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Abstract

Mapping the ensemble of protein conformations that contribute to function and can be targeted by small
molecule drugs remains an outstanding challenge. Here we explore the use of soft-introspective
variational autoencoders for reducing the challenge of dimensionality in the protein structure ensemble
generation problem. We convert high-dimensional protein structural data into a continuous,
low-dimensional representation, carry out search in this space guided by a structure quality metric, then
use RoseTTAFold to generate 3D structures. We use this approach to generate ensembles for the cancer
relevant protein K-Ras, training the VAE on a subset of the available K-Ras crystal structures and MD
simulation snapshots, and assessing the extent of sampling close to crystal structures withheld from
training. We find that our latent space sampling procedure rapidly generates ensembles with high
structural quality and is able to sample within 1 angstrom of held out crystal structures, with a consistency
higher than MD simulation or AlphaFold2 prediction. The sampled structures sufficiently recapitulate the
cryptic pockets in the held-out K-Ras structures to allow for small molecule docking.

Main Text
A major challenge in drug discovery is identifying cryptic binding pockets that can be targeted

by small molecule drugs (Beglov et al., 2018; Vajda et al., 2018; Vijayan et al., 2015). Despite
considerable advances in single state native protein structure prediction with AlphaFold and
RoseTTAFold in the past several years, generating plausible ensembles of structures that can be populated
upon binding a small molecule, or during protein function, remains an outstanding problem– AlphaFold
and RoseTTAFold generate single structures, rather than ensembles. Molecular dynamics (MD)
trajectories generate protein ensembles by simulating protein motion around the native structure, and are
often used to generate ensembles prior to small molecule docking calculations, but often fail to identify
cryptic ligand binding pockets not present in the unbound structure (Cimermancic et al., 2016; Beglov et
al., 2018; Vajda et al., 2018; Vijayan et al., 2015) or require very long and hence highly compute-intensive
simulations (typically sub-to-several microsecond level) (Kimura et al., 2017; Meller et al., 2023; Sun et
al., 2020). Other classical approaches have been used to sample protein conformers through Rosetta
(Larson et al., 2002), and loop sampling using kinematic closure (KIC) (Mandell et al., 2009), but have
not sampled the types of conformational changes involved in cryptic pocket formation. On the deep
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learning side, variational autoencoders which project complex data into a smaller dimension latent space
have been used to generate alternative backbones for general protein design tasks such as de novo design
of 64 residue backbones (Anand et al., 2018), graph-based protein design (Ingraham et al., 2019) and
Ig-fold modeling (Eguchi et al. 2020). VAEs have been used previously to sample the conformational
space of proteins, but have required visual inspection of the trained latent space to sample (Tian et al.,
2021), or have focused on mapping correlative fluctuations in extensive MD simulations of both the apo
and holo state of a target protein (Tsuchiya et al., 2019).

We reasoned that sampling within the latent space of variational autoencoders could provide a
solution to the ensemble generation problem for a specific protein sequence. Unlike most previous VAE
approaches, which have trained on many different proteins, the challenge of a protein specific VAE is that
there is limited training data. We reasoned this limitation could be overcome by supplementing available
crystal structures of the protein of interest in alternative conformations with snapshots from short MD
trajectories started from each of these structures. For exploring this approach, we chose the critical cancer
target K-Ras as a model system due to its considerable therapeutic importance and the many available
structures (Pantsar et al. 2019; Liete et al. 2022).

We began by exploring different VAE architectures, training on ensembles of MD simulations
from alternate crystals forms of K-Ras (full details in the Methods section), and evaluating the quality of
3D reconstruction following encoding and decoding. For encoding 3D structural information, we chose to
use the two-dimensional RoseTTAFold (Baek et al., 2021) template features. The reconstructed template
features were then used as input template features for 3D structure generation with RoseTTAFold, along
with the amino acid sequence. We evaluate the accuracy of reconstruction by computing the RMSD
between the input and output 3D coordinates. The RMSD loss was calculated based on the 2D template
features of the input and output 3D structures. We generate new samples by guided exploration in the
latent space, followed by 3D coordinate generation with RF (RoseTTAFold, Figure 1).
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Figure 1. VAE based ensemble generation approach. 3D coordinates from crystal structures and MD simulations
are converted to RoseTTAFold 2D template features (Baek et al., 2021). The decoded template features are
converted to 3D structures through RoseTTAFold, which is also given the amino acid sequence. Ensembles are
generated by sampling in the latent space followed by decoding and RF structure generation.

The reconstruction accuracy of crystal structures not included in the training set provides a rough
lower bound on the accuracy with which our approach can recapitulate conformations of interest. For
each available K-Ras structure, we trained a VAE leaving out this structure and others within 1A RMSD,
and evaluated the accuracy of reconstruction following RoseTTAFold (Baek et al., 2021) 3D coordinate
generation. We obtained best results with the soft-introspective VAE architecture (Figure S1), and the
accuracy of reconstruction plateaued at ~256 latent space dimensions (Figure S2) For most of the targets
(13/20), the reconstructed target from the VAE was of sub-angstrom accuracy (RMSD < 1A); for
comparison only 2/20 AF2 structure predictions were of sub-angstrom accuracy (Figure 2).

Figure 2. VAE Structure reconstruction accuracy. Coordinate RMSD of the closest AF2 predicted model and the
reconstructed model from the VAE decoded template features generated using RoseTTAFold. Structural
superimpositions for 3 targets are highlighted on top with the target crystal in gray, the AF2 prediction in blue and
the VAE reconstruction in orange.

We next explored the possibility of generating plausible K-Ras ensembles by sampling in the
latent space of the trained VAEs. To help ensure that the sampled structures remained broadly consistent
with the sequence and were physically plausible, we guided sampling by the consistency to the AF2
predicted distance distribution for the amino acid sequence. Samples were generated from a normal
distribution with a mean of 0 and variance of 1, decoded into the corresponding Cb distance map, the
CCE to the AF2 predicted distogram for the sequence was computed, and local optimization in the latent
space was carried out through gradient descent on the CCE value, limiting the total (latent space) distance
traversed from the starting point to prevent convergence. Following decoding and RF structure
generation, samples were evaluated using coordinate RMSD to the target crystal on either the overall
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structure recapitulation and cryptic pocket environment reconstruction (defined as the residues within 5
angstroms of the ligand binding pocket).

Using this VAE guided sampling approach, we generated K-Ras structure ensembles, again
holding out individual K-Ras crystal structures and MD simulation snapshots derived from them, along
with other K-Ras crystal structures (and MD snapshots) within 1 angstrom RMSD. We evaluated these
ensembles by determining how closely they sampled the held out structures. An advantage of our
approach is that ensembles can be generated quite rapidly (compared to MD simulations, for example),
and the closest RMSD to the held out structures of course decreases with increasing number of samples
(Figure S3). We found that ensembles of 3000 structures sampled more closely to the held out structures
than the closest training set crystal structure, training set MD simulation snapshot and the closest AF2
model for most targets (Figure 3).

For small molecule docking calculations, the sampling of alternative ligand binding pocket
geometries is particularly important. Comparison of the RMSD over the ligand binding pocket residues
between the closest sampled conformation in the generated ensembles and the held out structures showed
that the ensembles sample closer than the closest training MD snapshot or crystal structure in most cases
(Figure 4). Structural superimpositions show that the generated samples do not clash with the
superimposed ligand from the target structure, highlighted in orange, and therefore can be docked without
hindrance, whereas for the closest train crystal and the closest AF2 model, there are significant clashes
(Figure 4).

We used the physically based GA-ligand docking method to dock ligands onto all the models
generated from the VAE, the training examples and the AF2 models. Consistent with the above
observations, the RMSD over the ligand atoms was consistently lower for the ensemble generated
samples than the AF2 predictions, and lower in most cases than the docks to the MD ensembles (Figure
5).

Figure 3. The VAE enables sampling closer to held out K-Ras crystal structures than MD or AlphaFold
generated structures. For each test crystal structure (name below bars), a VAE was trained using MD simulation
data from all crystal structures with greater than 1A RMSD, and used to generate a structure ensemble. Bars indicate
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the coordinate error to the test crystal of the closest train crystal, the closest training sample, the closest AF2 model
and the closest VAE generated sample.

Figure 4. VAE sampling of K-Ras cryptic pocket geometry. As in Fig 3, but with the coordinate error to the test
crystal structure computed over only the binding site residues (defined as the residues within 5 angstroms of the
ligand binding pocket). The structural superimpositions (top) show the ligand inhibitor docked in only the target
crystal, where the cryptic binding pocket and the ligand are highlighted in orange on the target crystal structure.

Figure 5. Small molecule docking into VAE generated ensembles. Ligands from held out crystal structures were
docked into protein conformers using GA-ligand dock. Left: the held out crystal structure complex (column 1) and
the closest docked complex (in terms of RMSD over the ligand) among the training set crystal structures (column 2),
the MD snapshots (column 3), the AlphaFold models (column 4) , and the VAE ensembles (column 5). The closest
RMSDs of C-alpha coordinate RMSD of the cryptic pocket of docked structures and lowest RMSD over ligand
atoms (ligand RMSD) are indicated on the bar charts on the right.
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Discussion

Our VAE based sampling approach enables extrapolation from combinations of MD simulation
snapshots starting from multiple known crystal structures to generate ensembles of conformers more
closely sampling held out crystal structures. The ensembles sample alternative ligand binding site
geometries sufficiently accurately to enable docking of small molecule ligands. Our approach provides a
way to generalize from multiple classical MD simulation trajectories from different crystal structure
starting points to generate an effectively unlimited number of plausible samples with very low
computational cost. We go beyond previous studies using VAEs to model the space sampled by MD
simulations by taking advantage of the sophisticated understanding of protein sequence-structure
relationships implicit in the AF2 and RF deep neural networks in two ways: first, we use the AF predicted
distance distributions to focus the latent space sampling on regions consistent with the amino acid
sequence, and second, we use RF to generate 3D coordinates from the output distance maps which
ensures physical realism and local sequence-structure compatibility.

There are clear paths forward for improving our approach. First, the reconstruction error of ~1Å
for the known crystal structures is reasonable, but the challenge is that the differences between many of
the different conformations are also of this order, limiting the ability of our approach to really precisely
sample alternative states. VAE architectures with still lower reconstruction errors would improve our
method, as could fine-tuning the trained VAE on the FAPE loss (we did not observe this in preliminary
tests, but this warrants further exploration). Second, while the AF2 CCE metric provides a reasonable
guidepost, AF2 is trained to generate single structures, and hence the use of this measure to guide
sampling could limit diversity. Better results could be obtained by minimizing towards a predicted
ensemble of structures for a given target or subsampling the target MSA for RoseTTAFold structure
generation (Meller et al., 2023) to introduce more diversity in output structures. Despite these limitations,
our results show the utility of deep generative models for modeling the conformational ensembles that
determine protein function and drugability.
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Methods

1. Input data setup and incremental learning:

For the input dataset, we began by selecting distinct K-Ras conformations deposited in the PDB that are at
least an angstrom away from each other as our ‘training set crystal structures’. In addition to the RMSD
cut-off filter, we also selected conformations that had a deposited / known inhibitor. We selected 20 K-Ras
structures with these criteria. We ran MD simulations for 10 ns starting with each K-Ras crystal structure
and selected every 50 ps snapshots from 5 independent trajectories, giving a total of 1000 MD snapshots
for each starting structure. AMBER19SB force field (Tian et al., 2020) with TIP3P water model
(Jorgensen et al., 1983) was used in a periodic boundary box. Langevin dynamics was run at a constant
temperature of 300K and pressure of 1 atm. For each target crystal, the training data consisted of MD
snapshots of the training set crystal structures that were at least an angstrom away from it. The final 20
K-Ras conformations that we chose were: 4DSO, 5XCO, 5YXZ, 6PGP, 7EWB, 8AFD, 8DNI, 4LV6,
4L9W, 5V9O, 6B0V, 6N2K, 6P8W, 7RT1, 7U8H, 4Q21, 5V71, 5E95, 6H46 and 7C40. All 3D structures
were converted to 2D template features from RoseTTAFold (Baek et al., 2021) which consists of Cb
distances and orientations. We chose to use the raw distance and orientation values for training the model
for a more interpretable latent space.

After the first round of training using only MD snapshots as the training data, we then generated 3000
samples from the latent space that were optimized for the score metric and passed the diversity filter
(following the protocol laid out in the sampling methods section). These 3000 generated structures were
then concatenated on the initial MD snapshot training set to form an ‘incremental learning’ training set of
structures for the model. Using this new set, for each target, the training runs were set up again from
scratch. Incremental learning in this case benefits the VAE by providing a larger and more diverse set of
structures for exploration, improving representation of structural diversity, refining metric optimization,
and ultimately increasing the accuracy of the generated samples to the target crystal.

2. Soft Introspective VAE objective and training

We found best results using a Soft-Introspective VAE architecture (Daniel et al., 2020) which has been
shown to have higher output resolution than the vanilla VAE (Kingma et al., 2014). The objective
function of this model, along with the traditional VAE objective function of reconstruction loss and KL
divergence, has adversarial losses incorporated, like GANs (Goodfellow et al., 2014) but is trained
introspectively. In the case of SI-VAEs, the encoder is the implicit ‘discriminator’ where it is induced to
distinguish, through the ELBO (evidence lower bound) (Kingma et al., 2014) values that it assigns to the
real and generated samples. The decoder is the ‘generator’ where it is induced to generate samples to
‘fool’ the encoder (discriminator). However, unlike GANs, the SI-VAE model does not converge to the
data distribution, but to an entropy-regularized version of it (Daniel et al., 2020) .

Using default parameters from Daniel et al., 2020, encoder was trained with the following objective
(Equation 1):

𝐿
𝑒𝑛𝑐𝑜𝑑𝑒𝑟

 (𝑥 , 𝑧 ) =  𝑠 .  (β
𝑟𝑒𝑐

 𝐿
𝑟 

(𝑥) +  β
𝑘𝑙 

 𝐾𝐿 (𝑥)) +  1
2  𝑒𝑥𝑝 (− 2𝑠.  (β

𝑟𝑒𝑐 
𝐿

𝑟 
(𝐷𝑒𝑐(𝑧)) +  β

𝑛𝑒𝑔
 𝐾𝐿 (𝐷𝑒𝑐 (𝑧))))

where = reconstruction loss, s = 2, = 10, = 1e-3, = latent dimension = 256 and Dec = trained decoder of soft-introspective VAE.𝐿
𝑟
(𝑥) β

𝑟𝑒𝑐
β

𝑘𝑙
β

𝑛𝑒𝑔
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The decoder was optimized using the following objective (Equation 2):

𝐿
𝑑𝑒𝑐𝑜𝑑𝑒𝑟 

(𝑥, 𝑧) =  𝑠 .  β
𝑟𝑒𝑐

 𝐿
𝑟
(𝑥) +  𝑠 .  (β

𝑘𝑙
 𝐾𝐿 (𝐷𝑒𝑐(𝑧)) +  γ

𝑟
 .  β

𝑟𝑒𝑐
 𝐿

𝑟 
(𝐷𝑒𝑐(𝑧)))

where = reconstruction loss, s = 2, = 10, = 1e-3 and = 1.0𝐿
𝑟
(𝑥) β

𝑟𝑒𝑐
β

𝑘𝑙
γ

𝑟

The reconstruction loss was the mean-squared-error loss over all distances and orientations on the
decoded template features from the model. The model was optimized using individual optimizers for the
encoder and decoder, both of which were initialized with Adam (β1 = 0.9, β2 = 0.999) with learning rate
1e−3, with an effective batch size of 64. The encoder and decoder were made up of 3 ResNet blocks with
2D convolutional layers and the latent space was kept at a constant of 256 dimensions for all targets.

3. Sampling in latent space through gradient optimization of score metric (CCE)

To obtain the optimized structures using the trained decoder, we used gradient optimization in the latent
space. We first randomly sample n numbers from the standard Gaussian distribution (mean=0, std=1) with
dimension equal to that of the latent space. The initialized latent space coordinates are set to be trainable.
Each sample is then decoded into its respective template features and Cb distances are discretized through
radial basis function to ensure back propagation. The score metric we chose to optimize is the minimum
categorical cross-entropy (CCE) among all 5 AF2 predicted Cb distograms of the target structure and the
generated Cb distances. The Adam optimizer modifies the latent space sample to minimize this score
metric. This process is repeated until convergence. To ensure that diversity is maintained, the latent space
coordinates are restricted to explore only d (=10) euclidean distance in the latent space from their initial
starting coordinates. The overall goal of this exploration technique is to search the latent space to find a
better solution near the initial randomly generated coordinates. The final, converged latent space
coordinates are decoded into their respective template features and passed into RoseTTAFold, along with
the target MSA for structural modeling.

4. Docking Protocol
For each docking case, the inhibitor ligand was docked to the receptor model using the protein-ligand
docking method Rosetta GALigandDock (Park et al., 2021). The ligand atomic coordinates found in
complex crystal structures were extracted and used to prepare for ligand docking. The ligands were
protonated and the AM1-BCC partial charges were calculated using the tools provided by openbabel,
Antechamber in the AMBER suite, and UCSF Chimera (Pettersen et al., 2004). The ligand information
was converted to the parameter format that is compatible with the Rosetta generic potential (GenFF (Park
et al., 2021)). The initial position of the ligand to initiate docking was determined by superimposing the
complex crystal structure to the sampled protein backbone. Protein-ligand docking was performed by
allowing the side chains that are within 6A from the ligand to be flexible. The receptor models were
optimized in advance using Rosetta FastRelax with high constraints on each backbone. We ran 20 parallel
docking runs for each receptor model and ligand pair, and the combined results were analyzed, where the
best scoring generated sample was compared to best scoring models of the training set, training crystals
and AlphaFold models.
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Supplementary information:

Figure S1. Comparison of reconstruction performance between vanilla VAE and soft-introspective VAE.
Distance RMSD comparison of reconstruction of a different set of K-Ras training crystals from similarly trained
vanilla VAE and soft-introspective VAE.

Figure S2. Graph illustrating the relationship between latent dimension and RMSD. Increasing the
dimension (x-axis) initially leads to a significant decrease in mean RMSD calculated over training data
(y-axis), indicating improved data representation. However, the graph reaches an elbow point (256
dimensions) where further dimension expansion yields diminishing returns, plateauing the RMSD
reduction.
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Figure S3. Relationship between increasing number of samples generated in latent space and closest
coordinate RMSD to target. Each target is associated with a different number of samples generated in
the latent space, and the corresponding Closest Coordinate RMSD to the target crystal is plotted. More
samples result in lower RMSD until a threshold is reached, indicating improved accuracy.

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2023. ; https://doi.org/10.1101/2023.08.01.551540doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.01.551540
http://creativecommons.org/licenses/by-nd/4.0/

