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Abstract  
Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel 
electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining 
their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein 
identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained 
are often inaccurate. This hampers antibody validation and negatively impacts the reliability of 
western blot data, resulting worldwide in a considerable waste of reagents and labour. To alleviate 
these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. 
Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration 
patterns for approximately 10’000 human proteins in five commonly used cell lines. We applied a 
robust internal calibration of migration to determine accurate and reproducible molecular weights. 
This in turn allows merging replicates to increase accuracy, but also enables comparing different cell 
lines. Mining of the data obtained highlights structural factors that affect migration of distinct 
classes of proteins. We also show that the information produced recapitulates known post-
translational modifications and differential splicing and can be used to formulate hypotheses on new 
or poorly known processing events. The full information is freely accessible as a web resource  
through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this 
database will be useful to investigators worldwide for troubleshooting western blot experiments, 
but could also contribute to the characterization of human proteoforms.  

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.22.496709doi: bioRxiv preprint 

mailto:manfredo.quadroni@unil.ch
https://pumba.dcsr.unil.ch/
https://doi.org/10.1101/2022.06.22.496709
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Introduction  
The ability to reliably resolve, identify and quantify individual proteins is essential in both 
fundamental biology and biomedical research. For separation and profiling of complex protein 
mixtures, sodium dodecyl sulfate (SDS)-based electrophoresis (SDS-PAGE) has played a central role 
since its establishment by J. Maizel and U. Laemmli1,2. For protein identification, mass spectrometry 
(MS) can identify proteins based on their most integral property, the amino acid sequence. However, 
due to its cost and complexity, MS cannot be implemented in all labs. Thus in a majority of 
laboratories, specific protein detection is performed by western blot (WB), which combines MW-
based separation with recognition of the protein of interest by a specific antibody (Ab). WB has 
grown in popularity thanks to its low cost, ease of implementation and, at its best, exquisite 
sensitivity and specificity. However, WB is also often plagued by artefacts and technical issues at the 
separation and membrane transfer steps, in addition to major issues due to the reliability of the Ab’s 
used. Detection antibodies are essential tools in fundamental biology, biomedicine and medical 
diagnostics. And yet, they have also been singled out as major contributors to the poor 
reproducibility of scientific publications 3–8. The reasons for this situation, as well as its considerable 
scientific and economic costs, have been previously discussed 9. In practice, the problem can be 
reduced to two underlying issues, namely i) the often insufficient characterization and validation of 
commercial Ab’s and ii) the wide range of biological systems and techniques in which Ab’s are used. 
The combination of these two variables recurrently creates problems and ambiguities whenever a 
new Ab must be validated for a specific application in a given  class of samples. While the Ab market 
has been estimated at around 800 million US$ yearly 9, the cost in manpower dedicated annually to 
troubleshooting antibody-related problems is impossible to quantify but is likely much bigger than 
the cost of the reagents themselves.  

For WB, an ideal Ab should be specific and only generate a single or several band(s) at the known 
molecular weight(s) of the target protein species. The latter is a key parameter which can be known 
experimentally for the mature protein, but most often is simply inferred from the gene- or mRNA-
derived sequence. In everyday practice a number of issues often arise that can make validation of 
WB results difficult, namely i) a WB band is observed but its apparent MW on gel does not 
correspond to the expected MW calculated from the sequence ii) a WB band is observed but its 
apparent MW does not correspond to the one specified in the Ab data sheet, which in turn is often 
determined approximatively and in a different type of sample,  iii) several bands are observed, of 
which only one or none corresponds to the expected MW and iv) the band(s) observed are different 
in number and MW in different tissues or samples.  

These numerous issues have different origins, in part related to Ab properties as described above 
and in part due to the WB technique, which is complex, manual and poorly reproducible. Also, 
despite the advent of CRISPR/Cas9 techniques, a negative control not expressing the target protein 
is not always available. The complexity and plasticity of protein processing, especially in eukaryotic 
cells, in which differential mRNA splicing and post-translational modifications (PTMs) are widespread 
are additional confounding factors. These phenomena can alter dramatically protein MW and affect 
electrophoretic migration and the pattern observed in a particular sample. Thus in many cases an 
investigator performing a WB for the first time does not know, beyond the rather simplistic 
assumption of “one band at the right place”, what pattern (number of bands, apparent MW) should 
be expected for the protein of interest in a specific sample. It follows from these considerations that 
one of the main limitations at the moment is the lack of accurate and reliable information on the 
actual migration of proteins in SDS-PAGE. Such knowledge, if available, would facilitate the 
validation (or dismissal) of antibody reagents as well as WB results in general. Ideally, such reference 
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data on gel migration should be obtained in a manner fully orthogonal to Ab-based detection and 
thus should be created from MS-based identifications.  

Gel electrophoresis has been widely applied as a protein separation method before MS analysis in 
so-called geLC-MS workflows10. In such experiments, proteins are separated by classical SDS-PAGE, 
followed by cutting of desired gel regions and in-gel digestion with (mostly) trypsin. Peptide 
fragments are recovered in solution and submitted to nanoLC-MSMS for protein identification. 
GeLC-MS approaches are robust and compatible with many types of samples and can yield extensive 
pre-fractionation to reduce sample complexity. In recent years, with increased speed and resolution 
of MS systems, the needs for sample prefractionation decreased and, at least for total proteome 
studies, other in-solution workflows were often preferred, which offer higher throughput and 
sample recovery. Extensive gel fractionation has continued to be applied for projects in which a 
correlation of identification with protein MW is essential, e.g. for mapping proteolytic events. We 
have used extensive gel fractionation, coupled with SILAC labelling, to identify the cellular substrates 
of the NS3-4A Protease from Hepatitis C Virus11 as well as the effects of protease inhibition12. A 
similar approach was used by others to map cleavage events linked to apoptosis13,14. In these 
studies, the goal was to identify shifts in protein migration induced by cleavage or PTM’s in general. 
However, it is easy to see that extensive gel-based fractionation into 45-50 gel slices, when coupled 
with MS-based identification of proteins in each slice, does also produce detailed maps of protein 
presence as a function of position in the gel, as reported 15. Since data is obtained for >4000 proteins 
in a single experiment, the information could be exploited for evaluating the specificity of a large 
number of antibodies. Indeed, the Human Protein Atlas team has chosen this strategy as one of the 
pillars used to evaluate more than 6000 Ab produced by the consortium 16.   

We decided to use a similar approach but with a different scope, i.e. to build an easily accessible, 
user-friendly reference database of SDS-PAGE migration patterns for human proteins.  We analysed 
with an extended geLC-MS workflow extracts of 5 widely used human cell lines and generated 
detailed protein ID and quantitative data as a function of gel migration position. Crucially, we have 
developed a dedicated data analysis pipeline to determine accurate, internally-referenced gel MW 
values without using external markers. We then used this information to align and average three 
replicate runs for each line, thus increasing accuracy and robustness of the data. MW calibration also 
allows to carry out accurate comparisons of different cell lines. The information is available via a 
freely accessible web resource (https://pumba.dcsr.unil.ch/) with several options for graphical 
output including peptide coverage maps. We also show that the database can be mined to derive 
novel observations on so far unknown protein processing events. We argue that this database will be 
broadly useful to investigators using WB techniques in order to evaluate their results for proteins of 
interest. Furthermore, when integrated into existing knowledgebases, the migration patterns we 
determined could be useful for elucidating the occurrence of human proteoforms.   
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Materials and Methods 
 

Reagents 

Unless specified otherwise, all reagents were of analytical grade purchased from Merck-Sigma 
(Buchs, Switzerland). 

 

Sample preparation 

U2OS and HCT-116 cells were purchased from ATCC as described17. All other cell lines were 
purchased from ECACC (European Collection of Authenticated Cell Cultures ) through a local 
distributor (Millipore-Sigma). Adherent cells were grown to half dish confluence, after which the 
medium was removed by aspiration and layers of cells were washed with PBS at 4°C. Cells were then 
mechanically scraped in FASP buffer (4% SDS 100mM DTT, 100mM Tris pH 7.5)18 and the resulting 
suspension was immediately heated at 95°C for 5 min, sonicated with a tip sonicator for 3x20s and 
centrifuged at 13’000 xg  for 10 min. Protein concentration in the supernatant was determined with 
the tryptophan fluorescence method19. Suspension cells grown to a density of 5 x 105 cells/ml were 
diluted 5x with ice-cold PBS and recovered by centrifugation at 1’200 x g for 2 min. After washing 
two more times with excess ice-cold PBS, cells were lysed in FASP buffer as described for adherent 
cells. Samples for U2OS and HCT-116 cells were prepared as SILAC samples. While the light 
(unlabelled) sample was treated with 4 μM cisplatin for 48 h,  the heavy isotope-labelled sample was 
control cells  treated with vehicle only (DMSO). Only the intensities of the heavy control channel 
were used for database construction. 

Electrophoresis and protein digestion 

For protein separation in the case of SILAC-labelled samples, Heavy and Light labelled lysates were 
mixed at a quantitative ratio of 1:1. For all cell lines, a total of 120 μg of protein from lysates was 
migrated on a pre-cast 4-12% Novex NuPAGE SDS Mini Gel (Invitrogen/Thermo Fisher) using the 
Bis/Tris buffer system (product number NP0326BOX) with MOPS running buffer, according to 
instruction from the manufacturer. Gels were stained overnight with colloidal Coomassie blue20. 
Entire lanes were cut into 45-47 identical gel slices using a gridcutter tool (MEE1-5-50, The Gel 
Company, San Francisco, CA, USA) (Supplementary Fig. S1). In-gel proteolytic cleavage with 
sequencing grade trypsin (Promega) was performed robotically, according to a described protocol 21. 
The supernatant from the digestion was concentrated by evaporation and redissolved in 30 μl 0.05% 
trifluoroacetic acid (TFA) in 2% acetonitrile for liquid chromatography-tandem mass spectrometry. 
Samples were analyzed on a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) interfaced 
via a nanospray source to an UltimateRSLC 3000 nanoHPLC system (Thermo Fisher Scientific). 
Peptides were separated on a reversed-phase Acclaim PepMap nanocolumn (75 μm inner diameter x 
50 cm, 2 μm particle size, 100 Å pore size; Dionex) or a reversed-phase, custom-packed nanocolumn 
(75 μm ID x 40cm, 1.8 μm particles, Reprosil Pur, Dr Maisch) with a 4-76% acetonitrile gradient in 
0.1% formic acid (total time 65 min). Full MS survey scans were performed at 70'000 resolution. In 
data-dependent acquisition controlled by Xcalibur software (Thermo Fisher), the 10 most intense 
multiply charged precursor ions detected in the full MS survey scan were selected for collision-
induced dissociation (HCD, normalized collision energy NCE=27%) and analysed in the orbitrap at 
17’500 resolution. Selected precursors were then excluded from selection during 60 s.  
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MS data analysis 

GeLC-MS data were analyzed with MaxQuant version 1.6.14.0, using the Andromeda search engine 
for identification 22,23. Database searches were performed on the reviewed set of canonical human 
sequences of the UniProtKB/SWISSPROT database, downloaded on September 16th, 2020 containing  
20’371 sequences and supplemented with common contaminants. Search parameters were trypsin 
specificity, two possible missed cleavages and mass error tolerances of 7 ppm for the precursor and 
20 ppm for tandem mass spectra after recalibration. The iodoacetamide derivative of cysteine was 
specified as a fixed modification, and oxidation of methionine and protein N-terminal acetylation 
were specified as variable modifications. Peptide and protein identifications were filtered at 1% false 
discovery rate established against a reversed database, according to default MaxQuant parameters. 
A minimum of one unique peptide was necessary to discriminate sequences which shared peptides. 
Sets of protein sequences which could not be discriminated based on identified peptides were listed 
together as protein groups. All gel slices in a run were analysed as separate experiments by 
MaxQuant, with the “match between run” option activated applied between adjacent slices. Data 
for the three replicates for each cell line were analysed together in a MaxQuant run, followed by 
processing and import into the database.  Thus, protein inference and definition of protein groups 
was done at the level of each cell line. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 
24 via the PRIDE partner repository with the dataset identifier PXD026750. The dataset is available on 
https://www.ebi.ac.uk/pride/archive with the following information : username  :  
reviewer_pxd026750@ebi.ac.uk ,  password: g6TBDKtI . 

 
Database design and data import 

MaxQuant result files (proteinGroups.txt and peptides.txt) for each cell line were transformed and 
imported into a document database (MongoDB). The corresponding code and database design are 
available on GitHub (https://github.com/UNIL-PAF/pumba-backend). As a first step, contaminants 
were removed using the corresponding MaxQuant annotation (column “Potential contaminant”) and 
an additional list of environmental contaminants generated in the lab. Then the result files were 
parsed and stored in 3 different entities in the database (MongoDB): datasets, proteins and 
sequence (Supplementary Figure S2A). A dataset in the context of Pumba consists of a single 
replicate from a cell line. Cell line name, replicate name, species, slice-to-mass fits (described later) 
and a normalization factor (calculated from the sum of all protein group intensities in the dataset) 
are stored in this table.  Next, every protein group for every dataset is stored as a separate entry in 
the proteins table. For every entry the majority protein ID’s (proteins that have at least half of the 
peptides that the leading protein has), protein names and gene names and the corresponding 
peptides are imported. For every peptide, the majority protein ID’s it belongs to, the peptide 
sequence, the amino acid preceding and following the sequence, the theoretical mass and 
Andromeda score are recorded, together with the information whether it is a razor peptide or if it is 
unique by group. Finally the raw intensity of the peptide in each slice is recorded. To create the 
sequence table, the same FASTA files that were used for the MaxQuant identification were parsed 
and imported. For every protein entry the corresponding AC, protein and gene names, sequence and 
sequence length are stored. The theoretical mass for each protein was calculated from its sequence. 

 

Global slice-to-mass fitting 
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The following steps were done in R and implemented in a R package developed in house 
(https://github.com/UNIL-PAF/pumbaR). To estimate the molecular weight for each gel slice, the 
MaxQuant proteinGroups.txt result files were imported as a table. First all contaminants and reverse 
hit proteins were removed and only the first protein match from each protein group was used.  For 
each protein and slice the intensity information was used (MaxQuant “Intensity” column and for 
SILAC labelled cells (U2OS and HCT-116) the “Intensity H” column). Protein intensities from a few gel 
slices with low content and many contaminants (such as at the lower and upper boundaries of gels), 
thus showing a very atypical behaviour, were set to 0 so they were not used in any of the following 
steps. The molecular mass of each slice was then estimated by fitting a third degree polynomial 
function to a plot of theoretical protein masses against its slice position in the gel (Figure 2A, upper 
panel). The protein intensities in each slice were used as weights for the fitting. To further improve 
the fit, only a subset of all proteins was used. First, proteins that appeared in more than 30% of the 
slices (probably contaminants e.g. keratins) were removed. Second, proteins with intensity below 
50% of the max intensity were removed. Third, proteins from regions in the plot with only few data 
points were removed. This was done by laying a grid of 500 x 500 over the plot and only keeping the 
data in cells with more than 10 proteins.  In the end around 30% of all data points were used (e.g. for 
replicate 12’019 from cell line HEK293 only 13’216 data points from 7’776 proteins were used out of 
a total of 45’744 points for 8’374 proteins) (Figure 2A, lower panel). For every dataset a resulting 
table with estimated molecular weights for each gel slice was obtained and stored in the database. 

 

Querying the database to retrieve and display data for a protein 

To query the database, a user has to provide a query protein AC or gene name and the list of 
datasets to be loaded.  All protein groups and datasets which do contain the given protein AC or 
gene name are loaded from the database.  All information from the protein groups and all peptides 
corresponding to the corresponding protein AC are retrieved. The total protein intensity for the 
selected protein is computed by summing up all individual peptide intensities. The position of each 
peptide within the protein sequence is recomputed on every user request based on the sequence 
queried. The protein and peptide intensities of each dataset are then normalized using the 
normalization factor previously calculated from the total intensity in the dataset. In case the query is 
not the leading protein in a protein group, a flag is added in the data display (“lanes” view, when 
replicates are shown) to highlight the fact that there was an overall better candidate sequence 
identified by a higher number of peptides and that therefore the presence of the queried entry 
cannot be conclusively established in that dataset.    

 

Interpolation of intensities across gel slices 

A merge of all the replicates for every cell line is calculated for the query protein using a method 
implemented in Scala (https://github.com/UNIL-PAF/pumba-backend)(Figure 2B, Supplementary 
Figure S2B). For this, the normalized protein intensities for the selected protein groups are retrieved 
by cell line. Then, for each dataset within a cell line group, a table of masses and intensities is 
created and every slice is divided into 100 microslices along the MW coordinate, with the intensity 
spread uniformly among them. Afterwards the microslices from the different datasets are aligned, 
matched by MW within a certain tolerance and the average of the intensities is taken. If only one 
dataset is selected for display, the microslices are taken as they are. A LOESS curve is fitted through 
the averaged intensities, and intensity and mass information of the fit are retained (around 5000 
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data points). The result is one curve (intensity vs. MW) per cell line, associated with the database 
entry that was queried.  

 

Visualization in the web interface 

All normalized protein and peptide information together with the merges, are retrieved, combined 
with the sequence information and are subsequently used by the web interface to visualize the 
different plots (https://github.com/UNIL-PAF/pumba-frontend). In this version of the database, 
splice variants were not considered, due to the difficulty to assigning  intensities in case of presence 
of two or more variants with extensive shared sequences. However, the predicted MW of UNIPROT-
annotated splice variants can be visualized in the “lanes” view of the GUI.  

 

Processing of information extracted from the database for plotting and analysis 

For QC and analysis of content, a raw table was exported from the database containing a large set of 
features (Supplementary table ST2, see table for description of columns). To create this table, data 
was extracted from the database by accessing Pumba as an API. The R scripts used for the table 
creation can be found under (https://github.com/UNIL-PAF/pumba-datamining). Values for pI and 
hydrophobicity were calculated in R with the EMBOSS and Hopp-Woods methods, respectively.  
Further information added during export was parsed from UNIPROT and included  all annotations 
except GO, KEGG, Interpro, Corum, UNIPROT keywords. The latter were added using the Perseus 
software25 using data in https://annotations.perseus-framework.org. Perseus was also used for all 
subsequent steps, i.e. calculate numerical Venn diagrams, correlation coefficients (Pearson’s 
correlation), CVs and other general statistics. The initial main table exported from the database 
(Supplementary Table ST2) lists 10’187 proteins. For further analysis, the table was filtered to retain 
only proteins present in all replicates of all cell lines with a highest peak that contains at least 70% of 
the total intensity in that replicate (Supplementary Table ST4, 2’688 proteins). A subset of table ST4 
was prepared, containing only the averaged cell line “highest peak” columns. The FMD (Fractional 
Mass Deviation) was calculated as (xxx.highest.peak.mass-theo.mass)/theo.mass from interpolated, 
averaged values (Supplementary Table ST5 (2’688 proteins)). 1D annotation enrichment was 
calculated with Perseus 26 based on sorting by the FMD values for each of the 5 cell lines, with 
Benjamini-Hochberg FDR correction of the enrichment with threshold at q-value<0.01. For further 
plotting and presentation, only annotation terms that were significant in at least 4 out of 5 cell lines 
were considered. 
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Results  
 

Data acquisition 

To build the database we analysed lysates of HeLa, HEK293, Jurkat, U2OS and HCT-116 cell lines. 
These lines were chosen because of their widespread use in research lab, and to represent different 
cell types. Total extracts were prepared under strong solubilizing conditions (4% SDS) to ensure 
comprehensive extraction of cell compartments. For adherent cells, lysis was done in situ on plate to 
avoid artefacts linked to cell detachment by trypsinisation. Gel separation was carried out with pre-
cast, commercially available gradient gels to ensure reproducibility and high resolution over the 
largest possible range of MW (Figure 1). We used enlarged gel wells to increase loading and we only 
excised the portion of each lane with minimal streaks and border effects. The number of slices taken 
was between 45 and 47 (Supplementary Fig.S1, Supplementary table ST1). Replicates for cell lines 
corresponded to independently started cell cultures, sometimes prepared months apart (Table ST1). 
After in-gel trypsin digestion, proteins were identified by high resolution LC-MS/MS. MS data were 
analysed with MaxQuant23, whereby each gel slice was defined as a separate experiment. This allows 
monitoring the profile (signal intensity) of each identified protein, across all positions in the gel. The 
number of protein groups identified by MaxQuant ranged from approximately 5200 (HCT-116 cells) 
to 8400 (HEK-293 cells) per replicate (one full lane), filtered with standard MaxQuant parameters 
(1% peptide and protein FDR) at minimum 1 peptide (Supplementary Table ST1). U2OS and HCT-116 
cells had lower numbers of IDs, due to their SILAC labelling format that increases spectral 
complexity. 

 

MW fitting, alignment and averaging of data from different samples 

Our general goal was to determine accurate, robust values of apparent protein MW as determined 
by electrophoresis. Since proteins can be present as many species with potentially distinct apparent 
molecular weights, for the sake of clarity we will use the term “highest peak MW” to describe the 
molecular weight of the main, quantitatively dominant species detected. SDS-PAGE is not considered 
a highly reproducible technique and can be influenced by many environmental factors and variables. 
We thus reasoned that reference values should be obtained by averaging independent replicates. 
Key to the development of the database was thus the ability to determine MWs accurately and in a 
robust manner from a gel migration and to align results from any geLC-MS runs for averaging among 
replicates or comparison among cell lines. A plot of the observed raw protein intensity signals as a 
function of gel slice number and the logarithm of the theoretical (calculated from the sequence) MW 
(Figure 2A) showed, as expected, a sigmoidal correlation with a central linear domain. Rather than 
rely on a few external markers for calibrating the migration curve, we therefore exploited the wealth 
of information provided by thousands of MS identifications to calculate an internally-referenced 
calibration curve. This was based on the key assumption that a majority of proteins in the 
measurable proteome have a molecular weight that is close to the one predicted from the sequence 
and migrate approximately as expected from their MW. Filtering the data to retain only 
identifications with a higher number of peptide-spectrum matches  (and thus stronger signal 
intensity) corroborated this assumption and greatly reduced the spread of the distribution (Figure 
2A,lower panel). Polynomial fitting of the filtered dataset thus allowed calculation of an average MW 
value for each slice in each gel separation. Overall plots of protein distributions as a function of gel 
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migration were highly similar across replicates and cell lines and fitting could be performed in all 
cases without major difficulties (data not shown).  

The next step was the alignment and averaging of replicate runs. The data has a discrete structure, 
made of protein identifications and intensities linked to the theoretical centre of each gel slice in 
which they were detected, which in turn is a portion (bin) of the MW range. We developed a 
pipeline that interpolates normalized intensities in and across gel slices, then aligns (based on the 
fitted MW) and averages replicate runs to obtain the final profile for the cell line considered (Figure 
2B, for details see Supplementary Figure S2B). The raw intensity values in each gel slice for all 
replicates are retained and can be visualized at any time in the database interface for verification. 
Local and global maxima of the obtained intensity curve were detected and integrated to yield 
quantified peaks that were then used for quality control and data mining.  Overall, the separation for 
the gel/buffer system used appeared to fit an ideal behaviour in the range from 300 kDa down to 10 
kDa. Very few proteins were detected beyond these boundaries.  

 

 

Figure 1. Workflow for protein separation and data acquisition. Cell extracts were separated on a  standard 
precast gel system, stained and excised into 45-47 slices. Robotized in-gel digestion and LC-MS/MS analysis 
generated protein identifications and intensity data for all gel slices. 

 

Database content and overall patterns observed 

Initial tests of the workflow using technical duplicates prepared using the same sample showed 
highly reproducible results (data not shown). We thus proceeded to collect the datasets for all cell 
lines, fit and obtain slice molecular weights and populate the database. Database content for the 
human cell lines was then processed to extract essential metrics in a table format  for inspection and 
quality control. All intensity peaks that were determined on interpolated data are reported in 
Supplementary Table ST2, with a dedicated column for the apex of the most intense peak and its 
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integrated value. Position and intensity of such "highest peak", which would represent the main 
band in a conventional gel or western detection, were analysed more in depth to determine its 
contribution relative to the total signal of the protein and its position relative to the theoretical, 
expected MW. Table ST2 summarizing the database contains data for 10’187 proteins. Of these, 
3’535 had values in all replicates of all the 5 human cell lines. Numbers of proteins with values in the 
database for individual cell lines were in general very close (+/-2%) to the numbers of protein groups 
identified by MaxQuant in the same line, with slight differences due to the inference process used to 
align results from different lines. The percentage of proteins identified by a single peptide match 
varied from 3.3% (HEK 12019 sample) to 14% (U2OS 9053 sample), depending on the replicate and 
cell line. We decided to keep these proteins in the present build of the database to maintain 
maximum coverage. When replicates were merged for each cell line, the total numbers of proteins 
listed in the database for each cell line ranged from 5’709 (HCT-116) to 8’636 (HEK293). In an 
overwhelming majority of cases (97-98%) the accession code (AC) listed in the database was the first 
AC in the protein group in which the sequence was matched in the corresponding MaxQuant result 
table, showing that only few ambiguities due to protein inference in distinct samples are present. 
The low redundancy of the annotated UNIPROT sequence database used for identification plays a 
key role in this respect.  

Between 59% and 84% of the proteins were detected as migrating as a single peak (Supplementary 
Table ST2). Also in a majority of cases the "highest peak" detected was clearly the major migrating 
species : the mean fraction of total signal accounted for by the highest peak ranged from 0.89 to 
0.97 across all cell lines and replicates. While this value appears very high, it likely includes a bias, 
given that the numerous proteins that have a weak signal close to the limit of detection tend to be 
detected only once at a single position, resulting in a single peak. Still, when more than one peak 
was detected for a protein, the highest peak was, among all peaks detected, the closest to the 
expected MW (theoretical mass) for the protein in a majority of cases (61-72%). Overall, the data 
suggest that a majority of proteins migrate as a dominant single electrophoretic peak, which is often 
close to the expected mass. Although a majority of proteins present such an ideal behaviour, there is 
a significant number of proteins that deviate from it, either because they give rise to multiple peaks 
or because the main peak is at a MW significantly different from the theoretical MW calculated from 
the sequence. We address these cases in a later section.  

Globally, distributions of highest peak MWs were very similar among individual cell lines and 
corresponded very well to the distribution of expected theoretical MW for the set of proteins 
identified. More importantly, the distribution was also very close to the global one calculated for the 
entire human proteome, suggesting that there was no major bias in our pipeline for or against 
proteins of a particular mass range (Supplementary Fig.S3A). 
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Figure 2. Raw data, MW distribution and fitting. A) Plot of theoretical (calculated from the sequence) MW for identified 
proteins vs. identification in individual gel slices. Every point is a protein identification instance. Raw data (upper panel) 
and filtered data (lower panel) are shown for a representative replicate (HEK293 cells, replicate 3). A third-degree 
polynomial function is fitted on the data after filtering to keep the strongest signals  (lower panel). The polynomial function 
is then used to determine slice center mass, allowing alignment of replicates.  B) Interpolation, merging of replicates and 
smoothing create the final profile. For details on the procedure see Supplementary Figure S2. 

 

Quality control : binning and maximum error in MW determination 

In our workflow, all signals detected in a single gel slice are assigned the average MW of the centre 
of the slice. This results in binning of protein signals and thus an inherent technical error in MW 
determination. Locally, the maximum such error is thus related to the size of the MW range covered 
by each individual gel slice, which in turn is heavily dependent on the gel resolution at different 
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MWs. We have determined that the bins corresponding to gel slices have a relatively constant size of 
2-3 kDa in the range between 10 and 80 kDa but become larger at higher MWs, as can be expected 
from the gel separation pattern and from the fact that excised gel slices had a constant physical size 
(Supplementary Table ST3, Supplementary Figure S3B). The distribution of bin sizes also allows us to 
derive the maximum technical error due to gel cutting and binning, which is equal to the half of the 
slice size in kDa. In all samples, such error remained between 1% and 5%, depending on the MW. 
The best accuracy (smallest bins) was observed around 50kDa, which corresponds to the region of 
maximal protein density, while the lowest accuracy was observed at high MWs above 250 kDa 
(Supplementary Fig. S3B). To reduce this intrinsic error in MW determination we have on one hand 
tried to maximise the number of slices, while keeping a reasonable throughput. On the other hand, 
we hypothesized that the merging of data from replicate runs should reduce binning effects, 
because distinct gels being cut result in slices centred at slightly different MWs, defining different 
bins for each run. Histograms of highest peak MWs for the 3 replicates vs. the merged interpolated 
data illustrate the transition from a discrete distribution in the replicates to a more continuous 
distribution of MWs after merging, which resembles more closely the theoretical distribution 
calculated from the protein sequence (Supplementary Fig. S3C). In conclusion, while gel slicing 
results in inherent biases of MW determination, we think that such effects are significantly reduced 
by the combination of a sufficient resolution in gel slicing with the averaging of replicates. 

 

Quality control and global assessment of MW values (all proteins) 

For a first evaluation of the global similarities of migration patterns measured in different cell lines, 
we calculated correlations of highest peak MW values across all replicates of all cell lines 
(Supplementary Figure S3D). Pearson's R coefficients varied between 0.74 and 0.95, with 
nevertheless most values above 0.85. Interestingly, correlations intra-cell line were not drastically 
higher than between different cell lines. Averaged Pearson’s R coefficients for any particular 3 vs. 3 
comparison (intra- or inter cell lines) were all greater than 0.80 (Supplementary Figure S3D). Next, to 
assess the precision of measurement of highest peak MW, we calculated coefficients of variation 
(CV’s) of this parameter. Across replicate measurements in the same cell line, the mean CV ranged 
between 5.3 and 6.4% (medians were between 1.8 and 4%). This suggests that MW measurements 
are reproducible for all cell lines analysed. The overall mean CV across the entire database, 
calculated using all replicates across all cell lines, was higher, at 10.1%. However when replicates 
were averaged first for each cell line and the averages used to calculate CV’s across cell lines, the 
final mean CV was of 7.1%, i.e. almost identical to the values intra-cell lines. This suggests that 
averaging within each cell line further improves precision. The fact that CVs for the highest peak 
remain moderate even between distinct cell lines is in line with the empirical expectation that, 
globally, the main species of most proteins (though by no means all) should migrate at very similar 
MW in multiple cell lines.  
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Figure 3 Correlation of MW measurements and evaluation of systematic errors. A) Correlation of highest peak MW values 
among cell lines and to theoretical MW for a set of 2’688 proteins detected in all cell lines as a single main band (Table S4). 
Each value results from interpolation and averaging of 3 replicates. Values in the upper portion of the plot are Kendall’s 
correlation coefficients for the corresponding comparison. Theoretical MWs (Theo.Mass) were calculated from the 
UNIPROT default sequence. Font size of correlation coefficient is scaled proportional to its value. Axis marks on scatter 
plots are values of MW in kDa. B) Evaluation of systematic errors due to binning in gel slices. In grey : plot of theoretical 
MW vs. gel slice center mass.  Blue and orange : low and high slice limits vs. gel slice center mass. Data is for one 
representative dataset (U2OS, repl.1). MW scales are logarithmic (log10) but labels are in linear units. 
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To further benchmark the overall correlation and precision of MW determination we used a set of 
2688 proteins detected with a highest peak accounting for at least 70% of their total intensity in all 
replicates and cell lines (Supplementary Table S4). Analysis of these proteins that migrate 
predominantly as a single species and for which MW can be determined with high confidence 
yielded Pearson's R correlation coefficients that were uniformly higher than 0.98 between all 
replicates and cell lines, indicating high correlations (Figure 3A). Once more, correlations between 
cell lines were almost as high as within replicates of the same line. Highest peak MW values between 
cell lines after interpolation and sum of the replicates were also very highly correlated, i.e. greater 
than 0.93. For this set of proteins, mean CV's of MW values within individual cell lines were very low, 
ranging from 2.1% to 4.1%. When all replicates of all cell lines were considered for calculation, the 
CV was in the same range (3.2%)(Supplementary Table S4). The consistency of the measurements 
indicates that, for proteins detected reproducibly in more than one replicate, the value of MW can 
be mostly measured with high precision.  

 

Deviation of measured MW from calculated MW 

Interestingly, all correlations of experimentally determined MW values between cell lines and 
replicates were clearly higher than correlations of experimental MW to theoretical mass values 
(0.984 vs 0.968, Figure 3A). To determine if the deviation from the theoretical MW can be explained 
technically by the bias introduced by the slice-based binning we compared the fractional mass 
deviation (FMD) of proteins in individual replicates with the maximum error due to binning (Figure 
3B, Supplementary Fig. S3B). We defined the FMD as the difference between the observed position 
of the main peak and the theoretical mass, divided by the theoretical mass. The plot obtained shows 
that binning bias due to gel slicing can account for only a small fraction of the differences observed 
between electrophoretically measured MW and the expected mass. The implication of all the 
observations above is that proteins can and do display highly reproducible migration, but also 
reproducibly deviate from their "ideal" migration behaviour predicted from the calculated molecular 
mass. This observation prompted us to systematically investigate possible intrinsic biochemical 
properties that could influence the electrophoretic migration of proteins (see below).  

 

Online database : interface and features 

The database, that we codenamed PUMBA, is freely accessible online (https://pumba.dcsr.unil.ch/). 
The user interface has a welcome page with a search box that accepts UNIPROT identifiers or gene 
names and the possibility to choose the cell lines. If the protein of interest is matched, the default 
“lanes” view is western blot-like (Figure 4A) and shows for each cell line the merged pattern 
obtained from the three replicates. It is possible to show the data of the individual replicates with a 
click on the lanes. The user can adjust the grey level of the view to simulate the effects of a 
longer/shorter exposure on a physical WB (Figure 4A, right panel). This allows to see weaker bands 
that may correspond to modified forms or cleavage and degradation products.  

The second view is in a graph format (Figure 4B) and allows a more in depth comparison of the 
pattern among cell lines by superimposition of the traces. Here, too, it is possible to display the raw 
data for the replicates as pop-ups, to adjust the scale of the signal and to zoom in a region of interest 
(Supplementary Figure S4A). The intensity of each trace is based on the MS intensity as determined 
by MaxQuant, expressed for every protein as a fraction of the total intensity for all identified 
proteins. While not normalized by sequence length and probably not strictly quantitative, the 
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intensity values permit a rough estimation of the overall abundance of a protein in a cell line. So for 
example, the peak for beta tubulin (TUBB) has a similar apex intensity in all 5 cell lines, between 
2x10e-3 and 3.5x10e-3.  By contrast, the tumour suppressor p53 (TP53), detected only in HCT-116 
cells, has an apex intensity of 2.5x10e-6, i.e. approximately a thousand fold lower.  

The third view (“peptides ”) maps the identified peptides on the sequence of the protein on the 
horizontal axis as a function of the recovery of the same peptides in the gel MW range (y-axis) 
(Figure 4C). This unusual format of visualization offers the advantage of presenting the total 
information on the recovery of peptide fragments at all MWs. Like in the other views it is possible to 
filter the peptides shown by cell line but also adjust the display based on intensity, a feature that is 
particularly beneficial for interrogation of highly abundant proteins. Indeed, these are often 
detected in trace amounts at almost any MW, presumably due to degradation products and the gel 
migration trail, but only show high intensity signals at the position corresponding to the main band 
(Supplementary Figure S4B). 

As an example of usage of the graphical interface we queried the database for the BCR-ABL protein. 
This chimeric polypeptide results from a chromosomal translocation (Philadelphia chromosome) and 
is a hallmark of K562 cells, isolated from a myeloid leukaemia patient. Three out of five cell lines 
show peaks corresponding to endogenous BCR (highest peak MW=144 kDa) and to endogenous 
ABL1 (121-131 kDa) (Figure 4D). But only in K562 cells the profile shows for both of these proteins an 
additional peak at 200 kDa that corresponds to BCR-ABL. Furthermore, the shape of the profile for 
the fusion protein in K562 cells is essentially identical, regardless of whether BCR or ABL1 peptides 
are being detected (Figure 4D, Supplementary Figure 4C). This example shows that the approach can 
detect different parts of the same sequence across the migration profile as well as species with 
unexpected migration behaviour. 
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Figure 4. Graphical user interface of the PUMBA database. A) The default “Lanes” view is a virtual western blot. In this 
view it is possible to adjust contrast to visualize weaker bands as well as show data for individual replicates (right panel).  
B) The “Graph” view represent the same information but allows superimposition of traces for the individual lines, zooming 
and cursor-based MW display. C) In the “Peptides” view, peptide matches are shown in function of their location in the 
sequence and their identification at MW positions, also with the possibility of zooming and intensity-based thresholding. D) 
Graph views for proteins BCR and ABL1 are shown. The position of the BCR-ABL fusion protein expressed in K562 cells is 
indicated (arrow). 

 

Molecular properties influencing gel migration 

After establishment of the database and quality control of the content, we mined the data to try and 
identify protein properties that could influence electrophoretic migration. For this we considered 
the above described set of 2688 proteins that are ubiquitously detected mainly as a single dominant 
(>70% of intensity) peak, together with their FMD values. Since this analysis only considers the main 
peak, it will highlight only deviations from the ideal migration that affect the bulk of the pool of a 
protein. One thus expects to detect only effects due to either intrinsic properties of the sequence or 
to constitutive, high-stoichiometry post-translational modifications. 

Distributions of average FMD values in this set of proteins were very similar among cell lines and 
were centred close to zero with interquartile ranges of 0.12 and a majority of values between -0.2 
and +0.2 (Supplementary Figure S5A). We first examined the correlation of FMD with isoelectric 
point (pI) and hydrophobicity. A plot of FMD vs. pI does not suggests a clear, global correlation 
between protein net charge and slower or faster migration  (Figure 5A). Only a few proteins with 
extreme pI values show a tendency to migrate abnormally (mostly slower, i.e. positive FMD values). 
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On the other hand, a correlation was observed between FMD and hydrophobicity (Figure 5B), 
suggesting that very hydrophobic proteins migrate on average faster than expected (FMD<0) and 
show MW values lower than predicted based on their sequence.  

We then carried out 1D annotation enrichment analysis on the considered set of 2688 well-detected 
proteins sorted by FMD values. The categories considered included pathway and Gene Ontology 
terms (KEGG, GOBP, GOCC, GOMF) but also terms related to structural and sequence features from 
several sources (Interpro, Corum) as well as terms derived from manual UNIPROT/Swissprot curation 
(e.g. “keywords”). Even considering only terms statistically significant in at least 4 out of 5 cell lines, 
a number of annotation terms emerged that correlated with positive or negative FMD values 
(Supplementary Figure S5B). Results for global functional annotation terms (GOBP, KEGG) suggested 
that ribosomal and spliceosomal proteins and in general proteins involved in RNA processing and 
transcriptional regulation have positive FMD values, i.e. migrate slower than expected. On the other 
hand, proteins involved in several mitochondrial metabolic pathways and oxidative phosphorylation 
seemed to have negative FMD (Figure S5B,C), i.e. migrate faster than expected. Similar trends 
emerged from annotation focusing on localisation (GOCC, Corum).  

These broad categories encompass very heterogeneous groups of proteins with mixed molecular 
properties. In  the subsequent analysis we assumed that deviation of migration from an ideal 
behaviour under denaturing conditions must be due to either properties of the primary structure 
(sequence) or else to PTMs that impact mass, charge or hydrophobicity independently of 3D 
structure. We thus focused on more structural annotation to identify features that clearly correlate 
with positive or negative FMD and whose categories show minimal overlap. We then verified if the 
positive/negative FMD averages observed for broader functional or topological groups were due to 
presence of a subset of these more structurally-based FMD “outliers”. For example, mitochondrial 
proteins, as defined by GOCC or UNIPROT keywords, have on average negative FMD values (Figure 
5B). Based on our initial assumptions, we speculated that this is caused by the proteolytic removal of 
transit peptides that occurs during chain translocation through the mitochondrial membrane. 
Indeed, a set of 368 proteins with the keyword “Mitochondrion” has an average FMD of -0.08 (for 
HeLa cells), but when 223 proteins in this group annotated as having a transit peptide are 
subtracted, the remaining 145 protein set has an average FMD of -0.02, very close to the global 
average. This suggests that for a majority of integral mitochondrial proteins the observed lower-
than-expected migration is, unsurprisingly, due to transit peptide removal. This is indirectly 
supported by the comparison of cytosolic ribosomal proteins, which as  a group have a strikingly 
positive FMD, with mitochondrial ribosomal proteins, which have negative values after being 
synthesized in the cytosol and imported in mitochondria (Figure 5B). Using this approach, we found 
that positive FMD was associated with proteins having Interpro RNA Recognition Domains 
(RRM_dom), a set that overlaps in part with that of proteins annotated with a “nucleotide-binding 
alpha/beta plait”. A similar but only minimally overlapping group was characterized by presence of 
classical Zn-finger domains (Interpro ZnF C2H2). Further on, proteins with a (transcriptional) 
“repressor” activity (UNIPROT Keyword) were also positive, but only minimally overlapped with the 
groups previously described. In turn, “cytosolic ribosomal proteins” (Corum) stand out as very 
hydrophilic, high-migrating group but did not contain a significant amount of the annotations listed 
above.  

Surprisingly, amino acid compositional bias (from UNIPROT keyword annotation) appeared to be 
always correlated with positive FMD values, independently of the amino acid that is 
overrepresented (Supplementary Figure S5, Fig. 5B). Major groups with significant shifts were Pro-
rich but also Glu- and Gly-rich proteins.  
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We specifically asked if modification by cross-linking to ubiquitin family members, which can induce 
large MW increases, resulted in a tendency to positive FMD. Surprisingly, only a mild correlation was 
observed with sumoylation by SUMO-1 and SUMO-2. This could be due to several factors, including 
the incompleteness of the annotation but also the fact that such modifications (like many other 
PTMs) are often sub-stoichiometric  and would not be covered by this analysis that only takes into 
account a shift of the bulk pool of each protein.  

Concerning negative FMD shifts, many functional categories (TCA cycle, cellular respiration, cellular 
ketone metabolic process, .., Supplementary Figure S5) can be explained by the mitochondrial 
localization of the corresponding proteins. Other distinct, non-overlapping groups with negative 
FMD included the majority of aminoacyl-tRNA synthetases as well as a quite large group of proteins 
with an ARM-type fold domain (Interpro annotation). Unsurprisingly, proteins with a peptidase 
activity (GOMF) were among the ones with the strongest negative FMDs, likely due to frequent 
(auto-)proteolytic cleavage that is essential to production of the active form (e.g. TPP1 or Calpain 
catalytic subunits CAPN1/2). Proteins with several (>3) transmembrane domains also appeared to 
migrate clearly below their expected mass (Figure 5C), in line with their marked hydrophobicity 
(average -0.19 for HeLa cells). Excluding (auto)proteolytic events, only few PTMs appeared to 
correlate with significant (positive or negative) FMD values and these were mostly small groups 
(Supplementary. Figure S5B), e.g. ADP-ribosylserine (10 proteins, positive) or N6-(pyridoxal 
phosphate)-lysine (14 proteins, negative FMD).  

In conclusion, we could identify numerous groups of proteins, defined by annotation terms, which 
show systematic shifts in electrophoretic mobility relative to their theoretical mass. While it is 
possible to identify some trends, it remains difficult to pinpoint conclusively the factors causing such 
shifts because proteins have with many and multiform domains, features and properties. The 
existence of unknown PTMs can also not be ruled out. Furthermore, biological annotation is 
redundant, possibly incomplete, and contains many overlapping terms.  
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Figure 5. Correlation of Fractional Molecular Weight Deviation (FMD) with molecular properties and functional 
annotation. A set of  2688 proteins detected in all 5 cell lines with a main single peak accounting for more than 70% of 
total signal was used for the analysis. Data shown is for HeLa cells, see Supplementary Fig.S5 for all other lines.  A) FMD 
values as a function of pI (left panel)  and hydrophobicity (right panel, calculated by the method of Hopp-Woods. B) 
stripchart plots of selected annotation terms enriched for positive (upper panel) or negative (lower panel) FMD values in at 
least four out of five cell lines. Values for proteins with the specific term are highlighted in colour against the total set in 
gray. Upper panel terms are : RNA recognition domain (Interpro); Zinc finger-CH2 type domain (Interpro); Repressor 
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(UNIPROT keyword); Ribosome, cytoplasmic (Corum); Pro-rich,Glu-rich,Gly-rich (compositional bias, UNIPROT); SUMO1/2 
(UNIPROT PTM ). Lower panel : mitochondrion (UNIPROT keyword); transit peptide (UNIPROT keyword); Aminoacyl-tRNA 
biosynthesis (KEGG); ARM-type fold (Interpro); peptidase activity (GOMF); 55S ribosome, mitochondrial (Corum); TM 
domains>3 (UNIPROT annotation); lipid metabolic process (GOBP). The position of points for the background total set 
(grey) are randomized by the plotting algorithm and thus appear different in each plot.     

 

Individual proteins with noncanonical migration patterns 

After global exploration of properties that possibly affect electrophoretic migration, we tried to 
assess how well the database can capture the behaviour of individual proteins with more complex 
patterns and/or proteins with MW that strongly deviates from the predicted value reported in the 
database. We looked for known cases representative of three types of events : post-translational 
cleavage, differential splicing and conjugation. 

 

Proteins with unusual migration patterns due to cleavage  : PTPRF 

Some human proteins undergo constitutive cleavage to generate the mature form. Such proteins 
may or may not present a remnant peak/band at the expected full length (FL) MW, and should show 
signals at the MWs of the known fragments. In addition, the peptide sequence coverage at the 
different positions in the gel should be consistent with known position(s) of the cleavage site(s). A 
representative example is the receptor-type tyrosine-protein phosphatase F (PTPRF), a 1907 amino 
acid-long type-I membrane protein with a single transmembrane domain (TM). The protein is 
cleaved extracellularly adjacent to the TM domain during export27. In the PUMBA database, PTPRF is 
well detected in both HeLa and HEK cells as the N- and C-terminal  fragments, respectively at 132 
and 78 kDa (Figure 6A). The peptide map in PUMBA locates the cleavage site between pos. 1150 and 
1180 (numbering based on full sequence). This fits with previous reports27 locating the cleavage site 
in the RRRRR motif located at position  1174-78. By inspection of the database we could verify 
detection of known cleavage events for several other proteins (P52948, P07686, P07339, P10619, 
P07858, Q9H7Z7, P46821). However, a comprehensive search for chain cleavages would require an 
in-depth study.  

 

Proteins with unusual migration patterns due to differential splicing  : NASP  

Expression of a different splice variant can cause important changes in protein MW. In this respect it 
has to be noted that, unless clear information is available, the UNIPROT database reports by default 
the longest splice variant as the default protein isoform. As an example we focused on NASP 
(Nuclear autoantigenic sperm protein P49321 (NASP_HUMAN),  a widely expressed histone-binding 
protein with chaperone properties. The full length canonical isoform of NASP has an expected MW 
of 85 kDa and 4 coiled-coil domains of 152 AA in total, which constitutes almost 20% of its sequence. 
Moreover a large portion of its sequence is rather acidic (Glu-rich), a fact linked to its histone-
binding properties.  We detected human NASP in all cell lines as two bands, migrating respectively at 
120-125 and 60 kDa (Figure 6B). Peptide map coverage of the 120 kDa band is extensive, suggesting 
presence of the full sequence. Based on our previous findings, we speculate that the coiled-coil 
domains and Glu-rich sequence could account for the “excess” apparent MW of 35 kDa relative to 
the expected MW. An equally strong band is found at 60 kDa, which displays a markedly different 
peptide map, with a gap between AA 123 and 489. This sequence coverage fits very well to NASP 
isoform 2 (P49321-2), a splice variant missing residues 138-476 and has an expected MW of 48 kDa. 
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Isoform 2 retains only 2 of the coiled-coil domains present in the full length sequence as well as 
much less of its acidic stretch, which could correlate with its reduced “excess” MW of only 12 kDa. 
Finally, the intensity data in PUMBA allows a rough comparison of the relative ratio of the two (60  
and 120 kDa) isoforms, which appears to vary significantly among cell lines. The two species 
detected correspond to the previously described isoforms sNASP and tNASP (somatic and testicular 
NASP) that have been characterized in mouse tissues. Both variants are known to be widely 
expressed, and our data confirm in human cell lines the previous findings in mouse28–30.    

 

Proteins with unusual migration patterns due to conjugation to other proteins:  SUMO-1 and others 

Conjugation to proteins of the Ubiquitin family is a major regulatory mechanism resulting in 
generation of species with altered MW. SUMOylation (by SUMO-1) notoriously regulates a number 
of cellular processes31. The migration profile for SUMO-1 in our database shows a peak at 15 kDa 
that probably corresponds to the free monomer, which has an expected MW of 11.56 kDa (Figure 
6C). The main peak for SUMO-1, however is found around 77 kDa. Although SUMO-1-ylation affects 
a number of proteins, it is known that the Ran GTPase activator RANGAP1 is a major SUMOylation 
target in the cell32. In PUMBA, the main RANGAP1 peak is found at 63.5 kDa, in very good agreement 
with the theoretical mass of the protein (63.54). But a peak of similar intensity is found at 76-78 kDa, 
which overlaps perfectly with the intense SUMO-1 peak (Figure 6C). Furthermore, the hierarchy of 
intensities among cell lines for this peak is highly similar in the RANGAP1 and SUMO1 profiles with 
the HCT-116, U2OS and HEK293 cells on top and HeLa and K562 cells having lower values. This, 
together with the high similarity of the profiles, suggests that it is the same species, albeit identified 
and quantified on different peptides. Besides the monomer and the RANGAP1 peak, the SUMO-1 
profile shows a weaker, diffuse signal on a large range of molecular weights as expected for the 
ensemble of SUMOylated proteins in the cell. A similar but more diffuse profile can be observed for 
Ubiquitin (e.g. P62979 in PUMBA, see https://pumba.dcsr.unil.ch/), for which it is however difficult 
to infer unambiguously a dominant target. Highly specific conjugation was on the other hand clearly 
seen for the ATG5-ATG12 pair (Figure 6D). Overall, our approach offers a way to survey the MW 
distribution and intensity of Ub family-conjugated species that should be less biased than antibody-
based detections. At least for ubiquitin, the latter show limitations due to the different recognition 
of diverse types of linkages by the various antibodies available33.   

The three examples above show that, if a sufficient sequence coverage is available, data in our 
database can accurately recapitulate known complex migration patterns and map processing or 
splicing events when these affect significant portions of the sequence.    
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Figure 6. Database entries for representative proteins with MW peaks strongly deviating from their theoretical value. 
Examples due to constitutive cleavage (A), differential splicing (B) and conjugation (C,D) are described in the text. 

 

Possible novel processing or differential splicing events and database annotation   

Next we hypothesized that the PUMBA database can provide hints for as yet un- or poorly 
characterized processing or splicing events. In practice, the data is especially amenable to identify 
either cleavage events or splice variants that are shorter than the canonical one. This is a rather 
common case, since the canonical sequence listed in UNIPROT is almost always the longest isoform. 
In both cases, evidence should be based on a lower-than-expected highest peak MW in combination 
with a partial peptide sequence coverage that fits well the observed molecular weight. We thus 
carried out manually a (non-comprehensive) survey of the database, examining more in detail 
proteins with absolute values of FMD greater than 0.2. A certain number of candidates emerged, 
which present patterns compatible with differential splicing or processing distinct from the 
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information presented in UNIPROT (Table 1). While the evidence in the PUMBA database alone 
cannot be taken as conclusive proof, we believe it may constitute a starting point toward discovery 
and elucidation of processing events or differential splicing.  

 

Table 1. Proteins with MW differing from sequence-predicted values : new or poorly characterized cases.  

 

Gene 
name / 
UNIPROT 
ID 

Name Theo. 
MW* 
(kDa)  

Theo. 
Length* 
(AA)  
 

PUMBA  
main 
peaks 
MW 

PUMBA 
sequence 
coverage 

Type of 
change 

Details 

FDPS 
P14324   

Farnesyl 
pyrophosphat
e synthase 

48 419 37 67-353 Splice 
variant 

Variant P14324-2  is  probably 
expressed in all cell lines 

SCP2 
P22307       

Sterol carrier 
protein 2 

58.5 547 58.3 
46 
15 

2-535 
2-415 
416-535 

Splice 
variant 
and/or 
cleavage 

FL in K562 only. Truncated 15kDa 
isoform (416-535) in all lines, 
could be P22307-2. Cleaved (2-
415) form in HEK, HeLa, HCT.  

PALLD 
Q8WX93 

Palladin 150 1383 117 
76 
51 

390-1383 
710-1383 
1045-1339 

Splice 
variant 

Seq. coverage compatible with 
splice variants -3, -4, -7. Splice 
variant 1 only in U2OS (by MW). 
AA 1-390 are never detected. 

ERI3 O43414   ERI1 
exoribonuclea
se 3 

37.2 337 21 224-321 Splice 
variant or 
cleavage (?) 

Possibly splice variant 3  (O43414-
3, 14.5 kDa)  is  expressed in all 
lines, but sequence coverage 
suggests even shorter chain. 

CRNKL1 
Q9BZJ0  
 

Crooked neck-
like protein 1 

100.4 848 74 181-828 Splice 
variant 

Compatible with Splice var 2 
(missing 1-161) in all lines 

Q4J6C6 
PREPL  

Prolyl 
endopeptidas
e-like PREPL 

83.9 727 64 98-705 Splice 
Variant 

Compatible with Splice Var 4 
(missing 1-89) 

ACIN1 
Q9UKV3 

Apoptotic 
chromatin 
conden-sation 
inducer in the 
nucleus 

151.8 1341 174 
78 

104-1220 
823-1220 

Splice 
variant  

Splice var 2 probably expressed  

        
TBRG4 
Q969Z0    

FAST kinase 
domain-
containing 
protein 4  
   

70 (59) 631 (524) 60 63-631 Different 
processing 

Mitochondrial. UNIPROT reports 
cleavage at pos. 107 (transit 
peptide) but seq. coverage starts 
before. MW fits sequence 63 -631. 
No splice variants known. 

TIMM21 
Q9BVV7    

Mitochondrial 
import inner 
membrane 
translocase 
subunit 
Tim21. 

28.2 (26) 248 17 131-248 Different 
processing 

Mitochondrial. Probably more 
extensive cleavage.  No splice 
variant known that would fit this 
coverage. 

FAM210A 
Q96ND0   

Protein 
FAM210A 

30.8 272 19 109-253 Different 
processing 

Poorly characterized protein, 
possibly mitochondrial.  No known 
splice variants. Detected as 19kDa 
species, compatible with observed 
sequence coverage. Possible N-
terminal cleavage. 

MTX1  
Q13505  

Metaxin-1 51.46  466 35 191-466 Different 
processing 
or splice 
variant 

Involved in transport of proteins 
into mitochondria. Could be 
cleaved or otherwise isoform 3 
(150-466, expected MW = 35.8 
kDa). No cleavage reported in 
UNIPROT. 

YME1L1  
Q96TA2 

ATP-
dependent 
zinc 
metalloprotea

86.5 773 59 225-768 Different 
processing 

Mitochondrial. Cleavage by 
mitochondrial processing 
peptidase (MPP) generates 
mature form, but cleavage site 
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se YME1L1 not clear.   
CLPB 
Q9H078  

CLPB 
Caseinolytic 
peptidase B 
protein 
homolog ; 

78.7 
(74.9) 

707 57 130-688  Mitochondrial. Sequence  
coverage does not fit annotated 
splice variants so maybe more of 
the N-terminus is cleaved in the 
mature protein. Peptides in N-
term should be detectable. 

*as reported by UNIPROT 
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Discussion  
We present here a first version of a repertoire of reference electrophoretic patterns for human 
proteins in a set of commonly used cell lines. The usage of a geLC-MS approach to build migration 
maps is not new, but most previous efforts aimed at studying specific biological phenomena that 
impact protein migration by comparing two or more conditions11,12,14,34,35. In a different context, 
Edfors et al 36 showed that the approach can be used for antibody validation, using the human cell 
lines RT4 and U-251 that were also used for large scale Western Blot in the Human Protein Atlas 
project. Only Yang et al 15 constructed a freely accessible, online “virtual Western” database of 
protein migration for the mouse collecting duct cell line mpkCCD and used it to explore migration 
behaviour as a function of properties. Our work expands on these previous efforts but with a 
different scope, as we aimed to create a reference resource covering human cell lines widely used in 
research labs. To do this, we needed a framework to i) generate accurate, reproducible MW values 
and migration patterns and ii) make a maximum of information easily accessible. The resource 
should also be expandable to accommodate future additional datasets.   

Our approach using internal calibration of migration yields reproducible and accurate 
electrophoretic MWs for thousands of proteins. To our knowledge, this is the first time that gel 
electrophoresis patterns for a large portion of a proteome are determined and can be compared 
across replicates that were run months apart as well as among different cell lines. In fact our data 
show that, if the experimental setup is constant, protein MWs can be determined accurately and 
reproducibly with very low CV’s. We believe that this is only possible thanks to the large amount of 
information generated by MS, together with the use of internal global recalibration rather than 
relying on external migration standards. The calibration curves obtained for our gels show that, 
globally, most of the proteome behaves “as expected”. At the same time, the MW of most proteins 
deviates slightly from the expected value, with in some cases much larger discrepancies. Relying on a 
set of 5-10 individual proteins for obtaining accurate MWs would be intrinsically flawed, as every 
one of these proteins would migrate with a distinctive deviation from the expected value, creating a 
sparse and somewhat distorted MW calibration curve. In contrast, fitting an average pattern based 
on several thousand different polypeptides has a much higher chance to yield a robust and accurate 
calibration curve since individual protein properties are averaged out. The calibration curve 
obtained, thanks to the density of its points, can compensate much more effectively for local 
migration differences intrinsic to every gel run and allows a much better alignment of different runs.   

We showed that a majority of the proteins that are present as one dominant gel band display a MW 
that is highly similar across a range of different human cell lines. This suggests that protein migration 
is intrinsically reproducible, at least if the reagents and electrophoretic conditions are kept 
reasonably constant. While we did rely on commercial pre-cast gels and buffers, we made no special 
efforts to use reagents originating from the same batch. As mentioned previously, we successfully 
aligned gel runs that were carried out months or years apart, using different batches of gels.  

At the same time, while a majority of proteins migrate close to their theoretical MW calculated from 
the sequence, small to medium deviations from such ideal behaviour are pervasive. Our analysis of 
correlation of physical properties and annotation terms with the FMD values revealed some trends, 
e.g. faster migration of hydrophobic proteins or slower migration of proteins with large regions with 
compositional bias. Our finding are in very good agreement and expand those of Yang et al.15, for 
example on the effects of hydrophobicity and cleavage on migration. Although the physicochemical 
phenomena underlying these effects are not always clear, knowledge of these biases can help 
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rationalize migration behaviours of proteins not covered in this survey and possibly also in other 
species.  

Our preliminary exploration of individual proteins with MW drastically different from the expected 
value highlight proteolytic processing as one of the main causes of unexpected (faster) migration, 
especially in proteins located in mitochondria or other subcellular compartments. It also stresses the 
fact that the details of constitutive proteolysis linked to chain maturation are still only partially 
characterized for a number of human proteins. Similarly, our data suggests that in a number of cases 
the dominantly expressed splice variant is likely not the longest isoform typically listed as the default 
one by UNIPROT (Table 1). While our findings by themselves cannot be fully conclusive, we often 
observe almost full agreement across the 5 cell lines, supporting the idea that such variant 
expression patterns are widespread and biologically relevant. Determining which splice variant is 
preferentially expressed can be very challenging for genes with complex exon/intron structure. 
Many variants differ by only a few codons/amino acids, which can be or not covered by mRNA or 
peptide sequences. Also, formally validating a shorter variant requires proof of absence of part of 
the sequence (by definition a tricky question). The conservative choice made by the UNIPROT 
curators to list the longest isoform as the default one is understandable, yet the question of splice 
variant expression is a crucial one and will have to be addressed soon37. Transcriptomics data will 
presumably play a major role in this task38, but the pervasiveness of translation regulation and 
alternative start sites in eukaryotic systems implies that protein information will be essential for 
validation. We argue that accurate and reproducible MW values, together with peptide coverage 
and the knowledge of sequence properties that impact migration, can be important criteria that, 
combined with mRNA sequences, can lead to reliable assignment of splice variant presence/absence.  

The quality and completeness of information in the PUMBA database is limited by technical factors 
well known in MS-based proteomics. First, for proteins expressed at low level, data is sparse and 
sequence coverage is limited. Aiming to expand the database, the most immediate solution to this 
problem will be to employ newer MS instrumentation, which will increase both depth and peptide 
coverage. A different challenge is posed by sequence regions that are difficult to map because they 
contain either too many or too few trypsin cleavage sites, resulting in peptides that are either too 
small or too large for detection and thus constitute false negative hits. We plan to enhance the 
sequence display in the “peptides” view to flag such problematic stretches, as an aid to 
interpretation of the data. A possible improvement for sequences with low K/R  content could be to 
complement the data with second pass, semi-tryptic searches, which in our experience can often 
reveal partial sequences due to nonspecific trypsin cleavage or peptide in-source decay. Such 
searches should be performed with special parameters, such as tight mass tolerances and 
considering only matches to proteins already identified with full trypsin, to avoid false positive hits.  

In the near future, we plan to expand the database further by adding more human cell lines  
corresponding to other tissue types. We also plan to expand significantly the mouse section of the 
database (not discussed here), which at the moment contains only data for NIH 3T3 fibroblasts, by 
analysing several tissue extracts of relevance for the research community. Analysing entire, 
extensively fractionated gel lanes is time-consuming. Here too, the increased measurement speed of 
new MS instruments will help us to accelerate the rate of data acquisition by employing shorter LC-
MS gradients.   

Impact  

Ultimately, we believe that the information in our database will have an impact at two levels. First, it 
will be useful for investigators that use SDS-PAGE and WB on a daily base to work on human 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.22.496709doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.496709
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

proteins. Accurate and reliable MW data, together with peptide maps, will allow them to critically 
examine the information provided by Ab suppliers in data sheets of western blotting antibodies. In 
these documents, the MW of the band attributed to the target protein can often be derived only 
inaccurately. This in turn generates uncertainties when comparing one’s own WB with the data 
sheet, whenever more than one band is detected or the signal is weak. Moreover, if the protein of 
interest is found in our database, investigators will be able to use one or more of the easily available  
cell lines we analysed as positive (or negative in case of proven absence) controls. The high level of 
consistency of migration that we could observe for most proteins across cell lines suggests that, at 
least in normally growing cells, MW in these lines can be determined reproducibly. For molecules 
that undergo gel shift-inducing modifications (e.g. cleavage), it will be possible to try to explain and 
rationalize diverging patterns obtained with antibodies raised against different epitopes, based on 
the peptide maps in PUMBA. When, as often the case, the information on the antigen used for Ab 
generation is missing, the peptide pattern measured combined with MW can often help to formulate 
hypotheses on possible epitopes to try and explain the observed band patterns.  

Second, we think that the availability of our database could contribute to the global mapping of 
human proteoforms. The human proteome is believed to be far more complex than the size of the 
genome can suggest, due to differential splicing and post-translational modification events which 
expand the number of actual molecular species. Mapping the human proteoform landscape, even 
only partially, will be a major research task for the next decade37. Some recent efforts have been 
aimed at developing tools for the unbiased identification of distinct proteoforms39,40 based on 
peptide intensities from large scale MS data. While these tools are promising, connectivity 
information is often lost in bottom-up proteomics. We argue that integration of reliable molecular 
weight and migration data from several distinct biological samples will be very helpful for defining 
and validating existence of structural proteoforms. This will require novel software tools to analyse 
the content of our database, as well as extensive correlation to other types of information already 
available in protein knowledgebases such as UNIPROT. Finally, we estimate that the greatest benefit 
of this database will come from its use by the community at large as a protein resource that 
effectively completes the existing ones.  
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