
1 
 

Deep and fast label-free Dynamic Organellar Mapping 
 

Julia P. Schessner *1, Vincent Albrecht *1, Alexandra K. Davies 1, Pavel Sinitcyn 2, Georg H.H. Borner **1 

* Contributed equally 

** Corresponding author: borner@biochem.mpg.de 

1) Department of Proteomics and Signal Transduction, Systems Biology of Membrane Trafficking Research 

Group, Max-Planck Institute of Biochemistry, Martinsried, Germany 

2) Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, 

Germany 

 

Keywords: Dynamic organellar maps, data-independent acquisition mass spectrometry, DIA, spatial 

proteomics, profiling analysis, data quality control, Golgi proteins, starvation, Bafilomycin A1, endosomal 

transport 

 

ABSTRACT 
The Dynamic Organellar Maps (DOMs) approach combines cell fractionation and shotgun-proteomics for global 

profiling analysis of protein subcellular localization. Here, we have drastically enhanced the performance of 

DOMs through data-independent acquisition (DIA) mass spectrometry (MS).  DIA-DOMs achieve twice the depth 

of our previous workflow in the same MS runtime, and substantially improve profiling precision and 

reproducibility. We leveraged this gain to establish flexible map formats scaling from rapid analyses to ultra-deep 

coverage. Our fastest format takes only ~2.5h/map and enables high-throughput experimental designs. 

Furthermore, we introduce DOM-QC, an open-source software tool for in-depth standardized analysis of DOMs 

and other profiling data. We then applied DIA-DOMs to capture subcellular localization changes in response to 

starvation and disruption of lysosomal pH in HeLa cells, which revealed a subset of Golgi proteins that cycle 

through endosomes. DIA-DOMs offer a superior workflow for label-free spatial proteomics as a systematic 

phenotype discovery tool. 
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Introduction 
The compartments of eukaryotic cells organize the proteome into dynamic reaction spaces that control protein 

activity. The large number of diseases caused by disrupted protein transport demonstrates that protein 

localization must be tightly regulated to ensure correct protein function [1,2]. Our understanding of cellular 

homeostasis thus requires a comprehensive view of protein localizations and movements within the cell, 

collectively termed the ‘spatial proteome’ [3–10]. 

Our lab previously developed the Dynamic Organellar Maps (DOMs) approach for systems-level capture of 

protein subcellular localization [11]. Briefly, cells are lysed mechanically and the released organelles are partially 

separated by differential centrifugation [11,12]. Pelleted proteins are quantified across the fractions by mass 

spectrometry (MS). The obtained abundance profiles are characteristic of the harboring organelles and are used 

to predict protein localization by supervised machine-learning; the result is an organellar ‘map of the cell’ [11]. 

Since DOMs are highly reproducible, they allow capture of induced protein localization changes, and have thus 

driven phenotype discovery in diverse biological contexts. For example, DOMs have been applied to reveal the 

molecular pathomechanisms of AP-4 deficiency syndrome, a severe neurological disorder [13,14]; to characterize 

the function of a lysosomal retrieval pathway [15]; to quantify translocation events triggered during EGF 

signalling [11]; to identify the target of drugs selected from a phenotypic screen [16]; and to uncover how HIV 

infection alters the composition of extracellular vesicles [17]. 

The original DOMs method relied on SILAC (stable isotope labelling by amino acids in cell culture) [18] for 

accurate protein quantification across subcellular fractions [11]. To extend the method beyond cell lines 

amenable to SILAC, we implemented different quantification strategies [4,19], including label-free quantification 

(LFQ) [20] and the peptide-labelling methods TMT [21] and EASI-tag [22]. SILAC-based maps yield the most 

precise profiles, but offer limited depth due to increased MS1 spectral complexity. LFQ maps achieve greater 

depth but suffer from lower precision, while TMT and EASI-tag maps have intermediate quality [4]. 

All aforementioned DOMs workflows are based on data-dependent acquisition (DDA) of MS data  [23,24]. In each 

DDA cycle, a fixed number of the most abundant peptides from the MS1 scan are individually fragmented for 

identification. The MS1 intensities are subsequently used for quantification. While this approach prioritizes 

precursors that are most likely to generate high-quality MS2 spectra, it adds a stochastic element to precursor 

selection, which leads to inconsistent protein identifications across samples. In the context of DOMs, missing 

values severely limit depth of analysis, since profiling requires quantification of the same protein in the majority 

of measured subcellular fractions and replicates. To alleviate this problem, we previously fractionated peptide 

samples prior to MS analysis [11,25]. This resulted in improved map depth, but tripled MS time requirements. 
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Owing to recent advances in MS instrumentation and data analysis software, data-independent acquisition (DIA) 

is increasingly replacing DDA approaches [26]. During DIA, the entire peptide mass range of the MS1 scan is 

partitioned into windows. Co-eluting peptides within each window are fragmented together, resulting in complex 

MS2 spectra. Their deconvolution requires an auxiliary library with reference peptide spectra, which can either 

be generated from in silico predictions, from additionally measured DDA spectra, or directly from the DIA data 

[27]. The DIA approach is technically and computationally challenging, but conceptually allows the identification 

of all peptides present in a sample. Moreover, unlike in DDA, both the MS1 precursor and the MS2 fragment ions 

can be used for quantification, which increases precision [28]. DIA is hence becoming the strategy of choice for 

extensive profiling-based approaches such as SEC-MS [29] and has recently been applied in high-throughput 

subcellular phosphoproteomics [9]. 

Here, we harness the power of DIA for generating label-free DOMs. We show that proteomic depth, precision 

and reproducibility of DIA-DOMs increase dramatically relative to DDA-DOMs. For this purpose, we introduce 

the software tool DOM-QC, which enables rapid standardized analysis of DOMs and other types of profiling data. 

We provide optimized DIA-DOMs formats with short MS run times suitable for high-throughput experiments and 

with longer MS runtimes for maximum coverage. Finally, we investigate subcellular rearrangements upon 

starvation and inhibition of lysosomal acidification in HeLa cells, to demonstrate the power of DIA-DOMs for 

phenotype discovery. 
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Results 
 

DOM-QC, a new software tool for in-depth analysis and benchmarking of profiling 
data 
To facilitate the establishment and optimization of a new DIA-DOMs workflow, we first implemented DOM-QC, 

a software tool for the exploration and benchmarking of profiling data. DOM-QC provides multiple metrics and 

interactive info-plots via a graphical user interface (https://domqc.bornerlab.org). As input data, the tool handles 

raw output files from MaxQuant [30] and Spectronaut [31], as well as any pre-processed profiling data. Multiple 

maps can be uploaded together and directly compared. Proteomic depth is assessed before and after filtering 

for usable profiles, per map, and across replicates. Principal component analysis (PCA) plots provide a visual 

overview of map topology. Three metrics are calculated to gauge map quality:  1. Profile scatter of proteins that 

are part of the same complex. This reflects within-map profiling precision, based on the assumption that tightly 

bound proteins co-fractionate with near-identical profiles. 2. Profile scatter of individual proteins across map 

replicates, which reflects inter-map reproducibility. 3. Organellar prediction performance (supervised machine 

learning by support vector machines (SVMs)), judged by the harmonic mean of recall and precision of pre-defined 

marker proteins (F1 score). 

As a benchmark sample set for the optimization of DIA-DOMs,  we prepared three independent subcellular 

fractionations from HeLa cells, each with six fractions, label-free, as described [19]. We then tested a variety of 

liquid chromatography-mass spectrometry (LC-MS) setups and data acquisition strategies for mass spectrometric 

analysis (see Fig. 1 for overview of the experimental design and Supplementary Fig. 1 for DIA method 

optimization). Data were processed with MaxQuant 2.0, which features the new MaxDIA algorithm [32]. 

 

DIA maps outperform DDA maps across all metrics 
To compare DIA-DOMs to our previous label-free DDA-DOMs workflow, we measured our benchmark samples 

with DIA and DDA, on an Orbitrap Exploris mass spectrometer fitted with a nanoLC (100 min gradient). DIA data 

were processed either with a custom spectral library (ca. unique 159,000 peptide sequences, acquired with DDA), 

or with an in-silico spectral library predicted by DeepMassPrism [33] (MaxQuant’s ‘discovery DIA’ mode [32]). 

PCA plots of the DDA-, library DIA- and discovery DIA-based maps looked topologically similar (Fig. 2A), but 

enhanced tightness of organellar clusters was apparent in the DIA maps. As expected, the unfiltered proteome 

depth was only slightly increased by DIA (7,067 protein groups (PGs) with DDA vs. 7,371 PGs with discovery DIA 

and 7,833 PGs with library DIA). In contrast, the number of proteins profiled across all three map replicates 
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dramatically increased from 2,768 PGs with DDA, to 5,241 PGs with discovery DIA (+89%), and to 6,719 PGs with 

library DIA (+143%; Fig. 2B). This performance leap is explained by the much more consistent identification of 

proteins across samples, reflected by a rise in data completeness from 69% with DDA to 90% with discovery DIA, 

and to 97% with library DIA (Supplementary Fig. 2A). The proteins profiled in the DIA datasets mostly overlapped 

and contained almost all proteins quantified by DDA (Fig. 2B). Next, we assessed SVM-based organellar 

classification, analyzing a set of 844 established organellar marker proteins common to all three maps. DIA maps 

moderately but clearly outperformed DDA maps. Overall recall increased from 93% (DDA) to 95% (DIA) and the 

average F1 score increased from 0.87 to 0.9 (Fig. 2C). Importantly, the F1 scores for the highly dynamic 

membrane compartments endoplasmic reticulum (ER), plasma membrane, lysosomes and endosomes improved 

substantially with DIA (Supplementary Fig. 2B). The combination of increased depth and better SVM performance 

also resulted in a greatly increased number of high-confidence localization predictions, up from 998 (non-marker 

proteins) with DDA, to 1,649 with discovery DIA (+65%), and to 2,112 with library DIA (+111%) (Fig. 2D). In 

addition, DIA maps also provided many more medium-confidence predictions (Fig. 2D). For all three datasets, 

the concordance with our previously published predictions based on SILAC DOMs [11] was 98-100% in the high-

confidence category (Supplementary Fig. 2C). Finally, we evaluated profile quantification precision and 

reproducibility, which are key for comparative spatial proteomics [4]. Within-map profiling precision was 

markedly improved with DIA (complex scatter reduced by 13% with discovery DIA and by 19% with library DIA; 

Fig. 2E), and inter-map profile reproducibility was greatly enhanced (profile scatter reduced by 24% with 

discovery DIA and by 35% with library DIA; Fig. 2F). Taken together, these data demonstrate that DIA-DOMs 

strongly outperform our previously established label free DDA-DOMs with regards to depth, organellar 

resolution, precision and reproducibility. Remarkably, this drastic improvement is already achieved with 

discovery DIA using an in silico predicted spectral library, and can be boosted even further by using a measured 

peptide library. 

 

High-throughput liquid chromatography enables faster and deeper DIA-DOMs  
Based on the outstanding depth of DIA-DOMs with 100 min LC gradients, we next evaluated the performance of 

shorter LC formats, with the aim to establish a fast organellar mapping workflow. We used the Evosep One LC 

system [34], which runs pre-mixed gradients with standard lengths of 21 or 44 minutes, and reduces overhead 

time between samples to a few minutes. To avoid any confounding effects caused by peptide library generation, 

we first gauged the performance with DIA processing using the in-silico library (discovery DIA). We compared 

DIA-DOMs run with 100 min (nanoLC), 44 min or 21 min gradients (Evosep), which revealed an almost linear 

relationship between the number of profiled proteins and runtime (Fig. 3A and Supplementary Fig. 3A, B). 
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Remarkably, the 44 min gradient DIA-DOMs had a similar depth (2,681 PGs profiled across all three map 

replicates) as our previous 100 min gradient DDA-DOMs (Fig. 2B), and even with 21 min gradients, more than 

1,600 PGs were profiled across three replicates. The organellar prediction performance of both short gradient 

maps was lower (Fig. 3B), but still fairly high in absolute terms (F1 = 0.7). The difference was mostly caused by 

substantial drops in the classifications of three organelles, Golgi, ERGIC/cis-Golgi and peroxisomes, which are 

particularly challenging to resolve in HeLa cells (Supplementary Fig. 3C). As expected, shortening the LC gradients 

also reduced profiling precision (Fig. 3C) and reproducibility (Fig. 3D). Nevertheless, even the shortest (21 min) 

gradient provided astonishingly well-resolved maps in only around 2.5 hours of machine time, equivalent to a 

throughput of over 9 maps per day. Furthermore, processing with a measured peptide library increased the 

depth of 21 min gradient maps to 3,105 PGs (+89%), and the depth of 44 min gradient maps to 4,411 PGs (+65%; 

Fig. S3D), with substantial gains in reproducibility (Supplementary Fig. 3E), making fast DIA-DOMs even more 

useful for high-throughput screens and rapid pilot experiments. 

MaxQuant 2.0 allows DIA processing of fractionated samples, and we next explored if off-line peptide 

fractionation and analysis spread over several short LC runs may improve the performance relative to a ‘single-

shot’ LC run of equivalent length. Since the Evosep LC system minimizes sample loading overheads, this approach 

also optimizes the machine-time to gradient-time ratio. We triple-fractionated our benchmark samples by 

peptide STAGE-tipping [25] and analyzed them with 3 x 44 min LC gradients (with 5 min overheads), which 

requires little more overall machine time than a single run with a 100 min nanoLC gradient (with 35 min 

overheads). Remarkably, fractionation yielded approximately 1,500 additional profiled PGs relative to the single 

shot 100 min gradient (6798 vs 5241 PGs, +30%; Fig. 3A), with similar SVM performance, precision and profile 

reproducibility (Fig. 3B-D). 

We also analyzed maps with 3 x 21 min gradients. Relative to the 100 min gradient, this reduced machine time 

by approximately 50%, but incurred only a moderate drop in performance (Fig. 3A-D), and is thus a suitable 

intermediate format. Finally, we ran fractionated samples with 3 x 100 min nanoLC gradients, to provide ultra-

deep coverage. Compared to the single-shot 100 min gradient, this yielded a further 2,496 proteins (7,737, 

+48%), with further improvements to SVM performance (F1 0.90 vs 0.88) and profile reproducibility (Fig. 3D). Of 

note, these are the deepest organellar maps from HeLa cells to date, and we provide the SVM protein subcellular 

localization predictions in Supplementary Table 1.   

In conclusion, our data show that deep, high-accuracy DIA-DOMs can be prepared with short LC gradients, 

enabling high-throughput spatial proteomics. The Evosep One LC system allows convenient scaling of the runtime 

to the experimental requirements. In conjunction with the ability of MaxQuant to combine off-line fractionated 
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DIA samples, single long gradients can be replaced with multiple short gradients, which enhances map 

performance even further.  

DIA-DOMs reveal cellular effects of starvation and Bafilomycin A1 treatment 
We next tested the capabilities of DIA-DOMs for detecting induced subcellular localization changes. Nutrient 

deprivation in combination with Bafilomycin A1 (BafA) treatment is a widely-used method to investigate 

autophagy [35]. While the starvation induces metabolic changes including autophagy [36], the BafA treatment 

increases endo-lysosomal pH by inhibiting vATPase function and thus prevents lysosomal protein degradation 

[37,38]. This helps to gauge autophagic flux, and facilitates the capture of autophagic structures by imaging [35]. 

However, the endosome is a major protein trafficking hub, and increasing lumenal pH blocks endosomal exit 

pathways. As a result, proteins that normally cycle between endosomes and the plasma membrane, or between 

endosomes and the Golgi, become trapped in endosomes [39,40]. This ‘side effect’ of BafA treatment is largely 

ignored in investigations of autophagy, but may have considerable bearings on the interpretation of results. 

Moreover, it is not generally known which proteins get trapped, as only relatively few have been identified to 

date [15,39–41]. Here, we applied DIA-DOMs for the first global analysis of subcellular localization changes 

induced by starvation and BafA treatment. 

We prepared triplicate DIA-DOMs (100 min gradients, library DIA processing) and full proteomes from HeLa cells 

that were either starved for 1h in the presence of BafA, or left untreated. Evaluation with DOM-QC showed that 

the two conditions yielded topologically very similar maps (Fig. 4A). The strength of DIA-DOMs was highlighted 

again by the remarkable profiling depth (>6,500 PGs in each condition), the almost complete overlap of profiled 

proteins (Fig. 4B) and the near identical quality (Fig. 4C) of the maps. 

To identify proteins with altered subcellular localization, we performed our previously established movement 

and reproducibility (MR) analysis [11,42]. Since starvation and BafA treatment drastically reprograms cellular 

metabolism, we expected pleiotropic subcellular rearrangements, in addition to endosomal trapping. Setting a 

high stringency cut-off (False Discovery Rate (FDR) = 5%), we identified 114 proteins with significant localization 

shifts (Fig. 4D; Supplementary Table 2). Of these, 103 were also quantified in our full proteomes (Supplementary 

Fig. 4A), and only one changed significantly in abundance. Thus, our MR analysis specifically revealed proteins 

that respond to starvation and BafA1 treatment by subcellular re-localization. To categorize hits functionally, we 

performed hierarchical clustering on the profile changes and identified five main groups (Fig. 4E; see 

Supplementary Fig. 4B for detailed clustering and Supplementary Fig. 4C for enrichment analysis). The first 

cluster contained eight Golgi proteins, while the second cluster included seven secreted/secretory pathway 

proteins. These proteins all shifted towards an endosomal profile, consistent with endosomal trapping 

(Supplementary Table 2). The third and largest group predominantly contained proteins involved in translation 
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and mRNA processing (including over 40 core ribosomal proteins), which shifted towards the highest speed 

fraction (Fig. 4E and Supplementary Table 2). This is consistent with a starvation-induced reduction of 

translational activity, resulting in an increased number of free ribosomes or smaller translational assemblies. The 

remaining two clusters were more heterogeneous, and included several DNA binding proteins/transcriptional 

regulators. Of note, they contained two of our top hits, DNMT3B and Glycerol kinase (GK). DNMT3B is a DNA 

methyl transferase. Interestingly, its close homologue DNMT3A has recently been shown to exert a ‘memory’ 

function in autophagy, by long-term regulation of expression of autophagy-associated genes upon starvation 

[43], suggesting a related function for DNMT3B. GK is a key modulator of energy and lipid metabolism; its 

association with the outer mitochondrial membrane is regulated by starvation [44], and this response is captured 

by our maps (Supplementary Table 2).  

The hits in Fig. 4D/E represent only the most prominent translocation events in our dataset. Therefore, we 

created an interactive database for the exploration of individual profile shifts (Supplementary Table 2).   

Taken together, our DIA-DOMs analysis revealed a broad spectrum of known and novel subcellular 

rearrangements related to gene regulation and metabolism induced by starvation and BafA1 treatment, as well 

as endosomal trapping of diverse endomembrane proteins. Intriguingly, we identified eight Golgi proteins that 

shifted towards endosomes. This group contains some of the strongest hits (e.g., GLG1 and TM9SF2, Fig.4D), 

prompting us to characterize the behaviour of Golgi proteins in more detail.   

 

Systematic identification of Bafilomycin A1 sensitive anterograde cycling Golgi 
proteins 
Endosomal trapping of some Golgi proteins has previously been reported [15,39–41], but it has not been studied 

systematically which Golgi proteins are susceptible. Such an analysis could distinguish Golgi proteins with 

anterograde cycling from those that are relatively static, which would shed light on a fundamental feature of 

Golgi homeostasis (Fig. 5A). Intriguingly, the eight endosome-trapped Golgi proteins identified above (Fig. 4E and 

Supplementary Fig. 4B) differed considerably in shift magnitudes (Fig. 4D), indicating differential degrees of 

trapping. This also suggested that there may be further Golgi proteins with partial shifts below the detection 

limit of the MR analysis at 5% FDR. For a comprehensive and systematic characterization of Golgi protein 

behaviour, we therefore developed a targeted cross-correlation analysis strategy. We first compiled a list of all 

transmembrane (32) and lumenal (2) Golgi proteins from our untreated maps. We then calculated all pairwise 

correlations of their shift profiles, and performed hierarchical clustering. Strikingly, two clearly segregated groups 

emerged from the data (Fig. 5B). The first group (Cluster 1) contained all eight proteins identified by MR analysis, 
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which formed a particularly well-defined core. The first group also included the two lumenal Golgi proteins (SDF4 

and FAM3C), suggesting that these may be subject to endosomal trapping too. To characterize cluster behaviour 

in detail, we plotted the shifts for all proteins in PCA space (Fig. 5C, D). Cluster 1 proteins showed largely parallel 

shifts of different magnitudes from Golgi to endosomes/lysosomes (Fig. 5C). In contrast, Cluster 2 proteins 

showed variable shifts within the Golgi boundaries (Fig. 5D). Thus, our data reveal two classes of Golgi proteins 

– those that undergo partial or complete endosomal trapping (Cluster 1), and those that do not show any 

trapping under the experimental conditions (Cluster 2). To assess the individual degree of trapping for proteins 

in Cluster 1, we ranked them by absolute profile shift magnitudes (Fig. 5E). The top eight proteins corresponded 

to the hits from our MR analysis (primary hits). Importantly, the 13 secondary hits included both GOLM1 and 

GOLIM4, which have previously been shown to undergo endosomal trapping [41]. Inspection of individual profile 

shifts allowed us to further classify the transitions as complete, partial or marginal translocations (Supplementary 

Table 2; we also removed three proteins with negligible shifts (YIPF3, ACSL4, IMPAD1)). Shift differences may 

reflect different cycling kinetics, with fast cycling proteins showing more complete transitions. For further 

orthogonal validation of our predictions, we selected three proteins with different profiling behaviour for 

imaging: GLG1 and TGOLN2 (also known as TGN46) from Cluster 1, and GALNT2 from Cluster 2 (Fig. 5F). HeLa 

cells were starved and BafA treated as before, or left untreated. Colocalization analysis by widefield microscopy 

fully confirmed our profile analysis: as predicted, GLG1 showed complete transition from Golgi to a punctate 

endosomal pattern, TGOLN2 underwent a partial translocation, and GALNT2 retained its Golgi pattern (Fig. 5G). 

Furthermore, we confirmed that the re-localization was caused by the BafA treatment, and not by starvation 

(Supplementary Fig. 5A, B). 

In sum, our targeted correlation-based analysis increases the sensitivity of Dynamic Organellar Maps for 

detecting small, but highly correlated shifts, and enables prediction of relative phenotype strength. Our 

systematic assessment of Golgi protein anterograde cycling behaviour illuminates an important aspect of Golgi 

organelle homeostasis, and demonstrates the power of DIA-DOMs for functional investigations. 
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Discussion 
Dynamic organellar maps (DOMs) capture protein localizations and their changes at the proteomic scale, and the 

approach has driven diverse discoveries in cell and medical biology [11,13–17]. The bottleneck of our original 

DDA-based workflow was the considerable MS time required to achieve deep coverage. Here, we introduce label-

free DIA-DOMs, which overcome this limitation. DIA-DOMs achieve twice the proteomic depth of DDA-DOMs in 

the same MS time, and require only one third of the MS time to reach the same depth. 

Three tools were instrumental for establishing DIA-DOMs. First, we created DOM-QC 

(https://domqc.bornerlab.org), an open source web app for the analysis of profiling data. While previous quality 

assessment tools focused on organellar resolution (MetaMass and QSep [45,46]), DOM-QC additionally assesses 

profile precision and reproducibility, which are key parameters for comparative experiments. DOM-QC enables 

comprehensive, standardized formatting and benchmarking of profiling data, and facilitates objective method 

optimization. Second, the high-throughput Evosep One HPLC system allowed us to explore short-gradient maps. 

While DIA-DOMs work well with a conventional nano LC, the Evosep greatly enhances MS runtime efficiency and 

scalability of the method. Third, MaxQuant 2.0 can process DIA samples split over several fractions, a powerful 

feature currently not offered by other mainstream DIA software. This allowed us to combine several long LC runs 

into an ultra-deep mapping analysis. Moreover, in conjunction with the Evosep, it enabled us to replace single 

long LC gradients with multiple short Evosep gradients of equivalent overall run time, which considerably 

improved performance. Based on our extensive optimization, we now recommend the following formats for DIA 

organellar mapping: 1) Deep mapping with 12 hours of MS time per map, either using single runs on a 100 min 

nanoLC gradient, or fractionation/triple runs with 44 min Evosep gradients; 2) High-throughput maps with 

approximately 2.5 hours MS time per map, using Evosep 21 min gradients. Suitable peptide libraries generated 

by additional DDA measurements further boost the performance of either format.  

DIA-DOMs now replace our previous label-free DDA-DOMs [19], as they strongly improve map performance 

across all metrics. Our original DDA-SILAC DOMs [11,19] still have better precision than label-free DIA-DOMs 

(Supplementary Fig. 5C), but DIA-DOMs have similar reproducibility and offer three times greater proteomic 

depth in the equivalent MS run time (Supplementary Fig. 5D, E). In systems that allow metabolic labelling, DDA-

SILAC DOMs may still offer an advantage where there is a need to detect very small protein translocations. Future 

studies should investigate if DIA-SILAC DOMs may further enhance the performance. 

By achieving highly reproducible organellar profiles, the original DOMs approach enabled MS-based comparative 

spatial proteomics for the first time [11]. Today, several global organellar profiling approaches are firmly 

established, including LOPIT, PCP, SUBCELLBARCODES and DOMs [3–10]. All provide high-quality organellar 

maps, and have individual advantages [3,4]. DOMs have the simplest workflow, require the least MS runtime, 
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and provide robust maps from label-free samples. We would hence argue that DIA-DOMs currently offer the 

easiest option for labs venturing into spatial proteomics. Our extensive protocols [42], in conjunction with our 

DOM-QC tool, further facilitate rapid method establishment. Of note, the Olsen lab recently introduced a fast 

spatial proteomics method based on chemical fractionation [9], which provides complementary insights to our 

centrifugation-based profiling of intact organelles. Their approach also utilizes 21 min Evosep gradients, as 

implemented here for rapid DIA-DOMs, and achieved a similar depth to our method, suggesting that this is a 

robust LC-MS approach with consistent performance across sites. 

To test DIA-DOMs for phenotype discovery, we assessed protein localization changes upon nutrient starvation in 

the presence of Bafilomycin A1. This treatment is routinely used to investigate autophagy, but also blocks protein 

exit from endosomes, which causes a poorly characterized traffic jam in the endomembrane system. Our analysis 

mapped hundreds of protein localization changes associated with starvation and metabolic reprogramming, as 

well as extensive endosomal trapping of secretory pathway proteins, which can be explored through our 

interactive database (Supplementary Table 2). Intriguingly, a large proportion of the endosomally trapped 

proteins normally reside in the Golgi. To further dissect how Golgi homeostasis is affected, we performed a 

targeted profile shift analysis of all Golgi proteins captured by our maps. This revealed two populations: those 

that undergo endosomal trapping and those with persistent Golgi localization. This observation is consistent with 

a model in which some Golgi proteins undergo anterograde cycling via endosomes, and others do not, as 

previously proposed [39]. Our data now substantially expand this model. First, we provide a systematically-

derived compendium of anterograde cycling Golgi proteins. Furthermore, we observe pronounced differences in 

the degree of endosomal trapping within the experimental timeframe. Phenotypic strength varied from 

complete transitions (e.g., GLG1), to partial (TGOLN2/TGN46) and very subtle shifts (e.g., GOLIM4). The simplest 

explanation is that proteins cycle with different kinetics and that fast-cycling proteins undergo more complete 

shifts. While our data support the existence of a distinct pool of static proteins, these may also cycle, but with 

very slow kinetics or under different physiological conditions; alternatively, the cycling route may bypass the 

endosome. While we currently cannot distinguish between these scenarios, our identification of large sets of 

apparently static and cycling proteins, and the prediction of their relative cycling speeds, will facilitate future 

investigations into this fundamental property of Golgi proteins.  

In conclusion, DIA-DOMs enable label-free organellar profiling with unprecedented depth, speed and precision, 

and provide a powerful tool for systematic phenotype discovery.  
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Materials and Methods 

Experimental Protocols 

Antibodies 

The following antibodies were used in this study: rabbit anti-GLG1 1:200 for IF (Sigma Aldrich Cat# SAB1303679), 

mouse anti-GALNT2 1:200 for IF (BioLegend Cat# 682302, RRID:AB_2566611), mouse anti-LC3B 1:400 for IF (MBL 

International Cat# M152-3, RRID:AB_1279144), and sheep anti-TGN46 (TGOLN2) 1:200 for IF (Bio-Rad Cat# 

AHP500, RRID:AB_324049). Fluorescently labelled secondary antibodies were purchased from Thermo Fisher 

Scientific and used at 1:500 for IF: Alexa Fluor 488-labelled donkey anti-mouse IgG (Cat# A-21202, RRID: 

AB_141607), Alexa Fluor 568-labelled donkey anti-rabbit IgG (Cat# A10042, RRID:AB_2534017), and Alexa Fluor 

680-labelled donkey anti-sheep IgG (Cat# A-21102, RRID:AB_2535755). 

Cell culture 

HeLa cells [47] were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco Cat# 31966-021), 

supplemented with 10% (v/v) foetal bovine serum (FBS; Gibco Cat# 10270106) and 1% (v/v) 

penicillin-streptomycin solution (Gibco Cat# 15140122). Cells were maintained at 37 °C in a humidified 

atmosphere of 5% CO2. 

Starvation and BafA treatment 

For starvation, HeLa cells were washed three times with Dulbecco’s Phosphate Buffered Saline (PBS) (Gibco Cat# 

14190-094) and then incubated for 1 h in Earle’s Balanced Salt Solution (EBSS; Sigma-Aldrich Cat# E2888). Where 

indicated, cells were incubated in 100 nM Bafilomycin A1 (BafA, Merck, Cat# 19-148) for 1 h, in full medium 

(DMEM + 10% FBS) or EBSS (starve + BafA). 

Immunofluorescence microscopy 

For widefield microscopy, HeLa cells were grown onto 13 mm coverslips and fixed in 3% (v/v) formaldehyde in 

PBS for 20 min at room temperature. Residual aldehyde groups were quenched with 20 mM glycine in PBS for 5 

min. Formaldehyde fixed cells were permeabilized with 0.1% (w/v) saponin in PBS for 10 min and blocked in 1% 

(w/v) BSA/0.01% (w/v) saponin in PBS (BSA block) for 10 min. Primary antibody (diluted in BSA block) was added 

for 1 h at room temperature. Coverslips were washed three times in BSA block and then fluorophore-conjugated 

secondary antibody (diluted in BSA block) was added for 30 min at room temperature. Coverslips were then 

washed three times in PBS. Nuclei were stained with DAPI (300 nM in PBS; Thermo Scientific Cat# 62248) for 5 

min. Coverslips were washed in PBS, followed by a final wash in ddH2O, before being mounted in ProLong™ Glass 

Antifade Mountant (Invitrogen Cat# P36980). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2021.11.09.467934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467934
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

Microscopy was performed at the Imaging Facility of Max Planck Institute of Biochemistry, Martinsried, using a 

Leica DMi8 inverted microscope (Leica Thunder) equipped with a Leica DFC9000 GTC Camera, a 63x/1.47 oil 

objective (HC PL APO 63x/1.47 OIL) and an iTK LMT200 motorized stage, and controlled by Leica Application 

Software X (LAS X) version 3.5.5.19976. Images are representative of two biological replicates (independent 

starvation/BafA treatments performed on separate days), with immunofluorescence labelling and microscopy 

performed independently for each replicate. Cells were selected for imaging using the DAPI channel only in the 

Navigator software module of LAS X. ImageJ version 1.53q was used for cropping and global brightness/contrast 

adjustments, which were performed uniformly across all images. 

Generation of label-free organellar maps 

To avoid sample-related variation during method optimization, we generated three large-scale replicate maps 

from HeLa cells, each from 3 x 15 cm dishes at 70-90% confluency, on a single day.  Protein samples were digested 

with LysC and Trypsin (see below). All subsequent peptide clean-ups and peptide fractionations were performed 

from the same set of digests. For the comparative experiment (Fig. 4 and 5), organellar maps were prepared 

from control HeLa cells (untreated) and HeLa cells that had been starved for 1 h in the presence of Bafilomycin 

A1 (100 nM), in triplicate, each from 1 x 15 cm dish at 70-90% confluency. All six maps were generated on the 

same day. 

Dynamic Organellar Maps workflow. Cell lysis and subcellular fractionation were performed as reported 

previously [11,42]. All steps were performed at 4 °C with pre-chilled ice-cold buffers. HeLa cells were washed in 

PBS (without CaCl2 and MgCl2), incubated in PBS for 5 min, rinsed with hypotonic buffer (25 mM Tris・HCl, pH 

7.5, 50 mM sucrose, 0.5 mM MgCl2, 0.2 mM EGTA), and immediately incubated in hypotonic buffer for 5 min. 

Cells were drained, scraped into a total volume of 4 mL of fresh hypotonic lysis buffer and mechanically lysed 

with 15 strokes of a pre-chilled Dounce homogenizer (7 mL, tight pestle, Kontes Glass Co.). Sucrose was restored 

to 250 mM with hypertonic sucrose buffer (25 mM Tris・HCl, pH 7.5, 2.5 M sucrose, 0.5 mM MgCl2, 0.2 mM 

EGTA). 

All centrifugation steps were performed at 4 °C with the fastest acceleration and deceleration settings. Crude 

cell lysates were centrifuged at 1000 × g for 10 min (Multifuge 1 L, Heraeus) to pellet nuclear material and 

unbroken cells (‘1K’ fraction). Post-nuclear supernatants were transferred to new tubes and centrifuged at 3,000 

× g for 10 min (‘3K’ fraction). Post-3000 × g supernatants were transferred to ultracentrifuge tubes and further 

sub-fractionated using the Optima™ MAX Ultracentrifuge (Beckman Coulter) with a pre-chilled TLA 110 rotor 

(Beckman Coulter) by sequential centrifugation steps, each time collecting a protein pellet and transferring the 

supernatant to a new ultracentrifuge tube: 10,000 rpm (5,400 × g) for 15 min (‘6K’ fraction), 15,000 rpm (12,200 

× g) for 20 min (‘12K’ fraction), 21,000 rpm (24,000 × g) for 20 min (‘24K’ fraction), and 38,000 rpm (78,400 × g) 
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for 30 min (‘80K’ fraction). All pellets were resuspended in 1×SDS buffer (2.5 % SDS, 50 mM Tris・HCl, pH 8.1). 

The supernatant obtained after the final centrifugation step (cytosolic fraction) was mixed at a 4:1 ratio with 

5×SDS buffer (12.5 % SDS, 50 mM Tris・HCl, pH 8.1). Samples were heated at 72 °C for 5 min and sonicated using 

a Bioruptor (Diagenode Inc) with fifteen 30 s on/off cycles at maximum intensity. Fully solubilized samples were 

stored at -80 °C. Protein concentrations were determined using the Thermo Scientific™ Pierce™ BCA 

(bicinchoninic acid) Protein Assay Kit (Thermo Scientific™ Cat# 23225). Following concentration determination, 

DTT (Sigma-Aldrich Cat# D0632-25G) was added to a final concentration of 1 mM before preparing the samples 

for mass spectrometry. 

Sample preparation for mass spectrometry 

In-solution digestion of proteins. Protein was precipitated by the addition of five volumes of ice-cold acetone, 

incubated at -20°C overnight and pelleted by centrifugation at 10,000 × g (Centrifuge 5418R, Eppendorf) for 5 

min at 4°C. All subsequent steps were performed at room temperature. Precipitated protein pellets were 

drained, air-dried for 5 min, resuspended thoroughly in urea buffer (8 M urea, 50 mM Tris・HCl, pH 8.1, freshly 

added 1 mM DTT), and incubated for 15 min. Sulfhydryl groups were alkylated by the addition of 5 mM 

iodoacetamide for 1 h in the dark. Proteins were enzymatically predigested by the addition of LysC (1 µg per 50 

µg of protein; Wako Cat# 129-02541) for overnight incubation. Predigests were then diluted four-fold with 50 

mM Tris, pH 8.1 (final urea concentration < 2 M) before addition of trypsin (1 µg per 50 µg of protein; 

Sigma-Aldrich Cat# T6567) for a 3 h incubation. The reaction was stopped by the addition of 1 % trifluoroacetic 

acid (TFA, final pH < 3). Samples were incubated on ice for 10 min and spun at 10,000 × g for 5 min at 4 °C. 

Supernatants were transferred to new tubes for peptide storage at -20 °C. 

Purification and fractionation of peptides. Peptides were purified either by solid-phase extraction with 

poly(styrenedivinylbenzene) reverse-phase sulfonate (SDB-RPS), as previously described [25], or by LC trapping 

using commercially available C18 StageTips (EvoTips Cat# EV2001) of the Evosep System, according to the 

manufacturer’s instructions. In brief, EvoTips were activated by wetting the C18 material in 1-propanol, washed 

with Evosep buffer B (0.1 % [v/v] formic acid in acetonitrile), and wetted in 1-propanol again for 5 min. Soaked 

tips were washed with Evosep buffer A (0.1 % [v/v] formic acid), then with 0.2 % formic acid and then loaded 

with 200 ng acidified peptide sample. EvoTips were washed with Evosep buffer A, and finally loaded with Evosep 

buffer A and stored at 4 °C until analysis by mass spectrometry. Peptides purified via the SDB-RPS approach were 

dried at 45 °C in a centrifugal vacuum concentrator (Concentrator 5301, Eppendorf), resuspended in buffer A* 

(0.1 % [v/v] TFA, 2 % [v/v] acetonitrile), and stored at -20 °C until analysis by mass spectrometry. 

For deep measurements and the DDA library for the 100 min gradient, peptides were triple-fractionated on 

SDB-RPS StageTips [25]. StageTips were washed with 100% acetonitrile, equilibrated with StageTip equilibration 
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buffer (30% [v/v] methanol, 1% [v/v] TFA), and washed with 0.2 % (v/v) TFA. 20 μg of peptides in 1 % TFA were 

loaded onto activated stage-tips, washed with isopropanol, and then twice with 0.2% (v/v) TFA. Peptides were 

eluted in three consecutive fractions by applying a step gradient of increasing acetonitrile concentrations: 20 μL 

SDB-RPS-1 (100 mM ammonium formate, 40 % [v/v] acetonitrile, 0.5 % [v/v] formic acid), then 20 μL SDB-RPS-2 

(150 mM ammonium formate, 60 % [v/v] acetonitrile, 0.5 % [v/v] formic acid), then 30 μL SDB-RPS-3 (5 % [v/v] 

NH4OH, 80 % [v/v] acetonitrile). For the DDA libraries for the 21 and 44 min gradients, peptides were fractionated 

into a final eight fractions using a Pierce High pH reversed-Phase Peptide Fractionation Kit (Thermo Fisher 

Scientific, 84868), according to the manufacturer’s instructions. 

Mass spectrometric analysis 

All measurements were performed on a Thermo Exploris 480 mass spectrometer, with minimal chromatography 

column changes. Several MS setups and strategies were tested, most importantly data independent vs data 

dependent acquisition. The effect of gradient length on map quality was evaluated for 21, 44 and 100 min 

gradients, for both triply SDB-RPS fractionated [25] and unfractionated samples. 

Liquid Chromatography. Nanoflow reversed-phase chromatography was performed using either the Evosep One 

(Evosep Biosystems) or the EASY-nLC 1200 ultra-high-pressure system coupled online to an Orbitrap Exploris 480 

instrument via a nano-electrospray ion source (all Thermo Fisher Scientific). On the EASY-nLC 1200 system a 

binary buffer system with the mobile phases A (0.1 % [v/v] formic acid) and B (80 % acetonitrile, 0.1 % [v/v] 

formic acid) was employed. Peptides were separated in 100 min at a constant flow rate of 300 nL/min on a 50 

cm × 75 µm (i.d.) column with a laser-pulled emitter tip, packed in-house with ReproSil-Pur C18-AQ 1.9 µm silica 

beads (Dr. Maisch GmbH). The column was operated at 60 °C using an in-house manufactured oven. In total, 300 

ng of purified peptides in Buffer A* were loaded onto the column in Buffer A and eluted using a linear 84 min 

gradient of Buffer B from 5 % to 30 %, followed by an increase to 60 % B in 8 min, a further increase to 95 % B in 

4 min, a constant phase at 95 % B for 4 min, followed by washout – a decrease to 5 % B in 5 min and a constant 

phase at 5 % B for 5 min – before re-equilibration. On the Evosep One LC system a binary buffer system with the 

mobile phases A (0.1 % [v/v] formic acid) and B (0.1 % [v/v] formic acid in acetonitrile) was used. Peptides were 

separated in 21 min at a flow rate of 1.0 µL/min on an 8 cm column (with a throughput of 60 samples per day 

[SPD]) or 44 min at a flow rate of 0.5 µL/min on a 15 cm column (with a throughput of 30 SPD), using in-house 

packed columns and standard pre-programmed gradients. The 15 cm in-house packed column was operated at 

60 °C using an in-house manufactured oven. 

Mass spectrometry. For DDA, the Orbitrap Exploris 480 mass spectrometer run by Xcalibur (v.4.4, Thermo Fisher) 

was operated in top 15 scan mode (DDA) with a full scan range of 300 - 1650 Th when coupled to the EASY-nLC 

1200 system (100 min gradient). Survey scans were acquired at 60,000 resolution with an automatic gain control 
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(AGC) target of 3 × 106 charges and a maximum ion injection time of 25 ms. The selected precursor ions were 

isolated in a window of 1.4 Th, fragmented by higher-energy collisional dissociation (HCD) with normalized 

collision energies of 30. Fragment scans were performed at 15,000 resolution, with a maximum injection time of 

28 ms, an AGC target of 1 × 105 charges, and a precursor dynamic exclusion for 30 s. Acquisition schemes for the 

data-independent acquisition (DIA) scan mode used here were described previously [48,49], but were optimized 

and tailored for the Dynamic Organellar Maps approach. In brief, the DIA method for the 100 min gradient 

consisted of one survey scan that was followed by 33 variably sized MS2 windows (17-161 Th) in one cycle, 

resulting in a cycle time of 2.5 s. Survey scans were acquired at 120,000 resolution with an AGC target of 3 × 106 

charges and a maximum injection time of 60 ms covering a m/z range of 350 – 1,400. MS2 scans were acquired 

at 30,000 resolution with an Xcalibur-automated maximum injection time, covering a m/z range of 332 (lower 

boundary of the first window) to 1,570 (upper boundary of the 33rd window). The DIA method for the 44 min 

and 21 min gradient consisted of one survey scan that was followed by 35 equally sized MS2 windows (19.2 Th 

with 1 Th overlap) in one cycle, resulting in a cycle time of 1.5 s. Survey scans were acquired at 120,000 resolution 

with an AGC target of 3 × 106 charges and a maximum injection time of 45 ms, covering a m/z range of 350 – 

1,400. MS2 scans were acquired at 15,000 resolution with a maximum injection time of 22 ms, covering a m/z 

range of 361 - 1,033. 

Bioinformatic analysis 

Raw data analysis 

For peptide and protein identification, MS raw data were imported into MaxQuant version 1.6.7 or 2.0.0.0 [32] 

(see below). Unless otherwise stated, default parameters were used for all settings. The MS2 spectra were 

searched against the SwissProt entries contained in the UniProt human reference proteome FASTA database 

(UP000005640_9606, 42,418 entries). Spectral libraries were constructed using DDA raw data of fractionated 

subcellular samples of the same organellar maps that were used for the data acquired in DIA mode.  

Spectral library generation and DDA analysis. For spectral libraries and the DDA benchmark, DDA raw files were 

processed in MaxQuant (v.1.6.7) [30,50] employing the Andromeda search engine [51]. For accurate label-free 

quantification, the ‘MaxLFQ algorithm’ [20] was enabled with LFQ minimum ratio count of 1 and the 

match-between-runs feature was enabled to  match between equivalent and adjacent subcellular fractions of 

replicates. Each spectral library was assembled from 21 samples or 56 samples (six subcellular fractions as used 

for mapping, plus cytosol, each fractionated at the peptide level 3-fold or 8-fold as described above). A dedicated 

library was generated for each LC gradient length (100 min, 159,000 peptides; 44 min, 89,000 peptides; 21 min, 

59,500 peptides).  
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DIA analysis. DIA raw files were processed via MaxDIA [32], which is embedded into the MaxQuant software 

environment (v.2.0.0.0), using default settings except for using a minimum LFQ ratio count of 1. For both the 

discovery and library DIA approaches, spectral libraries of peptides were provided in the form of ‘peptides’, 

‘evidence’, and ‘msms’ files. Whereas for the library approach these files were obtained from MaxQuant DDA 

searches, for the discovery approach an in silico predicted library for all human peptides with up to 1 missed 

cleavage was used. The prediction had previously been generated using the DeepMass:Prism tool [33]. The 

provided library was filtered to contain only Swiss-Prot entries, using a python script (github.com/cox-

labs/DIAtools/tree/main/Misc/FilterAdditional). 

Downstream data quality analysis using the DOM-QC web app 

The intra- and inter-experimental quality of the dynamic organellar maps was evaluated to assess the 

performance of different combinations of MS methods, LC-MS setups, and processing strategies. To enable the 

visual exploration and quality assessment of spatial proteomics data, we developed DOM-QC, a web-based app 

(https://domqc.bornerlab.org). The workflow is entirely based on the Python scripting language and uses several 

external libraries as documented on github (https://github.com/valbrecht/SpatialProteomicsQC). DOM-QC 

performs customizable data filtering, normalization, and graphical representation. Various analysis tools allow 

detailed exploration of data, map quality, reproducibility, and resolution. All results can be downloaded as 

support vector graphics, formatted tables and as comprehensive .json files for custom analysis. Importantly, 

several maps can be compared in parallel. With the exception of the protein movement analysis (see below), all 

map analyses shown in the paper were performed using six-point profiles, i.e., protein abundance across 1K, 3K, 

6K, 12K, 24K and 80K fractions. 

Data filtering 

The primary output from MaxQuant or Spectronaut, or preprocessed data with protein quantification across the 

subcellular fractions, can be loaded into DOM-QC. For the MaxQuant output, reverse hits, contaminants and 

proteins only identified by modifications are removed. Further filtering is then performed at the level of 

individual maps and tailored to each quantification strategy, to obtain datasets with high-quality measurements. 

For SILAC maps, SILAC ratios are retained if they are based on more than two quantification events, or on two 

quantification events where the ratio variability was below 30 %. For each fraction, SILAC ratios are normalized 

by dividing by the median ratio for the fraction. Only proteins with complete profiles are retained, i.e., a valid 

SILAC ratio in each subcellular fraction. SILAC ratios are inverted (assuming that the reference fraction is SILAC 

heavy [11]) and profiles for each protein are 0-1 normalized. For LFQ maps, intensities are already globally 

normalized, hence no further normalization is required. Two stringency filters are applied: First, only profiles 

with LFQ intensities in at least 4 consecutive fractions are considered. Second, profiles are rejected if their 
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average MS/MS count per subcellular fraction is less than two. Then, (0-1) normalization of each profile is 

performed. Filtered datasets were annotated based on a predefined set of 1076 organellar marker proteins 

covering 12 subcellular localizations/organelles [11]. These default settings were used for all datasets in this 

study. 

Protein group alignment 

To compare quantifications from different raw data processing runs, protein groups need to be aligned. We 

implemented a strategy in which we prioritize matching of single-gene locus protein groups with complete 

coverage across experiments, over matching of (rare) multi-gene locus groups and groups with incomplete 

coverage. First, single-gene locus protein groups are temporarily reduced to the canonical id (if present), and 

otherwise to the first listed isoform id. Protein groups that can be found in all compared runs are then re-labelled 

to the reduced protein group id and flagged as ‘primary id’ matches. Typically, this is the case for the majority of 

proteins. Second, we maximize overlap for the remaining multi-gene locus groups, and single-gene locus groups 

with incomplete coverage, at the cost of making less exact matches. Starting with the largest multi-gene locus 

group across all experiments, we match this with its largest remaining subset in each other experiment, removing 

them from the pool of available groups. This is repeated until no multi-gene locus groups remain. These matches 

are re-labelled with all protein ids contained within the group, and either flagged as ‘multiple genes’, if all 

matched protein groups cover identical loci across experiments, or as ‘gene level conflict‘, if different loci were 

covered in different experiments. At the end of this procedure only single-gene locus groups with incomplete 

coverage remain to be aligned. These are reduced in the same way as the single-gene locus full coverage groups 

and are also flagged as ‘primary id‘ matches. To ensure full traceability of the original protein grouping in each 

of the compared search engine runs, an id mapping table is stored and available for download. 

Assessment of proteomic depth 

Proteomic depth is assessed by counting protein groups that are either identified in one or all replicates, and by 

counting proteins that are fully profiled (i.e., passing all quality filters) in one or all replicates. Venn diagrams and 

upsetplots are provided to evaluate overlap of proteins. 

Principal component analysis 

For graphical map representation, filtered and (0-1) normalized data from all experiments compared were 

centered and scaled to unit variance in each fraction, and jointly subjected to principal component analysis (PCA) 

to achieve dimensionality reduction. For each map, the first three principal components were calculated via 

Python’s scikit-learn library (v.0.23.2). Scores plots of PCs 1 and 3 usually provide the best visual resolution of 

clusters. 
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Profile scatter within stable complexes (intramap scatter) 

The subunits of a stable protein complex have identical subcellular distributions, and should therefore have very 

similar abundance profiles. Observed deviations are mostly caused by MS measurement noise, and intra-complex 

protein scatter thus reflects within-map quantification precision. We curated a dataset of around 30 well-

characterized protein complexes with at least five subunits (e.g., 20S core proteasome, CCT, COPI). Within DOM-

QC, starting with the filtered and (0-1) normalized data, profiles that belong to a specified protein cluster are 

extracted and filtered to leave only proteins that were measured with full coverage across all compared maps 

and experiments. By default, only complexes with full coverage data for at least five proteins are analyzed. 

Subsequently, the absolute distance of each subunit profile to the complex median profile is calculated. Smaller 

distances suggest more precise quantification. We observed that the baseline “tightness” varies somewhat 

between complexes, and hence recommend that the overall assessment should be based on at least ten different 

complexes.   

Inter-maps profile reproducibility (intermap scatter) 

To evaluate the reproducibility of (0-1) normalized profiles, the inter-profile scatter across replicates is 

calculated. For each protein, the absolute distance of each replicate profile to the average profile from all 

replicates is calculated; these distances are averaged to obtain this protein’s profile scatter. Global profile scatter 

is then plotted as a density function for proteins common to all compared maps. As an additional output, the 

distribution for all profiled proteins can be displayed, regardless of overlap with the other examined maps. The 

greater the proportion of proteins with low scatter, the better the between-maps reproducibility. As a numeric 

readout, the scatter at a specified quantile of each distribution can be displayed. 

Support vector machine analysis 

To further evaluate the performance of organellar maps, their power to predict protein localization was assessed 

using quality-filtered, (0-1) normalized data with full replicate coverage. For supervised classification a set of 

marker proteins covering 11 subcellular localizations  was used as a means to assign all other proteins to 

organellar clusters by SVMs in Perseus (v.1.6.2.3) [52]; the previously defined ER_high_curvature cluster [11] was 

removed in this study due to the low number of marker proteins in the depth-limited short-gradient datasets. As 

far as practicable (see figure legends), only markers present in all compared datasets were included, and identical 

SVM parameters were used. First, the SVM algorithm was trained on the marker proteins, to determine optimal 

classification parameters and thus define optimal boundaries between the organellar clusters. The kernel was 

set to a radial basis function (RBF) and 8-fold cross-validation was used to ensure models are not overfit. Both 

parameters, Sigma and C were optimized via one-dimensional scans to achieve the minimal overall classification 

error. Second, optimized parameters were used to classify non-marker proteins applying leave-one-out 
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cross-validation. The misclassification matrix from Perseus was then imported into the DOM-QC tool to calculate 

the global marker prediction recall (proportion of correctly predicted to the total number of markers), the 

organelle specific recall (proportion of markers correctly assigned to the cluster), and the organelle specific 

precision (ratio of markers correctly assigned to the number of all markers assigned to the cluster). The harmonic 

mean of recall and precision, the F1 score, was used as the primary readout for SVM performance. 

Protein movement analysis 

The previously established MR plot analysis was used to identify protein profiles that are significantly shifted 

between treatments [11,42], with minor modifications. Here, we compared organellar maps from untreated 

HeLa cells and from HeLa cells that had been starved in the presence of BafA for 1h. This analysis was performed 

in the Perseus environment (v.1.6.2.3). Replicates were numbered 1 to 3. As before [19], the 1K fractions were 

omitted, and profiles were 0-1 normalized to the remaining five datapoints. Next, ‘delta profiles’ were calculated 

within each cognate pair of untreated and treated maps, by subtracting the profiles obtained from each treated 

map from the profiles of its control map. Second, for each of three sets of delta profiles, a robust 

multidimensional outlier test was performed providing three p-values for movement for each protein. The 

median of the three p-values was selected for further analysis, and -log(10) transformed to obtain the Movement 

score (M score). Third, the Reproducibility score (R score) was calculated: the Pearson correlation of all pairs of 

delta profiles was calculated (Rep 1 vs 2, 1 vs 3, 2 vs 3) and the minimum of these (worst correlation) was chosen 

as the R score. M and R scores were then combined into a single score, using the formula CombScore = M x R^7 

(R scores were thus strongly weighted). As a further filter, we also calculated profile reproducibility as the lowest 

Pearson correlation of all six replicate profiles (untreated 1vs2, 1vs3, 2vs3; treated 1vs2, 1vs3, 2vs3). For proteins 

where profile reproducibility was lower than 0.7, the CombScore was set to 0 to effectively exclude them from 

the analysis. For FDR calculation, the six maps were compared in all those combinations not expected to yield 

relevant shifts (Treated1 vs Treated2, Treated1 vs Treated3, Treated2 vs Treated3, Not Treated1 vs Not Treated2, 

Not Treated1 vs Not Treated3, NotTreated2 vs Not Treated3), to obtain six largely static delta profiles as decoy 

distributions. From this comparison, six mock p-values and six mock correlations were calculated. To get a 

stringent FDR, the R score was determined as the second highest correlation of these, and the M score as the -

log10 median p value. The combined score was calculated as above. All proteins were then compiled into a joint 

list, with two entries for each protein (CombScore mock experiment and CombScore comparative experiment). 

Entries were then ranked by CombScore. FDR was calculated as the proportion of entries from the mock 

experiment at a given CombScore cut-off. FDR thus converged onto 50% for low CombScores (equal proportion 

of real and mock hits). We chose an FDR of 5% for generating the list of 114 hits shown in Fig. 4.  
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DOM-QC 1-min Quick Start Guide 

This guide will allow you to test the DOM-QC tool with data generated in this study. 

1. Go to webpage https://domqc.bornerlab.org. 

2. Click on the big green button ‘Benchmark multiple experiments’. 

3. From the ‘Add reference set’ drop-down menu (top right corner), select ‘HeLa 1x100min libraryDIA’. Click the 

‘Load’ button. 

4. Repeat Step 3., to load the ‘HeLa 1x100min DDA’ file.  

You have now loaded two different sets of maps. 

5. Click the big green button ‘Align and analyse selected datasets’. This may take a moment – the program will 

update on progress and tell you when it’s finished (bottom right corner). 

6. Scroll down, and select the ‘Overview’, ‘PCA maps’, ‘Depth and coverage’,… tabs to view the different analyses. 

The sample ‘reference sets’ .json files are already integrated into the DOM-QC tool. To analyse the complete 

datasets generated in this study, upload the .json files provided as Supplementary Data files 1-5. To do so, in step 

3., click the ‘Browse’ button, select a .json file, and upload. 

To configure your own analysis of profiling data, go to the start page and follow the instructions. 

Data availability 

The mass spectrometry proteomics data generated in this study will be deposited to the ProteomeXchange 

Consortium [http://proteomecentral.proteomexchange.org] via the PRIDE partner repository, prior to 

publication, and will be made available to reviewers upon request. 

All DOM-QC analyses in this study can be replicated by upload of the .json files, provided as Supplementary 

Data 1-5, to https://domqc.bornerlab.org. See DOM-QC 1-min Quick Start Guide above. 

Code availability  
The web app DOM-QC introduced in this study is available at https://domqc.bornerlab.org , and the source code 

at https://github.com/valbrecht/SpatialProteomicsQC.  
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Fig. 1. Overview of the Dynamic Organellar Maps workflow, DIA optimization strategy, and 
evaluation with DOM-QC.  HeLa cells were fractionated by differential centrifugation (x g indicated), 
to generate triplicate reference organellar maps. Following tryptic digest, samples were analyzed by 
LC-MS, using either a Thermo EASY-nLC 1200 HPLC, or a high-throughput Evosep One HPLC, coupled 
to a Thermo Exploris 480 orbitrap mass spectrometer. Data were acquired in DDA or DIA mode, and 
DIA processing was performed with library or discovery DIA. For the performance evaluation, data 
were analyzed with the new web app DOM-QC (https://domqc.bornerlab.org), which provides 
multiple info graphics and metrics for assessing map topology, proteomic depth, map resolution and 
reproducibility.  
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Fig. 2 Comparison of DDA, discovery DIA and library DIA based maps. All maps were acquired with 
100 min LC gradients. A) Topology of organellar maps in PCA space. Coloured dots correspond to 
organellar marker proteins. A single PCA was performed across all three experiments. PCs 1 and 3 
provide the best visual separation of clusters. B) Left panel: Number of proteins identified or profiled 
in at least 1 or in all 3 out of 3 replicate maps. Right panel: Overlap of profiled proteins between 
acquisition modes. C) Performance of support vector machine classification. The same 844 marker 
proteins were used for all three maps. F1 scores are the harmonic mean of recall (true positives / [true 
positives + false negatives]) and precision (true positives / (true positives + false positives]), and were 
determined with leave-one-out cross validation. D) Number of organellar assignments, by confidence 
class - (I) high, (II) medium, (III) low. The 844 marker proteins are not included. E) Stacked profile scatter 
within stable protein complexes. Only complexes with at least five subunits quantified across all 
datasets were included. Each bar slice represents the average absolute distance to the median complex 
profile in one map replicate. Thinner slices reflect higher quantification precision. F) Inter-replicate 
scatter, for the 2,651 proteins profiled across all conditions and replicates. X-axis shows the average 
absolute distance of replicates to the corresponding average protein profile. The 70th percentile values 
for all included profiles are: DDA: 0.080; direct DIA: 0.061; library DIA: 0.052. Lower scatter reflects 
higher map reproducibility (X-axis cut at 0.3; <1% of profiles not shown). 
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Fig. 3 Comparison of DIA-DOMs performance with different LC gradients and sample fractionation.  
Comparison of maps measured with a 100 min nanoLC gradient, or with 44 min / 21 min gradients on 
the Evosep One LC system. SDB-RPS STAGE-tipping was employed for triple-fractionation. All maps 
were analyzed with discovery DIA. A) Proteomic depth after filtering for profile completeness across 
three replicates. B) SVM classification performance (average F1 scores). For the single-shot 100 min 
and the triply-fractionated 44 min and 100 min maps, the same 982 organellar marker proteins were 
used. For short gradient single-shot maps and the triply-fractionated 21 min maps, a smaller number 
of detectable marker proteins were used (21 min: 564; 44 min: 782; 3x21 min: 879). C) Stacked intra-
complex scatter, quantified by the average absolute distance to the median complex profile. Only 
complexes with at least five subunits quantified across all datasets were included. Bar slices represent 
scatter in individual replicate measurements. D) Inter-replicate scatter for the 1,516 proteins 
quantified across all datasets. This number was limited by the depth of the 21 min dataset. (X-axis cut 
at 0.3; <8% of profiles not shown.) Inset: equivalent plot for the 4,894 proteins quantified across the 
100 min, 3 x 44 min, and 3 x 100 min datasets, revealing the superior performance obtained with triple 
fractionation. 
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Fig. 4 DIA-DOMs reveal the cellular effects of starvation and Bafilomycin A1 treatment. HeLa cells 
were either left untreated, or starved in the presence of 100 nM BafA for 1 h. DIA-DOMs were prepared 
in triplicate. A) PCA maps of organellar marker proteins show similar topology in both conditions. B) 
Overlap of profiled proteins between untreated and starved + BafA-treated maps, after filtering for 
profile completeness across three replicates. C) Inter-replicate scatter for the 6,389 proteins profiled 
across both conditions. D) Movement-Reproducibility (M-R) analysis detects 114 proteins with 
significantly altered subcellular localization (marked in red and black; FDR=5%). Golgi proteins with 
significant M-R scores are marked in black. E) Hierarchical clustering of the 114 significant delta profiles 
(starved/BafA minus control) by Pearson correlation (colour scale indicates profile change in each 
fraction). Cluster annotation is based on GO-term annotation enrichment (see Supplementary Fig. 4C). 
As expected, we did not observe the re-localization of core autophagic machinery, since HeLa cells 
already have high basal levels of autophagy (see Supplementary Fig. 4D). 
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Fig. 5 In-depth analysis and validation of Golgi protein behaviour caused by starvation and 
Bafilomycin A1 treatment. A) Some Golgi proteins cycle to the plasma membrane and back, via 
endosomes (red). BafA treatment compromises the retrieval pathway, trapping Golgi proteins in 
endosomes; non-cycling Golgi proteins (green) remain unaffected. B) Cross-correlation matrix and 
clustering of integral membrane and lumenal Golgi proteins (colour scale indicates Pearson correlation 
of delta profiles). Gene name colors: red = primary hits from outlier analysis, blue = lumenal proteins. 
Box highlights the core cluster of cycling proteins. C) Absolute movement distance summed over three 
replicates stratifies phenotype strength. The plot also reflects the sensitivity boundary of the MR 
outlier test (primary hits), and shows additional hits identified through the targeted correlation 
analysis (secondary hits). Proteins validated by imaging are highlighted with red boxes. Categorization 
into complete, partial and marginal shifts was based on manual evaluation of profiles. D-F) Protein 
shift trajectories starting at untreated positions overlaid with density plots of relevant organellar 
marker proteins. D) Anterograde cycling Golgi proteins (Cluster 1) shift towards the 
endosome/lysosome. E) Static Golgi proteins (Cluster 2) stay within the core density of the Golgi 
apparatus. F) Movements of three proteins selected for imaging validation. G-H) Widefield imaging of 
immunofluorescence labelling of GLG1, TGOLN2 (TGN46), and GALNT2 validated the localization shift 
predictions shown in F. HeLa cells were left untreated (control) or were starved in the presence of 100 
nM BafA for 1 h. In the merged images, DAPI labelling of the nucleus is also shown (blue). Scale bars: 
10 μm. Images are representative of at least 13 images per condition. G) GLG1 (red) completely 
disperses from the Golgi; H) TGOLN2 (red) shifts away from the Golgi; G-H) GALNT2 (green) remains 
unchanged. Note, the relocalization effects were confirmed to be caused by BafA treatment, and not 
by starvation, by imaging of cells that were starved without BafA or treated with BafA in full medium 
(see Supplementary Fig. 5A and B). 
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Supplementary Fig. 1 Optimization of the DIA workflow. Multiple datasets were acquired with 
different acquisition parameters and data processing strategies. The software app DOM-QC 
(https://domqc.bornerlab.org) was applied for unbiased performance evaluation. In each case, three 
replicate maps were analyzed, which all stemmed from the same subcellular fractionation experiment. 
We scored proteomic depth (number of protein groups profiled across all replicates, the higher the 
better), intra-complex scatter (lower scatter indicates higher quantification precision), and inter-
replicate scatter (lower scatter indicates higher reproducibility). In each panel, the configuration 
selected for this study is highlighted in the legend (bold, underlined). A) Window size optimization 
(variable DIA windows vs equal sized DIA windows). B) Software (MaxQuant 2.0 vs. Spectronaut 14) 
and database (direct/discovery vs. library) for data processing. The same set of raw files was processed 
in four different ways for this comparison. MaxQuant processing yields better quantification precision 
and reproducibility. C) Cycle time optimization for the 44 min gradient. The shorter the cycle time, the 
more quantifications per peak (q/p) were collected; 1.2 s ~ 7 q/p; 1.5 s ~5.0 q/p; 2.0s ~4 q/p. However, 
shorter cycle times necessitate larger DIA windows, which negatively impacts on depth and precision. 
D) Cycle time optimization for the 21 min gradient; 1.2 s ~ 4.5 q/p; 1.5 s ~4.0 q/p; 2.0s ~3.5 q/p. 
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Supplementary Fig. 2 Comparison of DDA, discovery DIA and library DIA based maps, additional data. 
A) Profile data completeness of all identified protein groups, prior to quality filtering. B) Breakdown of 
SVM classification performance (F1 score) by compartment. C) Concordance of SVM predictions with 
previously published SILAC-based organellar maps [11,19], by prediction confidence class (1, high 
confidence; 2, medium confidence; 3, low confidence). Callouts indicate how many (non-marker) 
proteins in each class/experiment were shared with the SILAC reference maps; concordance indicates 
the proportion of agreement. D) Median marker profiles of classified compartments show only minor 
differences with the different acquisition modes. 
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Supplementary Fig. 3 Comparison of DIA-DOMs performance with different LC gradients and sample 
fractionation, additional data. All datasets in A-C were generated with discovery DIA. A) Assessment 
of proteomic depth. id, number of protein groups identified; profile, number of protein groups with a 
complete abundance profile suitable for organellar mapping. Light shade, identified/profiled in at least 
one replicate; dark shade, identified/profiled in all three replicates. Samples were analysed either in 
‘single shot’ with the indicated LC gradient time per subcellular fraction, or in ‘triple shot’ following 3 
x SDB-RPS peptide fractionation. B) Upset-plot showing overlap of proteins profiled with different LC 
gradients. Combinations with intersection sizes <50 were not included. C) Breakdown of SVM 
classification performance (F1 score) by compartment and LC gradient. D-E, comparison of library and 
discovery DIA for short LC gradients. Auxiliary peptide libraries were generated by DDA, separately for 
each gradient (21 min gradient, 59,500 peptides; 44 min gradient, 89,000 peptides). D) Proteomic 
depth, as in A. E) Inter-replicate scatter, for the 1,541 proteins profiled across all experiments. Lower 
scatter reflects higher map reproducibility.    
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Supplementary Fig. 4 DIA-DOMs reveal the cellular effects of starvation and Bafilomycin A1 
treatment, additional data. A) Full-proteome protein abundance analysis of HeLa cells either left 
untreated, or starved in the presence of BafA for 1 h. Triplicates (n=3) were analysed for each 
condition. 5,819 proteins were quantified in at least 5 out of 6 experiments, and included in the 
analysis. Data were analysed with a two-tailed t-test: volcano lines indicate significance thresholds 
(permutation- based FDR = 5%). 103 proteins with shifted subcellular localisation (as indicated by MR 
analysis, Fig. 4) are highlighted in red. Only one of them showed a significant abundance change. B) 
Detailed analysis of the hierarchical clustering shown in Fig. 4E. Delta profiles of proteins with a 
significant subcellular localisation shift were clustered by correlation, yielding five main clusters. Four 
clusters are shown in detail here. The fifth cluster (turquoise, not shown here) contains core ribosome 
proteins and translation associated proteins (see Supplementary Table 2 for a complete list). Please 
note that the ‘Golgi’ cluster also contains a non-Golgi protein (Pygo2), which was not included for the 
analysis in Fig. 5. Furthermore, VPS26A (top of the figure panel) is in a separate cluster (annotated as 
‘cluster 0’ in Supplementary Table 2). C) Enriched GO-terms for the clusters shown in B and in Fig. 4E. 
The green cluster (annotated as ‘various’) did not show any significantly enriched terms. D) HeLa cells 
have a high level of basal autophagy. Widefield imaging of immunofluorescence labelling of LC3B as a 
marker for autophagosomes. Cells were either untreated (control), treated with 100 nM BafA for 1 h 
(control + BafA), starved for 1 h, or starved and treated with 100 nM BafA for 1 h. LC3B positive 
structures are readily detectable even under untreated control conditions. Scale bar: 10 µm. 
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Supplementary Fig. 5 Individual effects of starvation vs. BafA treatment, and performance of DIA 
label-free vs. SILAC organellar maps. A-B) Effect of starvation and BafA treatment on Golgi protein 
localization. Cells were either untreated (control), starved for 1 h, treated with 100 nM BafA for 1 h 
(control + BafA), or starved and treated with 100 nM BafA for 1h. In the merged images, DAPI labelling 
of the nucleus is shown (blue). Scale bars: 10 μm. Images are representative of at least 13 images per 
condition. Note, the same cells are shown for the control and starve + BafA conditions as in Fig. 5G, H. 
A) Widefield imaging of immunofluorescence labelling of the Golgi proteins GLG1 (red) and GALNT2 
(green). Following BafA treatment, with or without starvation, GLG1 shifts from the Golgi to endosomal 
structures, whereas GALNT2 remains in the Golgi. Starvation alone does not affect the localization of 
either protein. B) Widefield imaging of immunofluorescence labelling of the Golgi proteins TGOLN2 
(TGN46; red) and GALNT2 (green). Following BafA treatment, with or without starvation, TGOLN2 shifts 
partially from the Golgi to endosomal structures, whereas GALNT2 remains in the Golgi. Starvation 
alone does not affect the localization of either protein. C-E) Performance of SILAC organellar maps. 
Organellar maps generated in a previous study [11,19] using SILAC metabolic labelling, with 100 min 
LC gradients and DDA, were evaluated against the reference single shot label-free DIA maps, with 100 
min LC gradients, library processing, generated in this study (see Fig. 2). C) SILAC maps have lower 
intra-complex scatter than DIA maps, indicating higher quantification precision. D) DIA maps have 
slightly lower inter-replicate scatter than SILAC maps for the 2,080 proteins profiled across both 
experiment formats. E) DIA maps have triple the profiling depth of SILAC maps (6,615 vs 2,135 protein 
groups after quality filtering). 
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