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Abstract:  

Complex organisms perceive their surroundings with sensory neurons which encode physical 20 
stimuli into spikes of electrical activities. The past decade has seen reports of DNA-based 
chemical neurons that mimic artificial neural networks with chemical reactions. Yet, they lack 
the physical sensing and temporal coding of sensory biological neurons. Here we report a 
thermosensory chemical neuron based on DNA and enzymes that spikes with chemical activity 
when exposed to cold. Surprisingly, this chemical neuron shares deep mathematical similarities 25 
with a toy model of a cold nociceptive neuron: they follow a similar bifurcation route between 
rest and oscillations and avoid artefacts associated with canonical bifurcations (such as 
irreversibility, damping or untimely spiking). We experimentally demonstrate this robustness by 
encoding - digitally and analogically - thermal messages into chemical waveforms. This 
chemical neuron could pave the way for implementing in DNA the third generation of neural 30 
network models (spiking networks), and opens the door for associative learning.  

 
One-Sentence Summary: A DNA-based chemical network mathematically mimics the sensing 
of cold by a biological neuron. 

35 
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Main Text:  

Introduction 

Animals represent the world around them with spikes of electrical activities (action 
potentials) in their nervous system. The spikes are evoked by sensory neurons around the body in 
response to chemical or physical stimuli (sound, light, pressure, temperature...), and are 5 
transported to the central nervous system, where they are decoded, processed and integrated with 
other sensory signals to elicit a response. A case in point is thermosensation - the sensing of 
temperature by thermoreceptors and its coding into trains of spikes1. Thermosensation can be 
analog - the firing rates of spikes coding for the ambient temperature2. This graded thermal 
response is essential for organisms which cannot regulate their body temperature and resort to 10 
thermal acclimation or thermotaxis to adapt and navigate the thermal constrains set by their 
environment 3. Thermosensation can also be digital like in thermal nociceptors, where 
temperature-gated ion channels such as TRPM8 receptors generate trains of spikes only when 
they are exposed to dangerous levels of hot or cold1, and remain at rest otherwise (Fig 1A). This 
neural coding of sensation is sparse in space and time, allowing a fast and accurate response to 15 
be computed from a few transient signals4.  

In electronics, the parsimony and efficiency of neural coding has motivated the development of 
Spiking Neural Networks, which are electronic oscillators connected by a network of excitatory 
and inhibitory synapses5,6. Departing from the heavily supervised, energy and data hungry 
paradigm of deep neural networks, spiking neural networks can in principle learn and operate 20 
much more frugally7,8: with few neurons and with little supervision, data or power – similarly to 
biological neurons4,9. 

In chemistry, previous works has hinted at the feasibility of programming nonlinear chemical 
reactions to emulate neurons10–12 Emboldened by the success of DNA as a building13 and 
computing14–16 material, various groups have reported DNA-based neurons capable of 25 
performing linear17,18 and nonlinear classification19,20 on nucleic acids. However, these DNA 
neurons still pale in comparison with their biological counterparts. Firstly, they only process 
chemical stimuli (concentrations of nucleic acids), and are unable to integrate physical stimuli 
such as temperature. Secondly, these DNA neurons are akin to a toggle switch and have no sense 
of time. They are incapable of processing information in the time domain (e.g. deciding if two 30 
inputs are present sequentially or simultaneously), and lack the temporal finesse of biological 
neurons, which encode their stimulation history into a spike waveform21. With this temporal 
coding, the brain can decide if two stimuli are sequential or simultaneous (by comparing the 
arrival time of spike trains22), and learn from this temporal correlation to wire together neurons 
that fire together. This is the basis of associative learning, which allows the brain to store a 35 
sparse representation of its environment in its neural topology23. Chemical systems that mimic 
this temporal coding would open the door for associative learning and enables a novel range of 
molecular systems that learn from their environment. Encoding information with temperature 
also has practical benefits: it is easy to implement with a thermal cycler24, and the modulation of 
temperature to probe and program molecular systems has been studied for more than a decade25–40 
29. 

Here we report a thermosensory chemical neuron which encodes thermal signals in the 
temporal domain. The chemical neuron produces spikes of chemical activity when exposed to 
low temperature (Fig. 1B) - similarly to a cold nociceptive neuron30,31. At high temperature, the 
chemical neuron is at rest and does not spike. As temperature is lowered and crosses a threshold, 45 
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the neuron bifurcates to an oscillatory regime, turning into a chemical metronome that steadily 
generates pulses of a DNA species - the firing rate coding for the ambient temperature. 
Comparing our chemical neuron with a toy-model of a thermosensory biological neuron, we find 
that they bifurcate along a similar route. This route reversibly and cleanly switches the neurons 
between rest and oscillation, avoiding artefacts of simpler bifurcations (such as irreversibility, 5 
damping or erroneous spiking). Building on this robustness, we operate the chemical neuron in 
bulk as a digital communication channel –demonstrating high fidelity and resilience to thermal 
noise. Lastly, we miniaturize the chemical neurons and operate tens of thousands of them in an 
analog mode, precisely coding the ambient temperature into the firing rates of the neurons. Such 
chemical neuron opens an avenue to execute recurrent molecular computations and connect 10 
chemical neurons into a spiking chemical network, which could process information in a manner 
similar to the nervous systems of complex organisms.  

The spike generator 

Spiking neurons can be conceptualized as oscillators that produce rhythmic pulses of 
activity32. We selected a predator-prey chemical oscillator33 to generate chemical spikes. 15 
Although this DNA oscillator is simple, it is one of the most robust reported34–40 and oscillates 
for days on end41. It can be wired to other DNA circuits to cadence their activities, for instance to 
rhythmically aggregate and disaggregate colloids 42. This enzymatic oscillator comprises two 
DNA strands, a prey and a predator, which live and die according to rules set in their sequences 
and enforced by 3 enzymes (polymerase, nickase, exonuclease). Briefly, a prey replicates by 20 
binding to a grass template, an event which recruits a polymerase and a nickase and produces a 
new prey as an output (Fig. 1C). This self-replication produces an exponential growth in the 
population of prey (prey growth). At the same time, the predators replicate by “eating” the preys, 
converting them into predators through an enzymatic reaction that produces one new predator for 
each prey consumed by a predator. This predation triggers an exponential growth of the 25 
population of predators at the expense of preys, whose population then decays exponentially – 
eventually choking the growth of predators themselves. Once the exonuclease has cleared the 
population of predators, the remaining preys resume their exponential growth, and the cycle of 
growth and predation restarts - resulting in rhythmic oscillations with a typical period of ~1 h.  

We first took a phenomenological approach and investigated how this oscillator 30 
depended on temperature. We found that it behaves similarly to a cold sensory neuron - being 
inactive over a temperature threshold and suddenly becoming active below (Fig. 1D). At 52.4 °C 
or above, oscillations are silenced and the system is locked in a stable steady state with a low 
level of preys. But as temperature is lowered near 51°C, the system suddenly bifurcates and 
enters an oscillatory regime. At 51.1°C, oscillations emerge after a lag of dozens of hours. At 35 
49°C, oscillations quickly kick in and the system adopts a rhythmic pattern. The firing rate varies 
non-monotonically with temperature: it increases from 49°C to 46.3 °C, at which point it 
decreases (Fig 1F). By contrast, the amplitude of oscillations remains comparatively stable with 
temperature. 

Although the oscillator bifurcates between rest and oscillations in a manner similar to a 40 
cold sensory neuron, this phenomenological approach fails to precisely explain why and how it 
does so. The net effect of temperature on oscillations is difficult to predict from the chemical 
network of the oscillator, as temperature affects the thermodynamics and kinetics of all chemical 
reactions.  Heating promotes the melting of DNA duplexes, accelerating the separation of 
predators (involved in predator growth) and the melting of prey from their template (involved in 45 
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prey growth). But heating also destabilizes the binding of predators to prey, and the binding of 
preys to their templates. Increasing temperatures also affects the kinetic balance of enzymes, and 
thermophilic enzymes like the exonuclease are expected to become more active with increasing 
temperature. 

We thus took a reductionist approach to understand the kinetic basis of why and how the 5 
chemical neuron bifurcates with temperature. We started from a validated mathematical model of 
the oscillator33, which is two dimensional (tracking the dynamics of prey and predators) and 
nonlinear (accounting for the saturation of enzymatic kinetics through Michaelis-Menten 
equation), but which lacks temperature dependencies (SI 2.1). We isolated each of the three 
reaction modules of the model (prey growth, predation, degradation of prey and predators) and 10 
quantified their temperature dependence (Fig 1E & SI 2.2). Prey replication varies weakly (and 
non-monotonically) with temperature. By contrast, predation accelerates more than 5-fold from 
40 °C to 54 °C – suggesting that the separation of predators - promoted by heating - is the rate-
determining step in predation. Lastly, the degradation of prey and predators speeds up more than 
10-fold over this temperature range - which is consistent with our exonuclease being 15 
thermophilic43. We validated this modelling with a a priori prediction of the bifurcation 
temperature of Figure 1D. We linearized the enzymatic saturations - reducing the model to the 
celebrated Lotka-Volterra equation, and used classical linear stability analysis to express in a 
closed-form the frequency of oscillations and their temperature of bifurcation. Satisfyingly, this 
simplified model predicts the actual bifurcation temperature within ~1 °C (Fig 1F & SI 2.3). 20 

Coming back to the enzymatic model, we sharpened our understanding of the molecular basis of 
temperature-induced bifurcations. We postulated that oscillations emerge once the steady state at 
high-temperature loses its stability (SI 2.4). In this steady state, the level of predators is low, and 
the level of preys is mainly set by the balance between their replication and degradation by the 
polymerase – which essentially reduces the dynamics of predators to a one dimensional linear 25 
different equation. Knowing the steady-state level of prey, we computed the net growth rate of 
predators as the outcome of two linear processes: replication by predation of the prey and 
degradation by the exonuclease. At high temperatures, the exonuclease is highly active and there 
are not enough preys to feed the predators and counter their degradation by the exonuclease. The 
net growth of predators is negative and the steady state remains stable. But as temperature 30 
decreases, the exonuclease slows down, which has compounding effects on the growth of 
predators. First, it raises the steady-state level of preys, which promotes the replication of 
predators by predation, and it also attenuates the degradation of predators. Overall, the model 
predicts that replication and degradation cancel out at ~51°C (Fig. 1G) – a theoretical prediction 
that agrees within less than 1°C with the temperature measured experimentally for the 35 
bifurcation (Fig. 1D).  

In addition, we confronted the full model (2D and nonlinear) to an experimental 
bifurcation diagram- varying both temperature and exonuclease. The model satisfyingly predicts 
the onset on experimental bifurcations when those two parameters are varied. (Fig. S5) 

 40 
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Figure 1: Cold sensation by a chemical neuron. (A)  A cold sensory biological neuron switches 
between a rest state at high temperature to a spiking state at low temperature. The bifurcation is 
controlled at the molecular level by temperature-sensitive ion channels. (B) Our cold sensory 
chemical neuron switches between a rest state at high temperature to a spiking state at low 5 
temperature. The bifurcation is controlled at the molecular level by temperature-sensitive enzymes 
and the melting of DNA duplexes. (C) The chemical neuron is based on a DNA-based predator-
prey oscillator, which comprises three reaction modules (prey replication, predation and 
degradation) that are actuated by three DNA-processing enzymes. (D) Empirical dependence of 
the oscillator on temperature. The fluorescent traces are measured in bulk and mainly reflect the 10 
level of prey. (E) Individual measurements of the reaction rates of the three modules with 
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temperature (SI 2.2).  For sake of comparison, rates are normalized by their value at 46.5 °C. (F) 
Predicted and measured frequency of spiking against temperature. The black plain line shows the 
prediction of a nonlinear enzymatic model, and the green plain line shows the prediction its 
linearized version (Lotka-Voltera model) (SI 2.3). The red dots show the experimental 
measurements. (G) Prediction of the net rate of predator growth in the rest state (low predator) (SI 5 
2.4). This rate includes the effect of predation, prey growth and predator decay. When the net rate 
is negative, the rest state is stable. When the rate becomes positive, the system bifurcates the rest 
state disappears and oscillations emerge.  

Bifurcation routes 

Comforted by the predictive power of model, we visualized the bifurcation route of the 10 
neurons from rest to oscillation (Fig. 2A). We consider the prey nullcline (green) and predator 
nullcline (blue). At high temperature, trajectories are attracted to the stable steady state with few 
predators (black point near the x axis) and the neuron rests. As temperature is lowered, the steady 
level of prey increases, dragging the tip of the prey nullcline to the right of the plot. When the tip 
intersects the predator nullcline, a first saddle-node bifurcation occurs - creating an unstable state 15 
and a stable state, which quickly transitions to a stable spiral state - generating damped 
oscillations in its vicinity. Yet a generic trajectory (pink curve) cannot reach this spiral state 
because it is attracted by the stable state with low predators, and this saddle-node bifurcation is 
not apparent from a generic time trace. But as temperature decreases, the unstable and stable 
states keep sliding along the nullclines and eventually annihilate each other. This is the situation 20 
mentioned above where the net growth rate of predators enters the positive zone (i.e. the region 
on the right of the predator nullcline). This second saddle-node bifurcation clears the way for a 
generic trajectory to reach the spiral. It manifests in the time trace as damped oscillations that 
start after a long time-lag, which is due to the remnant of the stable state (i.e., the growth rate of 
preys and predators near this point is positive, but still close to 0 by continuity). Lastly, as 25 
temperature decreases again, a Hopf bifurcation destabilizes the spiral state and gives birth to a 
limit cycle. This manifests in the time trace as sustained oscillations that set in quickly from 
generic trajectories. The 3 bifurcations occur in a narrow temperature range (~0.1°C) (Fig. 2A & 
SI 2.6). While the ordering of the last two bifurcations (the second saddle-node and Hopf 
bifurcations) is sensitive to parameters, the general  bifurcation path (destruction of a resting 30 
state and creation of a limit cycle) remains the same. 
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Figure 2. Bifurcation routes of our chemical neuron and a toy model of a thermosensory 
biological neuron (A) 2D phase portraits of the chemical neuron for decreasing temperatures (see 
Movie S1). Thick green and blue lines are the nullclines for preys and predators respectively. The 
thin pink line shows a generic trajectory. Steady states – located at the intersection of nullclines – 5 
are shown as disks, color-coded by their nature and stability (see SI 2.6) (B) 2D phase portraits of 
a toy model of biological thermosensory neuron (see Movie S2), which has 2 variables (membrane 
potential and spiking variable), and is parametrized by temperature through its excitation current 
(see SI 3.1).The blue curve is the nullcline of the membrane potential, and the green curve is the 
nullcline of the spiking variable.  10 
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We then compared our chemical neuron with a toy model of a cold sensory neuron. While the 
mechanical basis of temperature sensing in neurons has been known for more than a decade, only 
a few mathematical models have attempted to explain how this temperature-dependence governs 
the bifurcations between rest and spikes.44–46 These models are typically based on a Hodgkin-
Huxley-type model47 (with a thermal dependence of the current to model the influence of 5 
temperature on thermoreceptors). Yet the Hodgkin-Huxley model is four dimensional, which 
makes the visualization and analysis of bifurcations delicate. Another model, the FitzHugh-
Nagumo model, simplifies the dynamic of spiking by reducing the number of variables from four 
to two, which makes it analytically tractable and easier to visualize 48–51. Yet, this model is 
limited to describing a certain class of neurons (those with class 2 excitability) due to the linear 10 
shape of one its nullcline (the nullcline for the recovery variable, also called spiking variable). 
For the sake of generality, visualization and comparison with our chemical neuron, we selected a 
generalization of the FitzHugh-Nagamo model with a quadratic nonlinearity in the spiking 
variable52 (which makes it mathematically equivalent to the 2D Hindmarsh-rose model49). Being 
2D, this model retains the ease of visualization and analysis of the FitzHugh-Nagamo model, 15 
while covering more classes of neuronal excitability thanks to its quadratic term. The model 
features only two variables (the membrane potential x and the spiking variable y), and four 
parameters (of which only three are freely tunable, because changing the parameter a has the 
same effect as changing the current). We set two parameters (c and d) to fall in a regime where 
bifurcations have been analytically studied in details (corresponding to a Class 2 excitability and 20 
Class 1 spiking52 53). We fix the remaining free parameter b to 0.6 to analyze and plot the 
bifurcations, and compare them with our chemical neuron (but the conclusions remain broadly 
similar with other values of b). Lastly, to capture the effect of temperature, we added a sigmoidal 
dependence of the excitation current I on the temperature T, which qualitatively agrees with the 
shape of measurements of I(T) in thermosensitive ion channels such as TRPM854 (SI 3.1)  25 

Since this model is a toy model, it does not pretend to describe how any chemosensory neuron 
will bifurcate with temperature. But it describes a plausible route for bifurcations, a route that is 
generic, analytically tractable and easy to visualize– allowing a qualitative and visual 
comparison with our chemical neuron. In this route, at high temperature the biological neuron is 
at rest, attracted by a stable steady state (Fig. 2B). As temperature decreases, the tip of the y 30 
nullcline intersects the x nullcline – a saddle-node bifurcation that creates two steady states: one 
stable and one unstable. It also creates a limit cycle which is blocked by the saddle that lies on it.  
Lowering the temperature again, a SNIC (Saddle Node on an Invariant Circle) bifurcation occurs 
that annihilates the rest state and saddle. This clears the way for the biological neuron to reach its 
limit cycle from a generic point in the phase space.  35 

The biological and chemical neurons thus follow a similar route from rest to oscillation 
(or from oscillation to rest), by destroying (creating) their rest state and creating (destroying) the 
limit cycle that supports their oscillations. This sequential bifurcation route offers several 
advantages for spike-encoded sensing compared to more traditional bifurcations (Fig. 3 & SI 
3.2). Among the canonical bifurcations between rest and oscillations (Saddle-Node, SNIC, 40 
homoclinic, supercritical and subcritical Hopf, Fold Limit cycle), only the SNIC and 
supercritical Hopf bifurcation are reversible – in the sense that they do not suffer from hysteresis 
when the control parameter is repeatedly swept across the bifurcation55  

Similar to SNIC and Hopf bifurcations, our chemical and biological neurons are 
reversible and do not exhibit hysteresis. This is because their rest state and limit cycle do not 45 
coexist – except within a narrow temperature range. Outside this temperature range, the state of 
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the neuron is unambiguous and only determined by temperature – not by the history of the 
neuron or its stimulation. This prevents the memory effect or hysteresis which occurs with say 
homoclinic bifurcation (SI 4.1).  

Like in a Hopf bifurcation, the chemical and biological neurons create and destroy their 
limit cycles. But unlike a Hopf bifurcation, they enter or leave the oscillatory regime in a clean 5 
and undamped manner because they create and destroy their steady states – removing the spiral 
state that pollutes the transitions between rest and oscillations (SI 4.2).  Since steady states can 
only typically be created or destroyed in pair, this route needs an auxiliary saddle steady state, 
which is used to destroy the rest state (when temperature is lowered and the system is switched 
from OFF to ON), or to destroy the steady state in which the limit cycle is shrunk (when 10 
temperature is raised and the system is switched from ON to OFF). 
In other words, the bifurcation route of the chemical and biological neurons is hybrid and 
combines the destruction (creation) of a stable node with the creation (destruction) of a limit 
cycle. With this combination, the neurons robustly sense temperature – reversibly and cleanly 
switching between ON and OFF states. This is confirmed by numerical simulations of toy 15 
models of canonical bifurcations (see SI 4): Homoclinic, Hopf and SNIC bifurcation are subject 
to artefacts when their control parameter is repeatedly turned ON and OFF, while the chemical 
and biological neurons do not suffer from such artefacts (Fig. 3). We experimentally verified this 
robustness for the chemical neuron, and we additionally confirmed that it resisted severe thermal 
noise. 20 

 
 

 
 

 25 
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Figure 3. Response of canonical dynamical systems, and chemical and biological neurons to 
periodic stimulations. These dynamical systems are subjected to periodical switching of their 
bifurcation parameter (SI 4), causing bifurcations between a rest state (OFF) and a limit cycle 
(ON). Some systems bifurcate by creating and destroying their rest state (e.g., SNIC), others by 5 
creating and destroying their limit cycle (e.g. Hopf). But only the biological or chemical neurons 
create and destroy both their limit cycles and their resting state. This allows them to switch between 
spiking and rest state without artefacts and reversibly (contrary to the canonical bifurcations). 

Passing of thermal messages 

Equipped with this theoretical grounding, we operated our neuron as a coding channel and  10 
encoded digital profiles of temperature (thermal messages) in which the neuron is switched 
between ON and OFF states. Each thermal message was divided in ten intervals of time, each 
interval carrying one bit of information (Fig 4A). During each interval, the temperature is set to 
either hot if the bit is 0 (which causes the neuron to rest, being OFF), or cold if the bit is 1 (which 
causes the neuron to spike, being ON). 15 

We first optimized the hot and cold temperatures (SI 5). The hottest temperature achievable is 
dictated  by the emergence of parasites, which  are DNA species that have evolved to resist 
degradation by the exonuclease, and which poison the system by monopolizing enzymatic 
resources 56. While the precise mechanism for the emergence of parasites is unclear, it is 
activated by temperature and is thought to involve breathing and partial melting of DNA strands. 20 
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We thus set the hot temperature (52°C) for the OFF state, only slightly above the bifurcation 
temperature (~51°C) to mitigate the emergence of parasites. On the other side, the cold 
temperature (ON) was dictated by the timescale of our experiment. We found that below 43°C, 
the priming of spikes was too slow to be practical and we chose this temperature as the cold 
temperature. Noticeably the hot and cold temperature are not symmetric with respect to the 5 
bifurcation.  

After optimization, we passed thermal messages of 10 bits. Experimental results confirm 
theoretical insights from the model: the neuron does not damp when temperature is switched 
(unlike Hopf bifurcations), and it does not spike extraneously when turned OFF (unlike SNIC 
bifurcations). The state of the neuron mostly depended on the inputted temperature, not its 10 
history (Fig. 4B). More than 90% of the bits were correctly coded (Fig. 4C) and most errors were 
false positives (e.g., spikes at high temperature, light blue boxes in Fig.4) that occurred after long 
stretches of 0s during which the neuron remained at high temperature for a long time. This is 
consistent with the view that parasitic species emerge at high temperature and interfere with the 
normal functioning of the neuron. Working at the microscale could mitigate the emergence of 15 
parasites, since it is a stochastic event that scales with the volume of the system. 
Compartmentalization in micrometric droplets has been shows to suppress parasitic species in 
other species,57,58, and it could drastically extend the length of messages that can be passed in our 
system.  
In a separate experiment, we further challenged the neuron by shrinking the thermal amplitude 20 
(the difference between the hot and cold temperature) and adding thermal noise (Fig. 5). Rather 
than keeping the cold or hot temperature constant, we swept it around the mean hot or cold 
temperature, adding noise to the input temperature. For a cold temperature of 46 (+/- 2) °C and a 
hot temperature of 49 (+/- 2) °C (giving a signal to noise ratio of 3°C/2°C=1.5), the neuron was 
still able to encode a message of 5 bits. Such a thermal window is sufficiently narrow so as not to 25 
perturb significantly downstream processes, and would allow the integration of the neurons with 
DNA-based logic circuits or neural networks19 . 
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Figure 4. Modulation of 10-bits spike trains with thermal messages. (A) The predator-prey 
system is subjected to various digital profiles of temperature. For each interval, the temperature 
is set either to hot (52°C) if the bit is 0, or cold (43°C) if the bit is 1. Experiments are performed 
in triplicate and the fluorescence of the system tracked. The consensus output is the consensus 5 
sequence obtained by majority voting on the three replicates. Erroneously transmitted bits are 
highlighted in light blue. (B) Time traces of 38 random messages. Messages are grouped 
according to their number of 0 bits. Magenta and cyan frames denote respectively an error on 
a 1 bit or a 0 bit. (C) Accuracy of transmission against the number of 0 bits in the message. 
The accuracy for each group is measured (defined as the number of correct bits transmitted, 10 
averaged over all bits of all the triplicates of all the message of a given group). 
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Figure 5. Response of the chemical neuron to noisy temperature stimuli. During each interval, 
the temperature oscillates 2°C above and below the nominal temperature with a 3 min period.  The 
zone corresponding to successful passing of the message is highlighted in green with the exception 
of the 50°C/27nM message which contains some errors.  5 

Analog encoding of temperature 

After operating the chemical neuron in a digital mode, we asked if it could be operated 
analogically, i.e. encoding the ambient temperature in the spiking frequency? This analog mode 
of operation is used by some organisms to track changes in temperature, enabling for instance 
thermotaxis.  10 

To that end, we miniaturized the chemical neuron and  mapped en masse its dependence 
on temperature and exonuclease. Briefly, we prepared ~30,000 micrometric droplets containing 
the chemical mix and varying concentrations of exonuclease, which we incubated in a silicon 
chamber59 (a material with excellent thermal properties) placed in a thermal gradient (the 
temperature range being selected to fall in the oscillatory regime) (Fig. 6A). This microfluidic 15 
mapping reveals a temperature range where the firing rate of spikes varies linearly with 
temperature (Fig. 6B-C ), and where the amplitude of spikes remains roughly constant (Fig. 6E-
F). This range is ideal to operate the chemical neuron as a temperature sensor, as it mimics the 
linear encoding of temperature seen with some thermosensory neurons2. Interestingly, 
temperature and exonuclease mostly compensate each other: the same firing rate can be obtained 20 
by compensating an increase in temperature by a decrease in the concentration of exonuclease, 
which facilitates the adjustment of parameters. 

We plotted Peristimulus Time Histograms (PSTH) to compare the oscillation of droplets 
with the same content and incubated at the same temperature (which is inspired by PSTH 
diagrams for biological neurons exposed to the same stimuli). Like their bulk counterpart, the 25 
chemical neurons in droplets oscillate rhythmically (Fig. 6D). But micrometric 
compartmentalization reveals features that are invisible in bulk, namely stochastic effects. At 
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high temperature, the droplets oscillate synchronously, but at lower temperature, they 
progressively desynchronize (which is visible from the spreading of the spikes). We posit that 
this desynchronization likely emerges from the low copy number of species in droplets. When 
the concentrations of prey reach the sub picomolar range, their copy number goes below ~100 
copies, and their chemistry cannot be correctly modeled with deterministic equations. Rare 5 
events may be amplified by the nonlinear chemistry, giving rise to large deviations from the 
deterministic equations. For instance, a template (which is normally in a close hairpin 
conformation) may transiently open up, allowing a prey to bind and replicate. Or two preys that 
bind fleetingly may be extended by the polymerase, giving rise to two predators that replicate 
exponentially. Enzyme fatigue (i.e. the partial unfolding and loss of activity of enzymes) 10 
accelerates at higher temperature.  This may explain how droplets in the 45-48 °C range remain 
synchronized.   

Overall, this shows that in principle the thermal history of the neuron could be recorded 
into the temporal profile of its chemical spikes and reconstructed by playing back the time course 
and measuring how the firing rate of spikes change with time. 15 
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Figure 6. [Exonuclease]-Temperature phase diagrams of the chemical neurons. (A) Time-
lapse of encapsulated chemical neurons in a temperature gradient (movie S3). Varying the 5 
concentration of exonuclease - given by a fluorescent barcoding (left and Image S1) – changes 
the frequency of the oscillations. scale bar: 100 µm (B) Experimental frequency phase diagram. 
The zone corresponding to low temperature and low concentration of exonuclease is populated 
of neurons that oscillate poorly (< 3 oscillations). For [Exonuclease] >30 nM the variation of 
frequency with increasing temperature is non monotonous and a maximum can be observed 10 
around 47°C. (C) In the 39°C - 45°C range the frequency increases linearly with temperature 
and its level can be offset by varying the exonuclease. (D) Peristimulus Time Histograms at 
different temperatures. In the 46°C - 48°C, droplets are very synchronized compared to 
droplets at lower temperatures. (E) Experimental amplitude phase diagram. (F) Evolution of 
prey amplitude with temperature for 3 concentrations of exonuclease.  15 
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Discussion 

We have built a chemical neuron that spikes with chemical activity when exposed to cold – 
similarly to a cold sensory neuron. At a fundamental level, this chemical coding is temporally 
sparse: the signal is localized in time because the neuron only activates when stimulated. This 
reduces power consumptions and opportunities for chemical “cacophony” (i.e. cross-talks 5 
between unrelated chemical systems). Sparse encoding also allows spikes to be compared and 
sorted according to their timing and frequency, which forms the basis of information processing 
in the brain 4. 

The dynamics of a single chemical neuron could already be rich enough to support advanced 
computations like reservoir computing 24,60. In this paradigm, a chemical neuron would be 10 
programmed to accept a time-varying signal as an input, and return for instance the time-lagged 
or time-averaged version of this signal as an output. More generally, the neuron could be 
programmed to fire when it recognizes a specific temporal pattern (like the alternance of high 
and low signals at a given frequency). 

Yet the full benefits of temporal coding will only be unlocked once neurons are connected into a 15 
network. For instance, warmth could be represented by integrating signals emanating from cold 
and hot sensory neurons (similarly to the biological sensation of warmth  30). Here we 
encapsulated millions of neurons in vesicles with microfluidics, but they remain to be wired with 
chemical synapses that traffic DNA between vesicles. Water-in-oil droplets are impermeable to 
DNA, but semi-permeable vesicles, or liposomes equipped with pores 61,62) could form the basis 20 
of such chemical synapses.  
Once the chemical neurons are connected together, their weights (i.e. the rate of chemical 
exchange between two neurons) could be learned by chemically reinforcing links between 
neurons that spike synchronously when exposed to the same stimuli. This Hebbian learning rule  
(“neuron that fire together wire together”) is already used to learn weights in electronic spiking 25 
networks 23. 

Chemical networks of thermosensory neurons could be integrated with locomotion to perform 
thermotaxis, by detecting change in the frequencies (i.e., the ascent of descent of a thermal 
gradient) and adjusting locomotion accordingly. More generally, networks of spiking chemical 
neurons could perform phototaxis, chemotaxis or tasks which require the integration of sensing, 30 
computation and locomotion at the molecular scale. 
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