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Abstract 

Integral membrane proteins are localised and/or regulated by lipids present in the surrounding 

bilayer. Whilst bacteria such as E. coli have relatively simple membranes when compared to 

eukaryotic cells, there is ample evidence that many bacterial proteins bind to specific lipids, 

especially the anionic lipid cardiolipin. Here, we apply molecular dynamics simulations to assess 

lipid binding to 42 different E. coli inner membrane proteins. Our data reveals a strong asymmetry 

between the membrane leaflets, with a marked increase of anionic lipid binding to the inner leaflet 

regions of membrane proteins, particularly for cardiolipin. From our simulations we identify over 

700 independent cardiolipin binding sites, allowing us to identify the molecular basis of a 

prototypical cardiolipin binding site, which we validate against structures of bacterial proteins 

bound to cardiolipin. This allows us to construct a set of metrics for defining a high affinity 

cardiolipin binding site on (bacterial) membrane proteins, paving the way for a heuristic approach 

to defining more complex protein-lipid interactions. 
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Introduction 

Cells are partitioned and encapsulated by biological membranes that are formed from a complex 

mixture of different lipids. Here, the lipids provide the necessary hydrophobic environment 

required to localise and tether the proteins to and/or within the membrane, acting as a solvent for 

the membrane-spanning region of the protein. In addition, specific interactions between particular 

membrane lipids and discrete regions on the surface of the protein can be of considerable 

importance, controlling how the protein folds, localises and functions (Corradi et al., 2019). 

Therefore the lipid composition and distribution can have a major impact on the regulation of cell 

membrane activity.  

The identification of specific protein-lipid interactions has been tackled for a number of different 

proteins. In the well-studied model Gram-negative bacteria Escherichia coli, for instance, which 

has a relatively simple plasma membrane, the anionic phospholipid cardiolipin (CDL) has been 

shown to interact specifically with several membrane proteins, including AmtB (Patrick et al., 

2018), SecYEG (Corey et al., 2018), formate dehydrogenase-N (Jormakka et al., 2002) and LeuT 

(Gupta et al., 2017)(Corey et al., 2019)(Bolla et al., 2020). However, there has been little in the 

way of systematically modelling CDL interactions with a range of different bacterial proteins in a 

single study. 

Protein-lipid interactions are frequently studied using computational methods, such as with 

molecular dynamics (MD) simulations (Corey, Stansfeld and Sansom, 2020)(Corradi et al., 

2019).These allow analysis of a given protein-lipid interaction with a high spatial and temporal 

resolution, as well as allowing a relatively unambiguous assignment of molecular species. In 

particular, use of a coarse-grained (CG) biomolecular force field, such as Martini (Siewert J 

Marrink et al., 2007; Luca Monticelli et al., 2008) has proven very powerful (Corradi et al., 2018). 

By reducing the degrees of freedom of a given system, sampling is improved, albeit with an 

associated loss in chemical resolution. This permits the dynamic modelling of protein-lipid 

interactions, which typically occur on the µs timescale.  

Here, we use CG simulations to analyse lipid interactions with 42 E. coli inner membrane proteins, 

with each protein simulated in simple bacterial membranes. Global analysis of the data shows a 

strong bilayer asymmetry, with substantially more anionic lipid binding in the inner leaflet of the 

membrane, particularly for CDL. This is primarily driven by an increased number of lipid-facing 

basic residues on the cytoplasmic face of the membrane – extending the well-established positive 

inside rule (von Heijne, 1986) to residues which interact with the membrane. We then resolve 
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over 700 discrete CDL binding sites from the dataset, and submit these to analyses using 

structural bioinformatics and free energy calculations. The data allow us to describe rules for a 

high affinity CDL binding site on bacterial membrane proteins. Finally, we validate our rules 

against previously-determined CDL sites on bacterial membrane protein structures, revealing 

excellent agreement. 

Results 

We constructed and simulated 42 different protein/membrane systems of E. coli inner membrane 

proteins using the coarse-grained (CG) Martini force field (Siewert J. Marrink et al., 2007; Luca 

Monticelli et al., 2008). Symmetric membranes were built using POPE, POPG and CDL, at a 7:2:1 

ratio and simulated for 5 x 5 µs: in total, we generated over 1 ms of simulation data (Figure 1B). 

We used this data to firstly analyse the global properties of protein-lipid interactions in the model 

E. coli membrane, and then to identify and characterise specific protein-CDL interactions.  

Distribution of residues in contact with the membrane 

Firstly, we carried out a global analysis of nature of protein-lipid interactions in our dataset. Across 

the 42 systems we see that CDL, and to a lesser extend PG, binds with a high propensity to the 

proteins (Figure 2A). Moreover, there is a strong asymmetry with regards to the inner 

(cytoplasmic) and outer leaflets, with CDL in particular far more likely to bind the protein when in 

the inner leaflet of the membrane. Looking at the distribution of residues in contact with the 

membrane (Figure 2B), this is explained by both Arg and Lys being substantially more prevalent 

in the inner leaflet (-2 nm) than the outer leaflet (+2 nm). Non-basic residues are evenly distributed 

between the two leaflets (Supplementary Figure 1B). This substantiates that the previously-

asserted ‘positive-inside’ rule for membrane protein topology (von Heijne, 1986) applies not just 

to distribution of residues, but also of amino acid sidechains that directly interact with the 

membrane.  
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Analysis of CDL-residue interactions 

The high binding likelihood of CDL, and the seeming importance of Arg/Lys interactions in this, 

led us to build interaction profiles for CDL and each residue type. As expected, the CG beads 

representing the CDL phosphate groups are most likely to be in contact with Arg and Lys residues 

(Figure 3; orange), with Arg slightly more prevalent, presumably reflecting the higher propensity 

for Arg in membrane-facing positions (Figure 2A). This role of basic residues in CDL binding 

supports previous structure-based predictions (Planas-Iglesias et al., 2015).   

The central glycerol also makes substantial contacts to Arg and Lys (Figure 3; purple), with Ser, 

Gly and Thr residues next most likely. The similarity between the phosphate and glycerol beads 

is probably due to their close proximity, and the shape of the CDL headgroup. The tail-connecting 

glycerol beads appear to bind to aromatic residues (Phe or Trp), as well as contacting small 

hydrophobic residues (Leu, Val), or basic residues (Figure 3A; cyan). 

Identification of specific CDL binding sites and the importance of basic residues 

We next set out to identify specific CDL binding sites from our simulation data. We followed an 

approach described recently (Barbera et al., 2018)(Duncan, Corey and Sansom, 2020), where 

contacts between each residue in the system and each lipid are modelled for every frame of the 

trajectory, and then sites are built based on residues with similar lipid-contact patterns. This 

analysis was run using a program designed specifically for this purpose, 

https://github.com/wlsong/PyLipID. From this, we identified 701 specific CDL sites with residence 

times above 10 ns (see Methods for filtering process). The sites had a median of 36% CDL 

occupancy (Figure 4A: ‘all). Representative protein structures with CDL bound are deposited at 

https://osf.io/gftqa/. 

Based on the data in Figure 3, it seems reasonable to predict that the presence of Arg or Lys 

residues would affect the affinity of the site. Of the 701 sites, ca. 60% contain at least one Arg or 

Lys residue, and these have a median CDL occupancy of ca. 53% (Figure 4A: ‘KR’), as opposed 

to just 14% for sites without a basic residue present (Figure 4A: ‘no KR’). We also saw a higher 

number of sites and median occupancy for sites with at least one basic residue in the cytoplasmic 

vs periplasmic leaflet (Supplementary Figure 3A). 

For the 60% of sites which do contain an Arg or Lys residue, the mean number of basic residues 

for each site was 1.9±1.3, with an overall site size of 6 residues (Supplementary Figure 3B). As 

such, we looked at the impact at having two or more basic residues in the site, and saw this gives 
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an even higher site occupancy of 64% (Figure 4A: ‘≥2KR’), as opposed to 37% for only 1 basic 

residue (Figure 4A: ‘1KR’).  

Visualising some example sites produced by PyLipID reveals that most sites have 2-3 basic 

residues in very close proximity to one another (Supplementary Figure 4). Therefore, we filtered 

the sites based on the presence of two or more adjacent basic residues (i.e. within 0.8 nm; 

Supplementary Figure 3C). 32% of sites with basic residues contain adjacent Arg/Lys residues, 

and that these residues are typically very close on the z-axis (median 0.21 nm; Supplementary 

Figure 3D). Strikingly, the median occupancy of these sites (72% for ≥2 basic residues; 70% for 

≥3) is far higher than sites with 2 or more Arg/Lys residues which are not adjacent (59%; Figure 

4A). 

Together, these observations suggest that higher occupancy CDL sites in E. coli membrane 

proteins contain 2 or more basic residues which are adjacent, i.e. within 0.8 nm, and within 0.2-

0.3 nm on the z-axis. 

Other features of a two basic residue site 

Of the 138 identified sites with adjacent Arg/Lys residues, we analysed other features which were 

associated with higher CDL binding. Firstly, analysis of the type of secondary structure the 

Arg/Lys residues are on reveals there is no preference for these residues to be either on helix or 

loop regions of the protein (Supplementary Figure 5A).  

Then, we looked at other residues present in the binding sites. Several residue types appear to 

contribute to CDL binding likelihood, including Gly (ca. 36% of sites), His (ca. 22% of sites), Ser 

(ca. 30% of sites), and Thr (ca. 27% of sites), which all increase the median occupancy of the 

CDL site (Figure 4B). This fits well with the observation that Ser, Gly and Thr all have high levels 

of CDL headgroup interactions (Figure 3). Conversely, Pro (ca. 33% of sites), decreases the 

median occupancy of the CDL site.  

Contribution of different residues to the CDL poses 

To assess the contributions of different residues to CDL binding, we performed alanine-scanning 

free energy perturbation (FEP) calculations. Here, a positive DDG value indicates a higher affinity 

for CDL than PE (see Methods for details). We applied this approach to selected residues in 10 

different binding sites, for a total of 94 mutations (see Figure 5A for three example sites). The 

data shows a reasonable range in the values for each residue type, with the primary observation 

being that Arg/Lys residues have a median interaction energy of 1.6 (0.8-2.4) kJ mol-1 for CDL 
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over PE (Figure 5B), i.e. they interact with CDL more strongly than with PE. Of note, in some 

cases the substitution of Arg/Lys for Ala decreases the strength of the CDL interaction. This 

occurs in cases where there are 4 or more basic residues in total in the site, suggesting that once 

2-3 basic residues are present, the addition of further basic residues diminishes the strength of 

the CDL coordination. 

In addition, certain aromatic residues show a preference for CDL over PE (Figure 5B), supporting 

the prediction in Figure 3. However the median interaction energy is close to, 0 so these residues 

need to be assessed with respect to the overall composition of the site. 

CDL binding site rules and experimental validation 

Taking the data together, it is clear that a high affinity CDL site from our data set has a few key 

features; namely 2-3 adjacent basic residues in the same plane of the membrane, one or more 

polar residues, and an aromatic residue slightly further into the membrane. To evaluate these 

rules using experimental data, we analysed structures previously deposited in the PDB. Firstly, a 

direct comparison of our data with the bound CDL in E. coli formate dehydrogenase-N (PDB 1KQF 

(Jormakka et al., 2002)) reveals that our CG model correctly predicts the structural site, with a 

very high (74±24 %) CDL occupancy across the subunits (Figure 6; ‘1KQF’), and that the site 

follows the rules outlined above. 

We then carried out a broader analysis, identifying a further 17 CDL sites across 5 additional 

proteins (from (Fyfe et al., 2000) (Gong et al., 2020) (Wiseman et al., 2018) (Zhang et al., 2020) 

(Yu et al., 2018); see Methods for details). We compared these to our CDL site rules, observing 

excellent agreement (Figure 6 and Supplementary Table 4).  

Discussion 

Membrane proteins bind to, and are often regulated by, many different lipids from the surrounding 

membrane. A number of studies have attempted to detect and probe these interactions, usually 

focusing on one system at a time, with notable exceptions (Corradi et al., 2018). Here, we 

investigate interactions between membrane proteins and lipids in the bacterial inner membrane, 

focusing on systems for which high resolution structural data of the E. coli membrane protein 

exist. 

Our analyses reveal a striking pattern of asymmetry between the inner and outer leaflets of the 

membrane, with anionic CDL and PG binding much more readily to the inner leaflet region of the 

protein. This might impact the ratios of lipids in each leaflet of the membrane – if CDL and PG are 
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sequestered at high affinity binding sites on proteins they are plausibly more likely to avoid 

recycling, as seen for mitochondrial CDL (Xu et al., 2016), contributing to a net asymmetry 

between the leaflets of the membrane. It is unclear what the biological necessity for this is: the 

proposed stabilisation of membrane proteins (Ghosh et al., 2020) or role as a proton sink (Haines 

and Dencher, 2002) in mitochondrial inner membranes could easily act in both leaflets of the 

membrane. In addition, the asymmetry could be in place to help balance the charges arising from 

the positive inside rule (von Heijne, 1986). Experimental analyses looking at CDL distribution in 

the membrane, like those similarly performed for PE distribution (Bogdanov et al., 2020), would 

be useful to confirm these findings. 

In addition, our data reveals a set of rules for a high affinity CDL binding site on an E. coli – and 

therefore likely bacterial – membrane protein. These are: 

1. 2-3 basic residues in close proximity – i.e. within 0.8 nm of each other, within 0.2-0.3 nm 

of each other on the z-axis, and roughly 1.8 nm from the centre of the membrane. These 

likely coordinate the two phosphates of the CDL molecule (Figure 3). FEP analyses 

suggest that each basic residue will contribute on average 1.6 kJ mol-1 to CDL binding 

above that of PE – and sometimes up to 4-5 kJ mol-1, and suggests that more than 3 basic 

residues is not necessary or desirable for a CDL site.  

2. The presence of at least one polar residue – e.g. Gly, Ser, Thr or His. These are often in 

a similar plane to the basic residues, and are possibly important for stabilising the CDL 

headgroup, particularly the central glycerol. 

3. One or more aromatic residues, slightly further into the plane of the membrane.  These 

probably coordinate the glycerol groups connecting the phosphate headgroup to the acyl 

tails.  

CDL is also highly abundant and functionally important in the mitochondrial membrane, where it 

has been shown to bind specifically to a wide range of proteins, including Tim23/Tim50 (Malhotra 

et al., 2017), F-ATPase (Duncan, Robinson and Walker, 2016) and Complex I (Jussupow, Di Luca 

and Kaila, 2019). It would therefore be interesting to extend these analyses to mitochondrial 

proteins, to see how universal our proposed CDL-binding rules are. 

Certain caution should be drawn from the use here of a CG model of CDL. This reduces the 

accuracy with which interactions are defined, particularly in terms of electrostatic interactions and 

structural changes within the protein, but is currently essential to permit sufficient sampling for 

proper statistical analyses. Considerable success has been achieved using CG to model protein-
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lipid interactions (Corradi et al., 2019)(Corey, Stansfeld and Sansom, 2020), however future work 

incorporating fully atomistic data will permit additional insight into the data presented here, and 

allow a higher degree of accuracy when distinguishing between similar sites with different lipid 

binding properties. The increased chemical resolution will also likely make data interpretation 

more difficult, necessitating the use of more advanced statistical analyses. 

Our study focuses principally on lipid headgroups, with little analysis of the contribution of lipid 

tails to binding. As a necessary simplification we chose to use simple palmitoyl-oleyl tails, where 

oleyl was chosen to represent the bacterial vaccenyl tail group. Therefore future analyses might 

also be important to investigate lipid tail diversity (Pluhackova and Horner, 2021).  

Methods 

Building systems 

We referred to the MemProtMD database (Stansfeld et al., 2015; Newport, Sansom and 

Stansfeld, 2018; http://memprotmd.bioch.ox.ac.uk) to identify 42 unique E. coli inner membrane 

proteins with structural information available in the Protein Data Bank. For each protein, a single 

representative PDB was chosen, with the full list of PDBs used found in Supplementary Table 1. 

For each PDB, the atomic coordinates of the protein, embedded in a model DPPC membrane, 

was downloaded from the MemProtMD database. The protein coordinates were extracted, and 

converted to the Martini 3 open beta package v3.0.b.3.2 (Siewert J Marrink et al., 2007; L 

Monticelli et al., 2008). The proteins were then built into symmetric E. coli inner membranes using 

the insane protocol (Wassenaar et al., 2015) with 67% 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE), 23% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) 

and 10% cardiolipin (CDL; using a -2 charge model with 23 CG beads, see Supplementary 

information for the topology used) in each leaflet. Note that, due to the coarse-grained nature of 

the Martini force field, here oleyl has been chosen to represent to common bacterial vaccenyl tail 

group. 

Systems were solubilised with Martini 3 waters and ions to a neutral charge. Systems were 

minimised using the steepest descent method, then equilibrated in two rounds using 5 fs time 

steps for 1 ns then 20 fs time steps for 100 ns. Both equilibration steps used a semi-isotropic 

Berendsen barostat (Berendsen et al., 1984) at 1 bar, and a velocity-rescaling thermostat (Bussi, 

Donadio and Parrinello, 2007) at 323 K. Production simulations were then run using the Parrinello-

Rahman barostat (Parrinello and Rahman, 1981) at 1 bar using 20 fs timesteps over 5 µs, running 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.19.436130doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436130
http://creativecommons.org/licenses/by/4.0/


  19-Mar-21 

10 
 

5 repeats. All simulations were run using Gromacs 2019 (Berendsen, van der Spoel and van 

Drunen, 1995; Van Der Spoel et al., 2005). 

The systems were analysed using gmx tools and MDanalysis (Gowers et al., 2016). Images were 

made with VMD (Humphrey, Dalke and Schulten, 1996) and plots made with Matplotlib (Hunter, 

2007) and Prism 8. 

Modelling asymmetry in lipid contacts 

For each of the 42 protein systems, the total number of each lipid type in contact with the protein 

was determined for both inner and outer leaflets of the membrane, as determined using the 

topology information present in the Orientations of Proteins in Membranes (OPM) database 

(Lomize et al., 2012). For each of the 5 repeats, average contacts (based on the distance between 

any protein reside and any bead from the lipid molecule being less than 0.6 nm) was taken for 

0.5-5 µs of each simulation, using the Gromacs tool gmx select. Data for CDL, PG and PE binding 

to each protein were combined and plotted as lipid binding propensity, where propensity Is defined 

as: 

𝑡𝑎𝑟𝑔𝑒𝑡	𝑙𝑖𝑝𝑖𝑑	𝑎𝑠	%	𝑜𝑓	𝑏𝑜𝑢𝑛𝑑	𝑙𝑖𝑝𝑖𝑑
𝑡𝑎𝑟𝑔𝑒𝑡	𝑙𝑖𝑝𝑖𝑑	𝑎𝑠	%	𝑜𝑓	𝑓𝑟𝑒𝑒	𝑙𝑖𝑝𝑖𝑑

 

So if 20% of the lipid bound to the protein surface was CDL, and 10% of the total lipid was CDL, 

then the propensity would be the ratio of these, i.e. 20/10 = 2. The raw data are plotted in 

Supplementary Figure 1A. 

Position of lipid-contacting residues across the membrane 

As the vast majority of the systems had planar bilayers, to establish a profile for protein-lipid 

interactions across the span of the membrane simulations were aligned according to the lipid 

phosphate beads, such that the centre of the membrane was set to 0 nm on the z-axis. The 

probability that each residue in the system contacts any lipid over the 5 x 5 µs of data was then 

calculated based on a 0.6 nm cut-off. For every residue with a lipid contact probability greater 

than 10% of the simulation time, we extracted the z-axis position from the final frame of the PO4 

bead normalised simulation. We then plotted a histogram of these residues along the z-axis. 

CDL-residue interactions 

Predictions of CDL binding sites were made based on the frequency of contact of each CDL 

particle with different protein residues across all 42 systems. Contact was determined as the 

number of frames of the simulation where the specified particles from the lipid and residue were 
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within 0.6 nm, calculated using MDAnalysis. For each bead type, the 5 highest contacting residue 

types were plotted, with all residues plotted in Supplementary Figure 2 for all three lipid types.  

Identification of lipid binding sites 

Identification of CDL binding sites was performed following a kinetic analysis of residue-lipid 

interactions, based on (Barbera et al., 2018) and (Duncan, Corey and Sansom, 2020). The 

program we wrote for this purpose is available at https://github.com/wlsong/PyLipID, with full 

details to be published separately. In brief, our approach determines whether each possible 

lipid/residue pair is in contact at each frame of the simulation, and then uses graph theory to 

cluster residues with high likelihood of simultaneously binding the same CDL headgroup.  For this 

a double cut-off model is used: once the lipid-residue distance is smaller than a first cut-off of 0.55 

nm, it is considered bound until the distance goes over a distance of 1 nm. A dual cut-off is used 

to account for variability in the lipid position within the binding site due to random fluctuations. 

Only CDL was analysed, and only interactions involving the 3 head group beads (GL0, PO1, 

PO2). 

For each site, a global occupancy of the site was calculated based off the number of frames that 

CDL spends in contact with at least one residue in the site (framesbound): 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 = 	
𝑓𝑟𝑎𝑚𝑒𝑠!"#$%
𝑓𝑟𝑎𝑚𝑒𝑠&"&'(

 

From the 42 systems we identified 986 CDL binding sites, with binding site residence times (the 

time the lipid is continuously in contact with any residue from the site) ranging from extremely 

short (ca. 1 ns time scale) to 2-3 µs in length. To simplify our data, we chose only sites the 701 

sites with calculated binding site residence times above 10 ns, as any time below this threshold 

is likely just accounted for by random diffusion of the CDL molecule. The inclusion of these sites 

doesn’t affect the main outcomes of the study (e.g. Supplementary Figure 3E). 

In addition, any individual residues with binding occupancies below 10% of the total site 

occupancy were removed before analysis. 

Identification of adjacent basic residues in sites 

To determine which sites contain adjacent basic residues, we extracted the Cartesian coordinates 

of the BB bead of all Arg or Lys residues from the identified site from the input model. If an 

individual site has two or more basic residues within 0.8 nm in 3D space, we classified these as 

an adjacent pair. 0.8 nm was chosen as a reasonable cut-off based off the distribution of the 
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distance between basic residues in sites with 2 or more basic residues present (Supplementary 

Figure 3C). 

Alanine scanning FEP 

For identified sites with CDL occupancies above 50%, as determined using PyLipID, alanine 

scanning free energy perturbation (FEP) calculations were performed on any residue in contact 

with the CDL for at least 50% of the overall site occupancy, apart from Gly and Ala (being too 

similar to Ala). For this, the selected residues were alchemically perturbed to Ala through 

conversion of their sidechains SC beads to dummy particles with no LJ or Coulombic interactions. 

We ran these FEP calculations in in the presence or absence of CDL to measure the effect of 

mutation on lipid binding (as per (Pipatpolkai et al., 2020)) 

Poses for each site comprising the protein and bound CDL were produced using the PyLipID 

program. These were then embedded into a solvated Martini POPE membrane, using the insane 

protocol. The systems were minimized using steepest descents, and equilibrated for 10 ns using 

20 fs time steps, as described above. The lipid was kept in the binding site using a 1,000 kJ mol-

1 nm-2 flat bottom restraint between the COM of the CDL headgroup and the COM of the site 

residues, applied using plumed 2.2.3 (Bonomi et al., 2009; Tribello et al., 2014). For calculations 

of the system without CDL, the CDL molecule was deleted, and a 100 ns equilibration simulation 

was run to allow the membrane to equilibrate around the protein. 

For selected residues, FEP calculations were carried out by perturbing the system with the native 

residue to that where the residue has dummy particles for its side chain, effectively performing a 

mutation to Ala. Coulombic and Lennard Jones (LJ) parameters were switched separately over 

the λ coordinate, over 17 windows with certain windows overlapping, following this scheme: 

; init_lambda   0   1   2   3   4   5   6   7   8   9   10  11  12  
13  14  15  16    

vdw_lambdas  = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 
0.7 0.8 0.9 1.0 

coul_lambdas = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 

 

Each λ window was run for 10 repeats for 12 ns, with the first 2 ns discarded as equilibration. The 

separate windows were constructed into energy landscapes along λ using Multistate Bennett 

Acceptance Ratio (MBAR) (Shirts and Chodera, 2008) as implemented in alchemical analysis 
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(Klimovich, Shirts and Mobley, 2015). Convergence is shown for one case (5JWY) in 

Supplementary Figure 6A. 

DDG values were computed using the cycle in Supplementary Figure 6B. Here, the determined 

energy cost of substituting a residue to an alanine when bound (DGarg>ala.CDL) and not bound (i.e. 

in a pure PE membrane; DGarg>ala.PE) to a CDL molecule. A positive DDG (DGarg>ala.CDL − DGarg>ala.PE) 

means that the residue is interacting more strongly with the CDL than with a generic lipid. 

Analysis of PDBs 

The PDB was queried for the Chemical ID “CDL”, giving 222 structures (as of Feb 2021), 64 of 

which were bacterial. Filtering out duplicate entries for the same system left 6 unique structures, 

with 18 CDL sites. Comparison with the proposed CDL rules were made based off visual 

inspection (see Supplementary table 4). Note that PDBs containing modified fluorescent CDL 

derivatives were not included in this analysis. 
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Figures 

 

 

Figure 1. Overview of the methodology 

A) Views of an example protein (AcrB, PDB 1IWG), coloured according to chain, shown in the 

input atomic resolution (top), in Martini CG description (middle) and embedded in a Martini CG 

lipid membrane (bottom). 

B) Views of all 42 proteins analysed in this study, with their common protein names shown above. 

Protein coordinates are shown in gray, phosphate beads in orange. PDB and UniProtKB IDs for 

each system can be found in Supplementary Table 1.  
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Figure 2. Cross-membrane asymmetry in protein-lipid interactions 

A) Quantification of the number of each type of lipid in contact with the different proteins, 

expressed as a propensity (see Methods). Data are divided between the inner and outer leaflets, 

with one data point per lipid, per leaflet, per protein. Box plots show the median, upper and lower 

quartiles, and range (excluding flier points). Statistics are from two-tailed t-tests, with p < 0.001 in 

all cases. The raw data are plotted in Supplementary Figure 1A. 

B) Total number of Arg and Lys residues in contact with lipid molecules, plotted as a function of 

z-axis position, centered on the centre-of-mass of the membrane. Substantially more contacts are 

made in the inner leaflet than the outer. The same analysis for other residues are in 

Supplementary Figure 1B. 

Figure 2: leaflet asymmetry
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Figure 3. CDL-residue interaction profiles 

Contact likelihood of each bead type of the Martini CDL molecule for each residue for the proteins 

analysed here. The 5 highest interacting residues are shown. Bar charts show mean and standard 

error of the mean over all 42 systems. Full residue data, and data for PE and PG, available in 

Supplementary Figure 2. 
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Figure 4. Characterisation of identified CDL sites 

A) Violin plot showing the computed occupancies for identified CDL binding sites with binding 

durations above 10 ns. Shown are all sites (‘all’), sites with any Arg/Lys residue (‘KR’), no Arg/Lys 

(‘no KR’), only 1 Arg/Lys (‘1KR’), at least 2 Arg/Lys (‘≥2 KR’), and then at least either 2 or 3 

structurally adjacent Arg/Lys residues (‘≥2 KR adj’ and ‘≥3 KR adj’). Reported median and 

interquartile range values can be found in Supplementary Table 2. 

C) CDL occupancies for sites with two or more structurally adjacent Arg/Lys residues and either 

with or without Gly, His, Pro, Ser, Thr. Statistical analysis from a two-tailed t-test, with p-values 

as 0.008, 0.007, 0.021, 0.001 and 0.0183, respectively. 
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Figure 5. FEP Alanine Scanning 

A) Views of selected CDL sites for which Ala-scanning FEP calculations were run. Each residue 

is shown in coloured spheres, and its calculated contribution to CDL binding reported as mean 

(n=10). The bound CDL from the input pose is shown as gold, cyan, green and purple sticks. 

B) DDG values for each residue type, as calculated using FEP. Each dot is an individual residue 

to alanine mutation. The median and interquartile range are shown. The values for each residue 

are broken down in Supplementary Figure 6C and the full data in Supplementary Table 3. 
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Figure 6. CDL sites from structural studies 

Views of CDL-binding sites as determined via structural analyses, coloured as in Figure 5. See 

Supplementary Table 4 for a summary of all 18 identified sites with respect to the proposed CDL-

binding rules. 

 

  

Figure 6: experimental sites

R267

K144

W148

H145

R121K122

T125

1E14

6LUM

R522 R554

W558

H650

7BVC5Y5S

Y4

Q5

F8

1KQF

S16

T39

P38 K254

K258

F37

K490

R267
W134

G259

R487

W91M262

W263

L129

Y22

6HWH

K204

K42
N6

A10

I7

T9

K62

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.19.436130doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436130
http://creativecommons.org/licenses/by/4.0/


  19-Mar-21 

24 
 

Supplementary Information 

 

Supplementary Figure 1.  

A) As Figure 2A, but plotting instead the raw binding probability for each lipid. Dotted lines indicate 

the total concentration of each lipid in the membrane. 

B) As Figure 2B, but for all residues except Arg and Lys. 

Supplementary Figure 1
BA
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Supplementary Figure 2.  

As per the data in Figure 3, but showing the binding likelihood of all residues to CDL, POPG and 

POPE. 
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Supplementary Figure 3.  

A) Occupancies for all sites containing at least one basic residue, separated by which leaflet the 

site is located. p < 0.0001 from a two-tailed t-test. 

B) Box plot showing the computed sizes of the identified sites, for sites with an Arg or Lys (‘+R/K’), 

without (‘-R/K’) and total. Shown are lines for the median, upper and lower quartiles, and range. 

C) Distribution of distance between closest two basic residues in the 255 sites identified with 2 or 

more basic residues. A red line denotes the chosen 0.8 nm cut-off. 

D) Distribution of z-distances between basic residues pairs determined to be adjacent. 

E) As Figure 4A, but also including data for sites with binding durations less than 10 ns. Note that 

the left two plots are the same as in Figure 4A. 
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Supplementary Figure 4.  

Views of selected CDL sites, as identified from PyLipID. Protein backbones are shown as gray 

surface, with sites residues coloured according to type. The bound CDL molecule in a 

representative pose is shown in coloured sticks Note that the sites are aligned with the CDL 

oriented with the headgroup at the bottom, whether the site is cytoplasmic or periplasmic 
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Supplementary Figure 5.  

A) Analysis of type of structure the CDL site basic residues are found on. ‘Helix’ includes all CG 

beads with definition H, 1, 2 and 3, and ‘loop’ all beads with type E, T, S and C, as defined by the 

martinize script (https://github.com/cgmartini/martinize.py). Shown are data for sites the basic 

residue solely on helix (‘KR on helix’), solely on a loop (‘KR on loop’), or a combination of both 

(‘mixed’). 

B) As Figure 4B but for residues with no significant difference as determined using a two-tailed t-

test. 
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Supplementary Figure 6.  

A) Convergence analysis of a subset of alanine scanning FEP calculations (5JWY chosen as 

representative site). For each residue, 2 ns is discarded as equilibration, and MBAR performed 

on increasing lengths of simulation up to 10 ns (12 ns in total). All calculations converge within 10 

ns. Mean and standard deviation of 10 repeats plotted. 

B) Thermodynamic cycle for perturbing an arginine residue to alanine in either the presence 

(DGarg>ala.CDL) or absence (DGarg>ala.POPE) of a bound CDL molecule. The interaction energy 

between the residue and the CDL is then calculated as the difference between these values. In 

the schematic, the protein is gray, the membrane is green, and the residue of interest is 

highlighted.  

C) As Figure 5B, but for each residue separately. Shown as bars is the median and interquartile 

range, where more than 3 values are present. 
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Supplementary table 1. 

Details of protein structures used in this analysis. 

UniProtKB ID PDB ID 
SATP_ECOLI 5ZUG 
FDNH_ECOLI  
FDNI_ECOLI 1KQF 

GLPG_ECOLI 2IC8 
YNEM_ECOLI 5OQT 
NARK_ECOLI 4JR9 
DSBB_ECOLI 2HI7 
FUCP_ECOLI 3O7P 
KDGL_ECOLI 3ZE3 
ATKA_ECOLI  
ATKB_ECOLI  
ATKC_ECOLI 

5MRW 

C561_ECOLI 5OC0 
NHAA_ECOLI 1ZCD 
LACY_ECOLI 1PV6 
ADIC_ECOLI 3OB6 
NARU_ECOLI 4IU8 
FRDC_ECOLI  
FRDD_ECOLI 1KF6 

FRDD_ECOLI 4KX6 
URAA_ECOLI 3QE7 
CLCA_ECOLI 1KPK 
EXBB_ECOLI 
EXBD_ECOLI 5SV0 

AMTB_ECOLI 1U77 
CYOB_ECOLI  
CYOC_ECOLI  
CYOA_ECOLI 

1FFT 

MSCS_ECOLI 5AJI 
MDFA_ECOLI 4ZP0 
LGT_ECOLI 5AZC 
NARI_ECOLI 1Q16 
GLPF_ECOLI 1FX8 
YIDC_ECOLI 6AL2 
FIEF_ECOLI 2QFI 
METI_ECOLI 3DHW 
ACRB_ECOLI 1IWG 
CUSA_ECOLI 3K07 
MBHS_ECOLI  
CYBH_ECOLI 4GD3 

PGPB_ECOLI 5JWY 
EMRE_ECOLI 3B5D 
DTPD_ECOLI 4Q65 
GLPT_ECOLI 1PW4 
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MALG_ECOLI  
MALF_ECOLI 2R6G 

GADC_ECOLI 4DJI 
CAIT_ECOLI 2WSX 
DHSC_ECOLI  
DHSD_ECOLI 1NEK 

BTUC_ECOLI 1L7V 
AQPZ_ECOLI 1RC2 
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Supplementary table 2. 

Number of sites, and median and interquartile range of CDL occupancies from the features 

mentioned in the text. Data from Figure 4 and Supplementary Figures 3 and 5. 

Feature No. of sites 25% Q Median 75% Q 
All 701 18.69 35.63 57.95 
KR 430 36.87 52.78 69.38 

no KR 271 2.355 14.77 24.68 
1 KR 175 27.5 37.36 49.42 
≥2 KR 255 51.18 64.35 76.58 

≥2 KR not adj 117 50.36 59.28 67.28 
≥2 KR adj 138 52.51 72.05 82.27 
≥3 KR adj 87 47.67 69.83 85.6 

KR (incl <10 ns) 469 32.54 51.14 66.97 
no KR (incl <10 ns) 517 0.016 0.372 16.91 

cyto 271 41.57 56.97 72.32 
peri 156 31.86 44.38 59.1 
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Supplementary table 3. 

Calculated DDG values from Figure 5 

Residue DDG (kJ mol-1) Residue DDG (kJ mol-1) Residue DDG (kJ mol-1) 
ARG 2.01 ± 0.84 PHE -1.62 ± 0.84 SER -0.45 ± 0.00 
ARG 1.26 ± 1.75 PHE 0.69 ± 0.64 SER 0.03 ± 0.10 
ARG 2.38 ± 0.88 PHE 0.08 ± 0.70 SER -0.03 ± 0.14 
ARG 1.85 ± 0.61 PHE -2.29 ± 0.89 SER 1.03 ± 0.60 
ARG 1.58 ± 0.58 PHE 0.34 ± 0.65 SER -0.83 ± 0.10 
ARG -0.06 ± 0.54 PHE 0.86 ± 0.81   
ARG 3.54 ± 0.42 PHE 0.29 ± 1.42 THR -1.36 ± 0.92 
ARG 1.92 ± 0.28 PHE 2.28 ± 0.97 THR 0.36 ± 0.22 
ARG 1.06 ± 0.28 PHE -0.29 ± 0.52 THR -2.42 ± 0.57 
ARG 1.44 ± 0.43 PHE 4.08 ± 2.76 THR 5.81 ± 0.22 
ARG -1.16 ± 0.87   THR -0.07 ± 0.55 
ARG 3.05 ± 0.96 TYR 1.81 ± 0.96 THR -0.02 ± 0.24 
ARG -1.75 ± 1.79 TYR -0.25 ± 0.83 THR -1.18 ± 0.28 
ARG 2.92 ± 0.94 TYR 0.28 ± 0.41   
ARG 0.54 ± 1.32 TYR 0.85 ± 0.22 ASN 0.19 ± 0.24 
ARG 2.23 ± 0.53 TYR -0.57 ± 0.70 ASN -0.11 ± 0.54 
ARG 1.48 ± 0.96 TYR 3.85 ± 2.57   
ARG 3.46 ± 1.12 TYR 0.23 ± 0.93 GLN -0.21 ± 0.30 
ARG -1.26 ± 0.92 TYR -1.85 ± 1.07 GLN 0.76 ± 0.80 
ARG 1.00 ± 0.68   GLN -1.52 ± 0.98 
ARG 2.40 ± 1.13 TRP 3.07 ± 1.54   

  TRP -1.26 ± 1.27 PRO -0.10 ± 0.26 
LYS 2.41 ± 0.98 TRP -0.96 ± 0.79 PRO 0.24 ± 0.40 
LYS 2.07 ± 0.76 TRP -0.50 ± 0.50 PRO -0.88 ± 0.62 
LYS -2.30 ± 1.42 TRP -0.07 ± 0.66 PRO -0.36 ± 0.22 
LYS 1.57 ± 0.42 TRP 1.33 ± 0.81   

  TRP -0.40 ± 1.08 CYS -0.25 ± 0.17 
HIS 0.15 ± 0.47 TRP -0.58 ± 0.59   
HIS -1.97 ± 0.91   ASP -1.65 ± 0.60 

    ASP -8.03 ± 0.96 
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Supplementary table 4. 

Bacterial CDL sites from the PDB, and comparison to the site outlined by our CG data in terms of 

≥2 Arg/Lys residues within 0.8 nm (‘Basic’), at least one Thr/Ser/His/Gly residue (‘Polar’) and at 

least 1 Phe/Trp/Tyr residue further into the membrane (‘Aromatic’). 

PDB System Organism Basic Polar Aromatic 
1KQF formate dehyrogenase N Escherichia coli 1/1 1/1 1/1 
6LUM succinate dehydrogenase 2 Mycobacterium smegmatis 1/1 1/1 1/1 
7BVC mbA-EmbB-AcpM2 Mycobacterium smegmatis 2/2 2/2 2/2 
1E14 reaction centre (RC) Rhodobacter sphaeroides 1/1 1/1 1/1 

6HWH respiratory supercomplex Mycobacterium smegmatis 4/4 3/4 4/4 
5Y5S Light-harvesting complex- RC Thermochromatium tepidum 9/9 9/9 6/9 
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