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 2 

ABSTRACT 21 

The metabolite succinate accumulates during cardiac ischemia. Within 5 min. of 22 

reperfusion, succinate returns to baseline levels via both its release from cells and oxidation  by 23 

mitochondrial complex II (Cx-II). The latter drives reactive oxygen species (ROS) generation and 24 

subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. 25 

Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically 26 

beneficial in cardiac ischemia-reperfusion (IR) injury. It has been proposed that blocking 27 

monocarboxylate transporter 1 (MCT-1) may be beneficial in IR, by preventing succinate release 28 

and subsequent engagement of downstream inflammatory signaling pathways. In contrast, 29 

herein we hypothesized that blocking MCT-1 would retain succinate in cells, exacerbating ROS 30 

generation and IR injury. Using the mitochondrial ROS probe mitoSOX, and a custom-built murine 31 

heart perfusion rig built into a spectrofluorometer, we measured ROS generation in-situ during 32 

the first moments of reperfusion, and found that acute MCT-1 inhibition enhanced mitochondrial 33 

ROS generation at reperfusion, and worsened IR injury (recovery of function and infarct size). 34 

Both these effects were abrogated by tandem inhibition of Cx-II, suggesting that succinate 35 

retention worsens IR due to driving more mitochondrial ROS generation. Furthermore, using the 36 

PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial 37 

membrane potential indicator TMRE, we herein provide evidence that ROS generation during 38 

early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, 39 

pore opening was exacerbated by MCT-1 inhibition. Together, these findings highlight the 40 

importance of succinate dynamics and mitochondrial ROS generation, as key determinants of PT 41 

pore opening and IR injury outcomes. 42 

  43 
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 44 

1. INTRODUCTION 45 

The metabolite succinate has a central role in tissue ischemia. Several mechanisms exist 46 

for ischemic succinate accumulation 1, 2, and this process is conserved across diverse tissues, 47 

species, and physiologic contexts 3, 4. However, rapid oxidation of accumulated succinate at the 48 

onset of tissue reperfusion is a key event in ischemia-reperfusion (IR) injury, the underlying 49 

pathology of myocardial infarction (heart attack) 1, 2. This has led to intense interest in succinate 50 

as a potential therapeutic target 5-9. 51 

Approximately ⅓ of succinate accumulated during ischemia is rapidly oxidized by complex 52 

II (Cx-II) of the mitochondrial respiratory chain 2, 10. This leads to the generation of reactive oxygen 53 

species (ROS) via mechanisms that are thought to involve either reverse electron transport (RET) 54 

at complex-I (Cx-I) 11-13 or forward electron transport at complex-III (Cx-III) 14-18. Mitochondrial 55 

ROS generation potentiates opening of the mitochondrial permeability transition (PT) pore 19-22, 56 

which triggers necrotic cell death. 57 

The remaining ⅔ of succinate accumulated during ischemia is released upon reperfusion, 58 

in a pH-dependent manner via monocarboxylate transporter 1 (MCT-1) 10, 23. The physiologic 59 

function of this released succinate is unclear, with suggestions that it may serve as a metabolic 60 

signal of hypoxia 24. Succinate is a ligand for the widely expressed succinate receptor (SUCNR1, 61 

formerly GPR91), which elicits a range of physiologic responses 25. Most relevant to IR injury, 62 

SUCNR1 signaling promotes inflammation via macrophage activation, which may contribute to 63 

the pathology of IR injury 10, 26-30. As such, it has been postulated that inhibiting MCT-1 would be 64 

beneficial in IR injury, via blunting of extracellular succinate  SUCNR1 signaling 10, 31. 65 

In contrast, given the key role of intracellular succinate for ROS generation during 66 

reperfusion, we hypothesized herein that acute blockade of succinate release via MCT-1 would 67 

worsen IR injury, and that simultaneous blockade of Cx-II would abrogate this effect. This 68 

hypothesis was tested by measuring mitochondrial ROS generation in-situ in perfused mouse 69 

hearts  using a custom-built perfusion rig within the chamber of a benchtop spectrofluorometer. 70 

In addition, since it has been proposed that PT pore opening itself may lie upstream of the burst 71 
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of ROS seen upon reperfusion 23, 32, we used this apparatus to interrogate the temporal 72 

relationship between ROS generation and PT pore opening during early reperfusion. 73 

 74 

2. MATERIALS AND METHODS 75 

2.1 Animals and Reagents 76 

Animal and experimental procedures complied with the National Institutes of Health 77 

Guide for Care and Use of Laboratory Animals (8th edition, 2011) and were approved by the 78 

University of Rochester Committee on Animal Resources (protocol #2007-087). Male and female 79 

C57BL/6J adult mice (8-20 weeks old) were housed in a pathogen-free vivarium with 12 hr. light-80 

dark cycles and food and water ad libitum. Mice were administered terminal anesthesia via intra-81 

peritoneal 2,2,2-tribromoethanol (Avertin) ~250 mg/kg. Avertin was prepared in amber glass 82 

vials and stored at 4°C for no more than 1 month. This agent was chosen for anesthesia since it 83 

does not impact cardioprotection as reported for volatile anesthetics or opioids 33-35, and does 84 

not have mitochondrial depressant effects as reported for barbiturates 36. Euthanasia occurred 85 

via cardiac extirpation (see below). 86 

MitoSOX red was from Thermo (NJ, USA) and was stored aliquoted under argon prior to 87 

use. Fully oxidized mitoSOX was prepared by reaction with Fremy’s salt, as described elsewhere 88 
37. AR-C155858 was from MedChemExpress (Monmouth Junction, NJ, USA). Unless otherwise 89 

stated, all other reagents were from Sigma (St. Louis MO, USA). 90 

 91 

2.2 Perfused Mouse Hearts 92 

Following establishment of anesthetic plane (toe-pinch response), beating mouse hearts 93 

were rapidly cannulated, excised and retrograde perfused at a constant flow (4 ml/min.) with 94 

Krebs-Henseleit buffer (KHB) consisting of (in mM): NaCl (118), KCl (4.7), MgSO4 (1.2), NaHCO3 95 

(25), KH2PO4 (1.2), CaCl2 (2.5), glucose (5), pyruvate (0.2), lactate (1.2), and palmitate (0.1, 96 

conjugated 6:1 to bovine serum albumin). KHB was gassed with 95% O2 and 5% CO2 at 37°C. A 97 

water-filled balloon connected to a pressure transducer was inserted into the left ventricle and 98 

expanded to provide a diastolic pressure of 6-8 mmHg. Cardiac function was recorded digitally at 99 

1 kHz (Dataq, Akron OH) for the duration of the protocol. Following equilibration (10-20 min.) 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2022. ; https://doi.org/10.1101/2022.04.27.489760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

ischemia-reperfusion (IR) injury comprised 25 min. global no-flow ischemia plus 60 min. 101 

reperfusion. Hearts were then sliced and stained with triphenyltetrazolium chloride (TTC) for 102 

infarct quantitation by planimetry (red = live tissue, white = infarct). Infarction analysis was 103 

blinded to experimentalists. 104 

The following conditions (Figure 1F) were examined: (i) Control: DMSO vehicle infusion 5 105 

min. prior to ischemia and 5 min. into reperfusion. (ii) S1QEL: 1.6 µM S1QEL1.1, delivered 5 min. 106 

prior to ischemia and 5 min. into reperfusion. (iii) DMM5: 5 mM dimethyl malonate at the onset 107 

of reperfusion and 5 min. into reperfusion. (iv) AR: 10 µM AR-C155858 infusion, 5 min. prior to 108 

ischemia and 5 min. into reperfusion. (v) AR + DMM5: 10 µM AR-C155858 infusion, 5 min. prior 109 

to ischemia and 5 min. into reperfusion plus 5 mM dimethyl malonate at the onset of reperfusion 110 

and 5 min. into reperfusion. (vi) AR + DMM10: 10 µM AR-C155858 infusion, 5 min. prior to 111 

ischemia and 5 min. into reperfusion plus 10 mM dimethyl malonate at the onset of reperfusion 112 

and 5 min. into reperfusion. (vii) AR + AA5: 10 µM AR-C155858 infusion, 5 min. prior to ischemia 113 

and 5 min. into reperfusion plus 100 nM atpenin A5 at the onset of reperfusion and 5 min. into 114 

reperfusion. (viii) CsA: 0.8 µM cyclosporin A infusion 38, 5 min. prior to ischemia and 5 min. into 115 

reperfusion. Simultaneously with these conditions, hearts were delivered either 1.5 µM mitoSOX 116 

for 5 min. or 500 nM tetramethylrhodamine ethyl ester (TMRE) for 20 min., prior to ischemia. 117 

 118 

2.3 Perfusion Apparatus Within Spectrofluorometer  119 

A cardiac perfusion apparatus was custom-built with an umbilicum, to position the heart 120 

within the light-proof enclosure of a Varian/Cary Eclipse benchtop spectrofluorometer (Agilent, 121 

Santa Clara CA, USA), as shown in Figure 1A-1C. Hearts were placed against the wall of a water-122 

jacketed cuvette maintained at 37°C in which the excitation light source strikes the left ventricle 123 

of the heart at a 45˚ angle relative to the photomultiplier tube (PMT) window. The cuvet holder 124 

was 3D printed (.stl file in supplementary materials). Data was collected using Cary WinUV 125 

Kinetics software, which permitted real-time fluorescence monitoring (1 s. reads / 15 s. cycle, 126 

PMT voltage 600, Ex/Em slit width = 5 nm) for the duration of the perfusion protocol. At the heart 127 

rates observed (438 ± 54 bpm, mean ± SD, N=54) a 1 s. fluorescent read averages across ~7 heart 128 

beats, so gating for motion artifacts was unnecessary. Initial validation was performed by 129 
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monitoring endogenous NAD(P)H fluorescence (λEX 340 nm, λEM 460 nm) and flavoprotein 130 

fluorescence (λEX 460 nm, λEM 520 nm), as shown in Figure 1D-1E. 131 

 132 

2.4 Measuring in situ Mitochondrial ROS  133 

Mitochondrial ROS generation was measured using the probe mitoSOX 39, 40 134 

(tetraphenylphosphonium-conjugated dihydroethidium, TPP+–DHE) at a concentration of 1.5 135 

µM, since the TPP+ moiety is known to uncouple mitochondria at concentrations >2.5 µM 41-43. 136 

Hearts subject to conditions (i-vii) described above were equilibrated for 10 min., loaded with 1.5 137 

µM mitoSOX for 5 min. before immediately being subjected to 25 min. ischemia. Fluorescence 138 

was monitored at λEX 510 nm,  λEM 580 nm. 139 

Since the λEX and λEM of mitoSOX overlap with absorbance spectra of endogenous 140 

chromophores in cardiomyocytes (e.g., myoglobin and cytochromes), changes in chromophore 141 

absorbance during the course of IR could impact the fluorescent signal. Furthermore, the 142 

distribution of the mitoSOX probe between cytosolic and mitochondrial matrix compartments is 143 

determined by the mitochondrial membrane potential (ΔΨm), which would also be expected to 144 

change during IR. To correct for these potential cofounding effects, a series of hearts were loaded 145 

with fully-oxidized mitoSOX 37, which fluoresces in a manner that is independent of ROS 146 

generation, but is still subject to the effects of chromophore absorbance and probe distribution. 147 

Fluorescent data from these hearts was used to correct data obtained with naïve mitoSOX 148 

(conditions i-vii), yielding a net signal that originated only from in-situ probe oxidation, without 149 

contribution from other factors. The data process for this correction is illustrated in Supplemental 150 

Figure 1, which also shows a minimal change in signal during IR when no mitoSOX was present. 151 

In addition, absorbance spectra of compounds tested in this study (AR, DMM, S1QEL, etc.) were 152 

also measured, to ensure these chemicals did not absorb significant amounts of light at the λEX 153 

and λEM of mitoSOX (Supplemental Figure 2). 154 

 155 

2.5 Measuring in situ Mitochondrial Membrane Potential (ΔΨm) 156 

In order to assess the timing of mitochondrial PT pore opening, mitochondrial membrane 157 

potential was measured using TMRE at 500 nM delivered for 20 min. prior to ischemia. The PT 158 
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pore inhibitor CsA (0.8 µM) was optionally delivered for 5 min. prior to ischemia. To determine 159 

changes upon reperfusion, TMRE data were normalized to the fluorescent signal during the last 160 

5 min. of ischemia. Two conditions were examined: control IR, and IR with MCT-1 inhibition (same 161 

as condition (vi) in section 2.2 above). Attempts to determine the effect of CsA on PT pore 162 

opening in the presence of AR-C155858 were confounded by interactions between these 163 

molecules and TMRE, resulting in precipitation of components in Krebs-Henseleit buffer. 164 

 165 

2.6 Effluent Analysis by High-Performance Liquid Chromatography 166 

Effluents from control and AR treated hearts were collected in 1 min. intervals for the first 167 

3 min. of reperfusion, and immediately treated with 10 % perchloric acid. Following addition of 168 

100 nmols butyrate as an internal standard, samples were frozen in liquid N2 and stored at -80°C 169 

until analysis. Samples were centrifuged at 20,000 x g to remove insoluble materials. Metabolites 170 

were resolved on HPLC (Shimadzu Prominence 20 system) using two 300 x 7.8 mm Aminex HPX-171 

87H columns (BioRad, Carlsbad CA, USA) in series with 10 mM H2SO4 mobile phase (flow rate: 0.7 172 

ml/min) and 100 µl sample injected on column. Succinate and lactate were detected using a 173 

photodiode array measuring absorbance at 210 nm as previously described 2. A standard curve 174 

was constructed for calibration. Lactate data were corrected for 1.2 mM lactate contained in the 175 

Krebs-Henseleit buffer. 176 

 177 

2.7 Quantitation and Statistical Analysis 178 

Comparisons between groups were made using ANOVA, followed by unpaired Student’s 179 

t-tests. Data are shown as means ± SEM. Numbers of biological replicates (N) are noted in the 180 

figures. Significance was set at α = 0.05. 181 

 182 

3. RESULTS 183 

3.1 Cardiac Fluorescence 184 

Although similar spectrofluorometric cardiac perfusion apparatus has previously been 185 

constructed 32, 44-48, prior efforts have used larger animal hearts (rats, guinea pigs) or have not 186 
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simultaneously measured cardiac function. To the best of our knowledge, this is the first study of 187 

mouse hearts with simultaneous fluorescence and functional assessment. 188 

The spectrofluorimetric perfusion system was first validated by monitoring NAD(P)H and 189 

flavoprotein autofluorescence during ischemia and reperfusion (Fig. 1D and 1E). As expected, 190 

NAD(P)H (λEX 340 nm, λEM 460 nm) autofluorescence immediately rose upon ischemia, in 191 

agreement with previous reports 32, 44, 49, 50. Likewise, flavoprotein fluorescence (λEx 460 nm, λEm 192 

520 nm) decreased upon ischemia 32, 50, 51. Both parameters returned to baseline levels 193 

immediately upon reperfusion. 194 

NAD(P)H autofluorescence in the heart is thought to mainly represent mitochondrial 195 

NADH, the substrate for Cx-I which accumulates during ischemia due to a highly reduced 196 

respiratory chain 50. The mitochondrial ATP synthase is thought to operate in reverse during 197 

ischemia, to maintain mitochondrial membrane potential (ΔΨm) 52, 53, and this also contributes 198 

to feedback inhibition of Cx-I resulting in high [NADH] 11. Notably, a decrease in NAD(P)H signal 199 

was observed ~12 min. into ischemia, concurrent with the onset of ischemic hyper-contracture 200 

(not shown). The latter is thought to indicate the onset of an energetic crisis (no ATP to relax 201 

contractile machinery) 54. 202 

 203 

3.2 MitoSOX Fluorescence 204 

Having validated the cardiac fluorescence system, we next sought to use it for 205 

measurement of ROS generation during IR. Figure 2A shows cardiac functional measurements 206 

throughout IR (heart rate x pressure product, RPP), while Figure 2B shows the corrected mitoSOX 207 

fluorescent readout over the same period. 208 

To account for changes in the absorbance of endogenous chromophores during IR, or 209 

probe distribution, additional hearts were perfused with oxidized mitoSOX or with no probe at 210 

all. No significant change in the fluorescent signal was observed in hearts without mitoSOX 211 

(Supplemental Figure 1A). However, delivery of oxidized mitoSOX resulted in a rapid increase in 212 

the fluorescent signal during dye loading (Supplemental Figure 1B). At the onset of ischemia, an 213 

additional signal increase was seen. This is expected, since it has been shown that cardiac tissue 214 

absorbance at 510 nm and 580 nm decreases during ischemia 55. Upon reperfusion, after a small 215 
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increase, the oxidized mitoSOX signal steadily declined for the remainder of the experiment. This 216 

is possibly due to loss of the dye from mitochondria as a result of changes in (ΔΨm) as 217 

mitochondrial integrity becomes compromised. 218 

Raw mitoSOX fluorescence traces (Supplemental Figure 1C) also increased slightly during 219 

loading, but not to the same extent as the fully oxidized probe. A sharp signal increase at the 220 

onset of ischemia may represent a burst of ROS generation as the terminal respiratory chain 221 

becomes inhibited. Upon reperfusion, a sustained signal increase was observed for ~10 min., 222 

followed by a decline. Using the oxidized mitoSOX data to correct the raw mitoSOX data, Figure 223 

2B (Supplemental Figure 1D) shows the signal resulting from oxidation of the probe during IR. 224 

Upon reperfusion, a sustained increase in the redox-dependent mitoSOX signal was seen, and 225 

this is consistent with the concept that a burst of mitochondrial ROS generation occurs during 226 

the first minutes of reperfusion 1, 56-58. 227 

It has been posited that reverse electron transport (RET) at Cx-I is the primary source of 228 

ROS during reperfusion, and recently a novel series of inhibitors that target ROS generation at 229 

the ubiquinone (Q) binding site of Cx-I (termed S1QELs) were shown to elicit cardioprotection 230 

against IR injury 59. Succinate levels return to baseline within the first 5 min. of reperfusion 2, and 231 

accordingly, examining mitoSOX fluorescence during this time period revealed that the 232 

immediate signal increase at the onset of reperfusion in control hearts was suppressed in hearts 233 

treated with a S1QEL (Figure 3A-3C). These data suggest that the ROS signal detected by mitoSOX 234 

during the first minutes of reperfusion originates from Cx-I RET. However, by 2 minutes the rate 235 

of signal increase in S1QEL hearts had returned to that seen in control hearts, potentially 236 

indicating a role for other sources of ROS 17. While no effect of S1QEL on flavoprotein 237 

fluorescence was observed (Figure 3E), S1QEL did cause a slight detriment in the elevation of 238 

NAD(P)H fluorescence at the start of ischemia (37±4% with S1QEL vs. 53±5% in controls, 239 

p=0.042). However, it also blunted the NAD(P)H response to ischemic hyper-contracture (Figure 240 

3D). The combination of these effects was such that the drop in NAD(P)H signal at the onset of 241 

reperfusion was not significantly different between S1QEL vs. control (30±4% vs. 36±4% 242 

respectively), suggesting that consumption of NADH by Cx-I during early reperfusion was not 243 

impacted by the compound. 244 
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 245 

3.3 Preventing Succinate Efflux Exacerbates Mitochondrial ROS at Reperfusion 246 

Upon reperfusion of ischemic heart, ⅓ of accumulated succinate is oxidized by Cx-II, 247 

driving ROS generation 2, 10. Consistent with this, the Cx-II competitive inhibitor malonate is 248 

reported to be cardioprotective when delivered at reperfusion 6, 7, 60. The remaining ⅔ of 249 

succinate accumulated during ischemia is released from tissue upon reperfusion, and the 250 

pathway for this release was recently elucidated as monocarboxylate transporter 1 (MCT-1) 2, 10. 251 

To test the impact of MCT-1 inhibition on ROS generation at reperfusion, hearts were infused 252 

peri-ischemically with the MCT-1 inhibitor AR-C155858 (AR) 61, which resulted in a significant 253 

decrease in succinate release into the post-cardiac effluent during the first 3 minutes of 254 

reperfusion (Supplemental Figure 3). As expected, lactate efflux was also significantly diminished, 255 

confirming MCT-1 inhibition. 256 

Figures 4C & 4F show that AR resulted in a significantly greater rate of ROS generation 257 

during the first minute of reperfusion, compared to control. To investigate the requirement for 258 

Cx-II in the additional AR-induced mitoSOX signal, the competitive Cx-II inhibitor dimethyl 259 

malonate (DMM, 5mM) was used. Surprisingly, DMM alone at this concentration did not 260 

significantly impact the mitoSOX signal, and it also did not significantly blunt the additional signal 261 

induced by AR (Figure 4B, 4D & 4F). We hypothesized that because malonate is a competitive Cx-262 

II inhibitor, it may not be able to out-compete the additional succinate present in cells caused by 263 

MCT-1 inhibition. Supporting this hypothesis, tandem administration of a higher dose of DMM 264 

(10 mM) was capable of blocking the elevated mitoSOX signal elicited by AR, returning it to 265 

control levels (Figure 4E & 4F).  Furthermore, the potent Cx-II inhibitor atpenin A5 (AA5, 100 nM) 266 

was also effective in blocking the additional mitoSOX signal induced by AR (Supplemental Figure 267 

4A & 4B). Overall, these data suggest that MCT-1 inhibition enhances mitochondrial ROS 268 

generation in the first minute of reperfusion, in a manner that can be blocked by inhibitors of Cx-269 

II. 270 

 271 

3.4 Blocking Succinate Release via MCT-1 Worsens IR Injury 272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2022. ; https://doi.org/10.1101/2022.04.27.489760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

In agreement with the role of succinate-derived ROS as a driver of post-IR pathology, 273 

DMM alone improved and AR worsened, IR injury (Figure 5A-C, cardiac functional recovery and 274 

infarct size). In addition, tandem administration of low dose DMM (5 mM) failed to reverse the 275 

impact of AR, whereas high dose DMM (10 mM) was protective. Furthermore, administration of 276 

the potent Cx-II inhibitor AA5 also blocked the impact of AR on functional recovery and infarct 277 

(Supplemental Figure 4C-E), and in-fact was more protective than AA5 alone 2. These effects of 278 

MCT-1 inhibition and Cx-II inhibition were more significant for myocardial infarction (Figure 5C) 279 

than for functional recovery (Figure 5B), but all trended in the same direction similar to mitoSOX 280 

data (Figure 4), i.e., interventions that increased mitoSOX signal at reperfusion worsened IR 281 

injury, and those that decreased it improved IR injury. Overall, a correlation was observed 282 

between the effect of interventions on mitoSOX at reperfusion and on infarct size and functional 283 

recovery, as illustrated in Figure 6. 284 

 285 

3.5 Timing of Mitochondrial ROS at Reperfusion vs. PT Pore Opening. 286 

 While it is largely accepted that ROS can trigger PT pore opening, it has also been 287 

proposed that during reperfusion injury, the PT pore itself may drive ROS generation 23, 32. To test 288 

this, we measured the effect of the PT pore inhibitor CsA on mitoSOX fluorescence during 289 

reperfusion. 0.8 µM CsA was chosen, as this was previously shown to elicit protection in mouse 290 

hearts 38. As shown in Figure 7B & 7C, CsA had no impact on mitoSOX fluorescence during 291 

reperfusion. To confirm that PT pore opening did occur, hearts were loaded with the ΔΨm 292 

indicator TMRE. Upon reperfusion, an immediate rise in TMRE fluorescence was observed. 293 

Subsequently, in control hearts the TMRE signal declined from ~5 min. into reperfusion, whereas 294 

in CsA treated hearts the signal was sustained (Figure 7D & 7E). We thus infer that PT pore 295 

opening occurs no sooner than 5 min. into reperfusion. Despite a small blip in the mitoSOX signal 296 

in control hearts at ~6.5 min., no substantial difference was seen between control & CsA hearts 297 

at this time point, concurrent with divergence of the TMRE traces, thus suggesting no secondary 298 

ROS burst due to PT pore opening. 299 
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Finally, as expected from its impact on mitoSOX fluorescence during early reperfusion 300 

(Figure 4), inhibition of MCT-1 led to an accelerated loss of the TMRE signal during reperfusion, 301 

indicating faster opening of the PT pore (Supplemental Figure 5).   302 

 303 

4. DISCUSSION 304 

Cardiac IR is a complex pathology, with numerous links between early and late events in 305 

the development of myocardial infarction. Shortly after reperfusion, a burst of ROS generation 306 

and mitochondrial Ca2+ overload both trigger opening of the mitochondrial PT pore, a key event 307 

in necrotic cell death of cardiomyocytes. Following this, inflammatory cells (macrophages, 308 

neutrophils) are recruited to the heart, where they mediate responses that lead to cardiac 309 

remodeling, fibrosis, and eventual development of hypertrophy and heart failure 62-64. 310 

Accumulation of succinate in hypoxia/ischemia is highly conserved 3, 4, but this succinate 311 

drives ROS generation upon tissue reperfusion, and this has led to a consensus that intracellular 312 

succinate plays a detrimental role in reperfusion injury 1, 2, 16, 65, 66. In contrast, succinate release 313 

from cells via MCT-1 2, 10, 23, along with the recent identification of a succinate receptor 314 

(GPR91/SUCNR1 25), have led to the notion that extracellular succinate may also play a role in IR 315 
6, 10. In this regard, findings from an in-vivo model of cardiac IR injury demonstrated that blocking 316 

succinate release via MCT-1 was cardioprotective, likely due to inhibiting immune system 317 

activation 6, 10. However, herein our data reveal that acutely blocking MCT-1 in a perfused heart 318 

system (where there are no inflammatory cells) leads to greater ROS generation and the 319 

worsening of IR injury. Reconciling these findings, it is possible that MCT-1 inhibition is indeed 320 

detrimental in the acute setting at the level of cardiomyocytes, but this is balanced in-vivo by a 321 

longer-term effect of MCT-1 inhibition, possibly involving receptor-mediated succinate effects on 322 

other cell types, including inflammatory cells. Together, these studies highlight that the 323 

therapeutic targeting of MCT-1 may require careful timing and titration, to balance detrimental 324 

vs. beneficial effects of blocking succinate release. 325 

Inhibiting MCT-1 in the heart lowered succinate release into the effluent by ~30%. 326 

Assuming this succinate was retained in cells and available for oxidation by Cx-II, it is therefore 327 

not surprising that MCT-1 inhibition also led to enhanced ROS generation. Furthermore, while 5 328 
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mM of the competitive Cx-II inhibitor malonate was ineffective at blocking this additional ROS, 329 

doubling its concentration to 10 mM effectively overrode the impact of AR. Unfortunately, due 330 

to the physical nature of dimethylmalonate (liquid) and our drug infusion system, it was not 331 

possible to test additional even higher doses of DMM. Instead, we tested the potent Cx-II 332 

inhibitor atpenin A5 (AA5, IC50 ~10 nM 67), and found that it was able to completely abrogate the 333 

additional ROS induced by AR, and this resulted in cardioprotection to a level greater than 334 

baseline control IR injury (Supplementary Figure 4). In-fact, the combination of AR and AA5 may 335 

be considered optimal from a therapeutic perspective – keeping succinate inside cells to prevent 336 

its signaling effects, and preventing its oxidation to generate ROS. 337 

Although there is a general consensus that mitochondrial ROS generation during early 338 

reperfusion is an upstream event that triggers PT pore opening, it has also been suggested that 339 

pore opening itself is the main driver of ROS generation in early reperfusion 23, 32. Our results 340 

(Figure 7) suggest that the burst of ROS at reperfusion is independent of the PT pore, since 341 

evidence for pore opening (i.e., a CsA-sensitive loss of ΔΨm) was not observed until at least 5 min. 342 

into reperfusion, by which time a large amount of ROS generation had already occurred. 343 

It should not go unmentioned that Ca2+ is also considered to be a major trigger for PT pore 344 

opening 68, 69, with both Ca2+ and ROS thought to potentiate each other’s effects at promoting 345 

pore formation 70. Thus, future experiments should be directed at using fluorescent Ca2+ probes 346 

in this or similar perfusion systems, to understand in-situ Ca2+ kinetics and how they relate to 347 

ROS and pore opening kinetics in early reperfusion. 348 

A number of caveats regarding the use of mitoSOX as a probe for mitochondrial ROS 349 

should be addressed. Firstly, it is known the probe can be oxidized by reactants other than ROS, 350 

although notably such one-electron oxidations result in non-fluorescent products that would be  351 

undetectable in our measurement system 71. Furthermore, the mitoSOX signal increase in early 352 

reperfusion was inhibited by S1QEL, a specific inhibitor of ROS generation at Cx-I 59, so we 353 

consider any contribution from other poorly-characterized oxidation sources to be minimal. 354 

Secondly, the mitoSOX signal is impacted both by its distribution between extracellular, cytosolic 355 

and mitochondrial compartments 37, and by the primary and secondary filter effects from 356 

endogenous chromophores 47, 55 (see methods section 2.4). However, our use of fully-oxidized 357 
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mitoSOX as a control (Supplementary Figure 1) ensures that any changes in the mitoSOX signal 358 

we observed originated only from in-situ probe oxidation, and not from redistribution of the 359 

probe or changes in the absorbance of myoglobin, cytochromes, etc. 360 

While mitoSOX does confer a number of limitations regarding the assignment of the signal 361 

to a particular reactive oxygen species, similar issues of probe specificity are also broadly 362 

applicable to genetically encoded biosensors 72, 73. In addition, more precise analytical methods 363 

such as LC-MS separation of mitoSOX oxidation products 37, 74 require time-consuming isolation 364 

steps that may release components that further oxidize the probe during isolation, and so may 365 

not be readily compatible with the rapid kinetics of the events observed herein. The development 366 

of more precise genetically-encoded and non ΔΨm dependent mitochondrial ROS probes may 367 

therefore be useful in future studies. 368 

Overall, the findings herein demonstrate that blocking MCT-1 in cardiac IR leads to 369 

inhibition of succinate release, which worsens IR injury due to enhanced mitochondrial ROS 370 

generation. Concurrent inhibition of Cx-II abrogates these effects, highlighting the importance of 371 

succinate oxidation at Cx-II in the pathology of IR injury. Furthermore, these events appear to lie 372 

temporally upstream of PT pore opening. Future experiments could explore the role of local 373 

succinate signaling in the heart, to determine if SUCNR1 may modulate responses to IR in a 374 

manner independent of inflammatory cells, providing further insight on the delicate balance of 375 

succinate dynamics in IR injury. 376 
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FIGURE LEGENDS 625 

Figure 1. Fluorescence Cardiac Perfusion System. (A): Schematic showing arrangement of the 626 

perfused mouse heart relative to light source and photomultiplier tube (PMT). (B): Photograph 627 

of heart in-situ prior to mounting inside spectrofluorometer. (C): Photograph of cardiac perfusion 628 

apparatus from above mounted inside spectrofluorometer. Components of the system are 629 

labeled, including a custom 3D-printed water-jacketed cuvet holder, heated umbilical lines to 630 

deliver KHB at 37°C to the heart, and vacuum line to remove perfusate/effluent. (D): NAD(P)H 631 

autofluorescence (340/460 nm) during ischemia and reperfusion. Traces in gray are individual 632 

hearts, with the average (N=7) shown in black. (E): Flavoprotein autofluorescence (462/520 nm) 633 

during ischemia and reperfusion. Traces in gray are individual hearts, with the average (N=4) 634 

shown in black. Fluorescence data are normalized to pre-ischemic levels. (F): Schematic showing 635 

design of the 7 experimental perfusion conditions examined herein. Where indicated, S1QEL1.1 636 

(Cx-I ROS inhibitor), dimethylmalonate (Cx-II inhibitor), AR-C155858 (MCT-1 inhibitor) or atpenin 637 

A5 (Cx-II inhibitor) were administered at the listed concentrations. Colors and terms used to 638 

denote each condition are used throughout the remainder of the Figures. 639 

 640 

Figure 2. Cardiac Function vs. mitoSOX Fluorescence During IR. (A): Cardiac functional 641 

measurements. Graph shows heart rate x left ventricular developed pressure (i.e., rate pressure 642 

product, RPP). The period of 25 min. ischemia is indicated. Data are means ± SEM, N= 16. (B): 643 

Corrected mitoSOX fluorescence (510/580 nm) during IR. Fluorescent data were processed as 644 

described in the methods and as shown in Supplemental Figure 1, to correct for changes in 645 

absorbance of endogenous cytochromes at the fluorescence wavelengths. Data are means ± 646 

SEM, N= 6. Note: mitoSOX fluorescent measurements were not performed for the entire 647 

perfusion time for all hearts in panel A (e.g., some hearts were used for controls or other 648 

measurements), hence different N between panels. 649 

 650 

Figure 3. Impact of S1QEL on IR injury dynamics. Hearts were treated with the Cx-I Q-site ROS 651 

generation inhibitor S1QEL1.1 for 5 min. pre- and post-ischemia (Figure 1 schematic). (A): Control 652 

mitoSOX fluorescent data during the first 5 min. of reperfusion (from Figure 2B) for comparative 653 
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purposes. (B): mitoSOX fluorescent data from S1QEL treated hearts. Gray traces show individual 654 

data, with averages shown as bold line. (C): Calculated slopes from 1st minute of reperfusion, for 655 

the data in panels A/B. For each condition, individual data points are shown on the left, with 656 

mean ± SEM on the right (N for each condition can be seen from number of data points). p values 657 

(ANOVA followed by unpaired Student’s t-test) for differences between groups are denoted. (D): 658 

NAD(P)H autofluorescence (340/460 nm) during ischemia and reperfusion. Traces in gray are 659 

individual hearts, with the average (N=5) shown in green. (E): Flavoprotein autofluorescence 660 

(462/520 nm) during ischemia and reperfusion. Traces in gray are individual hearts, with the 661 

average (N=5) shown in green. For panels D and E, the average data from control hearts (from 662 

Figure 1) is shown in black for comparative purposes. Fluorescence data are normalized to pre-663 

ischemic levels. 664 

 665 

Figure 4. Impact of AR and Cx-II Inhibitors on mitoSOX Fluorescence at Reperfusion. (A-E): 666 

Corrected mitoSOX traces 5 min. pre- and post-reperfusion, for the labeled conditions. Gray 667 

traces are individual data, with averages shown as bold colored lines (see Figure 1 for color 668 

scheme). (F): Calculated slopes from 1st minute of reperfusion, for the data in panels A-E. For 669 

each condition, individual data points are shown on the left, with mean ± SEM on the right (N for 670 

each condition can be seen from number of data points). p values (ANOVA followed by unpaired 671 

Student’s t-test) for differences between groups are denoted. 672 

 673 

Figure 5. Impact of AR and Cx-II Inhibitors on Outcomes of IR Injury. (A): Cardiac functional 674 

measurements during IR. Graphs show heart rate x left ventricular developed pressure (i.e., rate 675 

pressure product, RPP) for each of the conditions examined. The period of 25 min. ischemia is 676 

indicated. Data are means ± SEM. (B): Quantitation of percent functional recovery, i.e., cardiac 677 

function at 60 min. of reperfusion as a percentage of that immediately before ischemia (-25 min. 678 

time point). For each condition, individual data points are shown on the left, with mean ± SEM 679 

shown on the right (N for each condition can be seen from number of data points). p values 680 

(ANOVA followed by unpaired Student’s t-test) for differences between groups are denoted 681 

above the data. (C): Myocardial infarct size for each condition. Images above the graph show 682 
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representative TTC stained heart cross-sections, with pseudo-colored mask used for planimetry 683 

below.  Graph shows data for each condition, with individual data points on the left, mean ± SEM 684 

on the right (N for each condition can be seen from number of data points). p values (ANOVA 685 

followed by unpaired Student’s t-test) for differences between groups are denoted above the 686 

data. 687 

 688 

Figure 6. Correlations Between mitoSOX Fluorescence During Reperfusion and IR Outcomes. 689 

Graphs show correlation between mitoSOX slope data and (A): infarct size or (B): functional 690 

recovery. Each data point is the mean ± SEM for a condition (see color scheme in Figure 1). 691 

mitoSOX data are from Figure 3F and Supplemental Figure 5B. Infarct data are from Figure 4C 692 

and Supplemental Figure 5E. Functional data are from Figure 4B and Supplemental Figure 5D. 693 

Linear curve fits are shown, with correlation coefficient (r2) listed alongside. 694 

 695 

Figure 7. Temporal Relationship Between mitoSOX and PT Pore Opening During IR. (A): 696 

Schematic showing perfusion conditions. Where indicated, mitoSOX (ROS indicator), TMRE (ΔΨm 697 

indicator) and/or CsA (PT pore inhibitor) were administered at the listed concentrations. (B/C): 698 

mitoSOX signal during early reperfusion under control or CsA condition. The last 5 min. of the 699 

ischemic period is indicated. Gray traces show individual data, with averages shown as bold lines. 700 

Inset to panel C shows averages for control and CsA superimposed. (D/E): Normalized TMRE 701 

fluorescence during early reperfusion under control or CsA condition. The last 5 min. of the 702 

ischemic period is indicated. Gray traces show individual data, with averages shown as bold lines. 703 

Inset to panel C shows averages for control and CsA superimposed. Red arrow indicates the point 704 

at which traces diverge, 5 min. into reperfusion. 705 

  706 
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FIGURE 1  707 
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FIGURE 2 709 
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FIGURE 3 713 
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FIGURE 4  716 
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FIGURE 5  718 
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FIGURE 6  720 
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FIGURE 7 722 
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