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 23 

Abstract 24 

The multiple testing problem is a well-known statistical stumbling block in high-25 

throughput data analysis, where large scale repetition of statistical methods introduces 26 

unwanted noise into the results. While approaches exist to overcome the multiple testing 27 

problem, these methods focus on theoretical statistical clarification rather than incorporating 28 

experimentally-derived measures to ensure appropriately tailored analysis parameters. Here, 29 

we introduce a method for estimating inter-replicate variability in reference samples for a 30 

quantitative proteomics experiment using permutation analysis. This can function as a 31 

modulator to multiple testing corrections such as the Benjamini-Hochberg ordered Q value 32 

test. We refer to this as a ‘same-same’ analysis, since this method incorporates the use of six 33 

biological replicates of the reference sample and determines, through non-redundant triplet 34 

pairwise comparisons, the level of quantitative noise inherent within the system. The method 35 

can be used to produce an experiment-specific Q value cut-off that achieves a specified false 36 

discovery rate at the quantitation level, such as 1%. The same-same method is applicable to 37 

any experimental set that incorporates six replicates of a reference sample. To facilitate 38 

access to this approach, we have developed a same-same analysis R module that is freely 39 

available and ready to use via the internet. 40 

 41 

Keywords: Label-free shotgun proteomics, false discovery rates, data quality, data 42 

validation, statistics 43 
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 48 

1. Introduction 49 

 50 

Shotgun proteomics experiments that seek to compare ‘reference’ and ‘treated’ states of 51 

a given sample will often contain thousands of individual comparisons, each requiring 52 

statistical validation. In such circumstances, repeated use of the Student’s t-test will 53 

invariably introduce false discoveries into the results. A Student’s t-test with a significance 54 

cut-off threshold P value of 0.05 produces 95% confidence i.e. 5% of tests will have an equal 55 

likelihood to be attributable to chance instead of experimental factors [1-4]. This is a follow-56 

on conclusion from the probability that at least one test in an experiment will be significant, 57 

which is described as 1 – (1 - α)k, where α is the significance cut-off and k is the number of 58 

tests conducted [5]. 59 

Multiple Testing Corrections (MTCs) were introduced to help address this limitation [6], 60 

including the use of Q values rather than P values [7], Bonferroni correction [8,9], Benjamini-61 

Hochberg (BH) adjusted t-test [10], Bonferroni-Holm test [11], and the Benjamini-Yoav 62 

(BY) test [12]. MTCs, however, are often overly conservative and increase the false negative 63 

rate by eliminating otherwise valid protein identifications. This is especially a problem at the 64 

protein-quantitation level; MTCs, by their nature, contribute to a lessening of the protein 65 

quantitation false discovery rate (PQ-FDR) at the expense of otherwise valid protein 66 

identifications [13,14]. In the context of this article, PQ-FDR is defined as false discoveries 67 

arising from comparative quantitative proteomics calculations between one or more samples. 68 

There is always a balance to be struck between stringency and accuracy when controlling 69 

false discoveries at the protein quantitation level [15]. A recent study in this area applied 70 

Bayesian statistics to great effect, detecting a greater number of relevant protein quantitation 71 

changes in previously published data sets [16]. There are also numerous software packages 72 

available which incorporate various other MTC approaches, including Proteus [17], DAPAR 73 
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and ProStaR [18], MSqRob [19], UbiA-MS [20], ProteoSign [21], msVolcano [22], FDRtool 74 

[23], MSstats [24], and limma [25].  75 

Although the use of MTC correction methods in the proteomics field is not standardized 76 

[9,26-28], MTCs are an important tool that researchers can employ for extracting the best 77 

results from their dataset i.e. finding the balance between reducing noise without losing 78 

signal. This desire to reduce the noise in the system led us to ask the question: is there a better 79 

way to quantify variability between replicate analyses of a reference sample ? 80 

One established approach for assessing variability across a sample set is to use 81 

permutation analysis, based upon the Significance Analysis of Micro-array (SAM) 82 

permutation methodology [29,30]. This is a similar theoretical framework to that used for 83 

permutation analysis within Perseus [31], a well-established data analysis program in the 84 

MaxQuant environment [32]. The SAM permutation analysis method assigns a score to each 85 

gene on the basis of change in gene expression relative to the standard deviation of repeated 86 

measurements. SAM then uses redundant permutations of repeated measurements to estimate 87 

the percentage of genes identified by random chance as an artefact of the method, which is 88 

used to calculate the false discovery rate. The permutations are performed across all of the 89 

‘reference’ and ‘treated’ sample replicates within a given experimental data set. Those genes 90 

with scores higher than the specified threshold are deemed potentially significant, and the 91 

threshold can be adjusted to identify smaller or larger sets of genes, with FDR calculated for 92 

each set. 93 

The same – same method introduced in this study, in contrast, employs non-redundant 94 

permutations of experimentally repeated measurements of protein abundance in replicate 95 

analysis of a defined reference sample. The permutations are performed on data from the 96 

reference samples only, isolated from the ‘treated’ samples. This is used to generate a single 97 

average Q value indicative of the degree of variation of abundance across the reference 98 

sample replicates. Proteins which reach a defined statistical significance threshold are 99 
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deemed to be false discoveries at the protein quantitation level, since comparing a reference 100 

sample against itself should theoretically yield no changes in protein abundance. It is 101 

important to emphasize that the underlying assumption is that the biological variability 102 

between reference samples is zero, so this approach is accounting for the technical variability. 103 

This facilitates subsequent assessment of induced biological variation between reference 104 

samples and treated samples. 105 

A specified false discovery rate in the same – same analysis of replicates of the reference 106 

sample is used to generate a Q value threshold, and that value can then be carried forward to 107 

the subsequent analysis of a reference sample versus ‘treated’ sample within the same larger 108 

experimental data set. One of main the applications of this method for determining an 109 

experimentally-derived measure of reference sample variability is that it can subsequently be 110 

used to modify an existing MTC protocol for downstream analysis, thus minimising the PQ-111 

FDR without introducing false negatives. By performing a specific permutation analysis to 112 

measure the variability inherent within reference sample replicates, we can produce an 113 

experimentally modulated Q value threshold for use with MTCs when comparing the 114 

reference sample to treated samples. In essence, rather than using a default Q value of .05, or 115 

choosing a more stringent value, we are employing a Q value threshold that is experimentally 116 

determined for each set of samples analyzed. The same-same method represents another tool 117 

in the proteomics toolbox, and can be used to enable the extraction of additional biological 118 

knowledge from large-scale datasets. 119 

 120 

2. Materials and Methods  121 

 122 

2.1 Label free quantitative proteomics data sets 123 

To demonstrate the utility of the same-same approach we reanalyzed two sets of 124 

previously published label free quantitative shotgun proteomics data. Protein identification 125 

and Normalized Spectral Abundance Factor (NSAF) values [33,34] were sourced from 126 
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previously published studies from our laboratory on cultured Cabernet Sauvignon grape cells 127 

grown at different temperatures [35] (ProteomeXchange identifier PXD000977) and leaf 128 

tissue of IAC1131 rice plants exposed to drought stress [36] (ProteomeXchange identifier 129 

PXD004096). The cultured Cabernet Sauvignon grape cell data consists of six biological 130 

replicates of cell cultures maintained at 26°C, as the optimum, or control, temperature, and 131 

biological triplicate analysis of cells maintained at 18°C and 10°C as moderate and extreme 132 

cold stress conditions, and 34°C and 42°C as moderate and extreme heat stress conditions. 133 

The rice leaf data consists of two sets of three biological replicates each of unstressed plants 134 

as controls, and biological triplicate analysis of plants exposed to moderate drought stress, 135 

extreme drought stress, and extreme drought stress followed by recovery. 136 

2.2 Same – same permutation analysis of reference samples 137 

For analysis using the same-same workflow, six replicates of a reference sample are run 138 

through a PSM (peptide-to-spectrum matching) engine such as GPM or ProteomeDiscoverer 139 

and protein identification lists are exported as csv files. At a minimum, protein identifier and 140 

peptide count are needed. Next, these six replicates are grouped into two sets of triplicates 141 

by the use of inner joins (dummy state ‘control’, dummy state ‘treatment’), and a test array 142 

is formed through a full join of the states [37]. One hundred Student’s t-tests are conducted 143 

on spectral counts from each identified protein comparison with significance cut-off values 144 

from 0.01 to 1, stepped at 0.01 intervals. All proteins found at different quantitation levels 145 

are considered false discoveries, since comparison between two data sets of the same sample 146 

type would theoretically give identical quantitation with no observed changes. This process 147 

is repeated for all ten combinations of non-redundant triplet pairs that six replicates can form. 148 

The MTC analysis then begins by iterating over this 10x t-test array and applying one of five 149 

user-specified MTC methods (BH, Benjamini-Yoav, Bonferroni, Hommel [38], and 150 

Bioconductor Q [39]. The program then averages the MTC test results from all arrays 151 
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examined, and reports the point at which the significance cut-off corresponds to a user-152 

specified PQ-FDR. 153 

The same-same methodology is automated through an R script. Source code is available 154 

from https://bitbucket.org/peptidewitch/samesame/, and a freely accessible working web 155 

version can be found at https://peptidewitch.shinyapps.io/samesame. The R Shiny web-app 156 

provides three distinct outputs from the same-same analysis: 157 

1) A series of Q value vs FDR bar plots (x axis 0.01 to 1, stepped at 0.01) from all ten 158 

triplet paired combinations, 159 

2) A series of P value histograms of these same combinations, and, 160 

3) A numerical value that corresponds to the user-specified MTC cut-off that produces 161 

the desired PQ-FDR (default 1%). 162 

Input data types are not constrained to spectral counts, as in theory any data type that 163 

consists of protein identifications coupled with abundance or intensity value measurements 164 

can be used. However, the first generation of the analysis tool was designed and tested using 165 

spectral counting-based data, so it is recommended that spectral counts or spectral abundance 166 

factors be used initially.  167 

2.3 Perseus permutation analysis of reference samples 168 

 To serve as a comparison against the same-same process, the same NSAF data from both 169 

Grape and Rice samples as were reanalyzed using Perseus software [31]. Spreadsheet files 170 

containing NSAF values for each set of samples were uploaded to Perseus through a generic 171 

matrix upload. Using the two-sample module, we applied the Perseus permutation method as 172 

a form of truncation using ungrouped (no grouping preserved), 250-count permutation 173 

analysis on two-tailed Student’s t-testing arrays with BH correction, comparing six reference 174 

replicates with three replicates from each of the ‘treated’ sample states, with the specified 175 

FDR thresholds ranging from 1-5%. 176 

  177 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2021. ; https://doi.org/10.1101/797217doi: bioRxiv preprint 

https://doi.org/10.1101/797217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 of 20 

 

3. Results 178 

 179 

The following section details how same-same approach was applied to the published data 180 

from Grape and Rice cells. Figure 1 displays the outputs described above for the same-same 181 

analysis conducted on the grape cell culture label-free data when specifying BH correction 182 

and 1% PQ-FDR. The end-point of the same-same process is the modulated Q value, in this 183 

example 0.054 (Figure 1C), produced from averaging the threshold values in Figure 1A at 184 

the desired PQ-FDR value. This value can be used for downstream analysis on subsequent 185 

control vs treatment samples as a modulator for the chosen MTC. 186 

Figure 2 presents the subsequent downstream analysis of the grape cell cultures grown at 187 

different temperatures. Figure 2A shows the number of proteins found to be significantly 188 

differentially expressed in terms of protein fold change when comparing the set of six 189 

reference replicates to the set of three replicates of cells grown at each temperature. These 190 

are analysed using different statistical measures of significance: P values of 0.05 and 0.01 for 191 

a student’s t-test, BH Q value of 0.05, and BH using the same-same derived Q value (SS-Q), 192 

and specifying PQ – FDR of 1%, 2% or 3%. It is evident that the same-same derived Q values 193 

at 1% PQ-FDR produce results very similar to the use of default BH Q values, which is 194 

expected given that the SS-Q value used is very close to the 0.05 BH-Q value threshold. The 195 

two approaches give similar results, although it is noticeable that at a specified PQ – FDR of 196 

3%, the comparison with the largest effect size (Figure 2E) shows significantly more 197 

differentially expressed proteins. 198 

 199 

 200 
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Figure 1 201 

 202 

 203 
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 204 

Figure 2 205 

 206 
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 207 

Figure 3 presents the same type of analyses as shown in Figure 1 for the data derived 208 

from comparative analysis of leaf tissue from IAC1131 rice plants exposed to different levels 209 

of drought stress. Interestingly, in contrast to figure 2, it is clear that in this case there is a 210 

direct correlation between observed effect size and number of differentially expressed 211 

proteins identified using the SS-Q approach. In comparisons with greater effect size as 212 

observed in P value histograms (Figure 3E,3F,3G), the same-same derived Q Values are able 213 

to identify a greater number of differentially expressed proteins than were found using the 214 

default BH Q value, and at 3% PQ-FDR are approaching the number of differentially 215 

expressed proteins found using uncorrected P values. 216 

Table 1 presents the results of analyzing the grape and rice cell NSAF data referred to 217 

above using different analysis approaches, including Student t-tests with and without BH 218 

correction, application of same – same derived Q values to a BH corrected t-test at specified 219 

PQ-FDR values ranging from 1% to 5%, and t-tests using Perseus permutations at specified 220 

PQ-FDR values ranging from 1% to 5%. The table shows the number of proteins which are 221 

reported to be significantly differentially expressed when comparing the reference samples 222 

against the grape cells grown at four different temperatures, and the rice cells grown under 223 

three different watering regimes. It is clear from these comparisons that, as expected, the 224 

uncorrected student’s t-test gives a much greater number than any sort of correction. The BH 225 

correction reduces the number of significant proteins by approximately 95%. The Perseus 226 

permutation processing is even more strict and, for example, produces zero significant 227 

identifiers in more than half of the grape sample comparisons. In contrast, the same-same-228 
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modulated BH test is able to detect significantly differentially regulated proteins for every 229 

test case for both tissue types while always remaining well below the results reported from 230 

uncorrected Student’s t-testing P values. Multiple testing correction still takes place, but the 231 

experimentally derived Q value thresholds allow for the recovery of a greater number of 232 

significant differences at the protein quantitation level. 233 

 234 

 235 

Table 1 – Comparison of number of protein identifications retained using different 236 

analysis approaches to assess protein quantitation false discovery rate 237 

Comparisons t-testa Perseus permutations BH Same-Same BH 

Grape .05 BH 1%b 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Cont vs 10 C 735 42 0 0 0 0 0 48 54 72 91 99 

Cont vs 18 C 560 29 0 0 0 9 9 29 34 43 51 65 

Cont vs 34 C 432 21 0 0 0 0 6 24 28 36 42 48 

Cont vs 42 C 775 83 0 0 0 0 44 108 116 133 166 199 

 

Rice .05 BH 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Cont vs Ext 543 12 0 0 0 0 0 15 16 17 17 17 

Cont vs Mod 481 13 0 0 0 0 0 13 17 20 20 20 

Cont vs Recov 568 21 0 0 0 0 0 22 33 40 40 40 

 

a .05 = standard 2-sample t-test, BH = Benjamin-Hochberg corrected 2 sample t-test 238 

b protein quantitation false discovery rate assessed at 1%-5% using the approaches indicated 239 

 240 

 241 

  242 
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Figure 3 243 

 244 

 245 
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 246 

4. Discussion 247 

 248 

The correlation observed between effect size and number of differentially expressed 249 

proteins found in the dataset presented in Figure 3 has also been found in numerous other 250 

datasets we have analysed. In general, SS-Q values are generally better suited to those 251 

datasets that show a larger effect size. This may be due to the fact that not all quantitatively 252 

different proteins in a small effect sample are false positives, or may be a consequence of 253 

NSAFs overstating expression change ratios for protein identifications based on lower 254 

spectral counts, which can help to increase the effect size [4]. While the use of higher Q value 255 

thresholds raises the implicit question of whether or not the dataset contains too much noise, 256 

it is important to remember why the same-same experiment is conducted in the first place. If, 257 

in an experiment where we expect there to be minimal noise, we demonstrate that there is a 258 

SS-Q threshold value that produces 1% PQ-FDR between sets of control or reference 259 

replicates, then in a closely related experiment with the same reference sample using the same 260 

threshold value, we can infer experimentally that the specified PQ-FDR has been achieved.  261 

It is important to stress, however, that this method is suited more towards initial 262 

discovery, and that follow-up experimentation must employ orthogonal validation protocols. 263 

In order to obtain an experimentally-derived PQ-FDR of 1%, or other specified value, the 264 

same-same method is a very useful tool, because inferring the PQ-FDR based on the Q value 265 

cut-off alone does not yield corresponding PQ-FDR levels (i.e. a Q value of 0.05 does not 266 

specifically produce either 5% or 1% PQ-FDR). Modifying the MTC significance value cut-267 

off so that it takes into account the experimental variability inherent within the replicates 268 

helps to produce a more tailored list of differentially expressed protein identifications whilst 269 

controlling for PQ-FDR. Also, compounding the same-same technique with another method 270 

of filtering, such as fold change cut-offs, can reduce the number of false positives included 271 

in the final dataset, further reducing the PQ-FDR [30,31]. 272 
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In this research article, we have demonstrated a revised method for statistical analysis for 273 

shotgun proteomics datasets. The same-same method facilitates the construction of post 274 

analysis P value histograms and aids the researcher in choosing an appropriate statistical 275 

testing protocol for their analysis. We have shown that in the right circumstances, using BH 276 

Q value cut-offs derived from the same-same analysis yields a set of results that provide more 277 

significantly differentially expressed proteins from a given dataset, while also determining 278 

PQ-FDR at the experimental level. In the future, we hope to expand on this methodology so 279 

that it can be applied equally well to other quantitative proteomics data types, and also 280 

develop new tests to build onto the existing same-same architecture to further improve the 281 

statistical rigour for all shotgun proteomics results. 282 

 283 

----------||-----------  284 
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7. Figure Legends 297 

Figure 1. Screenshots from the same/same shiny apps module 298 

(https://peptidewitch.shinyapps.io/SameSame), using the grape cell control samples and 299 

specifying BH correction at 1% PQ-FDR. (A) Q value vs PQ-FDR bar plots (x axis 0.01 to 300 

1, stepped at 0.01) for all ten triplet paired permutations generated from six replicate analyses 301 

of a reference sample (see Figure 1) (B) P value histograms for each permutation, showing 302 

number of significantly expressed protein identifications sorted into P values bins in 303 

increments of 0.05. (C) displays a single numerical value which produces the desired PQ-304 

FDR value (default BH at 1%, can be user specified). 305 

Figure 2.  Grape cell culture comparisons with application of different statistical 306 

significance measures. Cells grown at 26°C were designated as the reference sample, and 307 

compared with cells grown at 18°C (moderate cold), 10°C (extreme cold), 34°C (moderate 308 
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heat), and 42°C (extreme heat). Panel A displays the number of significantly differentially 309 

expressed protein identifications found for each comparison using P values at .05 and .01, 310 

Benjamini-Hochberg adjusted values at 0.05, and BH using the same-same derived Q value 311 

(SS-Q), and specifying PQ – FDR of 1%, 2% or 3%. Panels B to E contain P value histograms 312 

showing the number of significantly expressed protein identifications sorted into P value bins 313 

in increments of 0.05, for each of the four experimental comparisons performed, as indicated. 314 

Figure 3.  IAC1131 rice samples drought stress comparisons with application of different 315 

statistical significance measures. Control plants were unstressed, and compared with plants 316 

exposed to moderate drought stress, extreme drought stress, or extreme drought stress 317 

followed by recovery. Panel A displays the number of significantly differentially expressed 318 

protein identifications found for each comparison using P values at .05 and .01, Benjamini-319 

Hochberg adjusted values at 0.05, and BH using the same-same derived Q value (SS-Q), and 320 

specifying PQ – FDR of 1%, 2% or 3%. Panels B to G are P value histograms showing the 321 

number of significantly expressed protein identifications sorted into P value bins in 322 

increments of 0.05, for each of the six experimental comparisons performed, as indicated. 323 

 324 

 325 

 326 

 327 

 328 

329 
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