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Molecular determinants of TRAF6 binding specificity suggest that native 
interaction partners are not optimized for affinity 
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ABSTRACT 

TRAF6 is an adapter protein and E3 ubiquitin ligase involved in signaling downstream of cell receptors essential for development and 
the immune system. TRAF6 participates in many protein-protein interactions, some of which are mediated by a C-terminal MATH 
domain that recruits TRAF6 to cell-surface receptors and associated proteins. The TRAF6 MATH domain binds to short peptide 
segments containing the motif PxExx[FYWHDE], where x is any amino acid. Blocking TRAF6 interactions is associated with favorable 
effects in various disease models. To better define the TRAF6 MATH domain binding preferences, we generated a bacterial cell-surface 
peptide display library to sample the TRAF6 motif sequence space. We performed sorting experiments and identified 236 of the best 
TRAF6-interacting peptides and a set of 1,200 peptides that match the sequence PxE but do not bind TRAF6. Selected binders, tested 
by single-clone bacterial display titrations and bio-layer interferometry, bound TRAF6 tighter than previously measured native 
peptides. To elucidate the structural basis for TRAF6 interaction preferences, we built all-atom structural models of the TRAF6 MATH 
domain in complex with high-affinity binders and motif-matching nonbinders that were identified in the screen. We identified motif 
features that favor binding to TRAF6 as well as negative design elements distributed across the motif that can disfavor or preclude 
binding. Searching the human proteome for matches to the library screening-defined binding motif revealed that most known, 
biologically relevant TRAF6 motif matches occupy a different sequence space from the most enriched hits discovered in combinatorial 
library screening. Our experimentally determined binding preferences and structural models can support the design of peptide-based 
interaction inhibitors with higher affinities than endogenous TRAF6 ligands.
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INTRODUCTION 

Protein-protein interactions assemble signal transduction 
networks that are critical for cellular function. Knowledge of  
which proteins interact, and how, is essential for a mechanistic 
understanding of information propagation through cells. Such an 
understanding would allow improved network modeling and 
provide insights into the logic of signal propagation. A high-
resolution map of signaling protein connectivity would also 
advance efforts to identify interactions that can be targeted for 
therapeutic benefit and provide leads for developing selective 
inhibitors.  

Many interactions important for signaling involve the binding of 
a recognition domain in one protein by a short linear interaction 
motif (SLiM) in a partner. Many such domain/motif pairs, 
including the TRAF6 MATH domain/TRAF6-interaction motif pair 
that is the subject of this work, have been compiled in the 
Eukaryotic Linear Motif database [1]. Most motif definitions are 
based on patterns found in a few examples, leading to 
incomplete models that do not fully capture the sequence 
features necessary or sufficient for binding in the cell. A deeper 
understanding of SLiM sequence requirements can come from 
large-scale screens, which can provide a more comprehensive 
view of protein recognition domain specificity [2–7]. 

TRAF6 is a member of the Tumor Necrosis Factor Receptor 
Associated Factor (TRAF) family of adaptor proteins with E3 
ubiquitin ligase functions [8–10]. TRAF6 mediates NF-κB signaling 
and thereby participates in immunity and inflammation-related 
pathways. TRAF6 binds directly or indirectly to Tumor Necrosis 
Factor receptors and members of the interleukin-1 (IL-1) 
receptor/Toll-like receptor superfamily, among other proteins. 
Downstream targets for TRAF6-mediated K63-linked 
ubiquitylation connect to the regulation of proteins such as 
transforming growth factor-β-activated kinase-1 (TAK1), IκB 
kinase (IKK), and mitogen-activated protein (MAP) kinases, which 
subsequently lead to the regulation of NF-κB and AP-1 activity 
[9,11]. Direct inhibition of the C-terminal domain of TRAF6 (the 
TRAF-C Meprin and TRAF Homology – or MATH – domain) has 
been proposed and explored as a potential therapeutic strategy 
for the treatment of a variety of pathologies such as 
cardiovascular diseases, diseases associated with obesity, 
osteoporosis, and others. [12–18]. 

TRAF6, like other members of the TRAF family, has four domains. 
The N-terminal RING domain works in concert with the 
immediately C-terminal zinc finger domains as an E3 ubiquitin 
ligase. A coiled-coil domain trimerizes TRAF6. The 17.4 kDa C-
terminal MATH domain engages peptides containing TRAF 

interaction motifs (TIMs) and is responsible for cellular 
localization [19]. The MATH domains of TRAFs 1, 2, 3, and 5 share 
high sequence similarity, whereas TRAF4 and TRAF6 are more 
diverged in sequence and function [9,20–22]. TRAF6 MATH is 
reported to bind peptides that contain the motif 
xxxPxExx[FYWHDE] (here referred to as TIM6; Figure 1A), where 
x is any amino acid [19,23–26]. TRAFs 1, 2, 3, and 5 have been 
shown to bind [PSAT]x[QE]E, PxQxxD, and PxQxT motifs [1]. For 
TRAF6, the proline and glutamate residues, referenced here as 
motif positions (0) and (+2), appear strictly conserved for TRAF6 
binding [19,23–26]. A preference for aromatic or acidic residues 
at (+5) is maintained in the peptide sequences that have been 
experimentally validated to bind to the TRAF6 MATH domain 
(Figure 1A) [19,23–26]. Solved structures show that the TRAF6 
MATH domain binds to peptides, including the TIM6 motif in 
CD40, through an interaction that involves the extension of a 
beta-sheet in the MATH domain (Figure 1B-D) [19,23,24]. 
Residues in position (+5) bind in a pocket comprised of aromatic 
and basic residues, engaging in electrostatic and pi-pi 
interactions (Figure 1D).  

Given the low complexity of the TRAF6 motif PxExx[FYWHDE], we 
reasoned that there might be other determinants of high-affinity 
TRAF6 binding. To define motif-proximal features important for 
the biochemical interaction of SLiMs with the TRAF6 MATH 
domain, we used bacterial surface-display screening to explore 
sequence preferences within a combinatorial library denoted 
xxxPxExxx, with x being a random amino acid, keeping the proline 
fixed at position (+0) and the glutamate fixed at position (+2). We 
screened this library and identified 236 highly enriched binders 
and 1200 nonbinders. We then used structure-based modeling 
to explore the nature of interactions between the best-binding 
peptides and the MATH domain.  

Our analysis revealed residues within the motif that support 
high-affinity binding and illuminated negative-design elements 
that explain why many peptides that contain PxE are not suitable 
TRAF6 ligands. These insights help to elucidate the determinants 
of TRAF6 binding specificity. We compared the sequence 
features of the library-identified binders with reported TRAF6 
binders and found that most native interaction partners do not 
match the top sequences isolated from the library. Notably, 
there are no sequences in the human proteome that share all of 
the features that are prominent among the tightest binders from 
the screen. These results suggest that native TRAF6 interaction 
partners may be under functional selection for moderate affinity, 
providing an opportunity to out-compete native interactions 
with designed peptides or mini-proteins. 
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Figure 1. TRAF6 MATH domain interactions with TIM6 peptide ligands. (A) Alignment of TRAF6-binding sequences from known 
partners showing the numbering scheme used throughout this paper. (B-D) Structure of the TRAF6 MATH domain (cyan) bound to a 
peptide from CD40 (dark grey), PDB ID 1LB6. (B) MATH domain in surface representation bound to the CD40 peptide. (C) Bound peptide 
with positions numbered as in (A). Peptide residues at (+1) - (+5) form a beta-strand that pairs with the MATH domain (paired strand 
in yellow). (D) Interaction of the (+5) Phe in CD40 with Phe 410 and Arg 392 in TRAF6. 
 

RESULTS 

Library screening by cell-surface display reveals strong 
positional preferences for peptides that bind TRAF6 

Bacterial-surface display can provide information about the 
binding of short peptides to protein interaction domains [3,27]. 
For this work, we developed bacterial-surface display constructs 
in which TIM6 peptides were fused to the C-terminus of re-
engineered OmpX [28,29], such that when the construct was 
expressed, the TIM6 peptides were presented on the outer 
membrane of Escherichia coli cells. Peptide-displaying cells were 
incubated with biotinylated TRAF6, and binding was detected 
using streptavidin conjugated to phycoerythrin by fluorescence-
activated cell sorting (FACS). The level of peptide expression was 
quantified using a FLAG-binding antibody conjugated to 
allophycocyanin (details in Methods). By titrating TRAF6 MATH 
domain into a clonal population of peptide-displaying cells, an 
apparent cell-surface dissociation constant (Kd) can be 
determined by fitting the binding signal vs. TRAF6 concentration. 
We measured peptide binding to TRAF6 homotrimers consisting 
of the coiled-coil and MATH domains (here the construct is 
termed T6cc). Binding between TRAF6 trimers and peptide-
displaying cells was multivalent, and the associated avidity 
enhanced the apparent dissociation constants. For example, by 
ITC, the isolated TRAF6 MATH domain binds to a peptide from 
CD40 (KQEPQEIDF) with a Kd of 83 µM [19]. In contrast, this 
peptide embedded in our display construct bound to our trimeric 

TRAF6 construct with an apparent Kd of 1.2 µM by bacterial 
surface display. 

To evaluate the TRAF6 MATH domain interaction motif space, we 
constructed a combinatorial library by introducing random 
residue variation around the core TIM6 element PxE. We used 
degenerate NNK codons to encode any of 20 amino acids at “x” 
positions in the sequence xxxPxExxx. The proline at position (+0) 
and the glutamate at position (+2) were held fixed to increase 
the proportion of binders in the library and to force a specific 
binding register to facilitate analysis and modeling. These 
sequences were presented in the context of flanking sequences 
from CD40; see Table S1 for details of the display constructs. To 
isolate cells displaying peptides that bound to the TRAF6 trimer, 
we carried out one round of enrichment using magnetic 
microbeads (see Methods). This procedure generated a smaller 
library, enriched in TRAF6 binders, that we designate MACSLib; 
this library was used as the input for subsequent enrichment 
experiments. Deep sequencing analysis of all unique sequences 
over all rounds of enrichment revealed that MACSLib contained 
a minimum of 8000 unique peptides matching the sequence 
xxxPxExxx. The content of the library is summarized in Figure 2.  

To identify high-affinity binders in MACSLib, two separate 5-
round enrichment sorts were performed using FACS to separate 
binding library members from nonbinding members (details in 
Methods). The stringency of the binding assay was gradually 
increased by using a lower concentration of T6cc for each round 
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(concentrations used: 300 nM, 100 nM, 30 nM, 10 nM, 3 nM). 
Following sorting, the population of binding cells in each round 
was deep sequenced to monitor the enrichment of individual 
sequences. The two replicate sorting experiments gave similar 
results, with sequences from rounds four and five reflecting 
similar preferred residues, indicating convergence of the 
selection process (Figure 2). In both replicate experiments, the 
three sequences LNLPEESDW, RNVPEESDW, and TNWPEENDW 
ranked among the top four binders based on sequencing read 
counts, and 14 of the top 20 most-represented sequences were 
the same in the two datasets. Examination of enriched 
sequences, particularly those in the final rounds, indicated a 

strong preference for Trp at position (+5). Additionally, 
preferences were evident for Asn at (–2), Glu at (+1), Ser/Asn at 
(+3), and a polar or acidic residue at (+4). A final set of 236 high-
confidence TRAF6 binders was generated by taking the set of 
sequences present in rounds 4 and 5 of either replicate and 
filtering for sequences that enriched over at least 2 rounds of 
sorting (Figure 2, red box and supplementary data files; see 
Methods). We also generated a population of nonbinders by 
collecting cells from the original unenriched library that gave a 
strong peptide-expression signal but no TRAF6 binding signal. 
This logo did not show strong enrichment of any particular 
features (Figure 2, black box). 

 

 
Figure 2. Sequence logos for TRAF6-binding and nonbinding peptides. TRAF6 binders were identified by initial MACS enrichment 
followed by 2 replicate 5-round FACS enrichment experiments. The final list of binders (red box) was generated by combining both 
replicates and further filtering for sequences that enriched across multiple rounds. Nonbinder sequences were defined as significantly 
populated sequences (read count >= 20) in the nonbinder pool (black box). Sequences selected for structural modeling are shown in 
the blue box. Residue height in the logos represents the frequency of that residue in the sequence set. The number of sequences in 
each set is shown in parentheses.  
 

To verify that the screening hits bound to TRAF6 in a 
concentration-dependent manner, we performed single-clone 
titration experiments to measure apparent cell-surface 
dissociation constants, 𝐾!∗ values, for 14 sequences selected 
from the enrichment data (Figure 6A and Figure S1; see 
Methods). We also measured 𝐾!∗ for the native 9-residue CD40 
TIM6 peptide in the same context. Interestingly, all of the top 
peptides from the enrichment bound TRAF6 with an apparent 

affinity higher than the CD40 TIM6 peptide, with some binding 
over an order of magnitude tighter than the CD40 TIM6. For 
example, RNVPEESDW, LNLPEESDW, and TNWPEENDW bound 
TRAF6 with 𝐾!∗ values of 31 nM, 46 nM, and 84 nM, respectively, 
whereas the CD40 TIM6 bound with 𝐾!∗ = 1.2 µM. To validate the 
cell-surface interactions identified in the screen, we measured 
TRAF6-peptide binding by biolayer interferometry (BLI), using 
purified monomeric TRAF6 MATH domain (construct termed 
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T6m) in solution and purified peptides attached to the sensor tip 
(see Table S1 for construct details). By BLI, RNVPEESDW, 
LNLPEESDW, and TNWPEENDW bound to TRAF6 with solution Kd 
values of 24.0, 27.5, and 37.2 µM, respectively, while the CD40 
TIM6 bound with a Kd of 238 µM. The BLI data validate the cell-
surface display results and support the conclusion that top hits 
from the screen bind with higher affinity than the TIM6 motif in 
CD40, which is one of the tightest known TRAF6 peptide binders 
[19] (Figure S2). Based on these observations, we conclude that 
despite the screening assay being performed in the environment 
of the cell surface, and in a multi-valent context, enrichment 
sorting returned high-affinity binders.  

Structural modeling explains positive and negative binding 
determinants 

For computational analysis of the structural determinants of 
TRAF6-TIM6 binding, we chose a subset of high-affinity binders 
identified from enrichment sorting and a subset of sequences 
designated as nonbinders (see Methods). Figure 2 shows 
sequence logos summarizing features of these two subsets of 
sequences. We then tested whether structure-based models 
could discriminate the binders from the nonbinders.  

FlexPepBind (FPB) is a peptide modeling protocol in the Rosetta 
suite [30]. As input to FPB, we prepared models using the 
structure of TRAF6 bound to peptide KQEPQEIDF from CD40 (PDB 
ID 1LB6) as a template [19]. We assumed that all peptides bound 
in the canonical TRAF6 binding groove with an alignment of PxE 
to the corresponding residues in peptide KQEPQEIDF. Starting 
from this initial docking position, the binding pose of the peptide 
was sampled, subject to constraints on the distance between the 
peptide and the MATH domain, and the lowest interface score 
over all sampled poses was assigned to each peptide complex 
(see Methods). Figure 3A shows the ranking of the 48 binders 
and 41 nonbinders by FPB score, which achieves a good 
separation of the two populations, with only 5 out of 89 
complexes misclassified when using an optimal score cutoff. 
Native CD40 TIM6 peptide (KQEPQEIDF), scored with the same 
protocol, gave an FPD interface score of -34.2, which is in the 
weaker end of the range of binding peptides, consistent with the 
affinity measurements discussed above. 

Because 9-residue peptides will sample an ensemble of 
conformations when bound to the TRAF6 domain, we also tested 
a molecular dynamics-based protocol for evaluating peptide-
domain interactions. Starting with complexes modeled on the 
structure of TRAF6 bound to KQEPQEIDF, as described above, we 
computed for each model a detachment temperature (Detach T), 
corresponding to the temperature at which the distance 
between the alpha-carbon of TRAF6 Phe 471 and the center of 
mass of the peptide increased beyond 7 Å, when the 
temperature was gradually increased from 300 K. Detach T, like 
FPB interface score, was able to separate binding peptides from 
nonbinders, as shown in Figure 3B, with no binders giving Detach 
T values lower than 700 K.  

To explore the structural origins of sequence trends apparent 
from our enrichment sorting results, we used molecular 
dynamics simulations to analyze TRAF6 complexes with peptide 

ligands from CD40, RANK, and each of the 48 binders (see 
Methods). In native complexes and all high-affinity binders, 
simulations showed the persistence of 5 hydrogen bonds that 
position the peptide as an extension of the beta-sheet in the 
MATH domain, as seen for the CD40 peptide in PDB structure 
1LB6 (Figures 1C and 4A). The hydrogen bonds involve backbone 
atoms of residues in positions (+1), (+3), and (+5). These non-
covalent interactions were highly stable during all 80 ns of 
equilibrated-MD simulation for the native CD40 and RANK 
peptides and for all high-affinity binders. Invariant TIM6 residues 
Pro at (+0) and Glu at (+2) also preserved their crystallographic 
positions throughout all trajectories, with only minor 
displacements (Figure 4B). Pro at (+0) is accommodated in the 
pocket created by residues Phe 471, Met 450, and Tyr 473, while 
the negatively charged Glu at (+2) caps a 3-10 helix formed by 
residues Leu 456, Leu 457, and Ala 458 (Figure 4B) in the MATH 
domain. 

 
Figure 3. FBD and Detach T scoring of TRAF6 binders and 
nonbinders. TRAF6 peptide binders (green) and nonbinders (red) 
identified by high-throughput screening are plotted based on a 
computationally predicted score: FBD interface score (A) or 
Detach T (B). 

Trp at (+5) was present in most of the binders obtained from 
enrichment sorting, even though this residue is not common in 
known native interaction partners of TRAF6 (Figure 1A). Indeed, 
only 14 out of 236 binder sequences identified in the enrichment 
screen did not have a W at position (+5). Our simulations showed 
different conformations for the Trp sidechain. Most frequently, 
the indole group was inserted into the receptor pocket (Figure 
4C), allowing for simultaneous pi-pi interaction with Phe 410 and 
cation-pi interaction with Arg 392. This conformation 
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represented the most populated cluster for 65% of the high-
affinity peptides and resembles the conformation for Phe at 
position (+5) in the complex of CD40 TIM6 peptide bound to 
TRAF6 MATH (Figure 1D) [19]. In particular, clustering Trp at (+5) 
conformations from simulation frames by RMSD shows that 
more than 60% of the conformations are within 1 Å of the 
sidechain arrangement shown in Figure 4C. We also observed 
structures in which the Trp indole was flipped out of the pocket 
but maintained a binding interface, including backbone H-bond 
interactions with Pro 468 and occasional pi-pi or cation-pi 
interactions with Phe 410 or Arg 392. Such conformations are 
shared among 20% of the high-affinity binders. The remaining 
15% of high-affinity binders showed unclustered Trp (+5) 
conformations in which the backbone was still involved in an H-
bond interaction with Pro 468, but the indole group was flipped 
out and did not contact the MATH domain. 

 
Figure 4. Structurally conserved features of high-affinity 
complexes. (A) Five beta-sheet hydrogen bonds involve main-
chain atoms of residues at positions (+1), (+3), (+5) (yellow), and 
residues 472, 470, and 468 in the MATH domain (green). The 
image shows a snapshot from a simulation of TRAF6 MATH in 
complex with the peptide LNLPEESDW. (B) Positions of Pro at (+0) 
and Glu at (+2) (sidechains in sticks) from different frames of the 
equilibrated MD simulation of the peptide LNLPEESDW bound to 
TRAF6 MATH (color scale: red-white-blue for snapshots from the 
beginning-middle-end of the equilibrated part of the simulation). 
Pro binds into the pocket shown with cyan mesh, and Glu caps 
the short helix marked in blue. (C) The two most populated 
clusters for Trp conformations at position (+5) for 65% of the 
high-affinity binders. This sidechain arrangement allows 
simultaneous pi-pi interaction with Phe 410 and cation-pi 
interaction with Arg 392. The expanded region highlights two 
snapshots from the two most common conformations. 

The preference for Asn at (–2) in binders from the screen can be 
explained by its sidechain interaction with nearby Glu 448 on 
TRAF6 through a hydrogen bond that stabilizes the N-terminal 
end of the peptide in the pocket (Figure 5A). This interaction is 
shared by more than 70% of the high-affinity binders, which each 
form this contact for > 30% of the simulation time. Asn also 

makes a stable interaction with the backbone of Thr 475 (for > 
40% of simulation time for all of the high-affinity binders), which 
is also apparent in the structure of CD40 TIM6 bound to TRAF6 
[19]. Longer residues at (-2) (e.g., Gln) are unable to interact with 
both TRAF6 amino acids. This interaction pattern appears to be 
important for high-affinity binding: Asn at (–2) is present in 190 
of the 236 binders from the enrichment. 

A preference for Glu at position (+1) can be explained by the salt-
bridge interaction that this residue makes with Arg 402 in the 
MATH domain (Figure 5B). Despite a Cα-Cα distance of ~10 Å, the 
Arg 402 sidechain can make a salt bridge with the (+1) Glu when 
both are fully extended toward one another. This interaction is 
stable for more than 80% of equilibrated trajectory time and is 
completely missing when Glu is substituted with Asp due to the 
shorter sidechain of the smaller residue.  

At position (+3), interactions involving residues at (+1) and (+5), 
and the positions of MATH domain residues 392, 394, 402, 410, 
and 474, narrow the pocket so that small residues, such as Asn, 
are preferred at this site (Figure 5D). Residues at position (+4) are 
less sterically constrained and can form a hydrogen bond or salt 
bridge with surface Lys 469 (Figure 5E); all high-affinity peptides 
with Glu at (+4) form a salt bridge with Lys 469 in more than 60% 
of simulation frames. Overall, the surface of TRAF6 is 
electrostatically positive near positions (+1) to (+5), as shown in 
Figure 5C. 

Analyzing our models of the high-affinity peptides helped explain 
why many nonbinders did not form tight interactions with 
TRAF6, despite including the conserved Pro at (+0) and Glu at 
(+2). At positions (+1), (+3), and (+5), high-affinity binders make 
hydrogen bonds that complete a beta-sheet with TRAF6. Proline 
residues are disfavored in beta structures because they lack the 
required NH group for this interaction and prefer backbone 
dihedral angles far from the typical range in β-sheets [31]. Thus, 
Pro at any position between (+1) and (+5) is expected to be highly 
unfavorable. 386 of the 1200 nonbinders identified in the screen 
have such a substitution, which is likely sufficient to prevent 
high-affinity binding. None of the 236 binders contain a proline 
at these positions. Furthermore, the TRAF6 MATH  domain is 
electrostatically positive near positions (+3), (+4), and (+5) 
(Figure 5C), suggesting that positively charged residues would be 
destabilizing at these sites. Indeed, Arg, Lys, or His are found at 
one or more of these positions in 436 of 1200 nonbinders but in 
only 6 of 236 binders. Steric constraints at position (+3) are 
further expected to disfavor medium or large residues at this 
site. Consistent with this, residues Q, H, I, L, F, Y, or W are found 
at position (+3) in 396 of the 1200 nonbinders but in only 4 of the 
236 binders. Overall, 898 of the 1200 nonbinders have at least 1 
of the unfavorable sequence features described above (see Table 
1 for summary). The nonbinders also lack key residues that form 
stabilizing interactions in the highest affinity binders. Only 119 of 
the 1200 nonbinders contain Asn at (-2), Glu at (+1), or Trp at 
(+5), while 234 of 236 binders contain at least one of these 
interactions. Only 3 of 1200 nonbinders contain two or more of 
these stabilizing residues, while 217 of 236 binders contain two 
or more of these stabilizing residues.
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Figure 5. Overview of the most significant contacts between the highest affinity binders and the TRAF6 MATH domain, as captured 
in molecular dynamics simulations. Panels A – F illustrate specific interactions discussed in the text. Each panel is outlined in a color 
that matches a label in the central figure. Key peptide residues are represented in sticks: grey for Pro at (+0) and Glu at (+2), purple 
for residues at positions that favor a particular amino acid, and orange for residues at positions that favor a group of amino acids with 
similar features. All of the highlighted interactions are present for > 30% of simulation time for all high-affinity binders. (A) Asn at (-2) 
can simultaneously form H-bonds with Glu 448 and Thr 475. (B) Glu at (+1) forms a bi-dentate salt-bridge interaction with Arg 402 
when both sidechains are fully extended. (C) Residues at positions (+3) and (+4), shown here with Asn and Asp in sticks, are located in 
an electrostatically positive region (as indicated by blue coloring). (D) Interactions involving residues at (+1) and (+5), shown as space-
filling Glu and Trp in purple, along with MATH domain residues 402, 410, 392, and 394 (space-filling, cyan), narrow the pocket at 
position (+3) so that small residues, such as the Asn pictured in orange sticks, are preferred at this site. (E) Residues at position (+4) 
face solvent, and acidic residues at this site, such as the pictured Asp, can form a salt bridge with Lys 469. (F) Trp at (+5) engages in 
edge-to-face pi-pi and cation-pi interactions with residues Phe 410 and Arg 392, respectively. 
 

Candidate TRAF6 interaction motifs in the proteome do not 
share the sequence features of the top screening hits 

We investigated whether any human proteins contain close 
matches to the high-affinity sequences identified by screening. 
We defined a position-specific scoring matrix (PSSM) to score 
candidate TRAF6 interaction motifs based on how well they 
match our top binders. We used pLogo [32], a log-odds-based 
method, to construct the PSSM, using the 236 binding sequences 
from the enrichment as the foreground and the 1200 nonbinder 
sequences as the background. The nonbinder sequences were 
considered a fair approximation of the sequence composition of 
the input library, assuming that TRAF6 binders are rare in the 
library. Indeed, we don’t observe any apparent residue 
preferences in the nonbinder set (Figure 2). To test if the PSSM 

score of a sequence represents how well that peptide binds to 
TRAF6 on the cell surface, we scored the sequences used in single 
clone titrations with our PSSM. Scores were normalized to span 
from 0 to 1, with 0 being the lowest possible PSSM score and 1 
being the highest possible PSSM score. We found that PSSM 
score is correlated with apparent cell-surface affinity, suggesting 
that our model is a good predictor of TRAF6 binding (Figures 6A 
and B). 

The PSSM was used to score TRAF6 motif matches in the human 
proteome to identify those SLiMs most likely to bind with high 
affinity. To focus on regions of the proteome that are predicted 
to be disordered, the TRAF6 motif matches with an average 
IUPred score > 0.4 (5185 hits total) were obtained using the 
SLiMSearch tool [33,34] (regular expression: ...P.E..[FYWHDE]). 
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The logo of hits is shown in Figure 6C, along with a logo of the 
subset of hits that are within proteins annotated to interact with 
TRAF6 [35], and a logo of experimentally validated TRAF6 binding 
peptides. 

 Binders Nonbinders 
proline any position 

between (+1) and (+5) 0/236 386/1200 

positive charge (R, K, H) 
at (+3), (+4), or (+5) 6/236 436/1200 

large/medium residues 
(Q, H, I, L, F, Y, W) at (+3) 4/236 396/1200 

Table 1. Fraction of binder and nonbinder sequence sets with 
given sequence features 

Figure 6D shows the distribution of PSSM scores for the 
sequences retrieved using SLiMSearch [33]. Notably, no 
sequences in the proteome occupy the sequence space favored 
in the screen (i.e., no sequences have a high score), and there is 
no match to the sequence predicted to be the best TRAF6 binder, 
YNLPEESDW, anywhere in the proteome. The highest scoring 
motif with an IUPred score > 0.4 is PNNPQEADW, which has a 
score of 0.78. In the absence of an IUPred filter, the highest-
scoring sequence in the proteome is  FNEPEENFW, with a score 
of 0.85. 

Despite the absence of sequences in the human proteome that 
closely match the sequence space identified in the screen, we 
nevertheless used the PSSM as one tool for identifying human 
proteins with characteristics conducive to TRAF6 binding. We 
constructed a table from the proteome motif matches that 
includes a variety of scores and filters. Filtering using these 
scores can restrict candidate motifs in the human proteome to 
those more likely to interact with TRAF6 (Table S3).  

In addition to having good potential for biophysical interaction 
with the TRAF6 MATH domain, which we assessed using our 
PSSM, TRAF6-binding SLiMs must be accessible for binding. The 
hits in our table can be filtered by IUPred score, and we set this 
to only include hits that are predicted to be disordered (IUPred 
score > 0.4). However, IUPred score is not a guarantee of 
accessibility. The AlphaFold pLDDT score is reported to be a good 
predictor of disorder [36], so we included the average and 
maximum AlphaFold pLDDT scores of the motif (+3 flanking 
residues) within the predicted structure of the protein [36–38]. 
For the average score, we recommend a cutoff of < 65 but 
caution that this will likely remove some instances where a motif 
is still accessible, despite the high pLDDT score. The maximum 
pLDDT score of any residue within the motif +/- 3 residues on 
each side is also reported, as this may detect cases in which most 
of the motif is disordered but proximity to a folded domain 
structure limits accessibility. For this filter, we recommend 
setting it to consider hits with a maximum pLDDT score of less 
than 70. 

We judged that proteins involved in similar biological processes 
as TRAF6 are more promising candidate interaction partners 
[33]. To identify MATH domain binding motifs in proteins that 

share functions in common with TRAF6, we used Gene Ontology 
(GO) annotations [39,40]. Specifically, we used SLiMSearch to 
retrieve GO terms for TRAF6, where each term has an associated 
p-value representing the likelihood that any 2 proteins in the 
proteome share that term by chance (p-value from SLiMSearch 
[33]). The table of proteome hits can then be filtered to include 
proteins that share 1 or more TRAF6 GO terms with a p-value 
below a given threshold. Smaller p-value cutoffs result in more 
general GO terms being removed from the list of terms used in 
the filter and provide greater stringency. We provide several 
different p-values as options and suggest p=0.01 as a starting 
point. 

Many proteins have been reported to interact with TRAF6 
without identification of the mode of interaction. We used the 
HIPPIE database [35] to identify which of the proteome windows 
that we evaluated are in proteins that are already annotated to 
be TRAF6 interaction partners (logo – Figure 6C; score 
distribution – Figure 6D, red line). A high-scoring motif match in 
a protein annotated as a TRAF6 interaction partner could 
indicate that its interaction with TRAF6 is likely to occur through 
the MATH domain.  

Our structural analysis identified several sequence features that 
disfavor or prevent PxE peptides from binding to the MATH 
domain (Table 1). We added filters to the table to identify 
candidate motifs having unfavorable residues, such as a proline 
at positions (+1) to (+5), a large/medium residue (QHILFYW) at 
position (+3), or a positively charged residue (RKH) at positions 
(+3), (+4), or (+5).  

Using our table and filters, we identified several interesting 
potential TRAF6 interaction motifs in the human proteome. One 
such hit is the sequence GMGPVEESW, which starts at position 
350 in RIPK1. The sequence has a Val at (+1), which has a 
moderately favorable PSSM score, and a highly favorable Trp at 
(+5). RIPK1 is a serine-threonine kinase involved in regulating 
TNF-mediated apoptosis, necroptosis, and inflammatory 
pathways [41]. It has been annotated as a TRAF6 interaction 
partner in the HIPPIE database, but the details of the interaction 
are unknown. RIPK1 has been found to bind to other TRAF 
proteins [42] and also to TICAM1 [43]. We propose that RIPK1 
may interact with TRAF6 via the MATH domain, engaging this 
short segment.  

One of the highest-scoring hits in the proteome is the sequence 
QNFPVESDW (PSSM score = 0.85) from the E3 ubiquitin-protein 
ligase RNF103. This sequence has the highly favorable residue 
Asn and Trp at positions (-2) and (+5), respectively. The sequence 
also contains favorable Ser and Asp residues at (+3) and (+4), 
respectively, and Val at (+1). RNF103 acts as an E3 ubiquitin-
protein ligase that is localized to the ER membrane; it is involved 
in the ER-associated degradation (ERAD) pathway [44]. The 
TRAF6 motif match has an average IUPred score of only 0.19 and 
thus is not predicted to be disordered by this metric. However, 
the average AlphaFold pLDDT score of the motif is 38.7 
(corresponding to predicted disordered) and the residues appear 
accessible in the AlphaFold-predicted structure [36–38]. 
Although RNF103 localizes to the ER membrane, the candidate 
motif (positions 474-482) maps to the cytosol, given its location 
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between the last transmembrane helix and the cytosolic RING 
domain of RNF103.  

Another hit with potential for biological significance is the 
sequence GNFPEENND, which spans positions 1065 – 1073 in the 
leptin receptor. This sequence contains an Asn at (-2), Glu at (+1), 
and Asn at (+3), which are all favorable residues according to our 
model. The leptin receptor binds leptin, which is secreted from 

adipose cells. In obese mammals, leptin levels are elevated, 
leading to chronic low-grade inflammation [45]. TRAF6 is a well-
known regulator of the inflammation response, suggesting a link 
between the two pathways. Follow-up biochemical work 
accompanied by tests in appropriate cell lines will be required to 
validate this candidate interaction and the other hits described 
above.

 

 
Figure 6. TRAF6 motif scoring. (A and B) The PSSM scores of selected TRAF6 binding peptides are roughly correlated with their 
apparent cell-surface binding affinity for TRAF6. (A) Reported dissociation constants are the average of fits to 2-3 replicate titrations. 
The standard error of the mean (sem) is reported for each sequence. (B) Correlation between K#∗  and PSSM score (data from A). Error 
bars are the standard error of the mean of 2-3 replicates. (C, top) Position-specific scoring matrix generated from the screening data 
and used to score candidate binding motifs in panel D. (C, bottom) Sequence logos of all unique TRAF6 motif matches (motif: 
xxxPxExx[FYWHDE]) in disordered regions of the proteome (IUPred score > 0.4), compared to the subset of those motif matches within 
proteins that are annotated as TRAF6 interaction partners (HIPPIE database [35]) as well as experimentally validated TRAF6 MATH 
domain binders. (D) Distribution of normalized PSSM scores of TRAF6 motif matches in disordered regions of the proteome (IUPred 
score > 0.4). Scores for all motifs are shown in blue, and motifs within proteins that are annotated as TRAF6 interaction partners 
(HIPPIE database [35]) are shown in red.  
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DISCUSSION 

The discovery of TRAF6 interaction partners over decades of 
experimental research has led to a general definition of the 
TRAF6 MATH domain binding motif (xxxPxExx[FYWHDE]). This 
was arrived at by compiling aligned, verified TRAF6 binding 
sequences and identifying their common sequence features 
[19,23–26]. In this work, we explored the TRAF6 motif sequence 
space more systematically, using cell-surface screening of a 
combinatorial library that presented the core PxE motif flanked 
by random residues. The top hits obtained from this screen 
bound with affinities comparable to or higher than known TRAF6 
interaction partners reported in the literature [19,24]. Analysis 
of screening hits highlighted which residues were most preferred 
at each position and identified features that differentiate binding 
sequences from nonbinding sequences among protein segments 
that contain the core element PxE.  

Two different methods of structure-based modeling 
demonstrated the ability to distinguish the best-binding peptides 
from the background, and we used molecular dynamics 
simulations to study the bound ensembles of diverse binders. 
This analysis provided a structural explanation for the residue 
preferences observed in our screening data. In particular, in all 
high-confidence binders that we analyzed, Asn at position (-2) 
can form favorable interactions with Glu 448 on TRAF6, Glu at 
position (+1) can form a salt bridge with Arg 402 on TRAF6, and 
Trp at position (+5) can form pi-pi interactions with Phe 410 and 
cation-pi interactions with Arg 392. Our structural analysis also 
highlighted negative design elements that prevent myriad PxE 
sequences from binding to TRAF6 MATH. The logo of nonbinders 
in Figure 2 does not indicate any strong features, but our data 
support a model in which a variety of sequence features, 
including proline in positions (+1) to (+5), a large residue at 
position (+3), or a positively charged residue at (+3), (+4), or (+ 5) 
can disfavor binding. Thus, it appears that within this 7-residue 
stretch that includes PxE, several positive features and the 
absence of a variety of negative-design elements are important 
for making a functional TRAF6 binder. 

Our analysis of disordered regions in the proteome revealed that 
no sequences map to the sequence space that we identified for 
high-affinity binding TRAF6 motifs using cell-surface display. 
Indeed, all of the well-studied peptides from verified TRAF6 
MATH domain binders lack the features of the highest-affinity 
binders identified in the screen or only contain 1 or 2 of the most 
favorable interactions we identified (Figure 1A). Only 3/14 have 
an Asn at (-2), and only TICAM1 contains Trp at (+5). Our findings 
imply that the core binding motif is either not under selection for 
high affinity, or high affinity is detrimental to TRAF6 function.  

It has been proposed that peptide recognition domains bind to 
SLiMs with weak affinity to allow for transient and short-lived 
interactions [46]. A complex that uses multiple weak interactions 
rather than one higher-affinity binding site provides 
opportunities for regulation, as is the case for tandem 
recognition of SLiMs by SH2, SH3, WW, and other domains [47–
50]. The TRAF proteins provide another example of the benefits 
of weak binding for signaling. TRAF6 uses avidity to significantly 
enhance binding affinity to oligomeric receptor proteins. Thus, in 

concentration regimes where the binding affinity of a single-
motif peptide is not significant, receptor oligomerization can 
trigger TRAF6 binding to three or more motifs in the clustered 
cytoplasmic receptors' tails, which then promotes ubiquitylation 
that propagates the signal further downstream [9]. Artificial 
oligomerization of TRAF6 alone is sufficient to activate signaling 
through certain pathways [51]. In this scheme, conserving a 
weak, fast-exchanging interaction between individual motifs and 
monomeric MATH domains is likely important for supporting 
rapid, ligand binding-dependent assembly and disassembly of a 
TRAF6 signaling complex.  

When viruses or parasites infect cells, they interfere with host 
cell regulatory pathways to make the host susceptible to viral 
replication and control immune response. Many viral/parasite 
proteins contain motifs that mimic host SLiMs [52]. The 
requirement to out-compete native SLiM interactions means 
that viral proteins are often under selective pressure to maintain 
high-affinity interactions with their host SLiM-binding domains. 
TRAF6 plays an integral role in immune response pathways and 
is thus a potential target for viral manipulation. Indeed, several 
pathogen proteins recruit TRAF6 MATH to modulate the host cell 
NF-κB pathway, including the protein UL37 from human 
herpesvirus (motif: SNTPVEDDE) [53] and GRA15 from the 
intracellular parasite Toxoplasma gondii (motif: PQVPGENSY) 
[54]. Of particular note, the motif in UL37 has residues N, V, and 
D at (-2), (+1), and (+4), respectively, which are predicted to be 
favorable for binding to TRAF6 in our model. We suggest that 
these residues allow UL37 to out-compete native interactions. 

High-affinity TRAF6 binders isolated in this work can serve as lead 
peptides for inhibitor development. TRAF6 signaling is implicated 
in inflammation and cardiovascular disease [12,13,18]. Targeting 
TRAF6 MATH is reported to improve insulin sensitivity in obese 
mice, improve heart function in mouse models of non-ischemic 
cardiac failure, reduce atherosclerosis, and inhibit 
osteoclastogenesis and bone resorption [14–17]. A RANK 
peptide attached to a protein transduction sequence to promote 
cell entry is currently sold commercially as a TRAF6 inhibitor (e.g. 
Novus Biologicals NBP2-26506) [16]. The reported affinity of a 
RANK peptide with sequence RKIPTEDEY for TRAF6 is 78 µM, 
determined by isothermal titration calorimetry [19]. The same 
study reported a Kd of 84 µM for the CD40 TIM6 peptide, and we 
showed that peptides from our screen bind ~10-fold tighter than 
the CD40 peptide (Figure S2). Thus, peptides from our screen, 
possibly further optimized by adding an optimal flanking 
sequence, can serve as higher-than-native-affinity inhibitors. 
Having a broad range of peptide sequences that can disrupt 
TRAF6 binding, as we have generated here, can support further 
efforts to develop inhibitors with desirable properties, such as 
low immunogenicity and cell permeability.  

Similar trends to what we observed in this study of TRAF6 have 
been observed for PDZ domains. Phage-display selections for 
PDZ domain-binding peptides have been conducted using both 
random peptide libraries and a library comprised of peptides 
from disordered regions of the proteome [2,4]. Interestingly, 
similar to our TRAF6 library screen, the random-peptide library 
hits included more hydrophobic sequences than the hits from 
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the native-sequence library, and these peptides often contained 
tryptophan. A PSSM based on the random library hits was used 
to identify candidate viral binders with better scores than human 
binders, and several viral peptides were found to bind with low-
micromolar affinities to the PDZ domain of SCRIB, a protein that 
is targeted by human papillomavirus [55,56]. This work and our 
results for TRAF6 indicate that random peptide library screening 
can provide high-affinity ligands for human protein recognition 
domains that exceed the affinity of native ligands, offering a 
strategy to identify inhibitors to modulate signaling that mimic 
strategies used by viruses. 

METHODS 

Vectors, bacterial cells, and cloning. The expression constructs 
and cell surface display constructs are detailed in Table S1. The 
TRAF6 trimeric construct, here termed T6cc, consisted of 
residues 310-504 of human TRAF6 (including the MATH domain 
and coiled-coil trimerization domain), an N-terminal BAP tag for 
biotinylation, and a hexahistidine tag for purification. The 
construct was expressed using a pDW363 vector to ensure 
biotinylation. A monomeric TRAF6 construct lacking the 
trimerization domain and BAP tag, here termed T6m, consisted 
of residues 350–501 of human TRAF6 and a hexahistidine tag. 
The construct was expressed in a pDW363 vector, although the 
lack of a BAP tag ensured no biotinylation of this protein. SUMO-
peptide fusion constructs contained a BAP tag, hexahistidine tag, 
and SUMO tag. The construct was expressed in a pDW363 vector 
to ensure biotinylation. E. coli strains BL21(DE3), DH5α, and 
MC1061 were used for protein expression, cloning, and surface 
display, respectively. For bacterial surface display of TRAF6-
binding peptides, the eCPX vector designed by the Daugherty 
group [57] was modified at the C-terminus to append a FLAG 
sequence, a linker containing a SfiI site, and the CD40 peptide 
sequence, which included 9 residues resolved in the X-ray 
structure of CD40 bound to TRAF6 (PDB ID: 1LB6 [19]) plus 8 
flanking residues on each side of this core region. The CD40-
derived sequence used is PTNKAPHPKQEPQEIDFPDDLPGSNT. 

Mutant library construction. The library was constructed using 
primers (from IDT) with NNK codons included in positions 
marked ‘x’ the motif xxxPxExxx, such that the theoretical size of 
the library was 207 = 1.28 * 109 unique members. The variable 
sequence was flanked by SfiI restriction sites for cloning. In 
parallel, a linear vector for cell-surface display containing the 
constant sequence of the display construct, with SfiI sites 
matching the library insert, was amplified by PCR. The insert and 
linear vector fragments were purified by PCR Cleanup Kits 
(Genesee Scientific) before SfiI digestion. Following purification 
of the digested fragments, a 5:1 ratio of insert:vector was added 
to a 200 µL T4 DNA Ligase (New England Biolabs) reaction and 
then incubated for 16 hours at 4 °C. The ligated mixture was 
electroporated into fresh electrocompetent MC1061 cells in four 
separate transformations. Transformed cells were transferred 
into 10 mL warm Super Optimal Broth media with 20 mM glucose 
(SOC media) and incubated at 37 °C for 1 hour. The 10 mL culture 
was then added to 1L of LB + 25 µg/mL chloramphenicol and 
grown to an OD600 of 0.6-0.8 before centrifugation and 
resuspension in LB + 20 % glycerol for freezing for storage. 

Protein purification and preparation. T6cc was co-expressed in 
BL21(DE3) E. coli with the biotin ligase BirA (from the pDW363 
vector) for 5 hours at 37 °C. The protein was then purified using 
Ni2+-NTA affinity chromatography followed by gel-filtration 
chromatography into a final buffer of 20 mM Tris pH 8.0, 150 mM 
NaCl, 5% glycerol, 1 mM DTT. Purified protein was concentrated 
before storing at -80 °C in aliquots for later use. Concentrations 
of T6cc are reported as monomer concentrations. For solution 
binding studies, a monomeric variant of TRAF6 (T6m) was 
expressed in Rosetta2(DE3) cells overnight at 18 °C and purified 
similarly to T6cc. T6m was purified into a final buffer of 50 mM 
Tris pH 8.0, 180 mM NaCl, 5% glycerol, and 1 mM DTT. SUMO-
peptide fusion proteins were co-expressed in Rosetta2(DE3) E. 
coli with the biotin ligase BirA (from the pDW363 vector) for 5 
hours at 37 °C. The protein was purified by Ni2+-NTA affinity 
chromatography followed by gel-filtration into a final buffer of 
20 mM Tris pH 8.0, 150 mM NaCl, 1 mM  DTT, and 10% glycerol. 

Magnetic bead presorting (MACS). To generate TRAF6-bound 
beads, 2 mL of vortex-mixed Invitrogen DynaBeadsTM Biotin 
Binder beads were incubated with T6cc (33 pmol biotinylated 
T6cc/10 µL beads) for 2 hours at 4 °C and then washed in PBS 
buffer, as described by Angelini et al. [58]. The TRAF6-decorated 
beads were then added to cultures of induced cells expressing 
the peptide library (induced with 0.2% w/v arabinose for 2 hours 
at 37 °C). After incubation for 3 hours at 4 °C, beads were 
magnetically isolated for 60 seconds before aspiration and 
replacement of PBS buffer. Beads were then gently shaken in the 
fresh buffer for 5 minutes at 4 °C. The bead wash cycle was 
repeated 7 times before beads were placed in LB media for 
growth overnight. 100 µl of the final growth stock was serially 
diluted on LB + agar + 25 µg/mL chloramphenicol plates. Colony-
forming units were tabulated to back-calculate the number of 
cells in the MACS-sorted library, which yielded 1.42 * 105 cells. 

Bacterial FACS preparation. For enrichment sorts and single-
clone FACS cell surface titrations, 5 ml cell cultures were grown 
overnight at 37 °C in LB + 25 µg/ml chloramphenicol and 0.2% 
w/v glucose. The next day the culture cell density was measured 
by OD600, and approximately 3.25 * 105 cells of each stock were 
isolated for new growth in 5 ml LB. Upon reaching an OD600 of 0.5 
– 0.6, cells were induced with 0.2% w/v arabinose for 2 hours at 
37 °C. Density was again measured, and cells were pelleted by 
centrifugation and resuspended in PBS + 0.5% BSA. Cells were 
then aliquoted into a 96-well Multi-Screen HTS® GV sterile 
filtration plate (2 x 107 cells per sample) and washed with fresh 
PBS + 0.5% BSA. Cells were then incubated in 30 µL of αFLAG-APC 
[PerkinElmer] (prepared at a 100:1 dilution in PBS + 0.5% BSA) at 
4 °C for 15 min. Next, cells were resuspended in 50 µL of TRAF6 
solution (25 µL PBS + 0.5% BSA mixed with 25 µL of the chosen 
TRAF6 concentration) and incubated at 4 °C for 60 min. Following 
a wash with 200 µL PBS + 0.1 % BSA, cells were resuspended in 
30 µL streptavidin-PE (SA-PE) [ThermoFisher] (prepared at a 
100:1 dilution in PBS + 0.1% BSA) and incubated at 4 °C for 15 
minutes. Cells were then washed in 200 µL PBS + 0.1% BSA, 
resuspended in another 200 µL PBS + 0.1% BSA, and placed on 
ice prior to FACS analysis or sorting. FACS analysis was performed 
using an HTS Canto II instrument and sorting took place on a FACS 
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Aria III cell sorter (BD Biosciences). Sorted cells were collected in 
1.5 mL microcentrifuge tubes containing 500 µL Luria-Bertani 
media with 25 µg/mL chloramphenicol.  

Single-clone titration experiments. For single-clone titration 
experiments, samples for FACS analysis were prepared as 
described above using eight concentrations of TRAF6 for each 
clone: 0 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1 µM, 3 µM. 
Binding curves were generated by plotting the mean PE value vs. 
TRAF6 concentration and fit to the following equation to 
determine a 𝐾!∗ value: 

(1)  𝑦 = 𝐹$%$& + (𝐹'(& − 𝐹$%$&) *
)

)*+!
∗+ 

Where y is the mean PE fluorescence value and x is the 
concentration of TRAF6. Finit, Fsat, and Kd were treated as floating 
parameters; Finit is the y value in the absence of TRAF6 and Fsat is 
the y value at which the binding curve saturates. Although the 
cell-surface binding data fit well to a hyperbolic binding 
equation, this assay is not likely to be at equilibrium, and we 
discourage interpretation of the apparent binding constant 𝐾!∗ as 
a true equilibrium dissociation constant. 

Biolayer Interferometry (BLI). BLI experiments were carried out 
on an Octet Red96 instrument (ForteBio). Streptavidin-coated 
tips (ForteBio) were pre-incubated for 10 min in BLI buffer 
(20mM Tris pH 8.0, 207 mM NaCl, 1 mM DTT, 1% Glycerol, 0.1% 
BSA, and 0.1% Tween-20). Biotinylated SUMO-peptides were 
immobilized on streptavidin tips. Loaded tips were then 
immersed in a solution of the TRAF6 MATH domain, which had 
been diluted to the relevant concentration in BLI buffer. 
Association data were collected at room temperature at an 
orbital shake speed of 1000 rpm (sampling rate) until the signal 
plateaued. Subsequently, TRAF6 bound tips were transferred to 
a well containing the above buffer, and dissociation data were 
collected until the signal plateaued. Due to the fast kinetics of 
the interaction, we elected to calculate Kd values using the 
steady-state signal of the association step. The raw association 
data of a SUMO-only control was subtracted from that of the 
SUMO-peptides. The normalized signal of the association step 
was averaged over 10 seconds after reaching a plateau and 
plotted against the concentration of TRAF6 MATH domain. The 
binding curve was fit to equation 1 in Kaleidagraph [59] using 
non-linear least-squares fitting to determine the dissociation 
constant. 

Enrichment sorting of MACS-presorted library. To isolate the best 
TRAF6 binders, we performed a five-round enrichment sort using 
the MACS-sorted library as the input. On each day, the library 
was sorted for TRAF6 binding as described above (Bacterial FACS 
preparation) using a single permissive gate set to collect 
successfully expressed TRAF6 binders. The gate was set manually 
each day using positive and negative binding controls. Selection 
for TRAF6 binding was gradually increased by using a lower 
concentration of T6cc each day (concentrations used: 300 nM, 
100 nM, 30 nM, 10 nM, 3 nM). Collected cells were grown 
overnight before splitting half of the pool to continue the sort 
and the other half to harvest for plasmid DNA and subsequent 
Illumina sequencing. We performed two duplicate 5-day 

enrichment experiments, generating 10 total pools for deep 
sequencing.  

Nonbinding clone FACS sorting. Using the unenriched (pre-MACS) 
library as input, a gate was drawn to define the region where 
peptide-expressing cells are found in the absence of TRAF6. This 
gate was used to collect 2 * 104 cells in the presence of a high 
TRAF6 concentration ([T6cc] = 6 µM) to isolate clones with no 
detectable binding to TRAF6.  

Illumina amplicon preparation. Figure S3 gives an overview of 
this procedure. Sorted pools were grown overnight at 37 °C in LB, 
and bulk plasmid DNA was harvested by QIAprep miniprep kit 
(Qiagen). We then PCR amplified the variable region of the 
plasmids from each cell-sorted pool, appending a MmeI 
restriction site to the 5’ end. At the 3’ end, we appended: a) an 
unused, randomized 9 nt barcode UID sequence, b) a 6 nt 
indexing sequence for multiplexing (Illumina TruSeq), and c) a 
custom reverse-read annealing sequence. Barcodes are given in 
Table S1, amplicon construction is depicted in Figure S3, and a 
lookup table is provided in Table S2. Amplified fragments were 
digested with MmeI. A double-stranded DNA fragment with a 2 
nt overhang matching the MmeI cut site was then ligated to each 
MmeI-cleaved fragment. This fragment contained the standard 
5’ Illumina adapter sequence and one of 24 preselected 5 nt 
barcodes for sample multiplexing. 5’ and 3’ Illumina anchoring 
sequences were appended to the amplicons in a subsequent PCR 
amplification. More than 50 amplicons were Sanger sequenced 
(QuintaraBio) to assess amplicon quality, which revealed the 
expected sequences and variable positions. The sequencing 
length of each amplicon was 65 nt, so forward and reverse 
paired-end 40 nt reads overlapped by 15 nt. Immediately prior to 
Illumina sequencing, the MIT BioMicro Center verified fragment 
size for all pools by agarose gel and multiplexed all pools at 
equimolar amounts. 

Illumina data collection and processing. Illumina sequencing was 
performed on a NextSeq500. The reads were demultiplexed 
using custom python scripts: 
https://github.com/jacksonh1/NGS_demultiplexing. Reads that 
did not exactly match one of the barcode/index pairs (first 5 nts 
of the forward read and first 6 nts of the reverse read, 
respectively) were discarded. Additionally, we required each of 
the first 5 nts of the forward read to have a Phred score of 20 or 
greater. Next, the `reformat.sh` tool from the BBTools suite 
(Version 38.94) was used to de-interleave the paired-end reads 
and filter for reads with an average Phred score greater than or 
equal to 20 (using the parameter: `minavgquality=20`) [60]. In 
our dataset, the forward reads covered the entire variable region 
of the displayed peptide. Therefore, reverse reads were 
discarded after de-interleaving, and only the higher-quality 
forward reads were used for further analysis. For each sample, 
we used custom Python scripts to count the abundance of each 
sequence in each sample at the DNA level, using an alignment-
based counting strategy. Here, the forward reads were aligned 
to a counting template sequence covering the variable region of 
the display construct: *********CCT***GAA*********CCGG, 
where * represents variable nucleotide positions. Sequences 
that mismatched 3 or more times to constant positions of the 
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template (non * positions) were removed. Sequence counts 
were then further collapsed to just the TRAF motif region: 
*********CCT***GAA*********. The result was a list of 
sequences and their associated read counts for each sample. 
NGS data have been deposited at the GEO with the accession 
number GSE149328. Processed data files are provided as 
supplementary material (see supplementary information for file 
descriptions). All sequence logos in this study were generated 
using the logomaker python library [61]. 

Enrichment data analysis: For each replicate enrichment 
experiment, we first removed any sequences that didn’t have 50 
or more reads on at least one of the 5 enrichment days or the 
input library (MACS sorted library). The remaining sequences 
were translated into amino acid sequences, and only those DNA 
sequences coding for peptides matching the xxxPxExxx motif 
were kept for further analysis. Amino acid sequences containing 
the characters “*” or “X” were then removed (corresponding to 
sequences containing stop codons or “N” bases). Read 
frequencies were calculated by dividing the read count of each 
sequence in each sample by the total number of reads in that 
sample. When a sequence had fewer than 20 reads, the 
frequency was set to 0 to minimize effects from low read counts. 
To determine a set of TRAF6 binding sequences, we first filtered 
for sequences with 20 or more reads on day 4 and/or day 5 in 
either replicate enrichment. The resulting list of binders was then 
further filtered to include only those sequences that enriched 2 
or more times (defined as an increase in read frequency from one 
day to the next day) during either enrichment replicate, yielding 
a final list of 236 unique TRAF6-binding peptides. 

Nonbinder data analysis: The NGS data from the nonbinder FACS 
sample (Nonbinding clone FACS sorting) were analyzed to define 
sequences of peptides that don’t bind to TRAF6. Sequences were 
filtered to include only those DNA sequences coding for peptides 
matching the xxxPxExxx motif and having a read count of 20 or 
more. The final list of nonbinders contained 1200 unique 
peptides. 

Generation of PSSM for proteome scanning: To generate a 
position-specific scoring matrix (PSSM) from the enrichment and 
nonbinder data, we used pLogo, which uses log-odds-based 
scoring to generate a PSSM from a given set of foreground 
sequences and background sequences [32]. We used the 236 
unique TRAF6-binding peptides determined from the 
enrichment experiment as the foreground and the 1200 unique 
nonbinding peptides from the nonbinder sample as the 
background. 

Scoring motif matches in the proteome: To generate a table of 
TRAF6 motif instances in the proteome, we used SLiMSearch4 
[33] to find all matches to the consensus TRAF6 binding motif 
(regex: “...P.E..[FYWHDE]”) in the human proteome. We used the 
SLiMSearch “shared functional annotations” feature to allow 
filtering the hits to proteins that share Gene Ontology (GO) terms 
with TRAF6. The set of GO terms used to filter the hits can be 
restricted by the likelihood that a given term is shared by any two 
proteins in the proteome (“sig” or “p-value”). We used this 
feature to create filters of different cutoff values (sig <= 0.01, 
0.001, 0.0001, and 0.00001) to allow filtering hits to those that 

share TRAF6 GO terms with sig less than or equal to the given 
cutoff value. The HIPPIE database was used to label motif 
instances in proteins that are annotated to interact with TRAF6 
[35]. AlphaFold 2 structure predictions for the human proteome 
were downloaded from the AlphaFold Protein Structure 
Database [36–38]. 

Selection of binding and nonbinding peptides for modeling 
studies: 48 binders were chosen from the binding sequences 
identified in the enrichment experiment for structure-based 
modeling. 3 of the 48 binders (RNVPEESDF, RNVPEESTW, and 
WNMPAEYDF) came from an earlier analysis of the enrichment 
data and are not present in the final set of 236 binders. However, 
all 3 sequences enrich at least once during the enrichment 
experiment and are likely real binders despite not making the 
final cutoff. Additionally, 41 nonbinder sequences were selected 
from the nonbinder pool for structural modeling. 

Computational Rosetta modeling. The pipeline for modeling 
mutated peptide interactions proceeded as follows. First, all 
structures were alchemically mutated onto the crystal structure 
of TRAF6 bound to the CD40 peptide (seq: KQEPQEIDF, PDB: 
1LB6) using FoldX. For each mutated pose, we used Rosetta relax 
to remove steric and angle violations. Next, the Rosetta 
FlexPepDock module was used to create 500 poses of each using 
the lowres_preopt flag to more aggressively sample the space in 
case of necessary residue rearrangement. The talaris2013 score 
function was used for all model scoring in Rosetta. The top pose 
by Rosetta score was isolated from each mutated sequence and 
used to rationalize residue preferences for both strong and weak 
binders. The Rosetta version used was 
rosetta_bin_linux_2017.08.59291_bundle.  

Scoring peptide binding affinity.  We implemented two different 
computational pipelines for scoring peptide binding to TRAF6: 
FlexPepBind (FPB) [30] and an in-house protocol based on 
computing a detaching Temperature (DetachT) by using short 
molecular dynamics simulations at increasing temperatures.  

Structures were prepared using TRAF6-CD40 complex structure 
1LB6 as a model.  All sequences were 9 amino acids long and 
shared the PxExxAr short linear TRAF6-interacting motif (TIM6). 
We assumed that all peptides bound in the canonical TRAF6 
binding groove with a position similar to that of the CD40 peptide 
KQEPQEIDF [19].  

Binding energies were computed using the FPB program 
implemented in Rosetta version 3.6 with scoring function 
ref2015 [62]. We generated models of peptide-protein 
complexes starting with structure 1LB6 (chains A, TRAF6 MATH 
domain, and B, CD40-native peptide), first relaxing the structure 
with the Rosetta Fast-Relaxation protocol to remove internal 
clashes and any angle violations in the receptor and the native 
peptide. We then introduced point mutations into the CD40 
peptide, keeping the backbone atoms fixed and optimizing the 
sidechain conformations of mutated residues using the Fixed-
Backbone Design package with Resfile flag [63]. Next, the Rosetta 
FPB module was used to sample 100 variations of the docking 
pose for each peptide, allowing both backbone and sidechain 
atoms to move, using the refinement flag, and applying harmonic 
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constraints around the crystallographic distances between the 
peptide and TRAF6 to reduce the conformational sampling 
space. Specifically, we restrained backbone hydrogen bond 
distances between the peptide residue in position (+0) and 
TRAF6 residue G472 and between the peptide residue in position 
(+2) and TRAF6-G470 G472 (using the observed distances in 
structure 1LB6). Models were ranked based on total interface 
score, calculated as the sum over energy terms contributed by 
interface residues of both partners. Interface residues were 
defined as those with Cβ (Cα for Gly) within 8 Å of any atom in 
the TRAF6 protein. We used the lowest-interface score complex 
for our analysis. The following is the command-line flag array for 
modeling peptides using Rosetta: ($name indicates a wildcard 
inserted to match the peptide to be run) 

$rosdir/FlexPepDocking.static.linuxgccrelease -s 
$name\_Dock_0001.pdb -native $nativepdb -
lowres_preoptimize -pep_refine -nstruct 500 -use_input_sc -
ex1 -ex2 -out:file:silent $name\_Dock.silent -
out:file:silent_struct_type binary 

For the Detach-T protocol, the crystal structure was initially 
minimized and equilibrated for 20 ns with CHARMM36a using 
ACEMD code. The resulting structure was then mutated using the 
VMD-Mutator tool to introduce changes into structure 1LB6 [64]. 
We ran MD simulations with the temperature increasing from 
300 K up to 1000 K, using a temperature step of 10 K every 100 
ps for a total time of 5 ns, restraining protein CA that were more 
than 15 Å from the binding pocket to avoid protein diffusion in 
the unit cell. For each peptide, we recorded the temperature at 
which the distance between the geometrical center of TRAF6 
residue 471 and the center of mass of the peptide segment 
composed of residues p0(PRO)-p1(variable)-p2(GLU) increased 
to greater than 7 Å.  

Molecular Dynamics simulation of a subset of TRAF6- binders 
complex. For 89 complexes, we performed short molecular 
dynamics (MD) simulations to identify key interactions or 
disruptive elements that influence peptide binding. Simulations 
were performed in NAMD using the CHARMM36m force field 
[65,66]. Each of 89 TRAF6-peptide complexes was solvated with 
a 15 Å pad of TIP3P water (resulting in a final simulation box of 
≈80,000 atoms). Simulations were performed at a constant 
pressure of 1 atm and temperature of 300 K, a non-bonded cut-
off of 12 Å, rigid bonds between heavy atoms and hydrogen 
atoms [67], and particle-mesh Ewald (PME) long-range 
electrostatics [68]. All complexes were first subjected to 1,000 
energy minimization steps. Relaxed models were then 
equilibrated for 50 ns using a time step of 2 fs with all Ca atoms 
restrained by a 10 kcal mol−1 Å−2 spring constant. Finally, 100 ns 
production runs were done using ACEMD [69], with non-bonded 
cut-off and PME parameters set as in the equilibration phase, 

and the time step increased to 4 fs. To prevent protein diffusion 
in the water box, a restraining spring constant (5 kcal mol−1 Å−2) 
was applied to all Cα atoms of the protein more than 15 Å from 
the peptide-binding pocket. 

Structures from the production runs were analyzed to determine 
root mean square deviations (RMSD), root mean square 
fluctuations (RMSF), and the presence/absence of specific 
interactions (hydrogen bonds, salt-bridges) using a Donor(D)-to 
Acceptor(A) distance cutoff of 3.2 Å; hydrogen bonds were 
additionally required to have an A-D-H angle of < 30°. We also 
checked for structurally favorable aromatic sidechain 
arrangements. In particular, cation-pi interactions were defined 
using the distance between the indole/phenyl group centroid 
and the guanidium centroid or amino group for Arg/Lys, 
respectively, and the angle between the respective planes. The 
angle was defined between the normal vectors to the planes of 
the sidechain rings, the guanidium group, or the positively 
charged groups. To qualify as cation-pi interaction, the distance 
had to be below 5.5 A. If the sidechains had an angle between 45 
and 135 degrees, the cation-pi interaction was defined as T-
shaped, otherwise as stacked [70,71]. We applied a similar 
definition for pi-pi interaction, setting the distance threshold 
between the centroids of the two aromatic rings to 7 Å, and the 
angle range between 75° and 90° for T-shaped or < 15° for 
stacked (parallel displaced or vertical) [72–74]. MATH domain 
charge distributions for Figure 5 were computed using the VMD-
APBS module [75,76].  
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