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ABSTRACT  

 

Riboswitch RNAs regulate gene expression by conformational changes induced by environmental 

conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small 

molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 

hairpins. While an interaction was shown for isolated hairpins in crystallization and EPR experiments, 

an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of 

this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET 

spectroscopy and detailed structural information from coarse-grained simulations, we observe and 

characterize three interconvertible states representing an open and kissing loop conformation as well 

as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further 

substantiate the proposed switching mechanism and provide detailed insight into the regulation 

mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-

grained simulations therefore provides a promising perspective in resolving the conformational changes 

induced by environmental conditions and to yield molecular insights into RNA regulation. 

 

INTRODUCTION 

Riboswitches are cis-regulatory elements that are located in the 5’ UTR of bacterial mRNA, affecting 

the expression of the downstream gene. They are generally comprised of an aptamer domain and an 

expression platform. The aptamer domain is responsible for specific ligand binding, whereas part of the 

expression platform can form distinct structure that trigger the genetic decision. By structurally coupling 

the aptamer domain with the expression platform, riboswitches are able to execute their regulatory 

function. There is a wide spectrum of metabolites that can be bound by the respective aptamer domain, 

ranging from ions (1,2), amino acids (3), nucleotides (4)  and cofactors (5)  to large biomolecules such 

as tRNAs (6). In general, two functional types of riboswitches can be discriminated: the transcriptional 

and translational riboswitches. In transcriptional riboswitches the expression platform contains a 

terminator sequence that halts transcription upon correct folding. In  contrast, translational riboswitches 

contain an anti-Shine-Dalgarno (SD) sequence (7). Sequestering of the SD sequence prevents 

ribosome binding and thus translation initiation. In both cases ligand binding to the aptamer could either 
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switch gene expression on or off, based on the type of riboswitch. This positive or negative feedback 

loop allows utilization of specific biosynthetic pathways (such as in the 2’dG riboswitch), or elimination 

of toxic substances, such as the fluoride riboswitch.  

So far, four classes of riboswitches have been identified that bind the cationic molecule guanidinium 

(Gdm+): guanidine-I (8), -II (9) , -III(2)  and -IV (10). The corresponding genes are in most cases involved 

in Gdm+ detoxification, and code for proteins like guanidine-carboxylases or multidrug efflux pumps 

(e. g. SugE). The guanidine-II riboswitch is the smallest representative of guanidine riboswitches 

classes, and was named mini-ykkC prior to Gdm+ being identified as the ligand in 2017 (9) . It consists 

of two GC-rich hairpins termed P1 and P2, both containing a conserved ACGR loop motif. It has been 

proposed that this class features a translational regulation mechanism since the two hairpins are 

connected with a linker containing a putative anti-SD sequence(11). So far, in-line probing experiments 

(9) and crystallization (12,11,13) analyses have suggested a kissing loop formation through canonical 

CG base pairs upon Gdm+ binding to the loop region (Figure 1A). This interaction supposedly 

sequesters the anti-SD sequence, exposing the SD sequence and thus facilitating translation of the 

downstream gene. Crystallization could however only show homo-dimerization of isolated hairpins. 

Recently, using EPR it was shown that RNAs comprising either hairpins P1 or P2 could form homo- as 

well as heterodimers (14).   

Until now, there was however no direct evidence that an interaction in cis between the two hairpins can 

form in a functional RNA (14) and that this interaction is regulated by ligand binding. To fill this gap, we 

combined single-molecule FRET (smFRET) spectroscopy and coarse-grained simulations. The results 

from our complementary approach show that the riboswitch aptamer domain can adopt three different 

conformational states, including a ligand dependent state that involves intrastrand kissing loop 

formation.  
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MATERIAL AND METHODS 

Construct design, dye attachment, and FRET positioning and screening software (FPS) 

For this work the sequence of the E. coli SugE guanidine-II riboswitch aptamer was used (Figure 1D). 

The construct contained the P1 and P2 hairpin as well as the native linker connecting both hairpins. 

The 5’ C1 was exchanged with a G to stabilize the hairpin. Labelling sites were chosen at U3 via a C5 

amino-allyl modification and the 3’ phosphate with a C6 amino-modifier. For immobilization, a biotin 

modifier was used at the 5’ end. The sequence was split into a 23mer and 24mer to allow separate 

labelling. 

For FRET efficiency prediction, the FRET positioning and screening software (FPS) (15) was used. The 

crystal structure of the E. coli P1 hairpin homodimer (PDB: 5NDI (12)) was used as a template. One 

monomer was shortened to four basepairs in the stem to simulate the correct length of P2. For Cy3, 

dye radii of 6.8 Å, 3.0 Å, and 1.5 Å, respectively, were used. Cy5 was calculated with 11.0 Å, 3.0 Å, and 

1.5 Å, respectively. The linkers were described with 22.3 Å and 4.5 Å for 5’ modification (C5 of amino-

allyl uridine), and 27.1 Å and 4.5 Å for the 3’ modification (3’ oxygen). The Förster radius for the Cy3/Cy5 

pair was set to 60 Å (16). The program was used to calculate the accessible volume clouds as depicted 

in Figure 1B, as well as the expected FRET efficiencies and average distances between the dyes.  

RNA synthesis: labelling 

Modified RNAs for the FRET construct were purchased in two fragments (Dharmacon) (5’ fragment: 

Biotin-GU(5-NH2-U) UGC AGG ACG ACC UGC AAA CG, 3’ fragment: P-CCU CUU UUC ACC GGG 

GAC GGC CCC C6NH2). 30 nmol of each RNA were ethanol precipitated, and subsequently 

resuspended in 20 µL freshly prepared 0.1 M NaHCO3 (pH 8.0). Cy3 or Cy5 amine-reactive dyes 

(Amersham CyDye Mono-Reactive Dye Packs, GE Healthcare) were dissolved in 20 µL DMSO. 

Labelling was achieved by mixing the two solutions and incubation of the RNA with the respective dye 

for 90 min (3’ fragment) or 3 h (5’ fragment) at room temperature under light protection. RNA was 

precipitated and dissolved in 300 µL deprotection buffer (100 mM AcOH adjusted to pH 3.8 with 

TEMED) and incubated at 60 °C for 40 min (3’ fragment) or 2 h (5’ fragment). Deprotected RNA was 

precipitated, and non-biotinylated RNA was dissolved in 0.1 M TEAA (pH 7.0) and purified via reverse 

phase chromatography with an Äkta Basic system using a C8 column (Kromasil 100 C8 7µm 

250x4.6mm). A gradient from 100% TEAA buffer to 50% MeCN was applied. Fractions with labelled 

RNA were collected and precipitated.  

RNA synthesis: ligation and purification 

The FRET construct was synthesized through splinted ligation of the two fluorophore labelled 

fragments. All nucleic acid components had a final concentration of 10 µM each. RNA fragments were 

dissolved in water, heated to 95 °C for 2 min and placed on ice. The DNA splint (TGG GGC CGT CCC 

CGG TGA AAA GAG GCG TTT GCA GGT CGT CCT GCA AAC CTA TAG TGA GTC GTA TTA) and 

T4 ligase buffer (50 mM TRIS/Cl, 10 mM MgCl2, 1 mM ATP, 10 mM DTT, pH 7.5) were added and the 
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mixture incubated at 85 °C for 3 min. After slowly cooling down T4 DNA ligase (final concentration of 

40 U/mL, NEB) was added and the reaction was performed for 2 h at room temperature. 1 U Turbo 

DNase (Invitrogen) was added and incubated for 30 min at 37 °C, and subsequently extracted using 

phenol/ether extraction and precipitated. The FRET construct containing the desired sequence (Figure 

1C) was separated via denaturing PAGE, eluted and ethanol precipitated.  

smFRET measurements 

Microscope slides (quartz) and cover slips were cleaned with nitrogen plasma for 10 min. Channels 

were made by aligning parafilm stripes on the slide, covering it with the coverslip and heating everything 

to 80 °C for 30 s. Cooled down channels were filled with 1 mg/mL biotin labelled bovine serum albumin 

(BSA, Sigma-Aldrich) in T50 buffer (10 mM Tris/Cl, 50 mM NaCl, pH 8.0) and incubated for 2 min. 

Channels were then washed with 50 µL of T50 before incubation with 0.2 mg/mL streptavidin in T50 for 

2 min. Channels were washed with 50 mM Tris/Cl (pH 7.4) with the respective Mg2+ and Gdm+ 

concentration. 100 pM RNA was folded in the respective buffer by incubation at 95 °C for 2 min and 

cooling on ice for 5 min, unless stated otherwise. RNA was flushed into the channel for immobilization. 

Prior to the measurement, the channel was rinsed with imaging buffer (sample conditions in Tris buffer, 

10% (w/v) D-(+)-glucose, 80 µg/mL glucose oxidase, 20 µg/mL catalase, and Trolox (saturated)). 

An objective-type spinning-spot total internal reflection microscopy setup with an EMCCD camera (iXon, 

Andor Technology) with 532 nm laser (green laser) and 633 nm laser (red laser) excitation with an 

integration time of 100 ms at 22 °C was used for smFRET measurements. For histograms 20 frames 

with green excitation were recorded. For kinetic data and verification of single step photobleaching 

movies of up to 7 min were recorded.  

FRET efficiencies for histograms were calculated as the average over 2 s. FRET efficiencies were 

binned to a bin size of 0.05. The donor only peak was fitted with a Gaussian fit, and subtracted from the 

data. The remaining data was plotted into histograms. For these histograms, 3 states were fitted with a 

Gaussian fit using OriginPro 2018b (Northampton). The fractions of the individual states were calculated 

from the ratios of the area under the individual curves. For kinetic data, traces before photobleaching 

were manually selected for consistency, anticorrelated dye behaviour, and single-step photobleaching. 

The selected traces were stitched to a single trace of 50,000 datapoints, and Hidden Markov modelling 

software (HaMMy) (17) was applied using a 3 state model. Fitting the traces with a 5 state model did 

not result in additional, discernible FRET states (data not shown). Dwell times for each transition were 

fitted with an exponential decay and rate constants (k) were calculated using OriginPro 2018b.  

The distribution of individual states of the dynamic molecules was calculated based on the rate 

constants k (Table 1 & 2) assuming the 3 state model shown in Figure 5C. For the equilibrium 

concentrations, the integrated phenomenological rate equations were used starting with equimolar 

concentrations (t=0) and iterating until an equilibrium was reached. 

[𝑈](𝑡𝑛) = [𝑈](𝑡𝑛−1) − [𝑈](𝑡𝑛−1) ∗ ∆𝑡 ∗ (𝑘𝑈,𝐾 + 𝑘𝑈,𝑀) +  [𝐾](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝐾,𝑈 + [𝑀](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝑀,𝑈 
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[𝐾](𝑡𝑛) = [𝐾](𝑡𝑛−1) − [𝐾](𝑡𝑛−1) ∗ ∆𝑡 ∗ (𝑘𝐾,𝑀 + 𝑘𝐾,𝑈) +  [𝑀](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝑀,𝐾 + [𝑈](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝑈,𝐾 

[𝑀](𝑡𝑛) = [𝑀](𝑡𝑛−1) − [𝑀](𝑡𝑛−1) ∗ ∆𝑡 ∗ (𝑘𝑀,𝑈 + 𝑘𝑀,𝐾) +  [𝑈](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝑈,𝑀 + [𝐾](𝑡𝑛−1) ∗ ∆𝑡 ∗ 𝑘𝐾,𝑀 

Here, [𝑖](𝑡𝑛) are the concentrations of states i=U,K,M at time 𝑡𝑛, ki,j are the rate constants between 

states j and j and ∆𝑡 is the timestep used (0.1 s). 

In the absence of Mg2+, the equilibrium concentrations were not calculated due to the missing rate 

constants kU,M, kM,U, and kM,K. For 1 mM Mg2+ and 30 mM Gdm+, transitions between the K- and M-state 

were considered to be 0. 

Coarse-grained simulations 

The simulation construct was modeled based on a crystal structure of the E. coli guanidine-II riboswitch 

P1 stem-loop dimer (PDB: 5NDI) (12). One loop was shortened to the length of the wild type P2 stem-

loop. Base pairs were mutated to match the FRET construct using Chimera (18). The linker between 

the P1 and P2 stem-loops was modeled using ModeRNA (19). The coarse-grained RNA simulations 

were performed using a three-interaction site model (TIS) developed by Thirumalai and coworkers (20–

24). For our present study, TIS is particularly suited since it is computational efficient allowing us the 

investigation of folding/unfolding transitions while reproducing the folding thermodynamics with good 

accuracy (21). In the TIS model, the intramolecular attractive interactions are defined based on the 

residues that appear in the native structure. This description, inherent to all Gō-like models, ensures 

that the native structure is the minimum energy structure (25). Native hydrogen bonds and tertiary 

stacks in the simulation construct were defined based on the crystal structure of the P1 stem-loop dimer 

(12).  

In order to capture folding intermediates that are not stabilized by native interactions, non-native 

secondary structure interactions were included via the base-stacking interactions of consecutive 

nucleotides and hydrogen-bond interactions between all nucleobases (22). A non-interacting adenine 

was added capping the structure at the 3’-end. The RNA was placed in a cubic box with an edge length 

of 70 nm. Simulations were run in the low friction regime for 1.5 x 109 steps with a timestep of 0.05τ 

(τ = 50 fs) at 298.15 K. The cut-off for electrostatic interactions was set to 3 nm. Magnesium was 

included explicitly via the effective Magnesium-phosphate interaction potential derived from RISM 

theory (24). Simulations were performed with concentrations ranging from 0 to 10 mM. Monovalent ions 

were included implicitly at a concentration of 50 mM. To compare the simulations to experiments, the 

FRET efficiency was calculated. Structures from the simulations where backmapped to an atomistic 

representation. Accessible volumes of the FRET dyes and corresponding mean FRET efficiencies were 

estimated using avtraj (26). Dye parameters were matched to the previously stated FPS parameters. 

The resulting FRET efficiencies were subsequently binned using the same bin size (0.05) as in the 

experiments and fitted with the same routine described above. For comparison with experimental data 

the most probable FRET efficiency of each state is obtained from the maximum of the fitted Gaussian. 
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RESULTS 

Construct design and synthesis 

Several crystal structures have shown the formation of a kissing loop interaction involving canonical 

C-G base pairs between isolated hairpins (11–13), resulting in homodimeric structures. However, two 

problems can be envisioned when transferring these findings to functional constructs. First, the two 

stems in all natural riboswitches have different sequences. Secondly, the two hairpins are linked with a 

presumably regulatory anti-Shine-Dalgarno sequence. It is therefore unclear whether the interactions 

found in the crystal structures can actually be transferred to the natural riboswitch. Therefore, a linked 

construct comprised of the native hairpins is required to resolve whether the interaction between P1 

and P2 helices can occur in cis. 

Based on the available structural information from crystal structures (12) as well as in-line probing 

experiments (9), an RNA FRET construct was designed. For this, a 47mer RNA sequence of the 

guanidine-II riboswitch aptamer upstream of the E. coli sugE gene was selected (Figure 1C). 

Fluorophore attachment sites were placed in helical regions of both hairpins expecting them to assume 

a defined distance upon kissing loop formation, supposedly creating a signature FRET efficiency. A 

native U of the P1 stem was modified at position C5, and the second modification was introduced at the 

3’ phosphate. 

 

Figure 1: A) Crystal structure of E. coli SugE guanidine-II riboswitch P1 homodimer (PDB ID: 5NDI) (12) B) 
Accessible volume of the fluorophores calculated with FPS. One stem from the crystal structure was shortened 
according to the four base pairs in P2. C) Ligation reaction of the fluorophore labelled 23mer and 24mer fragments 
to yield the FRET construct (left) and PAGE analysis of the dual fluorescently labelled, purified construct (right). D) 
Sequence of the FRET construct used in this work. The biotin moiety is illustrated in yellow and the Cy3 and Cy5 
attachments sites are shown as a green and red star, respectively. The ligation site between the 23mer and the 
24mer is shown in blue. 
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In order to identify the expected FRET efficiency of this construct in a potential kissing loop conformation 

(such as the one in the crystal structure), we modelled the available conformational states for the dyes 

with the FPS software package. This revealed a FRET efficiency of 0.72 (Figure 1B). Based on these 

results the RNA fragments were designed, and the construct successfully synthesized. We therefore 

divided the natural aptamer domain into two fragments corresponding to the 23mer P1 hairpin and the 

24mer linker and P2 region (Figure 1C). The 5’ fragment had an additional conjugated biotin to allow 

immobilization required for smFRET measurements. Fragments were successfully labelled with Cy3 

and Cy5 using NHS-chemistry, respectively. The final FRET construct was synthesized via subsequent 

splinted ligation of the dye-labelled fragments and denaturing PAGE purification of the double labelled 

RNA (Figure 1D). 

Initial smFRET characterization 

Synthesis of this FRET construct now enables investigation whether P1 and P2 interact in cis using 

smFRET. Initially, we tested the FRET efficiencies and their response to selected Mg2+ ion and Gdm+ 

ligand conditions. In the absence of both ligand and Mg2+ the majority of molecules resided in a low 

FRET state (EFRET ≈ 0.38) (Figure 2, top left). This low FRET state corresponds to a distance between 

the dyes that is larger than what would be expected for the conformation modelled from the crystal 

structure. As shown in the following, this state corresponds to an unfolded conformation, which we term 

the U-state.  

In presence of high Mg2+ concentrations, the riboswitch folds into a high FRET state (EFRET ≈ 0.86) 

which we designate the M-state (Figure 2, top right).. The M-state has a higher FRET efficiency than 

expected from the crystal structure. 

Upon addition of Gdm+ ligand, the equilibrium was shifted to an intermediate FRET efficiency of 0.69 

(Figure 2, bottom). This FRET value is in excellent agreement with the FPS modelled distance in the 

crystal structure of single hairpins in a kissing loop interaction. Therefore, the intermediate FRET 

conformation is assigned as the K-state. 

To summarize these initial experiments depending on the solution conditions, three distinct FRET states 

for the guanidine-II riboswitch were identified. For all of these states we verified that the data indeed 

originated from individual molecules by monitoring single step photobleaching in time resolved 

experiments. This strongly suggests that an RNA fold with fluorophore distances as expected for a 

kissing loop interaction between P1 and P2 is formed in cis within a full-length aptamer construct. 

Further, a previously uncharacterized M-conformation was identified.  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.440196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.440196
http://creativecommons.org/licenses/by/4.0/


8 

 

 

Figure 2: Initial smFRET experiments. The histograms show the populations at different FRET efficiencies in 
absence and presence of Mg2+ and Gdm+. The U-state is highlighted in orange, the K-state in blue and the M-state 
in green. 

For these experiments, the molecules were folded with the same conditions that were used for the 

subsequent smFRET measurements, which in principle also applies to data from in-line probing. The 

folding conditions for our experiments as well as those used for structural analysis of individual 

riboswitch hairpins however raise the question whether these states are in equilibrium or are 

conformationally trapped. Along the same line, for the function of some riboswitches it is crucial that the 

RNA does not only fold into different conformations, but that those are interconvertible in response to 

changing environmental conditions.  

We therefore evaluated the reversibility of the RNA conformations by exchanging the buffer directly on 

the smFRET slide. FRET histograms in Figure S1 show that molecules on the same slide were able to 

shift from the U-state in absence of Mg2+ and Gdm+ to the M-state upon addition of Mg2+ ions. Upon 

further addition of Gdm+ the K-state was the predominant population, and subsequent removal of both 

Mg2+ and Gdm+ ions resulted in a quantitative return of the molecules to the low FRET U-state. This 

shows that the majority of molecules in our smFRET experiments retains responsiveness towards the 

buffer conditions and does not enter a conformationally trapped state. 

 

Coarse-grained simulations and smFRET analysis of Mg2+-dependent folding 

We investigated the response of the riboswitch to changes in the Mg2+ concentration by performing 

Mg2+ titration experiments while monitoring the abundance of each of the three states. We found that 

high Mg2+ concentrations lead to stabilization of the M-state in smFRET experiments, while intermediate 

Mg2+ concentrations cause a shift from the U- to the K-state (Figure 3A & B, Figure S2A).  

To further characterize these states, we performed coarse-grained simulations. In agreement with the 

experiments, the coarse-grained simulations suggest the existence of three different states dependent 
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on the Mg2+ concentration. Representative structures of each state were selected from the simulations 

(Figure 4). At low Mg2+ concentrations, the linker in the obtained structures is extended. As a result, the 

P1 and P2 stem-loops are pointing in different directions, and the tetraloop sequences are not in spatial 

proximity. At intermediate Mg2+ concentrations, we find mainly structures with a native-like kissing loop 

orientation of the P1 and P2 stem-loops. At 10 mM Mg2+, more compact structures with a different 

secondary structure are most abundant. While the P1 hairpin remains folded, the P2 stem unfolds and 

forms new basepairs with the linker containing the putative anti-SD sequence (Figure 4).  

To assess whether the conformations derived from the simulations and the FRET experiments are 

representatives of the same state, we calculated the theoretical FRET efficiencies and their distributions 

from the simulations. In the coarse-grained simulations, the native K-state is designed to be the 

minimum energy structure by including the native contacts of the kissing-loop interaction. At the same 

time, the coarse-grained model includes non-native interactions and therefore allows us to capture the 

U-state at low Mg2+ concentrations and the M-state at high concentrations. Due to the Gō-like nature of 

the model, the abundance of the conformations in each state does not correspond to an equilibrium 

distribution. In addition, we find predominantly one conformational state and interconversion between 

the states is rare. Therefore, the magnitude of the FRET frequency from simulations and experiments 

varies as expected (Figure 3A).  

Still, the FRET efficiencies of the most probable structure in each state from simulations and 

experiments (ÊFRET) can be compared directly. Figure 3A, C show that ÊFRET from experiments and 

simulations is in very good agreement over a range of Mg2+ concentrations. This in turn suggests that 

the structures derived from the coarse-grained simulations and the ones observed in the FRET 

experiments at different concentrations are in fact identical. 

These results show that combining coarse-grained simulations and smFRET experiments provides 

detailed, complementary insights into the response of the riboswitch RNA to different Mg2+ 

concentrations. They also reveal that a coaxial orientation of the hairpins necessary for the kissing loop 

conformation is accessible in the absence of the ligand. High Mg2+ concentrations lead to the folding of 

the riboswitch into an alternative M-conformation. Here, the coarse-grained simulations allow us to 

resolve the alternative base pairing pattern and the three-dimensional structure. 
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Figure 3: Comparison of experimental smFRET and simulated response of the riboswitch RNA to varying Mg2+ 
concentrations A) Histograms of the populations obtained in the smFRET experiments (blue) and in the coarse-
grained simulations (pink) at different Mg2+ concentrations. The experiments were fitted with 3 Gaussians 
corresponding to the 3 states. The simulations were fitted with 1 Gaussian since at each concentration 
predominantly one state was populated while the probability of the other states was negligibly small. The maximum 
of the Gaussian fits ÊFRET,exp and ÊFRET,sim corresponds to the FRET efficiency of the most probable structure of 
each state and is shown as inset. B) Experimental fraction of riboswitches in the three states at various Mg2+ 
concentrations. The fractions were calculated from the area under the fits (shown in A). C) Comparison of most 
probable FRET efficiency ÊFRET (corresponding to the maxima in the Gaussian fits shown in A) from experiments 
and simulations at various Mg2+ concentrations. 
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Figure 4: Representative structures of the three states from coarse-grained simulations at different Mg2+ 
concentrations. The P1 and P2 stem-loops are coloured in purple and blue respectively, the linker is coloured in 
grey. The corresponding secondary structure is shown below each three-dimensional structure. The calculated 
FRET efficiency (EFRET) of each structure averaged over different dye orientations is given. 

 

Analysis of dynamics: Mg2+ titration 

After identification and structural description of the three states U, K and M, and showing that the states 

are interconvertible, we characterized the transitions between these states further. To this end, we 

performed time resolved smFRET measurements and observed the behavior of the molecules over 

several minutes at different Mg2+ concentrations in the absence of Gdm+. While some of the traces 

remained in one FRET state throughout the measurement (example in Figure 5A), the majority of 

molecules showed multiple transitions, in which each of the states was accessible directly from every 

other state. We isolated FRET data prior to photobleaching for each molecule and stitched these traces 

together to a single FRET trace up to 50,000 datapoints (Figure S3). From these stitched traces, we 

performed hidden Markov Modelling using the HaMMy software (17) with a three state model (Figure 

5C). Since the number of transitions for each molecule was significantly higher than the number of 

stitched molecules, we were able to extract kinetic information (  
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Table 1) about the fast-transitioning molecules (in other cases we note n.d.). For this we plotted the 

dwell times and fitted a mono-exponential function to derive rate constants (Figure 5B).  
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Table 1: Transition rates derived from dwell time fits at various Mg2+ concentrations. In cases where a reliable fit 
could not be obtained, i.e., due to an insufficient number of transitions (n), the rates were not determined (n.d.) 

Transition 0 mM 0.5 mM 1 mM 3 mM 5 mM 

kU,K [s-1] 
5.6 ± 0.14 

(n = 313) 

5.8 ± 0.16 

(n = 626) 

3.2 ± 0.04 

(n = 637) 

4.6 ± 0.08 

(n = 541) 

4.0 ± 0.07 

(n = 366) 

kK,U [s-1] 
1.1 ± 0.03 

(n = 291) 

1.0 ± 0.03 

(n = 575) 

1.6 ± 0.03 

(n = 511) 

1.5 ± 0.03 

(n = 439) 

2.2 ± 0.11 

(n = 336) 

kU,M [s-1] 
n.d. 

(n = 21) 

0.8 ± 0.04 

(n = 423) 

1.6 ± 0.04 

(n = 339) 

2.0 ± 0.07 

(n = 221) 

3.6 ± 0.10 

(n = 110) 

kM,U [s-1] 
n.d. 

(n = 43) 

0.8 ± 0.04 

(n = 476) 

0.6 ± 0.03 

(n = 466) 

0.8 ± 0.05 

(n = 324) 

0.8 ± 0.10 

(n = 140) 

kK,M [s-1] 
0.7 ± 0.05 

(n = 73) 

0.6 ± 0.03 

(n = 168) 

0.9 ± 0.05 

(n = 367) 

1.4 ± 0.05 

(n = 315) 

2.2 ± 0.07 

(n = 272) 

kM,K [s-1] 
n.d. 

(n = 51) 

1.2 ± 0.03 

(n = 115) 

0.7 ± 0.04 

(n = 240) 

0.4 ± 0.03 

(n = 212) 

0.6 ± 0.04 

(n = 243) 

 

We found that the transition from the U-state to the K-state was fast, with a rate constant of 

approximately kU,K = 4.6 s-1 (average over all Mg2+ concentrations). We note that this transition is a 

reorientation of the two hairpins P1 and P2 rather than opening of any helix, as suggested by the 

structures from the coarse-grained simulations. For opening the kissing loop, we found rates of kK,U 

between 1.0 and 2.2 s-1. For the formation of the M-conformation a likely Mg2+-dependent behaviour 

from both the U- and the K-state was observed, in which rates increased slightly with Mg2+ concentration 

(Figure 5D &   
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Table 1). This increase ranged from 0.8 to 3.6 s-1 for KU,M and from 0.6 to 2.2s-1 for kK,M. Refolding into 

both the U- and K-state starting from the M-state occurred slower in comparison, with no obvious 

dependence on Mg2+ concentrations for K and U (around kM,U = 0.8 s-1 and kM,K = 0.7 s-1). 

 

Figure 5 A) Exemplary FRET trace of a static molecule in the M-state. B) Exemplary dwell time plots used to 
determine transition rates. smFRET trajectories for each condition were fitted for 3 states with HaMMy and resulting 
dwell times were fitted with a monoexponantial decay. C) 3 state kinetic model D) Change of transition rates with 
increasing Mg2+ concentration of the transitions of the U to M (dark grey) and K to M (light grey). 

 

Effect of Gdm+ ligand on structural dynamics 

After observing the K-state to a certain amount (46% at 1 mM Mg2+) in the absence of the ligand and a 

stabilization of this conformation (to 66%) at high Gdm+ concentrations (Figure 2), we characterized the 

ability of P1 and P2 to form a kissing loop orientation in a ligand dependent manner. We chose the 

intermediate (and likely physiological) Mg2+ concentration of 1 mM to perform ligand titrations. 

Increasing Gdm+ concentrations in the sub-millimolar range did not result in significant shifts between 

the populations, with 30 to 41% of the molecules adopting the K state. Addition of 30 mM Gdm+ however 

shifted the populations into the K state (66%) on the expense of both U and M states, confirming a 

distinct ligand dependence of this conformation (Figure 6A&B & Figure S2C). The high concentrations 
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of Gdm+ used in this experiment could however also have an unspecific chaotropic effect. We therefore 

repeated this measurement in the presence of 30 mM urea instead of Gdm+ to further assess the 

specificity of ligand binding. In contrast to Gdm+, high concentrations of urea did not shift the equilibrium 

towards the K-state, but rather resulted in a destabilization of the RNA as evidenced by an increased 

and likely broadened U-state population (35% of molecules) (Figure 6C).  

As for the Mg2+ dependence we also calculated the rate constants for all observable state transitions in 

our Gdm+ titration (Figure 7B & Table 2) from the dwell times derived from stitched traces (Figure S4). 

Here, transitions between the U- and K-states are comparable with the data obtained from Mg2+ titration 

experiments, i.e. with kU,K = 3.9 s-1 and kK,U = 1.3 s-1, respectively. In general, all other observed 

transition rates were also comparable with the data of the Mg2+ titration in absence of ligand. Within 

error, we were not able to identify a faithful ligand dependence of any of the fast transitions, with the 

exception of kU,K, which upon increase of the ligand concentration rose from ≤3.7 s-1 up to 1 mM Gdm+ 

to 6.4 s-1 at  30 mM Gdm+. 

 

Table 2: Transition rates derived from dwell time fits at various Gdm+ concentrations at 1 mM Mg2+. In cases where 

a reliable fit could not be obtained, i.e. due to a low number of transitions (n), the rates were not determined (n.d.) 

Transition 0 30 nM 1 µM 30 µM 1 mM 30 mM 

kU,K [s-1] 
3.2 ± 0.04 

(n = 737) 

3.5 ± 0.04 

(n = 730) 

2.9 ± 0.04 

(n = 929) 

3.7 ± 0.07 

(n = 934) 

3.7 ± 0.04 

(n = 682) 

6.4 ± 0.09 

(n = 933) 

kK,U [s-1] 
1.6 ± 0.03 

(n = 729) 

1.0 ± 0.05 

(n = 696) 

0.8 ± 0.05 

(n = 903) 

1.9 ± 0.03 

(n = 846) 

1.2 ± 0.06 

(n = 632) 

1.4 ± 0.03 

(n = 930) 

kU,M [s-1] 
1.6 ± 0.04 

(n = 79) 

2.4 ± 0.11 

(n = 95) 

1.5 ± 0.05 

(n = 917) 

1.4 ± 0.05 

(n = 215) 

3.3 ± 0.09 

(n = 107) 

5.0 ± 0.19 

(n = 49) 

kM,U [s-1] 
0.6 ± 0.03 

(n = 86) 

0.3 ± 0.04 

(n = 129) 

0.3 ± 0.03 

(n = 223) 

0.4 ± 0.03 

(n = 303) 

0.4 ± 0.04 

(n = 157) 

0.6 ± 0.11 

(n = 51) 

kK,M [s-1] 
0.9 ± 0.05 

(n = 71) 

0.8 ± 0.05 

(n = 143) 

0.7 ± 0.06 

(n = 162) 

1.0 ± 0.07 

(n = 428) 

1.5 ± 0.08 

(n = 402) 

n.d. 

(n = 26) 

kM,K [s-1] 
0.7 ± 0.04 

(n = 64) 

0.2 ± 0.03 

(n = 109) 

0.2 ± 0.02 

(n = 135) 

0.3 ± 0.02 

(n = 340) 

0.4 ± 0.02 

(n = 353) 

n.d. 

(n = 23) 

 

 

As can be seen in Figure 7A, we do however observe some molecules that transiently adopt the K-

state for an extended period of time (> ~20sec). In addition to that, all of the data sets contained a 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.440196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.440196
http://creativecommons.org/licenses/by/4.0/


16 

 

limited number of molecules that adopted a particular state (U, K, or M) and showed no transitions 

between states for the duration of the observation (termed “static molecules”). Moreover, due to our 

limited observation time (minute timescale), the number of the transitions may not be faithfully 

represented in our steady state analysis shown in Figure 6. We therefore calculated the population 

distributions using the phenomenological equations described in the Materials and Methods section 

(Figure S5).When comparing the transition rates of the dynamic molecules (Tables 1 and 2) with the 

populations obtained from all molecules (i.e. Figure 1, Figure 6), we find that these are not always in 

agreement. 

 

 

 

Figure 6:  A) Histogram analysis of the Gdm+ titration at constant 1 mM Mg2+. The data was fitted with 3 Gaussian 
fits showing the change between the K-state (blue) and the M-state (green) with increasing Gdm+ concentration. 
B) Histogram analysis at 1 mM Mg2+ with 30 mM urea. C) Fractions of molecules adopting the individual states 
based on the area under the fitted curves. D) Structures of Gdm+ and urea. 
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Figure 7: A) Exemplary FRET trace of a dynamic molecule switching between a dynamic M-state and a static 
K-state. B) Exemplary dwell time plots of 1 mM Mg2+ and ligand each, used for transition rate calculations. 

 

DISCUSSION 

Using retrosynthetic splitting, we successfully designed and synthesized a smFRET construct for 

analysis of individual guanidine-II riboswitch RNA aptamer domain molecules. This RNA showed a 

distinct and reversible response to binding of both Mg2+ and Gdm+ ions and folding into three discernible 

states (Unfolded, Kissing loop orientation, and Mg2+ dependent). Binding of the ligand Gdm+ resulted 

in a FRET efficiency that closely matched the values derived from FPS-based modelling of the crystal 

structure. Since our methodological approach can robustly identify signals from individual molecules, 

this is a very strong indication that the interaction between P1 and P2 helices can indeed occur in cis, 

resulting in a kissing loop structure.  

The experimental results are supported further by coarse-grained simulations in the absence of Gdm+ 

ligand. From these simulations, we can identify and structurally characterize three distinct Mg2+-

dependent states. At low Mg2+ concentrations, an unfolded structure with folded P1 and P2 hairpins is 

observed. This conformation is shifted to a kissing loop structure at intermediate concentrations, 

emphasizing the requirement for Mg2+ ions for correct folding of the RNA. Further increasing the Mg2+ 

concentration leads to a conformation that exhibits a distinctly different secondary structure and base 

pairing pattern for the shorter P2 hairpin. In summary, the results suggest that the RNA requires a 

certain window of Mg2+ concentrations that facilitate folding into the kissing loop structure. When 

comparing theoretical FRET values derived from simulations and experiments, we find very good 

agreement of the individual FRET efficiency values and remarkably consistent results of the response 

to varying Mg2+ concentrations. Interestingly, the structure resolved by the simulations at high Mg2+ 
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concentrations is fully consistent with the measured FRET values even in absence of any other, 

orthogonal a priori structural knowledge. Furthermore, the structure is in agreement with other data from 

in-line probing experiments (9), which show a rather low cleavage intensity of the P2 loop even in 

absence of ligand, but at high (20 mM) Mg2+ concentrations. This may be a feature specific to the 

sequence of this riboswitch in E. coli but emphasizes the importance of a comparison of data points 

obtained at different Mg2+ concentrations. Since the state occurs at elevated Mg2+ concentrations and 

to a smaller extent also at near-physiological Mg2+ concentrations, an unambiguous judgment on a 

possible regulatory relevance of this state is not possible. As can be seen in Figure 3, the anti-SD-

sequence would be sequestered in this conformation, since it is interacting with a part of the sequence 

that is otherwise involved in formation of the P2 hairpin. 

In our smFRET analysis, we find that refolding from the U into the M state apparently increases with 

Mg2+ concentration over the physiologically relevant range. For ligand binding, an increase of folding 

from the U into the K state requires very high (30 mM) concentration of ligand. While the Kd for this RNA 

is generally high (300 µM, (9)), this points to an even higher concentration that is required for full stability 

of the kissing loop interaction. We would like to note that with our experimental smFRET methodology 

we cannot provide a detailed structural characterization of the kissing loop interaction. Nevertheless, 

the longevity of some molecules in the K-state suggests a certain degree of stabilization rather than a 

statistical orientation of the hairpins. Since we also observe the K state in absence of the native ligand 

Gdm+, we cannot definitively identify whether Gdm+ ligand binding induces the kissing loop interaction 

(“induced fit”), or whether binding of the ligand merely stabilizes molecules that have already adopted 

a kissing loop orientation (“conformational selection”). 

In our smFRET analysis, we expectedly find molecules that show multiple transitions in each time trace, 

but also molecules that occupy the same state for the duration of the experiment (dynamic versus static 

molecules, respectively). At the same time, the distribution of the entirety of molecules (as shown in the 

histograms in Figures 2, 5, and 7) shows somewhat different distributions between the U, K, and M 

state than what can be derived from the rates between those states (Figure S5). This can be rationalized 

by the presence of such static molecules, since these would contribute to the histograms, but not to the 

analysis of transition rates. 

With regard to the Mg2+ titration, a consistent picture emerges from our combined approach of smFRET 

experiments and coarse-grained simulations. While smFRET experiments are routinely employed to 

characterize the Mg2+-dependent folding of RNAs (27–31) and in particular riboswitches (32–35), the 

combined approach used here allows us to provide a more comprehensive view. The quantitative 

agreement between the maximum efficiencies of each state from simulations and experiments 

highlights the compatibility of both approaches despite possible limitations in the time scale accessible 

to the simulations. In particular, the simulations complement the experiments by providing molecular 

insight into the base pairing pattern and the three-dimensional structures at different Mg2+ 

concentrations.  
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The comparison of simulations and smFRET data at different Mg2+ concentrations and the presence of 

the M state also show that a near-physiological range of Mg2+ ion concentrations is required for the 

capacity for efficient folding into the suggested functional K state. The K state in turn is significantly 

stabilized by ligand binding, confirming the functional relevance of our analysis. This also for the first 

time experimentally directly demonstrates that the functionally relevant interaction between the two 

hairpins P1 and P2 occurs in cis in a ligand-dependent manner. 

 

Conclusion 

In summary, smFRET analysis and simulations of the full-length guanidine-II riboswitch aptamer 

domain from E.coli shows that the RNA can adopt three distinct states which are responsive to ligand 

as well as to Mg2+ concentration.  In close agreement between experiments and coarse-grained 

simulations, we find that three interconvertible states: An unfolded state, a novel Mg2+-dependent state, 

and the presumably functional kissing loop interaction state. 

Our results show that combining coarse-grained simulations and single-molecule FRET experiments 

provides complementary and detailed insights into the conformational changes induced by 

environmental conditions. 

In light of the proposed translation regulation properties of this riboswitch, our findings are in excellent 

agreement with existing data from other methodological approaches (9,11,12,14). Our results further 

provide the first direct evidence of the ligand-dependent kissing loop orientation in cis for the guanidine-

II riboswitch. 
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