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Abstract:  9 

Urine provides a diverse source of information related to a patient’s health status and is ideal for clinical proteomics 10 

because of its ease of collection. To date, there is no standard operating procedure for reproducible and robust urine 11 

sample preparation for mass spectrometry-based clinical proteomics. To this end, a novel workflow was developed 12 

based on an on-bead protein capture, clean up, and digestion without the requirement for processing steps such as 13 

precipitation or centrifugation. The workflow was applied to an acute kidney injury (AKI) pilot study. Urine from clin- 14 

ical samples and a pooled sample were subjected to automated sample preparation in a KingFisher™ Flex magnetic 15 

handling station using a novel urine-HILIC (uHLC) approach based on MagReSyn® HILIC microspheres. For bench- 16 

marking, the pooled sample was also prepared using a published protocol based on an on-membrane (OM) protein 17 

capture and digestion workflow. Peptides were analysed by LCMS in data independent acquisition (DIA) mode using 18 

a Dionex Ultimate 3000 UPLC coupled to a Sciex 5600 mass spectrometer. Data was searched in Spectronaut™ 17. Both 19 

workflows showed similar peptide and protein identifications in the pooled sample. The uHLC workflow was easier to 20 

set up and complete, having less hands-on time than the OM method, with fewer manual processing steps. Lower 21 

peptide and protein CV was observed in the uHLC technical replicates. Following statistical analysis, candidate protein 22 

markers were filtered, at ≥ 2-fold change in abundance, ≥ 2 unique peptides and ≤ 1% false discovery rate, and revealed 23 

many significant, differentially abundant kidney injury-associated urinary proteins. The pilot data derived using this 24 

novel workflow provides information on the urinary proteome of patients with AKI. Further exploration in a larger 25 

cohort using this novel high-throughput method is warranted. 26 

Keywords: automated sample preparation; clinical proteomics; SWATH-MS (DIA); urinary proteomics; HILIC 27 

 28 

1. Introduction 29 

The study of the human urinary proteome is becoming increasingly popular in clinical proteomics studies. Large vol- 30 

umes of samples are readily available with minimal invasiveness, and, in addition, soluble proteins and peptides de- 31 

rived from various tissues and organs are also filtered in urine, which can reflect more general health problems [1].  32 

 33 

Plasma was long considered the best biofluid choice for biomarker discovery studies. However, the main drawback is 34 

the large protein dynamic range and therefore protein biomarkers, often expressed in minute amounts, are difficult to 35 

detect and analyse reproducibly without the use of extensive depletion and fractionation strategies [2]. In contrast, urine 36 
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has a smaller dynamic range and is therefore more suitable with current analytical technologies [2]. However, urinary 37 

proteomic analysis has unique challenges, particularly in extracting soluble urinary proteins present in dilute concen- 38 

trations. To date, a few groups have developed methods for urinary proteome profiling that are robust; however, re- 39 

producibility between laboratories remains a challenge. The reported methods are based on precipitation, concentration, 40 

and on-membrane protein capture [3–6], thus removing interfering compounds found in normal urine such as salts and 41 

other metabolites. The most common methods include acetone precipitation, acetone and trichloroacetic acid precipita- 42 

tion, ultracentrifugation, filter-aided sample preparation and various combinations thereof [3,4,7,8]. After precipitation, 43 

protein resolubilisation is often performed using urea-based buffers instead of more efficient detergent-based buffers, 44 

as detergent removal is difficult to achieve. Unfortunately, there is no consensus on the ideal sample preparation meth- 45 

odology for the processing of urine and this remains the individual preference of the laboratory. Furthermore, many of 46 

the current methods lack the throughput required to analyse large clinical cohorts due to bottlenecks created by steps 47 

such as precipitation, centrifugation, and buffer exchange, which are all difficult to scale and automate. 48 

 49 

In the current study, we present a novel approach to the preparation of urinary proteome samples. The method, named 50 

urine-HILIC (uHLC), is based on direct, on-bead protein capture (from only 100 µL of urine), clean-up, and digestion. 51 

It is automated (1 to 96 samples per run) and can be easily implemented in the mass spectrometry laboratory and re- 52 

quires standard sample collection procedures in clinics or hospitals. The uHLC workflow was benchmarked against a 53 

urinary proteomics workflow based on on-membrane (OM) protein capture (MStern approach) [5,6], a high throughput 54 

method that can accommodate 96 samples in parallel. A 3 by 3 approach was used to evaluate both workflows, that is, 55 

3 technical replicates processed on 3 consecutive days (n = 9 per workflow).  56 

 57 

We then applied the novel workflow to an acute kidney injury (n = 12) pilot study to show applicability to typical 58 

proteomics research. Using the new workflow, we were able to show differentially abundant proteins and proteins 59 

known to be associated as disease markers for AKI. We show that the novel methods reported are reproducible, robust, 60 

and highly efficient and has the potential to be used routinely in future clinical urinary proteomics research. 61 

 62 

 63 

 64 
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2. Materials and Methods 65 

Solvents and chemicals (MS-grade) used in the study were purchased from MERCK unless otherwise specified. All 66 

buffers were freshly prepared. Sequencing grade modified trypsin was purchased from Promega (Madison, Wisconsin, 67 

USA). MagReSyn® HILIC microspheres were purchased from ReSyn Biosciences (Edenvale, Gauteng, South Africa). 68 

2.1 Urine sample collection protocol and pilot study cohort 69 

Ethics approval was received for recruitment and collection of urine samples for this study [Ethics reference: #58/2013, 70 

#271/2018 (CSIR-REC) and #120612 (WITS-HREC)]. For the development and benchmarking of the method, urine from 71 

three healthy adult men was used after informed consent (age range 26-38 years). Clinical samples were taken from 72 

unrelated patients who had been admitted to the Tshepong Hospital (North West, South Africa). All participants were 73 

HIV-positive and undergoing first-line combination ART. They were age, race and gender matched and grouped into 74 

AKI (case) and normal (control) based on their kidney function according to the guidelines set out in Kidney Disease 75 

Improving Global Outcome report [9].  76 

Urine was collected as midstream, clean-catch into sterile urine collection containers, and transported immediately on 77 

ice to prevent degradation. No protease inhibitors were used in this study. Individual samples were centrifuged at 800 78 

x g for 10 min to remove debris and then aliquoted and stored at -80 °C until further use. 79 

2.2 Sample preparation  80 

2.2.1 Automated urine-HILIC workflow 81 

Samples were allowed to thaw to room temperature (RT). Urine (100 μL) was mixed with 300 uL of urine sample buffer 82 

(USB: 8M Urea, 2% SDS), and sequentially reduced and alkylated using DTT (10mM v/v; 30 min, RT) and IAA (30mM 83 

v/v; 30 min, RT-dark). Thereafter, an equal volume HILIC binding buffer (30% MeCN/200mM Ammonium acetate pH 84 

4.5) was added to the sample-USB mix (~ 410 μL final volume). The automated KingFisher™ HILIC workflow was then 85 

followed (protocol available from info@resynbio.com), as previously described [10,11]. The automated on-bead protein 86 

capture, clean-up, and digest protocol was programmed using BindIt software v4.1 (Thermo Fisher Scientific). Briefly, 87 

magnetic hydrophilic affinity microparticles (10 μl beads/100 μl urine) were equilibrated in 200 μl of 100 mM NH4Ac 88 

pH 4.5, 15% MeCN. The microparticles were then transferred to the well containing the sample-USB-bind buffer mix 89 

and mixed for 30 min at RT. The captured proteins were washed twice in 200 μl of 95% MeCN and transferred to 200 90 

μl of 50 mM ammonium bicarbonate (ABC) containing 1 μg sequencing grade modified trypsin (Promega, Madison, 91 

USA) and mixed for 2 hr at 37 °C. Finally, beads were washed in 1% TFA to elute any remaining non-specifically bound 92 
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peptides. The resulting peptides (pool of digest and TFA eluate) were vacuum dried, resuspended in 2% MeCN, 0.2% 93 

FA and quantified using the Pierce™ Quantitative Colourimetric Peptide Assay (Thermo Fisher Scientific, Massachu- 94 

setts, USA) according to the manufacturer’s instructions. 95 

 96 

 97 

Figure 1: Schematic overview of the uHLC workflow. 98 

2.2.2 On-membrane workflow based on MStern Blot 99 

The on-membrane protein capture protocol was used to benchmark the uHLC method, since it is an emerging method 100 

in urinary proteomics for large scale clinical research [5,12]. Briefly, 100 µL of urine was mixed with 300 µL of urea 101 

sample buffer (8 M urea in 50 mM ABC). Reduction with 30 µL reduction solution (150 mM DTT, 8 M Urea, 50 mM 102 

ABC) and alkylation with 30 µL (150 mM IAA, 8 M Urea, 50 mM ABC) were carried out at RT in the dark for 30 min 103 

each. Individual wells of PVDF membrane plates (MSIPS4510, Merck Millipore) were activated and equilibrated with 104 

150 μl of 70% ethanol/water and urea sample buffer. Samples were passed through PVDF membranes using a vacuum 105 

manifold. Adsorbed proteins were washed twice with 150 μl of 50 mM ABC. Digestion was carried out at 37 °C for 2 hr 106 

by adding 100 μl digestion buffer (5% v/v MeCN)/50 mM ABC) containing 1 μg sequencing grade modified trypsin per 107 

well. The plates were sealed with a sealing mat and placed in a humidified incubator, the resulting peptides were col- 108 

lected by applying vacuum and the remaining peptides were eluted twice with 75 μl of 40%/0.1%/59.9% (v/v) 109 

MeCN/FA/water. Samples were frozen at -80 °C and then dried at -4 °C using a CentriVap vacuum concentrator (Lab- 110 

conco, Missouri, USA). The samples were resuspended in 2% MeCN, 0.1% FA and then desalted using C18 StageTips 111 

according to the manufacturer's instructions. Desalted peptides were frozen at -80 °C and then dried at -4 °C using a 112 

CentriVap vacuum concentrator. Finally, the peptides were then resuspended in 2% MeCN, 0.2% FA and quantified 113 

using the Pierce™ Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, Massachusetts, USA) according 114 

to the manufacturer’s instructions. 115 

 116 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.27.550780doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550780
http://creativecommons.org/licenses/by-nc/4.0/


 5 of 14 
 

 

2.3 LC SWATH-MS data acquisition   117 

Individual peptide samples were analysed using a Dionex UltiMate™ 3000 UHPLC in nanoflow configuration. Samples 118 

were inline desalted on an Acclaim PepMap C18 trap column (75 μm × 2 cm; 2 min at 5 μl/min using 2% MeCN/0.2% 119 

FA). Trapped peptides were gradient eluted and separated on a nanoEase M/Z Peptide CSH C18 Column (130 Å, 1.7 120 

µm, 75 µm X 250 mm) (Waters Corp., Milford, Massachusetts, United States) at a flowrate of 300 nl/min with a gradient 121 

of 5 – 40 %B over 30 min for benchmarking and 60 min for the pilot study (A: 0.1% FA; B: 80% MeCN/0.1% FA). 122 

Data was acquired using data-independent acquisition (DIA) - or Sequential Window Acquisition of all Theoreti- 123 

cal Mass Spectra (SWATH) [13], using a TripleTOF® 5600 mass spectrometer (SCIEX, Massachusetts, USA). Eluted pep- 124 

tides were delivered into the mass spectrometer via a Nanospray® III ion source equipped with a 20 µm Sharp Singu- 125 

larity emitter (Fossil Ion Technology, Madrid, Spain). Source settings were set as: Curtain gas - 25, Gas 1 - 40, Gas 2 - 0, 126 

temperature – 0 (off) and ion spray voltage – 3 200 V.  127 

Data was acquired using 48 MS/MS scans of overlapping sequential precursor isolation windows (variable m/z isolation 128 

width, 1 m/z overlap, high sensitivity mode), with a precursor MS scan for each cycle. The accumulation time was 50 129 

ms for the MS1 scan (from 400 to 1100 m/z) and 20 ms for each product ion scan (200 to 1 800 m/z) for a 1.06 sec cycle 130 

time. 131 

2.4 Data processing 132 

A spectral library was built in Spectronaut™ 17 software using default settings with minor adjustments as follows: 133 

segmented regression was used to determine iRT in each run; iRTs were calculated as median for all runs; the digestion 134 

rule was set as “Trypsin” and modified peptides were allowed; fragment ions between 300 and 1 800 m/z and ions with 135 

greater than 3 amino acids were considered; peptides with a minimum 3 and maximum 6 (most intense) fragment ions 136 

were accepted. This study specific spectral library was concatenated with an in-house generated urinary proteome spec- 137 

tral library (using Spectronaut™ “Search Archives” feature).  138 

Raw SWATH (.wiff) data files were analyzed using Spectronaut™ 17. The default settings that were used for targeted 139 

analysis are described in brief as follows: dynamic iRT retention time prediction was selected with correction factor for 140 

window 1; mass calibration was set to local; decoy method was set as scrambled; the FDR, based on mProphet approach 141 

[14], was set at 1% on the precursor, peptide and protein group levels; protein inference was set to “default” which is 142 

based on the ID picker algorithm [15], and global cross-run normalisation on median was selected. The final urinary 143 

proteome spectral library (peptides – 20 616, protein groups – 2 604) was used as a reference for targeted data extraction.  144 

Default settings were used for state comparison analysis using a t-test (null hypothesis that no change in protein abun- 145 

dance was observed between the two groups). The t-test was performed on the log2 ratio of peptide intensities that 146 
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corresponded to individual proteins. The p-values were corrected for multiple testing using the q-value approach to 147 

control false discovery rate [16].  148 

2.5 Bioinformatic data analysis 149 

Protein and peptide data were imported into ExPASy pI/MW [17] and GRAVY calculators. Protein data was further 150 

analysed in Spectronaut™ 17 and later exported into Microsoft Excel (v2305) to assess proteome coverage abundance 151 

scores (dynamic range assessment). Protein abundance data were analysed in ClustVis [18] and Enrichr [19] for princi- 152 

pal component analysis and gene ontology analysis, respectively. The volcano plot was plotted by http://www.bioin- 153 

formatics.com.cn/srplot, an online platform for data analysis and visualisation. All other graphs were generated in 154 

GraphPad Prism (v9). 155 

3. Results 156 

3.1. Peptide yield  157 

The workflows showed different peptide recoveries as shown in (Figure 2A). The OM workflow showed a mean peptide 158 

recovery of 0.16 µg peptide/µL urine (16.3 µg total). The uHLC workflow had a higher mean peptide recovery of 0.26 159 

µg peptide/µL urine (26.0 µg total). For both workflows, a total of 500 µg of peptide was injected for LC-MS analysis 160 

based on colorimetric peptide assay calculations. 161 

3.2. Peptides and proteins identified  162 

The uHLC workflow had higher reproducibility than the OM workflow, as shown in the lower CVs at the protein level 163 

(Figure 2B), with median CVs of 15.6% – 20% in the uHLC and 28% – 34.7% OM workflows, respectively. Similarly, at 164 

the peptide level (Figure 2C), median CVs of 20.2% – 24.7% in the uHLC and 36.2% – 44% OM workflows, were ob- 165 

served. PCA analysis also showed a tighter clustering of technical replicates in the uHLC workflow, indicating im- 166 

proved reproducibility compared to the OM workflow (Figure 2F). The workflows showed a similar total protein and 167 

peptide coverage. A large overlap was observed between the two methods, with an average of 7711 and 7477 peptides 168 

identified (Figure 2D) identified. These corresponded to an average of 1140 and 1069 protein identifications (Figure 2E). 169 

3.3. Protein properties and dynamic range comparison 170 

The protein GRAVY score, molecular weight, and isoelectric point distributions were similar between both methods, 171 

showing little to no biases (Figure 3A-C). The protein isoelectric point showed a slight difference in the number of 172 
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proteins recovered below a pI of 8, where uHLC showed a greater overall recovery. The uHLC workflow appeared to 173 

identify more proteins (16% vs. 12%) in the lower abundance range than the OM workflow (Figure 3D). 174 

A B C 

 

  

D E 

Peptide Protein 

F  

 

Figure 2: Yield and CV analysis between methods. A) Total peptide recoveries from each method. uHLC shows lower 175 

CV at the peptide (B) and protein (C) levels for all technical replicates over three days. D-E) Venn diagram showing 176 

similar protein and peptide identifications were observed. F) PCA plot shows tighter clustering of uHLC samples indi- 177 

cating lower CV between technical replicates.  178 
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A B 

  

C D 

 

 

Figure 3: Protein properties and dynamic range comparison. A-C) Protein level analysis of GRAVY score, molecular 179 

weight distribution and isoelectric point comparing uHLC (green) and OM (blue). D) Protein abundance scores are 180 

displayed in discrete bins, from high (left) to low abundance (right). 181 

 182 

3.4. Pilot study: data-independent analysis for clinical samples  183 

The uHLC workflow was applied to a pilot cohort of 12 HIV positive patients to determine if there was a correlation 184 

between first line ARV treatment and kidney dysfunction. Participants were matched by age, race and gender and 185 

grouped into AKI (case, n = 6) and normal (control, n = 6) based on kidney function. 186 

Data analysis of the urinary proteome revealed the presence of protein markers reported in the literature as potential 187 

biomarkers of renal dysfunction. Some known markers showed differential abundance (≥ 2-fold, q value ≤ 0.01, ≥ 2 188 

unique peptides) between cases and controls (labelled in Figure 4A-B). The PCA analysis showed moderate clustering 189 

of the limited number of AKI and normal participants based on quantitative proteomics data (Figure 4C). 190 
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Figure 4: Differential analysis of pilot clinical proteomes. A) Volcano plot showing differentially abundant proteins 191 

including candidate protein markers (up in blue and down in red) and B) Known markers for kidney injury: PEDF, 192 

B2M, CYTC and UROM. C) PCA plot, the X and Y axes show PC1 and PC2 that explain 28.7% and 18.2% of the total 193 

variance, respectively. D) GO molecular function bar plot showing strong endopeptidase enrichment for the differen- 194 

tially abundant proteins.  195 
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4. Discussion 199 

Successful biomarker studies require workflows that can be robust, easily implemented, and have high reproducibility.  200 

A generally accepted approach to urinary protein sample preparation for mass spectrometry-based proteomics is based 201 

on precipitation. After precipitation of urinary proteins, protein resolubilisation can be difficult to achieve and often 202 

requires the use of strong detergents and/or salts that are not compatible with downstream mass spectrometry analysis 203 

[20]. Urinary proteomics studies commonly use organic solvent precipitation followed by filter-aided sample prepara- 204 

tion (FASP) as a preferred method for the isolation, clean-up, and digestion of urinary proteins [21–23], and although 205 

this is a widely used and relatively simple procedure to follow, it is a laborious process and is prone to sample loss. This 206 

is due to numerous handling steps that also have the potential to introduce sample contamination. Following FASP, 207 

samples need further processing, such as desalting and drying, before being analysed, substantially increasing cost and 208 

time and perhaps more importantly a decrease in sample recovery. These shortcomings make urinary proteome analysis 209 

using organic solvent precipitation a complicated, cumbersome, and tedious process that lacks reproducibility. Lately, 210 

there has been a drive toward large clinical cohorts, which necessitate methods that are high throughput and robust. To 211 

this end, 96-well format methods have been developed, such as MStern, which can accommodate many samples in 212 

parallel and has been shown to perform better than FASP for urinary proteomics sample preparation [6]. This is a highly 213 

successful method; however, it lacks reproducibility, mainly due to its many manual steps, and the workflow cannot 214 

be easily automated, thus limiting its use.     215 

In contrast, we present a novel processing method, urine-HLC, that uses a small volume of urine (100 µL) mixed with 216 

urea and sodium dodecyl sulfate sample buffer with subsequent protein capture, clean-up, and on-bead digestion, using 217 

MagReSyn® HILIC microspheres. The method shows performance similar to that of well-established methods such as 218 

MStern in terms of peptide and protein identification. The physicochemical properties and dynamic range of the pro- 219 

teins identified using both methods were similar, although some method-specific biases were observed, as expected. 220 

However, where the uHLC method was superior was in reproducibility and speed. This is largely due to the minimal 221 

handling steps and the fact that it is automated with significantly less hands-on time. Furthermore, the uHLC method 222 

appears to capture more proteins in the low abundance range, which may be important in biomarker discovery studies. 223 

Using this methodology, we were able to confidently identify numerous markers that have been reported in the litera- 224 

ture as potential biomarkers for various forms of kidney damage. The differentially abundant candidate markers 225 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.27.550780doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550780
http://creativecommons.org/licenses/by-nc/4.0/


 11 of 14 
 

 

strongly correlate with those in the literature. Beta-2-microglobulin (B2M_HUMAN) [24–26] and cystatin c (CYTC_HU- 226 

MAN) [25,27,28] showed elevated urinary levels in patients with acute renal failure. A similar observation was made in 227 

kidney transplant patients who suffered rejection or postoperative renal complications in which pigment epithelium- 228 

derived factor (PEDF_HUMAN) increased in the urine after surgery [34]. Similarly, patients in our cohort who suffered 229 

kidney damage expressed higher levels of these three proteins in their urine. Uromodulin (UROM_HUMAN), the pro- 230 

tein most abundantly expressed in the urine of healthy patients [29–31], decreased significantly in our patients with 231 

kidney injury, possibly due to tubular damage leading to decreased excretion into the tubular lumen that contains urine 232 

[32]. This finding is important in kidney injury associated with first-line ARV therapy, as it is postulated that kidney 233 

injury is due to build-up of tenofovir in proximal tubule cells leading to toxicity [33–35]. Quintana et al. (2009) reported 234 

similar results in which patients experiencing kidney damage expressed lower levels of uromodulin in their urine [36]. 235 

A strong enrichment of endopeptidase proteins was observed in patients with AKI, which is consistent with other stud- 236 

ies in which these protein families showed associations with kidney injury [37].  237 

We have developed a novel workflow, urine-HILIC, suitable for low-volume, direct, automated processing of clinical 238 

urine samples without the need for centrifugation or precipitation. The workflow shows promise for use in future uri- 239 

nary proteomics research and is simpler and faster than other workflows while maintaining the depth of coverage of 240 

the proteome.  Furthermore, by applying the method in a pilot cohort, we were able to detect clinically relevant 241 

changes in the urinary proteome that are commonly associated with acute kidney damage. We have shown that the 242 

novel method is well suited for urinary proteome profiling and can be easily scaled for high-throughput clinical prote- 243 

omics studies. 244 
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