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Abstract

Targeting the cell nucleus remains a challenge for drug delivery. Here we present

a universal platform for smart design of nano-particles (NPs) decoration that allows

recruitment of multiple dynein motors to drive their active motion towards the nucleus.

The uniqueness of our approach is based on using: (i) a spacer polymer, commonly

Biotin-Polyethylene-glycol-thiol (B-PEG-SH), whose grafting density and molecular
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and ζ-potential measurements, respectively. All measurements are done in a temperature-

controlled chamber at 25 ◦C (± 0.05 ◦C); for data analysis the viscosity is taken as that of

water (0.8872 cP ). The NPs hydrodynamic diameter Dh is extracted as follows: the intensity

size distribution is extracted from the intensity auto-correlation function calculated using an

ALV/LSE 5003 correlator over a time window of 30 sec (10 runs of 3 sec), repeated 3 times,

using the software CONTIN. For ζ-potential measurements, the solution is transferred to

a U-tube cuvette (DTS1070, Malvern, England); the instrument is operated in automatic

mode. Utilizing the measured NPs electrostatic mobility, the ζ-potential value is determined

by applying the Henry equation.85 The Dh and ζ-potential values are averaged over 3 in-

dependent experiments; error bars correspond to the standard deviations of experimental

values.

UVVis absorption experiments. UVVis absorption experiments are used to determine

the mean number of bound PEG-NLS molecules per NP, ⟨N⟩. Analysis of the data is done

using an extinction coefficient that we extract from the absorbance of solutions of increasing

TAMRA-NLS concentrations that we fit using Beer-Lambert law. The absorbance is mea-

sured at a wavelength of λ = 553 nm resulting in an extinction coefficient ϵ553 = 0.0639

[1/(µMcm)].

Western blot experiments. WB is used to confirm the recruitment of dynein motors

by the PEG-NLS coated NPs and to quantify the amount of mammalian dynein molecules

recruited to the NP surface. The NPs are prepared as detailed above, then pelleted at

6800 g for 10 min at 25 ◦C, resuspended in a 1× Laemmli Sample Buffer, and boiled for

5 min to promote the detachment of the bound proteins. The proteins are separated by

electrophoresis using a 12 % agarose gel and transferred to a nitrocellulose membrane. The

membrane is incubated for 1 h in a blocking buffer of PBST (PBS supplemented with 0.1

v/v % Tween) and 10% (v/w) dry skim milk (Sigma-Aldrich, St. Louis, MO, USA). The

membrane is washed three times with PBST for 5 min and then incubated for 1 h at 25

◦C with a primary anti-dynein antibody (sc-13524) (Santa Cruz Biotechnology, Dallas, TX,
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USA) diluted 1:200 (v/v) in blocking buffer prior use. Next, the membrane is washed three

times with PBST and incubated for 1 h at 25 ◦C with an anti-mouse HRP conjugated

with a secondary antibody (sc-2005, Santa Cruz Biotechnology, Dallas, TX, USA) diluted

1:10,000 (v/v) in PBST supplemented with 0.5% (v/w) skim milk. To finalize the procedure,

the membrane is washed three times with PBST and incubated with an ECL Western blot

reagent (1,705,060, Bio-Rad, Hercules, CA, USA) for 5 min in the dark. Images are col-

lected by chemiluminescence using a Fusion FX imaging system (Vilber Lourmat, Collégien,

France). The integrated signal measured from the area of the dynein bands is extracted

using ImageJ and calibrated using known masses of purified dynein protein (CS-DN01, Cy-

toskeleton, Denver, CO, USA) that serve as standards. A molecular weight of 2.17 MDa86

is then used to derive the number of dynein motors recruited to the NPs. The standards

and NP samples are prepared under identical conditions.
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