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Abstract: Enzyme abundance, catalytic activity, and ultimately sequence are all shaped by the 17 

need of growing cells to maintain metabolic flux while minimizing accumulation of deleterious 18 

intermediates. To quantify how variation in the activity of one enzyme constrains the biochemical 19 

parameters and sequence of another, we focused on dihydrofolate reductase (DHFR) and 20 

thymidylate synthase (TYMS), a pair of enzymes catalyzing consecutive reactions in folate 21 

metabolism. We used deep mutational scanning to quantify the growth rate effect of 2,696 DHFR 22 

single mutations in 3 TYMS backgrounds and show that our data are well-described by a relatively 23 

simple enzyme velocity to growth rate model. From the data and model we estimate the 24 

approximate effects of all single mutations on DHFR catalytic power. Together our data provide 25 

a comprehensive view of epistasis between mutations in a biochemically linked enzyme pair, 26 

reveal the structural distribution of positions tuning DHFR catalysis, and establish a foundation 27 

for the design of multi-enzyme systems.  28 
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INTRODUCTION 39 
   40 
Enzymes function within biochemical pathways; exchanging substrates and products to generate 41 

useful metabolites. This metabolic context constrains enzyme velocity — the product of both 42 

catalytic activity and enzyme abundance. For example, the relative velocities of some enzymes 43 

must be coordinated to avoid accumulation of deleterious metabolic intermediates1–3. In other 44 

instances, optimal enzyme abundance is set by a tradeoff between the cost of protein synthesis 45 

and the benefit of efficient nutrient utilization4–6. Considered at the pathway scale, metabolic 46 

enzymes are often produced in evolutionarily conserved stoichiometric ratios across species7, 47 

providing further indication that relative — not just absolute — enzyme velocity is under selection. 48 

More generally, the relationship between the velocity of a given enzyme, metabolic flux through 49 

a pathway, and cellular growth rate is non-linear and shaped by interactions amongst pathway 50 

enzymes (Fig.1a). Indeed, a key result of metabolic control theory is that the control coefficient of 51 

an enzyme — defined as the fractional change in pathway-level flux given a fractional change in 52 

enzyme velocity —  depends on the starting (native) velocity of the enzyme, but also the velocity 53 

of all other enzymes in the pathway8,9. That is to say, given that enzymes act sequentially to 54 

produce metabolites, the effects of mutations on cellular phenotype can be buffered or amplified 55 

depending on which enzymatic reactions control metabolic flux. As a consequence, enzyme 56 

mutations that are neutral in one context may have profound consequences for metabolic flux and 57 

growth rate in the background of variation in another10–13. This context-dependence, or epistasis, 58 

amongst metabolic enzymes need not be mediated by direct physical binding, but emerges 59 

indirectly through shared metabolite pools and a need to maintain flux while avoiding the 60 

accumulation of deleterious intermediates6,11,14.      61 

 While much prior work has explored the constraints on protein sequence and evolution 62 

induced by physical protein-protein interactions, the sequence-level constraints emerging from 63 

these sorts of non-binding functional interactions in metabolism remain unclear. How is this 64 

“indirect” epistasis organized in the protein structure and reflected in the sequence? A quantitative 65 
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understanding of how pathway context shapes sequence and activity would assist in the 66 

interpretation of disease-associated mutations, the design of new enzymes, and directing the 67 

laboratory evolution of metabolic pathways. To begin to address this, we examined the residue-68 

level epistatic interactions between a pair of enzymes that catalyze consecutive reactions in folate 69 

metabolism: dihdyrofolate reductase (DHFR) and thymidylate synthase (TYMS). The activity of 70 

these enzymes is strongly linked to E. coli growth rate,  they are frequent targets of antibiotics 71 

and chemotherapeutics, and our prior work showed that they co-evolve as a module both in the 72 

laboratory and across thousands of bacterial genomes1. Taking this enzyme pair as a simplified 73 

model system in which to examine a metabolic interaction, we created a mathematical model 74 

relating variation in DHFR and TYMS catalytic parameters to growth rate using a focused set of 75 

well-characterized point mutants. Then, to more deeply test this model and comprehensively map 76 

the pattern of epistasis between these two enzymes, we measured the effect of nearly all possible 77 

DHFR single mutations (2,696 in total) in the context of three TYMS variants selected to span a 78 

range of catalytic activities. The model predicted – and the data showed – that TYMS background 79 

profoundly changed both the sign (buffering vs. aggravating) and magnitude of DHFR epistasis. 80 

Mapping the epistatic effects of mutation to the DHFR tertiary structure revealed that they are 81 

organized into distinct clusters based on epistatic sign. Additionally, mutations with the largest 82 

magnitude epistatic effect to TYMS centered around the DHFR active site, while more weakly 83 

epistatic positions radiated outwards. Finally, we inferred approximate values for DHFR catalytic 84 

power (kcat/Km) across all 2,696 mutations by using the growth rate measurements across TYMS 85 

backgrounds to constrain the enzyme velocity to growth rate model. The residues linked to 86 

catalysis form a structurally distributed network inside the enzyme and are highly evolutionarily 87 

conserved. Taken together, our data demonstrates at single-residue resolution how epistasis 88 

mediated through a metabolic interaction reshapes a mutational landscape. The enzyme velocity 89 

to growth rate model opens the door to extracting quantitative biochemical parameters from 90 

growth rate data, and invites one to consider new ideas for the design of multi-enzyme systems.  91 
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 92 

RESULTS 93 

An  enzyme velocity to growth rate model for DHFR and TYMS  94 

Folate metabolism is a well-conserved biochemical pathway involved in the synthesis of purine 95 

nucleotides, thymidine, glycine, and methionine15 (Fig. 1b). Consequently, this pathway is 96 

strongly linked to cell growth and a frequent target of antibiotics and chemotherapeutics. DHFR 97 

and TYMS play a central role in folate metabolism. DHFR reduces dihydrofolate (DHF) to 98 

tetrahydrofolate (THF) using NADPH as a cofactor. THF then serves as a carrier for activated 99 

one-carbon units in downstream metabolic processes. TYMS catalyzes the oxidation of THF back 100 

to DHF during deoxythymidine synthesis and is the sole enzyme responsible for recycling the 101 

DHF pool16,17. Prior work from ourselves and others indicates that these two enzymes are strongly 102 

functionally coupled to each other and less coupled to the remainder of the pathway: they co-103 

evolve in terms of synteny and gene presence-absence across bacterial species1, inhibition of 104 

DHFR with trimethoprim is rescued by suppressor mutations in TYMS in both the lab and the 105 

clinic1,18, and loss-of-function mutations in DHFR are rescued by loss-of-function mutations in 106 

TYMS1,19,20. Metabolomics data indicated that loss of DHFR function results in accumulation of 107 

DHF and depletion of reduced folates; compensatory loss of function mutations in TYMS help to 108 

restore DHF and THF pools to more native-like levels1,21,22. Thus, DHFR and TYMS are a growth-109 

linked two-enzyme system where epistasis is driven by a biochemical interaction, with the added 110 

simplification that they are relatively decoupled from surrounding metabolic context.   111 

We sought to create a mathematical model relating changes in DHFR and TYMS catalytic 112 

parameters to growth rate phenotype with the goals of (1) formalizing our previous empirical 113 

findings, (2) quantifying the constraints on DHFR and TYMS catalytic activities, and (3) defining 114 

the relationship between biochemical activity, epistatic sign, and epistatic magnitude. We 115 

developed our model using a previously collected set of metabolomics and growth rate data for 116 

five DHFR point mutants in the background of both WT TYMS and TYMS R166Q, a near-117 
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catalytically-inactive point mutant (Table S1, Table S2). First, we considered the relationship 118 

between intracellular THF abundance and growth rate as measured across all ten DHFR/TYMS 119 

sequence combinations. THF limitation restricts the production of several growth-linked factors, 120 

including thymidine, methionine, glycine, and the purine precursors inosine and AICAR. Under 121 

the experimental conditions of our growth rate assays — M9 minimal media with 0.4% glucose, 122 

0.2% amicase, and 50 µg/ml thymidine — thymidine is not growth limiting (TYMS R166Q is 123 

rescued to WT-like growth) and amicase provides a source of free amino acids. Thus we reason 124 

that growth rate is principally dependent upon purine production in our experiments. In any case, 125 

we previously observed a hyperbolic dependence of growth rate on reduced folate abundance for 126 

many THF species in these experimental conditions1. We selected 10-formyl THF with three 127 

glutamates as a representative growth-linked reduced folate given it’s clear relationship to growth 128 

and proximity to purine biosynthesis. Following a similar approach as Rodrigues et al, we fit a 129 

single four-parameter sigmoidal function relating growth rate to intracellular THF concentration23 130 

(Fig. 1c). 131 

𝑔	 = 	
𝑔!"# −	𝑔!$%

1 + (𝐾 [𝑇𝐻𝐹]⁄ )%
+ 𝑔!$% 132 

Here, 𝑔!"#		represents the maximal growth rate,	𝑔!$% is the minimal growth rate, 𝐾 is a constant 133 

that captures the concentration of THF that yields 50% growth, and 𝑛 is a Hill coefficient (Table 134 

S3).  135 

Next, we sought to connect variation in DHFR and TYMS enzyme velocity to intracellular 136 

THF concentrations. To simplify our model, we reduced the pathway to a cycle in which DHFR 137 

and TYMS catalyze opposing oxidation and reduction reactions (Fig. 1d). This abstraction 138 

assumes that DHFR and TYMS dominate turnover of the DHF and THF pools, and that the 139 

reduced folates are considered as a single THF pool. While this simplification clearly omits much 140 

of folate metabolism, it allows us to write a rate equation that isolates the recycling of THF in 141 

terms of a small number of measurable biochemical parameters:  142 

Eqn. 1 
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 143 

 144 

In this equation, DHFR and TYMS are treated as catalyzing opposing reactions with Michaelis 145 

Menten kinetics, providing a relationship between steady state kinetics parameters (𝑘'"()*, K!)*, 146 

𝑘'"(+, , K!+,) and intracellular THF abundance. From this equation one can find an analytical solution 147 

for the steady state concentration of THF in the form of the Goldbeter-Koshland equation 24,25.  148 

 149 

 150 

Where: 151 

 152 

In our initial model construction, the steady state catalytic parameters (𝑘'"()*, K!)*, 𝑘'"(+, , K!+,) were 153 

experimentally measured in vitro using purified samples of all mutants, with the exception of 154 

TYMS R166Q which is near-inactive and assigned an arbitrarily low kcat and high Km (Table 155 

S1,S2). Four fit parameters remain in Equation 3: (1) the concentration of the total folate pool 156 

([fol-.-]) (2) the intracellular concentration of DHFR ([DHFR]), which we treated as identical across 157 

all variants (as our model will eventually describe thousands of DHFR mutations, and we wish to 158 

avoid overparameterization), (3) the intracellular concentration of WT TYMS ([TYMS/+]), and (4) 159 

the intracellular concentration of TYMS R166Q (>TYMS01223?). This relatively simplified model 160 

showed good correspondence to the data when fit (R2 = 0.96, Fig. 1e, Table S3). Equations 1 161 

and 3 were then combined to estimate growth rate as a function of both DHFR and TYMS activity, 162 

<latexit sha1_base64="2iEokl0Nqnp1kUq8FoedU4ij3UE="></latexit>

d[THF]

dt
=

[DHFR] ⇤ kDH

cat

1 + K
DH

m /([foltot]� [THF])
� [TYMS] ⇤ kTS

cat

1 + K
TS

m /([THF])
Eqn. 2 

Eqn. 3 
<latexit sha1_base64="aRfLZqkEHACaSb86c0HLbPTokKA="></latexit>

[THFss]
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by linking catalytic activity to THF abundance, and then THF abundance to growth rate. The 163 

complete model worked well to predict growth rate on our initial training set (Fig. 1f).  164 

 165 

The growth rate effect of DHFR mutations changes magnitude and sign depending upon 166 

TYMS background.  167 

To more rigorously test our model and understand its’ predictions, we expanded our dataset to 168 

include more DHFR and TYMS variants with experimentally characterized activities. As our initial 169 

model was developed using only two extreme TYMS variants (wild-type and a near complete loss 170 

of function variant, R166Q), we were particularly curious to evaluate model performance for TYMS 171 

mutations with intermediate effects on catalysis and E. coli growth. We identified  candidate TYMS 172 

mutations by examining an earlier growth complementation study26. A handful of these mutants 173 

were then cloned, screened for expression, and when possible, purified and characterized. 174 

Through this mini-screen we selected two mutations that stably expressed, purified robustly, and 175 

yielded intermediate activities: TYMS R127A and Q33S (Fig. 2a). The R127A mutation is located 176 

in the TYMS active site and is one of four arginines that coordinate the substrate (dUMP) 177 

phosphate group. The Q33S mutation is located at the TYMS dimer interface, distal to the active 178 

site. We observed that R127A was more deleterious to catalytic function than Q33S, but that both 179 

mutations were more active than R166Q (which shows almost no measurable activity in vitro, Fig. 180 

2b, Table S2).  181 

We measured growth rates for seven catalytically characterized DHFR variants (a set of 182 

single and double mutants selected to span a range of catalytic activities) in the background of 183 

these four TYMS mutants (WT, R127A, Q33S and R166Q) using a plate-reader-based assay (28 184 

measurements total, each in triplicate; Fig. 2c, Fig S1a,c). We used this focused dataset to re-185 

parameterize the model equations, this time fitting five total parameters 186 

([fol-.-], [DHFR], [TYMS/+], >TYMS344,?, [TYMS01567], >TYMS01223?, Table S3). This second 187 

round of fitting tested the ability of growth rate data only (in the absence of metabolomics 188 
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measurements) to constrain the model, and the capacity of the model to capture TYMS mutations 189 

with intermediate effects on activity. The data were again well described by the model (Fig. 2C, 190 

Fig. S1b,d). As a control for overfitting, we tested the ability of the model to predict growth rates 191 

for arbitrary catalytic data. We randomly shuffled the catalytic parameters (kcat and Km) among 192 

mutations for both DHFR and TYMS, refit all free model parameters, and calculated the RMSD 193 

and R2 values between the best fit model and the shuffled data. Importantly, the model was 194 

generally unable to describe the experimental growth rate data when catalytic parameters were 195 

shuffled across both DHFR and TYMS (Fig S1e,f). This indicated that the model provided a 196 

specific description of our experiment and was not trivially overfit. The model was less sensitive 197 

to shuffling TYMS catalytic parameters (presumably because we included fit parameters 198 

describing the abundance of each TYMS mutation that can compensate for this shuffling, Fig. 199 

S1h). However, it was strongly sensitive to shuffling DHFR parameters (Fig. S1g). Taken 200 

together, this analysis indicated that the model provides a good description of the enzyme-201 

velocity-to-growth-rate relationship and can be used to predict and interpret how molecular 202 

changes in DHFR and TYMS activity modulate growth rate phenotype.  203 

As in previous work, we observed that decreasing DHFR activity was deleterious to growth 204 

rate, and that loss-of-function mutations in DHFR can be partly or even entirely rescued by the 205 

loss-of-function mutation TYMS R166Q (Fig. S1a,c). TYMS R127A, a less severe loss of function 206 

mutation, showed a similar albeit more modest trend – this mutation was able to partly rescue 207 

growth for some (though not all) DHFR mutations. As indicated by both our prior experimental 208 

data and the model, reducing TYMS activity alongside DHFR loss-of-function prevents the 209 

accumulation of DHF and depletion of THF pools, consequently preserving growth in thymidine-210 

supplemented media. Stated otherwise, loss-of-function mutations in TYMS help to preserve 211 

reduced folate pools, allowing THF to shuttle one-carbon units in downstream biochemical 212 

processes like purine biosynthesis. Thus, the TYMS R166Q and R127A variants show positive 213 

(buffering) epistasis to low-activity DHFR mutations. In contrast to our expectation that a more 214 
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intermediate mutation would also demonstrate intermediate levels of buffering epistasis, TYMS 215 

Q33S shows negative (or amplifying) epistasis to some DHFR mutations. This means that these 216 

DHFR mutations are more deleterious in the background of TYMS Q33S than in the native TYMS 217 

context. Our model accounted for this observation by increasing the intracellular concentration of 218 

TYMS Q33S (a fit parameter, Table S3) such that the effective kcat of TYMS Q33S is greater than 219 

wildtype (>TYMS344,?𝑘'"(
+89,_344, >	 [TYMS/+]𝑘'"(

+89,_/+). This in turn increased the intracellular 220 

requirement for DHFR activity, resulting in negative epistasis. 221 

To further explore the pattern of epistasis across TYMS backgrounds, we simulated 222 

growth rates over a range of DHFR kcat and Km values in each TYMS background (Fig. 2d). This 223 

provided a comprehensive prediction of the TYMS-induced constraints on DHFR activity. In 224 

particular, we obtained a regime of DHFR kcat and Km values that is sufficient to support growth 225 

for each TYMS mutation. From these data we computed epistasis. These results indicated that 226 

TYMS Q33S has negative epistasis to DHFR variants spanning a well-defined band of catalytic 227 

parameters. The simulations also indicated that R127A has weak positive epistasis over a regime 228 

of moderately impaired DHFR variants, but is insufficient to rescue growth for the strongest loss 229 

of function variants. Finally, TYMS R166Q was observed to be broadly rescuing; DHFR variants 230 

need only a negligible amount of activity to support growth in this context. Thus, our simulations 231 

show that the sign and magnitude of DHFR epistasis are strongly tuned by TYMS background. 232 

The model thus provides quantitative predictions of the catalytic regimes where epistasis will be 233 

most apparent.  234 

 235 

The single-mutant landscape of DHFR is strongly modulated by TYMS context 236 

Next we wanted to examine if these observations — negative epistasis for Q33S and broadly 237 

positive epistasis for R166Q — held true across a larger dataset. Additionally, we wanted to 238 

characterize the structural pattern of biochemical epistasis at the residue level across DHFR. To 239 
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accomplish this, we created a plasmid-based saturation mutagenesis library of DHFR containing 240 

all possible single mutations at every position (3002 total). This library was subcloned into all three 241 

TYMS backgrounds; sequencing showed that these libraries are well-distributed and approach 242 

full coverage of all single mutations (97.1% - WT TYMS, 94.6% - TYMS Q33S, 99.3% - TYMS 243 

R166Q) (Fig. S2). We transformed these libraries into E. coli lacking the genes encoding DHFR 244 

and thymidylate synthase (ER2566 ΔfolA ΔthyA). Transformants for each library were then grown 245 

as a mixed population in selective media (M9 minimal media with 0.4% glucose, 0.2% amicase, 246 

and 50 µg/ml thymidine) in a turbidostat to ensure maintenance of exponential growth and 247 

constancy of media conditions. We took six time points over the course of 24 hours, and we 248 

prepared these samples for next generation sequencing. By examining the change in the relative 249 

frequency of individual mutant counts over time, we computed the growth rate difference relative 250 

to WT DHFR for nearly all mutations in the library (Fig. 3a, Table S4, see methods for details).  251 

All relative growth rate measurements were made in triplicate. We observed good concordance 252 

among replicates (Fig. S3). 253 

 The entire dataset showed that the DHFR mutational landscape was strongly dependent 254 

on TYMS background (Fig. 3b-e). In all three TYMS backgrounds, the distribution of growth rate 255 

effects was bi-modal and reasonably well-described by a double gaussian containing one peak 256 

of near-neutral mutations and another peak of mutations with highly deleterious growth rate 257 

effects. This is the expected result for an enzyme that shows a sigmoidal relationship between 258 

activity and growth. In the native TYMS context, the vast majority of mutations fall into the near-259 

neutral peak. However, there is a substantial fraction (12%, 343 total) that display growth rates at 260 

or below that of “inactive”, where “inactive” was defined as the average growth rate across 261 

nonsense mutations in the first 120 residues of DHFR. Consistent with expectation, mutations at 262 

known positions of functional importance tended to be deleterious in the WT TYMS context (W22, 263 

D27, F31, T35, L54, R57, T113, G121, and D122)27. For example, both W22 and D27 are directly 264 

in the active site and serve to coordinate substrate through a hydrogen bonding network28, G121 265 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


and D122 are part of the βf-βg loop and stabilize conformational changes associated to 266 

catalysis29,30, and F31 contacts the substrate and is associated to the “network of promoting 267 

motions”31,32. In the TYMS Q33S context, many of these deleterious mutations had even more 268 

severe  effects or were classified as  “Null”. Null mutations disappeared from our sequencing 269 

counts within the first three time points (8 hours) of the selection experiment, preventing inference 270 

of growth rate. For example, mutations at position 22 are deleterious in the WT TYMS context, 271 

and appear as Null or very deleterious in the Q33S context. The same pattern can be readily 272 

observed for positions 7,14,15, 22, 27, 31, 35, and 121. Again we saw that 12% of mutations have 273 

growth rates at or below that of “inactive” variants. Finally, in the TYMS R166Q context, there are 274 

very few deleterious mutations. Nearly all mutations are contained in the near-neutral peak, 275 

including mutations at highly conserved active site positions like M20, W22, and L28. Stop codons 276 

and mutations at the active site residue D27 continued to be deleterious, indicating that DHFR 277 

activity was still under (very weak) selection in the TYMS R166Q background. Nonetheless, only 278 

5% of mutations displayed growth rates at or below those of inactive mutations. Thus TYMS 279 

R166Q is broadly buffering to DHFR variation.  280 

To quantify the context dependence of mutational effects, we computed epistasis for all 281 

DHFR mutations with measurable relative growth rates in each of the three TYMS backgrounds 282 

(2,696  in total, see also methods) (Fig. 4, Fig. S4, Table S5). We assessed the statistical 283 

significance of epistasis by unequal variance t-test under the null hypothesis that the mutations 284 

have equal mean growth rates in both TYMS backgrounds. These p-values were compared to a 285 

multiple-hypothesis testing adjusted p-value determined by Sequential Goodness of Fit (P = 0.035 286 

for TYMS Q33S and P = 0.029 for TYMS R166Q, Fig. 4a,b) 33. In the TYMS Q33S background, 287 

95 mutations (3%) showed significant negative epistasis and 280 mutations (9%) showed 288 

significant positive epistasis. Many of the DHFR mutations with positive epistasis to Q33S were 289 

near-neutral in the WT context, and displayed small improvements in growth rate that were highly 290 

significant due to the low experimental error for the best-growing mutations (Fig. 4c). In contrast, 291 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


the mutations with negative epistasis exhibited a range of growth rate effects in the WT context. 292 

For the TYMS R166Q background the overall proportion of significant epistatic mutations was 293 

larger: while only 41 mutations (1%) showed significant negative epistasis, 851 mutations (28%) 294 

showed significant positive epistasis. Direct comparison of the relative growth rates of mutations 295 

across the WT, Q33S, and R166Q TYMS backgrounds makes it very obvious that TYMS R166Q 296 

was broadly rescuing, while TYMS Q33S had a more subtle effect that sometimes yielded 297 

negative epistasis (Fig. 4c,d). These observations are consistent with our biochemical 298 

understanding of the interplay between DHFR and TYMS relative velocities. 299 

 300 

The enzyme velocity to growth-rate model captures the observed fitness landscapes and 301 

allows global estimation of mutational effects on catalysis 302 

Next we sought to further test our enzyme velocity to growth-rate model using the deep mutational 303 

scanning data. We refit the model a third time, drawing upon a larger dataset of 34 DHFR single 304 

mutants with previously reported kcat and Km values. We additionally characterized kcat and Km for 305 

four new DHFR mutations (I5K, V13H, E17V and M20Q) that exhibited strong sign epistasis to 306 

TYMS to more completely test our ability to predict epistasis. Together this yielded a set of 114 307 

growth rate measurements with matched kcat and Km values for DHFR and TYMS  (38 DHFR 308 

mutations in 3 TYMS backgrounds, Table S1). We used these data to perform a bootstrap 309 

analysis; iteratively subsampling the data and refitting the model 1000 times to obtain standard 310 

deviations in our model fit and the eight associated parameters (Fig. 5a). The inferred parameters 311 

for this large set of sequencing-based growth rate measurements were qualitatively similar to 312 

those obtained for the smaller set of 28 plate-reader based growth rate measurements (7 DHFR 313 

mutants in 4 TYMS backgrounds), but we observed some discrepancy in the estimated total folate 314 

pool and intracellular concentrations of TYMS (Table S3). Overall both the predicted growth rates 315 

and pattern of epistasis showed good agreement to our experimental observations (Fig. 5a,b).  316 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


 Having established model performance on a subset of biochemically characterized DHFR 317 

and TYMS sequences, we next examined consistency of the model with all growth rate 318 

measurements (the total model fit). However the effect of most mutations on catalysis is unknown. 319 

Thus, for each DHFR point mutant we used Monte Carlo sampling to identify a space of kcat and 320 

Km values consistent with the three growth rate measurements (in the three TYMS backgrounds). 321 

While three growth rate measurements were insufficient to uniquely constrain both kcat and Km 322 

(the solution space is degenerate), this process did permit estimation of log10 catalytic power 323 

(kcat/Km) for all 2,696 characterized point mutants with reasonable agreement to experiment (Fig. 324 

5c). Once these catalytic parameters were estimated, we put them back into the model to assess 325 

the correspondence between the predicted (modeled) growth rates, predicted epistasis, and our 326 

experimental observations, yielding a global picture of model fit quality. Overall, we observed that 327 

the model well-described the data with two exceptions. First, there was a small proportion of 328 

DHFR mutations that were predicted to be rescued by TYMS R166Q but in actuality were not (70 329 

total, 2% of all DHFR mutations, the horizontal stripe of red dots in Fig. 5d). It is possible that 330 

these mutations caused a growth rate defect through DHFR mis-folding and aggregation, a factor 331 

not captured by our model. Second, there was a proportion of DHFR mutations predicted to have 332 

negative epistasis to TYMS R166Q but observed to exhibit mild positive epistasis (Fig. 5e). These 333 

differences may be related to the fact that DHFR abundance is modeled with a single parameter 334 

across all mutants, a factor which could be addressed in future work by including additional 335 

experimental data. Nevertheless, the data indicated that our model can globally describe growth 336 

rate phenotypes given variation in enzyme velocity. The resulting model and inferred catalytic 337 

parameters now permit estimation of DHFR single mutant fitness in any TYMS background. We 338 

computed the fraction of DHFR point mutants that are neutral (growth rate above 0.9) as a function 339 

of variation in TYMS kcat and Km. These calculations highlighted that selection on DHFR activity 340 

is strongly shaped by TYMS background, with low-activity TYMS variants increasing the 341 

mutational tolerance of DHFR (Fig. 5f,g).  342 
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Epistasis between DHFR and TYMS is organized into structurally localized groups  343 

Next, we examined the structural pattern of DHFR positions with epistasis to TYMS Q33S and 344 

TYMS R166Q. Given that mutations tend to have similar epistatic effects at a particular DHFR 345 

position in our data set (Fig. S4), we used k-means clustering to sort positions into four categories 346 

according to their pattern of epistasis: negative, insignificant, positive, and strong positive (Fig. 347 

6a, Table S6). The strong positive category solely contained DHFR mutations in the TYMS 348 

R166Q background, while the negative epistasis category was predominantly occupied by DHFR 349 

mutations in the TYMS Q33S background. Mapping these positions to the DHFR structure 350 

showed that epistasis is organized into spatially distinct regions of the tertiary structure (Fig. 351 

6b,c). Mutations with negative epistasis to Q33S tended to be proximal to the DHFR active site, 352 

particularly the folate binding pocket. The negative epistasis cluster included several key positions 353 

near or in the Met-20 loop, which is known to undergo conformational fluctuations associated with 354 

catalysis (residues A9, V13, E17 and M20) 27,30.  It also encompassed positions I5, L24, L28, and 355 

F31 which surround the folate substrate. Several of these positions have known roles in catalysis; 356 

mutations at position 31 promoted product release (while slowing hydride transfer), and dynamics 357 

of the M20 loop (which includes V13,E17) are associated with substrate binding and product 358 

release31,34. Additionally, specific mutations at positions 5, 20, and 28 result in trimethoprim 359 

resistance by altering trimethoprim affinity34. These structural and biochemical observations are 360 

consistent with the finding that mutations with negative epistasis tended to yield moderate to 361 

severe growth rate defects. In contrast, positions with positive epistasis to Q33S often had very 362 

little (or sometimes a beneficial) effect on growth rate,  and were distributed around the DHFR 363 

surface (Fig. 4c, Fig. 6b). In the context of TYMS R166Q only one position — C85 — was 364 

included in the negative epistasis cluster (Fig. 6c). A large fraction of DHFR positions (53%, 84 365 

total) displayed positive epistasis to TYMS R166Q; these positions were distributed throughout 366 

the DHFR structure. The positions in the strong positive epistasis cluster included mutations with 367 

some of the most severe effects on growth rate in the WT TYMS context. A number of these 368 
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positions were previously established as important to DHFR catalysis, including residues F31, 369 

L54, G121, D122, and S14827. Mutations at these sites can be detrimental to kcat, Km,  or both.  370 

 371 

Epistasis and the structural encoding of DHFR catalysis  372 

When the epistatic clusters are viewed together on the structure, one sees that they form 373 

approximate distance-dependent shells around the active site (Fig. 7a-d). Considering the pattern 374 

of epistasis to TYMS Q33S, positions with negative epistasis were closest to the active site, 375 

surrounded by positions with insignificant epistasis, and finally positions in the positive epistasis 376 

cluster form an outer shell (Fig. 7a,b). For TYMS R166Q, positions in the strong positive epistasis 377 

cluster were closest to the active site, followed by positive epistasis positions, and finally those 378 

with insignificant epistasis (Fig. 7c,d). For comparison, we also mapped the model-predicted 379 

catalytic power averaged across all mutations at a position to the structure (Fig. 7e). Together, 380 

these structural images paint a picture of the molecular encoding of catalysis and epistasis. 381 

Mutations with predicted intermediate-to-large effects on catalysis were nestled near the active 382 

site and showed negative epistasis to Q33S and strong positive to positive epistasis to R166Q, 383 

while mutations with more mild effects on catalysis showed weaker positive to insignificant 384 

epistasis to R166Q and Q33S. Though catalysis and epistasis showed an approximate distance-385 

dependent relationship to the DHFR active site, there a number of key positions distal to the active 386 

site that exhibited large growth rate effects, strong positive epistasis to TYMS R166Q, and likely 387 

act allosterically to tune catalytic activity (e.g. L110, G121, D122, W133, S148, and Y151). The 388 

positions with the largest estimated effects on catalysis were highly evolutionarily conserved (P < 389 

10-10 by Fisher’s exact test, Table S7, Fig. 7f), indicating that our model and experimental data 390 

are capturing features relevant to the fitness of DHFR.  391 

 392 

DISCUSSION 393 
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It is well-appreciated that physical protein interactions place constraints on the individual 394 

interacting monomers. Protein interfaces are organized to bind with appropriate affinity and avoid 395 

non-specific interactions35,36. The individual components of physical complexes tend to be 396 

expressed in similar ratios to avoid dosage related toxicity and aggregation37,38. However the 397 

extent to which biochemical interactions constrain the function and sequence of individual 398 

monomers has remained less clear. We have explicitly revealed these interactions at single-399 

residue resolution for one model system and coupled them with a mathematical model to quantify 400 

the intracellular constraints on DHFR and TYMS relative catalytic activities. 401 

Our mutagenesis data and modeling show that TYMS activity strongly modifies the 402 

constraints on DHFR catalytic parameters; shaping both the range and relative importance of kcat 403 

and Km in modulating growth. This biochemical interaction results in an approximately shell-like 404 

pattern of mutational sensitivity to TYMS background (epistasis) in the DHFR tertiary structure. 405 

Extreme loss-of-TYMS function buffered variation in some of the most conserved DHFR active 406 

site positions, while moderate loss of function buffered variation at more peripheral surface 407 

exposed sites. Given these data, we expect that inhibition or loss-of-function in TYMS will promote 408 

the evolvability of DHFR, a finding with consequences for both laboratory and clinical evolution. 409 

For example, inhibiting TYMS activity in the clinic may promote the evolution of drug resistance 410 

in DHFR, while activating TYMS may restrict evolutionary accessible paths. In the laboratory, 411 

strains with reduced TYMS activity could provide a less stringent context for testing designed 412 

sequences or evolving new DHFR function.  413 

The existence of an enzyme velocity to growth-rate mapping — by definition — allows us 414 

to relate variation in DHFR and TYMS catalytic parameters to growth rate. It also allows one (in 415 

principle) to do the inverse: infer in vitro catalytic parameters from growth rate measurements. 416 

The intuition follows from classic steady-state Michaelis Menten experiments: to quantify steady 417 

state kinetics in vitro one measures enzyme initial velocity as a function of substrate 418 

concentration. In our sequencing-based experiments, variation in TYMS background effectively 419 
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titrates intracellular concentrations of DHF (substrate) while growth rate provides an estimate of 420 

velocity. Though our current dataset of three TYMS backgrounds is insufficient to uniquely 421 

constrain precise fits for kcat and Km, we anticipate that the addition of a few additional TYMS 422 

backgrounds and/or the use of more sophisticated fitting approaches will permit more accurate 423 

biochemical parameter inference. Indeed, recent work on peptide binding proteins (the PDZ and 424 

SH3 domains) has shown how measuring the growth rate effect of mutations in different genetic 425 

backgrounds and assay conditions can well-constrain biophysical parameters for binding affinity 426 

and protein stability39,40. One might follow a conceptually similar strategy to learn quantitative 427 

biochemical parameters from high throughput growth rate data. New microfluidics-based 428 

approaches for high-throughput biochemistry could play a key role in refining and testing such 429 

methodology41.   430 

 Together our findings shape how we think about designing enzymes and metabolic 431 

systems. Typical strategies for designing enzymes do not explicitly consider cellular context42. As 432 

a result, a significant fraction of designs could fail simply because they are not properly “matched” 433 

in terms of velocity to the surrounding pathway. The limited ability of homologs to complement 434 

growth in another species has been observed for a number of enzymes43–47, including DHFR48,49. 435 

Thus, even a well-designed catalytically active synthetic enzyme could fail to rescue growth if 436 

placed in the wrong cellular context. Just as computational protein design considers entire 437 

physical complexes to create binding interactions with altered affinity and specificity, one might 438 

consider the joint design of biochemically-interacting enzymes to alter metabolic efficiency and 439 

growth. Further study of enzyme rates and abundance across species, as well as 440 

characterizations of enzyme velocity to growth rate mappings, will help shape our understanding 441 

of the system level constraints placed on metabolic enzymes. 442 

 443 

MATERIALS AND METHODS 444 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 445 
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Escherichia coli expression and selection strains:  ER2566 ΔfolA ΔthyA E. coli were used for 446 

all growth in vivo growth rate measurements; this strain was a kind gift from Dr. Steven Benkovic 447 

and is the same used in Reynolds et al., 2011 and Thompson et al., 2020 50,51. XL1-Blue E. coli 448 

(genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIqZΔM15 Tn10(Tetr)]) 449 

from Agilent Technologies were used for cloning, mutagenesis, and plasmid propagation. 450 

BL21(DE3) E. coli (genotype: fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS. λ DE3 = λ sBamHIo 451 

∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5) from New England Biolabs were used for 452 

protein expression.  453 

 454 

Selection vector for DHFR constructs: DHFR variants were cloned into a modified version of 455 

the pACYC-Duet 1 vector (Novagen), which we refer to as pTet-Duet. pTet-Duet is a low-copy 456 

number vector containing two multiple cloning sites; the first is under control of the T7 promoter 457 

and the second was modified to be regulated by the tetracycline repressor (TetR). DHFR (folA) is 458 

cloned into the first MCS; TYMS (thyA) is cloned into the second MCS. During selections we do 459 

not induce expression of either gene but instead rely on leaky expression in ER2566 ΔfolA ΔthyA 460 

E. coli. The vector map for these constructs can be found on Addgene: 81596. 461 

 462 

Expression vector for DHFR constructs: E.coli folA (the gene encoding DHFR) was cloned into 463 

the pHis8-3 expression vector using restriction sites NcoI and XhoI. DHFR was tagged in-frame 464 

with an N-terminal 8X-Histidine tag separated from the folA reading frame by a thrombin cleavage 465 

site. Individual point mutant clones were constructed using the Quikchange II site-directed 466 

mutagenesis kit (Agilent). 467 

 468 

Expression vector for TYMS constructs: The thyA gene (encoding TYMS) was amplified by 469 

PCR from E. coli MG1655 and cloned into the vector pET24A using XbaI/Xho restriction sites. 470 
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The point mutants of TYMS (Q33S, R127A, and Q33S) were made using the Agilent QuikChange 471 

II site-directed mutagenesis kit.   472 

 473 

METHOD DETAILS 474 

Plate-reader Based Growth Rate Assays  475 

DHFR and TYMS point mutant combinations in the selection vector were transformed into 476 

ER2566 ΔfolA ΔthyA chemically competent cells by heat shock. The cells were recovered for 60 477 

minutes at 37°C with shaking at 220 rpm, spread on agar plates (Luria Broth (LB) containing 30 478 

µg/ml chloramphenicol and 50 µg/ml thymidine), and grown at 37°C overnight. The next day, 479 

liquid  overnight cultures were inoculated from a streak over multiple colonies and grown overnight 480 

at 37°C in LB supplemented with 30 µg/ml chloramphenicol and 50 µg/ml thymidine. These 481 

overnight cultures were pelleted and washed with M9 minimal media, then resuspended in pre-482 

warmed M9 media supplemented with 0.4% glucose, 0.2% amicase, 2 mM MgSO4, 0.1µM CaCl2,  483 

30 µg/ml chloramphenicol (henceforth referred to as M9 selection media). Next, OD600 for all 484 

resuspended cultures was measured in a Perkin Elmer Victor X3 plate reader. Cultures were then 485 

diluted to OD600=0.1 in prewarmed M9 selection media and incubated for 4 hours at 30°C, shaking 486 

at 220 rpm. After this period of adaptation and regrowth, cultures were back-diluted to OD600 = 487 

0.1 in 1 ml prewarmed M9 selection media with 50 µg/ml thymidine. These cells were inoculated 488 

into 96-well culture plate at OD600 = 0.005 (10 µl cells into 200 µl total well volume) containing 489 

prewarmed M9 selection media with 50 µg/ml thymidine;  plates were sealed with EasySeal 490 

permeable covers (Sigma Aldrich). All growth rate measurements were made in triplicate. Plates 491 

were shaken for 10 seconds before reading, and Readings of OD600 were taken every 6 minutes 492 

over 24 hours using a BioTek Synergy Neo2 plate reader in a 30°C climate-controlled room. 493 

 494 

DHFR Saturation Mutagenesis Library Construction 495 
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The DHFR saturation mutagenesis library was constructed as four sub-libraries in the DHFR 496 

selection vector (see above for details) to ensure coverage of each mutated region with a 300 497 

cycle Illumina sequencing kit. Each sublibrary covers 40 amino acid positions: 1-40 (sublibrary 1, 498 

SL1), 41-80 (sublibrary 2, SL2), 81-120 (sublibrary 3, SL3), and 121-159 (sublibrary 4, SL4). 499 

‘Round the Horn’ or inverse PCR (iPCR) with mutagenic NNS primers (N = A/T/G/C, S = G/C) 500 

was used to  introduce all 20 amino acid substitutions at a single amino acid position as described 501 

in51. Library completeness was verified by deep sequencing. In our initial validation sequencing 502 

run we found that mutations at positions W22 and L104 were systematically under-represented; 503 

iPCR was repeated for these positions and they were supplemented into their respective 504 

assembled sublibraries.  505 

After sub-library assembly, restriction digest and ligation was used to subclone each 506 

sublibrary into pTet-Duet plasmids containing different TYMS backgrounds (WT, R166Q, or 507 

Q33S). The entire DHFR coding region containing restriction sites (NotI and EcoNI) was amplified 508 

by PCR. PCR reaction was size-verified with agarose gel electrophoresis with an expected band 509 

size of 627 bp. The library PCR products and target plasmids were double digested with NotI and 510 

EcoNI for 3 hours at 37°C. To prevent re-circularization, the digested plasmid was treated with 511 

Antarctic phosphatase for 1 hour at 37°C. The DHFR insert and treated plasmid were ligated with 512 

T4 DNA ligase overnight at 16°C. The concentrated ligation product was then transformed into E. 513 

coli XL1-blue by electroporation, and recovered in SOB for 1 hour at 37°C. 20 µL of the recovery 514 

culture was serially diluted and plated on LB-agar with 50 µg/mL thymidine and 30 µg/mL 515 

chloramphenicol, to permit quantification of transformants and estimate library coverage. The 516 

minimum library coverage was 1000 CFU/mutant. The remaining recovery culture was grown in 517 

a flask containing 12 ml LB with 30 µg/mL chloramphenicol and 50 µg/mL thymidine at 37°C, with 518 

220 rpm shaking overnight. 10 ml of the overnight culture was miniprepped with the Gene-Jet 519 

Mini-prep kit (Fisher Scientific, K0503) to obtain the plasmid library.  520 

 521 
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Growth Rate Measurements in the Turbidostat for all DHFR mutant libraries 522 

All sublibraries were inoculated, grown, and sampled in triplicate. Each plasmid sub-library was 523 

transformed into the E. coli double knockout strain ER2566 ∆folA ∆thyA by electroporation and 524 

recovered in SOB for one hour at 37°C. To estimate library coverage, 20 µL of the recovery culture 525 

was serial diluted with SOB and plated on LB agar plates containing 30 µg/mL chloramphenicol 526 

and 50 µg/mL of thymidine. The remainder of the recovery culture was inoculated into M9 527 

selection media supplemented with 50 µg/mL thymidine and grown overnight at 37°C. The next 528 

morning, library coverage was estimated from colony counts; all selection experiments in this 529 

work had an estimated library coverage of 1000 CFU/mutant or greater. The overnight liquid 530 

culture was washed and back-diluted to OD600=0.1 in M9 selection media supplemented with 50 531 

µg/mL thymidine, and incubated for four hours at 30°C to allow adaptation to selection 532 

temperature and to return the culture to log-phase growth. Following adaptation, selection was 533 

initiated by back-diluting these cultures to an OD600 of 0.1 into 17 mL of pre-warmed M9 selection 534 

media supplemented with 50 µg/mL thymidine in  continuous culture vials with stir bars. These 535 

vials were then incubated in a turbidostat with a target OD600 of 0.15 at a temperature of 30°C. 536 

The turbidostat maintained a set optical density by adding 2.8 mL dilutions of M9 selection media 537 

supplemented with 50 µg/mL thymidine in response OD detection, and was built according to the 538 

design of Toprak et al52. Culture samples (1 mL each) were taken at the beginning of selection (t 539 

= 0 hours) and at 4, 8, 12, 20, and 24 hours into selection. Immediately after each time point, 540 

these 1 mL samples were pelleted at 2,348 rcf in a benchtop microcentrifuge for 5 minutes at 541 

room temperature. Supernatants were removed and the remaining pellet was stored at -20°C.  542 

 543 

Next Generation Sequencing Amplicon Sample Preparation  544 

Each turbidostat selection sample (representing a particular timepoint for a sub-library and 545 

replicate) was prepared for sequencing as a PCR amplicon using Illumina TruSeq-HT i5 and i7 546 

indexing barcodes. To generate these amplicons, each cell pellet from the growth rate assay was 547 
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thawed and lysed by resuspending the cells with 100 µL dH2O and incubation at 95°C for 5 548 

minutes. Lysates were then clarified by centrifugation at maximum speed for 10 minutes in a room 549 

temperature bench top microcentrifuge. Supernatants containing plasmids were isolated from the 550 

pellet. 1 µL of each supernatant was used as the template for an initial round of PCR with Q5-Hot 551 

Start Polymerase (NEB) that amplified the DHFR coding region of the sublibrary (10 PCR cycles 552 

total, standard Q5 reaction conditions). From this first PCR reaction, 1 µL was used in a second 553 

round of PCR (22 cycles of denaturation/anneal/elongation) with primers that added Illumina 554 

sequencing adaptors. Together, these two rounds of PCR yielded a final product of size: 315 bp 555 

(SL1), 308 bp (SL2), 298 bp (SL3), 304 bp (SL4). The amplicons were size verified using 1% 556 

agarose gel electrophoresis. In the case where a sample did not produce an amplicon, the first 557 

round PCR was repeated with 2 µL of the supernatant rather than 1 µL, with the remaining 558 

preparation identical.  All amplicons were individually quantified using with Quant-iT™ 559 

PicoGreen™ dsDNA Assay Kit (ThermoFischer Scientific) and mixed in equimolar ratio, with a 560 

final target amount greater than or equal to 2000 ng. Errors in pipetting volume were minimized 561 

by ensuring that more than 2 µL was taken from each amplicon. This mixture was gel-purified and 562 

then cleaned and concentrated using the Zymo Research DNA Clean & Concentrator-5 kit. To 563 

assess purity, the A260/A80 and A260/A230 nm absorbance ratios of the sample library were 564 

measured on a nanodrop. The sample library DNA concentration was measured using a Qubit 565 

dsDNA HS Assay in a Qubit 3 Fluorometer (Invitrogen by Thermo Fischer Scientific). The sample 566 

library was diluted to 30 nM in a volume of 50 µL of TE buffer (1 mM Tris-HCl (pH 8.5), 10 mM 567 

EDTA (pH 4)). This mixed and quantified library was sequenced on an Illumina HiSeq (150 cycle 568 

x 2 paired-end) by GeneWiz. Prior to sequencing, GeneWiz also provided quality control with 569 

sample library quantification with Qubit dsDNA HS Assay and sample DNA fragment composition 570 

with TapeStation (High Sensitivity D1000 ScreenTape, Agligent Technologies, Inc.). The NGS 571 

sequencing run resulted in 251.61 GB of data, with 337,353,664 reads, and  101,209 Mbases.  572 

 573 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


DHFR Expression and Purification 574 

DHFR mutant variants were expressed in BL21(DE3) E. coli grown at 30°C in 50 ml Terrific Broth 575 

(TB) with 35 µg/ml Kanamycin (Kan) for selection. Expression was induced at an OD600 = 0.6-0.8 576 

with 250 uM IPTG, and cells were grown at 18°C for 16-18 hours. Cultures were pelleted by 577 

centrifugation for 10 minutes at 5000 x g,  4°C and supernatant removed; cell pellets were stored 578 

at -80°C. Thawed cell pellets were lysed by sonication in 10ml lysis buffer (50 mM Tris, 500 mM 579 

NaCl, 10 mM imidazole, pH 8.0 buffer containing 0.1 mM PMSF, 0.001 mg/ml pepstatin, 0.01 580 

mg/ml leupeptin, 20 µg/ml DNAseI and 5 µg/mL lysozyme). The resulting lysate was clarified by 581 

centrifugation and incubated with 0.1ml Ni-NTA agarose (Qiagen) slurry (0.05 ml column volume) 582 

equilibrated in Nickel Binding Buffer (NiBB, 50 mM Tris pH 8.0, 500 mM NaCl, 10 mM imidazole) 583 

for 15 minutes on a tube rocker at 4°C. The slurry was then transferred to a disposable 584 

polypropylene column (BioRad).  After washing with 10 column volumes (CV) of NiBB, DHFR was 585 

eluted with 0.5 mL 50mM Tris pH 8.0, 500 mM NaCl, 400 mM imidazole.  The eluted protein was 586 

concentrated and buffer-exchanged to 50 mM Tris, pH 8.0 in a 10 kDa Amicon centrifugal 587 

concentrator (Millipore) and centrifuged 15 min at 21,000 x g, 4°C to pellet any precipitates. 588 

Following buffer exchange, the protein was purified by anion exchange chromatography (using a 589 

BioRad HiTrapQ HP column on a BioRad NGC Quest FPLC). A linear gradient was run from 0-1 590 

M NaCl in 50 mM Tris pH 8.0 over 30 ml (30 column volumes, CV) while collecting 0.5 ml fractions.  591 

Fractions containing DHFR were combined, concentrated, flash-frozen in liquid nitrogen, and 592 

stored at -80°C. 593 

 594 

TYMS Expression and Purification 595 

Individual TYMS mutants were expressed in BL21(DE3) E. coli grown at 37°C in 50 ml Terrific 596 

Broth (TB) with 35 µg/ml Kanamycin (Kan) for selection. Expression was induced with 1mM IPTG 597 

when the cells reached an OD600 = 0.6-0.8, and the cells were then grown at 18°C for 16-18 hours 598 

before harvesting pellets for storage at -80°C. TYMS was purified from the frozen pellets following 599 
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a protocol adapted from Changchien et al 53. Cell pellets were thawed and resuspended in TYMS 600 

lysis buffer (20 mM Tris/10 mM MgCl2/0.1% DOC pH 7.5 with 5 mM DTT, 0.2 mg/ml lysozyme, 5 601 

µg/ml DNAse I) and incubated at room temperature while rocking for 15 minutes. The resulting 602 

supernatant was clarified by centrifugation. Next, streptomycin sulfate was added to a final 603 

concentration of 0.75% to separate nucleic acids. The cells were incubated rocking at 4°C for 10 604 

minutes and the supernatant was retained following centrifugation for 10 minutes at >10,000 x g. 605 

Ammonium sulfate was then added at 50% saturation (0.3 g/ml), mixed for 10 minutes at 4°C, 606 

then centrifuged as above, retaining supernatant. Additional ammonium sulfate was then added 607 

to the supernatant at 80% saturation (an additional 0.2g/ml), mixed for 10 minutes at 4°C, and 608 

centrifuged as above, retaining the pellet. The pellet was dissolved in 25mM potassium phosphate 609 

pH 6.5 and dialyzed overnight at 4°C against 1L 25 mM potassium phosphate pH 6.5. Following 610 

dialysis the protein was purified by anion exchange (HiTrap Q HP column, Cytiva) with a 25 CV 611 

linear gradient from 0M NaCl to 1M NaCl in 25mM potassium phosphate pH 6.5. FPLC fractions 612 

containing TYMS were combined and concentrated using a 10 kDa Amicon concentrator 613 

(Millipore) and stored at 4°C for up to a week. 614 

 615 

DHFR Steady-state Michaelis Menten Kinetics 616 

DHFR kcat and Km were determined under Michaelis-Menten conditions with saturating 617 

concentrations of NADPH as in prior work54,55. Briefly, DHFR protein concentration was 618 

determined by measuring A280 (extinction coefficient = 33500 M-1cm-1). DHF (Sigma Aldrich) was 619 

prepared in MTEN buffer (50 mM MES, 25 mM Tris base, 25 mM Ethanolamine, 100 mM NaCl, 620 

pH 7.0) containing 5 mM DTT (Sigma Aldrich). 100 nM DHFR protein and 100 µM NADPH (Sigma 621 

Aldrich) were combined in MTEN buffer with 5 mM DTT and pre-incubated for 1 hour at 25°C prior 622 

to measurement. To initiate the reaction, the protein-NADPH solution was mixed with DHF in a 623 

quartz cuvette (sampling DHF over a range of concentrations, tuned to the Km of the mutant). 624 

The initial velocity of DHFR was measured spectrophotometrically by monitoring the consumption 625 
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of NADPH and DHF (decrease in absorbance at 340 nm, De340=13.2 mM-1 cm-1). All 626 

measurements were made in triplicate; analysis was performed using the Michaelis-Menten 627 

nonlinear regression function of Graph Pad Prism.  628 

 629 

Preparation of TYMS substrate for assaying enzyme activity and steady state kinetics  630 

(6R)-methylenetetrahydrofolic acid (MTHF, CH2H4fol) was purchased from Merck & Cie 631 

(Switzerland) and dissolved to 100 mM in nitrogen-sparged citrate-ascorbate buffer (10 mM 632 

ascorbic acid, 8.5 mM citrate, pH 8.0).  30 µL aliquots were made in light-safe microcentrifuge 633 

tubes, flash-frozen in liquid nitrogen, and stored at -80C.  Before use, the stock was thawed and 634 

diluted to 10 mM in TYMS kinetics reaction buffer (100 mM Tris base, 5 mM Formaldehyde, 1 mM 635 

EDTA, pH 7.5) and quantified in an enzymatic assay: 50 µM MTHF, 200 µM dUMP and 1µM 636 

TYMS protein were combined and A340 measured until steady-state reached. Actual concentration 637 

was then calculated from the difference in A340 before and after the reaction using Beer’s Law 638 

(MTHF extinction coefficient: 6.4 mM-1cm-1).   639 

 640 

TYMS Steady-state Michaelis Menten Kinetics 641 

TYMS kcat and Km were determined for both dUMP and MTHF under Michaelis-Menten conditions 642 

by varying one substrate and holding the other saturating as in prior work56,57. Briefly, TYMS 643 

protein concentration was determined by measuring A280 (extinction coefficient = 53400 M-1cm-1). 644 

TYMS protein was prepared in TYMS assay buffer (100 mM Tris base, 5 mM Formaldehyde, 1 645 

mM EDTA, pH 7.5) containing 50 mM DTT (Sigma Aldrich). 50 nM TYMS protein and either 100 646 

µM dUMP (Sigma Aldrich) or 150 µM MTHF (Merck & Cie) were combined with varying 647 

concentrations of the other substrate to initiate the reaction. The production of DHF was monitored 648 

spectrophotometrically (increase in absorbance at 340nm, De340=6.4 mM-1cm-1) for 2 minutes per 649 
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reaction. All measurements were made in triplicate; analysis was performed using the Michaelis-650 

Menten nonlinear regression function of Graph Pad Prism.  651 

 652 

QUANTIFICATION AND STATISTICAL ANALYSIS 653 

Enzyme Velocity to Growth Rate Model Construction and Parameterization  654 

For the purposes of modeling, we approximated DHFR and TYMS as a two-enzyme cycle in which 655 

DHFR produces THF and consumes DHF, and TYMS produces DHF and consumes THF. This 656 

abstraction ignores the different carbon-carrying THF species, instead collapsing them into a 657 

single “reduced folate” pool. This simplification allows us to construct an analytically solvable 658 

model for steady state THF concentration that we can then relate to growth (Equation 3). 659 

First, we fit the free parameters in the Goldbeter-Koshland equation ( [DHFR], [TYMSWT], 660 

[TYMSR166Q], foltot ) using a set of ten metabolomics measurements for the relative abundance of 661 

3-glutamate form of formyl THF as obtained in prior work 1. These measurements were made for 662 

DHFR mutations G121V, F31Y/L54I, M42F/G121V, F31Y/G121V and the WT in the background 663 

of WT TYMS and TYMS R166Q. So why this particular folate species? We noticed that the relative 664 

abundance of many of the reduced THF species in our data set was correlated, and chose formyl 665 

THF to model because the experimental data were less variable and showed a strong, monotonic 666 

relationship with cell growth. Then, we fit the free parameters in equation two (gmax, gmin, K, n) 667 

using a set of ten growth rate measurements for the same DHFR/TYMS mutation pairs. This fitting 668 

process gave rise to the fits shown in figure 1. When assessing model performance against the 669 

larger set of TYMS variants (as in figure 2) we refit all parameters (gmax, gmin, K, n, [DHFR], 670 

[TYMSWT], [TYMSR166Q], [TYMSQ33S], [TYMSR127A], foltot) to the growth rate data only since we did 671 

not have metabolomics data for this larger set. All parameter fits were made in python using 672 

scipy.optimize least_squares; the complete fitting process is documented in Jupyter notebook 673 

1_KGmodel.ipynb in the associated github repository. 674 
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We assessed the model sensitivity to shuffling the data (Figure 2 – supplement 2) by 675 

randomly shuffling all catalytic parameters (kcat, Km) 50 times across DHFR and TYMS and 676 

computing an R2 value. We also assessed model sensitivity to subsampling the data;  error bars 677 

in Figures 1, 2, and Figure 2 – supplement 2 correspond to SEM across “jackknife” re-samplings 678 

of the data wherein one DHFR/TYMS combination was left out for each re-sampling. Finally, to 679 

assess the global model fit to the data (as in Figure 6 and Figure 6 – supplement 1) we first fit the 680 

9 model parameters (gmax, gmin, K, n, [DHFR], [TYMSWT], [TYMSR166Q], [TYMSQ33S], foltot) using the 681 

growth rate measurements of 16 DHFR mutations for which experimental kcat and Km  were known 682 

(48 total observations given the three TYMS backgrounds). Then, fixing these parameters, we fit 683 

kcat and Km values for all 2696 mutations with growth rate measurements in all three TYMS 684 

backgrounds to the complete data set of 8,088 sequencing-based growth rate observations. This 685 

process is documented in Jupyter notebook 4_ModelAndDMSData.ipynb in the associated github 686 

repository. 687 

 688 

Next Generation Sequencing Data Processing and Read Counting 689 

All PCR amplicons (corresponding to individual replicates, timepoints and sublibraries) were 690 

sequenced on an Illumina HiSeq using 2 x 150 paired end reads. The resulting fastq files were 691 

processed and filtered prior to read counting. Briefly, the forward and reverse reads were merged 692 

using USEARCH. Each read was quality score filtered (Q-Score ≥ 20) and identified as a WT or 693 

mutant of DHFR using a custom python script. This python script filtered for full length reads and 694 

base call quality scores greater than 20 (error rate ≤ 1:100). The reads passing these quality 695 

control criteria were compared against the wild-type reference sequence to determine mutation 696 

identify. Reads that contained multiple point mutations or mutations outside the sublibrary of 697 

interest were removed from analysis. This process resulted in counts for the WT and each mutant 698 

at each time point and replicate. These counts were further corrected given the expected error in 699 
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the data (q-score) and Hamming distance from the WT codon to account for potential hopping of 700 

WT reads to mutations; a process that was detailed in McCormick et al 55. 701 

 702 

Relative Growth Rate Calculations 703 

We calculated relative growth rates for individual mutations and the WT over time from the 704 

sequencing-based counts (𝑁(!;( , 𝑁(<=).  Mutants with fewer than 10 counts were considered 705 

absent from the data set and were set to zero to reduce noise. From these thresholded counts, 706 

we calculated a log normalized relative frequency of each mutation over time:  707 

𝑙𝑜𝑔5(𝑓(𝑡)) 	= 	 𝑙𝑜𝑔5(𝑁(!;( 𝑁(<=⁄ ) 	−	 𝑙𝑜𝑔5(𝑁(>?!;( 𝑁(>?<=⁄ )	 708 

We then calculated relative growth rate (𝑚@A!;(
=B ) as the slope of the log relative frequency over 709 

time by linear regression. Linear regression was performed using scikit Learn, and individual 710 

points were weighted by the number of counts (in order to down weight less-sampled mutants at 711 

later time points). Relative growth rate or a mutant was only calculated if the mutant was present 712 

over at least the first three time points, otherwise it was classified as a “Null” mutant. Finally, all 713 

relative growth rates were normalized such that WT has a relative growth rate of 1. Growth rates 714 

were additionally normalized by the bulk culture growth rate (estimated from the turbidostat, in 715 

units of generations per hour) to account for small vial-to-vial variations culture doublings across 716 

the experiment. All calculations are shown in Jupyter notebook 2_DMSGrowthRates.ipynb in the 717 

associated github repository.  718 

 719 

Epistasis Analysis 720 

Epistasis was calculated according to an additive model: 721 

𝜀@A!;(,=B!;( 	= 	𝑚@A!;(
=B_!;( 	− 	𝑚@A!;(

=B_<=  722 

In our experiments TYMS R127A, Q33S and R166Q have no growth rate effect in the WT DHFR 723 

context due to thymidine supplementation. Under this formalism, mutations that show improved 724 
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growth in the mutated TYMS background have positive epistasis, while mutations with reduced 725 

growth in the mutated TYMS background have negative epistasis. We assessed the statistical 726 

significance of epistasis by unequal variance t-test under the null hypothesis that the mutations 727 

have equal mean growth rates in both TYMS backgrounds. These p-values were compared to a 728 

multiple-hypothesis testing adjusted p-value determined by Sequential Goodness of Fit (P = 0.035 729 

for TYMS Q33S and P = 0.029 for TYMS R166Q) 33. K-means clustering of epistatic positions 730 

was performed using a custom script based on that described in Thompson et al 51. All epistasis 731 

calculations are shown in Jupyter notebook 3_Epistasis.ipynb in the associated github repository.  732 
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FIGURES AND LEGENDS 757 

 758 
Figure 1. Constructing a biochemistry-to-growth model for DHFR and TYMS.  759 
a) Schematic describing the relationship between metabolic pathway flux and enzyme velocity. 760 

Many enzymes show a hyperbolic relationship between velocity and flux; the enzyme control 761 
coefficient describes the fractional change in flux given a fractional change in velocity. Control 762 
coefficients vary with the starting enzyme velocity (purple and green arrows, background “A”) 763 
and can change with genetic background (violet arrow, background “B”). 764 

b) The role of DHFR and TYMS in folate metabolism. Metabolites are labeled in grey or black 765 
italic text. Dotted lines indicate multiple intermediate reactions that are summarized with a 766 
single line. 767 

c) The relationship between the experimentally measured relative abundance of [10-formyl-THF] 768 
and E. coli growth rate. Red points indicate five DHFR variants in the background of TYMS 769 
R166Q (a near catalytically inactive variant) and black indicates the same DHFR variants in 770 
the context of WT TYMS. Error bars indicate the standard deviation across N=3 replicates for 771 
both growth rate (y-axis) and 10-formyl-THF abundance (x-axis). The blue dotted line 772 
indicates the best fit for a hyperbolic model (Equation 1)  relating THF abundance to growth.  773 

d) A simplified, abstracted version of the DHFR and TYMS system. Again dotted lines indicate 774 
multiple intermediate reactions that are summarized with a single line. 775 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


e) The correlation between experimentally measured log10[10-formyl-THF] relative abundance 776 
and the model prediction (as computed with Equation 3). The grey dotted line indicates x=y.  777 
Color coding is identical to c. 778 

f) The correlation between experimentally measured and predicted growth rates for five DHFR 779 
point mutations in two different TYMS backgrounds (same mutants as in c,e). The grey dotted 780 
line indicates x=y. Color coding is identical to c. 781 

  782 
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Figure 2. Evaluating biochemistry-to-growth model performance across additional TYMS 783 
variants.  784 
a) Location of the TYMS point mutations (PDBID: 1BID58). TYMS functions as an obligate 785 

domain-swapped homodimer; active sites include residues from both monomers (white and 786 
grey cartoon). Positions mutated in this study are in colored spheres, and indicated with 787 
arrows (Q33 – cyan, R127 – navy, R166 – red). The dUMP substrate is in sticks, labeled and 788 
colored green. 789 

b) Michaelis Menten enzyme kinetics for WT TYMS (black), TYMS Q33S (cyan), and TYMS 790 
R127A (navy). Individual replicates (3 total) are plotted. Points indicate experimental data and 791 
lines the best fit steady state model. 792 

c) Correlation between experimentally measured and model-predicted relative growth rates for 793 
seven DHFR variants in four TYMS backgrounds. Each point represents one DHFR/TYMS 794 
combination. Error bars in the x direction are SEM across triplicate growth rate measurements, 795 
error bars in y are the SEM estimated from jackknife (leave-one-out) sub-sampling the data 796 
and refitting the model. 797 

d) Heatmaps of simulated growth rates (top row) and epistasis (bottom row) as computed over 798 
a range of DHFR kinetic parameters in four TYMS backgrounds. In the left-most column of 799 
heatmaps a red star marks the highest activity enzyme (low Km, high kcat), while a yellow star 800 
marks the lowest activity enzyme. Growth rates are indicated with a blue-white-red color map, 801 
where a relative growth rate of one (white) is equivalent to WT. Epistasis values are indicated 802 
with a green-white-pink color map, where zero epistasis is shown in white.  803 
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Figure 3. The effects of DHFR mutation on growth rate in three TYMS backgrounds. 804 
a) Sequencing-based growth rate measurements for DHFR F31V in three TYMS backgrounds: 805 

R166Q (red), Q33S (cyan), and WT (black). Each point represents one triplicate experimental 806 
measurement. Dotted lines indicate linear regression fits to each replicate, the slope of each 807 
line is the inferred growth rate (relative to WT) for that DHFR/TYMS mutant combination. 808 

b) Heatmaps of the growth rate effect for all DHFR single mutations. DHFR positions are along 809 
the horizontal axis; amino acid residues (along the vertical axis) are organized by 810 
physiochemical similarity. The displayed relative growth rate is an average across three 811 
replicates, and is normalized such that the WT DHFR is equal to one. Red indicates mutations 812 
that increase growth rate, white indicates mutations with wild-type like growth, and blue 813 
indicates mutations that decrease growth rate. Null mutations (black squares) were not 814 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.28.542639doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542639
http://creativecommons.org/licenses/by/4.0/


observed by sequencing after the first two time points, and thus there was insufficient data for 815 
growth rate inference. Small dots mark the WT residue identity in each column.  816 

c) The distribution of DHFR mutational effects in the WT TYMS background. The red line 817 
indicates a best-fit double gaussian, grey bars are the data. The red, dashed “inactive” line 818 
marks the average relative growth rate for nonsense mutations (stop codons) in the first 120 819 
positions of DHFR. The WT DHFR growth rate is equal to one. 820 

d) The distribution of DHFR mutational effects in the TYMS Q33S background, color coding 821 
identical to (c) 822 

e) The distribution of DHFR mutational effects in the TYMS R166Q background, color coding 823 
identical to (c). Note that the y-axis for (e) is distinct from (c) and (d).  824 

 825 
  826 
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 827 
Figure 4. Epistatic coupling of DHFR to two TYMS backgrounds.  828 
a) Volcano plot examining the statistical significance of epistasis across all DHFR point 829 

mutations in the Q33S background. P-values were calculated by unequal variance t-test under 830 
the null hypothesis that the mutations have equal mean growth rates in both TYMS 831 
backgrounds. The red horizontal dashed line marks the standard significance cutoff of P=0.05, 832 
the black horizontal dashed line indicates a multiple-hypothesis testing adjusted p-value 833 
(P=0.035). The grey vertical dashed lines indicate an empirical threshold for epistasis. Pink 834 
and green indicate statistically significant positive and negative epistasis respectively. 835 

b) Volcano plot examining the statistical significance of epistasis across all DHFR point 836 
mutations in the R166Q background. P-values were calculated by unequal variance t-test 837 
under the null hypothesis that the mutations have equal mean growth rates in both TYMS 838 
backgrounds. The red horizontal dashed line marks the standard significance cutoff of P=0.05, 839 
the black horizontal dashed line indicates a multiple-hypothesis testing adjusted p-value 840 
(P=0.029). The grey vertical dashed lines indicate an empirical threshold for epistasis. Pink 841 
and green indicate statistically significant positive and negative epistasis respectively. 842 
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c) Comparison of the relative growth rate effects for DHFR single mutants in the WT and TYMS 843 
Q33S backgrounds. The marginal distribution of growth rate effects is shown along each axis. 844 
Mutations with statistically significant positive and negative epistasis are indicated in pink and 845 
green respectively. The WT relative growth rate equals one, and is indicated with a dashed 846 
grey line across each axis. The dashed red line marks x=y. 847 

d) Comparison of the relative growth rate effects for DHFR single mutants in the WT and TYMS 848 
R166Q backgrounds. Plot layout and color coding is identical to (c). 849 

 850 
  851 
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Figure 5. Global comparison of the biochemistry-to-growth model and deep mutational 852 
scanning data set.  853 
a) Correlation between the experimentally measured and predicted growth rates of 114 854 

DHFR/TYMS mutant combinations (circles colored according to TYMS background). 855 
Horizontal error bars indicate standard deviation in experimentally measured growth rates 856 
across three replicate measurements, vertical error bars are the standard deviation in the 857 
predicted growth rates estimated by performing 1000 bootstrap re-samplings (and model fits) 858 
of the data. The dashed grey line indicates y=x. 859 

b) Correlation between the experimentally measured and model-predicted epistasis, as 860 
computed from the growth rate data in (a).  Again, color coding indicates TYMS background 861 
(identical to a). The dashed grey line indicates y=x. 862 

c) Correlation between the experimentally measured and computationally inferred log10(kcat/Km) 863 
values for 38 mutants of DHFR. Horizontal error bars describe the standard deviation across 864 
triplicate experimental measurements, vertical error bars indicate the standard deviation 865 
across 50 iterations of stochastic (Monte-Carlo based) model inference. 866 

d) Correlation between experimentally measured and predicted growth rates across the entire 867 
deep mutational scanning dataset. The marginal distribution of growth rate effects is shown 868 
along each axis. 869 

e) Correlation between experimentally measured and predicted epistasis across the entire deep 870 
mutational scanning dataset. The marginal distribution of epistatic effects is shown along 871 
each axis. 872 
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f) Mutational tolerance of DHFR as a function of TYMS background. The heatmap shows the 873 
fraction of DHFR mutations with growth rates of 0.9 or better as TYMS kcat and Km are 874 
discretely varied. The values for TYMS R166Q, Q33S and WT are marked with red, cyan 875 
and black circles respectively. 876 

g) A zoomed-in version of (f), focusing on the mutational tolerance of DHFR for TYMS 877 
backgrounds similar in velocity to WT and Q33S TYMS.  878 
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 881 
Figure 6. DHFR positions clustered by epistatic mutational effect.   882 
a) Clusters of DHFR positions organized by predominant epistasis type. In each heat map DHFR 883 

positions are ordered along the vertical axis; amino acid residues are organized by 884 
physiochemical similarity along the horizontal axis. As in earlier plots, green indicates negative 885 
epistasis, and pink indicates positive epistasis. Grey pixels mark mutations with statistically 886 
insignificant epistasis.  887 

b) Structural location of epistatic clusters for DHFR to TYMS Q33S. The DHFR backbone is in 888 
grey cartoon (PDBID: 1RX230). Folate, the DHFR substrate is indicated with yellow sticks. The 889 
NADP+ cofactor is in green sticks. 890 

c) Structural location of epistatic clusters for DHFR to TYMS R166Q. Color coding is identical to 891 
panel (b). 892 
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 895 
Figure 7. The structural organization of epistasis in DHFR.  896 
a) Epistasis of individual DHFR positions to TYMS Q33S. The DHFR structure is shown in space 897 

filling spheres (PDBID: 1RX2), with the NADP co-factor in green sticks, and folate in yellow 898 
sticks. A slice through the structure shows the interior arrangement of epistasis. Positions in 899 
the negative epistasis cluster are colored green, positions in the positive epistasis cluster are 900 
colored pink. Grey spheres indicate positions in the insignificant epistasis cluster.  901 

b) Cumulative distribution of positions in each epistatic cluster by distance to the DHFR active 902 
site for the TYMS Q33S background. In this case, active site was defined as the C6 atom of 903 
the folate substrate. Color coding follows from (a) 904 

c) Epistasis of individual DHFR positions to TYMS R166Q. The DHFR structure is shown in 905 
space filling spheres (PDBID: 1RX2), with the NADP co-factor in green sticks, and folate in 906 
yellow sticks. A slice through the structure shows the interior arrangement of epistasis. 907 
Positions with strong positive epistasis are colored magenta, positions in the positive epistasis 908 
cluster are colored pink. Grey spheres indicate positions in the insignificant epistasis cluster.  909 

d) Cumulative distribution of positions in each epistatic cluster by distance to the DHFR active 910 
site for the TYMS R166Q background. In this case, active site was defined as the C6 atom of 911 
the folate substrate. Color coding follows from (c) 912 

e) The average effect of mutations on log10 catalytic power. All residues are indicated in space 913 
filling and color coded by the average mutational effect. Blue indicates positions where 914 
mutations have a deleterious effect on catalytic power (on average), while white indicates 915 
mutations that have little to no effect on catalytic power. Again, the NADP co-factor is shown 916 
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in green sticks, and folate in yellow sticks. A slice through the structure shows the interior 917 
distribution of mutational effects on catalysis. 918 

f) The structural overlap between positions associated to catalysis and evolutionary 919 
conservation. The DHFR backbone is shown in grey cartoon, the NADP co-factor in green 920 
sticks, and folate in yellow sticks. Positions where mutations have (on average) a deleterious 921 
effect on catalysis are shown in blue space filling (color coding identical to c). Evolutionarily 922 
conserved positions (as computed by the Kullback-Leibler relative entropy in a large alignment 923 
of DHFR sequences) are outlined in red mesh. 924 
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DATA AND MATERIALS AVAILABILITY 927 

The DHFR deep mutational scanning libraries (in all three TYMS backgrounds) have been 928 
deposited at addgene under deposit number 81596. 929 
 930 
Code for the enzyme velocity to growth rate model, and analysis of all deep mutational scanning 931 
data is available on github: https://github.com/reynoldsk/dhfr-tyms-epistasis  932 
 933 
The raw sequencing data is available in FASTQ format through the NCBI sequencing read 934 
archive, under BioProject ID PRJNA791680. 935 
 936 
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