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ABSTRACT: New mass spectrometry data collection methods require new computational tools. Direct Infusion Shotgun Proteome 

Analysis (DISPA) is a new paradigm for expedited mass spectrometry-based proteomics, but the original data analysis workflow 

was onerous. Here we introduce CsoDIAq, a user-friendly software package for the identification and quantification of peptides and 

proteins from DISPA data. In addition to establishing a complete and automated analysis workflow with a graphical user interface, 

CsoDIAq introduces algorithmic concepts to improve peptide identification speed and sensitivity. These include spectra pooling to 

reduce search time complexity, and a new spectrum-spectrum match score called match count and cosine (MaCC), which improves 

target discrimination in a target-decoy analysis. We further show that reanalysis after fragment mass tolerance correction increased 

the number of peptide identifications. Finally, we adapt CsoDIAq to standard LC-MS DIA, and show that it outperforms other 

spectrum-spectrum matching software. 

Shotgun proteomics using liquid chromatography (LC) cou-

pled to tandem mass spectrometry (MS/MS) is currently the 

leading method to identify and quantify proteome dynamics 

from biological samples. Two main types of mass spectrome-

try (MS) data acquisition exist, namely data-dependent analy-

sis (DDA)1–3 and data-independent analysis (DIA)4–6.  As the 

name implies, the scan sequence in DDA depends on the data; 

even if the same sample is analyzed twice, the scans collected 

in each analysis are unique. In each DDA scan cycle, the MS 

surveys m/z values that may represent peptides in a precursor 

scan, followed by isolation and fragmentation of those m/z 

regions in tandem mass spectrometry (MS/MS) scans. In con-

trast, DIA scans are the same in each analysis. DIA fragments 

all masses within a predefined set of m/z ranges, usually span-

ning the range of useful peptide masses from approximately 

400-1,000 m/z. DIA scans therefore usually result in chimeric 

spectra representing the combined MS/MS spectra of multiple 

peptides. DIA has grown significantly in popularity since its 

conception, as DIA data allows for deeper and more consistent 

peptide quantification than DDA in the absence of peptide 

fractionation7.  However, methods for DIA data analysis are 

still maturing, and continued advancements are required to 

maximize the value extracted from DIA. Further, the contin-

ued development of new DIA data collection methods requires 

specialized new tools. 

Several methodologies exist for identifying peptides from 

DIA MS data, including EncyclopeDIA8, PECAN9, Spectro-

naut10, DIA-Umpire11, DIA-NN12, Thesaurus13, Open-

SWATH14, Skyline15, mProphet16, LFQbench17, and PIQED18. 

Recent advances in machine learning have opened up the pos-

sibility of de novo sequencing19, or matching to predicted 

MS/MS spectra, such as Prosit20, DeepMass21, and DeepDIA22; 

however, many DIA data analysis methods require scoring the 

presence of peptides by comparing to spectra previously iden-

tified by DDA. Because nearly all proteomics DIA relies on 

LC, this is often achieved by assigning possible peptides a 

score based on the co-elution of peptide fragment ion signals 

over time. Retention time plays an important role in limiting 

the search for peptide fragment signals23. True and false pep-

tide matches are segregated using the target-decoy strategy to 

estimate false discovery rate (FDR)24.  A different strategy that 

only considers each spectrum without need for LC uses the 

projected spectrum concept25. MSPLIT-DIA26 identifies pep-

tides from complex, chimeric DIA spectra by comparing the 

shape of only those fragment ion intensities that are found 

within some mass tolerance of library spectra fragments.  

Nearly all proteomics experiments rely on LC to separate 

peptides before ionization and MS analysis. The field of pro-

teomics is experiencing a trend toward shorter LC gradi-

ents27,28. The logical extreme is to remove LC entirely; we 

recently introduced a new paradigm that enables fast prote-

omics called direct infusion shotgun proteome analysis 

(DISPA), which does not use LC separation and instead relies 

on additional gas-phase fractionation by ion mobility29. Be-

cause direct infusion data lacks co-elution of peptide frag-

ments over time, the original report of DISPA relied on pro-

jected cosine scoring with MSPLIT-DIA for peptide and pro-

tein identification. However, because MSPLIT-DIA was not 

customized to DISPA data and does not natively identify pro-

teins, multiple custom python and R scripts were required to 

enable FDR calculation, protein identification and quantifica-

tion. Overall, the original data analysis process was inaccessi-

ble and could deter future use of DISPA, despite its potential 

to enhance our study of the proteome.  

Here, we describe CsoDIAq (Cosine Similarity Optimiza-

tion for DIA qualitative and quantitative analysis), a python 

software package designed to enhance usability and sensitivity 

of the projected spectrum concept originally utilized by 

MSPLIT-DIA. CsoDIAq introduces several algorithmic ad-

vances, including pooling spectra peaks for reduced time 
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complexity and a new spectra-spectra scoring function that 

improves discrimination of target and decoy peptides. Com-

bined with a Graphic User Interface (GUI), CsoDIAq is both 

effective and user friendly, and can analyze DIA data from 

DISPA and LC-MS. We show that CsoDIAq identified 23.3% 

more peptides than MSPLIT-DIA when applied to DISPA 

data, and 36.0% more peptides from standard LC-MS DIA 

data (FDR < 1%). 

 

METHODS 

Data and Formats 

CsoDIAq reads raw mass spectrometry data in mzXML 

format, and spectral libraries created with SpectraST30 in 

TraML tsv format are preferred. However, we also support 

mgf libraries created with MPLIT-DIA26, or the pan-human 

library31. CsoDIAq requires .csv to be comma-delimited and 

.tsv files to be tab-delimited. Because downloads of the pan-

human library included .csv files that are tab-delimited, some 

libraries may need to be converted to the appropriate format. 

Spectral libraries were generated with multiple settings and the 

best library creation settings were: no fragments correspond-

ing to loss of water/ammonia, only fragments from 400-2000 

m/z within a 0.2 m/z tolerance of the predicted mass (the initial 

TraML library was built from low-resolution ion trap MS2 

data).  

DISPA data used to develop CsoDIAq was from the original 

publication29. It should be noted that libraries with a greater 

excess of nonexistent peptides will identify fewer peptides32. 

In our case, the TraML library used in below analyses has 

fewer peptides and generally outperforms the mgf library. 

Spectral libraries and all code and data to reproduce the fig-

ures are posted to a new repository on zenodo.org 

(10.5281/zenodo.4750187). LC-MS data was downloaded 

from massive33. 

 

Spectra Pooling 

CsoDIAq introduces a library-query peak comparison meth-

od dubbed “spectra pooling” that reduces the time complexity 

by an exponential factor. Four variables primarily impact the 

speed of the algorithm in any given m/z window of a DIA 

analysis, namely the number of library spectra corresponding 

to that window (nLS); the total number of fragment ion peaks 

in nLS library spectra (pLS); the number of query spectra 

(nQS); and the total number of fragment ion peaks in nQS 

query spectra (pQS). MSPLIT-DIA26 iteratively compares 

each library spectrum to each query spectrum, presuming the 

precursor mass of the peptide represented by the library spec-

trum falls within the m/z window captured by the query spec-

trum. If the above variables are assigned the letter values of 

nLS, pLS, nQS, and pQS, respectively, the time complexity of 

this method would be:  

nQS * pLS + nLS * pQS 

Variation in these factors significantly impacts the length of 

time required to complete the algorithm. In big O notation, the 

above equation results in a time complexity of O(n*m). 

Spectra pooling reduces unnecessary repetition in peak 

comparison, significantly improving speed at no cost to accu-

racy. MSPLIT-DIA separately compares a query spectrum to 

each relevant library spectrum, therefore referencing the same 

peak from one spectrum type once for each other spectrum 

with a precursor m/z within a given m/z query window. Spec-

tra pooling instead assigns each fragment ion a spectrum tag in 

addition to its inherent mass and intensity values, which al-

lows consolidation or pooling of multiple spectra into a single 

spectrum for comparison. Matches to fragments in the pooled 

spectra can be separated after matching using their spectrum 

tag to compute the separate match scores. Thus, by comparing 

a pooled query spectrum to a pooled library spectrum, any 

peak would only ever be referenced once. This exponentially 

reduces the time complexity of the above conventional ap-

proach to:  

pLS + pQS  

In big O notation, this results in a new time complexity of 

O(n+m).  

DISPA scouting experiments iterate over the same m/z que-

ry window at least once for every FAIMS compensation volt-

age setting. In terms of the above equation, nQS is generally 

equal to the number of compensation voltage settings run in 

the experiment. The dataset used as the benchmark iterated 

over the same m/z query windows twelve times for a scouting 

experiment, twice each for six compensation voltage settings. 

Two additional versions of the algorithm, one with only li-

brary spectra pooling and one with no pooling, were created to 

graphically illustrate the impact of spectra pooling on time 

complexity. Only pooling one spectrum type enables graphical 

comparison of performance between pooling and non-pooling 

on spectra from the other type. We pooled library spectra as 

opposed to query spectra for graphical representation because 

the number of library spectra (generally measured in thou-

sands) often far exceeds the number of query spectra (approx-

imately six) in a given m/z query window for DISPA data, and 

thus will more fully demonstrate the dramatic reduction in 

time complexity. Both versions of the algorithm, spectra pool-

ing and non-pooling, were based on copies of the main algo-

rithm, which was created under the assumption that pooling 

would occur. We did not optimize the non-pooling algorithm 

contrary to this expectation, which may cause additional time 

lag. However, the overall reduction in time complexity re-

mains as above described.  

Query spectra are grouped by precursor m/z and window 

width for pooling. By default, CsoDIAq pools all grouped 

query spectra, but users can indicate a maximum number of 

spectra to pool to reduce memory use. 

 

Scoring Method 

CsoDIAq employs a new scoring function for spectra-

spectra matching (SSM) that improves segregation of target 

and decoy peptide distributions to optimize the number of 

peptide hits below a standard False Discovery Rate (FDR) 

cutoff. CsoDIAq first takes the square root of fragment ion 

peak intensities in the spectral library and experimental spectra 

to normalize the contributions of fragment ion intensities34–36. 

Next, for each experimental spectrum, the fragment ions are 

compared with the pooled library spectra of all possible 

matches. Like MSPLIT-DIA, CsoDIAq uses the ‘projected 

spectrum’ concept; only experimental fragment ions found 

within a defined mass tolerance of fragment ions in the library 

spectra are used to compute the score. Fragment comparisons 

are done using parts per million (PPM) rather than absolute 

m/z differences. All matched fragment ions are recorded and 

then used to compute a SSM score for all possible peptides in 
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the pooled library. CsoDIAq calculates a SSM score by multi-

plying the fifth root of the number of matched fragments by 

the cosine score. Because of the importance and impact of 

peak matches on the SSM score, CsoDIAq imposes a mini-

mum of three fragment ion matches to the library spectrum 

with no maximum. 

The number of matches between a library and query spectra 

plays a significant role in these calculations, and as such noise 

in a library spectrum can strongly skew the MaCC score. This 

is primarily a concern for MGF libraries, as the TraML format 

already filters for fragment mz values expected for a given 

peptide. As such, all libraries are pre-processed to only include 

the top ten most intense peaks. For the same reasons, CsoDI-

Aq will only function with centroided experimental data. 

 

Fragment Mass Error Correction Process 

CsoDIAq also employs a dual search strategy for fragment 

ion mass correction. When comparing library peaks with que-

ry peaks, m/z values for true corresponding fragments are not 

expected to precisely match. In addition to a general margin of 

error in the query spectrum resulting from the natural variance 

of mass spectrometers, drift in mass calibration can result in a 

systematic mass value offset. To adjust for this, CsoDIAq runs 

an initial, uncorrected analysis of the data using a generic off-

set of 0 PPM and a default, user-adjustable tolerance of 30 

PPM. These numbers were based on previous experimentation 

that suggested an overall window of 30 PPM around 0 PPM 

would capture the true offset in addition to sufficient data to 

calculate an optimized tolerance. After identifying peptides of 

interest using the previously described scoring method, 

csoDIAq determines a new offset and tolerance from the PPM 

differences for those hits. By default, the offset and tolerance 

is customized to the PPM distribution. The offset is the highest 

bin value of the given histogram and tolerance is the furthest 

bin from the offset with values approximately equal to the 

surrounding noise. Users can alternatively elect to use the me-

dian and standard deviation of their choice for the offset and 

tolerance, respectively. CsoDIAq then excludes all peak 

matches outside of the chosen PPM offset and tolerance, re-

sulting in a corrected analysis that outperforms the uncorrected 

analysis in the number of unique identifications.  

For reference, the MSPLIT-DIA has a minimum allowance 

of ten matching peaks and a minimum cosine score of 0.7. 

Results were sorted by cosine score to calculate the FDR of 

each SSM for comparison with CsoDIAq output. Notably, all 

SSMs from the MSPLIT-DIA consistently had a lower FDR 

than 0.01, leading to acceptance of all SSMs. 

 

Peptide and Protein Identification 

CsoDIAq produces three output files for each mass spec-

trometry file that report spectra, peptides and proteins filtered 

to <1% FDR. In each case, CsoDIAq sorts peptide identifica-

tions by the above-described score, calculates the FDR for 

each identification using a modification of the target-decoy 

approach where FDR at score S = # decoys/ # targets, and 

removes SSMs below a 0.01 FDR threshold. The spectra re-

port is returned without filtering by unique peptides. The pep-

tide FDR calculations only use the highest-scoring instance 

among all SSMs for each peptide. CsoDIAq uses the IDPicker 

algorithm37 to identify protein groups from the list of discov-

ered peptides and adds them as an additional column in the 

output. Protein groups from the TraML spectral library are 

used for protein inference rather than matching peptides back 

to protein entries in a FASTA file. Our implementation of the 

IDPicker algorithm preferentially identifies proteins with a 

higher number of peptide connections after the peptide reduc-

tion step. When there is a tie, the algorithm instead uses the 

original number of peptide connections per protein. The pro-

tein FDR calculation for proteins uses the highest-scoring pep-

tide as the protein group score, though all peptides connected 

to those proteins in the peptide FDR output are re-included in 

the protein report for reference. 

 

Protein Quantitation 

Accurate protein quantitation requires a second DIA data 

collection that targets m/z and Compensation Voltage (CV) 

values corresponding to the best peptide target from identified 

proteins. CsoDIAq uses two criteria to choose representative 

peptides identified for each protein. First, peptides not unique 

to a given protein are eliminated from consideration. Next, 

CsoDIAq sorts the peptides from each protein by summed 

fragment ion intensity of matched fragment ions. Finally, the 

software allows the user to input their desired maximum num-

ber of representative peptides from each protein, starting with 

the highest ion count. 

The targeted quantitative DISPA re-analysis currently re-

quires that samples be prepared using Stable Isotope Labeling 

by Amino acids in Cell culture (SILAC)38, specifically using 

both 13C6, 
15N2 lysine and 13C6, 

15N4 arginine. CsoDIAq first 

prepares library spectra specific to the y-ions of the targeted 

peptides and their heavy isotopes. CsoDIAq uses a default 

initial tolerance of 30ppm before optionally applying the same 

mass correction algorithm discussed earlier to identify an off-

set and tolerance specific to the DISPA run. After identifying 

matched peaks (default: at least one of the top three most in-

tense peaks), CsoDIAq calculates the SILAC ratio for each 

peptide based on the identified peaks (default: median ratio 

value). 

The user can input (1) the standard deviation used to deter-

mine the tolerance of the correction process, (2) the minimum 

number of matches required to calculate SILAC ratios for the 

peptide, and (3) the mode of ratio selection. 

Note that the file for the targeted re-analysis will not have 

all the leading proteins from the protein FDR file. This is be-

cause the decoys will be removed, and because some protein 

groups identified by the IDPicker algorithm won’t have unique 

peptide targets to use. 

 

Comparison with MSPLIT-DIA 

For comparing the output of MSPLIT-DIA with CsoDIAq 

we generated an MGF library using the original data pipeline 

from skyline .blib converted to .ms2 and then .mgf. Peptides in 

the library were stripped of modifications for protein identifi-

cation from a FASTA file after initial library generation. The 

script for adding proteins to an MGF file is included in the 

CsoDIAq package at the command line. Both program settings 

included an initial tolerance of 10 PPM. MSPLIT-DIA was set 

to 2 m/z precursor window width for the DISPA data and 9 m/z 

window width for the LC-MS DIA data, both of which used a 

setting of 0 scans per cycle. CsoDIAq takes the window width 

from the mass spectrometry data file. Aside from the initial 

tolerance, all default settings were used for CsoDIAq output. 
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 Figure 1: Overview of CsoDIAq software package 

MSPLIT-DIA output was processed using the same FDR cal-

culation algorithms used by CsoDIAq at both the peptide and 

protein level. The MSPLIT-DIA output column name “Pep-

tide” was altered to “peptide” for this process, and the output 

was sorted by the cosine score rather than the MaCC score for 

FDR calculation. 

Usability 

CsoDIAq was written to be used from the command line 

through the pip installation package. All help text and flag 

descriptions can be viewed with the “--help” flag, as is stand-

ard for programs triggered from the command line. The 

CsoDIAq command line returns an error for improper inputs. 

In addition to command line operations, the CsoDIAq soft-

ware package includes a graphical user interface (GUI) im-

plemented with the package PyQt539. Ultimately, the GUI only 

serves as a shell for command line prompts and flags. From 

the GUI, invalid inputs highlight the offending section title in 

red, whereas the command line throws an error. A text win-

dow included in the GUI indicaties progress through the pro-

gram and highlights errors should they arise. 

 

Code and Availability 

CsoDIAq is written using the Python computer program-

ming language. The program utilizes several software packag-

es to enhance time and memory efficiency. For example, the 

numba package40 allows the program to run with time effi-

ciency approaching those written with coding languages such 

as C++ and Java and use of the numpy41 package drastically 

reduces memory use. Additional packages used include mat-

plotlib42, pyteomics43, pandas44, biopython45, PyQt539, and 

lxml46. CsoDIAq is available on GitHub 

(https://github.com/CCranney/CsoDIAq). 

 

RESULTS 

Overview 

DISPA has emerged as a promising method for fast peptide 

and protein identification and quantitation. However, the orig-

inal pipeline lacked unified computational support (Supple-

mental Figure 1). As shown in Figure 1 and as expounded in 

the original paper, DISPA data analysis requires: (1) spectra-

spectra match scoring, (2) FDR filtering to remove false posi-

tives, (3) protein inference, and (4) peptide quantitation via 

light-to-heavy isotope ratio comparison. In the original im-

plementation, MSPLIT-DIA26 was used to score peptides from 

DISPA data according to the projected spectrum concept25. 

However, an integrated solution including the above-

mentioned workflow steps was not developed in the initial 

publication. To address this limitation, here we introduce 

CsoDIAq (Cosine Similarity Optimization for DIA qualitative 

and quantitative analysis), a software package that efficiently 

consolidates the analytical pipelines needed for DISPA data 

analysis (Figure 1). In addition to supporting the steps that 

previously required custom code, CsoDIAq optimizes peptide 

identification by introducing a new scoring function based on 

a combination of projected cosine and the number of matched 

fragment ions. Further, we introduce a 2-stage search strategy 

including fragment mass tolerance correction. The combina-

tion of these new features, along with the ability to search 

against an improved TraML library, nearly doubles the num-

ber of unique peptide identifications at <1% FDR compared to 

the original publication using the same data.  

Spectra Pooling 

The use of spectra pooling to compare library and query 

spectra significantly improved the time performance of the 

algorithm. Rather than iteratively comparing multiple library 

spectra to multiple query spectra, spectra pooling tags each 

peak with a spectrum-specific identifier to enable library spec-

tra “pooling”. Key to this strategy is subsequent fragment ion 

match separation for scoring. By pooling all relevant spectra 

prior to peak comparison, CsoDIAq only ever iterates over 

each fragment ion peak a single time, which reduces the time 

complexity from O(m*n) to O(m+n) (Figure 2A). CsoDIAq 

analysis was performed with and without pooling to illustrate 

this effect. Figure 2B shows how the time required to com-

pare a single experimental spectrum increases with the number 

of query fragment ions and the number of potential library 

spectra matches. The number of fragment ion peaks in the 

query spectra shows positive linear correlation with time, the 

slope of which decreases as the number of library spectra in-

creases (Figure 2C). In contrast, the time to analyze one ex-

perimental spectrum requires roughly a static amount of time 

independent of the potential library spectra matches and que-

ried experimental fragment ions (shown in [red] near the y-

axis). Overall, the pooling strategy is nearly two orders of 

magnitude faster than without pooling (Figure 2D). 
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Figure 2: Spectra pooling concept and performance. A, Concept figure illustrating DISPA analysis without pooling. With only 

one query spectrum (black) and three library spectra (red, blue, and green), the algorithm completes three iterations over all query 

peaks, once for each library spectrum. This indicates an O(n*m) time complexity. B, Concept figure illustrating DISPA analysis with 

pooling. Using the same spectra examples in 2A, the number of spectra no longer multiplies the number of iterations over peaks. 

Instead, the time complexity relies on a single iteration of all query peaks and all library peaks, indicating an O(n+m) complexity. C, 

scatterplot illustrating the effect of the number of queried fragment ion peaks and number of potential library spectrum matches on 

algorithm speed per single query spectra analysis. Lines indicate the slope of a subset of the data sorted by the number of library 

spectra in equal proportions. D, line graph comparing performance of pooling vs. non-pooling algorithms in regards to time. Y-axis 

illustrated on a logarithmic scale for visual purposes. Data shown represents time before further optimization with the numba soft-

ware package. 

Peptide Spectrum Match Scoring  

CsoDIAq introduces two methods that, when combined, 

consistently improve discrimination of target and decoy SSMs 

to increase peptide identifications at an FDR threshold of 1%: 

(1) a scoring method unique to CsoDIAq and (2) fragment ion 

mass corrected re-analysis. 

Two variables strongly impacted the differentiation of target 

and decoy SSMs: (1) the number of fragment ion matches 

between the library and query spectra, and (2) the projected 

cosine similarity score. Projected cosine score was a strong 

indicator for identifying targets, and a higher number of frag-

ment ion matches generally led to projected cosine scores con-

centrated near the optimal value of 1 (Figure 3A). Like 

MSPLIT-DIA, one tactic for separating target peptides from 

decoys involves filtering SSMs for a minimum number of 

matched fragment ions and sorting by projected cosine score. 

One naive approach to optimizing this tactic is to calculate the 

number of unique peptide identifications with an FDR cutoff 

of 0.01 after filtering at every possible minimum number of 

fragment ion matches (Figure 3B). A strategy introduced here 

is to combine the number of fragment ion matches with the 

cosine score, dubbed Match Count and Cosine (MaCC) score. 

To better equalize the contribution of the matched fragments 

and the cosine similarity, MaCC uses the fifth root of the 

matched fragment ions count multiplied by the cosine score. 

The MaCC score therefore results in a non-rectangular segre-

gation of accepted and rejected hits in the space of cosine sim-

ilarity versus number of matched fragments (Figure 3C).   

After determining all SSMs with FDR<0.01 as determined 

by the MaCC, CsoDIAq conceptually runs a second, corrected 

spectrum-spectrum matching that further improved the number 

of identifications produced by csoDIAq. To speed up the im-
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Figure 3: Optimized CsoDIAq scoring mechanism. A, scatter plot between the 

number of fragment matches and cosine score of all PSMs in a single run. Target and 

decoy PSMs visually separated as blue and orange, respectively. B, recreation of 

figure 3A indicating PSMs above an FDR rate of 0.01 as sorted using the initial scor-

ing approach. The initial approach iteratively filters different match numbers, sorts 

by cosine score, and calculates the number of PSMs above the FDR rate, ultimately 

determining the optimal fragment ion match number to filter by. C, recreation of 

figure 3A indicating PSMs above an FDR rate of 0.01 as sorted using the optimized 

scoring approach, the Match Count and Cosine (MaCC) score. The optimized ap-

proach generates a new score as the fifth root of the match number multiplied by the 

cosine score, sorts by this new score, and calculates the number of PSMs below the 

FDR rate using the target decoy strategy. D, histogram illustrating the spread of 

fragment ion mass differences in PPM from all fragments corresponding to PSMs 

identified above the FDR cutoff rate from the first, uncorrected analysis. The black 

dashed line gives the mean and the dotted red lines give the second standard devia-

tion. E, Line graph comparing the performance of various algorithms with respect to 

the number of peptide identifications over 100 DISPA runs of the same sample. A 

minimum number of 6 matches was applied to the naive approach to optimize the 

output. Like the MaCC score use, a maximum of 10 peaks per library reference was 

used. F, Line graph comparing the performance of various algorithms with respect to 

the lowest cosine score over 100 DISPA runs of the same sample. 

plementation, this is not a re-comparison but 

rather re-filtering the matched fragments 

based on recorded mass errors from the initial 

search. A histogram of true minus predicted 

fragment ion mass differences in PPM of all 

fragmentation ion peak matches from the 

identified SSMs showed that mass difference 

was normally distributed, and that optimiza-

tion of the initial range could exclude outlier 

fragment matches (Figure 3D). After re-

filtering, the fragment ions using the opti-

mized fragment mass tolerance, csoDIAq’s 

MaCC score further excluded decoys result-

ing in the consistent identification of more 

unique peptides than all other methods (Fig-

ure 3E, blue line, “Optimized CsoDIAq, cor-

rected”). Fragment mass correction also en-

hanced and stabilized the naive approach 

(Figure 3E, orange line, “Naive CsoDIAq, 

corrected”). 

In addition to obtaining 

more peptide identifications, 

the combination of MaCC 

score and fragment ion mass 

correction consistently re-

sulted in a minimum pro-

jected cosine score higher 

than that obtained using the 

naive approach (Figure 3F). 

Comparison with 

MSPLIT-DIA 

Peptide and protein identi-

fications from CsoDIAq 

were benchmarked against 

MSPLIT-DIA using the 

same MGF library for both 

DISPA and LC-MS DIA 

data33. For DISPA data, 

CsoDIAq identified 23.3% 

and 5.6% more peptides and 

protein groups, respectively 

(Figure 4A and Figure 4B); 

for LC-MS DIA data 

CsoDIAq identified 36.0% 

and 24.6% more peptides 

and protein groups, respec-

tively (Figure 4C and Fig-

ure 4D). Tables of identified 

proteins and peptides are in 

the supplement (Supple-

ment Tables 1-4). CsoDIAq 

produced more identifica-

tions even across the 100 

replicates dataset used in 

Figure 3E (Supplemental 

Figures 2 and 3).  
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Figure 4: Comparing of CsoDIAq and MSPLIT-DIA per-

formance. All values were identified above an FDR threshold 

of 0.01. A, venn diagram comparing unique peptides identified 

by CsoDIAq and MSPLIT-DIA using DISPA data. B, venn 

diagram comparing unique protein groups identified by 

CsoDIAq and MSPLIT-DIA using DISPA data. C, venn dia-

gram comparing unique peptides identified by CsoDIAq and 

MSPLIT-DIA using LC-MS DIA data. D, venn diagram com-

paring unique protein groups identified by CsoDIAq and 

MSPLIT-DIA using LC-MS DIA data. 

We also recorded and compared the time required to run 

MSPLIT-DIA and CsoDIAq for the above analyses. MSPLIT-

DIA ran for 0:03:32 and 2:13:37 for DISPA and LC-MS da-

tasets, respectively. In comparison, CsoDIAq with correction 

ran for a substantial improvement of 0:03:16 and 0:51:23. 

Because the correction process is optional, users can decrease 

run time at the expense of the number of targets identified 

above a 0.01% FDR rate. Uncorrected, CsoDIAq ran at 

0:03:08 and 0:41:13.  

Protein Quantitation 

CsoDIAq additionally enables peptide and protein quantifi-

cation through analysis of SILAC data. We investigated the 

impact of three settings on the final output to determine the 

best defaults to use in the program: (1) the standard deviation 

used to determine the tolerance of the correction process, (2) 

the minimum number of matches required to calculate SILAC 

ratios for the peptide, and (3) the mode of ratio selection. We 

evaluated the impact of a range of these settings on the quanti-

ty and accuracy of peptide identification and quantification. 

Quantification data from the original DISPA publication29 was 

derived from peptide mixtures with light:heavy ratios of 1:8, 

1:4, 1:2, 1:1, 2:1, 4:1, and 8:1, allowing for relative quantifica-

tion of samples with known ratios. The second logarithmic of 

these ratios are -3, -2, -1, 0, 1, 2, and 3, respectively. With that 

background, the three metrics used to evaluate the CsoDIAq 

output were (1) the average standard deviation around the 

mean second logarithmic ratio across each sample, (2) the 

number of peptides quantified, and (3) the slope of mean sec-

ond logarithmic ratios across groups.  

Uniform manifold approximation and projection (UMAP)47 

was used to reduce the multi-dimensional results into two di-

mensions for visualization, and the points were colored by the 

metrics of interest (Figures 5A-C). The UMAP analysis 

shows four groups of parameter settings; the top right has the 

lowest standard deviation (Figure 5A) at the expense of total 

peptides quantified (Figure 5B).  The bottom-left group of 

parameters produced a slow closest to 1 (Figure 5C) at the 

expense of a high standard deviation (Figure 5A). The top-left 

group had good standard deviation (Figure 5A) and a high 

number of quantified peptides, but the slope of log2 ratios 

suffered (Figure 5C). The fourth group in the middle was an 

ideal balance between all the metrics of interest (shown as red 

points); these parameters were screened for those that pro-

duced (1) an average standard deviation less than 1, (2) quanti-

fied peptides greater than 80% of the maximum number of 

peptides identified, and (3) a slope within 0.05 of 1. This bal-

anced quantification result was achieved using the customized 

PPM distribution method described as the default for identifi-

cation searches, a minimum of one of the three most intense 

light or heavy fragment ions and using the median ratio of 

matched light and heavy peaks as the representative ratio 

(Figures 5A-C).  

Using output generated from the optimal settings, we next 

compared the results with those generated from other algo-

rithms. Because the original DISPA publication conducted a 

similar analysis, we obtained the same dataset and performed a 

re-analysis for comparison with CsoDIAq output. After isolat-

ing to peptides identified across all analyses, we compared the 

relative abundance in each sample. The ratios from LC-MS 

match the predicted values best (Figure 5D) compared to the 

original DISPA analysis (Figure 5E), and our optimized algo-

rithm showed slightly less ratio compression apparent at the 

extreme ratios (Figures 5F). 

Usability 

Recognizing that isolating CsoDIAq usability purely to the 

command line could alienate researchers unaccustomed to 

such tools, we implemented a Graphic User Interface (GUI) as 

an aid. The GUI doesn’t add any new functionality to CsoDI-

Aq, but serves as a shell for command line prompts to enhance 

usability. There are two tabs on the GUI, one for pep-

tide/protein identification (Figure 6A) and one for SILAC 

quantification (Figure 6B). Both tabs have entries for DIA 

data file path (first DIA run for identification, second DIA run 

for quantification), library file path, outfile directory path, all 

of which are required fields. Additionally, the quantification 

tab requires the path to the identification tab output to match 

results with the prior identification. For runtime settings, de-

faults are used if no user input is provided and are therefore 

not required fields. Both tabs have settings for initial mass 

tolerance in ppm and correction settings, including enabling 

the second mass corrected analysis, standard deviation toler-

ance used for the correction, and whether a histogram will be 

generated demonstrating the PPM values specified in the cor-

rection. Identification settings also include if protein inference 

should be enabled, and if so, how many target peptides per 

protein should be included in the output target lists for quanti-

tative analysis. There is also a setting to instigate a maximum 

number of query spectra that can be pooled at any time, as 

particularly large DIA data files can be memory intensive to 

analyze. The last identification setting is a checkbox that ena-

bles the files generated for targeted re-analysis to include tar-
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Figure 5: Optimizing performance of the CsoDIAq quantification algorithm. Figures A-C show UMAP that identify the best 

settings for use of the quantification algorithm by illustrating their impact on three most desirable outputs. Each dot represents a dif-

ferent mixture of settings, and red highlights indicate settings that maximize the three outputs. A, the impact of CsoDIAq settings on 

the average standard deviation around the expected second logarithmic output. B, the impact of CsoDIAq settings on the number of 

peptides quantified. C, the impact of CsoDIAq settings on the average expected second logarithmic output for each condition, summa-

rized as the slope. Figures D-F are boxplots illustrating the performance of the CsoDIAq quantification algorithm in relation to other 

methods. They show the relative quantification of peptides for each of the mixture ratios provided. Only the 226 peptides matched 

across every condition were used for more direct comparison. D, the relative quantification as determined by standard LC-MS DDA 

methods. E, the relative quantification as determined through MSPLIT in the original DISPA publication. F, the relative quantification 

as determined through CsoDIAq. 

gets for heavy peptides (includes heavy lysine and arginine). 

Quantification settings include an entry for the maximum 

number of library peaks per library spectra and a minimum 

number of peak matches required for identification and quanti-

fication, as excess peak matches decrease quantitative accura-

cy. Because each fragment match between library and query 

spectra can be used to determine a ratio that represents the 

change in quantity between conditions, a setting to choose 

between the mean or median of matched peak ratios is includ-

ed as well. In all cases, invalid inputs are highlighted red after 

clicking the “Execute” button while valid inputs are highlight-

ed green. Conditions required for each field can be identified 

by hovering over the highlighted text field in question. 

 

DISCUSSION 

The CsoDIAq software package introduced here enables the first 

unified solution to DISPA data analysis, which we expect to ena-

ble more widespread adoption. Furthermore, the applicability of 

CsoDIAq to standard LC-MS DIA analyses expands the utility. 

CsoDIAq introduces several algorithmic advances. These include 

spectra pooling, which significantly reduces the time required to 

complete a DIA-based analysis. Further, the MaCC score and 

PPM correction concepts can apply to similar tools in future de-

velopment. By combining these techniques with the projected 

spectrum scoring concept outlined in the MSPLIT-DIA package, 

we demonstrated an overall enhancement in the quantity of pep-

tides and proteins identified. Further, the results demonstrate that 

the CsoDIAq can accurately quantify peptides and proteins. Final-

ly, CsoDIAq greatly increases usability through the addition of a 

GUI. Altogether, the CsoDIAq software package simplifies and 

enhances DISPA data analysis. 
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Figure 6: Graphical User Interface layout. A, GUI settings for peptide and protein identification step. B, GUI settings for SILAC 

quantification step. 
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