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Abstract 15 

The primary function of virus proteases is the proteolytic processing of the viral polyprotein. These 16 

enzymes can also cleave host cell proteins, which is important for viral pathogenicity, modulation of 17 

cellular processes, viral replication, the defeat of antiviral responses and modulation of the immune 18 

response. It is known that COVID-19 can influence multiple tissues or organs and that infection can 19 

damage the functionality of the brain in multiple ways. After COVID-19 infections, amyloid-β, 20 

neurogranin, tau and phosphorylated tau were detected extracellularly, implicating possible 21 

neurodegenerative processes. 22 

The present study describes the possible induction of protein aggregation by the SARS-CoV-2 3CL 23 

protease (3CLpro) possibly relevant in neuropathology, such as aggregation of tau, alpha-synuclein and 24 

TPD-43. Further investigations demonstrated that tau was proteolytically cleaved by the viral protease 25 

3CL and, consequently, generated aggregates. However, more evidence is needed to confirm that 26 

COVID-19 is able to trigger neurodegenerative diseases. 27 
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 33 

Introduction 34 

Viral pathogens encode their protease(s) or use host proteases for their replication cycle. In the case 35 

of acute respiratory syndrome coronavirus 2 (SARS-CoV-2), proteolytic cleavage of the two virus 36 

polyproteins generates the various viral proteins needed to form a replication complex required for 37 

transcription and replication of the viral genome and subgenomic mRNAs. The key viral enzymes 38 

responsible are the papain-like (PLP, nsp3) and 3-chymotrypsin-like proteases (3CLpro) [1-3]. In 39 

addition, host cell protein cleavage is a critical component of viral pathogenicity [4], including 40 

diverting cellular processes to viral replication, defeating antiviral responses and immune response 41 

modulation. Many large-scale analyses of the SARS-CoV-2 infected-cell transcriptome, proteome, 42 

phosphoproteome and interactomes are described [5-7]. Regarding the 3CLpro human substrate 43 

repertoire, also known as the degradome [8], Pablos et al., 2021 identified over 100 substrates and 58 44 

additional high confidence candidate substrates out of SARS-CoV-2 infected human lung and kidney 45 

cells [9]. 46 

SARS-CoV-2 was identified in December 2019 as the causative agent of coronavirus disease-19 47 

(COVID-19) first occurring in Wuhan, Hubei province, China [10]. According to the data that were 48 

reported to the World Health Organization (WHO) up to the 3rd of January 2023, the global SARS-49 

CoV-2 pandemic was associated with >655 million confirmed cases of infections and >6.6 million 50 

virus-related deaths worldwide [11]. 51 

It is well known that SARS-CoV-2 infection can influence multiple tissues or organs [12-16]. Post-52 

COVID syndrome (also known as Long-COVID) has also been described as a syndrome that 53 

encompasses a prolonged course of various physical and neuropsychiatric symptoms that persist for 54 

more than 12 weeks [17,18]. It has also been reported that COVID-19 can damage the brain in different 55 

ways (Table 1). 56 

Table1. Some neurological symptoms caused by COVID-19. 57 

Neurological symptom Reference 

Loss of smell (anosmia) and altered taste (ageusia)  [19] 

Myoclonus, cerebellar ataxia, seizure and tremor [20,21] 

Headache [22] 

Cardiorespiratory failure [23] 

Encephalopathy [24] 

Acute Disseminated Encephalomyelitis [25] 

Stroke [26] 

Guillain-Barre syndrome [27] 

Douaud et al. 2022 described the dramatic effects of SARS-CoV-2 infections on the brain structure, 58 

including a reduction in grey matter thickness, tissue damage in regions that are functionally connected 59 
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to the primary olfactory cortex and a significant reduction in global brain size [28]. However, so far, 60 

there exists no direct link with the generation of neurodegenerative diseases like Parkinson's disease 61 

(PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), 62 

Huntington's disease (HD), spinocerebellar ataxias, corticobasal degeneration, progressive 63 

supranuclear palsy, chronic traumatic encephalopathy, or multiple system atrophy. These diseases have 64 

many common features, including their chronic and progressive nature, the increased prevalence with 65 

age, destruction of neurons in specific areas of the brain, damage to the network of synaptic 66 

connections, and selective brain mass loss [29]. Another event is the progressive accumulation of 67 

misfolded protein aggregates with well-ordered structures. The proteins most commonly implicated in 68 

the accumulation of cerebral misfolded aggregates include amyloid-beta (Aβ), tau, alpha-synuclein (α-69 

Syn) and TAR DNA-binding protein 43 (TDP-43) [29]. 70 

After COVID-19 infections in the brain, amyloid-β, neurogranin, tau and phosphorylated tau can 71 

be detected extracellularly, implicating possible neurodegenerative processes [30]. Another study 72 

demonstrated that the spike protein receptor binding domain binds to heparin and heparin-binding 73 

proteins, including amyloid-β, α-synuclein, tau, prion and TDP-43, which may initiate the pathological 74 

aggregation of these proteins resulting in neurodegeneration [31,32]. Ramani et al. 2020 showed that 75 

SARS-CoV-2 targets neurons of 3D human brain organoids and neurons invaded with SARS-CoV-2 76 

at the cortical area display altered tau, tau hyperphosphorylation distribution and apparent neuronal 77 

death [33]. 78 

Tau phosphorylation and tau proteolysis are likely key factors in disease-associated tau aggregation 79 

and accumulation. Tau proteolysis can destabilise its primary structure, preventing correct folding and 80 

can lead to the formation of aggregated tau species due to a disordered quaternary structure. Tau can 81 

be cleaved by various proteolytic enzymes, including caspases, calpains, thrombin, cathepsins, 82 

metalloprotease 10, asparagine endopeptidase and puromycin-sensitive aminopeptidase [34]. 83 

Here, we report the cleavage and aggregation of tau after SARS-CoV-2 3CLpro treatment in vitro 84 

using a combination of ThT assays, analytical HPLC and mass spectrometry. 85 

 86 

Material and Methods 87 

Preparation of alpha-synuclein, TDP-43 and 2N4R tau 88 

Alpha-synuclein was cloned, expressed and purified, as described previously [35]. TDP-43 sample 89 

was kindly provided by Dr Jeanine Kutzsche (IBI-7, Forschungszentrum Jülich). The gene for human 90 

tau (2N4R) encodes a protein of 441 amino acids. The respective gene was commercially synthesised 91 
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and cloned into the pET28A(+) vector (Genentech, San Francisco, USA), without His-tag. Protein 92 

expression was performed as described previously [36].  93 

Protein extraction began by dissolving the cell pellet of 1 L expression in 30 ml buffer 1 (50 mM 94 

HEPES pH 7.5, 500 mM KCL, 5 mM β-ME and 1 mM EDTA). The dissolved cell pellets were heated 95 

for 30 min at 85 °C followed by 10 min on ice, and samples were sonicated 3 x 40 seconds at a power 96 

setting of 5 in an ultrasonic cell disruptor Modell 250 (Branson Ultrasonic, Brookfield, USA). Bacterial 97 

debris was pelleted for 50 min at 10,000 x g. Soluble tau protein was precipitated from the supernatant 98 

by adding 40 ml of a saturated ammonium sulfate solution and incubated for 30 minutes at room 99 

temperature. Afterwards, the samples were centrifuged for 30 min at 10,000 x g, and the pellet was 100 

resuspended in buffer 2 (50 mM HEPES pH 7.5, 50 mM KCL, 1.5 M ammonium sulfate, 2 mM TCEP 101 

and 1 mM EDTA). The solution was centrifuged for 30 minutes at 10,000 x g, and the pellet was 102 

resolved in 10 mL ddH2O and 2 mM TCEP. The sample was centrifuged again for 30 minutes at 10,000 103 

x g, and the appearing pellet was resuspended in buffer 3 (20 mM HEPES pH 6.7, 150 mM NaCl, 2 104 

mM TCEP and 1 mM EDTA). The sample was centrifuged for 1h at 12,000 x g, and the supernatant 105 

was dialysed overnight at 6 °C against buffer 4 (50 mM ammonium acetate pH 7.4, 1 mM TCEP). The 106 

protein purity was assessed by SDS/PAGE (15%).  107 

 108 

Western Blot with fluorescent tau13 antibody 109 

For western blots, a fluorescent anti-tau antibody was used. Therefore tau13 (Biolegend, San 110 

Diego, USA) was labelled with CF633 (Biotium, Freemont, USA), and the labelling process was 111 

performed as described previously [37]. 2N4R tau recombinant protein samples were prepared in 112 

Laemmli buffer (final 1× composition: 20 mM Tris, pH 6.8, 2% SDS, 6% glycerol, 1% β-ME, 0.002% 113 

Bromophenol Blue). All samples were heated at 95 °C for 5 min and separated using SDS PAGE 114 

(15%). Proteins were then transferred to a polyvinylidene fluoride (PVDF) membrane (Thermo Fisher 115 

Scientific, Waltham, USA) at 500 mA for 40 min. After a washing step for 15 min in Tris-buffered 116 

saline tween buffer (TBS-T) (20 mM Tris, 150 mM NaCl, 0.1% Tween 20), the membrane was blocked 117 

for 1 h with 2.5% milk powder/TBS-T. Next, the membrane was washed with TBS-T, 2 × 5 min and 118 

in the last step for 15 min. Tau13 stocks were 1 mg/ml and were diluted in TBS-T (1:5000). The 119 

membrane was incubated with the antibody for 1.5 h. at RT. After a final wash step (2 × 5 min and 1 × 120 

10 min), TBS-T was performed. Detection based on the CF633 fluorescence of the labelled tau13 121 

antibody. Bio-Rad universal hood II and Chemidoc XRS camera and Quantity One 4.6.5 software 122 

enabled the visualisation and quantification of the protein bands. 123 
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Cloning, expression and purification of SARS-CoV-2 3CLpro 124 

SARS-CoV-2 3CLpro (Uniprot entry: P0DTD1, virus strain: hCoV-19/Wuhan/WIV04/2019) was 125 

cloned, expressed and purified, as described previously [38]. 126 

 127 

Thioflavin T Aggregation (ThT) Assay 128 

ThT aggregation assays were conducted in Corning half area 96-well plates with the non-binding 129 

surface (Corning No. 3881, Glendale, AZ, USA). As a control, polymerisation of 2N4R tau was 130 

initiated in the presence of the aggregation inducer heparin (Sigma-Aldrich, USA) with a molar ratio 131 

of 4:1 (Tau:heparin). 10 µM tau was incubated with 2.5 µM heparin (the final volume of the reaction 132 

mixture was 150 μl). The experiment buffer contained 20 mM Tris pH 7.2, 200 mM NaCl, 1 mM TCEP 133 

and 10 µM ThT. Fluorescence intensities were measured at 6 minutes intervals over 30 hours at 350 134 

rpm and 37˚C using an Infinite 200 PRO plate reader (Tecan, Männedorf, Switzerland). The excitation 135 

and emission wavelengths were 440 and 490 nm, respectively. All measurements were performed in 136 

triplicate, and data are presented as mean ± SD. 137 

 138 

Thioflavin T Aggregation (ThT) Assay using SARS-CoV-2 3CLpro as the inducer 139 

ThT assays were performed as described before. Instead of heparin, 10 µM SARS-CoV-2 3CLpro 140 

was used as an aggregation inducer. In a preliminary test, the effect of 3CLpro against 10 µM 2N4R 141 

tau, α synuclein and TDP-43 was tested over 24h. As a control, the same experiment was performed 142 

with the single proteins. 143 

A further experiment was performed with inactivated 3CLpro, the protease was incubated with an 144 

equimolar concentration of Disulfiram (DSF) (10µM) for 30 minutes at RT, after 10 µM 2N4R tau and 145 

ThT was added, and the experiment was running for 24h. As a control, 2N4R tau was incubated with 146 

DSF and monitored for the same experimental time.  147 

Furthermore, a ThT assay of 10 µM tau and 3CLpro were stopped after 24h, and the protease was 148 

inactivated through DSF addition (10 µM) and incubated for 30 minutes at RT. Afterwards, a new tau 149 

sample (10µM) was added. The same procedure without inactivating the protease was followed as a 150 

control. All measurements were performed in triplicate, and data are presented as mean ± SD. 151 

 152 

Investigation of tau and 3CLpro doses dependency 153 

Different concentrations were titrated to investigate tau, and 3CLpro doses dependency on the 154 

2N4R tau fibril formation and a ThT assay was performed as described before. The effect of 0, 2.5, 5, 155 
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10, 25 and 50 µM 3CLpro was tested against 10 µM tau over 24h. We also tested the opposite effect, 156 

where 0, 5, 10, 20, 40, 60, 80, and 100 µM of tau were tested against 10 µM 3CLpro. All experiments 157 

were performed in triplicate, and data are presented as mean ± SD. 158 

 159 

Stability of tau in the presence of Sars-CoV-2 3CLpro investigated by High-performance 160 

liquid chromatography  161 

To explore the proteolytic degradation of tau by 3CLpro samples after 0, 24, 48 and 72 h incubation 162 

were analysed by high-performance liquid chromatography (HPLC). Agilent 1260 Infinity II system 163 

(Agilent Technologies, Santa Clara, CA, USA), equipped with a quaternary pump, autosampler, heated 164 

column compartment, multi-wavelength detector (MWD) and an analytical fraction collector, was 165 

used. 20 µL of sample solution was injected into an Agilent Zorbax 300-SB C8 4.6*250 mm, 5 µm 166 

reversed-phase liquid chromatography column (Agilent Technologies, Santa Clara, CA, USA), which 167 

was heated to 80 °C. Mobile phases consisted of A: Water + 0.1% Trifluoroacetic acid (TFA) and B: 168 

Acetonitrile + 0.1% TFA. Analyte elution was accomplished by a linear gradient from 10%  to 80%  169 

buffer B in 20 min. Chromatograms were acquired at 214 nm and 280 nm. Furthermore, data 170 

acquisition and evaluation were performed with the Agilent OpenLab software (Version 2.6). The 171 

mean peak area of each triplicate was plotted against incubation time. Chromatograms of tau with 172 

3CLpro and chromatograms with a single protein were investigated for metabolite formation after an 173 

incubation period of up to 72 h. The peaks related to the sample in which both proteins were present 174 

(max incubation 72 h) were considered potential metabolites of the tau protein produced by Sars-CoV-175 

2 3CLpro. 176 

 177 

Purification of tau metabolites after proteolytic degradation by Sars-CoV-2 3CLpro 178 

To further investigate tau metabolites produced by incubation with Sars-CoV-2 3CLpro, we used 179 

HPLC and further mass spectrometry (MS) analysis. Tau was incubated with the protease for 72h at 180 

37 °C and 500 rpm. HPLC conditions were the same as described above. 100 µL of the sample was 181 

applied to the column per each chromatography run, and fractions were collected every minute. 182 

Fractions containing the same peak were pooled and lyophilised; subsequently, the samples were 183 

submitted for MS analysis. 184 

 185 

 186 

 187 
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Sample processing and mass spectrometry 188 

Lyophilised samples were resuspended in 500 µL 0.1% trifluoroacetic acid (TFA) and digested 189 

with trypsin (Serva, Heidelberg, Germany) in 50 mM NH4HCO3 overnight at 37 °C. Tryptic peptides 190 

were extracted with 0.1% TFA and subjected to MS-coupled liquid chromatography. Briefly, for 191 

peptide separation over a 55-minute LC-gradient with 300 nL/min in an Ultimate 3000 Rapid 192 

Separation liquid chromatography system (Thermo Scientific, Bremen, Germany) equipped with an 193 

Acclaim PepMap 100 C18 column (75 µm inner diameter, 25 cm length, 2 mm particle size from 194 

Thermo Scientific, Bremen, Germany) was used. MS analysis was carried out on a Q-Exactive plus 195 

mass spectrometer (Thermo Scientific, Bremen, Germany) operating in positive mode and equipped 196 

with a nanoelectrospray ionisation source. The capillary temperature was set to 250 °C and the source 197 

voltage to 1.5 kV. Survey scans were carried out over a mass range from 200-2,000 m/z at a resolution 198 

of 70,000 (at 200 m/z). The target value for the automatic gain control was 3,000,000, and the 199 

maximum fills time was 50 ms. The 20 most intense peptide ions (excluding singly charged ions) were 200 

selected for fragmentation. Peptide fragments were analysed using a maximal fill time of 50 ms, 201 

automatic gain control target value of 100,000 and a resolution of 17,500 (at 200 m/z). Already 202 

fragmented ions were excluded for fragmentation for 10 seconds. 203 

Acquired spectra were searched using Sequest HT within Proteome Discoverer version 2.4.1.15 204 

against the SwissProt Homo sapiens proteome dataset (UP000005640, 75777 sequences) with the 205 

inserted sequence of the human tau protein and an E.coli BL21 (DE3) database (UP000002032, 4156 206 

sequences). Methionine oxidation was considered a variable modification and tryptic cleavage 207 

specificity with a maximum of two missed cleavage sites. For the main search, a precursor mass 208 

tolerance of 10 ppm and a mass tolerance of 0.02 Da were applied for fragment spectra. For the semi-209 

specific tryptic search of peptides, PEAKS Studio 10.6 Build 220201221 was used, and the above 210 

human database was searched with an error tolerance of 20 ppm for parent masses and an error 211 

tolerance of 0.2 Da for fragment masses. 212 

 213 

Surface-based fluorescence intensity distribution analysis 214 

To quantify tau aggregation due to 3CLpro activity, surface-based fluorescence intensity distribution 215 

analysis (sFIDA) was performed according to the biochemical principle of Kravchenko et al. 2017, and 216 

Herrmann et al. 2017 [39,40]. Therefore, we used 384-Well plates (Greiner, Kremsmünster, Austria) 217 

to incubate the capture-antibody tau12 in 0.1 M carbonate at a 2.5 µg/ml concentration. After a fivefold 218 

washing step with TBS-T and TBS, 80 µl of blocking solution (Candor Bioscience, Wangen, Germany) 219 
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was added and incubated for 1.5 h. Afterwards, the plate was washed like previously described, and 220 

20 µl of tau conjugated silica-nanoparticles (SiNaPs) and tau aggregates diluted in low cross buffer 221 

strong (Candor Bioscience GmbH, Wangen in Allgäu, Germany) were added. In Addition, 20 µl of 222 

10 nM and 100 nM tau monomer were applied. 223 

To investigate the formation of tau oligomers or aggregates induced by 3CLpro, 5 µM tau monomer 224 

was incubated with 5 µM 3CLpro for 72 h. The negative control was established equivalently; however, 225 

the protease was previously inactivated with 10 µM Disulfiram (DSF). 226 

The samples, buffer control (BC) and capture control (CC), were incubated for 2 h and washed five 227 

times with TBS. For capture control, the capture antibody was omitted. As a detection probe, 20 µl of 228 

0.078 µg/ml tau13 CF633 in TBS was used. After 1 h of incubation, the wells were washed five times 229 

with TBS, and the buffer was changed against TBS-ProClin. The SiNaPs and antibodies used were 230 

synthesised and labelled according to the previously described principle [37,41].  231 

 232 

Results and Discussion 233 

Purification of 2N4R tau with a precipitation approach and characterisation of the 234 

protein 235 

2N4R tau was expressed in BL21 (DE3) (T1) E. coli and purified by a precipitation approach. 236 

2N4R tau consists of 266 amino acids with an approximated molecular weight of 46 kDa. The purity 237 

was assessed by SDS PAGE (Supplementary figure S1). However, the protein presented a single band 238 

on a denaturing SDS-PAGE gel with an apparent molecular mass of 60 kDa. A western blot with the 239 

specific antibody (Tau13, Biolegend) confirmed the target protein (Supplementary figure S2A). 240 

Following successful purification, 2N4R tau was characterised to compare the properties to those 241 

previously reported [42-45]. It is well known that tau, in the monomeric state, is inherently unfolded, 242 

with predominantly random-coil conformation. Our CD analysis confirmed this observation for the 243 

purified protein, with minimum peaks around 200 nm (Supplementary figure S2B). Tau aggregation 244 

was investigated using ThT assay and heparin as an inducer [46]. The results of the ThT assay indicated 245 

that heparin promoted the induction and acceleration of tau aggregation within 24h (Supplementary 246 

figure S2C). The structural changes of tau in the presence of heparin were followed by CD 247 

spectroscopy, demonstrating a shift of the absorbance spectrum from 202 (random-coil conformation) 248 

to 213 (beta-sheet conformation) nm (Supplementary figure S2B). Those results demonstrated that tau 249 

had been successfully aggregated by heparin because the aggregation of this protein is characterised 250 

by a transition from random coil to beta-sheet conformation [43]. 251 
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Identification and characterisation of tau aggregation events induced by SARS-CoV-2 252 

3CLpro using ThT assay 253 

To identify a possible aggregation effect caused by SARS-CoV-2 3CLpro on tau, alpha-synuclein 254 

and TDP-43 proteins, a ThT fibrillation assay was performed. The preliminary test showed that tau 255 

aggregates increased over time after the addition of 10 µM of SARS-CoV-2 3CLpro, which was not 256 

observed for alpha-synuclein and TDP-43 (Fig. 1A). To confirm our preliminary results, control 257 

experiments using the single proteins was performed, which indicated no signal of aggregation over 258 

the time (Fig. 1B). 259 

 260 

Figure 1. Effect of SARS-CoV-2 3CLpro on 2N4R tau aggregation and effect of 3CLpro inactivation on tau aggregation A: ThT 261 
assay of 2N4R tau, α-Synuclein and TDP-43, 3CLpro used as aggregation inducer. The experiment was performed for 24 h, 37 °C and 262 
600 rpm. B: Control ThT assay of single 3CLpro, α-Synuclein, TDP-43 and tau. The inactivation of the protease was treated with 10 µM 263 
DSF. C: ThT assay of inactivated 3CLpro, tau aggregation was not observed. D: ThT assay of 2N4R tau, aggregation was induced by 264 
3CLpro. After 24h DSF inactivated the protease and after 30 minutes of incubation, 10 µM fresh tau was added. Data shown are the mean 265 
± SD from three independent measurements (n=3). 266 

Additional ThT experiments were performed to evaluate the dose dependency of SARS-CoV-2 267 

3CLpro and 2N4R tau concentration on the aggregation behaviour of tau. A higher concentration of the 268 

protease (0, 0.5, 1, 2.5, 5 and 10 µM) caused a higher amount of the tau aggregates in a given time of 269 

24h (Supplementary fig. S3A). Similarly, the titration of tau at different concentrations (0, 5, 10, 20, 270 

40, 60, 80 and 100 µM) demonstrated that the monomer concentration and its cleavage are 271 

accompanied by the amount of aggregate formation (Supplementary fig. S3B).  272 

 273 
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Effect of SARS-CoV-2 3CLpro inactivation on tau aggregation 274 

There exist two possibilities for how SARS-CoV-2 3CLpro induced tau aggregation: (1) both 275 

proteins interact and form aggregates; (2) the protease cleaves tau and thus produces insoluble 276 

fragments that will initiate the aggregation process. To discover the possible forms of the aggregation 277 

endured by tau protein, we performed ThT assays using inactivated 3CLpro by disulfiram (DSF), a 278 

known 3CLpro inhibitor [47]. The results demonstrated that inactivation of the protease prevents tau 279 

aggregation (Fig. 1C), which allows us to suggest that the proteolysis role of the 3CLpro initiates the 280 

aggregation process. The addition of DSF in a running ThT assay stopped the tau aggregation 281 

immediately (Fig. 1D).  282 

 283 

Stability of tau under SARS-CoV-2 3CLpro influence 284 

The stability of 2N4R tau under the influence of SARS-CoV-2 3CLpro was investigated using 285 

analytical HPLC experiments. Interestingly, the results demonstrated an evident cleavage of tau protein 286 

by the virus protease (Fig. 2). As described before, the protein mix was analysed over 0, 24, 48 and 72 287 

h of incubation. The corresponding tau monomer peak (I) (retention time: 10.6 minutes) in the 288 

chromatogram decreased over 72h (Fig. 2A), which can also be observed in a silver-stained SDS PAGE 289 

(Fig. 2C). Beside the reduction of the monomer form of tau the presence of a new protein band around 290 

25 kDa was observed, which allow us to suggest that it represents the tau fragments after the 3CLpro 291 

proteolytic effect. Additionally, two additional peaks were observed on the analytical HPLC 292 

chromatogram (II, III) (Fig. 2A, D and E). SDS PAGE analysis of the related fractions (regions II and 293 

III) also validated the increasing protein bands over experimental time.   294 
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 295 

Figure 2. Effect of SARS-CoV-2 3CLpro on 2N4R tau degradation. A: Analytical HPLC analysis of 2N4R tau incubated with SARS-296 
CoV-2 3CLpro for 0, 24, 48 and 72h. The corresponding chromatogram regions of the tau monomer and related metabolites are labelled 297 
(I-III). B: Stability of 2N4R tau monomer after treatment with 3CLpro over 72h. Single tau and 3CLpro are shown as control. After 3CLpro 298 
treatment, the tau monomer amount decreases by about 60%. C: Chromatogram of peak I (Tau) shown enlarged, a silver stained SDS 299 
PAGE demonstrated that the 2N4R tau amount decreased over 72h treatment with 3CLpro and a protein band increases at 25 kDa. D: 300 
Chromatogram of peak region II shows enlarged three protein bands appearing over 72h experimental time. E: Chromatogram of peak 301 
region III shown enlarged, two protein bands appear over the 72h experimental time. 302 

Based on our results, we assumed that SARS-CoV-2 3CLpro cleaves tau possibly in different sites, 303 

resulting in truncated tau species. After 72 h experimental time, the 2N4R tau amount was reduced by 304 

about 60% related to the start point. Interestingly, in the first 24 h, the degradation process declines 305 

substantially to about 50% of the monomer amount; however, during the remaining 48 h, the monomer 306 

amount reduced by just around 10% (Fig. 2B). This observation can be attributed to the diminished 307 

amount of the monomer itself. 308 
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HPLC experiments with 2N4R tau and inactivated 3CLpro showed that the corresponding tau peak 309 

and the peak regions I, II and III are unaffected. After 72 h, tau is slightly depredated (~5%) 310 

(Supplementary Fig. S4).  311 

 312 

Analysis of the tau digestion underwent 3CLpro using mass spectrometry 313 

We have used mass spectrometry (MS) experiments to confirm tau fragments in the HPLC peaks 314 

I, II and III. Untreated 2N4R tau was used as control; in all tested samples, tau could be detected (Fig. 315 

3). The determination of tryptic tau peptides AEPRQEFEVMEDHAGTYGGLGDR, 316 

GDTPSLEDEAAGHVTQAR and SPQLATLADEVSASLAK are shown in Fig. 3A and 317 

supplementary figures S5 and S6. All tryptic tau peptides that were identified are listed in 318 

supplementary tables S1-S4 (Tryptic peptides that occurred less than three times are not shown).  319 

In the tau control, 111 tryptic peptides could be determined, and 320 

AEPRQEFEVMEDHAGTYGGLGDR had the highest appearance (eight times). Interestingly, we 321 

could not identify, in fractions II and III,  the N-terminal tryptic peptides detected in the control and 322 

peak I (AEPRQEFEVMEDHAGTYGGLGDR and 323 

AGLKESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQ) (Fig. 3B). 324 

Additionally, tryptic peptides in the mid-region and C-terminus of the control sequence could not be 325 

detected in fractions related to peak I, II and III (TPPSSGEPPKSGDRSGYSSPGSPGTPGSR, 326 

QTAPVPMPDLK and TDHGAEIVYKSPVVSGD). Likewise, the peptide 327 

(GSLGNIHHKPGGGQVEVK) in control was not detected in the peak I sample (Fig. 3B). 328 
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 329 

Figure 3. Mass spectrometry analysis of tau metabolites. A: Example of an MS spectrum corresponding to a tryptic peptide derived 330 
from 2N4R tau (AEPRQEFEVMEDHAGTYGGLGDR), b- and y-ions are labelled. B: 2N4R tau sequences and tryptic peptides, which 331 
could be identified in the corresponding samples, are highlighted. Asterisks label tryptic 2N4R tau peptides, which could not be identified 332 
in the three peak samples.   333 

The tau degradation can explain that tryptic tau peptides are no longer detectable by 3CLpro into 334 

different fragments, which may influence the composition and number of tryptic tau peptides in the 335 

four tested samples, as shown in Table 2. 336 

 337 
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Table 2. The number of tryptic tau peptides in control and the tested HPLC samples. 338 

Sample Number tryptic peptides Peptides with the highest appearance 

2N4R tau 111 AEPRQEFEVMEDHAGTYGGLGDR (8x) 

I 66 SPQLATLADEVSASLAK (8x) 

II 46 GDTPSLEDEAAGHVTQAR (6x) 

II 63 SPQLATLADEVSASLAK (15x) 

2N4R tau contains a sequence 241SRLQTAPV248 (QTAPVPMPDLK tryptic peptide absent in peak 339 

I) which shows similarities to the preferred 3CLpro cleavage pattern (Supplementary Fig. S7). A tau 340 

cleavage at this site could generate two fragments with sizes of 25 and 20 kDa, shown on the SDS page 341 

for peak I (Fig. 2C and 2E). Furthermore, at the N-terminus of tau, there are several potential cleavage 342 

sites for 3CLpro, which can generate fragments with molecular weights between 45 and 27 kDa. 343 

Possible 3CLpro cleavage sites relating to the tau protein sequence are shown in Supplementary Figure 344 

S7; this analysis is based on the amino acid preference in the SARS-CoV-2 3CLpro substrate binding 345 

site (Information conceived from the Merops database) [48] and similar amino acid sequences in the 346 

tau sequence. Four sequences showed similarities with the 3C-like protease from coronavirus-2 and 347 

one with a 3C-like peptidase from strawberry mottle virus (Supplementary fig. S7). 348 

The results described in this study indicated that 2N4R tau is proteolytically cleaved by 3CLpro, and 349 

the cleavage is related to tau aggregation events. It has previously been described that tau proteolysis 350 

is associated with aggregation and that the tau protein has cleavage sites for different proteolytic 351 

enzymes [34] (Table 3). 352 

Table 3. Examples of proteases with proteolytic activity against tau.  353 

Protease Cleavage site Reference 

Caspase-6 D13-H14 [49] 

Caspase-3 D25-Q26; K44-E45 [50] 

Calpain-1 and -2 R230-T231 [51,52] 

Caspase-2 D314-L315 [53]  

Calpain-1 K44-E45, R242-L243 [54,55] 

ADAM10 A152-T153 [56] 

Thrombin R155-G156; R209-S210 [57] 

Chymotrypsin Y197-S198 [58]  

Asparagine endopeptidase N255-V256; N368-K369 [59] 

Caspase-1, -3, -6, -7 and -8 D421-S422 [60] 

 354 

Surface-based fluorescence intensity distribution analysis  355 

Surface-based fluorescence intensity distribution analysis (sFIDA) was performed to quantify the 356 

tau oligomers and aggregates after treatment with 3CLpro. The technique employs a similar biochemical 357 

setup as ELISA-like techniques. However, sFIDA uses the same epitope to capture and detect 358 

antibodies and features single-particle sensitivity through a microscopy-based readout (Herrmann et 359 

al., 2017). Recently, sFIDA was applied to quantify tau aggregates in cerebrospinal fluid (CSF) and 360 
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demonstrated its applicability in clinical settings [37]. Initial sFIDA experiments include analysis of 361 

tau monomers, tau aggregates and tau SiNaPs (Fig. 4A-C). To quantify tau aggregates formed by 362 

3CLpro proteolysis, two approaches were tested: tau plus active 3CLpro and tau plus inactivated 3CLpro 363 

(with the addition of disulfiram). As shown in Fig. 4D, Tau samples containing active 3CLpro yielded 364 

higher aggregate-specific readouts than Tau samples in presence of inactivated protease. Compared to 365 

the Tau aggregate control, however, only a small fraction of the employed Tau substrate was converted 366 

into aggregates.  367 

 368 
Figure 4. sFIDA experiments. Samples, buffer control (BC) and capture control (CC) were tested. Pixel counts per concentration are 369 
shown for A: Tau monomer control, B: Tau aggregate control, C: Tau SiNaPs and D: Influence of active 3CLpro on tau aggregation.  370 

It is well known that the structural diversity of tau aggregates can make their detection technically 371 

challenging [61].  372 

For the sFIDA experiments anti-tau12 and anti-tau13 (Biolegend) were used, and both antibodies 373 

interact with the N-terminal region of tau (Tau 6-18 and 15-25) [62]. According to the mass spec results 374 

described before, tau epitope regions for anti-tau12 and anti-tau13 are cleaved and therefore cannot 375 
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react with the respective antibodies in the sFIDA assays. Additionally, remaining epitopes might be 376 

masked by aggregate core formation and can therefore not any more detected by the employed antibody 377 

system. 378 

 379 

Conclusion and future work 380 

The proportion of older adults in the population is increasing in almost all countries. Worldwide, 381 

around 55 million people have dementia, which is expected to increase to 78 million in 2030 and 139 382 

million in 2050 [63]. Different dementias show a conformationally altered concentration of tau. Tau 383 

detaches from microtubules and aggregates into oligomers and neurofibrillary tangles, which can be 384 

secreted from neurons, and spread through the brain during disease progression.  385 

The COVID-19 pandemic has increasingly moved virus infections into the scientific spotlight and 386 

has shown that this infection can damage the brain in many ways. The molecular underpinnings of 387 

neurodegenerative processes need to be investigated to develop appropriate therapies. Proteolysis of 388 

tau protein may be a crucial factor in forming toxic aggregates. Our results demonstrated that the 389 

SARS-CoV-2 3CLpro could cleave 2N4R tau into fragments and thus induce protein aggregation in 390 

vitro. However, further experiments need to be performed to get a closer assessment of the tau cleavage 391 

by SARS-CoV-2 3CLpro: 392 

- Adjustment and optimisation of sFIDA assay (e.g. antibodies). 393 

- Cleavage and accessibility of tau binding regions for specific antibodies. 394 

- Cell toxicity of tau peptides and related aggregates. 395 

- In vivo experiments will confirm the role of the 3CLpro on tau cleavage and aggregation. 396 
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