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Abstract

The quantity of each protein in a cell only is only partially correlated with its gene transcription 

rate. Independent influences on protein synthesis levels include mRNA sequence motifs, 

amino acyl-tRNA synthesis levels, elongation factor action, and protein susceptibility to 

degradation. Here we report two novel forms of interaction between the amino acid 

composition of a protein and its expression level.

In animals, the differing origins of amino acids define a nutritional classification system and 

indicate their potential for scarcity – essential amino acids (EAA) are solely obtained from 

dietary supply, non-essential amino acids (NEAA) from biosynthetic supply, and conditionally 

essential amino acids (CEAA) from both. Accessing public proteomic datasets, we 

demonstrate that CEAA sequence composition is inversely correlated with expression – a rule 

of supply that is further magnified by rapid cellular proliferation. Similarly, proteins with the 

most extreme compositions of EAA are reduced in abundance. Homeostatic responses to 

malnutrition may result from the reductions in expression of extreme composition proteins 

participating in biological systems such as taste and food-seeking behaviour, oxidative 

phosphorylation, and chemokine function. The rule can also influence general human 

phenotypes and disease susceptibility: stature proteins are enriched in CEAAs, and a curated 

dataset of over 700 cancer proteins is significantly under-represented in EAAs.

A second rule, whereby individual amino acids influence protein expression is also described. 

This rule is shared across all kingdoms of life and rooted in the immutable structural and 

encoding parameters of each amino acid. Species-specific environmental survival pathways 

are shown to be enriched in proteins with amino acid compositions favouring higher 

expression according to this rule.

These two rules of protein expression regulation promise new insights into systems biology, 

evolutionary studies, experimental research design, and public health intervention.
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Introduction

The regulated transcription of mRNA from DNA, and subsequent translation into effector 

proteins, underlies all of life’s dynamic processes. However, a typical gene’s levels of mRNA 

and protein only show a correlation of 0.6 [1-3], indicating the presence of DNA-independent 

regulatory influences on translation. Those influences are complex and incompletely 

understood [4-6] but include mRNA sequence motifs, compatibility between mRNA codon 

choice and corresponding tRNA-amino acid availability [7, 8] and the complex regulation of 

translation initiation, elongation and termination. 

The established mTORC1 signalling pathway elicits molecular and cellular changes in 

response to nutritional state via the monitoring of certain amino acid concentrations [9]. 

However, the direct impact of global amino acid scarcity on protein translation is 

underexplored, despite supply characteristics defining an important amino acid classification 

system in animals [10]. That classification comprises essential amino acids (EAA) required 

from diet, non-essential amino acids (NEAA) obtained through biosynthesis, and an ill-defined 

intermediate class, conditionally essential amino acids (CEAA), requiring supplementation 

from diet during development and periods of stress or illness [11, 12]. Over 500 million years 

ago the new animal kingdom was, in part, distinguished by a coordinated inactivation of 

biosynthetic pathways for the EAA class [13-15]. The resulting switch from an autotrophic to 

auxotrophic lifeway obliged the direct or secondary sourcing of EAAs from a diet of 

prototrophic plants, or heterotrophic prey that fed on those plants. The opportunity for 

increased biological complexity offered by the energetic efficiency of a higher trophic level has 

been of demonstrable advantage to animals but it created vulnerability to situational deficits 

in dietary supply of EAA and possibly CEAA. Such deficits would likely act by limiting tRNA-

amino acid synthesis and availability, slowing the protein translation rate, and decreasing 

protein expression – with inevitable phenotypic consequences. 
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Here we present evidence obtained from quantitative proteomics datasets that a protein’s 

amino acid composition correlates with its expression in two ways. Firstly, we show that the 

proportions of the three nutritional classes of amino acids in an animal protein exert an 

influence on expression reflecting extrinsic supply and intrinsic amino acid biosynthesis 

constraints, respectively. A second form of intrinsic amino acid composition effect on 

expression is also described that is shared across all kingdoms of life and derived from the 

universal structural and encoding parameters of amino acids. We propose that evolution has 

harnessed both the extrinsic and intrinsic effects to select protein compositions that confer 

advantageous expression responses during environmental stress. These two rules offer 

intriguing new insights into the environmental influences on protein evolution and expression 

regulation.

Results

Extrinsic effects of amino acid classes on protein expression

We first examined how the amino acid nutritional class composition of every human protein 

influences its expression. Mass spectrometry-derived expression levels of 9,399 liver proteins 

were accessed from the public proteomics repository, PaxDB [16] (Methods). Fig 1a shows 

proteins ranked from low-to-high frequency of each of the three nutritional classes plotted 

against a conservative moving median protein expression level. A greater compositional 

frequency of CEAA (fCEAA) was generally associated with a modest decrease in protein 

expression, whereas greater EAA (fEAA) was associated with increased expression. 

However, at the extremes of composition, the outcome was more complex with high fEAA and 

fCEAA both repressing expression, and low values releasing constraints on expression. At 

both extremes, we interpret the apparent fNEAA influence on expression to be merely the 
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passive consequences of active fCEAA or fEAA constraint effects. These findings are striking 

in two regards: they are naïve of mRNA expression information, and data are derived from 

human donors without known dietary amino acid deficiency.  

An alternative approach to data visualisation, focusing on relative amino acid composition, 

was applied to data from eight human organs and a lung alveolar basal epithelial 

adenocarcinoma cell line, A549. The accessed organ expression datasets (PaxDB) had 

already been normalised and integrated from several analyses. Ranked protein expression 

levels were plotted against smoothed relative EAA:CEAA:NEAA proportions for each protein 

(Methods, Fig 1b-g, and Supplementary Fig 1). The right side of every component image is 

largely conserved in appearance: high-level protein expression requires amino acid 

composition to be near to the population means (fEAA, 0.41; fCEAA, 0.28; fNEAA, 0.31). By 

contrast, the left side of each image was observed to fall into one of three distinct profiles. In 

the first, Fig.1b, Supplementary Fig 1 liver, heart, and male and female gonads show a 

marked increase in proteins with high CEAA proportion at lower expression levels (green 

arrow). This suggests the existence of a biosynthetic shortfall of these amino acids that results 

in reduced expression of such proteins. In Fig 1c, Supplementary Fig 1 pancreas and brain 

tissues do not appear to be affected by the steady-state supply of amino acids. In Fig 1d, 

Supplementary Fig 1 kidney and lung CEAA and NEAA biosynthesis are seemingly both 

constrained (green and blue arrows) causing a greater proportion of those amino acids in 

proteins with low expression, with lower EAA levels reflecting this passively. These three 

profiles may reflect inherent organ features such as non-proteogenic amino acid use 

(gluconeogenesis), local proliferation rate, basal metabolic rate, or amino acid transportation 

capacities. 

Figure 1 The relative proportions of the three nutritional amino acid classes change 

with protein expression level and proliferation rate. (a) Proteins were ranked by frequency 
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of each of the three nutritional classes (NEAA, blue; CEAA, green; EAA, red. Single-letter 

amino acid codes are shown) and plotted against a moving median of liver expression levels 

(periodicity = 5% of total protein number) to determine influence on expression. (b-g) A 

smoothing procedure (see Methods and Supplementary File 1) was applied to visualise 

trends in relative, ranked amino acid class proportion when plotted against ranked protein 

expression level in human liver, brain, and kidney, and in A549 lung cancer cells lines with 

different proliferation rates (data from PaxDB). The full set of human organ data is presented 

in Supplementary Figure 1. In (g), liver proteins have been randomised with respect to 

expression rank, removing trends in amino acid class representation and confirming the 

validity of the smoothing approach. (h/i) The impact of cellular proliferation rate on protein 

expression was examined in PaxDB data from 26 cell lines from multiple laboratories stratified 

into three cohorts (low proliferation rate, 11 lines; medium, 8 lines; high, 7 lines) via normalised 

expression level of the proliferation marker MKI67 (Ki67). Proteins were additionally 

subdivided into 5 amino acid class frequency ranges (fEAA/fCEAA 1-5, with 5 having the 

greatest representation of the amino acid class). Normalised total protein expression levels 

were calculated for each of the 15 groups and plotted.

In Fig 1e and f, markedly different profiles are shown for two expression datasets from the 

same lung cancer cell line, A549. We hypothesised that differing tissue culture protocols in 

the source laboratories affected amino acid availability. In Fig 1e (A549 a, data from [17], #id: 

3312331274) there is little evidence for constrained protein expression. However, in Fig 1f 

(A549 b, data from [18], #id: 878737823) - with cells described as actively proliferating - a 

substantial increase in CEAA and EAA proportions (green and red arrows) was observed at 

lower expression levels indicating that proteins with greater proportions of those two amino 

acid classes were inefficiently translated. A suspected interaction between proliferation rate, 

nutritional class and expression was therefore examined in PaxDB expression data from 26 

cell lines. Wide provenance, intrinsic cell line expression differences, and uncertain culture 
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conditions at the time of protein isolation required an objective means to stratify cell line data 

by proliferation rate. A normalised protein expression level was derived for established 

proliferation marker Ki67 (MKI67) within each cell line (this value correlated well with 

expression of cell division proteins such as CKS2, KIF23, POLA1, CDC45 and SPC24; data 

not shown). Cell lines were stratified into 3 groups by this proliferation rate proxy, as well as 

into 5 fEAA or fCEAA classes. When total protein expression levels within each of the resulting 

fifteen subdivisions were summed and plotted (Fig 1h and 1i), we saw evidence for 

expression influenced by two forms of amino acid supply kinetics. Firstly, a proportionately 

negative influence on expression exists across the full range of fCEAA, which is further 

intensified (green arrow) by the amino acid demands of rapid proliferation (Fig 1h). Secondly, 

a largely proliferation-independent, positive effect of increasing fEAA on protein expression 

levels was observed which switches to negative only for those proteins with the very highest 

fEAA (perhaps determined by the limits of EAA availability in media and its cellular uptake) 

(Fig 1i). 

Intrinsic effects on protein expression

We looked beyond nutritional supply constraint effects and amino acid groupings to determine 

if fundamental effects on protein expression existed at the individual amino acid level. Multiple 

Linear Regression (MLR) was used to determine individual amino acid frequency effects on 

expression within eight human organs and, in parallel, the root of plant Arabidopsis thaliana 

(a prototroph), the fungus Saccharomyces cerevisiae, and bacterium Escherichia coli (both 

heterotrophic/autotrophic) (Table 1, Supplementary File 1). The individual amino acid effects 

on expression were substantially conserved in scale and direction between human organs and 

across species. Increased representation of amino acids lysine (K), glycine (G), alanine (A), 

and valine (V) largely correlated with increased expression of a protein, whereas tryptophan 

(W), arginine (R), cysteine (C), and serine (S), largely correlated with reduced expression. 

Human-specific inhibitory effects were seen for isoleucine (I) and proline (P), and methionine 
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(M) was consistently inhibitory in non-animal species. Aspartate (D) only showed a positive 

influence in humans. These MLR models are statistically highly significant, but only generate 

modest r2 values within a range of 0.02 to 0.13 for global prediction of protein expression in 

the absence of mRNA expression data or nutritional deficiency. We noted that the largest r2 

values were observed for human ovary, heart, and testis, all represented within the subgroup 

represented in Fig. 1b and Supplementary Fig. 1a, and for the two microorganisms cultured 

in proliferation-driving conditions. This suggested that there may be overlapping effects from 

intrinsic amino acid characteristics and extrinsic amino acid constraint influences. This found 

further support in the over-representation of CEAAs within the group of amino acids showing 

MLR negative effects. Surprisingly, Serine (a NEAA not expected to be limiting) was also 

negatively associated with expression level. Serine’s vital role as a carbon source for the 

synthesis of other amino acids, and the pathological consequences of its deficiency in humans 

has prompted a recent call for its reclassification as a CEAA [19]. 
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Table 1 Pan-species conservation of individual amino acid influences on protein 

expression levels. Human organ data are shown in the lower section of the table and species 

data in the upper section. Numbers in cells represent the normalised magnitudes for 

statistically significant multiple linear regression (MLR) coefficients for each amino acid in each 

species or organ. Amino acids have been ordered left-to-right across the table from greatest 

average negative effect (shades of red) to greatest average positive effect (shades of green) 

on protein expression. Human amino acid nutritional class assignments are shown at the top 

of the table. Adjusted correlation values and statistical significance are shown on the extreme 

right of the table for each of the 11 MLRs. See Supplementary File 1 for full MLR data.

The pan-species nature of these amino acid effects was effectively demonstrated by using the 

E. coli MLR model from Table 1 and Supplementary File 1 to predict trends in global human 

protein expression (Fig. 2). A moving average expression describing three orders of 

magnitude was observed when the liver MLR model value for each protein was plotted against 

that protein’s true liver expression (Fig 2a). The bacterial MLR model applied to human liver 

expression generated was still able to describe a moving average expression spanning two 

orders of magnitude (Fig 2b). To explain these universal effects of amino acids on protein 

expression we considered three fundamental properties as candidate influences. The first 

property was the number of synonymous codons assigned to each amino acid, in what we 

hypothesised was a proxy for the effect of codon choice on translation. Secondly, three related 

models of amino acid biosynthetic cost were applied to determine if metabolic economisation 

has directed protein evolution towards ‘thrifty’ amino acid composition and protein expression 

levels. In the Akashi [20] and Wagner models [21], the cost of synthesis for each amino acid 

is measured as high-energy phosphate bond equivalents and, in the Zhang model [22], this is 

further refined by including amino acid degradation constants. The third assessed property 

was the composite ‘Dufton score’ [23], assigned to amino acids based on their spatial volume 

and chemical complexity - encapsulating biosynthetic, structural, and functional parameters. 
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Fig 2c illustrates the relative magnitudes of these properties for each amino acid (tabulated in 

full in Supplementary File 1). A MLR analysis of all properties applied to liver expression data 

indicated significant contributions from the number of codons allocated (p=5.2 x 10-14) and the 

Dufton score (p=5.2 x 10-13), but no significant influence of energetic cost. Combined in a 

single model, these two simple and immutable amino acid properties were sufficient to 

generate a moving average describing almost three orders of magnitude of liver expression 

(Fig 2d).

Figure 2 Pan-species effects of amino acids on protein expression can be largely 

explained by two fundamental parameters. The two expression prediction models 

generated by MLR analysis of individual amino acid effects on human liver and E. coli protein 

expression levels (detailed in Table 1 and Supplementary File 1) were tested for their ability 

to predict global liver protein expression. Each individual protein is shown as a green dot 

representing model predicted expression and actual human liver expression (log scale). Model 

ability is visualised by plots of moving averages (purple, red, black: periodicity of 100 proteins). 

(a) Liver model on liver expression analysis. (b) E. coli model on liver expression analysis. (c) 

Individual properties of amino acids (identified by their the one- and three-letter designations 

at the bottom) are visualised along with their amino acid frequency in the unit human 

proteome, and their nutritional class (red=EAA, green=CEAA, blue=NEAA). (d) A model 

combining Dufton score and number of codons allocated to each amino acid was tested for its 

ability to predict liver protein expression levels.
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Protective biological systems at extremes of amino acid 

composition

A prediction from these findings would be that animal proteins with the most extreme EAA or 

CEAA amino acid compositions would be the first to experience translational inefficiency in a 

state of amino acid deficiency. We theorised that such proteins might have retained 

counterintuitively extreme compositions to sense and respond to environmental adversity. 

When the fEAA and fCEAA composition of 20,397 human proteins was visualised (Fig 3a), 

outlier proteins were found to intersect with our understanding of the biology and pathology of 

animal survival during malnourishment.

Figure 3 EAA and CEAA over-representation in specific proteins and pathways reveals 

the consequences of, and response to, amino acid deprivation.  The composition of 

20,397 human proteins was plotted, fEEA against fCEAA. (a) Tight distribution within a dense 

central cluster was clarified by the associated histograms. Magnified outlier sectors of a 

contained protein families or functionalities with extremely high fCEAA (b/c) and fEAA (d/e) 

likely susceptible to reduced expression during nutritional insufficiency.

The fCEAA outlier group primarily consisted of proteins with roles in the formation of 

connective tissue, skin, hair, and their maturation enzymes: collagens, elastin, keratin-

associated proteins, late cornified envelope proteins, small cysteine, glycine and proline 

repeat-containing proteins, fibrillins, fibulins, lysyl oxidase, and latent-transforming growth 

factor beta-binding proteins (Fig 3b and 3c)[24, 25]. Gastrointestinal excretion and the 

production of skin and hair are the three principal routes of irretrievable amino acid loss from 

the body [26], so the relative paucity of EAAs in these proteins may be a resource conservation 

strategy. Furthermore, their extreme CEAA composition may act as a translational regulator 

for life processes that can be temporarily sacrificed or permanently downscaled to conserve 
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energy and amino acid reserves. Anorexia nervosa can be accompanied by thinning hair, 

brittle nails, and deterioration in skin health [27] and, separately, periods of bodily stress or 

illness are frequently recorded as discontinuous nail growth in the form of Beau’s lines or 

‘pitting’. Other proteins with high fCEAA that might be susceptible to the effects of dietary 

deficiency include all 14 metallothioneins involved in heavy metal-binding and oxidative stress 

responses, several members of the serine-/arginine-rich splicing factor family, oxytocin (a 

hormone involved in all aspects of reproduction from sexual arousal, to uterine contraction in 

labour, mother-offspring bonding, and milk production) and multiple components of the Notch 

cell fate and differentiation signalling pathway (including DLL3, NOTCH4, and JAG2).

Extreme fEAA was observed in both leptin (LEP) and the melanocortin receptor proteins 

(MC1R-MC5R) (Fig 3d) – components of an established hypothalamic signalling pathway that 

responds to increased levels of adiposity by promoting satiety. This pathway is also linked to 

onset of puberty and stature [28]. GRPR (gastrin-releasing peptide receptor) also possesses 

high fEAA and similar appetite-suppressing role. We speculate that their conventional 

signalling pathways are augmented by ‘hard-wired’ protein synthesis inhibition during EAA 

deprivation – expression reduction of any of these components would act to increase appetite 

drive, potentially leading to recuperative ingestion of amino acids. Most members of the large 

olfactory receptor subfamily [29] exhibit high EAA density. Similarly, bitter taste receptors of 

the TAS2R subfamily have an extremely high EAA composition (Fig.3e) - with member 

TAS2R20 ranked 9th in the entire proteome. This contrasts with the proteome-average EAA 

composition of the umami and sweet taste receptors of the TAS1R subfamily. The TAS2R 

family fulfilled an important survival function in human prehistory by allowing detection and 

rejection of potentially toxic substances in foraged food. We hypothesise that the proteins 

responsible for these two sensory modalities have evolved fragility of expression during dietary 

EAA deficiency. The resulting reduction in bitter taste and smell acuity may lower food 

discrimination or aversion, offering access to a greater range of foodstuffs potentially 

containing EAAs (histidine, tryptophan and valine salts are all bitter-tasting [30]). There is 

tentative evidence that prolonged anorexia nervosa blunts taste sensitivity [31]. Three other 
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protein families have significant representation at the extremes of fEAA, including a group of 

fatty acid metabolism proteins (fig 3d), 14 protein components of the mitochondrial electron 

transport chain complexes (fig 3d) - and all 26 protein members of the CC-/CX- chemokine 

and chemokine receptor families that control chemotaxis and other immune cell functions (Fig 

3e). Examination of the cell line data described earlier revealed globally reduced expression 

in the high fCEAA/high proliferation groups including the majority of the individual fCEAA 

outlier proteins discussed here. Highly proliferating lines showed specific reductions in 

expression of a number of fEAA outlier proteins, including most taste and olfactory receptors, 

some of the chemokines and their receptors, and slight decreases in expression for 

mitochondrial proteins such as MT-ND4, MT-ND5, and MT-ATP8.

E. coli, S. cerevisiae, and A. thaliana do not have compromised amino acid biosynthesis 

pathways requiring external EAA provision. However, they do possess the intrinsic 

‘constraints’ defined in our earlier MLR findings as negative coefficient amino acids. We 

hypothesised that proteins at MLR-defined compositional extremes might also have been 

subject to evolutionary selection. Scores based on combined negative coefficients (MLR-) and 

combined positive coefficients (MLR+) were assigned to each protein based on composition. 

Proteins at the four MLR score distribution extremes were analysed via The Gene Ontology 

Resource [32] using Panther [33] to identify significant enrichment for specific biological 

processes (gene ontologies: GO). Next, MLR- scores and MLR+ scores were collated from 

the full set of proteins associated with identified gene ontology terms and statistically 

compared to the whole protein population using a two-tailed z-test. For E. coli, we observed 

significant enrichment within the less negative MLR-, more positive MLR+ protein sector for 

251 proteins designated under the ‘response to abiotic stimulus’ GO term (MLR- p=2.6 x 10-5, 

MLR+ p=1.1 x 10-6). The two least negative MLR- proteins in the entire E. coli proteome fall 

within this environment-detection category: acid shock protein (asr) and cold shock-like protein 

(cspC). Also significant were 116 proteins under the ‘translation’ GO term (MLR- p=1.1 x 10-

18, MLR+ p=9.8 x 10-61). This assessment is indirectly related to protein sequence and thus 
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subject to bias from the presence of multiple paralogs. Reanalysis of the paralog-rich 

translation term, collapsing multiple paralogs to a single averaged archetype, still yielded 

significance (MLR- p=0.002, MLR+ p=5.5 x 10-8). Translation-related GO terms also presented 

statistically significant MLR score biases in S. cerevisiae, A. thaliana (root), and H. sapiens 

(liver). Likewise, environmental detection-related GO terms response to high light intensity, 

water deprivation, and cold acclimation (A. thaliana); detoxification, and response to stress (H. 

sapiens), all showed significant MLR score biases (Supplementary File 2).

Amino acid composition and disease 

In humans, gene-environment (GxE) interactions modifying disease risk and phenotypic 

expressivity may be encountered by proteins with extreme fEAA/fCEAA composition. 

Malnourishment in early life is currently experienced by 1 in 5 of the world’s population, 

affecting stature, intellectual ability, future fertility, and risk of chronic illnesses – with the WHO 

reporting 145 million children with stunted height in 2020 [34, 35]. In the first approach to 

examine potential EAA/CEAA deficiency influences on disease risk, the online DisGeNET 

catalogue of genes associated with 8,383 diseases [36] was queried to identify extreme 

fEAA/fCEAA composition proteins which also had robust aetiopathological roles supported by 

at least 10 distinct disease annotations (Supplementary File 1). Proteins linked to cancers 

(e.g., the tumour suppressor, CDKN2A), CNS disorders (e.g., the myelin constituent, PMP22), 

and developmental disorders (e.g., skeleton and tooth development protein, SLC10A7) were 

represented at fCEAA and fEAA extremes. For fCEAA, there were many connective tissue 

disorders (due to the collagen protein family), as well as several proteins linked to miscarriage 

(COL5A1, IGFBP6, LGALS3); for fEAA, proteins were linked to immunological disorders, 

primarily due to the chemokine family and their receptors.
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In a second, multigenic approach, five conditions (cancer, male infertility, female infertility, 

tooth abnormality, obesity) and one phenotype (stature/height) were chosen as established 

indicators of malnourishment or, in the case of cancer, selected because of a pathology 

defined by aberrant proliferation. Risk proteins for each disorder were compiled from the 

literature or public databases and two-tailed Z-tests performed to determine if risk protein lists 

showed average fCEAA or fEAA values significantly deviating from the entire proteome 

(Supplementary File 1). Significant findings were observed for cancer and stature. 

Established cancer proteins (n=723, from the COSMIC Cancer Gene Census [37]) showed a 

highly significant under-representation of EAA (p=0.00 x 100) and compensatory increase in 

fNEAA (p=2.23 x 10-31). Stature genes (n=116, manually curated from literature) showed an 

increase in fCEAA (p=1.02 x 10-6) and a decrease in fEAA (p=1.02 x 10-05) although 

significance was largely driven by 8 members of the collagen family. 

Discussion

We have established both extrinsic and intrinsic rules by which a protein’s amino acid 

composition can influence its expression. The profile of extrinsic CEAA inhibitory effects on 

expression during baseline and proliferative cellular conditions offers the first rigorous 

molecular definition of this historically ignored nutritional class. One consequence of our 

findings is that the proliferative state of laboratory cell lines (largely unreported in publication 

methods) may be a confounding factor for experimental replication of functional or expression 

studies - for half of all proteins. Expression of proliferation biomarker MKI67 may be a useful 

benchmark for such studies. By contrast, only modest consequences were observed for EAA-

enriched proteins. Determining the true scale of extrinsic EAA influences on protein expression 

in vitro and in vivo will require experimentation with amino acid-deficient culture media/feeds.

The remarkable second finding that individual amino acids affect protein expression in a 

largely conserved manner across species appears to be a consequence of the intrinsic amino 

acid properties of size, structural complexity, and codon allocation. It is presumed that these 
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intrinsic effects act at the ribosome during translation. We observed that proteins participating 

in translation and in species-specific environmental stress responses were significantly under-

represented in amino acids with negative influence on expression and, conversely, over-

represented in those with positive influence. We suggest this selective drive has ensured that 

survival-enhancing proteins can be rapidly, robustly, and highly expressed, even in 

challenging cellular and environmental conditions. Human and animal proteins at the extremes 

of EAA/CEAA composition may also have evolved as an advantageous strategy to survive 

extrinsic nutritional scarcity. As well as the described effects on hair/nail/skin production and 

food-seeking behaviours, the modulation of collagen protein expression may be a key 

response to nutritional status in development: determining the limits of body size and 

appropriate maternal resource allocation - and aligning future metabolic demand (proportional 

to body scale) with anticipated environmental resource availability. 

The findings presented here offer public health programs the prospect of quantitative protein 

biomarkers of clinical and sub-clinical amino acid dietary insufficiency. Additionally, they 

inform current clinical interventions based on amino acid supplementation and restriction. 

There are established benefits to amino acid supplementation (primarily the CEAAs glutamine 

or arginine) for patients undergoing ulcer treatment or post-surgery wound healing [38-41], 

potentially promoting connective tissue proliferation/regeneration. Supplementation with other 

CEAAs such as cysteine, or negative MLR coefficient amino acids such as serine, isoleucine, 

and tryptophan are now also worthy of investigation. By contrast, restricting amino acids in 

diet is an emerging concept in cancer treatment, capitalising on the specific demands of 

tumour cells. Our earlier findings on proliferation demands suggested that this ‘hallmark’ [42] 

would manifest as reduced fCEAA in cancer risk proteins. In fact, cancer proteins exhibited 

an extraordinary under-representation of EAA, suggesting that restricted essential amino acid 

supply to the tumour microenvironment may be a major determinant of protein expression, 

genotype-phenotype correlation, and clonal selection in cancer [43]. In tumours, expression 

of high fEAA proteins involved in mitochondrial oxidative respiration and chemokine function 

may thus be compromised. This would be consistent with the Warburg effect [42] which 
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describes the metabolic shift within tumours from oxidative respiration to glycolysis, and it may 

also contribute to the extensive chemokine/receptor-mediated interactions between tumour 

cells, stromal cells and macrophages [44]. Multiple amino acids have been trialled in restriction 

studies [45], mostly on the basis of gross abundance, so the detailed findings reported here 

may guide future dietary protocols in cancer treatment.

Methods

Data import and basic amino acid frequency analysis

From Uniprot.org, one representative human protein sequence per gene (totalling 20,397) was 

downloaded from the Reference Human proteome (ID: UP000005640) in FASTA format. 

Microsoft Excel text analysis formulas were applied to calculate the total amino residues, the 

frequency of each individual amino acid, and the relative proportions of the EAA/CEAA/NEAA 

nutritional classes present within each protein (Supplementary File 1). For example, a total 

of 34 EAA amino acids within a protein of 299 residues generates a fEAA of 0.11. Frequencies 

of amino acids or amino acid classes were used to remove the confounder of protein length 

differences. Similar processes were carried out for the Escherichia coli (UP000635675), 

Saccharomyces cerevisiae (UP000002311), and Arabidopsis thaliana (UP000006548) 

proteomes. 

Protein expression correlation with amino acid classification

Protein expression data were imported as simple .txt files into Excel from publicly available 

datasets in PaxDB. Species-specific protein identifiers in the expression data were converted 

into universal UniProt or UniPARC identifiers using the VLOOKUP command accessing 
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imported conversion tables, allowing correlation with the amino acid/amino acid class 

frequencies of each protein.

Moving median/average expression analysis

Nutritional amino acid class frequency was ranked and plotted against the moving median 

liver protein expression level (Fig.1a, periodicity of 469 = 5% of total). Multiple linear 

regression (see below) model score for each protein was plotted against liver expression value 

(log scale) and an Excel moving average trendline applied (periodicity of 100 proteins) (Fig. 

2a/b/d).

Tissue and cell line plots of changing EAA/CEAA/NEAA proportions 

across expression levels

For a tissue or cell line, both the numerical expression levels and the fEAA, fCEAA, and fNEAA 

for each protein were separately converted into ranks. Cumulative average proportions for 

each amino acid class were calculated from lowest-to-highest expressed proteins and, in 

parallel, highest-to-lowest expressed proteins – the average of the pair of values was 

calculated for each individual protein and plotted (Fig.1b-g, Supplementary Figure 1, 

Supplementary File 1). This method produced smoothed plots of trends in relative amino 

acid class representation as a function of ranked protein expression level.

Multiple Linear Regression and models

Multiple linear regression (MLR) in the Excel ‘Data Analysis’ ToolPak add-in was used to 

identify intrinsic parameters or individual amino acids with significant correlation to protein 

expression level, and their respective coefficients (Supplementary File 1). Statistically 

significant (p<0.05) MLR coefficients were normalised across organs and species in Table 1. 

MLR findings allowed the construction of models which generated relative numerical 

expression predictions for each protein based on coefficients and amino acid frequencies.
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Statistical tests of gene ontology and disease candidate lists

Two-tailed z-tests were applied to groupings derived from MLR+ (combined coefficients 

increasing expression) and MLR- (combined coefficients decreasing expression) data, or 

fEAA/fCEAA/fNEAA data. For human fEAA and fCEAA, analysis of parent population 

distributions showed statistically significant deviations in kurtosis and skewness. However, the 

large population size and small Lilliefors D effect size values of 0.043 (fEAA) and 0.078 

(fCEAA) justified treating the distributions as effectively normal for the purpose of z-tests 

(Supplementary File 1). Full monogenic and multigenic disease lists and statistical analyses 

relating to nutritional class composition are found in Supplementary File 1. Statistical analysis 

of enriched GO terms in MLR- and MLR+ data are found in Supplementary File 2.
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Supplementary Figure 1 The relative proportions of the three nutritional amino acid 

classes change with protein expression level and proliferation rate (extended data from 

Fig.1b-g).  A smoothing procedure (see Methods and Supplementary File 1) was applied to 

visualise trends in relative, ranked amino acid class proportion when plotted against ranked 

protein expression level for 8 human tissues and two samples of a lung cancer cell line, A549 

(data from PaxDB). As described in the main text, tissues can be placed in three groups (a, b, 

and c) based on the profile of EAA/CEAA/NEAA composition across the range of expression 

levels. A549 differences (d) most likely represent amino acid constraint effects brought about 

by different proliferation rates. Graph e shows the same liver data as in a but with randomised 

expression level as a control.

Supplementary File 1: Multiple datasets and analyses comprising; Amino acid composition 

calculator, Human proteome AA composition, 25 selenocysteine-containing proteins, Testing 

populations for normal distribution, Calculating and smoothing relative proportions of EAA, 

CEAA, and NEAA in proteins as a function of expression level, Multiple Linear Regression 

(MLR) analyses across organs, species, and amino acid parameters, Extreme fEAA- & 

fCEAA-associated diseases, and Multigenic disease statistics.
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Supplementary File 2: Statistics of the over-represented Gene Ontologies (GOs) in proteins 

with extremes of MLR coefficients.
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