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Abstract

Motivation: Self-supervised learning (SSL) is a method that learns the data representation by utilizing
supervision inherent in the data. This learning method is in the spotlight in the drug field, lacking annotated
data due to time-consuming and expensive experiments. SSL using enormous unlabeled data has shown
excellent performance for molecular property prediction, but a few issues exist. (1) Existing SSL models are
large-scale; there is a limitation to implementing SSL where the computing resource is insufficient. (2) In
most cases, they do not utilize 3D structural information for molecular representation learning. The activity
of a drug is closely related to the structure of the drug molecule. Nevertheless, most current models do not
use 3D information or use it partially. (3) Previous models that apply contrastive learning to molecules use
the augmentation of permuting atoms and bonds. Therefore, molecules having different characteristics
can be in the same positive samples. We propose a novel contrastive learning framework, small-scale 3D
Graph Contrastive Learning (3DGCL) for molecular property prediction, to solve the above problems.
Results: 3DGCL learns the molecular representation by reflecting the molecule’s structure through the
pre-training process that does not change the semantics of the drug. Using only 1,128 samples for pre-
train data and 0.5 million model parameters, we achieved state-of-the-art or comparable performance
in six benchmark datasets. Extensive experiments demonstrate that 3D structural information based on
chemical knowledge is essential to molecular representation learning for property prediction.
Availability: Data and codes are available in https://github.com/moonkisung/3DGCL.
Contact: sy.kwon@pusan.ac.kr

1 Introduction
Self-supervised learning (SSL) learns data semantics by utilizing inherent
supervision in data from a large amount of unlabeled data. A self-supervised
model using a pretext task has recently outperformed the general supervised
model. SSL has been extremely successful in computer vision (Chen et al.,
2020) and language fields (Mikolov et al., 2013; Devlin et al., 2018) and
has attracted particular attention in the field of drugs (Rong et al., 2020),
wherein considerable time and money are incurred labeling data, and there
is a lack of annotated data compared with other domains. A molecule
can be expressed in various ways, such as a chemical fingerprint, for
example, ECFP (Rogers and Hahn, 2010), which uses a fixed vector for
particular substructures, and simplified molecular input line entry system
(SMILES), (Weininger, 1988) which represents the molecule as a string.

In addition, there is a way to represent a molecule as a graph, and Graph
Neural Networks is widely used for molecular property prediction (Gilmer
et al., 2017) because it can reflect the structure and correlation of atoms
and bonds effectively. SSL using enormous amounts of unlabeled data has
shown excellent performance for molecular property prediction (Li et al.,
2021; Zhang et al., 2020). However, a few issues exist. First, Existing
self-supervised learning models are ’large-scale.’ They require a million
sizes of pre-train data to generalize various downstream tasks and, in many
cases, are large-size models such as Transformer (Vaswani et al., 2017)
to learn that data. Therefore, there is a limitation to implementing self-
supervised learning where the computing resource is insufficient. We use
only 1,128 samples for pre-train data, about 0.5 million model parameters,
and overcome the not-high computing environment. Second, in most
cases, self-supervised models do not utilize 3D structural information for
molecular representation learning. The activity and property of a drug
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are closely related to the structure of the drug molecule. Nevertheless,
most current self-supervised models do not use 3D information or use it
partially (Liu et al., 2021b; Stärk et al., 2021). We introduce a novel 3D-3D
view contrastive learning method to learn molecular structural-semantic.
Contrastive learning is one of the self-supervised learning methods and
consists of pretext tasks to learn similarities and dissimilarities between
positive and negative pairs. Finally, previous models that apply contrastive
learning to molecules have used the augmentation permuting atoms and
bonds, while positive samples should be intrinsically identical to each
other. Unlike images, molecules can be completely different if we use the
augmentation that changes atoms or bonds, so molecules having different
characteristics can be in the same positive samples. We generate a conformer
pool consisting of several conformers to preserve the molecular composition
and use it for molecule-contrastive learning.

We present a 3D Graph Contrastive Learning (3DGCL) framework
for molecular property prediction, a small-scale method that uses a tiny
dataset, model, and 3D coordinates. Our approach uses approximately 1,000
data and 0.5 million model parameters , and randomly selects molecules
from the conformer pool instead of selecting the most stable molecules to
learn the 3D structure abundantly. We demonstrated the effectiveness of
the 3DGCL through extensive experiments. We compared the proposed
method with previous state-of-the-art baselines in four regression and two
classification benchmark datasets under the same experimental settings. To
investigate the importance of the 3D view, we compared our method of
utilizing molecular 3D coordinates with the existing pre-training method
of modifying the original molecule. In addition, we also compare our
conformer pool, comprising conformers that exist in nature, with molecules
that are difficult to exist in nature, which is created by adding noise to the
structure of the original molecule. We achieved outstanding performance
and the best result in the pre-training effect by comparing the difference
between pre-training and non-pre-training, compared to existing methods.
The results showed that chemical-based 3D structural information is vital
for molecular representation learning in property prediction. We focus not
only on large-scale learning but also on pre-training strategies to learn
representations correctly in self-supervised learning.

Our main contributions are:

• We develop a compact self-supervised learning approach that can be
run even in environments with low computational resources, using the
small-scale pre-train samples and parameters. We also achieve the state-
of-the-art or comparable performance in six molecular benchmarks.

• To the best of our knowledge, we propose 3D-3D view contrastive
learning that can take full advantage of 3D information for the first time.
We actively utilize 3D positional information inherent in molecules
through a pre-training scheme using a conformer pool.

• Extensive experiments demonstrate that our method, which can utilize
structural information abundantly while maintaining semantics, is more
suitable for molecular property prediction than conventional contrastive
learning, which may change the structure or properties of molecules.

2 Related Works

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) is a widely used deep learning technique
using graph-structured data. Due to the fact that molecules can be well
described in graphs, GNNs for molecular property prediction has been
active research (Yang et al., 2019a; Gilmer et al., 2017; Lu et al., 2019).
The molecular graph is represented as G = (V, E), where V and E denote
the set of atoms and bonds, respectively.

The message passing scheme in GNNs (Gilmer et al., 2017) can be
formalized as follows:

m
(k+1)
v =

∑
w∈N(v)

Mt(h
(k)
v , h

(k)
w , evw) (1)

h
(k+1)
v = Uk(h

(k)
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(k+1)
v ) (2)

hG = READOUT(h
(k)
v | v ∈ G) (3)

The GNNs aims to learn each node vector hk
v and the entire graph

vector hG in the k-th layers. N(v) denotes the neighbor node of node v and
evw denotes the edge between node v and node w. M and U are message
and update functions depending on the GNN models. GNNs update each
node through an iterative message passing process. Finally, the readout
layer, e.g. sum or mean pooling, is applied to get the entire graph vector
while satisfying permutation-invariance.

2.2 Self-supervised learning for molecular property
prediction

In the drug field, it is challenging to obtain annotated data due to expensive
wet-lab experiments; however, it is relatively easy to collect data without
annotation. Thus, there have been many SSL approaches recently, and they
have shown noticeable results for molecular property prediction.

Inspired by BERT (Devlin et al., 2018), a powerful pre-training
model in NLP, SMILES-BERT (Wang et al., 2019), ChemBERTa
(Chithrananda et al., 2020) utilized the enormous SMILES datasets to
predict molecular properties. However, SMILES is not geometry-aware
because it represents molecules as string sequences. Instead of SMILES
as molecular representations, recent studies using molecular graphs use
various types of pretext tasks. GROVER (Rong et al., 2020) developed a
transformer-style architecture and utilized motif-level pretext tasks. (Dillard,
2021) integrated pretext tasks at a different scale consisting of the atom,
fragment, and molecule levels.

Contrastive learning is one of the powerful learning methods of self-
supervised learning, making similar samples close and dissimilar samples
far away in embedding space (He et al., 2020; Chen et al., 2020). GraphCL
(You et al., 2020) proposed various augmentation methods for graph
contrastive learning. MolCLR (Wang et al., 2022) focused on molecular
representation learning based on approaches presented in GraphCL. These
methods change the structure of the original graph, such as dropping nodes
or changing edges, so that molecules can have different properties. Zhang
et al. (2020) proposed contrastive method brings the subgraph and the
graph close together through motif-level sampling from the entire graph.
MoCL (Sun et al., 2021) used augmentation to replace the sub-structure
in the original molecule with bioisostere, which has similar properties to
the original, incorporating domain knowledge. They tried to maintain the
semantic information of the molecule, but supervision used in pre-training
may not be appropriate for molecular representation learning because even
a tiny change in a molecule can lead to a significant difference. Hermosilla
and Ropinski (2022) proposed a 3D protein contrastive learning method
to learn the structure of a protein. During the pre-training process, the
substructures of the protein are used, which is a similar approach to (Sun
et al., 2021) except that 3D information is used. MEMO (Zhu et al., 2022)
is a multiple-view contrastive learning method using various molecular
representations (2D graph, 3D graph, Fingerprint, and SMILES). Uni-Mol
(Zhou et al., 2022) is a self-supervised model that uses 3D information and
consists of a pre-training scheme that predicts masked atoms or denoises
3D positions after adding noise to the molecular coordinates.

Molecular structure information plays an essential role in determining
molecular properties. We have recently witnessed studies with great success
using 3D geometric data. GraphMVP (Liu et al., 2021b) and 3Dinformax
(Stärk et al., 2021). developed 2D-3D view contrastive learning approaches
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3D Graph Contrastive Learning for Molecular Property Prediction 3

maximizing the mutual information between molecular embedding of 2D
graph network and 3D graph network. Existing works with 3D coordinates
do not fully utilize geometric information because they allow the 2D view
network to learn 3D view information.

2.3 3D Graph Neural Networks

Due to a general graph being represented in a non-euclidean space, it is
difficult to grasp the exact molecular structure. However, by leveraging 3D
positions, we can specifically use unique molecular geometric properties
such as distance, angle, and torsion in the euclidean space. For this reason,
3D Graph Neural Networks (3D GNNs) using 3D information are attracting
widespread attention in drug and material discovery fields (Unke and
Meuwly, 2019; Qiao et al., 2020).

3D Molecular graph can be represented as G3d = (V, E,R) , where
R denotes the 3D coordinates of atoms. SGCN (Danel et al., 2020) applied
different weights according to interatomic distance in the message-passing
process based on GCN. SchNet (Schütt et al., 2017) used Gaussian radial
basis functions to represent distance information in a high-dimensional
space. DimeNet (Klicpera et al., 2020) used orthogonal functions to learn
both distance and angle information. SphereNet (Liu et al., 2021c) also
used torsion information to represent a complete molecular structure using
spherical message passing. ChIRo (Adams et al., 2021) developed a
chirality-aware 3D network that can learn molecular chirality from torsion
angles. SchNet and subsequent models (DimeNet and SphereNet) can
capture non-bonded interaction based on 3D positional information within
cutoff. SchNet is the most efficient architecture among 3D GNNs in terms
of the learning cost and time, although the other models are superior
performance. We use SchNet as an encoder for 3D contrastive learning.
The critical process of SchNet is expressed as follows:

v0i = aZi (4)

where v0i denotes the feature of the atom i and is the initialized value
using embedding of the atomic number.

eij = exp(−γ
∥∥∥dij − µk

∥∥∥)2 (5)

where dij denotes the distance between the atom i and the atom j. The
interatomic distance is encoded to eij by radial basis functions located in
k centers µk .

v
(l+1)
i = v

(l)
i +MLP(

∑
j∈N(v)

v
(l)
j ◦ eij) (6)

vl+1
i in the l+1-th layer is updated based on neighbor atom j in the

l-th layer and the distance information eij . ◦ indicates the element-wise
multiplication.

hG3d =

n∑
i=1

MLP(v
(l)
i | v ∈ G) (7)

The global molecular feature vector hG3d is obtained based on
summation of the atom embeddings. We can handle arbitrary positioned
atoms in the 3D space through the encoder.

3 Method

3.1 Conformer Pool

A conformer is a molecule group formed by rotation on single bonds in
a molecule. Conformers have different potential energies depending on
the degree of rotation, and the lower the energy, the higher the probability
of existence in nature. For example, butane is a molecule composed of
single carbon-carbon bonds and single carbon-hydrogen bonds. If it is

Fig. 1. The process of creating a conformer pool we use in contrastive learning. We cannot
grasp the spatial characteristics of butane in 2D. However, we can see that the potential
energy varies depending on the rotation angle of the bond between the second carbon (C2)
and the third carbon (C3), both colored black in the figure on top. We construct a pool of
conformers with different stability and pre-train by randomly selecting from the rest of the
conformers shown in the yellow box in the figure in the middle, except for the most stable
molecule.

expressed in 2D, it is difficult to see the change due to the rotation of a single
bond. Nevertheless, as shown in Figrue 1, if represented in 3D, we can see
that butanes form conformers with different potential energies according
to rotation. We generate a conformer pool using the Merck molecular
force field (MMFF94) (Halgren, 1996) function in RDkit (Landrum et al.,
2020) to utilize diverse molecular geometric information in contrastive
learning. The MMFF method combines distance geometry (DG) algorithms,
a classic approach that randomly sample conformational space, with energy
minimization using MMFF. The conformer pool consists of five conformers
with the lowest energy. We do not add more conformers because five
conformers are enough to represent almost all molecules in nature (Liu
et al., 2021b), and the more conformers we add, the more computational cost
we need. We also reduce the cost and enrich the molecular representation
by randomly selecting the conformers from the conformer pool.

3.2 3D Graph Contrastive Learning

Contrastive learning is a powerful self-supervised learning method, moving
positive pairs of similar samples close and negative pairs of dissimilar
samples far away in embedding space. In order to be consistent with the
basic assumption of contrastive learning, we make the positive samples be
intrinsically the same as each other, unlike previous works that have made
use of the augmentation permuting atoms and bonds or may not maintain
molecular semantics (Wang et al., 2022; Zhang et al., 2020; Sun et al.,
2021).

Maintaining semantics between conformers means that conformers
conserve identity with the same element. Therefore, we performed
contrastive learning by constructing positive pairs with conformers
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Fig. 2. We generate a conformer pool from the original 2D molecule using 3D coordinates information. The conformer pool consists of five conformers that vary stability with the rotation
angle of a single bond. We randomly choose the two molecules from the conformer pool for conformer augmentation. Then, the selected molecule is fed to a 3D encoder for embedding
molecular representation. We apply a projection head to map the 3D view representations into the latent space for contrastive learning. The contrastive loss is computed across all positive and
negative pairs in the minibatch of N molecules.

(molecules with slightly different properties) instead of the existing methods
of changing semantics in the pre-training process.

Given molecular-input samples, we augment the molecule by applying
our conformer pool to construct the positive and negative pairs. We randomly
select two conformers (in yellow circle) in the conformer pool, as shown
in Fig. 2.

Graph contrastive learning maximizes the consistency between latent
representations of positive pairs against negative pairs. We get the molecular
graph embedding h using a 3DGNN encoder as the SchNet, and we apply a
projection head to embedding h resulting in the non-linear transformation
to obtain latent representation z. The projection head consists of a two-
layer multi-layer perceptron and maps the molecular representations to
another latent space as advocated in (Chen et al., 2020). Finally, we adopt a
normalized temperature-scaled cross entropy (NT-Xent) (Chen et al., 2020)
loss as our objective loss to maximize the agreement between the positive
samples compared to the negative samples in a minibatch of N molecules.
The contrastive loss for the first and second sampled conformers of k-th
graph kc1, kc2 is defined as:

L(zkc1
, zkc2

) = − log
exp(sim(zkc1

, zkc2
)/τ)∑2N

l=1,l ̸=k exp(sim(zkc1
, zlc2 )/τ)

(8)

where sim (z1, z2) is the cosine similarity z1 · z2/(∥z1∥ ∥z2∥) and τ

is the temperature paramerter. We compute the final loss across all training
samples in the minibatch. There have been a few molecular graph contrastive
learning models using diverse viewpoints recently. As introduced in the
Section 2.2, MoCL and MolCLR (Sun et al., 2021; Wang et al., 2022)
use the 2D-2D view approach, and there are models 3Dinformax and
GraphMVP (Stärk et al., 2021; Liu et al., 2021b) that use the method of the
2D-3D view. However, as far as we know, we propose a 3D-3D perspective
contrastive learning model first to fully utilize 3D information in the context
of molecular property prediction, as shown in Table 1.

4 Experiments

4.1 Datasets

Pre-training Dataset For pre-training of 3DGCL. We use only 1,128 ESOL
datasets (Delaney, 2004). We add 3D coordinates to pre-train datasets

Table 1. Comparison of views in various contrastive learning models.

Model 2D-2D view 2D-3D view 3D-3D view

MoCL ✓ · ·
MolCLR ✓ · ·
3Dinformax · ✓ ·
GraphMVP · ✓ ·
3DGCL · · ✓

Table 2. Summary of benchmark datasets. The table contains the applied domain,
type, number of molecules, average number of atoms in the dataset, and metrics
used.

Domain Dataset # Compounds # Atoms Metric

Physical Chemistry
ESOL 1128 13.3 RMSE

Freesolv 642 8.7 RMSE

Quantum Mechanics
QM7 6834 6.8 MAE
QM8 21786 7.8 MAE

Biophysics BACE 1512 34.4 ROC-AUC
Physiology BBBP 2039 24.1 ROC-AUC

using the Merck molecular force field (MMFF94) (Halgren, 1996) function,
which can obtain 3D coordinates faster (Stärk et al., 2021) than the latest
deep learning-based methods (Ganea et al., 2021; Shi et al., 2021).

Downstream Datasets We use four regression and two classification datasets
for downstream tasks. The datasets are described in Table 2:

• ESOL: Water solubility data (log solubility in mols per litre) for common
organic small molecules.

• Freesolv Mobley and Guthrie (2014): Experimental and calculated
hydration free energy of small molecules in water.

• QM7 Blum and Reymond (2009): Electronic properties (atomization
energy, HOMO/LUMO, etc.) determined using ab-initio density
functional theory (DFT).
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Table 3. Test performance of 3DGCL and other methods based on four regression (ESOL, Freesolv, QM7, and QM8) and two classification benchmarks (BBBP and
BACE). We mark the best results in bold and the second best results in underlined. We split the dataset into 8:1:1 (train:validation:test) using scaffold splitting
considering chirality.

Metric RMSE (Lower is better) ↓ MAE (Lower is better) ↓ ROC-AUC (Higher is better) ↑
Model ESOL Freesolv QM7 QM8 BBBP BACE

DMPNN 1.050 (0.008) 2.082 (0.082) 103.5 (8.6) 0.0190 (0.0001) 71.0(0.3) 80.9 (0.6)

Attentive FP 0.877 (0.029) 2.073 (0.183) 72.0 (2.7) 0.0179 (0.001) 64.3 (1.8) 78.4 (0.02)

HMGNN 0.832 (0.010) 1.857 (0.071) 59.0 (3.4) 0.0173 (0.004) 64.3 (1.8) 78.4 (0.02)

N-GramRF 1.074 (0.107) 2.688 (0.085) 92.8 (4.0) 0.0236 (0.0006) 69.7 (0.6) 77.9 (1.5)

N-GramXGB 1.083 (0.082) 5.061 (0.744) 81.9 (1.9) 0.0215 (0.0005) 69.1 (0.8) 79.1 (1.3)

PretrainGNN 1.100 (0.006) 2.764 (0.002) 113.2 (0.6) 0.0200 (0.0001) 68.7 (1.3) 84.5 (0.7)

MolCLR 1.271 (0.033) 2.594(0.249) 66.8 (2.3) 0.0178 (0.0003) 72.2 (2.1) 82.4 (0.9)

GraphMVP 1.029 (0.033) — — — 72.4 (1.6) 81.2 (0.9)

GROVERbase 0.983 (0.090) 2.176 (0.052) 94.5 (3.8) 0.0218 (0.0004) 70.0 (0.1) 82.6 (0.7)

GROVERlarge 0.895 (0.017) 2.272 (0.051) 92.0 (0.9) 0.0224 (0.0003) 69.5 (0.1) 81.0 (1.4)

GEM 0.798 (0.029) 1.877 (0.094) 58.9 (0.8) 0.0171 (0.0001) 72.4 (0.4) 85.6 (0.2)

Uni-Mol 0.788 (0.029) 1.620 (0.035) 41.8 (0.2) 0.0156 (0.0001) 72.9 (0.6) 85.7 (0.2)

3DGCL 0.778 (0.102) 1.441 (0.19) 42.53 (7.69) 0.0143 (0.0001) 79.15 (0.04) 85.5 (0.03)

• QM8 Ramakrishnan et al. (2015): Electronic spectra and excited state
energy of small molecules calculated by multiple quantum mechanic
methods.

• BBBP: Binary labels of blood-brain barrier penetration.
• BACE: Quantitative (IC50) and qualitative (binary label) binding results

for a set of inhibitors of human β-secretase 1(BACE-1).

We select the six molecule datasets from MoleculeNet (Wu et al., 2018).
The first two, ESOL and Freesolv, are physical chemistry datasets, and
the next two, QM7 and QM8, are quantum mechanic datasets, then BACE
and BBBP are biophysics and physiology, respectively. We also add 3D
locational information to downstream datasets in the same way (Fang et al.,
2022) as the pre-training dataset.

4.2 Training and evaluation settings

4.2.1 Pre-training Setting
During the pre-training of the model, we use an Adam optimizer with an
initial learning rate of 0.001 and exponentially reduce the learning rate at a
ratio of 0.95 or 0.99. Pre-training process is run with 300 epochs and 400
batch sizes.

4.2.2 Fine-tuning Setting
After pre-training, we fine-tuned the model on six benchmark datasets.
We train the model with an Adam optimizer of a learning rate of 0.001
and exponentially decrease the learning rate at rates of 0.95 or 0.99 in the
same way as pre-training. We set 32 batch sizes and ran 200 epochs for all
datasets.

We split the data set into train/validation/test sets at a ratio of 80/10/10
using the scaffold splitter (Bemis and Murcko, 1996) from DeepChem
(Ramsundar et al., 2019) for downstream tasks like previous works (Hu
et al., 2019; Rong et al., 2020). Each set is structurally different as the
scaffold splitter splits molecular data by their substructure. Then, this
splitting method is widely used for molecular-related tasks because it can
evaluate the generalization capability of algorithms well. We provide further
details of hyperparameter settings in supplemental materials.

4.2.3 Implementation Details
We implement our 3DGCL with PyTorch (Paszke et al., 2019) and
PyTorch Geometric frameworks (Fey and Lenssen, 2019) and write our

implementation code based on (Liu et al., 2021a). We use RDKit (Landrum
et al., 2020), a cheminformatics software for molecular-related tasks. All
the experiments are run on a single NVIDIA RTX 3090 GPU.

There are two processes regarding the running time of tasks about
conformers: creating a conformer pool from the original ESOL dataset
and contrastive learning after selecting two conformers. In our study, each
process took 3 and 6 minutes, totaling approximately 9 minutes, and the
number of model parameters is about 0.5 million. This indicates that our
work requires significantly low resources.

4.2.4 Evaluation
To evaluate our fine-tuned model, we measure the RMSE (Root Mean
Squared Error) on ESOL, Freesolv, and the MAE (Mean Absolute Error)
on QM7 and QM8 datasets. For a fair comparison with the state-of-the-art
models, we run the model with random seeds three times and average the
performance and standard deviation in the same way in previous works. In
the same way (Wang et al., 2022; Rong et al., 2020; Zhou et al., 2022), we
evaluated QM7 for 1 target task and QM8 for the average of 12 target tasks.

4.3 Results

We evaluate the 3DGCL performance with standard supervised baselines
and self-supervised models. All compared methods use more than one
dataset of six benchmark datasets (ESOL, Freesolv, QM7, QM8, BBBP,
and BACE) and conduct experiments under the same condition (Zhou et al.,
2022). The same condition denotes scaffold-splitting (with considering
chirality) the train/validation/test data to an 8:1:1 ratio and running tests
independently three times with three random seeds. Scaffold splitting can
be divided into two types according to the consideration of chirality. We
show the results of scaffold splitting with considering chirality in Table 3,
the results without considering chirality in Supplementary Table S2.

The baselines are as follows: DMPNN (Yang et al., 2019b) proposes
an interactive message passing scheme considering the interactions.
AttentiveFP (Xiong et al., 2019) is an attention-based graph neural
network. HMGNN (Shui and Karypis, 2020) utilizes global molecular
representations using an attention mechanism. CD-MVGNN (Ma et al.,
2022) performs a cross-dependent message-passing scheme considering
both atom and bond information. We compare CD-MVGNN with the
baselines in Supplementary Table S2 for the same test settings.

The rest of the seven methods are self-supervised models. N-Gram (Liu
et al., 2019) produces a graph representation in short walks by building the
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Table 4. Performance improvements of 3DGCL pre-training. We show enhanced performances to verify the pre-training effect of our method. We also indicate the
number of atoms of datasets.

Dataset ESOL Freesolv QM7 QM8 BBBP BACE
Molecular size 13.3 8.7 6.8 7.8 34.4 24.1

without pre-training 1.031 (0.1) 1.91 (0.42) 59.70 (22.1) 0.0163 (0.0003) 71.19 (0.03) 76.2 (0.02)

with 3DGCL pre-training 0.778 (0.102) 1.441 (0.19) 42.53 (7.69) 0.0143 (0.0001) 79.15 (0.04) 85.5 (0.03)

Improvement 24.5% 24.61% 28.8% 12.3% 10.1% 11%

Fig. 3. Comparison of 3DGCL and the three state-of-the-art models in terms of dataset and
parameter size in pre-training.

node embedding. MolCLR (Wang et al., 2022) is a 2D-2D view contrastive
learning model based on atom masking, bond deletion, and subgraph
removal. GraphMVP (Liu et al., 2021b) proposes 2D-3D view contrastive
learning approaches. GROVER (Rong et al., 2020) uses a predictive pre-
training strategy of motif-level. GEM Fang et al. (2022) and Uni-Mol
design predictive self-supervised learning scheme using 3D molecular
information. We reference the performance of the baselines in Uni-Mol
(Zhou et al., 2022).

We present the experimental result with dataset size in pre-training
to show the efficiency of our method, as can be seen in Table 3. We
mark the best results in bold and underline the second best in Table 3.
3DGCL outperforms all other methods on four of six datasets and shows
the second-best performance in QM7 and third-best in BACE. Furthermore,
our method achieves overwhelming performance on Freesolv and BBBP
by a large margin.

The results present that 3DGCL consistently achieves the best
performance and comparable results. We should also note that our method
uses overwhelmingly fewer resources than other methods, as shown in
Figure 3. We compare 3DGCL and the three state-of-the-art, GROVER,
GEM, and Uni-Mol, that show the best overall performance with the
pre-train dataset and model parameters. We can see that 3DGCL uses
about 10,000 times fewer datasets using only 1k than other state-of-the-art
methods using over 10M datasets, as shown in Figure 3(a). We can also
confirm that the number of 3DGCL parameters is approximately over 100
times fewer than the parameter size of other models, as shown in Figure
3(b).

5 Additional Experiments

5.1 Pre-training effects according to the molecular 3D
information and size

3D information is molecular coordinates, and we can obtain geometric
information such as distance, angle, and torsion. Our encoder utilize
distance information in the pre-training process. To verify the contribution
of geometric information on molecular representation learning, we compare

our model with pre-training and the model without pre-training, i.e., SchNet.
As a result of the experiment, 3DGCL consistently obtains enhanced
performance on all the datasets, as shown in Table 4.

We also investigate the pre-training effect by molecular size. The size
denotes the average number of atoms in each dataset. The result shows that
3DGCL leads to higher self-supervised performance on small molecules
than on larger datasets. This confirms the effect of the backbone encoder
(SchNet), which was developed to focus on small organic molecules. We
demonstrate that 3D spatial information is critical for molecular property
prediction, and the encoder plays an important role in self-supervised
learning.

5.2 Comparison with diverse augmentation methods

We conduct comprehensive studies to compare the proposed 3DGCL
method with the existing contrastive learning approaches, which may
alter the original molecular properties. In addition, we also compare our
conformer pool, which consists of five conformers that can most likely
exist in nature, and molecules that are difficult to exist in nature, which
is created by adding noise to the 3D position of the original molecule.
Finally, we compared selecting the most stable molecules with our method
of selecting molecules at random. We visualize the methods used in this
study in Figure 4.

Atom Dropping: Atom dropping removes atoms randomly at a constant
ratio in the molecule graphG. In previous graph contrastive learning studies,
atom dropping has been widely used for graph augmentation (You et al.,
2020; Wang et al., 2022). We randomly delete 20% of the atoms in the
original molecule.

Attribute Masking: Like atom dropping, we randomly select 20% of
atoms in the original molecule, then mask their attributes with a feature not
presented in the original molecules (You et al., 2020; Wang et al., 2022).
Since we use only the atomic number as the feature of atoms, we replace
the atom number with the new masking number n.

Position Noising: We add noise to the original 3D coordinates of
the most stable molecule. We generate the noise drawn from a Gaussian
distribution ∼ N (0, 1) whose mean and standard deviation are 0 and 1,
then multiply the noise by 0.01 to fit the scale with coordinates.

Conformer-S: We compare the method using the two most stable
conformers without creating the conformer pool to verify that the proposed
way of randomly selecting in the conformer pool is effective for learning
rich molecular representations. We name the approach utilizing only the
two stable molecules conformer-S and call our method Conformer-R in
this experiment.

We conduct extensive experiments to confirm the efficacy of molecular
location information based on chemical knowledge. The experiments
consist of three concepts. First, we compare atom dropping and atom
masking methods, which are challenging to preserve molecular semantics
due to severe structural changes. Secondly, we performed pre-training using
the noising position method that utilizes 3D information while subtly giving
spatial changes without chemical knowledge. Finally, we witness that our
random select way is superior to the stable molecule choice method.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2022.12.11.520009doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.11.520009
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2023/5/12 — 9:06 — page 7 — #7 i
i

i
i

i
i

3D Graph Contrastive Learning for Molecular Property Prediction 7

Fig. 4. The overview of various molecular augmentation methods.

Table 5. Details of experimental results based on diverse augmentation methods. We conduct extensive tests to prove the superiority of our conformer-based
augmentation method for molecular property prediction. The methods are categorized according to semantic preservation, domain knowledge, and 3D information,
and their results are reported.

Method ESOL Freesolv QM7 QM8 BBBP BACE
Maintaining
semantics

Chemical
knowledge

3D information

Atom Dropping 0.808 1.743 57.14 0.0164 71.68 84.61 X X X
Attribute Masking 0.800 1.817 48.75 0.0171 75.17 84.81 X X X
Position Noising 0.780 1.89 51.34 0.0166 77.53 84.40 X X O
Conformer-S 0.787 1.743 48.73 0.0155 75.82 85.34 O O O
Conformer-R (Ours) 0.778 1.441 42.53 0.0143 79.15 85.52 O O O

As experimental results, attribute masking has the least improved
effect in pre-training, and atom dropping shows the second minor effect
after attribute masking, as shown in Table 5. These results show that
the method of significantly modifying the structure and properties of
the original molecule is not suitable for molecular representation learning.
Augmentation, position noising, which generates molecules that are difficult
to exist (finely changing the 3D locations of atoms at random), showed
a better effect than the above two approaches. We also test comparing
the conformer pool (Conformer-R) and without the pool (Conformer-S)
to confirm that our method plentifully learns from molecular geometric
representation. As a result, our 3DGCL shows the best performance than
other methods. Through diverse comparative experiments, we validate that
our proposed approach is the most proper for molecular graph contrastive
learning in the context of molecular property prediction.

Fig. 5. Comparision of performance difference by training dataset size.

5.3 Application to real world

The drug field suffers from annotation scarcity in that wet-lab experiments
are required. We design experiments to verify that our model can be applied
to the actual drug area, assuming the real world with a data deficiency. We
conduct the experiments using ESOL and only 150, 300, and 600 samples
as training data without using the 1,128 entire datasets.

Then, we compare the model’s results with pre-training and the model
without pre-training. The pre-training process was conducted using the
whole ESOL dataset in the same way as in the above experiments. We
evaluate the results based on RMSE and observe that our method consistently
outperforms the model trained from scratch in all the reduced datasets, as
shown in Figure 5. The results indicate that our approach can be utilized
in the drug field encountering annotation insufficiency to obtain significant
effects.

6 Conclusion and Futher Works
In this work, we first proposed a novel 3D-3D view Graph Contrastive
Learning (3DGCL) framework to address existing issues in self-supervised
learning for molecular property prediction. Despite the prevailing notion
that self-supervised learning requires hyper-scale resources, we present the
possibility of small-scale self-supervised learning methods. Furthermore,
we suggested a contrastive approach using randomization in a conformer
pool that can learn 3D information in abundance while maintaining
molecular semantics, unlike previous methods that could alter the property
of the molecule. Comprehensive experiments show that our method
outperforms existing self-supervised methods. We provide insight that it is
proper to leverage 3D geometric information and domain-based knowledge
in molecular property prediction. We also demonstrate that 3DGCL can be
applied to the actual drug field undergoing annotation scarcity. We have
shown remarkable performance using models and datasets, even on a small
scale.

Despite the strong strengths, our model 3DGCL also has some
weaknesses, such as focusing on only distance-based geometric information
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due to our 3D-based backbone framework. Another weakness is that the
model needs to generate 3D information of molecules, which can slow
the model training. If sufficient resources are supported, we will extend
3DGCL to further studies with a broader range of downstream tasks, along
with hyper-scale model capacity, and more diverse geometric information.
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