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Abstract 

Proteomic analysis on the scale that captures population and biological heterogeneity over hundreds to 

thousands of samples requires rapid mass spectrometry methods which maximize instrument utilization (IU) and 

proteome coverage while maintaining precise and reproducible quantification. To achieve this, a short liquid 

chromatography gradient paired to rapid mass spectrometry data acquisition can be used to reproducibly profile a 

moderate set of analytes. High throughput profiling at a limited depth is becoming an increasingly utilized strategy 

for tackling large sample sets but the time spent on loading the sample, flushing the column(s), and re-equilibrating 

the system reduces the ratio of meaningful data acquired to total operation time and IU. The dual-trap single-

column configuration presented here maximizes IU in rapid analysis (15 min per sample) of blood and cell lysates 

by parallelizing trap column cleaning and sample loading and desalting with analysis of the previous sample. We 

achieved 90% IU in low micro-flow (9.5 µL/min) analysis of blood while reproducibly quantifying 300-400 proteins 

and over 6,000 precursor ions. The same IU was achieved for cell lysates, in which over 4,000 proteins (3,000 at CV 

below 20%) and 40,000 precursor ions were quantified at a rate of 15 minutes/sample. Thus, deployment of this 

dual-trap single column configuration enables high throughput epidemiological blood-based biomarker cohort 

studies and cell-based perturbation screening.  

Introduction 

Automation of sample preparation and the commercialization of remote sampling devices have overcome 

two bottlenecks in large scale mass spectrometry based proteomic studies. The once cumbersome sample 

preparation for bottom-up proteomic analysis in which the protein content is extracted and enzymatically digested 

into peptides [1] can now reproducibly prepare several hundred to thousands of samples per day through 

automation [2]. Remote sampling devices allow donors to autonomously and reproducibly extract and ship several 

microliters of blood, thus greatly accelerating collection of specimens from many cohorts across multiple time 

points. With these developments, the remaining bottleneck is the analysis itself in which the generated peptides 

are separated by liquid chromatography and quantified by mass spectrometry (LC-MS). While multiplexing through 

isobaric mass tag labelling significantly improves LC-MS throughput [3-8], limitations of this strategy across large 

sample sets [9-11] have encouraged the use of rapid, individual, analysis of samples with data independent 

acquisition (DIA) [12-14]. The challenge is now to balance the maximum number of reproducibly quantified protein 

species with the speed of analysis.  

Epidemiological biomarker investigations are a key application that benefits from remote sampling and 

requires high throughput. Blood collected through Mitra devices is an interesting but challenging matrix for 

biomarkers. Blood has a dynamic proteome which varies within an individual depending on time of day [15, 16] and 

is impacted by the collection protocol [17, 18] and various other factors [19].  Blood is also highly heterogeneous 

between individuals and analysis of thousands of samples is required to appropriately capture the biological 

diversity of populations [10, 17, 20]. The steep dynamic range of the blood proteome is an added strain, where 

highly abundant species like hemoglobin, albumin, and immunoglobulins mask the presence of less abundant 

proteins. It is expected that the coverage of blood or blood plasma proteome will be limited [21-23], thus there is 

an impetus to reproducibly quantify a limited set of proteins rapidly and reproducibly across a vast number of 

samples. The presented platform reproducibly quantified 318 proteins across 87 remote sampling devices from 
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different donors. 

 Cell based perturbation experiments are another application which requires high throughput. In these 

studies, cells are grown in individual wells and subjected to various treatments, or combinations of treatments. The 

effects of these perturbations are then examined by profiling the cell’s molecular species[24-26]. The number of 

samples in such studies grows exponentially when multiple biological replicates are subjected to several 

combinations of conditions within multiple time points and dosages. With cell culture automation it is possible to 

grow multiples of 96-well plates while applying different perturbations across each plate. A reasonable pace of 

proteomic analysis to match this throughput is one 96-well plate per day per instrument, or 15 minutes per sample. 

Ideally a high number of proteins representative of most biological pathways can be reproducibly quantified at this 

pace. With the presented platform over 4,000 proteins were reproducibly quantified in the lysate of AC16 cells. 

Two mass spectrometry innovations address the challenge of maximizing the number of quantified analytes 

within a short analysis time: additional dimension of analyte separation through ion mobility, and rapid high 

resolution mass analysis.  Ion mobility separation obviates the need for long chromatographic separation by 

providing an orthogonal second dimension that multiplicatively increases peak capacity, which correlates with 

detectable analytes [27]. A fast mass analyzer is then required to carry out the necessary selective fragmentations 

for identification and specific quantification [28]. With these innovations, the role of LC becomes rapid and 

reproducible introduction of the separated analytes into the MS. The ratio of time during which analytes are 

detected to total time of analysis (instrument utilization, IU) is a critical metric of throughput because it roughly 

correlates to the number of quantified analytes. However, achieving a high IU during rapid analysis is challenging 

because the required steps during which useful data is not generated including the auto-sampler injection of the 

sample, the dwell time during which the analytes traverse the analytical column, and the cleaning and equilibration 

steps cannot be accelerated with the same flexibility as the analytical gradient. 

The presented dual-trap single column configuration is an accessible, easy to implement innovation which 

increases IU at any throughput, but especially in rapid analysis. This configuration is suitable for high flow rates, 

micro LC flow rates and nano-flow. In this configuration, one trap is back-flushed with a high organic buffer, 

equilibrated, and loaded with the subsequent sample while, in parallel, a sample loaded on the other trap is 

separated on the analytical column and analyzed. With this parallelization a maximum ratio of instrument time is 

devoted to collection of useful data (Fig. 1). Here we present the adaptation of this configuration for analysis of 

blood from remote sampling devices and cell lysates at 15 minutes per sample throughput. The presented 

configuration runs at the 9.5 µL/min flowrate and achieves optimal performance with 1,000 ng of peptides injected 

on column, thus making it suitable for some sample limited applications. 

Materials and Methods 

LC configuration 

 The dual-trap single column configuration schematic is illustrated in Figure 2 and requires a 10-port 2-

position valve, a second 2-position valve with at least 6 ports, an analytical pump, and a loading pump. In these 

experiments an Ultimate 3000 nano-RSLC instrument (Thermo) was used, but any instrument with the 

aforementioned features can be configured as such. To operate this configuration two complementary instrument 

methods are programmed. In the first method (Fig. 2A and B) the analytical gradient is delivered through Trapping 

Column 1 and Analytical Column, while the loading pump connected through the auto-sampler delivers a plug of 

highly organic solvent to clean and back-flush (in reverse direction of the analytical gradient) Trapping Column 2 

(Fig. 2A). The direction of loading pump flow is switched so that the subsequent sample picked up by the auto-
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sampler is loaded onto Trapping Column 2 in the analytical direction (forward loaded, Fig. 2B) and desalted for 

several minutes. In the next run the second method reverses the roles of the traps (Fig. 2C and D). The methods are 

alternated for the entire sample set. A blank is analyzed in the first run since no sample was loaded in the previous 

run and buffer is injected in the final run since there is no subsequent sample. It is important to note that the 

loading pump is not intended for gradient delivery and while it can be used to deliver a slug of organic buffer and 

equilibrate back to aqueous composition before sample loading at the 60 µL/min flowrate, it is not able to do so at 

the nano-liter/min flowrate, so instead the auto-sampler sample loop can be used to inject highly organic buffer 

during trap column cleaning. 

LC-MS Analysis 

 All samples were analyzed on an Ultimate 3000 nano-RSLC equipped with the capillary flow selector at 9.5 

µL/min analytical flowrate. Peptides were trapped on Phenomenex 0.3 mm internal diameter, 150 mm long 

columns packed with 5 um Kinetex C8 beads, and separated on a CapLC 50 cm micro-pillar array column from 

Pharmafluidics (now Thermo). An 8-nozzle M3 emitter installed in a MnESI source from Newomics was used to split 

the flow just prior to electrospray [29, 30]. The entire assembly was connected with 50 um internal diameter Viper 

capillaries (Thermo) and kept at 50° C in the column oven. The analytical gradient used 0.1% formic acid in water 

(mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B) and was delivered as follows: start at 7% B; 

linear ramp to 22%B over 8.5 minutes; linear ramp to 38%B in 4.3 minutes; jump to 98%B over 0.2 minutes, 0.9 min 

hold at 98% B, drop back to 7% B and hold for 1 minute (15 minutes total). The loading pump was connected to 

three solvents: 0.1% formic acid in water (loading buffer A), 0.2% formic acid in 70% acetonitrile 30% water with 5 

mM ammonium formate (loading buffer B), 0.2% formic acid in 90% isopropanol with 10% acetonitrile and 5 mM 

ammonium formate (loading buffer C). Although one highly organic solvent to flush the trapping columns and one 

aqueous buffer to load the samples is sufficient, this set of buffers was used for easy switching to a different 

application. At the beginning of the method the loading pump delivered 50% B and 50% C at 60 µL/min for 0.5 

minutes while reducing the flowrate to 55 µL/min. The solvent was switched to 100% A over 0.3 minutes and held 

for 8.2 minutes at 55 µL/min to equilibrate back to aqueous composition. The loading pump flowrate was reduced 

to 20 µL/min at 9.5 minutes and held for the remainder of the method for sample loading and desalting. The auto-

sampler was operated with a user program in which the first command initialized the run, next the auto-sampler 

filled the 20 µL sample loop with acetonitrile and injected it to help flush the trapping column. Two 25 µL rinses 

with water removed any organic from the needle assembly. After a 3-minute pause, 20 µL of sample was collected 

into the loop and injected onto the trapping column, this coincided with the drop of loading pump flowrate to 20 

µL/min at 9.5 minute run time. Finally, the syringe was emptied and the needle was washed. The auto-sampler 

program is presented in Supplement Table 1. 

  Data were acquired on a Bruker TIMS-TOF Pro mass spectrometer using PASEF-DIA. Ions were accumulated 

for 70 ms, separated with 70 ms ramp, and fragmented in 40 m/z windows which covered the 360 to 1120 m/z and 

0.65 to 1.41 1/K0 ion mobility ranges corresponding to the majority of observed multi-charged peptide ions. Each 

ramp cycle contained 1 to 3 DIA scans resulting in a 0.76 s total cycle time. The DIA isolation scheme is presented in 

Supplement Table 2. Electrospray ionization was performed using a Bruker MnESI source with the 8 nozzle M3 

emitter from Newomics with the capillary voltage set to 4800 V, the endplate offset voltage set to 500 V, the 

nebulizer set to 2.9 Bar, and the Dry Gas set to 6.0 L/min and 200 C. The mass spectrometer and Ultimate 3000 

were controlled through Hystar 6.0 with the SII plug-in. The two LC methods and the PASEF-DIA method files are 

uploaded to LCMSMethods.com under dx.doi.org/10.17504/protocols.io.5qpvob27dl4o/v1. 

Data Analysis 
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 Data were analyzed in DIA-NN 1.8 [31] using the library-free search feature or with libraries generated by 

gas phase fractionation (GPF). To generate the GPF libraries, pooled samples were analyzed repeatedly using the 

aforementioned LC settings but with data-dependent acquisition (DDA) to acquire fragmentation spectra for 

precursors within a restricted mass to charge range (e.g. 300 to 500 m/z) (Supplement Figure 1). Different 

precursor m/z ranges were analyzed in each run to span the 300 to 1100 range and one full range experiment was 

carried out as the reference for retention time alignment during library assembly. The GPF data were analyzed in 

FragPipe 17.1 [32]. In the first search, the open search pipeline with strict tryptic specificity was used to identify the 

prevalent post-translational modifications (PTMs) and the detectable protein population. The second search was 

restricted to the identified proteins and most prevalent PTMs, but with semi-tryptic protein specificity and up to 2 

allowed missed cleavages. The peptides identified in the second search at <1% FDR were compiled into a spectral 

library with EasyPQP. A quick library was generated for DIA method optimization using dried blood spots with just 

nine DDA runs. A more thorough library was generated for the remote sampling devices by collecting each GPF 

range in duplicate for each of the four cohorts (64 with an additional alignment reference run). Cell lysates were 

analyzed using the DIA-NN library-free feature in which the human SwissProt protein database was translated into 

in silico generated spectra with retention time and ion mobility predicted by machine learning. In all analysis, match 

between runs (MBR) and double pass mode were enabled and MS1 and MS2 mass errors were set to 15 ppm. 

 For cohort comparison of Mitra device blood the DIA-NN reported protein intensities were log base 2 

transformed and standardized across each sample so that the distribution of protein quantities in each sample had 

a mean of zero and standard deviation of one (Fig. 5). UMAP (Uniform Manifold Approximation and Projection for 

Dimension [33] was used to project the protein quantities onto two dimensions to allow for visualization of protein 

clustering by cohort. Proteins quantified in every sample (318 proteins) were compared between the control group 

and the three hypertension cohorts as a combined second group using t-tests with Benjamini-Hochberg correction.  

The proteins with significantly different means (adjusted p-values < 0.05) were used as inputs to train one of five 

classification models (Gradient Boosting Decision Trees [GB], Support Vector Classification [SVC], Random Forest 

[RF], Extra-Trees [ET], and Logistic Regression [LR]) [34-38] using 70% of the data. The remaining 30% of the data 

was used as the final test set and the model with the highest precision recall area under the curve (PR AUC) was 

selected as the classifier for hypertension prediction. This data normalization, analysis, and model training were 

performed in Python version 3.7.11. 

Dried blood spots (DBS) sample preparation 

Pooled, mixed-gender blood sample (Golden West Biosolutions, LLC., Human Whole Blood Lot# 

PS1000.104) was spotted onto Whatman cards. The discs with dried blood spots were transferred to 96 well deep-

well plates (1.1 mL volume, Thermo Fisher Scientific). The proteins were solubilized in lysis buffer composed of 9M 

Urea, 0.03 M TCEP (Thermo Fisher Scientific), and 0.2 M Trizma (Sigma Aldrich) by shaking at 1200 rpm for 60 

minutes at 37C. The remainder of the protocol was performed automatically on a Beckman i7 automated 

workstation (Beckman Coulter). The samples were alkylated in 0.05 M iodoacetamide (IAA). Then the samples were 

diluted with 0.2 M Trizma to a final volume of 567uL and trypsin was added to 0.15 mM final concentration. The 

plate was incubated at 42° C for 4 hours with slight shaking at 120 rpm and digestion was quenched by acidification 

with formic acid. Digested samples were mixed with 2% phosphoric acid, 0.1% formic acid and automatically 

desalted on an Oasis 30 µm HLB 96-well plate (Waters) following the manufacturer’s protocol adapted for the 

Beckman i7 and the positive pressure apparatus module to push the solvents through [39]. 

Mitra device dried blood sample preparation 
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 Blood was obtained from 87 patients using Mitra devices (Neoteryx). The patients were grouped by blood 

pressure into cohorts: Cohort 1 did not have high blood pressure (n=37), Cohort 2 had blood pressure between 

120/80 and 130/90 (n=29), Cohort 3 had a BP above 130/90 (n=11) and Cohort 4 had high blood pressure but was 

managing it with medication (n=10). The protein content was extracted from the Mitra devices by 1-hour 

incubation at 60° C in 35% TFE buffer containing 40 mM dithiothreitol (DTT; Sigma) and 50 mM ammonium 

bicarbonate (Sigma). The rest of the sample processing was performed automatically on the Beckman i7. 

Iodoacetamide was added to 10 mM concentration and the samples were incubated at 25° C in the dark for 30 

minutes. An addition of 5 mM DTT quenched alkylation and addition of 50NmM NH4CO3 diluted TFE to 5% final 

concentration. Trypsin was added at a ratio of 1:25 protease to substrate and samples were digested for 4 hours at 

43° C. Digestion was quenched with addition of formic acid to 1% final concentration. Samples were diluted to 50 

ng/ µL concentration before LC-MS analysis [40]. 

Cell Lysate Preparation 

The AC16 cell line was grown in house in high glucose Dulbecco's modified eagle medium: nutrient mixture 

F-12 (DMEM/F12; Gibco), with 12.5 % fetal bovine serum (FBS; Gibco) supplemented with antibiotic-antimycotic 

(100X; Gibco) at 37 °C (5% CO2). At 1.44 x 10
7
 cells/mL concentration the cells were washed two times with PBS, 

trypsinized, and pelleted at 180 x g. The pellet was washed twice and aliquots of 3.7 x 10
4
 cells suspended in 20 µL 

of 100 mM ammonium bicarbonate (MilliporeSigma) buffer were loaded into individual wells on three 96-well AFA-

Tube TPX plates (COVARIS). Cells were sonicated and lysed for 5 minutes using the LE220-Plus focused-

ultrasonicator (COVARIS) using 350 power peak intensity (PIP), 25 % duty factor (DF) and 200 cycles per burst (CPB). 

Each sample was reduced with 20 mM dithiothreitol (DTT; Pierce) for 10 minutes at 60° C, and then alkylated with 

40 mM Iodoacetamide (IAA; BioUltra) for 30 minutes at room temperature in dark. The sample volume was 

adjusted to 150 uL and to 10% acetonitrile. The samples were digested with sequencing grade modified trypsin 

from Promega at a ratio of 1:20 (w/w) for 2 hours at 42
o 

C. The samples were acidified to 0.6% Trifluoroacetic acid 

Optima LC/MS grade (TFA; Fisher Scientific) and dried under vacuum. Prior to analysis the dried peptides were 

reconstituted in 80 µL of 0.1% formic acid, to load 1,000 ng in 20 µL injections. 

Results and Discussion 

 With the dual-trap one-column configuration one trapping column is cleaned and loaded with the following 

sample during analysis of the sample loaded on the second trap. A typical auto-sampler injection requires 2.5 

minutes and the system cleaning and equilibration is reduced by 0.5 minutes, thus saving 3 minutes per run which 

amounts to a 20% increase in throughput at 15 minutes per sample. Parallelization has previously been 

implemented using configurations where two alternating separations are performed with two analytical columns 

driven by two analytical pumps with and without corresponding trapping columns [41, 42]. The presented 

configuration has several advantages over these more complex set-ups. First, LCs equipped with a loading pump 

and a binary analytical pump (e.g. Ultimate 3000 nano-RSLC and Waters Acuity) are widely implemented making 

this strategy accessible to many researchers. The dual column strategy can use a valve to select the column that is 

connected to the electrospray source during analyte elution[43], however this post-column volume reduces 

performance at the nano- and low micro- liter/min flowrates and a custom electrospray source that can 

accommodate two separate emitters is required [44]. Furthermore, a second analytical column is an additional 

source of variability. The presented approach is robust and reproducible at the low-microliter/min flowrate and 

lower and works with conventional single emitter sources which makes it suitable for low sample quantity 

applications. 
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 In the presented implementation of this configuration, peptides were quantified for 13.5 minutes out of 

the 15 minute run time thus achieving a 90% IU. The DIA data acquisition scheme was optimized using a standard 

composed of digested dried blood spots and the isolation windows were selected to cover the majority of 

detectable multi-charged peptide ions. Data acquisition schemes with varying ramp times and isolation window 

widths were evaluated by assessing the peptide level quantitative reproducibility of 10 injections of 1,000 ng of the 

standard (Supplement Figure 1). The highest number of identified precursors (3,985 total, 3,697 on average) and 

the lowest CV (23% median, 26% average) correlated with the highest number points across the elution of each 

precursor, indicated by the 3.1 MS2 scans across the full width half max (FWHM). To further exploit this trend, the 

isolation windows were optimized to increase the MS2 scans at FWMH and the method described in the Methods 

section averaged 3.3 to 4 MS2 scans at FWHM and was used for the subsequent experiments. 

 A loading curve spanning 10 to 1,500 ng of the DBS standard was generated to establish optimal loading 

quantity and evaluate quantitative variance at each level. Each quantity was injected 4 times, except for the 1,000 

ng and 1,500 ng levels which were injected 10 times to serve as the first day reproducibility set. One of the 25 ng 

injections was not picked up by the auto-sampler and was excluded from further analysis. The number of precursor 

and protein identifications and the %CV at each level is presented in Figure 3A and B. Based on this data the 

highest, most reproducible identifications were achieved at 1,000 ng. Thus the intra and inter day reproducibility 

was tested with ten 1,000 ng injections on two additional days and the %CV distribution is presented in Figure 3C 

and D. On two of the days 128 and 134 proteins had a CV of less than 10%, but on the second day, which reduced 

the inter-day reproducibility overall only 96 proteins were under this threshold. Despite this, 234 proteins had a CV 

below 20% on all three days and 212 met this threshold inter-day. If an inter-day variance of 30% CV is acceptable, 

then 291 proteins and 2,999 precursors (or 4,177 at 40% CV) can be considered reproducibly quantifiable with this 

platform.  

 Next, we applied the platform to real-world blood samples collected using Mitra devices. The specimens 

were grouped by blood pressure (BP): Cohort 1 had normal BP (n= 37), Cohort 2 had BP between 120/80 and 

130/90 (n=29), Cohort 3 had a BP above 130/90 (n=11) and Cohort 4 had high BP that was treated with medication 

(n=10). On average, 366 proteins were quantified in each cohort with 318 proteins quantified in every sample and 

362 proteins quantified in 80% of the samples (Fig 4A, 4B). At the precursor level, 2,166 were quantified in every 

sample, while 4483 were quantified in 80% of the samples with a total of 5,500 to 6,000 precursors quantified in 

most samples (Fig. 4). The reproducibility was excellent based on uncorrected log2 transformed protein quantity 

distributions across all 87 samples (Fig 5A), and standardization neatly aligned the quantity distributions (Fig 5B). 

UMAP was used for dimension reduction to examine the unbiased relationship between the 4 cohorts (Fig 5C). 

Remarkably, cohorts 3 and 4 cleanly separated from the intermixed control and lower hypertension cohorts along 

the second dimension. To separate the control cohort from a second group of the three hypertension cohorts, 

machine learning classification models were trained based on proteins which were quantified in every sample and 

significantly differentiated between cohort 1 and the combined hypertension cohorts. Data was split into 70% 

training and 30% test sets, and various models were optimized using random hyperparameter searches before 

assessing performance on the test set. Of all the models, extra-trees had the highest PR AUC score of 0.91 

(Supplement Table 3), which was substantially better than the no-skill model (Fig 5D). Altogether, this analysis 

shows that data generated from difficult samples using this high throughput platform can be used to distinguish 

patient groups even when the underlying biology is subtle. 

The platform was evaluated for rapid analysis of cell lysates in perturbation studies. Three identical 96-well 

plates containing untreated AC16 cell lysate were prepared. This experiment evaluated the depth of analysis which 

can be accomplished in 15 minutes and the combined reproducibility of the sample preparation protocol and 
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analytical set-up. The acquired data were analyzed against the human SwissProt database using the library-free 

search option of DIA-NN. Out of 296 samples, 9 injections failed because the auto-sampler did not pick up the 

sample, establishing a 3% re-injection rate that can be improved with a more robust auto-sampler. On average, 

37.5 k precursor ions and 4,534 proteins were identified across the 279 successful injections. The distribution of 

identifications by plate is presented in Figure 6A. The dataset completeness and reproducibility both at the protein 

and precursor level are presented in Figure 6B; 13,165 precursors and 3,515 proteins were identified in all 279 

samples, if a rate of 5% missing values is acceptable then these numbers increase to 22,621 and 3,977 for 

precursors and proteins, respectively. For the core proteins and precursors (those detected in all successful 

injections), the average %CV was 11% and 19%, respectively.  

The presented assembly robustly and rapidly analyzes challenging physiological samples like blood and 

achieves deep profiling in cell lysates. A key consideration for developing this platform is the ability to perform with 

minimal down time. Thus fairly large traps were selected in the expectation that they would not clog and will be 

able to filter out any contaminants that may compromise analysis. Another key consideration is variability in 

performance between the two traps. We address this potential issue by routinely running trap synchronization QC, 

in which the base-peak chromatograms from several runs on each trap are overlaid to ensure that the retention 

time and peak widths are identical on both traps. A failure in this alignment indicates that there is possibly a leak in 

one of the connections, some contamination is influencing trap retention, or the trap needs to be replaced. The 

analytical flowrate was set at 9.5 µL/min because the Ultimate 3000 operates at a maximum of 10 µL/min with the 

capillary flow module. The CapLC column was selected because it can robustly process 1 to 3 thousand samples, but 

it does not tolerate a pressure above 350 bar. At the analytical flowrate the back pressure was 200-250 bar, so it is 

possible to increase the flowrate by several microliters/min and further reduce the dwell time and increase IU. The 

IU can also be increased by reducing the dwell volume with smaller trapping columns or a different analytical 

column, but selection of trapping columns which have identical performance and can operate robustly requires 

thorough testing. It is important to note that while the focus of this publication was tryptic peptides the described 

configuration can be used to rapidly profile other sets of analytes such as metabolites, lipids, intact proteins, and 

RNA with the appropriate chromatographic columns and mobile phases. The raw data presented in this manuscript 

is shared through the MASSIVE repository (DOI#XXXXX) 

Conclusion 

 We’ve demonstrated that the dual-trap one-column configuration achieves 90% IU at 15 minute per 

sample throughput in two key LC-MS applications: analysis of cell lysates in a perturbation study and analysis of 

clinical specimens collected using remote blood sampling devices. We envision implementing this platform 

synchronously with 24-hour incubation of cells cultured on 96 well-plates with different conditions applied across 

the plate. This will allow zero down time in perturbation studies as samples are incubated for 24 hours, digested 

the next day, and analyzed the following day while the subsequent plates are prepared and digested in parallel. Our 

platform quantified over 4,000 proteins in a human cardiomyocyte cell line (AC16) lysate, which corresponds to 

approximately 20% of the total genome in 15 minutes. The platform is also versatile as demonstrated in the 

analysis of blood from remote sampling devices.  In combination with remote sampling, this platform can be used 

to execute ambitious surveys of large cohorts with multiple time-points. Even at the cursory depth of the top 300-

400 blood proteins we were able to distinguish samples based on the blood pressure phenotype using machine 

learning using data from just 15 minutes of instrument time. Similar algorithms can be generated for all sorts of 

phenotypes and disease states and greater depth can be achieved through longer methods or fractionation. Our 

dual-trap single-column platform provides a significant boost in throughput without sacrificing the quality of the 
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generated data thus empowering precise and reproducible quantitation across large samples sets and allowing 

proteomics to capture population and biological heterogeneity.  
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