: Given function, find the inverse function (IA 10.1.3).

Vocabulary.

A function is a relation where for every ________ there is exactly one ________.
In order to check if relation is a function we can use ________ test.
Domain of the relation is the set of all ________.
Range of the relation is the set of all ________.

Inverse of a Function
Let’s look at a one-to one function, , represented by the ordered pairs For each -value,
adds 5 to get the -value. To ‘undo’ the addition of 5, we subtract 5 from each -value and get back to the original
-value. We can call this “taking the inverse of ” and name the function
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Notice that that the ordered pairs of and have their -values and -values reversed. The domain of is the range
of and the domain of is the range of

Note: Do not confuse with . The negative 1 in is not an exponent but a notation used to designate the

inverse function.

To produce an inverse relation or function, interchange the first and the second coordinates of each ordered pair,
or interchange the variables in an equation.

EXAMPLE 1

Given function, find the inverse function.

Find the inverse of the function 0,3,1,5,2,8,3,4. Determine the domain and range of the inverse function.

Solution
To find the inverse we interchange the x-values and y-value in the ordered pairs of the function.

Inverse function {(3,0),(5,1),(8,2),(4,3)}

Domain of Inverse Function {3,5,8,4})

Range of Inverse Function {0,1,2,3}

Practice Makes Perfect
Given function, find the inverse function.

1. Find the inverse of the function {(6,1),(2,5),(3,11),(0,4)}. Determine the domain and range of the inverse function

If a point (a,b) is on the graph of a function , then the ordered pair (b,a) is on the graph of .

Since every point on the graph of a function is a mirror image of a point on the graph of , we say the
graphs are mirror images of each other through the line . We can use this concept to graph the inverse of a
function.
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2. Graph, on the same coordinate system, the inverse of the function shown below.

HOW TO

Find the inverse of a One-to-One Function when its given as an equation
Step 1. Substitute y in place of f(x).
Step 2. Interchange the variables x and y.
Step 3. Solve for y.
Step 4. Rewrite y as .
Step 5. Verify that the functions are inverses.

EXAMPLE 2

Given function, find the inverse function

Find the inverse of

Solution
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Practice Makes Perfect
Find the inverse of each of the following functions using the 4 step procedure outlined above.

3.

4.

5.

Objective 2: Find the domain of a radical function (IA 8.7.2).
A radical function is a function that is defined by a radical expression.

For example, , are both radical functions.

Practice Makes Perfect

6. For the radical function , find the following

ⓐ ⓑ ⓒ ⓓ ⓔ Why is there a problem with part d? Explain.

ⓕ What do you think is the domain of ? (Hint: think of domain as all the x-values for which we can evaluate

7. For the radical function , find the following

ⓐ ⓑ ⓒ ⓓ ⓔ Why is there a problem with part d? Explain.

ⓕ What do you think is the domain of ? (Hint: think of domain as all the x-values for which we can evaluate

Domain of a Radical Function

When the index of the radical is even, the radicand must be greater than or equal to zero.
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When the index of the radical is odd, the radicand can be any real number.

EXAMPLE 3

Find the domain of a radical function.

Find the domain of the function . Write the domain in interval notation.

Solution
Since this function has a radical with the even index of 2, we set the radicand to be greater than or equal to 0 and then
solve to find the domain.

The domain expressed in interval notation is

Practice Makes Perfect
Find the domain of a radical function.Find the domain of the following functions and express using interval notation.

8.

9.

10.

Park rangers and other trail managers may construct rock piles, stacks, or other arrangements, usually called cairns, to
mark trails or other landmarks. (Rangers and environmental scientists discourage hikers from doing the same, in order
to avoid confusion and preserve the habitats of plants and animals.) A cairn in the form of a mound of gravel is in the
shape of a cone with the height equal to twice the radius.

Figure 1

The volume is found using a formula from elementary geometry.
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We have written the volume in terms of the radius However, in some cases, we may start out with the volume and
want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct a cone shape mound
with a height twice the radius. What are the radius and height of the new cone? To answer this question, we use the
formula

This function is the inverse of the formula for in terms of

In this section, we will explore the inverses of polynomial and rational functions and in particular the radical functions we
encounter in the process.

Finding the Inverse of a Polynomial Function
Two functions and are inverse functions if for every coordinate pair in there exists a corresponding
coordinate pair in the inverse function, In other words, the coordinate pairs of the inverse functions have the
input and output interchanged. Only one-to-one functions have inverses. Recall that a one-to-one function has a unique
output value for each input value and passes the horizontal line test.

For example, suppose the Sustainability Club builds a water runoff collector in the shape of a parabolic trough as shown
in Figure 2. We can use the information in the figure to find the surface area of the water in the trough as a function of
the depth of the water.

Figure 2

Because it will be helpful to have an equation for the parabolic cross-sectional shape, we will impose a coordinate system
at the cross section, with measured horizontally and measured vertically, with the origin at the vertex of the
parabola. See Figure 3.
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Figure 3

From this we find an equation for the parabolic shape. We placed the origin at the vertex of the parabola, so we know
the equation will have form Our equation will need to pass through the point (6, 18), from which we can
solve for the stretch factor

Our parabolic cross section has the equation

We are interested in the surface area of the water, so we must determine the width at the top of the water as a function
of the water depth. For any depth the width will be given by so we need to solve the equation above for and find
the inverse function. However, notice that the original function is not one-to-one, and indeed, given any output there are
two inputs that produce the same output, one positive and one negative.

To find an inverse, we can restrict our original function to a limited domain on which it is one-to-one. In this case, it
makes sense to restrict ourselves to positive values. On this domain, we can find an inverse by solving for the input
variable:

This is not a function as written. We are limiting ourselves to positive values, so we eliminate the negative solution,
giving us the inverse function we’re looking for.

Because is the distance from the center of the parabola to either side, the entire width of the water at the top will be
The trough is 3 feet (36 inches) long, so the surface area will then be:

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is one-to-one.
2. The inverse of a quadratic function is a square root function. Both are toolkit functions and different types of power
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functions.

Functions involving roots are often called radical functions. While it is not possible to find an inverse of most polynomial
functions, some basic polynomials do have inverses. Such functions are called invertible functions, and we use the
notation

Warning: is not the same as the reciprocal of the function This use of “–1” is reserved to denote inverse
functions. To denote the reciprocal of a function we would need to write

An important relationship between inverse functions is that they “undo” each other. If is the inverse of a function
then is the inverse of the function In other words, whatever the function does to undoes it—and vice-
versa.

and

Note that the inverse switches the domain and range of the original function.

Verifying Two Functions Are Inverses of One Another

Two functions, and are inverses of one another if for all in the domain of and

HOW TO

Given a polynomial function, find the inverse of the function by restricting the domain in such a way that the
new function is one-to-one.

1. Replace with
2. Interchange and
3. Solve for and rename the function

EXAMPLE 1

Verifying Inverse Functions
Show that and are inverses, for .

Solution
We must show that and
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Therefore, and are inverses.

TRY IT #1 Show that and are inverses.

EXAMPLE 2

Finding the Inverse of a Cubic Function
Find the inverse of the function

Solution
This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function, we know it is
one-to-one. Solving for the inverse by solving for

Analysis
Look at the graph of and Notice that one graph is the reflection of the other about the line This is always
the case when graphing a function and its inverse function.

Also, since the method involved interchanging and notice corresponding points. If is on the graph of then
is on the graph of Since is on the graph of then is on the graph of Similarly, since is

on the graph of then is on the graph of See Figure 4.

Figure 4

TRY IT #2 Find the inverse function of

Restricting the Domain to Find the Inverse of a Polynomial Function
So far, we have been able to find the inverse functions of cubic functions without having to restrict their domains.
However, as we know, not all cubic polynomials are one-to-one. Some functions that are not one-to-one may have their
domain restricted so that they are one-to-one, but only over that domain. The function over the restricted domain would
then have an inverse function. Since quadratic functions are not one-to-one, we must restrict their domain in order to
find their inverses.
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Restricting the Domain

If a function is not one-to-one, it cannot have an inverse. If we restrict the domain of the function so that it becomes
one-to-one, thus creating a new function, this new function will have an inverse.

HOW TO

Given a polynomial function, restrict the domain of a function that is not one-to-one and then find the inverse.

1. Restrict the domain by determining a domain on which the original function is one-to-one.
2. Replace with
3. Interchange and
4. Solve for and rename the function or pair of function
5. Revise the formula for by ensuring that the outputs of the inverse function correspond to the restricted

domain of the original function.

EXAMPLE 3

Restricting the Domain to Find the Inverse of a Polynomial Function
Find the inverse function of

ⓐ ⓑ
Solution

The original function is not one-to-one, but the function is restricted to a domain of or on
which it is one-to-one. See Figure 5.

Figure 5

To find the inverse, start by replacing with the simple variable

This is not a function as written. We need to examine the restrictions on the domain of the original function to determine
the inverse. Since we reversed the roles of and for the original we looked at the domain: the values could
assume. When we reversed the roles of and this gave us the values could assume. For this function, so for
the inverse, we should have which is what our inverse function gives.

ⓐ The domain of the original function was restricted to so the outputs of the inverse need to be the same,
and we must use the + case:
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ⓑ The domain of the original function was restricted to so the outputs of the inverse need to be the same,
and we must use the – case:

Analysis
On the graphs in Figure 6, we see the original function graphed on the same set of axes as its inverse function. Notice
that together the graphs show symmetry about the line The coordinate pair is on the graph of and the
coordinate pair is on the graph of For any coordinate pair, if is on the graph of then is on the
graph of Finally, observe that the graph of intersects the graph of on the line Points of intersection for
the graphs of and will always lie on the line

Figure 6

EXAMPLE 4

Finding the Inverse of a Quadratic Function When the Restriction Is Not Specified
Restrict the domain and then find the inverse of

Solution
We can see this is a parabola with vertex at that opens upward. Because the graph will be decreasing on one side
of the vertex and increasing on the other side, we can restrict this function to a domain on which it will be one-to-one by
limiting the domain to

To find the inverse, we will use the vertex form of the quadratic. We start by replacing with a simple variable, then
solve for

  

  

  

  

  

Now we need to determine which case to use. Because we restricted our original function to a domain of the
outputs of the inverse should be the same, telling us to utilize the + case

If the quadratic had not been given in vertex form, rewriting it into vertex form would be the first step. This way we may
easily observe the coordinates of the vertex to help us restrict the domain.
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Analysis
Notice that we arbitrarily decided to restrict the domain on We could just have easily opted to restrict the domain
on in which case Observe the original function graphed on the same set of axes as its
inverse function in Figure 7. Notice that both graphs show symmetry about the line The coordinate pair
is on the graph of and the coordinate pair is on the graph of Observe from the graph of both functions
on the same set of axes that

∞

and

∞

Finally, observe that the graph of intersects the graph of along the line

Figure 7

TRY IT #3 Find the inverse of the function on the domain

Solving Applications of Radical Functions
Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If we
want to find the inverse of a radical function, we will need to restrict the domain of the answer because the range of the
original function is limited.

HOW TO

Given a radical function, find the inverse.

1. Determine the range of the original function.
2. Replace with then solve for
3. If necessary, restrict the domain of the inverse function to the range of the original function.

EXAMPLE 5

Finding the Inverse of a Radical Function
Restrict the domain of the function and then find the inverse.

Solution
Note that the original function has range Replace with then solve for
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Recall that the domain of this function must be limited to the range of the original function.

Analysis
Notice in Figure 8 that the inverse is a reflection of the original function over the line Because the original function
has only positive outputs, the inverse function has only positive inputs.

Figure 8

TRY IT #4 Restrict the domain and then find the inverse of the function

Solving Applications of Radical Functions
Radical functions are common in physical models, as we saw in the section opener. We now have enough tools to be
able to solve the problem posed at the start of the section.

EXAMPLE 6

Solving an Application with a Cubic Function
Park rangers construct a mound of gravel in the shape of a cone with the height equal to twice the radius. The volume of
the cone in terms of the radius is given by

Find the inverse of the function that determines the volume of a cone and is a function of the radius
Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use

Solution
Start with the given function for Notice that the meaningful domain for the function is since negative radii
would not make sense in this context nor would a radius of 0. Also note the range of the function (hence, the domain of
the inverse function) is Solve for in terms of using the method outlined previously. Note that in real-world
applications, we do not swap the variables when finding inverses. Instead, we change which variable is considered to be
the independent variable.
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This is the result stated in the section opener. Now evaluate this for and

Therefore, the radius is about 3.63 ft.

Determining the Domain of a Radical Function Composed with Other Functions
When radical functions are composed with other functions, determining domain can become more complicated.

EXAMPLE 7

Finding the Domain of a Radical Function Composed with a Rational Function

Find the domain of the function

Solution
Because a square root is only defined when the quantity under the radical is non-negative, we need to determine where

The output of a rational function can change signs (change from positive to negative or vice versa) at

x-intercepts and at vertical asymptotes. For this equation, the graph could change signs at

To determine the intervals on which the rational expression is positive, we could test some values in the expression or
sketch a graph. While both approaches work equally well, for this example we will use a graph as shown in Figure 9.

Figure 9

This function has two x-intercepts, both of which exhibit linear behavior near the x-intercepts. There is one vertical
asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit function, and there is
no horizontal asymptote because the degree of the numerator is larger than the degree of the denominator. There is a
y-intercept at

From the y-intercept and x-intercept at we can sketch the left side of the graph. From the behavior at the
asymptote, we can sketch the right side of the graph.
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From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be sure that the

original function will be defined. has domain or in interval notation, ∞

Finding Inverses of Rational Functions
As with finding inverses of quadratic functions, it is sometimes desirable to find the inverse of a rational function,
particularly of rational functions that are the ratio of linear functions, such as in concentration applications.

EXAMPLE 8

Finding the Inverse of a Rational Function
The function represents the concentration of an acid solution after mL of 40% solution has been added
to 100 mL of a 20% solution. First, find the inverse of the function; that is, find an expression for in terms of Then
use your result to determine how much of the 40% solution should be added so that the final mixture is a 35% solution.

Solution
We first want the inverse of the function in order to determine how many mL we need for a given concentration. We will
solve for in terms of

Now evaluate this function at 35%, which is

We can conclude that 300 mL of the 40% solution should be added.

TRY IT #5 Find the inverse of the function

MEDIA

Access these online resources for additional instruction and practice with inverses and radical functions.

Graphing the Basic Square Root Function (http://openstax.org/l/graphsquareroot)
Find the Inverse of a Square Root Function (http://openstax.org/l/inversesquare)
Find the Inverse of a Rational Function (http://openstax.org/l/inverserational)
Find the Inverse of a Rational Function and an Inverse Function Value (http://openstax.org/l/rationalinverse)
Inverse Functions (http://openstax.org/l/inversefunction)
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5.7 SECTION EXERCISES
Verbal

1. Explain why we cannot find
inverse functions for all
polynomial functions.

2. Why must we restrict the
domain of a quadratic
function when finding its
inverse?

3. When finding the inverse of
a radical function, what
restriction will we need to
make?

4. The inverse of a quadratic
function will always take
what form?

Algebraic

For the following exercises, find the inverse of the function on the given domain.

5. ∞ 6. ∞ 7. ∞

8. ∞ 9. ∞ 10. ∞

11. ∞

For the following exercises, find the inverse of the functions.

12. 13. 14.

15.

For the following exercises, find the inverse of the functions.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. ∞ 29. ∞ 30. ∞
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Graphical

For the following exercises, find the inverse of the function and graph both the function and its inverse.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40.

For the following exercises, use a graph to help determine the domain of the functions.

41. 42. 43.

44. 45.

Technology

For the following exercises, use a calculator to graph the function. Then, using the graph, give three points on the graph
of the inverse with y-coordinates given.

46. 47. 48.

49. 50.

Extensions

For the following exercises, find the inverse of the functions with positive real numbers.

51. 52. 53.

54. 55.

Real-World Applications

For the following exercises, determine the function described and then use it to answer the question.

56. An object dropped from a height of 200 meters
has a height, in meters after seconds have
lapsed, such that Express as
a function of height, and find the time to reach
a height of 50 meters.

57. An object dropped from a height of 600 feet has a
height, in feet after seconds have elapsed,
such that Express as a
function of height and find the time to reach a
height of 400 feet.
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58. The volume, of a sphere in terms of its radius,
is given by Express as a function

of and find the radius of a sphere with volume
of 200 cubic feet.

59. The surface area, of a sphere in terms of its
radius, is given by Express as a
function of and find the radius of a sphere with
a surface area of 1000 square inches.

60. A container holds 100 mL of a solution that is 25
mL acid. If mL of a solution that is 60% acid is
added, the function gives the
concentration, as a function of the number of
mL added, Express as a function of and
determine the number of mL that need to be
added to have a solution that is 50% acid.

61. The period in seconds, of a simple pendulum as
a function of its length in feet, is given by

. Express as a function of and

determine the length of a pendulum with period
of 2 seconds.

62. The volume of a cylinder , in terms of radius,
and height, is given by If a cylinder
has a height of 6 meters, express the radius as a
function of and find the radius of a cylinder with
volume of 300 cubic meters.

63. The surface area, of a cylinder in terms of its
radius, and height, is given by

If the height of the cylinder is 4
feet, express the radius as a function of and find
the radius if the surface area is 200 square feet.

64. The volume of a right circular cone, in terms of
its radius, and its height, is given by

Express in terms of if the height
of the cone is 12 feet and find the radius of a cone
with volume of 50 cubic inches.

65. Consider a cone with height of 30 feet. Express the
radius, in terms of the volume, and find the
radius of a cone with volume of 1000 cubic feet.

5.8 Modeling Using Variation
Learning Objectives
In this section, you will:

Solve direct variation problems.
Solve inverse variation problems.
Solve problems involving joint variation.

COREQUISITE SKILLS

Learning Objectives
Solve a formula for a specific variable (IA 2.3.1).
Solve direct variation problems (IA 7.5.5).

Objective 1: Solve a formula for a specific variable (IA 2.3.1).
It is often helpful to solve a formula for a specific variable. If you need to put a formula in a spreadsheet, it is not
unusual to have to solve it for a specific variable first. We isolate that variable on one side of the equals sign and all
other variables and constants are on the other side of the equal sign.

EXAMPLE 1

Solve the formula for h.

Solution

Write the formula.
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Remove the fraction on the right.

Simplify.

Divide both sides by

We could now use this formula to find the height of a right circular cone when we know the volume and the radius of
the base, by using the formula

Practice Makes Perfect
Solve the given formula for the indicated variable.

1. for b

2. for C

3. for F

Objective 2: Solve direct variation problems (IA 7.5.5)
Lindsay gets paid $15 per hour at her job. If we let be her salary and be the number of hours she has worked, we
could model this situation with the equation .

Lindsay’s salary is the product of a constant, 15, and the number of hours she works. We say that Lindsay’s salary varies
directly with the number of hours she works. Two variables vary directly if one is the product of a constant and the
other.

Which graph represents direct variation and why?

ⓐ

ⓑ
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Direct Variation

For any two variables x and y, y varies directly with x if

The constant k is called the constant of variation.

HOW TO

Solve direct variation problems.

Step 1. Write the formula for direct variation.
Step 2. Substitute the given values for the variables.
Step 3. Solve for the constant of variation.
Step 4. Write the equation that relates x and y using the constant of variation.

EXAMPLE 2

When Raoul runs on the treadmill at the gym, the number of calories, c, he burns varies directly with the number of
minutes, m, he uses the treadmill. He burned 315 calories when he used the treadmill for 18 minutes.

ⓐ Write the equation that relates c and m. ⓑ How many calories would he burn if he ran on the treadmill for 25
minutes?

Solution

ⓐ

The number of calories, c, varies directly with
the number of minutes, m, on the treadmill,
and when .

Write the formula for direct variation.

We will use c in place of y and m in place of x.

Substitute the given values for the variables.
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Solve for the constant of variation.

Write the equation that relates c and m.

Substitute in the constant of variation.

ⓑ

Find c when m = 25.

Write the equation that relates c and m.

Substitute the given value for m.

Simplify.

Raoul would burn 437.5 calories if he used the treadmill for 25
minutes.

Practice Makes Perfect
4. The number of calories , burned varies directly with the amount of time , spent exercising. Arnold burned 312

calories in 65 minutes exercising.

ⓐ Write the equation that relates c and t.

ⓑ How many calories would he burn if he exercises for 90 minutes?

5. The distance a moving body travels, , varies directly with the time, , that it moves. A train travels 100 miles in 2
hours.

ⓐ Write the equation that relates d and t. ⓑ How many miles would it travel in 5 hours?

6. Leland is traveling on a road trip. The distance, , he travels before stopping for lunch varies directly with the
speed, , he travels. He can travel 120 miles at a speed of 60 mph.

ⓐ Write the equation that relates d and v.

ⓑ How far would he travel before stopping for lunch at a rate of 65 mph?

A pre-owned car dealer has just offered their best candidate, Nicole, a position in sales. The position offers 16%
commission on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600,
she will earn $736. As she considers the offer, she takes into account the typical price of the dealer's cars, the overall
market, and how many she can reasonably expect to sell. In this section, we will look at relationships, such as this one,
between earnings, sales, and commission rate.

Solving Direct Variation Problems
In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula
tells us her earnings, come from the product of 0.16, her commission, and the sale price of the vehicle. If we create a
table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. See Table 1.
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, sales price Interpretation

$4,600 A sale of a $4,600 vehicle results in $736 earnings.

$9,200 A sale of a $9,200 vehicle results in $1472 earnings.

$18,400 A sale of a $18,400 vehicle results in $2944 earnings.

Table 1

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of
the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output
increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is
called direct variation. Each variable in this type of relationship varies directly with the other.

Figure 1 represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the
car. The formula is used for direct variation. The value is a nonzero constant greater than zero and is called
the constant of variation. In this case, and We saw functions like this one when we discussed power
functions.

Figure 1

Direct Variation

If are related by an equation of the form

then we say that the relationship is direct variation and varies directly with, or is proportional to, the th power of
In direct variation relationships, there is a nonzero constant ratio where is called the constant of

variation, which help defines the relationship between the variables.

HOW TO

Given a description of a direct variation problem, solve for an unknown.

1. Identify the input, and the output,
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2. Determine the constant of variation. You may need to divide by the specified power of to determine the
constant of variation.

3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 1

Solving a Direct Variation Problem
The quantity varies directly with the cube of If when find when is 6.

Solution
The general formula for direct variation with a cube is The constant can be found by dividing by the cube of

Now use the constant to write an equation that represents this relationship.

Substitute and solve for

Analysis
The graph of this equation is a simple cubic, as shown in Figure 2.

Figure 2

Q&A Do the graphs of all direct variation equations look like Example 1?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical,
etc. But all of the graphs pass through

TRY IT #1 The quantity varies directly with the square of If when find when is 4.
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Solving Inverse Variation Problems
Water temperature in an ocean varies inversely to the water’s depth. The formula gives us the temperature
in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s
surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.

If we create Table 2, we observe that, as the depth increases, the water temperature decreases.

depth Interpretation

500 ft At a depth of 500 ft, the water temperature is 28° F.

1000 ft At a depth of 1,000 ft, the water temperature is 14° F.

2000 ft At a depth of 2,000 ft, the water temperature is 7° F.

Table 2

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two
quantities are said to be inversely proportional and each term varies inversely with the other. Inversely proportional
relationships are also called inverse variations.

For our example, Figure 3 depicts the inverse variation. We say the water temperature varies inversely with the depth of
the water because, as the depth increases, the temperature decreases. The formula for inverse variation in this
case uses

Figure 3

Inverse Variation

If and are related by an equation of the form

where is a nonzero constant, then we say that varies inversely with the power of In inversely
proportional relationships, or inverse variations, there is a constant multiple

EXAMPLE 2

Writing a Formula for an Inversely Proportional Relationship
A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the tourist
drives.
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Solution
Recall that multiplying speed by time gives distance. If we let represent the drive time in hours, and represent the
velocity (speed or rate) at which the tourist drives, then Because the distance is fixed at 100 miles,

so Because time is a function of velocity, we can write

We can see that the constant of variation is 100 and, although we can write the relationship using the negative exponent,
it is more common to see it written as a fraction. We say that time varies inversely with velocity.

HOW TO

Given a description of an indirect variation problem, solve for an unknown.

1. Identify the input, and the output,
2. Determine the constant of variation. You may need to multiply by the specified power of to determine the

constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 3

Solving an Inverse Variation Problem
A quantity varies inversely with the cube of If when find when is 6.

Solution
The general formula for inverse variation with a cube is The constant can be found by multiplying by the cube

of

Now we use the constant to write an equation that represents this relationship.

Substitute and solve for

Analysis
The graph of this equation is a rational function, as shown in Figure 4.
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Figure 4

TRY IT #2 A quantity varies inversely with the square of If when find when is 4.

Solving Problems Involving Joint Variation
Many situations are more complicated than a basic direct variation or inverse variation model. One variable often
depends on multiple other variables. When a variable is dependent on the product or quotient of two or more variables,
this is called joint variation. For example, the cost of busing students for each school trip varies with the number of
students attending and the distance from the school. The variable cost, varies jointly with the number of students,
and the distance,

Joint Variation

Joint variation occurs when a variable varies directly or inversely with multiple variables.

For instance, if varies directly with both and we have If varies directly with and inversely with we
have Notice that we only use one constant in a joint variation equation.

EXAMPLE 4

Solving Problems Involving Joint Variation
A quantity varies directly with the square of and inversely with the cube root of If when and find

when and

Solution
Begin by writing an equation to show the relationship between the variables.

Substitute and to find the value of the constant

Now we can substitute the value of the constant into the equation for the relationship.
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To find when and we will substitute values for and into our equation.

TRY IT #3 A quantity varies directly with the square of and inversely with If when and
find when and

MEDIA

Access these online resources for additional instruction and practice with direct and inverse variation.

Direct Variation (http://openstax.org/l/directvariation)
Inverse Variation (http://openstax.org/l/inversevariatio)
Direct and Inverse Variation (http://openstax.org/l/directinverse)

5.8 SECTION EXERCISES
Verbal

1. What is true of the
appearance of graphs that
reflect a direct variation
between two variables?

2. If two variables vary
inversely, what will an
equation representing their
relationship look like?

3. Is there a limit to the
number of variables that
can vary jointly? Explain.

Algebraic

For the following exercises, write an equation describing the relationship of the given variables.

4. varies directly as and
when

5. varies directly as the
square of and when

 

6. varies directly as the
square root of and when

7. varies directly as the cube
of and when

8. varies directly as the cube
root of and when

9. varies directly as the
fourth power of and when

10. varies inversely as and
when

11. varies inversely as the
square of and when

12. varies inversely as the
cube of and when

13. varies inversely as the
fourth power of and
when

14. varies inversely as the
square root of and when

15. varies inversely as the
cube root of and when

16. varies jointly with and
and when and

17. varies jointly as and
and when

then

18. varies jointly as the
square of and the square
of and when and

then
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19. varies jointly as and the
square root of and when

and then

20. varies jointly as the
square of the cube of
and the square root of
When and

then

21. varies jointly as and
and inversely as . When

, and ,
then

22. varies jointly as the
square of and the square
root of and inversely as

the cube of   When

and
then

23. varies jointly as and
and inversely as the square
root of and the square of

When
and

then

Numeric

For the following exercises, use the given information to find the unknown value.

24. varies directly as When then
Find wneh

25. varies directly as the square of When
then Find when

26. varies directly as the cube of When
then Find when

27. varies directly as the square root of When
then Find when

28. varies directly as the cube root of When
then Find when

29. varies inversely with When then
Find when

30. varies inversely with the square of When
then Find when

31. varies inversely with the cube of When
then Find when

32. varies inversely with the square root of When
then Find when

33. varies inversely with the cube root of When
then Find when

34. varies jointly as When and
then Find when and

35. varies jointly as When
and then Find when

and

36. varies jointly as and the square of When
and then Find when

and

37. varies jointly as the square of and the square
root of When and then
Find when and

38. varies jointly as and and inversely as
When and then Find

when and and

39. varies jointly as the square of and the cube of

and inversely as the square root of   When

and then Find
when and

40. varies jointly as the square of and of and
inversely as the square root of and of When

and then Find
when and
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Technology

For the following exercises, use a calculator to graph the equation implied by the given variation.

41. varies directly with the
square of and when

42. varies directly as the
cube of and when

43. varies directly as the
square root of and when

44. varies inversely with
and when

45. varies inversely as the
square of and when

Extensions

For the following exercises, use Kepler’s Law, which states that the square of the time, required for a planet to orbit
the Sun varies directly with the cube of the mean distance, that the planet is from the Sun.

46. Using Earth’s time of 1
year and mean distance of
93 million miles, find the
equation relating and

47. Use the result from the
previous exercise to
determine the time
required for Mars to orbit
the Sun if its mean distance
is 142 million miles.

48. Using Earth’s distance of
150 million kilometers, find
the equation relating
and

49. Use the result from the
previous exercise to
determine the time
required for Venus to orbit
the Sun if its mean distance
is 108 million kilometers.

50. Using Earth’s distance of 1
astronomical unit (A.U.),
determine the time for
Saturn to orbit the Sun if its
mean distance is 9.54 A.U.

Real-World Applications

For the following exercises, use the given information to answer the questions.

51. The distance that an
object falls varies directly
with the square of the
time, of the fall. If an
object falls 16 feet in one
second, how long for it to
fall 144 feet?

52. The velocity of a falling
object varies directly to the
time, , of the fall. If after 2
seconds, the velocity of the
object is 64 feet per
second, what is the velocity
after 5 seconds?

53. The rate of vibration of a
string under constant
tension varies inversely
with the length of the
string. If a string is 24
inches long and vibrates
128 times per second, what
is the length of a string
that vibrates 64 times per
second?
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54. The volume of a gas held at
constant temperature
varies indirectly as the
pressure of the gas. If the
volume of a gas is 1200
cubic centimeters when
the pressure is 200
millimeters of mercury,
what is the volume when
the pressure is 300
millimeters of mercury?

55. The weight of an object
above the surface of Earth
varies inversely with the
square of the distance
from the center of Earth. If
a body weighs 50 pounds
when it is 3960 miles from
Earth’s center, what would
it weigh it were 3970 miles
from Earth’s center?

56. The intensity of light
measured in foot-candles
varies inversely with the
square of the distance
from the light source.
Suppose the intensity of a
light bulb is 0.08 foot-
candles at a distance of 3
meters. Find the intensity
level at 8 meters.

57. The current in a circuit
varies inversely with its
resistance measured in
ohms. When the current in
a circuit is 40 amperes, the
resistance is 10 ohms. Find
the current if the resistance
is 12 ohms.

58. The force exerted by the
wind on a plane surface
varies jointly with the
square of the velocity of
the wind and with the area
of the plane surface. If the
area of the surface is 40
square feet surface and the
wind velocity is 20 miles
per hour, the resulting
force is 15 pounds. Find the
force on a surface of 65
square feet with a velocity
of 30 miles per hour.

59. The horsepower (hp) that a
shaft can safely transmit
varies jointly with its speed
(in revolutions per minute
(rpm) and the cube of the
diameter. If the shaft of a
certain material 3 inches in
diameter can transmit 45
hp at 100 rpm, what must
the diameter be in order to
transmit 60 hp at 150 rpm?

60. The kinetic energy of a
moving object varies jointly
with its mass and the
square of its velocity If
an object weighing 40
kilograms with a velocity of
15 meters per second has a
kinetic energy of 1000
joules, find the kinetic
energy if the velocity is
increased to 20 meters per
second.
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Chapter Review
Key Terms
arrow notation a way to represent symbolically the local and end behavior of a function by using arrows to indicate

that an input or output approaches a value
axis of symmetry a vertical line drawn through the vertex of a parabola, that opens up or down, around which the

parabola is symmetric; it is defined by
coefficient a nonzero real number multiplied by a variable raised to an exponent
constant of variation the non-zero value that helps define the relationship between variables in direct or inverse

variation
continuous function a function whose graph can be drawn without lifting the pen from the paper because there are

no breaks in the graph
degree the highest power of the variable that occurs in a polynomial
Descartes’ Rule of Signs a rule that determines the maximum possible numbers of positive and negative real zeros

based on the number of sign changes of and
direct variation the relationship between two variables that are a constant multiple of each other; as one quantity

increases, so does the other
Division Algorithm given a polynomial dividend and a non-zero polynomial divisor where the degree of

is less than or equal to the degree of , there exist unique polynomials and such that
where is the quotient and is the remainder. The remainder is either equal to zero or

has degree strictly less than
end behavior the behavior of the graph of a function as the input decreases without bound and increases without

bound
Factor Theorem is a zero of polynomial function if and only if is a factor of
Fundamental Theorem of Algebra a polynomial function with degree greater than 0 has at least one complex zero
general form of a quadratic function the function that describes a parabola, written in the form ,

where and are real numbers and
global maximum highest turning point on a graph; where for all
global minimum lowest turning point on a graph; where for all
horizontal asymptote a horizontal line where the graph approaches the line as the inputs increase or decrease

without bound.
Intermediate Value Theorem for two numbers and in the domain of if and then the

function takes on every value between and ; specifically, when a polynomial function changes from a
negative value to a positive value, the function must cross the axis

inverse variation the relationship between two variables in which the product of the variables is a constant
inversely proportional a relationship where one quantity is a constant divided by the other quantity; as one quantity

increases, the other decreases
invertible function any function that has an inverse function
joint variation a relationship where a variable varies directly or inversely with multiple variables
leading coefficient the coefficient of the leading term
leading term the term containing the highest power of the variable
Linear Factorization Theorem allowing for multiplicities, a polynomial function will have the same number of factors

as its degree, and each factor will be in the form , where is a complex number
multiplicity the number of times a given factor appears in the factored form of the equation of a polynomial; if a

polynomial contains a factor of the form , is a zero of multiplicity
polynomial function a function that consists of either zero or the sum of a finite number of non-zero terms, each of

which is a product of a number, called the coefficient of the term, and a variable raised to a non-negative integer
power.

power function a function that can be represented in the form where is a constant, the base is a
variable, and the exponent, , is a constant

rational function a function that can be written as the ratio of two polynomials
Rational Zero Theorem the possible rational zeros of a polynomial function have the form where is a factor of the

constant term and is a factor of the leading coefficient.
Remainder Theorem if a polynomial is divided by , then the remainder is equal to the value
removable discontinuity a single point at which a function is undefined that, if filled in, would make the function

continuous; it appears as a hole on the graph of a function
roots in a given function, the values of at which , also called zeros
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smooth curve a graph with no sharp corners
standard form of a quadratic function the function that describes a parabola, written in the form

, where is the vertex
synthetic division a shortcut method that can be used to divide a polynomial by a binomial of the form
term of a polynomial function any of a polynomial function in the form
turning point the location at which the graph of a function changes direction
varies directly a relationship where one quantity is a constant multiplied by the other quantity
varies inversely a relationship where one quantity is a constant divided by the other quantity
vertex the point at which a parabola changes direction, corresponding to the minimum or maximum value of the

quadratic function
vertex form of a quadratic function another name for the standard form of a quadratic function
vertical asymptote a vertical line where the graph tends toward positive or negative infinity as the inputs

approach
zeros in a given function, the values of at which , also called roots

Key Equations

general form of a quadratic function

standard form of a quadratic function

general form of a polynomial function

Division Algorithm

Rational Function

Direct variation is a nonzero constant.

Inverse variation is a nonzero constant.

Key Concepts
5.1 Quadratic Functions

• A polynomial function of degree two is called a quadratic function.
• The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up or down.
• The axis of symmetry is the vertical line passing through the vertex. The zeros, or intercepts, are the points at

which the parabola crosses the axis. The intercept is the point at which the parabola crosses the axis. See
Example 1, Example 7, and Example 8.

• Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify the vertex
of a parabola. Either form can be written from a graph. See Example 2.

• The vertex can be found from an equation representing a quadratic function. See Example 3.
• The domain of a quadratic function is all real numbers. The range varies with the function. See Example 4.
• A quadratic function’s minimum or maximum value is given by the value of the vertex.
• The minimum or maximum value of a quadratic function can be used to determine the range of the function and to

solve many kinds of real-world problems, including problems involving area and revenue. See Example 5 and
Example 6.

• The vertex and the intercepts can be identified and interpreted to solve real-world problems. See Example 9.
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5.2 Power Functions and Polynomial Functions

• A power function is a variable base raised to a number power. See Example 1.
• The behavior of a graph as the input decreases beyond bound and increases beyond bound is called the end

behavior.
• The end behavior depends on whether the power is even or odd. See Example 2 and Example 3.
• A polynomial function is the sum of terms, each of which consists of a transformed power function with positive

whole number power. See Example 4.
• The degree of a polynomial function is the highest power of the variable that occurs in a polynomial. The term

containing the highest power of the variable is called the leading term. The coefficient of the leading term is called
the leading coefficient. See Example 5.

• The end behavior of a polynomial function is the same as the end behavior of the power function represented by
the leading term of the function. See Example 6 and Example 7.

• A polynomial of degree will have at most x-intercepts and at most turning points. See Example 8, Example
9, Example 10, Example 11, and Example 12.

5.3 Graphs of Polynomial Functions

• Polynomial functions of degree 2 or more are smooth, continuous functions. See Example 1.
• To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero.

See Example 2, Example 3, and Example 4.
• Another way to find the intercepts of a polynomial function is to graph the function and identify the points at

which the graph crosses the axis. See Example 5.
• The multiplicity of a zero determines how the graph behaves at the intercepts. See Example 6.
• The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
• The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
• The end behavior of a polynomial function depends on the leading term.
• The graph of a polynomial function changes direction at its turning points.
• A polynomial function of degree has at most turning points. See Example 7.
• To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that

the final graph has at most turning points. See Example 8 and Example 10.
• Graphing a polynomial function helps to estimate local and global extremas. See Example 11.
• The Intermediate Value Theorem tells us that if have opposite signs, then there exists at least one

value between and for which See Example 9.

5.4 Dividing Polynomials

• Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See
Example 1 and Example 2.

• The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the
quotient added to the remainder.

• Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form See Example
3, Example 4, and Example 5.

• Polynomial division can be used to solve application problems, including area and volume. See Example 6.

5.5 Zeros of Polynomial Functions

• To find determine the remainder of the polynomial when it is divided by This is known as the
Remainder Theorem. See Example 1.

• According to the Factor Theorem, is a zero of if and only if is a factor of See Example 2.
• According to the Rational Zero Theorem, each rational zero of a polynomial function with integer coefficients will be

equal to a factor of the constant term divided by a factor of the leading coefficient. See Example 3 and Example 4.
• When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
• Synthetic division can be used to find the zeros of a polynomial function. See Example 5.
• According to the Fundamental Theorem, every polynomial function has at least one complex zero. See Example 6.
• Every polynomial function with degree greater than 0 has at least one complex zero.
• Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor will

be in the form where is a complex number. See Example 7.
• The number of positive real zeros of a polynomial function is either the number of sign changes of the function or

less than the number of sign changes by an even integer.
• The number of negative real zeros of a polynomial function is either the number of sign changes of or less
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than the number of sign changes by an even integer. See Example 8.
• Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division.

See Example 9.

5.6 Rational Functions

• We can use arrow notation to describe local behavior and end behavior of the toolkit functions and
See Example 1.

• A function that levels off at a horizontal value has a horizontal asymptote. A function can have more than one
vertical asymptote. See Example 2.

• Application problems involving rates and concentrations often involve rational functions. See Example 3.
• The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.

See Example 4.
• The vertical asymptotes of a rational function will occur where the denominator of the function is equal to zero and

the numerator is not zero. See Example 5.
• A removable discontinuity might occur in the graph of a rational function if an input causes both numerator and

denominator to be zero. See Example 6.
• A rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and

denominator functions. See Example 7, Example 8, Example 9, and Example 10.
• Graph rational functions by finding the intercepts, behavior at the intercepts and asymptotes, and end behavior. See

Example 11.
• If a rational function has x-intercepts at vertical asymptotes at and no

then the function can be written in the form

See Example 12.

5.7 Inverses and Radical Functions

• The inverse of a quadratic function is a square root function.
• If is the inverse of a function then is the inverse of the function See Example 1.
• While it is not possible to find an inverse of most polynomial functions, some basic polynomials are invertible. See

Example 2.
• To find the inverse of certain functions, we must restrict the function to a domain on which it will be one-to-one. See

Example 3 and Example 4.
• When finding the inverse of a radical function, we need a restriction on the domain of the answer. See Example 5

and Example 7.
• Inverse and radical and functions can be used to solve application problems. See Example 6 and Example 8.

5.8 Modeling Using Variation

• A relationship where one quantity is a constant multiplied by another quantity is called direct variation. See Example
1.

• Two variables that are directly proportional to one another will have a constant ratio.
• A relationship where one quantity is a constant divided by another quantity is called inverse variation. See Example

2.
• Two variables that are inversely proportional to one another will have a constant multiple. See Example 3.
• In many problems, a variable varies directly or inversely with multiple variables. We call this type of relationship joint

variation. See Example 4.
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Exercises
Review Exercises
Quadratic Functions

For the following exercises, write the quadratic function in standard form. Then give the vertex and axes intercepts.
Finally, graph the function.

1. 2.

For the following exercises, find the equation of the quadratic function using the given information.

3. The vertex is and a
point on the graph is

4. The vertex is and a
point on the graph is

For the following exercises, complete the task.

5. A rectangular plot of land is to be enclosed by
fencing. One side is along a river and so needs no
fence. If the total fencing available is 600 meters,
find the dimensions of the plot to have maximum
area.

6. An object projected from the ground at a 45 degree
angle with initial velocity of 120 feet per second has
height, in terms of horizontal distance traveled,

given by Find the

maximum height the object attains.

Power Functions and Polynomial Functions

For the following exercises, determine if the function is a polynomial function and, if so, give the degree and leading
coefficient.

7. 8. 9.

For the following exercises, determine end behavior of the polynomial function.

10. 11. 12.

Graphs of Polynomial Functions

For the following exercises, find all zeros of the polynomial function, noting multiplicities.

13. 14. 15.
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For the following exercises, based on the given graph, determine the zeros of the function and note multiplicity.

16. 17. 18. Use the Intermediate Value
Theorem to show that at
least one zero lies between
2 and 3 for the function

Dividing Polynomials

For the following exercises, use long division to find the quotient and remainder.

19. 20.

For the following exercises, use synthetic division to find the quotient. If the divisor is a factor, then write the factored
form.

21. 22. 23.

24.

Zeros of Polynomial Functions

For the following exercises, use the Rational Zero Theorem to help you solve the polynomial equation.

25. 26. 27.

28.

For the following exercises, use Descartes’ Rule of Signs to find the possible number of positive and negative solutions.

29. 30.

Rational Functions

For the following exercises, find the intercepts and the vertical and horizontal asymptotes, and then use them to sketch a
graph of the function.

31. 32. 33.
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34.

For the following exercises, find the slant asymptote.

35. 36.

Inverses and Radical Functions

For the following exercises, find the inverse of the function with the domain given.

37. 38. 39.

40. 41. 42.

Modeling Using Variation

For the following exercises, find the unknown value.

43. varies directly as the
square of If when

find if

44. varies inversely as the
square root of If when

find if

45. varies jointly as the cube
of and as If when

and
find if and

46. varies jointly as and the
square of and inversely
as the cube of If when

and
find if

and

For the following exercises, solve the application problem.

47. The weight of an object above the surface of the
earth varies inversely with the distance from the
center of the earth. If a person weighs 150 pounds
when he is on the surface of the earth (3,960 miles
from center), find the weight of the person if he is
20 miles above the surface.

48. The volume of an ideal gas varies directly with
the temperature and inversely with the
pressure P. A cylinder contains oxygen at a
temperature of 310 degrees K and a pressure of
18 atmospheres in a volume of 120 liters. Find the
pressure if the volume is decreased to 100 liters
and the temperature is increased to 320 degrees
K.

Practice Test
Give the degree and leading coefficient of the following polynomial function.

1.

Determine the end behavior of the polynomial function.

2. 3.
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Write the quadratic function in standard form. Determine the vertex and axes intercepts and graph the function.

4.

Given information about the graph of a quadratic function, find its equation.

5. Vertex and point on
graph

Solve the following application problem.

6. A rectangular field is to be
enclosed by fencing. In
addition to the enclosing
fence, another fence is to
divide the field into two
parts, running parallel to
two sides. If 1,200 feet of
fencing is available, find the
maximum area that can be
enclosed.

Find all zeros of the following polynomial functions, noting multiplicities.

7. 8.

Based on the graph, determine the zeros of the function and multiplicities.

9.

Use long division to find the quotient.

10.

Use synthetic division to find the quotient. If the divisor is a factor, write the factored form.

11. 12.

Use the Rational Zero Theorem to help you find the zeros of the polynomial functions.

13. 14.
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15. 16.

Given the following information about a polynomial function, find the function.

17. It has a double zero at
and zeros at

and . Its y-intercept
is

18. It has a zero of multiplicity
3 at and another
zero at . It contains
the point

Use Descartes’ Rule of Signs to determine the possible number of positive and negative solutions.

19.

For the following rational functions, find the intercepts and horizontal and vertical asymptotes, and sketch a graph.

20. 21.

Find the slant asymptote of the rational function.

22.

Find the inverse of the function.

23. 24. 25.

Find the unknown value.

26. varies inversely as the
square of and when

Find if

27. varies jointly with and
the cube root of If when

and
find if and

Solve the following application problem.

28. The distance a body falls
varies directly as the
square of the time it falls. If
an object falls 64 feet in 2
seconds, how long will it
take to fall 256 feet?
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Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

Chapter Outline
6.1 Exponential Functions
6.2 Graphs of Exponential Functions
6.3 Logarithmic Functions
6.4 Graphs of Logarithmic Functions
6.5 Logarithmic Properties
6.6 Exponential and Logarithmic Equations
6.7 Exponential and Logarithmic Models
6.8 Fitting Exponential Models to Data

Introduction to Exponential and Logarithmic Functions
Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see
hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your
mouth, nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your
own cells. But that is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and
even essential to the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two.
When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time
required to form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years.1

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. Table 1 shows the
number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over one
thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would have
over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10

Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Table 1

EXPONENTIAL AND LOGARITHMIC FUNCTIONS6

1 Todar, PhD, Kenneth. Todar's Online Textbook of Bacteriology. http://textbookofbacteriology.net/growth_3.html.
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In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth
patterns such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to
exponential functions. Both types of functions have numerous real-world applications when it comes to modeling and
interpreting data.

6.1 Exponential Functions
Learning Objectives
In this section, you will:

Evaluate exponential functions.
Find the equation of an exponential function.
Use compound interest formulas.
Evaluate exponential functions with base .

COREQUISITE SKILLS

Learning Objectives
Find the value of a function (exponential). (IA 3.5.3)
Graph exponential functions. (IA 10.2.1)

Objective 1: Find the value of a function (exponential). (IA 3.5.3)

Vocabulary.

For the function , ________ is the independent variable as it can be any value in the domain and ________ is the
dependent variable as its value depends on ________ .

Many natural events and real-life applications can be modeled using exponential functions. For example, the growth
of populations, the spread of viruses, radioactive decay and compounding interest all follow exponential patterns.

Definition An exponential function is a function of the form

where and
Examples:

Notice that in the exponential function, the variable is the exponent. In our functions so far, the variables were the
base.

Evaluating a function is the process of finding the value of f(x) for a given value of x.

EXAMPLE 1

Evaluate the function for the given values

ⓐ ⓑ ⓒ
Solution

ⓐ Replace x with 2 and find the value of the function

ⓑ Replace x with -1 and find the value of the function

ⓒ Replace x with 2h and simplify if possible
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Practice Makes Perfect
Find the value of an exponential function.

1. Evaluate the function for the given values.

ⓐ ⓑ ⓒ
2. We also find the value of the function when we solve application problems involving exponential functions.

Medicare Premiums. The monthly Medicare Part B health-care premium for most beneficiaries ages 65 and older
has increased significantly since 1975. The monthly premium has increased from about $7 in 1975 to $110.50 in
2011 (Source: Centers for Medicare and Medicaid Services). The following exponential function models the
premium increases:

where x is the number of years since 1975.
Estimate the monthly Medicare Part B premium in 1985, in 1992, and in 2002. (Note that x is the number of years
since 1975, so for 1985, x=10.) Round to the nearest dollar.

3. We can find Compound Interest using ,
Where A is the amount of money, P is the principal, t is the number of years, r is the interest rate, and n is the
number of times the interest was compounded per year.
Suppose that $960 is invested at 7% interest, compounded semiannually.

ⓐ Find the function for the amount to which the investment grows after t years.

ⓑ Find the amount of money in the account at t=1, 6, 10, 15, and 20 years.

Objective 2: Graph exponential functions. (IA 10.2.1)
Practice Makes Perfect
Graph exponential functions.

4. Graph the exponential function by making a table.

5. Graph the exponential function by making a table.
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How does it compare with the graph of ?

6. Graph , , in the same viewing window using a graphing calculator or program.
What is the relationship between the base a and the shape of the graph?

7. Graph , , in the same viewing window using a graphing calculator or
program. What is the relationship between the base a and the shape of the graph?

8. Fill in the Properties of Exponential Function.

Is it continuous?
Is it one-to-one?
Domain
Range
Increasing if
Decreasing if
Asymptotes
Intercepts

The number e, e ≈ 2.718281827, is like the number π in that we use a symbol to represent it because its decimal
representation never stops or repeats. The irrational number e is called the natural base or Euler's number after the
Swiss mathematician Leonhard Euler.

The exponential function whose base is e, is called the natural exponential function.

Practice Makes Perfect
9. Graph the exponential function by making a table.
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What is the domain of ?
What is the range of ?

India is the second most populous country in the world with a population of about billion people in 2021. The
population is growing at a rate of about each year2 . If this rate continues, the population of India will exceed
China’s population by the year When populations grow rapidly, we often say that the growth is “exponential,”
meaning that something is growing very rapidly. To a mathematician, however, the term exponential growth has a very
specific meaning. In this section, we will take a look at exponential functions, which model this kind of rapid growth.

Identifying Exponential Functions
When exploring linear growth, we observed a constant rate of change—a constant number by which the output
increased for each unit increase in input. For example, in the equation the slope tells us the output
increases by 3 each time the input increases by 1. The scenario in the India population example is different because we
have a percent change per unit time (rather than a constant change) in the number of people.

Defining an Exponential Function
A study found that the percent of the population who are vegans in the United States doubled from 2009 to 2011. In
2011, 2.5% of the population was vegan, adhering to a diet that does not include any animal products—no meat, poultry,
fish, dairy, or eggs. If this rate continues, vegans will make up 10% of the U.S. population in 2015, 40% in 2019, and 80%
in 2021.

What exactly does it mean to grow exponentially? What does the word double have in common with percent increase?
People toss these words around errantly. Are these words used correctly? The words certainly appear frequently in the
media.

• Percent change refers to a change based on a percent of the original amount.
• Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments

of time, that is, a percent increase of the original amount over time.
• Exponential decay refers to a decrease based on a constant multiplicative rate of change over equal increments of

time, that is, a percent decrease of the original amount over time.

For us to gain a clear understanding of exponential growth, let us contrast exponential growth with linear growth. We
will construct two functions. The first function is exponential. We will start with an input of 0, and increase each input by
1. We will double the corresponding consecutive outputs. The second function is linear. We will start with an input of 0,
and increase each input by 1. We will add 2 to the corresponding consecutive outputs. See Table 1.

2 http://www.worldometers.info/world-population/. Accessed February 24, 2014.
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0 1 0

1 2 2

2 4 4

3 8 6

4 16 8

5 32 10

6 64 12

Table 1

From Table 1 we can infer that for these two functions, exponential growth dwarfs linear growth.

• Exponential growth refers to the original value from the range increases by the same percentage over equal
increments found in the domain.

• Linear growth refers to the original value from the range increases by the same amount over equal increments
found in the domain.

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential
growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever the
input increased by one. For linear growth, the constant additive rate of change over equal increments resulted in adding
2 to the output whenever the input was increased by one.

The general form of the exponential function is where is any nonzero number, is a positive real number
not equal to 1.

• If the function grows at a rate proportional to its size.
• If the function decays at a rate proportional to its size.

Let’s look at the function from our example. We will create a table (Table 2) to determine the corresponding
outputs over an interval in the domain from to

Table 2

Let us examine the graph of by plotting the ordered pairs we observe on the table in Figure 1, and then make a few
observations.
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Figure 1

Let’s define the behavior of the graph of the exponential function and highlight some its key characteristics.

• the domain is ∞ ∞

• the range is ∞

• as ∞ ∞
• as ∞
• is always increasing,
• the graph of will never touch the x-axis because base two raised to any exponent never has the result of zero.
• is the horizontal asymptote.
• the y-intercept is 1.

Exponential Function

For any real number an exponential function is a function with the form

where

• is a non-zero real number called the initial value and
• is any positive real number such that
• The domain of is all real numbers.
• The range of is all positive real numbers if
• The range of is all negative real numbers if
• The y-intercept is and the horizontal asymptote is

EXAMPLE 1

Identifying Exponential Functions
Which of the following equations are not exponential functions?

•
•
•
•

Solution
By definition, an exponential function has a constant as a base and an independent variable as an exponent. Thus,

does not represent an exponential function because the base is an independent variable. In fact, is
a power function.

Recall that the base b of an exponential function is always a positive constant, and Thus, does not
represent an exponential function because the base, is less than
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TRY IT #1 Which of the following equations represent exponential functions?

•
•
•
•

Evaluating Exponential Functions
Recall that the base of an exponential function must be a positive real number other than Why do we limit the base
to positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

• Let and Then which is not a real number.

Why do we limit the base to positive values other than Because base results in the constant function. Observe what
happens if the base is

• Let Then for any value of

To evaluate an exponential function with the form we simply substitute with the given value, and calculate
the resulting power. For example:

Let What is

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of
operations. For example:

Let What is

Note that if the order of operations were not followed, the result would be incorrect:

EXAMPLE 2

Evaluating Exponential Functions
Let Evaluate without using a calculator.

Solution
Follow the order of operations. Be sure to pay attention to the parentheses.

TRY IT #2 Let Evaluate using a calculator. Round to four decimal places.

Defining Exponential Growth
Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in
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everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined
more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models
exponential growth.

Exponential Growth

A function that models exponential growth grows by a rate proportional to the amount present. For any real
number and any positive real numbers and such that an exponential growth function has the form

where

• is the initial or starting value of the function.
• is the growth factor or growth multiplier per unit .

In more general terms, we have an exponential function, in which a constant base is raised to a variable exponent. To
differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100
stores and expands by opening 50 new stores a year, so its growth can be represented by the function

Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its
growth can be represented by the function

A few years of growth for these companies are illustrated in Table 3.

Year, Stores, Company A Stores, Company B

Table 3

The graphs comparing the number of stores for each company over a five-year period are shown in Figure 2. We can see
that, with exponential growth, the number of stores increases much more rapidly than with linear growth.
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Figure 2 The graph shows the numbers of stores Companies A and B opened over a five-year period.

Notice that the domain for both functions is ∞ and the range for both functions is ∞ After year 1, Company B

always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B,
In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and

represents the growth factor. Generalizing further, we can write this function as where
100 is the initial value, is called the base, and is called the exponent.

EXAMPLE 3

Evaluating a Real-World Exponential Model
At the beginning of this section, we learned that the population of India was about billion in the year 2013, with an
annual growth rate of about This situation is represented by the growth function where is
the number of years since To the nearest thousandth, what will the population of India be in

Solution
To estimate the population in 2031, we evaluate the models for because 2031 is years after 2013. Rounding to
the nearest thousandth,

There will be about 1.549 billion people in India in the year 2031.
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...

TRY IT #3 The population of China was about 1.39 billion in the year 2013, with an annual growth rate of
about This situation is represented by the growth function where is
the number of years since To the nearest thousandth, what will the population of China be
for the year 2031? How does this compare to the population prediction we made for India in
Example 3?

Finding Equations of Exponential Functions
In the previous examples, we were given an exponential function, which we then evaluated for a given input. Sometimes
we are given information about an exponential function without knowing the function explicitly. We must use the
information to first write the form of the function, then determine the constants and and evaluate the function.

HOW TO

Given two data points, write an exponential model.

1. If one of the data points has the form then is the initial value. Using substitute the second point into
the equation and solve for

2. If neither of the data points have the form substitute both points into two equations with the form
Solve the resulting system of two equations in two unknowns to find and

3. Using the and found in the steps above, write the exponential function in the form

EXAMPLE 4

Writing an Exponential Model When the Initial Value Is Known
In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population
was growing exponentially. Write an exponential function representing the population of deer over time

Solution
We let our independent variable be the number of years after 2006. Thus, the information given in the problem can be
written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years
after 2006, we have given ourselves the initial value for the function, We can now substitute the second point
into the equation to find

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places
for the remainder of this section.

The exponential model for the population of deer is (Note that this exponential function models
short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not
be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph in
Figure 3 passes through the initial points given in the problem, and We can also see that the domain for

the function is ∞ and the range for the function is ∞
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Figure 3 Graph showing the population of deer over time, years after 2006

TRY IT #4 A wolf population is growing exponentially. In 2011, wolves were counted. By the
population had reached 236 wolves. What two points can be used to derive an exponential
equation modeling this situation? Write the equation representing the population of wolves
over time

EXAMPLE 5

Writing an Exponential Model When the Initial Value is Not Known
Find an exponential function that passes through the points and

Solution
Because we don’t have the initial value, we substitute both points into an equation of the form and then
solve the system for and

• Substituting gives
• Substituting gives

Use the first equation to solve for in terms of

Substitute in the second equation, and solve for

Use the value of in the first equation to solve for the value of

Thus, the equation is

We can graph our model to check our work. Notice that the graph in Figure 4 passes through the initial points given in
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the problem, and The graph is an example of an exponential decay function.

Figure 4 The graph of models exponential decay.

TRY IT #5 Given the two points and find the equation of the exponential function that passes
through these two points.

Q&A Do two points always determine a unique exponential function?

Yes, provided the two points are either both above the x-axis or both below the x-axis and have different
x-coordinates. But keep in mind that we also need to know that the graph is, in fact, an exponential
function. Not every graph that looks exponential really is exponential. We need to know the graph is
based on a model that shows the same percent growth with each unit increase in which in many real
world cases involves time.

HOW TO

Given the graph of an exponential function, write its equation.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever possible. Try to
choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept , then is the initial value. Using substitute the second point
into the equation and solve for

3. If neither of the data points have the form substitute both points into two equations with the form
Solve the resulting system of two equations in two unknowns to find and

4. Write the exponential function,

EXAMPLE 6

Writing an Exponential Function Given Its Graph
Find an equation for the exponential function graphed in Figure 5.
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Figure 5

Solution
We can choose the y-intercept of the graph, as our first point. This gives us the initial value, Next, choose a
point on the curve some distance away from that has integer coordinates. One such point is

Because we restrict ourselves to positive values of we will use Substitute and into the standard form to yield
the equation

TRY IT #6 Find an equation for the exponential function graphed in Figure 6.

Figure 6

HOW TO

Given two points on the curve of an exponential function, use a graphing calculator to find the equation.

1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and press [ENTER].
6. The screen displays the values of a and b in the exponential equation .
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EXAMPLE 7

Using a Graphing Calculator to Find an Exponential Function
Use a graphing calculator to find the exponential equation that includes the points and

Solution
Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in the L1 column,
enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-coordinates, 24.8 and 198.4.

Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values and will be displayed. The
exponential equation is

TRY IT #7 Use a graphing calculator to find the exponential equation that includes the points (3, 75.98) and
(6, 481.07).

Applying the Compound-Interest Formula
Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement accounts, use
compound interest. The term compounding refers to interest earned not only on the original value, but on the
accumulated value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate earned by an
investment account. The term nominal is used when the compounding occurs a number of times other than once per
year. In fact, when interest is compounded more than once a year, the effective interest rate ends up being greater than
the nominal rate! This is a powerful tool for investing.

We can calculate the compound interest using the compound interest formula, which is an exponential function of the
variables time principal APR and number of compounding periods in a year

For example, observe Table 4, which shows the result of investing $1,000 at 10% for one year. Notice how the value of the
account increases as the compounding frequency increases.

Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16

Table 4

The Compound Interest Formula

Compound interest can be calculated using the formula

where

• is the account value,
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• is measured in years,
• is the starting amount of the account, often called the principal, or more generally present value,
• is the annual percentage rate (APR) expressed as a decimal, and
• is the number of compounding periods in one year.

EXAMPLE 8

Calculating Compound Interest
If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the account be
worth in 10 years?

Solution
Because we are starting with $3,000, Our interest rate is 3%, so Because we are compounding
quarterly, we are compounding 4 times per year, so We want to know the value of the account in 10 years, so we
are looking for the value when

The account will be worth about $4,045.05 in 10 years.

TRY IT #8 An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year).
What will the investment be worth in 30 years?

EXAMPLE 9

Using the Compound Interest Formula to Solve for the Principal
A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future college tuition; the
account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and wants the account to grow to
$40,000 over 18 years. She believes the account will earn 6% compounded semi-annually (twice a year). To the nearest
dollar, how much will Lily need to invest in the account now?

Solution
The nominal interest rate is 6%, so Interest is compounded twice a year, so

We want to find the initial investment, needed so that the value of the account will be worth $40,000 in years.
Substitute the given values into the compound interest formula, and solve for

Lily will need to invest $13,801 to have $40,000 in 18 years.

TRY IT #9 Refer to Example 9. To the nearest dollar, how much would Lily need to invest if the account is
compounded quarterly?

Evaluating Functions with Base e
As we saw earlier, the amount earned on an account increases as the compounding frequency increases. Table 5 shows
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that the increase from annual to semi-annual compounding is larger than the increase from monthly to daily
compounding. This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies, listed in Table 5.

Frequency Value

Annually $2

Semiannually $2.25

Quarterly $2.441406

Monthly $2.613035

Daily $2.714567

Hourly $2.718127

Once per minute $2.718279

Once per second $2.718282

Table 5

These values appear to be approaching a limit as increases without bound. In fact, as gets larger and larger, the
expression approaches a number used so frequently in mathematics that it has its own name: the letter This
value is an irrational number, which means that its decimal expansion goes on forever without repeating. Its
approximation to six decimal places is shown below.

The Number

The letter e represents the irrational number

The letter e is used as a base for many real-world exponential models. To work with base e, we use the
approximation, The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who
first investigated and discovered many of its properties.

EXAMPLE 10

Using a Calculator to Find Powers of e
Calculate Round to five decimal places.

Solution
On a calculator, press the button labeled The window shows Type and then close parenthesis,
Press [ENTER]. Rounding to decimal places, Caution: Many scientific calculators have an “Exp”
button, which is used to enter numbers in scientific notation. It is not used to find powers of

6.1 • Exponential Functions 641



...

TRY IT #10 Use a calculator to find Round to five decimal places.

Investigating Continuous Growth
So far we have worked with rational bases for exponential functions. For most real-world phenomena, however, e is used
as the base for exponential functions. Exponential models that use as the base are called continuous growth or decay
models. We see these models in finance, computer science, and most of the sciences, such as physics, toxicology, and
fluid dynamics.

The Continuous Growth/Decay Formula

For all real numbers and all positive numbers and continuous growth or decay is represented by the formula

where

• is the initial value,
• is the continuous growth rate per unit time,
• and is the elapsed time.

If , then the formula represents continuous growth. If , then the formula represents continuous decay.

For business applications, the continuous growth formula is called the continuous compounding formula and takes
the form

where

• is the principal or the initial invested,
• is the growth or interest rate per unit time,
• and is the period or term of the investment.

HOW TO

Given the initial value, rate of growth or decay, and time solve a continuous growth or decay function.

1. Use the information in the problem to determine , the initial value of the function.
2. Use the information in the problem to determine the growth rate

a. If the problem refers to continuous growth, then
b. If the problem refers to continuous decay, then

3. Use the information in the problem to determine the time
4. Substitute the given information into the continuous growth formula and solve for

EXAMPLE 11

Calculating Continuous Growth
A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How much was in
the account at the end of one year?

Solution
Since the account is growing in value, this is a continuous compounding problem with growth rate The initial
investment was $1,000, so We use the continuous compounding formula to find the value after year:
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The account is worth $1,105.17 after one year.

TRY IT #11 A person invests $100,000 at a nominal 12% interest per year compounded continuously. What
will be the value of the investment in 30 years?

EXAMPLE 12

Calculating Continuous Decay
Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to in 3 days?

Solution
Since the substance is decaying, the rate, , is negative. So, The initial amount of radon-222 was

mg, so We use the continuous decay formula to find the value after days:

So 59.5115 mg of radon-222 will remain.

TRY IT #12 Using the data in Example 12, how much radon-222 will remain after one year?

MEDIA

Access these online resources for additional instruction and practice with exponential functions.

Exponential Growth Function (http://openstax.org/l/expgrowth)
Compound Interest (http://openstax.org/l/compoundint)

6.1 SECTION EXERCISES
Verbal

1. Explain why the values of an
increasing exponential
function will eventually
overtake the values of an
increasing linear function.

2. Given a formula for an
exponential function, is it
possible to determine
whether the function grows
or decays exponentially just
by looking at the formula?
Explain.

3. The Oxford Dictionary
defines the word nominal as
a value that is “stated or
expressed but not
necessarily corresponding
exactly to the real value.”3

Develop a reasonable
argument for why the term
nominal rate is used to
describe the annual
percentage rate of an
investment account that
compounds interest.

3 Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nomina.
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Algebraic

For the following exercises, identify whether the statement represents an exponential function. Explain.

4. The average annual
population increase of a
pack of wolves is 25.

5. A population of bacteria
decreases by a factor of
every hours.

6. The value of a coin collection
has increased by
annually over the last
years.

7. For each training session, a
personal trainer charges his
clients less than the
previous training session.

8. The height of a projectile at
time is represented by the
function

For the following exercises, consider this scenario: For each year the population of a forest of trees is represented by
the function In a neighboring forest, the population of the same type of tree is represented by the
function (Round answers to the nearest whole number.)

9. Which forest’s population is
growing at a faster rate?

10. Which forest had a greater
number of trees initially?
By how many?

11. Assuming the population
growth models continue to
represent the growth of
the forests, which forest
will have a greater number
of trees after years? By
how many?

12. Assuming the population
growth models continue to
represent the growth of
the forests, which forest
will have a greater number
of trees after years? By
how many?

13. Discuss the above results
from the previous four
exercises. Assuming the
population growth models
continue to represent the
growth of the forests,
which forest will have the
greater number of trees in
the long run? Why? What
are some factors that
might influence the long-
term validity of the
exponential growth model?

For the following exercises, determine whether the equation represents exponential growth, exponential decay, or
neither. Explain.

14. 15. 16.

17.

For the following exercises, find the formula for an exponential function that passes through the two points given.

18. and 19. and 20. and

21. and 22. and
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For the following exercises, determine whether the table could represent a function that is linear, exponential, or
neither. If it appears to be exponential, find a function that passes through the points.

23.
1 2 3 4

70 40 10 -20

24.
1 2 3 4

70 49 34.3 24.01

25.
1 2 3 4

80 61 42.9 25.61

26.
1 2 3 4

10 20 40 80

27.
1 2 3 4

-3.25 2 7.25 12.5

For the following exercises, use the compound interest formula,

28. After a certain number of
years, the value of an
investment account is
represented by the
equation

What is the value of the
account?

29. What was the initial deposit
made to the account in the
previous exercise?

30. How many years had the
account from the previous
exercise been
accumulating interest?

31. An account is opened with
an initial deposit of $6,500
and earns interest
compounded semi-
annually. What will the
account be worth in
years?

32. How much more would the
account in the previous
exercise have been worth if
the interest were
compounding weekly?

33. Solve the compound
interest formula for the
principal, .

34. Use the formula found in
the previous exercise to
calculate the initial deposit
of an account that is worth

after earning
interest compounded

monthly for years.
(Round to the nearest
dollar.)

35. How much more would the
account in the previous
two exercises be worth if it
were earning interest for
more years?

36. Use properties of rational
exponents to solve the
compound interest formula
for the interest rate,

6.1 • Exponential Functions 645



37. Use the formula found in
the previous exercise to
calculate the interest rate
for an account that was
compounded semi-
annually, had an initial
deposit of $9,000 and was
worth $13,373.53 after 10
years.

38. Use the formula found in
the previous exercise to
calculate the interest rate
for an account that was
compounded monthly, had
an initial deposit of $5,500,
and was worth $38,455
after 30 years.

For the following exercises, determine whether the equation represents continuous growth, continuous decay, or
neither. Explain.

39. 40. 41.

42. Suppose an investment
account is opened with an
initial deposit of
earning interest
compounded continuously.
How much will the account
be worth after years?

43. How much less would the
account from Exercise 42
be worth after years if it
were compounded
monthly instead?

Numeric

For the following exercises, evaluate each function. Round answers to four decimal places, if necessary.

44. for 45. for 46. for

47. for 48.
for

49. for

50. for

Technology

For the following exercises, use a graphing calculator to find the equation of an exponential function given the points on
the curve.

51. and 52. and 53. and

54. and 55. and
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Extensions

56. The annual percentage
yield (APY) of an
investment account is a
representation of the
actual interest rate earned
on a compounding
account. It is based on a
compounding period of
one year. Show that the
APY of an account that
compounds monthly can
be found with the formula

57. Repeat the previous
exercise to find the formula
for the APY of an account
that compounds daily. Use
the results from this and
the previous exercise to
develop a function for
the APY of any account that
compounds times per
year.

58. Recall that an exponential
function is any equation
written in the form

such that
and are positive
numbers and Any
positive number can be
written as for
some value of . Use this
fact to rewrite the formula
for an exponential function
that uses the number as
a base.

59. In an exponential decay
function, the base of the
exponent is a value
between 0 and 1. Thus, for
some number the
exponential decay function
can be written as

Use this
formula, along with the
fact that to show
that an exponential decay
function takes the form

for some
positive number .

60. The formula for the
amount in an investment
account with a nominal
interest rate at any time
is given by
where is the amount of
principal initially deposited
into an account that
compounds continuously.
Prove that the percentage
of interest earned to
principal at any time can
be calculated with the
formula

Real-World Applications

61. The fox population in a
certain region has an
annual growth rate of 9%
per year. In the year 2012,
there were 23,900 fox
counted in the area. What
is the fox population
predicted to be in the year
2020?

62. A scientist begins with 100
milligrams of a radioactive
substance that decays
exponentially. After 35
hours, 50mg of the
substance remains. How
many milligrams will
remain after 54 hours?

63. In the year 1985, a house
was valued at $110,000. By
the year 2005, the value
had appreciated to
$145,000. What was the
annual growth rate
between 1985 and 2005?
Assume that the value
continued to grow by the
same percentage. What
was the value of the house
in the year 2010?
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64. A car was valued at $38,000
in the year 2007. By 2013,
the value had depreciated
to $11,000 If the car’s value
continues to drop by the
same percentage, what will
it be worth by 2017?

65. Jaylen wants to save
$54,000 for a down
payment on a home. How
much will he need to invest
in an account with 8.2%
APR, compounding daily, in
order to reach his goal in 5
years?

66. Kyoko has $10,000 that she
wants to invest. Her bank
has several investment
accounts to choose from,
all compounding daily. Her
goal is to have $15,000 by
the time she finishes
graduate school in 6 years.
To the nearest hundredth
of a percent, what should
her minimum annual
interest rate be in order to
reach her goal? (Hint: solve
the compound interest
formula for the interest
rate.)

67. Alyssa opened a retirement
account with 7.25% APR in
the year 2000. Her initial
deposit was $13,500. How
much will the account be
worth in 2025 if interest
compounds monthly? How
much more would she
make if interest
compounded
continuously?

68. An investment account
with an annual interest
rate of 7% was opened with
an initial deposit of $4,000
Compare the values of the
account after 9 years when
the interest is compounded
annually, quarterly,
monthly, and continuously.

6.2 Graphs of Exponential Functions
Learning Objectives

Graph exponential functions.
Graph exponential functions using transformations.

COREQUISITE SKILLS

Learning Objectives
Graph exponential functions (IA 10.2.1).
Function transformations (exponential) (CA 3.5.1-3.5.5).

Objective 1: Graph exponential functions (IA 10.2.1).
EXAMPLE 1

Graph exponential functions.

On the same coordinate system graph and

Solution
We will use point plotting to graph the functions.
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Looking at the graphs of the functions and above, we see that adding one in the exponent
caused a horizontal shift of one unit to the left. We can use this pattern to graph other functions using horizontal shifts.

On the same coordinate system graph and

Solution
We will use point plotting to graph the functions.

Looking at the graphs of the functions and , we see that subtracting 2 caused vertical shift of
down two units. Notice that the horizontal asymptote also shifted down 2 units. We can use this pattern to help graph
other functions with a vertical shift.

Practice Makes Perfect
1. On the same coordinate system graph and
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2. On the same coordinate system graph and

Objective 2: Function transformations (exponential). (CA 3.5.1-3.5.5)
Vertical and Horizontal Shifts: Given a function , a new function where is a constant, is a vertical
shift of the function . All the output values change by k units. If k is a positive, the graph will shift up. If k is negative,
the graph will shift down.

Given a function , a new function , where h is a constant, is a horizontal shift of the function .
If h is positive, the graph will shift right. If h is negative, the graph will shift left.

HOW TO

Given a function and both a vertical and a horizontal shift, sketch the graph.

Step 1. Identify the vertical and horizontal shifts from the formula.
Step 2. The vertical shift results from a constant added to the output. Move the graph up for a positive constant and

down for a negative constant.
Step 3. The horizontal shift results from a constant added to the input. Move the graph left for a positive constant

and right for a negative constant.
Step 4. Note the order of the shifts, transformations, and reflections follow the order of operations.

EXAMPLE 2

Function transformations (exponential).

Graph

Solution
1. Make a table for
2. Add a column on the left for , by subtracting 2 from all the input values
3. Add a column on the right by subtracting 3 from all the y-value
4. Two outside columns have the points for the new graph
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HOW TO

Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph about the
x-axis.

2. Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of the original graph about the
y-axis.

Practice Makes Perfect
Function transformations (exponential).

3. Graph

4. ⓐ Given , reflect it about y-axis and write an equation of a new function below.

ⓑ Given , reflect it about x-axis and write an equation of a new function below.

ⓒ Given , shift the graph up 4 units and write an equation of a new function below.

ⓓ Graph the equations found in parts a, b, and c on the coordinate system provided and check your work using a
graphing utility.

As we discussed in the previous section, exponential functions are used for many real-world applications such as finance,
forensics, computer science, and most of the life sciences. Working with an equation that describes a real-world situation
gives us a method for making predictions. Most of the time, however, the equation itself is not enough. We learn a lot
about things by seeing their pictorial representations, and that is exactly why graphing exponential equations is a
powerful tool. It gives us another layer of insight for predicting future events.

Graphing Exponential Functions
Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of values for a
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function of the form whose base is greater than one. We’ll use the function Observe how the
output values in Table 1 change as the input increases by

Table 1

Each output value is the product of the previous output and the base, We call the base the constant ratio. In fact, for
any exponential function with the form is the constant ratio of the function. This means that as the input
increases by 1, the output value will be the product of the base and the previous output, regardless of the value of

Notice from the table that

• the output values are positive for all values of
• as increases, the output values increase without bound; and
• as decreases, the output values grow smaller, approaching zero.

Figure 1 shows the exponential growth function

Figure 1 Notice that the graph gets close to the x-axis, but never touches it.

The domain of is all real numbers, the range is ∞ and the horizontal asymptote is

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the form
whose base is between zero and one. We’ll use the function Observe how the output values in

Table 2 change as the input increases by

Table 2

Again, because the input is increasing by 1, each output value is the product of the previous output and the base, or
constant ratio

Notice from the table that

• the output values are positive for all values of
• as increases, the output values grow smaller, approaching zero; and
• as decreases, the output values grow without bound.

Figure 2 shows the exponential decay function,
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Figure 2

The domain of is all real numbers, the range is ∞ and the horizontal asymptote is

Characteristics of the Graph of the Parent Function

An exponential function with the form has these characteristics:

• one-to-one function
• horizontal asymptote:

• domain: ∞ ∞
• range: ∞
• x-intercept: none
• y-intercept:
• increasing if
• decreasing if

Figure 3 compares the graphs of exponential growth and decay functions.

Figure 3
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HOW TO

Given an exponential function of the form graph the function.

1. Create a table of points.
2. Plot at least point from the table, including the y-intercept
3. Draw a smooth curve through the points.

4. State the domain, ∞ ∞ the range, ∞ and the horizontal asymptote,

EXAMPLE 1

Sketching the Graph of an Exponential Function of the Form f(x) = bx

Sketch a graph of State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and create a table of points for the graph.

• Since is between zero and one, we know the function is decreasing. The left tail of the graph will increase
without bound, and the right tail will approach the asymptote

• Create a table of points as in Table 3.

Table 3

• Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points as in Figure 4.

Figure 4

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #1 Sketch the graph of State the domain, range, and asymptote.

Graphing Transformations of Exponential Functions
Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions,
we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function

without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted,
reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the
transformations applied.
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Graphing a Vertical Shift
The first transformation occurs when we add a constant to the parent function giving us a vertical shift
units in the same direction as the sign. For example, if we begin by graphing a parent function, we can then
graph two vertical shifts alongside it, using the upward shift, and the downward shift,

Both vertical shifts are shown in Figure 5.

Figure 5

Observe the results of shifting vertically:

• The domain, ∞ ∞ remains unchanged.

• When the function is shifted up units to
◦ The y-intercept shifts up units to
◦ The asymptote shifts up units to

◦ The range becomes ∞

• When the function is shifted down units to
◦ The y-intercept shifts down units to
◦ The asymptote also shifts down units to

◦ The range becomes ∞

Graphing a Horizontal Shift
The next transformation occurs when we add a constant to the input of the parent function giving us a
horizontal shift units in the opposite direction of the sign. For example, if we begin by graphing the parent function

we can then graph two horizontal shifts alongside it, using the shift left, and the shift
right, Both horizontal shifts are shown in Figure 6.

Figure 6

Observe the results of shifting horizontally:

• The domain, ∞ ∞ remains unchanged.

• The asymptote, remains unchanged.
• The y-intercept shifts such that:

◦ When the function is shifted left units to the y-intercept becomes This is because
so the initial value of the function is

◦ When the function is shifted right units to the y-intercept becomes Again, see that

so the initial value of the function is
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Shifts of the Parent Function f(x) = b x

For any constants and the function shifts the parent function

• vertically units, in the same direction of the sign of
• horizontally units, in the opposite direction of the sign of
• The y-intercept becomes
• The horizontal asymptote becomes

• The range becomes ∞

• The domain, ∞ ∞ remains unchanged.

HOW TO

Given an exponential function with the form graph the translation.

1. Draw the horizontal asymptote
2. Identify the shift as Shift the graph of left units if is positive, and right units if is

negative.
3. Shift the graph of up units if is positive, and down units if is negative.

4. State the domain, ∞ ∞ the range, ∞ and the horizontal asymptote

EXAMPLE 2

Graphing a Shift of an Exponential Function
Graph State the domain, range, and asymptote.

Solution
We have an exponential equation of the form with and

Draw the horizontal asymptote , so draw

Identify the shift as so the shift is

Shift the graph of left 1 units and down 3 units.

Figure 7

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #2 Graph State domain, range, and asymptote.
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HOW TO

Given an equation of the form for use a graphing calculator to approximate the solution.

• Press [Y=]. Enter the given exponential equation in the line headed “Y1=”.
• Enter the given value for in the line headed “Y2=”.
• Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y2=”.
• Press [GRAPH] to observe the graph of the exponential function along with the line for the specified value of

• To find the value of we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and
press [ENTER] three times. The point of intersection gives the value of x for the indicated value of the function.

EXAMPLE 3

Approximating the Solution of an Exponential Equation
Solve graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter next to Y1=. Then enter 42 next to Y2=. For a window, use the values –3 to 3 for and
–5 to 55 for Press [GRAPH]. The graphs should intersect somewhere near

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer may be different if you use a different
window or use a different value for Guess?) To the nearest thousandth,

TRY IT #3 Solve graphically. Round to the nearest thousandth.

Graphing a Stretch or Compression
While horizontal and vertical shifts involve adding constants to the input or to the function itself, a stretch or
compression occurs when we multiply the parent function by a constant For example, if we begin by
graphing the parent function we can then graph the stretch, using to get as shown on
the left in Figure 8, and the compression, using to get as shown on the right in Figure 8.

Figure 8 (a) stretches the graph of vertically by a factor of (b) compresses the

graph of vertically by a factor of
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Stretches and Compressions of the Parent Function

For any factor the function

• is stretched vertically by a factor of if
• is compressed vertically by a factor of if
• has a y-intercept of

• has a horizontal asymptote at a range of ∞ and a domain of ∞ ∞ which are unchanged from

the parent function.

EXAMPLE 4

Graphing the Stretch of an Exponential Function

Sketch a graph of State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and key points on the graph.

• Since is between zero and one, the left tail of the graph will increase without bound as decreases, and the
right tail will approach the x-axis as increases.

• Since the graph of will be stretched by a factor of
• Create a table of points as shown in Table 4.

Table 4

• Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points, as shown in Figure 9.

Figure 9

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #4 Sketch the graph of State the domain, range, and asymptote.

Graphing Reflections
In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the y-axis. When we
multiply the parent function by we get a reflection about the x-axis. When we multiply the input by we
get a reflection about the y-axis. For example, if we begin by graphing the parent function we can then graph
the two reflections alongside it. The reflection about the x-axis, is shown on the left side of Figure 10, and
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the reflection about the y-axis is shown on the right side of Figure 10.

Figure 10 (a) reflects the graph of about the x-axis. (b) reflects the graph of
about the y-axis.

Reflections of the Parent Function

The function

• reflects the parent function about the x-axis.
• has a y-intercept of

• has a range of ∞

• has a horizontal asymptote at and domain of ∞ ∞ which are unchanged from the parent function.

The function

• reflects the parent function about the y-axis.

• has a y-intercept of a horizontal asymptote at a range of ∞ and a domain of ∞ ∞ which

are unchanged from the parent function.

EXAMPLE 5

Writing and Graphing the Reflection of an Exponential Function
Find and graph the equation for a function, that reflects about the x-axis. State its domain, range, and
asymptote.

Solution
Since we want to reflect the parent function about the x-axis, we multiply by to get,
Next we create a table of points as in Table 5.

Table 5

Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points:
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Figure 11

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #5 Find and graph the equation for a function, that reflects about the y-axis. State
its domain, range, and asymptote.

Summarizing Translations of the Exponential Function
Now that we have worked with each type of translation for the exponential function, we can summarize them in Table 6
to arrive at the general equation for translating exponential functions.

Translations of the Parent Function

Translation Form

Shift
• Horizontally units to the left

• Vertically units up

Stretch and Compress
• Stretch if

• Compression if

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

Table 6

Translations of Exponential Functions

A translation of an exponential function has the form

Where the parent function, is

• shifted horizontally units to the left.
• stretched vertically by a factor of if
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• compressed vertically by a factor of if
• shifted vertically units.
• reflected about the x-axis when

Note the order of the shifts, transformations, and reflections follow the order of operations.

EXAMPLE 6

Writing a Function from a Description

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the range.

• is vertically stretched by a factor of , reflected across the y-axis, and then shifted up units.

Solution
We want to find an equation of the general form We use the description provided to find and

• We are given the parent function so
• The function is stretched by a factor of , so
• The function is reflected about the y-axis. We replace with to get:
• The graph is shifted vertically 4 units, so

Substituting in the general form we get,

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #6 Write the equation for function described below. Give the horizontal asymptote, the domain, and
the range.

• is compressed vertically by a factor of reflected across the x-axis and then

shifted down units.

MEDIA

Access this online resource for additional instruction and practice with graphing exponential functions.

Graph Exponential Functions (http://openstax.org/l/graphexpfunc)

6.2 SECTION EXERCISES
Verbal

1. What role does the
horizontal asymptote of an
exponential function play in
telling us about the end
behavior of the graph?

2. What is the advantage of
knowing how to recognize
transformations of the
graph of a parent function
algebraically?
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Algebraic

3. The graph of is
reflected about the y-axis
and stretched vertically by a
factor of What is the
equation of the new
function, State its
y-intercept, domain, and
range.

4. The graph of
is reflected about the y-axis
and compressed vertically
by a factor of What is the
equation of the new
function, State its
y-intercept, domain, and
range.

5. The graph of is
reflected about the x-axis
and shifted upward units.
What is the equation of the
new function, State its
y-intercept, domain, and
range.

6. The graph of
is shifted right units,
stretched vertically by a
factor of reflected about
the x-axis, and then shifted
downward units. What is
the equation of the new
function, State its
y-intercept (to the nearest
thousandth), domain, and
range.

7. The graph of

is
shifted downward units,
and then shifted left units,
stretched vertically by a
factor of and reflected
about the x-axis. What is the
equation of the new
function, State its
y-intercept, domain, and
range.

Graphical

For the following exercises, graph the function and its reflection about the y-axis on the same axes, and give the
y-intercept.

8. 9. 10.

For the following exercises, graph each set of functions on the same axes.

11.
and

12. and

For the following exercises, match each function with one of the graphs in Figure 12.

Figure 12
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13. 14. 15.

16. 17. 18.

For the following exercises, use the graphs shown in Figure 13. All have the form

Figure 13

19. Which graph has the
largest value for

20. Which graph has the
smallest value for

21. Which graph has the
largest value for

22. Which graph has the
smallest value for

For the following exercises, graph the function and its reflection about the x-axis on the same axes.

23. 24. 25.

For the following exercises, graph the transformation of Give the horizontal asymptote, the domain, and the
range.

26. 27. 28.

For the following exercises, describe the end behavior of the graphs of the functions.

29. 30. 31.

For the following exercises, start with the graph of Then write a function that results from the given
transformation.

32. Shift 4 units upward 33. Shift 3 units
downward

34. Shift 2 units left

35. Shift 5 units right 36. Reflect about the
x-axis

37. Reflect about the
y-axis
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For the following exercises, each graph is a transformation of Write an equation describing the transformation.

38. 39. 40.

For the following exercises, find an exponential equation for the graph.

41. 42.

Numeric

For the following exercises, evaluate the exponential functions for the indicated value of

43. for 44. for 45. for

Technology

For the following exercises, use a graphing calculator to approximate the solutions of the equation. Round to the nearest
thousandth.

46. 47. 48.

49. 50.
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Extensions

51. Explore and discuss the graphs of
and Then make a conjecture about
the relationship between the graphs of the
functions and for any real number

52. Prove the conjecture made in the previous
exercise.

53. Explore and discuss the graphs of
and Then make a

conjecture about the relationship between the
graphs of the functions and for any

real number n and real number

54. Prove the conjecture made in the previous
exercise.

6.3 Logarithmic Functions
Learning Objectives
In this section, you will:

Convert from logarithmic to exponential form.
Convert from exponential to logarithmic form.
Evaluate logarithms.
Use common logarithms.
Use natural logarithms.

COREQUISITE SKILLS

Learning Objectives
1. Convert between exponential and logarithmic form. (IA 10.3.1)
2. Evaluate logarithmic functions. (IA 10.3.2)

Objective 1: Convert between exponential and logarithmic form. (IA 10.3.1)
Practice Makes Perfect
1. Graph the exponential function by making a table.

a. Is it one-to-one?
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b. Domain?
c. Range?
d. Graph the inverse of on the grid above by interchanging x and y coordinates in the table.

e. Is the inverse one-to-one function?
f. Domain?

g. Range?

EXAMPLE 1

Find the inverse of

Solution

Rewrite with

Interchange the variables and .

Solve for . Oops! We have no way to solve for .

We give y a new notation:

" " read "the logarithm, base 2 of x", means "the power to which we raise 2 to get x". The function
is equivalent to is the logarithmic function with base , where ,

Since the equations and are equivalent, we can go back and forth between them. This will often be the
method to solve some exponential and logarithmic equations. To help with converting back and forth, let’s take a close
look at the equations. Notice the positions of the exponent and base.

Figure 1

If we remember the logarithm is the exponent, it makes the conversion easier. You may want to repeat, “base to the
exponent gives us the number.”

EXAMPLE 2

Convert between exponential and logarithmic form.

ⓐ Convert to logarithmic form:

Solution
Identify the base and the exponent: the base is 2 and the exponent is 3.
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Then we have .

ⓑ Convert to exponential form:

Solution
Identify the base and the exponent: the base is b and the exponent is a.
Then we have .

Practice Makes Perfect
Convert between exponential and logarithmic form.

Remember these logarithmic notations to help complete the following:
Common Logarithm
Natural Logarithm

2. Convert to logarithmic form.

ⓐ ⓑ ⓒ
3. Convert to exponential form.

ⓐ ⓑ ⓒ
Objective 2: Evaluate logarithmic functions (IA 10.3.2).
We can solve and evaluate logarithmic equations by using the technique of converting the equation to its equivalent
exponential form.

EXAMPLE 3

Find the value of x: ⓐ ⓑ and ⓒ
Solution

ⓐ

Convert to exponential form.

Solve the quadratic.

The base of a logarithmic function must be positive, so we
eliminate .

ⓑ

Convert to exponential form.

Simplify.

ⓒ
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Convert to exponential form.

Rewrite as .

With the same base, the exponents must be equal.

Practice Makes Perfect
4. Evaluate logarithmic functions.Find the value of .

ⓐ ⓑ ⓒ

5. Evaluate each of the following.

ⓐ ⓑ ⓒ ⓓ ⓔ ⓕ ⓖ
ⓗ

Figure 1 Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes4 . One year later, another,
stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,5 like those shown in
Figure 1. Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the
earthquake in Haiti. How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter
Scale. The Haitian earthquake registered a 7.0 on the Richter Scale6 whereas the Japanese earthquake registered a 9.0.7

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great as
an earthquake of magnitude 4. It is times as great! In this lesson, we will investigate the nature of
the Richter Scale and the base-ten function upon which it depends.

Converting from Logarithmic to Exponential Form
In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need to
be able to convert between logarithmic and exponential form. For example, suppose the amount of energy released

4 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.

5 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary. Accessed 3/4/2013.

6 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.

7 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#details. Accessed 3/4/2013.
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from one earthquake were 500 times greater than the amount of energy released from another. We want to calculate
the difference in magnitude. The equation that represents this problem is where represents the difference
in magnitudes on the Richter Scale. How would we solve for

We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far is
sufficient to solve We know that and so it is clear that must be some value between
2 and 3, since is increasing. We can examine a graph, as in Figure 2, to better estimate the solution.

Figure 2

Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function.
Observe that the graph in Figure 2 passes the horizontal line test. The exponential function is one-to-one, so its
inverse, is also a function. As is the case with all inverse functions, we simply interchange and and solve for
to find the inverse function. To represent as a function of we use a logarithmic function of the form
The base logarithm of a number is the exponent by which we must raise to get that number.

We read a logarithmic expression as, “The logarithm with base of is equal to ” or, simplified, “log base of is ”
We can also say, “ raised to the power of is ” because logs are exponents. For example, the base 2 logarithm of 32
is 5, because 5 is the exponent we must apply to 2 to get 32. Since we can write We read this as “log
base 2 of 32 is 5.”

We can express the relationship between logarithmic form and its corresponding exponential form as follows:

Note that the base is always positive.

Because logarithm is a function, it is most correctly written as using parentheses to denote function evaluation,
just as we would with However, when the input is a single variable or number, it is common to see the parentheses
dropped and the expression written without parentheses, as Note that many calculators require parentheses
around the

We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. This
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means and are inverse functions.

Definition of the Logarithmic Function

A logarithm base of a positive number satisfies the following definition.

For

where,

• we read as, “the logarithm with base of ” or the “log base of
• the logarithm is the exponent to which must be raised to get

Also, since the logarithmic and exponential functions switch the and values, the domain and range of the
exponential function are interchanged for the logarithmic function. Therefore,

• the domain of the logarithm function with base ∞
• the range of the logarithm function with base ∞ ∞

Q&A Can we take the logarithm of a negative number?

No. Because the base of an exponential function is always positive, no power of that base can ever be
negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of
zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative
number is not a real number.

HOW TO

Given an equation in logarithmic form convert it to exponential form.

1. Examine the equation and identify
2. Rewrite as

EXAMPLE 1

Converting from Logarithmic Form to Exponential Form
Write the following logarithmic equations in exponential form.

ⓐ ⓑ
Solution

First, identify the values of Then, write the equation in the form

ⓐ
Here, Therefore, the equation is equivalent to

ⓑ
Here, Therefore, the equation is equivalent to

TRY IT #1 Write the following logarithmic equations in exponential form.

ⓐ ⓑ
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Converting from Exponential to Logarithmic Form
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base exponent and
output Then we write

EXAMPLE 2

Converting from Exponential Form to Logarithmic Form
Write the following exponential equations in logarithmic form.

a.
b.
c.

Solution
First, identify the values of Then, write the equation in the form

a.
Here, and Therefore, the equation is equivalent to

b.
Here, and Therefore, the equation is equivalent to

c.

Here, and Therefore, the equation is equivalent to

TRY IT #2 Write the following exponential equations in logarithmic form.

ⓐ ⓑ ⓒ

Evaluating Logarithms
Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example,
consider We ask, “To what exponent must be raised in order to get 8?” Because we already know it
follows that

Now consider solving and mentally.

• We ask, “To what exponent must 7 be raised in order to get 49?” We know Therefore,
• We ask, “To what exponent must 3 be raised in order to get 27?” We know Therefore,

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate
mentally.

• We ask, “To what exponent must be raised in order to get ” We know and so

Therefore,

HOW TO

Given a logarithm of the form evaluate it mentally.

1. Rewrite the argument as a power of
2. Use previous knowledge of powers of identify by asking, “To what exponent should be raised in order to get

”
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EXAMPLE 3

Solving Logarithms Mentally
Solve without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must 4 be raised in order
to get 64?”

We know

Therefore,

TRY IT #3 Solve without using a calculator.

EXAMPLE 4

Evaluating the Logarithm of a Reciprocal
Evaluate without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must 3 be raised in order

to get ”

We know but what must we do to get the reciprocal, Recall from working with exponents that

We use this information to write

Therefore,

TRY IT #4 Evaluate without using a calculator.

Using Common Logarithms
Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words,
the expression means We call a base-10 logarithm a common logarithm. Common logarithms are
used to measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of
stars and the pH of acids and bases also use common logarithms.

Definition of the Common Logarithm

A common logarithm is a logarithm with base We write simply as The common logarithm of a
positive number satisfies the following definition.

For

We read as, “the logarithm with base of ” or “log base 10 of ”

The logarithm is the exponent to which must be raised to get
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HOW TO

Given a common logarithm of the form evaluate it mentally.

1. Rewrite the argument as a power of
2. Use previous knowledge of powers of to identify by asking, “To what exponent must be raised in order to

get ”

EXAMPLE 5

Finding the Value of a Common Logarithm Mentally
Evaluate without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must be raised in
order to get 1000?” We know

Therefore,

TRY IT #5 Evaluate

HOW TO

Given a common logarithm with the form evaluate it using a calculator.

1. Press [LOG].
2. Enter the value given for followed by [ ) ].
3. Press [ENTER].

EXAMPLE 6

Finding the Value of a Common Logarithm Using a Calculator
Evaluate to four decimal places using a calculator.

Solution
• Press [LOG].
• Enter 321, followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

Analysis
Note that and that Since 321 is between 100 and 1000, we know that must be between

and This gives us the following:

TRY IT #6 Evaluate to four decimal places using a calculator.
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EXAMPLE 7

Rewriting and Solving a Real-World Exponential Model
The amount of energy released from one earthquake was 500 times greater than the amount of energy released from
another. The equation represents this situation, where is the difference in magnitudes on the Richter Scale.
To the nearest thousandth, what was the difference in magnitudes?

Solution
We begin by rewriting the exponential equation in logarithmic form.

Next we evaluate the logarithm using a calculator:

• Press [LOG].
• Enter followed by [ ) ].
• Press [ENTER].
• To the nearest thousandth,

The difference in magnitudes was about

TRY IT #7 The amount of energy released from one earthquake was times greater than the amount of
energy released from another. The equation represents this situation, where is the
difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference
in magnitudes?

Using Natural Logarithms
The most frequently used base for logarithms is Base logarithms are important in calculus and some scientific
applications; they are called natural logarithms. The base logarithm, has its own notation,

Most values of can be found only using a calculator. The major exception is that, because the logarithm of 1 is
always 0 in any base, For other natural logarithms, we can use the key that can be found on most scientific
calculators. We can also find the natural logarithm of any power of using the inverse property of logarithms.

Definition of the Natural Logarithm

A natural logarithm is a logarithm with base We write simply as The natural logarithm of a positive
number satisfies the following definition.

For

We read as, “the logarithm with base of ” or “the natural logarithm of ”

The logarithm is the exponent to which must be raised to get

Since the functions and are inverse functions, for all and for

HOW TO

Given a natural logarithm with the form evaluate it using a calculator.

1. Press [LN].
2. Enter the value given for followed by [ ) ].
3. Press [ENTER].
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EXAMPLE 8

Evaluating a Natural Logarithm Using a Calculator
Evaluate to four decimal places using a calculator.

Solution
• Press [LN].
• Enter followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

TRY IT #8 Evaluate

MEDIA

Access this online resource for additional instruction and practice with logarithms.

Introduction to Logarithms (http://openstax.org/l/intrologarithms)

6.3 SECTION EXERCISES
Verbal

1. What is a base logarithm?
Discuss the meaning by
interpreting each part of the
equivalent equations
and for

2. How is the logarithmic
function
related to the exponential
function What is
the result of composing
these two functions?

3. How can the logarithmic
equation be
solved for using the
properties of exponents?

4. Discuss the meaning of the
common logarithm. What is
its relationship to a
logarithm with base and
how does the notation
differ?

5. Discuss the meaning of the
natural logarithm. What is
its relationship to a
logarithm with base and
how does the notation
differ?

Algebraic

For the following exercises, rewrite each equation in exponential form.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.

6.3 • Logarithmic Functions 675

http://openstax.org/l/intrologarithms


For the following exercises, rewrite each equation in logarithmic form.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.

For the following exercises, solve for by converting the logarithmic equation to exponential form.

26. 27. 28.

29. 30. 31.

32. 33. 34.

35.

For the following exercises, use the definition of common and natural logarithms to simplify.

36. 37. 38.

39. 40. 41.

Numeric

For the following exercises, evaluate the base logarithmic expression without using a calculator.

42. 43. 44.

45.

For the following exercises, evaluate the common logarithmic expression without using a calculator.

46. 47. 48.

49.

For the following exercises, evaluate the natural logarithmic expression without using a calculator.

50. 51. 52.

53.
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Technology

For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.

54. 55. 56.

57. 58.

Extensions

59. Is in the domain of
the function
If so, what is the value of
the function when
Verify the result.

60. Is in the range of
the function
If so, for what value of
Verify the result.

61. Is there a number such
that If so, what is
that number? Verify the
result.

62. Is the following true:

Verify the

result.

63. Is the following true:

Verify

the result.

Real-World Applications

64. The exposure index for
a camera is a
measurement of the
amount of light that hits
the image receptor. It is
determined by the
equation

where

is the “f-stop” setting on
the camera, and is the
exposure time in seconds.
Suppose the f-stop setting
is and the desired
exposure time is seconds.
What will the resulting
exposure index be?

65. Refer to the previous
exercise. Suppose the light
meter on a camera
indicates an of and
the desired exposure time
is 16 seconds. What should
the f-stop setting be?

66. The intensity levels I of two
earthquakes measured on
a seismograph can be
compared by the formula

where

is the magnitude given
by the Richter Scale. In
August 2009, an
earthquake of magnitude
6.1 hit Honshu, Japan. In
March 2011, that same
region experienced yet
another, more devastating
earthquake, this time with
a magnitude of 9.0.8 How
many times greater was
the intensity of the 2011
earthquake? Round to the
nearest whole number.

6.4 Graphs of Logarithmic Functions
Learning Objectives
In this section, you will:

Identify the domain of a logarithmic function.
Graph logarithmic functions.

8 http://earthquake.usgs.gov/earthquakes/world/historical.php. Accessed 3/4/2014.
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COREQUISITE SKILLS

Learning Objectives
1. Find the domain and range of a relation and a function. (IA 3.5.1)
2. Graph Logarithmic functions. (IA 10.3.3)

Objective 1: Find the domain and range of a relation and a function. (IA 3.5.1)

Vocabulary

Fill in the blanks:
The domain of a releation or a function is ________.
The range of a releation or a function is ________.

EXAMPLE 1

Find the domain and range of a relation and a function.

ⓐ ⓑ

ⓒ
Find the domain of the function

ⓓ
Find the domain of the function .

Solution

ⓐ
The set of points on the graph is
The Domain is the set of all x-coordinates:
The Range is the set of all y-coordinates:
Notice that even though y-coodinate of 1 appears twice, we only list it once.

ⓑ
Domain:
Range:
Notice that is included because the point is on the graph of a function.

ⓒ
A function is not defined when the denominator is zero. We need to set the denominator equal zero and exclude
this value(s) from the domain.

Domain
Notice that 2 is excluded from the domain because the function is not defined at

ⓓ
From the definition of the logarithmic function we know that
To find domain of , we need to set up and solve inequality.

,
Domain:
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Practice Makes Perfect
Find the domain and range of a relation and a function.

1. Find the domain and range of a relation.

2. Find the domain and the range of the function graphed. Use interval notation.

3. Find the domain of the function . Notice: this is the same function that was graphed in
question 2.

Objective 2: Graph Logarithmic functions. (IA 10.3.3)
To graph a logarithmic function , it is easiest to convert the equation to its exponential form, .
Generally, when we look for ordered pairs for the graph of a function, we usually choose an x-value and then determine
its corresponding y-value. In this case you may find it easier to choose y-values and then determine its corresponding x-
value.

EXAMPLE 2

Graph Logarithmic functions.

Graph

Solution
To graph the function, we will first rewrite the logarithmic equation, in exponential form,

We will use point plotting to graph the function. It will be easier to start with values of y and then get x.
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Practice Makes Perfect
Graph Logarithmic functions

4. Graph and in the same coordinate system.

680 6 • Exponential and Logarithmic Functions

Access for free at openstax.org



5. Graph
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6.

Do the graphs of , , and have the shape we expect from a logarithmic function
where ? (Remember a is the base of the log function)

7. Is there a point they all share? Why does this make sense?

8. Do they all have a point ? Why does this make sense?

9. Do they all have a point ? Why does this make sense?

10. Do they all have the same vertical asymptote? What is the equation of the vertical asymptote?

11. Do they all have the same domain? Write the domain in the interval notation.

12. Do they all have the same range? Write the range in the interval notation.

In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential model gives us
another layer of insight for predicting future events. How do logarithmic graphs give us insight into situations? Because
every logarithmic function is the inverse function of an exponential function, we can think of every output on a
logarithmic graph as the input for the corresponding inverse exponential equation. In other words, logarithms give the
cause for an effect.

To illustrate, suppose we invest in an account that offers an annual interest rate of compounded
continuously. We already know that the balance in our account for any year can be found with the equation

But what if we wanted to know the year for any balance? We would need to create a corresponding new function by
interchanging the input and the output; thus we would need to create a logarithmic model for this situation. By
graphing the model, we can see the output (year) for any input (account balance). For instance, what if we wanted to
know how many years it would take for our initial investment to double? Figure 1 shows this point on the logarithmic
graph.
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Figure 1

In this section we will discuss the values for which a logarithmic function is defined, and then turn our attention to
graphing the family of logarithmic functions.

Finding the Domain of a Logarithmic Function
Before working with graphs, we will take a look at the domain (the set of input values) for which the logarithmic function
is defined.

Recall that the exponential function is defined as for any real number and constant where

• The domain of is ∞ ∞

• The range of is ∞

In the last section we learned that the logarithmic function is the inverse of the exponential function
So, as inverse functions:

• The domain of is the range of ∞

• The range of is the domain of ∞ ∞

Transformations of the parent function behave similarly to those of other functions. Just as with other
parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and reflections—to
the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of Similarly,
applying transformations to the parent function can change the domain. When finding the domain of a
logarithmic function, therefore, it is important to remember that the domain consists only of positive real numbers. That
is, the argument of the logarithmic function must be greater than zero.

For example, consider This function is defined for any values of such that the argument, in this
case is greater than zero. To find the domain, we set up an inequality and solve for

In interval notation, the domain of is ∞

HOW TO

Given a logarithmic function, identify the domain.

1. Set up an inequality showing the argument greater than zero.
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2. Solve for
3. Write the domain in interval notation.

EXAMPLE 1

Identifying the Domain of a Logarithmic Shift
What is the domain of

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when Solving
this inequality,

The domain of is ∞

TRY IT #1 What is the domain of

EXAMPLE 2

Identifying the Domain of a Logarithmic Shift and Reflection
What is the domain of

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when Solving
this inequality,

The domain of is ∞

TRY IT #2 What is the domain of

Graphing Logarithmic Functions
Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to graphing
logarithmic functions. The family of logarithmic functions includes the parent function along with all its
transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function Because every logarithmic function of this form is the inverse of an
exponential function with the form their graphs will be reflections of each other across the line To
illustrate this, we can observe the relationship between the input and output values of and its equivalent

in Table 1.

Table 1
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Table 1

Using the inputs and outputs from Table 1, we can build another table to observe the relationship between points on the
graphs of the inverse functions and See Table 2.

Table 2

As we’d expect, the x- and y-coordinates are reversed for the inverse functions. Figure 2 shows the graph of and

Figure 2 Notice that the graphs of and are reflections about the line

Observe the following from the graph:

• has a y-intercept at and has an x- intercept at

• The domain of ∞ ∞ is the same as the range of

• The range of ∞ is the same as the domain of

Characteristics of the Graph of the Parent Function,

For any real number and constant we can see the following characteristics in the graph of

• one-to-one function
• vertical asymptote:

• domain: ∞
• range: ∞ ∞
• x-intercept: and key point
• y-intercept: none
• increasing if
• decreasing if

6.4 • Graphs of Logarithmic Functions 685



...

See Figure 3.

Figure 3

Figure 4 shows how changing the base in can affect the graphs. Observe that the graphs compress
vertically as the value of the base increases. (Note: recall that the function has base

Figure 4 The graphs of three logarithmic functions with different bases, all greater than 1.

HOW TO

Given a logarithmic function with the form graph the function.

1. Draw and label the vertical asymptote,
2. Plot the x-intercept,
3. Plot the key point
4. Draw a smooth curve through the points.

5. State the domain, ∞ the range, ∞ ∞ and the vertical asymptote,

EXAMPLE 3

Graphing a Logarithmic Function with the Form f(x) = logb(x).
Graph State the domain, range, and asymptote.
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Solution
Before graphing, identify the behavior and key points for the graph.

• Since is greater than one, we know the function is increasing. The left tail of the graph will approach the
vertical asymptote and the right tail will increase slowly without bound.

• The x-intercept is
• The key point is on the graph.
• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points (see

Figure 5).

Figure 5

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #3 Graph State the domain, range, and asymptote.

Graphing Transformations of Logarithmic Functions
As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to those of
other parent functions. We can shift, stretch, compress, and reflect the parent function without loss of
shape.

Graphing a Horizontal Shift of f(x) = logb(x)
When a constant is added to the input of the parent function the result is a horizontal shift units in
the opposite direction of the sign on To visualize horizontal shifts, we can observe the general graph of the parent
function and for alongside the shift left, and the shift right,

See Figure 6.
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Figure 6

Horizontal Shifts of the Parent Function

For any constant the function

• shifts the parent function left units if
• shifts the parent function right units if
• has the vertical asymptote

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the horizontal shift:
a. If shift the graph of left units.
b. If shift the graph of right units.

2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by subtracting

from the coordinate.
4. Label the three points.

5. The Domain is ∞ the range is ∞ ∞ and the vertical asymptote is
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EXAMPLE 4

Graphing a Horizontal Shift of the Parent Function y = logb(x)
Sketch the horizontal shift alongside its parent function. Include the key points and asymptotes on
the graph. State the domain, range, and asymptote.

Solution
Since the function is we notice

Thus so This means we will shift the function right 2 units.

The vertical asymptote is or

Consider the three key points from the parent function, and

The new coordinates are found by adding 2 to the coordinates.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

Figure 7

TRY IT #4 Sketch a graph of alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.

Graphing a Vertical Shift of y = logb(x)
When a constant is added to the parent function the result is a vertical shift units in the direction of
the sign on To visualize vertical shifts, we can observe the general graph of the parent function
alongside the shift up, and the shift down, See Figure 8.
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Figure 8

Vertical Shifts of the Parent Function

For any constant the function

• shifts the parent function up units if
• shifts the parent function down units if
• has the vertical asymptote

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the vertical shift:
◦ If shift the graph of up units.
◦ If shift the graph of down units.

2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by adding to

the coordinate.
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4. Label the three points.

5. The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

EXAMPLE 5

Graphing a Vertical Shift of the Parent Function y = logb(x)
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Since the function is we will notice Thus

This means we will shift the function down 2 units.

The vertical asymptote is

Consider the three key points from the parent function, and

The new coordinates are found by subtracting 2 from the y coordinates.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

Figure 9

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #5 Sketch a graph of alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

Graphing Stretches and Compressions of y = logb(x)
When the parent function is multiplied by a constant the result is a vertical stretch or compression
of the original graph. To visualize stretches and compressions, we set and observe the general graph of the parent
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function alongside the vertical stretch, and the vertical compression,
See Figure 10.

Figure 10

Vertical Stretches and Compressions of the Parent Function

For any constant the function

• stretches the parent function vertically by a factor of if
• compresses the parent function vertically by a factor of if
• has the vertical asymptote
• has the x-intercept

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the vertical stretch or compressions:
◦ If the graph of is stretched by a factor of units.
◦ If the graph of is compressed by a factor of units.
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2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying

the coordinates by
4. Label the three points.

5. The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

EXAMPLE 6

Graphing a Stretch or Compression of the Parent Function y = logb(x)
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Since the function is we will notice

This means we will stretch the function by a factor of 2.

The vertical asymptote is

Consider the three key points from the parent function, and

The new coordinates are found by multiplying the coordinates by 2.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is See Figure 11.

Figure 11

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #6 Sketch a graph of alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

EXAMPLE 7

Combining a Shift and a Stretch
Sketch a graph of State the domain, range, and asymptote.
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Solution
Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch the
function vertically by a factor of 5, as in Figure 12. The vertical asymptote will be shifted to The x-intercept will be

The domain will be ∞ Two points will help give the shape of the graph: and We chose

as the x-coordinate of one point to graph because when the base of the common logarithm.

Figure 12

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #7 Sketch a graph of the function State the domain, range, and asymptote.

Graphing Reflections of f(x) = logb(x)
When the parent function is multiplied by the result is a reflection about the x-axis. When the input is
multiplied by the result is a reflection about the y-axis. To visualize reflections, we restrict and observe the
general graph of the parent function alongside the reflection about the x-axis, and the
reflection about the y-axis,
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Figure 13

Reflections of the Parent Function

The function

• reflects the parent function about the x-axis.

• has domain, ∞ range, ∞ ∞ and vertical asymptote, which are unchanged from the parent

function.

The function

• reflects the parent function about the y-axis.

• has domain ∞

• has range, ∞ ∞ and vertical asymptote, which are unchanged from the parent function.

HOW TO

Given a logarithmic function with the parent function graph a translation.
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1. Draw the vertical asymptote, 1. Draw the vertical asymptote,

2. Plot the x-intercept, 2. Plot the x-intercept,

3. Reflect the graph of the parent function
about the x-axis.

3. Reflect the graph of the parent function
about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth curve through the points.

5. State the domain, (0, ∞), the range, (−∞, ∞), and the
vertical asymptote .

5. State the domain, (−∞, 0) the range, (−∞, ∞) and the
vertical asymptote

Table 3

EXAMPLE 8

Graphing a Reflection of a Logarithmic Function
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Before graphing identify the behavior and key points for the graph.

• Since is greater than one, we know that the parent function is increasing. Since the input value is multiplied
by is a reflection of the parent graph about the y-axis. Thus, will be decreasing as moves
from negative infinity to zero, and the right tail of the graph will approach the vertical asymptote

• The x-intercept is
• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points.

Figure 14

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #8 Graph State the domain, range, and asymptote.
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HOW TO

Given a logarithmic equation, use a graphing calculator to approximate solutions.

1. Press [Y=]. Enter the given logarithm equation or equations as Y1= and, if needed, Y2=.
2. Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view of the

graphs, including their point(s) of intersection.
3. To find the value of we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and

press [ENTER] three times. The point of intersection gives the value of for the point(s) of intersection.

EXAMPLE 9

Approximating the Solution of a Logarithmic Equation
Solve graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter next to Y1=. Then enter next to Y2=. For a window, use the values 0 to 5 for

and –10 to 10 for Press [GRAPH]. The graphs should intersect somewhere a little to right of

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be different if you use a different
window or use a different value for Guess?) So, to the nearest thousandth,

TRY IT #9 Solve graphically. Round to the nearest thousandth.

Summarizing Translations of the Logarithmic Function
Now that we have worked with each type of translation for the logarithmic function, we can summarize each in Table 4 to
arrive at the general equation for translating exponential functions.

Translations of the Parent Function

Translation Form

Shift
• Horizontally units to the left

• Vertically units up

Stretch and Compress
• Stretch if

• Compression if

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

Table 4
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Translations of Logarithmic Functions

All translations of the parent logarithmic function, have the form

where the parent function, is

• shifted vertically up units.
• shifted horizontally to the left units.
• stretched vertically by a factor of if
• compressed vertically by a factor of if
• reflected about the x-axis when

For the graph of the parent function is reflected about the y-axis.

EXAMPLE 10

Finding the Vertical Asymptote of a Logarithm Graph
What is the vertical asymptote of

Solution
The vertical asymptote is at

Analysis
The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4 units to the left
shifts the vertical asymptote to

TRY IT #10 What is the vertical asymptote of

EXAMPLE 11

Finding the Equation from a Graph
Find a possible equation for the common logarithmic function graphed in Figure 15.

Figure 15

Solution
This graph has a vertical asymptote at and has been vertically reflected. We do not know yet the vertical shift or
the vertical stretch. We know so far that the equation will have form:
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It appears the graph passes through the points and Substituting

Next, substituting in ,

This gives us the equation

Analysis
We can verify this answer by comparing the function values in Table 5 with the points on the graph in Figure 15.

−1 0 1 2 3

1 0 −0.58496 −1 −1.3219

4 5 6 7 8

−1.5850 −1.8074 −2 −2.1699 −2.3219

Table 5

TRY IT #11 Give the equation of the natural logarithm graphed in Figure 16.

Figure 16

Q&A Is it possible to tell the domain and range and describe the end behavior of a function just by
looking at the graph?

Yes, if we know the function is a general logarithmic function. For example, look at the graph in Figure 16.
The graph approaches (or thereabouts) more and more closely, so is, or is very close to,
the vertical asymptote. It approaches from the right, so the domain is all points to the right,
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The range, as with all general logarithmic functions, is all real numbers. And we can see
the end behavior because the graph goes down as it goes left and up as it goes right. The end behavior is

that as ∞ and as ∞ ∞

MEDIA

Access these online resources for additional instruction and practice with graphing logarithms.

Graph an Exponential Function and Logarithmic Function (http://openstax.org/l/graphexplog)
Match Graphs with Exponential and Logarithmic Functions (http://openstax.org/l/matchexplog)
Find the Domain of Logarithmic Functions (http://openstax.org/l/domainlog)

6.4 SECTION EXERCISES
Verbal

1. The inverse of every
logarithmic function is an
exponential function and
vice-versa. What does this
tell us about the relationship
between the coordinates of
the points on the graphs of
each?

2. What type(s) of
translation(s), if any, affect
the range of a logarithmic
function?

3. What type(s) of
translation(s), if any, affect
the domain of a logarithmic
function?

4. Consider the general
logarithmic function

Why can’t
be zero?

5. Does the graph of a general
logarithmic function have a
horizontal asymptote?
Explain.

Algebraic

For the following exercises, state the domain and range of the function.

6. 7. 8.

9. 10.

For the following exercises, state the domain and the vertical asymptote of the function.

11. 12. 13.

14. 15.

For the following exercises, state the domain, vertical asymptote, and end behavior of the function.

16. 17. 18.

19. 20.
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For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist, write DNE.

21. 22. 23.

24. 25.

Graphical

For the following exercises, match each function in Figure 17 with the letter corresponding to its graph.

Figure 17

26. 27. 28.

29. 30.

For the following exercises, match each function in Figure 18 with the letter corresponding to its graph.

Figure 18
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31. 32. 33.

For the following exercises, sketch the graphs of each pair of functions on the same axis.

34. and 35. and 36. and

37. and

For the following exercises, match each function in Figure 19 with the letter corresponding to its graph.

Figure 19

38. 39. 40.

For the following exercises, sketch the graph of the indicated function.

41. 42. 43.

44. 45. 46.
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For the following exercises, write a logarithmic equation corresponding to the graph shown.

47. Use as the parent
function.

48. Use as the parent
function.

49. Use as the parent
function.

50. Use as the parent
function.

Technology

For the following exercises, use a graphing calculator to find approximate solutions to each equation.

51. 52.

53. 54. 55.

Extensions

56. Let be any positive real
number such that
What must be equal
to? Verify the result.

57. Explore and discuss the
graphs of

and
Make a conjecture based
on the result.

58. Prove the conjecture made
in the previous exercise.
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59. What is the domain of the
function
Discuss the result.

60. Use properties of
exponents to find the
x-intercepts of the function

algebraically. Show the
steps for solving, and then
verify the result by
graphing the function.

6.5 Logarithmic Properties
Learning Objectives
In this section, you will:

Use the product rule for logarithms.
Use the quotient rule for logarithms.
Use the power rule for logarithms.
Expand logarithmic expressions.
Condense logarithmic expressions.
Use the change-of-base formula for logarithms.

COREQUISITE SKILLS

Learning Objectives
1. Simplify expressions using the properties for exponents. (IA 5.2.1)
2. Use the properties of logarithms. (IA 10.4.1)

Objective 1: Simplify expressions using the properties for exponents (IA 5.2.1)

Vocabulary

Simplify expressions using the properties for exponents.
Fill in the blanks:
In the expression , a is called ________, and m is called ________.
For example, means ________ which simplifies to ________.

The Product Property
Simplify expressions using the properties for exponents.

Simplify

What does this mean?

Now we see that

To multiply powers with the same base we need to ________ exponents.

This leads us to the Product Property

The Quotient Property

Simplify

What does this mean? After simplifying we get
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Now we see that

To divide powers with the same base we need to __________ exponents.

This leads us to the Quotient Property

The Power Property
Simplify

What does this mean? After adding exponents we get .

Now we see that

To raise a power to a power we need to __________ exponents.

This leads us to the Power Property .

We will also use these other properties:

Negative Exponents Property

Zero Exponent Property

EXAMPLE 1

Simplify expressions using the properties for exponents.

ⓐ Simplify ⓑ Simplify ⓒ Simplify

Solution

ⓐ

Use the product property.

Simplify.

ⓑ

Use the power property and multiply exponents.

Use the product property and add exponents.

Any base to the power of zero equals 1.

ⓒ

Use the power property and multiply exponents.

Use the product property and add exponents.
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Any base to the power of zero equals 1.

Practice Makes Perfect
Simplify expressions using the properties for exponents.

1.

2.

3.

4.

5.

6.

7.

Objective 2: Use the properties of logarithms (IA 10.4.1).

Property Base Base

Inverse Properties

Product Property of Logarithms

Quotient Property of Logarithms

Power Property of Logarithms

EXAMPLE 2

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution

Use the Product Property, .
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Use the Power Property, , on the last two terms.

Simplify.

EXAMPLE 3

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution

Rewrite the radical with a rational exponent.

Use the Power Property, .

Use the Quotient Property, .

Use the Product Property, ,
in the second term.

Use the Power Property, , inside the
parentheses.

Simplify by distributing.

EXAMPLE 4

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Solution

The log expressions all have the same base, 4.

The first two terms are added, so we use the Product Property,
.
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Since the logs are subtracted, we use the Quotient Property,
.

Practice Makes Perfect
8. Use the properties of logarithms to expand:

9. Use the properties of logarithms to expand:

10. Use the Properties of Logarithms to condense the logarithm:

11. Use the Properties of Logarithms to condense the logarithm:

Figure 1 The pH of hydrochloric acid is tested with litmus paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to 14.
Substances with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are said to be basic. Our
bodies, for instance, must maintain a pH close to 7.35 in order for enzymes to work properly. To get a feel for what is
acidic and what is basic, consider the following pH levels of some common substances:

• Battery acid: 0.8
• Stomach acid: 2.7
• Orange juice: 3.3
• Pure water: 7 (at 25° C)
• Human blood: 7.35
• Fresh coconut: 7.8
• Sodium hydroxide (lye): 14

To determine whether a solution is acidic or basic, we find its pH, which is a measure of the number of active positive
hydrogen ions in the solution. The pH is defined by the following formula, where is the concentration of hydrogen
ion in the solution

The equivalence of and is one of the logarithm properties we will examine in this section.
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Using the Product Rule for Logarithms
Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have similar
properties to exponents. Some important properties of logarithms are given here. First, the following properties are easy
to prove.

For example, since And since

Next, we have the inverse property.

For example, to evaluate we can rewrite the logarithm as and then apply the inverse property
to get

To evaluate we can rewrite the logarithm as and then apply the inverse property to get

Finally, we have the one-to-one property.

We can use the one-to-one property to solve the equation for Since the bases are the same,
we can apply the one-to-one property by setting the arguments equal and solving for

But what about the equation The one-to-one property does not help us in this instance.
Before we can solve an equation like this, we need a method for combining terms on the left side of the equation.

Recall that we use the product rule of exponents to combine the product of powers by adding exponents:
We have a similar property for logarithms, called the product rule for logarithms, which says that the logarithm of a
product is equal to a sum of logarithms. Because logs are exponents, and we multiply like bases, we can add the
exponents. We will use the inverse property to derive the product rule below.

Given any real number and positive real numbers and where we will show

Let and In exponential form, these equations are and It follows that

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the product of
any number of factors. For example, consider Using the product rule for logarithms, we can rewrite this
logarithm of a product as the sum of logarithms of its factors:

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of
individual logarithms.
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HOW TO

Given the logarithm of a product, use the product rule of logarithms to write an equivalent sum of logarithms.

1. Factor the argument completely, expressing each whole number factor as a product of primes.
2. Write the equivalent expression by summing the logarithms of each factor.

EXAMPLE 1

Using the Product Rule for Logarithms
Expand

Solution
We begin by factoring the argument completely, expressing as a product of primes.

Next we write the equivalent equation by summing the logarithms of each factor.

TRY IT #1 Expand

Using the Quotient Rule for Logarithms
For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to combine the
quotient of exponents by subtracting: The quotient rule for logarithms says that the logarithm of a

quotient is equal to a difference of logarithms. Just as with the product rule, we can use the inverse property to derive
the quotient rule.

Given any real number and positive real numbers and where we will show

Let and In exponential form, these equations are and It follows that

For example, to expand we must first express the quotient in lowest terms. Factoring and canceling we

get,

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the numerator.
Then we apply the product rule.
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The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the difference of
individual logarithms.

HOW TO

Given the logarithm of a quotient, use the quotient rule of logarithms to write an equivalent difference of
logarithms.

1. Express the argument in lowest terms by factoring the numerator and denominator and canceling common
terms.

2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of the
numerator.

3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand completely.

EXAMPLE 2

Using the Quotient Rule for Logarithms

Expand

Solution
First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product rule, noting that
the prime factors of the factor 15 are 3 and 5.

Analysis
There are exceptions to consider in this and later examples. First, because denominators must never be zero, this
expression is not defined for and Also, since the argument of a logarithm must be positive, we note as we

observe the expanded logarithm, that and Combining these conditions is beyond the
scope of this section, and we will not consider them here or in subsequent exercises.

TRY IT #2 Expand

Using the Power Rule for Logarithms
We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such as One
method is as follows:

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have
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derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the
base. Keep in mind that, although the input to a logarithm may not be written as a power, we may be able to change it to
a power. For example,

The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the
exponent times the logarithm of the base.

HOW TO

Given the logarithm of a power, use the power rule of logarithms to write an equivalent product of a factor
and a logarithm.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.

EXAMPLE 3

Expanding a Logarithm with Powers
Expand

Solution
The argument is already written as a power, so we identify the exponent, 5, and the base, and rewrite the equivalent
expression by multiplying the exponent times the logarithm of the base.

TRY IT #3 Expand

EXAMPLE 4

Rewriting an Expression as a Power before Using the Power Rule
Expand using the power rule for logs.

Solution
Expressing the argument as a power, we get

Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the exponent
times the logarithm of the base.

TRY IT #4 Expand
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EXAMPLE 5

Using the Power Rule in Reverse
Rewrite using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution
Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows that the
product of a number and a logarithm can be written as a power. For the expression we identify the factor, 4, as
the exponent and the argument, as the base, and rewrite the product as a logarithm of a power:

TRY IT #5 Rewrite using the power rule for logs to a single logarithm with a leading coefficient of 1.

Expanding Logarithmic Expressions
Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we apply
more than one rule in order to simplify an expression. For example:

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an
alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember,
however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside
the argument of the logarithm.

EXAMPLE 6

Expanding Logarithms Using Product, Quotient, and Power Rules

Rewrite as a sum or difference of logs.

Solution
First, because we have a quotient of two expressions, we can use the quotient rule:

Then seeing the product in the first term, we use the product rule:

Finally, we use the power rule on the first term:

TRY IT #6 Expand
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EXAMPLE 7

Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical Expression
Expand

Solution

TRY IT #7 Expand

Q&A Can we expand

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

EXAMPLE 8

Expanding Complex Logarithmic Expressions

Expand

Solution
We can expand by applying the Product and Quotient Rules.

TRY IT #8 Expand

Condensing Logarithmic Expressions
We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a
single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will
learn later how to change the base of any logarithm before condensing.

HOW TO

Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a
single logarithm.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each as
the logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.
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EXAMPLE 9

Using the Product and Quotient Rules to Combine Logarithms
Write as a single logarithm.

Solution
Using the product and quotient rules

This reduces our original expression to

Then, using the quotient rule

TRY IT #9 Condense

EXAMPLE 10

Condensing Complex Logarithmic Expressions
Condense

Solution
We apply the power rule first:

Next we apply the product rule to the sum:

Finally, we apply the quotient rule to the difference:

TRY IT #10 Rewrite as a single logarithm.

EXAMPLE 11

Rewriting as a Single Logarithm
Rewrite as a single logarithm.

Solution
We apply the power rule first:

Next we rearrange and apply the product rule to the sum:
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Finally, we apply the quotient rule to the difference:

TRY IT #11 Condense

EXAMPLE 12

Applying of the Laws of Logs
Recall that, in chemistry, If the concentration of hydrogen ions in a liquid is doubled, what is the effect
on pH?

Solution
Suppose is the original concentration of hydrogen ions, and is the original pH of the liquid. Then If the
concentration is doubled, the new concentration is Then the pH of the new liquid is

Using the product rule of logs

Since the new pH is

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

TRY IT #12 How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Using the Change-of-Base Formula for Logarithms
Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base other than 10
or we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other base; when
using a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.

Given any positive real numbers and where and we show

Let By exponentiating both sides with base , we arrive at an exponential form, namely It follows
that

For example, to evaluate using a calculator, we must first rewrite the expression as a quotient of common or
natural logs. We will use the common log.
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The Change-of-Base Formula

The change-of-base formula can be used to evaluate a logarithm with any base.

For any positive real numbers and where and

It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of
common or natural logs.

and

HOW TO

Given a logarithm with the form use the change-of-base formula to rewrite it as a quotient of logs with
any positive base where

1. Determine the new base remembering that the common log, has base 10, and the natural log,
has base

2. Rewrite the log as a quotient using the change-of-base formula
a. The numerator of the quotient will be a logarithm with base and argument
b. The denominator of the quotient will be a logarithm with base and argument

EXAMPLE 13

Changing Logarithmic Expressions to Expressions Involving Only Natural Logs
Change to a quotient of natural logarithms.

Solution
Because we will be expressing as a quotient of natural logarithms, the new base,

We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be the natural log
with argument 3. The denominator of the quotient will be the natural log with argument 5.

TRY IT #13 Change to a quotient of natural logarithms.

Q&A Can we change common logarithms to natural logarithms?

Yes. Remember that means So,
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EXAMPLE 14

Using the Change-of-Base Formula with a Calculator
Evaluate using the change-of-base formula with a calculator.

Solution
According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base. Since our
calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the log base

TRY IT #14 Evaluate using the change-of-base formula.

MEDIA

Access these online resources for additional instruction and practice with laws of logarithms.

The Properties of Logarithms (http://openstax.org/l/proplog)
Expand Logarithmic Expressions (http://openstax.org/l/expandlog)
Evaluate a Natural Logarithmic Expression (http://openstax.org/l/evaluatelog)

6.5 SECTION EXERCISES
Verbal

1. How does the power rule for logarithms help when
solving logarithms with the form

2. What does the change-of-base formula do? Why is
it useful when using a calculator?

Algebraic

For the following exercises, expand each logarithm as much as possible. Rewrite each expression as a sum, difference, or
product of logs.

3. 4. 5.

6. 7. 8.

For the following exercises, condense to a single logarithm if possible.

9. 10.

11. 12. 13.

14.
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For the following exercises, use the properties of logarithms to expand each logarithm as much as possible. Rewrite
each expression as a sum, difference, or product of logs.

15. 16. 17.

18. 19.

For the following exercises, condense each expression to a single logarithm using the properties of logarithms.

20. 21. 22.

23. 24.

For the following exercises, rewrite each expression as an equivalent ratio of logs using the indicated base.

25. to base 26. to base

For the following exercises, suppose and Use the change-of-base formula along with
properties of logarithms to rewrite each expression in terms of and Show the steps for solving.

27. 28. 29.

Numeric

For the following exercises, use properties of logarithms to evaluate without using a calculator.

30. 31. 32.

For the following exercises, use the change-of-base formula to evaluate each expression as a quotient of natural logs.
Use a calculator to approximate each to five decimal places.

33. 34. 35.

36. 37.

Extensions

38. Use the product rule for logarithms to find all
values such that

Show the steps
for solving.

39. Use the quotient rule for logarithms to find all
values such that
Show the steps for solving.
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40. Can the power property of
logarithms be derived from
the power property of
exponents using the
equation If not,
explain why. If so, show the
derivation.

41. Prove that
for any

positive integers and

42. Does

Verify the claim
algebraically.

6.6 Exponential and Logarithmic Equations
Learning Objectives
In this section, you will:

Use like bases to solve exponential equations.
Use logarithms to solve exponential equations.
Use the definition of a logarithm to solve logarithmic equations.
Use the one-to-one property of logarithms to solve logarithmic equations.
Solve applied problems involving exponential and logarithmic equations.

COREQUISITE SKILLS

Learning Objectives
1. Solve Exponential Equations. (IA 10.2.2)
2. Solve Logarithmic Equations. (IA 10.3.4)

Objective 1: Solve Exponential Equations. (IA 10.2.2)
Equations that include an exponential expression are called exponential equations. There are two types of
exponential equations: those with the common base on each side, and those without a common base.

Type 1: Possible common base on each side: Use properties of exponents to rewrite each side with a common base. Use
base-exponent property to set exponents equal to each other and solve for x.

Base-Exponent Property

For any , if then

Type 2: No possible common base: Use properties of exponents to rewrite each side in terms of one exponential
expression. Take the log or ln of each side and use the power rule to bring down the power. Solve the remaining
equation for x.

Property of Logarithmic Equality:

For any
If

EXAMPLE 1

Solving Exponential Equations.
Solve:

Solution

Is here a common base? Yes, both 3 and 27 can be rewritten as powers of
3.
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Write both sides of the equation with the same base.

Since the bases are the same, the exponents must be equal.

Write a new equation by setting the exponents equal.

Solve the equation.

Check the solution by substituting x=4 into the original
equation.

True

EXAMPLE 2

Solve . Find the exact answer and then approximate it to three decimal places.

Solution

Rewriting with a common base is not possible.

Isolate the exponential by dividing both sides by 3.

Take the natural logarithm of both sides.

Use the Power Property to get the x as a factor, not an exponent.

Use the property to simplify.

Solve the equation. Find the exact answer.

Approximate the answer.

TRY IT #1 Use the following steps to help solve the equation below. Is there a common base? Isolate the
variable term first to determine.
Solve .
Isolate the exponential term on one side.
Take ln or log of each side.
Use the Power Property to get the x as a factor, not an exponent.
Solve for x. Give an exact answer and approximate. Check.

TRY IT #2 Use the following steps to help solve the equation below.
Solve .
Is here a common base here? Yes, both 2 and 8 can be rewritten as powers of 2.
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Rewrite each side with a base of 2 using properties of exponents.
Set exponents equal since the bases are the same.
Solve for x. Give an exact answer and approximate. Check.

Practice Makes Perfect
Solve. Find the exact answer and then approximate it to three decimal places.

1.

2.

Objective 2: Solving Logarithmic Equations. (IA 10.3.4)
There are two types of logarithmic equations: those with log terms on just one side of the equation or those with log
terms on each side of the equation. Since the domain of logarithmic functions is positive numbers only, make sure to
check the solutions.

Type 1: Log terms on one side of the equation: Use properties of logs to rewrite a side with just one log term. Convert to
exponential notation and solve for x.

If then .

Type 2: Log terms on both sides of equation: First, use log properties to rewrite each side in terms of a single log
expression, if necessary. Use the one-to-one property of logarithmic equality to set arguments equal to one another.
Solve the resulting equation for x.

One-to-One Property of Logarithmic Equations

For any and is any real number:

EXAMPLE 3

Solving logarithmic equations.
Solve:

Solution

Rewrite in exponential form.

Simplify.

Solve for x.

Check.

, True
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EXAMPLE 4

Solve

Solution

Use the Quotient Property on the left side and the Power
Property on the right.

Rewrite as .

Use the One-to-One Property.

Solve the rational equation.

Distribute and write in standard form.

Factor and solve for x. , ,

Check: x=–5 is extraneous solution because so
x=1 is the only solution.

TRY IT #3 Use the following steps to help solve the equation below.

Solve

Use properties of logarithms to rewrite the left side as a single log term.

Convert to exponential form.

Solve for x. Check.

TRY IT #4 Use the following steps to help solve the equation below.

Solve

Use properties of logarithms to rewrite the left side as a single log term.

Use the One-to-One Property.

Solve the quadratic equation.

Check.

Practice Makes Perfect
Don’t forget to check your solutions.

3.

4.

5.
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Figure 1 Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as
the “rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia
had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population
numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions.
Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential
growth. In this section, we will learn techniques for solving exponential functions.

Using Like Bases to Solve Exponential Equations
The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions
tells us that, for any real numbers and where if and only if

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also
applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the
rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions
are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation To solve for we use the division property of exponents to rewrite
the right side so that both sides have the common base, Then we apply the one-to-one property of exponents by
setting the exponents equal to one another and solving for :

Using the One-to-One Property of Exponential Functions to Solve Exponential Equations

For any algebraic expressions and any positive real number

HOW TO

Given an exponential equation with the form where and are algebraic expressions with an
unknown, solve for the unknown.
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1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, for the unknown.

EXAMPLE 1

Solving an Exponential Equation with a Common Base
Solve

Solution

TRY IT #5 Solve

Rewriting Equations So All Powers Have the Same Base
Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the
terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation We can rewrite both sides of this equation as a power of Then we
apply the rules of exponents, along with the one-to-one property, to solve for

HOW TO

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation, for the unknown.

EXAMPLE 2

Solving Equations by Rewriting Them to Have a Common Base
Solve

Solution
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TRY IT #6 Solve

EXAMPLE 3

Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base
Solve

Solution

TRY IT #7 Solve

Q&A Do all exponential equations have a solution? If not, how can we tell if there is a solution during the
problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may
obtain an expression that is undefined.

EXAMPLE 4

Solving an Equation with Positive and Negative Powers
Solve

Solution
This equation has no solution. There is no real value of that will make the equation a true statement because any
power of a positive number is positive.

Analysis
Figure 2 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the equation has no
solution.

Figure 2

TRY IT #8 Solve

Solving Exponential Equations Using Logarithms
Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by
taking the logarithm of each side. Recall, since is equivalent to we may apply logarithms with the
same base on both sides of an exponential equation.
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HOW TO

Given an exponential equation in which a common base cannot be found, solve for the unknown.

1. Apply the logarithm of both sides of the equation.
a. If one of the terms in the equation has base 10, use the common logarithm.
b. If none of the terms in the equation has base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the unknown.

EXAMPLE 5

Solving an Equation Containing Powers of Different Bases
Solve

Solution

TRY IT #9 Solve

Q&A Is there any way to solve

Yes. The solution is

Equations Containing e
One common type of exponential equations are those with base This constant occurs again and again in nature, in
mathematics, in science, in engineering, and in finance. When we have an equation with a base on either side, we can
use the natural logarithm to solve it.

HOW TO

Given an equation of the form solve for

1. Divide both sides of the equation by
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by

EXAMPLE 6

Solve an Equation of the Form y = Aekt

Solve
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Solution

Analysis
Using laws of logs, we can also write this answer in the form If we want a decimal approximation of the
answer, we use a calculator.

TRY IT #10 Solve

Q&A Does every equation of the form have a solution?

No. There is a solution when and when and are either both 0 or neither 0, and they have the
same sign. An example of an equation with this form that has no solution is

EXAMPLE 7

Solving an Equation That Can Be Simplified to the Form y = Aekt

Solve

Solution

TRY IT #11 Solve

Extraneous Solutions
Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct
algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the
logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be
positive. If the number we are evaluating in a logarithm function is negative, there is no output.

EXAMPLE 8

Solving Exponential Functions in Quadratic Form
Solve

Solution
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Analysis
When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because zero has the
unique property that when a product is zero, one or both of the factors must be zero. We reject the equation
because a positive number never equals a negative number. The solution is not a real number, and in the real
number system this solution is rejected as an extraneous solution.

TRY IT #12 Solve

Q&A Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous
solutions.

Using the Definition of a Logarithm to Solve Logarithmic Equations
We have already seen that every logarithmic equation is equivalent to the exponential equation We
can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic
expression.

For example, consider the equation To solve this equation, we can use rules of logarithms
to rewrite the left side in compact form and then apply the definition of logs to solve for

Using the Definition of a Logarithm to Solve Logarithmic Equations

For any algebraic expression and real numbers and where

EXAMPLE 9

Using Algebra to Solve a Logarithmic Equation
Solve

Solution

TRY IT #13 Solve
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EXAMPLE 10

Using Algebra Before and After Using the Definition of the Natural Logarithm
Solve

Solution

TRY IT #14 Solve

EXAMPLE 11

Using a Graph to Understand the Solution to a Logarithmic Equation
Solve

Solution

Figure 3 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs
intersect is close to 20. In other words A calculator gives a better approximation:

Figure 3 The graphs of and cross at the point which is approximately (20.0855, 3).

TRY IT #15 Use a graphing calculator to estimate the approximate solution to the logarithmic equation
to 2 decimal places.

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations
As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one
property of logarithmic functions tells us that, for any real numbers and any positive real number
where

For example,

So, if then we can solve for and we get To check, we can substitute into the original equation:
In other words, when a logarithmic equation has the same base on each side, the arguments
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must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation with
logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then we
use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the
unknown.

For example, consider the equation To solve this equation, we can use the rules of
logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for

To check the result, substitute into

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

For any algebraic expressions and and any positive real number where

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an
extraneous solution.

HOW TO

Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form

2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation, for the unknown.

EXAMPLE 12

Solving an Equation Using the One-to-One Property of Logarithms
Solve

Solution

Analysis
There are two solutions: or The solution is negative, but it checks when substituted into the original equation
because the argument of the logarithm functions is still positive.
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TRY IT #16 Solve

Solving Applied Problems Using Exponential and Logarithmic Equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen
that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve
logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve
equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a
radioactive substance to decay, called its half-life. Table 1 lists the half-life for several of the more common radioactive
substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

Table 1

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to
calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

where

• is the amount initially present
• is the half-life of the substance
• is the time period over which the substance is studied
• is the amount of the substance present after time

EXAMPLE 13

Using the Formula for Radioactive Decay to Find the Quantity of a Substance
How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?
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Solution

Analysis
Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 grams.

TRY IT #17 How long will it take before twenty percent of our 1000-gram sample of uranium-235 has
decayed?

MEDIA

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

Solving Logarithmic Equations (http://openstax.org/l/solvelogeq)
Solving Exponential Equations with Logarithms (http://openstax.org/l/solveexplog)

6.6 SECTION EXERCISES
Verbal

1. How can an exponential
equation be solved?

2. When does an extraneous
solution occur? How can an
extraneous solution be
recognized?

3. When can the one-to-one
property of logarithms be
used to solve an equation?
When can it not be used?

Algebraic

For the following exercises, use like bases to solve the exponential equation.

4. 5. 6.

7. 8. 9.

10.

For the following exercises, use logarithms to solve.

11. 12. 13.
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14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

29. 30.

For the following exercises, use the definition of a logarithm to solve the equation.

31. 32. 33.

34. 35.

For the following exercises, use the one-to-one property of logarithms to solve.

36. 37. 38.

39. 40. 41.

42. 43.

For the following exercises, solve each equation for

44. 45. 46.

47. 48. 49.

50.

Graphical

For the following exercises, solve the equation for if there is a solution. Then graph both sides of the equation, and
observe the point of intersection (if it exists) to verify the solution.

51. 52. 53.

54. 55. 56.

57. 58. 59.
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60. 61. 62.

63. 64.

For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

65. An account with an initial
deposit of earns

annual interest,
compounded continuously.
How much will the account
be worth after 20 years?

66. The formula for measuring
sound intensity in decibels

is defined by the
equation

where

is the intensity of the
sound in watts per square
meter and is
the lowest level of sound
that the average person
can hear. How many
decibels are emitted from a
jet plane with a sound
intensity of watts
per square meter?

67. The population of a small
town is modeled by the
equation
where is measured in
years. In approximately
how many years will the
town’s population reach

Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm.
Then use a calculator to approximate the variable to 3 decimal places.

68. using
the common log.

69. using the natural
log

70. using the
common log

71. using the
common log

72. using the
natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to the
nearest ten-thousandth.

73. 74. 75.

76. Atmospheric pressure in pounds per square
inch is represented by the formula

where is the number of miles
above sea level. To the nearest foot, how high is
the peak of a mountain with an atmospheric
pressure of pounds per square inch? (Hint:
there are 5280 feet in a mile)

77. The magnitude M of an earthquake is represented

by the equation where is the

amount of energy released by the earthquake in
joules and is the assigned minimal
measure released by an earthquake. To the
nearest hundredth, what would the magnitude be
of an earthquake releasing joules of
energy?
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Extensions

78. Use the definition of a
logarithm along with the
one-to-one property of
logarithms to prove that

79. Recall the formula for
continually compounding
interest, Use the
definition of a logarithm
along with properties of
logarithms to solve the
formula for time such
that is equal to a single
logarithm.

80. Recall the compound
interest formula

Use the
definition of a logarithm
along with properties of
logarithms to solve the
formula for time

81. Newton’s Law of Cooling states that the
temperature of an object at any time t can be
described by the equation

where is the
temperature of the surrounding environment,
is the initial temperature of the object, and is the
cooling rate. Use the definition of a logarithm
along with properties of logarithms to solve the
formula for time such that is equal to a single
logarithm.

6.7 Exponential and Logarithmic Models
Learning Objectives
In this section, you will:

Model exponential growth and decay.
Use Newton’s Law of Cooling.
Use logistic-growth models.
Choose an appropriate model for data.
Express an exponential model in base .

COREQUISITE SKILLS

Learning Objectives
1. Use exponential models in applications. (IA 10.2.3)
2. Use logarithmic models in applications. (IA 10.3.5)

Objective 1: Use exponential models in applications. (IA 10.2.3)

Vocabulary

Fill in the blanks.
An Exponential Function is the function in the form _________, where _________.
The Natural Exponential Function is an exponential function whose base is _________.
This irrational number_________ approximately equals _________.

Using exponential models
Exponential functions model many situations. If you have a savings account, you have experienced the use of an
exponential function. There are two formulas that are used to determine the balance in the account when interest is
earned. If a principal, P, is invested at an interest rate, r, for t years, the new balance, A, will depend on how often the
interest is compounded.
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Compound Interest

For a principal, P, invested at an interest rate, r, for t years, the new balance, A, is:

EXAMPLE 1

A total of was invested in a college fund for a new grandchild.

ⓐ If the interest rate is how much will be in the account in 18 years by each method of compounding?

ⓑ compound quarterly

ⓒ compound monthly

ⓓ compound continuously

Solution

ⓐ

Identify the values of each variable in the formulas.

Remember to express the percent as a decimal.

ⓑ

For quarterly compounding, . There are 4 quarters in a year.

Substitute the values in the formula.

Compute the amount. Be careful to consider the order of operations as you
enter the expression into your calculator.

ⓒ

For monthly compounding, . There are 12 months in a year.

Substitute the values in the formula.

Compute the amount.
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ⓓ

For compounding continuously,

Substitute the values in the formula.

Compute the amount.

Exponential Growth and Decay
Other topics that are modeled by exponential functions involve growth and decay. Both also use the formula
we used for the growth of money. For growth and decay, generally we use as the original amount instead of calling
it the principal. We see that exponential growth has a positive rate of growth and exponential decay has a negative
rate of growth.

Exponential Growth and Decay

For an original amount, that grows or decays at a rate, r, for a certain time, t, the final amount, A, is:

EXAMPLE 2

Chris is a researcher at the Center for Disease Control and Prevention and he is trying to understand the behavior of a
new and dangerous virus. He starts his experiment with 100 of the virus that grows at a rate of 25% per hour. He will
check on the virus in 24 hours. How many viruses will he find?

Solution

Identify the values of each variable in the formulas.

Be sure to put the percent in decimal form.

Be sure the units match—the rate is per hour and the time is in hours.

Substitute the values in the formula: .

Compute the amount.

Round to the nearest whole virus.

The researcher will find 40,343 viruses.

Practice Makes Perfect
1. Angela invested in a savings account. If the interest rate is how much will be in the account in 10

years by each method of compounding?

ⓐ compound quarterly
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ⓑ compound monthly

ⓒ compound continuously

2. Another researcher at the Center for Disease Control and Prevention, Lisa, is studying the growth of a bacteria.
She starts her experiment with 50 of the bacteria that grows at a rate of per hour. She will check on the
bacteria every 8 hours. How many bacteria will she find in 8 hours?

Objective 2: Use logarithmic models in applications. (IA 10.3.5)

Vocabulary

Fill in the blanks.
A Logarithmic Function is the function in the form ________, where ________, ________, and ________.
The Logarithmic Function is called the ________ and has a base ________.

Decibel Level of Sound
There are many applications that are modeled by logarithmic equations. We will first look at the logarithmic equation
that gives the decibel (dB) level of sound. Decibels range from 0, which is barely audible to 160, which can rupture an
eardrum. The10-12 in the formula represents the intensity of sound that is barely audible.

The loudness level, D, measured in decibels, of a sound of intensity, I, measured in watts per square inch is

EXAMPLE 3

Use logarithmic models in applications.

Extended exposure to noise that measures 85 dB can cause permanent damage to the inner ear which will result in
hearing loss. What is the decibel level of music coming through earphones with intensity watts per square inch?

Solution

Substitute in the intensity level, I.

Simplify.

Since

Multiply.

The magnitude of an earthquake is measured by a logarithmic scale called the Richter scale. The model is
where is the intensity of the shock wave. This model provides a way to measure earthquake intensity.

Earthquake Intensity

The magnitude R of an earthquake is measured by where I is the intensity of its shock wave.
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EXAMPLE 4

In 1906, San Francisco experienced an intense earthquake with a magnitude of 7.8 on the Richter scale. Over 80% of
the city was destroyed by the resulting fires. In 2014, Los Angeles experienced a moderate earthquake that measured
5.1 on the Richter scale and caused $108 million dollars of damage. Compare the intensities of the two earthquakes.

Solution
To compare the intensities, we first need to convert the magnitudes to intensities using the log formula. Then we will
set up a ratio to compare the intensities.

Convert the magnitudes to
intensities.

1906 earthquake

Convert to exponential form.

2014 earthquake

Convert to exponential form.

Form a ratio of the intensities.

Substitute in the values.

Divide by subtracting the
exponents.

Evaluate.

Answer:
The intensity of the 1906 earthquake was about 501 times the intensity of the
2014 earthquake.

Practice Makes Perfect
Use logarithmic models in applications.

3. What is the decibel level of one of the new quiet dishwashers with intensity watts per square inch?

4. In 1906, San Francisco experienced an intense earthquake with a magnitude of 7.8 on the Richter scale. In 1989,
the Loma Prieta earthquake also affected the San Francisco area, and measured 6.9 on the Richter scale. Compare
the intensities of the two earthquakes.
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Figure 1 A nuclear research reactor inside the Neely Nuclear Research Center on the Georgia Institute of Technology
campus (credit: Georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section, we explore
some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

Modeling Exponential Growth and Decay
In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a familiar
general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. In the
case of rapid growth, we may choose the exponential growth function:

where is equal to the value at time zero, is Euler’s constant, and is a positive constant that determines the rate
(percentage) of growth. We may use the exponential growth function in applications involving doubling time, the time it
takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, and
natural resources may exhibit growth based on a doubling time. In some applications, however, as we will see when we
discuss the logistic equation, the logistic model sometimes fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably
choose the exponential decay model. Again, we have the form where is the starting value, and is
Euler’s constant. Now is a negative constant that determines the rate of decay. We may use the exponential decay
model when we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its original
quantity. We use half-life in applications involving radioactive isotopes.

In our choice of a function to serve as a mathematical model, we often use data points gathered by careful observation
and measurement to construct points on a graph and hope we can recognize the shape of the graph. Exponential
growth and decay graphs have a distinctive shape, as we can see in Figure 2 and Figure 3. It is important to remember
that, although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance above the x-axis.
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Figure 2 A graph showing exponential growth. The equation is

Figure 3 A graph showing exponential decay. The equation is

Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we often use
orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in scientific notation,
with one digit to the left of the decimal. For example, the distance to the nearest star, Proxima Centauri, measured in
kilometers, is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is So, we could
describe this number as having order of magnitude

Characteristics of the Exponential Function,

An exponential function with the form has the following characteristics:

• one-to-one function
• horizontal asymptote:

• domain: ∞ ∞
• range: ∞
• x intercept: none
• y-intercept:
• increasing if (see Figure 4)
• decreasing if (see Figure 4)
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Figure 4 An exponential function models exponential growth when and exponential decay when

EXAMPLE 1

Graphing Exponential Growth
A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a function of
time.

Solution
When an amount grows at a fixed percent per unit time, the growth is exponential. To find we use the fact that is
the amount at time zero, so To find use the fact that after one hour the population doubles from
to The formula is derived as follows

so Thus the equation we want to graph is The graph is shown in Figure 5.

Figure 5 The graph of

Analysis
The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of magnitude

The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude so we could say
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...

that the population has increased by three orders of magnitude in ten hours.

Half-Life
We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above, is
half-life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount. Every
radioactive isotope has a half-life, and the process describing the exponential decay of an isotope is called radioactive
decay.

To find the half-life of a function describing exponential decay, solve the following equation:

We find that the half-life depends only on the constant and not on the starting quantity

The formula is derived as follows

Since the time, is positive, must, as expected, be negative. This gives us the half-life formula

HOW TO

Given the half-life, find the decay rate.

1. Write
2. Replace by and replace by the given half-life.
3. Solve to find Express as an exact value (do not round).

Note: It is also possible to find the decay rate using

EXAMPLE 2

Finding the Function that Describes Radioactive Decay
The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time,

Solution
This formula is derived as follows.

The function that describes this continuous decay is We observe that the coefficient of
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is negative, as expected in the case of exponential decay.

TRY IT #1 The half-life of plutonium-244 is 80,000,000 years. Find a function that gives the amount of
plutonium-244 remaining as a function of time, measured in years.

Radiocarbon Dating
The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate date a
plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libby, who won a Nobel Prize for his
discovery. It compares the difference between the ratio of two isotopes of carbon in an organic artifact or fossil to the
ratio of those two isotopes in the air. It is believed to be accurate to within about 1% error for plants or animals that died
within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the carbon
dioxide in the air we breathe. Most of the carbon on Earth is carbon-12, which has an atomic weight of 12 and is not
radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000 years, using tree
rings and other organic samples of known dates—although the ratio has changed slightly over the centuries.

As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the
atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-14 to
carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be
approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after years is

where

• is the amount of carbon-14 remaining
• is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:

To find the age of an object, we solve this equation for

Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14 dating,
and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is approximately
0.0000000001%. Let be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be dated, determined by a
method called liquid scintillation. From the equation we know the ratio of the percentage of
carbon-14 in the object we are dating to the initial amount of carbon-14 in the object when it was formed is

We solve this equation for to get
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...
HOW TO

Given the percentage of carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an equivalent decimal,
2. Substitute for k in the equation and solve for the age,

EXAMPLE 3

Finding the Age of a Bone
A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the bone?

Solution
We substitute for in the equation and solve for

The bone fragment is about 13,301 years old.

Analysis
The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention above, a scientist
will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only accurate to about 1%,
so this age should be given as

TRY IT #2 Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take
more or less than 230 years until only 1 milligram remains?

Calculating Doubling Time
For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities, we
might want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for a quantity
to double is called the doubling time.

Given the basic exponential growth equation doubling time can be found by solving for when the original
quantity has doubled, that is, by solving

The formula is derived as follows:

Thus the doubling time is

EXAMPLE 4

Finding a Function That Describes Exponential Growth
According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is
approximately two years. Give a function that describes this behavior.
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Solution
The formula is derived as follows:

The function is

TRY IT #3 Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer
holds. Growth has slowed to a doubling time of approximately three years. Find the new function
that takes that longer doubling time into account.

Using Newton’s Law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the
temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of the
generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for
temperature as a function of time as an object’s temperature is equalized with the ambient temperature

This formula is derived as follows:

Newton’s Law of Cooling

The temperature of an object, in surrounding air with temperature will behave according to the formula

where

• is time
• is the difference between the initial temperature of the object and the surroundings
• is a constant, the continuous rate of cooling of the object

HOW TO

Given a set of conditions, apply Newton’s Law of Cooling.

1. Set equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula to find the parameters and

3. Substitute in the desired time to find the temperature or the desired temperature to find the time.
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EXAMPLE 5

Using Newton’s Law of Cooling
A cheesecake is taken out of the oven with an ideal internal temperature of and is placed into a refrigerator.
After 10 minutes, the cheesecake has cooled to If we must wait until the cheesecake has cooled to before we
eat it, how long will we have to wait?

Solution
Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay
exponentially toward 35, following the equation

We know the initial temperature was 165, so

We were given another data point, which we can use to solve for

This gives us the equation for the cooling of the cheesecake:

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to

TRY IT #4 A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the
temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60
degrees?

Using Logistic Growth Models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to fall
apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double the
number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or one-
half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time.
Eventually, an exponential model must begin to approach some limiting value, and then the growth is forced to slow. For
this reason, it is often better to use a model with an upper bound instead of an exponential growth model, though the
exponential growth model is still useful over a short term, before approaching the limiting value.

The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output
approaches the model’s upper bound, called the carrying capacity. For constants and the logistic growth of a
population over time is represented by the model
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The graph in Figure 6 shows how the growth rate changes over time. The graph increases from left to right, but the
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase
decreases.

Figure 6

Logistic Growth

The logistic growth model is

where

• is the initial value

• is the carrying capacity, or limiting value
• is a constant determined by the rate of growth.

EXAMPLE 6

Using the Logistic-Growth Model
An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more people
who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it
spreads. These two factors make the logistic model a good one to study the spread of communicable diseases. And,
clearly, there is a maximum value for the number of people infected: the entire population.

For example, at time there is one person in a community of 1,000 people who has the flu. So, in that community, at
most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth constant
is Estimate the number of people in this community who will have had this flu after ten days. Predict how
many people in this community will have had this flu after a long period of time has passed.

Solution
We substitute the given data into the logistic growth model

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value is
To find we use the formula that the number of cases at time is from which it follows that

This model predicts that, after ten days, the number of people who have had the flu is
Because the actual number must be a whole number (a person has either had the flu or
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not) we round to 294. In the long term, the number of people who will contract the flu is the limiting value,

Analysis
Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people infected.
The model only approximates the number of people infected and will not give us exact or actual values.

The graph in Figure 7 gives a good picture of how this model fits the data.

Figure 7 The graph of

TRY IT #5 Using the model in Example 6, estimate the number of cases of flu on day 15.

Choosing an Appropriate Model for Data
Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model for
the raw data we have. Many factors influence the choice of a mathematical model, among which are experience,
scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a
function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the
number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, we
notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the interval
from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of home buyers
for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and
logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear model
may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other models, such
as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called
the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies
above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore
cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave
up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether
rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A
logarithmic curve is always concave away from its vertical asymptote. In the case of positive data, which is the most
common case, an exponential curve is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point,
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called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the
parameters. We reduce round-off error by choosing points as far apart as possible.

EXAMPLE 7

Choosing a Mathematical Model
Does a linear, exponential, logarithmic, or logistic model best fit the values listed in Table 1? Find the model, and use a
graph to check your choice.

1 2 3 4 5 6 7 8 9

0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Table 1

Solution
First, plot the data on a graph as in Figure 8. For the purpose of graphing, round the data to two decimal places.

Figure 8

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of the
points, most or all of the points between those two points lie above the line, so the graph is concave down, suggesting a
logarithmic model. We can try Plugging in the first point, gives We reject the case that

(if it were, all outputs would be 0), so we know Thus and Next we can use the point
to solve for

Because an appropriate model for the data is

To check the accuracy of the model, we graph the function together with the given points as in Figure 9.
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Figure 9 The graph of

We can conclude that the model is a good fit to the data.

Compare Figure 9 to the graph of shown in Figure 10.

Figure 10 The graph of

The graphs appear to be identical when A quick check confirms this conclusion: for

However, if the graph of includes a “extra” branch, as shown in Figure 11. This occurs because, while
cannot have negative values in the domain (as such values would force the argument to be negative), the

function can have negative domain values.
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Figure 11

TRY IT #6 Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.

1 2 3 4 5 6 7 8 9

3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Table 2

Expressing an Exponential Model in Base
While powers and logarithms of any base can be used in modeling, the two most common bases are and In science
and mathematics, the base is often preferred. We can use laws of exponents and laws of logarithms to change any
base to base

HOW TO

Given a model with the form change it to the form

1. Rewrite as
2. Use the power rule of logarithms to rewrite y as
3. Note that and in the equation

EXAMPLE 8

Changing to base e
Change the function so that this same function is written in the form

Solution
The formula is derived as follows

TRY IT #7 Change the function to one having as the base.

MEDIA

Access these online resources for additional instruction and practice with exponential and logarithmic models.
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Logarithm Application – pH (http://openstax.org/l/logph)
Exponential Model – Age Using Half-Life (http://openstax.org/l/expmodelhalf)
Newton’s Law of Cooling (http://openstax.org/l/newtoncooling)
Exponential Growth Given Doubling Time (http://openstax.org/l/expgrowthdbl)
Exponential Growth – Find Initial Amount Given Doubling Time (http://openstax.org/l/initialdouble)

6.7 SECTION EXERCISES
Verbal

1. With what kind of
exponential model would
half-life be associated? What
role does half-life play in
these models?

2. What is carbon dating? Why
does it work? Give an
example in which carbon
dating would be useful.

3. With what kind of
exponential model would
doubling time be
associated? What role does
doubling time play in these
models?

4. Define Newton’s Law of
Cooling. Then name at least
three real-world situations
where Newton’s Law of
Cooling would be applied.

5. What is an order of
magnitude? Why are orders
of magnitude useful? Give
an example to explain.

Numeric

6. The temperature of an
object in degrees Fahrenheit
after t minutes is
represented by the equation

To
the nearest degree, what is
the temperature of the
object after one and a half
hours?

For the following exercises, use the logistic growth model

7. Find and interpret
Round to the nearest tenth.

8. Find and interpret
Round to the nearest tenth.

9. Find the carrying capacity.
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10. Graph the model. 11. Determine whether the
data from the table could
best be represented as a
function that is linear,
exponential, or
logarithmic. Then write a
formula for a model that
represents the data.

–2 0.694

–1 0.833

0 1

1 1.2

2 1.44

3 1.728

4 2.074

5 2.488

12. Rewrite
as an exponential equation
with base to five decimal
places.
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Technology

For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table could represent a function that is linear, exponential, or logarithmic.

13.

1 2

2 4.079

3 5.296

4 6.159

5 6.828

6 7.375

7 7.838

8 8.238

9 8.592

10 8.908

14.

1 2.4

2 2.88

3 3.456

4 4.147

5 4.977

6 5.972

7 7.166

8 8.6

9 10.32

10 12.383

15.

4 9.429

5 9.972

6 10.415

7 10.79

8 11.115

9 11.401

10 11.657

11 11.889

12 12.101

13 12.295

16.

1.25 5.75

2.25 8.75

3.56 12.68

4.2 14.6

5.65 18.95

6.75 22.25

7.25 23.75

8.6 27.8

9.25 29.75

10.5 33.5
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For the following exercises, use a graphing calculator and this scenario: the population of a fish farm in years is
modeled by the equation

17. Graph the function. 18. What is the initial
population of fish?

19. To the nearest tenth, what
is the doubling time for the
fish population?

20. To the nearest whole
number, what will the fish
population be after
years?

21. To the nearest tenth, how
long will it take for the
population to reach

22. What is the carrying
capacity for the fish
population? Justify your
answer using the graph of

Extensions

23. A substance has a half-life
of 2.045 minutes. If the
initial amount of the
substance was 132.8
grams, how many half-lives
will have passed before the
substance decays to 8.3
grams? What is the total
time of decay?

24. The formula for an
increasing population is
given by
where is the initial
population and
Derive a general formula
for the time t it takes for
the population to increase
by a factor of M.

25. Recall the formula for
calculating the magnitude
of an earthquake,

Show

each step for solving this
equation algebraically for
the seismic moment

26. What is the y-intercept of
the logistic growth model

Show the

steps for calculation. What
does this point tell us
about the population?

27. Prove that for
positive

Real-World Applications

For the following exercises, use this scenario: A doctor prescribes 125 milligrams of a therapeutic drug that decays by
about 30% each hour.

28. To the nearest hour, what
is the half-life of the drug?

29. Write an exponential
model representing the
amount of the drug
remaining in the patient’s
system after hours. Then
use the formula to find the
amount of the drug that
would remain in the
patient’s system after 3
hours. Round to the
nearest milligram.

30. Using the model found in
the previous exercise, find

and interpret the
result. Round to the
nearest hundredth.
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For the following exercises, use this scenario: A tumor is injected with grams of Iodine-125, which has a decay rate of
per day.

31. To the nearest day, how
long will it take for half of
the Iodine-125 to decay?

32. Write an exponential
model representing the
amount of Iodine-125
remaining in the tumor
after days. Then use the
formula to find the amount
of Iodine-125 that would
remain in the tumor after
60 days. Round to the
nearest tenth of a gram.

33. A scientist begins with
grams of a radioactive
substance. After
minutes, the sample has
decayed to grams.
Rounding to five decimal
places, write an
exponential equation
representing this situation.
To the nearest minute,
what is the half-life of this
substance?

34. The half-life of Radium-226
is years. What is the
annual decay rate? Express
the decimal result to four
decimal places and the
percentage to two decimal
places.

35. The half-life of Erbium-165
is hours. What is the
hourly decay rate? Express
the decimal result to four
decimal places and the
percentage to two decimal
places.

36. A wooden artifact from an
archeological dig contains
60 percent of the
carbon-14 that is present in
living trees. To the nearest
year, about how many
years old is the artifact?
(The half-life of carbon-14
is years.)

37. A research student is
working with a culture of
bacteria that doubles in
size every twenty minutes.
The initial population count
was bacteria.
Rounding to five decimal
places, write an
exponential equation
representing this situation.
To the nearest whole
number, what is the
population size after
hours?

For the following exercises, use this scenario: A biologist recorded a count of bacteria present in a culture after 5
minutes and 1000 bacteria present after 20 minutes.

38. To the nearest whole
number, what was the
initial population in the
culture?

39. Rounding to six decimal
places, write an
exponential equation
representing this situation.
To the nearest minute, how
long did it take the
population to double?
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For the following exercises, use this scenario: A pot of warm soup with an internal temperature of Fahrenheit was
taken off the stove to cool in a room. After fifteen minutes, the internal temperature of the soup was

40. Use Newton’s Law of
Cooling to write a formula
that models this situation.

41. To the nearest minute, how
long will it take the soup to
cool to

42. To the nearest degree,
what will the temperature
be after and a half hours?

For the following exercises, use this scenario: A turkey is taken out of the oven with an internal temperature of
and is allowed to cool in a room. After half an hour, the internal temperature of the turkey is

43. Write a formula that
models this situation.

44. To the nearest degree,
what will the temperature
be after 50 minutes?

45. To the nearest minute, how
long will it take the turkey
to cool to

For the following exercises, find the value of the number shown on each logarithmic scale. Round all answers to the
nearest thousandth.

46. 47.

48. Plot each set of approximate values of intensity of
sounds on a logarithmic scale: Whisper:

Vacuum: Jet:

49. Recall the formula for calculating the magnitude

of an earthquake, One

earthquake has magnitude on the MMS scale.
If a second earthquake has times as much
energy as the first, find the magnitude of the
second quake. Round to the nearest hundredth.

For the following exercises, use this scenario: The equation models the number of people in a town

who have heard a rumor after t days.

50. How many people started
the rumor?

51. To the nearest whole
number, how many people
will have heard the rumor
after 3 days?

52. As increases without
bound, what value does

approach? Interpret
your answer.

For the following exercise, choose the correct answer choice.

ⓐ ⓑ
ⓒ
ⓓ

53. A doctor injects a patient with 13 milligrams of
radioactive dye that decays exponentially. After 12
minutes, there are 4.75 milligrams of dye
remaining in the patient’s system. Which is an
appropriate model for this situation?
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6.8 Fitting Exponential Models to Data
Learning Objectives
In this section, you will:

Build an exponential model from data.
Build a logarithmic model from data.
Build a logistic model from data.

COREQUISITE SKILLS

Learning Objectives
Draw and interpret scatter diagrams (linear, exponential, logarithmic). (CA 4.3.1)
Fit a regression equation to a set of data and use the linear (or exponential) model to make predictions. (CA
4.3.4)

Objective 1: Draw and interpret scatter diagrams (linear, exponential, logarithmic). (CA 4.3.1)

Vocabulary and Concept Check

Draw and interpret scatter diagrams (linear, exponential, logarithmic).

Fill in the blanks and match the description with the graphs a, b, or c

A ________ function has equation and has a basic shape ________.
A ________ function has equation and has a basic shape ________.
A ________ function has equation and has a basic shape ________.

A Scatter Plot is a graph of plotted points that may show a relationship between the variables in a set of data.

EXAMPLE 1

Draw and interpret scatter diagrams (linear, exponential, logarithmic).

Using a Scatter Plot to Investigate Cricket Chirps
The table below shows the number of cricket chirps in 15 seconds, for several different air temperatures, in degrees
Fahrenheit 9 . Plot this data, and determine whether the data appears to be linearly related.

Cricket Chirps vs Air Temperature

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

9 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010
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Solution
Plotting this data, as depicted below, suggests that there may be a trend. We can see from the trend in the data that
the number of chirps increases as the temperature increases. The trend appears to be roughly linear, though certainly
not perfectly so.

Figure 1

Practice Makes Perfect
Draw and interpret scatter diagrams ( linear, exponential, logarithmic).

1. Make a scatter plot for the table below. Does it look linear? Exponential? Logarithmic?

x 1 2 3 4 5 6 7 8 9

y 0 1.5 2.2 2.8 3.5 3.6 3.9 4.3 4.4

2. Make a scatter plot for the table below. Does it look linear? Exponential? Logarithmic?

x 1 2 3 4 5 6 7 8 9

y 3.3 5.6 9.1 15.1 24.4 40.2 66.2 108.4 180.1
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3. Make a scatter plot for the table below. Does it look linear? Exponential? Logarithmic?

x 1 2 3 4 5 6

y 3 5.5 7 10 12.1 14.9

Objective 2: Fit a regression equation to a set of data and use the linear (or exponential) model to
make predictions. (CA 4.3.4)
We can find a linear function that fits the data in the previous problem by “eyeballing” a line that seems to fit. But while
estimating a line works relatively well, technology can help us find a line that fits the data as perfect as possible.

This line is called the Least Squares Regression Line or Linear Regression Model.

A regression line is a line that is closest to the data in the scatter plot, which means that such a line is a best fit for the
data.

Fit a regression equation to a set of data and use the linear (or exponential) model to make predictions.

HOW TO

Given data of input and corresponding outputs from a linear function, find the best fit line using linear
regression.

1. Enter the input in List 1 (L1).
2. Enter the output in List 2 (L2).
3. On a graphing utility, select Linear Regression (LinReg).
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EXAMPLE 2

Fit a regression equation to a set of data and use the linear (or exponential) model to make predictions.
Find the linear regression line using the cricket-chirp data in the example earlier in this section, and find the
temperature if there are 30 chirps in 15 seconds.

Solution
Enter the input (chirps) in List 1.

1. Enter the output (temperature) in List 2.

L1 44 35 20.4 33 31 35 18.5 37 26

L2 80.5 70.5 57 66 68 72 52 73.5 53

2. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data, with technology we obtain the
equation: T(c)=30.281+1.143c

3. To find the temperature for 30 chirps in 15 seconds we substitute 30 for x and find T:

4. The graph of the scatter plot with the regression line of best fit is shown.

Practice Makes Perfect
Fit a regression equation to a set of data and use the linear (or exponential) model to make predictions.

4. Gasoline consumption in the United States has been steadily increasing from 1994 to 2004.

Year 94 95 96 97 98 99 00 01 02 03 04

Consumption
(billions of gallons)

113 116 118 119 123 125 126 128 131 133 136

ⓐ Determine whether the trend is linear, and if so, use your graphing utility to find a model for the data.

ⓑ Use the model to predict the consumption in 2008.

5. We determined in the second practice problem, earlier in this section, that the data below has an exponential
trend. Use your graphing utility to find an exponential model that fits the data the best and write your exponential
model below (Hint: instead of choosing Linear Regression, choose Exponential Regression).

x 1 2 3 4 5 6 7 8 9

y 3.3 5.6 9.1 15.1 24.4 40.2 66.2 108.4 180.1

In previous sections of this chapter, we were either given a function explicitly to graph or evaluate, or we were given a
set of points that were guaranteed to lie on the curve. Then we used algebra to find the equation that fit the points
exactly. In this section, we use a modeling technique called regression analysis to find a curve that models data collected
from real-world observations. With regression analysis, we don’t expect all the points to lie perfectly on the curve. The
idea is to find a model that best fits the data. Then we use the model to make predictions about future events.

Do not be confused by the word model. In mathematics, we often use the terms function, equation, and model
interchangeably, even though they each have their own formal definition. The term model is typically used to indicate
that the equation or function approximates a real-world situation.

We will concentrate on three types of regression models in this section: exponential, logarithmic, and logistic. Having
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already worked with each of these functions gives us an advantage. Knowing their formal definitions, the behavior of
their graphs, and some of their real-world applications gives us the opportunity to deepen our understanding. As each
regression model is presented, key features and definitions of its associated function are included for review. Take a
moment to rethink each of these functions, reflect on the work we’ve done so far, and then explore the ways regression
is used to model real-world phenomena.

Building an Exponential Model from Data
As we’ve learned, there are a multitude of situations that can be modeled by exponential functions, such as investment
growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object. What do these
phenomena have in common? For one thing, all the models either increase or decrease as time moves forward. But
that’s not the whole story. It’s the way data increase or decrease that helps us determine whether it is best modeled by
an exponential equation. Knowing the behavior of exponential functions in general allows us to recognize when to use
exponential regression, so let’s review exponential growth and decay.

Recall that exponential functions have the form or When performing regression analysis, we use the
form most commonly used on graphing utilities, Take a moment to reflect on the characteristics we’ve already
learned about the exponential function (assume

• must be greater than zero and not equal to one.
• The initial value of the model is

◦ If the function models exponential growth. As increases, the outputs of the model increase slowly at
first, but then increase more and more rapidly, without bound.

◦ If the function models exponential decay. As increases, the outputs for the model decrease rapidly
at first and then level off to become asymptotic to the x-axis. In other words, the outputs never become equal to
or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by the variable
or (You may have to change the calculator’s settings for these to be shown.) The values are an indication of the
“goodness of fit” of the regression equation to the data. We more commonly use the value of instead of but the
closer either value is to 1, the better the regression equation approximates the data.

Exponential Regression

Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly
without bound, or where decay begins rapidly and then slows down to get closer and closer to zero. We use the
command “ExpReg” on a graphing utility to fit an exponential function to a set of data points. This returns an
equation of the form,

Note that:

• must be non-negative.
• when we have an exponential growth model.
• when we have an exponential decay model.

HOW TO

Given a set of data, perform exponential regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow an exponential pattern.

3. Find the equation that models the data.
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a. Select “ExpReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 1

Using Exponential Regression to Fit a Model to Data
In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data from 2,871
crashes were used to measure the association of a person’s blood alcohol level (BAC) with the risk of being in an
accident. Table 1 shows results from the study 10 . The relative risk is a measure of how many times more likely a person
is to crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to crash as a person who has not been
drinking alcohol.

BAC 0 0.01 0.03 0.05 0.07 0.09

Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54

BAC 0.11 0.13 0.15 0.17 0.19 0.21

Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78

Table 1

a. Let represent the BAC level, and let represent the corresponding relative risk. Use exponential regression to fit a
model to these data.

b. After 6 drinks, a person weighing 160 pounds will have a BAC of about How many times more likely is a person
with this weight to crash if they drive after having a 6-pack of beer? Round to the nearest hundredth.

Solution
a. Using the STAT then EDIT menu on a graphing utility, list the BAC values in L1 and the relative risk values in L2.

Then use the STATPLOT feature to verify that the scatterplot follows the exponential pattern shown in Figure 1:

Figure 1

10 Source: Indiana University Center for Studies of Law in Action, 2007
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Use the “ExpReg” command from the STAT then CALC menu to obtain the exponential model,

Converting from scientific notation, we have:

Notice that which indicates the model is a good fit to the data. To see this, graph the model in the same
window as the scatterplot to verify it is a good fit as shown in Figure 2:

Figure 2

b. Use the model to estimate the risk associated with a BAC of Substitute for in the model and solve for

If a 160-pound person drives after having 6 drinks, they are about 26.35 times more likely to crash than if driving
while sober.

TRY IT #1 Table 2 shows a recent graduate’s credit card balance each month after graduation.

Month 1 2 3 4 5 6 7 8

Debt ($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92

Table 2

ⓐ Use exponential regression to fit a model to these data.

ⓑ If spending continues at this rate, what will the graduate’s credit card debt be one year after
graduating?

Q&A Is it reasonable to assume that an exponential regression model will represent a situation
indefinitely?

No. Remember that models are formed by real-world data gathered for regression. It is usually
reasonable to make estimates within the interval of original observation (interpolation). However, when a
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model is used to make predictions, it is important to use reasoning skills to determine whether the model
makes sense for inputs far beyond the original observation interval (extrapolation).

Building a Logarithmic Model from Data
Just as with exponential functions, there are many real-world applications for logarithmic functions: intensity of sound,
pH levels of solutions, yields of chemical reactions, production of goods, and growth of infants. As with exponential
models, data modeled by logarithmic functions are either always increasing or always decreasing as time moves
forward. Again, it is the way they increase or decrease that helps us determine whether a logarithmic model is best.

Recall that logarithmic functions increase or decrease rapidly at first, but then steadily slow as time moves on. By
reflecting on the characteristics we’ve already learned about this function, we can better analyze real world situations
that reflect this type of growth or decay. When performing logarithmic regression analysis, we use the form of the
logarithmic function most commonly used on graphing utilities, For this function

• All input values, must be greater than zero.
• The point is on the graph of the model.
• If the model is increasing. Growth increases rapidly at first and then steadily slows over time.
• If the model is decreasing. Decay occurs rapidly at first and then steadily slows over time.

Logarithmic Regression

Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time. We use the command “LnReg” on a graphing utility to fit a logarithmic function to a set of data points. This
returns an equation of the form,

Note that

• all input values, must be non-negative.
• when the model is increasing.
• when the model is decreasing.

HOW TO

Given a set of data, perform logarithmic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logarithmic pattern.

3. Find the equation that models the data.
a. Select “LnReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 2

Using Logarithmic Regression to Fit a Model to Data
Due to advances in medicine and higher standards of living, life expectancy has been increasing in most developed
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countries since the beginning of the 20th century.

Table 3 shows the average life expectancies, in years, of Americans from 1900–201011 .

Year 1900 1910 1920 1930 1940 1950

Life Expectancy(Years) 47.3 50.0 54.1 59.7 62.9 68.2

Year 1960 1970 1980 1990 2000 2010

Life Expectancy(Years) 69.7 70.8 73.7 75.4 76.8 78.7

Table 3

ⓐ Let represent time in decades starting with for the year 1900, for the year 1910, and so on. Let
represent the corresponding life expectancy. Use logarithmic regression to fit a model to these data.

ⓑ Use the model to predict the average American life expectancy for the year 2030.

11 Source: Center for Disease Control and Prevention, 2013
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Solution

ⓐ Using the STAT then EDIT menu on a graphing utility, list the years using values 1–12 in L1 and the
corresponding life expectancy in L2. Then use the STATPLOT feature to verify that the scatterplot follows a
logarithmic pattern as shown in Figure 3:

Figure 3

Use the “LnReg” command from the STAT then CALC menu to obtain the logarithmic model,

Next, graph the model in the same window as the scatterplot to verify it is a good fit as shown in Figure 4:

Figure 4

ⓑ To predict the life expectancy of an American in the year 2030, substitute for the in the model and solve
for

If life expectancy continues to increase at this pace, the average life expectancy of an American will be 79.1 by the
year 2030.
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TRY IT #2 Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time
moved on. Table 4 shows the number of games sold, in thousands, from the years 2000–2010.

Year 2000 2001 2002 2003 2004 2005

Number Sold (thousands) 142 149 154 155 159 161

Year 2006 2007 2008 2009 2010 -

Number Sold (thousands) 163 164 164 166 167 -

Table 4

ⓐ Let represent time in years starting with for the year 2000. Let represent the
number of games sold in thousands. Use logarithmic regression to fit a model to these data.

ⓑ If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest
thousand.

Building a Logistic Model from Data
Like exponential and logarithmic growth, logistic growth increases over time. One of the most notable differences with
logistic growth models is that, at a certain point, growth steadily slows and the function approaches an upper bound, or
limiting value. Because of this, logistic regression is best for modeling phenomena where there are limits in expansion,
such as availability of living space or nutrients.

It is worth pointing out that logistic functions actually model resource-limited exponential growth. There are many
examples of this type of growth in real-world situations, including population growth and spread of disease, rumors, and
even stains in fabric. When performing logistic regression analysis, we use the form most commonly used on graphing
utilities:

Recall that:

• is the initial value of the model.

• when the model increases rapidly at first until it reaches its point of maximum growth rate, At

that point, growth steadily slows and the function becomes asymptotic to the upper bound
• is the limiting value, sometimes called the carrying capacity, of the model.

Logistic Regression

Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows to an
upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a set of data points. This
returns an equation of the form

Note that

• The initial value of the model is

• Output values for the model grow closer and closer to as time increases.
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HOW TO

Given a set of data, perform logistic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logistic pattern.

3. Find the equation that models the data.
a. Select “Logistic” from the STAT then CALC menu.
b. Use the values returned for and to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 3

Using Logistic Regression to Fit a Model to Data
Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all residents have cellular
service. Table 5 shows the percentage of Americans with cellular service between the years 1995 and 2012 12 .

Year Americans with Cellular Service (%) Year Americans with Cellular Service (%)

1995 12.69 2004 62.852

1996 16.35 2005 68.63

1997 20.29 2006 76.64

1998 25.08 2007 82.47

1999 30.81 2008 85.68

2000 38.75 2009 89.14

2001 45.00 2010 91.86

2002 49.16 2011 95.28

2003 55.15 2012 98.17

Table 5

ⓐ Let represent time in years starting with for the year 1995. Let represent the corresponding percentage of
residents with cellular service. Use logistic regression to fit a model to these data.

ⓑ Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to the nearest
tenth of a percent.

ⓒ Discuss the value returned for the upper limit, What does this tell you about the model? What would the limiting

12 Source: The World Bank, 2013
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value be if the model were exact?

Solution

ⓐ Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the corresponding
percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows a logistic pattern as shown in
Figure 5:

Figure 5

Use the “Logistic” command from the STAT then CALC menu to obtain the logistic model,

Next, graph the model in the same window as shown in Figure 6 the scatterplot to verify it is a good fit:

Figure 6

ⓑ
To approximate the percentage of Americans with cellular service in the year 2013, substitute for the in the model
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and solve for

According to the model, about 99.3% of Americans had cellular service in 2013.

ⓒ
The model gives a limiting value of about 105. This means that the maximum possible percentage of Americans with
cellular service would be 105%, which is impossible. (How could over 100% of a population have cellular service?) If the
model were exact, the limiting value would be and the model’s outputs would get very close to, but never
actually reach 100%. After all, there will always be someone out there without cellular service!

TRY IT #3 Table 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years
1997 to 2012.

Year Seal Population (Thousands) Year Seal Population (Thousands)

1997 3.493 2005 19.590

1998 5.282 2006 21.955

1999 6.357 2007 22.862

2000 9.201 2008 23.869

2001 11.224 2009 24.243

2002 12.964 2010 24.344

2003 16.226 2011 24.919

2004 18.137 2012 25.108

Table 6

ⓐ Let represent time in years starting with for the year 1997. Let represent the
number of seals in thousands. Use logistic regression to fit a model to these data.

ⓑ Use the model to predict the seal population for the year 2020.

ⓒ To the nearest whole number, what is the limiting value of this model?

MEDIA

Access this online resource for additional instruction and practice with exponential function models.

Exponential Regression on a Calculator (https://openstax.org/l/pregresscalc)
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6.8 SECTION EXERCISES
Verbal

1. What situations are best
modeled by a logistic
equation? Give an example,
and state a case for why the
example is a good fit.

2. What is a carrying capacity?
What kind of model has a
carrying capacity built into
its formula? Why does this
make sense?

3. What is regression analysis?
Describe the process of
performing regression
analysis on a graphing
utility.

4. What might a scatterplot of
data points look like if it
were best described by a
logarithmic model?

5. What does the y-intercept
on the graph of a logistic
equation correspond to for
a population modeled by
that equation?

Graphical

For the following exercises, match the given function of best fit with the appropriate scatterplot in Figure 7 through
Figure 11. Answer using the letter beneath the matching graph.

Figure 7

Figure 8
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Figure 9

Figure 10

Figure 11
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6. 7. 8.

9. 10.

Numeric

11. To the nearest whole
number, what is the initial
value of a population
modeled by the logistic
equation

What is the carrying
capacity?

12. Rewrite the exponential
model

as an
equivalent model with base

Express the exponent to
four significant digits.

13. A logarithmic model is given
by the equation

To the nearest hundredth,
for what value of does

14. A logistic model is given by
the equation

To the

nearest hundredth, for
what value of t does

15. What is the y-intercept on
the graph of the logistic
model given in the
previous exercise?

Technology

For the following exercises, use this scenario: The population of a koi pond over months is modeled by the function

16. Graph the population
model to show the
population over a span of
years.

17. What was the initial
population of koi?

18. How many koi will the
pond have after one and a
half years?

19. How many months will it
take before there are
koi in the pond?

20. Use the intersect feature to
approximate the number
of months it will take
before the population of
the pond reaches half its
carrying capacity.

For the following exercises, use this scenario: The population of an endangered species habitat for wolves is modeled
by the function where is given in years.

21. Graph the population
model to show the
population over a span of

years.

22. What was the initial
population of wolves
transported to the habitat?

23. How many wolves will the
habitat have after years?
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24. How many years will it take
before there are
wolves in the habitat?

25. Use the intersect feature to
approximate the number
of years it will take before
the population of the
habitat reaches half its
carrying capacity.

For the following exercises, refer to Table 7.

x 1 2 3 4 5 6

f(x) 1125 1495 2310 3294 4650 6361

Table 7

26. Use a graphing calculator
to create a scatter diagram
of the data.

27. Use the regression feature
to find an exponential
function that best fits the
data in the table.

28. Write the exponential
function as an exponential
equation with base

29. Graph the exponential
equation on the scatter
diagram.

30. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 8.

x 1 2 3 4 5 6

f(x) 555 383 307 210 158 122

Table 8

31. Use a graphing calculator
to create a scatter diagram
of the data.

32. Use the regression feature
to find an exponential
function that best fits the
data in the table.

33. Write the exponential
function as an exponential
equation with base

34. Graph the exponential
equation on the scatter
diagram.

35. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 9.

x 1 2 3 4 5 6

f(x) 5.1 6.3 7.3 7.7 8.1 8.6

Table 9
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36. Use a graphing calculator
to create a scatter diagram
of the data.

37. Use the LOGarithm option
of the REGression feature
to find a logarithmic
function of the form

that best
fits the data in the table.

38. Use the logarithmic
function to find the value
of the function when

39. Graph the logarithmic
equation on the scatter
diagram.

40. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 10.

x 1 2 3 4 5 6 7 8

f(x) 7.5 6 5.2 4.3 3.9 3.4 3.1 2.9

Table 10

41. Use a graphing calculator
to create a scatter diagram
of the data.

42. Use the LOGarithm option
of the REGression feature
to find a logarithmic
function of the form

that best
fits the data in the table.

43. Use the logarithmic
function to find the value
of the function when

44. Graph the logarithmic
equation on the scatter
diagram.

45. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 11.

x 1 2 3 4 5 6 7 8 9 10

f(x) 8.7 12.3 15.4 18.5 20.7 22.5 23.3 24 24.6 24.8

Table 11

46. Use a graphing calculator
to create a scatter diagram
of the data.

47. Use the LOGISTIC
regression option to find a
logistic growth model of
the form that

best fits the data in the
table.

48. Graph the logistic equation
on the scatter diagram.

49. To the nearest whole
number, what is the
predicted carrying capacity
of the model?

50. Use the intersect feature to
find the value of for
which the model reaches
half its carrying capacity.
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For the following exercises, refer to Table 12.

0 2 4 5 7 8 10 11 15 17

12 28.6 52.8 70.3 99.9 112.5 125.8 127.9 135.1 135.9

Table 12

51. Use a graphing calculator
to create a scatter diagram
of the data.

52. Use the LOGISTIC
regression option to find a
logistic growth model of
the form that

best fits the data in the
table.

53. Graph the logistic equation
on the scatter diagram.

54. To the nearest whole
number, what is the
predicted carrying capacity
of the model?

55. Use the intersect feature to
find the value of for
which the model reaches
half its carrying capacity.

Extensions

56. Recall that the general form of a logistic equation
for a population is given by such

that the initial population at time is
Show algebraically that

57. Use a graphing utility to find an exponential
regression formula and a logarithmic
regression formula for the points
and Round all numbers to 6 decimal
places. Graph the points and both formulas along
with the line on the same axis. Make a
conjecture about the relationship of the
regression formulas.

58. Verify the conjecture made in the previous
exercise. Round all numbers to six decimal places
when necessary.

59. Find the inverse function for the logistic
function Show all steps.

60. Use the result from the previous exercise to graph
the logistic model along with its

inverse on the same axis. What are the intercepts
and asymptotes of each function?
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Chapter Review
Key Terms
annual percentage rate (APR) the yearly interest rate earned by an investment account, also called nominal rate
carrying capacity in a logistic model, the limiting value of the output
change-of-base formula a formula for converting a logarithm with any base to a quotient of logarithms with any

other base.
common logarithm the exponent to which 10 must be raised to get is written simply as
compound interest interest earned on the total balance, not just the principal
doubling time the time it takes for a quantity to double
exponential growth a model that grows by a rate proportional to the amount present
extraneous solution a solution introduced while solving an equation that does not satisfy the conditions of the

original equation
half-life the length of time it takes for a substance to exponentially decay to half of its original quantity
logarithm the exponent to which must be raised to get written
logistic growth model a function of the form where is the initial value, is the carrying capacity,

or limiting value, and is a constant determined by the rate of growth
natural logarithm the exponent to which the number must be raised to get is written as
Newton’s Law of Cooling the scientific formula for temperature as a function of time as an object’s temperature is

equalized with the ambient temperature
nominal rate the yearly interest rate earned by an investment account, also called annual percentage rate
order of magnitude the power of ten, when a number is expressed in scientific notation, with one non-zero digit to

the left of the decimal
power rule for logarithms a rule of logarithms that states that the log of a power is equal to the product of the

exponent and the log of its base
product rule for logarithms a rule of logarithms that states that the log of a product is equal to a sum of logarithms
quotient rule for logarithms a rule of logarithms that states that the log of a quotient is equal to a difference of

logarithms

Key Equations

definition of the exponential
function

definition of exponential
growth

compound interest formula

continuous growth formula
is the number of unit time periods of growth

is the starting amount (in the continuous compounding formula a is replaced
with P, the principal)

is the mathematical constant,

General Form for the Translation of the Parent Function
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Definition of the logarithmic function
For

if and only if

Definition of the common logarithm For if and only if

Definition of the natural logarithm For if and only if

General Form for the Translation of the Parent Logarithmic Function

The Product Rule for Logarithms

The Quotient Rule for Logarithms

The Power Rule for Logarithms

The Change-of-Base Formula

One-to-one property for exponential
functions

For any algebraic expressions and and any positive real number
where

if and only if

Definition of a logarithm
For any algebraic expression S and positive real numbers and where

if and only if

One-to-one property for logarithmic
functions

For any algebraic expressions S and T and any positive real number
where

if and only if

Half-life formula If the half-life is

Carbon-14 dating is the amount of carbon-14 when the plant or animal died
is the amount of carbon-14 remaining today

is the age of the fossil in years

Doubling time
formula

If the doubling time is

Newton’s Law of
Cooling

where is the ambient temperature, and is the
continuous rate of cooling.

Key Concepts
6.1 Exponential Functions

• An exponential function is defined as a function with a positive constant other than raised to a variable exponent.
See Example 1.
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• A function is evaluated by solving at a specific value. See Example 2 and Example 3.
• An exponential model can be found when the growth rate and initial value are known. See Example 4.
• An exponential model can be found when the two data points from the model are known. See Example 5.
• An exponential model can be found using two data points from the graph of the model. See Example 6.
• An exponential model can be found using two data points from the graph and a calculator. See Example 7.
• The value of an account at any time can be calculated using the compound interest formula when the principal,

annual interest rate, and compounding periods are known. See Example 8.
• The initial investment of an account can be found using the compound interest formula when the value of the

account, annual interest rate, compounding periods, and life span of the account are known. See Example 9.
• The number is a mathematical constant often used as the base of real world exponential growth and decay

models. Its decimal approximation is
• Scientific and graphing calculators have the key or for calculating powers of See Example 10.
• Continuous growth or decay models are exponential models that use as the base. Continuous growth and decay

models can be found when the initial value and growth or decay rate are known. See Example 11 and Example 12.

6.2 Graphs of Exponential Functions

• The graph of the function has a y-intercept at domain ∞ ∞ range ∞ and horizontal

asymptote See Example 1.
• If the function is increasing. The left tail of the graph will approach the asymptote and the right tail will

increase without bound.
• If the function is decreasing. The left tail of the graph will increase without bound, and the right tail will

approach the asymptote
• The equation represents a vertical shift of the parent function
• The equation represents a horizontal shift of the parent function See Example 2.
• Approximate solutions of the equation can be found using a graphing calculator. See Example 3.
• The equation where represents a vertical stretch if or compression if of the

parent function See Example 4.
• When the parent function is multiplied by the result, is a reflection about the x-axis.

When the input is multiplied by the result, is a reflection about the y-axis. See Example 5.
• All translations of the exponential function can be summarized by the general equation See Table

3.
• Using the general equation we can write the equation of a function given its description. See

Example 6.

6.3 Logarithmic Functions

• The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function is an
exponential function.

• Logarithmic equations can be written in an equivalent exponential form, using the definition of a logarithm. See
Example 1.

• Exponential equations can be written in their equivalent logarithmic form using the definition of a logarithm See
Example 2.

• Logarithmic functions with base can be evaluated mentally using previous knowledge of powers of See Example
3 and Example 4.

• Common logarithms can be evaluated mentally using previous knowledge of powers of See Example 5.
• When common logarithms cannot be evaluated mentally, a calculator can be used. See Example 6.
• Real-world exponential problems with base can be rewritten as a common logarithm and then evaluated using a

calculator. See Example 7.
• Natural logarithms can be evaluated using a calculator Example 8.

6.4 Graphs of Logarithmic Functions

• To find the domain of a logarithmic function, set up an inequality showing the argument greater than zero, and
solve for See Example 1 and Example 2

• The graph of the parent function has an x-intercept at domain ∞ range ∞ ∞
vertical asymptote and
◦ if the function is increasing.
◦ if the function is decreasing.
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See Example 3.
• The equation shifts the parent function horizontally

◦ left units if
◦ right units if

See Example 4.
• The equation shifts the parent function vertically

◦ up units if
◦ down units if

See Example 5.
• For any constant the equation

◦ stretches the parent function vertically by a factor of if
◦ compresses the parent function vertically by a factor of if

See Example 6 and Example 7.
• When the parent function is multiplied by the result is a reflection about the x-axis. When the input

is multiplied by the result is a reflection about the y-axis.
◦ The equation represents a reflection of the parent function about the x-axis.
◦ The equation represents a reflection of the parent function about the y-axis.

See Example 8.
◦ A graphing calculator may be used to approximate solutions to some logarithmic equations See Example 9.

• All translations of the logarithmic function can be summarized by the general equation
See Table 4.

• Given an equation with the general form we can identify the vertical asymptote for
the transformation. See Example 10.

• Using the general equation we can write the equation of a logarithmic function given its
graph. See Example 11.

6.5 Logarithmic Properties

• We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms. See Example 1.
• We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms. See

Example 2.
• We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent and the log

of its base. See Example 3, Example 4, and Example 5.
• We can use the product rule, the quotient rule, and the power rule together to combine or expand a logarithm with

a complex input. See Example 6, Example 7, and Example 8.
• The rules of logarithms can also be used to condense sums, differences, and products with the same base as a

single logarithm. See Example 9, Example 10, Example 11, and Example 12.
• We can convert a logarithm with any base to a quotient of logarithms with any other base using the change-of-base

formula. See Example 13.
• The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and as the quotient of

natural or common logs. That way a calculator can be used to evaluate. See Example 14.

6.6 Exponential and Logarithmic Equations

• We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the
same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one
another and solve for the unknown.

• When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents
equal to one another and solve for the unknown. See Example 1.

• When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each
side of the equation as powers of the same base, then set the exponents equal to one another and solve for the
unknown. See Example 2, Example 3, and Example 4.

• When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side.
See Example 5.

• We can solve exponential equations with base by applying the natural logarithm of both sides because
exponential and logarithmic functions are inverses of each other. See Example 6 and Example 7.

• After solving an exponential equation, check each solution in the original equation to find and eliminate any
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extraneous solutions. See Example 8.
• When given an equation of the form where is an algebraic expression, we can use the definition of a

logarithm to rewrite the equation as the equivalent exponential equation and solve for the unknown. See
Example 9 and Example 10.

• We can also use graphing to solve equations with the form We graph both equations and
on the same coordinate plane and identify the solution as the x-value of the intersecting point. See Example

11.
• When given an equation of the form where and are algebraic expressions, we can use the one-

to-one property of logarithms to solve the equation for the unknown. See Example 12.
• Combining the skills learned in this and previous sections, we can solve equations that model real world situations,

whether the unknown is in an exponent or in the argument of a logarithm. See Example 13.

6.7 Exponential and Logarithmic Models

• The basic exponential function is If we have exponential growth; if we have
exponential decay.

• We can also write this formula in terms of continuous growth as where is the starting value. If is
positive, then we have exponential growth when and exponential decay when See Example 1.

• In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model and use
the model to find the parameters. Then we use the formula with these parameters to predict growth and decay. See
Example 2.

• We can find the age, of an organic artifact by measuring the amount, of carbon-14 remaining in the artifact and
using the formula to solve for See Example 3.

• Given a substance’s doubling time or half-time, we can find a function that represents its exponential growth or
decay. See Example 4.

• We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired
temperature, or to find what temperature an object will be after a given time. See Example 5.

• We can use logistic growth functions to model real-world situations where the rate of growth changes over time,
such as population growth, spread of disease, and spread of rumors. See Example 6.

• We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic,
and logistic graphs help us to develop models that best fit our data. See Example 7.

• Any exponential function with the form can be rewritten as an equivalent exponential function with the
form where See Example 8.

6.8 Fitting Exponential Models to Data

• Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without
bound, or where decay begins rapidly and then slows down to get closer and closer to zero.

• We use the command “ExpReg” on a graphing utility to fit function of the form to a set of data points. See
Example 1.

• Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time.

• We use the command “LnReg” on a graphing utility to fit a function of the form to a set of data
points. See Example 2.

• Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows as
the function approaches an upper limit.

• We use the command “Logistic” on a graphing utility to fit a function of the form to a set of data

points. See Example 3.
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Exercises
Review Exercises
Exponential Functions
1. Determine whether the

function
represents exponential
growth, exponential decay,
or neither. Explain

2. The population of a herd of
deer is represented by the
function
where is given in years. To
the nearest whole number,
what will the herd
population be after years?

3. Find an exponential
equation that passes
through the points
and

4. Determine whether Table 1
could represent a function that
is linear, exponential, or neither.
If it appears to be exponential,
find a function that passes
through the points.

x 1 2 3 4

f(x) 3 0.9 0.27 0.081

Table 1

5. A retirement account is
opened with an initial
deposit of $8,500 and earns

interest compounded
monthly. What will the
account be worth in
years?

6. Hsu-Mei wants to save
$5,000 for a down payment
on a car. To the nearest
dollar, how much will she
need to invest in an account
now with APR,
compounded daily, in order
to reach her goal in years?

7. Does the equation
represent

continuous growth,
continuous decay, or
neither? Explain.

8. Suppose an investment
account is opened with an
initial deposit of
earning interest,
compounded continuously.
How much will the account
be worth after years?

Graphs of Exponential Functions
9. Graph the function State the

domain and range and give the y-intercept.
10. Graph the function and its

reflection about the y-axis on the same axes, and
give the y-intercept.
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11. The graph of is reflected about the
y-axis and stretched vertically by a factor of
What is the equation of the new function,
State its y-intercept, domain, and range.

12. The graph below shows transformations of the
graph of What is the equation for the
transformation?

Figure 1

Logarithmic Functions

13. Rewrite
as an equivalent
exponential equation.

14. Rewrite as an
equivalent exponential
equation.

15. Rewrite as an
equivalent logarithmic
equation.

16. Rewrite as an
equivalent logarithmic
equation.

17. Solve for x if by converting the

logarithmic equation to exponential
form.

18. Evaluate
without using a calculator.

19. Evaluate without using a calculator.

20. Evaluate using a
calculator. Round to the
nearest thousandth.

21. Evaluate
without using a calculator.

22. Evaluate using a

calculator. Round to the
nearest thousandth.

Graphs of Logarithmic Functions
23. Graph the function 24. Graph the function

25. State the domain, vertical asymptote, and end
behavior of the function

Logarithmic Properties
26. Rewrite in expanded form. 27. Rewrite

in compact form.
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28. Rewrite in expanded form. 29. Rewrite in compact form.

30. Rewrite as a product. 31. Rewrite as a single logarithm.

32. Use properties of logarithms to expand 33. Use properties of logarithms to expand

34. Condense the expression
to a single logarithm.

35. Condense the expression

to a single logarithm.

36. Rewrite to base 37. Rewrite as a logarithm. Then apply
the change of base formula to solve for using
the common log. Round to the nearest
thousandth.

Exponential and Logarithmic Equations
38. Solve

by
rewriting each side with a
common base.

39. Solve by

rewriting each side with a
common base.

40. Use logarithms to find the
exact solution for

If there
is no solution, write no
solution.

41. Use logarithms to find the
exact solution for

If there
is no solution, write no
solution.

42. Find the exact solution for
. If there is no

solution, write no solution.

43. Find the exact solution for
If there

is no solution, write no
solution.

44. Find the exact solution for
If there is

no solution, write no
solution.

45. Find the exact solution for
If

there is no solution, write
no solution.

46. Use the definition of a
logarithm to solve.

47. Use the definition of a
logarithm to find the exact
solution for

48. Use the one-to-one property of
logarithms to find an exact
solution for

If there is no solution, write no
solution.

49. Use the one-to-one property
of logarithms to find an exact
solution for

If there is no solution, write no
solution.

50. The formula for measuring sound intensity in
decibels is defined by the equation

where is the intensity of the

sound in watts per square meter and
is the lowest level of sound that the average
person can hear. How many decibels are emitted
from a large orchestra with a sound intensity of

watts per square meter?

51. The population of a city is modeled by the
equation where is
measured in years. If the city continues to grow at
this rate, how many years will it take for the
population to reach one million?
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52. Find the inverse function for the exponential
function

53. Find the inverse function for the logarithmic
function

Exponential and Logarithmic Models

For the following exercises, use this scenario: A doctor prescribes milligrams of a therapeutic drug that decays by
about each hour.

54. To the nearest minute, what is the half-life of the
drug?

55. Write an exponential model representing the
amount of the drug remaining in the patient’s
system after hours. Then use the formula to find
the amount of the drug that would remain in the
patient’s system after hours. Round to the
nearest hundredth of a gram.

For the following exercises, use this scenario: A soup with an internal temperature of Fahrenheit was taken off the
stove to cool in a room. After fifteen minutes, the internal temperature of the soup was

56. Use Newton’s Law of
Cooling to write a formula
that models this situation.

57. How many minutes will it
take the soup to cool to

For the following exercises, use this scenario: The equation models the number of people in a

school who have heard a rumor after days.

58. How many people started
the rumor?

59. To the nearest tenth, how
many days will it be before
the rumor spreads to half
the carrying capacity?

60. What is the carrying
capacity?
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For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table would likely represent a function that is linear, exponential, or
logarithmic.

61.
x f(x)

1 3.05

2 4.42

3 6.4

4 9.28

5 13.46

6 19.52

7 28.3

8 41.04

9 59.5

10 86.28

62.
x f(x)

0.5 18.05

1 17

3 15.33

5 14.55

7 14.04

10 13.5

12 13.22

13 13.1

15 12.88

17 12.69

20 12.45

63. Find a formula for an
exponential equation that
goes through the points

and Then
express the formula as an
equivalent equation with
base e.

Fitting Exponential Models to Data
64. What is the carrying capacity for a population

modeled by the logistic equation
What is the initial population

for the model?

65. The population of a culture of bacteria is modeled
by the logistic equation

where is in days. To the nearest tenth, how many
days will it take the culture to reach of its
carrying capacity?

6 • Exercises 789



For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic
model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round
values to five decimal places.

66.
x f(x)

1 409.4

2 260.7

3 170.4

4 110.6

5 74

6 44.7

7 32.4

8 19.5

9 12.7

10 8.1

67.
x f(x)

0.15 36.21

0.25 28.88

0.5 24.39

0.75 18.28

1 16.5

1.5 12.99

2 9.91

2.25 8.57

2.75 7.23

3 5.99

3.5 4.81

68.
x f(x)

0 9

2 22.6

4 44.2

5 62.1

7 96.9

8 113.4

10 133.4

11 137.6

15 148.4

17 149.3

Practice Test
1. The population of a pod of

bottlenose dolphins is
modeled by the function

where is
given in years. To the
nearest whole number, what
will the pod population be
after years?

2. Find an exponential
equation that passes
through the points
and

3. Drew wants to save $2,500
to go to the next World Cup.
To the nearest dollar, how
much will he need to invest
in an account now with

APR, compounding
daily, in order to reach his
goal in years?
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4. An investment account was
opened with an initial
deposit of $9,600 and earns

interest, compounded
continuously. How much will
the account be worth after

years?

5. Graph the function
and its

reflection across the y-axis
on the same axes, and give
the y-intercept.

6. The graph shows transformations
of the graph of What
is the equation for the
transformation?

7. Rewrite
as an equivalent exponential
equation.

8. Rewrite as an
equivalent logarithmic
equation.

9. Solve for by converting the
logarithmic equation

to exponential

form.

10. Evaluate
without using a calculator.

11. Evaluate using a
calculator. Round to the
nearest thousandth.

12. Graph the function

13. State the domain, vertical
asymptote, and end
behavior of the function

14. Rewrite as a
sum.

15. Rewrite
in compact form.

16. Rewrite as a

product.

17. Use properties of
logarithm to expand

18. Condense the expression
to a single

logarithm.

19. Rewrite as
a logarithm. Then apply the
change of base formula to
solve for using the
natural log. Round to the
nearest thousandth.

20. Solve by rewriting each
side with a common base.

21. Use logarithms to find the
exact solution for

. If
there is no solution, write
no solution.
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22. Find the exact solution for
If there

is no solution, write no
solution.

23. Find the exact solution for
If

there is no solution, write
no solution.

24. Find the exact solution for
If there is

no solution, write no
solution.

25. Find the exact solution for
If there

is no solution, write no
solution.

26. Use the definition of a
logarithm to find the exact
solution for

27. Use the one-to-one property of logarithms to find
an exact solution for

If there is no
solution, write no solution.

28. The formula for measuring
sound intensity in decibels

is defined by the
equation

where

is the intensity of the
sound in watts per square
meter and is
the lowest level of sound
that the average person
can hear. How many
decibels are emitted from a
rock concert with a sound
intensity of
watts per square meter?

29. A radiation safety officer is
working with grams of
a radioactive substance.
After days, the sample
has decayed to grams.
Rounding to five significant
digits, write an exponential
equation representing this
situation. To the nearest
day, what is the half-life of
this substance?

30. Write the formula found in
the previous exercise as an
equivalent equation with
base Express the
exponent to five significant
digits.

31. A bottle of soda with a
temperature of
Fahrenheit was taken off a
shelf and placed in a
refrigerator with an
internal temperature of

After ten minutes,
the internal temperature of
the soda was Use
Newton’s Law of Cooling to
write a formula that
models this situation. To
the nearest degree, what
will the temperature of the
soda be after one hour?
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32. The population of a wildlife
habitat is modeled by the
equation

where

is given in years. How
many animals were
originally transported to
the habitat? How many
years will it take before the
habitat reaches half its
capacity?

33. Enter the data from Table 1
into a graphing calculator
and graph the resulting
scatter plot. Determine
whether the data from the
table would likely
represent a function that is
linear, exponential, or
logarithmic.

x f(x)

1 3

2 8.55

3 11.79

4 14.09

5 15.88

6 17.33

7 18.57

8 19.64

9 20.58

10 21.42

Table 1

34. The population of a lake of
fish is modeled by the
logistic equation

where

is time in years. To the
nearest hundredth, how
many years will it take the
lake to reach of its
carrying capacity?
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For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic
model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round
values to five decimal places.

35.
x f(x)

1 20

2 21.6

3 29.2

4 36.4

5 46.6

6 55.7

7 72.6

8 87.1

9 107.2

10 138.1

36.
x f(x)

3 13.98

4 17.84

5 20.01

6 22.7

7 24.1

8 26.15

9 27.37

10 28.38

11 29.97

12 31.07

13 31.43

37.
x f(x)

0 2.2

0.5 2.9

1 3.9

1.5 4.8

2 6.4

3 9.3

4 12.3

5 15

6 16.2

7 17.3

8 17.9
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