
Would you like to add buttons, boxes, pictures and colours
and more to your Python programs? This book will show you
how to create Python desktop applications using the guizero

library, which is quick, accessible, and understandable for all.

This book is suitable for everyone, from beginners to
experienced Python programmers who want to explore

graphical user interfaces (GUIs).

There are ten fun projects for you to create, including a
painting program, an emoji match game, and a

stop-motion animation creator.

Create games and fun Python programs
Learn how to create your own graphical user interfaces
Use windows, text boxes, buttons, images, and more
Learn about event-based programming
Explore good (and bad) user interface design

Create your own
graphical user interfaces

on any computer

Laura Sach
Create graphical user interfaces w

ith Python
M

artin O
’H

anlon

Create Graphical User
Interfaces with Python

Laura Sach Martin O’Hanlon

How to build windows, buttons, and widgets
for your Python projects

www.dbooks.org

https://www.dbooks.org/

78 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

F lood It’ is a game where the aim is to flood the board with all squares the same
colour. Beginning with the top-left square, players choose a colour to flood into. It
offers a slightly more complex Waffle-based game.

Aim of the game
In this example (Figure 1), the top-left square is blue. The player could either choose to flood
into the single purple square below, or to flood into the yellow square to the right.

Flooding the yellow square would be a
better move because all adjoining yellow
squares would also be flooded, and the
player is only allowed a limited amount of
moves before the game ends.

Flood It
Create a more complex Waffle-based puzzle game

Chapter 8

 Figure 1 Flood the squares with one colour

YOU WIN!

5 MOVES
REMAINING

‘

79Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Set up
Download (from magpi.cc/floodit) and open the starter file, floodit_starter.py. Save it in a
sensible place.

In the variables section, give the variables some values:

•	 colours – a list of six colours as strings. These can either be common colour names or
hex colours. The colour names "white", "black", "red", "green", "blue", "cyan", "yellow", and
"magenta" will always be available.

•	 board_size – the width/height of the board as an integer; we chose 14. The board is
always a square.

•	 moves_limit – how many moves the player is allowed before they lose, as an integer; we
chose 25.

In the app section, create an App widget and give it a title.

app = App("Flood it")
app.display()

Running this will result in a standard labelled window (Figure 2).

Create the board
The board is a grid of squares, each containing a randomly selected colour from the list you
created earlier.

Inside the app, add a Waffle widget. This will create a grid which will be the board.

board = Waffle(app)

 Figure 2 The usual labelled window

www.dbooks.org

http://magpi.cc/floodit
https://www.dbooks.org/

80 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Run your program and you will see that the grid is a bit too small (Figure 3).
Add to the line of code you just wrote to specify parameters for the width and height of the

Waffle, and make the padding between the grid squares zero.

board = Waffle(app, width=board_size, height=board_size, pad=0)

That‘s better (Figure 4).

 Figure 3 The grid squares are too small

 Figure 4 A grid of the correct board size, with no padding

81Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create the palette
The palette shows the player which colours they can click on to flood the board. They will click
on these colours to play the game. The palette from the finished game is shown in Figure 5.

On the line after you created the board, create another Waffle, but this time it should be
called palette.

palette = Waffle(app)

Remember when you added the parameters to the board Waffle in the previous step? This
time, add these parameters to the palette Waffle with each one separated by a comma:

width = 6 (the number of colours we have)
height = 1

dotty = True (this makes the squares into circles)

 Figure 5 You’ll need a palette for the player to choose a colour

Palette

www.dbooks.org

https://www.dbooks.org/

82 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

So, now you should have:

palette = Waffle(app, width=6, height=1, dotty=True)

Run the code to see a blank palette (Figure 6).

Colour in the board
The board should start off with each square as a randomly chosen colour from the colours list
you created earlier.

On the line below your palette, write a call to a function

fill_board()

Find the functions section in your program, and begin writing the code for this new function:

def fill_board():

You can write a nested loop to loop through every row and column in the board. Each pixel will
be coloured with a randomly chosen colour from the list. To colour in a pixel, you will use this
code, where the ? symbols will be replaced with the x, y co-ordinates of the pixel:

board.set_pixel(?, ?, random.choice(colours))

Try to write the code yourself using what you have learnt about nested loops in the previous
chapters – the solution is provided on page 83 if you get stuck.

Hint: Use the board_size variable to know how many times to loop.

When you run your code, you should see a colourful board. If you see a white board, double-
check that you put in the function call to fill_board() (Figure 7).

 Figure 6 A blank palette

83Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Here is one solution, but there are many ways you could do this:

def fill_board():
 for x in range(board_size):
 for y in range(board_size):
 board.set_pixel(x, y, random.choice(colours))

An alternative solution which uses a more advanced feature called a list comprehension:

def fill_board():
 [board.set_pixel(x, y, random.choice(colours)) for y in

range(board_size) for x in range(board_size)]

Colour in the palette
Now that you have a colourful board, let’s colour in the palette.

On the line below your fill_board() code, write a call to a function:

init_palette()

Find the functions section in your program, and begin writing the code for this new function:

 Figure 7 Each square of the board is coloured randomly

www.dbooks.org

https://www.dbooks.org/

84 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

HOW MANY WAYS CAN YOU COLOUR THE PALETTE?
Here is a solution which uses a loop and a variable to keep track of which column you are colouring in:

def init_palette():

 column = 0

 for colour in colours:

 palette.set_pixel(column, 0, colour)

 column += 1

Here is a similar solution which uses a range inside the for loop instead of a counter variable:

def init_palette():

 for x in range(len(colours)):

 palette.set_pixel(x, 0, colours[x])

Here is a different solution which uses the index function colours.index(colour). This code

says ‘In the colours list, find me the position in the list of colour’. So, for example if your list was

["green", "blue", "red"] then the index of green would be 0, the index of blue would be 1,

etc., remembering that we count starting from zero.

def init_palette():

 for colour in colours:

 palette.set_pixel(colours.index(colour), 0, colour)

You can use any of these solutions, or you may have come up with a different way by yourself. None of

them is the 'right answer': there are often many different ways of coding a solution.

def init_palette():

The idea here is to loop through all of the colours in the list, assigning one to each of the
circles in the palette. You can use the same set_pixel method as you used for the board to
change the colour of the circles in the palette.

Have a go at writing the code yourself. If you get stuck, some possible solutions are shown
in the ‘How many ways can you colour the palette’ box.

Hint: All of the circles in the palette are in row 0 of the Waffle.

85Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Start the flood
When the player clicks on a colour in the palette, the board should flood with that colour,
beginning with the top-left square.

In the functions section, create a new function called start_flood in exactly the same way
as you did for the last two functions. This function needs to take two parameters which will be
the x, y co-ordinates of the square that was clicked on. Add these between the brackets so that
you end up with your code looking like this:

def start_flood(x, y):

Add a line of code (indented) to the function get the name of the colour that was clicked on:

flood_colour = palette.get_pixel(x,y)

This will be the colour to flood the board with.
Add a line of code to get the current colour of the starting pixel – this is always the pixel in

the top left of the board, at co-ordinates 0, 0.

target = board.get_pixel(0,0)

Now call the flood function, which has already been written for you in the starter file. This
function starts at 0,0 and floods all the pixels connected to the top-left pixel that are the same
colour with the flood_colour.

flood(0, 0, target, flood_colour)

This function should run whenever someone clicks on a colour in the palette, so find the line of
code where you created the palette.

palette = Waffle(app, width=6, height=1, dotty=True)

Add another parameter which is a command. When a circle on the palette is clicked, this
command will be executed. The command is the function start_flood, so your code should
now look like this:

palette = Waffle(app, width=6, height=1, dotty=True,
command=start_flood)

www.dbooks.org

https://www.dbooks.org/

86 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Test out your code by clicking on the
circles on the palette.

The top-left square is green (Figure 8).
If you click purple on the palette, the top-
left square will turn purple and connect to
the purple square below (Figure 9).

Now there are five purple squares
connected to the top-left square. Let’s
click pink to connect up the pink squares
underneath (Figure 10).

Now there is a large chain of pink
squares. Continue the game by pressing
different colours in the palette. The aim
is to eventually get all of the squares the
same colour.

Winning the game
At the moment, if the player manages to
get all of the squares in the grid the same
colour, nothing happens. The player is
also allowed an infinite number of turns,
as the number of moves they have taken
is not tracked.

First let’s add a piece of text to the GUI
to display whether the player has won or
lost. The text will start off blank.

Underneath the code for the palette,
add a Text widget called win_text.

win_text = Text(app)

In the variables section, add another variable called moves_taken and set it to 0.
Now create a function called win_check to check after each move whether the player

has won.
First, you need to specify that you would like to be allowed to change the value of the global

variable moves_taken.

global moves_taken

 Figure 8 Here, the top-left square is green

 Figure 9 Clicking purple turns it purple

 Figure 10 Click pink for a chain of pink

87Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Then add 1 to the moves_taken variable – each time this function is called, we will add one
more move.

moves_taken += 1

Check if the moves_taken is less than the moves_limit or not:

if moves_taken < moves_limit:

else:

If the moves_taken is not within the limit, this means the playher has run out of moves, so
update the text to say that they lost:

if moves_taken < moves_limit:

else:
 win_text.value = "You lost :("

If the number of moves taken is less than the limit, check whether all of the squares are the
same colour by calling the function already written for you in the starter file. Make sure the
following code is indented below the first if statement:

 if all_squares_are_the_same():
 win_text.value = "You win!"

The completed piece of code should look like this:

def win_check():
 moves_taken += 1
 if moves_taken <= moves_limit:
 if all_squares_are_the_same():
 win_text.value = "You win!"
 else:
 win_text.value = "You lost :("

Finally, you must call the win_check function whenever a square is clicked on. The easiest
way to do this is to add the function call at the end of the start_flood function.

Now it’s time to test the game. An example code listing is shown in 08-floodit.py, overleaf.

www.dbooks.org

https://www.dbooks.org/

88 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Test your game
You can test whether the game works by playing it; however, it might take a long time to
test whether you can win! An easier way to check is to change the board_size variable to
something small such as 5, and then play the game on a much smaller grid to see whether you
can win.

You can easily test whether the game causes you to lose properly by clicking on the same
colour 25 times!

CHALLENGE
•	 If the player wins or the player loses, disable the palette to prevent them clicking on it any more

and causing an error. The code to disable the palette is palette.disable().

•	 Display how many moves are left as a piece of text on the GUI.

•	 Add a button which displays instructions for how to play.

•	 Add a reset button to let the player start a new game. Don’t forget, you will also have to reset the

colours on the board, reset the moves_taken variable, and re-enable the palette if you disabled

it (palette.enable()).

89Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports

from guizero import App, Waffle, Text, PushButton, info
import random

Variables

colours = ["red", "blue", "green", "yellow", "magenta", "purple"]
board_size = 14
moves_limit = 25
moves_taken = 0

Functions

Recursively floods adjacent squares
def flood(x, y, target, replacement):
 # Algorithm from https://en.wikipedia.org/wiki/Flood_fill
 if target == replacement:
 return False
 if board.get_pixel(x, y) != target:
 return False
 board.set_pixel(x, y, replacement)
 if y+1 <= board_size-1: # South
 flood(x, y+1, target, replacement)
 if y-1 >= 0: # North
 flood(x, y-1, target, replacement)
 if x+1 <= board_size-1: # East
 flood(x+1, y, target, replacement)
 if x-1 >= 0: # West
 flood(x-1, y, target, replacement)

Check whether all squares are the same
def all_squares_are_the_same():
 squares = board.get_all()
 if all(colour == squares[0] for colour in squares):
 return True

08-floodit.py / Python 3 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

90 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 else:
 return False

def win_check():
 global moves_taken
 moves_taken += 1
 if moves_taken <= moves_limit:
 if all_squares_are_the_same():
 win_text.value = "You win!"
 else:
 win_text.value = "You lost :("

def fill_board():
 for x in range(board_size):
 for y in range(board_size):
 board.set_pixel(x, y, random.choice(colours))

def init_palette():
 for colour in colours:
 palette.set_pixel(colours.index(colour), 0, colour)

def start_flood(x, y):
 flood_colour = palette.get_pixel(x,y)
 target = board.get_pixel(0,0)
 flood(0, 0, target, flood_colour)
 win_check()

App

app = App("Flood it")

board = Waffle(app, width=board_size, height=board_size, pad=0)
palette = Waffle(app, width=6, height=1, dotty=True,
command=start_flood)

win_text = Text(app)

fill_board()
init_palette()

app.display()

08-floodit.py (cont.) / Python 3

91Chapter 8 Flood it

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

92 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Y ou are going to build an emoji picture-matching game (Figure 1). The object of the
game is to spot the one emoji that appears in two different sets. You get a point for
each correct match and lose a point for an incorrect match.

Loading emojis
To create the game, you will need emojis. You can use the emojis created for Twitter
(twemoji.twitter.com). Download the emojis.zip file from magpi.cc/guizeroemojis, open the
zip file, and copy the emojis folder to the folder where you save your code.

The game will need to choose nine emojis at random and arrange them into a grid. A simple
way to do this is to put all of the emojis into a list and randomly shuffle them.

The following code creates a shuffled list of items, each in the form path/emoji_file_name.
Create a new program with the usual commented lines for different sections (Imports,

Variables, Functions, App). Under imports, add:

import os
from random import shuffle

Emoji Match
Create a fun picture-matching game

Chapter 9

http://twemoji.twitter.com
http://magpi.cc/guizeroemojis

93Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Then, under variables, enter this code which creates a shuffled list of emojis, each in the
form path/emoji_file_name.

set the path to the emoji folder on your computer
emojis_dir = "emojis"
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_

dir)]
shuffle(emojis)

The emojis_dir variable is the path of
the emojis on your computer; it will tell the
code that loads the emojis where to 	
find them.

Test your program. Try printing
the emojis list to the screen with
print(emojis). You should see a long
list of file names. The list should be in a
different order each time you run it.

Displaying the emojis
Next, the code needs to create two 3×3
grids of Picture and PushButton widgets
which will show the emojis.

Modify your program to create a guizero
app and a Box to hold the picture widgets
using a "grid" layout. In the imports section, add this line to import the required widgets:

from guizero import App, Box

In the app section, add the following code:

app = App("emoji match")

pictures_box = Box(app, layout="grid")

The Box widget is really useful for laying out your GUI. It’s an invisible area of your GUI 	
where you can group widgets together. A Box can have its own layout, size, and bg

 Figure 1 The finished game

www.dbooks.org

https://www.dbooks.org/

94 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

(background). They can also be hidden or shown, meaning you can easily make a collection 	
of widgets invisible.

If you wish to see the Box, you can add a border by setting the parameter to True.

pictures_box = Box(app, layout="grid", border=True)

Now, add the Picture widget to your imports:

from guizero import App, Box, Picture

In the app section, add in the code to create the Picture widgets and add them to a list.

pictures = []

for x in range(0,3):
 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

To assign co-ordinates to each Picture widget, two for loops are used. They both run through
the range 0–2; one assigns its value to the variable x and the other to the variable y. The grid
position of each widget is set using the x and y values. The widgets are appended to a list so
they can be referenced later in the game.

Do the same for PushButton widgets to create the second 3×3 grid. First, add the widget to
your imports:

from guizero import App, Box, Picture, PushButton

In the app section, add lines so it looks like this:

app = App("emoji match")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
 for y in range(0,3):

95Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

In the functions section, create a function to set up each round of the game.

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()

To assign each picture and button widget an emoji, the image property is set to an item
from the emojis list. Emojis are selected using pop(), which chooses the last item in a list
and then removes it from the list. I've used this function because it will prevent any emoji
appearing in the game more than once.

At the bottom of your program, call the setup_round function and display the app.

setup_round()

app.display()

Your program should now resemble
emoji1.py (page 99). Test it and you
should see two grids of nine emojis.

Matching emojis
At the moment, all of the emojis in your
app will be different (Figure 2). In the next
step, you will pick another emoji to match,
and update one picture and one button so
they have the same matching emoji.

Add randint to your random import line.
This is used to obtain a number from 0 to 8
for each picture and button.

from random import shuffle, randint

 Figure 2 No matching emojis

www.dbooks.org

https://www.dbooks.org/

96 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Then add this code (indented) to the bottom of the setup_round function to pop another
emoji from the list and set it to be the image of a random picture and button.

matched_emoji = emojis.pop()

random_picture = randint(0,8)
pictures[random_picture].image = matched_emoji

random_button = randint(0,8)
buttons[random_button].image = matched_emoji

Your code should now look like emoji2.py. Run your program now; one of the emojis should
match. Look carefully – the matching emoji can be hard to spot.

Check the guess
Each time one of the PushButtons is pressed, it will need to check if this is the matching emoji
and put the result ‘correct’ or ‘incorrect’ on the screen. After the player’s guess, a new round
will be set up and different set of emojis displayed.

Your app will need a Text widget display the result. Add it to your imports:

from guizero import App, Box, Picture, PushButton, Text

Add this line in your app section:

result = Text(app)

Create a new function which will be called when one of the emoji buttons is pressed. It will
display ‘correct’ or ‘incorrect’ and call setup_round to create the next set of emojis.

def match_emoji(matched):
 if matched:
 result.value = "correct"
 else:
 result.value = "incorrect"

 setup_round()

The incorrect emoji buttons will pass False to the match_emoji function; the matching emoji
will pass True.

97Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Update the setup_round function so that all the ‘incorrect’ buttons call the 		
match_emoji function.

 for button in buttons:
 button.image = emojis.pop()
 button.update_command(match_emoji, args=[False])

The update_command method sets the function which will be called when the button is
pressed. The args list [False] will be used as the parameters to the match_emoji function.

Finally, update the command for the matching button so it calls match_emoji, but this time
passes True as the argument.

 buttons[random_button].update_command(match_emoji, [True])

Your code should now resemble emoji3.py. Play the game. In each round there will be a
matching emoji – press the matching picture button. Did you get it right?

Adding a score and timer
At the moment, the game continues forever (or until you run out of emojis in the list). Add a
score and a timer which counts down to the end of the game to give a challenge.

In the app section, create two Text widgets to show the score and the timer.

score = Text(app, text="0")
timer = Text(app, text="30")

The timer is set to "30", which will be the number of seconds in each round.
Modify the match_emoji function to either add or subtract 1 to/from the player’s score.

def match_emoji(matched):
 if matched:
 result.value = "correct"
 score.value = int(score.value) + 1
 else:
 result.value = "incorrect"
 score.value = int(score.value) - 1

To create the timer, you will use a feature of guizero which allows you to ask the application to
continuously call a function every 1 second.

Create a function which will reduce the value of the timer by 1.

www.dbooks.org

https://www.dbooks.org/

98 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

def reduce_time():
 timer.value = int(timer.value) - 1

Before the app is displayed, use the app.repeat() function to call the reduce_time function
every second (1000 milliseconds).

app.repeat(1000, reduce_time)

app.display()

Running your game now, you will notice that the timer counts down from 30. Unfortunately, it
will continue counting down past 0 and never stop.

Update the reduce_time function to check if the timer is less than zero and then stop
the game.

def reduce_time():
 timer.value = int(timer.value) - 1
 # is it game over?
 if int(timer.value) < 0:
 result.value = "Game over! Score = " + score.value
 # hide the game
 pictures_box.hide()
 buttons_box.hide()
 timer.hide()
 score.hide()

When the timer is less than 0, the message
‘game over’ is displayed and the game's
widgets are hidden so the user can no 	
longer play.

See emoji4.py to get an idea of how your
code should now look. Run it and play the
emoji match game. Challenge a friend or
family member to a game.

You may want to put the score and timer
widgets into a Box so they can be laid
out better (Figure 3) – see the complete
09-emoji-match.py listing for how to do this.

 Figure 3 With box for score and timer

99Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CHALLENGE
At the moment, the only way to start a new round of the game is restart the program. Can
you change the code to introduce a button to start a new round?

USING OTHER IMAGES
The emoji match game uses picture buttons to allow the user to pick which emoji matches. You can

make any PushButton widget into a picture button by setting the image parameter; for example:

button = PushButton(app, image="my_picture.gif")

The button will scale to fit the size of your image. The type of image you can use is determined by your

operating system and how you installed guizero, although any setup will support GIF images. To find

the image file types supported by your setup, you can run:

from guizero import system_config

print(system_config.supported_image_types)

You can find out more about image support in guizero at lawsie.github.io/guizero/images.

emoji1.py / Python 3

Imports

import os
from random import shuffle
from guizero import App, Box, Picture, PushButton

Variables

set the path to the emoji folder on your computer
emojis_dir = "emojis"

 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://lawsie.github.io/guizero/images
http://magpi.cc/guizerocode
https://www.dbooks.org/

100 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]
shuffle(emojis)

Functions

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()

App

app = App("emoji match")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

setup_round()

app.display()

emoji1.py (cont.) / Python 3

101Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton

Variables

set the path to the emoji folder on your computer
emojis_dir = "emojis"
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]
shuffle(emojis)

Functions

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()

 matched_emoji = emojis.pop()

 random_picture = randint(0,8)
 pictures[random_picture].image = matched_emoji

 random_button = randint(0,8)
 buttons[random_button].image = matched_emoji

emoji2.py / Python 3

www.dbooks.org

https://www.dbooks.org/

102 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

App

app = App("emoji match")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

setup_round()

app.display()

emoji2.py (cont.) / Python 3

Imports

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

Variables

set the path to the emoji folder on your computer

emoji3.py / Python 3

103Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

emojis_dir = "emojis"
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]
shuffle(emojis)

Functions

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()
 button.update_command(match_emoji, args=[False])

 matched_emoji = emojis.pop()

 random_picture = randint(0,8)
 pictures[random_picture].image = matched_emoji

 random_button = randint(0,8)
 buttons[random_button].image = matched_emoji

 buttons[random_button].update_command(match_emoji, [True])

def match_emoji(matched):
 if matched:
 result.value = "correct"
 else:
 result.value = "incorrect"

 setup_round()

App

emoji3.py (cont.) / Python 3

www.dbooks.org

https://www.dbooks.org/

104 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app = App("emoji match")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

result = Text(app)

setup_round()

app.display()

emoji3.py (cont.) / Python 3

Imports

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

Variables

set the path to the emoji folder on your computer
emojis_dir = "emojis"
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_

emoji4.py / Python 3

105Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

dir)]
shuffle(emojis)

Functions

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()
 button.update_command(match_emoji, args=[False])

 matched_emoji = emojis.pop()

 random_picture = randint(0,8)
 pictures[random_picture].image = matched_emoji

 random_button = randint(0,8)
 buttons[random_button].image = matched_emoji

 buttons[random_button].update_command(match_emoji, [True])

def match_emoji(matched):
 if matched:
 result.value = "correct"
 score.value = int(score.value) + 1
 else:
 result.value = "incorrect"
 score.value = int(score.value) - 1

 setup_round()

def reduce_time():
 timer.value = int(timer.value) - 1
 # is it game over?
 if int(timer.value) < 0:
 result.value = "Game over! Score = " + score.value

emoji4.py (cont.) / Python 3

www.dbooks.org

https://www.dbooks.org/

106 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 # hide the game
 pictures_box.hide()
 buttons_box.hide()
 timer.hide()
 score.hide()

App

app = App("emoji match")

score = Text(app, text="0")
timer = Text(app, text="30")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

result = Text(app)

setup_round()

app.repeat(1000, reduce_time)

app.display()

emoji4.py (cont.) / Python 3

107Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Imports

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

Variables

set the path to the emoji folder on your computer
emojis_dir = "emojis"
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]
shuffle(emojis)

Functions

def setup_round():
 for picture in pictures:
 picture.image = emojis.pop()

 for button in buttons:
 button.image = emojis.pop()
 button.update_command(match_emoji, args=[False])

 matched_emoji = emojis.pop()

 random_picture = randint(0,8)
 pictures[random_picture].image = matched_emoji

 random_button = randint(0,8)
 buttons[random_button].image = matched_emoji

 buttons[random_button].update_command(match_emoji, [True])

09-emoji-match.py / Python 3

www.dbooks.org

https://www.dbooks.org/

108 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

def match_emoji(matched):
 if matched:
 result.value = "correct"
 score.value = int(score.value) + 1
 else:
 result.value = "incorrect"
 score.value = int(score.value) - 1

 setup_round()

def reduce_time():
 timer.value = int(timer.value) - 1
 # is it game over?
 if int(timer.value) < 0:
 result.value = "Game over! Score = " + score.value
 # hide the game
 game_box.hide()

App

app = App("emoji match")

game_box = Box(app, align="top")

top_box = Box(game_box, align="top", width="fill")
Text(top_box, align="left", text="Score ")
score = Text(top_box, text="4", align="left")
timer = Text(top_box, text="30", align="right")
Text(top_box, text="Time", align="right")

pictures_box = Box(game_box, layout="grid")
buttons_box = Box(game_box, layout="grid")

pictures = []
buttons = []

for x in range(0,3):

09-emoji-match.py (cont.) / Python 3

109Chapter 9 Emoji Match

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 for y in range(0,3):
 picture = Picture(pictures_box, grid=[x,y])
 pictures.append(picture)

 button = PushButton(buttons_box, grid=[x,y])
 buttons.append(button)

result = Text(app)

setup_round()

app.repeat(1000, reduce_time)

app.display()

09-emoji-match.py (cont.) / Python 3

www.dbooks.org

https://www.dbooks.org/

110 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Y ou are going to build a simple
application which will allow you
to paint using lines and shapes

(Figure 1). You will create your paint
application in four stages:

•	 drawing dots which follow the mouse
•	 draw lines between the dots
•	 adding colours and line width modifier
•	 drawing shapes

Note that you can style your application
anyway you want – it doesn't have to look like
this one.

Paint
Create a simple drawing application

Chapter 10

 Figure 1 Our simple paint application

111Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Drawing dots
The first step is to create a simple application which will use the Drawing widget and the
when_mouse_dragged event to draw dots (or ovals on the screen).

In the imports section of your otherwise blank program, add the widgets:

from guizero import App, Drawing

Create a new function:

def draw(event):
 painting.oval(
 event.x - 1, event.y - 1,
 event.x + 1, event.y + 1,
 color="black")

Add this code to the app section:

app = App("Paint")

painting = Drawing(app, width="fill", height="fill")

painting.when_mouse_dragged = draw

app.display()

Your code should resemble paint1.py (page 116). The Drawing widget fills all the available space
on the window. When the mouse is dragged
across the drawing, the function draw is
called which draws ovals on the painting.

The draw function is called each time an
event is raised. The event which contains the
x and y position of the mouse is passed as a
variable to the function.

There is a problem, though. Unless you
move your mouse very slowly, a series
of dots is drawn by your program, not a
continuous line (Figure 2). It’s not a very
good paintbrush! There are gaps between the
dots because an event is not raised for every
pixel the mouse crosses. Figure 2 Not a very good paintbrush

www.dbooks.org

https://www.dbooks.org/

112 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Lines between the dots
To solve this problem, you are going to change the program to draw lines between the dots.
That way the line made will be continuous and be more like a pen or paintbrush.

You will need to use a when_left_button_pressed event to store the position of where
the line starts. Then draw a straight line between where the line starts and next position the
mouse was dragged too.

Create a new function which will be called when the mouse is pressed.

 def start(event):
 painting.last_event = event

Add this to the app section:

 painting.when_left_button_pressed = start

The position of where the line starts is stored in the last_event variable.

Modify the draw function to draw a line between where the line starts and where the mouse
has been dragged to.

 def draw(event):
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color="black",
 width=3
)

 painting.last_event = event

By updating the last_event variable to be the current position of the mouse, the next time
the mouse is dragged, it will draw another line between this point and the next. Your program
should look like paint2.py. Test it and make sure your paintbrush now works properly.

Change the line width and colour
You only have one colour and thickness for your paintbrush, which limits the drawing you can
create. Next, you will amend your GUI so you can pick different colours and line widths.

Add two widgets to the GUI capture a colour and width for the line.

from guizero import App, Drawing, Combo, Slider

113Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add these line to the app section:

color = Combo(app, options=["black", "white", "red", "green", "blue"])
width = Slider(app, start=1, end=10)

You may also want to change the background colour of your painting to be different. Also, we
have used a Combo and a Slider, but you could choose different widgets.

Modify the draw function to use the colour and width values when painting the line.

 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color=color.value,
 width=width.value
)

Test your code, which should be like paint3.py, and you can now select the colour and line width.

Drawing shapes
You are going to extend your paint application so you can draw filled rectangles. When the
mouse is pressed, the rectangle will appear and grow as the mouse is dragged across the
screen. When the mouse button is released, the rectangle will drawn onto the screen.

To do this, you will modify your program to continuously draw and delete rectangles until the
mouse button is released. Let's add a widget to your GUI so you can select whether to draw a
line or a rectangle. Add this to the app section:

shape = Combo(app, options=["line", "rectangle"])

Modify the draw function to only draw lines if the "line" option is selected.

 if shape.value == "line":
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color=color.value,
 width=width.value
)

Test your program to make sure that the line still works and nothing happens when
"rectangle" is selected.

www.dbooks.org

https://www.dbooks.org/

114 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create two new variables to keep track of the first event and the last shape drawn when the
mouse button is pressed.

def start(event):
 painting.last_event = event
 painting.first_event = event
 painting.last_shape = None

These variables will be used when drawing and deleting the rectangle before the mouse button
is released.

Add this code to your draw function to draw a rectangle when the mouse is dragged.

 if shape.value == "rectangle":

 if painting.last_shape is not None:
 painting.delete(painting.last_shape)

 rectangle = painting.rectangle(
 painting.first_event.x, painting.first_event.y,
 event.x, event.y,
 color=color.value
)

 painting.last_shape = rectangle

The program will continually draw a rectangle, then delete it, then draw it again until you
release the button.

Your complete program should look similar to paint4.py. Have fun trying it out – what
pictures can you create?

ADD OVALS
When you first created the Paint application, you used ovals to draw dots across the
screen. Can you modify your program to draw ovals again, using a similar process to how
rectangles are drawn? Hint: see the 10-paint.py listing, which also styles up the tools and
aligns them neatly in a box.

The Drawing widget also supports drawing triangles and polygons. Take a look at the
documentation (lawsie.github.io/guizero/drawing) and see how you might use this
function to create other shapes.

http://lawsie.github.io/guizero/drawing

115Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CUSTOM EVENTS
To get your paint application to react to the mouse position, you have used custom events. The events

work very similar to the normal widget command parameter in that you set them to a function, which is

called when that event occurs.

When your function is called, a variable is passed which contains information about the event that

has occurred, such as the x and y co-ordinates of the mouse. Most widgets, including the App itself,

support the following events:

•	 when clicked – when_clicked

•	 when the left mouse button is pressed – when_left_button_pressed

•	 when the left mouse button is released – when_left_button_released

•	 when the right mouse button is pressed – when_right_button_pressed

•	 when the right mouse button is released – when_right_button_released

•	 when a key is pressed – when_key_pressed

•	 when a key is released – when_key_released

•	 when the mouse enters a widget – when_mouse_enters

•	 when the mouse leaves a widget – when_mouse_leaves

•	 when the mouse is dragged across a widget – when_mouse_dragged

These events can be used to make your GUIs more interactive.

www.dbooks.org

https://www.dbooks.org/

116 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint1.py / Python 3

simple paint app, just draw dots

Imports

from guizero import App, Drawing

Functions

def draw(event):
 painting.oval(
 event.x - 1, event.y - 1,
 event.x + 1, event.y + 1,
 color="black")

App

app = App("Paint")

painting = Drawing(app, width="fill", height="fill")

painting.when_mouse_dragged = draw

app.display()

 DOWNLOAD
magpi.cc/guizerocode

http://magpi.cc/guizerocode

117Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint2.py / Python 3

drawing lines by tracking when the mouse is clicked

Imports

from guizero import App, Drawing

Functions

def start(event):
 painting.last_event = event

def draw(event):
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color="black",
 width=3
)

 painting.last_event = event

App

app = App("Paint")

painting = Drawing(app, width="fill", height="fill")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

www.dbooks.org

https://www.dbooks.org/

118 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint3.py / Python 3

widgets to set the color and width

Imports

from guizero import App, Drawing, Combo, Slider

Functions

def start(event):
 painting.last_event = event

def draw(event):
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color=color.value,
 width=width.value
)

 painting.last_event = event

App

app = App("Paint")

color = Combo(app, options=["black", "white", "red", "green",
"blue"])
width = Slider(app, start=1, end=10)

painting = Drawing(app, width="fill", height="fill")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

119Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint4.py / Python 3

adding different drawing shapes

Imports

from guizero import App, Drawing, Combo, Slider

Functions

def start(event):
 painting.last_event = event
 painting.first_event = event
 painting.last_shape = None

def draw(event):
 if shape.value == "line":
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color=color.value,
 width=width.value
)

 if shape.value == "rectangle":

 if painting.last_shape is not None:
 painting.delete(painting.last_shape)

 rectangle = painting.rectangle(
 painting.first_event.x, painting.first_event.y,
 event.x, event.y,
 color=color.value
)

 painting.last_shape = rectangle

 painting.last_event = event

App

www.dbooks.org

https://www.dbooks.org/

120 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint4.py (cont.) / Python 3

app = App("Paint")

color = Combo(app, options=["black", "white", "red", "green",
"blue"])
width = Slider(app, start=1, end=10)
shape = Combo(app, options=["line", "rectangle"])

painting = Drawing(app, width="fill", height="fill")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

121Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

10-paint.py / Python 3

styled up

Imports

from guizero import App, Drawing, Combo, Slider, Box, Text

Functions

def start(event):
 painting.last_event = event
 painting.first_event = event
 painting.last_shape = None

def draw(event):
 if shape.value == "line":
 painting.line(
 painting.last_event.x, painting.last_event.y,
 event.x, event.y,
 color=color.value,
 width=width.value
)

 else:
 if painting.last_shape is not None:
 painting.delete(painting.last_shape)

 if shape.value == "rectangle":

 painting.last_shape = painting.rectangle(
 painting.first_event.x, painting.first_event.y,
 event.x, event.y,
 color=color.value
)

 if shape.value == "oval":

 painting.last_shape = painting.oval(
 painting.first_event.x, painting.first_event.y,
 event.x, event.y,
 color=color.value

www.dbooks.org

https://www.dbooks.org/

122 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

10-paint.py (cont.) / Python 3

)

 painting.last_event = event

App

app = App("Paint")
app.font = "impact"

tools = Box(app, align="top", width="fill", border=True)

Text(tools, text="Tool", align="left")
shape = Combo(tools, options=["line", "rectangle", "oval"],
align="left")

Text(tools, text="Colour", align="left")
color = Combo(tools, options=["black", "white", "red", "green",
"blue"], align="left")

Text(tools, text="Width", align="left")
width = Slider(tools, start=1, end=10, align="left")

painting = Drawing(app, width="fill", height="fill")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

123Chapter 10 Paint

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

124 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

T his projects uses a Raspberry Pi Camera Module and guizero to make a stop-frame
animation application (Figure 1). To complete this project, you will need a Raspberry
Pi with an official Camera Module (or High Quality Camera). If you need help

connecting up the Camera Module, take a look at the ‘Getting started with the Camera Module’
guide at rpf.io/picamera.

You will need guizero installed with the optional ‘images’ functionality, which you can install
by running this command in the terminal:

pip3 install guizero[images]

If using the Thonny IDE, you may also need to switch to Regular Mode, go to Tools > Manager
packages, select guizero, click on the ‘…’ button, check the box for ‘Upgrade dependencies’, and
click on Install.

Stop-frame
Animation

Chapter 11

Build your own stop-frame animated GIF creator

http://rpf.io/picamera

125Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

This project is broken down into stages:

1.	 Taking a picture with the camera and
displaying it on a GUI

2. 	 Taking multiple pictures and saving
them to a GIF file

3. 	 Allowing the user to change the GIF
4. 	 Tidying up the GUI

Take a picture
Start by creating this program.

Imports ---------------
from guizero import App, Picture, PushButton
from picamera import PiCamera

Functions -------------
def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

Variables -------------
camera = PiCamera(resolution="400x400")

App -------------------
app = App(title="Stop frame animation")

take_next_picture = PushButton(app, text="Take picture",
command=capture_image)
viewer = Picture(app)

app.display()

Note that the higher the resolution, the greater the processing time. 400×400 is small but really
quick to process.

 Figure 1 A simple stop-frame animation

www.dbooks.org

https://www.dbooks.org/

126 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

The GUI contains a PushButton and
Picture. When the button is pressed, the
capture_image function is called. The
function uses the camera to capture an
image and save it as frame.jpg. The picture
is then displayed in the Picture widget.

Test the program (stopframe1.py,
page 131). When you click the ‘Take
picture‘ button, the image should be
displayed on the GUI (Figure 2).

Take multiple images 		
and save to a GIF
An animation is made of multiple pictures,
known as frames. Each frame in the
animation will be slightly different to the
last and when played together at speed, the animation will appear to move.

In this step, you will change your GUI to keep a list of all the frames taken and use PIL
(Python Imaging Library) to save the frames as an animated GIF which will be displayed in the
viewer. At the top of your program, import the Image module from PIL:

from PIL import Image

Create a list to store the frames of your animation:

frames = []

To keep track of how many frames have been taken, import a Text widget, add it to your app,
and set it to 0.

from guizero import App, Picture, PushButton, Text

total_frames = Text(app, text="0")

Each time a new image is captured, you will need to open it and append it to your list of frames:

 Figure 2 Take a picture

127Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 frame = Image.open("frame.jpg")
 frames.append(frame)
 total_frames.value = len(frames)

The len (length) of the frames list is then used to update the text in total_frames.
Your program should now look similar to stopframe2.py. Test it and make sure the number

of frames increases each time you take a picture.

Save as a GIF
You can PIL to save all the frames as one animated GIF. Create a new save_animation
function to save the frames as animation.gif.

def save_animation():
 if len(frames) > 0:
 viewer.show()
 frames[0].save(
 "animation.gif",
 save_all=True,
 append_images=frames[1:])
 viewer.image = "animation.gif"
 else:
 viewer.hide()

There is a lot happening here, but by breaking down the code you can see how this works.
If the number of frames in the list is greater than 0, then the viewer is shown, otherwise it 	

is hidden:

 if len(frames) > 0:
 viewer.show()
 ...
 else:
 viewer.hide()

The frames are then saved to a file called animation.gif. The first frame (frames[0]) is saved,
the remaining frames (frames[1:]) are appended, and all are saved to the animated GIF:

www.dbooks.org

https://www.dbooks.org/

128 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

 frames[0].save(
 "animation.gif",
 save_all=True,
 append_images=frames[1:])

The animation.gif is then shown in the viewer:

 viewer.image = "animation.gif"

Call the save_animation function at the end of the capture_image function to create and
display the animation:

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 save_animation()

Your code should now be similar to stopframe3.py. Test it out.

Delete the last frame
At the moment, if you make a mistake while creating your animated GIF, you have to start
again from the beginning.

You should modify your GUI to allow the last frame taken to be deleted, so if a mistake is
made you can undo the change.

Create a new function which will remove or pop the last frame from the list, save the
changed animation, and then display it.

def delete_frame():
 if len(frames) > 0:
 frames.pop()
 total_frames.value = len(frames)

 save_animation()

The length of the frames list is checked before attempting to pop the last item. An error would
be raised if you tried to pop an item from an empty list.

Add a PushButton to the GUI to call the delete_frame function, by inserting this code in 	
your app:

129Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

delete_last_picture = PushButton(controls, align="left",
text="Delete last", command=delete_frame)

Note: You could also modify the GUI to allow you to delete any frame, not just the last one.

Changing the timing
Each frame is displayed for the default duration time of 100 milliseconds. Include a Slider
widget in your GUI to allow the duration to be changed.

Add it to the list of imports.

from guizero import App, Picture, PushButton, Text, Slider

Then create the widget in the app.

Text(app, text="Duration")
duration = Slider(app, start=100, end=1000, command=save_

animation)

The start and end parameters will be the minimum and maximum times you can set for the
frame duration.

Each time the slider is changed, the save_animation function will be run.
Update the save_animation function to use the duration value when saving the GIF.

 frames[0].save(
 "animation.gif",
 save_all=True,
 append_images=frames[1:],
 duration=duration.value)

Your code should now resemble stopframe4.py. Try it out.

www.dbooks.org

https://www.dbooks.org/

130 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Align the controls
At the moment, the controls are taking up a lot of room stacked at the top of the GUI (Figure 3).
Create a Box and align it to the top of the GUI to hold the controls, first adding it to the imports.

from guizero import App, Picture, PushButton, Text, Slider, Box

controls = Box(app, align="top")

Modify the widgets so that they are in the controls box and set the align parameter to "left". 	
For example:

total_frames = Text(controls, text="0", align="left")

Aligning widgets to the left inside the box will
make them stack up next to each other.

Repeat this for rest of the controls so they
are all put into the top box and lined up next to
each other.

Your complete program should look similar
to 11-stop-frame.py.

 Figure 3 Controls stacked at the top

CONSISTENT CAPTURES
As the camera is using "auto", each time a image is captured, the setting used may
change. This will cause each image to be slightly different and will cause a flickering in
your animation.

By fixing the camera settings when the program starts, you can stop this from happening.

The required settings will depend on the lighting where you are taking picture.

This article from the picamera documentation provides more information and example
settings: rpf.io/picamera-consistent.

http://rpf.io/picamera-consistent

131Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe1.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton
from picamera import PiCamera

Functions -------------

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

App -------------------

app = App(title="Stop frame animation")

camera = PiCamera(resolution="400x400")
take_next_picture = PushButton(app, text="Take picture",
command=capture_image)
viewer = Picture(app)

app.display()

stopframe2.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 DOWNLOAD
magpi.cc/guizerocode

www.dbooks.org

http://magpi.cc/guizerocode
https://www.dbooks.org/

132 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe2.py (cont.) / Python 3

 frame = Image.open("frame.jpg")
 frames.append(frame)
 total_frames.value = len(frames)

Variables -------------

frames = []

camera = PiCamera(resolution="400x400")

App -------------------

app = App(title="Stop frame animation")

total_frames = Text(app, text="0")
take_next_picture = PushButton(app, text="Take picture",
command=capture_image)

viewer = Picture(app)

app.display()

stopframe3.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 frame = Image.open("frame.jpg")

133Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe3.py (cont.) / Python 3

 frames.append(frame)
 total_frames.value = len(frames)

 save_animation()

def save_animation():
 if len(frames) > 0:
 viewer.show()
 frames[0].save(
 "animation.gif",
 save_all=True,
 append_images=frames[1:])
 viewer.image = "animation.gif"
 else:
 viewer.hide()

Variables -------------

frames = []

camera = PiCamera(resolution="400x400")

App -------------------

app = App(title="Stop frame animation")

total_frames = Text(app, text="0")
take_next_picture = PushButton(app, text="Take picture",
command=capture_image)

viewer = Picture(app)

app.display()

www.dbooks.org

https://www.dbooks.org/

134 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe4.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text, Slider
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 frame = Image.open("frame.jpg")
 frames.append(frame)
 total_frames.value = len(frames)

 save_animation()

def save_animation():
 if len(frames) > 0:
 viewer.show()
 frames[0].save(
 "animation.gif",
 save_all=True,
 append_images=frames[1:],
 duration=duration.value)
 viewer.image = "animation.gif"
 else:
 viewer.hide()

def delete_frame():
 if len(frames) > 0:
 frames.pop()
 total_frames.value = len(frames)

 save_animation()

Variables -------------

frames = []

camera = PiCamera(resolution="400x400")

135Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe4.py (cont.) / Python 3

App -------------------

app = App(title="Stop frame animation")

total_frames = Text(app, text="0")
take_next_picture = PushButton(app, text="Take picture",
command=capture_image)
delete_last_picture = PushButton(app, text="Delete last",
command=delete_frame)
Text(app, text="Duration")
duration = Slider(app, start=100, end=1000, command=save_
animation)

viewer = Picture(app)

app.display()

11-stop-frame.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text, Slider, Box
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
 camera.capture("frame.jpg")
 viewer.image = "frame.jpg"

 frame = Image.open("frame.jpg")
 frames.append(frame)
 total_frames.value = len(frames)

 save_animation()

def save_animation():
 if len(frames) > 0:
 viewer.show()
 frames[0].save(

www.dbooks.org

https://www.dbooks.org/

136 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

11-stop-frame.py (cont.) / Python 3

 "animation.gif",
 save_all=True,
 append_images=frames[1:],
 duration=duration.value)
 viewer.image = "animation.gif"
 else:
 viewer.hide()

def delete_frame():
 if len(frames) > 0:
 frames.pop()
 total_frames.value = len(frames)

 save_animation()

Variables -------------

frames = []

camera = PiCamera(resolution="400x400")

App -------------------

app = App(title="Stop frame animation")

controls = Box(app, align="top")
total_frames = Text(controls, text="0", align="left")
take_next_picture = PushButton(controls, align="left", text="Take
picture", command=capture_image)
delete_last_picture = PushButton(controls, align="left",
text="Delete last", command=delete_frame)
Text(controls, align="left", text="Duration")
duration = Slider(controls, align="left", start=100, end=1000,
command=save_animation)

viewer = Picture(app)

app.display()

137Chapter 11 Stop-frame Animation

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

138 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

H ere we will show you how to set everything up on your computer in order to create
Python programs with graphical user interfaces. To be able to run and edit the
applications in this book, you’ll need three things:

1. 	 The Python interpreter – this is the software that allows you to run programs written
in Python.

2. 	 An integrated development environment (IDE) – software which includes a code editor
and the ability to run a program from that editor. Python comes bundled with an IDE called
IDLE, but you might choose to use a different IDE.

3. 	 The guizero Python library – instructions for installing this are given in Chapter 1, but if you
are using Thonny please refer to the section below as the instructions are slightly different.

There are many IDEs available; here we’re going to look at two of them – IDLE and Thonny.
IDLE is a very simple IDE which comes bundled with Python for Windows and Mac, and
is installed by default on some versions of Raspberry Pi OS. Thonny has some additional
features, but it is still geared towards beginners.

Occasionally, errors can occur while trying to get everything installed and running –
especially on older computers. If you experience errors while trying to use a particular IDE or
version of Python, try another IDE or Python version.

Setting up
Appendix A

Learn how install Python and an IDE

139Appendix A Setting up

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Installing Python and IDLE
Windows
Windows does not come with Python 3 pre-installed. If you think you may have installed
Python previously, you can check this by looking for ‘Python’ in the Start menu or under ‘Apps
and Features’ within Settings. If you intend to use Thonny as your IDE, you can skip ahead to
the ‘Thonny’ section as Python is automatically installed alongside it.

Go to python.org, mouse-over Downloads and click on Windows. Choose the option to
directly download the latest stable Python 3 release (most people will need the one labelled
Windows x86-64 executable installer, but this may vary depending on your computer). Once the
download is complete, run the program either via your web browser or from your Downloads
folder. Click ‘Install now’ to install using the default options. IDLE will also be installed and can
be opened via the Start menu or by searching for it by name.

Alternatively, if you have Windows 10, you could download the Microsoft Store package
of the latest Python version (currently 3.8). If you have any difficulties, full installation
instructions can be found at rpf.io/python-windows.

Mac
Although most versions of macOS come with a Python interpreter, it’s version 2.7 which is not
compatible with guizero. You will need to install Python 3 alongside the existing installation.

Go to python.org, mouse-over Downloads and click on Mac OS X. Choose the latest stable
release, and click on macOS 64-bit installer. Once the download is complete, run the program
either via your web browser or from your Downloads folder. Install using the default options.
IDLE will also be installed and can now be opened from the Launchpad or Applications folder.

Raspberry Pi
Raspberry Pi OS (previously known as Raspbian) comes with Python already installed.
However, recent versions of the OS come with the Thonny but do not include IDLE. To install
IDLE, make sure you are connected to the internet, then open a Terminal and type:

sudo apt-get install idle3

If you have any problems getting the code in this book to run, try upgrading to the most recent
version of Raspberry Pi OS.

www.dbooks.org

http://python.org
http://rpf.io/python-windows
http://python.org
https://www.dbooks.org/

140 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

IDEs
IDLE
IDLE is a basic IDE which is usually automatically installed alongside Python. Once IDLE starts,
the first thing you’ll see is a window titled ‘Python 3.8.5 Shell’ (the number may be different
depending on which exact version you have). This window is called the shell and you can use it
to type a line of Python code and see the code run straight away.

For example, try typing the following:
6 + 2

Use the File menu > New file to open a Python file. A file allows you to type multiple lines of
code and then run them all, rather than each line running immediately when you press ENTER.
You can run the program by going to the Run menu and choosing Run Module – or by pressing
F5 on the keyboard. If an error occurs, you will see any error messages in the shell window.

 IDLE usually comes pre-installed with Python

141Appendix A Setting up

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Thonny
Thonny comes installed with recent versions of Raspberry Pi OS. For Windows and Mac
computers, you can download and install it from thonny.org. By default, Thonny uses a version
of Python which comes packaged with it, so even if you have already installed Python, Thonny
will ignore that version and use its own.

Use the File menu > New to open a Python file. You will type your code in the top white box
which has a number 1 to the left side. You can run the program by selecting the ‘Run current
script’ button, or by pressing F5 on the keyboard. If an error occurs, you will see any error
messages in the shell area at the bottom of the screen.

Thonny includes a debugger which allows you to step through the code one line at a time
and see how the variables change.

Because Thonny uses its own Python installation, you will need to install guizero from
inside Thonny in order for Thonny to be able to access it. Make sure you are connected to the
internet, then click on the Tools menu > Manage packages. In the window that appears, type
guizero in the box and click ‘Find package from PyPI’. Thonny will locate the package for you;
click Install to install guizero within Thonny's own Python environment.

 Thonny includes a debugger which may prove useful

www.dbooks.org

http://thonny.org
https://www.dbooks.org/

142 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

U nlike a visual, block-based coding environment like Scratch, Python is text-based:
you write instructions, using a simplified language and specific format, which the
computer then carries out. Python is a great next step for those who have already

used Scratch, offering increased flexibility and a more ‘traditional’ programming environment.
In the following examples, we’re using the Thonny IDE (integrated development environment),
but you can use an alternative IDE if you prefer (see Appendix A).

First program
The top white box in the Thonny window is where you write your program script. Click in this
box and type the following code:

print ("Hello, World!")

Now click the Run icon in the Thonny toolbar and you will be asked to save your program first;
type a descriptive name, like ‘Hello World’, and click the Save button. Once your program has
saved, you’ll see two messages appear in the Python shell area:

>>> %Run 'Hello World.py'
Hello, World!

Congratulations, you have successfully written and run a Python script! You will use the same
method for all of the programs in this book – write the code in the script area and then run it.

Get started
with Python

Appendix B

If you’re a complete beginner, here’s how to start coding in Python

143Appendix B Get started with Python

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Loops and code indentation
Just as Scratch uses stacks of jigsaw-like blocks to control which bits of the program are
connected to which other bits, Python has its own way of controlling the sequence in which its
programs run: indentation.

Create a new program by clicking on the New icon in the Thonny toolbar. You won’t lose
your existing program; instead, Thonny will create a new tab above the script area. Type in the
following code:

print ("Loop starting!")
for i in range(10):
 print ("Loop")

Click the Run icon in the Thonny toolbar, save your program with the name ‘Indentation’, and
watch the shell area for its output. See if you can work out what is happening.

The first line prints a message to the shell, just like your Hello World program. The second
tells Python to start a loop which runs 10 times – the number of times the loop runs is
controlled by the range(10) instruction. The third line is indented, which means it is pushed
inwards compared to the other lines. This indentation is how Python tells the difference
between instructions outside the loop and instructions inside the loop. In Scratch, the
instructions to be included in the loop are placed within the C-shaped block, and in Python they
are indented. So this means that the instruction to print the word ‘Loop’ is repeated 10 times.

You’ll notice that when you pressed ENTER at the end of the third line, Thonny automatically
indented the next line, assuming it would be part of the loop. To remove this, just press the
BACKSPACE key once and then type a fourth and final line:

print ("Loop finished!")

Your four-line program is now complete. The first line sits outside the loop, and will only run
once; the second line sets up the loop; the third sits inside the loop and will run once for each
time the loop loops; and the fourth line sits outside the loop once again.

www.dbooks.org

https://www.dbooks.org/

144 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Run the program again. If you haven’t made the Thonny window larger, you may need to use
the scroll bar to the right of the shell area to see its full output:

Loop starting!
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop finished!

 Run the program and see the result in the shell area below

145Appendix B Get started with Python

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Indentation is a powerful part of Python, and one of the most common reasons for a program
to not work as you expected. When looking for problems in a program, always double-check
the indentation.

Conditionals and Variables
You can create variables in your program to store values; for example, you might want to store
some data the user typed in, or the result of a calculation.

Start a new program by clicking the New icon on the Thonny menu, then type the following
into the script area:

my_name = input("What is your name? ")

Click the Run icon, save your program with the name ‘Input test’, and watch what happens in
the shell area: you’ll be asked for your name. Type your name and press ENTER. The variables
area to the right of the Thonny window will automatically display the name of the variable

 Variable names and values are shown in the area on the right

www.dbooks.org

https://www.dbooks.org/

146 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

(my_name) and its value (e.g. ‘Laura’). If you can't see the variables area, check on the View
menu that there is a tick next to Variables. This information remains displayed even when the
program isn’t running, making it easy to see what your program has been doing.

The program has saved what you typed as your name as the value of the variable called
my_name. Using the input command is useful for basic Python programs, but when you
attempt the GUI programs in this book, you will learn about other ways to capture input from
the user and store it in variables to be used in your program.

To make your program do something useful with the name, add a conditional statement by
typing the following:

if my_name == "Clark Kent":
 print ("You are Superman!")
else:
 print ("You are not Superman!")

 Unless you enter your name is entered as Clark Kent, you’re not Superman

147Appendix B Get started with Python

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Remember that when Thonny sees that your code needs to be indented, it will do so
automatically – but it doesn’t know when your code needs to stop being indented, so you’ll
have to delete the spaces yourself.

Click the Run icon and type your name into the shell area, as before. Unless your name
happens to be Clark Kent, you’ll see an additional message ‘You are not Superman!’ in the
shell area. Click Run again, and this time type in the name ‘Clark Kent’ – making sure to write it
exactly as in the program, with a capital C and a capital K. This time, the program recognises
that you are, in fact, Superman.

The == symbol tells Python to compare two values. In this case it will look to see if the value
of the variable my_name matches the text "Clark Kent".

When you are creating the programs in this book, you will collect input from the user, store
data in variables, display information on the screen, and use loops. The examples we have
worked through in this section are very basic and only allow the user to interact with the
program via text. We hope that now you know the basics of how to write a Python program
you will enjoy creating GUIs as a more graphical way of interacting with your program.

USING = AND ==
We have now seen two different operators – the single equals sign (=) and the double
equals sign (==). They mean different things and it is important to know the difference.
The single equals (=) means “it IS equal to this value,” while a double equals (==) means
“IS IT equal to this value?” The first is used to assign a value to a variable, and the second
is used to compare two values.

www.dbooks.org

https://www.dbooks.org/

148 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

W idgets in guizero are how you create your graphical user interface. They are
the things which appear on the GUI, everything from the app itself to text boxes,
buttons and pictures.

Note: This is an overview of the widgets in guizero. Be sure to view the specific online
documentation for each widget for more information: lawsie.github.io/guizero.

Widgets in guizero
Appendix C

An overview of the widgets used in guizero

Widgets
App
The App object is the basis of all GUIs created using guizero.
It is the main window which contains all of the other widgets.

app = App()
app.display()

Box
The Box object is an invisible container which can contain
other widgets.

box = Box(app)
box = Box(app, border=True)

http://lawsie.github.io/guizero

149Appendix C Widgets in guizero

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

ButtonGroup
The ButtonGroup object displays a group of radio buttons,
allowing the user to choose a single option.

choice = ButtonGroup(app,
options=["cheese", "ham", "salad"])

CheckBox
The CheckBox object displays a check box to allow an option
to be ticked or un-ticked.

checkbox = CheckBox(app, text="salad ?")

Combo
The Combo object displays a drop-down box allowing a
single item to be selected from a list of options.

combo = Combo(app, options=["cheese",
"ham", "salad"])

Drawing
The Drawing object allows shapes, images, and text to
be created.

drawing = Drawing(app)

ListBox
The ListBox object displays a list of items from which either
single or multiple items can be selected.

listbox = ListBox(app, items=["cheese",
"ham", "salad"])

www.dbooks.org

https://www.dbooks.org/

150 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Picture
The Picture object displays an image.

picture = Picture(app, image="guizero.
png")

PushButton
The PushButton object displays a button with text or an
image, which calls a function when pressed.

def do_nothing():
 print("button pressed")

button = PushButton(app, command=do_nothing)

Slider
The Slider object displays a bar and selector which can be
used to specify a value in a range.

slider = Slider(app)

Text
The Text object displays non-editable text in your app –
useful for titles, labels, and instructions.

text = Text(app, text="Hello World")

TextBox
The TextBox object displays a text box which the user can
type in.

textbox = TextBox(app)

151Appendix C Widgets in guizero

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Waffle
The Waffle object displays an n×n grid of squares with
custom dimensions and padding.

waffle = Waffle(app)

Window
The Window object creates a new window in guizero.

window = Window(app)

Properties
All widgets are customisable through their properties. These properties are typical for most
widgets. Check a widget’s online documentation (e.g. lawsie.github.io/guizero/app) for details.

PROPERTY DATA TYPE DESCRIPTION

align string The alignment of this widget within its container

bg string, List The background colour of the widget

enabled boolean True if the widget is enabled

font string The font of the text

grid List [x,y] co-ordinates of this widget if in a ‘grid’

height int, string The height of the widget

master App, Window, Box The container to which this widget belongs

value int, string, bool The widget’s current ‘value’, e.g. the text in a TextBox

visible boolean If this widget is visible

width size The width of the widget

ext_size int The size of the text

ext_color color The colour of the text

www.dbooks.org

http://lawsie.github.io/guizero/app
https://www.dbooks.org/

152 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Methods
Widgets can be interacted with through their methods. The methods supported are dependent
on the widget, so check the documentation. These methods are typical across most widgets.

METHOD DESCRIPTION

after(time, command,

args=None)

Schedules a single call to command after time
milliseconds

cancel(command) Cancels a scheduled call to command

destroy() Destroys the widget

disable() Disables the widget so that it cannot be interacted with

enable() Enables the widget

focus() Gives focus to the widget

hide() Hides the widget from view

repeat(time, command,

args=None)
Schedules a call to command every time milliseconds

resize(width, height) Sets the width and height of the widget

show() Displays the widget if it was previously hidden

update_command(command,

args=None)
Updates the function to call when the widget is used

153Appendix C Widgets in guizero

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

154 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

155Appendix C Widgets in guizero

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

www.dbooks.org

https://www.dbooks.org/

Laura Sach
Create graphical user interfaces w

ith Python
M

artin O
’H

anlon

Create your own
graphical user interfaces

on any computer
Would you like to add buttons, boxes, pictures and colours and more to
your Python programs? This book will show you how to create Python

desktop applications using the guizero library, which is quick, accessible,
and understandable for all.

This book is suitable for everyone, from beginners to experienced Python
programmers who want to explore graphical user interfaces (GUIs).

There are ten fun projects for you to create, including a painting program,
an emoji match game, and a stop-motion animation creator.

✓ Create games and fun Python programs

✓ Learn how to create your own graphical user interfaces

✓ Use windows, text boxes, buttons, images, and more

✓ Learn about event-based programming

✓ Explore good (and bad) user interface design

	001_guizero_COVER_DIGITAL
	002-007_guizero_INTRO_PK1_SR_PK2
	008-011_guizero_CHAPTER 1_PK1_PK2_PK3_SR
	012-017_guizero_CHAPTER 2_PK1_SR_PK2_SR
	018-025_guizero_CHAPTER 3_PK3_PK4_PK5_PK6_SR
	026-035_guizero_CHAPTER 4_PK1_PK2_PK3_SR
	036-043_guizero_CHAPTER 5_PK1_PK2_SR
	044-061_guizero_CHAPTER 6_PK1_SR_PK2_PK3_SR
	062-077_guizero_CHAPTER 7_PK1_SR_PK2_SR
	078-091_guizero_CHAPTER 8_PK1_SR_PK2_SR
	092-109_guizero_CHAPTER 9_PK1_SR_PK2_SR_PK3
	110-123_guizero_CHAPTER 10_PK1_SR_PK2_PK3_SR
	124-137_guizero_CHAPTER 11_PK1_SR
	138-141_guizero_APPENDIX A_PK1
	142-147_guizero_APPENDIX B_PK1
	148-155_guizero_APPENDIX C_PK1
	156_guizero_COVER_DIGITAL

