
Would you like to add buttons, boxes, pictures and colours
and more to your Python programs? This book will show you
how to create Python desktop applications using the guizero

library, which is quick, accessible, and understandable for all.

This book is suitable for everyone, from beginners to
experienced Python programmers who want to explore

graphical user interfaces (GUIs).

There are ten fun projects for you to create, including a
painting program, an emoji match game, and a

stop-motion animation creator.

Create games and fun Python programs
Learn how to create your own graphical user interfaces
Use windows, text boxes, buttons, images, and more
Learn about event-based programming
Explore good (and bad) user interface design

Create your own
graphical user interfaces

on any computer

Laura Sach
Create graphical user interfaces w

ith Python
M

artin O
’H

anlon

Create Graphical User
Interfaces with Python

Laura Sach Martin O’Hanlon

How to build windows, buttons, and widgets
for your Python projects

www.dbooks.org

https://www.dbooks.org/

2 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

3

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

First published in 2020 by Raspberry Pi Trading Ltd, Maurice Wilkes Building,
St. John's Innovation Park, Cowley Road, Cambridge, CB4 0DS

Publishing Director: Russell Barnes • Editor: Phil King
Design: Critical Media

CEO: Eben Upton

ISBN: 978-1-912047-91-8

The publisher and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in this book.
Except where otherwise noted, the content of this book is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
(CC BY-NC-SA 3.0)

www.dbooks.org

https://www.dbooks.org/

4 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Martin O'Hanlon
Martin works in the learning team at the Raspberry
Pi Foundation, where he creates online courses,
projects, and learning resources. He contributes
to the development of many open-source projects
and Python libraries, including guizero. As a child,
he wanted to be a computer scientist, astronaut,
or snowboard instructor.

Laura Sach
Laura leads the A Level team at the Raspberry
Pi Foundation, creating resources for students
to learn about Computer Science. She somehow
also manages to make cakes, hug cats, and
wrangle a toddler.

About the authors...

5

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Welcome!

T his book will show you how to use Python to create some fun graphical user
interfaces (GUIs) using the guizero library. The guizero library started with the belief
that there must be an easier way for students in school to create Python GUIs. The

library itself was born one day on a long train journey from Cambridge, as the side project of a
secondary school teacher.

Guizero has grown significantly in terms of features, yet remained true to its original aim of
being simple but flexible. It is a library for all beginners to create with, for teachers to scaffold
learning with and for experts to save time with.

We hope that these projects and guizero brings you that little spark of excitement to
your Python programs. That spark might be anything from a button that does something
when you click it, to colours in your otherwise black and white Python programming, to a
full multicoloured Waffle.

It turns out that with open-source software, even if you don't know how to get the whole way
there, if you start, someone will help you. We are grateful to the many contributors who have
put time and effort into creating guizero, and to the thousands of people who have used it in
their projects. Enjoy your journey and be proud of your creations.

Laura and Martin

www.dbooks.org

https://www.dbooks.org/

6 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 1: Introduction to GUIs 008
How to install guizero and create your first app

Chapter 2: Wanted Poster 012
Use styled text and an image to create a poster

Chapter 3: Spy Name Chooser 018
Make an interactive GUI application

Chapter 4: Meme Generator 026
Create a GUI application which draws memes

Chapter 5: World’s Worst GUI 036
Learn good GUI design by doing it all wrong first!

Chapter 6: Tic-tac-toe 044
Use your GUI to control a simple game

Chapter 7: Destroy the Dots 062
Learn how to use a Waffle to create a tasty game

Contents

7

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 8: Flood It 078
Create a more complex Waffle-based puzzle game

Chapter 9: Emoji Match 092
Make a fun picture-matching game

Chapter 10: Paint 110
Create a simple drawing application

Chapter 11: Stop-frame Animation 124
Build your own stop-frame animated GIF creator

Appendix A: Setting up 138
Learn how install Python and an IDE

Appendix B: Get started with Python 142
How to start coding in Python

Appendix C: Widgets in guizero 148
An overview of the widgets used in guizero

www.dbooks.org

https://www.dbooks.org/

8 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

A graphical user interface (GUI,
pronounced ‘gooey’) is a way of
making your Python programs

easier to use and more exciting. You can add
different components called ‘widgets’ to your
interface, allowing lots of different ways for
information to be entered in to the program
and displayed as output. You might want
to allow people to push a button, to display
a piece of text, or even let them choose an
option from a menu. In this book we will use
the guizero library, which has been developed
with the aim of helping beginners to easily
create GUIs.

Python’s standard GUI package is called
tkinter, and is already installed with Python

Introduction to GUIs
How to install guizero and create your first app

Chapter 1

WHAT YOU'LL NEED
You will need a computer (e.g. Raspberry

Pi, Apple Mac, Windows or Linux PC) and

an internet connection for the software

installation. You will also need the

following software installed:

• Python 3 (python.org) – see Appendix A

• An IDE (code editor), e.g.:

IDLE (installed with Python 3), Thonny

(thonny.org), Mu (codewith.mu),

PyCharm (jetbrains.com/pycharm)

• The guizero Python library

(lawsie.github.io/guizero)

http://python.org
http://thonny.org
http://codewith.mu
http://jetbrains.com/pycharm
http://lawsie.github.io/guizero

9Chapter 1 Introduction to GUIs

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

on most platforms. The guizero library is
a wrapper for tkinter – this means that
it offers a much simpler way of using
Python’s standard GUI library.

Installing guizero
You will need to install the guizero
(lawsie.github.io/guizero) Python library
to create the programs in this book. It is
available as a Python package, which is
reusable code you can download, install, and then use in your programs.

How you install of guizero will depend on your operating system and the permissions you
have to control your computer.

If you have access to the command line / terminal, you can use the following command:

pip3 install guizero

Comprehensive installation instructions for guizero are available at lawsie.github.io/guizero,
including options for installing when you have no administration rights to your computer and
downloadable installations for Windows.

Hello World
Now that you have guizero installed, let’s check that it’s working and write a small ‘hello
world’ app which is traditional for programmers to write as their first program when using a
new tool or language.

 An alternative way to install guizero is to
download the zip file from GitHub

AIMS OF GUIZERO

• Able to be used without installation

• Remove unnecessary code new learners find

difficult to understand

• Sensible widget names

• Accessible to young children, but able be used

for advanced projects

• Good-quality documentation with examples

• Generate helpful error messages

www.dbooks.org

http://lawsie.github.io/guizero
http://lawsie.github.io/guizero
https://www.dbooks.org/

10 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Open up the editor where you will write your Python
code. At the start of every guizero program, you will
choose the widgets you need from the guizero library
and import them. You only need to import each widget
once, and then you can use it in your program as many
times as you like.

At the top of the page, add this code to import the
App widget:

from guizero import App

All guizero projects begin with a main window which is a container widget called an App. At the
end of every guizero program, you must tell the program to display the app you have just created.

Add these two lines of code underneath the line where you imported the App widget:

app = App(title="Hello world")
app.display()

Now save and run your code. You should see a GUI window with the title ‘Hello world’ (Figure
1). Congratulations, you’ve just created your first guizero app!

Adding widgets
Widgets are the things which appear on the GUI, such as text boxes, buttons, sliders, and
even plain old pieces of text.

All widgets go between the line of code to create the App and the app.display() line.
Here is the app you just made, but in this example we have added a Text widget:

from guizero import App, Text
app = App(title="Hello world")
message = Text(app, text="Welcome to the app")
app.display()

Did you notice that there are two changes (Figure 2)? There is now an extra line of code to
add the Text widget, and we have also added Text to the list of widgets to import on the very
first line.

Let’s look at the Text widget code in a bit more detail:

message = Text(app, text="Welcome to the app")

 Figure 1 Your first guizero app

11Chapter 1 Introduction to GUIs

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Just like any variable in Python, a widget needs a
name. This one is called ‘message’. Then we specify
that we would like this to be a ‘Text’ widget. Inside the
brackets are some parameters to tell the Text widget
what it should look like. The first one, ‘app’, tells the
Text where it will live. All widgets need to live inside
a container widget. Most of the time your widgets
will live directly inside an App, but you will discover
later that there are also some other types of container
widget you can put things in too. Finally, we tell the
widget to contain the text “Welcome to the app”. Figure 2 Add a text message

from guizero import App, Text
app = App(title="Hello world")
message = Text(app, text="Welcome to the app")
app.display()

01-helloworld.py / Python 3 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

12 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

N ow that you can create a basic GUI, let’s make it look a bit more exciting. You can
add text in different fonts, sizes and colours, change the background colour, and
add pictures too. To practise all of this, let’s create a ‘Wanted’ poster.

First of all, you need to start off by creating an app. In your editor, add this code to create
the most basic app window:

from guizero import App

app = App("Wanted!")

app.display()

Save and run your code and you should see an app that
looks like a plain grey square with the title ‘Wanted!’ at
the top (Figure 1).

Wanted Poster
Use styled text and an image to create a poster

Chapter 2

 Figure 1 The basic app

13Chapter 2 Wanted Poster

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Background colours
Let's make the background of the app a bit different.
Traditionally, wanted posters look like they are made of
parchment, so let’s add a pale yellow colour instead as
the background.

Find the line of code where you create the app.
Immediately after this line of code, add one more line
of code to modify the bg property of the window. In
this case, bg is short for ‘background’ and will let us
change the colour of the background. Now your code
should look like this:

from guizero import App

app = App("Wanted!")
app.bg = "yellow"

app.display()

This is called editing a property. In the code, you need to specify the widget you are talking
about (app), the property you want to change (bg) and the value you want to change it to.

You might think this colour (Figure 2) is a bit too yellow, so let's look up the hex code of
a different yellow colour. There are lots of websites where you can search for colours, for
example you could try htmlcolorcodes.com (Figure 3).

 Figure 2 Background colour

 Figure 3 Selecting a shade on htmlcolorcodes.com

www.dbooks.org

http://htmlcolorcodes.com
http://htmlcolorcodes.com
https://www.dbooks.org/

14 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

When you have selected the colour you want,
you will see its code displayed on the site either
as hexadecimal (in this case #FBFBD0) or as RGB
(251, 251, 208). You can use both of these formats
for setting colours in guizero; for example, you could
delete the code for making your background yellow
and then try one of these options in your program:

app.bg = "#FBFBD0"
app.bg = (251, 251, 208)

Add some text
Your app should look something like Figure 4. Now let’s add some text to the GUI. We will
begin by adding the text that all good wanted posters need – the word ‘Wanted’!

First, look for the line of code you already have where you imported the App.

from guizero import App

You need to import Text to be able to create a piece of text, so add it to the end of the list.
Now the line looks like this:

from guizero import App, Text

Every time you want to use a new type of widget, add its name to the end of the list. There is
no need to keep adding whole new lines of code: just stick with one list so that your program
doesn’t get too confusing.

Now that you can use text, let's add a piece of text. Remember that all widgets on the
GUI must be added between the line of code where you create the App and the line of code
where you display it. Your code should now look like this:

from guizero import App, Text

app = App("Wanted!")
app.bg = "#FBFBD0"

wanted_text = Text(app, "WANTED")

app.display()

 Figure 4 Pale background

15Chapter 2 Wanted Poster

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Let’s take a closer look at that line of code you just added.

wanted_text = Text(app, "WANTED")

Here, wanted_text is the name of the piece of text. This is so that we can talk about it later
on in the code – think of it like a person's name. (You could even call your piece of text Dave
if you want – the computer won’t care!)

Inside the brackets we have two things. The second one, "WANTED", is straightforward as
it is the text we would like to display on the screen. The first is the container which controls
this piece of text, which is called its ‘master’. In this case we are saying that this text should
be controlled by the app. When you first start creating GUIs, most of your widgets will have
the app as their master, but there are other containers that can store widgets that you will
learn about later on.

Change text size and colour
Uh oh, this text is pretty small (Figure 5). Let's change the text_size property in exactly the
same way as you did when we changed the background colour of the app. Remember that
you needed to specify three things:

1. The name of the widget
2. Which property to change
3. The new value to change it to

So, in this case you are going to specify the widget
(wanted_text), the property to change (text_size)
and the new value (50). Add one new line of code immediately under the line where you
created the text, to change the property.

wanted_text = Text(app, "WANTED")
wanted_text.text_size = 50

You now have larger text on your poster (Figure 6). See if you can now change the font
of this text to something different. Which fonts are available depends on which operating
system you are using, so here are some suggestions:

• Times New Roman
• Verdana
• Courier
• Impact

 Figure 5 Text is too small

 Figure 6 Larger text

www.dbooks.org

https://www.dbooks.org/

16 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

No ‘wanted’ poster would be complete without a picture, so let’s add one. My poster is going
to be for my cat, because she is always scratching things she shouldn’t be.

Save a copy of the image you would like to use in the same folder as your GUI program.
You can use images in other folders, but if you do you will have to provide the path to the
image, so it’s a lot easier to just store them in the same folder when you are starting out.

Hopefully you’re now getting used to adding widgets. Remember that they must always be
imported at the top of the program, and then the widget created with a sensible name after
the line of code where you create the App, but before the final app.display() line.

Add 'Picture' to the list of widgets to import at the start of the program.

from guizero import App, Text, Picture

Now create a Picture widget with two parameters: the app and the file name of the picture.
This is the code we used because our picture was called tabitha.png.

cat = Picture(app, image="tabitha.png")

Run your code (which should look like 02-wanted.py)
again and you should see the picture displaying below
your text (Figure 7).

Now it's up to you to use your new GUI
customisation skills to style your poster however you
would like.

IMAGE MANIPULATION
Because guizero is a library for beginners and we wanted to make it as easy as possible to install,

it does not come with the fancier image manipulation functions as these require an extra library

called 'pillow'. You can always use non-animated GIF images on any platform, and PNG images on all

platforms except Mac, so if you're not sure whether you have installed the extra image manipulation

functions, stick to those image types.

 Figure 7 The finished poster

17Chapter 2 Wanted Poster

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

from guizero import App, Text, Picture

app = App("Wanted!")
app.bg = "#FBFBD0"

wanted_text = Text(app, "WANTED")
wanted_text.text_size = 50
wanted_text.font = "Times New Roman"

cat = Picture(app, image="tabitha.png")

app.display()

02-wanted.py / Python 3 DOWNLOAD
magpi.cc/guizerocode

READING THE DOCS
You might be wondering how to find out what properties a particular widget has that you can change.

Even if you are a complete beginner programmer, it is worth learning how to read documentation

because it will let you use the full power of guizero and any other libraries you come across.

The guizero documentation can be found at lawsie.github.io/guizero. Once you are there, click on the

widget you would like to change, and scroll down until you reach the properties section. For example, if

you select ‘Text’ under the heading of widgets, you will see all of the properties of a piece of Text that

you can possibly change. Documentation also often contains helpful snippets of code which show you

how to use a particular property or method, so don't be scared of having a look through – you never

know what you might learn!

www.dbooks.org

http://magpi.cc/guizerocode
http://lawsie.github.io/guizero
https://www.dbooks.org/

18 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

S o far you've learnt how to
customise your GUI with a
variety of different options. It's

now time to get into the really interactive
part and make a GUI application that
actually responds to input from the user. Who could resist pushing a big red button to
generate a super secret spy name?

Since you already know how to create an app, why not go ahead and create a basic window
and add some text if you like? Here is some code to get you started, and this code also
includes some comments (the lines that start with a #) to help you structure your program:

Imports ---------------
from guizero import App, Text

Functions -------------

Spy Name Chooser
Make an interactive GUI application

Chapter 3

 Figure 1 Displaying the text in a window

19Chapter 3 Spy Name Chooser

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy

name")

Display ---------------
app.display()

Run this code and you should see a window with the text (Figure 1).

Add a button
Let's go ahead and add a button to the GUI. Add PushButton to your list of imports so that
you can use buttons. (Be careful to use a capital B!)

Underneath the Text widget, but before the app displays, add a line of code to create
a button.

button = PushButton(app, choose_name, text="Tell me!")

Your code should now look like spy1.py (page 22). Run it and no button will appear, but you’ll
see an error in the shell window:

NameError: name 'choose_name' is not defined

This is because choose_name is the
name of a command which runs when the
button is pressed. Most GUI components
can have a command attached to them.
For a button, attaching a command
means “when the button is pressed, run
this command.” A GUI program works differently to other Python programs you might have
written because the order in which the commands are run in the program depends entirely
on the order in which the user presses the buttons, moves the sliders, ticks the boxes or
interacts with whichever other widgets you are using. The actual command is almost always
the name of a function to run.

 Figure 2 You now have a button

www.dbooks.org

https://www.dbooks.org/

20 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create a function
Let's write the function choose_name so
your button has something it can do when
it is pressed.

Look at your program and find the
functions section. This is where you
should write all of the functions which will
be attached to GUI widgets, to keep them separate from the code for displaying the widget.
Add this code in the functions section:

def choose_name():
 print("Button was pressed")

Your code should now look like spy2.py. The button will now appear (Figure 2). If you press
the button, it may appear that nothing has happened, but if you look in your shell or output
window, you will see that some text has appeared there (Figure 3).

Instructing your function to first print out some dummy text is a useful way of confirming
that the button is activating its command function correctly when it is pressed. You can then
replace the print statement with the actual code for the task you would like your button
to perform.

Inside your choose_name function, type a # symbol in front of the line of code that prints
"Button was pressed". Programmers call this ‘commenting out’, and what you have done
here is told the computer to treat this line of code as if it were a comment, or in other words
you have instructed the computer to ignore it. The benefit of commenting a line of code out
instead of just deleting it is so that if you ever want to use that code again, you can easily
make it part of your program again by removing the # symbol.

BIG RED BUTTON
At the moment, your button is not big or red! You used properties in the previous chapter to change

the appearance of your text on the ‘Wanted’ poster, so can you use the properties of the PushButton

widget to change the background colour and the text size?

Note that it may not bepossible to change the colour of a button on macOS, as some versions of the

operating system will not allow you to do so, but you should still be able to alter the text size.

 Figure 3 Text is output to the shell window

21Chapter 3 Spy Name Chooser

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add some names
On a new line, add a list of first names.
You can choose the names in your list
and there can be as many names as you
like, but make sure that each name is
between quotes, and the names are each
separated by a comma. A collection of
letters, numbers, and/or punctuation between quotation marks is called a string, so we say
that each name must be a string.

first_names = ["Barbara", "Woody", "Tiberius", "Smokey",
"Jennifer", "Ruby"]

Now add a list of last names as well:

last_names = ["Spindleshanks", "Mysterioso", "Dungeon",
"Catseye", "Darkmeyer", "Flamingobreath"]

Now you will need to add a way of choosing a random name from each list to form your spy
name. Your first job is to add a new import line in your imports section:

from random import choice

This tells the program that you would like to use a function called choice which chooses a
random item from a list. Someone else has written the code which does this for you, and it is
included with Python for you to use.

In your code for the choose_name function, just below your lists of names, add a line of
code to choose your spy's first name, and then concatenate it together with the last name,
with a space in between. Concatenate is a fancy word that means ‘join two strings together’
and the symbol in Python for concatenation is a plus (+).

spy_name = choice(first_names) + " " + choice(last_names)
print(spy_name)

Your code should now resemble spy3.py. Save and run it. When you press the button, you
should see that a randomly generated spy name appears in your console or shell, in the
same place where the original "Button was pressed" message showed up before (Figure 4).

 Figure 4 Outputting a spy name

www.dbooks.org

https://www.dbooks.org/

22 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Put the name in the GUI
That's good, but wouldn't it be nicer if
the spy name appeared on the GUI? Let's
make another Text widget and use it to
display the spy name.

In the widgets section, add a new Text
widget which will display the spy name:

name = Text(app, text="")

When you create the widget, you don't want it to display any text at all as the person won't
have pressed the button yet, so you can set the text to "", which is called an ‘empty string’
and displays nothing. Inside your choose_name function, comment out the line of code
where you print out the spy name.

Now add a new line of code at the end of the function to set the value of the name Text
widget to the spy_name you just created. This will cause the Text widget to update itself and
display the name.

name.value = spy_name

Your final code should be as in 03-spy-name-chooser.py. Run it and press the button to see
your spy name displayed proudly on the GUI (Figure 5).

You can press the button again if you don't like the name you are given, and the program
will randomly generate another name for you.

Imports ---------------
from guizero import App, Text, PushButton

Functions -------------

App -------------------
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")

Display ---------------
app.display()

spy1.py / Python 3 DOWNLOAD
magpi.cc/guizerocode

 Figure 5 The finished spy name chooser

http://magpi.cc/guizerocode

23Chapter 3 Spy Name Chooser

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Text, PushButton

Functions -------------
def choose_name():
 print("Button was pressed")

App -------------------
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")

Display ---------------
app.display()

spy2.py / Python 3

Imports ---------------
from guizero import App, Text, PushButton
from random import choice

Functions -------------
def choose_name():
 #print("Button was pressed")
 first_names = ["Barbara", "Woody", "Tiberius", "Smokey",
"Jennifer", "Ruby"]
 last_names = ["Spindleshanks", "Mysterioso", "Dungeon",
"Catseye", "Darkmeyer", "Flamingobreath"]
 spy_name = choice(first_names) + " " + choice(last_names)
 print(spy_name)

App -------------------
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")
button.bg = "red"
button.text_size = 30

Display ---------------
app.display()

spy3.py / Python 3

www.dbooks.org

https://www.dbooks.org/

24 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, Text, PushButton
from random import choice

Functions -------------

def choose_name():
 #print("Button was pressed")
 first_names = ["Barbara", "Woody", "Tiberius", "Smokey",
"Jennifer", "Ruby"]
 last_names = ["Spindleshanks", "Mysterioso", "Dungeon",
"Catseye", "Darkmeyer", "Flamingobreath"]
 spy_name = choice(first_names) + " " + choice(last_names)
 #print(spy_name)
 name.value = spy_name

App -------------------

app = App("TOP SECRET")

Widgets ---------------

title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")
button.bg = "red"
button.text_size = 30
name = Text(app, text="")

Display ---------------

app.display()

03-spy-name-chooser.py / Python 3

25Chapter 3 Spy Name Chooser

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

26 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

L et's take the lessons you learnt from the previous chapters to create a GUI which
draws memes. You will input the text and image name and your GUI will combine them
into your own meme using the Drawing widget.

Start by creating a simple GUI with two text boxes for the top and bottom text. This is where
you will enter the text which will be inserted over your picture to create your meme. Add this
line to import the widgets needed.

from guizero import App, TextBox, Drawing

Then add this code for the app:

app = App("meme")

top_text = TextBox(app, "top text")
bottom_text = TextBox(app, "bottom text")

app.display()

Meme Generator
Create a GUI application which draws memes

Chapter 4

27Chapter 4 Meme Generator

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

The meme will be created on a Drawing widget which will hold the image and text.

Create a meme
Add it to the GUI by inserting this code just before the app.display() line. The Drawing
widget’s height and width should be set to ‘fill’ the rest of the GUI.

meme = Drawing(app, width="fill", height="fill")

The meme will be created when the text in the top and bottom text boxes changes. To do that,
we will need to create a function which draws the meme.

The function should clear the drawing, create an image (we're using a photo of a
woodpecker, but you can use any you want) and insert the text at the top and bottom of
the image.

Remember when you used name.value to set the value of the Text widget with the spy
name in Chapter 3? You can also use the value property to get the value of a Text widget, so in
this case top_text.value means ‘please get the value that is typed in the top_text box’.

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(20, 20, top_text.value)
 meme.text(20, 320, bottom_text.value)

The first two numbers in meme.image(0,
0) and meme.text(20, 20) are the x, y
co-ordinates of where to draw the image
and text. The image is drawn at position
0, 0, which is the top-left corner, so the
image covers the whole of the drawing.

Finally, call your draw_meme function just
before you display the app. Insert this code
just before the app.display line:

draw_meme()

Your code should now look like meme1.py. Figure 1 Meme with unstyled text

www.dbooks.org

https://www.dbooks.org/

28 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

If you run your app (Figure 1) and try changing the top and bottom text, you will notice that
it doesn’t update in the meme. To get this working, you will have to change your program to
call the draw_meme function when the text changes, by adding a command to the two TextBox
widgets to the app.

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

Your code should now look like that in meme2.py. Run it and update your meme by changing
the top and bottom text.

You can then look of your meme by changing the color, size, and font parameters of the text.
For example:

meme.text(
 20, 20, top_text.value,
 color="orange",
 size=40,
 font="courier")
meme.text(
 20, 320, bottom_text.value,
 color="blue",
 size=28,
 font="times new roman",
)

Your code should now look like meme3.py. Try different styles until you find something you
like (Figure 2).

Customise your meme generator
For a truly interactive meme generator, the
user should be able to set the font, size,
and colour themselves. You can provide
additional widgets on the GUI to allow
them to do this.

The number of options available for
the colour and font are limited, so you
could use a drop-down list, also known as
a Combo, for this. The size could be set
using a Slider widget.

TIP
These lines of code were

starting to get very long, so we

have split them over a number

of lines to make it easier to

read. It doesn’t affect what the

program does, just how it looks.

 Figure 2 Alter the fonts and colours

29Chapter 4 Meme Generator

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

First, modify your import statement to include the Combo and Slider widgets.

from guizero import App, TextBox, Drawing, Combo, Slider

After you have created your TextBox widgets for the top and bottom text, create a new Combo
widget so the user can select a colour.

bottom_text = TextBox(app, "bottom text", command=draw_meme)
color = Combo(app,
 options=["black", "white", "red", "green", "blue", "orange"],
 command=draw_meme)

The options parameter sets what colours the user can select from the Combo. Each colour is
an element in a list. You can add any other colours you want to the list.

The options are displayed in the order in which you put them in the list. The first option is
the default, which is displayed first. If you want to have a different option as the default, you
can do it using the selected parameter, e.g. "blue".

color = Combo(app,
 options=["black", "white", "red", "green", "blue", "orange"],
 command=draw_meme,
 selected="blue")

Now your user can select a colour. Next, you need to change the draw_meme function to use
Combo’s value when creating the text in your the meme. For example:

meme.text(
 20, 20, top_text.value,
 color=color.value,
 size=40,
 font="courier")

Do the same for the bottom-text block of code. Your program should now resemble meme4.py.
Following the steps above, add a second Combo to your application so the user can select a

font from this list of options: ["times new roman", "verdana", "courier", "impact"].
Remember to change the draw_meme function to use the font value when adding the text.

Create a new Slider widget to set the size of the text your user wants.

size = Slider(app, start=20, end=40, command=draw_meme)

www.dbooks.org

https://www.dbooks.org/

30 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

The range of the slider is set using the start and end parameters. So, in this example, the
smallest text available will be 20 and the largest 40.

Modify the draw_meme function to use the value from your size slider when creating the
meme's text.

meme.text(
 20, 20, top_text.value,
 color=color.value,
 size=size.value,
 font=font.value)

Your code should now resemble that in
04-meme-generator.py. Try running it and
you should see something like Figure 3.

Can you change the GUI so that the
name of the image file can be entered
into a TextBox or perhaps selected from
a list in a Combo? This would make your
application capable of generating memes
with different images too.

DRAWING WIDGET
The Drawing widget is really versatile and can be used to display lots of different shapes, patterns,

and images.

To find out more about the Drawing widget, see Appendix C, or take a look at the online

documentation: lawsie.github.io/guizero/drawing.

 Figure 3 The finished meme generator

http://lawsie.github.io/guizero/drawing

31Chapter 4 Meme Generator

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, TextBox, Drawing

Functions -------------

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(20, 20, top_text.value)
 meme.text(20, 320, bottom_text.value)

App -------------------

app = App("meme")

top_text = TextBox(app, "top text")
bottom_text = TextBox(app, "bottom text")

meme = Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

meme1.py / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing

Functions -------------

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(20, 20, top_text.value)
 meme.text(20, 320, bottom_text.value)

meme2.py / Python 3

 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

32 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------

app = App("meme")

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

meme = Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

meme2.py (cont.) / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing

Functions -------------

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(
 20, 20, top_text.value,
 color="orange",
 size=40,
 font="courier")
 meme.text(
 20, 320, bottom_text.value,
 color="blue",
 size=28,
 font="times new roman",
)

meme3.py / Python 3

33Chapter 4 Meme Generator

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------

app = App("meme")

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

meme = Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

meme3.py (cont.) / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing, Combo, Slider

Functions -------------

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(
 20, 20, top_text.value,
 color=color.value,
 size=40,
 font="courier")
 meme.text(
 20, 320, bottom_text.value,
 color=color.value,
 size=28,
 font="times new roman",
)

App -------------------

meme4.py / Python 3

www.dbooks.org

https://www.dbooks.org/

34 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app = App("meme")

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

color = Combo(app,
 options=["black", "white", "red", "green", "blue",
"orange"],
 command=draw_meme, selected="blue")

meme = Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

meme4.py (cont.) / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing, Combo, Slider

Functions -------------

def draw_meme():
 meme.clear()
 meme.image(0, 0, "woodpecker.png")
 meme.text(
 20, 20, top_text.value,
 color=color.value,
 size=size.value,
 font=font.value)
 meme.text(
 20, 320, bottom_text.value,
 color=color.value,
 size=size.value,
 font=font.value,
)

04-meme-generator.py / Python 3

35Chapter 4 Meme Generator

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------

app = App("meme")

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

color = Combo(app,
 options=["black", "white", "red", "green", "blue",
"orange"],
 command=draw_meme, selected="blue")

font = Combo(app,
 options=["times new roman", "verdana", "courier",
"impact"],
 command=draw_meme)

size = Slider(app, start=20, end=50, command=draw_meme)

meme = Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

04-meme-generator.py / Python 3

www.dbooks.org

https://www.dbooks.org/

36 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

I ts time to really go to town with your GUIs and experiment with different widgets,
colours, fonts, and features. Like most experiments, it’s likely that you won’t get it right
first time! In fact, you are going to explore the wrong way to approach creating your GUI.

It’s hard to read
The right choice of GUI colour and font are important. It’s important that the contrast between
background and text colour ensure that your GUI is easily readable. What you shouldn't do it is
use two very similar colours.

Import the widgets at the top of the code:

from guizero import App, Text

Create an app with a title:

app = App("it's all gone wrong")
title = Text(app, text="Some hard to read text")

World’s Worst GUI
Learn good GUI design by doing it all wrong first!

Chapter 5

Are you sure?

NOYES

Are you sure?

NOYES

Are you sure?

NOYES

Well done!
You started
the application.

Well done!
You started
the application.

Well done!
You started
the application.

Well done!
You started
the application.

Well done!
You started
the application.

#13A751

#EA5F10

#289099

37Chapter 5 World’s Worst GUI

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app.display()

Experiment by changing the colours, font, and text size (see worst1.py listing, page 41). My
choices are not the best!

app = App("it's all gone wrong", bg="dark green")
title = Text(app, text="Some hard-to-read text", size="14",

font="Comic Sans", color="green")

It’s important that text on a GUI also stays around long enough to be read. It certainly shouldn't
disappear or start flashing.

All widgets in guizero can be made invisible (or visible again) using the hide() and show()
functions. Using the repeat function in guizero to run a function every second, you can make
your text hide and show itself and appear to flash.

Create a function which will hide the text if it’s visible and show it if it’s not:

def flash_text():
 if title.visible:
 title.hide()
 else:
 title.show()

Before the app is displayed, use repeat to make the flash_text function run every 1000
milliseconds (1 second).

app.repeat(1000, flash_text)

app.display()

Your code should now look like worst2.py. Test your app: the title text should flash, appearing
and disappearing once every second.

The wrong widget
Using an appropriate widget can be the difference between a great GUI and one which is
completely unusable.

Which widget would you use to enter a date? A TextBox? Multiple Combos? A TextBox
would be more flexible but would require validation and formatting. Multiple Combos for year,
month, and day wouldn't require validating but would be slower to use.

www.dbooks.org

https://www.dbooks.org/

38 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Using a Slider to set a date and time (Figure 1), as in the worst3.py code example, is not a
great idea, though.

The Slider widget returns a number between 0 and 999,999,999. This is the number of
seconds since 1 January 1970. The function ctime() is used to turn this number into a date
and time.

Getting text from your user is simple: a TextBox or a multi-line TextBox should fulfil all your
needs. Is it too simple, though. Does this require too much typing?

What about the user who just wants to use a mouse? Perhaps a series of Combos each
containing all the letters in the alphabet would be better (Figure 2)?

Start by importing the guizero widgets and ascii_letters.

from guizero import App, Combo
from string import ascii_letters

ascii_letters is a list containing all the ‘printable’ ASCII characters which you can use as
the options for the Combo.

Create a single Combo which contains all the letters and displays the app.

a_letter = Combo(app, options=" " + ascii_letters, align="left")

app.display()

Your program should now resemble worst4.py. Running it, you will see a single Combo which
contains all the letters plus a space and is aligned to the left of the window.

To get a line of letters together, you could continually add Combo widgets to your app, e.g.:

a_letter = Combo(app, options=" " + ascii_letters, align="left")
b_letter = Combo(app, options=" " + ascii_letters, align="left")
c_letter = Combo(app, options=" " + ascii_letters, align="left")

 Figure 1 A slider to set date and time Figure 2 Combos to choose letters

39Chapter 5 World’s Worst GUI

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

By aligning each Combo widget to the left,
the widgets are displayed next to each other
against the left edge.

Alternatively, you could use a for loop,
create a list of letters, and append each letter
to the list, as shown in worst5.py.

Try both these approaches and see which
you prefer. The for loop is more flexible as it
allows you to create as many letters as you like.

Pop-ups
No terrible GUI would be complete without
a pop-up box. guizero contains a number of
pop-up boxes, which can be used to let users
know something important or gather useful
information. They can also be used to irritate and annoy users!

First, create an application which pops up a pointless box at the start to let you know the
application has started.

from guizero import App

app = App(title="pointless pop-ups")

app.info("Application started", "Well done you started the
application")

app.display()

Running your application, you will see that an ‘info’ box appears (Figure 3). The first parameter
passed to info is the title of the window; the second parameter is the message.

You can change the style of this simple pop-up by using warn or error instead of info.
Pop-up boxes can also be used to get information from the user. The simplest is a yesno

which will ask the user a question and get a True or False response. This is useful if you want
a user to confirm before doing something, such as deleting a file. Perhaps not every time they
press a button, though!

Import the PushButton widget into your application:

from guizero import App, PushButton

Create a function which uses the yesno pop-up to ask for confirmation.

 Figure 3 Pointless pop-up

www.dbooks.org

https://www.dbooks.org/

40 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

def are_you_sure():
 if app.yesno("Confirmation", "Are you sure?"):
 app.info("Thanks", "Button pressed")
 else:
 app.error("Ok", "Cancelling")

Add the button to your GUI which calls the function when it is pressed.

button = PushButton(app, command=are_you_sure)

Your code should now resemble 05-worlds-worst-gui.py.
When you run the application and press the button, you will see
a pop-up asking to you confirm with a Yes or No (Figure 4).

You can find out more about the pop-up boxes in guizero at
lawsie.github.io/guizero/alerts.

How about combining all of these ‘features’ into one
great GUI? Figure 4 Yes, we’re sure!

WINDOW WIDGET

Pop-up boxes can be used to ask users

questions, but they are really simple.

If you want to do show additional information

or ask for supplementary data, you could use the

Window widget to create multiple windows.

Window is used in a similar way to App and

has many of the same functions.

from guizero import App, Window

app = App("Main window")

window = Window(app, "2nd Window")

app.display()

You can control whether a Window is on screen

using the show() and hide() methods.

window.show()

window.hide()

An app can be made to wait for a window to be

closed after it has been shown, by passing True

to the wait parameter of show. For example:

window.show(wait=True)

You can find out more about how to use multiple

windows in the guizero documentation:

lawsie.github.io/guizero/multiple_windows.

http://lawsie.github.io/guizero/alerts
http://lawsie.github.io/guizero/multiple_windows

41Chapter 5 World’s Worst GUI

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, Text

App -------------------

app = App("its all gone wrong", bg="dark green")

title = Text(app, text="Hard to read", size="14", font="Comic
Sans", color="green")

app.display()

worst1.py / Python 3

Imports ---------------

from guizero import App, Text

Functions -------------

def flash_text():
 if title.visible:
 title.hide()
 else:
 title.show()

App -------------------

app = App("its all gone wrong", bg="dark green")

title = Text(app, text="Hard to read", size="14", font="Comic
Sans", color="green")

app.repeat(1000, flash_text)

app.display()

worst2.py / Python 3

 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

42 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, Slider, Text
from time import ctime

Functions -------------

def update_date():
 the_date.value = ctime(date_slider.value)

App -------------------

app = App("Set the date with the slider")
the_date = Text(app)
date_slider = Slider(app, start=0, end=999999999, command=update_
date)

app.display()

worst3.py / Python 3

Imports ---------------
from guizero import App, Combo
from string import ascii_letters

App -------------------

app = App("Enter your name")

a_letter = Combo(app, options=" " + ascii_letters, align="left")

app.display()

worst4.py / Python 3

43Chapter 5 World’s Worst GUI

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, Combo
from string import ascii_letters

App -------------------

app = App("Enter your name")

name_letters = []
for count in range(10):
 a_letter = Combo(app, options=" " + ascii_letters,
align="left")
 name_letters.append(a_letter)

app.display()

worst5.py / Python 3

from guizero import App, PushButton

def are_you_sure():
 if app.yesno("Confirmation", "Are you sure?"):
 app.info("Thanks", "Button pressed")
 else:
 app.error("Ok", "Cancelling")

app = App(title="pointless pop-ups")

button = PushButton(app, command=are_you_sure)

app.info("Application started", "Well done you started the
application")

app.display()

05-worlds-worst-gui.py / Python 3

www.dbooks.org

https://www.dbooks.org/

44 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

N ow that you have learnt how to make a basic GUI, let's add some more programming
logic behind the scenes to make your GUI work as the means of controlling a game
of tic-tac-toe (also known as noughts and crosses).

Create a new file with the following code:

Imports ---------------
from guizero import App

Functions -------------

Variables -------------

App -------------------
app = App("Tic tac toe")

app.display()

Tic-tac-toe
Use your GUI to control a simple game

Chapter 6

45Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create the board
Let’s begin by creating the widgets which
will make up the game board. A traditional
tic-tac-toe board looks like the one shown
in Figure 1.

You’ll use buttons to represent each of
the positions on the board, so that the player
can click on one of the buttons indicating
where they would like to move. To be able
to lay out the buttons on a grid, let's create a
new type of guizero widget called a Box.

A Box is a container widget. This means
that it is used for containing other widgets
and grouping them together. Add it to the
imports at the top of your code:

from guizero import App, Box,

Set the Box to have a grid layout and add it to your app – before the app.display() line, as
with all widgets.

board = Box(app, layout="grid")

If you run your program at this point, you won't see anything on the screen because the Box
itself is invisible.

Now let's create the buttons to go inside it. You will need nine buttons in total, so instead of
creating them individually, you can use a nested loop to generate them all automatically and
give them co-ordinates. First, add PushButton to your list of widgets to import and then add
this code immediately after the code for the board you just created.

for x in range(3):
 for y in range(3):
 button = PushButton(
 board, text="", grid=[x, y], width=3
)

 Figure 1 A typical game of tic-tac-toe

www.dbooks.org

https://www.dbooks.org/

46 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Notice that there are two loop variables: x from 0 to 2 and y from 0 to 2. As we iterate and
generate buttons, each button will be added to the board, which is the Box container you
created earlier. The button will be given the grid co-ordinates x,y, meaning that each button is
neatly placed on a grid at a different position!

Your code should now look like tictactoe1.py. The result of running it is shown in Figure 2.

Underlying data structure
You might notice that when you create the buttons using a loop, you are creating nine buttons
automatically and every single one is called button. How will you be able to refer to each of
these buttons in the program?

The answer is that you need an underlying data structure to hold a reference to each button,
and for this you will use a two-dimensional list.

Let's create a function which we can call to clear the board. It is a good idea to do this in a
function so that you can reuse the code once the game has been played to reset the board and
allow the player to begin a fresh game.

In the functions section, add a new function called clear_board.

def clear_board():

Your first job inside this function is to initialise the data structure for the board. Let's assume
at this point you have not created any buttons, so you can initialise each position on the board
as None – the element in the list now exists but does not yet have a value. Add the following
line, indented, to your function.

new_board = [[None, None, None], [None, None, None], [None, None,
None]]

 Figure 2 A grid of nine buttons to play tic-tac-toe

47Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Next, move the nested loop code from your app section into the clear_board function. Make
sure the indentation is correct.

Inside the inner (y) loop, add a line of code to store a reference to each button at its x,y co-
ordinate position within the two-dimensional list so that you can refer to it later.

new_board[x][y] = button

Finally, after the loops end, return the new_board you have just created. Your function should
look like this:

def clear_board():
 new_board = [[None, None, None],
 [None, None, None],
 [None, None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(
 board, text="", grid=[x, y], width=3
)
 new_board[x][y] = button
 return new_board

In the app section, initialise a list called board_squares and set it to call the new function you
just created.

board_squares = clear_board()

This variable will be assigned the value of the new_board you created within the function,
which should be a blank board with nine buttons. Make sure that you create this variable after
the code for creating the Box, otherwise you will be trying to add buttons to a container that
does not yet exist.

Your code will now resemble tictactoe2.py. Save and run the program and you should see
an identical result to the one you had at the end of the last step, but now you have a hidden
two-dimensional list data structure to let you reference and manipulate the buttons.

If you want to see what your 2D list looks like, you could add a print command to print the
board_squares list: print(board_squares). You should then see nine lots of [PushButton]
object with text "" appear in the shell.

www.dbooks.org

https://www.dbooks.org/

48 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Make the buttons work
At the moment, your buttons don't do anything when you press them. Let’s make a function to
attach to the button, so that when it is pressed, the button displays either X or O depending on
which player chose it.

First, create a variable in the variables section to record whose turn it is. You can choose to
start with either player, but we will choose to start with X.

turn = "X"

This now means that you need to display on the GUI whose turn it is (Figure 3) so the players
don't get confused. Add Text to your list of widgets to import:

from guizero import App, Box, PushButton, Text

Then add a new Text widget in the app section to display the turn.

message = Text(app, text="It is your turn, " + turn)

Move to the functions section and create a new function called choose_square.

def choose_square(x, y):

You will notice that this function takes two arguments – x and y. This is so that you know
which square on the board has been clicked.

 Figure 3 Let your players know whose turn it is

49Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add the following code (indented) inside the function to set the text inside the button that
was clicked to the symbol of the current player, and then disable the button so it cannot be
clicked on again.

board_squares[x][y].text = turn
board_squares[x][y].disable()

Finally, connect this function to the button. Find this line of code inside your
clear_board function:

button = PushButton(board, text="", grid=[x, y], width=3)

Modify it so that it looks like the line below:

button = PushButton(board, text="", grid=[x, y], width=3,
command=choose_square, args=[x,y])

You have added two things here. Firstly, you are attaching a command, just as before. When
the button is pressed, the function with this name will be called. Secondly, you are also
providing arguments to this function, which are the co-ordinates x and y of the button which
was pressed, so that you can find that button again in the list.

Your program should now look like tictactoe3.py. Save and run it. You will now be able to
click on a button and it will change to an X. Unfortunately, in this version of the game it is
permanently X’s turn!

Alternating between players
Once one player has taken their turn, the turn variable should toggle to be the other player.
Here is a function which will toggle from X to O and vice versa.

def toggle_player():
 global turn
 if turn == "X":
 turn = "O"
 else:
 turn = "X"

Add the code in your functions section. Notice the first line in the function: global turn. You
need to specify this so that you are allowed to modify the global version of the turn variable,
i.e. the one you already created. If you don’t specify this, Python will create a local variable
called turn and modify that instead, but that change won't be saved once the function exits.

www.dbooks.org

https://www.dbooks.org/

50 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

You also need to make sure that the Text widget accurately reports the current player’s turn.
After the if/else statement in the toggle_player function, update the message like this:

message.value = "It is your turn, " + turn

Go back to your choose_square function and call the toggle_player function – with
toggle_player() – once you have set the text and disabled the button. Your code should
now resemble tictactoe4.py. Save and test the program again and you should find that you can
click squares and they will alternately be designated either X or O.

Do we have a winner?
Finally, you need to write a function which will check whether there is a row, column, or
diagonal of three Xs or Os, and if so will report the winner of the game.

Although it seems very inelegant, by far the easiest way to check if someone has won is to
hard-code the checks for each vertical, horizontal, and diagonal line individually.

The following code is for one vertical line, one horizontal line, and one diagonal – can you
add the rest?

def check_win():
 winner = None

 # Vertical lines
 if (
 board_squares[0][0].text == board_squares[0][1].text ==

board_squares[0][2].text
) and board_squares[0][2].text in ["X", "O"]:
 winner = board_squares[0][0]

 # Horizontal lines
 elif (
 board_squares[0][0].text == board_squares[1][0].text ==

board_squares[2][0].text
) and board_squares[2][0].text in ["X", "O"]:
 winner = board_squares[0][0]

 # Diagonals
 elif (
 board_squares[0][0].text == board_squares[1][1].text ==

board_squares[2][2].text

51Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

RESET THE GAME
At the start, you wrote a function called clear_board. This may have seemed unnecessary at the

time, but in actual fact it was thinking ahead to when the game has ended. Since tic-tac-toe is quite a

short game, it is likely that someone might want to play more than one game in a row.

Can you add a reset button to your game, which only appears once either someone has won the game,

or the game was a draw? The button should call the clear_board function and reset the turn

variable as well as the message reporting whose turn it is.

Hint: You will need to check the guizero documentation to find out how to hide and show widgets, so

that your button is not visible all of the time during the game.

Hint: Create a new function which takes care of everything you need to do to reset the game, and call

that function when the reset button is pressed. Don't forget that in your function you'll need to specify

some variables as global.

) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[0][0]

Notice that the function begins by creating a Boolean variable called winner. If by the time
the long if/elif statement has been executed, the value of this variable is True, you know that
someone has won the game.

After adding the remaining winning line checks, add some code at the end of the function to
change the display message if there has been a winner:

if winner is not None:
 message.value = winner.text + " wins!"

You now need to make sure that this function is called each time an X or O is placed, which
corresponds to any time a button is pressed. Add a call to check_win at the end of the
choose_square function, just in case the square that was chosen was the winning square.

Your program should now look like tictactoe5.py. Run it and test the game. If you wrote
the tests in the check_win function correctly, you should find that the game detects correctly
when a player has won.

www.dbooks.org

https://www.dbooks.org/

52 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

GLOBAL VARIABLES
It is arguably a bad idea to use global variables because if you have many functions in a large program,

it can become extremely confusing as to which code modifies the value of a variable and when. In a

small program like this, it is not too difficult to keep track.

Remember that it is possible to read and use the value of a global variable from inside a function

without declaring it global, but in order to modify its value you will need to explicitly declare this. The

functions in this program (and most GUI programs in this book) are actually modifying the values of

your widgets as global variables. For example, when someone wins the game, you set the value of the

message to display who won:

message.value = winner.text + " wins!"

In this example, message is a global variable. So how can we modify its value without declaring it as

global? The answer is because we are using a property of the message widget, the property called

value. Essentially what this code is saying is “Hey Python, you know that widget over there called

message? Well, could you modify its value property please?” Python will allow modification through

object properties in the global scope, but it won't allow you to directly modify the value of a variable

without declaring it global.

Draw game
At the moment, the game will allow you to continue playing even after it has been won, until all
of the squares are selected. It will also not tell you if the game was a draw. You could stop at
this point, but if you really want to put the icing on the cake, adding a few more little touches
could make your game more polished.

First, let's add some code to detect whether the game is a draw. The game is a draw if all of
the squares contain either an X or an O, and no one has won. In the functions section, create a
new function called moves_taken:

def moves_taken():

You’re going to use this function to count the number of moves which have been made, so let’s
start a variable to keep count, initially beginning at 0.

def moves_taken():
 moves = 0

Now, remember when we created the board_squares, we used a nested loop to create all of
the squares on the grid? We’re going to need another nested loop here to check each and
every square and determine whether it has been filled in with an X or O, or whether it is blank.

53Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add this code for a nested loop to the moves_taken function:

for row in board_squares:
 for col in row:

Inside the loop, we need to check whether that particular square is filled in with an X or an O. If
it is, add 1 to the moves variable to record that square has been counted.

if col.text == "X" or col.text == "O":
 moves = moves + 1

Finally, once the loops have finished, add a return statement to return the number of
moves taken.

return moves

Now, call this function inside the check_win function, to check for a draw. Add this code after
the code that checks for a winner:

if winner is not None:
 message.value = winner.text + " wins!"

Add this code
elif moves_taken() == 9:
 message.value = "It's a draw"

Your code should resemble 06-tictactoe.py. When run, the game will now check whether nine
moves have been taken; if they have, it will change the message to report that the game was
a draw.

www.dbooks.org

https://www.dbooks.org/

54 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Box, PushButton

Functions -------------

Variables -------------

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
for x in range(3):
 for y in range(3):
 button = PushButton(board, text="", grid=[x, y], width=3)

app.display()

tictactoe1.py / Python 3

Imports ---------------
from guizero import App, Box, PushButton

Functions -------------
def clear_board():
 new_board = [[None, None, None], [None, None, None], [None,
None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(
 board, text="", grid=[x, y], width=3)
 new_board[x][y] = button
 return new_board

Variables -------------

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()

app.display()

tictactoe2.py / Python 3

 DOWNLOAD
magpi.cc/guizerocode

http://magpi.cc/guizerocode

55Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
 new_board = [[None, None, None], [None, None, None], [None,
None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
 new_board[x][y] = button
 return new_board

def choose_square(x, y):
 board_squares[x][y].text = turn
 board_squares[x][y].disable()

Variables -------------
turn = "X"

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

tictactoe3.py / Python 3

www.dbooks.org

https://www.dbooks.org/

56 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
 new_board = [[None, None, None], [None, None, None], [None,
None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
 new_board[x][y] = button
 return new_board

def choose_square(x, y):
 board_squares[x][y].text = turn
 board_squares[x][y].disable()
 toggle_player()

def toggle_player():
 global turn
 if turn == "X":
 turn = "O"
 else:
 turn = "X"
 message.value = "It is your turn, " + turn

Variables -------------
turn = "X"

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

tictactoe4.py / Python 3

57Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
 new_board = [[None, None, None], [None, None, None], [None,
None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
 new_board[x][y] = button
 return new_board

def choose_square(x, y):
 board_squares[x][y].text = turn
 board_squares[x][y].disable()
 toggle_player()
 check_win()

def toggle_player():
 global turn
 if turn == "X":
 turn = "O"
 else:
 turn = "X"
 message.value = "It is your turn, " + turn

def check_win():
 winner = None

 # Vertical lines
 if (
 board_squares[0][0].text == board_squares[0][1].text ==
board_squares[0][2].text
) and board_squares[0][2].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[1][0].text == board_squares[1][1].text ==
board_squares[1][2].text
) and board_squares[1][2].text in ["X", "O"]:
 winner = board_squares[1][0]
 elif (
 board_squares[2][0].text == board_squares[2][1].text ==
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "O"]:

tictactoe5.py / Python 3

www.dbooks.org

https://www.dbooks.org/

58 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 winner = board_squares[2][0]

 # Horizontal lines
 elif (
 board_squares[0][0].text == board_squares[1][0].text ==
board_squares[2][0].text
) and board_squares[2][0].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[0][1].text == board_squares[1][1].text ==
board_squares[2][1].text
) and board_squares[2][1].text in ["X", "O"]:
 winner = board_squares[0][1]
 elif (
 board_squares[0][2].text == board_squares[1][2].text ==
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[0][2]

 # Diagonals
 elif (
 board_squares[0][0].text == board_squares[1][1].text ==
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[2][0].text == board_squares[1][1].text ==
board_squares[0][2].text
) and board_squares[0][2].text in ["X", "O"]:
 winner = board_squares[0][2]

 if winner is not None:
 message.value = winner.text + " wins!"

Variables -------------
turn = "X"

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

tictactoe5.py (cont.) / Python 3

59Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
 new_board = [[None, None, None], [None, None, None], [None,
None, None]]
 for x in range(3):
 for y in range(3):
 button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
 new_board[x][y] = button
 return new_board

def choose_square(x, y):
 board_squares[x][y].text = turn
 board_squares[x][y].disable()
 toggle_player()
 check_win()

def toggle_player():
 global turn
 if turn == "X":
 turn = "O"
 else:
 turn = "X"
 message.value = "It is your turn, " + turn

def check_win():
 winner = None

 # Vertical lines
 if (
 board_squares[0][0].text == board_squares[0][1].text ==
board_squares[0][2].text
) and board_squares[0][2].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[1][0].text == board_squares[1][1].text ==
board_squares[1][2].text
) and board_squares[1][2].text in ["X", "O"]:
 winner = board_squares[1][0]
 elif (
 board_squares[2][0].text == board_squares[2][1].text ==
board_squares[2][2].text

06-tictactoe.py / Python 3

www.dbooks.org

https://www.dbooks.org/

60 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[2][0]

 # Horizontal lines
 elif (
 board_squares[0][0].text == board_squares[1][0].text ==
board_squares[2][0].text
) and board_squares[2][0].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[0][1].text == board_squares[1][1].text ==
board_squares[2][1].text
) and board_squares[2][1].text in ["X", "O"]:
 winner = board_squares[0][1]
 elif (
 board_squares[0][2].text == board_squares[1][2].text ==
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[0][2]

 # Diagonals
 elif (
 board_squares[0][0].text == board_squares[1][1].text ==
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "O"]:
 winner = board_squares[0][0]
 elif (
 board_squares[2][0].text == board_squares[1][1].text ==
board_squares[0][2].text
) and board_squares[0][2].text in ["X", "O"]:
 winner = board_squares[0][2]

 if winner is not None:
 message.value = winner.text + " wins!"
 elif moves_taken() == 9:
 message.value = "It's a draw"

def moves_taken():
 moves = 0
 for row in board_squares:
 for col in row:
 if col.text == "X" or col.text == "O":
 moves = moves + 1
 return moves

06-tictactoe.py (cont.) / Python 3

61Chapter 6 Tic-tac-toe

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Variables -------------
turn = "X"

App -------------------
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

06-tictactoe.py (cont.) / Python 3

www.dbooks.org

https://www.dbooks.org/

62 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Y ou saw in the Tic-tac-toe game how to create a GUI on a grid layout in order to
present the player with a grid-like board. If you are making a game involving a larger
grid, there is a type of guizero widget called a Waffle which can instantly create a grid

for you, and is really useful for creating all kinds of fun games.
A Waffle was originally a grid of squares in early versions of guizero. This game is called

‘Destroy the dots’ and it came about because Martin thought it was a good idea to allow a
Waffle widget to contain a mixture of squares and dots.

Aim of the game
In this game, you need to destroy the dots before they destroy you! The board consists of a
grid of squares. The squares will gradually turn into dots. To destroy a dot, click on the dot and
it will turn back into a square. The aim of the game is to last as long as possible before being
overrun by dots (Figure 1).

Destroy the Dots
Learn how to use a Waffle to create a tasty game

Chapter 7

63Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Set up the game
Let’s start by making a guizero program which contains the instructions for the game and
a Waffle. By now you should be familiar with the layout of a standard guizero program with
sections for imports, functions, variables, and the app itself.

First, create an App and inside it add a Text widget for the instructions and a Waffle widget
for the board:

Imports ---------------
from guizero import App, Text, Waffle

App -------------------
app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app)

app.display()

If you run your program, you will see a small 3×3 grid of white squares. If you want to make
your grid bigger than this, you can add width and height properties to your Waffle:

 Figure 1 Destroy the red dots before they take over the board

www.dbooks.org

https://www.dbooks.org/

64 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

board = Waffle(app, width=5, height=5)

Your code should now resemble destroy1.py (page 71).

Bring on the dots
Next you need to write a function to find a random square on the board and turn it into a dot.
Begin a new function in your functions section called add_dot():

def add_dot():

To choose a random square on the board, you need to be able to generate a random pair of
integers as co-ordinates. Add a line in your imports section to import the randint function
from the random library, which lets you generate a random integer.

from random import randint

Let’s generate two variables, x and y, which you can use to reference a co-ordinate on the grid.
Inside your add_dot() function, begin your code like this:

x, y = randint(0,4), randint(0,4)

Notice that you have generated two random integers between 0 and 4, because earlier on
you set the width and height of the grid to be 5 – the rows and columns will be numbered
from 0. If you chose different values earlier on, you will need to adjust the values here to fit
the size of your grid. However, there is a better way to manage aspects like this (see ‘Using
constants’ box on page 70).

Dot or not?
Now that you know about constants, you can use the following function to generate a random
co-ordinate on the grid:

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)

At this point, you don’t know whether the randomly chosen co-ordinate is already a dot or
not. This might not seem to make any difference at the start of a game when the board is
mostly squares, but as the board gets filled up with dots, you need to make sure that the
space is actually a square, otherwise the game will be too easy. One way to achieve this is
to run a loop which checks whether the chosen square is already a dot, and if it is, chooses
another random square:

65Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)

You might realise that this isn't a particularly efficient method of choosing a random square
that is not a dot, but it will do for what we need in this game.

As soon as this loop finishes, you can be sure that the randomly chosen x, y co-ordinate is
definitely a square. Let's convert it to a red dot – following (not inside) your while loop, add
the following lines:

board[x, y].dotty = True
board.set_pixel(x, y, "red")

Add a call to your new add_dot() function in the app section after you've created the board.
Your program should now resemble destroy2.py. When you run it, you should see a single
random red dot in the grid. If you run the program again, the dot will probably be in a different
random place (Figure 2).

Destroy the dot
So far there is only one dot – let’s destroy it! Don’t worry: you'll add more dots to destroy later
on, but once you can destroy one, you can destroy them all!

Make a new function in your functions section with a really satisfying name – destroy_dot
– and give it two parameters, x and y.

def destroy_dot(x, y):

 Figure 2 Generating a random red dot

www.dbooks.org

https://www.dbooks.org/

66 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

This function will check whether the co-ordinate x,y is a dot (rather than a square). You can
do this using the same code as the code to create a dot – the code board[x, y].dotty will
return True if that coordinate is a dot, and False if it is a square.

if board[x,y].dotty == True:

If the co-ordinate is a dot, change it to a square by setting its dotty property to False, and also
change its colour back to white:

if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")

This function needs to be triggered whenever the board is clicked. Find the line of code you
already have which creates the board, and add a command like this:

board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

This will call the destroy_dot function whenever a space on the board is clicked.
Note that a Waffle widget will automatically pass two parameters to any command

function; these will always be the x and y co-ordinates of the pixel that was clicked on to
trigger the command.

Your code should now look like destroy3.py. Test your program by running it and clicking on
the dot. You should see the dot turn back into a white square. If you click on a square that is
not a dot, nothing should happen.

More dots!
Now it’s time to actually make the game a challenge, by adding continually spawning dots.
Let's start off by adding a new random dot every second. To do this, you need to schedule a
call to the add_dot function every second using a built-in feature of guizero called after.

In your app section, remove the call to add_dot() and replace it with a new line of code:

board.after(1000, add_dot)

This line of code means ‘after 1000 milliseconds (1 second), call the function add_dot’.
If you run the program now, you’ll still get a single dot, but it will appear on the grid after a

delay of 1 second.
Here's the clever bit. Find your add_dot function and add the same line of code to it, at the

end of the function.

67Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

This will schedule a new call to add_dot every time a new dot finishes being added. The
next dot is scheduled to appear in 1 second as well, so if you run the program you should see a
new dot appearing on the grid every second (Figure 3).

Try running your program, which should now look like destroy4.py. Since you already wrote
the method to destroy a dot, clicking on any dot should remove it. However, if you play the
game for a while you will notice it is pretty easy to keep up with the pace of one dot every
second and it is almost impossible to lose the game.

You still need to add two things – a score to keep track of how many dots you have
destroyed, and a way of making the game get more difficult so that it becomes a challenge.

Add a score
Adding a score is pretty straightforward and takes three steps:

• Add a variable to keep track of the score; the variable should start at 0.
• Display a message on the GUI with the current score.
• Any time the destroy_dot function is called and a dot is destroyed, add 1 to score and

update the message display.

Try to add the code yourself using what you have already learnt.

Hint: To update the score variable from the destroy_dot function, you will need to declare
it a global.

Hint: If you get an error saying that the variable score is referenced before assignment, make
sure your variables section comes before your functions section in your program.

The solution is shown overleaf if you are stuck…

 Figure 3 Every second, a new dot will appear

www.dbooks.org

https://www.dbooks.org/

68 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Solution: add a score
First, add a variable in your variables section

score = 0

Next, add a new Text widget in the app section to display the score:

score_display = Text(app, text="Your score is " + str(score))

Finally, add 1 to the score every time a dot is destroyed:

def destroy_dot(x,y):

 # Declare score global
 global score

 # This code already exists
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")

 # Add 1 to score and display it on the GUI
 score += 1
 score_display.value = "Your score is " + str(score)

Your code (without the optional comments) should now resemble destroy5.py. Test your
game and you should see your score go up by 1 every time you click on a dot.

Put the player under pressure
Now that you can track the player's score, you can use it to put the player under pressure and
speed up the spawn of dots if they are doing well.

Remember that you used an after call inside the add_dot function to schedule another dot
in 1000 milliseconds (or 1 second)? Go back and find that line – you're going to change it a bit.

First, create a variable speed and set it to 1000. Then, instead of scheduling a call to add a
dot after 1000 ms, schedule it to add a dot after speed milliseconds. This will have absolutely
no effect on the game… yet. You are still scheduling the next call after 1000 ms, but that figure
is now coming from the variable speed instead of being hard-coded as a magic number.

speed = 1000
board.after(speed, add_dot)

69Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Now here's how you can ramp up the pressure. Between these two lines of code, you can add
some code to set the speed of dots depending on the current score. Here is an example:

speed = 1000
if score > 30:
 speed = 200
elif score > 20:
 speed = 400
elif score > 10:
 speed = 500
board.after(speed, add_dot)

Here, you can see that if the player has got more than 10 points, the new dots will appear every
500ms, if they have more than 20 points a dot will appear every 400ms, and so on. This makes
the game much harder the more points you have. Save your code – destroy6.py – and test
the game to see the difference. You can alter the numbers or add more elif conditions if you
want to increase the difficulty even further.

Game over
All that remains is to figure out when the player has lost the game; this happens when every
square has turned into a red dot.

Remember that when you made Tic-tac-toe, you used nested loops to check whether all
squares were filled and the game was a draw? You can use the same method here too, to loop
through every square on the grid and check if it is a red dot. In your add_dot function, just before
the call to after, add some code for a nested loop to loop through all squares on the board:

all_red = True
for x in range(GRID_SIZE):
 for y in range(GRID_SIZE):

The first line begins by assuming that all squares are red. The nested loop will provide the
coordinates of every square on the grid in turn, as the values x and y so that you can check
whether this is true.

Add some code inside the second loop to find out whether the current pixel is red, and if it is
not, change the all_red variable to False.

all_red = True
for x in range(GRID_SIZE):
 for y in range(GRID_SIZE):
 if board[x,y].color != "red":
 all_red = False

www.dbooks.org

https://www.dbooks.org/

70 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CHALLENGE
• Can you add a reset button which allows the player to begin a new game without having to

rerun the program?

• Can you put even more pressure on the player by calculating how many red dots are on the

board, and increasing the speed in proportion to the number of red dots?

After both loops end (make sure you unindent the following code), check whether the grid was
all red dots. If it is, the player has lost so display a message:

if all_red:
 score_display.value = "You lost! Score: " + str(score)

If the player hasn't lost, the game should continue. Add an else: and inside it, indent the
after method you already have, as we only want to add a new dot if the player has not lost:

else:
 board.after(speed, add_dot)

Be careful to indent the after line you already have here rather than adding another one, or
your game will start behaving strangely and generate multiple dots per second!

Your final code should resemble 07-destroy-the-dots.py. Enjoy the game.

USING CONSTANTS
Setting the height and width of your Waffle to 5 is known as using a ‘magic number’ in a program,

because the specific number is hard-coded into the program. If you want to change the size of the

grid, you will need to find everywhere in the program this number appears and change it, which might

be messy.

Better programming practice would be to define a constant in your variables section called

GRID_SIZE and set it equal to 5:

GRID_SIZE = 5

Then, instead of defining your Waffle's dimensions with a magic number 5, you can put:

board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE)

If you decide to change the size of the grid, you can just change the value of this constant.

Thinking about this type of thing at the time you write the program will help you to avoid headaches

later if you decide to change it.

71Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports ---------------

from guizero import App, Text, Waffle

Variables -------------

Functions -------------

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=5, height=5)

app.display()

destroy1.py / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True

destroy2.py / Python 3

 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

72 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 board.set_pixel(x, y, "red")

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=5, height=5)
add_dot()

app.display()

destroy2.py (cont.) / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True
 board.set_pixel(x, y, "red")

def destroy_dot(x, y):
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")

destroy3.py / Python 3

73Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)
add_dot()

app.display()

destroy3.py (cont.) / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True
 board.set_pixel(x, y, "red")
 board.after(1000, add_dot)

def destroy_dot(x,y):
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")

App -------------------

destroy4.py / Python 3

www.dbooks.org

https://www.dbooks.org/

74 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)
board.after(1000, add_dot)

app.display()

destroy4.py (cont.) / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = 0

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True
 board.set_pixel(x, y, "red")
 board.after(1000, add_dot)

def destroy_dot(x,y):
 global score
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")
 score += 1
 score_display.value = "Your score is " + str(score)

destroy5.py / Python 3

75Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)
board.after(1000, add_dot)
score_display = Text(app, text="Your score is " + str(score))

app.display()

destroy5.py (cont.) / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = 0

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True
 board.set_pixel(x, y, "red")

 speed = 1000
 if score > 30:
 speed = 200
 elif score > 20:
 speed = 400
 elif score > 10:

destroy6.py / Python 3

www.dbooks.org

https://www.dbooks.org/

76 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 speed = 500
 board.after(speed, add_dot)

def destroy_dot(x,y):
 global score
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")
 score += 1
 score_display.value = "Your score is " + str(score)

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)
board.after(1000, add_dot)
score_display = Text(app, text="Your score is " + str(score))

app.display()

destroy6.py (cont.) / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = 0

Functions -------------

def add_dot():
 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 while board[x, y].dotty == True:

07-destroy-the-dots.py / Python 3

77Chapter 7 Destroy the Dots

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 x, y = randint(0,GRID_SIZE-1), randint(0,GRID_SIZE-1)
 board[x, y].dotty = True
 board.set_pixel(x, y, "red")

 speed = 1000
 if score > 30:
 speed = 200
 elif score > 20:
 speed = 400
 elif score > 10:
 speed = 500

 all_red = True
 for x in range(GRID_SIZE):
 for y in range(GRID_SIZE):
 if board[x,y].color != "red":
 all_red = False
 if all_red:
 score_display.value = "You lost! Score: " + str(score)
 else:
 board.after(speed, add_dot)

def destroy_dot(x,y):
 global score
 if board[x,y].dotty == True:
 board[x,y].dotty = False
 board.set_pixel(x, y, "white")
 score += 1
 score_display.value = "Your score is " + str(score)

App -------------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)
board.after(1000, add_dot)
score_display = Text(app, text="Your score is " + str(score))

app.display()

07-destroy-the-dots.py (cont.) / Python 3

www.dbooks.org

https://www.dbooks.org/

	001_guizero_COVER_DIGITAL
	002-007_guizero_INTRO_PK1_SR_PK2
	008-011_guizero_CHAPTER 1_PK1_PK2_PK3_SR
	012-017_guizero_CHAPTER 2_PK1_SR_PK2_SR
	018-025_guizero_CHAPTER 3_PK3_PK4_PK5_PK6_SR
	026-035_guizero_CHAPTER 4_PK1_PK2_PK3_SR
	036-043_guizero_CHAPTER 5_PK1_PK2_SR
	044-061_guizero_CHAPTER 6_PK1_SR_PK2_PK3_SR
	062-077_guizero_CHAPTER 7_PK1_SR_PK2_SR
	078-091_guizero_CHAPTER 8_PK1_SR_PK2_SR
	092-109_guizero_CHAPTER 9_PK1_SR_PK2_SR_PK3
	110-123_guizero_CHAPTER 10_PK1_SR_PK2_PK3_SR
	124-137_guizero_CHAPTER 11_PK1_SR
	138-141_guizero_APPENDIX A_PK1
	142-147_guizero_APPENDIX B_PK1
	148-155_guizero_APPENDIX C_PK1
	156_guizero_COVER_DIGITAL

