1	Differential Expression of Gluconeogenesis-Related Transcripts in a Freshwater
2	Zooplankton Model Organism Suggests a Role of the Cori Cycle in Hypoxia Tolerance
3	
4	M. C. Malek ^{1,2} , J.R. Behera ¹ , A. Kilaru ¹ and L. Y. Yampolsky ^{1,3}
5	
6	¹ Department of Biological Sciences, East Tennessee State University, Johnson City TN 37614, USA
7	² Present address: Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
8	37240, USA
9	³ Corresponding author: yampolsk@etsu.edu
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

29 Abstract

- 30 1. Gluconeogenesis (GNG) is the process of regenerating glucose and NAD+ that allows continuing ATP
- 31 synthesis by glycolysis during fasting or in hypoxia. Recent data from *C. elegans* and crustaceans
- 32 challenged with hypoxia show differential and tissue-specific expression of GNG-specific genes.
- 2. Here we report differential expression of several GNG-specific genes in the head and body of a model
- 34 organism, Daphnia magna, a planktonic crustacean, in normoxic and acute hypoxic conditions. We predict
- 35 that GNG-specific transcripts will be enriched in the body, where most of the fat tissue is located, rather
- 36 than in the head, where the tissues critical for survival in hypoxia, the central nervous system and
- 37 locomotory muscles, are located. We measured the relative expression of GNG-specific transcripts in each
- 38 body part by qRT-PCR and normalized them by either the expression of a reference gene or the rate-
- 39 limiting glycolysis enzyme pyruvate kinase (PK).
- 40 3. Our data show that of the three GNG-specific transcripts tested, pyruvate carboxylase (PC) showed no
- 41 differential expression in either the head or body. Phosphoenolpyruvate carboxykinase (PEPCK-C), on the
- 42 other hand, is upregulated in hypoxia in both body parts. Fructose-1,6-bisphosphatase (FBP) is upregulated
- 43 in the body relative to the head and upregulated in hypoxia relative to normoxia, with a stronger body effect
- 44 in hypoxia when normalized by PK expression.
- 45 4. These results support our hypothesis that *Daphnia* can survive hypoxic conditions by implementing the
- 46 Cori cycle, where body tissues supply glucose and NAD+ to the brain and muscles, enabling them to
- 47 continuously generate ATP by glycolysis.
- 48
- 49
- 50
- 51
- 52 Keywords: gluconeogenesis, glycolysis, hypoxia, Daphnia, differential gene expression, Cori cycle

54 Introduction

55 The role of the Cori cycle or gluconeogenesis (GNG) has been well characterized in humans and other 56 mammals, where products of glycolysis are utilized in the liver to resupply muscles and other critical tissues 57 with glucose and NAD+, thus allowing glycolysis to continuously generate ATP during bursts of muscular 58 activity or while in hypoxic or fasting conditions [1-6]. In some other vertebrates adapted to either periodic 59 fasting[7] or hypoxia[8], the Cori cycle emerges as a key element of adaptation to environmental extremes. 60 The GNG pathway utilizes lactate generated through the anaerobic catabolism of pyruvate as a precursor for 61 glucose synthesis. This multi-step process is assisted by the respective glycolytic enzymes catalyzing the 62 reverse reactions, except for the exclusive involvement of phosphoenolpyruvate carboxykinase (cytosolic 63 PEPCK-C and mitochondrial PEPCK-M), fructose 1,6-bisphosphatase (FBP), and glucose 6-phosphatase in 64 GNG[6] (Fig. 1). The upregulation of GNG-specific genes, primarily PEPCK paralogs, in hypoxia and the 65 role of hypoxia-inducible factor (HIF-1) in this upregulation have been reliably demonstrated in mammalian 66 models[9-11]. 67 However, little data is available on GNG and the Cori cycle in aquatic invertebrates like 68 crustaceans. Aquatic organisms are more likely to experience periods of hypoxia than terrestrial ones, as 69 oxygen solubility and diffusion rates in water are low, and its availability is highly dependent on 70 temperature, the respiratory activity of aerobic heterotrophs, and the non-biological oxidation of organic

71 matter. Therefore, it is important to examine GNG as a possible mechanism of hypoxic survival to

vunderstand the ability of organisms to cope with episodes of high temperatures and low oxygen availability

73 in their natural habitats.

74 Studies on the decapod shrimp Litopenaeus vannamei indicate tissue-specific expression of GNG-75 related genes are consistent with the role of GNG in providing glucose to fuel muscles during hypoxia. The 76 hepatopancreas in crustaceans, an organ that is functionally analogous to the vertebrate liver, shows higher 77 expression of pyruvate carboxylase (PC) [12], PEPCK-C and PEPCK-M [13], and FBP [14,15] relative to 78 muscle or gill tissues. Importantly, this tissue-specific gene expression is further enhanced by hypoxia 79 [12,13,15]. Furthermore, glucose-6-phosphatase, one of the rate-limiting enzymes of glycolysis, shows a 80 reverse response pattern to hypoxia, where it is upregulated in the gills but not in the hepatopancreas [16]. 81 These results are consistent with the operation of the Cori cycle to allow hypoxia tolerance, with the 82 hepatopancreas completing the GNG phase of the cycle and supplying tissues like muscles with glucose and 83 NAD+. We expect this mechanism is likely conserved across invertebrates, as a similar differential 84 expression was observed in the nematode *Caenorhabditis elegans* [17]. 85 We have previously analyzed differential gene expression in response to mild chronic and severe

We have previously analyzed differential gene expression in response to mild chronic and severe
acute hypoxia in a classic model organism for aquatic ecophysiology, *Daphnia magna* [18] revealing that
while only a small subset of abundant transcripts showed differential expression responses under mild

chronic hypoxic conditions, many, including the GNG-specific PEPCK-C, showed upregulation in acute
severe hypoxia. Aralar1, a mitochondrial carrier protein that transports aspartate from the mitochondria to
the cytosol, also showed upregulation in hypoxia. The function of Aralar1 is critical for GNG, as it allows
bypassing pyruvate as the starting point of the pathway by converting aspartate to oxaloacetate, a PEPCK-C

- 92 substrate that converts to phosphoenolpyruvate in the cytosol.
- 93

94 The goal of this study was to examine the differential expression of GNG-related enzymes PC, 95 PEPCK-C, and FBP and the Aralar1 transporter separately in the head and body of hypoxia-challenged vs. 96 normoxic control Daphnia. For Daphnia to survive in an acute hypoxic state, metabolic processes must be 97 altered to allow alternative sources of glucose through GNG. We hypothesize that if GNG is upregulated as 98 part of the Cori cycle, the relative abundance of transcripts should correspond to either the head or the body, 99 with the body containing the majority of GNG transcripts while the head undergoes glycolysis steps (Figure 100 1). To that end, we used both a reference gene unrelated to glucose metabolism and a rate-limiting 101 glycolysis enzyme, pyruvate kinase, as normalization controls to infer the relative expression of GNG-102 related transcripts, thus emphasizing the relative expression of the two opposing Cori cycle pathways in the 103 heads and bodies of Daphnia.

104

105 Materials and methods

106 Daphnia clones and culture

107 Daphnia magna stocks used in this study were obtained from the Basel University Daphnia Stock 108 Collection (Basel, Switzerland) and maintained locally since 2016. The IDs of the four stocks used were FI-109 FSP1-16-2, GB-EL75-69, HU-K-6, and IL-M1-8; details of the provenance of these D. magna clones are 110 supplied on Table 1 in Ekwudo et al. 2022. Hereafter, we refer to these clones by the first two letters of 111 their Basel stock IDs. Previous longevity studies indicate that these clones differ significantly in their 112 lifespan and acute hypoxia tolerance, with FI and IL being the short-lived, hypoxia-tolerant clones, and GB 113 and HU showing higher longevity but lower hypoxia tolerance [18]. Stocks were maintained in modified 114 ADaM zooplankton medium (Ref. [19]; https://evolution.unibas.ch/ebert/lab/adam.htm) at the density of 115 one adult Daphnia per 20 mL, at 20 °C under 16h:8h L:D photoperiod and fed green alga Scenedesmus 116 acutus Meyen (current nomenclature Tetradesmus obliquus (Turpin) M. J. Wynne) at the concentration of 117 10⁵ cells per mL per day. Newborn individuals of each of the four clones were collected within 24 h of birth 118 and placed in groups of 10 in 100 mL jars, with the density reduced to one Daphnia per 20 mL at maturity 119 (day 6-8), and maintained with food added daily, water changed, and neonates removed twice weekly. The 120 four clones used were characterized by their lactate:pyruvate ratio in normoxic and acute hypoxic 121 conditions, as described below.

Fig. 1. Schematic representation of the Cori cycle. Only those steps of glycolysis (red) and gluconeogenesis (blue) that are accomplished by different enzymes are labeled. The enzymes labeled are rate-limiting for each of the two branches of the cycle. Enzymes analyzed in this study are shown in bold, underlined type. FBP: fructose-1,6-bisphosphatase; PC: pyruvate carboxylase; PEPCK: phosphoenolpyruvate carboxykinase; PK: pyruvate kinase.

152 Acute hypoxia exposure and lactate:pyruvate ratio measurements

- 153 Daphnia females maintained as described above until the age of 15-25 days were randomly assigned to 154 control and hypoxia treatments. Hypoxia treatment individuals were placed individually in 10-mL screw-155 cap vials filled with 20 °C ADaM water deoxygenized to $<1 \text{ mg O}_2/L$ by intense bubbling with nitrogen. 156 Oxygen concentration was maintained by an Extech DO210 dissolved oxygen meter. Simultaneously, the 157 control Daphnia were transferred into fresh vials containing fully oxygenized (>8 mg O₂/L) ADaM. No 158 food was added to either the hypoxia or control vials. *Daphnia* were harvested after 12 hours of exposure. 159 Typically, no mortality occurs in 12 hours at $1 \text{ mg O}_2/L$, with survival times ranging between 17 and 30 160 hours[18]. This experiment was conducted in two randomized blocks on two different dates, with 48 and 16 161 Daphnia used in each block. 162 163 Whole *Daphnia* females from either control or acute hypoxia treatments were homogenized in 100
- 164 μ L of RO water using a bead beater with 0.15 mm ZrO beads and centrifuged for 4 min at 4 °C. The
- supernatant was then used to determine lactate and pyruvate concentrations using CellBioLabs®
- 166 colorimetric kits (Cat. #s MET-5012 and MET-5125, respectively), according to the manufacturer's
- 167 protocol, scaled down to 50 μ L reactions, each containing 20 μ L of supernatant. Absorbance was measured 168 in 384-well plates on a BioTek Synergy plate reader at room temperature at 490 and 570 nm for lactate and
- 169 pyruvate, respectively. In parallel, soluble protein content in the supernatant was measured by the Bradford 170 method to normalize lactate and pyruvate concentrations per mg of protein.
- Based on the results, we then selected the hypoxia-tolerant clone IL, characterized by the highestlactate:pyruvate ratio in hypoxia, for further qRT-PCR analyses.
- 173

174 Differential gene expression quantification

175 Total RNA was extracted using the RNeasy Mini Kit (Qiagen) from the heads and bodies of 15 days old D. 176 magna females (clone IL) exposed to acute hypoxia treatment or normoxia as described above. 10 females 177 per sample were used for the RNA extraction, and four such samples were prepared for each condition. The 178 RNA concentration was measured by Nanodrop, and samples were diluted to a final concentration of 20 179 ng/µL in RNase-free water. qRT-PCR was done using the qScript One-Step SYBR Green qRT-PCR Kit 180 (Quantabio) according to the manufacturer's protocol, using gene-specific primers (Table 1). A total of 80 181 ng of RNA was used as input in a 20 µL reaction mixture, and all the reactions were carried out using an 182 Illumina Eco Real-time PCR system. Four biological replicate samples in two technical replicates were 183 used. The cDNA synthesis was performed at 50 °C for 10 minutes using the primers specific for the genes 184 (Table 1), followed by polymerase activation at 95 °C for 10 minutes. PCR cycles were carried out at 95 °C 185 for 10s, followed by 60 °C for 20s, for 40 cycles. Fluorescence signals (Channel 1; for SYBR Green) were

- detected after each cycle. The reference genes were chosen following Ref[20]. We tested *D. magna*
- 187 orthologs of the following proposed internal reference genes for constant expression: X-box binding protein
- 188 1 (*Xbp1*), TATA-box binding protein (*Tbp*), and syntaxin-16 (*Stx16*). Among these, *Xbp1* showed no
- 189 difference in expression between the control and hypoxia treatments and was thus chosen as the reference
- 190 gene. The quantification cycle (Cq) values for each gene expression were determined from the amplification
- 191 curves at a threshold value set at 0.02, and the relative expression of GNG-related genes was expressed as -
- 192 ΔCq (Rao et al. 2013). For further comparison relative to the pace of glycolysis, corresponding gene
- 193 expressions were also normalized against that of the muscular isoform pyruvate kinase (PK) gene that
- 194 catalyzes one of the rate-limiting steps of glycolysis.

- 195 Table 1. qRT-PCR primers used for GNG-related and reference genes. Xbp1, X-box binding protein 1; Tbp,
- 196 TATA-box binding protein; Stx16, syntaxin-16; Arlar1; FBP, fructose 1,6-bisphosphotase; PEPCK-C,
- 197 cytoplasmic phosphoenolpyruvate carboxykinase; PC, mitochondrial pyruvate carboxylase; PK, pyruvate
- 198 kinase, muscle isoform.
- 199
- 200

Table 1: Gene-specific primers used in qR	Γ-PCR.
---	--------

Gene	Accession	Primer	5'-3' Primer sequence	Product size, bp
Xbp1	XM_032923654	Forward	CAGAGGCTTGATCACATGAC	150
		Reverse	GTGATTGTTCTCTGCCCTAAG	
Tbp	XM_032935699	Forward	CTGACTCACAGCCAGTTTAG	130
		Reverse	GAACTTTGGCGCCAGTAA	
Stx16	XM_032933438	Forward	ACCTGAACAAGATAAAGTCACG	124
		Reverse	TGGCTCATAACCCTTGGA	
Aralar1	XM_032929071	Forward	TCCTTTGTTGGCGAGTTAAT	156
		Reverse	GACCAGATCGTTAGTTGTGAG	
FBP	XM_032922068	Forward	CAAAGAAAGAGGGTGCGAAG	106
		Reverse	TGTGGCAGGGTCATGAATA	
PEPCK-C	XM_045175641	Forward	TCATCCAATGCCCAGAGA	108
		Reverse	CTATTACCGAGCCAATCCTTAG	
РС	XM_032936339	Forward	GCCAAGGTCATCACAGAAA	150
		Reverse	CACCTGCTCATTCGTTATCC	
РК	XM_045169465	Forward	AGCGGAGAAACAGCAAAG	129
		Reverse	AGTAACGACCATGCCAGA	

202

203

204 Data analysis

205 Lactate and pyruvate content and qRT-PCR data were analyzed using Residual Maximum 206 Likelihood (REML) ANOVA using JMP (Ver. 16, SAS Institute 2016), with protein-normalized lactate and 207 pyruvate concentrations and their ratio, or relative expression, respectively, as the response variables. The 208 main effects in the model were clones and acute hypoxia exposure. The date of measurement was included 209 in the model as a random block effect. For qRT-PCR data, the biological replicate was included in the 210 analysis as a random block effect. Table-wide sequential Bonferroni-adjusted P-values[20] were calculated 211 for each table of results.

212 Results

213 Lactate and pyruvate content

Here we examined the differences in protein-normalized concentrations of lactate and pyruvate and their

- ratio under hypoxic and normoxic conditions among four *D. magna* clones (Table 2, Fig 2). Lactate
- 216 concentration significantly increased in hypoxia but did not differ among the clones, while pyruvate
- 217 concentration did not increase in hypoxia but showed a strong clone effect, with the IL clone demonstrating
- the lowest levels of pyruvate. As the results indicate, the lactate:pyruvate ratio showed both clone and
- 219 hypoxia effects, with the increased lactate:pyruvate ratio after exposure to acute hypoxia being largely due
- 220 to the increase in lactate concentration, whereas interclonal differences were largely due to differences in
- 221 pyruvate concentration. There were no interaction effects between clones and hypoxia in either lactate or
- 222 pyruvate concentrations or their ratio (Table 2).
- 223

224 Table 2. Residual maximum likelihood (REML) analysis of variance of the differences in protein-

normalized concentrations of lactate and pyruvate and their ratio among clones and between hypoxia

treatment and normoxic control. P<0.025 shown in italics; P<0.001 in bold. Sequential Bonferroni-

227 corrected P-values are should to the right of individually significant P-values

228

Source	DF	DFDen	F Ratio	Р	P _{adj}
Response Lac/Pyr					
Clone	3	55	8.69	<0.0001	<0.001
Нурохіа	1	47.02	25.43	<0.0001	<0.001
Clone*Hypoxia	3	55	1.27	0.29	
Response Lac, mM/mg Prot					
Clone	3	55	0.46	0.71	
Нурохіа	1	55.9	63.47	<0.0001	<0.001
Clone*Hypoxia	3	55	0.397	0.75	
Response Pyr, mM/mg Prot					
Clone	3	55	7.02	0.0004	0.0024
Нурохіа	1	55.89	6.18	0.0159	0.08
Clone*Hypoxia	3	55	0.08	0.97	

Fig. 2. Lactate:pyruvate ratio and protein-normalized lactate and pyruvate concentration in whole-body
extracts in Daphnia from normoxic control (blue) and 12 h exposure to acute hypoxia (orange). Diamonds
represent means; a diamond's height represents the SE of the mean.

262 Differential gene expression

- 263 The results of differential expression analysis by qPCR were somewhat different depending on which
- transcript was used for normalization: a carbohydrate metabolism-independent housekeeping reference gene
- 265 Xbp1 or the glycolysis rate-limiting PK (Fig. 1), even though PK itself showed no significant differences
- between either oxygen levels or body parts (Table 3, Fig. 3). Normalization of GNG-specific transcripts by
- 267 Xbp1 reflects general levels of expression; normalization by PK reflects the relative activity of the GNG vs.
- 268 glycolysis branches of the Cori cycle. Of the four GNG-related transcripts tested, the transport protein
- 269 Aralar1 transcript, contrary to predictions, showed a slight downregulation in hypoxia. PC showed no
- evidence of differential expression regardless of which reference was used for normalization (Table 3). The
- 271 other two transcripts, PEPCK-C and FBP, showed hypoxia-related differential expression. Both PEPCK-C
- and FBP were upregulated in hypoxia when normalized by Xbp1 (tentatively significant after multiple test
- correction); FBP was both upregulated in hypoxia and in the bodies, relative to the heads, as predicted, with
- the hypoxia upregulation being stronger in the head than in the body (Table 3; Fig. 3).

277	Table 3. Residual maximum likelihood (REML) analysis of variance of the effects of hypoxia (normoxic
278	control vs. 12 hours at <1 mg/L O ₂) and body part (head vs. body) on transcript abundance (- Δ Cq) for four
279	GNG-related transcripts normalized either by the general housekeeping reference gene encoding X-box
280	binding protein (Xbp1) or glycolysis-specific pyruvate kinase (PK). P<0.025 shown in italics; P<0.001 in
281	bold. Sequential Bonferroni-adjusted P-values shown on the right on individually significant P-values.
282	

		N	lormaliz	ed by X	Xbp1			Norma	lized by	PK	
Trans- cript	Source	DF	DF _{Den}	F	Р	P _{adj}	DF	DF _{Den}	F	Р	P _{adj}
Aralar1	Hypoxia	1	7.94	7.90	0.023	0.12	1	8.09	1.85	0.21	
	BodyPart	1	7.94	0.08	0.78		1	8.29	0.19	0.67	
	Hypoxia* BodyPart	1	7.94	0.21	0.66		1	8.09	0.001	0.99	
PC	Hypoxia	1	11.1	1.11	0.32		1	11.8	1.48	0.25	
	BodyPart	1	11.1	0.91	0.36		1	11.8	0.17	0.69	
	Hypoxia* BodyPart	1	11.1	0.40	0.54		1	11.8	0.39	0.54	
PEPCK- C	Нурохіа	1	13.1	7.43	0.017	0.10	1	13	4.23	0.06	
	BodyPart	1	13.1	0.83	0.38		1	13	2.28	0.16	
	Hypoxia* BodyPart	1	13.1	0	1		1	13	0.50	0.49	
FBP	Hypoxia	1	12	9.11	0.011	0.08	1	12	46.21	<0.0001	<0.001
	BodyPart	1	12	0.86	0.37		1	12	28.44	0.0002	0.0016
	Hypoxia* BodyPart	1	12	0.12	0.73		1	12	5.871	0.032	0.13
РК	Hypoxia	1	15	0.13	0.72						
	BodyPart	1	15	1.48	0.24						
	Hypoxia* BodyPart	1	15	0.03	0.87						

Fig. 3. Relative expression (-ΔC_q) of PEPCK-C (A, B), FBP (C, D), and PK (E) transcripts normalized by
Xbp (A, C, E) and PK (B, D). Error bars represent standard error. Higher values indicate higher expression;
-ΔC_q difference of 1 corresponds to two-fold difference in transcript abundance. Colors as on Fig. 2.

322 Discussion

The Cori cycle is an adaptation to intense bouts of muscular activity in larger animals, where it is difficult to supply sufficient oxygen for oxidative phosphorylation in muscles during peak ATP demand [5]. However, this is a costly way of generating ATP, as for every mole of ATP generated by glycolysis in the muscles, three moles are spent in the GNG branch of Cori cycle, making it unsustainable in the long term. However, even small organisms may have to resort to GNG to regenerate glucose in hypoxic conditions. For example, zooplankton organisms like *Daphnia* must continuously swim (typically upward) to avoid hypoxic layers or spots within a lake or pond, and this is likely a subject for selection.

- 331 In Daphnia and other cladocerans, the head contains major locomotory muscles, namely the ones 332 driving the 2nd (swimming) antenna, in addition to the mitochondria-rich ATP-consuming central neural 333 system (Ref. [21], Fig. 1.3). Thus, the head tissues and organs are likely to be the primary consumers of 334 glucose synthesized by GNG in conditions when glycolysis is the main source of ATP. While the "classic" 335 mammalian GNG-active organs, the liver and kidneys, do not have direct counterparts in *Daphnia* anatomy, 336 we hypothesize that the adipose tissue, located in the thorax and the abdomen, may be the main site of 337 GNG. Lactate and pyruvate metabolism, including the starting points of gluconeogenesis such as the 338 conversion of pyruvate to oxaloacetate by PC, is known to be active in adipose tissue in both mammals and 339 arthropods [22]. Therefore, we hypothesize that the "body" (thorax and abdomen) may be the donor of 340 glucose produced by GNG in the Cori cycle operating in *Daphnia* under hypoxic conditions, suggesting 341 differential expression of the GNG and glycolysis-related genes in the body and the head. And a further 342 prediction made was that acute hypoxia should augment this differentiation.
- 343

344 These predictions were tested in a qRT-PCR experiment, measuring GNG-related transcript 345 abundance separately in the heads and bodies of individuals from the IL Daphnia clone. We selected this 346 clone from a panel of four as it was the one characterized by the lowest pyruvate accumulation in tissues, 347 hypothetically indicating the utilization of pyruvate for lactic fermentation and/or GNG. This clone has 348 previously been demonstrated to be the most hypoxia-tolerant of the four clones tested [18]. We observed a 349 significant upregulation of PEPCK-C and FBP (but not of PC) in hypoxia in both body parts when 350 normalized by a reference gene unrelated to carbohydrate metabolism (Fig. 3). We also observed a 351 significant upregulation of FBP, a rate-limiting GNG enzyme, in hypoxia and in the body relative to the 352 head, when normalized by PK, one of the rate-limiting enzymes of glycolysis. We therefore conclude that 353 body/head compartmentalization of the glycolysis and GNG pathways is likely necessary for survival in 354 hypoxia. Furthermore, we predicted the hypoxia-by-body part interaction with the hypoxia effect being

355 stronger in the body than in the head (Fig. 3); however, this predicted interaction effect was only marginally 356 significant and did not survive multiple test correction.

357 It is yet to be tested if the same observation would be made with a less hypoxia-tolerant clone of D. 358 magna (or in less hypoxia-tolerant species of zooplankton). Further studies would test if that variation in 359 hypoxia tolerance, within and among zooplankton species, is maintained by the trade-offs between the 360 ability to operate the Cori cycle in hypoxia and the GNG-associated costs of doing so when oxygen is 361 abundant. 362 363 364 Conclusions 365 We observe upregulation of the genes encoding rate-limiting gluconeogenesis enzymes, 366 cytoplasmic phosphoenolpyruvate carboxykinase (PEPCK-C) and fructose-1,6-bisphosphatase (FBP), in 367 hypoxia within a hypoxia-tolerant clone of *Daphnia*. When normalized by the rate-limiting glycolysis 368 enzyme pyruvate kinase, the upregulation of FBP is more pronounced in the body than in the head of 369 Daphnia, indicating the potential role of the Cori cycle in sustaining glycolysis in the central nervous 370 system and locomotory muscles during hypoxia. 371 372 References 373 374 1. Cori, C.F., & Cori, G.T. 1929. Glycogen formation in the liver from d- and l-lactic acid. J Biol Chem, 81, 375 389-403. 376 2. Reichard, G. A., Jr., Moury N. F., Jr., Hochella, N. J., Patterson, A. L., & Weinhouse, S. 1963. 377 Quantitative estimation of the Cori cycle in the human. J. Biol. Chem, 238, 495. 378 3. Cahill, G. F. 1970. Starvation in Man. New England Journal of Medicine, 282(12), 668–675. 379 doi:10.1056/nejm197003192821209 380 4. Freminet, A., Poyart, C., Leclerc, L., & Gentil, M. 1976. Effect of fasting on the Cori cycle in rats. FEBS 381 Lett, 66, 2, 328-331. doi: 10.1016/0014-5793(76)80532-7.PMID: 955096. 382 5. Cori, C.F. 1981. The glucose-lactic acid cycle and gluconeogenesis. Current Topics in Cellular 383 Regulation, 18, 377-387. 384 6. Nelson, D.L., & Cox, M.M. 2005. Lehninger Principles of Biochemistry (Fourth ed.). New York: W.H. 385 Freeman and Company. p. 543. 386 7. Champagne, C.D., Houser, D.S., & Crocker, D.E. 2005. Glucose production and substrate cycle activity 387 in a fasting adapted animal, the northern elephant seal. J Exp Biol., 208(Pt 5), 859-868. doi: 388 10.1242/jeb.01476. PMID: 15755884.

389	8. Gupta, A., Varma, A., & Storey, K.B. 2021. New insights to regulation of fructose-1,6-bisphosphatase
390	during anoxia in red-eared slider, Trachemys scripta elegans. Biomolecules, 11, 10, 1548. doi:
391	10.3390/biom11101548. PMID: 34680181.
392	9. Choi, J.H., Park, M.J., Kim, K.W., Choi, Y.H., Park, S.H., An, W.G., Yang, U.S., & Cheong J. 2005.
393	Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional
394	regulation. FEBS Lett., 579(13), 2795-2801. doi: 10.1016/j.febslet.2005.03.097. PMID:
395	15907483.
396	10. Hara, Y., & Watanabe, N. 2020. Changes in expression of genes related to glucose metabolism in liver
397	and skeletal muscle of rats exposed to acute hypoxia. Heliyon, 6, 7, e04334. doi:
398	10.1016/j.heliyon.2020.e04334. PMID: 32642586.
399	11. Owczarek, A., Gieczewska, K., Jarzyna, R., Jagielski, A.K., Kiersztan, A., Gruza, A., & Winiarska, K.
400	2020. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-
401	dependent activation of phosphoenolpyruvate carboxykinase expression. Biochimie, 171-172, 31-
402	37. doi: 10.1016/j.biochi.2020.02.002. PMID: 32045650.
403	12. Granillo-Luna, O.N., Hernandez-Aguirre, L.E., Peregrino-Uriarte, A.B., Duarte-Gutierrez, J., Contreras-
404	Vergara, C.A., Gollas-Galvan, T., & Yepiz-Plascencia, G. 2022. The anaplerotic pyruvate
405	carboxylase from white shrimp Litopenaeus vannamei: Gene structure, molecular
406	characterization, protein modelling and expression during hypoxia. Comp Biochem Physiol A
407	Mol Integr Physiol, 269, 111212. doi: 10.1016/j.cbpa.2022.111212. PMID: 35417748.
408	13. Reyes-Ramos CA, Peregrino-Uriarte AB, Cota-Ruiz K, Valenzuela-Soto EM, Leyva-Carrillo L, Yepiz-
409	Plascencia G. 2018. Phosphoenolpyruvate carboxykinase cytosolic and mitochondrial isoforms
410	are expressed and active during hypoxia in the white shrimp Litopenaeus vannamei. Comp
411	Biochem Physiol B Biochem Mol Biol. 226:1-9. doi: 10.1016/j.cbpb.2018.08.001. PMID:
412	30107223.
413	14. Cota-Ruiz, K., Peregrino-Uriarte, A.B., Felix-Portillo, M., Martínez-Quintana, J.A., & Yepiz-
414	Plascencia, G. 2015. Expression of fructose 1,6-bisphosphatase and phosphofructokinase is
415	induced in hepatopancreas of the white shrimp Litopenaeus vannamei by hypoxia. Mar Environ
416	Res, 106, 1-9. doi: 10.1016/j.marenvres.2015.02.003. PMID: 25725474.
417	15. Cota-Ruiz, K., Leyva-Carrillo, L., Peregrino-Uriarte, A.B., Valenzuela-Soto, E.M., Gollas-Galván, T.,
418	Gómez-Jiménez, S., Hernández, J., & Yepiz-Plascencia, G. 2016. Role of HIF-1 on
419	phosphofructokinase and fructose 1,6-bisphosphatase expression during hypoxia in the white
420	shrimp i. Comp Biochem Physiol A Mol Integr Physiol, 198,1-7. doi:
421	10.1016/j.cbpa.2016.03.015. PMID: 27032338.

16. Hernández-Aguirre, L.E., Cota-Ruiz, K., Peregrino-Uriarte, A.B., Gómez-Jiménez, S., & Yepiz-422 423 Plascencia, G. 2021. The gluconeogenic glucose-6-phosphatase gene is expressed during oxygen-424 limited conditions in the white shrimp Penaeus (Litopenaeus) vannamei: Molecular cloning, 425 membrane protein modeling and transcript modulation in gills and hepatopancreas. J Bioenerg 426 Biomembr, 53, 4, 449-461. doi: 10.1007/s10863-021-09903-6. PMID: 34043143. 427 17. Vora, M., Pyonteck, S.M., Popovitchenko, T., Matlack, T.L., Prashar, A., Kane, N.S., Favate, J., Shah, 428 P., & Rongo, C. 2022. The hypoxia response pathway promotes PEP carboxykinase and 429 gluconeogenesis in C. elegans. Nature Communications, 13, 1, 6168. doi: 10.1038/s41467-022-430 33849-x. PMID: 36257965. 431 18. Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. 2022. The interplay between prior selection, 432 mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response 433 to hypoxia. Ecol Evol. 12(10):e9319. doi: 10.1002/ece3.9319. PMID: 36248677. 434 19. Klüttgen B, U Dülmer, M Engels, H.T Ratte. 1994. ADaM, an artificial freshwater for the culture of 435 zooplankton. Water Research 28 (3), 743-746.https://doi.org/10.1016/0043-1354(94)90157-0. 436 20. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of 437 Statistics. 6 (2): 65-70. 438 20. Spanier, K.I., Leese, F., Mayer, C., Colbourne, J.K., Gilbert, D., Pfrender, M.E., & Tollrian, R. 2010. 439 Predator-induced defenses in Daphnia pulex: selection and evaluation of internal reference genes 440 for gene expression studies with real-time PCR. BMC Mol Biol, 11, 50. doi: 10.1186/1471-2199-441 11-50. PMID: 20587017. 442 21. Rao X., Huang, X., Zhou, Z., & Lin, X. 2013. An improvement of the 2^(-delta delta CT) method for 443 quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath, 3, 3, 444 71-85. PMID: 25558171. 445 22. Smirnov, N.N. 2017) Physiology of the Cladocera. 2nd edition Academic Press. 446 23. Krycer, J.R., Quek, L.E., Francis, D., Fazakerley, D.J., Elkington, S.D., Diaz-Vegas, A., Cooke, K.C., 447 Weiss, F.C., Duan, X., Kurdyukov, S., Zhou, P.X., Tambar, U.K., Hirayama, A., Ikeda, S., 448 Kamei, Y., Soga, T., Cooney, G.J., & James, D.E. 2020. Lactate production is a prioritized 449 feature of adipocyte metabolism. J Biol Chem, 295, 1, 83-98. doi: 10.1074/jbc.RA119.011178. 450 PMCID: PMC6952601.