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Abstract.  
Due to their active roles in regulating phosphorylations, protein tyrosine phosphatases (PTP) 
have emerged as attractive targets in diseases characterized by aberrant phosphorylations such 
as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to 
several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood 
cancers. Development of small molecules that directly target PRL3, however, has been 
challenging. This is partly due to the lack of structural information on how PRL3 interacts with its 
inhibitors. Here, computational methods are used to bridge this gap by evaluating the 
druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, 
were used to identify binding pockets using structures of PRL3 currently available in the Protein 
Data Bank. Druggability assessment by molecular dynamics simulations with probes was also 
performed to validate these results and to predict the strength of binding in the identified 
pockets. While several druggable pockets were identified, those in the closed conformation 
show more promise given their volume and depth. These two pockets flank the active site loops 
and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, 
druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites 
implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative 
pockets identified here can be leveraged for high-throughput virtual screening to further 
accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics. 
 
Introduction.  
    Aberrant cellular phosphorylation is a hallmark of several diseases including inflammation and 
cancers (1–3). Protein phosphorylation is a post-translational modification that can act as a 
switch to regulate biochemical pathways and is regulated by the concerted action of two classes 
of enzymes: kinases and phosphatases. As such, kinases and phosphatases present as 
significant potential clinical molecular targets. To date, several kinase inhibitors have been 
approved for various indications and kinases have been regarded as one of the most important 
drug targets of the 21st century (4–8). Meanwhile, phosphatases are recently gaining traction as 
therapeutic drug targets, particularly with emerging roles in cancers (9–12). Development of 
phosphatase inhibitors offer a novel approach to treatment of diseases involving dysregulated 
protein phosphorylation. 
    Among protein phosphatases, the phosphatase of regenerating liver (PRL), also known as 
the protein tyrosine phosphatase 4A (PTP4A), family is of significant interest in drug discovery 
as PRL expression has been correlated with oncogenicity (13–16). PRL3 or PTP4A3 is the most 
well-studied PRL and is highly expressed in several cancer types. Its expression has been 
correlated with poor patient prognosis in various cancers as well as with increased proliferation 
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and metastatic potential in cellular models (17–26). While a lot remains unknown about its 
physiological functions and endogenous substrates, PRL3 has been shown to be involved in 
regulation of apoptosis, cellular metabolism, DNA integrity, epithelial-to-mesenchymal transition 
(EMT), and angiogenesis (27). As such, PRL3 is emerging as one of the most prominent 
phosphatase drug targets in recent years.  
    Given its roles in cancers, PRL3 has been the target of several drug discovery programs 
leading to the identification of several potential inhibitors (11, 13, 14, 28–35). Pentamidine 
isethionate, an FDA approved anti-protozoa drug, is among the first molecules to be identified to 
inhibit PRLs in vitro (13). High-throughput screening efforts identified several potential PRL3 
inhibitors including several rhodanine derivatives, and one of the most potent inhibitors at the 
time, thienopyridone (29–32, 34, 36). Further elaboration of the thienopyridone scaffold 
eventually led to the development of JMS-053, currently the most potent experimental inhibitor 
of PRL3 (33, 37, 38). Recently, the JMS-053 scaffold was linked to an adamantly moiety to 
generate a bifunctional ER stress inducer/PRL3 inhibitor (35). Despite the success of these 
campaigns to identify candidate molecules, however, no small molecule inhibitor targeting PRL3 
has advanced to clinical studies. The rhodanine scaffold has been considered a promiscuous 
binder and likely is associated with several off-target effects (37, 39). Meanwhile, the 
thienopyridone scaffold exhibits redox activity which potentially inhibits enzymes susceptible to 
oxidation, such as PRL3 (37, 40). Thus, while there a few candidate molecules, the search for 
inhibitors for PRL3 with potential to be developed as cancer therapeutics remains open. 
    To date, a few structures of PRL3 have been experimentally determined, capturing its open 
and closed conformations (41–44). The closed conformation was determined in the presence of 
vanadate, a general protein tyrosine phosphatase inhibitor, bound to the active site (44, 45). A 
crystal structure of PRL3 has also been determined where the CBS-pair domain of the 
magnesium transporter CNNM3 is bound to the active site (41). In this interaction, PRL3 acts as 
a pseudo-phosphatase, revealing a unique cellular function for the PRL3 family. While these 
structures have allowed for characterization of function of PRL3, a challenge remains in that 
none of these structures capture how PRL3 binds to small molecules, which is critical for 
structure-based drug design and virtual screening campaigns.   
    In this present work, available structural information is leveraged to identify and characterize 
putative druggable pockets within PRL3. The objective is to inform high throughput in silico 
screening efforts by focusing on pockets amenable for inhibitor binding. Pocket identification 
tools were used, along with molecular dynamics simulations using probes, to identify druggable 
pockets towards the development of highly specific PRL3 inhibitors.  
 
Methods.  
Protein Structures. All analyses were performed on three structures of PRL3 taken from the 
Protein Data Bank: 2MBC, 1V3A, and 5TSR. These structures represent the open (1V3A) and 
closed (2MBC, 5TSR) conformations of PRL3 (41, 44). One of the closed conformations (5TSR) 
is the structure of PRL3 bound to the CNNM3 magnesium transporter Bateman domain 
determined by X-ray crystallography to a resolution of 3.19 Å. Chain A, the PRL3 structure, was 
extracted from this. A closed conformation in the presence of vanadate (2MBC) was determined 
by solution NMR. Only the first model of the twenty in the NMR bundle was used. The open 
conformation (1V3A) was also determined by solution NMR and only a single conformer was 
deposited (42). All these structures were used without further modification.  
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Druggability simulations and analysis. Druggability molecular dynamics simulations were set-up 
using the druggability suite VMD plug-in (DruGUI) and were performed using the NAMD 
software and CHARMM forefield (46, 47). PRL3 structures were placed in a box with 8 Å 
padding, containing explicit TIP3P water and enough chloride ions to neutralize the system. The 
probe composition for all runs was set at 80% isopropanol and 20% acetamide. 
    Simulations were first minimized for 2000 steps prior to a series of equilibration steps. First, 
the system was heated from 100 K to 300 K over 40 ps and ran at 300 K for 80 ps. Then, the 
system was further heated to 600 K over 60 ps, ran at 600 K for 600 ps, and cooled back to 300 
K over 18 ps. The Cα atoms were restrained by a harmonic potential with a force constant of 1 
kcal/mol/A2 during these equilibration steps. A final 600 ps equilibration without constraint was 
done at 300 K. Two independent 40-ns production runs were carried out for each of the 
systems.  
    Analysis of probe binding hotspots was done using the built-in analysis tool in the DruGUI 
plug-in. The default parameters were used for the analyses of all simulations. The two 
simulations for each system were analyzed individually. Results were visualized using VMD, 
PyMol, or ChimeraX (48–50).  
 
Detection of possible binding pockets. Two web/server-based tools were used to detect and 
identify potentially druggable pockets. The tools were chosen as they employ distinct algorithms 
in identifying protein pockets and are both free to use. DoGSite3 is an automated grid-based 
pocket detection tool included in the ProteinPlus server (Center of Bioinformatics, University of 
Hamburg). It uses Difference of Gaussian (DoG) filter for pocket prediction and considers 
volume, hydrophobicity, enclosure, and depth (51–53). Meanwhile, FTmap relies on the 
identification of binding hotspots of 16 small chemical probes. Docked probes go through 
energy-based clustering followed by consensus clustering to identify binding hotspots (54). The 
prepared structures were directly uploaded onto these web tools and results were visualized 
with either PyMol or ChimeraX (48, 49). 
 
Results and Discussion. 
    Protein tyrosine phosphatases are now emerging as significant therapeutic targets, 
particularly in cancers (3, 55). Among the PRL sub-family, PRL3 is the most well-studied and 
most targeted by on-going drug discovery efforts. While there have been several promising 
inhibitors identified and structures of PLR3 experimentally determined, there is currently no 
information on how PRL3 interacts with any of these small molecules. That is, there is currently 
no  known structure of PRL3 in complex with any inhibitor. Information on the interaction of a 
protein target and inhibitors is critical for the rational improvement of these inhibitors and the 
design of new ones (56). In the absence of these structures, any information on putative binding 
pockets is crucial to in silico drug screening efforts (51, 54, 56, 57). This study aims to evaluate 
the druggability of PRL3 and to identify and characterize putative druggable pockets which will 
further inform drug discovery and development against this important target. To maximize the 
likelihood of identifying a druggable pocket, multiple structures (open, closed, and pseudo-
substrate-bound, Supplementary Figure 1) are used along with multiple computational tools.  
    Two web/server-based binding pocket detection tools with unique detection algorithms were 
used, along with molecular dynamics druggability simulations.  
    DoGSite3 is an improvement on DoGSiteScorer that better handles binding site boundary 
using a depth-first search (51). It successfully identified several putative pockets in all three 
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conformations of PRL3 used (Supplementary Tables 1 and 2, Figure 1). Five putative binding 
pockets were identified in the open conformation ranging from 46 to 127 Å3 in volume (Figure 
1A, C). The 127 Å3 pocket has a depth of 7.6 Å and is the largest in this conformation. The 
vanadate-bound, closed conformation has larger pockets with two prominent one having 
volumes of 221 Å3 and 181 Å3 (Figure 1B, C). These are adjacent to the active site loops, the 
WPD and P loops, respectively. These pockets are also the deepest ones detected at 13.6 Å for 
the WPD-adjacent and 10.3 Å and P-adjacent pockets (Figure 1D, E). These pockets involve 
the active site residues D72, C104, and R110 and are highly hydrophobic (64% and 84% 
hydrophobic residues, respectively, Figure 1D, E, Supplementary Table 1). The pseudo-
substrate-bound structure, interestingly, did not show comparable binding pockets 
(Supplementary Table 1). Interestingly, using the older version of DoGSite3, two adjacent 
pockets that cover the entire active site are identified, in addition to several others, with a 
combined volume of 1,030 Å3 (Supplementary Table 2). This is not surprising considering that 
PRL3 has an active site that is more shallow than typical PTP active sites and DoGSite3 factors 
in the depth of the pocket (42, 43).  
    Another approach to identifying putative binding pockets in a protein is the computational 
analogue to fragment screening (58, 59). One such implementation is FTmap, which performs 
rigid docking of 16 small molecule probes to identify clusters or hotspots which correspond to 
possible drug binding pockets (54). Using FTmap, several potential binding pockets were 
identified in all three conformations studied, some of which overlap with pockets identified by 
DoGSite3 (Figure 2). While the active site in the open conformation does not meet the depth 
criteria of DoGSite3, pockets identified by DoGSiteScorer within the active site overlap with 
FTmap hotspots (Supplementary Figure 2). Fragment binding predicted by FTmap may imply 
that, while shallow, it is still possible to design molecules that bind to this pocket. Interestingly, a 
small pocket near the N-terminus also overlaps with an FTmap hotspot (Figure 2A). Meanwhile, 
for the vanadate-bound conformation, the biggest FTmap clusters of probes overlap with the 
biggest pockets identified by DoGSite3, adjacent to the WPD and P loops (Figure 2B). Similarly, 
several hotspots were identified for the pseudo-substrate-bound conformation, including some 
that overlap with the smaller DoGSite3 pockets (Figure 2C). In addition to identifying hotspots 
from consensus clusters based on docked probes, FTmap also quantifies the non-bonded and 
hydrogen bonding interaction between residues and the probes (Figure 3, Supplementary 
Figure 3). For the vanadate-bound closed conformation, there is significant involvement from the 
active site loops (WPD and P) in binding the hotspots (Figure 3A, B). The major interacting 
residues (15% of the top residue count or higher) map to residues that are identified in 
DoGSite3 as well (Figure 3C, D). Moreover, there is significant non-bonded interactions 
identified near the N-terminus (residues 10-20, Figure 3B) which is potentially another pocket, 
albeit significantly smaller. This area was also identified by DogSite3 (Figure 1B). Active site 
involvement is not as prominent in the open conformation, although there is potential for 
significant interactions adjacent to the P loop (residues 110-120, Supplementary Figure A, B). 
This is again reflective of the shallow binding pocket of PRL3; though interestingly, several 
hotspots are detected in that shallow pocket (Figure 2A).  
    Overall, these two approaches identified several pockets of interest within PRL3. It is 
noteworthy that based on these two techniques, the vanadate-bound closed conformation 
reveals the most promising binding pockets (Figure 1D, E, 2B, Supplementary Table 1). These 
pockets have sufficient volume and depth to be identified by DoGSite3 and several 
clusters/hotspots and interaction data determined by FTmap support this. There are also some 
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sites in the open conformation identified by both methods, although they are significantly smaller 
(Figure 2A). The difference in pocket identification algorithm also allows FTmap to identify 
potential hotspots within the active site of the open conformation that is missed by DoGSite3 
(Figure 2A, Supplemental Figure 2). While these pockets are capable of hydrogen bonding, 
majority of the residues are hydrophobic (Supplementary Table 2).  
    To further analyze these pockets, a molecular dynamics druggability simulation was 
performed using the DruGUI VMD plugin (47, 50). This offers yet another unique approach to 
validate the results so far. Like FTmap, druggability simulations makes use of small molecule 
probes to identify potential druggable pockets (54). A molecular dynamics simulation in explicit 
water in the presence of molecular probes is used to identify hotspots and estimate maximal 
predicted binding affinity at a site, as opposed to the rigid docking method (47). Several 
hotspots were identified by the druggability simulations (Supplementary Table 3), particularly in 
the open and vanadate-bound closed conformation. The top hotspots, based on predicted 
lowest binding energy (or highest binding affinity) for the open and vanadate-bound 
conformations capture some of the previously identified pockets (Table 2). Several hotspots 
have highly desirable predicted maximum binding affinities from low nanomolar to <100 µM, 
indicating that these hotspots might be promising druggable pockets. The top predicted binding 
pocket in the open conformation, for instance, is the shallow active site pocket (Figure 4A) with 
a theoretical strongest binding affinity at the nanomolar range. A similarly potentially high affinity 
binding pocket is detected in the closed conformation, adjacent to the P loop (Figure 4B). This 
site roughly corresponds with the P loop-adjacent site identified by DoGSite3 and FTmap 
(Figure 2B, 3).  
    Overall, this study has identified several potentially druggable binding pockets, including the 
active site and most notably a binding pocket in the closed conformation that is adjacent to the 
active site P loop. Residues that line these pockets have also been identified for use in high-
throughput flexible side chain docking simulations (62–64). Druggability simulations predict high 
affinity binders in several pockets. While this is a theoretical maximum, this provides hope for 
future drug discovery programs to identify potent PRL3 inhibitors. The pockets identified here 
also support and validate previous predictions. For instance, a previous virtual screening 
attempt identified inhibitors that bind the shallow active site (32). The thienopyridone scaffold 
was also docked in the closed conformation near the WPD loop, near one of the sites identified 
in the present study (38). Blind docking of FDA-approved drugs similarly identified roughly the 
same pockets in both the open and closed conformations (60). In the absence of experimental 
structures of PRL3 in complex with inhibitors, these computational studies provide invaluable 
information that will guide drug design efforts against this important therapeutic target. 
 
Conclusion. 
PRL3 is a protein tyrosine phosphatase (PTP) that has emerged as a significant oncology drug 
target. While PTPs have historically been labelled ‘undruggable,’ this family of proteins is slowly 
shedding this identity (9–12, 61). This study contributes to further advancing PRL3-targeted 
drug discovery by predicting potentially druggable pockets within the open and closed 
conformations. Three unique methodologies identified some consensus sites, as well as unique 
sites, that could be the focus of virtual drug screening, using the vast chemical space 
accessible. Knowledge on the residues that might be involved in drug binding can now be used 
in conjunction with docking with flexible sidechains (62–64). Furthermore, this study contributes 
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to further supporting the druggability of PRL3 – that perhaps more high affinity inhibitors are just 
soon to be discovered. 
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Figure 1. Pockets identified by DoGSite3. Several small pockets were identified in the open (1V3A, A, C)
closed conformations (2MBC, B, C) of PRL3. Pocket parameters, including volume, surface, and depth
summarized (C, Supplementary Table 1). Two major pockets are identified in the closed conformation (Pocke
and 2 in 2MBC) cradled near the active site loops (red and orange). 
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Figure 2. Fragment hotspots determined by FTmap. Several hotspots for the various probes (all colored pu
to emphasize positions regardless of probe identity) were identified in the open (1V3A, A), vanadate-bound (2M
B), and pseudo-substrate bound (5TSR, C) conformations. Where there is overlap, the DoGSite3-predicted poc
are also shown.  
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Figure 3. Residue level interaction data from FTmap. Raw counts of hydrogen bonding (A) and non-bonde
interactions in the closed conformation (2MBC). Active site loops are highlighted (WPD, yellow and P, ora
along with significant interaction counts, defined as 15% of the highest counts or more (orange bars). These
hydrogen bonding (C) and non-bonding (D) interactions are mapped onto the structure along with the pri
pockets identified in DoGSite3 (yellow and blue surfaces). 
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Figure 4. Druggability simulations identify probe hotspots. Top 3 hotspots from DruGUI drugga
simulations for the open (1V3A, A) and vanadate-bound closed (2MBC, B) conformation of PRL3.  
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Table 1. Results from DoGSite3 
2MBC 

Pocket Volume 
(Å3) 

Surface 
(Å2) 

Depth 
(Å) 

P1 221 276 13.6 
P2 181 359 10.3 

P2_1 101 257 8.3 
P2_2 80 258 6.9 

P3 68 317 5.9 
P4 43 44 5.1 
P5 36 156 4.2 

1V3A 

Pocket Volume 
(Å3) 

Surface 
(Å2) 

Depth 
(Å) 

P1 127 249 7.6 
P2 105 440 7.8 
P3 63 114 5.9 
P4 49 50 5.7 
P5 46 56 5.6 

5TSR 

Pocket Volume 
(Å3) 

Surface 
(Å2) 

Depth 
(Å) 

P1 81 275 6.9 
P2 60 204 5.6 
P3 47 146 5.8 
P4 26 80 4.4 
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Table 2. Hotspots predicted by druggability simulations. 
1V3A 

Site 
Binding 
Energy 

(kcal/mol) 

Affinity 
(nM) 

Volume 
(Å3) 

1 -12.56 0.7 436 
2 -11.00 9.5 401 
3 -9.19 200 380 

2MBC 

Site 
Binding 
Energy 

(kcal/mol) 

Affinity 
(nM) 

Volume 
(Å3) 

1 -12.53 0.7 398 
2 -11.59 3.6 438 
3 -11.34 5.4 403 
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