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ABSTRACT 

One of the hallmarks of diabetes is an increased modification of cellular proteins. The most prominent 

type of modification stems from the reaction of methylglyoxal with arginine and lysine residues, leading 

to structural and functional impairments of target proteins. For lysine glycation, several algorithms allow 

a prediction of occurrence, thus making it possible to pinpoint likely targets. However, according to our 

knowledge, no approaches have been published for predicting the likelihood of arginine glycation. There 

are indications that arginine and not lysine is the most prominent target for the toxic dialdehyde. One of 

the reasons why there is no arginine glycation predictor is the limited availability of quantitative data. Here 

we used a recently published high-quality dataset of arginine modification probabilities to employ an 

artificial neural network strategy. Despite the limited data availability, our results achieve an accuracy of 

about 75% of correctly predicting the exact value of the glycation probability of an arginine-containing 

peptide without setting thresholds upon whether it is decided if a given arginine is modified or not. This 

contribution suggests a possible solution for predicting arginine glycation. Our approach will greatly aid 

researchers in narrowing down possible glycation sites in protein targets. This strategy could improve the 

structural and functional characterization of proteins of interest. 
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INTRODUCTION 

In nature, there is an amazing variety of proteins. So far, thousands of them have been described that 

carry out diverse functions that are essential for life, either as structural building blocks within and without 

cells or as catalysts of biochemical reactions in the form of enzymes 1,2. Proteins are composed of a certain 

number of amino acids. There are twenty ‘standard’ amino acids and several somewhat obscure ones like 

selenocysteine and pyrrolysine that are also proteinogenic.   

Clearly, the potential sequence variety is enormous even in short proteins (peptides), reaching 

astronomical proportions. To this huge variety, so-called post-translational modifications of amino acids 

must be added. These modifications add layers of regulation and control and include a plethora of 

processes leading to adducts, like acetylation, phosphorylation, methylation and ubiquitination among 

many others 3. The post-translational modification of specific amino acids can occur enzymatically or non-

enzymatically. For example, protein glycosylation, which is important for protein sorting, protein secretion 

and cellular recognition among other functions, is performed by glycosyltransferases and related enzymes 

4. Another important example is the reversible modification of histones by histone acetylases and 

deacetylases that is essential for the coordinated regulation of gene expression 5. Glycation, on the other 

hand, is regarded as a strictly non-enzymatic process that involves the reaction of sugars (e. g., glucose, 

fructose) and sugar-derived molecules with amino groups of biologically highly relevant molecules, like 

nucleic acids, lipids and proteins 6. Usually, these reactions result in the formation of advanced glycation 

end-products (AGEs) which are mostly detrimental and compromise the function of the target molecule 

irreversibly 7,8. 
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In proteins, the side chains of lysine and arginine are the main targets of AGE formation 9,10. One of the 

most reactive glycating compounds is the reactive carbonyl species (RCS) methylglyoxal (MGO) which is 

formed as a toxic by-product by metabolic activity, e. g. during glycolysis 11. 

Usually, cellular MGO levels are kept at relatively low levels of around 0.3 to 6 µM 12 by a dedicated 

enzymatic defense systems (e.g., glyoxalase I and II, aldose reductases) 13,14 and low-molecular weight 

scavengers, but in certain pathological conditions (i. e., diabetes, neurodegeneration, cancer) 15,16 and in 

aged cells and tissues 17–19 MGO can become problematic for cellular viability due to increased production 

and/or impaired removal. It should be noted that the specific MGO-mediated modification of proteins can 

be important for several signaling processes and for gene regulation. This has been demonstrated in 

studies often conducted in simple eukaryotic model systems that are very amenable to experimental 

procedures 20.   

Although the importance of MGO binding to certain amino acids in a target protein is a well-studied 

phenomenon, it has become clear that there are most likely no straightforward consensus sequences that 

allow a reliable prediction of potential glycation sites 21. Available predictive algorithms therefore must 

rely on the physical (e. g., polarity), chemical (e. g., amino acid composition) or structural features (e. g., 

accessible surface area, secondary structure features and local backbone angles) of nearby amino acid 

residues. These allow a prediction of potential sites of lysine glycation. For example, GlyNN 22 utilizes an 

artificial neural network (ANN) 23 approach to enable lysine glycation prediction from a relatively small 

dataset of 215 elements. Further developments are BPB_GlySite 24, PreGly 25, PredGly 26, Gly-PseAAC 27, 

Glypre 28, iProtGly-SS 29 and GlyStruct 30 with approaches like bi-profile Bayes feature extraction, position 

specific amino acid propensity and models trained with support vector machine (SVM) classifiers. 

Traditionally, lysine glycation has been the target of in-depth research with a large database of lysine 
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modifications being freely available (PLMD 31, which is based on CPLM 32 and CPLA 1.0 33). However, in 

recent years it has become clear that also, possibly even more so, the reaction of MGO and arginine is very 

relevant for the pathogenicity of AGEs 9,34. Chemically, MGO reacts with arginine yielding an irreversible 

intermediate, the AGE dihydroxyimidazoline (DHI) after Schiff base addition and its subsequent 

rearrangement (Amadori product formation). Removal of water from DHI leads to the formation of the 

AGE 5-hydro-5-methylimidazolone (MG-H1) 7,8. MG-H1 is an important marker for the AGE-modification of 

skin collagen 35, mitochondrial dysfunction 36 and acute coronary syndrome 37 among others.   

The experimental demonstration of specific amino acid modifications is often very costly in terms of 

time, resources, and labor, especially in larger proteins which may contain several potential sites of 

glycation. Hence, being able to analyze protein sequences for the presence of glycated arginine residues 

would be a useful approach to predict sites of MG-H1 formation. To our knowledge, no tools have been 

published so far that allow the predictive identification of potential arginine modification sites in proteins. 

In this work, we implemented a machine learning (ML) method using our own supervised numerical 

training algorithm, which uses the features of amino acids as input information, and as target the 

probability of glycation to occur in a certain protein, where the selected amino acids form a sequence of 

eleven elements within the protein whose central amino acid will always be arginine. Specifically, we 

utilize Artificial Neural Networks (ANN) because they offer a direct way to solve problems given their high 

accuracy and their adaptation to noisy, unknown or incomplete information 23  besides a fast computation 

after training due the fact that the neural network can be easily implemented in the parallel hardware. In 

particular, ANNs as ML methods have been applied in problems of fluids in the flow phase pattern 

identification, for example 38,39. 
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The peptide sequences we used were extracted from Scheck et al. 21. Although the number of glycated 

peptides is relatively small for training or prediction, the information is of exceptional quality because all 

experiments were performed by the same lab using the same procedures for modification and its 

detection. As such our work is not based on glycation data from different sources that are inherently 

difficult to compare. Furthermore, our approach allows stating a probability of glycation in percent. It is 

therefore superior to algorithms that are based on thresholds that decide whether a residue is glycated or 

not. In conclusion, our contribution is aimed at enabling a more directed protein-AGE analysis saving time 

and funds for the researcher. 
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METHODOLOGY 

GENERAL OUTLINE 

 We chose the following features of amino acids to computationally characterize a short protein 

sequence (11 amino acids) that contains a central arginine residue: sequence of amino acids of the peptide 

(SoA), hydropathy (Hyd), mass (Mas), hydrophobicity (Hyp), polarizability (Pol), normalized van der Waals 

volume (vdW), torsion angle (ToA), and isoelectric point (IEP) (Fig. 1). We subsequently formed vectors of 

the type ∈ R1X11 for each feature and selected the number of vectors, one (study case 1), two (study case 

2), or three (study case 3), that enter an artificial neural network (ANN) to train a model that allows us to 

predict the glycation probability of the central arginine residue in the 11-mer peptide sequence. These 

sequences were taken from a recent publication by Scheck et al.  21. The extent of arginine modification 

was determined by these authors using a state-of-the-art technique (liquid chromatography mass 

spectrometry). In total, 54 sequences were retrieved. Although the number of glycated peptide fragments 

is not particularly high, all experimental steps were conducted under comparable conditions, making 

comparisons much more reliable 21. Fig. 1 shows a general outline of the process to be followed in our 

methodology. More details on the ANN operation can be found in the supplementary materials to this 

manuscript. 

DATABASE CONSTRUCTION AND STUDY CASES 

 The tool of ML used to make the prediction of peptide glycation is an artificial neural network (ANN) 

that requires data for training and testing. As stated above, for the construction of the arginine glycation 

database, information obtained experimentally by Scheck et al. 21 was used. This information allows us to 

rewrite the alphabetical sequence of amino acids for each of the peptides with the corresponding 

numerical values for each of their physical properties. The list of the 20 proteinaceous amino acids, with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.05.494871doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.05.494871
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

their corresponding values for each of the physical properties that represent them can be found in Table 

S1 in the supplementary material.  

 

Fig. 1: Steps to follow for the characterization and prediction of glycation using ANN. First, a preliminary 
database is assembled from the amino acid sequence of the peptides. Then, by rewriting the amino acid 
sequence with the values corresponding to each of the physical properties, a list of all the vectors is 
created. Their values are normalized and delivered to the ANN, which through a learning process makes 
the final predictions corresponding to the probability of glycation for each peptide. 

 

By employing this information, we built a database with 54 (peptides) × 8 (features) vectors using the 

different values for each amino acid (11 elements). That is, each one of the 432 vectors was formed by 

selecting one of the 54 peptides made up of a sequence of 11 elements, and selecting one of the eight 

physical properties, thus assigning to each element of the peptide the value corresponding to that physical 

property. For example, for the 11mer-sequence SPFYLRPPSFL we built eight vectors (Fig. 2). We retrieved 
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each element of the sequence (i. e., an amino acid) and obtained the corresponding values (for the 

complete list of constructed vectors refer to Tab. S2). This process was repeated for all properties.   

We considered basically three cases as inputs for the ANN. The single-case study is accepting one 

individual vector of the same property for each peptide as input. The two-case study considers two vectors 

of two different properties in combination for each peptide, giving rise to up to 28 different outputs. 

Finally, the three-case study considers three vectors of three different properties in combination for each 

peptide, giving rise to up to 56 different outputs. We would like to point out that, considering that higher 

order combinations result in more complex learning processes without providing significant improvements 

in predictions. Consequently, we did not consider them further in our study. 

Here it is important to note that, for any of the three cases, at the center of the sequence of elements is 

always the amino acid arginine. Recall that the objective of ANN in this project is to be able to predict the 

glycation probability of the central arginine corresponding to each peptide. This can be done through the 

combination of vectors as described above.  

At this point it is worth taking a few steps forward and establishing now that another part of the objective 

of this study is to find out which of all these possible combinations of amino acids parameters gives us the 

most accurate predictions. 

For the ANN learning and prediction process, it is necessary to form a set of samples for each of the study 

cases, which we termed patterns. Each pattern was built on a combination of only one, two or three 

vectors for a specific peptide where their numerical values are the properties used in the corresponding 

amino acid sequence of the peptide. Thus, each pattern (𝒫) is represented by a matrix of “m” rows (the 

number of properties selected) and “n” columns (each one of the eleven amino acids within the peptide). 
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These patterns are provided to the ANN to be able to predict the exact probability of glycation of the 

central amino acid arginine (inside the pattern).  

 

Fig. 2: Example of construction of vectors. For the 11-sequence SPFYLRPPSFL, each amino acid is converted 
into a number, dependably of the property. The first amino acid, serine (SER), has a value of 5.7 for the 
property localized electrical effect, 3.83 for torsion angle, 1.6 for normalized van der Waals volume, -0.04 
for polarizability, 0.06 for hydrophobicity, 105 of mass, -0.8 for hydropathy, and -2 for amino acid 
sequence. 

 

For example, if we wanted to predict the probability of glycation of a certain peptide from the analysis 

of a pattern formed by the combination of two vectors corresponding to hydropathy (Hyd) and mass (Mas), 

we would specify an array 𝐴 of the form:  

𝒫 = 𝐴ଶ×ଵଵ = ൬
𝐻𝑦𝑑ଵ 𝐻𝑦𝑑ଶ ⋯ 𝐻𝑦𝑑ଵ 𝐻𝑦𝑑ଵଵ

𝑀𝑎𝑠ଵ 𝑀𝑎𝑠ଶ ⋯ 𝑀𝑎𝑠ଵ 𝑀𝑎𝑠ଵଵ
൰ 

where p is the index for each one of the 54 peptides. Thus, for the 11-sequence SPFYLRPPSFL mentioned 

above, we can consider that for a combination of two vectors, to form a 2-vector pattern (𝒫), we can take 

any two of the 8 different sequences of numerical values shown in Fig 2. 
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Table 1: Details of the ANN study cases. The physical properties and the architecture of the neural network 
are presented for each one of the sub-cases of the case 1, along with the sub-cases that performed the 
best result for cases 2 and 3. 

Cases Features ANN layer 

architecture 

Case 1A Sequence of 

Amino Acid 

11x4x3x2x1 

Case 1B Hydropathy 11x4x3x2x1 

Case 1C Mass 11x4x3x2x1 

Case 1D Polarizability 11x4x3x2x1 

Case 1E Hydrophobicity 11x4x3x2x1 

Case 1F Normalized van 

der Waals 

volume 

11x4x3x2x1 

Case 1G Torsion angle 11x4x3x2x1 

Case 1H Isoelectric point 11x4x3x2x1 

Case 2 Polarization + 

van der Waals 

volume 

22x10x1 

Case 3 Sequence of 

Amino Acid + 

Hydropathy + 

van der Waals 

volume 

33x40x1 
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All the specifications of the study cases are presented in Table 1 for reference. From the eight amino acid 

features, there are multiple combinations to conform each one of the study cases. For the two-case and 

three-case we will focus on the combinations of features that present the best results. However, for the 

one-case, to explain in detail, the learning and prediction process of the ANN, we have chosen to present 

the results of all the features, thus forming a total of eight sub-cases (Table 1). 

Taking up the fact that for each of the patterns used as input information for the ANN training is composed 

of an array of “m” features and eleven values the amino acids (n), then, for the three-case study, we will 

have an array of the form: 

𝒫 = 𝐴× = ቌ

𝑓ଵ 𝑓ଶ ⋯ 𝑓ଵଵ

𝑓ଵ 𝑓ଶ ⋯ 𝑓ଵଵ

𝑓ଵ 𝑓ଶ ⋯ 𝑓ଵଵ

ቍ                           

where the index p represents the peptide and therefore runs from 1 to 54, and the index m represents 

each one of the three features chosen (fa, fb or fc) among the eight possible ones; where indices a, b and c 

take different values from each other, ranging from 1 to 8. 

For optimal ANN performance, the input data for all cases are preprocessed to result in the normalized 

𝒫 pattern, for which 

𝑓መ =
𝑓  −  𝑓

തതത

σ
 

each feature m and for each amino acid n we will normalize the matrix elements following to the relation 

(3), where  f୫
തതത is the mean of the elements of the training set corresponding to the m-th feature, and σ୫ 

is the standard deviation of those elements. The normalization process for a given case has been 

performed on each subset of vectors made up of the elements corresponding to the same feature, and 

not on the whole dataset. 
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For the learning process, all the normalized information will be divided into three sets, the first and 

largest will be used for training, consisting of 70% of the data. The second is the validation set consisting 

of 15% of the data and the remaining 15% will be used for the final predictions that will be presented in 

the results section. It is important to note that during training the ANN does not know the data of the 

validation and prediction sets. 
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Fig. 3: Schematic of the utilized ANN structure. Each of the 11mer sequences with n-features is provided 
to the ANN through the input layer, from which the learning process proceeds through an adjustment in 
the interconnections in the hidden layers. Finally, a prediction of the glycation probability is made, which 
is provided by the output layer. 

 

Thus, the ANN will be fed only with the training set for each of the case studies. Where, in general, the 

ANN architecture is of one to three hidden layers, having per layer (including the input layer), a varying 

number of neurons, according to each of the cases studied (see Table 1). 
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Fig. 3 shows the general architecture of the ANN used. Consider that it will be fed with the patterns 

formed for each of the case studies, through the input layer of the ANN. Subsequently, learning is 

performed through the hidden layers and the prediction is processed in the output layer. 

Finally, to minimize the error during the training process the ANN was constructed as a regression 

model using the Adam optimization algorithm 40 with a learning rate γ=0.001, we have used a rectified 

linear unit (ReLu) as an activation function 41, and employing a backpropagation algorithm 42. 
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 RESULTS 

Towards predicting the value of the glycation probability based on the small database available, ANNs 

were used. They can offer high accuracy, even with incomplete information 23. As previously described, 

we used eight different features to construct the vectors, feeding the algorithms with one of the features 

for each sequence, or using a combination of them. We report the Mean Absolute Percent Error (MAPE) 

and Mean Absolute Error (MAE), by averaging the results over 160 different predictions, each with a 

different ANN training. 

Table 2 summarizes the analysis carried out from the eight different features and the combination of 

each two of them. The MAPE and MAE values are reported in the upper and lower diagonal matrices 

respectively. In the main diagonal of the matrix, the MAPE is represented first, followed by MAE. Both 

errors are also characterized by gray shades, to describe if we have a high accuracy (clear gray), average 

(medium gray) or low accuracy (dark gray) prediction value.  

The cases where we use only one feature can be seen in the main diagonal, for MAE values the lower 

results we had were using Hyp (30.63) or ToA (32.11), whereas, we have the highest values using SoA 

(26.98) or vdW (27.49). Also, for MAPE the lower results we had again were using Hyp (54.79) or ToA 

(52.12), and for the highest results we have the best values using vdW (39.25) or Mass (40.93). 

We have seen that the combination of features can improve the performance of the ANN, now we will 

review the results for each specific case, recall that the previous values were the average over 160 

different predictions. Fig. 4 shows the box plots of MAPE and MAE for the individual features, even though 

vdW results in the lowest errors in the table 2, we can see a broader distribution, in contrast with Hyd. As 

we can see from table 2, Hyd represents a 7.2 and 2.5% higher MAPE and MAE error than vdW, but 66.7 
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and 70.7% narrower range distribution. The narrowest range distribution for MAPE and MAE are 

represented by IEP and Hyp respectively, in contrast, the broadest is Pol for both cases. 

For cases 2 and 3, where there are multiple combinations of amino acid features, in a search for clarity 

it was considered to present in detail for this work, only the cases that showed the best results (considering 

that the remaining details are shown in the supplementary material, Fig. S1).   

Thus, for case 2, the highest errors were obtained with the combination of Hyp and ToA with values for 

MAE and MAPE of 30.61 and 57.13, respectively. Now, if we use the best features in the main diagonal to 

make the combinations, we can improve the results compared to one feature only. The best value we were 

able to find using a combination of two features was vdW-Pol for both MAE and MAPE with values of 23.53 

and 33.3 respectively (bold numbers in Table 2). 

Fig. 5 shows the MAPE and MAE respectively of the first 8 combinations of two features with the lowest 

values. In turn, for comparison, the two combinations with the highest errors are presented (the complete 

set can be found in the supplementary materials, Fig. S1). Interestingly, once we study the combination of 

two features, most of the cases show error distributions as narrow as using only the feature Hyd, which is 

the single feature that shows the narrowest error distribution (see Fig 4).  This can lead us to the idea that, 

increasing the number of features used in the ANN increases the performances and narrows the error 

distribution, but we must be aware that this is not always the case, because the features may hide 

unknown correlations, whereby increasing the number of them will not improve the prediction, as the 

amount of independent data may not raise. The narrowest error for case 2 is presented in the combination 

of Mas-ToA for MAPE and Hyd-IEP for MAE with a range of 2.13 and 0.80 respectively. 

In case 3, consisting of the combination of three different properties, an improvement in ANN 

performance was generally observed, mainly in combinations that incorporated the properties SoA, Hyd, 
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Mas, vdW and IEP, whose trend can be seen from case 2 in Fig. 5. Thus, the lowest value for MAE was 

obtained by combining SoA with Mas and IEP, reaching an error of 15.42; while for MAPE a value of 25.04% 

was reached by combining Hyd with Mas and IEP; which is a substantial reduction with respect to the best 

results of case 2.  

Table 2: Summary of glycation probability errors (MAPE/MAE) for the single-case / two-case predictive 
approaches. We report the MAPE values in the upper diagonal matrix, and MAE values in the lower 
diagonal. The main diagonal shows the MAPE and MAE value for the case 1 respectively. Both errors are 
also characterized by gray shades, to describe if we have a high accuracy (clear gray), average (medium 
gray) or low accuracy (dark gray) prediction value. 

 

 

 

 

 

 

 

Fig. 4: Box plot of the results for case 1. Values obtained for MAPE (left) and for MAE (right). The 
characteristics are ordered from the lowest error (implying higher reliability and accuracy) to the highest 
errors. 
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Fig. 5: Box plots of the results for case 2. Values obtained for MAPE (left) and for MAE (right). The first 
eight combinations with the lowest errors are shown, as well as the two combinations with the highest 
errors. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.05.494871doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.05.494871
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 

DISCUSSION 

Here we developed a tool for predicting the glycation probability of arginine residues in proteins. 

Although we had to work with a limited dataset, we consider it relevant to have some means to predict 

arginine modifications. Furthermore, our work can serve as a work of principle and be subsequently 

expanded once more information on arginine glycation becomes available.  

Arginine, akin to lysine, is a prime target for methylglyoxal 9. Due to the fact our data set on arginine 

glycation is too small for conventional approaches, we employed a machine learning strategy. While 

artificial intelligence (AI) is the overarching science of mimicking human abilities, machine learning is a 

specific subset of AI that trains a machine how to learn. Nowadays, machine learning is one of the most 

important tools for scientists in the development of new applications 43,44. We could have conveniently 

employed a linear regression-based approach to estimate the probability of glycation, but the results 

would have been considerably poor compared to those obtained using the more sophisticated ANN. 

At present, the accuracy of our algorithm is limited by the relatively small size of the database we used 

for training and testing the ANN. This bottleneck can be tackled by adding more data entries to the 

database once these become available. This would allow an improvement of the reliability of our algorithm 

for successfully reporting glycation probabilities.  

Experimentally, approaches like nano high performance liquid chromatography/electrospray 

ionization/tandem mass spectrometry can be utilized to determine the ratio of glycated to total peptides 

45. It should be kept in mind that usually amino acid glycation is not resulting in a “black or white” pattern 

(i. e., all peptides carrying the modification or none) but more like a gradual probability scale. Once more 

data on arginine glycation becomes available, we aim to present a tool based on our algorithm that 
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analyzes a protein sequence provided by the user in FASTA format for the presence of arginine residues 

that are potentially glycated. The output would be given as an arginine glycation probability at a specific 

position of the protein in percent. This approach could allow narrowing down the amount of arginine 

residues that can preferentially become AGE-modified. Such a tool is envisioned to enable a more directed 

protein-AGE-arginine analysis saving time and funds for the researcher. 

We want to stress that efforts have already been developed in this area from which the present 

research is inspired. Reddy et al. 30 developed a methodology based on support vector machines (SVM) 

with which they were able to classify glycated and non-glycated lysine residues using the structural 

properties of amino acid residues. For that work, they had a reference database containing a total of 538 

glycated and non-glycated lysine residues, with which they were able to obtain an accuracy of 0.7562, 0 

being totally inaccurate and 1 being totally accurate. Recently in Yu et al. 26 achieved a considerable 

improvement in the classification process of lysine glycations with SVM, working with a database of more 

than 6000 items, reaching a high accuracy of 0.88. 

In comparison with the work presented here, it should be emphasized that although they are different 

methods (classification with SVM versus prediction with ANN), the highest precisions achieved are of 

similar magnitudes. However, there are several considerations to be stressed; first, the fact that our work 

had a very small base of only 54 peptides (both glycated and non-glycated peptides), which made the 

learning process of the neural network more complicated, and second the fact that what we performed in 

this project is an exact prediction of the probability of glycation, while the cited study and other similar 

studies on which this one is based 25,27,29 are founded on a classification between groups of peptides where 

there is glycation and where there is no glycation. It is important to note that all other studies prior to the 

one developed by Yu et al. 26 achieve, relatively speaking, lower accuracy. 
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Our algorithm shows that the most important characteristics determining arginine glycation probability 

are the sequence of amino acids, polarizability, amino acid mass, normalized van der Waals volume and 

hydropathy while torsion angle, hydrophobicity and isoelectric point seem to be of lesser importance (Fig. 

4). When simultaneously considering two characteristics (two-case) polarizability and normalized van der 

Waals volume stand out as being most important for determining glycation probability (Fig. 5). The errors 

become lower when considering these two characteristics, showing that probably a combination of several 

factors predisposes an arginine residue for glycation. Scheck et al. 21 made the observations that polar 

residues like tyrosine (large van der Waals volume) and negatively charged ones seem to influence 

glycation probability. Certainly, it is possible that more than two properties of neighboring amino acids are 

relevant for the determination of arginine glycation probability. This question is planned to be addressed 

in future work. 
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CONCLUSIONS 

In conclusion, we herein present the conceptual framework that allows predicting the glycation 

susceptibility of arginine residues in peptides. Arginine modification by glycation is emerging to be highly 

relevant, perhaps even more so than lysine modification 9,34. Whereas several research groups addressed 

the question how to predict lysine modification, to our knowledge, we present the first attempt at 

predicting arginine glycation. At the same time, this study has been carried out using ANN on a very limited 

database. This is relevant given that previous studies on lysine have been carried out with the SVM method 

on databases of considerable size. 

The present work focused on obtaining an accurate estimation of the probability of glycation in 

arginine. Promising results were obtained by taking combinations of two or three amino acid 

characteristics for such estimation. We identified that a combination of three characteristics (sequence of 

amino acids, amino acid mass and isoelectric point) gives the smallest mean absolute error (15.42). 

Combinations with other characteristics such as normalized van der Waals volume and hydropathy yield 

similar results. This key finding suggests that arginine glycation (and potentially glycation in general) is 

mostly influenced by the combination of these factors. Experimental approaches are needed to confirm 

this result.  

Our work is aimed at the researcher who requires information on whether a certain arginine residue 

might be the target of reactive dicarbonyls and if so, to which extent. More than just reporting qualitative 

aspects we provide a strategy to receive quantitative information on the glycation probability of individual 

arginine residues. Therefore, the most probable “hits” would be the ones to whose experimental 

characterization would be applied preferentially. Overall, our approach is not only positioned to integrate 
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into the landscape of previously published algorithms for the estimation of lysine residue glycation but to 

extend it in a meaningful way.    
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