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21 Abstract

22

23 The Michaelis—Menten (MM) rate law has been the dominant paradigm of modeling

24 biochemical rate processes for over a century with applications in biochemistry, biophysics,
25 cell biology, and chemical engineering. The MM rate law and its remedied form stand on the
26  assumption that the concentration of the complex of interacting molecules, at each moment,
27  approaches an equilibrium much faster than the molecular concentrations change. Yet, this
28  assumption is not always justified. Here, we relax this quasi-steady state requirement and
29 propose the generalized MM rate law for the interactions of molecules with active

30 concentration changes over time. Our approach for time-varying molecular concentrations,
31 termed the effective time-delay scheme (ETS), is based on rigorously estimated time-delay
32 effects in molecular complex formation. With particularly marked improvements in protein—
33 protein and protein—DNA interaction modeling, the ETS provides an analytical framework to
34 interpret and predict rich transient or rhythmic dynamics (such as autogenously-regulated
35 cellular adaptation and circadian protein turnover), which goes beyond the quasi-steady

36 state assumption.
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37  Introduction
38
39 Since proposed by Henri [1] and Michaelis and Menten [2], the Michaelis—Menten (MM) rate

40 law has been the dominant framework for modeling the rates of enzyme-catalyzed reactions
41  for over a century [1-4]. The MM rate law has also been widely adopted for describing other
42 bimolecular interactions, such as reversible binding between proteins [5-7], between a gene
43 and a transcription factor [8,9], and between a receptor and a ligand [10,11]. The MM rate
44 law hence serves as a common mathematical tool in both basic and applied fields, including
45 biochemistry, biophysics, pharmacology, and many subfields of chemical engineering [12].
46  The derivation of the MM rate law from the underlying biochemical mechanism is based on
47  the steady-state approximation by Briggs and Haldane [3], referred to as the standard quasi-
48  steady state approximation (sQSSA) [12—14]. The sQSSA, however, is only valid when the

49 enzyme concentration is low enough and thus the concentration of enzyme—substrate

50 complex is negligible compared to substrate concentration [14]. This condition may be

51 acceptable for many metabolic reactions with substrate concentrations that are typically far
52 higher than the enzyme concentrations.

53 Nevertheless, in the case of protein—protein interactions in various cellular activities, the
54 interacting proteins as the “enzymes” and “substrates” often show the concentrations

55 comparable with each other [15-17]. Therefore, the use of the MM rate law for describing
56 protein—protein interactions has been challenged in its rationale, with the modified

57  alternative formula from the total quasi-steady state approximation (tQSSA) [12,13,18-24].
58  The tQSSA-based form is generally more accurate than the MM rate law from the sQSSA, for
59  abroad range of combined molecular concentrations and thus for protein—protein

60 interactions as well [12,13,18-24]. The superiority of the tQSSA has not only been proven in
61  the quantitative, but also in the qualitative outcomes of systems, which the sQSSA

62 sometimes fails to predict [12,18]. Later, we will provide the overview of the tQSSA and its
63 relationship with the conventional MM rate law from the sQSSA.

64 Despite the correction of the MM rate law by the tQSSA, both the tQSSA and sQSSA still

65 rely on the assumption that the concentration of the complex of interacting molecules, at
66  each moment, approaches an equilibrium much faster than the molecular concentrations

67  change [12,14,21]. Although this quasi-steady state assumption may work for a range of

68 biochemical systems, the exact extent of such systems to follow that assumption is not clear.
69 Numerous cellular processes do exhibit active molecular concentration changes over time,

70  such asin signal responses, circadian oscillations, and cell cycles [6,7,18,25-28], calling for a
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71 better approach to even cover the time-varying molecular concentrations that may not

72 strictly adhere to the quasi-steady state assumption.

73 In this study, we report the generalization of the MM rate law, whereby the interaction of
74  time-varying molecular components is more properly described than by the tQSSA and

75 sQSSA. This generalization is the correction of the tQSSA with rigorously estimated, time-

76  delay effects affected by free molecule availability. Our formulation, termed the effective
77  time-delay scheme (ETS), well accounts for the transient or oscillatory dynamics and

78  empirical patterns of biomolecular systems with the relevant analytical insights, which are
79 not captured by the previous methods. Surprisingly, we reveal that the existing quasi-steady
80  state assumption can even fail for extremely slow changes in protein concentrations under
81 autogenous regulation, whereas the ETS does not. In addition, the ETS allows the natural

82 explanation of rhythmic degradation of circadian proteins without requiring explicitly-

83 rhythmic post-translational mechanisms; this is not straightforward within the quasi-steady
84  state assumption. As an added feat, the ETS improves kinetic parameter estimation. As

85 demonstrated in a number of contexts such as autogenously-regulated cellular adaptation
86  and circadian oscillations, our approach offers a unified theoretical framework to interpret
87  and predict rich transient or rhythmic dynamics of biochemical systems with a wide range of

88  applications.

89

90 Results

91

92  Theory overview
93

94 First, we present the outline of the tQSSA, sQSSA, and our generalized MM rate law.

95 Consider two different molecules A and B that bind to each other and form complex AB, as
96 illustrated in Fig. 1(A). For example, A and B may represent two participant proteins in

97 heterodimer formation, a chemical substrate and an enzyme in a metabolic reaction, and a
98  solute and a transporter in membrane transport. The concentration of the complex AB at

99 timet, denoted by C(t), changes over time as in the following equation:

100
101 £0 = kA — CONB(E) — C(O)] - ksC(2). (1)
102

103 Here, A(t) and B(t) denote the total concentrations of A and B, respectively, and hence
104  A(t) — C(t) and B(t) — C(t) correspond to the concentrations of free A and B. k, denotes
105  the association rate of free A and B. kg is the effective “decay” rate of AB with kg = kq +

106 1. + ke + kaie Where kg, kjoc, and kg stand for the dissociation, translocation, and
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107  dilution rates of AB, respectively, and 7 for the chemical conversion or translocation rate of
108 A or B upon the formation of AB [Fig. 1(A)].

109 In the tQSSA, the assumption is that C (t) approaches the equilibrium fast enough each
110  time, given the values of A(t) and B(t) [12,21]. This assumption and the notation K =

111 ks/k, lead Eq. (1) to an estimate C(t) = CtQ(t) with the following form (Supplementary
112 Material, Section S1):

113
1
114 Ce(t) = E{K +A(t) + B() — KA}, (2)
115
AD+BDO]? 4

116 Ag(t) = \/[1 + %] — S A(DB(t)

_ 2
117 = J1 +2 [A(t);B(“] + [A(”KB“)] . (3)
118

119  As mentioned earlier, the tQSSA is generally more accurate than the conventional MM rate

120 law [12,13,18-24]. To obtain the MM rate law, consider a rather specific condition,

121

122 B(t) < K + A(t) or A(t) < K + B(t). (4)
123

124 In this condition, the Padé approximant for Cyq (t) takes the following form:

125

126 Ceo(t) = % (5)
127

128  Considering Eq. (5), Eq. (4) is similar to the condition Cyq(t)/A(t) < 1 or Cio(t)/B(t) < 1.
129 In other words, Eq. (5) would be valid when the concentration of AB complex is negligible
130 compared to either A or B’s concentration. This condition is essentially identical to the

131 assumption in the sQSSA resulting in the MM rate law [14]. In the example of a typical

132  metabolic reaction with B(t) « A(t) for substrate A and enzyme B, Eq. (4) is automatically
133 satisfied and Eq. (5) further reduces to the familiar MM rate law Cio(t) = A(£)B(t)/[K +
134  A(t)], i.e., the outcome of the sQSSA [1-4,12-14]. To be precise, the sQSSA uses the

135  concentration of free A instead of A(t), but we refer to this formula with A(t) as the sQSSA
136 because the complex is assumed to be negligible in that scheme. Clearly, K here is the

137  Michaelis constant, commonly known as K.

138 The application of the MM rate law beyond the condition in Eq. (4) invites a risk of

139 erroneous modeling results, whereas the tQSSA is relatively free of such errors and has wider
140  applicability [12,13,18-24]. Still, both the tQSSA and sQSSA stand on the quasi-steady state
141 assumption that C(t) approaches an equilibrium fast enough each time before the marked

142 temporal change of A(t) or B(t). We now relax this assumption and generalize the
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143 approximation of C(t) to the case of time-varying A(t) and B(t), as the main objective of
144 this study.

145 Suppose that C(t) may not necessarily approach the equilibrium each time but stays within
146 some distance from it. Revisiting Eq. (1), we derive the following approximant for C(t) as

147  explained in Supplementary Material, Section S1:
148

. -1
149 C,(t) = min {CtQ {t — [ksAeg(D)] },A(t), B(t)}. (6)
150
151  Although the above Cy(t) looks rather complex, this form is essentially a simple conversion

152 t->t— [ksAtQ(t)]_l in the tQSSA. min{-} is just taken for a minor role to ensure that the

153  complex concentration cannot exceed A(t) or B(t). Hence, the distinct feature of C, (¢) is

154  the inclusion of an effective time delay [kSAtQ(t)]_1 in complex formation. This delay is the
155 rigorous estimate of the molecular relaxation time during which the effect of instantaneous
156  A(t) and B(t) is notably sustained in the complex formation, as shown in Supplementary
157 Material, Section S1. We will refer to this formulation as the effective time-delay scheme
158  (ETS), and its relationship with the tQSSA is depicted in Fig. 1(A).

159 We propose the ETS as the generalization of the MM rate law for time-varying molecular
160  concentrations that may not strictly adhere to the quasi-steady state assumption. If the

161 relaxation time in complex formation is so short that the effective time delay in Eq. (6) can
162 be ignored, the ETS returns to the tQSSA in its form. Surprisingly, we proved that, unlike the
163 ETS, any simpler new rate law without a time-delay term would not properly work for active
164  concentration changes over time (Supplementary Material, Section S3). Nevertheless, one
165 may question the analytical utility of the ETS, regarding the apparent complexity of its time-
166  delay term. In the examples of autogenously-regulated cellular adaptation and rhythmic
167 protein turnover below, we will use the ETS to deliver valuable analytical insights into the
168  systems whose dynamics is otherwise ill-explained by the conventional approaches.

169 About the physical interpretation of the ETS, we notice that the effective time delay is

170  inversely linked to free molecule availability, as [k(gAtQ(t)]_1 = kgl{l + K‘l[A(t) +

171 B(t) — ZCtQ(t)]}_l from Eq. (2). Here, A(t) + B(t) — 2Cyq (1) = [A(t) — Co(®)] +

172 [B(t) — CtQ(t)], which approximates the total free molecule concentration near the

173 equilibrium each time. In other words, the less the free molecules, the more the time delay,
174  which is at most k5. One can understand this observation as follows: given A(t) and B(t) at
175  each moment, Eq. (1) indicates that the decay time-scale of the complex (kgl) is a main

176 contributor to the relaxation time, which becomes further shortened as the complex

177  formation itself decelerates with free molecule depletion over time. This depletion effect is


https://doi.org/10.1101/2022.01.07.475310
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475310; this version posted March 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

178 pronounced if the free molecule concentration is high (Supplementary Material, Section S1).
179  Therefore, the relaxation time takes a decreasing function of the free molecule

180 concentration, consistent with the above observation. Clearly, the free molecule

181 concentration would be low for relatively few A and B molecules with comparable

182  concentrations—i.e., small A(t) + B(t) and [A(t) — B(t)]? in Eq. (3). In this case, the

183 relaxation time would be relatively long and the ETS shall be deployed instead of the tQSSA
184  or sQSSA. We thus expect that protein—protein interactions would often be the cases in need
185 of the ETS compared to metabolic reactions with much excess substrates not binding to

186 enzymes, as will be shown later.

187 Thus far, we have implicitly assumed the continuous nature of molecular concentrations as
188 in Eq. (1). However, there exist biomolecular events that fundamentally deviate from this
189 assumption. For example, a transcription factor (TF) binds to a DNA molecule in the nucleus
190  to regulate mRNA expression and the number of such a TF-DNA assembly would be either 1
191  or 0 for a DNA site that can afford at most one copy of the TF [Fig. 1(B)]. This inherently

192 discrete nature of the TF-DNA assembly is seemingly contrasted with the continuity of the
193 molecular complex level in Eq. (1). To rigorously describe this TF-DNA binding dynamics, we
194 harness the chemical master equation [29] and introduce quantities Arg(t) and Crg(t),

195  which are the total TF concentration and the TF-DNA assembly concentration averaged over
196  the cell population, respectively (Supplementary Material, Section S4). According to our

197  calculation, the quasi-steady state assumption leads to the following approximant for

198 CTF(t):
199
— _ Amr@®)
200 Crrq(t) = VKt Ars @ (7)
201

202  where K = kg/k, with k, and kg as the TF-DNA binding and unbinding rates, respectively,
203 and V is the nuclear volume (Supplementary Material, Section S4).

204 CTFQ(t) in Eqg. (7) looks very similar to the MM rate law, considering the “concentration” of
205  the DNA site (V~1). Nevertheless, CTFQ(t) is not a mere continuum of Eq. (5), because the
206  denominator in Crgq(t) includes K + Atg(t), but not K + Aqg(t) + V1. In fact, the

207  discrepancy between Crpq(t) and Eq. (5) comes from the inherent stochasticity in the TF—
208 DNA assembly (Supplementary Material, Section S4). In this regard, directly relevant to

209  Crpq(t) is the stochastic version of the MM rate law with denominator K + A(t) + B(t) —
210 V=1 proposed by Levine and Hwa [30], because the DNA concentration B(t) is V™! in our

211 case. Crpq(t) is a fundamentally more correct approximant for the DNA-binding TF level
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212 than both the tQSSA and sQSSA in Egs. (2) and (5). Therefore, we will just refer to Crpq(t) as
213 the QSSA for TF-DNA interactions.

214 Still, the use of CTFQ(t) stands on the quasi-steady state assumption. We relax this

215 assumption and generalize the approximation of Crg(t) to the case of time-varying TF

216  concentration. As a result, we propose the following approximant for Ctg(t) (Supplementary

217 Material, Section S4):

218

ks'K
219 CTFY (t) = CTFQ [t — m . (8)
220

221  This formula represents the TF-DNA version of the ETS, and its relationship with the QSSA is
222 illustrated in Fig. 1(B). The time-delay term in Eq. (8) has a similar physical interpretation to
223  thatin Eq. (6). Besides, this term is directly proportional to the probability of the DNA

224 unoccupancy in equilibrium, according to Eq. (7).

225 Through numerical simulations of various theoretical and empirical systems, we found that
226  the ETS provides the reasonably accurate description of the deviations of time-course

227 molecular profiles from the quasi-steady states (Supplementary Material, Sections S6-S8).
228  This result was particularly evident for the cases of protein—protein and TF-DNA interactions
229  with time-varying protein concentrations. In these cases, the ETS unveils the importance of
230  the relaxation time (effective time delay) in complex formation to the shaping of molecular
231 profiles, otherwise difficult to clarify. Yet, the use of the sQSSA or tQSSA is practically enough
232  for typical metabolic reaction and transport systems, without the need for the ETS. The strict
233 mathematical conditions for the validity of the ETS as well as those of the quasi-steady state
234 assumption are derived in Supplementary Material, Section S5.

235

236 Autogenous control

237

238  Adaptation to changing environments is a process of biological control. The ETS offers an

239 analytical tool for understanding transient dynamics of such adaptation processes,

240  exemplified by autogenously regulated systems where TFs regulate their own transcription.
241  This autogenous control underlies cellular responses to various internal and external stimuli
242 [31,32]. We here explore the case of positive autoregulation and show that the quasi-steady
243 state assumption does not even work for extremely-slow protein changes near a tipping

244 point. The case of negative autoregulation is covered in Supplementary Material, Section
245  si10.

246 In the case of positive autoregulation, consider a scenario in Fig. 2(A) that proteins enhance

247  their own transcription after homodimer formation and this dimer—promoter interaction is
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248  facilitated by inducer molecules. The inherent cooperativity from the dimerization is known
249  to give a sigmoid TF—DNA binding curve, resulting in abrupt and history-dependent transition
250 events [31,33]. We here built the full kinetic model of the system without the ETS, tQSSA, or
251 other approximations of the dimerization and dimer—promoter interaction (Supplementary
252 Material, Section S9). As the simulated inducer level increases, Fig. 2(B) demonstrates that
253 an initially low, steady-state protein level undergoes an abrupt leap at some point 7., known
254  as atransition or tipping point. This discontinuous transition with only a slight inducer

255 increase signifies a qualitative change in the protein expression state. Reducing the inducer
256 level just back to the transition point 7. does not reverse the protein state, which is

257  sustained until more reduction in the inducer level [Fig. 2(B)]. This history-dependent

258 behavior, hysteresis, indicates the coexistence of two different stable states of the protein
259 level (bistability) between the forward and backward transitions [31,33].

260 Other than steady states, we examine how fast the system responds to signals. Upon acute
261 induction from a zero to certain inducer level (> 7.), the protein level grows over time

262  towards its new steady state and this response becomes rapider at stronger induction away
263  from the transition point [Fig. 2(C)]. Conversely, as the inducer level decreases towards the
264  transition point, the response time continues to increase and eventually becomes diverging
265  (in this study, response time is defined as the time taken for a protein level to reach 90% of
266 its steady state). This phenomenon has been called “critical slowing down” [34-36].

267 Regarding this near-transition much slow protein growth, one may expect that the quasi-
268  steady state assumption would work properly near that transition point. To test this

269 possibility, we modified the full model by the tQSSA and QSSA of the dimerization and dimer-
270 promoter interaction, respectively, and call this modified model the QSSA-based model. For
271 comparison, we created another version of the model by the ETS of the dimerization and
272 dimer-promoter interaction and call this version the ETS-based model (Supplementary

273 Material, Section S9). Across physiologically-relevant parameter conditions, we compared
274  the QSSA- and ETS-based model simulation results to the full model’s (Supplementary

275 Material, Section S12 and Table S5). Surprisingly, the QSSA-based model often severely

276 underestimated the response time, particularly near a transition point, while the ETS-based
277 response time was relatively close to that from the full model [P < 10~* and Supplementary
278 Material, Section S12; e.g., 8.5-hour shorter and 0.5-hour longer response times in Fig. 2(C)
279 (left) in the QSSA and ETS cases, respectively].

280 This unexpected mismatch between the QSSA and full model results comes from the

281  following factors: because the QSSA model discards the effective time delay in dimerization

282 and dimer-promoter interaction, this model accelerates positive feedback, transcription, and

8
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283 protein production, and thus shortens the response time. Near the transition point, although
284  the protein level grows very slowly, a little higher transcription activity in the QSSA model
285 substantially advances the protein growth with near-transition ultrasensitivity that we

286 indicated above. Therefore, the QSSA model shortens the response time even near the

287 transition point.

288 Related to this point, the ETS allows the analytical calculation of response time and its

289 QSSA-based estimate. In this calculation, we considered two different stages of protein

290 growth—its early and late stages [Fig. 2(D)] and found that the QSSA model underestimates
291 response time mainly at the early stage. This calculation suggests that the exact response

292  time would be longer than the QSSA-based estimate by

293

2 (1, 1 1 1, 1\,1/1 1 DDTF(ﬁ—l)[DDTF(ﬁ—l)—Z(D"’DTF)]}
234 r n-Tc (D + DTF) + T ln (1 + D + DTF)+T (D + DTF) ln {1 + (D+DTF)2 ! (9)
295 V™

296  where 1 and 1. denote an inducer level and its value at the transition point, respectively, r is
297  the sum of protein degradation and dilution rates, and D and Dty are parameters inversely
298 proportional to the effective time delays in dimerization and dimer—promoter interaction,
299 respectively. The additional details and the definition of parameter 1 are provided in

300 Supplementary Material, Section S9.

301 Notably, the above response time difference vanishes as D1 + D — 0. In other words,
302 the total effective time delay is responsible for this response time difference. Strikingly, this
303  difference indefinitely grows as 1 decreases towards 7, as a linear function of

304 1/m. This prediction can serve as a testbed for our theory and highlights far
305 excessive elongation of near-transition response time (compared to the QSSA) as an

306 amplified effect of the relaxation time in complex formation. This amplified effect is the
307 result of the near-transition ultrasensitivity that we indicated above. Consistent with our
308 prediction, the full model simulation always shows longer response time than the QSSA
309 model simulation and the difference is linearly scaled to 1/\m as exemplified by

310  Fig. 2(E) (R? > 0.98 in simulated conditions; see Supplementary Material, Section $12).

311 Moreover, its predicted slope against 1/\m [i.e., 2 (6.28 :--) multiplied by

312 (DT_F1 + D‘l)r_l] is comparable with the simulation results [7.3 £ 0.3 (avg. £ s.d. in

313 simulated conditions) multiplied by (DT‘F1 + D‘l)r‘l; see Supplementary Material, Section
314  S12]. The agreement of these nontrivial predictions with the numerical simulation results
315 proves the theoretical value of the ETS. Again, we raise a caution against the quasi-steady
316  state assumption, which unexpectedly fails for very slow dynamics with severe

317 underestimation of response time, e.g., by a few tens of hours in the case of Fig. 2(E).
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318

319 Rhythmic degradation of circadian proteins

320

321 Circadian clocks in various organisms generate endogenous molecular oscillations with ~24 h

322 periodicity, enabling physiological adaptation to diurnal environmental changes caused by
323  the Earth’s rotation around its axis. Circadian clocks play a pivotal role in maintaining

324 biological homeostasis, and the disruption of their function is associated with a wide range
325 of pathophysiological conditions [7,9,18,25—-27]. According to previous reports, some

326  circadian clock proteins are not only rhythmically produced but also decompose with

327 rhythmic degradation rates [Figs. 3(A) and 3(B)] [37—41]. Recently, we have suggested that
328 the rhythmic degradation rates of proteins with circadian production can spontaneously
329 emerge without any explicitly time-dependent regulatory mechanism of the degradation
330 processes [37,42]. If the rhythmic degradation rate peaks at the descending phase of the
331 protein profile and stays relatively low elsewhere, it is supposed to save much of the

332  biosynthetic cost in maintaining a circadian rhythm. A degradation mechanism with multiple
333 post-translational modifications (PTMs), such as phospho-dependent ubiquitination, may
334  elevate the rhythmicity of this degradation rate in favor of the biosynthetic cost saving

335 [37,40]. Can the ETS explain this inherent rhythmicity in the degradation rates of circadian
336 proteins?

337 First, we constructed the kinetic model of circadian protein production and degradation
338  without the ETS or other approximations (Supplementary Material, Section S11). This model
339 attributes a circadian production rate of the protein to a circadian mRNA expression or

340 translation rate. Yet, a protein degradation rate in the model is not based on any explicitly
341 time-dependent regulatory processes, but on constantly-maintained proteolytic mediators
342 such as constant E3 ubiquitin ligases and kinases. In realistic situations, the protein turnover
343 may require multiple preceding PTMs, like mono- or multisite phosphorylation and

344  subsequent ubiquitination. Our model covers these cases, as well.

345 Next, we apply the ETS to the PTM processes in the model for the analytical estimation of
346  the protein degradation rate. We observed the mathematical equivalence of the PTM

347 processes and the above-discussed TF—DNA interactions, despite their different biological
348  contexts (Supplementary Material, Section S11). This observation leads to the estimate ry(t)

349 of the protein degradation rate as

350
L R0 =gmin[Rea(e-mn) a0~ 2 - o S + ) wo
352

353  where A(t) is a protein concentration, a,, and a,, are the rates of the two slowest PTM and
354  turnover steps in a protein degradation pathway (the step of a,, precedes that of a,, in the
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355 degradation pathway; see Supplementary Material, Section S11), and the rightmost formula
356 s to simplify 73, (t) with the Taylor expansion. The use of 7, (t) may not satisfactorily work for
357  the degradation depending on many preceding PTMs, but still helps to capture the core

358  feature of the dynamics.

359 Strikingly, the quasi-steady state assumption does not predict a rhythmic degradation rate,
360 asthe QSSA version of Eq. (10) gives rise to a constant degradation rate, a,a,,/(a, + a,,)
361 (Supplementary Material, Section S11). In contrast, the ETS naturally accounts for the

362 degradation rhythmicity through the effective time delay in the degradation pathway. The
363 rightmost formula in Eq. (10) indicates that the degradation rate would be an approximately
364  increasing function of —A'(t)/A(t) and thus increase as time goes from the ascending to
365 descending phase of the protein profile. This predicted tendency well matches the

366  experimental data patterns in Figs. 3(A) and 3(B). Fundamentally, this degradation

367 rhythmicity roots in the unsynchronized interplay between protein translation, modification,
368 and turnover events [37]. For example, in the case of protein ubiquitination, ubiquitin ligases
369  with a finite binding affinity would not always capture all newly-translated substrates, and
370 therefore a lower proportion of the substrates can be ubiquitinated during the ascending
371 phase of the substrate profile than during the descending phase. The degradation rate

372 partially follows this ubiquitination pattern. Additional PTMs like phosphorylation, if required
373  for the ubiquitination, can further retard the full substrate modification and thereby increase
374  the degradation rhythmicity for a given substrate profile. One may expect that these effects
375  would be enhanced with more limited ubiquitin ligases or kinases, under the condition when
376  the substrate level shows a strong oscillation. This expectation is supported by the relative

377  amplitude of the degradation rate estimated by Eq. (10):

378

max¢[ry (t)]-ming[ry, ()] o1 1 dAa@®)] . 1 dA®)
373 (ry (©)) ~au+a,,{ tlaee) dt t[A(t) de } (11)
380

381  where () denotes a time average. Here, the relative amplitude of the degradation rate is
382  proportional to 1/(a, + a,,) as well as to the amplitude of A’(¢t)/A(t). Therefore, limited
383 ubiquitin ligases or kinases, and strong substrate oscillations increase the rhythmicity of the
384  degradation rate. Given a substrate profile, multiple PTMs can further enhance this

385 degradation rhythmicity because they invite the possibility of smaller a,, and a,, values than
386  expected for the case of only a single PTM. Moreover, Eq. (10) predicts that the degradation
387  rate would peak around the peak time of —A'(t)/A(t).

388 In the example of Fig. 3(C) for a single PTM case, the simulated degradation rate from the

389 aforementioned full kinetic model exhibits the rhythmic profile in excellent agreement with
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390 the ETS-predicted profile. Notably, the peak time of the simulated degradation rate is very
391  close to that of —A'(t)/A(t) as predicted by the ETS. Indeed, the peaks of the degradation
392  rates show only < 1h time differences from the maximum —A’(t) /A(t) values across most
393 (89-99%) of the simulated conditions of single to triple PTM cases [Fig. 3(D); Supplementary
394 Material, Section S12 and Table S6]. In addition, for each substrate profile, the simulated

395 degradation rate tends to become more rhythmic and have a larger relative amplitude as the
396 number of the PTMs increases [Fig. 3(E)], supporting the above argument that multiple PTMs
397 can facilitate degradation rhythmicity. The estimated relative amplitude in Eqg. (11) also

398  shows this tendency for single to double PTMs, yet not clearly for triple PTMs unlike the

399 simulated relative amplitude [Fig. 3(E)]. This inaccuracy with the triple PTMs comes from the
400 accumulated errors over multiple PTMs in our estimation, as we indicated early. Still, the
401 estimate in Eq. (11) accounts for at least the order of magnitude of the simulated relative
402 amplitude, as the ratio of the simulated to estimated relative amplitude almost equals 1 for a
403 single PTM case and remains to be O(1) for double and triple PTM cases [Fig. 3(F)].

404 Together, the ETS provides a useful theoretical framework of rhythmic degradation of

405 circadian proteins, which is hardly explained by the quasi-steady state assumption.

406

407 Parameter estimation

408

409  The use of an accurate function of variables and parameters is important for good parameter

410  estimation by the fitting of the parameters [13,43,44]. Parameter estimation is a crucial part
411 of pharmacokinetic—pharmacodynamic (PK—PD) analysis for drug development and clinical
412 study design. Yet, the MM rate law is widely deployed for PK-PD models integrated into
413 popular simulation and statistical analysis tools.

414 To raise a caution against the unconditional use of the quasi-steady state assumption in
415 parameter estimation, we here compare the accuracies of the tQSSA- and ETS-based

416 parameter estimates. Because the sQSSA-based parameter estimates have already been
417 known as less accurate than the tQSSA-based ones [12,44], we skip the use of the sQSSA.
418  Specifically, we consider a protein—protein interaction model with time-varying protein

419 concentrations (Supplementary Material, Section $S12). To the “true” profile of the protein
420  complex [i.e., C(t) in Eq. (1)], we fit the ETS [C, (¢) in Eq. (6)] or the tQSSA [Ciq(t) in Eq. (2)]
421 and estimate the original parameters of the model [45]: the ETS-based fitting can estimate
422 both parameters K and kg, and the tQSSA-based fitting can estimate only K.

423 Likewise, we consider a TF-DNA interaction model with time-varying TF concentration
424 (Supplementary Material, Section S12). The ETS-based fitting can estimate both K and kg,

425 and the QSSA-based fitting can estimate only K.
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426 In the case of protein—protein interactions, Fig. 4(A) reveals that the ETS improves the

427 parameter estimation over the tQSSA, with the tendency of more accurate estimation of K.
428 For example, in the cases that the relative error of K estimated by the tQSSA is 2 0.2, most of
429  the ETS-based estimates (75.9%) show the relative error < 0.2 (P < 10~* and Supplementary
430 Material, Section S12) and their 65.9% even show the relative error < 0.1. In the case of TF—
431 DNA interactions, the ETS still offers an improvement in the estimation of K, but this

432 improvement is comparably weak [Fig. 4(B)].

433 Unlike K, kg can only be estimated through the ETS, and hence the comparison to the

434 tQSSA- or QSSA-based estimate is not possible. Still, kg is found to have the relative error <
435 0.1 for most of the ETS-based estimates, 86.6% and 80.7% in the cases of protein—protein
436  and TF-DNA interactions, respectively [Figs. 4(C) and 4(D)].

437

438  Discussion

439

440 The quasi-steady state assumption involves the approximation by time-scale separation

441  where the “fast” components of a system undergo instantaneous equilibrium and only the
442 “slow” components govern the relevant dynamics. The time-scale separation has been a long
443 practice in many different areas, such as the Monod—Wyman—Changeux model of allosteric
444  effects, the Ackers—Johnson—Shea model of gene regulation by A phage repressor, and the
445 Born—Oppenheimer approximation in quantum chemistry [46—-48]. If some prediction from
446  the time-scale separation deviates from empirical data, our study may provide a useful

447 intuition about this deviation based on an overlooked time-delay effect in that system.

448 We here proposed the ETS as a theoretical framework of molecular interaction kinetics
449  with time-varying molecular concentrations. The utility of the ETS for transient or oscillatory
450  dynamics originates in the rigorous estimation of the relaxation time in complex formation,
451 i.e., the effective time delay. In the cases of protein—protein and TF-DNA interactions, the
452 ETS manifests the importance of the effective time delay for the time-course molecular

453 profiles distinct from the quasi-steady states. Accordingly, the ETS provides valuable

454  analytical insights into the signal response time under autogenous regulation and the

455 spontaneous establishment of the rhythmic degradation rates of circadian proteins. In

456  addition, the ETS improves kinetic parameter estimation with a caution against the

457 unconditional use of the quasi-steady state assumption. Our approach enhances the

458 mathematical understanding of the time-varying behaviors of complex-complete mass-

459 action models [33,37,49] beyond only their steady states.

460 Further elaboration and physical interpretation of our framework, in concert with

461 extensive experimental profiling of molecular complexes in regulatory or signaling pathways
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462 [15,16], are warranted for the correct explanation of the interplay of cellular components
463 and its functional consequences. Although the simulation and empirical data presented here
464  are supportive of the ETS, experimental tests including direct validation are clearly

465  warranted. This validation could involve the measurements of the time-series of molecular
466  complex concentrations by co-immunoprecipitation assays or other techniques. High

467  temporal resolution data are preferred for their comparison with the ETS-based profiles.
468 Lastly, comprehensive consideration of stochastic fluctuation and nonlinearity in molecular
469 binding events [29,50,51] would be a fruitful endeavor for more complete development of

470  our theory, although the stochasticity in TF-DNA interactions was partially considered in this

471 work.

472

473 Materials and methods
474

475 The full details of theory derivation, mathematical modeling, and data sources are available
476  in Supplementary Material. Numerical simulation and data analysis methods are presented
477 in Supplementary Material, Section S12: briefly, simulations and data analyses were

478 performed by Python 3.7.0 or 3.7.4. Ordinary differential equations were solved by LSODA
479 (scipy.integrate.solve_ivp) in SciPy v1.1.0 or v1.3.1 with the maximum time step of 0.05 h.
480 Delay differential equations were solved by a modified version of the ddeint module with
481 LSODA [52]. Splines of discrete data points were achieved with scipy.interpolate.splrep in
482 SciPy v1.3.1. Linear regression of data points was performed with scipy.stats.linregress in
483 SciPy v1.3.1 and then the slope of the fitted line and R? were obtained. For the parameter
484  selection in numerical simulations or for the null model generation in statistical significance
485  tests, random numbers were sampled by the Mersenne Twister in random.py. To test the
486  significance of the average of the relative errors of analytical estimates against actual

487  simulation data, we randomized the pairing of these estimates and simulation data (while
488 maintaining their identities as the estimates and simulation data) and measured the P value

489 (one-tailed) from the 10* null configurations.

490 The source codes will be uploaded to GitHub before the manuscript publication.
491
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629 Fig. 1. Generalization of the MM rate law for time-varying molecular concentrations,

630 referred to as the ETS. (A) Two different molecules A and B bind to each other and form their
631 complex. (B) A TF binds to a DNA molecule to regulate mRNA expression (RNA polymerase
632 and other molecules are omitted here). In (A) and (B), the graphs show the comparison

633 among the exact time-course profile of the complex concentration, the tQSSA-based (A) or
634  QSSA-based (B) profile, and the ETS-based profile. The relationship between the tQSSA (or
635 QSSA) and the ETS is illustrated through the effective time delay in the ETS. Notations k,, kg,
636 ks, t, Aq(t), K, and A (t) are defined in the description of Egs. (1)~(3) and (6)—(8).
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642 Fig. 2. Positive autoregulation and induction kinetics. (A) Protein production mechanism with
643 positive autoregulation in the presence of inducers. (B) Bifurcation diagram of the simulated
644 protein level as a function of 7 (proxy for an inducer level). The steady state is plotted as n
645 increases (solid line) or decreases (dashed line). Acute induction can be simulated by a

646  sudden change of n = 0 ton > 1. in the shaded area. (C) Time-series of protein levels from
647  the full, ETS, and QSSA models upon acute induction at time 0 h withnp = 2.42 (left)orn =
648 200 (right). (D) Phase portrait of induction kinetics with n > 1. A vertical dashed line splits

649  the early and late stages of protein growth. A stable fixed point is indicated by a filled circle.

650  (E) The full model-to-QSSA difference in response time as a function of 1//(n — n¢o) /Ne.-
651 Both the simulated and analytically-estimated differences are presented. The analytical
652 estimation is based on Eq. (9). For more details of (B)—(E), refer to Supplementary Material,

653 Section S9 and Table S7.
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655
656 Fig. 3. Rhythmic degradation of circadian proteins. (A) The experimental abundance levels

657  (solid line) and degradation rates (open circles) of the mouse PERIOD2 (PER2) protein [38].
658  (B) The experimental abundance levels (dots, interpolated by a solid line) and degradation
659 rates (open circles) of PSEUDO RESPONSE REGULATOR 7 (PRR7) protein in Arabidopsis

660 thaliana [39,40,53]. Horizontal white and black segments correspond to light and dark

661 intervals, respectively. (C) A simulated protein degradation rate from the full kinetic model
662 and its ETS- and QSSA-based estimates, when the degradation depends on a single PTM. In
663 addition, the protein abundance profile is presented here (gray solid line). A vertical dashed
664  line corresponds to the peak time of —A'(t) /A(t) where A(t) is a protein abundance. The
665 parameters are provided in Supplementary Material, Table S8. (D) The probability

666  distribution of the peak-time difference between a degradation rate and —A'(t)/A(t) for
667  each number of PTMs (n) required for the degradation. The probability distribution was
668  obtained with randomly-sampled parameter sets in Supplementary Material, Table S6. (E)
669  The probability distribution of the relative amplitude of a simulated degradation rate (top) or
670 its estimate in Eq. (11) (bottom) for each n, when the relative amplitude of a protein

671 abundance is 1. (F) The probability distribution of the ratio of the simulated to estimated
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672 relative amplitude of a degradation rate for each n. For more details of (A)—(F), refer to
673 Supplementary Material, Section S11.
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678
679 Fig. 4. Parameter estimation for protein—protein and TF-DNA interaction models. (A) The

Probability density
IS
Probability density

680 probability distribution of the relative error of the ETS-estimated K for a protein—protein

681  interaction model. The estimation was conducted when the relative error of the tQSSA-

682 estimated K was < 0.1 (top), 2 0.1 and < 0.2 (center), or 2 0.2 (bottom). (B) The probability
683  distribution of the relative error of the ETS-estimated K for a TF-DNA interaction model. The
684  estimation was conducted when the relative error of the QSSA-estimated K was < 0.1 (top),
685 > 0.1 and < 0.2 (center), or 20.2 (bottom). In (A) and (B), shaded is the literal range of the
686 relative error of the tQSSA-estimated (A) or QSSA-estimated (B) K from our simulated

687  conditions. More than a half of the simulated conditions show that the relative error of the
688 ETS-estimated K is < 0.1 (top and center) or < 0.2 (bottom). (C) The probability distribution of
689  the relative error of the ETS-estimated kg for the protein—protein interaction model in (A).
690 (D) The probability distribution of the relative error of the ETS-estimated kg for the TF-DNA
691 interaction model in (B). Although not shown in (C) and (D), there exist a negligible portion of
692  the simulated conditions where the relative error of the estimated kg is > 0.6. For more

693 details of (A)—(D), refer to Supplementary Material, Section S12.
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