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ABSTRACT 

 
Sulfonated rhodamines that endow xanthene dyes with cellular impermeability are presented. We 

fuse charged sulfonates to red and far-red dyes to obtain Sulfo549 and Sulfo646, respectively, and 

further link these to SNAP- and Halo-tag substrates for protein self-labelling. Cellular 

impermeability is validated in live cell imaging experiments in transfected HEK cells and neurons 

derived from induced pluripotent stem cells (iPSCs). Lastly, we show that Sulfo646 is amenable 

to STED nanoscopy by recording membranes of SNAP/Halo-surface-labelled human iPSC-

derived neuronal axons. We therefore provide an avenue for rendering dyes impermeable for 

exclusive extracellular visualization via self-labelling protein tags. 
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INTRODUCTION 

Fluorescent microscopy is often the method of choice to visualize and interrogate cell biology.[1,2] 

Two major methods can be distinguished, that is the use of genetically-encoded fluorescent 

proteins or the use of small molecule fluorophores.[2] The latter can be targeted by chemical fusion 

to a selective and tight small molecule binder, or by means of self-labelling protein tags.[3–5] A 

plethora of fluorescent small molecules are available for microscopy, spanning different 

photophysical and chemical properties.[6,7] Desirable properties are brightness, resistance to 

photobleaching, and cellular permeability.[8–12] Depending on imaging modality, other properties 

might be desirable such as blinking or fluorogenicity. However, very few fluorescent dyes exist 

for exclusive SNAP- and Halo-tag labelling on cell surface proteins, best typified by 

transmembrane receptors. Within that repertoire, even fewer are suitable for stimulated emission 

depletion (STED) nanoscopy,[13] since higher laser powers are required that may lead to 

photobleaching, although impermeable dyes were used in the beginning[14]. While robust and 

permeable dyes can be targeted to SNAP- or Halo-tag, non-specific background labelling may 

become problematic, especially in live cell applications.[15] Moreover, this might be the case for 

cell surface receptor localization (Figure 1A), and as such it remains difficult to isolate surface and 

intracellular pools of receptors not only for nanoscopy.[16] To restrict a priori fluorogenic dyes to 

the cell surface, we set out to synthesize rhodamines endowed with a cell impermeable sulfonate 

moiety. To achieve this, the rhodamine scaffold of fluorogenic and bright JaneliaFluor (JF) dyes[8] 

was extended with a short sulfonate-containing linker to provide red and far-red colors (Sulfo549 

and Sulfo646), which can be targeted to cell surface tags and receptors (Figure 1B). The versatility 

of this approach is highlighted in live cell imaging with various tagged constructs in different cell 

types including human induced pluripotent stem cells (iPSCs)-derived neurons, and in fixed 

neurons by STED nanoscopy to obtain high-definition resolution of axonal membranes.   

 

RESULTS 

We set out to synthesize impermeable dyes by the synthetic addition of charged sulfonates, which 

remain deprotonated and therefore not only become cell impermeable, but may also increase their 

solubility in aqueous media. With our primary aims in mind, i.e. i) impermeability, ii) labelling of 

SNAP- and Halo-tags, and iii) usage in STED nanoscopy, we decided to use xanthene dyes as a 

blueprint for our design, which are known to exist in two states, an open (fluorescent) and a closed 
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(non-fluorescent) form (Figure 2A) and are among the most stable towards photobleaching. The 

recently reported JaneliaFluor dyes are rhodamine-based fluorophores, showing higher brightness 

and fluorogenicity than their tetramethyl rhodamines congeners, due to installment of azetidines 

as nitrogen containing moieties.[8] As such, we synthesized Sulfo549 and Sulfo646 congeners by 

introducing a carboxylate handle on the 3-position of the azetidine, which was further derivatized 

to a sulfonated head group via peptide coupling to taurine (Figure 2A, Scheme S1). A carboxylate 

in the 6-position served as a position to install O6-benzylguanine (BG) or a chloroalkane (CA) 

group, which act as substrates for the self-labelling SNAP- and Halo-tag, respectively, and thereby 

obtained four molecules displaying two colors and two labelling modalities (Figure 2B, Scheme 

S1). In a first set of experiments, we assessed the excitation and emission profiles of our dyes in 

their unbound (i.e. BG- and CA-linked) and in their bound (i.e. SNAP- and Halo-tag reacted) states 

(Figure 2C). Fluorogenicity was reduced as expected when charges are added in close proximity 

to the dye, however, all dyes still showed high brightness (Figure S1, S2). Labelling was confirmed 

in vitro by incubation of Sulfo dyes with recombinant SNAP- and Halo-tag and subsequent mass 

spectrometry (see Supporting Information). Furthermore, we assessed kinetics of BG–Sulfo549 

(t1/2 = 28.0 sec) labelling on SNAP-tag versus BG–TMR (t1/2 = 8.9 sec) and BG–JF549 (t1/2 = 15.3 

sec) by means of fluorescent polarization, and found a slight decrease in rate of labelling by a 

factor of ~3.14 and ~1.83, respectively (Figure S3). Still, full labelling of SNAP:Sulfo549 was 

achieved within minutes and, interestingly, with enhanced polarization.  

Next, we wanted to test our molecules in a cellular setting for protein labelling in fluorescent 

microscopy. To prove that our impermeabilization strategy is applicable, we expressed a SNAP-

Halo-construct with a nuclear localization signal (NLS; SNAP–Halo–NLS[9]) in HEK293T cells, 

before titrating 100-5000 nM of permeable JF646 or its impermeable counterpart Sulfo646. Clear 

concentration-dependent nuclear signals were detected for JaneliaFluor dyes, but not for the Sulfo 

probes (Figure S4). To confirm surface labelling, we cloned two constructs containing: i) an IgK 

trafficking signal for the plasma membrane; and ii) a SNAP-tag and Halo-tag separated by a single 

pass transmembrane (TM) domain (see Supporting Information). As such, the construct should be 

labelled exclusively on the surface when using impermeable dyes, while a permeable dye would 

lead to background staining from proteins residing in the cell. Indeed, by titration of 100-5000 nM 

of JF646 or Sulfo646 as before, we observed an increased background when using permeable dyes, 

and solely surface labelling when using Sulfo646, irrespective of the tag used (Figure S5). 
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Furthermore, due to the installation of two orthogonal tags on the same construct, we were able to 

dual-color label with a red and far-red dye, testing for permeability and localization properties. 

Having established that 100 nM of substrates lead to sufficient labelling, SNAP–TM–Halo-

transfected HEK293T cells were incubated with a combination of BG–Sulfo646/CA–JF549 at each 

100 nM concentration (Figure 3A). Widefield fluorescent imaging revealed surface localized 

staining for SNAP:Sulfo646 in combination with intracellular signals presumably stemming from 

non-surface trafficked or nascent Halo:JF549 (Figure 3B). This could be further resolved by plotting 

a line through a transfected cell (Figure 3C), which depicts plasma membrane and intracellular 

signals from the two colors. Using the same construct and settings, we then switched the dye colors 

for the respective tags. SNAP–TM–Halo transfected HEK293T cells were stained with BG–

Sulfo549/CA–JF646 (Figure 3D), providing surface and intracellular staining for SNAP:Sulfo549 

and Halo:JF646, respectively (Figure 3E), again shown using a line profile (Figure 3F). Finally, 

experiments were repeated by switching the labelling tag localization and transfecting HEK293 

cells with Halo–TM–SNAP construct, this time labelled with BG–JF646/CA–Sulfo549 (Figure 4A). 

Again, widefield microscopy showed expected membrane associated signals for Halo:Sulfo549 

and intracellular signals for SNAP:JF646 (Figure 4B, C). Using instead BG–JF549/CA–Sulfo646 

(Figure 4D), we were able to switch the localization to external Halo:Sulfo646 and internal 

SNAP:JF549 (Figure 4E, F).  

To show the utility of the Sulfo dyes for labelling cell surface receptors, we transfected AD293 

cells with N-terminal SNAP- and Halo-tagged glucagon-like peptide-1 receptor (GLP1R), a class 

B GPCR and target for the incretin-mimetic class of anti-diabetic therapy (Figure 5). In its non-

stimulated state, GLP1R displays minimal constitutive activity and is largely present at the cell 

surface. Notably, differences between JF549 and JF646 and their Sulfo derivatives were present for 

SNAP labelling, and became even more prominent for Halo labeling, where a large improvement 

in membrane resolution and brightness was detected.  

Given the performance of the Sulfo dyes so far in heterologous cell systems, we sought to extend 

studies to more complex cell populations where background signal can make accurate protein 

localization difficult. To allow this, human cortical neurons were derived from iPSC and co-

cultured with murine primary astrocytes[17,18], before transfection with our SNAP–TM–Halo and 

Halo–TM–SNAP constructs. Labeling was performed with the respective impermeable far-red 

Sulfo646 and permeable red JF549, before live imaging was conducted by confocal microscopy. 
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Using the SNAP–TM–Halo construct labelled with BG–Sulfo646 and CA–JF549, clear labelling 

was observed for BG–Sulfo646 (Figure 6A). Likewise, Halo–TM–SNAP labelled with CA–

Sulfo646 and BG–JF549 (Figure 6B) showed clearest labelling for CA–Sulfo646. Thus, for both 

self-labelling tags, the Sulfo dyes demonstrated excellent performance for cell surface protein 

visualization in more complex cell types.  

Lastly, we fixed the cultures before STED nanoscopy on Halo:Sulfo646 and SNAP:JF549 labelled 

neurons (Figure 7A). An accumulated line profile along an axon (white box) of the confocal and 

STED images revealed that Sulfo646 is amenable to nanoscopy (Figure 7B). By two-Gaussian 

fitting, we obtained sharper full width half-maximal values for STED versus confocal 

(FWHMconfocal = 268.5 and 292.3 nm; FWHMSTED = 157.5 and 223.1 nm) microscopy. Consistent 

with our previous results, Halo:Sulfo646 generated a more pronounced signal along the axonal 

membrane, while SNAP:JF549 could be observed in the intra-axonal compartment (Figure 7C).  

 

DISCUSSION 

The need for custom-tailored dyes is in high demand as the range of microscopy modalities, 

experimental techniques and labelling strategies increases. Recent developments[9,19–22] have 

focused mostly on boosting brightness, fluorescent lifetimes, chemical stability and/or 

fluorogenicity, the latter being a cause for cellular permeability. For the interrogation of cell 

surface proteins that are genetically fused to self-labelling protein tags (e.g. SNAP- and Halo-tag), 

however, cell impermeable dyes are desirable. Rendering dyes impermeable is usually achieved 

by introduction of sulfonates, which remain negatively charged in biological systems and are 

therefore not able to cross the plasma lipid bilayer. While many sulfonated dyes exist, such as 

Alexa488/568/647, or LD555/655[23], their application for enzyme self-labelling and STED 

nanoscopy has so far not reached the performance bar set by permeable dyes. A recent study, 

however, showed great performance of LD dyes for FRET measurements of dimer formation on 

SNAP-tagged GPCRs and in TIRF microscopy for single molecule FRET recovery after 

photobleaching.[24] Rhodamine dyes have attracted some attention in recent years since the 

emergence of JaneliaFluor dyes, which rely on the exchange of azetidine groups for 

dimethylamines on various molecular scaffolds[8]. Indeed, one impermeable version has been 

described, JF635i, which retains some of its fluorogenicity and has been used to observe Halo-

tagged transferrin receptor recycling.[25] Nevertheless, it has only been described as a Halo-tag 
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substrate and has not been subjected to super-resolution STED nanoscopy. We aimed to expand 

this palette, by using azetidine containing rhodamines for red and far-red imaging, which show 

minimal fluorogenicity and therefore maximal brightness. Accordingly, we synthesized Sulfo549 

and Sulfo646 based on JF549 and JF646, each bearing two sulfonate groups, and further linked them 

to SNAP- and Halo-tag substrates BG and CA, respectively. Our probes add favorably to a 

previous study, where we reported on a strategy to limit any dye to cell surface exposed SNAP 

tags by altering the BG substrate to a sulfonate itself (termed SBG)[16]. With a simple chloride 

anion being the leaving group for the Halo-tag, introducing a charged sulfonate is not tolerated. 

Therefore, the impermeable characteristics need to instead be provided by the dye, for which we 

provide a solution herein.  

To test our approach, we cloned constructs for cellular transfections that bear a SNAP- and Halo-

tag separated by a transmembrane domain, thereby placing each tag either side of the plasma 

membrane. These constructs allowed screening of permeability parameters in live HEK293 cells. 

Sulfo dyes performed well in these systems, where no background signals from intracellular spaces 

were detected. Line scans revealed clean plasma membrane staining of Sulfo dyes and intracellular 

staining of the permeable JF dyes.  

Encouraged by this, we next used SNAP- and Halo-tagged GLP1R to provide performance 

benchmarking in a more relevant cell surface signaling molecule. Comparable to previous findings 

with the SNAP/Halo constructs, we obtained clean surface labelling for both colors and both 

protein tags, with more prominent effects for Halo, which is in line with in vitro measurements. 

Given that GLP1R labelling was performed at 37 °C, where constitutive activity of GPCRs can be 

increased, intracellular signal from Sulfo dyes can be observed, and we note that their strength 

might differ due to different expression and endocytosis levels. While we have shown dual color 

GLP1R trafficking in a previous report on a SNAP-tagged construct[16], our results herein set the 

stage for flexible use of colors on the Halo-tag not only on GLP1R, for instance for post endocytic 

protein trafficking[25,26] and the interrogation of cell surface receptor ensembles[27–29].   

We were also able to extend this approach to more complex cell types, by staining live 

somatodendritic and axonal compartments in human cortical neurons derived from iPSC, co-

cultured with astrocytes. By transfecting neurons with SNAP–TM–Halo or Halo–TM–SNAP, we 

aimed to benchmark far-red staining of the outer membrane with both tags, as this color was our 

choice for later super-resolution imaging. As such, we observed surface labelling with both 
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constructs and the use of the respective Sulfo646, with signals markedly brighter when bound to 

Halo. In contrast, CA-JF549 clearly stained the intracellular Halo-tagged protein pool of neurons, 

while BG-JF549 non-specifically accumulated in co-cultured astrocytes. Self-labelling tags have 

been employed in “brainbow” labelling, where they offer more flexibility in terms of colors 

available, more straightforward applicability than antibodies, and better survival of the rather harsh 

clearing conditions with respect to fluorescent proteins.[30] Indeed, we anticipate Sulfo dyes to be 

a favorable addition to such studies and their performance in whole tissues[31,32], and with this 

observed trend in mind, we chose to continue with Halo:Sulfo646 in our preparations.  

For this reason, we fixed the astrocyte/neuron co-culture and tested SNAP:JF549 and Halo:Sulfo646 

for STED nanoscopy. As expected, JF549 was not amenable to the depletion laser, but gratifyingly, 

Sulfo646 was able to improve full width half maximal values when a broad line plot was applied 

along an axon in STED imaging. In addition, the resolution, i.e. the distance of the two maxima, 

of the membranes were resolved to be ~300 nm in both confocal and STED. Previous studies 

resolved the median axonal diameter of organotypic GFP expressing CA1 neurons to be 203 nm 

by STED[33], and to be 242 nm by super-resolution shadow imaging (SUSHI)[34].  

 

SUMMARY 

We have designed and synthesized sulfonated fluorescent rhodamines dyes (Sulfo549 and 

Sulfo646) that are based on the JaneliaFluor scaffolds to obtain bright and impermeable dyes in 

the red and far-red. By linking these dyes to substrates recognized by the SNAP and Halo-tag, we 

were able to achieve exclusive cell surface labelling in HEK293/AD293 cells and in human 

induced neurons by means of widefield and confocal microscopy. Lastly, we employed STED 

nanoscopy on Sulfo646-labelled neuron axons and showcase their performance by resolving the 

axonal membranes. We anticipate that these and other sulfonated rhodamines will be useful for 

visualizing cell surface proteins using a range of imaging approaches spanning widefield through 

super-resolution.   
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METHODS 

Chemistry, cloning and in vitro protein labelling 

Chemical Schemes, synthetic protocols, protein labelling in vitro, and characterization can be 

found in the Supporting Information. Plasmids were cloned using Gibson assembly cloning Kit 

(NEB), primer were designed using the NEBuilder assembly tool. Plasmids were isolated using a 

mini prep kit (Thermo Fisher). DNA concentration was measured on a NanoDrop (Thermo Fisher) 

and verified by Sanger sequencing (see Supporting Information).  

In vitro fluorescence spectroscopy 

Purified SNAPf and Halo was obtained as previously described.[20] Labelling dyes were dissolved 

in DMSO to a concentration of 1 mM and diluted in activity buffer (containing: 50 mM NaCl, 50 

mM HEPES, pH=7.3 + 4 µg/mL BSA) to 500 nM. Protein was diluted in activity buffer to a 

concentration of 2 µM. 100 µL of each protein and labelling agent were combined in each well in 

a black flat bottom 96-well plate and allowed to incubate at r.t. for 30 min, before fluorescence 

spectra were acquired in quadruplicates on a TECAN infinite 2000Pro plate reader. Experiments 

were run in quadruplicate and plotted in GraphPad Prism 8. 

Kinetic measurements were performed as previously described on a TECAN GENios Pro plate 

reader by means of fluorescence polarization. Stocks of SNAPf (2 µM) and substrates (200 nM) 

were prepared in activity buffer (containing in mM: NaCl 50, HEPES 50, pH 7.3) with additional 

10 μg/mL BSA. SNAPf and substrates were mixed (100 μL each) in a Greiner black flat bottom 

96 well plate. Mixing was performed via a built-in injector on a TECAN GENios Pro. Fluorescence 

polarization reading was started immediately (λEx = 535±25 nm; λEm = 590±35 nm; 10 flashes; 40 

µs integration time). Experiments were run in quadruplicates and raw polarization values were 

one-phase decay fitted in GraphPad Prism 8. 

Protein mass spectrometry 

Labelling substrates were dissolved in DMSO to a concentration of 1 mM and diluted in activity 

buffer (containing: 50 mM NaCl, 50 mM HEPES, pH=7.3 + 4 µg/mL BSA) to 20 µM. Protein was 

diluted in activity buffer to a concentration of 2 µM. 25 µL of each protein and labelling agent 

were combined in a mass spec vial and allowed to incubate at r.t. for 1h, before full protein mass 

was acquired. In case for non-labelling control, 25 µL of activity buffer was mixed with 25 µL of 

protein.  

Cell culture, staining and microscopy 
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HEK293 

HEK293T cells were cultured in growth medium (DMEM, Glutamax, 4.5 g Glucose, 10% FCS, 

1% PS; Invitrogen) at 37 °C and 5% CO2. 30,000 cells/well were seeded on 8-well µl slides (Ibidi) 

previously coated with 0.25 mg/ml poly-L-lysine (Aldrich, mol wt 70000-150000). The next day, 

400 ng DNA was transfected using 0.8 µl Jet Prime reagent in 40 µl Jet Prime buffer (VWR) per 

well. Medium was exchanged against antibiotic free media before the transfection mix was 

pipetted on the cells. After 4 hours incubation at 37 °C and 5% CO2, medium was exchanged 

against growth media. After 24 hours cells were stained and imaged. All dyes were used in a 

concentration of 100 nM. 5 µM Hoechst 33342 was used to stain DNA. Staining was done in 

growth medium at 37 °C, 5% CO2 for 30 minutes. Afterwards cells were washed once in growth 

media and imaged live in cell imaging buffer (Invitrogen) using an Epifluorescence Microscope, 

TIE Nikon equipped with pE4000 (cool LED), Penta Cube (AHF 66-615), 60x oil NA 1.49 (Apo 

TIRF Nikon) and imaged on sCMOS camera (Prime 95B, Photometrics) operated by NIS Elements 

(Nikon). For excitation the following LED wavelengths were used: Hoechst – 405 nm, JF549 and 

Sulfo549 – 550 nm, JF646 and Sulfo646 – 635 nm. 

AD293 

AD293 cells were cultured in DMEM (D6546, Merck) supplemented with 10% FCS (Merck) and 

2 mM L-glutamine (Thermo Scientific) at 37 °C and 5% CO2. Cells were seeded on poly-L-lysine-

coated (MW > 300,000, 0.1 mg/ml, Biochrom) 8-well chamber slides (Nunc Lab-Tek II) and 

transfected the next day (50-70% confluency). For transfection, growth media was exchanged 

against Opti-MEM (Gibco), and 110 ng plasmid DNA (SNAP-GLP1R from cisbio, for sequence 

of Halo-GLP1R see SI) and 0.3 µl Lipofectamine 2000 (Invitrogen) per chamber were mixed in 

Opti-MEM, incubated for five minutes and then added to the cells. After incubation at 37 °C and 

5% CO2 for 5 hours, Opti-MEM was exchanged against growth media. AD293 cells were labeled 

and imaged 24 h after transfection. Cells were labelled in growth media containing 500 nM of dyes 

for 30 minutes at 37 °C and 5% CO2. For the last five minutes of incubation, Hoechst33342 (4.4 

µM) was added. After one wash, cells were imaged in growth media using a Crest X-Light 

spinning disk head coupled to a Nikon Ti-E automated base and 60x/1.4 NA objective. Excitation 

was delivered at λ = 395/25 nm (Hoechst), 575/25 nm (JF549 and Sulfo549), and 640/30 nm (JF646 

and Sulfo646) using a Lumencor Spectra X Light engine, and emitted signals were detected at λ = 
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460/50 nm, 630/75 nm, and 700/75 nm, respectively, using a Photometrics Evolve Delta 512 

EMCCD. 

Human iPSC-derived neurons  

Human induced pluripotent stem cells (iPSCs) engineered to express mNGN2 under a 

doxycycline-inducible system in the AAVS1 safe harbor locus were used for the i3Neuron 

differentiation protocol, as described previously.[17,18] In brief, iPSCs were seeded on Matrigel 

(Corning)-coated dishes in StemFlex Medium (Gibco) supplemented with 5 nM Y-27632 

dihydrochloride ROCK inhibitor (Stem Cell Technologies). The iPSCs were subsequently fed 

daily for 3 consecutive days with Neuronal Induction Medium (DMEM/F12 medium (Gibco) 

containing 2.5 μg/mL doxycycline, 1X N2‐supplement (Gibco), 1X NEAA (Gibco), 1X 

GlutaMAX (Gibco), 1X Pen/Strep (Gibco), 10 ng/mL BDNF (PeproTech), 10 ng/mL NT‐3 

(PeproTech) and 1 μg/mL Laminin (Gibco)). On the third day, Neuronal Induction Medium was 

supplemented with 6 µg/ml puromycin. After 3 days, pre-differentiated i3Neurons were dispersed 

using Trypsin (Gibco) and co-cultured with primary murine astrocytes on matrigel-coated 25 mm 

glass coverslips in Neuron Culture Medium (NeuroBasal Medium (Gibco), supplemented with 1X 

B27 (Gibco), 1X GlutaMAX (Gibco), 1X Pen/Strep (Gibco), 10 ng/mL BDNF (PeproTech), 10 

ng/mL NT‐3 (PeproTech) and 1 μg/mL Laminin (Gibco)). 50% of the Neuron Culture Medium 

was replaced every 2-3 days and supplemented with 2 μM araC 5 days after culturing, to limit glial 

proliferation. i3Neurons were transfected, labeled and imaged as described below 10-12 days after 

co-culturing.  

Neuronal transfection, labeling and imaging 

i3Neurons were transfected with 2 µg of plasmid (SNAP–TM–Halo or Halo–TM–SNAP) per 25 

mm coverslip using a calcium phosphate transfection kit (Promega), according to manufacturer’s 

instruction. 24 hours after transfection, cells were labeled with 500 nM in parallel of either BG-

Sulfo646 and Halo-JF549, or Halo-Sulfo646 and BG-JF549, dissolved in Neuron Culture Medium 

for 30 minutes at 37 °C.  

For live imaging, i3Neurons were washed once with Neuron Culture Medium before imaging in 

conditioned Neuron Culture Medium using a spinning disc confocal microscope (Ti Eclipse, 

Nikon) equipped with a spinning disk (CSU-X1, Yokogawa), EMCCD Camera (AU-888, Andor), 

60x Plan-Apo NA 1.40 objective (oil immersion, Nikon), incubation chamber (37 °C, 5% CO2, 

Okolab). JF549 and Sulfo646 were excited with 561 nm and 638 nm laser, respectively, and 
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emission was detected within 600-650 and 700-775 nm filter range, respectively.  Images were 

taken using an additional 1x lens, resulting in 110 nm effective pixel size.  

For super-resolution imaging, labelled i3Neurons were washed once with PBS before fixing 20 

minutes at room temperature with 4% PFA and 4% sucrose in PBS. Fixation solution was removed 

and fixed i3Neurons were incubated with quenching solution (0.1 M glycine, 0.1 M NH4Cl in PBS) 

for 10 minutes at room temperature. Coverslips were subsequently washed once with PBS and 

once with water, mounted in ProLong Gold Antifade (ThermoFisher), and cured for 24 h at room 

temperature. STED imaging was performed on a Leica TCS 3x gSTED microscope, equipped with 

a pulsed white light excitation laser (NKT Photonics) and a 775 nm depletion laser. Two-channel 

STED imaging was performed by sequentially exciting JF549 or Sulfo646 at 550 and 640 nm, 

respectively, using a 100x PL Apo NA1.4 objective (oil immersion, Leica). The 775 nm STED 

laser was used to deplete both JF549 and Sulfo646. Time-gated detection was set from 0.5-6 ns for 

all dyes and emission was detected within 560-643 and 650-751 nm, respectively. Fluorescence 

signal was detected sequentially by two hybrid detectors, 6-fold zoom, 8-bit sampling and 

1,024x1,024 pixel scanning format, resulting in 18.9x18.9 nm pixel dimension. 
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FIGURES 

 
Figure 1: Permeable and impermeable fluorophores for protein labelling. A) A self-labelling 

tagged transmembrane protein is localized at the cell surface in addition to different intracellular, 

membrane-enclosed compartments (e.g. vesicles, ER) and is visualized by staining with a 

fluorescent dye. Unbound dyes lead to non-specific background signals. B) Sulfonation prevents 

the dye from entering the cell and therefore cleanly labels surface proteins, isolating them for 

visualization.  
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Figure 2: Design and properties of sulfonated rhodamines. A) Rhodamines display fluorogenic 

behavior between a closed, non-fluorescent form, and an open, fluorescent isomer. Azetidine 

installation enhances brightness, and can be further derivatized with sulfonates. B) Sulfo549 and 

Sulfo646 as red and far-red fluorophores that can be linked to BG and CA substrates for SNAP- 

and Halo-tag labelling, respectively. C) Normalized fluorescence excitation and emission spectra 

of non-sulfonated JF dyes and Sulfo dyes in solution and reacted with respective self-labelling 

tags.  
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Figure 3: Widefield fluorescent imaging of live HEK293 cells transfected with SNAP–TM–

Halo construct. A) Logic of labelling with BG–Sulfo646 and CA-JF549 leading to extra- and 

intracellular staining. B) Widefield imaging of live, transfected, and labelled HEK293T cells; 

insert shows zoom of one cell. C) Line plot intensity profile reveals membrane staining for 

impermeable Sulfo646 and intracellular labelling for JF549. D–F) As for A, B, C, but with BG–

Sulfo549 and CA–JF646. Scale bar = 20 µm. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435698
http://creativecommons.org/licenses/by/4.0/


19 
 

 
Figure 4: Widefield fluorescent imaging of live HEK293 cells transfected with Halo–TM–

SNAP construct. A) Logic of labelling with CA–Sulfo549 and BG-JF646 leading to extra- and 

intracellular staining. B) Widefield imaging of live, transfected, and labelled HEK293T cells, 

insert shows zoom of one cell. C) Line plot intensity profile reveals membrane staining for 

impermeable Sulfo549 and intracellular labelling for JF646. D–F) As for A, B, C, but with CA–

Sulfo646 and BG–JF549. Scale bar = 20 µm. 
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Figure 5: SNAP/Halo–GLP1R labelling. A-B) Widefield imaging of AD293 cells expressing 

SNAP-GLP1R labeled with BG-JF549, BG-Sulfo549, BG-JF646, or BG-Sulfo646, and 

Hoechst33342 staining. C-D) Same as for A and B but AD293 expressing Halo-GLP1R and 

labeled with CA versions of dyes. Scale bar = 20 µm. 
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Figure 6: Confocal fluorescence imaging of live transfected human cortical neurons. Neurons 

co-cultured with astrocytes were transfected with a SNAP–TM–Halo (A) or a Halo–TM–SNAP 

(B) construct and labelled with CA–JF549/BG–Sulfo646 (A) and BG–JF549/CA–Sulfo646. Scale 

bar = 20 µm. 
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Figure 7: Confocal and STED imaging of fixed human cortical neurons. A) Cultures 

transfected with Halo–TM–SNAP from Figure 6 were fixed and BG–JF549- and CA–Sulfo646-

labelled axons imaged by confocal microscopy and STED nanoscopy. B) Line profile along an 

axon showing improved resolution of Halo:Sulfo646 at the membranous margins in STED versus 

confocal imaging. C) Halo:Sulfo646 allows visualization of surface signals, whereas SNAP:JF549 

is largely confined to the intra-axonal compartment (STED signals). Scale bar = 1 µm. 
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