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ABSTRACT 

Chemical probing experiments have transformed RNA structure analysis, enabling high-

throughput measurement of base-pairing in living cells. Dimethyl sulfate (DMS) is one of 

the most widely used structure probing reagents and has played a prominent role in 

enabling next-generation single-molecule probing analyses. However, DMS has 

traditionally only been able to probe adenine and cytosine nucleobases. We previously 

showed that, using appropriate conditions, DMS can also be used to interrogate base-

pairing of uracil and guanines in vitro at reduced accuracy. However, DMS remained 

unable to informatively probe guanines in cells. Here, we develop an improved DMS 

mutational profiling (MaP) strategy that leverages the unique mutational signature of N1-

methylguanine DMS modifications to enable robust, high-fidelity structure probing at all 

four nucleotides, including in cells. Using information theory, we show that four-base 

DMS reactivities convey greater structural information than comparable two-base DMS 

and SHAPE probing strategies. Four-base DMS experiments further enable improved 

direct base-pair detection by single-molecule PAIR analysis, and ultimately support 

RNA structure modeling at superior accuracy. Four-base DMS probing experiments are 

easily performed and will broadly facilitate improved RNA structural analysis in living 

cells. 
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INTRODUCTION 

RNA molecules fold into complex base-paired secondary and tertiary structures 

that are critically linked to RNA function (1). One of the oldest and most scalable 

methods for interrogating RNA structure are chemical probing experiments (2-4). These 

experiments, which can be performed both in vitro and in cells, use small molecule 

chemical reagents to selectively modify flexible nucleotides, yielding per-nucleotide 

reactivity measurements that report on local RNA structure. Probing data are useful as 

stand-alone measurements, and can also be used to guide structure modeling 

algorithms to reconstruct global RNA structure (5,6). Recently, we and others have 

introduced single-molecule chemical probing experiments as an even more powerful 

strategy for characterizing complex RNA systems (7). By measuring correlated 

modification events, single molecule probing experiments enable direct measurement of 

secondary base-pairing (8,9), tertiary interactions (10), and ensembles comprising 

multiple structural states (11-14). Both traditional and single-molecule experiments have 

provided critical insights into RNA biology (15-22), and increasingly serve as 

foundational technologies for RNA functional characterization and therapeutic 

development (19,23-26). 

Numerous strategies utilizing diverse chemical reagents have been developed to 

probe different aspects of RNA structure (4). The oldest and still one of the most used 

probing reagents is dimethyl sulfate (DMS) (27). DMS methylates the Watson-Crick face 

of single-stranded adenine (A) and cytosine (C) nucleobases at the N1 and N3 

positions, respectively. DMS is readily cell permeable and can be used to achieve high 

levels of modification, which is essential for single-molecule probing applications. 
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However, the inability of DMS to probe uracil (U) and guanine (G) bases has 

represented a key limitation. We recently showed that mildly alkaline conditions enable 

DMS to effectively probe U structure (8). These conditions also support probing of G 

structure in vitro at lower but still useful accuracy. However, DMS remained unable to 

probe G structure in cells. Probing G is particularly desirable because of the outsized 

role G nucleotides play in stabilizing RNA structure. Alternative chemical reagents 

permit probing of G and U (28-30), and SHAPE (selective 2'-hydroxyl acylation analyzed 

by primer extension) reagents support probing of all four bases (31-34), but to date 

these reagents have proven less amenable for single-molecule analyses. Enabling 

robust DMS probing at all four bases has the potential to broadly improve both per-

nucleotide and single-molecule RNA structural analysis.  

 A seminal advance in chemical probing technology has been the development of 

mutational profiling (MaP) (10,35). MaP uses specialized reverse transcription protocols 

to read through and encode chemical modifications as mutations in cDNA, which can 

then be measured via high-throughput sequencing. Compared to alternative strategies, 

MaP permits precise quantitation of even rare modification events. Critically, MaP also 

permits measurement of multiple modifications per individual molecule, enabling 

detection of the correlated modification events that underpin single-molecule probing 

strategies (7). MaP may also enable distinguishment between different chemical 

modifications that generate distinct mutational signatures, although this application is 

relatively unexplored.  

In recent years, multiple reverse transcriptase enzymes have been adapted for 

performing DMS-MaP experiments. G- and U-sensitive DMS probing and most single-
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molecule probing analyses have relied on a relaxed-fidelity Superscript II (SSII) reverse-

transcription protocol (8,10,11). Newer MaP protocols that use TGIRT-III (TGIRT) and 

MarathonRT (Marathon) reverse transcriptase have been reported to be more 

processive and exhibit lower background error rates (36-38). However, these enzymes 

have not been evaluated for their ability to measure DMS modifications at G and U 

nucleotides, nor for their ability to support direct base pair detection via single-molecule 

correlation analysis.  

In this work, we sought to evaluate different MaP protocols for their ability to 

support DMS probing at all four bases. Strikingly, our analyses revealed that reverse 

transcriptases decode DMS-induced N1-methylguanine and N7-methylguanine chemical 

modifications via distinct mutational signatures. Leveraging this discovery, we develop a 

new strategy that solves prior limitations to enable high-fidelity DMS probing at all four 

nucleotides in cells. Four-base DMS-MaP conveys more information than other 

comparable structural probing experiments, facilitates more sensitive single-molecule 

analysis, and ultimately enables improved RNA structural modeling, representing an all-

in-one strategy for complete RNA structural analysis. 

 

MATERIALS AND METHODS 

Probing of HEK293 cells 

 DMS probing: Human HEK293 cells (ATCC; CRL-1573) were maintained in 

DMEM supplemented with 10% FBS and 100 U/mL Pen/Strep at 37 °C and 5% CO2. ~1 

x 106 cells were seeded in a 6 cm culture dish and grown to ~75% confluency. Prior to 

DMS treatment, media was exchanged with 2.8 mL fresh media, followed by addition of 
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800 µL of 1 M bicine (pH 8.3 at room temperature), 1 M sodium cacodylate (pH 7.2), or 

nuclease-free water, and equilibrated for 3 min at 22 °C. Cells were modified by adding 

400 µL of 1.7 M DMS solution in ethanol (or 100% ethanol for control reactions) and 

incubating at 37 °C for 6 min. Reactions were quenched by addition of 4 mL ice-cold 

20% 2-mercaptoethanol (vol/vol in PBS). Cells were scraped and pelleted by 

centrifugation at 1000 g for 5 min at 4 °C, followed by RNA extraction with 1 mL TRIzol 

reagent (ThermoFisher). Genomic DNA was removed by addition of 6 U of TURBO 

DNase (Ambion) and incubation at 37 °C for 45 min. RNA then was purified (RNA Clean 

& Concentrator, Zymo), quality assessed by TapeStation analysis (Agilent), and 

concentration quantified by UV absorbance (NanoDrop, ThermoFisher). 

 2A3 probing: Probing was done as described by Marinus et al (34). HEK293 cells 

were maintained as described above. Prior to 2A3 treatment, media was removed, cells 

washed with 1x PBS, followed by addition of 1 mL trypsin and 2 min incubation at 37 °C 

to detach cells from the dish. Trypsin was neutralized by 2 mL of media and cells 

pelleted by centrifugation at 1000 g for 5 min at 22 °C. The cell pellet was resuspended 

in 90 µL of PBS. 10 µL of 1 M 2A3 (Tocris Bioscience) was added to the cells followed 

by 15 min incubation at 37 °C with occasional tapping to mix. 2A3 reactions were 

quenched by addition of 100 mL of ice-cold 20% 2-mercaptoethanol. RNA then was 

extracted as described above. 

 

DMS probing of E. coli RNA 

Cell-free experiments: Cell-free DMS probing of E. coli K-12 MG1655 total RNA 

was performed as previously described (8). 148 mL LB was inoculated with 2 mL of an 
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overnight culture and grown at 37 °C until OD600 » 0.5. 16.65 mL of 187.5 µg/mL 

rifampicin was added followed by incubation for 20 min at 37 °C to chase assembly of 

RNA-protein complexes (39). Cells were pelleted and resuspended in 32 mL of lysis 

buffer [15 mM Tris HCl (pH 8), 450 mM sucrose, 8 mM EDTA (pH 8)], followed by 

addition of 1.28 mL of 1 mg/mL lysozyme, and 10 min incubation on ice. Total RNA was 

extracted by 3x phenol/chloroform/isoamyl alcohol (PCA) extraction, 3x chloroform 

extraction, and exchange into 1x bicine folding buffer [200 mM bicine (pH 8.3 at room 

temperature), 200 mM potassium acetate, 5 mM MgCl2]. After 10 min equilibration at 37 

°C, 1 volume of 1.7 M DMS solution in ethanol (or 1 volume of 100% ethanol for control 

reactions) was added to 9 volumes of total RNA and reacted for 6 min at 37 °C. Ten 

volumes of ice-cold 20% 2-mercaptoethanol was added to quench reactions, followed 

by purification (RNeasy Midi, Qiagen), DNase treatment (TURBO DNase, 

ThermoFisher), and a final purification (RNeasy Midi, Qiagen). RNA was then quantified 

for quality (TapeStation, Agilent) and concentration (NanoDrop, ThermoFisher). 

In-cell experiments: In-cell DMS probing of E. coli total RNA was performed as 

described (8). Cells were grown and treated with rifampicin as described for cell-free 

experiments, then pelleted by centrifugation at 4000 g for 5 min at 22 °C. Cell pellets 

were resuspended in 20 mL of 1x bicine folding buffer [200 mM bicine (pH 8.3 at room 

temperature), 200 mM potassium acetate, 5 mM MgCl2]. For experiments using 

alternative extracellular buffers, pH 8.3 bicine buffer was replaced with 200 mM pH 7.2 

sodium cacodylate, 200 mM bicine pH 8, or 200 mM bicine pH 9 (all prepared at room 

temperature). 4.5 mL of cells was added to 0.5 mL of 7 M DMS in ethanol (or 0.5 mL 

100% ethanol for control reactions) and reacted for 6 min at 37 °C. DMS reactions were 
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quenched by addition of 20 mL of ice-cold 20% 2-mercaptoethanol and the cells placed 

on ice. Cells were pelleted, resuspended in 1 mL of 1mg/mL lysozyme, and incubated 

on ice for 5 min. Total RNA was extracted using TRIzol reagent, DNase treated 

(TURBO DNase, Invitrogen), and then purified (RNeasy Midi, Qiagen). 

 

Reverse Transcription 

Four different mutational profiling (MaP) reverse transcription (RT) protocols 

were evaluated, which we refer to by the RT enzyme used: Superscript II (SSII) (8), 

MarathonRT (Marathon) (37), TGIRT-III (TGIRT) (36), and evolved HIV RT (40). Gene-

specific priming was used for human RNase P and RMRP, and E. coli tmRNA, and 

random priming was used for ribosomal RNAs. RT reactions were purified using 

magnetic beads (Mag-Bind Total Pure NGS, Omega Bio-Tek). 2A3-probed RMRP and 

RNase P samples were reverse transcribed using the SSII protocol.  

SSII: 2 µL of 10 mM dNTPs and 1 µL of either 2 µM specific primer or 200 ng/µL 

random 9-mer was added to 8 µL of 1-2 µg RNA and incubated at 65 °C for 10 min 

followed by 4 °C for 2 min. Subsequently, 8 µL of 2.5x SSII MaP buffer [final 

concentration 50 mM Tris-HCl (pH 8), 75 mM KCl, 6 mM MnCl2, 1 M betaine, 10 mM 

DTT] was added to the solution, followed by 1 µL of SSII (Invitrogen). The reaction was 

then incubated according to the temperature program: 25 °C for 10 min, 42 °C for 90 

min, 10x[50 °C for 2 min, 42 °C for 2 min], 72 °C for 10 min. 

Marathon: 2 µL of 10 mM dNTPs and 1 µL of either 2 µM specific primer or 200 

ng/µL random 9-mer was added to 2.8 µL of 1-2 µg extracted RNA and incubated at 65 

°C for 10 min followed by 4 °C for 2 min. Afterward, 12.2 µL of Marathon MaP buffer 
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[final concentration 50 mM Tris-HCl (pH 8.3), 200 mM KCl, 5 mM DTT, 1 mM MnCl2, 

20% glycerol] and 2 µL of Marathon (Kerafast) were added to the solution. The solution 

then was incubated at 42 °C for 3 h followed by 95 °C for 1 min. 

TGIRT: 2 µL of 10 mM dNTPs and 1 µL of either 2 µM specific primer or 200 

ng/µL random 9-mer was added to 8 µL of 1-2 µg RNA and incubated at 65 °C for 10 

min followed by 4 °C for 2 min. 8 µL of 5X TGIRT-III RT buffer [final concentration 50 

mM Tris–HCl (pH 8.3), 75 mM KCl, and 3 mM MgCl2] and 1 µL TGIRT-III (InGex) were 

added to the solution, followed by incubation at 60 °C for 2 h. 

eHIV: 1 µL of 10 mM dNTPs and 1 µL of 5 µM specific primer was added to 7 µL 

containing 2 µg of RNA and incubated at 70 °C for 2 min followed by 4 °C for 2 min. 9 

µL of 5X eHIV RT buffer [final concentration 200 mM Tris-HCl (pH 8.3), 400 mM KCl, 20 

mM MgCl2] and 2 µL of eHIV enzyme were added to the solution. The reaction was then 

incubated at 42 °C for 3 h followed by 95 °C for 1 min. The eHIV enzyme was 

expressed and purified from pET30-RT1306 (gift from Bryan Dickinson; Addgene 

plasmid # 131521) following published protocols (40). 

 

Library Preparation 

Small RNAs: Libraries were prepared using a two-step PCR strategy (6,8). 1 µL 

of cDNA was input into PCR1 using the following temperature cycles: 98 °C for 30 s, 18 

cycles of [98 °C for 10 s, 60 °C for 30 s, 72 °C for 20 s], and 72 °C for 2 min. PCR1 

products were purified (Mag-Bind Total Pure NGS, Omega Bio-Tek) using a 0.7x bead 

ratio. 1 ng of PCR1 product was used as input for PCR2 using the following temperature 

cycles: 98 °C for 30 s, then 12 cycles of [98 °C for 10 s, 66 °C for 30 s, 72 °C for 20 s], 
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and 72 °C for 2 min. PCR2 products were purified using a 0.7x bead ratio. Libraries 

were sequenced on an Illumina MiSeq instrument using either 2x250 (v2 chemistry) or 

2x300 (v3 chemistry) paired-end sequencing. 

rRNAs: Libraries from randomly primed total RNA were prepared using the xGen 

NGS RNA (Integrated DNA Technologies) kit for HEK293 and the Nextera XT (Illumina) 

kit for E. coli cells. cDNAs were converted to double stranded DNA (dsDNA) by 

NEBNext second-strand synthesis module (New England Biolabs) using 2 h incubation 

at 16 °C. dsDNA was purified and size selected using magnetic beads (Mag-Bind Total 

Pure NGS, Omega Bio-Tek) using a 0.65x bead ratio. Libraries were then generated 

following the Nextera XT manufacturer protocol, followed by purification and size-

selection by magnetic beads (Mag-Bind Total Pure NGS, Omega Bio-Tek) using a 0.56x 

bead ratio. Libraries were sequenced on an Illumina MiSeq instrument using 2x300 

paired-end sequencing (v3 chemistry). 

 

Mutation signature analysis 

RMRP and RNase P probing data were initially processed using ShapeMapper 

2.1.5 with the --output-counted-mutations flag to tabulate mutation types observed at 

each sequence position. Area under the receiver operating characteristic curves 

(AUROC) were calculated with Scikit-Learn (0.24.1) in Python using background-

subtracted mutation rates with pairing status of each position derived from known 

reference structures (41-45). To identify the G mutation signature filter, AUROC was 

calculated for all possible combinations of mutation types, which revealed that including 

only G-to-C and G-to-T substitutions yielded the highest AUROC for all enzymes.  
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ShapeMapper 2.2 

Building on our mutation signature analysis, we incorporated several new 

features into ShapeMapper to automate four-base DMS-MaP processing. This new 

version of ShapeMapper (v2.2) is available for download at https://github.com/Weeks-

UNC/shapemapper2. DMS-specific processing is invoked using the “--dms” flag.   

Mutation signature filtering: G-to-A single-nucleotide mismatches, G multi-

nucleotide mismatches, and insertions and deletions at all nucleotides are ignored (set 

internally to “no data”).  

DMS reactivity normalization: Because four-base DMS modification rates vary 

significantly based on nucleotide identity, reactivities are normalized on a nucleotide-

specific basis. The DMS modification rate is calculated as the difference between the 

modified and untreated mutation rates, or simply as the modified mutation rate if no 

untreated sample is provided. Normalization factors for each nucleotide type n are 

computed as 

𝑁! = max	{	〈𝑟!〉[#!",			#!#], 𝑃'((𝑟! > 0.001)	} 

where	〈𝑟!〉[#!",			#!#] denotes the mean of 90th–95th percentile modification rates, 

𝑃'((𝑟! > 0.001) denotes the 75th percentile of modification rates >0.001. This scheme is 

more robust for RNAs such as the ribosome where most nucleotides are unreactive. 

Final normalized reactivities are then obtained by dividing the modification rate by the 

nucleotide-specific normalization factor. The normalized reactivities are output directly 

as text files with the suffix .dms. 
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Final data processing 

Four-base DMS probing data were processed using ShapeMapper 2.2 with the --

dms and --output-parsed-mutations options. Amplicon libraries from small RNAs were 

processed using the --amplicon option, and total RNA (rRNA) libraries were processed 

using the --random-primer-len 9 flag. Unfiltered (standard DMS) and 2A3 data were 

processed using ShapeMapper 2.2 without the --dms flag.  

 

Expected Structural Information 

Inspired by metrics for quantifying sequence information content (46), we 

developed the Expected Structural Information (ESI) metric to intuitively quantify the 

total information provided by a probing experiment. Each nucleotide can adopt two 

possible structural states: base-paired (b) or unpaired (u). In the absence of any probing 

data, we assume each nucleotide has an equal probability of being paired or unpaired 

(𝑝(𝑏) = 𝑝(𝑢) = 0.5). A reactivity measurement (𝑟)) reduces the structural uncertainty, 

which can be quantified as 

𝑆𝐼(𝑟)) = 	𝐻(𝑠) 	|	∅) − 𝐻(𝑠) 	|	𝑟)) = 1 − 𝐻(𝑠) 	|	𝑟)) 

 

where 𝑆𝐼(𝑟)) denotes the structural information conveyed by reactivity 𝑟), and 𝐻(𝑠)) 

denotes the Shannon entropy of position i: 

Η(𝑠) 	|	𝑟)) = 	− @ 𝑝(𝑠	|	𝑟))	𝑙𝑜𝑔*	𝑝(𝑠	|	𝑟))
+∈{.,/}

 

 

If 𝑟) 	conveys no information,  𝑝(𝑏	|	𝑟)) = 𝑝(𝑢	|	𝑟)) = 0.5 and 𝑆𝐼(𝑟)) = 0. Alternatively, if 𝑟) 

conveys perfect information, then 𝑝(𝑏	|	𝑟)) = 1	or	𝑝(𝑢	|	𝑟)) = 1 and 𝑆𝐼(𝑟)) = 1. 𝑝(𝑏	|	𝑟)) 
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and  𝑝(𝑢	|	𝑟))	are determined from the empirical reactivity distributions for paired and 

unpaired positions based on the known structure: 

𝑝(𝑏	|	𝑟)) = 	
�̂�(𝑟) 	|	𝑏)

�̂�(𝑟) 	|	𝑏) + �̂�(𝑟) 	|	𝑢)
	; 	𝑝(𝑢	|	𝑟)) = 1 − 	𝑝(𝑏	|	𝑟)) 

 

The distributions �̂�(𝑟) 	|	𝑏) and �̂�(𝑟) 	|	𝑢) are estimated by fitting the paired and unpaired 

reactivity data for each nucleotide type to double-gamma mixture models. The expected 

structural information (ESI) is then obtained as the average over all nucleotides n in the 

molecule (excluding primer binding sites and other positions with low-quality data): 

𝐸𝑆𝐼 = 	
1
𝑛@𝑆𝐼(𝑟))

!

)12

 

 

For computing ESI of DMS at only A and C nucleotides, 𝑆𝐼(𝑟)) of G and U nucleotides 

was set to 0.  

 

PAIR-MaP Analysis 

 We incorporated several minor updates to PairMapper analysis to maximize 

performance on four-base DMS datasets. PairMapper previously required nucleotide 

windows to have a minimum of 50 co-modification events to be considered for PAIR 

correlation analysis (8). We reevaluated this co-modification threshold across the range 

of 5 to 50, finding optimal performance with co-modification count cutoff of 10. We also 

updated the reactivity thresholds for primary and secondary PAIRs to 0.2 and 0.4, 

respectively.  
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Positive predictive value (ppv) and PAIR-MaP sensitivity (sens) were computed 

relative to accepted reference structures as previously described (8). RNA regions 

lacking DMS data were excluded from ppv and sens calculations. 

 

Structure Modeling  

Four-base DMS pseudo-energy parameterization: We followed a previously 

described strategy (8,47) to derive four-base-DMS-optimized pseudo-energy potentials 

for structure modeling in RNAstructure (v6.3) (48). Nucleotide-specific reactivity 

likelihood functions for paired and unpaired bases were fit using a double gamma 

mixture to normalized four-base DMS data collected on the cell-free E. coli 23S rRNA. 

These 23S rRNA derived parameters serve as universal folding parameters for all 

RNAs. Four-base DMS potentials only vary modestly from our previous nucleotide-

specific DMS potentials (8), but more strongly penalize pairing of reactive G and U 

nucleotides. Fitted model parameters are provided in Supplemental Table S5. For 

structure modeling purposes, we replaced the DMSdist_nt.txt file in 

RNAstructure/data_tables/dists with our new four-base DMS-specific file. We plan to 

make these parameters available in future releases of RNAstructure via the -fbDMS 

flag. 

RNAstructure modeling: Four-base DMS and SHAPE-directed modeling of 

RMRP, RNase P, and tmRNA was performed using iterative ShapeKnots folding to 

enable modeling of multiple pseudoknots (8,49). foldPK.py, the automated script that 

facilitates this iterative folding strategy, is available for download at 

https://github.com/MustoeLab/StructureAnalysisTools. Folding of rRNAs was performed 
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using Fold with the -mfe and -md 600 options. Default SHAPE and four-base DMS 

parameters were used for all Fold and ShapeKnots modeling. For four-base DMS 

modeling, PAIR restraints were additionally passed using the -x option. Structure 

modeling was not possible for human 28S rRNA due to memory overflow errors in 

RNAstructure. 

Quantification of model accuracy: The positive predictive value (ppv) and 

sensitivity (sens) of modeled structures were computed relative to accepted reference 

structures as previously described (8), using all Watson Crick and GU pairs allowing for 

one-position register shifts and ignoring singleton pairs. Accepted reference structures 

were obtained from refs (41-45). Modifications to tmRNA and RMRP structures were 

included as previously described (8).  

 

RESULTS 

Existing DMS-MaP strategies are unable to probe G structure in cells 

To evaluate the ability of different MaP strategies to measure DMS modifications 

at all nucleotides, we generated MaP datasets from identical DMS-probed RNA inputs 

using published SSII (8), TGIRT (36), and Marathon (37) MaP protocols (Fig. 1A). We 

additionally evaluated an HIV-1 reverse transcriptase that was evolved to MaP N1-

methyladenosine modifications (eHIV) (40), which has not been previously tested on 

DMS modified samples. DMS probing experiments were performed in duplicate on living 

HEK293 cells, under mildly alkaline buffer conditions that support multiple-hit DMS 

modification at all four nucleobases (see Methods) (8). An amplicon strategy was then 
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used to obtain targeted DMS-MaP datasets for the Ribonuclease P (RNase P) and 

RnaseP RMP (RMRP) non-coding RNAs, which adopt well-defined, known structures.  

Consistent with prior studies (36,37), analysis of untreated control samples 

revealed significant differences in the background error rates of different MaP protocols. 

While all protocols exhibit low median background rates (0.001, 0.001, and 5 x 10-4 for 

SSII, Marathon, and TGIRT respectively), SSII samples feature significantly more 

positions with high background rates (95th percentiles of 0.02, 0.008, 0.005, 

respectively) (Fig. S1A). eHIV featured a 3-fold higher background rate than SSII 

(median 0.003; Fig. S1A), leading us to focus on the established MaP protocols for 

subsequent analyses.  

Despite differences in background error profiles, background-subtracted DMS 

modification rates measured at adenosine (A), cytidine (C), and uridine (U) bases are 

broadly consistent across all enzymes (R > 0.9; Fig. 1B; Fig. S1B). As expected, Us are 

approximately 5-fold less reactive than A and Cs (Fig. 1C). U reactivities also vary more 

in SSII samples compared to Marathon and TGIRT, reflective of greater background 

noise in SSII samples. SSII and Marathon consistently measure higher modification 

rates compared to TGIRT (Fig. 1B, C), indicating differences in random nucleotide 

incorporation and enzyme drop-off. SSII also generates an increased fraction of indels 

compared to Marathon and TGIRT (26%, 2.8%, 7.4%, respectively; Fig. S1C). 

Nonetheless, each enzyme is similarly accurate at distinguishing single-stranded versus 

base-paired nucleotides (area under the receiver operating characteristic curve 

[AUROC] » 0.79 for A; » 0.93 for C; » 0.83 for U; Fig. 1D; Table S1). These data 
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corroborate our prior observation (8) that DMS is a highly specific probe of U pairing 

status and validate that all established MaP protocols reliably measure U modifications. 

In contrast to A, C, and U nucleotides, all three MaP protocols exhibited minimal-

to-no ability to measure G nucleotide structure (AUROC £ 0.6; Fig. 1D; Table S1). G 

mutation rates significantly increase upon DMS treatment, indicating that DMS is 

modifying G bases (Fig. 1C). However, these modifications occur at similar rates in both 

single-stranded and base-paired nucleotides. Surprisingly, G reactivity measurements 

vary 10-fold across MaP protocols, with SSII, Marathon, and TGIRT reporting median 

modification rates of 0.002, 0.007, and 8 ´ 10-4, respectively. Despite yielding the lowest 

overall modification rates, TGIRT does identify several highly reactive single-stranded 

Gs, but not with sufficient sensitivity to be useful. Thus, consistent with our prior studies 

(8), existing DMS probing protocols are unable to reliably probe G pairing status in cells. 

 

Mutational signature filtering enables robust DMS probing of G nucleotides 

DMS is known to methylate G bases at two positions (2,8). DMS predominantly 

modifies G at the N7 position with minimal dependence on Watson-Crick pairing status. 

At much lower rates, DMS can methylate single-stranded, deprotonated G nucleobases 

at the N1 position. While reverse-transcriptases are generally considered to be 

insensitive to N7-G modifications, we hypothesized that MaP may detect these 

modifications at low rates, convoluting any informative N1-G signal in DMS-MaP data. 

Further, we hypothesized that the differences in G modification rates measured by 

alternative MaP protocols reflect differences in N7-G detection efficiency. 
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To explore these hypotheses, we more closely analyzed the G mutational 

signatures yielded by each enzyme. DMS-MaP analysis traditionally considers all 

mutation types as conveying equivalent information. Strikingly, however, we observed 

major differences in the structural specificity of different mutation types. The elevated G 

modification rate measured by Marathon is driven by GàA substitutions, which occur at 

equivalent frequencies (median » 0.005) in single-stranded and paired nucleotides (Fig. 

2A; S2). SSII and TGIRT datasets similarly exhibit a surplus of structurally non-specific 

GàA substitutions, although at lower frequencies (median < 0.001). By contrast, DMS-

dependent GàC and GàT substitutions occur almost exclusively in single-stranded 

nucleotides for all three enzymes (Fig. 2A). Thus, our DMS data are consistent with 

MaP measuring N7-G modifications specifically as GàA substitutions, whereas 

structurally informative N1-G modifications are decoded as GàC and GàT 

substitutions.  

To validate this mutational signature, we used MaP to measure natural N1-G and 

N7-G modifications in untreated E. coli and human ribosomal RNAs (50,51). Consistent 

with our DMS data, N7-G modifications are detected by Marathon with low efficiency 

(~2%), but overwhelmingly as GàA substitutions (93% of mutations) (Fig. 2B). By 

comparison, the natural ribosomal N1-G modification is read out with high efficiency 

(65%) as a mixture of GàC and GàT substitutions (89% of mutations) (Fig. 2B). 

Similar results were also observed for SSII (not shown). Together, these data confirm 

that MaP decodes N1-G and N7-G modifications via distinct mutational signatures.  

Leveraging this mutational signature, we implemented a refined bioinformatics 

pipeline within ShapeMapper (52) that filters out GàA substitutions and other 
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uninformative mutation types in DMS probing data (see Methods). This refined pipeline 

resulted in dramatic improvements in the structural specificity of G DMS reactivity, with 

AUROC increasing from <0.6 to >0.7 for all three reverse-transcriptase enzymes (Fig. 

2C). Benchmarking on an expanded panel of RNAs from human and E. coli cells 

confirmed that our pipeline enabled accurate DMS probing of G base-pairing status 

across diverse systems (Table S1). Marathon consistently yielded superior AUROC at 

G nucleotides (Fig. 2D, Table S1), leading us to select it as the optimal reverse 

transcriptase for DMS-MaP experiments. This improved strategy also reduced the 

importance of background mutation rate subtraction (Fig. S3), although the use of an 

untreated control still offers minor increases in probing accuracy. Overall, we conclude 

mutation-signature filtering enables robust DMS profiling of RNA structure at all four 

nucleotides, which we term four-base DMS-MaP.  

 

Appropriate buffering is essential for measuring U and G reactivities 

The ability of DMS-MaP to measure structure-specific modifications at U and G 

requires transient deprotonation of N1-G and N3-U (8). We previously reported that 

bicine buffer (pH 8.0) is critical for robust DMS modification of G and U nucleotides in 

vitro (8). However, the extent to which extracellular buffering impacts DMS modification 

in cells is unclear. Cells work to maintain pH homeostasis, but changes in extracellular 

pH can affect intracellular pH, particularly on short time scales (53,54). DMS treatment 

may also perturb the plasma membrane or induce stress responses that compromise 

internal pH control. We therefore investigated the impact of extracellular buffering by 

DMS probing E. coli and HEK293 cells at a variety of extracellular pHs: no supplemental 
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buffer, which results in rapid acidification of the media (pH < 6); neutral pH 7.2 (sodium 

cacodylate buffer); and across the bicine buffering range (pH 7.7, pH 8.0, and pH 8.7). 

Both U and N1-G modification rates strongly depend on extracellular buffering, 

increasing ~10-fold at pH 8 compared to unbuffered conditions (Fig. 3A, B). 

Interestingly, the reactivity rate of U and N1-G plateaus above pH 8, suggesting that 

cells buffer against major deviations from pH neutrality. The increase in G and U 

modification rate coincides with a significant increase in AUROC (from mean 0.76 to 

0.91 for U, and 0.43 to 0.72 for G, respectively; Fig. 3C, D). By contrast, minimal 

changes in mutation rate or AUROC are observed at A or C nucleotides. The rate of N7-

G modifications, measured by GàA substitutions, also minimally changes with pH (Fig. 

3A, B). Thus, these data establish that extracellular pH — whether it is acidic due to 

DMS-induced acidification in the absence of buffer (10), neutral, or basic — modulates 

DMS reactivity in cells and emphasize that proper buffering is essential for four-base 

DMS probing. These data also provide further support for the deprotonation mechanism 

of DMS modification at N1-G and N3-U. 

 

Four-base DMS data compare favorably to SHAPE data 

To facilitate structural analysis, we implemented a strategy to correct for 

differences in DMS modification rates across bases and normalize reactivities to a 

common 0 to ~1 scale, denoting unreactive and reactive nucleotides, respectively 

(Methods). Consistent with the AUROC analysis above, these normalized four-base 

DMS reactivities provide a precise map of RNA structure in cells with significantly 

increased resolution compared to traditional DMS data (Fig. 4A).    
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 We sought to understand how four-base DMS reactivity data compare to SHAPE 

data, which represent the gold-standard for measuring structure at all four nucleotides 

(35). Prior in vitro studies have suggested that DMS and SHAPE data can convey 

similar amounts of structural information (8,47), but direct comparisons of in-cell DMS 

and SHAPE data are lacking. Recently, 2A3 was introduced as an improved SHAPE 

reagent for in-cell structure probing, and high-quality 2A3 datasets are available for 

human and E. coli ribosomal RNAs (rRNAs) and E. coli tmRNA (34). We also collected 

our own 2A3 SHAPE-MaP data for RMRP and RNase P in HEK293 cells (Fig. S4). We 

note that we relied on published SHAPE protocols without pursuing further 

optimizations. Visual analysis indicates that SHAPE and four-base DMS reactivity 

profiles are qualitatively similar, although DMS provides a more binary measure of 

structure compared to a more continuous measure provided by SHAPE (Fig. 4A). Four-

base DMS data also typically yield slightly higher AUROC than SHAPE data (Fig. 4C, 

S5). 

Prompted by the differences observed between SHAPE and DMS data, we 

sought to develop a better analytic framework for evaluating the information conveyed 

by probing experiments. AUROC quantifies how well reactivity data perform as a binary 

classifier of a nucleobase being paired versus single-stranded, but this does not reflect 

how reactivity data are normally interpreted. For most applications, data are interpreted 

probabilistically: given a measured reactivity, what is the probability that a base is paired 

versus unpaired? These probabilities are represented by the paired/unpaired likelihood 

ratio function, with more extreme likelihoods indicating greater information content (55). 

The DMS likelihood ratio function is more extreme for A, C, and U nucleotides, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.10.536308doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536308
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

indicating that DMS encodes more structural information at these nucleotides, whereas 

SHAPE encodes modestly more information at G (Fig. 4B). To quantify these 

differences, we developed a new metric termed expected structural information (ESI) 

that measures the total per-base information conveyed by a probing experiment (see 

Materials and Methods). ESI has units of bits and ranges between 0 (no information) to 

1 (perfect specification of paired/unpaired status for all nucleotides) (Fig. S6). SHAPE 

experiments provide an average of 0.25 bits of ESI, whereas four-base DMS data 

convey an average of 0.35 bits (Fig. 4C), supporting that four-base DMS provides a 

more deterministic measure of base-pairing. Notably, two-base DMS data only convey 

an average of 0.23 bits of ESI, typically less than SHAPE (Fig. 4C). Together, these 

analyses indicate that four-base DMS experiments typically provide more structural 

information than other widely used probing strategies.  

 

Four-base DMS-MaP enables improved direct base-pair detection from single-

molecule PAIR analysis 

In addition to providing a per-nucleotide readout of base-pairing status, DMS 

probing data can be analyzed at the single-molecule level to identify nucleotides that 

undergo correlated modification. PAIR analysis (8) is a powerful strategy for detecting 

RNA duplexes from single-molecule probing data, and significantly improves the 

confidence and accuracy of structural analysis. We hypothesized that the improved 

specificity of four-base DMS-MaP would also benefit PAIR analysis. Indeed, PAIR 

analysis applied to four-base DMS-MaP data significantly outperformed analysis of 

traditional DMS-MaP data (SSII without mutation-signature filtering): the positive 
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predictive value (ppv) of PAIR correlations increased from 0.73 to 0.84, and sensitivity 

(sens) increased from 0.18 to 0.31, respectively) (Fig. 5A,B; Fig. S7,S8; Table S2). 

Four-base DMS-MaP also enabled detection of PAIRs at lower read coverages 

(coverage of ~300,000 vs ~400,000 required for DMS-MaP (8)) (Fig. 5C). 

Surprisingly, PAIR analysis on traditional DMS-MaP data (SSII without mutation-

signature filtering) performed worse than in prior studies (8). This reduced performance 

can be attributed to lower DMS modification rates (Fig. S9) and, for cell-free ribosomal 

RNA samples, significantly lower read depth coverage in our current experiments. We 

also note that many of the “false positive” PAIRs observed in cell-free rRNA samples 

likely correspond to “real” non-native interactions formed under these conditions 

(8,56,57). Interestingly, we also observed a 4-fold greater GàA substitution rate in our 

current DMS-MaP datasets compared to our prior experiments, suggestive of cryptic 

reverse-transcription differences that impact detection of N7-G modifications and reduce 

PAIR performance (Fig. S9). Mutation-signature filtering of SSII DMS-MaP data 

improved PAIR performance, but still underperformed Marathon DMS-MaP data (Fig. 

S7, S10). 

We also performed PAIR analysis on four-base DMS-MaP datasets collected 

using TGIRT reverse-transcriptase. Compared to Marathon and SSII, TGIRT data gave 

significantly worse PAIR results (mean ppv = 0.57, sens = 0.20; Fig. S7, S10), 

presumably due to TGIRT measuring fewer modifications (Fig. 1, S10). 

We additionally explored whether the 2A3 SHAPE reagent supports PAIR 

analysis. Historically, SHAPE reagents have been unable to achieve high enough 

modification rates for PAIR analysis. However, 2A3 addresses this limitation, modifying 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.10.536308doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536308
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

RNA at comparable rates to DMS, with lower modification of A and C compensated by 

higher modification at U and G (Fig. S4). Deeply sequenced human RMRP and RNase 

P in-cell 2A3 datasets both feature multiple PAIR correlation signals, but with lower 

sensitivity and specificity than four-base DMS-MaP (Fig. 5A, B). Thus, SHAPE 

experiments can enable PAIR detection, but further optimization is needed to make 

SHAPE-based PAIR analysis broadly useful.  

 

Four-base DMS-MaP enables improved RNA structure modeling 

The end goal of many chemical probing studies is to translate probing data into 

an accurate model of RNA structure. Building on the improvements of four-base DMS-

MaP, we developed new pseudo energy functions for incorporating four-base DMS 

reactivities as restraints during structure modeling with RNAstructure (Methods). 

Integrated structure modeling guided by four-base DMS reactivities and PAIR 

correlations facilitated accurate modeling of diverse, challenging RNA targets (Fig. 6). 

Notably, four-base DMS meets or exceeds the accuracy of SHAPE-directed structure 

modeling (Fig. 6). Four-base DMS data particularly benefits modeling accuracy for 

pseudoknot-containing tmRNA, RMRP, and Rnase P RNAs (Fig. 6), enabled by PAIR 

correlations unavailable to SHAPE. As an exception, SHAPE (2A3) data yields more 

accurate models for the in-cell 16S and 23S rRNAs, consistent with the superior ESI of 

2A3 versus four-base DMS for these RNAs (Fig. 4C). Both four-base DMS and SHAPE 

data yielded similarly inaccurate models for in-cell human 18S rRNA; this inaccuracy 

arises from the extensive protein protections that reduce ESI of both reagents, as well 

as the poor thermodynamic stability of 18S rRNA (58). When the unrepresentative 
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human and E. coli rRNAs are excluded, average ppv and sens of DMS-directed models 

increase to 0.93 and 0.92, respectively. In sum, four-base DMS-MaP supports best-in-

class structure modeling accuracy and enables reconstruction of even challenging multi-

pseudoknotted RNA structures.    

 

DISCUSSION 

 DMS has long been a favored structure probing reagent and has played an 

essential role in enabling next-generation single-molecule probing analyses (4,7). 

However, the inability of DMS to probe U and G nucleotides has been a critical 

limitation. In this work we introduced four-base DMS-MaP as a strategy for high-fidelity 

structure probing at all four nucleotides in living cells. Through rigorous benchmarking, 

we established that four-base DMS-MaP experiments typically convey more structural 

information than other available probing strategies and enhance single-molecule 

analysis, enabling accurate structure modeling of complex RNAs that challenge other 

methods. Four-base DMS-MaP experiments are straightforward to perform, requiring 

only minor changes to standard DMS probing protocols and bioinformatics pipelines. 

Thus, four-base DMS-MaP represents an “almost for free” upgrade offering improved 

resolution in both conventional per-nucleotide and single-molecule probing analysis. 

  The success of four-base DMS-MaP experiments depends on several subtle but 

collectively critical experimental parameters. Most importantly, our results emphasize 

the need for proper buffering, with G and U reactivity strictly dependent on pH (Fig. 3). 

Despite cells buffering against significant changes in intracellular pH, extracellular pH 

clearly modulates in-cell DMS reactivity. We also showed that different MaP protocols 
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can impact data quality. SSII, Marathon, and TGIRT protocols performed similarly for 

per-nucleotide DMS reactivity analysis, although Marathon consistently performed the 

best at measuring N1-G modifications. However, the choice of MaP enzyme significantly 

impacted the success of single-molecule PAIR analyses, with Marathon consistently 

detecting more duplexes with fewer false positives than other MaP enzymes. TGIRT 

performed the worst at single-molecule PAIR analysis, likely because of a reduced 

ability to MaP through highly modified RNAs. We note that our analyses were limited to 

published MaP protocols, and speculate that optimization of MaP in the context of four-

base DMS-MaP may yield even further improvements in data quality.   

 Four-base DMS-MaP is also built on the insight that MaP enzymes can 

simultaneously encode distinct types of chemical information via different mutational 

signatures. DMS modifies G nucleotides at two positions (59): The bulk of modifications 

occur at the N7 position, which do not report on Watson-Crick pairing, whereas only a 

minority of modifications occur at the informative N1 position. Consistent with other 

studies (60), our analysis indicates that Marathon (and to a lesser degree other reverse 

transcriptases) selectively decode N7-G modifications as GàA mismatches, allowing us 

to discriminate N1-G modifications and measure G pairing status with high fidelity. While 

not the focus of our current study, DMS N7-G modifications can provide information 

about RNA tertiary structure and G-quadruplexes (27,60,61), and further investigating 

the value of N7-G reactivity is a compelling area of future research. More generally, 

using mutation signatures to decode multiple coexisting modification signals represents 

a powerful paradigm for improving chemical probing analysis.  
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 Our finding that four-base DMS-MaP typically conveys greater structural 

information than SHAPE-MaP is surprising. SHAPE chemistry holistically and 

unbiasedly measures nucleotide flexibility at the 2' OH (62), but this holistic measure 

may come with the tradeoff of reduced specificity for Watson-Crick pairing compared to 

direct nucleobase probing by DMS. Reverse transcriptases may also decode 2' OH 

SHAPE modifications with lower fidelity. Nevertheless, we emphasize that the 

performance gap between four-base DMS and SHAPE experiments is subtle, with both 

strategies performing well for most RNAs. SHAPE reagents also offer important 

benefits, including that they are generally less cytotoxic than DMS, are better suited for 

probing RNAs with modified bases, and, as noted above, holistically measure 

nucleotide flexibility. SHAPE reagents can further be used to probe all four nucleobases 

under single-hit reaction conditions, whereas four-base DMS probing of U, and 

especially G, nucleobases requires high overall modification rates. We also note that 

unlike for DMS, we made no attempt to optimize SHAPE-MaP. For example, SHAPE-

specific data processing algorithms may enable improved PAIR analysis on SHAPE 

datasets. More generally, we believe that systematic efforts to improve MaP reverse-

transcription and bioinformatics protocols will drive further increases in SHAPE probing 

resolution and accuracy.  

 Ultimately, our analysis demonstrates how improved chemical probing data can 

support further advances in RNA structure determination accuracy. The increased 

structural information provided by four-base DMS reactivities combined with PAIR 

correlation data is sufficient to guide in-cell structure modeling to >90% average 

accuracy for even very difficult targets such as tmRNA. Modeling accuracy is lower for 
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rRNAs, but ribosomes are clearly exceptional cases with atypically high protein 

protections. Modeling accuracy is also reduced for human RNase P; follow-up analysis 

revealed that prediction accuracy was low even when using simulated “perfect” data 

(not shown), indicating that pseudoknot modeling algorithms remain imperfect. 

Combining four-base DMS-MaP with new statistical-learning strategies (63) represents 

one of several potential avenues for further improving modeling accuracy. Moving 

forward, we expect that focus will increasingly turn to the more difficult problem of 

modeling RNAs with heterogenous structures. Importantly, four-base DMS-MaP is fully 

compatible with emerging ensemble deconvolution analysis (11-14). We anticipate that 

the greater information provided by four-base DMS-MaP will help propel further 

advances in modeling and understanding complex RNA systems.  

 

DATA AVAILABILITY 

Raw and processed probing data have been deposited at the GEO under accession 

number GSE225383. Analysis codes are available at https://github.com/MustoeLab and 
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Figure 1. Comparison of different MaP protocols for measuring DMS modifications at all 

four RNA bases. (A) Experimental scheme for in-cell DMS probing, reverse 
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transcription, and reactivity analysis using identical RNA inputs. (B) Background-

subtracted DMS-MaP reactivity profiles measured for RMRP. Gray curves shown at 

bottom indicate known base pairing interactions. (C) DMS modification rates measured 

at each nucleotide combined across RMRP and RNase P. Background-subtracted 

mutation rates are shown for base-paired (filled) and single-stranded (open) bases. The 

y axis has a linear scale below <10-2 (indicated by thick axis) and logarithmic scale for 

values >10-2 (thin axis). (D) Receiver operator characteristic (ROC) curves quantifying 

ability of DMS reactivity to discriminate single-stranded versus base-paired nucleotides 

in RMRP and RNase P. 
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Figure 2. Mutation signature filtering enables high-fidelity DMS probing of G base-

pairing status. (A) G-specific mutation spectrums for in-cell probed RMRP and RNase P 

generated by SSII (green), Marathon (blue), and TGIRT (orange). Rates are shown 

separately for base-paired (filled) and single-stranded (open) G nucleotides. The y axis 

has a linear scale below <10-2 (indicated by thick line) and logarithmic scale for values 

>10-2 (thin line). (B) Mutation rates (top) and percentage of detected mutations (bottom) 

measured by Marathon MaP for naturally-occurring N1-G and N7-G modifications in 

untreated E. coli and human rRNA. (C) ROC curves for mutation-signature-filtered G 

reactivities for in-cell probed RMRP and RNase P. Curves generated without mutation 

filtering for each enzyme are shown in gray. (D) Average AUROC across all probed 

RNAs quantifying the ability of mutation-signature-filtered DMS reactivities to 

discriminate pairing status at each nucleotide. The best performing enzyme, Marathon, 

is boxed. See Table S1 for the complete list of probed RNAs.  
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Figure 3. Four-base DMS-MaP depends strongly on extracellular buffering. (A, B) 

Mean DMS modification rates measured by Marathon MaP for single-stranded A,C,G, 

and U nucleobases for E. coli tmRNA and human RMRP probed in cells using different 

extracellular buffers. GàA substitutions, which are filtered out by mutation-signature-

filtering, are shown in gray. (C, D) Corresponding AUROC values for E. coli tmRNA and 

human RMRP quantifying the ability of DMS reactivities to discriminate pairing status. 

All data points represent the mean of two independent biological replicates, with vertical 

bars indicating standard error. Lines are drawn between points to guide the eye. 
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Figure 4. Four-base DMS-MaP conveys more structural information than other probing 

strategies. (A) Normalized reactivity profiles for in-cell probed RMRP given by SHAPE-

MaP (top), traditional DMS-MaP (SSII; no mutation-signature filtering) considering only 

A and C nucleotides (upper middle) or all nucleotides (lower middle), or four-base DMS-

MaP (bottom). Base pairing interactions in the accepted structure are shown using gray 

shading and arcs. (B) Unpaired/paired likelihood ratios for SHAPE and four-base DMS-

MaP reactivities measured on cell-free probed E. coli 16S and 23S rRNA. A likelihood 

ratio of 1 indicates that a base has equal probability of being paired or unpaired given 
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the measured reactivity. Likelihood ratios are shown for each nucleotide for four-base 

DMS-MaP, and are aggregated for all nucleotides for SHAPE. (C) Comparison of 

AUROC (top) and expected structural information (ESI; bottom) for four-base DMS-MaP 

and SHAPE-MaP across a diverse panel of RNAs. 2A3 SHAPE data for human rRNAs, 

and E. coli rRNAs and tmRNA were taken from ref. (34). AUROC and ESI values were 

also calculated for only A and C DMS reactivities, representing what is obtained by 

traditional two-base DMS probing experiments. 
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Figure 5. Four-base DMS probing improves single-molecule direct base-pair detection. 

(A) PAIR analysis performed on in-cell probed RMRP using traditional DMS-MaP (left), 

four-base DMS-MaP (center), or SHAPE-MaP (right) datasets. PAIRs are prioritized 

based on strength as principal and minor signals, shown in dark and light blue 

respectively. The accepted structure is shown at top. Long-range helices that are 

masked by primer binding sites, and thus lack PAIR-MaP data, are shown in light gray. 

PAIR positive predictive value (ppv) and sensitivity (sens) relative to the known 

structure are also indicated. (B) PAIR ppv and sens for traditional DMS-MaP (tan), four-

base DMS-MaP (red), and SHAPE-MaP (gray). Data from two biological replicates are 

shown for in-cell RMRP, RNase P, and tmRNA. 16S and 23S rRNA data are shown in 
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open circles and demonstrate reduced ppv and sens due to low sequencing coverage 

and likely misfolding of these RNAs under cell-free conditions.  (C) Mean PAIR ppv and 

sens values for RMRP, RNase P, in-cell tmRNA, and cell-free tmRNA are shown for 

traditional DMS-MaP (tan) and four-base DMS-MaP (red) as a function of sequencing 

read depth. The indicated number of sequencing reads were unsampled without 

replacement from the larger datasets.  
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Figure 6. Four-base DMS-MaP enables improved RNA structure modeling. (A) E. coli 

tmRNA structure models obtained via RNAstructure modeling with four-base DMS and 

PAIR restraints (left) or SHAPE restraints (right) from in-cell experiments. True positive 

(gray), false positive (purple), and false-negative (green) predicted pairs are shown at 

top, and overall model ppv and sens are shown at bottom. For four-base DMS, 

measured PAIR correlations are also shown at bottom. Correctly modeled pseudoknots 

are labeled. (B) Structure modeling accuracy of four-base DMS-MaP and SHAPE-MaP. 

For in-cell RMRP, RNase P, and tmRNA, four-base DMS data from two biological 

replicates were pooled together. Asterisks (*) next to in-cell E. coli and HEK293 rRNAs 
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indicate that four-base DMS structure modeling was done without PAIR restraints, 

which were not available due to insufficient sequencing depth. 2A3 SHAPE data for E. 

coli tmRNA and rRNAs, and human rRNAs were taken from ref. 34. 
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