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Abstract

Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due

to the experimental/computational difficulties in the structural determination/prediction

for members of this family of G-protein coupled receptors. Here we have developed

a protocol that performs a series of molecular dynamics simulations from a set of

structures predicted de novo by recent machine learning algorithms and apply it to

a well-studied receptor, the human OR51E2. Our study demonstrates the need for

simulations to refine and validate such models. Furthermore, we demonstrate the need

for the sodium ion at a binding site near D2.50 and E3.39 to stabilize the inactive state

of the receptor. Considering the conservation of these two acidic residues across hu-

man ORs, we surmise this requirement also applies to the other ∼400 members of this

family.
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Olfactory receptors (ORs) are a family of G protein-coupled receptors (GPCRs) that

plays a crucial role in the sense of smell.1 The human genome encodes for approximately

800 GPCRs, out of which 50% are ORs.2 Although initially identified in the nose, ORs are

expressed in different parts of the body.3,4 The investigation of the physiological roles of these

extranasal ORs, as well as their possible involvement in pathological conditions, is attracting

a growing interest.5,6 Moreover, given that GPCRs are the target of ∼34% of FDA-approved

drugs7 and the wide range of biologically active molecules binding to ORs,8 these receptors

are being explored as potential novel drug targets.9,10 However, the lack of high-resolution

structures for ORs has hindered the understanding of their functional mechanisms and the

development of OR-targeting drugs.

Recently, the field of computational biology has made significant strides in protein struc-

ture prediction, following the development of AlphaFold2,11 a deep learning (DL)-based

algorithm that can predict the 3D structures of proteins from their amino acid sequences

with high accuracy. The success of AlphaFold2 and other machine learning (ML)-based algo-

rithms has provided a powerful tool to study protein structure and function.12–14 Nonetheless,

structural prediction of GPCRs, including ORs, still presents challenges. In particular, the

algorithm predicts a single structure, despite multiple conformational states are possible

for GPCRs,15,16 and higher average confidence scores are obtained for proteins with close

homologs in the training PDB set,17 which is not the case for ORs.

To verify the reliability of an out-of-the-box in silico approach to predict OR structures

and dynamics, we tested a set of models generated with six different predictors, followed by

sub-microsecond molecular dynamics (MD) simulations. We chose to focus on the human ol-

factory receptor 51E2 (hOR51E2), associated to prostate cancer, because it has been widely

studied, both experimentally and computationally.18,19 Based on our test case, we propose

a protocol to build reliable models of inactive, sodium-bound OR structures.

Initial models. A set of six structural models of hOR51E2 was generated via homol-

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.02.22.529484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529484
http://creativecommons.org/licenses/by-nc-nd/4.0/


ogy modeling and ML-based prediction algorithms. For homology modeling, we relied on

the SwissModel (SM) webserver,20 while for ML-based prediction, we considered AlphaFold

(AF),11,21 RoseTTAFold (RF),22 OmegaFold (OF),23 and ESMFold (EF).24 As a last can-

didate, we considered a model of the receptor in its inactive state (AFin), generated with

AlphaFold-MultiState.15,25 For all the predictors considered, we tried to use the models al-

ready available to the public (i.e., without directly using the ML algorithm or modifying

the default parameters – see details in the Supporting Information). In Figure 1 we show

the initial predicted structures and a similarity representation among all six models, based

on the calculation of the mutual backbone RMSD, followed by a 2D projection using Multi-

dimensional Scaling (MDS).26 The most similar conformations are the AF and OF models

(in line with OF having been trained to reproduce AF results), while the most distant ones

are AFin (most likely because it was trained only on inactive GPCR structures) and SM

(which shows extracellular loops markedly different from the other models, inherited from

the template used, see Supporting Information).

Models without Sodium ion in its Binding Site. For the first set of MD runs,

we submitted the starting configurations (solvated and embedded in a POPC lipid bilayer)

as set up by the CHARMM-GUI27 webserver (see the Methods section and the Supporting

Information). During the equilibration, while the receptor and the membrane configurations

were maintained in the presence of restraints, when the system was left unconstrained we

observed in all cases at least a partial rearrangement of the transmembrane helices and their

interfaces.

Interestingly, even before removal of the restraints on the protein structure, the interior of

the receptor is flooded with water molecules passing from the intracellular to the extracel-

lular part (Figure 2). During the last 500 ns of unconstrained simulation, the amount of

flowing water increases, destabilizing the interaction network that keeps TM6 and TM7 close

together, thus increasing the spacing (from 7− 9 Å to 13− 15 Å) between them and finally

breaking the helical bundle fold.
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Figure 1: Comparison of the initial structures obtained via AI- or homology modeling-based
structural prediction. Left, Multidimensional Scaling (MDS)-based similarity plot. Right,
Cartoon representation of the six initial models.

One notable exception was represented by the SM structure. After ∼200 ns of unrestrained

simulation, a sodium ion bound to the receptor, occupying the known ion binding pocket in

class A GPCRs, close to D2.50 (D69 in hOR51E2). In addition, E1103.39 also participated in

the coordination of the the Na+ ion. After this event, the structure appeared much more

stable (despite the already broken fold). This suggests that a sodium-bound inactive struc-

ture might be more stable than an ion-devoid configuration and thus make us consider the

possibility of positioning such an ion in the Na+ binding pocket from the beginning of the

MD protocol.

Models with Sodium in its Binding Site. In the second set of runs, we followed the

same protocol but positioning a sodium ion close to the ion binding pocket in the vicinity

of D692.50. The time evolution of all the replicas is shown in the Supporting Information, in

terms of their RMSD and A100 values (Figures S1 and S2). In all the 18 simulations (6 sys-

tems × 3 replicas per system), we observed a better preservation of the initial fold, with an
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Figure 2: Opening of the TM6-TM7 interface in absence of sodium, exemplified here for
the AF model. In all the simulations without a sodium ion bound to the receptor, the
interface between TM6 and TM7 is disrupted (red-contoured arrows) and thus the receptor
changes between a closed conformation (cyan) at the end of the restrained equilibration to
a completely open conformation (lilac) after unrestrained MD.

RMSD of all heavy atoms around 5 Å (see Figure S2 in the SI), and the inactive conformation

is maintained, as shown by the A100 descriptor28 (see Figure S1). Despite this qualitative

change in the stability of the fold compared to the simulations without bound Na+, the

sodium-bound simulations started from EF, RF, and SM configurations still showed, in all

replicas, water passing from the intracellular to the extracellular part through the receptor

(see Table S2 in the Supporting Information), resulting in disruption of the interface between

the transmembrane helices, mainly stabilized by hydrophobic interactions.

Considering the OF and AF models, water did not pass from the intracellular part to the

transmembrane part of the receptor in one and two replicas out of three, respectively, main-

taining the initial fold and the TM6-TM7 distance through the whole 500 ns simulations.
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Finally, for AFin all the 3 runs maintained the original configuration (see Table S2).

To highlight differences and similarities in the fold suggested by different structure pre-

dictors, we performed a cluster analysis of the simulations. In particular, we concatenated

all the MD trajectories and calculated the reciprocal RMSD of all the frames (Figure 3),

considering the heavy atoms of the transmembrane helices only and ignoring the extra- and

intracellular loops, which are less stable and usually predicted with a smaller confidence.29–31

The results of the clustering are shown in Figure 3 and further details can be found in the

Methods section. From the cluster analysis we can make two observations: (i) the three

Figure 3: Cluster analysis for the sodium bound simulations started from different initial
receptor configurations. Left, Cluster population; Right, Representative structures of clusters
1-5, with TM6 and TM7 helices colored according to the starting model.

most stable models –AFin, AF, and OF– belong to two different clusters (1 and 4 in Figure

3); (ii) the histogram shows no overlap between the different source structures (with the

exception of cluster 1, where part of RF and whole AF and OF trajectories are classified

together). Therefore, upon refinement with MD, the different structure prediction methods

return significantly different conformations in the transmembrane part of the receptor, even

though the helical bundle should be less prone to errors in the structure prediction (and thus
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more stable). Interestingly, RF (which unfolds during the simulation) overlaps, at least in

part, with the conformations sampled in the AF and OF simulations (see cluster 1 in Figure

3). In general, AF and OF seem to generate similar initial and MD-refined structures, that,

considered together, are stable in three out of six simulations.

The most evident change between the three best candidates, AFin and AF/OF, is the different

structural alignment of the TM6-TM7 interface, as shown by the corresponding representa-

tive structures in Figure 3 (panels 1 and 2). Contact map analysis of the centroid structures

of clusters 1 and 4 (using MAPIYA32 (https://mapiya.lcbio.pl)) reveals a shift in the non-

bonded (mainly hydrophobic) interactions that stabilize the TM6-TM7 interface in the two

structures (see Figure 4). The TM6 sequence is half helical turn behind in the AFin model

with respect to AF/OF, whereas the TM7 helix is similar in both models. As a result, a

mismatch between opposing amino acid pairs occurs at the TM6-TM7 interface. In partic-

Figure 4: Comparison of the TM6-TM7 interface in the cryoEM structure of hOR51E2 (PDB
8F76) and the OF/AF and AFin models.

ular, the AFin and AF/OF structures have almost the same TM7 residues involved in the

interhelical contacts (Y2797.40, I2867.48, I2907.52), while for TM6 the only residue identified
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as interacting in both models is V2466.43. From a practical point of view, TM6 appears to be

shifted by 1-2 residues in the structural alignment of the two models, similarly to what was

observed in a recent work on another chemosensory receptor, TAS2R14,33 when comparing

two models built with AlphaFold and I-TASSER, respectively.34

Lastly, we compared the TM6-TM7 interfaces obtained for our two best in silico models

(AFin and AF/OF) with the one observed in the only experimental structure of hOR51E2

available as of April 2023 (PDB 8F76).19 Taking into account that a direct comparison is

not straightforward due to their different conformational state (the experimental structure

corresponds to a receptor in its active state, whereas our models are in the inactive state),

we can observe that the TM6-TM7 interhelical contacts are almost identical to the ones ob-

served with AFin. Namely, the TM6 residues commonly identified as part of the interface for

both the AFin and experimental structures are S2426.39, V2466.43, and F2506.47. Afterwards,

we observe a bending in the TM6-TM7 relative orientation (most likely related with the

active state of the receptor in the cryo-EM structure); as a result P2356.50 becomes the last

main actor of the hydrophobic interface, similarly to the AF/OF models (which are trained

on both active and inactive GPCR conformations, unlike the state-specific AFin). A further

indication that the TM6 structure is key for understanding the structure-function relation-

ships of hOR51E2 can be found in the side chain orientation of the two TM6 residues (i.e.

S2586.55 and R2626.59) involved in ligand binding based on the cryo-EM structure and muta-

genesis data.19 In the AF/OF model, R2626.59 points towards the membrane, while S2586.55

is involved in an intrahelical H-bond with L2546.54. Instead, in the AFin model both residues

are pointing inside the binding cavity; thus, this model is more compatible with these two

residues forming hydrogen bonds with the propionate ligand in the cryo-EM structure.19

These observations exemplify that, although the global differences between structures gen-

erated with different predictors might seem minimal, small local differences can still result

in significant changes and thus in misleading predictions regarding structure-function rela-

tionships.
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In conclusion, we set up a protocol to equilibrate and test models of olfactory receptors

in their inactive state embedded in a POPC membrane. We can highlight four main obser-

vations from the protocol: (i) as already suggested in previous works,35–37 the reliability of

structures should be tested via MD simulations: we observed that the initial conformation

of the receptor changes in the first 50-100 ns of unrestrained simulations (see RMSD plots

in the SI), confirming the need of relaxation times at least in this order of magnitude to

verify the stability of a model; (ii) de novo structural determination can lead to significantly

different predictions in presence of a multi-state system (see AF vs. AFin); (iii) the lim-

ited conservation of sequence motifs between human ORs and other class A GPCRs (see

Table S3), especially for TM6,38 can lead to gross errors in structure reconstruction; and

(iv) for hOR51E2 in its inactive state –but this is most probably valid for a large set of

ORs– the presence of sodium in its binding pocket is crucial for the stabilization of its fold.

Sodium binding to hOR51E2 can be attributed to the presence of two negatively charged

residues, D692.50 and E1103.39. The first one is a known site for ion binding conserved in

class A GPCRs, while the second position is usually occupied by S in non-olfactory class A

GPCRs39 (see Table S4). Instead, 93% of human ORs contain Asp/Glu at both positions

2.50 and 3.39 (see Figure S6). Residue conservation in these sites can suggest a coevolu-

tionary feature40 supporting the structural stability role of Na+ ion binding, as empirically

observed by us. In line with this hypothesis, the presence of sodium in that position is

also foreseen for hOR51E2 by the ML-based protein-ligand binding predictor, AlphaFill41

(see https://alphafill.eu/model?id=Q9H255). As a further indirect validation, a recent ex-

perimental work42 showed that mutation of E3.39 enhances the in vitro expression of ORs,

further supporting the structural and functional importance of this residue. As pointed out

by a recent commentary,43 de novo structure determination is dramatically limited by the

“single answer problem”: predictors return a single structure that is, following the training,

the most probable candidate. From a general point of view, this can be correct only for
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single-state proteins, while here (and in the majority of the biologically-relevant cases) our

target GPCR has a set of different conformational states. This problem can be solved (or

attenuated) taking particular care of the structural knowledge that the algorithm employs

to perform its prediction. In the Heo and Feig15 or del Alamo et al.16 approaches, this is ac-

complished by limiting the training set to a single state (here GPCR experimental structures

annotated to be in the inactive state), to maximize the chances of a correct prediction. The

majority of the de novo structure determination algorithms need a properly aligned multi-

ple sequence alignment (MSA). Hence, the abundance of sequences that can be employed

in the generation of reliable MSA is a key point in the success of the structural prediction

algorithms presented here. In the case of the GPCR superfamily, their predominance in the

human genome (approx. 800 genes)2 and the availability of experimental structures (159

unique receptors in the GPCRdb, as of December 2022) provides a wealth of data to train

ML predictors. However, as pointed out in references,15,16 GPCRs have multiple confor-

mational states and thus special care needs to be taken when generating the corresponding

MSAs. Here we further highlight that, for less similar GPCR families, such as hORs,44 the

limited conservation of functional motifs (or lack thereof, see Table S3) further impacts the

reliability of the structural predictions. In particular, ORs lack the “rotamer toggle switch”

involving W6.48 present on helix TM6 in non-olfactory class A GPCRs,38,45 but contain Y/F

at positions 6.48 and 6.47 (see Table S2). Such divergence (and possible consequent MSA

mismatch) may result in different structural predictions. Some of these models seem to be

not good enough, as evidenced by the stability (or lack thereof) of the predicted fold of the

system in MD simulations. One possible way to overcome this problem can be represented

by the use of manually-curated MSA based also on structural information and/or in the

training of ML weights to target specific GPCRs subfamilies in their structure predictions.

Finally, we expect that the MD-based protocol presented here for the inactive models of

hOR51E2 as test case can be generalized and applied to the other ∼400 hORs, as well as

to class A GPCRs. In particular, the observation that sodium binding helps stabilize the

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.02.22.529484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529484
http://creativecommons.org/licenses/by-nc-nd/4.0/


inactive models is likely to hold for the 93% of hORs with D/E at positions 2.50 and 3.39

(Figure S6) and for the 94% class A GPCRs with a negatively charged residue at position

2.50.39

Methods

System preparation

The set of six ML- and homology-based structural models of hOR51E2 generated in this

work (see Supporting Information, section ‘Initial structures generation’) was preprocessed

using the Protein Preparation Wizard implemented in Schrödinger Maestro 2022-3,46 which

automatically assigns the amino acid protonation states. Two exceptions were represented by

D692.50 and E1103.39, that were kept in their charged state. All the structures prepared were

further processed via the interface of CHARMM-GUI.27,47 First, we built a disulfide bond

between C963.25 and C17845.50, then we defined a cubic box with dimensions 100×100×120Å
3
,

with the receptor embedded in a POPC lipid bilayer. The membrane and the receptor were

solvated in water with a NaCl concentration of 0.15 M, in line with standard experimental

and physiological conditions for GPCRs. The protein, lipids, and ions were parameterized

using the CHARMM36m force field,48 while water was described with the TIP3P49 model.

Molecular dynamics simulations

The simulations performed here were based on an extended version of the standard CHARMM-

GUI workflow (see Supporting Information). The production step was a 500 ns-long unre-

strained MD simulation with a time step of 2 fs. Velocity rescale thermostat50 and cell-

rescale barostat51 were applied to keep the temperature and pressure to 310 K and 1 bar,

respectively. For all Na+-bound systems, we performed three independent replicas for each

model, assigning different starting initial velocities. The number and simulation length

of the replicas performed here is the same as recommended in the protocol used in the
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GPCRmd repository.52 All simulations were performed using GROMACS53 2021.2 patched

with PLUMED.54,55

Cluster analysis

We concatenated the trajectories for all the systems simulated and performed a mutual

RMSD calculation using non-hydrogen atoms of the transmembrane part of the receptor.

Clustering was performed with the gromos method,56 as implemented in GROMACS, using

an RMSD cutoff of 2.5 Å.

Data Availability

Data needed to reproduce the results shown in this paper (structures, topology, GROMACS

and PLUMED input files, a tcl script for 7x7 RMSD calculations, etc.) and the resulting

trajectories are available at Zenodo (https://doi.org/10.5281/zenodo.7817679).
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A100 and RMSD, a table with the water passage results, a plot that shows the amino acid

conservation for positions 2.50 and 3.39, as well as tables with the Ballesteros-Weinstein

numbering for hOR51E2, as listed in the GPCRdb,25 conserved motifs in hORs and class A

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.02.22.529484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529484
http://creativecommons.org/licenses/by-nc-nd/4.0/


GPCRs; a structural alignment of the models obtained; a MDS plot based on the RMSD of

the MD trajectories; and a 7x7 RMSD matrix between the experimental cryoEM structure

of hOR51E2 and the two best models obtained here (AF/OF and AFin).
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Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic

Analysis, Paralogon Groups, and Fingerprints. Molecular Pharmacology 2003, 63,

1256–1272.

(3) Maßberg, D.; Hatt, H. Human Olfactory Receptors: Novel Cellular Functions Outside

of the Nose. Physiological Reviews 2018, 98, 1739–1763.

(4) Alfonso-Prieto, M. Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in

the Tongue and the Nose. The Journal of Membrane Biology 2021, 254, 343–352.

(5) Drew, L. Olfactory receptors are not unique to the nose. Nature 2022, 606, S14–S17.

(6) Naressi, R. G.; Schechtman, D.; Malnic, B. Odorant receptors as potential drug targets.

Trends in Pharmacological Sciences 2023, 44, 11–14.

(7) Hauser, A. S.; Chavali, S.; Masuho, I.; Jahn, L. J.; Martemyanov, K. A.; Gloriam, D. E.;

Babu, M. M. Pharmacogenomics of GPCR Drug Targets. Cell 2018, 172, 41–54.e19.

(8) Cong, X.; Ren, W.; Pacalon, J.; Xu, R.; Xu, L.; Li, X.; de March, C. A.; Mat-

sunami, H.; Yu, H.; Yu, Y.; Golebiowski, J. Large-Scale G Protein-Coupled Olfactory

Receptor–Ligand Pairing. ACS Central Science 2022, 8, 379–387.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.02.22.529484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529484
http://creativecommons.org/licenses/by-nc-nd/4.0/


(9) Lee, S.-J.; Depoortere, I.; Hatt, H. Therapeutic potential of ectopic olfactory and taste

receptors. Nature Reviews Drug Discovery 2018, 18, 116–138.

(10) Pizio, A. D.; Behrens, M.; Krautwurst, D. Beyond the Flavour: The Potential Drugga-

bility of Chemosensory G Protein-Coupled Receptors. International Journal of Molec-

ular Sciences 2019, 20, 1402.

(11) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tun-
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tra, A. J.; Gloriam, D. E. GPCRdb in 2023: state-specific structure models using Al-

phaFold2 and new ligand resources. Nucleic Acids Research 2022,

(26) Modern Multidimensional Scaling ; Springer New York, 2005.

(27) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. CHARMM-GUI: a web-based graphical user

interface for CHARMM. Journal of computational chemistry 2008, 29, 1859–1865.

(28) Ibrahim, P.; Wifling, D.; Clark, T. Universal activation index for class A GPCRs.

Journal of Chemical Information and Modeling 2019, 59, 3938–3945.

(29) Kufareva, I.; Katritch, V.; Stevens, R. C.; Abagyan, R. Advances in GPCR Modeling

Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure

2014, 22, 1120–1139.

(30) Lee, C.; Su, B.-H.; Tseng, Y. J. Comparative studies of AlphaFold, RoseTTAFold and

Modeller: a case study involving the use of G-protein-coupled receptors. Briefings in

Bioinformatics 2022, 23 .

(31) Nicoli, A.; Haag, F.; Marcinek, P.; He, R.; Kreißl, J.; Stein, J.; Marchetto, A.;

Dunkel, A.; Hofmann, T.; Krautwurst, D.; Pizio, A. D. Modeling the Orthosteric Bind-

ing Site of the G Protein-Coupled Odorant Receptor OR5K1. Journal of Chemical

Information and Modeling 2023,

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2023.02.22.529484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529484
http://creativecommons.org/licenses/by-nc-nd/4.0/


(32) Badaczewska-Dawid, A. E.; Nithin, C.; Wroblewski, K.; Kurcinski, M.; Kmiecik, S.

MAPIYA contact map server for identification and visualization of molecular interac-

tions in proteins and biological complexes. Nucleic Acids Research 2022, 50, W474–

W482.
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