
An Introduction to Computer Networks
Release 1.9.21

Peter L Dordal

Jul 16, 2020

CONTENTS

0 Preface 3
0.1 Licensing . 3
0.2 Classroom Use . 4
0.3 Acknowledgments . 6
0.4 Progress Notes . 7
0.5 Technical considerations . 7
0.6 A Note On the Cover . 9
0.7 Recent Changes . 10

1 An Overview of Networks 13
1.1 Layers . 13
1.2 Data Rate, Throughput and Bandwidth . 14
1.3 Packets . 14
1.4 Datagram Forwarding . 15
1.5 Topology . 18
1.6 Routing Loops . 19
1.7 Congestion . 20
1.8 Packets Again . 21
1.9 LANs and Ethernet . 22
1.10 IP - Internet Protocol . 24
1.11 DNS . 30
1.12 Transport . 30
1.13 Firewalls . 34
1.14 Some Useful Utilities . 35
1.15 IETF and OSI . 37
1.16 Berkeley Unix . 40
1.17 Epilog . 40
1.18 Exercises . 40

2 Ethernet 45
2.1 10-Mbps Classic Ethernet . 45
2.2 100 Mbps (Fast) Ethernet . 56
2.3 Gigabit Ethernet . 58
2.4 Ethernet Switches . 59
2.5 Spanning Tree Algorithm and Redundancy . 64

i

2.6 Virtual LAN (VLAN) . 68
2.7 TRILL and SPB . 70
2.8 Software-Defined Networking . 72
2.9 Epilog . 78
2.10 Exercises . 78

3 Other LANs 85
3.1 Virtual Private Networks . 85
3.2 Carrier Ethernet . 86
3.3 Token Ring . 87
3.4 Virtual Circuits . 88
3.5 Asynchronous Transfer Mode: ATM . 92
3.6 Adventures in Radioland . 94
3.7 Wi-Fi . 98
3.8 WiMAX and LTE . 125
3.9 Fixed Wireless . 128
3.10 Epilog . 131
3.11 Exercises . 131

4 Links 137
4.1 Encoding and Framing . 137
4.2 Time-Division Multiplexing . 142
4.3 Epilog . 147
4.4 Exercises . 147

5 Packets 149
5.1 Packet Delay . 149
5.2 Packet Delay Variability . 152
5.3 Packet Size . 153
5.4 Error Detection . 155
5.5 Epilog . 160
5.6 Exercises . 161

6 Abstract Sliding Windows 165
6.1 Building Reliable Transport: Stop-and-Wait . 165
6.2 Sliding Windows . 170
6.3 Linear Bottlenecks . 173
6.4 Epilog . 181
6.5 Exercises . 181

7 IP version 4 187
7.1 The IPv4 Header . 188
7.2 Interfaces . 190
7.3 Special Addresses . 192
7.4 Fragmentation . 193
7.5 The Classless IP Delivery Algorithm . 195
7.6 IPv4 Subnets . 199
7.7 Network Address Translation . 204

ii

7.8 DNS . 209
7.9 Address Resolution Protocol: ARP . 220
7.10 Dynamic Host Configuration Protocol (DHCP) . 224
7.11 Internet Control Message Protocol . 226
7.12 Unnumbered Interfaces . 229
7.13 Mobile IP . 230
7.14 Epilog . 232
7.15 Exercises . 232

8 IP version 6 237
8.1 The IPv6 Header . 237
8.2 IPv6 Addresses . 239
8.3 Network Prefixes . 241
8.4 IPv6 Multicast . 243
8.5 IPv6 Extension Headers . 243
8.6 Neighbor Discovery . 246
8.7 IPv6 Host Address Assignment . 250
8.8 Globally Exposed Addresses . 255
8.9 ICMPv6 . 255
8.10 IPv6 Subnets . 256
8.11 Using IPv6 and IPv4 Together . 258
8.12 IPv6 Examples Without a Router . 262
8.13 IPv6 Connectivity via Tunneling . 264
8.14 IPv6-to-IPv4 Connectivity . 267
8.15 Epilog . 269
8.16 Exercises . 270

9 Routing-Update Algorithms 271
9.1 Distance-Vector Routing-Update Algorithm . 272
9.2 Distance-Vector Slow-Convergence Problem . 276
9.3 Observations on Minimizing Route Cost . 278
9.4 Loop-Free Distance Vector Algorithms . 280
9.5 Link-State Routing-Update Algorithm . 286
9.6 Routing on Other Attributes . 290
9.7 ECMP . 291
9.8 Epilog . 292
9.9 Exercises . 292

10 Large-Scale IP Routing 299
10.1 Classless Internet Domain Routing: CIDR . 299
10.2 Hierarchical Routing . 301
10.3 Legacy Routing . 302
10.4 Provider-Based Routing . 302
10.5 Geographical Routing . 307
10.6 Border Gateway Protocol, BGP . 308
10.7 Epilog . 331
10.8 Exercises . 332

iii

11 UDP Transport 337
11.1 User Datagram Protocol – UDP . 337
11.2 Trivial File Transport Protocol, TFTP . 349
11.3 Fundamental Transport Issues . 351
11.4 Other TFTP notes . 356
11.5 Remote Procedure Call (RPC) . 358
11.6 Epilog . 362
11.7 Exercises . 362

12 TCP Transport 367
12.1 The End-to-End Principle . 368
12.2 TCP Header . 368
12.3 TCP Connection Establishment . 370
12.4 TCP and WireShark . 374
12.5 TCP Offloading . 376
12.6 TCP simplex-talk . 376
12.7 TCP state diagram . 381
12.8 TCP Old Duplicates . 386
12.9 TIMEWAIT . 387
12.10 The Three-Way Handshake Revisited . 388
12.11 Anomalous TCP scenarios . 390
12.12 TCP Faster Opening . 391
12.13 Path MTU Discovery . 392
12.14 TCP Sliding Windows . 392
12.15 TCP Delayed ACKs . 393
12.16 Nagle Algorithm . 394
12.17 TCP Flow Control . 394
12.18 Silly Window Syndrome . 394
12.19 TCP Timeout and Retransmission . 395
12.20 KeepAlive . 396
12.21 TCP timers . 397
12.22 Variants and Alternatives . 397
12.23 Epilog . 407
12.24 Exercises . 407

13 TCP Reno and Congestion Management 413
13.1 Basics of TCP Congestion Management . 414
13.2 Slow Start . 418
13.3 TCP Tahoe and Fast Retransmit . 423
13.4 TCP Reno and Fast Recovery . 424
13.5 TCP NewReno . 427
13.6 Selective Acknowledgments (SACK) . 429
13.7 TCP and Bottleneck Link Utilization . 430
13.8 Single Packet Losses . 433
13.9 TCP Assumptions and Scalability . 434
13.10 TCP Parameters . 435
13.11 Epilog . 435
13.12 Exercises . 436

iv

14 Dynamics of TCP 441
14.1 A First Look At Queuing . 441
14.2 Bottleneck Links with Competition . 442
14.3 TCP Fairness with Synchronized Losses . 450
14.4 Notions of Fairness . 457
14.5 TCP Reno loss rate versus cwnd . 458
14.6 TCP Friendliness . 461
14.7 AIMD Revisited . 463
14.8 Active Queue Management . 465
14.9 The High-Bandwidth TCP Problem . 470
14.10 The Lossy-Link TCP Problem . 472
14.11 The Satellite-Link TCP Problem . 472
14.12 Epilog . 472
14.13 Exercises . 472

15 Newer TCP Implementations 483
15.1 Choosing a TCP on Linux . 483
15.2 High-Bandwidth Desiderata . 486
15.3 RTTs . 487
15.4 A Roadmap . 487
15.5 Highspeed TCP . 487
15.6 TCP Vegas . 490
15.7 FAST TCP . 493
15.8 TCP Westwood . 495
15.9 TCP Illinois . 497
15.10 Compound TCP . 498
15.11 TCP Veno . 500
15.12 TCP Hybla . 501
15.13 DCTCP . 501
15.14 H-TCP . 504
15.15 TCP CUBIC . 505
15.16 TCP BBR . 509
15.17 Epilog . 513
15.18 Exercises . 514

16 Network Simulations: ns-2 519
16.1 The ns-2 simulator . 519
16.2 A Single TCP Sender . 521
16.3 Two TCP Senders Competing . 533
16.4 TCP Loss Events and Synchronized Losses . 549
16.5 TCP Reno versus TCP Vegas . 558
16.6 Wireless Simulation . 560
16.7 Epilog . 566
16.8 Exercises . 566

17 The ns-3 Network Simulator 569
17.1 Installing and Running ns-3 . 569
17.2 A Single TCP Sender . 570

v

17.3 Wireless . 579
17.4 Exercises . 585

18 Mininet 587
18.1 Installing Mininet . 588
18.2 A Simple Mininet Example . 590
18.3 Multiple Switches in a Line . 591
18.4 IP Routers in a Line . 594
18.5 IP Routers With Simple Distance-Vector Implementation 596
18.6 TCP Competition: Reno vs Vegas . 599
18.7 TCP Competition: Reno vs BBR . 604
18.8 Linux Traffic Control (tc) . 605
18.9 OpenFlow and the POX Controller . 608
18.10 Exercises . 620

19 Queuing and Scheduling 623
19.1 Queuing and Real-Time Traffic . 623
19.2 Traffic Management . 624
19.3 Priority Queuing . 624
19.4 Queuing Disciplines . 625
19.5 Fair Queuing . 626
19.6 Applications of Fair Queuing . 639
19.7 Hierarchical Queuing . 641
19.8 Hierarchical Weighted Fair Queuing . 644
19.9 Token Bucket Filters . 649
19.10 Applications of Token Bucket . 654
19.11 Token Bucket Queue Utilization . 656
19.12 Hierarchical Token Bucket . 659
19.13 Fair Queuing / Token Bucket combinations . 660
19.14 Epilog . 663
19.15 Exercises . 663

20 Quality of Service 669
20.1 Net Neutrality . 670
20.2 Where the Wild Queues Are . 670
20.3 Real-time Traffic . 671
20.4 Integrated Services / RSVP . 673
20.5 Global IP Multicast . 674
20.6 RSVP . 679
20.7 Differentiated Services . 683
20.8 RED with In and Out . 687
20.9 NSIS . 688
20.10 Comcast Congestion-Management System . 688
20.11 Real-time Transport Protocol (RTP) . 689
20.12 Multi-Protocol Label Switching (MPLS) . 694
20.13 Epilog . 696
20.14 Exercises . 696

vi

21 Network Management and SNMP 699
21.1 Network Architecture . 701
21.2 SNMP Basics . 701
21.3 SNMP Naming and OIDs . 703
21.4 MIBs . 705
21.5 SNMPv1 Data Types . 706
21.6 ASN.1 Syntax and SNMP . 706
21.7 SNMP Tables . 707
21.8 SNMP Operations . 712
21.9 MIB Browsing . 717
21.10 MIB-2 . 718
21.11 SNMPv1 communities and security . 727
21.12 SNMP and ASN.1 Encoding . 728
21.13 SNMPv2 . 731
21.14 Table Row Creation . 742
21.15 SNMPv3 . 751
21.16 Exercises . 761

22 Security 763
22.1 Code-Execution Intrusion . 764
22.2 Stack Buffer Overflow . 765
22.3 Heap Buffer Overflow . 774
22.4 Network Intrusion Detection . 779
22.5 Cryptographic Goals . 780
22.6 Secure Hashes . 781
22.7 Shared-Key Encryption . 786
22.8 Diffie-Hellman-Merkle Exchange . 795
22.9 Public-Key Encryption . 799
22.10 SSH and TLS . 804
22.11 IPsec . 822
22.12 DNSSEC . 825
22.13 RSA Key Examples . 834
22.14 Exercises . 837

23 Bibliography 841

24 Selected Solutions 843
24.1 Solutions for An Overview of Networks . 843
24.2 Solutions for Ethernet . 844
24.3 Solutions for Other LANs . 845
24.4 Solutions for Links . 846
24.5 Solutions for Packets . 847
24.6 Solutions for Sliding Windows . 848
24.7 Solutions for IPv4 . 850
24.8 Solutions for Routing-Update Algorithms . 850
24.9 Solutions for Large-Scale IP Routing . 851
24.10 Solutions for UDP . 852
24.11 Solutions for TCP Reno . 852

vii

24.12 Solutions for Dynamics of TCP . 852
24.13 Solutions for Mininet . 854
24.14 Solutions for Queuing and Scheduling . 854

Indices and tables 857

Bibliography 859

Index 867

viii

An Introduction to Computer Networks, Release 1.9.21

Peter L Dordal
Department of Computer Science
Loyola University Chicago

Contents:

CONTENTS 1

An Introduction to Computer Networks, Release 1.9.21

2 CONTENTS

0 PREFACE

“No man but a blockhead ever wrote, except for money.” - Samuel Johnson

The textbook world is changing. On the one hand, open source software and creative-commons licensing
have been great successes; on the other hand, unauthorized PDFs of popular textbooks are widely available,
and it is time to consider flowing with rather than fighting the tide. Hence this open-access textbook, released
for free under the Creative Commons license described below. Mene, mene, tekel pharsin.

Perhaps the last straw, for me, was patent 8195571 for a roundabout method to force students to purchase
textbooks. (A simpler strategy might be to include the price of the book in the course.) At some point,
faculty have to be advocates for their students rather than, well, Hirudinea.

This is not to say that I have anything against for-profit publishing. It is just that this particular book does
not – and will not – belong to that category; the online edition will always be free. In this it is in good
company: there is Wikipedia, there is an increasing number of other open online textbooks out there, and
there is the entire open-source world. Although the open-source-software and open-textbook models are not
completely parallel, they are similar enough.

The market inefficiencies of traditional publishing are sobering: the return to authors of advanced textbooks
is usually modest. Costs to users are also quite high: both the direct cost of purchasing a book, and the
lost-opportunity cost of not having access to a book. (None of this is meant to imply there will never be a
print edition; when I started this project it seemed inconceivable that a print publisher would ever agree to
having the online edition remain free, but times are changing.)

The book is updated multiple times per year (0.7 Recent Changes). This is another feature that paper
publishing can’t touch.

The official book website is intronetworks.cs.luc.edu. The book is available there as online html, as a zipped
archive of html files, in .pdf format, and in other formats as may prove useful.

Note that there are three html variants: the original, a version using a more universally available set of uni-
code characters, and a version better suited to smaller screen. In an ideal world, my Javascript would figure
out which version to serve to your browser automatically; in our real world, it took me three years to get
the html quick-search facility to work again after I broke it with the collapsible sidebar. See 0.5 Technical
considerations below for more information.

0.1 Licensing

This text is released under the Creative Commons license Attribution-NonCommercial-NoDerivs. This text
is like a conventional book, in other words, except that it is free. You may copy the work and distribute
it to others for any noncommercial use (and for some commercial uses; see below), but all reuse requires
attribution.

The Creative Commons license does not precisely spell out what constitutes “noncommercial” use. The
author considers any sale of printed copies of this book, even by a non-profit organization and even if
the price just covers expenses, to be commercial use. Personal printing, and free distribution of printed
selections, do qualify as noncommercial.

3

https://patents.google.com/patent/US8195571B2
http://intronetworks.cs.luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/

An Introduction to Computer Networks, Release 1.9.21

Starting with Edition 1.9.16, commercial use is also explicitly allowed, provided that printed copies are
not distributed. In other words, the text is also released under the terms of the Creative Commons license
Attribution-NoDerivs, amended to include a prohibition on the distribution of printed copies. The Creative
Commons license summary linked to here states that “you are free to share – copy and redistribute the
material in any medium or format for any purpose, even commercially”; this license is amended by this
paragraph to limit “any medium” to non-printed media. Permissible commercial uses may include, but are
not limited to, use in internal training programs, use in for-profit training and educational programs, sale of
the work in the electronic formats available here, and installation throughout the Amazon EC2.

The Attribution clause of the Creative Commons licenses [Section 4, (b) for by-nd or (c) for by-nc-nd]
requires that redistributors of the work provide “. . . (iii) to the extent reasonably practicable, the URI, if
any, that Licensor specifies to be associated with the Work”. That URI is intronetworks.cs.luc.edu.

Under the Creative Commons licenses, creation of derivative works requires permission. It is not entirely
clear, however, what would be considered a derivative work, beyond the traditional examples of abridgment
and translation. Any supplemental materials like exams, labs, slides or coverage of additional topics would
be new, independent works, and would require no permission. Even the inclusion in such supplements of
modest amounts of material from this book would have a strong claim to Fair Use. In the open-source
software world, the right to make derivative works is exercised whenever the software is modified, but it is
hard to see how this applies to textbook supplements. The bottom line is that if you have a situation you’re
concerned about in this regard, let me know and I’ll probably be happy to grant permission.

Some of the chapters contain source code; this is licensed under the Apache 2.0 license. Some code files
(those which are derivative works) contain an official Apache license statement; others do not.

0.2 Classroom Use

This book is meant as a serious and more-or-less thorough text for an introductory college or graduate course
in computer networks, carefully researched, with consistent notation and style, and complete with diagrams
and exercises. I have also tried to rethink the explanations of many protocols and algorithms, with the goal
of making them easier to understand. My intent is to create a text that covers to a reasonable extent why the
Internet is the way it is, to avoid the endless dreary focus on TLA’s (Three-Letter Acronyms), and to remain
not too mathematical. For the last, I have avoided calculus, linear algebra, and, for that matter, quadratic
terms (though some inequalities do sneak in at times). That said, the book includes a large number of back-
of-the-envelope calculations – in settings as concrete as I could make them – illustrating various networking
concepts.

Overall, I tried to find a happy medium between practical matters and underlying principles. My goal has
been to create a book that is useful to a broad audience, including those interested in network management,
in high-performance networking, in software development, or just in how the Internet is put together.

One of the best ways to gain insight into why a certain design choice was made is to look at a few alterna-
tive implementations. To that end, this book includes coverage of some topics one may never encounter in
practice, but which may be useful as points of comparison. These topics arguably include ATM (3.5 Asyn-
chronous Transfer Mode: ATM), SCTP (12.22.2 SCTP) and even 10 Mbps Ethernet (2.1 10-Mbps Classic
Ethernet).

The book can also be used as a networks supplement or companion to other resources for a variety of
other courses that overlap to some greater or lesser degree with networking. At Loyola, this book has been

4 0 Preface

https://creativecommons.org/licenses/by-nd/3.0/
https://en.m.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
http://intronetworks.cs.luc.edu
https://www.apache.org/licenses/LICENSE-2.0

An Introduction to Computer Networks, Release 1.9.21

used – sometimes coupled with a second textbook – in courses in computer security, network management,
telecommunications, and even introduction-to-computing courses for non-majors. Another possibility is an
alternative or nontraditional presentation of networking itself. It is when used in concert with other works,
in particular, that this book’s being free is of marked advantage.

Finally, I hope the book may also be useful as a reference work. To this end, I have attempted to ensure
that the indexing and cross-referencing is sufficient to support the drop-in reader. Similarly, obscure or
specialized notation is kept to a minimum.

Much is sometimes made, in the world of networking textbooks, about top-down versus bottom-up se-
quencing. This book is not really either, although the chapters are mostly numbered in bottom-up fashion.
Instead, the first chapter provides a relatively complete overview of the LAN, IP and transport network layers
(along with a few other things), allowing subsequent chapters to refer to all network layers without forward
reference, and, more importantly, allowing the chapters to be covered in a variety of different orders. As a
practical matter, when I use this text to teach Loyola’s Introduction to Computer Networks course, I cover
the IP/routing and TCP material more or less in parallel.

A distinctive feature of the book is the extensive coverage of TCP: TCP dynamics, newer versions of TCP
such as TCP Cubic and BBR TCP, and chapters on using the ns-2 and ns-3 simulators and the Mininet
emulator. This has its roots in a longstanding goal to find better ways to present competition and congestion
in the classroom. Another feature is the detailed chapter on queuing disciplines.

One thing this book makes little attempt to cover in detail is the application layer; the token example in-
cluded is SNMP. While SNMP actually makes a pretty good example of a self-contained application, my
recommendation to instructors who wish to cover more familiar examples is to combine this text with the
appropriate application documentation.

Although the book is continuously updated, I try very hard to ensure that all editions are classroom-
compatible. To this end, section renumbering is avoided to the extent practical, and, within the first edition,
existing exercises are never renumbered. This is an essential feature for a textbook that is often updated mid-
semester, and a useful feature for any textbook that is updated at all. New exercises are regularly inserted,
but with fractional (floating point) numbers. Existing integral exercise numbers have been given a trailing
.0, to reduce confusion between exercise 12.0, say, and 12.5. I do anticipate some exercise renumbering for
the second edition; as chapters there will also be divided and renumbered.

For those interested in using the book for a “traditional” networks course, I with some trepidation offer the
following set of core material. In solidarity with those who prefer alternatives to a bottom-up ordering, I
emphasize that this represents a set and not a sequence.

• 1 An Overview of Networks

• Selected sections from 2 Ethernet, particularly switched Ethernet

• Selected sections from 3.7 Wi-Fi

• Selected sections from 5 Packets

• 6 Abstract Sliding Windows

• 7 IP version 4 and/or 8 IP version 6

• Selected sections from 9 Routing-Update Algorithms, probably including the distance-vector algo-
rithm

• Selected sections from 10 Large-Scale IP Routing

0.2 Classroom Use 5

An Introduction to Computer Networks, Release 1.9.21

• 11 UDP Transport

• 12 TCP Transport

• 13 TCP Reno and Congestion Management

With some care in the topic-selection details, the above can be covered in one semester along with a survey
of selected important network applications, or the basics of network programming, or the introductory con-
figuration of switches and routers, or coverage of additional material from this book, or some other set of
additional topics. Of course, non-traditional networks courses may focus on a quite different sets of topics.

Instructors who adopt this book in a course, as either a primary or a secondary text, are strongly encouraged
to let me know, as this helps support continued work on the book. Below is a list of the institutions I’m
aware of so far where the book has been adopted. Commercial publishers get this information from sales
records, but that won’t work here; if you want to see your institution listed, contact me!

Augustana College
California State University, Fresno
Eastern Washington University
Loyola University Maryland
Murray State University
Ohio University
Saint Martin’s University
SUNY Delhi
University of Arkansas Community College at Batesville
University of California, Santa Cruz
University of Maryland, University College
University of North Alabama
University of Texas at El Paso
University of the People
Villanova University
Wellington Institute of Technology

0.3 Acknowledgments

I would like to thank the many Loyola students who have provided invaluable feedback on the text and the
exercises. The result, I hope, is greater clarity for both. I would also like to thank the following people from
outside Loyola who have contributed technical or editorial comments. I’ve included institutional affiliation
if I could figure it out. If I’ve missed anyone, or their institution, please let me know.

6 0 Preface

An Introduction to Computer Networks, Release 1.9.21

Anonymous
Jose Alvarado University of the People
Eric Freudenthal University of Texas at El Paso
David Garfield
Jeff Harrang
Emmanuel Lochin Institut supérieur de l’aéronautique et de l’espace
Robert Michael
Natale Patriciello Centre Tecnològic Telecomunicacions Catalunya
Herman Torjussen
Alexander Wijesinha Towson University
Justin Yang

Comments – from anyone – on clarity, completeness, consistency and correctness are much appreciated.
Even single comments or corrections are very welcome, though I continue to seek reviewers willing to
review an entire section or chapter. I can be contacted at pld AT cs.luc.edu, or via the book comment form.

Peter Dordal
Shabbona, Illinois

0.4 Progress Notes

This work was started in the summer of 2012. Edition 1.0 was declared complete as of March 2014; the
current edition is 1.9.21.

The intronetworks.cs.luc.edu website carries both edition 1.0 and also the current 1.9.21 edition.

I expect to release Edition 2.0 in summer 2020. This will mostly involve breaking some of the longer
chapters into two.

0.5 Technical considerations

The book was prepared in reStructuredText using the Linux Sphinx package, which can produce multiple
formats from the same source. That said, the primary format is html. The table-of-contents sidebar and the
text sidebars work best there. Most of the diagrams were drawn using LibreOffice Draw.

The html version also provides a “Quick search” box, which, with the aid of Javascript’s
stopPropagation() method, finally coexists with the collapsible sidebar. Quick search, however, only
works for all-alphabetic strings; strings with hyphens such as “wi-fi” and “Diffie-Hellman” fail. The index
is an effective alternative.

0.4 Progress Notes 7

https://docs.google.com/forms/d/1P32pBBd65ZY1U4AJ7gMbHiJgztZW3nL49HR-mSCt5dc/viewform?usp=send_form
http://intronetworks.cs.luc.edu

An Introduction to Computer Networks, Release 1.9.21

The book uses a modest set of unicode special characters. Unfortunately, some of these characters are
not universally available in all browsers. The comma-separated characters in the first line, below, appear
to have the most limited support. The math-italic Greek letters are not present in the so-called Unicode
Basic Multilingual Plane, but the symbols are, so that is not the entire explanation.

x,y,»,𝛼,𝛽,𝛾,𝜆,𝜑,𝜏 ,𝜚,∆,",ÝÑ,ÐÝ,ÐÑ
(,),«,𝛼,𝛽,𝛾,𝜆,𝜑,𝜏 ,𝜌,∆,^, Ñ,Ð ,ÐÑ
µ,?,8,ď,ě,ˆ,˜,˘,–,‰,Ñ,Ð, , , , , , , , , , ,

The characters above should look roughly as they do in the following image (the first line is the one most
likely to fail):

If they do not, there are two options for browser-based viewing. If the second and third rows above display
successfully, there is a unicode-safer version of the book (both online and zipped) available at intronet-
works.cs.luc.edu that has the characters in the first row above replaced by those in the second row.

The other alternative is to add an appropriate font. Generally Firefox and Internet Explorer display the
necessary characters out of the box, but Chrome may not. The Chrome situation can usually be fixed, at
least on “real” computers, by adding a font and then tweaking the Chrome font settings. I have had good
luck with Symbola (at shapecatcher.com/unicodefonts.html and other places). To install the font, extract
the .ttf file and double-click on it. Then to adjust Chrome, go to Settings Ñ Show advanced settings Ñ
Customize fonts (button), and change at a minimum the default Sans-serif font to Symbola. Then restart
Chrome.

Unfortunately, adding fonts to (non-rooted) Android devices continues to be very difficult. Worse, Android
often fails to display even a box symbol “l” in the place of missing characters.

If no available browser properly displays the symbols above, I recommend the pdf format. The unicode-safer
version, however, should work on most systems.

At some point I hope to figure out how to handle this font situation a little better using Javascript. This turns
out, however, not to be straightforward, and progress has been slow.

I could have gone with TeX and MathJax, but then I likely would have gotten rather too carried away with
mathematical formulas. The character set above keeps things (relatively) simple.

The diagrams in the body of the text have now all been migrated to the vector-graphics .svg format, although
a few diagrams rendered with line-drawing characters appear in the exercises. Most browsers now (2018)
appear to support zooming in on .svg images, which is a significant step forward.

8 0 Preface

https://en.wikipedia.org/wiki/Plane_(Unicode)#Basic_Multilingual_Plane
http://intronetworks.cs.luc.edu/
http://intronetworks.cs.luc.edu/
https://www.mozilla.org/en-US/firefox/new/
http://www.google.com/chrome/
http://shapecatcher.com/unicodefonts.html

An Introduction to Computer Networks, Release 1.9.21

0.6 A Note On the Cover

The photo is of mahogany leaves, presumably Swietenia mahagoni. The original image was taken by Homer
Edward Price and placed at https://commons.wikimedia.org/wiki/File:Mahogany-leaves_(5606894105).gif
under a Creative Commons license; the image as used here has been cropped.

I began with the idea that the cover should depict some networking reference from the natural world. The
connection between mahogany and networking comes from Bertolt Brecht’s work The City of Mahagonny,
“the city of nets”. Ok, “nets” in the sense of traps rather than communication, but close enough.

Alas, this turned out to be based on a misapprehension. As musicologist John Simon puts it [JS05],

Where did Brecht get the name for that lawless city that was his symbol for a capitalist society
in distress? In coining the name Mahagonny, the opera’s Leokadja Begbick explains it as “the
City of Nets”, i.e. traps. But the word “mahogany”, from which the name must stem, has
nothing to do with nets.

It remains unclear just what “Mahagonny” did mean to Brecht.

After learning this, a picture of mahogany seemed to be out. But, as the book progressed, with more and

0.6 A Note On the Cover 9

https://commons.wikimedia.org/wiki/File:Mahogany-leaves_(5606894105).gif

An Introduction to Computer Networks, Release 1.9.21

more reading of papers and RFCs, I began to see the non-connection here as a symbol of diligent fact-
checking. So there it is.

And besides, it’s green.

0.7 Recent Changes

July 16, 2020 (ver 1.9.22): miscellaneous minor updates
March 4, 2020 (ver 1.9.21): updates to 19.13.2 Linux HTB, 10.6.11 BGP Security and Route Registries
and 22.8.2 Simultaneous Authentication of Equals; new 10.6.11.2 RPKI.
Jan 20, 2020 (ver 1.9.20): new section 7.8.1 DNS Resolvers, new 10.6.11 BGP Security and Route
Registries.
July 26, 2019 (ver 1.9.19): minor changes, 10.6.5 BGP Table Size, html search box works again.
March 31, 2019 (ver 1.9.18): correction to 22.2.2.2 The shellcode.
March 9, 2019 (ver 1.9.17): 22.12 DNSSEC, and updates to 7.8 DNS.
December 1, 2018 (ver 1.9.16): Licensing, 0.3 Acknowledgments, adopters, 2.4.2 Switch Hardware,
7.8.5 DNS and CDNs, 10.6.8 BGP and Anycast.
October 18, 2018 (ver 1.9.15): 3.7.5.1.1 KRACK Attack, 3.7.5.3 WPA3, 3.7.4.4 Mesh Networks,
9.4.2 AODV , 9.4.3 HWMP, 9.7 ECMP, 2.7 TRILL and SPB, shortest-path proof in
9.5.1 Shortest-Path-First Algorithm.
September 11, 2018 (ver 1.9.14): 2.2 100 Mbps (Fast) Ethernet. ref:KRACK, 3.7.5.3 WPA3,
22.8.2 Simultaneous Authentication of Equals.
August 28, 2018 (ver 1.9.13): fixed example in 5.4.1 Cyclical Redundancy Check: CRC.
August 16, 2018 (ver 1.9.12): technical changes.
August 15, 2018 (ver 1.9.11): Domain fronting (22.10.2.4.1 Domain Fronting), multiple other updates.
February 19, 2018 (ver 1.9.10): Expanded content on QUIC (12.22.4 QUIC Revisited).
January 5, 2018 (ver 1.9.9): Corrections to 15.5 Highspeed TCP, added 15.10 Compound TCP,
8.14 IPv6-to-IPv4 Connectivity and NAT64, updates to 20.6.1 A CDN Alternative to IntServ and
3.7 Wi-Fi, miscellaneous other updates.
October 27, 2017 (ver 1.9.8): multiple corrections to 15.16 TCP BBR; some updated exercises.
October 3, 2017 (ver 1.9.7): Added tbf and htb examples (18.8 Linux Traffic Control (tc)) to
18 Mininet; miscellaneous exercise updates, and more on CDNs (20.6.1 A CDN Alternative to IntServ).
September 4, 2017 (ver 1.9.6): Added a webserver example (18.3.1 Running a webserver) to 18 Mininet;
updates to 7.8 DNS.
August 27, 2017 (ver 1.9.5): Expanded examples in the chapter on Mininet (18 Mininet)
July 27, 2017 (ver 1.9.4): Clarified the role of priority in 2.8.1 OpenFlow Switches.
July 22, 2017 (ver 1.9.3): Significant revisions to 2.8.2 Learning Switches in OpenFlow; other minor
changes.
July 11, 2017 (ver 1.9.2): A section in the Mininet chapter on the Pox controller (18.9 OpenFlow and the
POX Controller).
July 7, 2017 (ver 1.9.1): A new (partially completed) chapter on Mininet (18 Mininet).

10 0 Preface

An Introduction to Computer Networks, Release 1.9.21

Jan 27, 2017 (ver 1.9.0): New sections on SEND (8.6.4 Security and Neighbor Discovery), DCCP
(11.1.2 DCCP), TLS programming (22.10.3 A TLS Programming Example), bufferbloat
(14.8.1 Bufferbloat), CoDel (14.8.6 CoDel) and BBR TCP (15.16 TCP BBR). There is also added
content in 3.7.5 Wi-Fi Security.
Oct 31, 2016 (ver 1.8.27): Introduction to TFTP (11.2 Trivial File Transport Protocol, TFTP) moved
before 11.3 Fundamental Transport Issues; a minor adjustment to the TCP state diagram (12.7 TCP state
diagram) for transitions out of FIN_WAIT_1.
Oct 3, 2016 (ver 1.8.26): minor changes to the text, but a significant and hopefully useful change to the
way the table-of-contents sidebar works: expanding the sidebar puts the table of contents in the current
viewport, and clicking on a contents link then collapses the sidebar.
Sept 27, 2016 (ver 1.8.25): several new exercises and other updates
Sept 16, 2016 (ver 1.8.24): Improved integration between the exercise sections and 24 Selected Solutions;
additional corrections and clarifications to 3.7.1 Wi-Fi and Collisions, 2.4.1 Ethernet Learning
Algorithm, and other places.
Aug 9, 2016 (ver 1.8.23): More corrections and clarifications to SNMP (21 Network Management and
SNMP); more on IPv6 extension headers (8.5 IPv6 Extension Headers) and OpenFlow (2.8.1 OpenFlow
Switches).
Jul 21, 2016 (ver 1.8.22): Corrections and clarifications to SNMP (21 Network Management and SNMP)
Jun 14, 2016 (ver 1.8.21): Added material on 2.8 Software-Defined Networking and 1.5.1 Traffic
Engineering (also scattered about in other sections), and updates to 22 Security.
Apr 4, 2016 (ver 1.8.20): clarifications and new diagrams in 9 Routing-Update Algorithms.
Mar 30, 2016 (ver 1.8.19): miscellaneous updates, including to TCP RST processing in 12.3 TCP
Connection Establishment.
Feb 29, 2016 (ver 1.8.18): Revisions to 8 IP version 6, including updates related to 8.2.1 Interface
identifiers. All line drawings are now in .svg format.
Jan 20, 2016 (ver 1.8.17): New section on IPsec (22.11 IPsec), and other updates. Some diagrams are now
in .svg format (eg in chapters 13 TCP Reno and Congestion Management and 22 Security). The .pdf
version also takes advantage of the .svg format.
Dec 31, 2015 (ver 1.8.16): Updates to 10.6.9 BGP Relationships, 3.7.5 Wi-Fi Security, 6.2 Sliding
Windows, and other miscellaneous changes.
Dec 3, 2015 (ver 1.8.15): Technical corrections to some exercises.
Nov 24, 2015 (ver 1.8.14): Multiple small updates and clarifications, including to several exercises.
Oct 18, 2015 (ver 1.8.13): Extensive revisions to 8 IP version 6.
Oct 14, 2015 (ver 1.8.12): Minor fixes and clarifications of some exercises.
Oct 11, 2015 (ver 1.8.11): Solutions to a few of the exercises (those marked with ♢) are now provided, in
24 Selected Solutions. Hopefully this section will continue to expand. There is a correction to
10.6.9.1 BGP No-Valley Theorem and a reorganization of the exposition; there are also several minor
changes to 8 IP version 6.
Sep 9, 2015 (ver 1.8.10): Miscellaneous clarifications; a paragraph on classless routing in 1.10 IP -
Internet Protocol.
Aug 16, 2015 (ver 1.8.09): Sections on 4.2.3 Optical Transport Network and 11.1.4 netcat;
miscellaneous updates.
Jul 23, 2015 (ver 1.8.08): Multiple changes to 2 Ethernet and 3.7 Wi-Fi; other changes as well.
Jun 16, 2015 (ver 1.8.07): Corrections to 6.3.4 Simple Packet-Based Sliding-Windows Implementation and

0.7 Recent Changes 11

An Introduction to Computer Networks, Release 1.9.21

additions to 7.11 Internet Control Message Protocol and 8.9 ICMPv6.
May 29, 2015 (ver 1.8.06): Section on RSA factoring (22.9.1.2 Factoring RSA Keys), fixed typos in
1.6 Routing Loops and 11.3 Fundamental Transport Issues.
May 24, 2015 (ver 1.8.05): Added discussion of the Logjam attack (22.8 Diffie-Hellman-Merkle
Exchange).
May 22, 2015 (ver 1.8.04): Several additions to the wireless sections, including MIMO antennas
(3.7.3 Multiple Spatial Streams) and LTE (3.8 WiMAX and LTE). Wireless LANs are now moved to the
end of the chapter 3 Other LANs.
May 1, 2015 (ver 1.8.03): This book is now available via IPv6! See 8.11 Using IPv6 and IPv4 Together.
Also, corrections to exactly-once semantics in 11.5 Remote Procedure Call (RPC).
Apr 26, 2015 (ver 1.8.02): Numerous corrections and clarifications, and new sections on 12.22.1 MPTCP
and 12.22.2 SCTP.
Mar 19, 2015: Added unicode-safer version (above), to support reading on most Android devices.
Mar 14, 2015: Expanded and revised chapter 8 IP version 6, now including tunnel-broker IPv6
connections.
Mar 3, 2015: New section on 7.8 DNS.
Feb 23, 2015: certificate pinning, sidebar on Superfish in 22.10.2.1 Certificate Authorities.
Feb 15, 2015: New material on IPv6, in particular 8.11 Using IPv6 and IPv4 Together.
Jan, 2015: The chapter 22 Security is largely finished.

12 0 Preface

1 AN OVERVIEW OF NETWORKS

Somewhere there might be a field of interest in which the order of presentation of topics is well agreed upon.

Computer networking is not it.

There are many interconnections in the field of networking, as in most technical fields, and it is difficult
to find an order of presentation that does not involve endless “forward references” to future chapters; this
is true even if – as is done here – a largely bottom-up ordering is followed. I have therefore taken here a
different approach: this first chapter is a summary of the essentials – LANs, IP and TCP – across the board,
and later chapters expand on the material here.

Local Area Networks, or LANs, are the “physical” networks that provide the connection between machines
within, say, a home, school or corporation. LANs are, as the name says, “local”; it is the IP, or Internet
Protocol, layer that provides an abstraction for connecting multiple LANs into, well, the Internet. Finally,
TCP deals with transport and connections and actually sending user data.

This chapter also contains some important other material. The section on datagram forwarding, central
to packet-based switching and routing, is essential. This chapter also discusses packets generally, conges-
tion, and sliding windows, but those topics are revisited in later chapters. Firewalls and network address
translation are also covered here and not elsewhere.

1.1 Layers

These three topics – LANs, IP and TCP – are often called layers; they constitute the Link layer, the Internet-
work layer, and the Transport layer respectively. Together with the Application layer (the software you use),
these form the “four-layer model” for networks. A layer, in this context, corresponds strongly to the idea
of a programming interface or library, with the understanding that a given layer communicates directly only
with the two layers immediately above and below it. An application hands off a chunk of data to the TCP
library, which in turn makes calls to the IP library, which in turn calls the LAN layer for actual delivery. An
application does not interact directly with the IP and LAN layers at all.

The LAN layer is in charge of actual delivery of packets, using LAN-layer-supplied addresses. It is often
conceptually subdivided into the “physical layer” dealing with, eg, the analog electrical, optical or radio
signaling mechanisms involved, and above that an abstracted “logical” LAN layer that describes all the
digital – that is, non-analog – operations on packets; see 2.1.4 The LAN Layer. The physical layer is
generally of direct concern only to those designing LAN hardware; the kernel software interface to the LAN
corresponds to the logical LAN layer.

Application

Transport

IP

Logical LAN

Physical LAN

13

An Introduction to Computer Networks, Release 1.9.21

This LAN physical/logical division gives us the Internet five-layer model. This is less a formal hierarchy
as an ad hoc classification method. We will return to this below in 1.15 IETF and OSI, where we will also
introduce two more rather obscure layers that complete the seven-layer model.

1.2 Data Rate, Throughput and Bandwidth

Any one network connection – eg at the LAN layer – has a data rate: the rate at which bits are transmitted.
In some LANs (eg Wi-Fi) the data rate can vary with time. Throughput refers to the overall effective
transmission rate, taking into account things like transmission overhead, protocol inefficiencies and perhaps
even competing traffic. It is generally measured at a higher network layer than the data rate.

The term bandwidth can be used to refer to either of these, though we here use it mostly as a synonym
for data rate. The term comes from radio transmission, where the width of the frequency band available is
proportional, all else being equal, to the data rate that can be achieved.

In discussions about TCP, the term goodput is sometimes used to refer to what might also be called
“application-layer throughput”: the amount of usable data delivered to the receiving application. Specif-
ically, retransmitted data is counted only once when calculating goodput but might be counted twice under
some interpretations of “throughput”.

Data rates are generally measured in kilobits per second (kbps) or megabits per second (Mbps); the use of
the lower-case “b” here denotes bits. In the context of data rates, a kilobit is 103 bits (not 210) and a megabit
is 106 bits. Somewhat inconsistently, we follow the tradition of using kB and MB to denote data volumes
of 210 and 220 bytes respectively, with the upper-case B denoting bytes. The newer abbreviations KiB and
MiB would be more precise, but the consequences of confusion are modest.

1.3 Packets

Packets are modest-sized buffers of data, transmitted as a unit through some shared set of links. Of necessity,
packets need to be prefixed with a header containing delivery information. In the common case known as
datagram forwarding, the header contains a destination address; headers in networks using so-called
virtual-circuit forwarding contain instead an identifier for the connection. Almost all networking today
(and for the past 50 years) is packet-based, although we will later look briefly at some “circuit-switched”
options for voice telephony.

Single and multiple headers

data

data

header

header1 header2

14 1 An Overview of Networks

https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Mebibyte

An Introduction to Computer Networks, Release 1.9.21

At the LAN layer, packets can be viewed as the imposition of a buffer (and addressing) structure on top
of low-level serial lines; additional layers then impose additional structure. Informally, packets are often
referred to as frames at the LAN layer, and as segments at the Transport layer.

The maximum packet size supported by a given LAN (eg Ethernet, Token Ring or ATM) is an intrinsic
attribute of that LAN. Ethernet allows a maximum of 1500 bytes of data. By comparison, TCP/IP packets
originally often held only 512 bytes of data, while early Token Ring packets could contain up to 4 kB of
data. While there are proponents of very large packet sizes, larger even than 64 kB, at the other extreme the
ATM (Asynchronous Transfer Mode) protocol uses 48 bytes of data per packet, and there are good reasons
for believing in modest packet sizes.

One potential issue is how to forward packets from a large-packet LAN to (or through) a small-packet LAN;
in later chapters we will look at how the IP (or Internet Protocol) layer addresses this.

Generally each layer adds its own header. Ethernet headers are typically 14 bytes, IP headers 20 bytes, and
TCP headers 20 bytes. If a TCP connection sends 512 bytes of data per packet, then the headers amount to
10% of the total, a not-unreasonable overhead. For one common Voice-over-IP option, packets contain 160
bytes of data and 54 bytes of headers, making the header about 25% of the total. Compressing the 160 bytes
of audio, however, may bring the data portion down to 20 bytes, meaning that the headers are now 73% of
the total; see 20.11.4 RTP and VoIP.

In datagram-forwarding networks the appropriate header will contain the address of the destination and
perhaps other delivery information. Internal nodes of the network called routers or switches will then try
to ensure that the packet is delivered to the requested destination.

The concept of packets and packet switching was first introduced by Paul Baran in 1962 ([PB62]). Baran’s
primary concern was with network survivability in the event of node failure; existing centrally switched
protocols were vulnerable to central failure. In 1964, Donald Davies independently developed many of the
same concepts; it was Davies who coined the term “packet”.

It is perhaps worth noting that packets are buffers built of 8-bit bytes, and all hardware today agrees what
a byte is (hardware agrees by convention on the order in which the bits of a byte are to be transmitted).
8-bit bytes are universal now, but it was not always so. Perhaps the last great non-byte-oriented hardware
platform, which did indeed overlap with the Internet era broadly construed, was the DEC-10, which had a
36-bit word size; a word could hold five 7-bit ASCII characters. The early Internet specifications introduced
the term octet (an 8-bit byte) and required that packets be sequences of octets; non-octet-oriented hosts had
to be able to convert. Thus was chaos averted. Note that there are still byte-oriented data issues; as one
example, binary integers can be represented as a sequence of bytes in either big-endian or little-endian byte
order (11.1.5 Binary Data). RFC 1700 specifies that Internet protocols use big-endian byte order, therefore
sometimes called network byte order.

1.4 Datagram Forwarding

In the datagram-forwarding model of packet delivery, packet headers contain a destination address. It is up
to the intervening switches or routers to look at this address and get the packet to the correct destination.

In datagram forwarding this is achieved by providing each switch with a forwarding table of
xdestination,next_hopy pairs. When a packet arrives, the switch looks up the destination address (presumed
globally unique) in its forwarding table and finds the next_hop information: the immediate-neighbor ad-
dress to which – or interface by which – the packet should be forwarded in order to bring it one step closer

1.4 Datagram Forwarding 15

https://tools.ietf.org/html/rfc1700.html

An Introduction to Computer Networks, Release 1.9.21

to its final destination. The next_hop value in a forwarding table is a single entry; each switch is responsible
for only one step in the packet’s path. However, if all is well, the network of switches will be able to deliver
the packet, one hop at a time, to its ultimate destination.

The “destination” entries in the forwarding table do not have to correspond exactly with the packet des-
tination addresses, though in the examples here they do, and they do for Ethernet datagram forwarding.
However, for IP routing, the table “destination” entries will correspond to prefixes of IP addresses; this
leads to a huge savings in space. The fundamental requirement is that the switch can perform a lookup
operation, using its forwarding table and the destination address in the arriving packet, to determine the next
hop.

Just how the forwarding table is built is a question for later; we will return to this for Ethernet switches
in 2.4.1 Ethernet Learning Algorithm and for IP routers in 9 Routing-Update Algorithms. For now, the
forwarding tables may be thought of as created through initial configuration.

In the diagram below, switch S1 has interfaces 0, 1 and 2, and S2 has interfaces 0,1,2,3. If A is to send a
packet to B, S1 must have a forwarding-table entry indicating that destination B is reached via its interface
2, and S2 must have an entry forwarding the packet out on interface 3.

S1 S20

1

2

30

1

2A B

C D

E
Two switches S1 and S2,

with interface numbers shown

A complete forwarding table for S1, using interface numbers in the next_hop column, would be:

S1
destination next_hop
A 0
C 1
B 2
D 2
E 2

The table for S2 might be as follows, where we have consolidated destinations A and C for visual simplicity.

S2
destination next_hop
A,C 0
D 1
E 2
B 3

16 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

In the network diagrammed above, all links are point-to-point, and so each interface corresponds to the
unique immediate neighbor reached by that interface. We can thus replace the interface entries in the
next_hop column with the name of the corresponding neighbor. For human readers, using neighbors
in the next_hop column is usually much more readable. S1’s table can now be written as follows (with
consolidation of the entries for B, D and E):

S1
destination next_hop
A A
C C
B,D,E S2

A central feature of datagram forwarding is that each packet is forwarded “in isolation”; the switches in-
volved do not have any awareness of any higher-layer logical connections established between endpoints.
This is also called stateless forwarding, in that the forwarding tables have no per-connection state. RFC
1122 put it this way (in the context of IP-layer datagram forwarding):

To improve robustness of the communication system, gateways are designed to be stateless,
forwarding each IP datagram independently of other datagrams. As a result, redundant paths can
be exploited to provide robust service in spite of failures of intervening gateways and networks.

The fundamental alternative to datagram forwarding is virtual circuits, 3.4 Virtual Circuits. In virtual-
circuit networks, each router maintains state about each connection passing through it; different connections
can be routed differently. If packet forwarding depends, for example, on per-connection information – eg
both TCP port numbers – it is not datagram forwarding. (That said, it arguably still is datagram forwarding
if web traffic – to TCP port 80 – is forwarded differently than all other traffic, because that rule does not
depend on the specific connection.)

Datagram forwarding is sometimes allowed to use other information beyond the destination address. In
theory, IP routing can be done based on the destination address and some quality-of-service information,
allowing, for example, different routing to the same destination for high-bandwidth bulk traffic and for low-
latency real-time traffic. In practice, most Internet Service Providers (ISPs) ignore user-provided quality-
of-service information in the IP header, except by prearranged agreement, and route only based on the
destination.

By convention, switching devices acting at the LAN layer and forwarding packets based on the LAN address
are called switches (or, originally, bridges; some still prefer that term), while such devices acting at the IP
layer and forwarding on the IP address are called routers. Datagram forwarding is used both by Ethernet
switches and by IP routers, though the destinations in Ethernet forwarding tables are individual nodes while
the destinations in IP routers are entire networks (that is, sets of nodes).

In IP routers within end-user sites it is common for a forwarding table to include a catchall default entry,
matching any IP address that is nonlocal and so needs to be routed out into the Internet at large. Unlike the
consolidated entries for B, D and E in the table above for S1, which likely would have to be implemented as
actual separate entries, a default entry is a single record representing where to forward the packet if no other
destination match is found. Here is a forwarding table for S1, above, with a default entry replacing the last
three entries:

1.4 Datagram Forwarding 17

https://tools.ietf.org/html/rfc1122.html
https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

S1
destination next_hop
A 0
C 1
default 2

Default entries make sense only when we can tell by looking at an address that it does not represent a
nearby node. This is common in IP networks because an IP address encodes the destination network, and
routers generally know all the local networks. It is however rare in Ethernets, because there is generally
no correlation between Ethernet addresses and locality. If S1 above were an Ethernet switch, and it had
some means of knowing that interfaces 0 and 1 connected directly to individual hosts, not switches – and S1
knew the addresses of these hosts – then making interface 2 a default route would make sense. In practice,
however, Ethernet switches do not know what kind of device connects to a given interface.

1.5 Topology

In the network diagrammed in the previous section, there are no loops; graph theorists might describe this
by saying the network graph is acyclic, or is a tree. In a loop-free network there is a unique path between
any pair of nodes. The forwarding-table algorithm has only to make sure that every destination appears in
the forwarding tables; the issue of choosing between alternative paths does not arise.

However, if there are no loops then there is no redundancy: any broken link will result in partitioning the
network into two pieces that cannot communicate. All else being equal (which it is not, but never mind for
now), redundancy is a good thing. However, once we start including redundancy, we have to make decisions
among the multiple paths to a destination. Consider, for a moment, the following network:

S1 S2

S3 S4 B

A

Should S1 list S2 or S3 as the next_hop to B? Both paths A S1 S2 S4 B and A S1 S3 S4 B get there.
There is no right answer. Even if one path is “faster” than the other, taking the slower path is not exactly
wrong (especially if the slower path is, say, less expensive). Some sort of protocol must exist to provide a
mechanism by which S1 can make the choice (though this mechanism might be as simple as choosing to
route via the first path discovered to the given destination). We also want protocols to make sure that, if S1
reaches B via S2 and the S2 S4 link fails, then S1 will switch over to the still-working S1 S3 S4 B route.

As we shall see, many LANs (in particular Ethernet) prefer “tree” networks with no redundancy, while IP
has complex protocols in support of redundancy (9 Routing-Update Algorithms).

18 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

1.5.1 Traffic Engineering

In some cases the decision above between routes A S1 S2 S4 B and A S1 S3 S4 B might be of material
significance – perhaps the S2–S4 link is slower than the others, or is more congested. We will use the term
traffic engineering to refer to any intentional selection of one route over another, or any elevation of the
priority of one class of traffic. The route selection can either be directly intentional, through configuration,
or can be implicit in the selection or tuning of algorithms that then make these route-selection choices
automatically. As an example of the latter, the algorithms of 9.1 Distance-Vector Routing-Update Algorithm
build forwarding tables on their own, but those tables are greatly influenced by the administrative assignment
of link costs.

With pure datagram forwarding, used at either the LAN or the IP layer, the path taken by a packet is deter-
mined solely by its destination, and traffic engineering is limited to the choices made between alternative
paths. We have already, however, suggested that datagram forwarding can be extended to take quality-of-
service information into account; this may be used to have voice traffic – with its relatively low bandwidth
but intolerance for delay – take an entirely different path than bulk file transfers. Alternatively, the network
manager may simply assign voice traffic a higher priority, so it does not have to wait in queues behind
file-transfer traffic.

The quality-of-service information may be set by the end-user, in which case an ISP may wish to recognize
it only for designated users, which in turn means that the ISP will implicitly use the traffic source when
making routing decisions. Alternatively, the quality-of-service information may be set by the ISP itself,
based on its best guess as to the application; this means that the ISP may be using packet size, port num-
ber (1.12 Transport) and other contents as part of the routing decision. For some explicit mechanisms
supporting this kind of routing, see 9.6 Routing on Other Attributes.

At the LAN layer, traffic-engineering mechanisms are historically limited, though see 2.8 Software-Defined
Networking. At the IP layer, more strategies are available; see 20 Quality of Service.

1.6 Routing Loops

A potential drawback to datagram forwarding is the possibility of a routing loop: a set of entries in the
forwarding tables that cause some packets to circulate endlessly. For example, in the previous picture we
would have a routing loop if, for (nonexistent) destination C, S1 forwarded to S2, S2 forwarded to S4,
S4 forwarded to S3, and S3 forwarded to S1. A packet sent to C would not only not be delivered, but
in circling endlessly it might easily consume a large majority of the bandwidth. Routing loops typically
arise because the creation of the forwarding tables is often “distributed”, and there is no global authority to
detect inconsistencies. Even when there is such an authority, temporary routing loops can be created due to
notification delays.

Routing loops can also occur in networks where the underlying link topology is loop-free; for example, in
the previous diagram we could, again for destination C, have S1 forward to S2 and S2 forward back to S1.
We will refer to such a case as a linear routing loop.

All datagram-forwarding protocols need some way of detecting and avoiding routing loops. Ethernet, for
example, avoids nonlinear routing loops by disallowing loops in the underlying network topology, and avoids
linear routing loops by not having switches forward a packet back out the interface by which it arrived. IP
provides for a one-byte “Time to Live” (TTL) field in the IP header; it is set by the sender and decremented

1.6 Routing Loops 19

An Introduction to Computer Networks, Release 1.9.21

by 1 at each router; a packet is discarded if its TTL reaches 0. This limits the number of times a wayward
packet can be forwarded to the initial TTL value, typically 64.

In datagram routing, a switch is responsible only for the next hop to the ultimate destination; if a switch has
a complete path in mind, there is no guarantee that the next_hop switch or any other downstream switch will
continue to forward along that path. Misunderstandings can potentially lead to routing loops. Consider this
network:

B

A

D

C

B

E

D might feel that the best path to B is D–E–C–B (perhaps because it believes the A–D link is to be avoided).
If E similarly decides the best path to B is E–D–A–B, and if D and E both choose their next_hop for B
based on these best paths, then a linear routing loop is formed: D routes to B via E and E routes to B via D.
Although each of D and E have identified a usable path, that path is not in fact followed. Moral: successful
datagram routing requires cooperation and a consistent view of the network.

1.7 Congestion

Switches introduce the possibility of congestion: packets arriving faster than they can be sent out. This can
happen with just two interfaces, if the inbound interface has a higher bandwidth than the outbound interface;
another common source of congestion is traffic arriving on multiple inputs and all destined for the same
output.

Whatever the reason, if packets are arriving for a given outbound interface faster than they can be sent, a
queue will form for that interface. Once that queue is full, packets will be dropped. The most common
strategy (though not the only one) is to drop any packets that arrive when the queue is full.

The term “congestion” may refer either to the point where the queue is just beginning to build up, or to the
point where the queue is full and packets are lost. In their paper [CJ89], Chiu and Jain refer to the first point
as the knee; this is where the slope of the load vs throughput graph flattens. They refer to the second point
as the cliff; this is where packet losses may lead to a precipitous decline in throughput. Other authors use
the term contention for knee-congestion.

In the Internet, most packet losses are due to congestion. This is not because congestion is especially bad
(though it can be, at times), but rather that other types of losses (eg due to packet corruption) are insignificant
by comparison.

When to Upgrade?

Deciding when a network really does have insufficient bandwidth is not a technical issue but an economic
one. The number of customers may increase, the cost of bandwidth may decrease or customers may
simply be willing to pay more to have data transfers complete in less time; “customers” here can be

20 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

external or in-house. Monitoring of links and routers for congestion can, however, help determine exactly
what parts of the network would most benefit from upgrade.

We emphasize that the presence of congestion does not mean that a network has a shortage of bandwidth.
Bulk-traffic senders (though not real-time senders) attempt to send as fast as possible, and congestion is
simply the network’s feedback that the maximum transmission rate has been reached. For further discussion,
including alternative definitions of longer-term congestion, see [BCL09].

Congestion is a sign of a problem in real-time networks, which we will consider in 20 Quality of Service.
In these networks losses due to congestion must generally be kept to an absolute minimum; one way to
achieve this is to limit the acceptance of new connections unless sufficient resources are available.

1.8 Packets Again

Perhaps the core justification for packets, Baran’s concerns about node failure notwithstanding, is that the
same link can carry, at different times, different packets representing traffic to different destinations and from
different senders. Thus, packets are the key to supporting shared transmission lines; that is, they support
the multiplexing of multiple communications channels over a single cable. The alternative of a separate
physical line between every pair of machines grows prohibitively complex very quickly (though virtual
circuits between every pair of machines in a datacenter are not uncommon; see 3.4 Virtual Circuits).

From this shared-medium perspective, an important packet feature is the maximum packet size, as this repre-
sents the maximum time a sender can send before other senders get a chance. The alternative of unbounded
packet sizes would lead to prolonged network unavailability for everyone else if someone downloaded a
large file in a single 1 Gigabit packet. Another drawback to large packets is that, if the packet is corrupted,
the entire packet must be retransmitted; see 5.3.1 Error Rates and Packet Size.

When a router or switch receives a packet, it (generally) reads in the entire packet before looking at the
header to decide to what next node to forward it. This is known as store-and-forward, and introduces
a forwarding delay equal to the time needed to read in the entire packet. For individual packets this
forwarding delay is hard to avoid (though some switches do implement cut-through switching to begin
forwarding a packet before it has fully arrived), but if one is sending a long train of packets then by keeping
multiple packets en route at the same time one can essentially eliminate the significance of the forwarding
delay; see 5.3 Packet Size.

Total packet delay from sender to receiver is the sum of the following:

• Bandwidth delay, ie sending 1000 Bytes at 20 Bytes/millisecond will take 50 ms. This is a per-link
delay.

• Propagation delay due to the speed of light. For example, if you start sending a packet right now
on a 5000-km cable across the US with a propagation speed of 200 m/µsec (= 200 km/ms, about 2/3
the speed of light in vacuum), the first bit will not arrive at the destination until 25 ms later. The
bandwidth delay then determines how much after that the entire packet will take to arrive.

• Store-and-forward delay, equal to the sum of the bandwidth delays out of each router along the path

• Queuing delay, or waiting in line at busy routers. At bad moments this can exceed 1 sec, though that
is rare. Generally it is less than 10 ms and often is less than 1 ms. Queuing delay is the only delay
component amenable to reduction through careful engineering.

1.8 Packets Again 21

An Introduction to Computer Networks, Release 1.9.21

See 5.1 Packet Delay for more details.

1.9 LANs and Ethernet

A local-area network, or LAN, is a system consisting of

• physical links that are, ultimately, serial lines

• common interfacing hardware connecting the hosts to the links

• protocols to make everything work together

We will explicitly assume that every LAN node is able to communicate with every other LAN node. Some-
times this will require the cooperation of intermediate nodes acting as switches.

Far and away the most common type of (wired) LAN is Ethernet, originally described in a 1976 paper by
Metcalfe and Boggs [MB76]. Ethernet’s popularity is due to low cost more than anything else, though the
primary reason Ethernet cost is low is that high demand has led to manufacturing economies of scale.

The original Ethernet had a bandwidth of 10 Mbps (megabits per second; we will use lower-case “b” for
bits and upper-case “B” for bytes), though nowadays most Ethernet operates at 100 Mbps and gigabit (1000
Mbps) Ethernet (and faster) is widely used in server rooms. (By comparison, as of this writing (2015) the
data transfer rate to a typical faster hard disk is about 1000 Mbps.) Wireless (“Wi-Fi”) LANs are gaining
popularity, and in many settings have supplanted wired Ethernet to end-users.

Many early Ethernet installations were unswitched; each host simply tapped in to one long primary cable
that wound through the building (or floor). In principle, two stations could then transmit at the same time,
rendering the data unintelligible; this was called a collision. Ethernet has several design features intended
to minimize the bandwidth wasted on collisions: stations, before transmitting, check to be sure the line is
idle, they monitor the line while transmitting to detect collisions during the transmission, and, if a collision
is detected, they execute a random backoff strategy to avoid an immediate recollision. See 2.1.5 The Slot
Time and Collisions. While Ethernet collisions definitely reduce throughput, in the larger view they should
perhaps be thought of as a part of a remarkably inexpensive shared-access mediation protocol.

In unswitched Ethernets every packet is received by every host and it is up to the network card in each host
to determine if the arriving packet is addressed to that host. It is almost always possible to configure the
card to forward all arriving packets to the attached host; this poses a security threat and “password sniffers”
that surreptitiously collected passwords via such eavesdropping used to be common.

Password Sniffing

In the fall of 1994 at Loyola University I remotely changed the root password on several CS-department
unix machines at the other end of campus, using telnet. I told no one. Within two hours, someone else
logged into one of these machines, using the new password, from a host in Europe. Password sniffing was
the likely culprit.

Two months later was the so-called “Christmas Day Attack” (12.10.1 ISNs and spoofing). One of the
hosts used to launch this attack was Loyola’s hacked apollo.it.luc.edu. It is unclear the degree to which
password sniffing played a role in that exploit.

22 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

Due to both privacy and efficiency concerns, almost all Ethernets today are fully switched; this ensures that
each packet is delivered only to the host to which it is addressed. One advantage of switching is that it
effectively eliminates most Ethernet collisions; while in principle it replaces them with a queuing issue, in
practice Ethernet switch queues so seldom fill up that they are almost invisible even to network managers
(unlike IP router queues). Switching also prevents host-based eavesdropping, though arguably a better
solution to this problem is encryption. Perhaps the more significant tradeoff with switches, historically, was
that Once Upon A Time they were expensive and unreliable; tapping directly into a common cable was dirt
cheap.

Ethernet addresses are six bytes long. Each Ethernet card (or network interface) is assigned a (supposedly)
unique address at the time of manufacture; this address is burned into the card’s ROM and is called the card’s
physical address or hardware address or MAC (Media Access Control) address. The first three bytes of
the physical address have been assigned to the manufacturer; the subsequent three bytes are a serial number
assigned by that manufacturer.

By comparison, IP addresses are assigned administratively by the local site. The basic advantage of having
addresses in hardware is that hosts automatically know their own addresses on startup; no manual configura-
tion or server query is necessary. It is not unusual for a site to have a large number of identically configured
workstations, for which all network differences derive ultimately from each workstation’s unique Ethernet
address.

The network interface continually monitors all arriving packets; if it sees any packet containing a destination
address that matches its own physical address, it grabs the packet and forwards it to the attached CPU (via a
CPU interrupt).

Ethernet also has a designated broadcast address. A host sending to the broadcast address has its packet
received by every other host on the network; if a switch receives a broadcast packet on one port, it forwards
the packet out every other port. This broadcast mechanism allows host A to contact host B when A does
not yet know B’s physical address; typical broadcast queries have forms such as “Will the designated server
please answer” or (from the ARP protocol) “will the host with the given IP address please tell me your
physical address”.

Traffic addressed to a particular host – that is, not broadcast – is said to be unicast.

Because Ethernet addresses are assigned by the hardware, knowing an address does not provide any direct
indication of where that address is located on the network. In switched Ethernet, the switches must thus have
a forwarding-table record for each individual Ethernet address on the network; for extremely large networks
this ultimately becomes unwieldy. Consider the analogous situation with postal addresses: Ethernet is
somewhat like attempting to deliver mail using social-security numbers as addresses, where each postal
worker is provided with a large catalog listing each person’s SSN together with their physical location. Real
postal mail is, of course, addressed “hierarchically” using ever-more-precise specifiers: state, city, zipcode,
street address, and name / room#. Ethernet, in other words, does not scale well to “large” sizes.

Switched Ethernet works quite well, however, for networks with up to 10,000-100,000 nodes. Forwarding
tables with size in that range are straightforward to manage.

To forward packets correctly, switches must know where all active destination addresses in the LAN are
located; traditional Ethernet switches do this by a passive learning algorithm. (IP routers, by comparison,
use “active” protocols, and some newer Ethernet switches take the approach of 2.8 Software-Defined
Networking.) Typically a host physical address is entered into a switch’s forwarding table when a packet
from that host is first received; the switch notes the packet’s arrival interface and source address and assumes
that the same interface is to be used to deliver packets back to that sender. If a given destination address has

1.9 LANs and Ethernet 23

An Introduction to Computer Networks, Release 1.9.21

not yet been seen, and thus is not in the forwarding table, Ethernet switches still have the backup delivery
option of flooding: forwarding the packet to everyone by treating the destination address like the broadcast
address, and allowing the host Ethernet cards to sort it out. Since this broadcast-like process is not generally
used for more than one packet (after that, the switches will have learned the correct forwarding-table entries),
the risks of excessive traffic and of eavesdropping are minimal.

The xhost,interfacey forwarding table is often easier to think of as xhost,next_hopy, where the next_hop node
is whatever switch or host is at the immediate other end of the link connecting to the given interface. In a
fully switched network where each link connects only two interfaces, the two perspectives are equivalent.

1.10 IP - Internet Protocol

To solve the scaling problem with Ethernet, and to allow support for other types of LANs and point-to-point
links as well, the Internet Protocol was developed. Perhaps the central issue in the design of IP was to
support universal connectivity (everyone can connect to everyone else) in such a way as to allow scaling to
enormous size (in 2013 there appear to be around ~109 nodes, although IP should work to 1010 nodes or
more), without resulting in unmanageably large forwarding tables (currently the largest tables have about
300,000 entries.)

In the early days, IP networks were considered to be “internetworks” of basic networks (LANs); nowadays
users generally ignore LANs and think of the Internet as one large (virtual) network.

To support universal connectivity, IP provides a global mechanism for addressing and routing, so that
packets can actually be delivered from any host to any other host. IP addresses (for the most-common
version 4, which we denote IPv4) are 4 bytes (32 bits), and are part of the IP header that generally follows
the Ethernet header. The Ethernet header only stays with a packet for one hop; the IP header stays with the
packet for its entire journey across the Internet.

An essential feature of IPv4 (and IPv6) addresses is that they can be divided into a network part (a prefix)
and a host part (the remainder). The “legacy” mechanism for designating the IPv4 network and host address
portions was to make the division according to the first few bits:

first few bits first byte network bits host bits name application
0 0-127 8 24 class A a few very large networks
10 128-191 16 16 class B institution-sized networks
110 192-223 24 8 class C sized for smaller entities

For example, the original IP address allocation for Loyola University Chicago was 147.126.0.0, a class B.
In binary, 147 is 10010011.

IP addresses, unlike Ethernet addresses, are administratively assigned. Once upon a time, you would get
your Class B network prefix from the Internet Assigned Numbers Authority, or IANA (they now delegate
this task), and then you would in turn assign the host portion in a way that was appropriate for your local site.
As a result of this administrative assignment, an IP address usually serves not just as an endpoint identifier
but also as a locator, containing embedded location information (at least in the sense of location within the
IP-address-assignment hierarchy, which may not be geographical). Ethernet addresses, by comparison, are
endpoint identifiers but not locators.

24 1 An Overview of Networks

https://www.iana.org/

An Introduction to Computer Networks, Release 1.9.21

The Class A/B/C definition above was spelled out in 1981 in RFC 791, which introduced IP. Class D was
added in 1986 by RFC 988; class D addresses must begin with the bits 1110. These addresses are for
multicast, that is, sending an IP packet to every member of a set of recipients (ideally without actually
transmitting it more than once on any one link).

Nowadays the division into the network and host bits is dynamic, and can be made at different positions
in the address at different levels of the network. For example, a small organization might receive a /27
address block (1/8 the size of a class-C /24) from its ISP, eg 200.1.130.96/27. The ISP routes to the or-
ganization based on this /27 prefix. At some higher level, however, routing might be based on the prefix
200.1.128/18; this might, for example, represent an address block assigned to the ISP (note that the first 18
bits of 200.1.130.x match 200.1.128; the first two bits of 128 and 130, taken as 8-bit quantities, are “10”).
The network/host division point is not carried within the IP header; routers negotiate this division point
when they negotiate the next_hop forwarding information. We will return to this in 7.5 The Classless IP
Delivery Algorithm.

The network portion of an IP address is sometimes called the network number or network address or
network prefix. As we shall see below, most forwarding decisions are made using only the network prefix.
The network prefix is commonly denoted by setting the host bits to zero and ending the resultant address
with a slash followed by the number of network bits in the address: eg 12.0.0.0/8 or 147.126.0.0/16. Note
that 12.0.0.0/8 and 12.0.0.0/9 represent different things; in the latter, the second byte of any host address
extending the network address is constrained to begin with a 0-bit. An anonymous block of IP addresses
might be referred to only by the slash and following digit, eg “we need a /22 block to accommodate all our
customers”.

All hosts with the same network address (same network bits) are said to be on the same IP network and
must be located together on the same LAN; as we shall see below, if two hosts share the same network
address then they will assume they can reach each other directly via the underlying LAN, and if they cannot
then connectivity fails. A consequence of this rule is that outside of the site only the network bits need to be
looked at to route a packet to the site.

Usually, all hosts (or more precisely all network interfaces) on the same physical LAN share the same
network prefix and thus are part of the same IP network. Occasionally, however, one LAN is divided into
multiple IP networks.

Each individual LAN technology has a maximum packet size it supports; for example, Ethernet has a
maximum packet size of about 1500 bytes but the once-competing Token Ring had a maximum of 4 kB.
Today the world has largely standardized on Ethernet and almost entirely standardized on Ethernet packet-
size limits, but this was not the case when IP was introduced and there was real concern that two hosts on
separate large-packet networks might try to exchange packets too large for some small-packet intermediate
network to carry.

Therefore, in addition to routing and addressing, the decision was made that IP must also support fragmen-
tation: the division of large packets into multiple smaller ones (in other contexts this may also be called
segmentation). The IP approach is not very efficient, and IP hosts go to considerable lengths to avoid frag-
mentation. IP does require that packets of up to 576 bytes be supported, and so a common legacy strategy
was for a host to limit a packet to at most 512 user-data bytes whenever the packet was to be sent via a
router; packets addressed to another host on the same LAN could of course use a larger packet size. Despite
its limited use, however, fragmentation is essential conceptually, in order for IP to be able to support large
packets without knowing anything about the intervening networks.

IP is a best effort system; there are no IP-layer acknowledgments or retransmissions. We ship the packet

1.10 IP - Internet Protocol 25

https://tools.ietf.org/html/rfc791.html
https://tools.ietf.org/html/rfc988.html

An Introduction to Computer Networks, Release 1.9.21

off, and hope it gets there. Most of the time, it does.

Architecturally, this best-effort model represents what is known as connectionless networking: the IP layer
does not maintain information about endpoint-to-endpoint connections, and simply forwards packets like a
giant LAN. Responsibility for creating and maintaining connections is left for the next layer up, the TCP
layer. Connectionless networking is not the only way to do things: the alternative could have been some
form connection-oriented internetworking, in which routers do maintain state information about individual
connections. Later, in 3.4 Virtual Circuits, we will examine how virtual-circuit networking can be used to
implement a connection-oriented approach; virtual-circuit switching is the primary alternative to datagram
switching.

Connectionless (IP-style) and connection-oriented networking each have advantages. Connectionless net-
working is conceptually more reliable: if routers do not hold connection state, then they cannot lose con-
nection state. The path taken by the packets in some higher-level connection can easily be dynamically
rerouted. Finally, connectionless networking makes it hard for providers to bill by the connection; once
upon a time (in the era of dollar-a-minute phone calls) this was a source of mild astonishment to many new
users. (This was not always a given; the paper [CK74] considers, among other things, the possibility of
per-packet accounting.)

The primary advantage of connection-oriented networking, on the other hand, is that the routers are then
much better positioned to accept reservations and to make quality-of-service guarantees. This remains
something of a sore point in the current Internet: if you want to use Voice-over-IP, or VoIP, telephones, or
if you want to engage in video conferencing, your packets will be treated by the Internet core just the same
as if they were low-priority file transfers. There is no “priority service” option.

The most common form of IP packet loss is router queue overflows, representing network congestion. Packet
losses due to packet corruption are rare (eg less than one in 104; perhaps much less). But in a connectionless
world a large number of hosts can simultaneously attempt to send traffic through one router, in which case
queue overflows are hard to avoid.

Although we will often assume, for simplicity, that routers have a fixed input queue size, the reality is often
a little more complicated. See 14.8 Active Queue Management and 19 Queuing and Scheduling.

1.10.1 IP Forwarding

IP routers use datagram forwarding, described in 1.4 Datagram Forwarding above, to deliver packets, but
the “destination” values listed in the forwarding tables are network prefixes – representing entire LANs –
instead of individual hosts. The goal of IP forwarding, then, becomes delivery to the correct LAN; a separate
process is used to deliver to the final host once the final LAN has been reached.

The entire point, in fact, of having a network/host division within IP addresses is so that routers need to
list only the network prefixes of the destination addresses in their IP forwarding tables. This strategy is the
key to IP scalability: it saves large amounts of forwarding-table space, it saves time as smaller tables allow
faster lookup, and it saves the bandwidth and overhead that would be needed for routers to keep track of
individual addresses. To get an idea of the forwarding-table space savings, there are currently (2013) around
a billion hosts on the Internet, but only 300,000 or so networks listed in top-level forwarding tables.

With IP’s use of network prefixes as forwarding-table destinations, matching an actual packet address to a
forwarding-table entry is no longer a matter of simple equality comparison; routers must compare appropri-
ate prefixes.

26 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

IP forwarding tables are sometimes also referred to as “routing tables”; in this book, however, we make
at least a token effort to use “forwarding” to refer to the packet forwarding process, and “routing” to refer
to mechanisms by which the forwarding tables are maintained and updated. (If we were to be completely
consistent here, we would use the term “forwarding loop” rather than “routing loop”.)

Now let us look at an example of how IP forwarding (or routing) works. We will assume that all network
nodes are either hosts – user machines, with a single network connection – or routers, which do packet-
forwarding only. Routers are not directly visible to users, and always have at least two different network
interfaces representing different networks that the router is connecting. (Machines can be both hosts and
routers, but this introduces complications.)

Suppose A is the sending host, sending a packet to a destination host D. The IP header of the packet will
contain D’s IP address in the “destination address” field (it will also contain A’s own address as the “source
address”). The first step is for A to determine whether D is on the same LAN as itself or not; that is, whether
D is local. This is done by looking at the network part of the destination address, which we will denote by
Dnet. If this net address is the same as A’s (that is, if it is equal numerically to Anet), then A figures D is on
the same LAN as itself, and can use direct LAN delivery. It looks up the appropriate physical address for D
(probably with the ARP protocol, 7.9 Address Resolution Protocol: ARP), attaches a LAN header to the
packet in front of the IP header, and sends the packet straight to D via the LAN.

If, however, Anet and Dnet do not match – D is non-local – then A looks up a router to use. Most ordinary
hosts use only one router for all non-local packet deliveries, making this choice very simple. A then forwards
the packet to the router, again using direct delivery over the LAN. The IP destination address in the packet
remains D in this case, although the LAN destination address will be that of the router.

When the router receives the packet, it strips off the LAN header but leaves the IP header with the IP
destination address. It extracts the destination D, and then looks at Dnet. The router first checks to see
if any of its network interfaces are on the same LAN as D; recall that the router connects to at least one
additional network besides the one for A. If the answer is yes, then the router uses direct LAN delivery to the
destination, as above. If, on the other hand, Dnet is not a LAN to which the router is connected directly, then
the router consults its internal forwarding table. This consists of a list of networks each with an associated
next_hop address. These xnet,next_hopy tables compare with switched-Ethernet’s xhost,next_hopy tables;
the former type will be smaller because there are many fewer nets than hosts. The next_hop addresses in the
table are chosen so that the router can always reach them via direct LAN delivery via one of its interfaces;
generally they are other routers. The router looks up Dnet in the table, finds the next_hop address, and uses
direct LAN delivery to get the packet to that next_hop machine. The packet’s IP header remains essentially
unchanged, although the router most likely attaches an entirely new LAN header.

The packet continues being forwarded like this, from router to router, until it finally arrives at a router that
is connected to Dnet; it is then delivered by that final router directly to D, using the LAN.

To make this concrete, consider the following diagram:

R1 R2 R3

A B C F E D: 200.0.1.37

200.0.0/24 200.0.1/24

Two LANs joined by three routers

With Ethernet-style forwarding, R2 would have to maintain entries for each of A,B,C,D,E,F. With IP for-

1.10 IP - Internet Protocol 27

An Introduction to Computer Networks, Release 1.9.21

warding, R2 has just two entries to maintain in its forwarding table: 200.0.0/24 and 200.0.1/24. If A sends
to D, at 200.0.1.37, it puts this address into the IP header, notes that 200.0.0 ‰ 200.0.1, and thus concludes
D is not a local delivery. A therefore sends the packet to its router R1, using LAN delivery. R1 looks up the
destination network 200.0.1 in its forwarding table and forwards the packet to R2, which in turn forwards it
to R3. R3 now sees that it is connected directly to the destination network 200.0.1, and delivers the packet
via the LAN to D, by looking up D’s physical address.

In this diagram, IP addresses for the ends of the R1–R2 and R2–R3 links are not shown. They could be
assigned global IP addresses, but they could also use “private” IP addresses. Assuming these links are
point-to-point links, they might not actually need IP addresses at all; we return to this in 7.12 Unnumbered
Interfaces.

One can think of the network-prefix bits as analogous to the “zip code” on postal mail, and the host bits as
analogous to the street address. The internal parts of the post office get a letter to the right zip code, and
then an individual letter carrier (the LAN) gets it to the right address. Alternatively, one can think of the
network bits as like the area code of a phone number, and the host bits as like the rest of the digits. Newer
protocols that support different net/host division points at different places in the network – sometimes called
hierarchical routing – allow support for addressing schemes that correspond to, say, zip/street/user, or
areacode/exchange/subscriber.

The Invertebrate Internet

The backbone is not as essential as it once was. Once Upon A Time, all traffic between different providers
passed through the backbone. The legacy backbone still exists, but today it is also common for traffic
from large providers such as Google to take a backbone-free path; such providers connect (or “peer”)
directly with large residential ISPs such as Comcast. Google refers to this as their “Edge Network”; see
peering.google.com and also 10.6.7.1 MED values and traffic engineering.

We will refer to the Internet backbone as those IP routers that specialize in large-scale routing on the
commercial Internet, and which generally have forwarding-table entries covering all public IP addresses;
note that this is essentially a business definition rather than a technical one. We can revise the table-size
claim of the previous paragraph to state that, while there are many private IP networks, there are about
800,000 separate network prefixes (as of 2019) visible to the backbone. (In 2012, the year this book was
started, there were about 400,000 prefixes.) A forwarding table of 800,000 entries is quite feasible; a table a
hundred times larger is not, let alone a thousand times larger. For a graph of the growth in network prefixes
/ forwarding-table entries, see 10.6.5 BGP Table Size.

IP routers at non-backbone sites generally know all locally assigned network prefixes, eg 200.0.0/24 and
200.0.1/24 above. If a destination does not match any locally assigned network prefix, the packet needs
to be routed out into the Internet at large; for typical non-backbone sites this almost always this means
the packet is sent to the ISP that provides Internet connectivity. Generally the local routers will contain a
catchall default entry covering all nonlocal networks; this means that the router needs an explicit entry only
for locally assigned networks. This greatly reduces the forwarding-table size. The Internet backbone can be
approximately described, in fact, as those routers that do not have a default entry.

For most purposes, the Internet can be seen as a combination of end-user LANs together with point-to-point
links joining these LANs to the backbone, point-to-point links also tie the backbone together. Both LANs
and point-to-point links appear in the diagram above.

28 1 An Overview of Networks

https://google.com
http://comcast.com
https://peering.google.com/

An Introduction to Computer Networks, Release 1.9.21

Just how routers build their xdestnet,next_hopy forwarding tables is a major topic itself, which we cover in
9 Routing-Update Algorithms. Unlike Ethernet, IP routers do not have a “flooding” delivery mechanism
as a fallback, so the tables must be constructed in advance. (There is a limited form of IP broadcast, but it
is basically intended for reaching the local LAN only, and does not help at all with delivery in the event that
the destination network is unknown.)

Most forwarding-table-construction algorithms used on a set of routers under common management fall into
either the distance-vector or the link-state category; these are described in 9 Routing-Update Algorithms.
Routers not under common management – that is, neighboring routers belonging to different organizations
– exchange information through the Border Gateway Protocol, BGP (10 Large-Scale IP Routing). BGP
allows routing decisions to be based on a fusion of “technical” information (which sites are reachable at all,
and through where) together with “policy” information representing legal or commercial agreements: which
outside routers are “preferred”, whose traffic an ISP will carry even if it isn’t to one of the ISP’s customers,
etc.

Most common residential “routers” involve network address translation in addition to packet forwarding.
See 7.7 Network Address Translation.

1.10.2 The Future of IPv4

As mentioned earlier, allocation of blocks of IP addresses is the responsibility of the Internet Assigned
Numbers Authority. IANA long ago delegated the job of allocating network prefixes to individual sites; they
limited themselves to handing out /8 blocks (class A blocks) to the five regional registries, which are

• ARIN – North America

• RIPE – Europe, the Middle East and parts of Asia

• APNIC – East Asia and the Pacific

• AfriNIC – most of Africa

• LACNIC – Central and South America

As of the end of January 2011, the IANA finally ran out of /8 blocks. There is a table at http://www.iana.
org/assignments/ipv4-address-space/ipv4-address-space.xml of all IANA assignments of /8 blocks; exami-
nation of the table shows all have now been allocated.

In September 2015, ARIN ran out of its pool of IPv4 addresses. Most of ARIN’s customers are ISPs, which
can now obtain new IPv4 addresses only by buying unused address blocks from other organizations.

A few months after the IANA pool ran out in 2011, Microsoft purchased 666,624 IP addresses (2604 Class-
C blocks) in a Nortel bankruptcy auction for $7.5 million. Three years later, IP-address prices fell to half
that, but, by 2019, had climbed to the $20-and-up range. It is possible that the market for IPv4 address
blocks will continue to develop; alternatively, this turn of events may accelerate implementation of IPv6,
which has 128-bit addresses.

An IPv4 address price in the range of $20 is unlikely to have much impact in residential Internet access,
where annual connection fees are often $600. Large organizations use NAT (7.7 Network Address Trans-
lation) extensively, leading to the need for only a small number of globally visible addresses. The IPv4
address shortage does not even seem to have affected wireless networking. It does, however, lead to ineffi-
cient routing tables, as sites that might once have had a single /17 address block – and thus a single backbone

1.10 IP - Internet Protocol 29

https://www.arin.net/
http://www.ripe.net/
http://www.apnic.net/
http://www.afrinic.net/
http://www.lacnic.net/
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
https://www.arin.net/announcements/2015/20150924.html

An Introduction to Computer Networks, Release 1.9.21

forwarding-table entry – might now be spread over more than a hundred /24 blocks and concomitant for-
warding entries.

1.11 DNS

IP addresses are hard to remember (nearly impossible in IPv6). The domain name system, or DNS
(7.8 DNS), comes to the rescue by creating a way to convert hierarchical text names to IP addresses.
Thus, for example, one can type www.luc.edu instead of 147.126.1.230. Virtually all Internet software
uses the same basic library calls to convert DNS names to actual addresses.

One thing DNS makes possible is changing a website’s IP address while leaving the name alone. This
allows moving a site to a new provider, for example, without requiring users to learn anything new. It
is also possible to have several different DNS names resolve to the same IP address, and – through some
modest trickery – have the http (web) server at that IP address handle the different DNS names as completely
different websites.

DNS is hierarchical and distributed. In looking up cs.luc.edu four different DNS servers may be
queried: for the so-called “DNS root zone”, for edu, for luc.edu and for cs.luc.edu. Searching
a hierarchy can be cumbersome, so DNS search results are normally cached locally. If a name is not found
in the cache, the lookup may take a couple seconds. The DNS hierarchy need have nothing to do with the
IP-address hierarchy.

1.12 Transport

The IP layer gets packets from one node to another, but it is not well-suited to transport. First, IP routing
is a “best-effort” mechanism, which means packets can and do get lost sometimes. Additionally, data that
does arrive can arrive out of order. Finally, IP only supports sending to a specific host; normally, one wants
to send to a given application running on that host. Email and web traffic, or two different web sessions,
should not be commingled!

The Transport layer is the layer above the IP layer that handles these sorts of issues, often by creating some
sort of connection abstraction. Far and away the most popular mechanism in the Transport layer is the
Transmission Control Protocol, or TCP. TCP extends IP with the following features:

• reliability: TCP numbers each packet, and keeps track of which are lost and retransmits them after
a timeout. It holds early-arriving out-of-order packets for delivery at the correct time. Every arriving
data packet is acknowledged by the receiver; timeout and retransmission occurs when an acknowl-
edgment packet isn’t received by the sender within a given time.

• connection-orientation: Once a TCP connection is made, an application sends data simply by writing
to that connection. No further application-level addressing is needed. TCP connections are managed
by the operating-system kernel, not by the application.

• stream-orientation: An application using TCP can write 1 byte at a time, or 100 kB at a time; TCP
will buffer and/or divide up the data into appropriate sized packets.

• port numbers: these provide a way to specify the receiving application for the data, and also to
identify the sending application.

30 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

• throughput management: TCP attempts to maximize throughput, while at the same time not con-
tributing unnecessarily to network congestion.

TCP endpoints are of the form xhost,porty; these pairs are known as socket addresses, or sometimes as just
sockets though the latter refers more properly to the operating-system objects that receive the data sent to
the socket addresses. Servers (or, more precisely, server applications) listen for connections to sockets they
have opened; the client is then any endpoint that initiates a connection to a server.

When you enter a host name in a web browser, it opens a TCP connection to the server’s port 80 (the standard
web-traffic port), that is, to the server socket with socket-address xserver,80y. If you have several browser
tabs open, each might connect to the same server socket, but the connections are distinguishable by virtue
of using separate ports (and thus having separate socket addresses) on the client end (that is, your end).

A busy server may have thousands of connections to its port 80 (the web port) and hundreds of connections
to port 25 (the email port). Web and email traffic are kept separate by virtue of the different ports used. All
those clients to the same port, though, are kept separate because each comes from a unique xhost,porty pair.
A TCP connection is determined by the xhost,porty socket address at each end; traffic on different connec-
tions does not intermingle. That is, there may be multiple independent connections to xwww.luc.edu,80y.
This is somewhat analogous to certain business telephone numbers of the “operators are standing by” type,
which support multiple callers at the same time to the same toll-free number. Each call to that number
is answered by a different operator (corresponding to a different cpu process), and different calls do not
“overhear” each other.

TCP uses the sliding-windows algorithm, 6 Abstract Sliding Windows, to keep multiple packets en route
at any one time. The window size represents the number of packets simultaneously in transit (TCP actually
keeps track of the window size in bytes, but packets are easier to visualize). If the window size is 10
packets, for example, then at any one time 10 packets are in transit (perhaps 5 data packets and 5 returning
acknowledgments). Assuming no packets are lost, then as each acknowledgment arrives the window “slides
forward” by one packet. The data packet 10 packets ahead is then sent, to maintain a total of 10 packets
on the wire. For example, consider the moment when the ten packets 20-29 are in transit. When ACK[20]
is received, the number of packets outstanding drops to 9 (packets 21-29). To keep 10 packets in flight,
Data[30] is sent. When ACK[21] is received, Data[31] is sent, and so on.

Sliding windows minimizes the effect of store-and-forward delays, and propagation delays, as these then
only count once for the entire windowful and not once per packet. Sliding windows also provides an auto-
matic, if partial, brake on congestion: the queue at any switch or router along the way cannot exceed the
window size. In this it compares favorably with constant-rate transmission, which, if the available band-
width falls below the transmission rate, always leads to overflowing queues and to a significant percentage of
dropped packets. Of course, if the window size is too large, a sliding-windows sender may also experience
dropped packets.

The ideal window size, at least from a throughput perspective, is such that it takes one round-trip time to send
an entire window, so that the next ACK will always be arriving just as the sender has finished transmitting the
window. Determining this ideal size, however, is difficult; for one thing, the ideal size varies with network
load. As a result, TCP approximates the ideal size. The most common TCP strategy – that of so-called TCP
Reno – is that the window size is slowly raised until packet loss occurs, which TCP takes as a sign that it
has reached the limit of available network resources. At that point the window size is reduced to half its
previous value, and the slow climb resumes. The effect is a “sawtooth” graph of window size with time,
which oscillates (more or less) around the “optimal” window size. For an idealized sawtooth graph, see
13.1.1 The Somewhat-Steady State; for some “real” (simulation-created) sawtooth graphs see 16.4.1 Some
TCP Reno cwnd graphs.

1.12 Transport 31

An Introduction to Computer Networks, Release 1.9.21

While this window-size-optimization strategy has its roots in attempting to maximize the available band-
width, it also has the effect of greatly limiting the number of packet-loss events. As a result, TCP has come
to be the Internet protocol charged with reducing (or at least managing) congestion on the Internet, and –
relatedly – with ensuring fairness of bandwidth allocations to competing connections. Core Internet routers
– at least in the classical case – essentially have no role in enforcing congestion or fairness restrictions at all.
The Internet, in other words, places responsibility for congestion avoidance cooperatively into the hands of
end users. While “cheating” is possible, this cooperative approach has worked remarkably well.

While TCP is ubiquitous, the real-time performance of TCP is not always consistent: if a packet is lost,
the receiving TCP host will not turn over anything further to the receiving application until the lost packet
has been retransmitted successfully; this is often called head-of-line blocking. This is a serious problem
for sound and video applications, which can discretely handle modest losses but which have much more
difficulty with sudden large delays. A few lost packets ideally should mean just a few brief voice dropouts
(pretty common on cell phones) or flicker/snow on the video screen (or just reuse of the previous frame);
both of these are better than pausing completely.

The basic alternative to TCP is known as UDP, for User Datagram Protocol. UDP, like TCP, provides port
numbers to support delivery to multiple endpoints within the receiving host, in effect to a specific process on
the host. As with TCP, a UDP socket consists of a xhost,porty pair. UDP also includes, like TCP, a checksum
over the data. However, UDP omits the other TCP features: there is no connection setup, no lost-packet
detection, no automatic timeout/retransmission, and the application must manage its own packetization.
This simplicity should not be seen as all negative: the absence of connection setup means data transmission
can get started faster, and the absence of lost-packet detection means there is no head-of-line blocking. See
11 UDP Transport.

The Real-time Transport Protocol, or RTP, sits above UDP and adds some additional support for voice and
video applications.

1.12.1 Transport Communications Patterns

The two “classic” traffic patterns for Internet communication are these:

• Interactive or bursty communications such as via ssh or telnet, with long idle times between short
bursts

• Bulk file transfers, such as downloading a web page

TCP handles both of these well, although its congestion-management features apply only when a large
amount of data is in transit at once. Web browsing is something of a hybrid; over time, there is usually
considerable burstiness, but individual pages now often exceed 1 MB.

To the above we might add request/reply operations, eg to query a database or to make DNS requests. TCP
is widely used here as well, though most DNS traffic still uses UDP. There are periodic calls for a new
protocol specifically addressing this pattern, though at this point the use of TCP is well established. If a
sequence of request/reply operations is envisioned, a single TCP connection makes excellent sense, as the
connection-setup overhead is minimal by comparison. See also 11.5 Remote Procedure Call (RPC) and
12.22.2 SCTP.

This century has seen an explosion in streaming video (20.3.2 Streaming Video), in lengths from a few
minutes to a few hours. Streaming radio stations might be left playing indefinitely. TCP generally works
well here, assuming the receiver can get, say, a minute ahead, buffering the video that has been received

32 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

but not yet viewed. That way, if there is a dip in throughput due to congestion, the receiver has time to
recover. Buffering works a little less well for streaming radio, as the listener doesn’t want to get too far
behind, though ten seconds is reasonable. Fortunately, audio bandwidth is smaller.

Another issue with streaming video is the bandwidth demand. Most streaming-video services attempt
to estimate the available throughput, and then adapt to that throughput by changing the video resolution
(20.3 Real-time Traffic).

Typically, video streaming operates on a start/stop basis: the sender pauses when the receiver’s playback
buffer is “full”, and resumes when the playback buffer drops below a certain threshold.

If the video (or, for that matter, voice audio) is interactive, there is much less opportunity for stream buffer-
ing. If someone asks a simple question on an Internet telephone call, they generally want an answer more
or less immediately; they do not expect to wait for the answer to make it through the other party’s stream
buffer. 200 ms of buffering is noticeable. Here we enter the realm of genuine real-time traffic (20.3 Real-
time Traffic). UDP is often used to avoid head-of-line blocking. Lower bandwidth helps; voice-grade
communications traditionally need only 8 kB/sec, less if compression is used. On the other hand, there may
be constraints on the variation in delivery time (known as jitter; see 20.11.3 RTP Control Protocol for a
specific numeric interpretation). Interactive video, with its much higher bandwidth requirements, is more
difficult; fortunately, users seem to tolerate the common pauses and freezes.

Within the Transport layer, essentially all network connections involve a client and a server. Often this
pattern is repeated at the Application layer as well: the client contacts the server and initiates a login session,
or browses some web pages, or watches a movie. Sometimes, however, Application-layer exchanges fit the
peer-to-peer model better, in which the two endpoints are more-or-less co-equals. Some examples include

• Internet telephony: there is no benefit in designating the party who place the call as the “client”

• Message passing in a CPU cluster, often using 11.5 Remote Procedure Call (RPC)

• The routing-communication protocols of 9 Routing-Update Algorithms. When router A reports to
router B we might call A the client, but over time, as A and B report to one another repeatedly, the
peer-to-peer model makes more sense.

• So-called peer-to-peer file-sharing, where individuals exchange files with other individuals (and as
opposed to “cloud-based” file-sharing in which the “cloud” is the server).

RFC 5694 contains additional discussion of peer-to-peer patterns.

1.12.2 Content-Distribution Networks

Sites with an extremely large volume of content to distribute often turn to a specialized communication
pattern called a content-distribution network or CDN. To reduce the amount of long-distance traffic, or to
reduce the round-trip time, a site replicates its content at multiple datacenters (also called Points of Presence
(PoPs), nodes, access points or edge servers). When a user makes a request (eg for a web page or a video),
the request is routed to the nearest (or approximately nearest) datacenter, and the content is delivered from
there.

CDN Mapping

1.12 Transport 33

https://tools.ietf.org/html/rfc5694.html

An Introduction to Computer Networks, Release 1.9.21

For a geographical map of the servers in the NetFlix CDN as of 2016, see [BCTCU16]. The map was
created solely through end-user measurements. Most of the servers are in North and South America and
Europe.

Large web pages typically contain both static content and also individualized dynamic content. On a typical
Facebook page, for example, the videos and javascript might be considered static, while the individual wall
posts might be considered dynamic. The CDN may cache all or most of the static content at each of its edge
servers, leaving the dynamic content to come from a centralized server. Alternatively, the dynamic content
may be replicated at each CDN edge node as well, though this introduces some real-time coordination issues.

If dynamic content is not replicated, the CDN may include private high-speed links between its nodes,
allowing for rapid low-congestion delivery to any node. Alternatively, CDN nodes may simply communicate
using the public Internet. Finally, the CDN may (or may not) be configured to support fast interactive traffic
between nodes, eg teleconferencing traffic, as is outlined in 20.6.1 A CDN Alternative to IntServ.

Organizations can create their own CDNs, but often turn to specialized CDN providers, who often combine
their CDN services with website-hosting services.

In principle, all that is needed to create a CDN is a multiplicity of datacenters, each with its own connection
to the Internet; private links between datacenters are also common. In practice, many CDN providers also
try to build direct connections with the ISPs that serve their customers; the Google Edge Network above
does this. This can improve performance and reduce traffic costs; we will return to this in 10.6.7.1 MED
values and traffic engineering.

Finding the edge server that is closest to a given user is a tricky issue. There are three techniques in common
use. In the first, the edge servers are all given different IP addresses, and DNS is configured to have users
receive the IP address of the closest edge server, 7.8 DNS. In the second, each edge server has the same IP
address, and anycast routing is used to route traffic from the user to the closest edge server, 10.6.8 BGP
and Anycast. Finally, for HTTP applications a centralized server can look up the approximate location of
the user, and then redirect the web page to the closest edge server.

1.13 Firewalls

One problem with having a program on your machine listening on an open TCP port is that someone may
connect and then, using some flaw in the software on your end, do something malicious to your machine.
Damage can range from the unintended downloading of personal data to compromise and takeover of your
entire machine, making it a distributor of viruses and worms or a steppingstone in later break-ins of other
machines.

A strategy known as buffer overflow (22.2 Stack Buffer Overflow) has been the basis for a great many
total-compromise attacks. The idea is to identify a point in a server program where it fills a memory
buffer with network-supplied data without careful length checking; almost any call to the C library function
gets(buf) will suffice. The attacker then crafts an oversized input string which, when read by the server
and stored in memory, overflows the buffer and overwrites subsequent portions of memory, typically con-
taining the stack-frame pointers. The usual goal is to arrange things so that when the server reaches the end
of the currently executing function, control is returned not to the calling function but instead to the attacker’s
own payload code located within the string.

34 1 An Overview of Networks

https://www.netflix.com

An Introduction to Computer Networks, Release 1.9.21

A firewall is a mechanism to block connections deemed potentially risky, eg those originating from outside
the site. Generally ordinary workstations do not ever need to accept connections from the Internet; client
machines instead initiate connections to (better-protected) servers. So blocking incoming connections works
reasonably well; when necessary (eg for games) certain ports can be selectively unblocked.

The original firewalls were built into routers. Incoming traffic to servers was often blocked unless it was
sent to one of a modest number of “open” ports; for non-servers, typically all inbound connections were
blocked. This allowed internal machines to operate reasonably safely, though being unable to accept incom-
ing connections is sometimes inconvenient.

Nowadays per-host firewalls – in addition to router-based firewalls – are common: you can configure your
workstation not to accept inbound connections to most (or all) ports regardless of whether software on the
workstation requests such a connection. Outbound connections can, in many cases, also be prevented.

The typical home router implements something called network-address translation (7.7 Network Address
Translation), which, in addition to conserving IPv4 addresses, also provides firewall protection.

1.14 Some Useful Utilities

There exists a great variety of useful programs for probing and diagnosing networks. Here we list a few
of the simpler, more common and available ones; some of these are addressed in more detail in subsequent
chapters. Some of these, like ping, are generally present by default; others will have to be installed from
somewhere.

ping

Ping is useful to determine if another machine is accessible, eg

ping www.cs.luc.edu
ping 147.126.1.230

See 7.11 Internet Control Message Protocol for how it works. Sometimes ping fails because the necessary
packets are blocked by a firewall.

ifconfig, ipconfig, ip

To find your own IP address you can use ipconfig on Windows, ifconfig on Linux and Macintosh
systems, or the newer ip addr list on Linux. The output generally lists all active interfaces but can be
restricted to selected interfaces if desired. The ip command in particular can do many other things as well.
The Windows command netsh interface ip show config also provides IP addresses.

nslookup, dig and host

This trio of programs, all developed by the Internet Systems Consortium, are all used for DNS lookups.
They differ in convenience and options. The oldest is nslookup, the one with the most options (by a
rather wide margin) is dig, and the newest and arguably most convenient for normal usage is host.

nslookup intronetworks.cs.luc.edu

Non-authoritative answer:
Name: intronetworks.cs.luc.edu
Address: 162.216.18.28

1.14 Some Useful Utilities 35

http://isc.org

An Introduction to Computer Networks, Release 1.9.21

dig intronetworks.cs.luc.edu

...
;; ANSWER SECTION:
intronetworks.cs.luc.edu. 86400 IN A 162.216.18.28
...

host intronetworks.cs.luc.edu

intronetworks.cs.luc.edu has address 162.216.18.28
intronetworks.cs.luc.edu has IPv6 address 2600:3c03::f03c:91ff:fe69:f438

See 7.8.2 nslookup and dig.

traceroute

This lists the route from you to a remote host:

traceroute intronetworks.cs.luc.edu

1 147.126.65.1 (147.126.65.1) 0.751 ms 0.753 ms 0.783 ms
2 147.126.95.54 (147.126.95.54) 1.319 ms 1.286 ms 1.253 ms
3 12.31.132.169 (12.31.132.169) 1.225 ms 1.231 ms 1.193 ms
4 cr83.cgcil.ip.att.net (12.123.7.46) 4.983 ms cr84.cgcil.ip.att.net (12.

ãÑ123.7.170) 4.825 ms 4.812 ms
5 cr83.cgcil.ip.att.net (12.123.7.46) 4.926 ms 4.904 ms 4.888 ms
6 cr1.cgcil.ip.att.net (12.122.99.33) 5.043 ms cr2.cgcil.ip.att.net (12.

ãÑ122.132.109) 5.343 ms 5.317 ms
7 gar13.cgcil.ip.att.net (12.122.132.121) 3.879 ms 18.347 ms ggr4.cgcil.

ãÑip.att.net (12.122.133.33) 2.987 ms
8 chi-b21-link.telia.net (213.248.87.253) 2.344 ms 2.305 ms 2.409 ms
9 nyk-bb2-link.telia.net (80.91.248.197) 24.065 ms nyk-bb1-link.telia.net

ãÑ(213.155.136.70) 24.986 ms nyk-bb2-link.telia.net (62.115.137.58) 23.158
ãÑms
10 nyk-b3-link.telia.net (62.115.112.255) 23.557 ms 23.548 ms nyk-b3-link.

ãÑtelia.net (80.91.248.178) 24.510 ms
11 netaccess-tic-133837-nyk-b3.c.telia.net (213.248.99.90) 23.957 ms 24.

ãÑ382 ms 24.164 ms
12 0.e1-4.tbr1.mmu.nac.net (209.123.10.101) 24.922 ms 24.737 ms 24.754 ms
13 207.99.53.42 (207.99.53.42) 24.024 ms 24.249 ms 23.924 ms

The last router (and intronetworks.cs.luc.edu itself) don’t respond to the traceroute packets, so
the list is not quite complete. The Windows tracert utility is functionally equivalent. See 7.11.1 Tracer-
oute and Time Exceeded for further information.

Traceroute sends, by default, three probes for each router. Sometimes the responses do not all come back
from the same router, as happened above at routers 4, 6, 7, 9 and 10. Router 9 sent back three distinct
responses.

On Linux systems the mtr command may be available as an alternative to traceroute; it repeats the traceroute
at one-second intervals and generates cumulative statistics.

36 1 An Overview of Networks

https://en.wikipedia.org/wiki/MTR_(software)

An Introduction to Computer Networks, Release 1.9.21

route and netstat

The commands route, route print (Windows), ip route show (Linux), and netstat -r (all
systems) display the host’s local IP forwarding table. For workstations not acting as routers, this includes the
route to the default router and, usually, not much else. The default route is sometimes listed as destination
0.0.0.0 with netmask 0.0.0.0 (equivalent to 0.0.0.0/0).

The command netstat -a shows the existing TCP connections and open UDP sockets.

netcat

The netcat program, often called nc, allows the user to create TCP or UDP connections and send lines
of text back and forth. It is seldom included by default. See 11.1.4 netcat and 12.6.2 netcat again.

WireShark

This is a convenient combination of packet capture and packet analysis, from wireshark.org. See 12.4 TCP
and WireShark and 8.11 Using IPv6 and IPv4 Together for examples.

WireShark was originally named Etherreal. An earlier command-line-only packet-capture program is tcp-
dump, though WireShark has greatly expanded support for packet-format decoding. Both WireShark and
tcpdump support both live packet capture and reading from .pcap (packet capture) and .pcapng (next
generation) files.

WireShark is the only non-command-line program listed here. It is sometimes desired to monitor packets
on a remote system. If X-windows is involved (eg on Linux), this can be done by logging in from one’s
local system using ssh -X, which enables X-windows forwarding, and then starting wireshark (or
perhaps sudo wireshark) from the command line. Other alternatives include tcpdump and tshark; the
latter is part of the WireShark distribution and supports the same packet-decoding facilities as WireShark.
Finally, there is termshark, a frontend for tshark that offers a terminal-based interface reasonably similar to
WireShark’s graphical interface.

1.15 IETF and OSI

The Internet protocols discussed above are defined by the Internet Engineering Task Force, or IETF (under
the aegis of the Internet Architecture Board, or IAB, in turn under the aegis of the Internet Society,
ISOC). The IETF publishes “Request For Comment” or RFC documents that contain all the formal Internet
standards; these are available at http://www.ietf.org/rfc.html (note that, by the time a document appears
here, the actual comment-requesting period is generally long since closed). The five-layer model is closely
associated with the IETF, though is not an official standard.

RFC standards sometimes allow modest flexibility. With this in mind, RFC 2119 declares official under-
standings for the words MUST and SHOULD. A feature labeled with MUST is “an absolute requirement
for the specification”, while the term SHOULD is used when

there may exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a different course.

The original ARPANET network was developed by the US government’s Defense Advanced Research
Projects Agency, or DARPA; it went online in 1969. The National Science Foundation began NSFNet in
1986; this largely replaced ARPANET. In 1991, operation of the NSFNet backbone was turned over to

1.15 IETF and OSI 37

http://wireshark.org
http://www.tcpdump.org/
http://www.tcpdump.org/
https://termshark.io
http://www.ietf.org/rfc.html
https://tools.ietf.org/html/rfc2119.html

An Introduction to Computer Networks, Release 1.9.21

ANSNet, a private corporation. The ISOC was founded in 1992 as the NSF continued to retreat from the
networking business.

Hallmarks of the IETF design approach were David Clark’s declaration

We reject: kings, presidents and voting.
We believe in: rough consensus and running code.

and RFC Editor Jon Postel’s Robustness Principle, here stated in its RFC 761/RFC 793 form:

TCP implementations should follow a general principle of robustness: be conservative in what
you do, be liberal in what you accept from others.

Postel’s aphorism is often shortened to “be liberal in what you accept, and conservative in what you send”.
As such, it has come in for occasional criticism in recent years, especially with regard to cryptographic
protocols, for which lax enforcement can lead to security vulnerabilities. To be fair, however, Postel wrote
this in an era when protocol specifications sometimes failed to fully spell out the rules for every possible
situation, and too-strict implementations sometimes failed to interoperate. Just what should happen if a
TCP packet arrives with the SYN bit set, for creating a new connection, and also the FIN bit, for terminating
a connection? However, TCP specifications today are generally much more complete, and cryptographic
protocols even moreso. One way to read Postel’s rule is that protocol implementations should be as strict as
necessary, but no stricter.

There is a persistent – though false – notion that the distributed-routing architecture of IP was due to a US
Department of Defense mandate that the original ARPAnet be built to survive a nuclear attack. In fact, the
developers of IP seemed unconcerned with this. However, Paul Baran did write, in his 1962 paper outlining
the concept of packet switching, that

If [the number of stations] is made sufficiently large, it can be shown that highly survivable
system structures can be built – even in the thermonuclear era.

In 1977 the International Organization for Standardization, or ISO, founded the Open Systems Interconnec-
tion project, or OSI, a process for creation of new network standards. OSI represented an attempt at the
creation of networking standards independent of any individual government.

The OSI project is today perhaps best known for its seven-layer networking model: between Transport and
Application were inserted the Session and Presentation layers. The Session layer was to handle “sessions”
between applications (including the graceful closing of Transport-layer connections, something included in
TCP, and the re-establishment of “broken” Transport-layer connections, which TCP could sorely use), and
the Presentation layer was to handle things like defining universal data formats (eg for binary numeric data,
or for non-ASCII character sets), and eventually came to include compression and encryption as well.

Data presentation and session management are important concepts, but in many cases it has not proved
necessary, or even particularly useful, to make them into true layers, in the sense that a layer communicates
directly only with the layers adjacent to it. What often happens is that the Application layer manages
its own Transport connections, and is responsible for reading and writing data directly from and to the
Transport layer. The application then uses conventional libraries for Presentation actions such as encryption,
compression and format translation, and for Session actions such as handling broken Transport connections
and multiplexing streams of data over a single Transport connection. Version 2 of the HTTP protocol, for
example, contains a subprotocol for managing multiple streams; this is generally regarded as part of the
Application layer.

However, the SSL/TLS transport-encryption service, 22.10.2 TLS, can be viewed as an example of a true

38 1 An Overview of Networks

http://www.postel.org/postel.html
https://tools.ietf.org/html/rfc761.html
https://tools.ietf.org/html/rfc793.html

An Introduction to Computer Networks, Release 1.9.21

Presentation layer. Applications generally read and write data directly to the SSL/TLS endpoint, which in
turn mostly encapsulates the underlying TCP connection. The encapsulation is incomplete, though, in that
SSL/TLS applications generally are responsible for creating their own Transport-layer (TCP) connections;
see 22.10.3 A TLS Programming Example and the note at the end of 22.10.3.2 TLSserver.

OSI has its own version of IP and TCP. The IP equivalent is CLNP, the ConnectionLess Network Protocol,
although OSI also defines a connection-oriented protocol CMNS. The TCP equivalent is TP4; OSI also
defines TP0 through TP3 but those are for connection-oriented networks.

It seems clear that the primary reasons the OSI protocols failed in the marketplace were their ponderous
bureaucracy for protocol management, their principle that protocols be completed before implementation
began, and their insistence on rigid adherence to the specifications to the point of non-interoperability;
indeed, Postel’s aphorism above may have been intended as a response to this last point. In contrast, the
IETF had (and still has) a “two working implementations” rule for a protocol to become a “Draft Standard”.
From RFC 2026:

A specification from which at least two independent and interoperable implementations from different
code bases have been developed, and for which sufficient successful operational experience has been
obtained, may be elevated to the “Draft Standard” level. [emphasis added]

This rule has often facilitated the discovery of protocol design weaknesses early enough that the problems
could be fixed. The OSI approach is a striking failure for the “waterfall” design model, when competing
with the IETF’s cyclic “prototyping” model. However, it is worth noting that the IETF has similarly been
unable to keep up with rapid changes in html, particularly at the browser end; the OSI mistakes were mostly
evident only in retrospect.

Trying to fit protocols into specific layers is often both futile and irrelevant. By one perspective, the Real-
Time Protocol RTP lives at the Transport layer, but just above the UDP layer; others have put RTP into the
Application layer. Parts of the RTP protocol resemble the Session and Presentation layers. A key component
of the IP protocol is the set of various router-update protocols; some of these freely use higher-level layers.
Similarly, tunneling might be considered to be a Link-layer protocol, but tunnels are often created and
maintained at the Application layer.

A sometimes-more-successful approach to understanding “layers” is to view them instead as parts of a
protocol graph. Thus, in the following diagram we have two protocol sublayers within the transport layer
(UDP and RTP), and one protocol (ARP) not easily assigned to a layer.

1.15 IETF and OSI 39

https://tools.ietf.org/html/rfc2026.html

An Introduction to Computer Networks, Release 1.9.21

IP

ATM
LAN

Ethernet
LAN

ARP
???

TCP
transport

UDP
transport

RTP
transport

1.16 Berkeley Unix

Though not officially tied to the IETF, the Berkeley Unix releases became de facto reference implementa-
tions for most of the TCP/IP protocols. 4.1BSD (BSD for Berkeley Software Distribution) was released in
1981, 4.2BSD in 1983, 4.3BSD in 1986, 4.3BSD-Tahoe in 1988, 4.3BSD-Reno in 1990, and 4.4BSD in
1994. Descendants today include FreeBSD, OpenBSD and NetBSD. The TCP implementations TCP Tahoe
and TCP Reno (13 TCP Reno and Congestion Management) took their names from the corresponding
4.3BSD releases.

1.17 Epilog

This completes our tour of the basics. In the remaining chapters we will expand on the material here.

1.18 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
2.5 is distinct, for example, from exercises 2.0 and 3.0. Exercises marked with a ♢ have solutions or hints
at 24.1 Solutions for An Overview of Networks.

1.0. Give forwarding tables for each of the switches S1-S4 in the following network with destinations A, B,
C, D. For the next_hop column, give the neighbor on the appropriate link rather than the interface number.

A B C

S1 S2 S3

40 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

S4 D

2.0. Give forwarding tables for each of the switches S1-S4 in the following network with destinations A,
B, C, D. Again, use the neighbor form of next_hop rather than the interface form. Try to keep the route to
each destination as short as possible. What decision has to be made in this exercise that did not arise in the
preceding exercise?

A S1 S2 B

D S4 S3 C

2.5. In the network of the previous exercise, suppose that destinations directly connected to an immediate
neighbor are always reached via that neighbor; eg S1’s forwarding table will always include xB,S2y and
xD,S4y. This leaves only routes to the diagonally opposite nodes undetermined (eg S1 to C). Show that, no
matter which next_hop entries are chosen for the diagonally opposite destinations, no routing loops can ever
be formed. (Hint: the number of links to any diagonally opposite switch is always 2.)

2.7.♢ Give forwarding tables for each of the switches A-E in the following network. Destinations are A-E
themselves. Keep all route lengths the minimum possible (one hop for an immediate neighbor, two hops for
everything else). If a destination is an immediate neighbor, you may list its next_hop as direct or local for
simplicity. Indicate destinations for which there is more than one choice for next_hop.

A

D

C

E

B

1

1

1 1

11

3.0. Consider the following arrangement of switches and destinations. Give forwarding tables (in neighbor
form) for S1-S4 that include default forwarding entries; the default entries should point toward S5. The
default entries will thus automatically forward to the “possible other destinations” shown below right.

Eliminate all table entries that are implied by the default entry (that is, if the default entry is to S3, eliminate
all other entries for which the next hop is S3).

A S1
D

C S3 S4 S5 ... possible other destinations

E
B S2

4.0. Four switches are arranged as below. The destinations are S1 through S4 themselves.

1.18 Exercises 41

An Introduction to Computer Networks, Release 1.9.21

S1 S2

S4 S3

(a). Give the forwarding tables for S1 through S4 assuming packets to adjacent nodes are sent along the
connecting link, and packets to diagonally opposite nodes are sent clockwise.
(b). Give the forwarding tables for S1 through S4 assuming the S1–S4 link is not used at all, not even for
S1ÐÑS4 traffic.

5.0. Suppose we have switches S1 through S4; the forwarding-table destinations are the switches themselves. The tables for S2 and S3 are as below, where the next_hop value is specified in neighbor form:

S2: xS1,S1y xS3,S3y xS4,S3y
S3: xS1,S2y xS2,S2y xS4,S4y

From the above we can conclude that S2 must be directly connected to both S1 and S3 as its table lists them
as next_hops; similarly, S3 must be directly connected to S2 and S4.

(a). The given tables are consistent with the network diagrammed in exercise 4.0. Are the tables also
consistent with a network in which S1 and S4 are not directly connected? If so, give such a network; if not,
explain why S1 and S4 must be connected.
(b). Now suppose S3’s table is changed to the following. Find a network layout consistent with these tables
in which S1 and S4 are not directly connected. Do not add additional switches.

S3: xS1,S4y xS2,S2y xS4,S4y

While the table for S4 is not given, you may assume that forwarding does work correctly. However, you
should not assume that paths are the shortest possible. Hint: It follows from the S3 table above that the path
from S3 to S1 starts S3 ÝÑ S4; how will this path continue? The next switch along the path cannot be S1,
because of the hypothesis that S1 and S4 are not directly connected.

6.0. (a) Suppose a network is as follows, with the only path from A to C passing through B:

... A B C ...

Explain why a single routing loop cannot include both A and C. Hint: if the loop involves destination D,
how does B forward to D?

(b). Suppose a routing loop follows the path A S1 S2 . . . Sn A, where none of the Si are equal to
A. Show that all the Si must be distinct. (A corollary of this is that any routing loop created by datagram-
forwarding either involves forwarding back and forth between a pair of adjacent switches, or else involves
an actual graph cycle in the network topology; linear loops of length greater than 1 are impossible.)

7.0 Consider the following arrangement of switches:

42 1 An Overview of Networks

An Introduction to Computer Networks, Release 1.9.21

S1 S4 S10 A E

S2 S5 S11 B

S3 S6 S12 C D F

Suppose S1-S6 have the forwarding tables below. For each of the following destinations, suppose a packet
is sent to the destination from S1.

(a). A
(b). B
(c). C
(d).♢ D
(e). E
(f). F

Give the switches the packet will pass through, including the initial switch S1, up until the final switch
S10-S12.

S1: (A,S4), (B,S2), (C,S4), (D,S2), (E,S2), (F,S4)

S2: (A,S5), (B,S5), (D,S5), (E,S3), (F,S3)

S3: (B,S6), (C,S2), (E,S6), (F,S6)

S4: (A,S10), (C,S5), (E,S10), (F,S5)

S5: (A,S6), (B,S11), (C,S6), (D,S6), (E,S4), (F,S2)

S6: (A,S3), (B,S12), (C,S12), (D,S12), (E,S5), (F,S12)

7.5 Suppose a set of nodes A-F and switches S1-S6 are connected as shown.

A S1 5 S4 D

1 1

B S2 2 S5 E

8 1

C S3 4 S6 F

The links between switches are labeled with weights, which are used by some routing applications. The
weights represent the cost of using that link. You are to find the path through S1-S6 with lowest total cost
(that is, with smallest sum of weights), for each of the following transmissions. For example, the lowest-cost
path from A to E is A–S1–S2–S5–E, for a total cost of 1+2=3; the alternative path A–S1–S4–S5–E has total
cost 5+1=6.

1.18 Exercises 43

An Introduction to Computer Networks, Release 1.9.21

(a).♢ AÑF
(b). AÑD
(c). AÑC

(d). Give the complete forwarding table for S2, where all routes are selected for lowest total cost.

8.0 In exercise 7.0, the routes taken by packets A-D are reasonably direct, but the routes for E and F are
rather circuitous.

(a). Assign weights to the seven links S1–S2, S2–S3, S1–S4, S2–S5, S3–S6, S4–S5 and S5–S6, as in
exercise 7.5, so that destination E’s route in exercise 7.0 becomes the optimum (lowest total link weight)
path.
(b). Assign weights to the seven links that make destination F’s route in exercise 7.0 optimal. (This will be
a different set of weights from part (a).)

Hint: you can do this by assigning a weight of 1 to all links except to one or two “bad” links; the “bad” links
get a weight of 10. In each of (a) and (b) above, the route taken will be the route that avoids all the “bad”
links. You must treat (a) entirely differently from (b); there is no assignment of weights that can account for
both routes.

9.0 Suppose we have the following three Class C IP networks, joined by routers R1–R4. There is no con-
nection to the outside Internet. Give the forwarding table for each router. For networks directly connected
to a router (eg 200.0.1/24 and R1), include the network in the table but list the next hop as direct or local.

R1 200.0.1/24

R4 R2 200.0.2/24

R3 200.0.3/24

44 1 An Overview of Networks

2 ETHERNET

We now turn to a deeper analysis of the ubiquitous Ethernet LAN protocol. Current user-level Ethernet today
(2013) is usually 100 Mbps, with Gigabit and 10 Gigabit Ethernet standard in server rooms and backbones,
but because the potential for collisions makes Ethernet speeds scale in odd ways, we will start with the 10
Mbps formulation. While the 10 Mbps speed is obsolete, and while even the Ethernet collision mechanism
is largely obsolete, collision management itself continues to play a significant role in wireless networks.

The original Ethernet specification was the 1976 paper of Metcalfe and Boggs, [MB76]. The data rate was
10 megabits per second, and all connections were made with coaxial cable instead of today’s twisted pair.
The authors described their architecture as follows:

We cannot afford the redundant connections and dynamic routing of store-and-forward packet
switching to assure reliable communication, so we choose to achieve reliability through sim-
plicity. We choose to make the shared communication facility passive so that the failure of an
active element will tend to affect the communications of only a single station.

Classic Ethernet was indeed simple, and – mostly – passive. In its most basic form, the Ethernet medium was
one long piece of coaxial cable, onto which stations could be connected via taps. If two stations happened
to transmit at the same time – most likely because they were both waiting for a third station to finish – their
signals were lost to the resultant collision. The only active components besides the stations were repeaters,
originally intended simply to make end-to-end joins between cable segments.

Repeaters soon evolved into multiport devices, allowing the creation of arbitrary tree (that is, loop-free)
topologies. At this point the standard wiring model shifted from one long cable, snaking from host to host,
to a “star” network, where each host connected directly to a central multipoint repeater. This shift allowed
for the replacement of expensive coaxial cable by the much-cheaper twisted pair; links could not be as long,
but they did not need to be.

Repeaters, which forwarded collisions, soon gave way to switches, which did not (2.4 Ethernet Switches).
Switches thus partitioned an Ethernet into disjoint collision domains, or physical Ethernets, through which
collisions could propagate; an aggregation of physical Ethernets connected by switches was then sometimes
known as a virtual Ethernet. Collision domains became smaller and smaller, eventually down to individual
links and then vanishing entirely.

Throughout all these changes, Ethernet never implemented true redundant connections, in that at any one
instant the topology was always required to be loop-free. However, Ethernet did adopt a mechanism by
which idle backup links can quickly be placed into service after a primary link fails; 2.5 Spanning Tree
Algorithm and Redundancy.

2.1 10-Mbps Classic Ethernet

Originally, Ethernet consisted of a long piece of cable (possibly spliced by repeaters). When a station
transmitted, the data went everywhere along that cable. Such an arrangement is known as a broadcast
bus; all packets were, at least at the physical layer, broadcast onto the shared medium and could be seen,
theoretically, by all other nodes. Logically, however, most packets would appear to be transmitted point-to-
point, not broadcast. This was because between each station CPU and the cable there was a peripheral device

45

An Introduction to Computer Networks, Release 1.9.21

(that is, a card) known as a network interface, which would take care of the details of transmitting and
receiving. The network interface would (and still does) decide when a received packet should be forwarded
to the host, via a CPU interrupt.

A B C D

NI NI NI NI

Whenever two stations transmitted at the same time, the signals would collide, and interfere with one an-
other; both transmissions would fail as a result. Proper handling of collisions was an essential part of the
access-mediation strategy for the shared medium. In order to minimize collision loss, each station imple-
mented the following:

1. Before transmission, wait for the line to become quiet

2. While transmitting, continually monitor the line for signs that a collision has occurred; if a collision
is detected, cease transmitting

3. If a collision occurs, use a backoff-and-retransmit strategy

These properties can be summarized with the CSMA/CD acronym: Carrier Sense, Multiple Access, Colli-
sion Detect. (The term “carrier sense” was used by Metcalfe and Boggs as a synonym for “signal sense”;
there is no literal carrier frequency to be sensed.) It should be emphasized that collisions are a normal event
in Ethernet, well-handled by the mechanisms above.

IEEE 802 Network Standards

The IEEE network standards all begin with 802: 802.3 is Ethernet, 802.11 is Wi-Fi, 802.16 is WiMAX,
and there are many others. One sometimes encounters the claim that 802 represents the date of an early
meeting: February 1980. However, the IEEE has a continuous stream of standards (with occasional
gaps): 799: Handling and Disposal of Transformer PCBs, 800: D-C Aircraft Rotating Machines, 803:
Recommended Practice for Unique Identification in Power Plants, etc.

Classic Ethernet came in version 1 [1980, DEC-Intel-Xerox], version 2 [1982, DIX], and IEEE 802.3. There
are some minor electrical differences between these, and one rather substantial packet-format difference,
below. In addition to these, the Berkeley Unix trailing-headers packet format was used for a while.

There were three physical formats for 10 Mbps Ethernet cable: thick coax (10BASE-5), thin coax (10BASE-
2), and, last to arrive, twisted pair (10BASE-T). Thick coax was the original; economics drove the successive
development of the later two. The cheaper twisted-pair cabling eventually almost entirely displaced coax, at
least for host connections.

The original specification included support for repeaters, which were in effect signal amplifiers although
they might attempt to clean up a noisy signal. Repeaters processed each bit individually and did no buffering.
In the telecom world, a repeater might be called a digital regenerator. A repeater with more than two ports
was commonly called a hub; hubs allowed branching and thus much more complex topologies.

46 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

It was the rise of hubs that enabled star topologies in which each host connects directly to the hub rather
than to one long run of coax. This in turn enabled twisted-pair cable: while this supported maximum runs
of about 100 meters, versus the 500 meters of thick coax, each run simply had to go from the host to the
central hub in the wiring closet. This was much more convenient than having to snake coax all around the
building. A hub failure would bring the network down, but hubs proved largely reliable.

Bridges – later known as switches – came along a short time later. While repeaters act at the bit layer, a
switch reads in and forwards an entire packet as a unit, and the destination address is consulted to deter-
mine to where the packet is forwarded. Except for possible collision-related performance issues, hubs and
switches are interchangeable. Eventually, most wiring-closet hubs were replaced with switches.

Hubs propagate collisions; switches do not. If the signal representing a collision were to arrive at one port of
a hub, it would, like any other signal, be retransmitted out all other ports. If a switch were to detect a collision
one one port, no other ports would be involved; only packets received successfully are ever retransmitted
out other ports.

Originally, switches were seen as providing interconnection (“bridging”) between separate physical Ether-
nets; a switch for such a purpose needed just two ports. Later, a switched Ethernet was seen as one large
“virtual” Ethernet, composed of smaller collision domains. Although the term “switch” is now much more
common than “bridge”, the latter is still in use, particularly by the IEEE. For some, a switch is a bridge with
more than two ports, though that distinction is relatively meaningless as it has been years since two-port
bridges were last manufactured. We return to switching below in 2.4 Ethernet Switches.

In the original thick-coax cabling, connections were made via taps, often literally drilled into the coax
central conductor. Thin coax allowed the use of T-connectors to attach hosts. Twisted-pair does not allow
mid-cable attachment; it is only used for point-to-point links between hosts, switches and hubs. Mid-
cable attachment, however, was always simply a way of avoiding the need for active devices like hubs and
switches.

There is still a role for hubs today when one wants to monitor the Ethernet signal from A to B (eg for
intrusion detection analysis), although some switches now also support a form of monitoring.

All three cable formats could interconnect, although only through repeaters and hubs, and all used the same
10 Mbps transmission speed. While twisted-pair cable is still used by 100 Mbps Ethernet, it generally needs
to be a higher-performance version known as Category 5, versus the 10 Mbps Category 3.

Data in 10 Mbps Ethernets was transmitted using Manchester encoding; see 4.1.3 Manchester. This meant
that the electronics had to operate, in effect, at 20 Mbps. Faster Ethernets use different encodings.

2.1.1 Ethernet Packet Format

Here is the format of a typical Ethernet packet (DIX specification); it is still used for newer, faster Ethernets:

dest addr src addr type data CRC

The destination and source addresses are 48-bit quantities; the type is 16 bits, the data length is variable up
to a maximum of 1500 bytes, and the final CRC checksum is 32 bits. The checksum is added by the Ethernet
hardware, never by the host software. There is also a preamble, not shown: a block of 1 bits followed by a

2.1 10-Mbps Classic Ethernet 47

An Introduction to Computer Networks, Release 1.9.21

0, in the front of the packet, for synchronization. The type field identifies the next higher protocol layer; a
few common type values are 0x0800 = IP, 0x8137 = IPX, 0x0806 = ARP.

The IEEE 802.3 specification replaced the type field by the length field, though this change never caught on.
The two formats can be distinguished as long as the type values used are larger than the maximum Ethernet
length of 1500 (or 0x05dc); the type values given in the previous paragraph all meet this condition.

The Ethernet maximum packet length of 1500 bytes worked well in the past, but can seem inconveniently
small at 10 Gbit speeds. But 1500 bytes has become the de facto maximum packet size throughout the
Internet, not just on Ethernet LANs; increasing it would be difficult. TCP TSO (12.5 TCP Offloading) is
one alternative.

Each Ethernet card has a (hopefully unique) physical address in ROM; by default any packet sent to this
address will be received by the board and passed up to the host system. Packets addressed to other physical
addresses will be seen by the card, but ignored (by default). All Ethernet devices also agree on a broadcast
address of all 1’s: a packet sent to the broadcast address will be delivered to all attached hosts.

It is sometimes possible to change the physical address of a given card in software. It is almost universally
possible to put a given card into promiscuous mode, meaning that all packets on the network, no matter
what the destination address, are delivered to the attached host. This mode was originally intended for
diagnostic purposes but became best known for the security breach it opens: it was once not unusual to find
a host with network board in promiscuous mode and with a process collecting the first 100 bytes (presumably
including userid and password) of every telnet connection.

2.1.2 Ethernet Multicast

Another category of Ethernet addresses is multicast, used to transmit to a set of stations; streaming video
to multiple simultaneous viewers might use Ethernet multicast. The lowest-order bit in the first byte of
an address indicates whether the address is physical or multicast. To receive packets addressed to a given
multicast address, the host must inform its network interface that it wishes to do so; once this is done, any
arriving packets addressed to that multicast address are forwarded to the host. The set of subscribers to a
given multicast address may be called a multicast group. While higher-level protocols might prefer that the
subscribing host also notifies some other host, eg the sender, this is not required, although that might be the
easiest way to learn the multicast address involved. If several hosts subscribe to the same multicast address,
then each will receive a copy of each multicast packet transmitted.

We are now able to list all cases in which a network interface forwards a received packet up to its attached
host:

• if the destination address of the received packet maches the physical address of the interface

• if the destination address of the received packet is the broadcast address

• if the interface is in promiscuous mode

• if the destination address of the received packet is a multicast address and the host has told the network
interface to accept packets sent to that multicast address

If switches (below) are involved, they must normally forward multicast packets on all outbound links, exactly
as they do for broadcast packets; switches have no obvious way of telling where multicast subscribers might
be. To avoid this, some switches do try to engage in some form of multicast filtering, sometimes by snooping

48 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

on higher-layer multicast protocols. Multicast Ethernet is seldom used by IPv4, but plays a larger role in
IPv6 configuration.

2.1.3 Ethernet Address Internal Structure

The second-to-lowest-order bit of a physical Ethernet address indicates whether that address is believed to
be globally unique or if it is only locally unique; this is known as the Universal/Local bit. For real Ethernet
physical addresses, the multicast and universal/local bits of the first byte should both be 0.

When (global) Ethernet IDs are assigned to physical Ethernet cards by the manufacturer, the first three
bytes serve to indicate the manufacturer. They are allocated by the IEEE, and are officially known
as organizationally unique identifiers. These can be looked up at any of several sites on the Internet
to identify the manufacturer associated with any given Ethernet address; the official IEEE site is stan-
dards.ieee.org/develop/regauth/oui/public.html (OUIs must be entered here without colons).

As long as the manufacturer involved is diligent in assigning the second three bytes, every manufacturer-
provided Ethernet address should be globally unique. Lapses, however, are not unheard of.

Ethernet addresses for virtual machines must be distinct from the Ethernet address of the host system, and
may be (eg with so-called “bridged” configurations) as visible on the LAN as that host system’s address.
The first three bytes of virtual Ethernet addresses are often taken from the OUI assigned to the manufacturer
whose card is being emulated; the last three bytes are then either set randomly or via configuration. In
principle, the universal/local bit should be 1, as the address is only locally unique, but this is often ignored.
It is entirely possible for virtual Ethernet addresses to be assigned so as to have some local meaning, though
this appears not to be common.

2.1.4 The LAN Layer

The LAN layer, at its upper end, supplies to the network layer a mechanism for addressing a packet and
sending it from one station to another. At its lower end, it handles interactions with the physical layer. The
LAN layer covers packet addressing, delivery and receipt, forwarding, error detection, collision detection
and collision-related retransmission attempts.

In IEEE protocols, the LAN layer is divided into the media access control, or MAC, sublayer and a
higher logical link control, or LLC, sublayer for higher-level flow-control functions that today have moved
largely to the transport layer. For example, the HDLC protocol (4.1.5.1 HDLC) supports sliding windows
(6.2 Sliding Windows) as an option, as did the early X.25 protocol. ATM, 3.5 Asynchronous Transfer
Mode: ATM, also supports some higher-level functions, though not sliding windows.

Because the LLC layer is so often insignificant, and because the most well-known LAN-layer functions are
in fact part of the MAC sublayer, it is common to identify the LAN layer with its MAC sublayer, especially
for IEEE protocols where the MAC layer has official standing. In particular, LAN-layer addresses are
perhaps most often called MAC addresses.

Generally speaking, much of the operation of the LAN/MAC layer takes place in the network card. Host
systems (including drivers) are, for example, generally oblivious to collisions (although they may query the
card for collision statistics). In some cases, eg with Wi-Fi rate scaling (3.7.2 Dynamic Rate Scaling), the
host-system driver may get involved.

2.1 10-Mbps Classic Ethernet 49

http://standards.ieee.org/develop/regauth/oui/public.html
http://standards.ieee.org/develop/regauth/oui/public.html

An Introduction to Computer Networks, Release 1.9.21

2.1.5 The Slot Time and Collisions

The diameter of an Ethernet is the maximum distance between any pair of stations. The actual total length
of cable can be much greater than this, if, for example, the topology is a “star” configuration. The maximum
allowed diameter, measured in bits, is limited to 232 (a sample “budget” for this is below). This makes
the round-trip-time 464 bits. As each station involved in a collision discovers it, it transmits a special jam
signal of up to 48 bits. These 48 jam bits bring the total above to 512 bits, or 64 bytes. The time to send
these 512 bits is the slot time of an Ethernet; time intervals on Ethernet are often described in bit times but
in conventional time units the slot time is 51.2 µsec.

The value of the slot time determines several subsequent aspects of Ethernet. If a station has transmitted
for one slot time, then no collision can occur (unless there is a hardware error) for the remainder of that
packet. This is because one slot time is enough time for any other station to have realized that the first
station has started transmitting, so after that time they will wait for the first station to finish. Thus, after one
slot time a station is said to have acquired the network. The slot time is also used as the basic interval for
retransmission scheduling, below.

Conversely, a collision can be received, in principle, at any point up until the end of the slot time. As a result,
Ethernet has a minimum packet size, equal to the slot time, ie 64 bytes (or 46 bytes in the data portion). A
station transmitting a packet this size is assured that if a collision were to occur, the sender would detect it
(and be able to apply the retransmission algorithm, below). Smaller packets might collide and yet the sender
not know it, ultimately leading to greatly reduced throughput.

If we need to send less than 46 bytes of data (for example, a 40-byte TCP ACK packet), the Ethernet packet
must be padded out to the minimum length. As a result, all protocols running on top of Ethernet need to
provide some way to specify the actual data length, as it cannot be inferred from the received packet size.

As a specific example of a collision occurring as late as possible, consider the diagram below. A and B are
5 units apart, and the bandwidth is 1 byte/unit. A begins sending “helloworld” at T=0; B starts sending just
as A’s message arrives, at T=5. B has listened before transmitting, but A’s signal was not yet evident. A
doesn’t discover the collision until 10 units have elapsed, which is twice the distance.

T=0 A B

T=1 A B

T=2 A B

T=3 A B

T=4 A B

T=4.99 A B

T=5 A B

T=6 A B

h

e h

e hl

e hl

l

l

l

o

o

l

l

e

e h

h

A just starting to send

just before collision, B sees line is idle

B transmits; COLLISION!

T=7 A B

T=8 A B

T=9 A B

T=10 A B

ow l l

wo o

or

l

collision propagates back to A

A detects the collision
d

Here are typical maximum values for the delay in 10 Mbps Ethernet due to various components. These

50 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

are taken from the Digital-Intel-Xerox (DIX) standard of 1982, except that “point-to-point link cable” is
replaced by standard cable. The DIX specification allows 1500m of coax with two repeaters and 1000m
of point-to-point cable; the table below shows 2500m of coax and four repeaters, following the later IEEE
802.3 Ethernet specification. Some of the more obscure delays have been eliminated. Entries are one-way
delay times, in bits. The maximum path may have four repeaters, and ten transceivers (simple electronic
devices between the coax cable and the NI cards), each with its drop cable (two transceivers per repeater,
plus one at each endpoint).

Ethernet delay budget

item length delay, in bits explanation (c = speed of light)
coax 2500 m 110 bits 23 meters/bit (.77c)
transceiver cables 500 m 25 bits 19.5 meters/bit (.65c)
transceivers 40 bits, max 10 units 4 bits each
repeaters 25 bits, max 4 units 6+ bits each (DIX 7.6.4.1)
encoders 20 bits, max 10 units 2 bits each (for signal generation)

The total here is 220 bits; in a full accounting it would be 232. Some of the numbers shown are a little high,
but there are also signal rise time delays, sense delays, and timer delays that have been omitted. It works out
fairly closely.

Implicit in the delay budget table above is the “length” of a bit. The speed of propagation in copper is about
0.77ˆc, where c=3ˆ108 m/sec = 300 m/µsec is the speed of light in vacuum. So, in 0.1 microseconds (the
time to send one bit at 10 Mbps), the signal propagates approximately 0.77ˆcˆ10-7 = 23 meters.

Ethernet packets also have a maximum packet size, of 1500 bytes. This limit is primarily for the sake
of fairness, so one station cannot unduly monopolize the cable (and also so stations can reserve buffers
guaranteed to hold an entire packet). At one time hardware vendors often marketed their own incompatible
“extensions” to Ethernet which enlarged the maximum packet size to as much as 4 kB. There is no technical
reason, actually, not to do this, except compatibility.

The signal loss in any single segment of cable is limited to 8.5 db, or about 14% of original strength.
Repeaters will restore the signal to its original strength. The reason for the per-segment length restriction
is that Ethernet collision detection requires a strict limit on how much the remote signal can be allowed to
lose strength. It is possible for a station to detect and reliably read very weak remote signals, but not at the
same time that it is transmitting locally. This is exactly what must be done, though, for collision detection
to work: remote signals must arrive with sufficient strength to be heard even while the receiving station is
itself transmitting. The per-segment limit, then, has nothing to do with the overall length limit; the latter is
set only to ensure that a sender is guaranteed of detecting a collision, even if it sends the minimum-sized
packet.

2.1.6 Exponential Backoff Algorithm

Whenever there is a collision the exponential backoff algorithm – operating at the MAC layer – is used
to determine when each station will retry its transmission. Backoff here is called exponential because the
range from which the backoff value is chosen is doubled after every successive collision involving the same
packet. Here is the full Ethernet transmission algorithm, including backoff and retransmissions:

1. Listen before transmitting (“carrier detect”)

2.1 10-Mbps Classic Ethernet 51

An Introduction to Computer Networks, Release 1.9.21

2. If line is busy, wait for sender to stop and then wait an additional 9.6 microseconds (96 bits). One
consequence of this is that there is always a 96-bit gap between packets, so packets do not run together.

3. Transmit while simultaneously monitoring for collisions

4. If a collision does occur, send the jam signal, and choose a backoff time as follows: For transmission
N, 1ďNď10 (N=0 represents the original attempt), choose k randomly with 0 ď k < 2N. Wait k slot
times (kˆ51.2 µsec). Then check if the line is idle, waiting if necessary for someone else to finish,
and then retry step 3. For 11ďNď15, choose k randomly with 0 ď k < 1024 (= 210)

5. If we reach N=16 (16 transmission attempts), give up.

If an Ethernet sender does not reach step 5, there is a very high probability that the packet was delivered
successfully.

Exponential backoff means that if two hosts have waited for a third to finish and transmit simultaneously,
and collide, then when N=1 they have a 50% chance of recollision; when N=2 there is a 25% chance, etc.
When Ně10 the maximum wait is 52 milliseconds; without this cutoff the maximum wait at N=15 would
be 1.5 seconds. As indicated above in the minimum-packet-size discussion, this retransmission strategy
assumes that the sender is able to detect the collision while it is still sending, so it knows that the packet
must be resent.

In the following diagram is an example of several stations attempting to transmit all at once, and using the
above transmission/backoff algorithm to sort out who actually gets to acquire the channel. We assume we
have five prospective senders A1, A2, A3, A4 and A5, all waiting for a sixth station to finish. We will
assume that collision detection always takes one slot time (it will take much less for nodes closer together)
and that the slot start-times for each station are synchronized; this allows us to measure time in slots. A solid
arrow at the start of a slot means that sender began transmission in that slot; a red X signifies a collision. If
a collision occurs, the backoff value k is shown underneath. A dashed line shows the station waiting k slots
for its next attempt.

A1

A2

A3

A4

A5

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

k=1

k=1

k=0

k=0

k=1

k=3

k=0

T=1T=0 T=2 T=3 T=4 T=5

k=6

k=3

k=1

k=2

: Attempt to transmit : collision

At T=0 we assume the transmitting station finishes, and all the Ai transmit and collide. At T=1, then, each
of the Ai has discovered the collision; each chooses a random k<2. Let us assume that A1 chooses k=1, A2
chooses k=1, A3 chooses k=0, A4 chooses k=0, and A5 chooses k=1.

52 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

Those stations choosing k=0 will retransmit immediately, at T=1. This means A3 and A4 collide again, and
at T=2 they now choose random k<4. We will Assume A3 chooses k=3 and A4 chooses k=0; A3 will try
again at T=2+3=5 while A4 will try again at T=2, that is, now.

At T=2, we now have the original A1, A2, and A5 transmitting for the second time, while A4 trying again
for the third time. They collide. Let us suppose A1 chooses k=2, A2 chooses k=1, A5 chooses k=3, and A4
chooses k=6 (A4 is choosing k<8 at random). Their scheduled transmission attempt times are now A1 at
T=3+2=5, A2 at T=4, A5 at T=6, and A4 at T=9.

At T=3, nobody attempts to transmit. But at T=4, A2 is the only station to transmit, and so successfully
seizes the channel. By the time T=5 rolls around, A1 and A3 will check the channel, that is, listen first, and
wait for A2 to finish. At T=9, A4 will check the channel again, and also begin waiting for A2 to finish.

A maximum of 1024 hosts is allowed on an Ethernet. This number apparently comes from the maximum
range for the backoff time as 0 ď k < 1024. If there are 1024 hosts simultaneously trying to send, then,
once the backoff range has reached k<1024 (N=10), we have a good chance that one station will succeed in
seizing the channel, that is; the minimum value of all the random k’s chosen will be unique.

This backoff algorithm is not “fair”, in the sense that the longer a station has been waiting to send, the lower
its priority sinks. Newly transmitting stations with N=0 need not delay at all. The Ethernet capture effect,
below, illustrates this unfairness.

2.1.7 Capture effect

The capture effect is a scenario illustrating the potential lack of fairness in the exponential backoff algorithm.
The unswitched Ethernet must be fully busy, in that each of two senders always has a packet ready to
transmit.

Let A and B be two such busy nodes, simultaneously starting to transmit their first packets. They collide.
Suppose A wins, and sends. When A is finished, B tries to transmit again. But A has a second packet, and
so A tries too. A chooses a backoff k<2 (that is, between 0 and 1 inclusive), but since B is on its second
attempt it must choose k<4. This means A is favored to win. Suppose it does.

After that transmission is finished, A and B try yet again: A on its first attempt for its third packet, and B
on its third attempt for its first packet. Now A again chooses k<2 but B must choose k<8; this time A is
much more likely to win. Each time B fails to win a given backoff, its probability of winning the next one
is reduced by about 1/2. It is quite possible, and does occur in practice, for B to lose all the backoffs until
it reaches the maximum of N=16 attempts; once it has lost the first three or four this is in fact quite likely.
At this point B simply discards the packet and goes on to the next one with N reset to 1 and k chosen from
{0,1}.

The capture effect can be fixed with appropriate modification of the backoff algorithm; the Binary Logarith-
mic Arbitration Method (BLAM) was proposed in [MM94]. The BLAM algorithm was considered for the
then-nascent 100 Mbps Fast Ethernet standard. But in the end a hardware strategy won out: Fast Ethernet
supports “full-duplex” mode which is collision-free (see 2.2 100 Mbps (Fast) Ethernet, below). While
Fast Ethernet continues to support the original “half-duplex” mode, it was assumed that any sites concerned
enough about performance to be worried about the capture effect would opt for full-duplex.

2.1 10-Mbps Classic Ethernet 53

An Introduction to Computer Networks, Release 1.9.21

2.1.8 Hubs and topology

Ethernet hubs (multiport repeaters) change the topology, but not the fundamental constraints. Hubs enabled
the model in which each station now had its own link to the wiring closet. Loops are still forbidden. The
maximum diameter of an Ethernet consisting of multiple segments joined by hubs is still constrained by
the round-trip-time, and the need to detect collisions before the sender has completed sending, as before.
However, the network “diameter”, or maximum distance between two hosts, is no longer synonymous with
“total length”. Because twisted-pair links are much shorter, about 100 meters, the diameter constraint is
often immaterial.

2.1.9 Errors

Packets can have bits flipped or garbled by electrical noise on the cable; estimates of the frequency with
which this occurs range from 1 in 104 to 1 in 106. Bit errors are not uniformly likely; when they occur,
they are likely to occur in bursts. Packets can also be lost in hubs, although this appears less likely. Packets
can be lost due to collisions only if the sending host makes 16 unsuccessful transmission attempts and gives
up. Ethernet packets contain a 32-bit CRC error-detecting code (see 5.4.1 Cyclical Redundancy Check:
CRC) to detect bit errors. Packets can also be misaddressed by the sending host, or, most likely of all, they
can arrive at the receiving host at a point when the receiver has no free buffers and thus be dropped by a
higher-layer protocol.

2.1.10 CSMA persistence

A carrier-sense/multiple-access transmission strategy is said to be nonpersistent if, when the line is busy,
the sender waits a randomly selected time. A strategy is p-persistent if, after waiting for the line to clear,
the sender sends with probability pď1. Ethernet uses 1-persistence. A consequence of 1-persistence is that,
if more than one station is waiting for line to clear, then when the line does clear a collision is certain.
However, Ethernet then gracefully handles the resulting collision via the usual exponential backoff. If N
stations are waiting to transmit, the time required for one station to win the backoff is linear in N.

When we consider the Wi-Fi collision-handling mechanisms in 3.7 Wi-Fi, we will see that collisions cannot
be handled quite as cheaply: for one thing, there is no way to detect a collision in progress, so the entire
packet-transmission time is wasted. In the Wi-Fi case, p-persistence is used with p<1.

An Ethernet broadcast storm was said to occur when there were too many transmission attempts, and most
of the available bandwidth was tied up in collisions. A properly functioning classic Ethernet had an effective
bandwidth of as much as 50-80% of the nominal 10Mbps capacity, but attempts to transmit more than this
typically resulted in successfully transmitting a good deal less.

2.1.11 Analysis of Classic Ethernet

How much time does Ethernet “waste” on collisions? A paradoxical attribute of Ethernet is that raising the
transmission-attempt rate on a busy segment can reduce the actual throughput. More transmission attempts
can lead to longer contention intervals between packets, as senders use the transmission backoff algorithm
to attempt to acquire the channel. What effective throughput can be achieved?

54 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

It is convenient to refer to the time between packet transmissions as the contention interval even if there is no
actual contention, that is, even if the network is idle; we cannot tell if stations are not transmitting because
they have nothing to send, or if they are simply waiting for their backoff timer to expire. Thus, a timeline
for Ethernet always consists of alternating packet transmissions and contention intervals:

...

contention contention contention contentionpacket packet packet packet

Ethernet packet transmissions alternating with contention intervals

As a first look at contention intervals, assume that there are N stations waiting to transmit at the start of the
interval. It turns out that, if all follow the exponential backoff algorithm, we can expect O(N) slot times
before one station successfully acquires the channel; thus, Ethernets are happiest when N is small and there
are only a few stations simultaneously transmitting. However, multiple stations are not necessarily a severe
problem. Often the number of slot times needed turns out to be about N/2, and slot times are short. If N=20,
then N/2 is 10 slot times, or 640 bytes. However, one packet time might be 1500 bytes. If packet intervals
are 1500 bytes and contention intervals are 640 byes, this gives an overall throughput of 1500/(640+1500)
= 70% of capacity. In practice, this seems to be a reasonable upper limit for the throughput of classic
shared-media Ethernet.

2.1.11.1 The ALOHA models

Another approach to analyzing the Ethernet contention interval is by using the ALOHA model that was a
precursor to Ethernet. In the ALOHA model, stations transmit packets without listening first for a quiet line
or monitoring the transmission for collisions (this models the situation of several ground stations transmitting
to a satellite; the ground stations are presumed unable to see one another). Similarly, during the Ethernet
contention interval, stations transmit one-slot packets under what are effectively the same conditions (we
return to this below).

The ALOHA model yields roughly similar throughput values to the O(N) model of the previous section.
We make, however, a rather artificial assumption: that there are a very large number of active senders, each
transmitting at a very low rate. The model may thus have limited direct applicability to typical Ethernets.

To model the success rate of ALOHA, assume all the packets are the same size and let T be the time to send
one (fixed-size) packet; T represents the Aloha slot time. We will find the transmission rate that optimizes
throughput.

The core assumption of this model is that that a large number N of hosts are transmitting, each at a relatively
low rate of s packets/slot. Denote by G the average number of transmission attempts per slot; we then have
G = Ns. We will derive an expression for S, the average rate of successful transmissions per slot, in terms of
G.

If two packets overlap during transmissions, both are lost. Thus, a successful transmission requires everyone
else quiet for an interval of 2T: if a sender succeeds in the interval from t to t+T, then no other node can have
tried to begin transmission in the interval t–T to t+T. The probability of one station transmitting during an
interval of time T is G = Ns; the probability of the remaining N–1 stations all quiet for an interval of 2T is
(1–s)2(N–1). The probability of a successful transmission is thus

S = Ns*(1–s)2(N–1)

2.1 10-Mbps Classic Ethernet 55

An Introduction to Computer Networks, Release 1.9.21

= G(1–G/N)2N

Math Warning

Finding the limit of G(1–G/N)2N and finding the maximum of Ge-2G realistically requires a little back-
ground in calculus. However, these are not central to applying the model.

As N gets large, the second line approaches Ge-2G. The function S = G e-2G has a maximum at G=1/2,
S=1/2e. The rate G=1/2 means that, on average, a transmission is attempted every other slot; this yields the
maximum successful-transmission throughput of 1/2e. In other words, at this maximum attempt rate G=1/2,
we expect about 2e–1 slot times worth of contention between successful transmissions. What happens to
the remaining G–S unsuccessful attempts is not addressed by this model; presumably some higher-level
mechanism (eg backoff) leads to retransmissions.

A given throughput S<1/2e may be achieved at either of two values for G; that is, a given success rate may
be due to a comparable attempt rate or else due to a very high attempt rate with a similarly high failure rate.

2.1.11.2 ALOHA and Ethernet

The relevance of the Aloha model to Ethernet is that during one Ethernet slot time there is no way to detect
collisions (they haven’t reached the sender yet!) and so the Ethernet contention phase resembles ALOHA
with an Aloha slot time T of 51.2 microseconds. Once an Ethernet sender succeeds, however, it continues
with a full packet transmission, which is presumably many times longer than T.

The average length of the contention interval, at the maximum throughput calculated above, is 2e–1 slot
times (from ALOHA); recall that our model here supposed many senders sending at very low individual
rates. This is the minimum contention interval; with lower loads the contention interval is longer due to
greater idle times and with higher loads the contention interval is longer due to more collisions.

Finally, let P be the time to send an entire packet in units of T; ie the average packet size in units of T. P is
thus the length of the “packet” phase in the diagram above. The contention phase has length 2e–1, so the
total time to send one packet (contention+packet time) is 2e–1+P. The useful fraction of this is, of course, P,
so the effective maximum throughput is P/(2e–1+P).

At 10Mbps, T=51.2 microseconds is 512 bits, or 64 bytes. For P=128 bytes = 2*64, the effective bandwidth
becomes 2/(2e-1+2), or 31%. For P=512 bytes=8*64, the effective bandwidth is 8/(2e+7), or 64%. For
P=1500 bytes, the model here calculates an effective bandwidth of 80%.

These numbers are quite similar to our earlier values based on a small number of stations sending constantly.

2.2 100 Mbps (Fast) Ethernet

Classic Ethernet, at 10 Mbps, is quite slow by modern standards, and so by 1995 the IEEE had created
standards for Ethernet that operated at 100 Mbps. Ethernet at this speed is commonly known as Fast
Ethernet; this name is used even today as “Fast” Ethernet is being supplanted by Gigabit Ethernet (below).
By far the most popular form of 100 Mbps Ethernet is officially known as 100BASE-TX; it operates over
twisted-pair cable.

56 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

In the previous analysis of 10 Mbps Ethernet, the bandwidth, minimum packet size and maximum network
diameter were all interrelated, in order to ensure that collisions could always be detected by the sender.
Increasing the speed means that at least one of the other constraints must be scaled as well. For example, if
the network physical diameter were to remain the same when moving to 100 Mbps, then the Fast-Ethernet
round-trip time would be the same in microseconds but would be 10-fold larger measured in bits; this might
mean a minimum packet size of 640 bytes instead of 64 bytes. (Actually, the minimum packet size might
be somewhat smaller, partly because the “jam signal” doesn’t have to become longer, and partly because
some of the numbers in the 10 Mbps delay budget above were larger than necessary, but it would still be
large enough that a substantial amount of bandwidth would be consumed by padding.) The designers of Fast
Ethernet felt that such a large minimum-packet size was impractical.

However, Fast Ethernet was developed at a time (~1995) when reliable switches (below) were widely avail-
able; the quote above at 2 Ethernet from [MB76] had become obsolete. Large “virtual” Ethernet networks
could be formed by connecting small physical Ethernets with switches, effectively eliminating the need to
support large-diameter physical Ethernets. So instead of increasing the minimum packet size, the decision
was made to ensure collision detectability by reducing the network diameter instead. The network diameter
chosen was a little over 400 meters, with reductions to account for the presence of hubs. At 2.3 meters/bit,
400 meters is 174 bits, for a round-trip of 350 bits. The slot time (and minimum packet size) remains 512
bits – now 5.12 µsec – which is safely large enough to ensure collision detection.

This 400-meter diameter, however, may be misleading: the specific 100BASE-TX standard, which uses
so-called Category 5 twisted-pair cabling (or better), limits the length of any individual cable segment to
100 meters. The maximum 100BASE-TX network diameter – allowing for hubs – is just over 200 meters.
The 400-meter distance does apply to optical-fiber-based 100BASE-FX in half-duplex mode, but this is not
common.

The 100BASE-TX network-diameter limit of 200 meters might seem small; it amounts in many cases to
a single hub with multiple 100-meter cable segments radiating from it. In practice, however, such “star”
configurations could easily be joined with switches. As we will see below in 2.4 Ethernet Switches,
switches partition an Ethernet into separate “collision domains”; the network-diameter rules apply to each
domain separately but not to the aggregated whole. In a fully switched (that is, no hubs) 100BASE-TX
LAN, each collision domain is simply a single twisted-pair link, subject to the 100-meter maximum length.

Fast Ethernet also introduced the concept of full-duplex Ethernet: two twisted pairs could be used, one
for each direction. Full-duplex Ethernet is limited to paths not involving hubs, that is, to single station-to-
station links, where a station is either a host or a switch. Because such a link has only two potential senders,
and each sender has its own transmit line, full-duplex Ethernet is entirely collision-free.

Fast Ethernet (at least the 100BASE-TX form) uses 4B/5B encoding, covered in 4.1.4 4B/5B. This means
that the electronics have to handle 125 Mbps, versus the 200 Mbps if Manchester encoding were still used.

Fast Ethernet 100BASE-TX does not particularly support links between buildings, due to the maximum-
cable-length limitation. However, fiber-optic point-to-point links are an effective alternative here, provided
full-duplex is used to avoid collisions. We mentioned above that the coax-based 100BASE-FX standard
allowed a maximum half-duplex run of 400 meters, but 100BASE-FX is much more likely to use full duplex,
where the maximum cable length rises to 2,000 meters.

2.2 100 Mbps (Fast) Ethernet 57

An Introduction to Computer Networks, Release 1.9.21

2.3 Gigabit Ethernet

The problem of scaling Ethernet to handle collision detection gets harder as the transmission rate increases.
If we were continue to maintain the same 51.2 µsec slot time but raise the transmission rate to 1000 Mbps,
the maximum network diameter would now be 20-40 meters. Instead of that, Gigabit Ethernet moved to
a 4096-bit (512-byte, or 4.096 µsec) slot time, at least for the twisted-pair versions. Short frames need to
be padded, but this padding is done by the hardware. Gigabit Ethernet 1000Base-T uses so-called PAM-
5 encoding, below, which supports a special pad pattern (or symbol) that cannot appear in the data. The
hardware pads the frame with these special patterns, and the receiver can thus infer the unpadded length as
set by the host operating system.

Gigabit vs Disks

Once a network has reached Gigabit speed, the network is generally as fast as reading from or writing to
a disk. Keeping data on another node no longer slows things down. This greatly expands the range of
possibilities for constructing things like clustered databases.

However, the Gigabit Ethernet slot time is largely irrelevant, as full-duplex (bidirectional) operation is almost
always supported. Combined with the restriction that each length of cable is a station-to-station link (that
is, hubs are no longer allowed), this means that collisions simply do not occur and the network diameter is
no longer a concern. (10 Gigabit Ethernet has officially abandoned any pretense of supporting collisions;
everything must be full-duplex.)

There are actually multiple Gigabit Ethernet standards (as there are for Fast Ethernet). The different stan-
dards apply to different cabling situations. There are full-duplex optical-fiber formulations good for many
miles (eg 1000Base-LX10), and even a version with a 25-meter maximum cable length (1000Base-CX),
which would in theory make the original 512-bit slot practical.

The most common gigabit Ethernet over copper wire is 1000BASE-T (sometimes incorrectly referred to
as 1000BASE-TX. While there exists a TX, it requires Category 6 cable and is thus seldom used; many
devices labeled TX are in fact 1000BASE-T). For 1000BASE-T, all four twisted pairs in the cable are used.
Each pair transmits at 250 Mbps, and each pair is bidirectional, thus supporting full-duplex communication.
Bidirectional communication on a single wire pair takes some careful echo cancellation at each end, using
a circuit known as a “hybrid” that in effect allows detection of the incoming signal by filtering out the
outbound signal.

On any one cable pair, there are five signaling levels. These are used to transmit two-bit symbols at a rate
of 125 symbols/µsec, for a data rate of 250 bits/µsec. Two-bit symbols in theory only require four signaling
levels; the fifth symbol allows for some redundancy which is used for error detection and correction, for
avoiding long runs of identical symbols, and for supporting a special pad symbol, as mentioned above. The
encoding is known as 5-level pulse-amplitude modulation, or PAM-5. The target bit error rate (BER) for
1000BASE-T is 10-10, meaning that the packet error rate is less than 1 in 106.

In developing faster Ethernet speeds, economics plays at least as important a role as technology. As new
speeds reach the market, the earliest adopters often must take pains to buy cards, switches and cable known
to “work together”; this in effect amounts to installing a proprietary LAN. The real benefit of Ethernet,
however, is arguably that it is standardized, at least eventually, and thus a site can mix and match its cards
and devices. Having a given Ethernet standard support existing cable is even more important economically;

58 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

the costs of replacing inter-office cable often dwarf the costs of the electronics.

As Ethernet speeds continue to climb, it has become harder and harder for host systems to keep up. As a
result, it is common for quite a bit of higher-layer processing to be offloaded onto the Ethernet hardware, for
example, TCP checksum calculation. See 12.5 TCP Offloading.

2.4 Ethernet Switches

Switches join separate physical Ethernets (or sometimes Ethernets and other kinds of networks). A switch
has two or more Ethernet interfaces; when a packet is received on one interface it is retransmitted on one or
more other interfaces. Only valid packets are forwarded; collisions are not propagated. The term collision
domain is sometimes used to describe the region of an Ethernet in between switches; a given collision
propagates only within its collision domain.

Switches have revolutionized Ethernet layout: all the collision-detection rules, including the rules for maxi-
mum network diameter, apply only to collision domains, and not to the larger “virtual Ethernets” created by
stringing collision domains together with switches. As we shall see below, a switched Ethernet also offers
much more resistance to eavesdropping than a non-switched (eg hub-based) Ethernet.

Switch Costs

In the 1980’s the author once installed a two-port 10-Mbps Ethernet switch (then called a “bridge”) that
cost $3000; cf the [MB76] quote at 2 Ethernet. Today a wide variety of multiport 100-Mbps Ethernet
switches are available for around $10, and almost all installed Ethernets are fully switched.

Like simpler unswitched Ethernets, the topology for a switched Ethernet is in principle required to be loop-
free. In practice, however, most switches support the spanning-tree loop-detection protocol and algorithm,
2.5 Spanning Tree Algorithm and Redundancy, which automatically “prunes” the network topology to
make it loop-free while allowing the pruned links to be placed back in service if a primary link fails.

While a switch does not propagate collisions, it must maintain a queue for each outbound interface in case it
needs to forward a packet at a moment when the interface is busy; on (rare) occasion packets are lost when
this queue overflows.

2.4.1 Ethernet Learning Algorithm

Traditional Ethernet switches use datagram forwarding as described in 1.4 Datagram Forwarding; the trick
is to build their forwarding tables without any cooperation from ordinary, non-switch hosts. Indeed, to the
extent that a switch is to act as a drop-in replacement for a hub, it cannot count on cooperation from other
switches.

The solution is for the switch to start out with an empty forwarding table, and then incrementally build the
table through a learning process. If a switch does not have an entry for a particular destination, it will
fall back to flooding: it will forward the packet out every interface other than the one on which the packet
arrived. This is sometimes also called “unknown unicast flooding”; it is equivalent to treating the destination
as a broadcast address. The availability of fallback-to-flooding for unknown destinations is what makes it

2.4 Ethernet Switches 59

An Introduction to Computer Networks, Release 1.9.21

possible for Ethernet switches to learn their forwarding tables without any switch-to-switch or switch-to-
host communication or coordination. This learning process is now part of the IEEE 802.1D standard, and is
occasionally referred to as transparent bridging.

A switch learns address locations as follows: for each interface, the switch maintains a table of physical
(MAC) addresses that have appeared as source addresses in packets arriving via that interface. The switch
thus knows that to reach these addresses, if one of them later shows up as a destination address, the packet
needs to be sent only via that interface. Specifically, when a packet arrives on interface I with source address
S and destination unicast address D, the switch enters xS,Iy into its forwarding table.

To actually deliver the packet, the switch also looks up the destination D in the forwarding table. If there is
an entry xD,Jy with J‰I – that is, D is known to be reached via interface J – then the switch forwards the
packet out interface J. If J=I, that is, the packet has arrived on the same interfaces by which the destination
is reached, then the packet does not get forwarded at all; it presumably arrived at interface I only because
that interface was connected to a shared Ethernet segment that also either contained D or contained another
switch that would bring the packet closer to D. If there is no entry for D, the switch must flood the packet out
all interfaces J with J‰I; this represents the unknown-destination fallback to flooding. After a short while,
the fallback-to-flooding alternative is needed less and less often, as switches learn where the active hosts are
located. (However, in some switch implementations, forwarding tables also include timestamps, and entries
are removed if they have not been used for, say, five minutes.)

If the destination address D is the broadcast address, or, for many switches, a multicast address, broadcast
(flooding) is required. Some switches try to keep track of multicast groups, so as to forward multicast traffic
only out interfaces with known subscribers; see 2.1.2 Ethernet Multicast.

S1 S2 S3

S4 S5

A B

C

A A A,C

A,C

A

BB B

C

C

Five learning bridges after three packet transmissions

In the diagram above, each switch’s tables are indicated by listing near each interface the destinations (iden-
tified by MAC addresses) known to be reachable by that interface. The entries shown are the result of the
following packets:

• A sends to B; all switches learn where A is

• B sends to A; this packet goes directly to A; only S3, S2 and S1 learn where B is

• C sends to B; S4 does not know where B is so this packet goes to S5; S2 does know where B is so the
packet does not go to S1.

It is worth observing that, at the application layer, hosts do not commonly identify one another by their MAC
addresses. In an IPv4-based network, the use of ARP (7.9 Address Resolution Protocol: ARP) to translate
from IPv4 to MAC addresses would introduce additional broadcasts, which would cause the above scenario

60 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

to play out differently. See exercise 11.0.

Switches do not automatically discover directly connected neighbors; S1 does not learn about A until A
transmits a packet.

Once all the switches have learned where all (or most of) the hosts are, each packet is forwarded rather
than flooded. At this point packets are never sent on links unnecessarily; a packet from A to B only travels
those links that lie along the (unique) path from A to B. (Paths must be unique because switched Ethernet
networks cannot have loops, at least not active ones. If a loop existed, then a packet sent to an unknown
destination would be forwarded around the loop endlessly.)

Switches have an additional privacy advantage in that traffic that does not flow where it does not need to flow
is much harder to eavesdrop on. On an unswitched Ethernet, one host configured to receive all packets can
eavesdrop on all traffic. Early Ethernets were notorious for allowing one unscrupulous station to capture,
for instance, all passwords in use on the network. On a fully switched Ethernet, a host physically sees
only the traffic actually addressed to it; other traffic remains inaccessible. This switch-based eavesdropping
protection is, however, potentially vulnerable to attackers flooding the network with fake source addresses,
forcing switches into fallback-to-flooding mode.

Typical large switches have room for a forwarding table with 104 - 105 entries, though fully switched net-
works at the upper end of this size range are not common. The main size limitations specific to switching are
the requirement that the topology must be loop-free (thus disallowing duplicate paths which might otherwise
provide redundancy), and that all broadcast traffic must always be forwarded everywhere. As a switched
Ethernet grows, broadcast traffic comprises a larger and larger percentage of the total traffic, and the or-
ganization must at some point move to a routing architecture (eg as in 7.6 IPv4 Subnets). A common
recommendation is to have no more than 1000 hosts per LAN (or VLAN, 2.6 Virtual LAN (VLAN)).

2.4.2 Switch Hardware

One of the differences between an inexpensive Ethernet switch and a pricier one is the degree of internal
parallelism it can support. If three packets arrive simultaneously on ports 1, 2 and 3, and are destined for
respective ports 4, 5 and 6, can the switch actually transmit the packets simultaneously? A “yes” answer
here is the gold performance standard for an Ethernet switch: to keep up with packets as fast as they arrive.

The worst-case load, for a switch with 2N ports, is for packets to arrive continuously on N ports, and depart
on a different N ports. This means that, in the time required to transmit one packet, the switch must internally
forward N packets in parallel.

This is sometimes much faster than necessary. If all the load is departing (or arriving) via just one of the
ports – for example, the port connected to the server, or to the Internet – then the above standard is N times
faster than necessary; the switch need only handle one packet at a time. Such a switch may be forced to
queue outbound packets on that one port, but that does not represent a lack of performance on the part of the
switch. Still, greater parallelism is generally viewed as a good thing in switches.

The simplest switch architecture – used whenever a switch is built around a “standard” computer – is the
shared-memory model. Such a system consists of a single CPU, single memory and peripheral busses, and
multiple Ethernet cards. When a packet arrives, the CPU must copy the packet from the arrival interface
into RAM, determine the forwarding, and then copy the packet to the output interface. To keep up with
one-at-a-time 100 Mbps transmission, the internal transfer rate must therefore be at least 200 Mbps.

2.4 Ethernet Switches 61

An Introduction to Computer Networks, Release 1.9.21

The maximum speed of such a device depends largely on the speed of the peripheral-to-RAM bus (the so-
called front-side bus). The USB 3.0 bus operates at 5 Gbps. At an Ethernet speed of 100 Mbps, such a
bus can theoretically transfer 5 Gbps/200 Mbps = 25 packets in and out in the time it takes one packet to
arrive, supporting up to 50 ports total. However, with gigabit Ethernet, only two packets can be handled.
For commodity five-port switches, this is enough, and such switches can generally handle this degree of
parallelism.

Bus speeds go up at least ten-fold, but 10 Gbps and even 40 Gbps Ethernet is now common in datacenters,
and 24 ports is a bare minimum. As a result, the shared-memory architecture is generally not regarded as
adequate for high-performance switches. When a high degree of parallelism is required, there are various
architectures – known as switch fabrics – that can be implemented.

One common solution to this internal-bottleneck problem is a so-called crossbar switch fabric, consisting
of a grid of NˆN normally open switch nodes that can be closed under CPU control. Packets travel, via a
connected path through the crossbar, directly from one Ethernet interface to another. The crossbar allows
parallel connections between any of N inputs and any of N outputs.

1

2

3

4

5

Inputs

1 2 3 4 5

Outputs

5×5 crossbar with 5 parallel connections
 1�1, 2�3, 3�5, 4�2, 5�4

The diagram above illustrates a 5ˆ5 crossbar, with 5 inputs and 5 separate outputs. (In a real Ethernet
switch, any port can be an input or an output, but this is a relatively inessential difference). There are 5
parallel connections shown, from inputs 1-5 to outputs 1,3,5, 2 and 4 respectively; the large dots represent
solid-state switching elements in the closed state. Packets are transmitted serially through each switch path.

We saw in 1.7 Congestion that, for any switch (or router), if packets arrive over time for a given output
port faster than they can be transmitted by that port, then the excess packets will need to be queued at that
output port. However, in this crossbar example, if multiple packets destined for the same output arrive
simultaneously, all but one will also have to be queued briefly at the input side: packets cannot be delivered
in parallel to the same output-port queue. The same is true for most other switch fabrics as well, including
the simple shared-memory switch discussed above. So, while the “primary” queues of switches (and routers)
are at the output side, as packets wait their turn for transmission, there is also a need for smaller input-side
queues, as packets wait their turn to enter the switch fabric.

Crossbars, and variations, are one common approach in the design of high-speed switches that support

62 2 Ethernet

https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/USB_3.0

An Introduction to Computer Networks, Release 1.9.21

multiple parallel transfers.

The other hardware innovation often used by high-performance switches is Content-Addressable Memory,
or CAM; this allows for the search of the forwarding table in a single memory load. In a shared-memory
switch, each destination address must be looked up in a hash table or other data structure; including the
calculation of the hash value, this process may take as long as several tens of memory loads.

On some brands of switches, the forwarding table is often referred to as the CAM table.

CAM memory consists of a large number N of memory registers all attached to a common data-input bus;
for Ethernet switching, the data width of the bus and registers needs to be at least as large as the 48-bit
address size. When the input bus is activated, each memory register simultaneously compares the value on
the bus with its own data value; if there is a match, the register triggers its output line. A binary-encoder
circuit then converts the number k<N of that register to a binary value representing the address k of the
register. It is straightforward to have the encoder resolve ties by choosing, for example, the number of the
first register to match.

In the diagram above, the data width is 6, and there are 16 vertically oriented registers numbered (in hex)
0-f. Register 6 contains the entry 100011 matching the data input, and enables its signal into the encoder.
The output of the encoder is the corresponding address, 0110.

A common variant of CAM is Ternary CAM, or TCAM, in which each memory register is paired with a
corresponding “mask” register. For any given bit, a match is declared only if the bus bit matches the register
bit, or the corresponding mask bit is 0. A mask bit of 0 thus represents a wildcard value, matching any input.
TCAM is most useful when the addresses being looked up are IP addresses rather than Ethernet addresses,
in which case the goal is to match only the address bits corresponding to the network prefix (1.10 IP -
Internet Protocol). In this setting the mask contents represents the IP address mask (7.6 IPv4 Subnets). In
order to implement the longest-match rule (10.1 Classless Internet Domain Routing: CIDR) it is essential
that addresses with shorter prefixes – longer runs of terminal wildcard bits – appear before addresses with
longer prefixes (and also that, in the event of multiple matches, the encoder prefers the righthand – that
is, longer – match). This implies that new TCAM entries must be inserted in relatively specific positions,
which may involve a significant amount of shifting the positions of existing entries. See 7.5.1 Efficient
Forwarding-Table Lookup.

2.4 Ethernet Switches 63

https://en.wikipedia.org/wiki/Encoder_(digital)

An Introduction to Computer Networks, Release 1.9.21

2.5 Spanning Tree Algorithm and Redundancy

In theory, if you form a loop with Ethernet switches, any packet with destination not already present in
the forwarding tables will circulate endlessly, consuming most available throughput. Some early switches
would actually do this; it was generally regarded as catastrophic failure.

In practice, however, loops allow redundancy – if one link breaks there is still 100% connectivity – and so
can be desirable. As a result, Ethernet switches have incorporated a switch-to-switch protocol to construct
a subset of the switch-connections graph that has no loops and yet allows reachability of every host, known
in graph theory as a spanning tree. Once the spanning tree is built, links that are not part of the tree are
disabled, even if they would represent the most efficient path between two nodes. If a link that is part of
the spanning tree fails, partitioning the network, a new tree is constructed, and some formerly disabled links
may now return to service.

One might ask, if switches can work together to negotiate a a spanning tree, whether they can also work
together to negotiate loop-free forwarding tables for the original non-tree topology, thus keeping all links
active. The difficulty here is not the switches’ ability to coordinate, but the underlying Ethernet broadcast
feature. As long as the topology has loops and broadcast is enabled, broadcast packets might circulate
forever. And disabling broadcast is not a straightforward option; switches rely on the broadcast-based
fallback-to-flooding strategy of 2.4.1 Ethernet Learning Algorithm to deliver to unknown destinations.
However, we will return to this point in 2.8 Software-Defined Networking. See also exercise 10.0.

The presence of hubs and other unswitched Ethernet segments slightly complicates the switch-connections
graph. In the absence of these, the graph’s nodes and edges are simply the hosts (including switches) and
links of the Ethernet itself. If unswitched multi-host Ethernet segments are present, then each of these
becomes a single node in the graph, with a graph edge to each switch to which it directly connects. (Any
Ethernet switches not participating in the spanning-tree algorithm would be treated as hubs.)

Every switch has an ID, eg its smallest Ethernet address, and every edge that attaches to a switch does so via
a particular, numbered interface. The goal is to disable redundant (cyclical) paths while retaining the ability
to deliver to any segment. The algorithm is due to Radia Perlman, [RP85].

The switches first elect a root node, eg the one with the smallest ID. Then, if a given segment connects to two
switches that both connect to the root node, the switch with the shorter path to the root is used, if possible; in
the event of ties, the switch with the smaller ID is used. The simplest measure of path cost is the number of
hops, though current implementations generally use a cost factor inversely proportional to the bandwidth (so
larger bandwidth has lower cost). Some switches permit other configuration here. The process is dynamic,
so if an outage occurs then the spanning tree is recomputed. If the outage should partition the network into
two pieces, both pieces will build spanning trees.

All switches send out regular messages on all interfaces called bridge protocol data units, or BPDUs (or
“Hello” messages). These are sent to the Ethernet multicast address 01:80:c2:00:00:00, from the Ethernet
physical address of the interface. (Note that Ethernet switches do not otherwise need a unique physical
address for each interface.) The BPDUs contain

• The switch ID

• the ID of the node the switch believes is the root

• the path cost (eg number of hops) to that root

64 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

These messages are recognized by switches and are not forwarded naively. Switches process each message,
looking for

• a switch with a lower ID than any the receiving switch has seen before (thus becoming the new root)

• a shorter path to the existing root

• an equal-length path to the existing root, but via a neighbor switch with a lower ID (the tie-breaker
rule). If there are two ports that connect to that switch, the port number is used as an additional
tie-breaker.

In a heterogeneous Ethernet we would also introduce a preference for faster paths, but we will assume here
that all links have the same bandwidth.

When a switch sees a new root candidate, it sends BPDUs on all interfaces, indicating the distance. The
switch includes the interface leading towards the root.

Once this process has stabilized, each switch knows

• its own path to the root

• which of its ports any further-out switches will be using to reach the root

• for each port, its directly connected neighboring switches

Now the switch can “prune” some (or all!) of its interfaces. It disables all interfaces that are not enabled by
the following rules:

1. It enables the port via which it reaches the root

2. It enables any of its ports that further-out switches use to reach the root

3. If a remaining port connects to a segment to which other “segment-neighbor” switches connect as well,
the port is enabled if the switch has the minimum cost to the root among those segment-neighbors, or,
if a tie, the smallest ID among those neighbors, or, if two ports are tied, the port with the smaller ID.

4. If a port has no directly connected switch-neighbors, it presumably connects to a host or segment, and
the port is enabled.

Rules 1 and 2 construct the spanning tree; if S3 reaches the root via S2, then Rule 1 makes sure S3’s port
towards S2 is open, and Rule 2 makes sure S2’s corresponding port towards S3 is open. Rule 3 ensures that
each network segment that connects to multiple switches gets a unique path to the root: if S2 and S3 are
segment-neighbors each connected to segment N, then S2 enables its port to N and S3 does not (because
2<3). The primary concern here is to create a path for any host nodes on segment N; S2 and S3 will create
their own paths via Rules 1 and 2. Rule 4 ensures that any “stub” segments retain connectivity; these would
include all hosts directly connected to switch ports.

2.5.1 Example 1: Switches Only

We can simplify the situation somewhat if we assume that the network is fully switched: each switch port
connects to another switch or to a (single-interface) host; that is, no repeater hubs (or coax segments!) are
in use. In this case we can dispense with Rule 3 entirely.

Any switch ports directly connected to a host can be identified because they are “silent”; the switch never
receives any BPDU messages on these interfaces because hosts do not send these. All these host port ends

2.5 Spanning Tree Algorithm and Redundancy 65

An Introduction to Computer Networks, Release 1.9.21

up enabled via Rule 4. Here is our sample network, where the switch numbers (eg 5 for S5) represent their
IDs; no hosts are shown and interface numbers are omitted.

S1 S2 S3

S4 S5 S6

S1 has the lowest ID, and so becomes the root. S2 and S4 are directly connected, so they will enable the
interfaces by which they reach S1 (Rule 1) while S1 will enable its interfaces by which S2 and S4 reach it
(Rule 2).

S3 has a unique lowest-cost route to S1, and so again by Rule 1 it will enable its interface to S2, while by
Rule 2 S2 will enable its interface to S3.

S5 has two choices; it hears of equal-cost paths to the root from both S2 and S4. It picks the lower-numbered
neighbor S2; the interface to S4 will never be enabled. Similarly, S4 will never enable its interface to S5.

Similarly, S6 has two choices; it selects S3.

After these links are enabled (strictly speaking it is interfaces that are enabled, not links, but in all cases here
either both interfaces of a link will be enabled or neither), the network in effect becomes:

S1 S2 S3

S4 S5 S6

2.5.2 Example 2: Switches and Segments

As an example involving switches that may join via unswitched Ethernet segments, consider the following
network; S1, S2 and S3, for example, are all segment-neighbors via their common segment B. As before, the
switch numbers represent their IDs. The letters in the clouds represent network segments; these clouds may
include multiple hosts. Note that switches have no way to detect these hosts; only (as above) other switches.

66 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

S1

S2

A

F

C S4
D

S5

E

S3

B

S6
G

H

1

2 3

5

4 1 3 1

2

1

2

3

1
2

1

2

3

J

2

S7
1 2

K

Eventually, all switches discover S1 is the root (because 1 is the smallest of {1,2,3,4,5,6}). S2, S3 and S4
are one (unique) hop away; S5, S6 and S7 are two hops away.

Algorhyme

I think that I shall never see
a graph more lovely than a tree.
A tree whose crucial property
is loop-free connectivity.
A tree that must be sure to span
so packet can reach every LAN.
First, the root must be selected.
By ID, it is elected.
Least-cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
then bridges find a spanning tree.

Radia Perlman

For the switches one hop from the root, Rule 1 enables S2’s port 1, S3’s port 1, and S4’s port 1. Rule 2
enables the corresponding ports on S1: ports 1, 5 and 4 respectively. Without the spanning-tree algorithm
S2 could reach S1 via port 2 as well as port 1, but port 1 has a smaller number.

S5 has two equal-cost paths to the root: S5ÝÑS4ÝÑS1 and S5ÝÑS3ÝÑS1. S3 is the switch with the

2.5 Spanning Tree Algorithm and Redundancy 67

An Introduction to Computer Networks, Release 1.9.21

lower ID; its port 2 is enabled and S5 port 2 is enabled.

S6 and S7 reach the root through S2 and S3 respectively; we enable S6 port 1, S2 port 3, S7 port 2 and S3
port 3.

The ports still disabled at this point are S1 ports 2 and 3, S2 port 2, S4 ports 2 and 3, S5 port 1, S6 port 2
and S7 port 1.

Now we get to Rule 3, dealing with how segments (and thus their hosts) connect to the root. Applying Rule
3,

• We do not enable S2 port 2, because the network (B) has a direct connection to the root, S1

• We do enable S4 port 3, because S4 and S5 connect that way and S4 is closer to the root. This enables
connectivity of network D. We do not enable S5 port 1.

• S6 and S7 are tied for the path-length to the root. But S6 has smaller ID, so it enables port 2. S7’s
port 1 is not enabled.

Finally, Rule 4 enables S4 port 2, and thus connectivity for host J. It also enables S1 port 2; network F has
two connections to S1 and port 2 is the lower-numbered connection.

All this port-enabling is done using only the data collected during the root-discovery phase; there is no
additional negotiation. The BPDU exchanges continue, however, so as to detect any changes in the topology.

If a link is disabled, it is not used even in cases where it would be more efficient to use it. That is, traffic
from F to B is sent via B1, D, and B5; it never goes through B7. IP routing, on the other hand, uses the
“shortest path”. To put it another way, all spanning-tree Ethernet traffic goes through the root node, or along
a path to or from the root node.

The traditional (IEEE 802.1D) spanning-tree protocol is relatively slow; the need to go through the tree-
building phase means that after switches are first turned on no normal traffic can be forwarded for ~30
seconds. Faster, revised protocols have been proposed to reduce this problem.

Another issue with the spanning-tree algorithm is that a rogue switch can announce an ID of 0 (or some
similar artificially small value), thus likely becoming the new root; this leaves that switch well-positioned
to eavesdrop on a considerable fraction of the traffic. One of the goals of the Cisco “Root Guard” feature
is to prevent this. Another goal of this and related features is to put the spanning-tree topology under some
degree of administrative control. One likely wants the root switch, for example, to be geographically at least
somewhat centered, and for the high-speed backbone links to be preferred to slow links.

2.6 Virtual LAN (VLAN)

What do you do when you have different people in different places who are “logically” tied together? For
example, for a while the Loyola University CS department was split, due to construction, between two
buildings.

One approach is to continue to keep LANs local, and use IP routing between different subnets. However,
it is often convenient (printers are one reason) to configure workgroups onto a single “virtual” LAN, or
VLAN. A VLAN looks like a single LAN, usually a single Ethernet LAN, in that all VLAN members will
see broadcast packets sent by other members and the VLAN will ultimately be considered to be a single IP
subnet (7.6 IPv4 Subnets). Different VLANs are ultimately connected together, but likely only by passing

68 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

through a single, central IP router. Broadcast traffic on one VLAN will generally not propagate to any other
VLAN; this isolation of broadcast traffic is another important justification for VLAN use.

VLANs can be visualized and designed by using the concept of coloring. We logically assign all nodes on
the same VLAN the same color, and switches forward packets accordingly. That is, if S1 connects to red
machines R1 and R2 and blue machines B1 and B2, and R1 sends a broadcast packet, then it goes to R2 but
not to B1 or B2. Switches must, of course, be told the color of each of their ports.

S1 S2 S3

S4 Router R

R1

R2

B1

B2

R3

B3

One network of switches S1-S4 divided into two VLANs, red and blue

In the diagram above, S1 and S3 each have both red and blue ports. The switch network S1-S4 will deliver
traffic only when the source and destination ports are the same color. Red packets can be forwarded to the
blue VLAN only by passing through the router R, entering R’s red port and leaving its blue port. R may
apply firewall rules to restrict red–blue traffic.

When the source and destination ports are on the same switch, nothing needs to be added to the packet; the
switch can keep track of the color of each of its ports. However, switch-to-switch traffic must be additionally
tagged to indicate the source. Consider, for example, switch S1 above sending packets to S3 which has nodes
R3 (red) and B3 (blue). Traffic between S1 and S3 must be tagged with the color, so that S3 will know to
what ports it may be delivered. The IEEE 802.1Q protocol is typically used for this packet-tagging; a 32-bit
“color” tag is inserted into the Ethernet header after the source address and before the type field. The first
16 bits of this field is 0x8100, which becomes the new Ethernet type field and which identifies the frame as
tagged. A separate 802.3 amendment allows Ethernet packets to be slightly larger, to accommodate the tags.

Double-tagging is possible; this would allow an ISP to have one level of tagging and its customers to have
another level.

Finally, most commercial-grade switches do provide some way of selectively allowing traffic between dif-
ferent VLANs; with such switches, for example, rules could be created to allow R1 to connect to B3 without
the use of the router R. One difficulty with this approach is that there is often little standardization among
switch manufacturers. This makes it difficult to create, for example, authorization applications that al-
low opening inter-VLAN connections on the fly. Another issue is that some switches allow inter-VLAN
rules based only on MAC addresses, and not, for example, on TCP port numbers. The OpenFlow protocol
(2.8.1 OpenFlow Switches) has the potential to create the necessary standardization here. Even without
OpenFlow, however, some specialty access-and-authentication systems have been developed that do enable
host access by dynamic creation of the appropriate switch rules.

2.6 Virtual LAN (VLAN) 69

An Introduction to Computer Networks, Release 1.9.21

2.7 TRILL and SPB

As Ethernets get larger, the spanning-tree algorithm becomes more and more a problem, primarily because
useful links are disabled and redundancy is lost. In a high-performance network, such as within a datacenter,
disabled links are a wasted resource. A secondary issue is that, in the event of link failure, the spanning-tree
approach can take many seconds to create a new tree and restore connectivity.

To address these problems, there are now protocols which allow Ethernet to have active loops in the topology,
making first-class use of all links. The idea is to generate forwarding tables within the Ethernet switches – or
at least within some of them – that route every packet along the shortest path – or at least an approximation
to the shortest path – based on all available links. This has long been a staple in the IP world (9 Routing-
Update Algorithms), but is definitely a break with tradition at the LAN layer.

There are two competing protocols here: TRILL (TRansparent Interconnection of Lots of Links) and SPB
(Shortest-Path Bridging). TRILL is documented in [RP04] and RFC 6325 and companions, while SPB is
standardized by IEEE 802.1aq. We will focus here on TRILL.

Both TRILL and SPB envision that, initially, only a few switches will be smart enough to do shortest-path
routing, just as, once upon a time, only a few switches implemented the spanning-tree algorithm. But,
with time, it is likely that eventually most if not all Ethernet switches will be shortest-path aware. In high-
performance datacenters it is particularly likely that forwarding will be based on TRILL or SPB.

In TRILL, the Ethernet switches that are TRILL-aware are known as Router-Bridges, or RBridges (the terms
RSwitches and TRILL Switches might also be appropriate). In between the RBridges are Legacy Ethernets
(called “links” in [RP04] and RFC 6325, though this term is misleading); Legacy Ethernets consist of
maximal subnetworks of Ethernet hosts and non-TRILL-aware switches. The intent is for the RBridges to
partition the entire Ethernet into relatively small Legacy Ethernets. In the ultimate case where all switches
are RBridges, the Legacy Ethernets are simply individual hosts. In the diagram below, four RBridges isolate
Legacy Ethernets 1, 2, 3 and 4, though Legacy Ethernet 5 represents a degree of partitioning inefficiency.

RB1 RB4

RB3RB2

LE1

LE2

LE4

LE3

LE5

Each Legacy Ethernet elects a single connected RBridge to represent it. There is a unique choice for LE1
through LE4 above, but LE5 must make a decision. This elected RBridge is known as the Designated
RBridge, or DRB. Each Legacy Ethernet then builds its own spanning tree, perhaps (though not necessarily)
rooted at its Designated RBridge.

Traffic from a Legacy Ethernet to the outside will generally be forwarded through its Designated RBridge;
connections to other RBridges will not be used. The idea is for packets from one Legacy Ethernet to another
to be delivered first to the source node’s DRB, and then to the destination node’s DRB via true shortest-path
forwarding between the RBridges, and from there to the destination node. Of course, in the ultimate case

70 2 Ethernet

https://tools.ietf.org/html/rfc6325.html
https://en.wikipedia.org/wiki/IEEE_802.1aq
https://tools.ietf.org/html/rfc6325.html

An Introduction to Computer Networks, Release 1.9.21

where every switch is an RBridge, traffic will take the shortest path from start to finish.

The one exception to this rule about forwarding through the Designated RBridge is that the DRB can dele-
gate this forwarding task to other RBridges for different VLANs within the Legacy Ethernet. If this is done,
each VLAN will always use the same RBridge for all its outside traffic.

The second part of the process is for the RBridges each to figure out the overall topology; that is, each builds
a complete map of all the RBridges and their interconnections. This is done using a link-state routing-update
protocol, described in 9.5 Link-State Routing-Update Algorithm. Of the two primary link-state protocols,
IS-IS and OSPF, TRILL has selected the former, as it is more easily adapted to a setting in which, as here,
nodes do not necessarily have IP addresses. The RBridges each send out appropriate “link-state packets”,
using multicast and using per-RBridge databases to ensure that these packets are not re-forwarded endlessly.
These link-state packets can be compared to spanning-tree Hello messages. As is fundamental to link-state
forwarding, once each RBridge has a complete map of all the RBridges, each RBridge can calculate an
optimal route to any other RBridge.

As Designated RBridges see packets from their Legacy Ethernets, they learn the MAC addresses of the
active hosts within, via the usual Ethernet learning protocol. They then share these addresses with other
RBridges, using the IS-IS link-state protocol, so other RBridges eventually learn how to reach most if not
all Ethernet addresses present in the overall network.

Delivery still must make use of fallback-to-flooding, however, to deliver to previously unknown destinations.
To this end, the RBridges negotiate among themselves a spanning tree covering all the RBridges. Any packet
with unknown destination is flooded along this spanning tree, and then, as the packet reaches a Designated
RBridge for a Legacy Ethernet, is flooded along the spanning tree of that Ethernet. This process is also used
for delivery of broadcast and multicast packets.

As RBridges talk to one another, they negotiate compact two-byte addresses – known as “nicknames” – for
one another, versus the standard Ethernet six-byte addresses. This saves space in the RBridge-to-RBridge
communications.

As packets travel between RBridges, a special TRILL header is added. This header includes a hopcount
field, otherwise not present in Ethernet, which means any packets caught in transient routing loops will
eventually be discarded. IS-IS may occasionally generate such routing loops, though they are rare.

The TRILL header also includes the nicknames of the source and destination RBridges. This means that
actual packet forwarding between RBridges does not involve the MAC address of the destination host; that
is used only after the packet has reached the Designated RBridge for the destination Legacy Ethernet, at
which point the TRILL header is removed.

If a link between two RBridges fails, then the link’s endpoints send out IS-IS update messages to notify all
the other RBridges of the failure. The other RBridges can then recalculate their forwarding tables so as not
to use the broken link. Recovery time is typically under 0.1 seconds, a roughly hundredfold improvement
over spanning-tree recovery times.

TRILL supports the use of multiple equal-cost paths to improve throughput between two RBridges; cf
9.7 ECMP. In a high-performance datacenter, this feature is very important.

Like TRILL, SPB uses IS-IS between the SPB-aware bridges to find shortest paths, and encapsulates packets
with a special header as they travel between RBridges. SPB does not include a hopcount in the encapsulation
header; instead, it more carefully controls forwarding. SPB also uses the original destination MAC address
for inter-RBridge forwarding.

2.7 TRILL and SPB 71

An Introduction to Computer Networks, Release 1.9.21

2.8 Software-Defined Networking

While TRILL and SPB offer one way to handle to the scaling problems of spanning trees, Software-Defined
Networking, or SDN, offers another, much more general, approach. The core idea of SDN is to place the
forwarding mechanism of each participating switch under the aegis of a controller, a user-programmable
device that is capable of giving each switch instructions on how to forward packets. Like TRILL and SPB,
this approach also allows forwarding and redundant links to coexist. The controller can be a single node on
the network, or can be a distributed set of nodes. The controller manages the forwarding tables of each of
the switches.

To handle legitimate broadcast traffic, the controller can, at startup, probe the switches to determine their
layout, and, from this, construct a suitable spanning tree. The switches can then be instructed to flood
broadcast traffic only along the links of this spanning tree. Links that are not part of the spanning tree can
still be used for forwarding to known destinations, however, unlike conventional switches using the spanning
tree algorithm.

Typically, if a switch sees a packet addressed to an unknown destination, it reports it to the controller, which
then must figure out what to do next. One option is to have traffic to unknown destinations flooded along
the same spanning tree used for broadcast traffic. This allows fallback-to-flooding to coexist safely with the
full use of loop topologies.

Switches are often configured to report new source addresses to the controller, so that the controller can tell
all the other switches the best route to that new source.

SDN controllers can be configured as simple firewalls, disallowing forwarding between selected pairs of
nodes for security reasons. For example, if a datacenter has customers A and B, each with multiple nodes,
then it is possible to configure the network so that no node belonging to customer A can send packets to a
node belonging to customer B. See also the following section.

At many sites, the SDN implementation is based on standardized modules. However, controller software
can also be developed locally, allowing very precise control of network functionality. This control, rather
than the ability to combine loop topologies with Ethernet, is arguably SDN’s most important feature. See
[FRZ13].

2.8.1 OpenFlow Switches

At the heart of SDN is the ability of controllers to tell switches how to forward packets. We next look at
the packet-forwarding architecture for OpenFlow switches; OpenFlow is a specific SDN standard created
by the Open Networking Foundation. See [MABPPRST08] and the OpenFlow switch specification (2015
version).

OpenFlow forwarding is built around one or more flow tables. The primary components of a flow-table
entry are a set of match fields and a set of packet-response instructions, or actions, if the match succeeds.
Some common actions include

• dropping the packet

• forwarding the packet out a specified single interface

• flooding the packet out a set of interfaces

72 2 Ethernet

https://www.opennetworking.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

An Introduction to Computer Networks, Release 1.9.21

• forwarding the packet to the controller

• modifying some field of the packet

• processing the packet at another (higher-numbered) flow table

The match fields can, of course, be a single entry for the destination Ethernet address. But it can also include
any other packet bit-field, and can include the ingress interface number. For example, the forwarding can
be done entirely (or partially) on IP addresses rather than Ethernet addresses, thus allowing the OpenFlow
switch to act as a so-called Layer 3 switch (7.6.3 Subnets versus Switching), that is, resembling an IP router.
Matching can be by the destination IP address and the destination TCP port, allowing separate forwarding
for different TCP-based applications. In 9.6 Routing on Other Attributes we define policy-based routing;
arbitrary such routing decisions can be implemented using OpenFlow switches. In SDN settings the policy-
based-routing abilities are sometimes used to segregate real-time traffic and large-volume “elephant” flows.
In the l2_pairs.py example of the following section, matching is done on both Ethernet source and
destination addresses.

Flow tables bear a rough similarity to forwarding tables, with the match fields corresponding to destinations
and the actions corresponding to the next_hop. In simple cases, the match field contains a single destination
address and the action is to forward out the corresponding switch port.

Normally, OpenFlow switches handle broadcast packets by flooding them; that is, by forwarding them out
all interfaces other than the arrival interface. It is possible, however, to set the NO_FLOOD attribute on
specific interfaces, which means that packets designated for flooding (broadcast or otherwise) will not be
sent out on those interfaces. This is typically how spanning trees for broadcast traffic are implemented (see
18.9.6 l2_multi.py for a Mininet example). An interface marked NO_FLOOD, however, may still be used
for unicast traffic. Generally, broadcast flooding does not require a flow-table entry.

Match fields are also assigned a priority value. In the event that a packet matches two or more flow-table
entries, the entry with the highest priority wins. The table-miss entry is the entry with no match fields
(thereby matching every packet) and with priority 0. Often the table-miss entry’s action is to forward the
packet to the controller, although a packet that matches no entry is simply dropped.

Flow-table instructions can also involve modifying (“mangling”) packets. One Ethernet-layer application
might be VLAN coloring (2.6 Virtual LAN (VLAN)); at the IPv4 layer, this could be used to decrement the
TTL and update the checksum (7.1 The IPv4 Header).

In addition to match fields and instructions, flow tables also include counters, flags, and a last_used time.
The latter allows flows to be removed if no matching packets have been seen for a while. The counters allow
the OpenFlow switch to implement Quality-of-Service constraints – eg bandwidth limiting – on the traffic.

2.8.2 Learning Switches in OpenFlow

Suppose we want to implement a standard Ethernet learning switch (2.4.1 Ethernet Learning Algorithm).
The obvious approach is to use flows matching only on the destination address. But we encounter a problem
because, by default, packets are reported to the controller only when there is no flow-entry match. Suppose
switch S sees a packet from host B to host A and reports it to the controller, which installs a flow entry in S
matching destination B (much as a real learning switch would do). If a packet now arrives at S from a third
host C to B, it would simply be forwarded, as it would match the B flow entry, and therefore would not be
reported to the controller. This means the controller would never learn about address C, and would never
install a flow entry for C.

2.8 Software-Defined Networking 73

An Introduction to Computer Networks, Release 1.9.21

One straightforward alternative approach that avoids this problem is to match on Ethernet xdestaddr,srcaddry
pairs. If a packet from A to B arrives at switch S and does not match any existing flow entry at S, it is
reported to the controller, which now learns that A is reached via the port by which the packet arrived at S.

A S B
port 1 port 2

In the network above, suppose A sends a packet to B (or broadcasts a packet meant for B), and the flow table
of S is empty. S will report the packet to the controller (not shown in the diagram), which will send it back
to S to be flooded. However, the controller will also record that A can be reached from S via port 1.

Next, suppose B responds. When this packet from B arrives at S, there are still no flow-table entries, and
so S again reports the packet to the controller. But this time the controller knows, because it learned from
the first packet, that S can reach A via port 1. The controller also now knows, from the just-arrived packet,
that B can be reached via port 2. Knowing both of these forwarding rules, the controller now installs two
flow-table entries in S:

dst=B,src=A: forward out port 2
dst=A,src=B: forward out port 1

If a packet from a third host C now arrives at S, addressed to B, it will not be forwarded, even though its
destination address matches the first rule above, as its source address does not match A. It will instead be
sent to the controller (and ultimately be flooded). When B responds to C, the controller will install rules for
dst=C,src=B and dst=B,src=C. If the packet from C were not reported to the controller – perhaps because
S had a flow rule for dst=B only – then the controller would never learn about C, and would never be in a
position to install a flow rule for reaching C.

The pairs approach to OpenFlow learning is pretty much optimal, if a single flow-entry table is available.
The problem with this approach is that it does not scale well; with 10,000 addresses on the network, we will
need 100,000,000 flowtable-entry pairs to describe all the possible forwarding. This is prohibitive.

We examine a real implementation (in Python) of the pairs approach in 18.9.2 l2_pairs.py, using the
Mininet network emulator and the Pox controller (18 Mininet).

A more compact approach is to use multiple flow tables: one for matching the destination, and one for
matching the source. In this version, the controller never has to remember partial forwarding information,
as the controller in the version above had to do after receiving the first packet from A. When a packet arrives,
it is matched against the first table, and any actions specified by the match are carried out. One of the actions
may be a request to repeat the match against the second table, which may lead to a second set of actions.
We repeat the AÑB, BÑA example above, letting T0 denote the first table and T1 denote the second.

Initially, before any packets are seen, the controller installs the following low-priority match rules in S:

T0: match nothing: flood, send to T1

T1: match nothing: send to controller

These are in effect default rules: because there are no packet fields to match, they match all packets. The
low priority ensures that better-matching rules are always used when available.

When the packet from A to B arrives, the T0 rule above means the packet is flooded to B, while the T1 rule
means the packet is sent to the controller. The controller then installs the following rules in S:

74 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

T0: match dst=A: forward via port 1, send to T1

T1: match src=A: do nothing

Now B sends its reply to A. The first rule above matches, so the packet is forwarded by S to A, and is
resubmitted to T1. The T1 rule immediately above, however, does not match. The only match is to the
original default rule, and the packet is sent to the controller. The controller then installs another two rules in
S:

T0: match dst=B: forward via port 2, send to T1

T1: match src=B: do nothing

At this point, as A and B continue to communicate, the T0 rules ensure proper forwarding, while the T1
rules ensure that no more packets from this flow are sent to the controller.

Note that the controller always installs the same address in the T0 table and the T1 table, so the list of
addresses present in these two tables will always be identical. The T0 table always matches destinations,
though, while the T1 table matches source addresses.

The Mininet/Pox version of this appears in 18.9.3 l2_nx.py.

Another application for multiple flow tables involves switches that make quality-of-service prioritization
decisions. A packet’s destination would be found using the first flow table, while its priority would be found
by matching to the second table. The packet would then be forwarded out the port determined by the first
table, using the priority determined by the second table. Like building a learning switch, this can be done
with a single table by listing all combinations of xdestaddr,priorityy, but sometimes that’s too many entries.

We mentioned above that SDN controllers can be used as firewalls. At the Ethernet-address level this is
tedious to configure, but by taking advantage of OpenFlow’s understanding of IP addresses, it is straight-
forward, for example, to block traffic between different IP subnets, much like a router might do. OpenFlow
also allows blocking all such traffic except that between specific pairs of hosts using specific protocols. For
example, we might want customer A’s web servers to be able to communicate with A’s database servers
using the standard TCP port, while still blocking all other web-to-database traffic.

2.8.3 Other OpenFlow examples

After emulating a learning switch, perhaps the next most straightforward OpenFlow application, concep-
tually, is the support of Ethernet topologies that contain loops. This can be done quite generically; the
controller does not need any special awareness of the network topology.

On startup, switches are instructed by the controller to report their neighboring switches. With this informa-
tion the controller is then able to form a complete map of the switch topology. (One way to implement this
is for the controller to order each switch to send a special marked packet out each of its ports, and then for
the receiving switches to report these packets back to the controller.) Once the controller knows the switch
topology, it can calculate a spanning tree, and then instruct each switch that flooded packets should be sent
out only via ports that correspond to links on the spanning tree.

Once the location of a destination host has been learned by the controller (that is, the controller learns
which switch the host is directly connected to), the controller calculates the shortest (or lowest-cost, if the
application supports differential link costs) path from each switch to that host. The controller then instructs
each switch how to forward to that host. Forwarding will likely use links that are not part of the spanning
tree, unlike traditional Ethernet switches.

2.8 Software-Defined Networking 75

An Introduction to Computer Networks, Release 1.9.21

We outline an implementation of this strategy in 18.9.6 l2_multi.py.

2.8.3.1 Interconnection Fabric

The previous Ethernet-loop example is quite general; it works for any switch topology. Many other Open-
Flow applications require that the controller contains some prior knowledge of the switch topology. As an
example of this, we present what we will refer to as an interconnection fabric. This is the S1-S5 network
illustrated below, in which every upper (S1-S2) switch connects directly to every lower (S3-S5) switch. The
bottom row in the diagram represents server racks, as interconnection fabrics are very common in datacen-
ters. (For a real-world datacenter example, see here, although real-world interconnection fabrics are often
joined using routing rather than switching.) The red and blue numbers identify the switch ports.

S1 S2

S5S4S3

0

1 2 3

0

1 2 3

000 1 1 1

2 3 4 2 3 4 2 3 4

The first two rows here contain many loops, eg S1–S3–S2–S4–S1 (omitting the S3-S5 row, and having S1
and S2 connect directly to the server racks, does not eliminate loops). In the previous example we described
how we could handle loops in a switched network by computing a spanning tree and then allowing packet
flooding only along this spanning tree. This is certainly possible here, but if we allow the spanning-tree
algorithm to prune the loops, we will lose most of the parallelism between the S1-S2 and S3-S5 layers; see
exercise 8.5. This generic spanning-tree approach is not what we want.

If we use IP routing at S1 through S5, as in 9 Routing-Update Algorithms, we then need the three clusters
of server racks below S3, S4 and S5 to be on three separate IP subnets (7.6 IPv4 Subnets). While this is
always technically possible, it can be awkward, if the separate subnets function for most other purposes as a
single unit.

One OpenFlow approach is to assume that the three clusters of server racks below S3-S4-S5 form a single
IP subnet. We can then configure S1-S5 with OpenFlow so that traffic from the subnet is always forwarded
upwards while traffic to the subnet is always forwarded downwards.

But an even simpler solution – one not requiring any knowledge of the server subnet – is to use OpenFlow to
configure the switches S1-S5 so that unknown-destination traffic entering on a red (upper) port is flooded out
only on the blue (lower) ports, and vice-versa. This eliminates loops by ensuring that all traffic goes through
the interconnection fabric either upwards-only or downwards-only. After the destination server below S3-S5
has replied, of course, S1 or S2 will learn to which of S3-S5 it should forward future packets to that server.

This example works the way it does because the topology has a particular property: once we eliminate paths

76 2 Ethernet

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

An Introduction to Computer Networks, Release 1.9.21

that both enter and leave S1 or S2 via blue nodes, or that enter and leave S3, S4 and S5 via red nodes, there is
a unique path between any input port (red upper port) and any output port (towards the server racks). From
there, it is easy to avoid loops. Given a more general topology, on the other hand, in which unique paths
cannot be guaranteed by such a rule, the OpenFlow controller has to choose a path. This in turn generally
entails path discovery, shortest-path selection and loop avoidance, as in the previous example.

2.8.3.2 Load Balancer

The previous example was quite local, in that all the OpenFlow actions are contained within the intercon-
nection fabric. As a larger-scale (and possiby more typical) special-purpose OpenFlow example, we next
describe how to achieve server load-balancing via SDN; that is, users are connected transparently to one of
several identical servers. Each server handles only its assigned fraction of the total load. For this example,
the controller must not only have knowledge of the topology, but also of the implementation goal.

To build the load-balancer, imagine that the SDN controller is in charge of, in the diagram of the previous
section, all switches in the interconnection fabric and also all switches among the server racks below. At
this point, we configure all the frontline servers within the server racks identically, including giving them
all identical IPv4 addresses. When an incoming TCP connection request arrives, the controller picks a
server (perhaps using round robin, perhaps selecting the server with the lowest load) and sets up OpenFlow
forwarding rules so all traffic on that TCP connection arriving from the outside world is sent to the designated
server, and vice-versa. Different servers with the same IPv4 address are not allowed to talk directly with
one another at all, thereby averting chaos. The lifetime of the OpenFlow forwarding rule can be adjusted as
desired, eg to match the typical lifetime of a user session.

When the first TCP packet of a connection arrives at the selected server, the server may or may not need
to use ARP to figure out the appropriate internal LAN address to which to send its reply. Sometimes ARP
needs to be massaged a bit to work acceptably in an environment in which some hosts have the same IPv4
address.

At no point is the fact that multiple servers have been assigned the same IPv4 address directly exposed: not
to other servers, not to internal routers, and not to end users. (Servers never initiate outbound connections
to users, so there is no risk of two servers contacting the same user.)

For an example of this sort of load balancing implemented in Mininet and Pox, see 18.9.5 loadbal-
ance31.py.

The identical frontline servers might need to access a common internal database cluster. This can be im-
plemented by assigning each server a second IPv4 address for this purpose, not shared with other servers,
or by using the common public-facing IPv4 address and a little more OpenFlow cleverness in setting up
appropriate forwarding rules. If the latter approach is taken, it is now in principle possible that two servers
would connect to the database using the same TCP port, by coincidence. This would expose the identical
IPv4 addresses, and the SDN controllers would have to take care to ensure that this did not happen. One
approach, if supported, would be to have the OpenFlow switches “mangle” the server IPv4 addresses or
ports, as is done with NAT (7.7 Network Address Translation).

There are also several “traditional” strategies for implementing load balancing. For example, one can give
each server its own IPv4 address but then use round-robin DNS (7.8 DNS) to assign different users to
different servers. Alternatively, one can place a device called a load balancer at the front of the network that
assigns incoming connection requests to an internal server and then takes care of setting up the appropriate
forwarding. Forwarding can be at the IP layer (that is, via routing), or at the TCP layer, or at the application

2.8 Software-Defined Networking 77

An Introduction to Computer Networks, Release 1.9.21

layer. The load balancer can be thought of as NAT-like (7.7 Network Address Translation) in that it
maintains a table of associations between external-user connections and a internal servers; once a user
connects, the association with the chosen server remains in place for a period of time. One advantage of
the SDN approach described here is that the individual front-line servers need no special configuration; all
of the load-sharing awareness is contained within the SDN network. Furthermore, the SDN switches do
virtually no additional work beyond ordinary forwarding; they need only involve the controller when the
first new TCP packet of each connection arrives.

2.9 Epilog

Ethernet dominates the LAN layer, but is not one single LAN protocol: it comes in a variety of speeds
and flavors. Higher-speed Ethernet seems to be moving towards fragmenting into a range of physical-layer
options for different types of cable, but all based on switches and point-to-point linking; different Ethernet
types can be interconnected only with switches. Once Ethernet finally abandons physical links that are
bi-directional (half-duplex links), it will be collision-free and thus will no longer need a minimum packet
size.

Other wired networks have largely disappeared (or have been renamed “Ethernet”). Wireless networks,
however, are here to stay, and for the time being at least have inherited the original Ethernet’s collision-
management concerns.

2.10 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
2.5 is distinct, for example, from exercises 2.0 and 3.0. Exercises marked with a ♢ have solutions or hints
at 24.2 Solutions for Ethernet.

1.0. Simulate the contention period of five Ethernet stations that all attempt to transmit at T=0 (presumably
when some sixth station has finished transmitting), in the style of the diagram in 2.1.6 Exponential Backoff
Algorithm. Assume that time is measured in slot times, and that exactly one slot time is needed to detect a
collision (so that if two stations transmit at T=1 and collide, and one of them chooses a backoff time k=0,
then that station will transmit again at T=2). Use coin flips or some other source of randomness.

2.0. Suppose we have Ethernet switches S1 through S3 arranged as below; each switch uses the learning
algorithm of 2.4 Ethernet Switches. All forwarding tables are initially empty.

S1 S2 S3 D

A B C

(a). If A sends to B, which switches see this packet?
(b). If B then replies to A, which switches see this packet?
(c). If C then sends to B, which switches see this packet?
(d). If C then sends to D, which switches see this packet?

78 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

2.7.♢ Suppose we have the Ethernet switches S1 through S4 arranged as below. All forwarding tables are
empty; each switch uses the learning algorithm of 2.4 Ethernet Switches.

B

S4

A S1 S2 S3 C

D

Now suppose the following packet transmissions take place:

• A sends to D

• D sends to A

• A sends to B

• B sends to D

For each switch S1-S4, list what source addresses (eg A,B,C,D) it has seen (and thus what nodes it has
learned the location of).

3.0. Repeat the previous exercise (2.7), with the same network layout, except that instead the following
packet transmissions take place:

• A sends to B

• B sends to A

• C sends to B

• D sends to A

For each switch, list what source addresses (eg A,B,C,D) it has seen (and thus what nodes it has learned the
location of).

4.0. In the switched-Ethernet network below, find two packet transmissions so that, when a third transmis-
sion AÝÑD occurs, the packet is seen by B (that is, it is flooded out all ports by S2), but is not similarly
seen by C (because it is forwarded to D, not flooded, by S3). All forwarding tables are initially empty, and
each switch uses the learning algorithm of 2.4 Ethernet Switches.

B C

A S1 S2 S3 D

Hint: Destination D must be in S3’s forwarding table, but must not be in S2’s. So there must have been a
packet sent by D that was seen by S3 but not by S2.

5.0. Given the Ethernet network with learning switches below, with (disjoint) unspecified parts represented
by ?, explain why it is impossible for a packet sent from A to B to be forwarded by S1 directly to S2, but to
be flooded by S2 out all of S2’s other ports.

2.10 Exercises 79

An Introduction to Computer Networks, Release 1.9.21

? ?
| |

A S1 S2 B

6.0. In the diagram below, from 2.4.1 Ethernet Learning Algorithm, suppose node D is connected to S5.
Now, with the tables as shown by the labels in the diagram (that is, S5 knows about A and C, etc), D sends
to B.

S1 S2 S3

S4 S5

A B

C

A A A,C

A,C

A

BB B

C

C

D

Which switches will see this DÑB packet, and thus learn about D? Of these switches, which do not already
know where B is and will use fallback-to-flooding?

7.0. Suppose two Ethernet switches are connected in a loop as follows; S1 and S2 have their interfaces 1
and 2 labeled. These switches do not use the spanning-tree algorithm.

S1 S2

1

2

0

1

2

A

Suppose A attempts to send a packet to destination B, which is unknown. S1 will therefore flood the packet
out interfaces 1 and 2. What happens then? How long will A’s packet circulate?

8.0. The following network is like that of 2.5.1 Example 1: Switches Only, except that the switches are
numbered differently. Again, the ID of switch Sn is n, so S1 will be the root. Which links end up “pruned”
by the spanning-tree algorithm, and why? Diagram the network formed by the surviving links.

S1 S4 S6

S3 S5 S2

8.5. Consider the network below, consisting of just the first two rows from the datacenter diagram in
2.8.1 OpenFlow Switches:

80 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

S1 S2

S5S4S3

(a).♢ Give network of surviving links after application of the spanning-tree algorithm. Assume the ID of
switch Sn is n. In this network, what is the path of traffic from S2 to S5?
(b). Do the same as part (a) except assuming S4 has ID 0, and so will be the root, while the ID for the other
Sn remains n. What will be the path of traffic from S1 to S5?

9.0. Suppose you want to develop a new protocol so that Ethernet switches participating in a VLAN all keep
track of the VLAN “color” associated with every destination in their forwarding tables. Assume that each
switch knows which of its ports (interfaces) connect to other switches and which may connect to hosts, and
in the latter case knows the color assigned to that port.

(a). Suggest a way by which switches might propagate this destination-color information to other switches.
(b). What must be done if a port formerly reserved for connection to another switch is now used for a host?

10.0. (This exercise assumes some familiarity with Distance-Vector routing as in 9 Routing-Update Algo-
rithms.)

(a). Suppose switches are able to identify the non-switch hosts that are directly connected, that is,
reachable without passing through another switch. Explain how the algorithm of 9.1 Distance-Vector
Routing-Update Algorithm could be used to construct optimal Ethernet forwarding tables even if loops
were present in the network topology.

(b). Suppose switches are allowed to “mark” packets; all packets are initially unmarked. Give a mechanism
that allows switches to detect which non-switch hosts are directly connected.

(c). Explain why Ethernet broadcast (and multicast) would still be a problem.

11.0. Consider the scenario from 2.4.1 Ethernet Learning Algorithm:

2.10 Exercises 81

An Introduction to Computer Networks, Release 1.9.21

S1 S2 S3

S4 S5

A B

C

A A A,C

A,C

A

BB B

C

C

Five learning bridges after three packet transmissions

• A sends to B

• B sends to A

• C sends to B

Now suppose that, before each packet transmission above, the sender first sends a broadcast packet, and
the destination then sends a unicast reply packet (this is roughly the ARP protocol, used to translate from
IPv4 addresses to Ethernet physical addresses, 7.9 Address Resolution Protocol: ARP). After the three
transmissions listed above, what destinations do the switches S1-S5 have in their forwarding tables?

12.0.♢ Consider the following arrangement of three hosts h1, h2, h3 and one OpenFlow switch S with ports
1, 2 and 3 and controller C (not shown)

h1 S h2

h3

1 2

3

Four packets are then transmitted:

(a). h1Ñh2
(b). h2Ñh1
(c). h3Ñh1
(d). h2Ñh3

Assume that S reports to C all packets with unknown destination, that is, all packets for which S does
not have a forwarding entry for that packet’s destination. Packet reports include the source and destination
addresses and the arrival port. On receiving a report, if the source address is previously unknown then
C installs on S a forwarding-table entry for that source address. At that point S uses its forwarding table
(including any new entries) to forward the packet, if a suitable entry exists. Otherwise S floods the packet
as usual.

For the four packets above, indicate

1. whether S reports the packet to C

82 2 Ethernet

An Introduction to Computer Networks, Release 1.9.21

2. if so, any new forwarding entry C installs on S

3. whether S is then able to forward the packet using its table, or must fall back to flooding.

(If S does not report the packet to C then S must have had a forwarding-table entry for that destination, and
so S is able to forward the packet normally.)

12.2. Consider again the arrangement of exercise 12.0 of three hosts h1, h2, h3 and one OpenFlow switch S
with ports 1, 2 and 3 and controller C (not shown)

h1 S h2

h3

1 2

3

The same four packets are transmitted:

(a). h1Ñh2
(b). h2Ñh1
(c). h3Ñh1
(d). h2Ñh3

This time, assume that S reports to C all packets with unknown destination or unknown source (that is, S
does not have a forwarding entry for either the packet’s source or destination address). For the four packets
above, indicate

1. whether S reports the packet to C

2. if so, any new forwarding entry C installs on S

3. whether S is then able to forward the packet using its table, or must fall back to flooding.

As before, packet reports include the source and destination addresses and the arrival port. On receiving
a report, if the source address is previously unknown then C installs on S a forwarding-table entry for that
source address. At that point S uses its forwarding table (including any new entries) to forward the packet, if
a suitable entry exists. Otherwise S floods the packet as usual. Again, if S does not report a packet to C then
S must have had a forwarding-table entry for that destination, and so is able to forward the packet normally.

13.0 Consider the following arrangement of three switches S1-S3, three hosts h1-h3 and one OpenFlow
controller C.

h1 h2 h3

S1 S2 S3

C

2.10 Exercises 83

An Introduction to Computer Networks, Release 1.9.21

As with exercise 12.0, assume that the switches report packets to C only if they do not already have a
forwarding-table entry for the packet’s destination. After each report, C installs a forwarding-table entry on
the reporting switch for reaching the packet’s source address via the arrival port. At that point the switch
floods the packet (as the destination must not have been known). If a switch can forward a packet without
reporting to C, no new forwarding entries are installed.

Packets are now sent as follows:

h1Ñh2
h2Ñh1
h1Ñh3
h3Ñh1
h2Ñh3
h3Ñh2

At the end, what are the forwarding tables on S1♢, S2 and S3?

14.0 Here are the switch rules for the multiple-flow-table example in 2.8.2 Learning Switches in OpenFlow:

Table match field match action no-match default
T0 destaddr forward and send to T1 flood and send to T1

T1 srcaddr do nothing send to controller

Give a similar table where the matches are reversed; that is, T0 matches the srcaddr field and T1 matches the
destaddr field.

84 2 Ethernet

3 OTHER LANS

In the wired era, one could get along quite well with nothing but Ethernet and the occasional long-haul point-
to-point link joining different sites. However, there are important alternatives out there. Some, like token
ring, are mostly of historical importance; others, like virtual circuits, are of great conceptual importance but
– so far – of only modest day-to-day significance.

And then there is wireless. It would be difficult to imagine contemporary laptop networking, let alone
mobile devices, without it. In both homes and offices, Wi-Fi connectivity is the norm. Mobile networking
is ubiquitous. A return to being tethered by wires is almost unthinkable.

3.1 Virtual Private Networks

Suppose you want to connect to your workplace network from home. Your workplace, however, has a
security policy that does not allow “outside” IP addresses to access essential internal resources. How do you
proceed, without leasing a dedicated telecommunications line to your workplace?

A virtual private network, or VPN, provides a solution; it supports creation of virtual links that join far-
flung nodes via the Internet. Your home computer creates an ordinary Internet connection (TCP or UDP) to
a workplace VPN server (IP-layer packet encapsulation can also be used, and avoids the timeout problems
sometimes created by sending TCP packets within another TCP stream; see 7.13 Mobile IP). Each end
of the connection is typically associated with a software-created virtual network interface; each of the
two virtual interfaces is assigned an IP address. (Virtual interfaces are not essential; VPNs created with
IPsec, 22.11 IPsec, generally omit them.) When a packet is to be sent along the virtual link, it is actually
encapsulated and sent along the original Internet connection to the VPN server, wending its way through the
commodity Internet; this process is called tunneling. To all intents and purposes, the virtual link behaves
like any other physical link.

Tunneled packets are often encrypted as well as encapsulated, though that is a separate issue. One relatively
easy-to-implement example of a tunneling mechanism is to treat a TCP home-workplace connection as a
serial line and send packets over it back-to-back, using PPP with HDLC; see 4.1.5.1 HDLC and RFC 1661
(though this can lead to the above-mentioned TCP-in-TCP timeout problems).

At the workplace side, the virtual network interface in the VPN server is attached to a router or switch; at
the home user’s end, the virtual network interface can now be assigned an internal workplace IP address.
The home computer is now, for all intents and purposes, part of the internal workplace network.

In the diagram below, the user’s regular Internet connection is via hardware interface eth0. A connection is
established to Site A’s VPN server; a virtual interface tun0 is created on the user’s machine which appears
to be a direct link to the VPN server. The tun0 interface is assigned a Site-A IP address. Packets sent via
the tun0 interface in fact travel over the original connection via eth0 and the Internet.

85

https://tools.ietf.org/html/rfc1661.html

An Introduction to Computer Networks, Release 1.9.21

Internet

 Site A
200.0.1/24

User at home

eth0

VPN server

Site A private

tun0
200.0.1.37

VPN: blue link represents tunnel. Actual connection is made via eth0
The tun0 interface is a virtual network interface with a Site-A address

After the VPN is set up, the home host’s tun0 interface appears to be locally connected to Site A, and thus
the home host is allowed to connect to the private area within Site A. The home host’s forwarding table will
be configured so that traffic to Site A’s private addresses is routed via interface tun0.

VPNs are also commonly used to connect entire remote offices to headquarters. In this case the remote-office
end of the tunnel will be at that office’s local router, and the tunnel will carry traffic for all the workstations
in the remote office.

Other applications of VPNs include trying to appear geographically to be at another location, and bypassing
firewall rules blocking specific TCP or UDP ports.

To improve security, it is common for the residential (or remote-office) end of the VPN connection to use
the VPN connection as the default route for all traffic except that needed to maintain the VPN itself. This
may require a so-called host-specific forwarding-table entry at the residential end to allow the packets that
carry the VPN tunnel traffic to be routed correctly via eth0. This routing strategy means that potential
intruders cannot access the residential host – and thus the workplace internal network – through the original
residential Internet access. A consequence is that if the home worker downloads a large file from a non-
workplace site, it will travel first to the workplace, then back out to the Internet via the VPN connection, and
finally arrive at the home.

To improve congestion response, IP packets are sometimes marked by routers that are experiencing conges-
tion; see 14.8.3 Explicit Congestion Notification (ECN). If such marking is done to the outer, encapsulat-
ing, packet, and the marks are not transferred at the remote endpoint of the VPN to the inner, encapsulated,
packet, then the marks are lost. Congestion response may suffer. RFC 6040 spells out a proper re-marking
strategy in general; RFC 7296 defines re-marking for IPsec (22.11 IPsec). Older VPN protocols, however,
may not support congestion re-marking.

3.2 Carrier Ethernet

Carrier Ethernet is a leased-line point-to-point link between two sites, where the subscriber interface at each
end of the line looks like Ethernet (in some flavor). The physical path in between sites, however, need not

86 3 Other LANs

https://tools.ietf.org/html/rfc6040.html
https://tools.ietf.org/html/rfc7296.html

An Introduction to Computer Networks, Release 1.9.21

have anything to do with Ethernet; it may be implemented however the carrier wishes. In particular, it will
be (or at least appear to be) full-duplex, it will be collision-free, and its length may far exceed the maximum
permitted by any IEEE Ethernet standard.

Bandwidth can be purchased in whatever increments the carrier has implemented. The point of carrier
Ethernet is to provide a layer of abstraction between the customers, who need only install a commodity
Ethernet interface, and the provider, who can upgrade the link implementation at will without requiring
change at the customer end.

In a sense, carrier Ethernet is similar to the widespread practice of provisioning residential DSL and cable
routers with an Ethernet interface for customer interconnection; again, the actual link technologies may not
look anything like Ethernet, but the interface will.

A carrier Ethernet connection looks like a virtual VPN link, but runs on top of the provider’s internal network
rather than the Internet at large. Carrier Ethernet connections often provide the primary Internet connectivity
for one endpoint, unlike Internet VPNs which assume both endpoints already have full Internet connectivity.

3.3 Token Ring

A significant part of the previous chapter was devoted to classic Ethernet’s collision mechanism for sup-
porting shared media access. After that, it may come as a surprise that there is a simple multiple-access
mechanism that is not only collision-free, but which supports fairness in the sense that if N stations wish to
send then each will receive 1/N of the opportunities.

That method is Token Ring. Actual implementations come in several forms, from Fiber-Distributed Data
Interface (FDDI) to so-called “IBM Token Ring”. The central idea is that stations are connected in a ring:

F D

C

B

E

A

Packets will be transmitted in one direction (clockwise in the ring above). Stations in effect forward most
packets around the ring, although they can also remove a packet. (It is perhaps more accurate to think
of the forwarding as representing the default cable connectivity; non-forwarding represents the station’s
momentarily breaking that connectivity.)

When the network is idle, all stations agree to forward a special, small packet known as a token. When a
station, say A, wishes to transmit, it must first wait for the token to arrive at A. Instead of forwarding the
token, A then transmits its own packet; this travels around the network and is then removed by A. At that
point (or in some cases at the point when A finishes transmitting its data packet) A then forwards the token.

In a small ring network, the ring circumference may be a small fraction of one packet. Ring networks
become “large” at the point when some packets may be entirely in transit on the ring. Slightly different

3.3 Token Ring 87

An Introduction to Computer Networks, Release 1.9.21

solutions apply in each case. (It is also possible that the physical ring exists only within the token-ring
switch, and that stations are connected to that switch using the usual point-to-point wiring.)

If all stations have packets to send, then we will have something like the following:

• A waits for the token

• A sends a packet

• A sends the token to B

• B sends a packet

• B sends the token to C

• C sends a packet

• C sends the token to D

• . . .

All stations get an equal number of chances to transmit, and no bandwidth is wasted on collisions. (A
station constantly sending smaller packets will send the same number of packets as a station constantly
sending larger packets, but the bandwidth will be smaller in proportion to the smaller packet size.)

One problem with token ring is that when stations are powered off it is essential that the packets continue
forwarding; this is usually addressed by having the default circuit configuration be to keep the loop closed.
Another issue is that some station has to watch out in case the token disappears, or in case a duplicate token
appears.

Because of fairness and the lack of collisions, IBM Token Ring was once considered to be the premium
LAN mechanism. As such, Token Ring hardware commanded a substantial price premium. But due to
Ethernet’s combination of lower hardware costs and higher bitrates (even taking collisions into account), the
latter eventually won out.

There was also a much earlier collision-free hybrid of 10 Mbps Ethernet and Token Ring known as Token
Bus: an Ethernet physical network (often linear) was used with a token-ring-like protocol layer above
that. Stations were physically connected to the (linear) Ethernet but were assigned identifiers that logically
arranged them in a (virtual) ring. Each station had to wait for the token and only then could transmit a
packet; after that it would send the token on to the next station in the virtual ring. As with “real” Token
Ring, some mechanisms need to be in place to monitor for token loss.

Token Bus Ethernet never caught on. The additional software complexity was no doubt part of the problem,
but perhaps the real issue was that it was not necessary.

3.4 Virtual Circuits

Before we can get to our final LAN example, ATM, we need to detour briefly through virtual circuits.

The Road Not Taken

88 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

A close reading of Robert Frost’s poem referenced here reveals that the supposed great difference between
the two roads exists only in the narrator’s retrospective imaginings; the roads were in fact “really about
the same”. Perhaps this would also apply to datagram and virtual-circuit forwarding, though see below
on per-connection billing.

Virtual circuits are The Road Not Taken by IP.

Virtual-circuit switching (or routing) is an alternative to datagram switching, which was introduced in Chap-
ter 1. In datagram switching, routers know the next_hop to each destination, and packets are addressed by
destination. In virtual-circuit switching, routers know about end-to-end connections, and packets are “ad-
dressed” by a connection ID.

Before any data packets can be sent, a connection needs to be established first. For that connection, the route
is computed and then each link along the path is assigned a connection ID, traditionally called the VCI, for
Virtual Circuit Identifier. In most cases, VCIs are only locally unique; that is, the same connection may use
a different VCI on each link. The lack of global uniqueness makes VCI allocation much simpler. Although
the VCI keeps changing along a path, the VCI can still be thought of as identifying the connection. To send
a packet, the host marks the packet with the VCI assigned to the host–router1 link.

Packets arrive at (and depart from) switches via one of several ports, which we will assume are numbered
beginning at 0. Switches maintain a connection table indexed by xVCI,porty pairs; unlike a forwarding
table, the connection table has a record of every connection through that switch at that particular moment.
As a packet arrives, its inbound VCIin and inbound portin are looked up in this table; this yields an outbound
xVCIout,portouty pair. The VCI field of the packet is then rewritten to VCIout, and the packet is sent via
portout.

Note that typically there is no source address information included in the packet (although the sender can
be identified from the connection, which can be identified from the VCI at any point along the connection).
Packets are identified by connection, not destination. Any node along the path (including the endpoints) can
in principle look up the connection and figure out the endpoints.

Note also that each switch must rewrite the VCI. Datagram switches never rewrite addresses (though they
do update hopcount/TTL fields). The advantage to this rewriting is that VCIs need be unique only for a
given link, greatly simplifying the naming. Datagram switches also do not make use of a packet’s arrival
interface.

As an example, consider the network below. Switch ports are numbered 0,1,2,3. Two paths are drawn in,
one from A to F in red and one from B to D in green; each link is labeled with its VCI number in the same
color.

We will construct virtual-circuit connections between

• A and F (shown above in red)

• A and E

• A and C

• B and D (shown above in green)

• A and F again (a separate connection)

The following VCIs have been chosen for these connections. The choices are made more or less randomly
here, but in accordance with the requirement that they be unique to each link. Because links are generally

3.4 Virtual Circuits 89

http://www.bartleby.com/119/1.html

An Introduction to Computer Networks, Release 1.9.21

S1 S2

S3 S4 S5

A D

B

C E

F

0

1

2 0

1

2

0 0 0

1 1

12 2

3 3

4
6

4

8 5
4

8

7 8

taken to be bidirectional, a VCI used from S1 to S3 cannot be reused from S3 to S1 until the first connection
closes.

• A to F: A 4 S1 6 S2 4 S4 8 S5 5 F; this path goes from S1 to S4 via S2

• A to E: A 5 S1 6 S3 3 S4 8 E; this path goes, for no particular reason, from S1 to S4
via S3, the opposite corner of the square

• A to C: A 6 S1 7 S3 3 C

• B to D: B 4 S3 8 S1 7 S2 8 D

• A to F: A 7 S1 8 S2 5 S4 9 S5 2 F

One may verify that on any one link no two different paths use the same VCI.

We now construct the actual xVCI,porty tables for the switches S1-S4, from the above; the table for S5 is left
as an exercise. Note that either the xVCIin,portiny or the xVCIout,portouty can be used as the key; we cannot
have the same pair in both the in columns and the out columns. It may help to display the port numbers for
each switch, as in the upper numbers in following diagram of the above red connection from A to F (lower
numbers are the VCIs):

A S1 S2 S4 S5 F
0 2 0 1 3 2 0 1

4 6 4 8 5

Switch S1:

VCIin portin VCIout portout connection
4 0 6 2 AÝÑF #1
5 0 6 1 AÝÑE
6 0 7 1 AÝÑC
8 1 7 2 BÝÑD
7 0 8 2 AÝÑF #2

Switch S2:

90 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

VCIin portin VCIout portout connection
6 0 4 1 AÝÑF #1
7 0 8 2 BÝÑD
8 0 5 1 AÝÑF #2

Switch S3:

VCIin portin VCIout portout connection
6 3 3 2 AÝÑE
7 3 3 1 AÝÑC
4 0 8 3 BÝÑD

Switch S4:

VCIin portin VCIout portout connection
4 3 8 2 AÝÑF #1
3 0 8 1 AÝÑE
5 3 9 2 AÝÑF #2

The namespace for VCIs is small, and compact (eg contiguous). Typically the VCI and port bitfields can be
concatenated to produce a xVCI,Porty composite value small enough that it is suitable for use as an array
index. VCIs work best as local identifiers. IP addresses, on the other hand, need to be globally unique, and
thus are often rather sparsely distributed.

Virtual-circuit switching offers the following advantages:

• connections can get quality-of-service guarantees, because the switches are aware of connections and
can reserve capacity at the time the connection is made

• headers are smaller, allowing faster throughput

• headers are small enough to allow efficient support for the very small packet sizes that are optimal for
voice connections. ATM packets, for instance, have 48 bytes of data; see below.

Datagram forwarding, on the other hand, offers these advantages:

• Routers have less state information to manage.

• Router crashes and partial connection state loss are not a problem.

• If a router or link is disabled, rerouting is easy and does not affect any connection state. (As mentioned
in Chapter 1, this was Paul Baran’s primary concern in his 1962 paper introducing packet switching.)

• Per-connection billing is very difficult.

The last point above may once have been quite important; in the era when the ARPANET was being devel-
oped, typical daytime long-distance rates were on the order of $1/minute. It is unlikely that early TCP/IP
protocol development would have been as fertile as it was had participants needed to justify per-minute
billing costs for every project.

3.4 Virtual Circuits 91

An Introduction to Computer Networks, Release 1.9.21

It is certainly possible to do virtual-circuit switching with globally unique VCIs – say the concatenation of
source and destination IP addresses and port numbers. The IP-based RSVP protocol (20.6 RSVP) does
exactly this. However, the fast-lookup and small-header advantages of a compact namespace are then lost.

Multi-Protocol Label Switching (20.12 Multi-Protocol Label Switching (MPLS)) is another IP-based ap-
plication of virtual circuits.

Note that virtual-circuit switching does not suffer from the problem of idle channels still consuming re-
sources, which is an issue with circuits using time-division multiplexing (eg shared T1 lines)

3.5 Asynchronous Transfer Mode: ATM

ATM is a network mechanism intended to accommodate real-time traffic as well as bulk data transfer. We
present ATM here as a LAN layer, for which it is still sometimes used, but it was originally proposed as a
replacement for the IP layer as well, and, to an extent, the Transport layer. These broader plans were not
greeted with universal enthusiasm within the IETF. When used as a LAN layer, IP packets are transmitted
over ATM as in 3.5.1 ATM Segmentation and Reassembly.

A distinctive feature of ATM is its small packet size. ATM has its roots in the telephone industry, and was
therefore particularly intended to support voice. A significant source of delay in voice traffic is the packet
fill time: at DS0 speeds (64 kbps), voice data accumulates at 8 bytes/ms. If we are sending 1 kB packets,
this means voice is delayed by about 1/8 second, meaning in turn that when one person stops speaking, the
earliest they can hear the other’s response is 1/4 second later. Slightly smaller levels of voice delay can
introduce an annoying echo. Smaller packets reduce the fill time and thus the delay: when voice is sent over
IP (VoIP), one common method is to send 160 bytes every 20 ms.

ATM took this small-packet strategy even further: packets have 48 bytes of data, plus 5 bytes of header. Such
small packets are often called cells. To manage such a small header, virtual-circuit routing is a necessity. IP
packets of such small size would likely consume more than 50% of the bandwidth on headers, if the LAN
header were included.

Aside from reduced voice fill-time, other benefits to small cells are reduced store-and-forward delay and
minimal queuing delay, at least for high-priority traffic. Prioritizing traffic and giving precedence to high-
priority traffic is standard, but high-priority traffic is never allowed to interrupt transmission already begun
of a low-priority packet. If you have a high-priority voice cell, and someone else has a 1500-byte packet
just started, your cell has to wait about 30 cell times, because 1500 bytes is about 30 cells. However, if their
low-priority traffic is instead made up of 30 cells, you have only to wait for their first cell to finish; the delay
is 1/30 as much.

ATM also made the decision to require fixed-size cells. The penalty for one partially used cell among many
is small. Having a fixed cell size simplifies hardware design, and, in theory, allows it easier to design for
parallelism.

Unfortunately, the designers of ATM also chose to mandate no cell reordering. This means cells can use
a smaller sequence-number field, but also makes parallel switches much harder to build. A typical parallel
switch design might involve distributing incoming cells among any of several input queues; the queues
would then handle the VCI lookups in parallel and forward the cells to the appropriate output queues. With
such an architecture, avoiding reordering is difficult. It is not clear to what extent the no-reordering decision
was related to the later decline of ATM in the marketplace.

92 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

ATM cells have 48 bytes of data and a 5-byte header. The header contains up to 28 bits of VCI information,
three “type” bits, one cell-loss priority, or CLP, bit, and an 8-bit checksum over the header only. The
VCI is divided into 8-12 bits of Virtual Path Identifier and 16 bits of Virtual Channel Identifier, the latter
supposedly for customer use to separate out multiple connections between two endpoints. Forwarding is by
full switching only, and there is no mechanism for physical (LAN) broadcast.

3.5.1 ATM Segmentation and Reassembly

Due to the small packet size, ATM defines its own mechanisms for segmentation and reassembly of larger
packets. Thus, individual ATM links in an IP network are quite practical. These mechanisms are called
ATM Adaptation Layers, and there are four of them: AALs 1, 2, 3/4 and 5 (AAL 3 and AAL 4 were once
separate layers, which merged). AALs 1 and 2 are used only for voice-type traffic; we will not consider
them further.

The ATM segmentation-and-reassembly mechanism defined here is intended to apply only to large data; no
cells are ever further subdivided. Furthermore, segmentation is always applied at the point where the data
enters the network; reassembly is done at exit from the ATM path. IPv4 fragmentation, on the other hand,
applies conceptually to IP packets, and may be performed by routers within the network.

For AAL 3/4, we first define a high-level “wrapper” for an IP packet, called the CS-PDU (Convergence
Sublayer - Protocol Data Unit). This prefixes 32 bits on the front and another 32 bits (plus padding) on the
rear. We then chop this into as many 44-byte chunks as are needed; each chunk goes into a 48-byte ATM
payload, along with the following 32 bits worth of additional header/trailer:

• 2-bit type field:

– 10: begin new CS-PDU

– 00: continue CS-PDU

– 01: end of CS-PDU

– 11: single-segment CS-PDU

• 4-bit sequence number, 0-15, good for catching up to 15 dropped cells

• 10-bit MessageID field

• CRC-10 checksum.

We now have a total of 9 bytes of header for 44 bytes of data; this is more than 20% overhead. This did not
sit well with the IP-over-ATM community (such as it was), and so AAL 5 was developed.

AAL 5 moved the checksum to the CS-PDU and increased it to 32 bits from 10 bits. The MID field was
discarded, as no one used it, anyway (if you wanted to send several different types of messages, you simply
created several virtual circuits). A bit from the ATM header was taken over and used to indicate:

• 1: start of new CS-PDU

• 0: continuation of an existing CS-PDU

The CS-PDU is now chopped into 48-byte chunks, which are then used as the entire body of each ATM
cell. With 5 bytes of header for 48 bytes of data, overhead is down to 10%. Errors are detected by the

3.5 Asynchronous Transfer Mode: ATM 93

An Introduction to Computer Networks, Release 1.9.21

CS-PDU CRC-32. This also detects lost cells (impossible with a per-cell CRC!), as we no longer have any
cell sequence number.

For both AAL3/4 and AAL5, reassembly is simply a matter of stringing together consecutive cells in order
of arrival, starting a new CS-PDU whenever the appropriate bits indicate this. For AAL3/4 the receiver
has to strip off the 4-byte AAL3/4 headers; for AAL5 the receiver has to verify the CRC-32 checksum once
all cells are received. Different cells from different virtual circuits can be jumbled together on the ATM
“backbone”, but on any one virtual circuit the cells from one higher-level packet must be sent one right after
the other.

A typical IP packet divides into about 20 cells. For AAL 3/4, this means a total of 200 bits devoted to CRC
codes, versus only 32 bits for AAL 5. It might seem that AAL 3/4 would be more reliable because of this,
but, paradoxically, it was not! The reason for this is that errors are rare, and so we typically have one or at
most two per CS-PDU. Suppose we have only a single error, ie a single cluster of corrupted bits small enough
that it is likely confined to a single cell. In AAL 3/4 the CRC-10 checksum will fail to detect that error (that
is, the checksum of the corrupted packet will by chance happen to equal the checksum of the original packet)
with probability 1/210. The AAL 5 CRC-32 checksum, however, will fail to detect the error with probability
1/232. Even if there are enough errors that two cells are corrupted, the two CRC-10s together will fail to
detect the error with probability 1/220; the CRC-32 is better. AAL 3/4 is more reliable only when we have
errors in at least four cells, at which point we might do better to switch to an error-correcting code.

Moral: one checksum over the entire message is often better than multiple shorter checksums over parts of
the message.

3.6 Adventures in Radioland

For the remainder of this chapter we leave wires (and fiber) behind, and contemplate the transmission of
packets via radio, freeing nodes from their cable tethers. Wi-fi (3.7 Wi-Fi) and mobile wireless (3.8 WiMAX
and LTE) are now ubiquitous. But radio is not quite like wire, and wireless transmission of packets brings
several changes.

3.6.1 Privacy

It’s hard to tap into wired Ethernet, especially if you are locked out of the building. But anyone can re-
ceive wireless transmissions, often from a considerable distance. The data breach at TJX Corporation was
achieved by attackers parking outside a company building and pointing a directional antenna at it; encryp-
tion was used but it was weak (see 22 Security and 22.7.7 Wi-Fi WEP Encryption Failure). Similarly,
Internet café visitors generally don’t want other patrons to read their email. Radio communication needs
strong encryption.

3.6.2 Collisions

Ethernet-like collision detection is no longer feasible over radio. This has to do with the relative signal
strength of the remote signal at the local transmitter. Along a wire-based Ethernet the remote signal might be
as weak as 1/100 of the transmitted signal but that 1% received signal is still detectable during transmission.

94 3 Other LANs

https://en.wikipedia.org/wiki/TJX_Companies

An Introduction to Computer Networks, Release 1.9.21

However, with radio the remote signal might easily be as little as 1/1,000,000 of the transmitted signal (-60
dB), as measured at the transmitting station, and it is simply overwhelmed during transmission.

As a result, wireless protocols must be constructed appropriately. We will look at how Wi-Fi handles this
in its most common mode of operation in 3.7.1 Wi-Fi and Collisions. Wi-Fi also supports its PCF mode
(3.7.7 Wi-Fi Polling Mode) that involves fewer (but not zero) collisions through the use of central-point
polling. Finally, WiMAX and LTE switch from polling to scheduling to further reduce collisions, though
the potential for collisions is still inevitable when new stations join the network.

It is also worth pointing out that, while an Ethernet collision affects every station in the physical Ethernet
(the “collision domain”), wireless collisions are local, occuring at the receiver. Two stations can transmit at
the same time, and in range of one another, but without a collision! This can happen if each of the relevant
receivers is in range of only one of the two transmitting stations. As an example, suppose three stations are
arranged linearly, A–C–B, with the A–C and C–B distances just under the maximum effective range. When
A and B both transmit there is indeed a collision at C. But when C and B transmit simultaneously, A may
receive C’s signal just fine, as B’s is too weak to interfere.

3.6.3 Hidden Nodes

In wireless communication, two nodes A and B that are not in range of one another – and thus cannot detect
one another – may still have their signals interfere at a third node C. This creates an additional complication
to collision handling. See 3.7.1.4 Hidden-Node Problem.

3.6.4 Band Width

To radio engineers, “band width” means the frequency range used by a signal, not the data transmission rate.
No information can be conveyed using a single frequency; even signaling by switching a carrier frequency
off and on at a low rate “blurs” the carrier into a band of nonzero width.

In keeping with this we will for the remainder of this chapter use the term “data rate” for what we have
previously called “bandwidth”. We will use the terms “channel width” or “width of the frequency band” for
the frequency range.

All else being equal, the data rate achievable with a radio signal is proportional to the channel width. The
constant of proportionality is limited by the Shannon-Hartley theorem: the maximum data rate divided by
the width of the frequency band is log2(1+SNR), where SNR is the signal to noise power ratio. Noise here
is assumed to have a specific statistical form known as Gaussian white noise. If SNR is 127, for example,
and the width of the frequency band is 1 MHz, then the maximum theoretical data rate is 7 Mbps, where
7 = log2(128). If the signal power S drops by about half so SNR=63, the data rate falls to 6 Mbps, as 6 =
log2(64); the relationship between signal power and data rate is logarithmic.

3.6.4.1 OFDM

The actual data rate achievable, for a given channel width and SNR, depends on the signal encoding, or
modulation, mechanism. Most newer modulation mechanisms use “orthogonal frequency-division multi-
plexing”, OFDM, or some variant.

3.6 Adventures in Radioland 95

http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem

An Introduction to Computer Networks, Release 1.9.21

A central feature of OFDM is that one wider frequency band is divided into multiple narrow subchan-
nels; each subchannel then carries a proportional fraction of the total information signal, modulated onto a
subchannel-specific carrier. All the subchannels can be allocated to one transmission at a time (time-division
multiplexing, 4.2 Time-Division Multiplexing), or disjoint sets of subchannels can be allocated to different
transmissions that can then proceed (at proportionally lower data rates) in parallel. The latter is known as
frequency-division multiplexing.

In many settings OFDM comes reasonably close to the Shannon-Hartley limit. Perhaps more importantly,
OFDM also performs reasonably well with multipath interference, below, which is endemic in urban and
building-interior environments with their many reflective surfaces. Multipath interference is, however, not
necessarily comparable to the Gaussian noise assumed by the Shannon-Hartley theorem. We will not address
further technical details of OFDM here, except to note that implementation usually requires some form of
digital signal processing.

The OFDMA variant, with the MA standing for Multiple Access, allows multiple users to use nonoverlap-
ping sets of subchannels, thus allowing simultaneous transmission. It is an option available in 802.11ax.

3.6.5 Cost

Another fundamental issue is that everyone shares the same radio spectrum. For mobile wireless providers,
this constraint has driven prices to remarkable levels; the 2014-15 FCC AWS-3 auction raised almost $45
billion for 65 MHz (usable throughout the entire United States). This works out to somewhat over $2 per
megahertz per phone. The corresponding issue for Wi-Fi users in a dense area is that all the available Wi-Fi
bandwidth may be in use. Inside busy buildings one can often see dozens of Wi-Fi access points competing
for the same Wi-Fi channel; the result is that no user will be getting close to the nominal data rates of
3.7 Wi-Fi.

Higher data rates require wider frequency bands. To reduce costs in the face of fixed demand, the usual
strategy is to make the coverage zones smaller, either by reducing power (and adding more access points as
appropriate), or by using directional antennas, or both.

3.6.6 Multipath

While a radio signal generally covers a wide area – even with ordinary directional antennas – it does so in
surprisingly non-uniform ways. A signal may reach a receiver through a line-of-sight path and also several
reflected paths, possibly of varying length. In addition to reflection, the signal may be subject to reflection-
like scattering and diffraction. All of this together is known as multipath interference (or, if analog audio
is involved, multipath distortion; in the analog TV era this was ghosting).

96 3 Other LANs

http://wireless.fcc.gov/auctions/default.htm?job=auction_factsheet&id=97

An Introduction to Computer Networks, Release 1.9.21

A B

Line-of-sight and reflected signals Superposition of encoded data

The picture above shows two transmission paths from A to B. The respective carrier paths may interfere with
or supplement one another. The longer delay of the reflecting path (red) wil also delay its encoded signal.
The result, shown at right, is that the line-of-sight and reflected data symbols may overlap and interfere with
each other; this is known as intersymbol interference. Multipath interference may even change the meaning
of the data symbol as seen by the receiver; for example, the red and black low data-signal peaks above at
the point of the vertical dashed line may sum together so as to be received as a higher peak (assuming the
underlying carriers are in sync).

Multipath interference tends to lead to wide fluctuations in signal intensity with a period of about half a wavelength; this phenomenon is known as multipath fading. As an example, the wavelength of FM radio stations in the United States is about 3 meters; in fringe reception areas it is not uncommon to pull a car forward a quarter wavelength and have a station go from clear to indecipherable, or even for reception to switch to another station (on the same frequency but transmitted from another location) altogether.

3.6 Adventures in Radioland 97

An Introduction to Computer Networks, Release 1.9.21

Signal-intensity map (simulated) in a room with walls with 40% reflectivity

The picture above is from a mathematical simulation intended to illustrate multipath fading. The walls of
the room reflect 40% of the signal from the transmitter located in the orange ball at the lower left. The
transmitter transmits an unmodulated carrier signal, which may be reflected off the walls any number of
times; at any point in the room the total signal intensity is the sum over all possible reflection paths. On the
right-hand side, the small-scale blue ripples represent the received carrier strength variation due to multipath
interference between the line-of-sight and all the reflected paths. Note that the ripple size is about half a
wavelength.

In comparison to this simulated intensity map, real walls tend to have a lower reflectivity, real rooms are not
two-dimensional, and real carriers are modulated. However, real rooms also introduce scattering, diffraction
and shadowing from objects within, and significant (3ˆ to 10ˆ) multipath-fading signal-strength variations
are common in actual wireless settings.

Multipath fading can be either flat – affecting all frequencies more or less equally – or selective – affecting
some frequencies differently than others. It is quite possible for an OFDM channel (3.6.4.1 OFDM) to
encounter selective fading of only some of its subchannel frequencies.

Generally, multipath interference is a problem that engineers go to great lengths to overcome. However, as
we shall see in 3.7.3 Multiple Spatial Streams, multipath interference can sometimes be put to positive
use by allowing almost-adjacent antennas to transmit and receive independent signals, thus increasing the
effective throughput.

For an alternative example of multipath interference in which the signal strength has no ripples, see exercise
13.0.

3.6.7 Power

If you are cutting the network cable and replacing it with wireless, there is a good chance you will also
want to cut the power cable as well and replace it with batteries. This tends to make power consumption a
very important issue. The Wi-Fi standard has provisions for minimizing power usage by allowing a device
to “doze” most of the time, waking periodically to check if any packets are ready to be sent to it (see
3.7.4.1 Joining a Network). The 6LoWPAN project (IPv6 Low-power Wireless Personal Area Network) is
intended to support very low-power devices; see RFC 4919 and RFC 6282.

3.6.8 Tangle

Wireless is also used simply to replace cords and their attendant tangle, and, of course, the problem of
incompatible connectors. The low-power Bluetooth wireless standard is commonly used as a cable alterna-
tive for things like computer mice and telephone headsets. Bluetooth is also a low-power network; for many
applications the working range is about 10 meters. ZigBee is another low-power small-scale network.

3.7 Wi-Fi

Wi-Fi is a trademark of the Wi-Fi Alliance denoting any of several IEEE wireless-networking protocols
in the 802.11 family, specifically 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax. (Strictly

98 3 Other LANs

http://en.wikipedia.org/wiki/6LoWPAN
https://tools.ietf.org/html/rfc4919.html
https://tools.ietf.org/html/rfc6282.html
http://www.wi-fi.org

An Introduction to Computer Networks, Release 1.9.21

speaking, these are all amendments to the original 802.11 standard, but they are also de facto standards
in their own right.) Like classic Ethernet, Wi-Fi must deal with collisions; unlike Ethernet, however, Wi-
Fi is unable to detect collisions in progress, complicating the backoff and retransmission algorithms. See
3.6.2 Collisions above.

Unlike any wired LAN protocol we have considered so far, in addition to normal data packets Wi-Fi also uses
control and management packets that exist entirely within the Wi-Fi LAN layer; these are not initiated by or
delivered to higher network layers. Control packets are used to compensate for some of the infelicities of the
radio environment, such as the lack of collision detection. Putting radio-essential control and management
protocols within the Wi-Fi layer means that the IP layer can continue to interact with the Wi-Fi LAN exactly
as it did with Ethernet; no changes are required.

Wi-Fi is designed to interoperate freely with Ethernet at the logical LAN layer. Wi-Fi MAC (physical)
addresses have the same 48-bit size as Ethernet’s and the same internal structure (2.1.3 Ethernet Address
Internal Structure). They also share the same namespace: one is never supposed to see an Ethernet and
a Wi-Fi interface with the same address. As a result, data packets can be forwarded by switches between
Ethernet and Wi-Fi; in many respects a Wi-Fi LAN attached to an Ethernet LAN looks like an extension of
the Ethernet LAN. See 3.7.4 Access Points.

Microwave Ovens and Wi-Fi

The impact of a running microwave oven on Wi-Fi signals is quite evident if the oven is between the
sender and receiver. For other configurations the effect may vary. Most ovens transmit only during one
half of the A/C cycle, that is, they are on 1/60 sec and then off 1/60 sec; this may allow intervening
transmission time. See also here.

Traditionally, Wi-Fi used the 2.4 GHz ISM (Industrial, Scientific and Medical) band used also by microwave
ovens, though 802.11a used a 5 GHz band, 802.11n supports that as an option and the new 802.11ac has
returned to using 5 GHz exclusively. The 5 GHz band has reduced ability to penetrate walls, often resulting
in a lower effective range (though in offices and multi-unit housing this can be an advantage). The 5 GHz
band provides many more usable channels than the 2.4 GHz band, resulting in much less interference in
“crowded” environments.

Wi-Fi radio spectrum is usually unlicensed, meaning that no special permission is needed to transmit but
also that others may be trying to use the same frequency band simultaneously. The availability of unlicensed
channels in the 5 GHz band continues to improve.

The table below summarizes the different Wi-Fi versions. All data bit rates assume a single spatial stream;
channel widths are nominal. The names in the far-right column have been introduced by the Wi-Fi Alliance
as a more convenient designation for the newer versions.

IEEE name maximum bit rate frequency channel width new name
802.11a 54 Mbps 5 GHz 20 MHz
802.11b 11 Mbps 2.4 GHz 20 MHz
802.11g 54 Mbps 2.4 GHz 20 MHz
802.11n 65-150 Mbps 2.4/5 GHz 20-40 MHz Wi-Fi 4
802.11ac 78-867 Mbps 5 GHz 20-160 MHz Wi-Fi 5
802.11ax Up to 1200 Mbps 2.4/5+ GHz 20-160 MHz Wi-Fi 6

3.7 Wi-Fi 99

https://xkcd.com/654

An Introduction to Computer Networks, Release 1.9.21

The maximum bit rate is seldom achieved in practice. The effective bit rate must take into account, at a
minimum, the time spent in the collision-handling mechanism. More significantly, all the Wi-Fi variants
above use dynamic rate scaling, below; the bit rate is reduced up to tenfold (or more) in environments with
higher error rates, which can be due to distance, obstructions, competing transmissions or radio noise. All
this means that, as a practical matter, getting 150 Mbps out of 802.11n requires optimum circumstances; in
particular, no competing senders and unimpeded line-of-sight transmission. 802.11n lower-end performance
can be as little as 10 Mbps, though 40-100 Mbps (for a 40 MHz channel) may be more typical.

The 2.4 GHz ISM band is divided by international agreement into up to 14 officially designated (and mostly
adjacent) channels, each about 5 MHz wide, though in the United States use may be limited to the first 11
channels. The 5 GHz band is similarly divided into 5 MHz channels. One Wi-Fi sender, however, needs
several of these official channels; the typical 2.4 GHz 802.11g transmitter uses an actual frequency range of
up to 22 MHz, or up to five official channels. As a result, to avoid signal overlap Wi-Fi use in the 2.4 GHz
band is often restricted to official channels 1, 6 and 11. The end result is that there are generally only three
available Wi-Fi bands in the 2.4 GHz range, and so Wi-Fi transmitters can and do interact with and interfere
with each other.

There are almost 200 5 MHz channels in the 5 GHz band. The United States requires users of the this
band to avoid interfering with weather and military applications in the same frequency range; this may
involve careful control of transmission power (under the IEEE 802.11h amendment) and so-called “dynamic
frequency selection” to choose channels with little interference, and to switch to such channels if interference
is detected later. Even so, there are many more channels than at 2.4 GHz; the larger number of channels
is one of the reasons (arguably the primary reason) that 802.11ac can run faster (below). The number
of channels available for Wi-Fi use has been increasing, often as conflicts with existing 5 GHz weather
systems are resolved.

802.11ax has preliminary support for additional frequency bands in the 6-7 GHz range, though these are
still awaiting (in the US) final FCC approval.

Wi-Fi designers can improve throughput through a variety of techniques, including

1. improved radio modulation techniques

2. improved error-correcting codes

3. smaller guard intervals between symbols

4. increasing the channel width

5. allowing multiple spatial streams via multiple antennas

The first two in this list seem now to be largely tapped out; OFDM modulation (3.6.4.1 OFDM) is close
enough to the Shannon-Hartley limit that there is limited room for improvement, though 802.11ax saw fit to
move to ODFMA. The third reduces the range (because there is less protection from multipath interference)
but may increase the data rate by ~10%; 802.11ax introduced support for dynamic changing of guard-interval
and symbol size. The largest speed increases are obtained the last two items in the list.

The channel width is increased by adding additional 5 MHz channels. For example, the 65 Mbps bit rate
above for 802.11n is for a nominal frequency range of 20 MHz, comparable to that of 802.11g. However,
in areas with minimal competition from other signals, 802.11n supports using a 40 MHz frequency band;
the bit rate then goes up to 135 Mbps (or 150 Mbps if a smaller guard interval is used). This amounts to
using two of the three available 2.4 GHz Wi-Fi bands. Similarly, the wide range in 802.11ac bit rates reflects
support for using channel widths ranging from 20 MHz up to 160 MHz (32 5-MHz official channels).

100 3 Other LANs

https://en.wikipedia.org/wiki/IEEE_802.11h-2003

An Introduction to Computer Networks, Release 1.9.21

Using multiple spatial streams is the newest data-rate-improvement technique; see 3.7.3 Multiple Spatial
Streams.

For all the categories in the table above, additional bits are used for error-correcting codes. For 802.11g
operating at 54 Mbps, for example, the actual raw bit rate is (4/3)ˆ54 = 72 Mbps, sent in symbols consisting
of six bits as a unit.

3.7.1 Wi-Fi and Collisions

We looked extensively at the 10 Mbps Ethernet collision-handling mechanisms in 2.1 10-Mbps Classic
Ethernet, only to conclude that with switches and full-duplex links, Ethernet collisions are rapidly becoming
a thing of the past. Wi-Fi, however, has brought collisions back from obscurity. An Ethernet sender will
discover a collision, if one occurs, during the first slot time, by monitoring for faint interference with its own
transmission. However, as mentioned in 3.6.2 Collisions, Wi-Fi transmitting stations simply cannot detect
collisions in progress. If another station transmits at the same time, a Wi-Fi sender will see nothing amiss
although its signal will not be received. While there is a largely-collision-free mode for Wi-Fi operation
(3.7.7 Wi-Fi Polling Mode), it is not commonly used, and collision management has a significant impact
on ordinary Wi-Fi performance.

3.7.1.1 Link-Layer ACKs

The first problem with Wi-Fi collisions is even detecting them. Because of the inability to detect collisions
directly, the Wi-Fi protocol adds link-layer ACK packets, at least for unicast transmission. These ACKs
are our first example of Wi-Fi control packets and are unrelated to the higher-layer TCP ACKs.

The reliable delivery of these link-layer ACKs depends on careful timing. There are three time intervals
applicable (numeric values here are for 802.11b/g in the 2.4 GHz band). The value we here call IFS is more
formally known as DIFS (D for “distributed”; see 3.7.7 Wi-Fi Polling Mode).

• slot time: 20 µsec

• IFS, the “normal” InterFrame Spacing: 50 µsec

• SIFS, the short IFS: 10 µsec

For comparison, note that the RTT between two Wi-Fi stations 100 meters apart is less than 1 µsec. At 11
Mbps, one IFS time is enough to send about 70 bytes; at 54 Mbps it is enough to send almost 340 bytes.

Once a station has received a data packet addressed to it, it waits for time SIFS and sends its ACK. At this
point in time the receiver will be the only station authorized to send, because, as we will see in the next
section, all other stations (including those on someone else’s overlapping Wi-Fi) will be required to wait
the longer IFS period following the end of the previous data transmission. These other stations will see the
ACK before the IFS time has elapsed and will thus not interfere with it (though see exercise 4.0).

If a packet is involved in a collision, the receiver will send no ACK, so the sender will know something
went awry. Unfortunately, the sender will not be able to tell whether the problem was due to a collision,
or electromagnetic interference, or signal blockage, or excessive distance, or the receiver’s being powered
off. But as a collision is usually the most likely cause, and as assuming the lost packet was involved in a
collision results in, at worst, a slight additional delay in retransmission, a collision will always be assumed.

3.7 Wi-Fi 101

An Introduction to Computer Networks, Release 1.9.21

Link-Layer ACKs contain no information – such as a sequence number – that identifies the packet being
acknowledged. These ACKs simply acknowledge the most recent transmission, the one that ended one SIFS
earlier. In the Wi-Fi context, this is unambiguous. It may be compared, however, to 6.1 Building Reliable
Transport: Stop-and-Wait, where at least one bit of packet sequence numbering is required.

3.7.1.2 Collision Avoidance and Backoff

The Ethernet collision-management algorithm was known as CSMA/CD, where CD stood for Collision
Detection. The corresponding Wi-Fi mechanism is CSMA/CA, where CA stands for Collision Avoidance.
A collision is presumed to have occurred if the link-layer ACK is not received. As with Ethernet, there is an
exponential-backoff mechanism as well, though it is scaled somewhat differently.

Any sender wanting to send a new data packet waits the IFS time after first sensing the medium to see if
it is idle. If no other traffic is seen in this interval, the station may then transmit immediately. However,
if other traffic is sensed, the sender must do an exponential backoff even for its first transmission attempt;
other stations, after all, are likely also waiting, and avoiding an initial collision is strongly preferred.

The initial backoff is to choose a random k<25 = 32 (recall that classic Ethernet in effect chooses an initial
backoff of k<20 = 1; ie k=0). The prospective sender then waits k slot times. While waiting, the sender
continues to monitor for other traffic; if any other transmission is detected, then the sender “suspends” the
backoff-wait clock. The clock resumes when the other transmission has completed and one followup idle
interval of length IFS has elapsed.

Note that, under these rules, data-packet senders always wait for at least one idle interval of length IFS
before sending, thus ensuring that they never collide with an ACK sent after an idle interval of only SIFS.

On an Ethernet, if two stations are waiting for a third to finish before they transmit, they will both transmit
as soon as the third is finished and so there will always be an initial collision. With Wi-Fi, because of the
larger initial k<32 backoff range, such initial collisions are unlikely.

If a Wi-Fi sender believes there has been a collision, it retries its transmission, after doubling the backoff
range to 64, then 128, 256, 512, 1024 and again 1024. If these seven attempts all fail, the packet is discarded
and the sender starts over.

In one slot time, radio signals move 6,000 meters; the Wi-Fi slot time – unlike that for Ethernet – has nothing
to do with the physical diameter of the network. As with Ethernet, though, the Wi-Fi slot time represents
the fundamental unit for backoff intervals.

Finally, we note that, unlike Ethernet collisions, Wi-Fi collisions are a local phenomenon: if A and B
transmit simultaneously, a collision occurs at node C only if the signals of A and B are both strong enough
at C to interfere with one another. It is possible that a collision occurs at station C midway between A and
B, but not at station D that is close to A. We return to this below in 3.7.1.4 Hidden-Node Problem.

3.7.1.3 Wi-Fi RTS/CTS

Wi-Fi stations optionally also use a request-to-send/clear-to-send (RTS/CTS) protocol, again negotiated
with designated control packets. Usually this is used only for larger data packets; often, the RTS/CTS
“threshold” (the size of the largest packet not sent using RTS/CTS) is set (as part of the Access Point
configuration, 3.7.4 Access Points) to be the maximum packet size, effectively disabling this feature. The

102 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

idea behind RTS/CTS is that a large packet that is involved in a collision represents a significant waste of
potential throughput; for large packets, we should ask first.

The RTS control packet – which is small – is sent through the normal procedure outlined above; this packet
includes the identity of the destination and the size of the data packet the station desires to transmit. The
destination station then replies with CTS after the SIFS wait period, effectively preventing any other trans-
mission after the RTS. The CTS packet also contains the data-packet size. The original sender then waits
for SIFS after receiving the CTS, and sends the packet. If all other stations can hear both the RTS and
CTS messages, then once the RTS and CTS are sent successfully no collisions should occur during packet
transmission, again because the only idle times are of length SIFS and other stations should be waiting for
time IFS.

3.7.1.4 Hidden-Node Problem

Consider the diagram below. Each station has a 100-meter range. Stations A and B are 150 meters apart and
so cannot hear one another at all; each is 75 meters from C. If A is transmitting and B senses the medium in
preparation for its own transmission, as part of collision avoidance, then B will conclude that the medium is
idle and will go ahead and send.

However, C is within range of both A and B. If A and B transmit simultaneously, then from C’s perspective
a collision occurs. C receives nothing usable. We will call this a hidden-node collision as the senders A
and B are hidden from one another; the general scenario is known as the hidden-node problem.

Note that node D receives only A’s signal, and so no collision occurs at D.

The hidden-node problem can also occur if A and B cannot receive one another’s transmissions due to a
physical obstruction such as a radio-impermeable wall:

3.7 Wi-Fi 103

An Introduction to Computer Networks, Release 1.9.21

C

B

A

One of the rationales for the RTS/CTS protocol is the prevention of hidden-node collisions. Imagine that,
instead of transmitting its data packet, A sends an RTS packet, and C responds with CTS. B has not heard
the RTS packet from A, but does hear the CTS from C. A will begin transmitting after a SIFS interval, but B
will not hear A’s transmission. However, B will still wait, because the CTS packet contained the data-packet
size and thus, implicitly, the length of time all other stations should remain idle. Because RTS packets are
quite short, they are much less likely to be involved in collisions themselves than data packets.

3.7.1.5 Wi-Fi Fragmentation

Conceptually related to RTS/CTS is Wi-Fi fragmentation. If error rates or collision rates are high, a sender
can send a large packet as multiple fragments, each receiving its own link-layer ACK. As we shall see in
5.3.1 Error Rates and Packet Size, if bit-error rates are high then sending several smaller packets often
leads to fewer total transmitted bytes than sending the same data as one large packet.

Wi-Fi packet fragments are reassembled by the receiving node, which may or may not be the final destina-
tion.

As with the RTS/CTS threshold, the fragmentation threshold is often set to the size of the maximum packet.
Adjusting the values of these thresholds is seldom necessary, though might be appropriate if monitoring
revealed high collision or error rates. Unfortunately, it is essentially impossible for an individual station
to distinguish between reception errors caused by collisions and reception errors caused by other forms of
noise, and so it is hard to use reception statistics to distinguish between a need for RTS/CTS and a need for
fragmentation.

3.7.2 Dynamic Rate Scaling

Wi-Fi senders, if they detect transmission problems, are able to reduce their transmission bit rate in a process
known as rate scaling or rate control. The idea is that lower bit rates will have fewer noise-related errors,
and so as the error rate becomes unacceptably high – perhaps due to increased distance – the sender should
fall back to a lower bit rate. For 802.11g, the standard rates are 54, 48, 36, 24, 18, 12, 9 and 6 Mbps. Senders
attempt to find the transmission rate that maximizes throughput; for example, 36 Mbps with a packet loss
rate of 25% has an effective throughput of 36 ˆ 75% = 27 Mbps, and so is better than 24 Mbps with no
losses.

Senders may update their bit rate on a per-packet basis; senders may also choose different bit rates for
different recipients. For example, if a sender sends a packet and receives no confirming link-layer ACK, the
sender may fall back to the next lower bit rate. The actual bit-rate-selection algorithm lives in the particular
Wi-Fi driver in use; different nodes in a network may use different algorithms.

104 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

The earliest rate-scaling algorithm was Automatic Rate Fallback, or ARF, [KM97]. The rate decreases after
two consecutive transmission failures (that is, the link-layer ACK is not received), and increases after ten
transmission successes.

A significant problem for rate scaling is that a packet loss may be due either to low-level random noise
(white noise, or thermal noise) or to a collision (which is also a form of noise, but less random); only in the
first case is a lower transmission rate likely to be helpful. If a larger number of collisions is experienced, the
longer packet-transmission times caused by the lower bit rate may increase the frequency of hidden-node
collisions. In fact, a higher transmission rate (leading to shorter transmission times) may help; enabling the
RTS/CTS protocol may also help.

Signal Strength

Most Wi-Fi drivers report the received signal strength. Newer drivers use the IEEE Received Channel
Power Indicator convention; the RCPI is an 8-bit integer proportional to the absolute power received by
the antenna as measured in decibel-milliwatts (dBm). Wi-Fi values range from -10 dBm to -90 dBm and
below. For comparison, the light from the star Polaris delivers about -97 dBm to one eye on a good night;
Venus typically delivers about -73 dBm. A GPS satellite might deliver -127 dBm to your phone. (Inspired
by Wikipedia on DBm.)

A variety of newer rate-scaling algorithms have been proposed; see [JB05] for a summary. One, Receiver-
Based Auto Rate (RBAR, [HVB01]), attempts to incorporate the signal-to-noise ratio into the calculation of
the transmission rate. This avoids the confusion introduced by collisions. Unfortunately, while the signal-
to-noise ratio has a strong theoretical correlation with the transmission bit-error rate, most Wi-Fi radios
will report to the host system the received signal strength. This is not the same as the signal-to-noise ratio,
which is harder to measure. As a result, the RBAR approach has not been quite as effective in practice as
might be hoped.

With the Collision-Aware Rate Adaptation algorithm (CARA, [KKCQ06]), a transmitting station attempts
(among other things) to infer that its packet was lost to a collision rather than noise if, after one SIFS interval
following the end of its packet transmission, no link-layer ACK has been received and the channel is still
busy. This will detect collisions only when the colliding packet is longer than the station’s own packet, and
only when the hidden-node problem isn’t an issue.

Because the actual data in a Wi-Fi packet may be sent at a rate not every participant is close enough to
receive correctly, every Wi-Fi transmission begins with a brief preamble at the minimum bit rate. Link-layer
ACKs, too, are sent at the minimum bit rate.

3.7.3 Multiple Spatial Streams

The latest innovation in improving Wi-Fi (and other wireless) data rates is to support multiple simultaneous
data streams, through an antenna technique known as multiple-input-multiple-output, or MIMO. To use N
streams, both sender and receiver must have N antennas; all the antennas use the same frequency channels
but each transmitter antenna sends a different data stream. At first glance, any significant improvement in
throughput might seem impossible, as the antenna elements in the respective sending and receiving groups
are each within about half a wavelength of each other; indeed, in clear space MIMO is not possible.

The reason MIMO works in most everyday settings is that it puts multipath interference to positive use.

3.7 Wi-Fi 105

http://en.wikipedia.org/wiki/DBm

An Introduction to Computer Networks, Release 1.9.21

Consider again at the right-hand side of the final image of 3.6.6 Multipath, in which the signal strength
varies according to the blue ripples; the peaks and valleys have a period of about half a wavelength. We will
assume initially that the signal strength is low enough that reception in the darkest blue areas is no longer
viable; a single antenna with the misfortune to be in one of these “dead zones” may receive nothing.

We will start with two simpler cases: SIMO (single-input-multiple-output) and MISO (multiple-input-
single-output). In SIMO, the receiver has multiple antennas; in MISO, the transmitter. Assume for the
moment that the multiple-antenna side has two antennas. In the simplest implementation of SIMO, the re-
ceiver picks the stronger of the two received signals and uses that alone; as long as at least one antenna is
not in a “dead zone”, reception is successful. With two antennas under half a wavelength apart, the odds are
that at least one of them will be located outside a dead zone, and will receive an adequate signal.

Similarly, in simple MISO, the transmitter picks whichever of its antennas that gets a stronger signal to the
receiver. The receiver is unlikely to be in a dead zone for both transmitter antennas. Note that for MISO the
sender must get some feedback from the receiver to know which antenna to use.

We can do quite a bit better if signal-processing techniques are utilized so the two sender or two receiver
antennas can be used simultaneously (though this complicates the mathematics considerably). Such signal-
processing is standard in 802.11n and above; the Wi-Fi header, to assist this process, includes added man-
agement packets and fields for reporting MIMO-related information. One station may, for example, send
the other a sequence of training symbols for discerning the response of the antenna system.

MISO with these added techniques is sometimes called beamforming: the sender coordinates its multiple
antennas to maximize the signal reaching one particular receiver.

In our simplistic description of SIMO and MIMO above, in which only one of the multiple-antenna-side
antennas is actually used, we have suggested that the idea is to improve marginal reception. At least one
antenna on the multiple-antenna side can successfully communicate with the single antenna on the other
side. MIMO, on the other hand, can be thought of as applying when transmission conditions are quite good
all around, and every antenna on one side can reach every antenna on the other side. The key point is that, in
an environment with a significant degree of multipath interference, the antenna-to-antenna paths may all be
independent, or uncorrelated. At least one receiving antenna must be, from the perspective of at least one
transmitting antenna, in a multipath-interference “gray zone” of reduced signal strength.

A
1

A2 B2

B1

A B

MIMO antennas

As a specific example, consider the diagram above, with two sending antennas A1 and A2 at the left and two
receiving antennas B1 and B2 at the right. Antenna A1 transmits signal S1 and A2 transmits S2. There are
thus four physical signal paths: A1-to-B1, A1-to-B2, A2-to-B1 and A2-to-B2. If we assume that the signal
along the A1-to-B2 path (dashed and blue) arrives with half the strength of the other three paths (solid and
black), then we have

signal received by B1: S1 + S2

signal received by B2: S1/2 + S2

From these, B can readily solve for the two independent signals S1 and S2. These signals are said to form two

106 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

spatial streams, though the spatial streams are abstract and do not correspond to any of the four physical
signal paths.

The antennas are each more-or-less omnidirectional; the signal-strength variations come from multipath
interference and not from physical aiming. Similarly, while the diagonal paths A1-to-B2 and A2-to-B1 are
slightly longer than the horizontal paths A1-to-B1 and A2-to-B2, the difference is not nearly enough to allow
B to solve for the two signals.

In practice, overall data-rate improvement over a single antenna can be considerably less than a factor of 2
(or than N, the number of antennas at each end).

The 802.11n standard allows for up to four spatial streams, for a theoretical maximum bit rate of 600 Mbps.
802.11ac allows for up to eight spatial streams, for an even-more-theoretical maximum of close to 7 Gbps.
MIMO support is sometimes described with an AˆBˆC notation, eg 3ˆ3ˆ2, where A and B are the number
of transmitting and receiving antennas and C ď min(A,B) is the number of spatial streams.

3.7.4 Access Points

There are two standard Wi-Fi configurations: infrastructure and ad hoc. The former involves connection to
a designated access point; the latter includes individual Wi-Fi-equipped nodes communicating informally.
For example, two laptops can set up an ad hoc connection to transfer data at a meeting. Ad hoc connections
are often used for very simple networks not providing Internet connectivity. Complex ad hoc networks are,
however, certainly possible; see 3.7.8 MANETs.

The infrastructure configuration is much more common. Stations in an infrastructure network communi-
cate directly only with their access point, which, in turn, communicates with the outside world. If Wi-Fi
nodes B and C share access point AP, and B wishes to send a packet to C, then B first forwards the packet to
AP and AP then forwards it to C. While this introduces a degree of inefficiency, it does mean that the access
point and its associated nodes automatically act as a true LAN: every node can reach every other node. (It
is also often the case that most traffic is between Wi-Fi nodes and the outside world.) In an ad hoc network,
by comparison, it is common for two nodes to be able to reach each other only by forwarding through an
intermediate third node; this is in fact a form of the hidden-node scenario.

Wi-Fi access points are generally identified by their SSID (“Service Set IDentifier”), an administratively
defined human-readable string such as “linksys” or “loyola”. Ad hoc networks also have SSIDs; these are
generated pseudorandomly at startup and look like (but are not) 48-bit MAC addresses.

Portable Access Points

Being a Wi-Fi access point is a very specific job; Wi-Fi-enabled “station” devices like phones and work-
stations do not generally act as access points. However, it is often possible to for a station device to
become an access point if the access-point mode is supported by the underlying radio hardware, and if
suitable drivers can be found. The Linux hostapd package is one option. The FCC may or may not
bestow its blessing.

Many access points can support multiple SSIDs simultaneously. For example, an access point might support
SSID “guest” with limited authentication (below), and also SSID “secure” with much stronger authentica-
tion.

3.7 Wi-Fi 107

https://fcc.gov
https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=39498&switch=P

An Introduction to Computer Networks, Release 1.9.21

Finally, Wi-Fi is by design completely interoperable with Ethernet; if station A is associated with access
point AP, and AP also connects via (cabled) Ethernet to station B, then if A wants to send a packet to B it
sends it using AP as the Wi-Fi destination but with B also included in the header as the “actual” destination.
Once it receives the packet by wireless, AP acts as an Ethernet switch and forwards the packet to B. While
this forwarding is transparent to senders, the Ethernet and Wi-Fi LAN header formats are quite different.

dest addr src addr type data CRC

receiver
addr

transmit
addr

dest addr src addr data CRC frame
control

dura-
tion

seq
control

Ethernet

Wi-Fi Data

The above diagram illustrates an Ethernet header and the Wi-Fi header for a typical data packet (not using
Wi-Fi quality-of-service features). The Ethernet type field usually moves to an IEEE Logical Link Control
header in the Wi-Fi region labeled “data”. The receiver and transmitter addresses are the MAC addresses
of the nodes receiving and transmitting the (unicast) packet; these may each be different from the ultimate
destination and source addresses. If station B wants to send a packet to station C in the same network,
the source and destination are B and C but the transmitter and receiver are B and the access point. In
infrastructure mode either the receiver or transmitter address is always the access point; in typical situations
either the receiver is the destination or the sender is the transmitter. In ad hoc mode, if LAN-layer routing is
used then all four addresses may be distinct; see 3.7.8.1 Routing in MANETs.

3.7.4.1 Joining a Network

To join the network, an individual station must first discover its access point, and must associate and then
authenticate to that access point before general communication can begin. (Older forms of authentication
– so-called “open” authentication and the now-deprecated WEP authentication – came before association,
but newer authentication protocols such as WPA2, WPA2-Personal and WPA2-Enterprise (3.7.5 Wi-Fi
Security) come after.) We can summarize the stages in the process as follows:

• scanning (or active probing)

• open-authentication and association

• true authentication

• DHCP (getting an IP address, 7.10 Dynamic Host Configuration Protocol (DHCP))

The association and authentication processes are carried out by an exchange of special management pack-
ets, which are confined to the Wi-Fi LAN layer. Occasionally stations may re-associate to their Access
Point, eg if they wish to communicate some status update.

Access points periodically broadcast their SSID in special beacon packets (though for pseudo-security rea-
sons the SSID in the beacon packets can be suppressed). Beacon packets are one of several Wi-Fi-layer-only
management packets; the default beacon-broadcast interval is 100 ms. These broadcasts allow stations to

108 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

see a list of available networks; the beacon packets also contain other Wi-Fi network parameters such as
radio-modulation parameters and available data rates.

Another use of beacons is to support the power-management doze mode. Some stations may elect to enter
this power-conservation mode, in which case they inform the access point, record the announced beacon-
transmission time interval and then wake up briefly to receive each beacon. Beacons, in turn, each contain a
list (in a compact bitmap form) of each dozing station for which the access point has a packet to deliver.

Ad hoc networks have beacon packets as well; all nodes participate in the regular transmission of these via
a distributed algorithm.

A connecting station may either wait for the next scheduled beacon, or send a special probe-request packet
to elicit a beacon-like probe-response packet. These operations may involve listening to or transmitting on
multiple radio channels, sequentially, as the station does not yet know the correct channel to use. Uncon-
nected stations often send probe-request packets at regular intervals, to keep abreast of available networks;
it is these probe packets that allow tracking by the station’s MAC address. See 3.7.4.2 MAC Address
Randomization.

Once the beacon is received, the station initiates an association process. There is still a vestigial open-
authentication process that comes before association, but once upon a time this could also be “shared WEP
key” authentication (below). Later, support for a wide range of authentication protocols was introduced, via
the 802.1X framework; we return to this in 3.7.5 Wi-Fi Security. For our purposes here, we will include
open authentication as part of the association process.

Wi-Fi Drivers

Even in 2015, 100%-open-source Wi-Fi drivers are available only for selected hardware, and even then
not all operations may be supported. Something as simple in principle as changing one’s source Wi-
Fi MAC address is sometimes not possible, though see 3.7.4.2 MAC Address Randomization. Using
multiple MAC addresses for a host plus embedded virtual machines is another problematic case.

In open authentication the station sends an authentication request to the access point and the access point
replies. About all the station needs to know is the SSID of the access point, though it is usually possible
to configure the access point to restrict admission to stations with MAC (physical) addresses on a pre-
determined list. Stations sometimes evade MAC-address checking by changing their MAC address to an
acceptable one, though some Wi-Fi drivers do not support this.

Because the SSID plays something of the role of a password here, some Wi-Fi access points are configured
so that beacon packets does not contain the SSID; such access points are said to be hidden. Unfortunately,
access points hidden this way are easily unmasked: first, the SSID is sent in the clear by any other stations
that need to authenticate, and second, an attacker can often transmit forged deauthentication or disassoci-
ation requests to force legitimate stations to retransmit the SSID. (See “management frame protection” in
3.7.5 Wi-Fi Security for a fix to this last problem.)

The shared-WEP-key authentication was based on the (obsolete) WEP encryption mechanism (3.7.5 Wi-Fi
Security). It involved a challenge-response exchange by which the station proved to the access point that it
knew the shared WEP key. Actual WEP encryption would then start slightly later.

Once the open-authentication step is done, the next step in an infrastructure network is for the station to
associate to the access point. This involves an association request from station to access point, and an

3.7 Wi-Fi 109

An Introduction to Computer Networks, Release 1.9.21

association response in return. The primary goal of the association exchange is to ensure that the access
point knows (by MAC address) what stations it can reach. This tells the access point how to deliver packets
to the associating station that come from other stations or the outside world. Association is not necessary in
an ad hoc network.

The entire connection process (including secure authentication, below, and DHCP, 7.10 Dynamic Host
Configuration Protocol (DHCP)), often takes rather longer than expected, sometimes several seconds. See
[PWZMTQ17] for a discussion of some of the causes. Some station and access-point pairs appear not to
work as well together as other pairs.

3.7.4.2 MAC Address Randomization

Most Wi-Fi-enabled devices are configured to transmit Wi-Fi probe requests at regular intervals (and on all
available channels), at least when not connected. These probe requests identify available Wi-Fi networks,
but they also reveal the device’s MAC address. This allows sites such as stores to track customers by their
device. To prevent such tracking, some devices now support MAC address randomization, proposed in
[GG03]: the use at appropriate intervals of a new MAC address randomly selected by the device.

Probe requests are generally sent when the device is not joined to a network. To prevent tracking via probe
requests, the simplest approach is to change the MAC address used for probes at regular, frequent intervals.
A device might even change its MAC address on every probe.

Changing the MAC address used for actually joining a network is also important to prevent tracking, but
introduces some complications. RFC 7844 suggests these options for selecting new random addresses:

• At regular time intervals

• Per connection: each time the device connects to a Wi-Fi network, it will select a new MAC address

• Per network: like the above, except that if the device reconnects to the same network (identified by
SSID), it will use the same MAC address

The first option, changing the joined MAC address at regular time intervals, breaks things. First, it will likely
result in assignment of a new IP address to the device, terminating all existing connections. Second, many
sites still authenticate – at least in part – based on the MAC address. The per-connection option prevents the
first problem. The per-network option prevents both, but allows a site at which the device actually joins the
network to track repeat connections. (Configuring the device to “forget” the connection between successive
joins will usually prevent this, but may not be convenient.)

Another approach to the tracking problem is to disable probe requests entirely, except on explicit demand.

Wi-Fi MAC address randomization is, unfortunately, not a complete barrier to device tracking; there are
other channels through which devices may leak information. For example, probe requests also contain
device-capability data known as Information Elements; these values are often distinctive enough that they
allow at least partial fingerprinting. Additionally, it is possible to track many Wi-Fi devices based on minute
variations in the modulated signals they transmit. MAC address randomization does nothing to prevent such
“radiometric identification”. Access points can also impersonate other popular access points, and thus trick
devices into initiating a connection with their real MAC addresses. See [BBGO08] and [VMCCP16] for
these and other examples.

Finally, MAC address randomization may have applications for Ethernet as well as Wi-Fi. For example,
in the original IPv6 specification, IPv6 addresses embedded the MAC address, and thus introduced the

110 3 Other LANs

https://tools.ietf.org/html/rfc7844.html

An Introduction to Computer Networks, Release 1.9.21

possibility of tracking a device by its IPv6 address. MAC address randomization can prevent this form
of tracking as well. However, other techniques implementable solely in the IPv6 layer appear to be more
popular; see 8.2.1 Interface identifiers.

3.7.4.3 Roaming

Large installations with multiple access points can create “roaming” access by assigning all the access points
the same SSID. An individual station will stay with the access point with which it originally associated until
the signal strength falls below a certain level (as determined by the station), at which point it will seek out
other access points with the same SSID and with a stronger signal. In this way, a large area can be carpeted
with multiple Wi-Fi access points, so as to look like one large Wi-Fi domain. The access points are often
connected via a wired LAN, known as the distribution system, though the use of Wi-Fi itself to provide
interconnection between access points is also an option (3.7.4.4 Mesh Networks). At any one time, a station
may be associated to only one access point. In 802.11 terminology, a multiple-access-point configuration
with a single SSID is known as an “extended service set” or ESS.

In order for such a large-area network to work, traffic to a wireless station, eg B, must find that station’s
current access point, eg AP. To help the distribution system track B’s current location, B is required, at
the time it moves from APold to AP, to send to AP a reassociation request, containing APold’s address.
This sets in motion a number of things; one of them is that AP contacts APold to verify (and terminate) the
former association. This reassociation process also gives AP an opportunity – not spelled out in detail in the
standard – to notify the distribution system of B’s new location.

If the distribution system is a switched Ethernet supporting the usual learning mechanism (2.4 Ethernet
Switches), one simple approach to roaming stations is to handle this the same way as, in a wired Ethernet,
traffic finds a laptop that has been unplugged, carried to a new location, and plugged in again. Suppose
our wireless node B has been exchanging packets via the distribution system with wired node C (perhaps a
router connecting B to the Internet). When B moves from APold to AP, all it has to do is send any packet
over the LAN to C, and the Ethernet switches on the path from B to C will then learn the route through the
switched Ethernet from C back to B’s new AP, and thus to B. It is also possible for B’s new AP to send this
switch-updating packet, perhaps as part of its reassociation response.

This process may leave other switches in the distribution system still holding in their forwarding tables the
old location for B. This is not terribly serious, as it will be fixed for any one switch as soon as B sends a
packet to a destination reached by that switch. The problem can be avoided entirely if, after moving, B (or,
again, its new AP) sends out an Ethernet broadcast packet.

Running Ethernet cable to remote access points can easily dwarf the cost of the access point itself. As a
result, there is considerable pressure to find ways to allow the Wi-Fi network itself to form the distribution
system. We return to this below, in 3.7.4.4 Mesh Networks.

The IEEE 802.11r amendment introduced the standardization of fast handoffs from one access point to an-
other within the same ESS. It allows the station and new access point to reuse the same pairwise master keys
(below) that had been negotiated between the station and the old access point. It also slightly streamlines the
reassociation process. Transitions must, however, still be initiated by the station. The amendment is limited
to handoffs; it does not address finding the access point to which a particular station is associated, or routing
between access points.

Because handoffs must be initiated by the station, sometimes all does not quite work out smoothly. Within
an ESS, most newer devices (2018) are quite good at initiating handoffs. However, this is not always the

3.7 Wi-Fi 111

An Introduction to Computer Networks, Release 1.9.21

case for older devices, and is usually still not the case for many mobile-station devices moving from one
ESS to another (that is, where there is a change in the SSID). Such devices may cling to their original access
point well past the distance at which the original signal ceases to provide reasonable bandwidth, as long as it
does not vanish entirely. Many Wi-Fi “repeaters” or “extenders” (below) sold for residential use do require
a second SSID, and so will often do a poor job at supporting roaming.

Some access points support proprietary methods for dealing with older mobile stations that are reluctant to
transfer to a closer access point within the same ESS, though these techniques are now seldom necessary.
By communicating amongst themselves, the access points can detect when a station’s signal is weak enough
that a handoff would be appropriate. One approach involves having the original access point initiate a
dissociation. At that point the station will reconnect to the ESS but should now connect to an access point
within the ESS that has a stronger signal. Another approach involves having the access points all use the
same MAC address, so they are indistinguishable. Whichever access point receives the strongest signal from
the station is the one used to transmit to the station.

3.7.4.4 Mesh Networks

Being able to move freely around a multiple-access-point Wi-Fi installation is very important for many
users. When such a Wi-Fi installation is created in a typical office building pre-wired for Ethernet, the
access points all plug into the Ethernet, which becomes the distribution network. However, in larger-scale
residential settings, and even many offices, running Ethernet cable may be prohibitively expensive. In such
cases it makes sense to have the access points interconnect via Wi-Fi itself. If Alice associates to access
point A and sends a packet destined for the outside world, then perhaps A will have to forward the packet to
Wi-Fi node B, which will in turn forward it to C, before delivery can be complete.

This is sometimes easier said than done, however, as the original Wi-Fi standards did not provide for the
use of Wi-Fi access points as “repeaters”; there was no standard mechanism for a Wi-Fi-based distribution
network.

One inexpensive approach is to use devices sometimes sold as Wi-Fi “extenders”. Such devices typically
set up a new SSID, and forward all traffic to the original SSID. Multi-hop configurations are possible, but
must usually be configured manually. Because the original access point and the extender have different
SSIDs, many devices will not automatically connect to whichever is closer, preferring to stick to the SSID
originally connected to until that signal essentially disappears completely. This is, for many mobile users,
reason enough to give up on this strategy.

The desire for a Wi-Fi-based distribution network has led to multiple proprietary solutions. It is possible to
purchase a set of Wi-Fi “mesh routers” (2018), often sold at a considerable premium over “standard” routers.
After they are set up, these generally work quite well: they present a single SSID, and support fast handoffs
from one access point to another, without user intervention. To the user, coverage appears seamless.

The downside of a proprietary mechanism, however, is that once you buy into one solution, equipment from
other vendors will seldom interoperate. This has led to pressure for standardization. The IEEE introduced
“mesh networking” in its 802.11s amendment, finalized as part of the 2012 edition of the full 802.11 stan-
dard; it was slow to catch on. The Wi-Fi Alliance introduced the Wi-Fi EasyMesh solution in 2018, based
on 802.11s, but, as of the initial rollout, no vendors were yet on board.

We will assume, for the time being, that Wi-Fi mesh networking is restricted to the creation of a distribution
network interconnecting the access points; ordinary stations do not participate in forwarding other users’

112 3 Other LANs

https://www.wi-fi.org/discover-wi-fi/wi-fi-easymesh

An Introduction to Computer Networks, Release 1.9.21

packets through the mesh. Common implementations often take this approach, but in fact the 802.11s
amendment allows more general approaches.

In creating a mesh network with a Wi-Fi distribution system – proprietary or 802.11s – the participating
access points must address the following issues:

• They must authenticate to one another

• They must identify the correct access point to reach a given station B

• They must correctly handle station B’s movement to a different access point

• They must agree on how to route, through the mesh of access points, between the station and the
connection to the Internet

Eventually the routing issue becomes the same routing problem faced by MANETs (3.7.8 MANETs),
although restricted to the (simpler) case where all nodes are under common management. Routing is not
trivial; the path AÑBÑC might be shorter than the alternative path AÑDÑEÑC, but support a lower data
rate.

The typical 802.11s solution is to have the multiple access points participate in a mesh BSS. This allows all
the access points to appear to be on a single LAN. In this setting, the mesh BSS is separate from the ESS
seen by the user stations, and is only used for inter-access-point communication.

One (or more) access points are typically connected to the Internet; these are referred to as root mesh
stations.

In the 802.11s setting, mesh discovery is achieved via initial configuration of a mesh SSID, together with
a WPA3 passphrase. Mutual authentication is then via WPA3, below; it is particularly important that each
pair of stations authenticate symmetrically to one another.

If station B associates to access point AP, then AP uses the mesh BSS to deliver packets sent by B to the
root mesh station (or to some other AP). For reverse traffic, B’s reassociation request sent to AP gives AP
an opportunity to interact with the mesh BSS to update B’s new location. The act of B’s sending a packet
via AP will also tell the mesh BSS how to find B.

Routing through the mesh BSS is handled via the HWMP protocol, 9.4.3 HWMP. This protocol typically
generates a tree of station-to-station links (that is, a subset of all links that contains no loops), based at
the root station. This process uses a routing metric that is tuned to the wireless environment, so that high-
bandwidth and low-error links are preferred.

If a packet is routed through the mesh BSS from station A to station B, then more addresses are needed
in the packet header. The ultimate source and destination are A and B, and the transmitter and receiver
correspond to the specific hop, but the packet also needs a source and destination within the mesh, perhaps
corresponding to the two access points to which A and B connect. 802.11s handles this by adding a mesh
control field consisting of some management fields (such as TTL and sequence number) and a variable-
length block of up to three additional addresses.

It is also possible for ordinary stations to join the 802.11s mesh BSS directly, rather than restricting the mesh
BSS to the access points. This means that the stations will participate in the mesh as routing nodes. It is
hard to predict, in 2018, how popular this will become.

The EasyMesh standard of the Wi-Fi Alliance is not exactly the same as the IEEE 802.11s standard. For one
thing, the EasyMesh standard specifies that one access point – the one connected to the Internet – will be a

3.7 Wi-Fi 113

An Introduction to Computer Networks, Release 1.9.21

“Multi-AP” Controller; the other access points are called Agents. The EasyMesh standard also incorporates
parts of the IEEE 1905.1 standard for home networks, which simplifies initial configuration.

3.7.5 Wi-Fi Security

Unencrypted Wi-Fi traffic is visible to anyone nearby with an appropriate receiver; this eavesdropping zone
can be expanded by use of a larger antenna. Because of this, Wi-Fi security is important, and Wi-Fi supports
several types of traffic encryption.

The original – and now obsolete – Wi-Fi encryption standard was Wired-Equivalent Privacy, or WEP. It
involved a 5-byte key, later sometimes extended to 13 bytes. The encryption algorithm was based on RC4,
22.7.4.1 RC4. The key was a pre-shared key, manually configured into each station.

Because of the specific way WEP made use of the RC4 cipher, it contained a fatal (and now-classic) flaw.
Bytes of the key could be could be “broken” – that is, guessed – sequentially. Knowing bytes 0 through i–1
would allow an attacker to guess byte i with a relatively small amount of data, and so on through the entire
key. See 22.7.7 Wi-Fi WEP Encryption Failure for details.

WEP was replaced with Wi-Fi Protected Access, or WPA. This used the so-called TKIP encryption algo-
rithm that, like WEP, was ultimately based on RC4, but which was immune to the sequential attack that made
WEP so vulnerable. WPA was later replaced by WPA2 as part of the IEEE 802.11i amendment, which uses
the presumptively stronger AES encryption (22.7.2 Block Ciphers); the variant used by WPA2 is known as
CCMP. WPA2 encryption is believed to be quite secure, although there was a vulnerability in the associated
Wi-Fi Protected Setup protocol. In the 802.11i standard, WPA2 is known as the robust security network
protocol. Access points supporting WPA or WPA2 declare this in their beacon and probe-response packets;
these packets also include a list of acceptable ciphers.

WPA2 (and WPA) comes in two flavors: WPA2-Personal and WPA2-Enterprise. These use the same AES
encryption, but differ in how keys are managed. WPA2-Personal, appropriate for many smaller sites, uses
a pre-shared master key, known as the PSK. This key must be entered into the Access Point (ideally not
over the air) and into each connecting station. The key is usually a secure hash (22.6 Secure Hashes) of a
passphrase. The use of a single key for multiple stations makes changing the key, or revoking the key for a
particular user, difficult.

In 2018, the IEEE introduced WPA3, intended to fix a host of accumulated issues. Perhaps the most im-
portant change is that WPA3-Personal switches from the WPA2 four-way handshake to the SAE mutual-
password-authentication mechanism, 22.8.2 Simultaneous Authentication of Equals. We return to WPA3
below, at 3.7.5.3 WPA3.

3.7.5.1 WPA2 Four-way handshake

In any secure Wi-Fi authentication protocol, the station must authenticate to the access point and the access
point must authenticate to the station; without the latter part, stations might inadvertently connect to rogue
access points, which would then likely gain at least partial access to private data. This bidirectional authen-
tication is achieved through the so-called four-way handshake, which also generates a session key, known
as the pairwise transient key or PTK, that is independent of the master key. Compromise of the PTK should
not allow an attacker to determine the master key. To further improve security, the PTK is used to generate
the temporal key, TK, used to encrypt data messages, a separate message-signing key used in the MIC code,
below, and some management-packet keys.

114 3 Other LANs

https://en.wikipedia.org/wiki/IEEE_1905

An Introduction to Computer Networks, Release 1.9.21

In WPA2-Personal, the master key is the pre-shared key (PSK); in WPA2-Enterprise, below, the master
key is the negotiated “pairwise master key”, or PMK. The four-way handshake begins immediately after
association and, for WPA2-Enterprise, the selection of the PMK. None of the four packets that are part of
the handshake are encrypted.

Both station and access point begin by each selecting a random string, called a nonce, typically 32 bytes
long. In the diagram below, the access point (authenticator) has chosen ANonce and the station (supplicant)
has chosen SNonce. The PTK will be a secure hash of the master key, both nonces, and both MAC
addresses. The first packet of the four-way handshake is sent by the access point to the station, and contains
its nonce, unencrypted. This packet also contains a replay counter, RC; the access point assigns these
sequentially and the station echoes them back.

Station Access Point

ANonce, RC=r

SNonce, RC=r, MIC

Station
knows PTK

Access Point
knows PTK

RC=r+1, GTK, MIC

ACK, RC=r+1, MIC

Four-way WPA2 handshake
RC = replay counter

Install
PTK

Install
PTK

At this point the station has enough information to compute the PTK; in the second message of the handshake
it now sends its own nonce to the access point. The nonce is again sent in the clear, but this second message
also includes a digital signature. This signature is sometimes called a Message Integrity Code, or MIC,
and in the 802.11i standard is officially named Michael. It is calculated in a manner similar to the HMAC
mechanism of 22.6.1 Secure Hashes and Authentication, and uses its own key derived from the PTK.

Upon receipt of the station’s nonce, the access point too is able to compute the PTK. With the PTK now in
hand, the access point verifies the attached signature. If it checks out, that proves to the access point that the
station did in fact know the master key, as a valid signature could not have been constructed without it. The
station has now authenticated itself to the access point.

For the third stage of the handshake, the access point, now also in possession of the PTK, sends a signed
message to the station. The replay counter is incremented, and an optional group temporal key, GTK, may
be included for encrypting non-unicast messages. If the GTK is included, it is encrypted with the PTK,
though the entire message is not encrypted. When this third message is received and verified, the access
point has authenticated itself to the station. The fourth and final step is simply an acknowledgment from the
client.

Four-way-handshake packets are sent in the EAPOL format, described in the following section. This format
can be used to identify the handshake packets in WireShark scans.

3.7 Wi-Fi 115

An Introduction to Computer Networks, Release 1.9.21

One significant vulnerability of the four-way handshake when WPA2-Personal is used is that if an eaves-
dropper records the messages, then it can attempt an offline brute-force attack on the key. Different values
of the passphrase used to generate the PSK can be tried until the MIC values computed for the second and
third packets match the values in the corresponding recorded packets. At this point the attacker can not only
authenticate to the network, but can also decrypt packets. This attack is harder with WPA2-Enterprise, as
each user has a different key.

Other WPA2-Personal stations on the same network can also eavesdrop, given that all stations share the
same PSK, and that the PTK is generated from the PSK and information transmitted without encryption.
The Diffie-Hellman-Merkle key-exchange mechanism, 22.8 Diffie-Hellman-Merkle Exchange, would avoid
this difficulty; keys produced this way are not easily determined by an eavesdropper, even one with inside
information about master keys. However, this was not used, in part because WPA needed to be rushed into
service after the failure of WEP.

3.7.5.1.1 KRACK Attack

The purpose of the replay counter, RC in the diagram above, is to prevent an attacker from reusing an old
handshake packet. Despite this effort, replayed or regenerated instances of the third handshake packet can
sometimes be used to seriously weaken the underlying encryption. The attack, known as the Key Rein-
stallation Attack, or KRACK, is documented in [VP17]. The attack has several variations, some of which
address a particular implementation’s interpretation of the IEEE standard, and some of which address other
Wi-Fi keys (eg the group temporal key) and key handshakes (eg the handshake used by 3.7.4.3 Roaming).
We consider only the most straightforward form here.

The ciphers used by WPA2 are all “stream” ciphers (22.7.4 Stream Ciphers), meaning that, for each packet,
the key is used to generate a keystream of pseudorandom bits, the same length as the packet; the packet is
then XORed with this keystream to encrypt it. It is essential for this scheme’s security that the keystreams of
different packets are unrelated; to achieve this, the keystream algorithm incorporates an encryption nonce,
initially 1 and incremented for each successive packet.

The core observation of KRACK is that, whenever the station installs or reinstalls the PTK, it also resets this
encryption nonce to 1. This has the effect of resetting the keystream, so that, for a while, each new packet
will be encrypted with exactly the same keystream as an earlier packet.

This key reinstallation at the station side occurs whenever an instance of the third handshake packet arrives.
Because of the possibility of lost packets, the handshake protocol must allow duplicates of any packet.

The basic strategy of KRACK is now to force key reinstallation, by arranging for either the access point or
the attacker to deliver duplicates of the third handshake packet to the station.

In order to interfere with packet delivery, the attacker must be able to block and delay packets from the
access point to the station, and be able to send its own packets to the station. The easiest way to accomplish
this is for the attacker to be set up as a “clone” of the real access point, with the same MAC address, but
operating on a different Wi-Fi channel. The attacker receives messages from the real access point on the
original channel, and is able to selectively retransmit them to the station on the new channel. This can
be described as a channel-based man-in-the-middle attack; cf 22.9.3 Trust and the Man in the Middle.
Alternatively, the attacker may also be able to selectively jam messages from the access point.

If the attacker can block the fourth handshake packet, from station to access point, then the access point will
eventually time out and retransmit a duplicate third packet, complete with properly updated replay counter.

116 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

The attacker can delay the duplicate third packet, if desired, in order to prolong the interval of keystream
reuse. The station’s response to this duplicate third packet will be encrypted, but the attacker can usually
generate a forged, unencrypted version.

Forcing reuse of the keystream does not automatically break the encryption. However, in many cases the
plaintext of a few packets can be guessed by context, and hence, by XORing, the keystream used to encrypt
the packet can be determined. This allows trivial decryption of any later packet encrypted with the same
keystream.

Other possibilities depend on the cipher. When the TKIP cipher is used, a vulnerability in the MIC algorithm
may allow determination of the key used in the MIC; this in turn would allow the attacker to inject new
packets, properly signed, into the connection. These new packets can be encrypted with one of the broken
keystreams. This strategy does not work with AES (CCMP) encryption.

The KRACK vulnerability was fixed in wpa_supplicant by disallowing reinstallation of the same key.
That is, if a retransmission of the third handshake packet is received, it is ignored; the encryption nonce is
not reset.

3.7.5.2 WPA2-Enterprise

The WPA2-Enterprise alternative allows each station to have its own separate key. In fact, it largely
separates the encryption mechanisms from the Wi-Fi protocols, allowing sites great freedom in choosing
the former. Despite the “enterprise” in the name, it is also well suited for smaller sites. WPA2-Enterprise is
based rather closely on the 802.1X framework, which supports arbitrary authentication protocols as plug-in
modules.

In principle, the only improvement WPA2-Enterprise offers over WPA2-Personal is the ability to assign
individual Wi-Fi passwords. In practice, this is an enormously important feature. It prevents, for example,
one user from easily decrypting packets sent by another user.

The keys are all held by a single common system known as the authentication server, usually unrelated to
the access point. The client node (that is, the Wi-Fi station) is known as the supplicant, and the access point
is known as the authenticator.

To begin the authentication process, the supplicant contacts the authenticator using the Extensible Authen-
tication Protocol, or EAP, with what amounts to a request to authenticate to that access point. EAP is a
generic message framework meant to support multiple specific types of authentication; see RFC 3748 and
RFC 5247. The EAP request is forwarded to the authentication server, which may exchange (via the au-
thenticator) several challenge/response messages with the supplicant. No secret credentials should be sent
in the clear.

EAP is usually used in conjunction with the RADIUS (Remote Authentication Dial-In User Service) pro-
tocol (RFC 2865), which is a specific (but flexible) authentication-server protocol. WPA2-Enterprise is
sometimes known as 802.1X mode, EAP mode or RADIUS mode (though WPA2-Personal is also based on
802.1X, and uses EAP in its four-way handshake).

EAP communication takes place before the supplicant is given an IP address; thus, a mechanism must be
provided to support exchange of EAP packets between supplicant and authenticator. This mechanism is
known as EAPOL, for EAP Over LAN. EAP messages between the authenticator and the authentication
server, on the other hand, can travel via IP; in fact, sites may choose to have the authentication server

3.7 Wi-Fi 117

https://tools.ietf.org/html/rfc3748.html
https://tools.ietf.org/html/rfc5247.html
https://tools.ietf.org/html/rfc2865.html

An Introduction to Computer Networks, Release 1.9.21

hosted remotely. Specific protocols using the EAP/RADIUS framework often use packet formats other than
EAPOL, but EAPOL will be used in the concluding four-way handshake.

Once the authentication server (eg RADIUS server) is set up, specific per-user authentication methods can
be entered. This can amount to xusername,passwordy pairs (below), or some form of security certificate, or
sometimes both. The authentication server will generally allow different encryption protocols to be used for
different supplicants, thus allowing for the possibility that there is not a common protocol supported by all
stations.

In WPA2-Enterprise, the access point no longer needs to know anything about what authentication protocol
is actually used; it is simply the middleman forwarding EAP packets between the supplicant and the authen-
tication server. In particular, the access point does not need to support any specific authentication protocol.
The access point allows the supplicant to connect to the network once it receives permission to do so from
the authentication server.

At the end of the authentication process, the supplicant and the authentication server will, as part of that pro-
cess, also have established a shared secret. In WPA2-Enterprise terminology this is known as the pairwise
master key or PMK. The authentication server then communicates the PMK securely to the access point
(using any standard protocol; see 22.10 SSH and TLS). The next step is for the supplicant and the access
point to negotiate their session key. This is done using the four-way-handshake mechanism of the previous
section, with the PMK as the master key. The resultant PTK is, as with WPA2-Personal, used as the session
key.

WPA2-Enterprise authentication typically does require that the access point have an IP address, in order to
be able to contact the authentication server. An access point using WPA2-Personal authentication does not
need an IP address, though it may have one simply to enable configuration.

3.7.5.2.1 Enabling WPA2-Enterprise

Configuring a Wi-Fi network to use WPA2-Enterprise authentication is relatively straightforward, as long
as an authentication server running RADIUS is available. We here give an outline of setting up WPA2-
Enterprise authentication using FreeRADIUS (version 2.1.12, 2018). We want to enable per-user passwords,
but not per-user certificates. Passwords will be stored on the server using SHA-1 hashing (22.6 Secure
Hashes). This is not necessarily strong enough for production use; see 22.6.2 Password Hashes for other
options. Because passwords will be hashed, the client will have to communicate the actual password to the
authentication server; authentication methods such as those in 22.6.3 CHAP are not an option.

The first step is to set up the access point. This is generally quite straightforward; WPA2-Enterprise is sup-
ported even on inexpensive access points. After selecting the option to enable WPA2-Enterprise security, we
will need to enter the IP address of the authentication server, and also a “shared secret” password for authen-
ticating messages between the access point and the server (see 22.6.1 Secure Hashes and Authentication
for message-authentication techniques).

Configuration of the RADIUS server is a bit more complex, as both RADIUS and EAP are both quite
general; both were developed long before 802.1X, and both are used in many other settings as well. Because
we have decided to use hashed passwords – which implies the client station will send the plaintext password
to the authentication server – we will need to use an authentication method that creates an encrypted tunnel.
The Protected EAP method is well-suited here; it encrypts its traffic using TLS (22.10.2 TLS, though here
without TCP). (There is also an EAP TLS method, using TLS directly and traditionally requiring client-side
certificates, and a TTLS method, for Tunneled TLS.)

118 3 Other LANs

https://freeradius.org/

An Introduction to Computer Networks, Release 1.9.21

Within the PEAP encrypted tunnel, we want to use plaintext password authentication. Here we want the
Password Authentication Protocol, PAP, which basically just asks for the username and password. FreeRA-
DIUS does not allow PAP to run directly within PEAP, so we interpose the Generic Token Card protocol,
GTC. (There is no “token card” device anywhere in sight, but GTC is indeed quite generic.)

We probably also have to tell the RADIUS server the IP address of the access point. The access point here
must have an IP address, specifically for this communication.

We enable all these things by editing the eap.conf file so as to contain the following entries:

default_eap_type = peap

...

peap {
default_eap_type = gtc
...

}

...

gtc {
auth_type = PAP
...

}

The next step is to create a (username, hashed_password) credential pair on the server. To keep things
simple, we will store credentials in the users file. The username will be “alice”, with password “snorri”.
Per the FreeRADIUS rules, we need to convert the password to its SHA-1 hash, encoded using base64.
There are several ways to do this; we will here make use of the OpenSSL command library:

echo -n "snorri" | openssl dgst -binary -sha1 | openssl base64

This returns the string 7E6FbhrN2TYOkrBti+8W8weC2W8= which we then enter into the users file
as follows:

alice SHA1-Password := "7E6FbhrN2TYOkrBti+8W8weC2W8="

Other options include Cleartext-Password, MD5-Password and SSHA1-Password, with the lat-
ter being for salted passwords (which are recommended).

With this approach, Alice will have difficulty changing her password, unless she is administrator of the
authentication server. This is not necessarily worse than WPA2-Personal, where Alice shares her password
with other users. However, if we want to support user-controlled password changing, we can configure the
RADIUS server to look for the (username, hashed_password) credentials in a database instead of the users
file. It is then relatively straightforward to create a web-based interface for allowing users to change their
passwords.

Now, finally, we try to connect. Any 802.1X client should ask for the username and password, before com-
munication with the authentication server begins. Some may also ask for a preferred authentication method
(though our RADIUS server here is only offering one), an optional certificate (which we are not using), or
an “anonymous identity”, which is a way for a client to specify a particular authentication server if there are

3.7 Wi-Fi 119

https://en.wikipedia.org/wiki/Snorri_Sturluson
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/OpenSSL

An Introduction to Computer Networks, Release 1.9.21

several. If all goes well, connection should be immediate. If not, FreeRADIUS has an authentication-testing
tool, and copious debugging output.

3.7.5.3 WPA3

In 2018 the Wi-Fi Alliance introduced WPA3, a replacement for WPA2. The biggest change is that, when
both parties are WPA3-aware, the WPA2 four-way handshake is replaced with SAE, 22.8.2 Simultaneous
Authentication of Equals. The advantage of SAE here is that an eavesdropper can get nowhere with an
offline, dictionary-based, brute-force password attack; recall from the end of 3.7.5.1 WPA2 Four-way
handshake that WPA2 is quite vulnerable in this regard. An attacker can still attempt an online brute-force
attack on WPA3, eg by parking a van within Wi-Fi range and trying one password after another, but this is
slow.

Another consequence of SAE is forward secrecy (22.9.2 Forward Secrecy). This means that if an attacker
obtains the encryption key for one session, it will not help decrypt older (or newer) sessions. In fact, even if
an attacker obtains the master password, it will not be able to obtain any session keys (although the attacker
will be able to connect to the network). Under WPA2, if an attacker obtains the PMK, then all session keys
can be calculated from the nonce values exchanged in the four-way handshake.

As with WPA2, WPA3 requires that both the station and the access point maintain the password cleartext
(or at least the key derived from the password). Because each side must authenticate to the other, it is hard
to see how this could be otherwise.

WPA3 encrypts even connections to “open” access points, through what is called Opportunistic Wireless
Encryption; see RFC 8110. WPA3 also introduces longer key lengths, and adds some new ciphers.

Although it is not strictly part of WPA3, the EasyConnect feature was announced at the same time. This al-
lows easier connection of devices that lack screens or keyboards, which makes entering a password difficult.
The EasyConnect device should come with a QR code; scanning the code allows the device to be connected.

Finally, WPA3 contains an official fix to the KRACK attack.

3.7.5.4 Encryption Coverage

Originally, encryption covered only the data packets. A common attack involved forging management pack-
ets, eg to force stations to disassociate from their access point. Sometimes this was done continuously as
a denial-of-service attack; it might also be done to force a station to reassociate and thus reveal a hidden
SSID, or to reveal key information to enable a brute-force decryption attack.

The 2009 IEEE 802.11w amendment introduced the option for a station and access point to negotiate man-
agement frame protection, which encrypts (and digitally signs) essential management packets exchanged
after the authentication phase is completed. This includes those station-to-access-point packets requesting
deauthentication or disassociation, effectively preventing the above attacks. However, management frame
protection is (as of 2015) seldom enabled by default by consumer-grade Wi-Fi access points, even when
data encryption is in effect.

120 3 Other LANs

https://tools.ietf.org/html/rfc8110.html
https://en.wikipedia.org/wiki/QR_code

An Introduction to Computer Networks, Release 1.9.21

3.7.6 Wi-Fi Monitoring

Again depending on ones driver, it is sometimes possible to monitor all Wi-Fi traffic on a given chan-
nel. Special tools exist for this, including aircrack-ng and kismet, but often plain WireShark will suffice
if one can get the underlying driver into so-called “monitor” mode. On Linux systems the command
iwconfig wlan0 mode monitor should do this (where wlan0 is the name of the wireless net-
work interface). It may be necessary to first kill other processes that have the wlan0 interface open, eg
with service NetworkManager stop. It may also be necessary to bring the interface down, with
ifconfig wlan0 down, in which case the interface needs to be brought back up after entering moni-
tor mode. Finally, the receive channel can be set with, eg, iwconfig wlan0 channel 6. (On some
systems the interface name may change after the transition to monitor mode.)

After the mode and channel are set, Wireshark will report the 802.11 management-frame headers, and also
the so-called radiotap header containing information about the transmission data rate, channel, and received
signal strength.

One useful experiment is to begin monitoring and then to power up a Wi-Fi enabled device. The WireShark
display filter wlan.addr == device-MAC-address helps focus on the relevant packets(or, better yet, the
capture filter ether host device-MAC-address). The WireShark screenshot below is an example.

we see node SamsungE_03:3f:ad broadcast a probe request, which is answered by the access point Cisco-
Li_d1:24:40. The next two packets represent the open-authentication process, followed by two packets
representing the association process. The last four packets, of type EAPOL, represent the WPA2-Personal
four-way authentication handshake.

3.7.7 Wi-Fi Polling Mode

Wi-Fi also includes a “polled” mechanism, where one station (the Access Point) determines which stations
are allowed to send. While it is not often used, it has the potential to greatly reduce collisions, or even
eliminate them entirely. This mechanism is known as “Point Coordination Function”, or PCF, versus the
collision-oriented mechanism which is then known as “Distributed Coordination Function”. The PCF name
refers to the fact that in this mode it is the Access Point that is in charge of coordinating which stations get
to send when.

The PCF option offers the potential for regular traffic to receive improved throughput due to fewer collisions.
However, it is often seen as intended for real-time Wi-Fi traffic, such as voice calls over Wi-Fi.

The idea behind PCF is to schedule, at regular intervals, a contention-free period, or CFP. During this
period, the Access Point may

• send Data packets to any receiver

• send Poll packets to any receiver, allowing that receiver to reply with its own data packet

3.7 Wi-Fi 121

http://www.aircrack-ng.org/
https://www.kismetwireless.net/
https://www.wireshark.org/
http://www.radiotap.org/

An Introduction to Computer Networks, Release 1.9.21

• send a combination of the two above (not necessarily to the same receiver)

• send management packets, including a special packet marking the end of the CFP

None of these operations can result in a collision (unless an unrelated but overlapping Wi-Fi domain is
involved).

Stations receiving data from the Access Point send the usual ACK after a SIFS interval. A data packet from
the Access Point addressed to station B may also carry, piggybacked in the Wi-Fi header, a Poll request to
another station C; this saves a transmission. Polled stations that send data will receive an ACK from the
Access Point; this ACK may be combined in the same packet with the Poll request to the next station.

At the end of the CFP, the regular “contention period” or CP resumes, with the usual CSMA/CA strategy.
The time interval between the start times of consecutive CFP periods is typically 100 ms, short enough to
allow some real-time traffic to be supported.

During the CFP, all stations normally wait only the Short IFS, SIFS, between transmissions. This works
because normally there is only one station designated to respond: the Access Point or the polled station.
However, if a station is polled and has nothing to send, the Access Point waits for time interval PIFS (PCF
Inter-Frame Spacing), of length midway between SIFS and IFS above (our previous IFS should now really
be known as DIFS, for DCF IFS). At the expiration of the PIFS, any non-Access-Point station that happens
to be unaware of the CFP will continue to wait the full DIFS, and thus will not transmit. An example of
such a CFP-unaware station might be one that is part of an entirely different but overlapping Wi-Fi network.

The Access Point generally maintains a polling list of stations that wish to be polled during the CFP. Stations
request inclusion on this list by an indication when they associate or (more likely) reassociate to the Access
Point. A polled station with nothing to send simply remains quiet.

PCF mode is not supported by many lower-end Wi-Fi routers, and often goes unused even when it is avail-
able. Note that PCF mode is collision-free, so long as no other Wi-Fi access points are active and within
range. While the standard has some provisions for attempting to deal with the presence of other Wi-Fi
networks, these provisions are somewhat imperfect; at a minimum, they are not always supported by other
access points. The end result is that polling is not quite as useful as it might be.

3.7.8 MANETs

The MANET acronym stands for mobile ad hoc network; in practice, the term generally applies to ad
hoc wireless networks of sufficient complexity that some internal routing mechanism is needed to enable
full connectivity. A mesh network in the sense of 3.7.4.4 Mesh Networks qualifies as a MANET, though
MANETs also include networks with much less centralized control, and in which the routing nodes may
be highly mobile. MANETs are also potentially much larger, with some designs intended to handle many
hundreds of routing nodes, while a typical Wi-Fi mesh network may have only a handful of access points.
While MANETs be built with any wireless mechanism, we will assume here that Wi-Fi is used.

MANET nodes communicate by radio signals with a finite range, as in the diagram below.

122 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

A B

C

D

E

F

G

Typical MANET in which the radio range for each node
is represented by a circle around that node. A can reach G
either by the route A—B—C—E—G or by A—B—D—F—G.

Each node’s radio range is represented by a circle centered about that node. In general, two MANET nodes
may be able to communicate only by relaying packets through intermediate nodes, as is the case for nodes
A and G in the diagram above. Finding the optimal route through those intermediate nodes is a significant
problem.

MANETs for the People

In the early years of MANETs, many designs focused on a decentralized, communitarian approach, eg
wireless community networks. During the 2010 Arab Spring, MANETs were often proposed (in conjunc-
tion with a few users having satellite-Internet access) as a way to bypass government censorship of the
Internet. Fast forward to 2018, and much press discussion of “mesh networks” is oriented towards those
with exceptionally large private residences. Nothing endures but change.

In the field, the radio range of each node may not be very circular at all, due to among other things signal
reflection and blocking from obstructions. An additional complication arises when the nodes (or even just
obstructions) are moving in real time (hence the “mobile” of MANET); this means that a working route may
stop working a short time later. For this reason, and others, routing within MANETs is a good deal more
complex than routing in an Ethernet. A switched Ethernet, for example, is required to be loop-free, so there
is never a choice among multiple alternative routes.

Note that, without successful LAN-layer routing, a MANET does not have full node-to-node connectivity
and thus does not meet the definition of a LAN given in 1.9 LANs and Ethernet. With either LAN-layer or
IP-layer routing, one or more MANET nodes may serve as gateways to the Internet.

Note also that MANETs in general do not support broadcast or multicast, unless the forwarding of broadcast
and multicast messages throughout the MANET is built in to the routing mechanism. This can complicate
the operation of IPv4 and IPv6 networks, even assuming that the MANET routing mechanism replaces the

3.7 Wi-Fi 123

https://en.wikipedia.org/wiki/Wireless_community_network
https://en.wikipedia.org/wiki/Arab_Spring

An Introduction to Computer Networks, Release 1.9.21

need for broadcast/multicast protocols like IPv4’s ARP (7.9 Address Resolution Protocol: ARP) and IPv6’s
Neighbor Discovery (8.6 Neighbor Discovery) that otherwise play important roles in local packet delivery.
For example, the common IPv4 address-assignment mechanism we will describe in 7.10 Dynamic Host
Configuration Protocol (DHCP) relies on broadcast and so often needs adaptation. Similarly, IPv6 relies
on multicast for several ancillary services, including address assignment (8.7.3 DHCPv6) and duplicate
address detection (8.7.1 Duplicate Address Detection).

MANETs are simplest when all the nodes are under common, coordinated management, as in the mesh
Wi-Fi described above. Life is much more complicated when nodes are individually owned, and each owner
wishes to place limits on the amount of “transit traffic” – traffic passing through the owner’s node – that is
acceptable. Yet this is often the situation faced by schemes to offer Wi-Fi-based community Internet access.

Finally, we observe that while MANETs are of great theoretical interest, their practical impact has been
modest; they are almost unknown, for example, in corporate environments, beyond the mesh networks of
3.7.4.4 Mesh Networks. They appear most useful in emergency situations, rural settings, and settings where
the conventional infrastructure network has failed or been disabled.

3.7.8.1 Routing in MANETs

Routing in MANETs can be done either at the LAN layer, using physical addresses, or at the IP layer with
some minor bending (below) of the rules.

Either way, nodes must find out about the existence of other nodes, and appropriate routes must then be
selected. Route selection can use any of the mechanisms we describe later in 9 Routing-Update Algorithms.

Routing at the LAN layer is much like routing by Ethernet switches; each node will construct an appropriate
forwarding table. Unlike Ethernet, however, there may be multiple paths to a destination, direct connectivity
between any particular pair of nodes may come and go, and negotiation may be required even to determine
which MANET nodes will serve as forwarders.

Routing at the IP layer involves the same issues, but at least IP-layer routing-update algorithms have always
been able to handle multiple paths. There are some minor issues, however. When we initially presented
IP forwarding in 1.10 IP - Internet Protocol, we assumed that routers made their decisions by looking
only at the network prefix of the address; if another node had the same network prefix it was assumed to be
reachable directly via the LAN. This model usually fails badly in MANETs, where direct reachability has
nothing to do with addresses. At least within the MANET, then, a modified forwarding algorithm must be
used where every address is looked up in the forwarding table. One simple way to implement this is to have
the forwarding tables contain only host-specific entries as were discussed in 3.1 Virtual Private Networks.

Multiple routing algorithms have been proposed for MANETs. Performance of a given algorithm may
depend on the following factors:

• The size of the network

• How many nodes have agreed to serve as routers

• The degree of node mobility, especially of routing-node mobility if applicable

• Whether the nodes (especially routing nodes) are under common administration, and thus may agree
to defer their own transmission interests for the common good

• per-node storage and power availability

124 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

3.8 WiMAX and LTE

WiMAX and LTE are both wireless network technologies suitable for data connections to mobile (and
sometimes stationary) devices.

WiMAX is an IEEE standard, 802.16; its original name is WirelessMAN (for Metropolitan Area Network),
and this name appears intermittently in the IEEE standards. In its earlier versions it was intended for station-
ary subscribers (802.16d), but was later expanded to support mobile subscribers (802.16e). The stationary-
subscriber version is often used to provide residential Internet connectivity, in both urban and rural areas.

LTE (the acronym itself stands for Long Term Evolution) is a product of the mobile telecom world; it was
designed for mobile subscribers from the beginning. Its official name – at least for its radio protocols –
is Evolved UTRA, or E-UTRA, where UTRA in turn stands for UMTS Terrestrial Radio Access. UMTS
stands for Universal Mobile Telecommunications System, a core mobile-device data-network mechanism
with standards dating from the year 2000.

4G Capacity

A medium-level wireless data plan often comes with a 5 GB monthly cap. At the 100 Mbps 4G data rate,
that allotment can be downloaded in under six minutes. Data rate isn’t everything.

Both LTE and the mobile version of WiMAX are often marketed as fourth generation (or 4G) networking
technology. The ITU has a specific definition for 4G developed in 2008, officially named IMT-Advanced
and including a 100 Mbps download rate to moving devices and a 1 Gbps download rate to more-or-less-
stationary devices. Neither WiMAX nor LTE quite qualified technically, but to marketers that was no im-
pediment. In any event, in December 2010 the ITU issued a statement in which it “recognized that [the
term 4G], while undefined, may also be applied to the forerunners of these technologies, LTE and WiMax”.
So-called Advanced LTE and WiMAX2 are true IMT-Advanced protocols.

As in 3.6.4 Band Width we will use the term “data rate” for what is commonly called “bandwidth” to avoid
confusion with the radio-specific meaning of the latter term.

WiMAX can use unlicensed frequencies, like Wi-Fi, but its primary use is over licensed radio spectrum;
LTE is used almost exclusively over licensed spectrum.

WiMAX and LTE both support a number of options for the width of the frequency band; the wider the band,
the higher the data rate. Downlink (base station to subscriber) data rates can be well over 100 Mbps (uplink
rates are usually smaller). Most LTE bands are either in the range 700-900 MHz or are above 1700 MHz;
the lower frequencies tend to be better at penetrating trees and walls.

Like Wi-Fi, WiMAX and LTE subscriber stations connect to a central access point. The WiMAX standard
prefers the term base station which we will use henceforth for both protocols; LTE officially prefers the
term “evolved NodeB” or eNB.

The coverage radius for LTE and mobile-subscriber WiMAX might be one to ten kilometers, versus less
(sometimes much less) than 100 meters for Wi-Fi. Stationary-subscriber WiMAX can operate on a larger
scale; the coverage radius can be several tens of kilometers. As distances increase, the data rate is reduced.

Large-radius base stations are typically mounted in towers; smaller-radius base-stations, generally used
only in areas densely populated with subscribers, may use lower antennas integrated discretely into the local

3.8 WiMAX and LTE 125

http://www.itu.int
http://en.wikipedia.org/wiki/IMT_Advanced
http://www.itu.int/net/pressoffice/press_releases/2010/48.aspx

An Introduction to Computer Networks, Release 1.9.21

architecture. Subscriber stations are not expected to be able to hear other stations; they interact only with
the base station.

3.8.1 Uplink Scheduling

As distances increase, the subscriber-to-base RTT becomes non-negligible. At 10 kilometers, this RTT is
66 µsec, based on the speed of light of about 300 m/µsec. At 100 Mbps this is enough time to send 800
bytes, making it a priority to reduce the number of RTTs. To this end, it is no longer practical to use
Wi-Fi-style collisions to resolve access contention; it is not even practical to use the Wi-Fi PCF mode of
3.7.7 Wi-Fi Polling Mode because polling requires additional RTTs. Instead, WiMAX and LTE rely on
base-station-regulated scheduling of transmissions.

The base station has no difficulty scheduling downlink transmissions, from base to subscriber: the base
station simply sends the packets sequentially (or in parallel on different sets of subcarriers if OFDM is used).
If beamforming MISO antennas are used, or multiple physically directional antennas, the base station will
take this into account.

It is the uplink transmissions – from subscriber to base – that are more complicated to coordinate. Once a
subscriber station completes the network entry process to connect to a base station (3.8.3 Network Entry),
it is assigned regular transmission slots, including times and frequencies. These transmission slots may vary
in size over time; the base station may regularly issue new transmission schedules. Each subscriber station is
told in effect that it may transmit on its assigned frequencies starting at an assigned time and for an assigned
length; LTE lengths start at 1 ms and WiMAX lengths at 2 ms. The station synchronizes its clock with that
of the base station as part of the network entry process.

Each subscriber station is scheduled to transmit so that one transmission finishes arriving at the base station
just before the next station’s same-frequency transmission begins arriving. Only minimal “guard intervals”
need be included between consecutive transmissions. Two (or more) consecutive uplink transmissions may
in fact be “in the air” simultaneously, as far-away stations need to begin transmitting early so their signals
will arrive at the base station at the expected time.

The diagram above illustrates this for stations separated by relatively large physical distances (as may be
typical for long-range WiMAX). This strategy for uplink scheduling eliminates the full RTT that Wi-Fi
polling mode (3.7.7 Wi-Fi Polling Mode) entails.

Scheduled timeslots may be periodic (as is would be appropriate for voice) or may occur at varying inter-
vals. Quality-of-Service requests may also enter into the schedule; LTE focuses on end-to-end QoS while
WiMAX focuses on subscriber-to-base QoS.

When a station has data to send, it may include in its next scheduled transmission a request for a longer
transmission interval; if the request is granted, the station may send its data (or at least some of its data) in
its next scheduled transmission slot. When a station is done transmitting, its timeslot may shrink back to the
minimum, and may be scheduled less frequently as well, but it does not disappear. Stations without data to
send remain connected to the base station by sending “empty” messages during these slots.

3.8.2 Ranging

The uplink scheduling of the previous section requires that each subscriber station know the distance to
the base station. If a subscriber station is to transmit so that its message arrives at the base station at a

126 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

Base

Sta1

Sta2

Sta3

Three packets in transit from stations Sta1, Sta2 and Sta3. The packets propagate
outwards from the stations at the speed of light, like ripples, spatially confined between
two concentric dot-dash circles (circles around Sta3 are not shown). The packet portion
along the straight line from the station to the Base is represented as a heavy arrow.
The three packets will arrive at Base sequentially and without overlap.

certain time, it must actually begin transmission early by an amount equal to the one-way station-to-base
propagation delay. This distance/delay measurement process is called ranging.

Ranging can be accomplished through any RTT measurement. Any base-station delay in replying, once a
subscriber message is received, simply needs to be subtracted from the total RTT. Of course, that base-station
delay needs also to be communicated back to the subscriber.

The distance to the base station is used not only for the subscriber station’s transmission timing, but also to
determine its power level; signals from each subscriber station, no matter where located, should arrive at the
base station with about the same power.

3.8.3 Network Entry

The scheduling process eliminates the potential for collisions between normal data transmissions. But there
remains the issue of initial entry to the network. If a handoff is involved, the new base station can be
informed by the old base station, and send an appropriate schedule to the moving subscriber station. But
if the subscriber station was just powered on, or is arriving from an area without LTE/WiMAX coverage,
potential transmission collisions are unavoidable. Fortunately, network entry is infrequent, and so collisions
are even less frequent.

A subscriber station begins the network-entry connection process to a base station by listening for the base
station’s transmissions; these message streams contain regular management messages containing, among
other things, information about available data rates in each direction. Also included in the base station’s
message stream is information about when network-entry attempts can be made.

In WiMAX these entry-attempt timeslots are called ranging intervals; the subscriber station waits for one

3.8 WiMAX and LTE 127

An Introduction to Computer Networks, Release 1.9.21

of these intervals and sends a “range-request” message to the base station. These ranging intervals are open
to all stations attempting network entry, and if another station transmits at the same time there will be a
collision. An Ethernet/Wi-Fi-like exponential-backoff process is used if a collision does occur.

In LTE the entry process is known as RACH, for Random Access CHannel. The base station designates
certain 1 ms timeslots for network entry. During one of these slots an entry-seeking subscriber chooses at
random one of up to 64 predetermined random access preambles (some preambles may be reserved for a
second, contention-free form of RACH), and transmits it. The 1-ms timeslot corresponds to 300 kilometers,
much larger than any LTE cell, so the fact that the subscriber does not yet know its distance to the base does
not matter.

The preambles are mathematically “orthogonal”, in such a way that as long as no two RACH-participating
subscribers choose the same preamble, the base station can decode overlapping preambles and thus receive
the set of all preambles transmitted during the RACH timeslot. The base station then sends a reply, listing
the preambles received and, in effect, an initial schedule indexed by preamble of when each newly entering
subscriber station can transmit actual data. This reply is sent to a special temporary multicast address known
as a radio network temporary identifier, or RNTI, as the base station does not yet know the actual identity of
any new subscriber. Those identities are learned as the new subscribers transmit to the base station according
to this initial schedule.

A collision occurs when two LTE subscriber stations have the misfortune of choosing the same preamble in
the same RACH timeslot, in which case the chosen preamble will not appear in the initial schedule trans-
mitted by the base station. As for WiMAX, collisions are rare because network entry is rare. Subscribers
experiencing a collision try again during the next RACH timeslot, choosing at random a new preamble.

For both WiMAX and LTE, network entry is the only time when collisions can occur; afterwards, all
subscriber-station transmissions are scheduled by the base station.

If there is no collision, each subscriber station is able to use the base station’s initial-response transmission
to make its first ranging measurement. Subscribers must have a ranging measurement in hand before they
can send any scheduled transmission.

3.8.4 Mobility

There are some significant differences between stationary and mobile subscribers. First, mobile subscribers
will likely expect some sort of handoff from one base station to another as the subscriber moves out of
range of the first. Second, moving subscribers mean that the base-to-subscriber ranging information may
change rapidly; see exercise 7.0. If the subscriber does not update its ranging information often enough, it
may transmit too early or too late. If the subscriber is moving fast enough, the Doppler effect may also alter
frequencies.

3.9 Fixed Wireless

This category includes all wireless-service-provider systems where the subscriber’s location does not
change. Often, but not always, the subscriber will have an outdoor antenna for improved reception and
range. Fixed-wireless systems can involve relay through satellites, or can be terrestrial.

128 3 Other LANs

http://en.wikipedia.org/wiki/Doppler_effect

An Introduction to Computer Networks, Release 1.9.21

3.9.1 Terrestrial Wireless

Terrestrial wireless – also called terrestrial broadband or fixed-wireless broadband – involves direct (non-
satellite) radio communication between subscribers and a central access point. Access points are usually
tower-mounted and serve multiple subscribers, though single-subscriber point-to-point “microwave links”
also exist. A multi-subscriber access point may serve an area with radius up to several tens of miles, de-
pending on the technology, though more common ranges are under ten miles. WiMAX 802.16d is one form
of terrestrial wireless, but there are several others. Frequencies may be either licensed or unlicensed. Unli-
censed frequency bands are available at around 900 MHz, 2.4 GHz, and 5 GHz. Nominally all three bands
require that line-of-sight transmission be used, though that requirement becomes stricter as the frequency
increases. Lower frequencies tend to be better at “seeing” through trees and other obstructions.

Trees vs Signal

3.9 Fixed Wireless 129

An Introduction to Computer Networks, Release 1.9.21

Photo of the author attempting to improve his 2.4 GHz terrestrial-wireless signal via tree trimming.

Terrestrial fixed wireless was originally popularized for rural areas, where residential density is too low for
economical cable connections. However, some fixed-wireless ISPs now operate in urban areas, often using
WiMAX. One advantage of terrestrial fixed-wireless in remote areas is that the antennas covers a much
smaller geographical area than a satellite, generally meaning that there is more data bandwidth available per
user and the cost per megabyte is much lower.

Outdoor subscriber antennas often use a parabolic dish to improve reception; sizes range from 10 to 50 cm
in diameter. The size of the dish may depend on the distance to the central tower.

While there are standardized fixed-wireless systems, such as WiMAX, there are also a number of propri-
etary alternatives, including systems from Trango and Canopy. Fixed-wireless systems might, in fact, be
considered one of the last bastions of proprietary LAN protocols. This lack of standardization is due to a
variety of factors; two primary ones are the relatively modest overall demand for this service and the the fact
that most antennas need to be professionally installed by the ISP to ensure that they are “properly mounted,
aligned, grounded and protected from lightning”.

3.9.2 Satellite Internet

An extreme case of fixed wireless is satellite Internet, in which signals pass through a satellite in geosyn-
chronous orbit (35,786 km above the earth’s surface). Residential customers have parabolic antennas typ-
ically from 70 to 100 cm in diameter, larger than those used for terrestrial wireless but smaller than the
dish antennas used at access points. The geosynchronous satellite orbit means that the antennas need to be
pointed only once, at installation. Transmitter power is typically 1-2 watts, remarkably low for a signal that
travels 35,786 km.

The primary problem associated with satellite Internet is very long RTTs. The the speed-of-light round-trip
propagation delay is about 500 ms to which must be added queuing delays for the often-backlogged access
point (my own personal experience suggested that RTTs of close to 1,000 ms were the norm). These long
delays affect real-time traffic such as VoIP and gaming, but as we shall see in 14.11 The Satellite-Link TCP
Problem bulk TCP transfers also perform poorly with very long RTTs. To provide partial compensation for
the TCP issue, many satellite ISPs provide some sort of “acceleration” for bulk downloads: a web page, for
example, would be downloaded rapidly by the access point and streamed to the satellite and back down to
the user via a proprietary mechanism. Acceleration, however, cannot help interactive connections such as
VPNs.

Another common feature of satellite Internet is a low daily utilization cap, typically in the hundreds of
megabytes. Utilization caps are directly tied to the cost of maintaining satellites, but also to the fact that one
satellite covers a great deal of ground, and so its available capacity is shared by a large number of users.

The delay issues associated with satellite Internet would go away if satellites were in so-called low-earth
orbits, a few hundred km above the earth. RTTs would then be comparable with terrestrial Internet. Fixed-
direction antennas could no longer be used. A large number of satellites would need to be launched to
provide 24-hour coverage even at one location. To data (2016), such a network of low-earth satellites has
been proposed, but not yet launched.

130 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

3.10 Epilog

Along with a few niche protocols, we have focused primarily here on wireless and on virtual circuits. Wire-
less, of course, is enormously important: it is the enabler for mobile devices, and has largely replaced
traditional Ethernet for home and office workstations.

While it is sometimes tempting (in the IP world at least) to write off ATM as a niche technology, virtual
circuits are a serious conceptual alternative to datagram forwarding. As we shall see in 20 Quality of
Service, IP has problems handling real-time traffic, and virtual circuits offer a solution. The Internet has
so far embraced only small steps towards virtual circuits (such as MPLS, 20.12 Multi-Protocol Label
Switching (MPLS)), but they remain a tantalizing strategy.

3.11 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
4.5 is distinct, for example, from exercises 4.0 and 5.0. Exercises marked with a ♢ have solutions or hints
at 24.3 Solutions for Other LANs.

1.0. Suppose remote host A uses a VPN connection to connect to host B, with IP address 200.0.0.7. A’s
normal Internet connection is via device eth0 with IP address 12.1.2.3; A’s VPN connection is via device
ppp0 with IP address 10.0.0.44. Whenever A wants to send a packet via ppp0, it is encapsulated and
forwarded over the connection to B at 200.0.0.7.

(a). Suppose A’s IP forwarding table is set up so that all traffic to 200.0.0.7 uses eth0 and all traffic to
anywhere else uses ppp0. What happens if an intruder M attempts to open a connection to A at 12.1.2.3?
What route will packets from A to M take?
(b). Suppose A’s IP forwarding table is (mis)configured so that all outbound traffic uses ppp0. Describe
what will happen when A tries to send a packet.

2.0. Suppose remote host A wishes to use a TCP-based VPN connection to connect to host B, with IP
address 200.0.0.7. However, the VPN software is not available for host A. Host A is, however, able to run
that software on a virtual machine V hosted by A; A and V have respective IP addresses 10.0.0.1 and 10.0.0.2
on the virtual network connecting them. V reaches the outside world through network address translation
(7.7 Network Address Translation), with A acting as V’s NAT router. When V runs the VPN software,
it forwards packets addressed to B the usual way, through A using NAT. Traffic to any other destination it
encapsulates over the VPN.

Can A configure its IP forwarding table so that it can make use of the VPN? If not, why not? If so, how? (If
you prefer, you may assume V is a physical host connecting to a second interface on A; A still acts as V’s
NAT router.)

3.0. Token Bus was a proprietary Ethernet-based network. It worked like Token Ring in that a small token
packet was sent from one station to the next in agreed-upon order, and a station could transmit only when it
had just received the token.

3.10 Epilog 131

An Introduction to Computer Networks, Release 1.9.21

(a). If the data rate is 10 Mbps and the token is 64 bytes long (the 10-Mbps Ethernet minimum packet size),
what is the average wait to receive the token on an idle network with 40 stations? (The average number of
stations the token must pass through is 40/2 = 20.) Ignore the propagation delay and the gap Ethernet
requires between packets.
(b)♢. Sketch a protocol by which stations can sort themselves out to decide the order of token transmission;
that is, an order of the stations S0 . . . Sn-1 where station Si sends the token to station S(i+1) mod n.

4.0. A seemingly important part of the IEEE 801.11 Wi-Fi standard is that stations do not transmit when
another station is transmitting; this is meant to reduce collisions. And yet the standard states “transmission
of the ACK frame shall commence after a SIFS period, without regard to the busy/idle state of the medium”;
that is, the ACK sender does not listen first for an idle network.

Give a scenario in which the transmission of an ACK while the medium is not idle does not result in a col-
lision! That is, station A has just finished transmitting a packet to station C, but before C can begin sending
its ACK, another station B starts transmitting. Hint: this is another example of the hidden-node problem,
3.7.1.4 Hidden-Node Problem, with station C again the “middle” station. Recall also that simultaneous
transmission results in a collision only if some node fails to be able to read either signal as a result. (Also
note that, if C does not send its ACK, despite B, the packet just sent from A has to all intents and purposes
been lost.)

4.5.♢ Give an example of a three-sender hidden-node collision (3.7.1.4 Hidden-Node Problem); that is,
three nodes A, B and C, no two of which can see one another, where all can reach a fourth node D. Can you
do this for more than three sending nodes?

5.0. Suppose the average contention interval in a Wi-Fi network (802.11g) is 64 SlotTimes. The average
packet size is 1 kB, and the data rate is 54 Mbps. At that data rate, it takes about (8ˆ1024)/54 = 151 µsec to
transmit a packet.

(a). How long is the average contention interval, in µsec?
(b)♢. What fraction of the total potential bandwidth is lost to contention? (See 2.1.11 Analysis of Classic
Ethernet for a similar example).

6.0. WiMAX and LTE subscriber stations are not expected to hear one another at all. For Wi-Fi non-access-
point stations in an infrastructure (access-point) setting, on the other hand, listening to other non-access-
point transmissions is encouraged. List some ways in which such stations might respond to packets sent by
other non-access-point stations. Try to come up with examples for stations associated to the same access
point, and also for stations associated to different access points. The responses need not be in the form of
transmissions. (Wi-Fi stations cannot be required to make such responses because reception of the relevant
packets is often quite spotty.)

7.0. Suppose WiMAX subscriber stations can be moving, at speeds of up to 33 meters/sec (the maximum
allowed under 802.16e).

(a). How much earlier (or later) can one subscriber packet arrive? Assume that the ranging process updates
the station’s propagation delay once a minute. The speed of light is about 300 meters/µsec.

132 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

(b). With 5000 senders per second, how much time out of each second must be spent on “guard intervals”
accommodating the early/late arrivals above? You will need to double the time from part (a), as the base
station cannot tell whether the signal from a moving subscriber will arrive earlier or later.

8.0. [SM90] contained a proposal for sending IP packets over ATM as N cells as in AAL-5, followed by one
cell containing the XOR of all the previous cells. This way, the receiver can recover from the loss of any
one cell. Suppose N=20 here; with the SM90 mechanism, each packet would require 21 cells to transmit;
that is, we always send 5% more. Suppose the cell loss-rate is p (presumably very small). If we send 20
cells without the SM90 mechanism, we have a probability of about 20p that any one cell will be lost, and we
will have to retransmit the entire 20 again. This gives an average retransmission amount of about 20p extra
packets. For what value of p do the with-SM90 and the without-SM90 approaches involve about the same
total number of cell transmissions?

9.0. In the example in 3.4 Virtual Circuits, give the VCI table for switch S5.

10.0. Suppose we have the following network:

A S1 S2 B

C S3 S4 D

The virtual-circuit switching tables are below. Ports are identified by the node at the other end. Identify all
the connections. Give the path for each connection and the VCI on each link of the path.

Switch S1:

VCIin portin VCIout portout
1 A 2 S3
2 A 2 S2
3 A 3 S2

Switch S2:

VCIin portin VCIout portout
2 S4 1 B
2 S1 3 S4
3 S1 4 S4

Switch S3:

VCIin portin VCIout portout
2 S1 2 S4
3 S4 2 C

Switch S4:

3.11 Exercises 133

An Introduction to Computer Networks, Release 1.9.21

VCIin portin VCIout portout
2 S3 2 S2
3 S2 3 S3
4 S2 1 D

10.5♢ We have the same network as the previous exercise:

A S1 S2 B

C S3 S4 D

The virtual-circuit switching tables are below. Ports are identified by the node at the other end. Identify all
the connections. Give the path for each connection and the VCI on each link of the path.

Switch S1:

VCIin portin VCIout portout
1 A 2 S2
3 S3 2 A

Switch S2:

VCIin portin VCIout portout
2 S1 3 S4
1 B 2 S4

Switch S3:

VCIin portin VCIout portout
2 S1 2 S4
1 S4 3 S1

Switch S4:

VCIin portin VCIout portout
3 S2 2 D
2 S2 1 S3

11.0. Suppose we have the following network:

A S1 S2 B

C S3 S4 D

134 3 Other LANs

An Introduction to Computer Networks, Release 1.9.21

Give virtual-circuit switching tables for the following connections. Route via a shortest path.

(a). A–D
(b). C–B, via S4
(c). B–D
(d). A–D, via whichever of S2 or S3 was not used in part (a)

12.0. Below is a set of switches S1 through S4. Define VCI-table entries so the virtual circuit from A to B
follows the path

A ÝÑ S1 ÝÑ S2 ÝÑ S4 ÝÑ S3 ÝÑ S1 ÝÑ S2 ÝÑ S4 ÝÑ S3 ÝÑ B

That is, each switch is visited twice.

A S1 S2

B S3 S4

13.0. In this exercise we outline the two-ray ground model of wireless transmission in which the signal
power is inversely proportional to the fourth power of the distance, rather than following the usual inverse-
square law. Some familiarity with trigonometric (or complex-exponential) manipulations is necessary.

Suppose the signal near the transmitter is A sin(2𝜋ft), where A is the amplitude, f the frequency and t the
time. Signal power is proportional to A2. At distance rě1, the amplitude is reduced by a factor of 1/r (so
the power is reduced by 1/r2) and the signal is delayed by a time r/c, where c is the speed of light, giving

(A/r)sin(2𝜋f(t – r/c)) = (A/r)sin(2𝜋ft – 2𝜋𝜆r)

where 𝜆 = f/c is the wavelength.

The received signal is the superposition of the line-of-sight signal path and its reflection from the ground, as
in the following diagram:

height h

line-of-sight r

reflected path r�
r/2 r/2

arriving signals

Sender and receiver are shown at equal heights above the ground, for simplicity. We assume 100% ground
reflectivity (this is reasonable for very shallow angles). The phase of the ground signal is reversed 180° by
the reflection, and then is delayed slightly more by the slightly longer path.

(a). Find a formula for the length of the reflected-signal path r1, in terms of r and h. Eliminate the square
root, using the approximation (1+x)1/2 » 1 + x/2 for small x. (You will need to factor r out of the square-root
expression for r1 first.)

(b). Simplify the difference (because of the 180° reflection phase-reversal) of the line-of-sight and reflected-
signal paths. Use the approximation sin(X) – sin(Y) = 2 sin((X–Y)/2) cos((X+Y)/2) » (X-Y) cos((X+Y)/2)

3.11 Exercises 135

An Introduction to Computer Networks, Release 1.9.21

» (X–Y) cos(X), for X»Y (or else use complex exponentials, noting sin(X) is the real part of i eiX). You
may assume r1–r is smaller than the wavelength 𝜆. Start with (A/r)sin(2𝜋ft – 2𝜋𝜆r) – (A/r1)sin(2𝜋ft –
2𝜋𝜆r1); it helps to isolate the rÑr1 change to one subexpression at a time by writing this as follows (adding
and subtracting the identical middle terms):

((A/r)sin(2𝜋ft – 2𝜋𝜆r) – (A/r1)sin(2𝜋ft – 2𝜋𝜆r)) + ((A/r1)sin(2𝜋ft – 2𝜋𝜆r) –
(A/r1)sin(2𝜋ft – 2𝜋𝜆r1))

= (A/r – A/r1)sin(2𝜋ft – 2𝜋𝜆r) + (A/r1)(sin(2𝜋ft – 2𝜋𝜆r) – sin(2𝜋ft – 2𝜋𝜆r1))

(c). Show that the approximate amplitude of this difference is proportional to 1/r2, making the relative power
proportional to 1/r4.

14.0. In the four-way handshake of 3.7.5 Wi-Fi Security, suppose station B (for Bad) records the successful
handshake of station A and the access point. A then leaves the network, and B attempts a replay attack: B
uses A’s packets in the handshake. At exactly what point does the handshake break down?

136 3 Other LANs

4 LINKS

At the lowest (logical) level, network links look like serial lines. In this chapter we address how packet
structures are built on top of serial lines, via encoding and framing. Encoding determines how bits and
bytes are represented on a serial line; framing allows the receiver to identify the beginnings and endings of
packets.

We then conclude with the high-speed serial lines offered by the telecommunications industry, T-carrier and
SONET, upon which almost all long-haul point-to-point links that tie the Internet together are based.

4.1 Encoding and Framing

A typical serial line is ultimately a stream of bits, not bytes. How do we identify byte boundaries? This is
made slightly more complicated by the fact that, beneath the logical level of the serial line, we generally
have to avoid transmitting long runs of identical bits, because the receiver may simply lose count; this is
the clock synchronization problem (sometimes called the clock recovery problem). This means that, one
way or another, we cannot always just send the desired bits sequentially; for example, extra bits are often
inserted to break up long runs. Exactly how we do this is the encoding mechanism.

Once we have settled the transmission of bits, the next step is to determine how the receiver identifies the start
of each new packet. Ethernet packets are separated by physical gaps, but for most other link mechanisms
packets are sent end-to-end, with no breaks. How we tell when one packet stops and the next begins is the
framing problem.

To summarize:

• encoding: correctly recognizing all the bits in a stream

• framing: correctly recognizing packet boundaries

These are related, though not the same.

For long (multi-kilometer) electrical serial lines, in addition to the clock-related serial-line requirements
we also want the average voltage to be zero; that is, we want no DC component. We will mostly concern
ourselves here, however, only with lines short enough for this not to be a major concern.

4.1.1 NRZ

NRZ (Non-Return to Zero) is perhaps the simplest encoding; it corresponds to direct bit-by-bit transmission
of the 0’s and 1’s in the data. We have two signal levels, lo and hi, we set the signal to one or the other
of these depending on whether the data bit is 0 or 1, as in the diagram below. Note that in the diagram the
signal bits have been aligned with the start of the pulse representing that signal value.

137

An Introduction to Computer Networks, Release 1.9.21

0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1

NRZ Encoding: 1 = hi, 0 = lo

NRZ replaces an earlier RZ (Return to Zero) encoding, in which hi and lo corresponded to +1 and -1, and
between each pair of pulses corresponding to consecutive bits there was a brief return to the 0 level.

One drawback to NRZ is that we cannot distinguish between 0-bits and a signal that is simply idle. However,
the more serious problem is the lack of synchronization: during long runs of 0’s or long runs of 1’s, the
receiver can “lose count”, eg if the receiver’s clock is running a little fast or slow. The receiver’s clock can
and does resynchronize whenever there is a transition from one level to the other. However, suppose bits
are sent at one per µs, the sender sends five 1-bits in a row, and the receiver’s clock is running 10% fast.
The signal sent is a 5-µs hi pulse, but when the pulse ends the receiver’s clock reads 5.5 µs due to the clock
speedup. Should this represent five 1-bits or six 1-bits?

4.1.2 NRZI

An alternative that helps here (though not obviously at first) is NRZI, or NRZ Inverted. In this encoding,
we represent a 0-bit as no change, and a 1-bit as a transition from lo to hi or hi to lo:

0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1

NRZI Encoding: 1 = transition, 0 = no transition

Now there is a signal transition aligned above every 1-bit; a 0-bit is represented by the lack of a transition.
This solves the synchronization problem for runs of 1-bits, but does nothing to address runs of 0-bits.
However, NRZI can be combined with techniques to minimize runs of 0-bits, such as 4B/5B (below).

4.1.3 Manchester

Manchester encoding sends the data stream using NRZI, with the addition of a clock transition between
each pair of consecutive data bits. This means that the signaling rate is now double the data rate, eg 20
MHz for 10Mbps Ethernet (which does use Manchester encoding). The signaling is as if we doubled the
bandwidth and inserted a 1-bit between each pair of consecutive data bits, removing this extra bit at the
receiver:

138 4 Links

An Introduction to Computer Networks, Release 1.9.21

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

c
lo

c
k

100 0 1 1 0 1 1 1 1 0 0 0 0 0 1

Manchester Encoding: NRZI alternating with clock transitions

All these transitions mean that the longest the clock has to “count” is 1 bit-time; clock synchronization is
essentially solved, at the expense of the doubled signaling rate.

4.1.4 4B/5B

In 4B/5B encoding, for each 4-bit “nybble” of data we actually transmit a designated 5-bit symbol, or code,
selected to have “enough” 1-bits. A symbol in this sense is a digital or analog transmission unit that decodes
to a set of data bits; the data bits are not transmitted individually. (The transmission of symbols rather than
individual bits is nearly universal for high-performance links, including all forms of Ethernet faster than
10Mbps and all Wi-Fi links.)

Specifically, every 5-bit symbol used by 4B/5B has at most one leading 0-bit and at most two trailing 0-bits.
The 5-bit symbols corresponding to the data are then sent with NRZI, where runs of 1’s are safe. Note that
the worst-case run of 0-bits has length three. Note also that the signaling rate here is 1.25 times the data
rate. 4B/5B is used in 100-Mbps Ethernet, 2.2 100 Mbps (Fast) Ethernet. The mapping between 4-bit data
values and 5-bit symbols is fixed by the 4B/5B standard:

data symbol data symbol
0000 11110 1011 10111
0001 01001 1100 11010
0010 10100 1101 11011
0011 10101 1110 11100
0100 01010 1111 11101
0101 01011 IDLE 11111
0110 01110 HALT 00100
0111 01111 START 10001
1000 10010 END 01101
1001 10011 RESET 00111
1010 10110 DEAD 00000

There are more than sixteen possible symbols; this allows for some symbols to be used for signaling rather
than data. IDLE, HALT, START, END and RESET are shown above, though there are others. These can be
used to include control and status information without fear of confusion with the data. Some combinations
of control symbols do lead to up to four 0-bits in sequence; HALT and RESET have two leading 0-bits.

10-Mbps and 100-Mbps Ethernet pads short packets up to the minimum packet size with 0-bytes, meaning
that the next protocol layer has to be able to distinguish between padding and actual 0-byte data. Although
100-Mbps Ethernet uses 4B/5B encoding, it does not make use of special non-data symbols for packet
padding. Gigabit Ethernet uses PAM-5 encoding (2.3 Gigabit Ethernet), and does use special non-data

4.1 Encoding and Framing 139

An Introduction to Computer Networks, Release 1.9.21

symbols (inserted by the hardware) to pad packets; there is thus no ambiguity at the receiving end as to
where the data bytes ended.

The choice of 5-bit symbols for 4B/5B is in principle arbitrary; note however that for data from 0100 to
1101 we simply insert a 1 in the fourth position, and in the last two we insert a 0 in the fourth position. The
first four symbols (those with the most zeroes) follow no obvious pattern, though.

4.1.5 Framing

How does a receiver tell when one packet stops and the next one begins, to keep them from running together?
We have already seen the following techniques for addressing this framing problem: determining where
packets end:

• Interpacket gaps (as in Ethernet)

• 4B/5B and special bit patterns

Putting a length field in the header would also work, in principle, but seems not to be widely used. One
problem with this technique is that restoring order after desynchronization can be difficult.

There is considerable overlap of framing with encoding; for example, the existence of non-data bit patterns
in 4B/5B is due to an attempt to solve the encoding problem; these special patterns can also be used as
unambiguous frame delimiters.

4.1.5.1 HDLC

HDLC (High-level Data Link Control) is a general link-level packet format used for a number of applica-
tions, including Point-to-Point Protocol (PPP) (which in turn is used for PPPoE – PPP over Ethernet – which
is how a great many Internet subscribers connect to their ISP), and Frame Relay, still used as the low-level
protocol for delivering IP packets to many sites via telecommunications lines. HDLC supports the following
two methods for frame separation:

• HDLC over asynchronous links: byte stuffing

• HDLC over synchronous links: bit stuffing

The basic encapsulation format for HDLC packets is to begin and end each frame with the byte 0x7E, or, in
binary, 0111 1110. The problem is that this byte may occur in the data as well; we must make sure we don’t
misinterpret such a data byte as the end of the frame.

Asynchronous serial lines are those with some sort of start/stop indication, typically between bytes; such
lines tend to be slower. Over this kind of line, HDLC uses the byte 0x7D as an escape character. Any
data bytes of 0x7D and 0x7E are escaped by preceding them with an additional 0x7D. (Actually, they are
transmitted as 0x7D followed by (original_byte xor 0x20).) This strategy is fundamentally the same as that
used by C-programming-language character strings: the string delimiter is “ and the escape character is \.
Any occurrences of “ or \ within the string are escaped by preceding them with \.

Over synchronous serial lines (typically faster than asynchronous), HDLC generally uses bit stuffing. The
underlying bit encoding involves, say, the reverse of NRZI, in which transitions denote 0-bits and lack of
transitions denote 1-bits. This means that long runs of 1’s are now the problem and runs of 0’s are safe.

140 4 Links

An Introduction to Computer Networks, Release 1.9.21

Whenever five consecutive 1-bits appear in the data, eg 011111, a 0-bit is then inserted, or “stuffed”, by the
transmitting hardware (regardless of whether or not the next data bit is also a 1). The HDLC frame byte of
0x7E = 0111 1110 thus can never appear as encoded data, because it contains six 1-bits in a row. If we had
0x7E in the data, it would be transmitted as 0111 11010.

The HDLC receiver knows that

• six 1-bits in a row marks the end of the packet

• when five 1-bits in a row are seen, followed by a 0-bit, the 0-bit is removed

Example:

Data: 011110 0111110 01111110
Sent as: 011110 01111100 011111010 (stuffed bits in bold)

Note that bit stuffing is used by HDLC to solve two unrelated problems: the synchronization problem where
long runs of the same bit cause the receiver to lose count, and the framing problem, where the transmitted
bit pattern 0111 1110 now represents a flag that can never be mistaken for a data byte.

4.1.5.2 B8ZS

While insertion of an occasional extra bit or byte is no problem for data delivery, it is anathema to voice
engineers; extra bits upset the precise 64 kbps DS-0 rate. As a result, long telecom lines prefer encodings
that, like 4B/5B, do not introduce timing fluctuations. Very long (electrical) lines also tend to require
encodings that guarantee a long-term average voltage level of 0 (versus 0.5 if half the bits are 1 v and half
are 0 v in NRZ); that is, the signal must have no DC component.

The AMI (Alternate Mark Inversion) technique eliminates the DC component by using three voltage levels,
nominally +1, 0 and -1; this ternary encoding is also known as bipolar. Zero bits are encoded by the 0
voltage, while 1-bits take on alternating values of +1 and -1 volts. Thus, the bits 011101 might be encoded
as 0,+1,-1,+1,0,-1, or, more compactly, 0+–+0–. Over a long run, the +1’s and the –1’s cancel out.

Plain AMI still has synchronization problems with long runs of 0-bits. The solution used on North American
T1 lines (1.544 Mbps) is known as B8ZS, for bipolar with 8-zero substitution. The sender replaces any run
of 8 zero bits with a special bit-pattern, either 000+–0–+ or 000–+0+–. To decide which, the sender checks
to see if the previous 1-bit sent was +1 or –1; if the former, the first pattern is substituted, if the latter then the
second pattern is substituted. Either way, this leads to two instances of violation of the rule that consecutive
1-bits have opposite sign. For example, if the previous bit were +, the receiver sees

+ 0 0 0 + � 0 � +

B8ZS Encoding. The bits in the box were originally all zeros.
Arrows link 1-bit alternating-sign violations

This double-violation is the clue to the receiver that the special pattern is to be removed and replaced with
the original eight 0-bits.

4.1 Encoding and Framing 141

An Introduction to Computer Networks, Release 1.9.21

4.2 Time-Division Multiplexing

Classical circuit switching means a separate wire for each connection. This is still in common use for
residential telephone connections: each subscriber has a dedicated wire to the Central Office. But a separate
physical line for each connection is not a solution that scales well.

Once upon a time it was not uncommon to link computers with serial lines, rather than packet networks.
This was most often done for file transfers, but telnet logins were also done this way. The problem with this
approach is that the line had to be dedicated to one application (or one user) at a time.

Packet switching naturally implements multiplexing (sharing) on links; the demultiplexer is the destination
address. Port numbers allow demultiplexing of multiple streams to same destination host.

There are other ways for multiple channels to share a single wire. One approach is frequency-division
multiplexing, or putting each channel on a different carrier frequency. Analog cable television did this.
Some fiber-optic protocols also do this, calling it wavelength-division multiplexing.

But perhaps the most pervasive alternative to packets is the voice telephone system’s time division mul-
tiplexing, or TDM, sometimes prefixed with the adjective synchronous. The idea is that we decide on a
number of channels, N, and the length of a timeslice, T, and allow each sender to send over the channel for
time T, with the senders taking turns in round-robin style. Each sender gets to send for time T at regular
intervals of NT, thus receiving 1/N of the total bandwidth. The timeslices consume no bandwidth on headers
or addresses, although sometimes there is a small amount of space dedicated to maintaining synchronization
between the two endpoints. Here is a diagram of sending with N=8:

A B C D E F G H A B C D E F G H A B

Time-Division Multiplexing

Note, however, that if a sender has nothing to send, its timeslice cannot be used by another sender. Because
so much data traffic is bursty, involving considerable idle periods, TDM has traditionally been rejected for
data networks.

4.2.1 T-Carrier Lines

TDM, however, works extremely well for voice networks. It continues to work when the timeslice T is
small, when packet-based approaches fail because the header overhead becomes unacceptable. Consider for
a moment the telecom Digital Signal hierarchy. A single digitized voice line in North America is one 8-bit
sample every 1/8,000 second, or 64 kbps; this is known as a DS0 channel. A T1 line – the lowest level of the
T-carrier hierarchy and known at the logical level as a DS1 line – represents 24 DS0 lines multiplexed via
TDM, where each channel sends a single byte at a time. Thus, every 1/8,000 of a second a T1 line carries
24 bytes of user data, one byte per channel (plus one bit for framing), for a total of 193 bits. This gives a
raw line speed of 1.544 Mbps.

Note that the per-channel frame size here is a single byte. There is no efficient way to send single-byte
packets. The advantage to the single-byte approach is that it greatly reduces the latency across the line. The
biggest source of delay in packet-based digital voice lines is the packet fill time at the sender’s end: the
sender generates voice data at a rate of 8 bytes/ms, and a packet cannot be sent until it is full. For a 1 kB

142 4 Links

An Introduction to Computer Networks, Release 1.9.21

packet, that’s about a quarter second. For standard Voice-over-IP or VoIP channels, RTP is used with 160
bytes of data sent every 20 ms; for ATM, a 48-byte packet is sent every 6 ms. But the fill-time delay for a
call sent over a T1 line is 0.125 ms, which is negligible (to be fair, 6 ms and even 20 ms turn out to be pretty
negligible in terms of call quality). The T1 one-byte-at-a-time strategy also means that T1 multiplexers
need to do essentially no buffering, which might have been important back in 1962 when T-carrier was
introduced.

The next most common T-carrier / Digital Signal line is perhaps T3/DS3; this represents the TDM multiplex-
ing of 28 DS1 signals. The problem is that some individual DS1s may run a little slow, so an elaborate pulse
stuffing protocol has been developed. This allows extra bits to be inserted at specific points, if necessary, in
such a way that the original component T1s can be exactly recovered even if there are clock irregularities.
The pulse-stuffing solution did not scale well, and so T-carrier levels past T3 were very rarely used.

While T-carrier was originally intended as a way of bundling together multiple DS0 channels on a single
high-speed line, it also allows providers to offer leased digital point-to-point links with data rates in almost
any multiple of the DS0 rate.

4.2.2 SONET

SONET stands for Synchronous Optical NETwork; it is the telecommunications industry’s standard mecha-
nism for very-high-speed TDM over optical fiber. While there is now flexibility regarding the the “optical”
part, the “synchronous” part is taken quite seriously indeed, and SONET senders and receivers all use very
precisely synchronized clocks (often atomic). The actual bit encoding is NRZI.

Due to the frame structure, below, the longest possible run of 0-bits is ~250 bits (~30 bytes), but is usually
much less. Accurate reception of 250 0-bits requires a clock accurate to within (at a minimum) one part
in 500, which is potentially within reach. However, SONET also has a “bit-scrambling” feature, involving
XOR with a fixed bit pattern, to ensure in most cases that there is a 1-bit every byte or less.

The primary reason for SONET’s accurate clocking, however, is not the clock-synchronization problem as
we have been using the term, but rather the problem of demultiplexing and remultiplexing multiple compo-
nent bitstreams in a setting in which some of the streams may run slow. One of the primary design goals for
SONET was to allow such multiplexing without the need for “pulse stuffing”, as is used in the Digital Signal
hierarchy. SONET tributary streams are in effect not allowed to run slow (although SONET does provide
for occasional very small byte slips, below). Furthermore, as multiple SONET streams are demultiplexed
at a switching center and then remultiplexed into new SONET streams, synchronization means that none of
the streams falls behind or gets ahead.

The basic SONET format is known as STS-1. Data is organized as a 9x90 byte grid. The first 3 bytes of
each row (that is, the first three columns) form the frame header. Frames are not addressed; SONET is a
point-to-point protocol and a node sends a continuous sequence of frames to each of its neighbors. When the
frames reach their destination, in principle they need to be fully demultiplexed for the data to be forwarded
on. In practice, there are some shortcuts to full demultiplexing.

4.2 Time-Division Multiplexing 143

An Introduction to Computer Networks, Release 1.9.21

The actual bytes sent are scrambled: the data is XORed with a standard, fixed pseudorandom pattern before
transmission. This introduces many 1-bits, on which clock resynchronization can occur, with a high degree
of probability.

There are two other special columns in a frame, each guaranteed to contain at least one 1-bit, so the maxi-
mum run of data bytes is limited to ~30; this is thus the longest run of possible 0’s.

The first two bytes of each frame are 0xF628. SONET’s frame-synchronization check is based on verifying
these byte values at the start of each frame. If the receiver is ever desynchronized, it begins a frame re-
synchronization procedure: the receiver searches for those 0xF628 bytes at regular 810-byte (6480-bit)
spacing. After a few frames with 0xF628 in the right place, the receiver is “very sure” it is looking at the
synchronization bytes and not at a data-byte position. Note that there is no evident byte boundary to a
SONET frame, so the receiver must check for 0xF628 beginning at every bit position.

SONET frames are transmitted at a rate of 8,000 frames/second. This is the canonical byte sampling rate
for standard voice-grade (“DS0”, or 64 kbps) lines. Indeed, the classic application of SONET is to transmit
multiple DS0 voice calls using TDM: within a frame, each data byte position is given over to one voice
channel. The same byte position in consecutive frames constitutes one byte every 1/8000 seconds. The
basic STS-1 data rate of 51.84 Mbps is exactly 810 bytes/frame ˆ 8 bits/byte ˆ 8000 frames/sec.

To a customer who has leased a SONET-based channel to transmit data, a SONET link looks like a very fast
bitstream. There are several standard ways of encoding data packets over SONET. One is to encapsulate the
data as ATM cells, and then embed the cells contiguously in the bitstream. Another is to send IP packets
encoded in the bitstream using HDLC-like bit stuffing, which means that the SONET bytes and the IP bytes
may no longer correspond. The advantage of HDLC encoding is that it makes SONET re-synchronization
vanishingly infrequent. Most IP backbone traffic today travels over SONET links.

Within the 9ˆ90-byte STS-1 frame, the payload envelope is the 9ˆ87 region nominally following the three
header columns; this payload region has its own three reserved columns meaning that there are 84 columns
(9ˆ84 bytes) available for data. This 9ˆ87-byte payload envelope can “float” within the physical 9ˆ90-
byte frame; that is, if the input frames are running slow then the output physical frames can be transmitted
at the correct rate by letting the payload frames slip “backwards”, one byte at a time. Similarly, if the input
frames are arriving slightly too fast, they can slip “forwards” by up to one byte at a time; the extra byte is
stored in a reserved location in the three header columns of the 9ˆ90 physical frame.

Faster SONET streams are made by multiplexing slower ones. The next step up is STS-3, an STS-3 frame
is three STS-1 frames, for 9ˆ270 bytes. STS-3 (or, more properly, the physical layer for STS-3) is also
called OC-3, for Optical Carrier. Beyond STS-3, faster lines are multiplexed combinations of four of the

144 4 Links

An Introduction to Computer Networks, Release 1.9.21

next-slowest lines. Here are some of the higher levels:

STS STM line rate
STS-1 STM-0 51.84 Mbps
STS-3 STM-1 155.52 Mbps
STS-12 STM-4 622.08 Mbps (=12*51.84, exactly)
STS-48 STM-16 2.48832 Gbps
STS-192 STM-64 9.953 Gbps
STS-768 STM-256 39.8 Gbps

Usable capacity is typically 84/90 of the above line rates, as six of the 90 columns of an STS-1 frame are
for overhead.

SONET provides a wide variety of leasing options at various bandwidths. High-volume customers can
lease an entire STS-1 or larger unit. Alternatively, the 84 data columns of an STS-1 frame can be divided
into seven virtual tributary groups, each of twelve columns; these groups can be leased individually or in
multiples, or be further divided into as few as three columns (which works out to be just over the T1 data
rate).

4.2.3 Optical Transport Network

The Optical Transport Network, or OTN, is an ITU specification for data transmission over optical fiber;
the primary standard is G.709. A preliminary version of G.709 was published in 1988, but version 1.0 was
released in 2001. OTN abandons SONET’s voice-oriented frame rate of 8000 frames/sec; while OTN is still
widely used for voice, transmission no longer quite so perfectly fits the time-division-multiplexing model.

The standard OTN frame is as diagrammed below; each frame is arranged in four rows. It can be helpful to
view the 4,080 columns as divided into 255 16-byte-wide “supercolumns”: one for the frame and payload
overhead, 238 for the payload itself, and 16 for error correction.

1 14 16 3824 4080 = 16×255

256 bytes3824 = 16×239 bytes

Payload: 3808 = 16×238 bytes

Payload Overhead

OTN Frame Format: 4080 columns × 4 rows

Error Correction

Frame Overhead

The portion available for carrying customer data is highlighted in blue; unlike SONET, the payload portion
of a frame is not allowed to “float”. The 256 columns at the end are for error-correcting codes (5.4.2 Error-
Correcting Codes); the addition of such error correction (below) is a major advantage of OTN over SONET.

OTN comes in three primary rates, OTN1, OTN2 and OTN3; there are also a few variants. The OTN1 rate is
chosen so that a SONET STS-48/STM-16 stream – 2.48832 Gbps – exactly fits in the blue payload portion

4.2 Time-Division Multiplexing 145

http://itu.int
http://www.itu.int/rec/T-REC-G.709/en

An Introduction to Computer Networks, Release 1.9.21

of the frame. This means that the OTN1 line rate must be (255/238) ˆ 2.48832 » 2.6661 Gbps. The frame
rate, in turn, is therefore about 20.42 frames/ms.

Four OTN1 streams can be multiplexed into a single OTN2 stream; four OTN2 streams can be multiplexed
into a single OTN3 stream. The frame layout does not change, however; it is the frame rate that increases.
The data rate does not increase by an exact multiple of 4; the OTN2 rate is chosen so that four OTN1
payloads and an additional 16 columns per frame can be carried in the payload portion of the OTN2 frames.
The additional 16 columns serve to specify details about the interleaving of the four OTN1 frames; this
leaves 3792 = 16ˆ237 columns for the OTN1-stream data. The end result is that the OTN2 stream must
carry data at a line rate of 4ˆ238/237 times the OTN1 rate, or 4ˆ255/237 times the STS-48/STM-16 rate.
This works out to be about 10.709 Gbps.

In order to handle multiplexing without the need for T-carrier-style pulse stuffing, OTN streams must have a
long-term bit-rate accuracy of ˘20 parts per million, which works out to be one byte every 3-4 frames. The
frame-overhead region takes care of the slack.

The last 256 columns of each frame are devoted to error correction; SONET has nothing comparable. By
default, these columns are used for so-called Reed-Solomon codes; specifically, in a formulation where 16
bytes of codes are used for each 239 bytes of payload (this is exactly consistent with the relative sizes of the
payload and error-correction columns). Such codes can correct up to 8 bytes of error. They can be used to
increase the length of cable runs before regeneration is needed. Alternatively, their use can reduce the bit
error rate as much as a hundredfold, which will be important in 14.9 The High-Bandwidth TCP Problem.

OTN also includes, at the physical layer, extensive support for dense wavelength-division multiplexing
(DWDM, a form of frequency-division multiplexing), meaning that multiple independent OTN streams can
be carried on relatively close wavelengths. This greatly increases the overall capacity of a given run of
fiber. DWDM works at a lower network layer than the frame organization outlined above, and in principle
SONET could implement DWDM as well. In practice, though, DWDM has been integrated with OTN from
the beginning.

4.2.4 Other Optical Fiber

Optical Fiber and Lightning

One of the advantages of of optical fiber (particularly at mountaintop observatories) is its resistance to
damage and interference from lightning. Some fiber-optic cables do, however, have metal jackets to add
strength or to resist animals; lightning resistance must be researched carefully.

SONET and OTN are primarily, though not exclusively, used by telecommunications carriers. There are
also multiple fiber-optic alternatives for smaller-scale operations. These are often part of the Ethernet family
although they may have little except their bitrate in common with one another or with Ethernet over copper
wire. Another standard that supports optical fiber links is so-called “Fibre Channel”, though that too also
now supports copper.

Distances supported by fiber-optic Ethernet range from hundreds of meters to tens of kilometers. Generally,
the longer-haul links require the use of full duplex to avoid the collision-detection (slot time) requirement
that a sender continue to transmit for one full Ethernet-segment RTT, but full duplex is common at high
Ethernet speeds even for short links. For 100 Mbps Ethernet, fiber-optic standards include 100BASE-FX,

146 4 Links

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

An Introduction to Computer Networks, Release 1.9.21

100BASE-SX, 100BASE-LX and 100BASE-BX. The latter supports distances up to 40 km; the limiting
factor is the need for signal regeneration. 1000-Gbit Ethernet optical standards include 1000BASE-SX,
1000BASE-LX, 1000BASE-BX and 1000BASE-EX; the latter again supports up to 40 km. These forms
of Ethernet are often deployed in residential “fiber Internet” connections, although in some cases the last
hundred meters or so may still involve copper.

At speeds of 10 Gbps, long-range optical fiber alternatives include 10GBASE-ER and 10GBASE-ZR, sup-
porting 40 and 80 km respectively; 10GBASE-ZR is based on SONET STM-64 standards. It is worth noting
that fiber is often used for short links as well at 1 Gbps and 10 Gbps speeds; at 10 Gbps some copper-link
standards support distances of only a few meters. As of 2014, several 10-Gbps Ethernet physical-layer
standards come from industry consortiums rather than the IEEE.

4.3 Epilog

This completes our discussion of common physical links. Perhaps the main takeaway point is that transmit-
ting bits over any distance is not quite as simple as it may appear; simple NRZ transmission is not effective.

4.4 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of future exercises. Exer-
cise 3.5 is distinct, for example, from exercises 3.0 and 4.0. Exercises marked with a ♢ have solutions or
hints at 24.4 Solutions for Links.

1.0. What is encoded by the following NRZI signal? The first two bits are shown.

0 1

2.0. Argue that sending 4 0-bits via NRZI requires a clock accurate to within 1 part in 8. Assume that the
receiver resynchronizes its clock whenever a 1-bit transition is received, but that otherwise it attempts to
sample a bit in the middle of the bit’s timeslot.

3.0.(a) What bits are encoded by the following Manchester-encoded sequence?

(b). Why is there no ambiguity as to whether the first transition is a clock transition or a data (1-bit)
transition?
(c). Give an example of a signal pattern consisting of an NRZI encoding of 0-bits and 1-bits that does not
contain two consecutive 0-bits and which is not a valid Manchester encoding of data. Such a pattern could
thus could be used as a special non-data marker.

4.3 Epilog 147

An Introduction to Computer Networks, Release 1.9.21

3.5.♢ What is the 4B/5B encoding for the 3-byte string “Net”? (Hint: ‘N’ is 0100 1110.)

4.0. What three ASCII letters (bytes) are encoded by the following 4B/5B pattern? (Be careful about upper-
case vs lower-case.)

010110101001110101010111111110

5.0.(a) Suppose a device is forwarding SONET STS-1 frames. How much clock drift, as a percentage, on
the incoming line would mean that the output payload envelopes must slip backwards by one byte per three
physical frames? | (b). In 4.2.2 SONET it was claimed that sending 250 0-bits required a clock accurate to
within 1 part in 500. Describe how a SONET clock might meet the requirement of part (a) above, and yet
fail at this second requirement. (Hint: in part (a) the requirement is a long-term average).

148 4 Links

5 PACKETS

In this chapter we address a few abstract questions about packets, and take a close look at transmission
times. We also consider how big packets should be, and how to detect transmission errors. These issues are
independent of any particular set of protocols.

5.1 Packet Delay

There are several contributing sources to the delay encountered in transmitting a packet. On a LAN, the most
significant is usually what we will call bandwidth delay: the time needed for a sender to get the packet onto
the wire. This is simply the packet size divided by the bandwidth, after everything has been converted to
common units (either all bits or all bytes). For a 1500-byte packet on 100 Mbps Ethernet, the bandwidth
delay is 12,000 bits / (100 bits/µsec) = 120 µsec.

There is also propagation delay, relating to the propagation of the bits at the speed of light (for the transmis-
sion medium in question). This delay is the distance divided by the speed of light; for 1,000 m of Ethernet
cable, with a signal propagation speed of about 230 m/µsec, the propagation delay is about 4.3 µsec. That is,
if we start transmitting the 1500 byte packet of the previous paragraph at time T=0, then the first bit arrives
at a destination 1,000 m away at T = 4.3 µsec, and the last bit is transmitted at 120 µsec, and the last bit
arrives at T = 124.3 µsec.

Minimizing Delay

Back in the last century, gamers were sometimes known to take advantage of players with slow (as in
dialup) links; an opponent could be eliminated literally before he or she could respond. As an updated
take on this, some financial-trading firms have set up microwave-relay links between trading centers, say
New York and Chicago, in order to reduce delay. In computerized trading, milliseconds count. A direct
line of sight from New York to Chicago – which we round off to 1200 km – takes about 4 ms in air,
where signals propagate at essentially the speed of light c = 300 km/ms. But fiber is slower; even an
absolutely straight run would take 6 ms at glass fiber’s propagation speed of 200 km/ms. In the presence
of high-speed trading, this 2 ms savings is of considerable financial significance.

Bandwidth delay, in other words, tends to dominate within a LAN.

But as networks get larger, propagation delay begins to dominate. This also happens as networks get faster:
bandwidth delay goes down, but propagation delay remains unchanged.

An important difference between bandwidth delay and propagation delay is that bandwidth delay is propor-
tional to the amount of data sent while propagation delay is not. If we send two packets back-to-back, then
the bandwidth delay is doubled but the propagation delay counts only once.

The introduction of switches leads to store-and-forward delay, that is, the time spent reading in the entire
packet before any of it can be retransmitted. Store-and-forward delay can also be viewed as an additional
bandwidth delay for the second link.

149

An Introduction to Computer Networks, Release 1.9.21

Finally, a switch may or may not also introduce queuing delay; this will often depend on competing traffic.
We will look at this in more detail in 14 Dynamics of TCP, but for now note that a steady queuing delay (eg
due to a more-or-less constant average queue utilization) looks to each sender more like propagation delay
than bandwidth delay, in that if two packets are sent back-to-back and arrive that way at the queue, then the
pair will experience only a single queuing delay.

5.1.1 Delay examples

Case 1: A B

• Propagation delay is 40 µsec

• Bandwidth is 1 byte/µsec (1 MB/sec, 8 Mbit/sec)

• Packet size is 200 bytes (200 µsec bandwidth delay)

Then the total one-way transmit time for one packet is 240 µsec = 200 µsec + 40 µsec. To send two back-
to-back packets, the time rises to 440 µsec: we add one more bandwidth delay, but not another propagation
delay.

Case 2: A B

Like the previous example except that the propagation delay is increased to 4 ms

The total transmit time for one packet is now 4200 µsec = 200 µsec + 4000 µsec. For two packets it is 4400
µsec.

Case 3: A R B

We now have two links, each with propagation delay 40 µsec; bandwidth and packet size as in
Case 1.

The total transmit time for one 200-byte packet is now 480 µsec = 240 + 240. There are two propagation
delays of 40 µsec each; A introduces a bandwidth delay of 200 µsec and R introduces a store-and-forward
delay (or second bandwidth delay) of 200 µsec.

Case 4: A R B

The same as 3, but with data sent as two 100-byte packets

The total transmit time is now 380 µsec = 3x100 + 2x40. There are still two propagation delays, but there is
only 3/4 as much bandwidth delay because the transmission of the first 100 bytes on the second link overlaps
with the transmission of the second 100 bytes on the first link.

150 5 Packets

An Introduction to Computer Networks, Release 1.9.21

T=40

T=240

T=40

T=240

T=280

T=480

Case 1: one link Case 3: two links

Bandwidth delay 200 µsec, per-link propagation delay 40 µsec

T=40

T=240

T=280

T=380

Case 4: two half-sized packets

T=140

T=180

These ladder diagrams represent the full transmission; a snapshot state of the transmission at any one
instant can be obtained by drawing a horizontal line. In the middle, case 3, diagram, for example, at no
instant are both links active. Note that sending two smaller packets is faster than one large packet. We
expand on this important point below.

Now let us consider the situation when the propagation delay is the most significant component. The cross-
continental US roundtrip delay is typically around 50-100 ms (propagation speed 200 km/ms in cable, 5,000-
10,000 km cable route, or about 3-6000 miles); we will use 100 ms in the examples here. At a bandwidth
of 1.0 Mbps, 100ms is about 12 kB, or eight full-sized Ethernet packets. At this bandwidth, we would have
four packets and four returning ACKs strung out along the path. At 1.0 Gbit/s, in 100ms we can send 12,000
kB, or 800 Ethernet packets, before the first ACK returns.

At most non-LAN scales, the delay is typically simplified to the round-trip time, or RTT: the time between
sending a packet and receiving a response.

Different delay scenarios have implications for protocols: if a network is bandwidth-limited then protocols
are easier to design. Extra RTTs do not cost much, so we can build in a considerable amount of back-and-
forth exchange. However, if a network is delay-limited, the protocol designer must focus on minimizing
extra RTTs. As an extreme case, consider wireless transmission to the moon (0.3 sec RTT), or to Jupiter (1
hour RTT).

At my home I formerly had satellite Internet service, which had a roundtrip propagation delay of ~600 ms.
This is remarkably high when compared to purely terrestrial links.

When dealing with reasonably high-bandwidth “large-scale” networks (eg the Internet), to good approx-
imation most of the non-queuing delay is propagation, and so bandwidth and total delay are effectively
independent. Only when propagation delay is small are the two interrelated. Because propagation delay
dominates at this scale, we can often make simplifications when diagramming. In the illustration below, A
sends a data packet to B and receives a small ACK in return. In (a), we show the data packet traversing
several switches; in (b) we show the data packet as if it were sent along one long unswitched link, and in (c)
we introduce the idealization that bandwidth delay (and thus the width of the packet line) no longer matters.

5.1 Packet Delay 151

An Introduction to Computer Networks, Release 1.9.21

(Most later ladder diagrams in this book are of this type.)

5.1.2 Bandwidth ˆ Delay

The bandwidth ˆ delay product (usually involving round-trip delay, or RTT), represents how much we
can send before we hear anything back, or how much is “pending” in the network at any one time if we
send continuously. Note that, if we use RTT instead of one-way time, then half the “pending” packets will
be returning ACKs. Here are a few approximate values, where 100 ms can be taken as a typical inter-
continental-distance RTT:

RTT bandwidth bandwidth ˆ delay
1 ms 10 Mbps 1.2 kB
100 ms 1.5 Mbps 20 kB
100 ms 600 Mbps 8 MB
100 ms 1.5 Gbps 20 MB

5.2 Packet Delay Variability

For many links, the bandwidth delay and the propagation delay are rigidly fixed quantities, the former by the
bandwidth and the latter by the speed of light. This leaves queuing delay as the major source of variability.

This state of affairs lets us define RTTnoLoad to be the time it takes to transmit a packet from A to B, and
receive an acknowledgment back, with no queuing delay.

While this is often a reasonable approximation, it is not necessarily true that RTTnoLoad is always a fixed
quantity. There are several possible causes for RTT variability. On Ethernet and Wi-Fi networks there is an
initial “contention period” before transmission actually begins. Although this delay is related to waiting for
other senders, it is not exactly queuing delay, and a packet may encounter considerable delay here even if it

152 5 Packets

An Introduction to Computer Networks, Release 1.9.21

ends up being the first to be sent. For Wi-Fi in particular, the uncertainty introduced by collisions into packet
delivery times – even with no other senders competing – can complicate higher-level delay measurements.

It is also possible that different packets are routed via slightly different paths, leading to (hopefully) minor
variations in travel time, or are handled differently by different queues of a parallel-processing switch.

A link’s bandwidth, too, can vary dynamically. Imagine, for example, a T1 link comprised of the usual
24 DS0 channels, in which all channels not currently in use by voice calls are consolidated into a single
data channel. With eight callers, the data bandwidth would be cut by a third from 24 ˆ DS0 to 16 ˆ DS0.
Alternatively, perhaps routers are allowed to reserve a varying amount of bandwidth for high-priority traffic,
depending on demand, and so the bandwidth allocated to the best-effort traffic can vary. Perceived link
bandwidth can also vary over time if packets are compressed at the link layer, and some packets are able to
be compressed more than others.

Finally, if mobile nodes are involved, then the distance and thus the propagation delay can change. This can
be quite significant if one is communicating with a wireless device that is being taken on a cross-continental
road trip.

Despite these sources of fluctuation, we will usually assume that RTTnoLoad is fixed and well-defined, espe-
cially when we wish to focus on the queuing component of delay.

5.3 Packet Size

How big should packets be? Should they be large (eg 64 kB) or small (eg 48 bytes)?

The Ethernet answer to this question had to do with equitable sharing of the line: large packets would not
allow other senders timely access to transmit. In any network, this issue remains a concern.

On the other hand, large packets waste a smaller percentage of bandwidth on headers. However, in most of
the cases we will consider, this percentage does not exceed 10% (the VoIP/RTP example in 1.3 Packets is
an exception).

It turns out that if store-and-forward switches are involved, smaller packets have much better throughput.
The links on either side of the switch can be in use simultaneously, as in Case 4 of 5.1.1 Delay examples.
This is a very real effect, and has put a damper on interest in support for IP “jumbograms”. The ATM
protocol (intended for both voice and data) pushes this to an extreme, with packets with only 48 bytes of
data and 5 bytes of header.

As an example of this, consider a path from A to B with four switches and five links:

A R1 R2 R3 R4 B

Suppose we send either one big packet or five smaller packets. The relative times from A to B are illustrated
in the following figure:

5.3 Packet Size 153

An Introduction to Computer Networks, Release 1.9.21

R2 R4 B R3 R4R2R1A BR3R1A

One large packet over five links Five smaller packets over five links

The point is that we can take advantage of parallelism: while the R4–B link above is handling packet 1,
the R3–R4 link is handling packet 2 and the R2–R3 link is handling packet 3 and so on. The five smaller
packets would have five times the header capacity, but as long as headers are small relative to the data, this
is not a significant issue.

The sliding-windows algorithm, used by TCP, uses this idea as a continuous process: the sender sends a
continual stream of packets which travel link-by-link so that, in the full-capacity case, all links may be in
use at all times.

5.3.1 Error Rates and Packet Size

Packet size is also influenced, to a modest degree, by the transmission error rate. For relatively high error
rates, it turns out to be better to send smaller packets, because when an error does occur then the entire
packet containing it is lost.

Small error rates

Generally, if the bit error rate p is small, we can approximate the probability of error in an N-bit packet
as pˆN, rather than working out the exact answer (assuming bit-error independence) of 1 – (1–p)N. This
approximation works best if pˆN is also small. For the 1000-bit example here with p=1/10,000, the exact
value of the success rate is 90.4833% versus the pˆN approximation of 90%. For the 10,000-bit packet,
though, the pˆN approximation predicts a 100% chance of error, which is not very helpful at all.

For example, suppose that 1 bit in 10,000 is corrupted, at random, so the probability that a single bit is

154 5 Packets

An Introduction to Computer Networks, Release 1.9.21

transmitted correctly is 0.9999 (this is much higher than the error rates encountered on real networks). For a
1000-bit packet, the probability that every bit in the packet is transmitted correctly is (0.9999)1000, or about
90.5%. For a 10,000-bit packet the probability is (0.9999)10,000 » 37%. For 20,000-bit packets, the success
rate is below 14%.

Now suppose we have 1,000,000 bits to send, either as 1000-bit packets or as 20,000-bit packets. Nominally
this would require 1,000 of the smaller packets, but because of the 90% packet-success rate we will need to
retransmit 10% of these, or 100 packets. Some of the retransmissions may also be lost; the total number of
packets we expect to need to send is about 1,000/90% » 1,111, for a total of 1,111,000 bits sent. Next, let
us try this with the 20,000-bit packets. Here the success rate is so poor that each packet needs to be sent on
average seven times; lossless transmission would require 50 packets but we in fact need 7ˆ50 = 350 packets,
or 7,000,000 bits.

Moral: choose the packet size small enough that most packets do not encounter errors.

To be fair, very large packets can be sent reliably on most cable links (eg TDM and SONET). Wireless,
however, is more of a problem.

5.3.2 Packet Size and Real-Time Traffic

There is one other concern regarding excessive packet size. As we shall see in 20 Quality of Service, it
is common to commingle bulk traffic on the same links with real-time traffic. It is straightforward to give
priority to the real-time traffic in such a mix, meaning that a router does not begin forwarding a bulk-traffic
packet if there are any real-time packets waiting (we do need to be sure in this case that real-time traffic
will not amount to so much as to starve the bulk traffic). However, once a bulk-traffic packet has begun
transmission, it is impractical to interrupt it.

Therefore, one component of any maximum-delay bound for real-time traffic is the transmission time for
the largest bulk-traffic packet; we will call this the largest-packet delay. As a practical matter, most IPv4
packets are limited to the maximum Ethernet packet size of 1500 bytes, but IPv6 has an option for so-called
“jumbograms” up to 2 MB in size. Transmitting one such packet on a 100 Mbps link takes about 1/6 of a
second, which is likely too large for happy coexistence with real-time traffic.

5.4 Error Detection

The basic strategy for packet error detection is to add some extra bits – formally known as an error-detection
code – that will allow the receiver to determine if the packet has been corrupted in transit. A corrupted packet
will then be discarded by the receiver; higher layers do not distinguish between lost packets and those never
received. While packets lost due to bit errors occur much less frequently than packets lost due to queue
overflows, it is essential that data be received accurately.

Intermittent packet errors generally fall into two categories: low-frequency bit errors due to things like
cosmic rays, and interference errors, typically generated by nearby electrical equipment. Errors of the latter
type generally occur in bursts, with multiple bad bits per packet. Occasionally, a malfunctioning network
device will introduce bursty errors as well.

5.4 Error Detection 155

An Introduction to Computer Networks, Release 1.9.21

Networks v Refrigerators

At Loyola we once had a workstation used as a mainframe terminal that kept losing its connection. We
eventually noticed that the connection dropped every time the office refrigerator kicked on. Sure enough,
the cable ran directly behind the fridge; rerouting it solved the problem.

The simplest error-detection mechanism is a single parity bit; this will catch all one-bit errors. There is,
however, no straightforward generalization to N bits! That is, there is no N-bit error code that catches all
N-bit errors; see exercise 9.0.

The so-called Internet checksum, used by IP, TCP and UDP, is formed by taking the ones-complement sum
of the 16-bit words of the message. Ones-complement is an alternative way of representing signed integers
in binary; if one adds two positive integers and the sum does not overflow the hardware word size, then
ones-complement and the now-universal twos-complement are identical. To form the ones-complement sum
of 16-bit words A and B, first take the ordinary twos-complement sum A+B. Then, if there is an overflow
bit, add it back in as low-order bit. Thus, if the word size is 4 bits, the ones-complement sum of 0101 and
0011 is 1000 (no overflow). Now suppose we want the ones-complement sum of 0101 and 1100. First we
take the “exact” sum and get 1|0001, where the leftmost 1 is an overflow bit past the 4-bit wordsize. Because
of this overflow, we add this bit back in, and get 0010.

The 4-bit ones-complement numeric representation has two forms for zero: 0000 and 1111 (it is straightfor-
ward to verify that any 4-bit quantity plus 1111 yields the original quantity; in twos-complement notation
1111 represents -1, and an overflow is guaranteed, so adding back the overflow bit cancels the -1 and leaves
us with the original number). It is a fact that the ones-complement sum is never 0000 unless all bits of all
the summands are 0; if the summands add up to zero by coincidence, then the actual binary representation
will be 1111. This means that we can use 0000 in the checksum to represent “checksum not calculated”,
which the UDP protocol still allows over IPv4 for efficiency reasons. Over IPv6, UDP packets must include
a calculated checksum (RFC 2460, §8.1).

Ones’ complement

Long ago, before Loyola had any Internet connectivity, I wrote a primitive UDP/IP stack to allow me
to use the Ethernet to back up one machine that did not have TCP/IP to another machine that did. We
used “private” IP addresses of the form 10.0.0.x. I set as many header fields to zero as I could. I paid
no attention to how to implement ones-complement addition; I simply used twos-complement, for the IP
header only, and did not use a UDP checksum at all. Hey, it worked.

Then we got a real Class B address block 147.126.0.0/16, and changed IP addresses. My software no
longer worked. It turned out that, in the original version, the IP header bytes were all small enough that
when I added up the 16-bit words there were no carries, and so ones-complement was the same as twos-
complement. With the new addresses, this was no longer true. As soon as I figured out how to implement
ones-complement addition properly, my backups worked again.

Ones-complement addition has a few properties that make numerical calculations simpler. First, when
finding the ones-complement sum of a series of 16-bit values, we can defer adding in the overflow bits until
the end. Specifically, we can find the ones-complement sum of the values by adding them using ordinary
(twos-complement) 32-bit addition, and then forming the ones-complement sum of the upper and lower
16-bit half-words. The upper half-word here represents the accumulated overflow. See exercise 10.0.

156 5 Packets

https://tools.ietf.org/html/rfc2460.html

An Introduction to Computer Networks, Release 1.9.21

We can also find the ones-complement sum of a series of 16-bit values by concatenating them pairwise
into 32-bit values, taking the 32-bit ones-complement sum of these, and then, as in the previous paragraph,
forming the ones-complement sum of the upper and lower 16-bit half-words.

Somewhat surprisingly, when calculating the 16-bit ones-complement sum of a series of bytes taken two at
a time, it does not matter whether we convert the pairs of consecutive bytes to integers using big-endian or
little-endian byte order (11.1.5 Binary Data). The overflow from the low-order bytes is added to the high-
order bytes by virtue of ordinary carries in addition, and the overflow from the high-order bytes is added to
the low-order bytes by the ones-complement rule. See exercise 10.5.

Finally, there is another way to look at the (16-bit) ones-complement sum: it is in fact the remainder upon
dividing the message (seen as a very long binary number) by 216 - 1, provided we replace a remainder of 0
with the equivalent ones-complement zero value consisting of sixteen 1-bits. This is similar to the decimal
“casting out nines” rule: if we add up the digits of a base-10 number, and repeat the process until we get
a single digit, then that digit is the remainder upon dividing the original number by 10-1 = 9. The analogy
here is that the message is looked at as a very large number written in base-216, where the “digits” are the
16-bit words. The process of repeatedly adding up the “digits” until we get a single “digit” amounts to
taking the ones-complement sum of the words. This remainder approach to ones-complement addition isn’t
very practical, but it does provide a useful way to analyze ones-complement checksums mathematically.

A weakness of any error-detecting code based on sums is that transposing words leads to the same sum, and
the error is not detected. In particular, if a message is fragmented and the fragments are reassembled in the
wrong order, the ones-complement sum will likely not detect it.

While some error-detecting codes are better than others at detecting certain kinds of systematic errors (for
example, CRC, below, is usually better than the Internet checksum at detecting transposition errors), ulti-
mately the effectiveness of an error-detecting code depends on its length. Suppose a packet P1 is corrupted
randomly into P2, but still has its original N-bit error code EC(P1). This N-bit code will fail to detect the
error that has occurred if EC(P2) is, by chance, equal to EC(P1). The probability that two random N-bit
codes will match is 1/2N (though a small random change in P1 might not lead to a uniformly distributed
random change in EC(P1); see the tail end of the CRC section below).

This does not mean, however, that one packet in 2N will be received incorrectly, as most packets are error-
free. If we use a 16-bit error code, and only 1 packet in 100,000 is actually corrupted, then the rate at which
corrupted packets will sneak by is only 1 in 100,000 ˆ 65536, or about one in 6 ˆ 109. If packets are 1500
bytes, you have a good chance (90+%) of accurately transferring a terabyte, and a 37% chance (1/e) at ten
terabytes.

5.4.1 Cyclical Redundancy Check: CRC

The CRC error code is based on long division of polynomials, where the coefficients are integers modulo 2.
The use of polynomials tends to sound complicated but in fact it eliminates the need for carries or borrowing
in addition and subtraction. Together with the use of modulo-2 coefficients, this means that addition and
subtraction become equivalent to XOR. We treat the message, in binary, as a giant polynomial m(X), using
the bits of the message as successive coefficients (eg 10011011 = X7 + X4 + X3 + X + 1). We standardize
a divisor polynomial p(X) of degree N (N=32 for CRC-32 codes); the full specification of a given CRC
code requires giving this polynomial. (A full specification also requires spelling out the bit order within
bytes.) We append N 0-bits to m(X) (this is the polynomial XNm(X)), and divide the result by p(X). The
“checksum” is the remainder r(X), of maximum degree N–1 (that is, N bits).

5.4 Error Detection 157

An Introduction to Computer Networks, Release 1.9.21

This is a reasonably secure hash against real-world network corruption, in that it is very hard for systematic
errors to result in the same hash code. However, CRC is not secure against intentional corruption; given an
arbitrary message msg, there are straightforward algebraic means for tweaking the last bytes of msg so that
the CRC code of the result is equal to any predetermined value in the appropriate range.

As an example of CRC, suppose that the CRC divisor is 1011 (making this a CRC-3 code) and the message
is 1001 1011 1100. Here is the division; we repeatedly subtract (using XOR) a copy of the divisor 1011,
shifted so the leading 1 of the divisor lines up with the leading 1 of the previous difference. A 1 then goes
on the quotient line, lined up with the last digit of the shifted divisor; otherwise a 0. There are several online
calculators for this sort of thing, eg here. Note that an extra 000 has been appended to the dividend.

1 0100 1101 011

1011 1001 1011 1100 000
1011

010 1011 1100 000
10 11

00 0111 1100 000
101 1

010 0100 000
10 11

00 1000 000
1011

0011 000
10 11

01 110
1 011

0 101

The remainder, at the bottom, is 101; this is the N-bit CRC code. We then append the code to the original
message, that is, without the added zeroes: 1001 1011 1100 101; algebraically this is XNm(X) + r(X). This
is what is actually transmitted; if converted to a polynomial, it yields a remainder of zero upon division by
p(X). This slightly simplifies the receiver’s job of validating the CRC code: it just has to check that the
remainder is zero.

CRC is easily implemented in hardware, using bit-shifting registers. Fast software implementations are also
possible, usually involving handling the bits one byte at a time, with a precomputed lookup table with 256
entries.

If we randomly change enough bits in packet P1 to create P2, then CRC(P1) and CRC(P2) are effectively
independent random variables, with probability of a match 1 in 2N where N is the CRC length. However, if
we change just a few bits then the change is not so random. In particular, for many CRC codes (that is, for
many choices of the underlying polynomial p(X)), changing up to three bits in P1 to create a new message
P2 guarantees that CRC(P1)‰ CRC(P2). For the Internet checksum, this is not guaranteed even if we know
only two bits were changed.

158 5 Packets

http://www.ee.unb.ca/cgi-bin/tervo/calc.pl

An Introduction to Computer Networks, Release 1.9.21

Finally, there are also secure hashes, such as MD-5 and SHA-1 and their successors (22.6 Secure Hashes).
Nobody knows (or admits to knowing) how to produce two messages with same hash here. However, these
secure-hash codes are generally not used in network error-correction as they are much slower to calculate
than CRC; they are generally used only for secure authentication and other higher-level functions.

5.4.2 Error-Correcting Codes

If a link is noisy, we can add an error-correction code (also called forward error correction) that allows the
receiver in many cases to figure out which bits are corrupted, and fix them. This has the effect of improving
the bit error rate at a cost of reducing throughput. Error-correcting codes tend to involve many more bits than
are needed for error detection. Typically, if a communications technology proves to have an unacceptably
high bit-error rate (such as wireless), the next step is to introduce an error-correcting code to the protocol.
This generally reduces the “virtual” bit-error rate (that is, the error rate as corrected) to acceptable levels.

Perhaps the easiest error-correcting code to visualize is 2-D parity, for which we need O(N1/2) additional
bits. We take NˆN data bits and arrange them into a square; we then compute the parity for every column,
for every row, and for the entire square; this is 2N+1 extra bits. Here is a diagram with N=4, and with even
parity; the column-parity bits (in blue) are in the bottom (fifth) row and the row-parity bits (also in blue)
are in the rightmost (fifth) column. The parity bit for the entire 4ˆ4 data square is the light-blue bit in the
bottom right corner.

0 1 1 0 0

0 1 1 1 1

1 0 1 0 0

1 1 1 1 0

0 1 0 0 1

Now suppose one bit is corrupted; for simplicity, assume it is one of the data bits. Then exactly one column-
parity bit will be incorrect, and exactly one row-parity bit will be incorrect. These two incorrect bits mark
the column and row of the incorrect data bit, which we can then flip to the correct state.

We can make N large, but an essential requirement here is that there be only a single corrupted bit per square.
We are thus likely either to keep N small, or to choose a different code entirely that allows correction of
multiple bits. Either way, the addition of error-correcting codes can easily increase the size of a packet
significantly; some codes double or even triple the total number of bits sent.

5.4.2.1 Hamming Codes

The Hamming code is another popular error-correction code; it adds O(log N) additional bits, though if N is
large enough for this to be a material improvement over the O(N1/2) performance of 2-D parity then errors
must be very infrequent. If we have 8 data bits, let us number the bit positions 0 through 7. We then write
each bit’s position as a binary value between 000 and 111; we will call these the position bits of the given
data bit. We now add four code bits as follows:

5.4 Error Detection 159

An Introduction to Computer Networks, Release 1.9.21

1. a parity bit over all 8 data bits

2. a parity bit over those data bits for which the first digit of the position bits is 1 (these are positions 4,
5, 6 and 7)

3. a parity bit over those data bits for which the second digit of the position bits is 1 (these are positions
010, 011, 110 and 111, or 2, 3, 6 and 7)

4. a parity bit over those data bits for which the third digit of the position bits is 1 (these are positions
001, 011, 101, 111, or 1, 3, 5 and 7)

We can tell whether or not an error has occurred by the first code bit; the remaining three code bits then tell
us the respective three position bits of the incorrect bit. For example, if the #2 code bit above is correct, then
the first digit of the position bits is 0; otherwise it is one. With all three position bits, we have identified the
incorrect data bit.

As a concrete example, suppose the data word is 10110010. The four code bits are thus

1. 0, the (even) parity bit over all eight bits

2. 1, the parity bit over the second half, 10110010

3. 1, the parity bit over the bold bits: 10110010

4. 1, the parity bit over these bold bits: 10110010

If the received data+code is now 10111010 0111, with the bold bit flipped, then the fact that the first code
bit is wrong tells the receiver there was an error. The second code bit is also wrong, so the first bit of the
position bits must be 1. The third code bit is right, so the second bit of the position bits must be 0. The
fourth code bit is also right, so the third bit of the position bits is 0. The position bits are thus binary 100, or
4, and so the receiver knows that the incorrect bit is in position 4 (counting from 0) and can be flipped to the
correct state.

5.5 Epilog

The issues presented here are perhaps not very glamorous, and often play a supporting, behind-the-scenes
role in protocol design. Nonetheless, their influence is pervasive; we may even think of them as part of the
underlying “physics” of the Internet.

As the early Internet became faster, for example, and propagation delay became the dominant limiting
factor, protocols were often revised to limit the number of back-and-forth exchanges. A classic example is
the Simple Mail Transport Protocol (SMTP), amended by RFC 1854 to allow multiple commands to be sent
together – called pipelining – instead of individually.

While there have been periodic calls for large-packet support in IPv4, and IPv6 protocols exist for “jum-
bograms” in excess of a megabyte, these are very seldom used, due to the store-and-forward costs of large
packets as described in 5.3 Packet Size.

Almost every LAN-level protocol, from Ethernet to Wi-Fi to point-to-point links, incorporates an error-
detecting code chosen to reflect the underlying transportation reliability. Ethernet includes a 32-bit CRC
code, for example, while Wi-Fi includes extensive error-correcting codes due to the noisier wireless envi-
ronment. The Wi-Fi fragmentation option (3.7.1.5 Wi-Fi Fragmentation) is directly tied to 5.3.1 Error
Rates and Packet Size.

160 5 Packets

https://tools.ietf.org/html/rfc1854.html

An Introduction to Computer Networks, Release 1.9.21

5.6 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercises
marked with a ♢ have solutions or hints at 24.5 Solutions for Packets.

1.0. Suppose a link has a propagation delay of 20 µsec and a bandwidth of 2 bytes/µsec.

(a). How long would it take to transmit a 600-byte packet over such a link?
(b). How long would it take to transmit the 600-byte packet over two such links, with a store-and-forward
switch in between?

2.0. Suppose the path from A to B has a single switch S in between: A S B. Each link has a propaga-
tion delay of 60 µsec and a bandwidth of 2 bytes/µsec.

(a). How long would it take to send a single 600-byte packet from A to B?
(b). How long would it take to send two back-to-back 300-byte packets from A to B?
(c). How long would it take to send three back-to-back 200-byte packets from A to B?

3.0.♢ Repeat parts (a) and (b) of the previous exercise, except change the per-link propagation delay from
60 µsec to 600 µsec.

3.5. Suppose the path from A to B has a single switch S in between: A S B. The propagation delays
on the A–S and S–B are 24 µsec and 35 µsec respectively. The per-packet bandwidth delays on the A–S and
S–B links are 103 µsec and 157 µsec respectively. The ladder diagram below describes the sending of two
consecutive packets from A to B. Label the time intervals (a) through (e) at the right edge, and give the total
time for the packets to be sent.

5.6 Exercises 161

An Introduction to Computer Networks, Release 1.9.21

A S B

packet 1

packet 2

packet 1

packet 2

(a)

(b)

(c)

(d)

(e)

3.6. Now assume that the delays are the same as in exercise 3.5, except that the bandwidth delays are
reversed: the A–S bandwidth delay is 157 µsec and the S–B bandwidth delay is 103 µsec. The propagation
delays are unchanged. Draw the corresponding ladder diagram, and also the total time for two consecutive
packets to be sent. (Hint: the total time should not change.)

4.0. Again suppose the path from A to B has a single switch S in between: A S B. The per-link
bandwidth and propagation delays are as follows:

link bandwidth propagation delay
A S 5 bytes/µsec 24 µsec
S B 3 bytes/µsec 13 µsec

(a). How long would it take to send a single 600-byte packet from A to B?
(b). How long would it take to send two back-to-back 300-byte packets from A to B? Note that, because
the S B link is slower, packet 2 arrives at S from A before S has finished transmitting packet 1 to B.

5.0. Suppose in the previous exercise, the A–S link has the smaller bandwidth of 3 bytes/µsec and the S–B
link has the larger bandwidth of 5 bytes/µsec. The propagation delays are unchanged. Now how long does
it take to send two back-to-back 300-byte packets from A to B?

6.0. Suppose we have five links, A R1 R2 R3 R4 B. Each link has a bandwidth of 100
bytes/ms. Assume we model the per-link propagation delay as 0.

(a). How long would it take a single 1500-byte packet to go from A to B?
(b). How long would it take five consecutive 300-byte packets to go from A to B?

162 5 Packets

An Introduction to Computer Networks, Release 1.9.21

The diagram in 5.3 Packet Size may help.

7.0. Suppose there are N equal-bandwidth links on the path between A and B, as in the diagram below, and
we wish to send M consecutive packets.

A S1 . . . SN-1 B

Let BD be the bandwidth delay of a single packet on a single link, and assume the propagation delay on
each link is zero. Show that the total (bandwidth) delay is (M+N-1)ˆBD. Hint: the total time is the sum
of the time A takes to begin transmitting the last packet, and the time that last packet (or any other packet)
takes to travel from A to B. Show that the former is (M-1)ˆBD and the latter is NˆBD. Note that no packets
ever have to wait at any Si because the ith packet takes exactly as long to arrive as the (i-1)th packet takes to
depart.

8.0. Repeat the analysis in 5.3.1 Error Rates and Packet Size to compare the probable total number of bytes
that need to be sent to transmit 107 bytes using

(a). 1,000-byte packets
(b). 10,000-byte packets

Assume the bit error rate is 1 in 16 ˆ 105, making the error rate per byte about 1 in 2 ˆ 105.

9.0. In the text it is claimed “there is no N-bit error code that catches all N-bit errors” for Ně2 (for N=1, a
parity bit works). Prove this claim for N=2. Hint: pick a length M, and consider all M-bit messages with a
single 1-bit. Any such message can be converted to any other with a 2-bit error. Show, using the Pigeonhole
Principle, that for large enough M two messages m1 and m2 must have the same error code, that is, e(m1) =
e(m2). If this occurs, then the error code fails to detect the error that converted m1 into m2.

10.0. Consider the following four-bit numbers, with decimal values in parentheses:

1000 (8)
1011 (11)
1101 (13)
1110 (14)

The ones-complement sum of these can be found using the division method by treating these as a four-digit
hex number 0x8bde and taking the remainder mod 15; the result is 1.

(a). Find this ones-complement sum via three 4-bit ones-complement additions. To get started, note that the
(exact) sum of 1000 and 1011 is 1|0011, and adding the carry bit to the low-order 4 bits gives a
ones-complement sum of the first pair of 0100.
(b). The exact (and 8-bit twos-complement) sum of the values above is 46, or 10|1110 in binary. Find the
ones-complement sum of the values by taking this exact sum and then forming the ones-complement sum
of the 4-bit high and low halves. Note that this is not the same as the twos-complement sum of the halves.

10.5. Let [a,b] denote a pair of bytes a and b. The 16-bit integer corresponding to [a,b] using big-endian
conversion is aˆ256 + b; using little-endian conversion it is a + 256ˆb.

5.6 Exercises 163

http://en.wikipedia.org/wiki/Pigeonhole_principle
http://en.wikipedia.org/wiki/Pigeonhole_principle

An Introduction to Computer Networks, Release 1.9.21

(a). Find the ones-complement sum of [200,150] and [90,230] by using big-endian conversion to the
respective 16-bit integers 51,350 and 23,270. Convert back to two bytes, again using big-endian
conversion, at the end.
(b). Do the same using little-endian conversion, in which case the 16-bit integers are 38,600 and 58,970.

11.0. Suppose a message is 110010101. Calculate the CRC-3 checksum using the polynomial X3 + 1, that
is, find the 3-bit remainder using divisor 1001.

12.0. The CRC algorithm presented above requires that we process one bit at a time. It is possible to do the
algorithm N bits at a time (eg N=8), with a precomputed lookup table of size 2N. Complete the steps in the
following description of this strategy for N=3 and polynomial X3 + X + 1, or 1011.

13.0. Consider the following set of bits sent with 2-D even parity; the data bits are in the 4ˆ4 upper-left
block and the parity bits are in the rightmost column and bottom row. Which bit is corrupted?

1 1 0 1 1

0 1 0 0 1

1 1 1 1 1

1 0 0 1 0

1 1 1 0 1

14.0. (a) Show that 2-D parity can detect any three errors.
(b). Find four errors that cannot be detected by 2-D parity.
(c). Show that that 2-D parity cannot correct all two-bit errors. Hint: put both bits in the same row or
column.

15.0. Each of the following 8-bit messages with 4-bit Hamming code contains a single error. Correct the
message.

(a)♢. 10100010 0111
(b). 10111110 1011

16.0 (a) What happens in 2-D parity if the corrupted bit is in the parity column or parity row?
(b). In the following 8-bit message with 4-bit Hamming code, there is an error in the code portion. How
can this be determined?

1001 1110 0100

164 5 Packets

6 ABSTRACT SLIDING WINDOWS

In this chapter we take a general look at how to build reliable data-transport layers on top of unreliable
lower layers. This is achieved through a retransmit-on-timeout policy; that is, if a packet is transmitted
and there is no acknowledgment received during the timeout interval then the packet is resent. As a class,
protocols where one side implements retransmit-on-timeout are known as ARQ protocols, for Automatic
Repeat reQuest.

In addition to reliability, we also want to keep as many packets in transit as the network can support. The
strategy used to achieve this is known as sliding windows. It turns out that the sliding-windows algorithm
is also the key to managing congestion; we return to this in 13 TCP Reno and Congestion Management.

The End-to-End principle, 12.1 The End-to-End Principle, suggests that trying to achieve a reliable trans-
port layer by building reliability into a lower layer is a misguided approach; that is, implementing reliability
at the endpoints of a connection – as is described here – is in fact the correct mechanism.

6.1 Building Reliable Transport: Stop-and-Wait

Retransmit-on-timeout generally requires sequence numbering for the packets, though if a network path is
guaranteed not to reorder packets then it is safe to allow the sequence numbers to wrap around surprisingly
quickly (for stop-and-wait, a single-bit sequence number will work; see exercise 8.5). However, as the
no-reordering hypothesis does not apply to the Internet at large, we will assume conventional numbering.
Data[N] will be the Nth data packet, acknowledged by ACK[N].

In the stop-and-wait version of retransmit-on-timeout, the sender sends only one outstanding packet at a
time. If there is no response, the packet may be retransmitted, but the sender does not send Data[N+1] until
it has received ACK[N]. Of course, the receiving side will not send ACK[N] until it has received Data[N];
each side has only one packet in play at a time. In the absence of packet loss, this leads to the following:

165

An Introduction to Computer Networks, Release 1.9.21

Stop and Wait

Data 1

Ack 1

Data 2

Data 3

Ack 3

Ack 2

Data 4

Ack 4

6.1.1 Packet Loss

Lost packets, however, are a reality. The left half of the diagram below illustrates a lost Data packet, where
the sender is the host sending Data and the Receiver is the host sending ACKs. The receiver is not aware of
the loss; it sees Data[N] as simply slow to arrive.

166 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]

ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

6.1 Building Reliable Transport: Stop-and-Wait 167

An Introduction to Computer Networks, Release 1.9.21

At least one side must implement retransmit-on-timeout; otherwise a lost packet leads to deadlock as the
sender and the receiver both wait forever. The other side must implement at least one of retransmit-on-
duplicate or retransmit-on-timeout; usually the former alone. If both sides implement retransmit-on-timeout
with different timeout values, generally the protocol will still work.

6.1.2 Sorcerer’s Apprentice Bug

Sorcerer’s Apprentice

The Sorcerer’s Apprentice bug is named for the legend (in which the apprentice casts a spell on a broom
to carry water, one bucket at a time. When the basin is full, the apprentice chops the broom in half, only
to find both halves carrying water. An animated version of this appears in Disney’s _Fantasia_, set to the
music of Paul Dukas. I used to post a YouTube link here to the video, but Disney has blocked it. It may
still be findable online, though. Mickey Mouse chops the broom about five and a half minutes in from the
start of the music.

A strange thing happens if one side implements retransmit-on-timeout but both sides implement retransmit-
on-duplicate, as can happen if the implementer takes the naive view that retransmitting on duplicates is
“safer”; the moral here is that too much redundancy can be the Wrong Thing. Let us imagine that an im-
plementation uses this strategy (with the sender retransmitting on timeouts), and that the initial ACK[3] is
delayed until after Data[3] is retransmitted on timeout. In the following diagram, the only packet retrans-
mitted due to timeout is the second Data[3]; all the other duplications are due to the bilateral retransmit-on-
duplicate strategy.

168 6 Abstract Sliding Windows

https://en.wikipedia.org/wiki/The_Sorcerer%27s_Apprentice_(Dukas)

An Introduction to Computer Networks, Release 1.9.21

sender receiver

First Data[3]

Second Data[3]

First ACK[3], delayed

TIMEOUT

First Data[4]

Second ACK[3]

First ACK[4]

Second Data[4]

Second ACK[4]

First Data[5]

Second Data[5]

First ACK[5]

First ACK[4]

Second ACK[5]

...

The Sorcerer's Apprentice bug
First transmissions are in black
Second transmissions are in blue

All packets are sent twice from Data[3] on. The transfer completes normally, but takes double the normal
bandwidth. The usual fix is to have one side (usually the sender) retransmit on timeout only. TCP does this;
see 12.19 TCP Timeout and Retransmission. See also exercise 1.5.

6.1.3 Flow Control

Stop-and-wait also provides a simple form of flow control to prevent data from arriving at the receiver faster
than it can be handled. Assuming the time needed to process a received packet is less than one RTT, the
stop-and-wait mechanism will prevent data from arriving too fast. If the processing time is slightly larger
than RTT, all the receiver has to do is to wait to send ACK[N] until Data[N] has not only arrived but also
been processed, and the receiver is ready for Data[N+1].

For modest per-packet processing delays this works quite well, but if the processing delays are long it
introduces a new problem: Data[N] may time out and be retransmitted even though it has successfully been
received; the receiver cannot send an ACK until it has finished processing. One approach is to have two kinds
of ACKs: ACKWAIT[N] meaning that Data[N] has arrived but the receiver is not yet ready for Data[N+1],
and ACKGO[N] meaning that the sender may now send Data[N+1]. The receiver will send ACKWAIT[N]
when Data[N] arrives, and ACKGO[N] when it is done processing it.

Presumably we want the sender not to time out and retransmit Data[N] after ACKWAIT[N] is received, as
a retransmission would be unnecessary. This introduces a new problem: if the subsequent ACKGO[N] is
lost and neither side times out, the connection is deadlocked. The sender is waiting for ACKGO[N], which

6.1 Building Reliable Transport: Stop-and-Wait 169

An Introduction to Computer Networks, Release 1.9.21

is lost, and the receiver is waiting for Data[N+1], which the sender will not send until the lost ACKGO[N]
arrives. One solution is for the receiver to switch to a timeout model, perhaps until Data[N+1] is received.

TCP has a fix to the flow-control problem involving sender-side polling; see 12.17 TCP Flow Control.

6.2 Sliding Windows

Stop-and-wait is reliable but it is not very efficient (unless the path involves neither intermediate switches
nor significant propagation delay; that is, the path involves a single LAN link). Most links along a multi-hop
stop-and-wait path will be idle most of the time. During a file transfer, ideally we would like zero idleness
(at least along the slowest link; see 6.3 Linear Bottlenecks).

We can improve overall throughput by allowing the sender to continue to transmit, sending Data[N+1]
(and beyond) without waiting for ACK[N]. We cannot, however, allow the sender get too far ahead of the
returning ACKs. Packets sent too fast, as we shall see, simply end up waiting in queues, or, worse, dropped
from queues. If the links of the network have sufficient bandwidth, packets may also be dropped at the
receiving end.

Now that, say, Data[3] and Data[4] may be simultaneously in transit, we have to revisit what ACK[4] means:
does it mean that the receiver has received only Data[4], or does it mean both Data[3] and Data[4] have
arrived? We will assume the latter, that is, ACKs are cumulative: ACK[N] cannot be sent until Data[K] has
arrived for all KďN. With this understanding, if ACK[3] is lost then a later-arriving ACK[4] makes up for
it; without it, if ACK[3] is lost the only recovery is to retransmit Data[3].

The sender picks a window size, winsize. The basic idea of sliding windows is that the sender is allowed
to send this many packets before waiting for an ACK. More specifically, the sender keeps a state variable
last_ACKed, representing the last packet for which it has received an ACK from the other end; if data
packets are numbered starting from 1 then initially last_ACKed = 0.

Window Size

In this chapter we will assume winsize does not change. TCP, however, varies winsize up and down with
the goal of making it as large as possible without introducing congestion; we will return to this in 13 TCP
Reno and Congestion Management.

At any instant, the sender may send packets numbered last_ACKed + 1 through last_ACKed + winsize; this
packet range is known as the window. Generally, if the first link in the path is not the slowest one, the sender
will most of the time have sent all these.

If ACK[N] arrives with N > last_ACKed (typically N = last_ACKed+1), then the window slides forward; we
set last_ACKed = N. This also increments the upper edge of the window, and frees the sender to send more
packets. For example, with winsize = 4 and last_ACKed = 10, the window is [11,12,13,14]. If ACK[11]
arrives, the window slides forward to [12,13,14,15], freeing the sender to send Data[15]. If instead ACK[13]
arrives, then the window slides forward to [14,15,16,17] (recall that ACKs are cumulative), and three more
packets become eligible to be sent. If there is no packet reordering and no packet losses (and every packet
is ACKed individually) then the window will slide forward in units of one packet at a time; the next arriving
ACK will always be ACK[last_ACKed+1].

170 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

Note that the rate at which ACKs are returned will always be exactly equal to the rate at which the slowest
link is delivering packets. That is, if the slowest link (the “bottleneck” link) is delivering a packet every
50 ms, then the receiver will receive those packets every 50 ms and the ACKs will return at a rate of
one every 50 ms. Thus, new packets will be sent at an average rate exactly matching the delivery rate;
this is the sliding-windows self-clocking property. Self-clocking has the effect of reducing congestion by
automatically reducing the sender’s rate whenever the available fraction of the bottleneck bandwidth is
reduced.

Below is a video of sliding windows in action, with winsize = 5. (A link is here, if the embedded video does
not display properly, which will certainly be the case with non-html formats.) The nodes are labeled 0, 1
and 2. The second link, 1–2, has a capacity of five packets in transit either way, so one “flight” (windowful)
of five packets can exactly fill this link. The 0–1 link has a capacity of one packet in transit either way. The
video was prepared using the network animator, “nam”, described further in 16 Network Simulations: ns-2.

The first flight of five data packets leaves node 0 just after T=0, and leaves node 1 at around T=1 (in video
time). Subsequent flights are spaced about seven seconds apart. The tiny packets moving leftwards from
node 2 to node 0 represent ACKs; at the very beginning of the video one can see five returning ACKs from
the previous windowful. At any moment (except those instants where packets have just been received) there
are in principle five packets in transit, either being transmitted on a link as data, or being transmitted as an
ACK, or sitting in a queue (this last does not happen in this video). Due to occasional video artifacts, in
some frames not all the ACK packets are visible.

6.2.1 Bandwidth ˆ Delay

As indicated previously (5.1 Packet Delay), the bandwidth ˆ RTT product represents the amount of data
that can be sent before the first response is received. It plays a large role in the analysis of transport protocols.
In the literature the bandwidthˆdelay product is often abbreviated BDP.

The bandwidth ˆ RTT product is generally the optimum value for the window size. There is, however, one
catch: if a sender chooses winsize larger than this, then the RTT simply grows – due to queuing delays – to
the point that bandwidth ˆ RTT matches the chosen winsize. That is, a connection’s own traffic can inflate
RTTactual to well above RTTnoLoad; see 6.3.1.3 Case 3: winsize = 6 below for an example. For this reason, a
sender is often more interested in bandwidth ˆ RTTnoLoad, or, at the very least, the RTT before the sender’s
own packets had begun contributing to congestion.

We will sometimes refer to the bandwidth ˆ RTTnoLoad product as the transit capacity of the route. As
will become clearer below, a winsize smaller than this means underutilization of the network, while a larger
winsize means each packet spends time waiting in a queue somewhere.

Below are simplified diagrams for sliding windows with window sizes of 1, 4 and 6, each with a path
bandwidth of 6 packets/RTT (so bandwidth ˆ RTT = 6 packets). The diagram shows the initial packets sent
as a burst; these then would be spread out as they pass through the bottleneck link so that, after the first
burst, packet spacing is uniform. (Real sliding-windows protocols such as TCP generally attempt to avoid
such initial bursts.)

6.2 Sliding Windows 171

https://vimeo.com/150452468

An Introduction to Computer Networks, Release 1.9.21

Sliding Windows, bandwidth 6 packets/RTT

WinSize = 1 WinSize = 4 WinSize = 6

Data 1-4

Ack 1 / Data 5

Ack 2 / Data 6

Ack 3 / Data 7

Ack 4 / Data 8

Ack 5 / Data 9

Ack 6 / Data 10

Ack 7 / Data 11

Ack 8 / Data 12

Data 1-6

Data 1

Ack 1

Data 2

Data 3

Ack 3

Ack 2

Ack 1 / Data 7

Ack 2 / Data 8

Ack 3 / Data 9

Ack 4 / Data 10

Ack 5 / Data 11

Ack 6 / Data 12

Ack 7 / Data 13

Ack 8 / Data 14

Ack 9 / Data 15

Ack 10 / Data 16

With winsize=1 we send 1 packet per RTT; with winsize=4 we always average 4 packets per RTT. To put
this another way, the three window sizes lead to bottle-neck link utilizations of 1/6, 4/6 and 6/6 = 100%,
respectively.

While it is tempting to envision setting winsize to bandwidth ˆ RTT, in practice this can be complicated;
neither bandwidth nor RTT is constant. Available bandwidth can fluctuate in the presence of competing
traffic. As for RTT, if a sender sets winsize too large then the RTT is simply inflated to the point that
bandwidth ˆ RTT matches winsize; that is, a connection’s own traffic can inflate RTTactual to well above
RTTnoLoad. This happens even in the absence of competing traffic.

6.2.2 The Receiver Side

Perhaps surprisingly, sliding windows can work pretty well with the receiver assuming that winsize=1, even
if the sender is in fact using a much larger value. Each of the receivers in the diagrams above receives
Data[N] and responds with ACK[N]; the only difference with the larger sender winsize is that the Data[N]
arrive faster.

172 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

If we are using the sliding-windows algorithm over single links, we may assume packets are never reordered,
and a receiver winsize of 1 works quite well. Once switches are introduced, however, life becomes more
complicated (though some links may do link-level sliding-windows for per-link throughput optimization).

If packet reordering is a possibility, it is common for the receiver to use the same winsize as the sender.
This means that the receiver must be prepared to buffer a full window full of packets. If the window is
[11,12,13,14,15,16], for example, and Data[11] is delayed, then the receiver may have to buffer Data[12]
through Data[16].

Like the sender, the receiver will also maintain the state variable last_ACKed, though it will not be
completely synchronized with the sender’s version. At any instant, the receiver is willing to accept
Data[last_ACKed+1] through Data[last_ACKed+winsize]. For any but the first of these, the receiver must
buffer the arriving packet. If Data[last_ACKed+1] arrives, then the receiver should consult its buffers and
send back the largest cumulative ACK it can for the data received; for example, if the window is [11-16]
and Data[12], Data[13] and Data[15] are in the buffers, then on arrival of Data[11] the correct response is
ACK[13]. Data[11] fills the “gap”, and the receiver has now received everything up through Data[13]. The
new receive window is [14-19], and as soon as the ACK[13] reaches the sender that will be the new send
window as well.

6.2.3 Loss Recovery Under Sliding Windows

Suppose winsize = 4 and packet 5 is lost. It is quite possible that packets 6, 7, and 8 may have been received.
However, the only (cumulative) acknowledgment that can be sent back is ACK[4]; the sender does not
know how much of the windowful made it through. Because of the possibility that only Data[5] (or more
generally Data[last_ACKed+1]) is lost, and because losses are usually associated with congestion, when we
most especially do not wish to overburden the network, the sender will usually retransmit only the first lost
packet, eg packet 5. If packets 6, 7, and 8 were also lost, then after retransmission of Data[5] the sender
will receive ACK[5], and can assume that Data[6] now needs to be sent. However, if packets 6-8 did make
it through, then after retransmission the sender will receive back ACK[8], and so will know 6-8 do not need
retransmission and that the next packet to send is Data[9].

Normally Data[6] through Data[8] would time out shortly after Data[5] times out. After the first time-
out, however, sliding windows protocols generally suppress further timeout/retransmission responses until
recovery is more-or-less complete.

Once a full timeout has occurred, usually the sliding-windows process itself has ground to a halt, in that there
are usually no packets remaining in flight. This is sometimes described as pipeline drain. After recovery,
the sliding-windows process will have to start up again. Most implementations of TCP, as we shall see later,
implement a mechanism (“fast recovery”) for early detection of packet loss, before the pipeline has fully
drained.

6.3 Linear Bottlenecks

Consider the simple network path shown below, with bandwidths shown in packets/ms. The minimum
bandwidth, or path bandwidth, is 3 packets/ms.

6.3 Linear Bottlenecks 173

An Introduction to Computer Networks, Release 1.9.21

A R1
10 pkts/ms

R2
6 pkts/ms

R3 R4 B
3 pkts/ms 3 pkts/ms 8 pkts/ms

The slow links are R2–R3 and R3–R4. We will refer to the slowest link as the bottleneck link; if there are
(as here) ties for the slowest link, then the first such link is the bottleneck. The bottleneck link is where the
queue will form. If traffic is sent at a rate of 4 packets/ms from A to B, it will pile up in an ever-increasing
queue at R2. Traffic will not pile up at R3; it arrives at R3 at the same rate by which it departs.

Furthermore, if sliding windows is used (rather than a fixed-rate sender), traffic will eventually not queue up
at any router other than R2: data cannot reach B faster than the 3 packets/ms rate, and so B will not return
ACKs faster than this rate, and so A will eventually not send data faster than this rate. At this 3 packets/ms
rate, traffic will not pile up at R1 (or R3 or R4).

There is a significant advantage in speaking in terms of winsize rather than transmission rate. If A sends to
B at any rate greater than 3 packets/ms, then the situation is unstable as the bottleneck queue grows without
bound and there is no convergence to a steady state. There is no analogous instability, however, if A uses
sliding windows, even if the winsize chosen is quite large (although a large-enough winsize will overflow
the bottleneck queue). If a sender specifies a sending window size rather than a rate, then the network will
converge to a steady state in relatively short order; if a queue develops it will be steadily replenished at the
same rate that packets depart, and so will be of fixed size.

6.3.1 Simple fixed-window-size analysis

We will analyze the effect of window size on overall throughput and on RTT. Consider the following network
path, with bandwidths now labeled in packets/second.

A R1
infinitely fast

R2
1 pkt/sec

R3 R4 B
1 pkt/sec 1 pkt/sec 1 pkt/sec

We will assume that in the backward BÝÑA direction, all connections are infinitely fast, meaning zero
delay; this is often a good approximation because ACK packets are what travel in that direction and they
are negligibly small. In the AÝÑB direction, we will assume that the AÝÑR1 link is infinitely fast, but
the other four each have a bandwidth of 1 packet/second (and no propagation-delay component). This
makes the R1ÝÑR2 link the bottleneck link; any queue will now form at R1. The “path bandwidth” is 1
packet/second, and the RTT is 4 seconds.

As a roughly equivalent alternative example, we might use the following:

C S1
infinitely fast

S2
1 pkt/sec

D
1 pkt/sec

with the following assumptions: the C–S1 link is infinitely fast (zero delay), S1ÝÑS2 and S2ÝÑD each
take 1.0 sec bandwidth delay (so two packets take 2.0 sec, per link, etc), and ACKs also have a 1.0 sec

174 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

bandwidth delay in the reverse direction.

In both scenarios, if we send one packet, it takes 4.0 seconds for the ACK to return, on an idle network. This
means that the no-load delay, RTTnoLoad, is 4.0 seconds.

(These models will change significantly if we replace the 1 packet/sec bandwidth delay with a 1-second
propagation delay; in the former case, 2 packets take 2 seconds, while in the latter, 2 packets take 1 second.
See exercise 4.0.)

We assume a single connection is made; ie there is no competition. Bandwidth ˆ delay here is 4 packets (1
packet/sec ˆ 4 sec RTT)

6.3.1.1 Case 1: winsize = 2

In this case winsize < bandwidthˆdelay (where delay = RTT). The table below shows what is sent by A and
each of R1-R4 for each second. Every packet is acknowledged 4 seconds after it is sent; that is, RTTactual
= 4 sec, equal to RTTnoLoad; this will remain true as the winsize changes by small amounts (eg to 1 or 3).
Throughput is proportional to winsize: when winsize = 2, throughput is 2 packets in 4 seconds, or 2/4 =
1/2 packet/sec. During each second, two of the routers R1-R4 are idle. The overall path will have less than
100% utilization.

Time A R1 R1 R2 R3 R4 B
T sends queues sends sends sends sends ACKs
0 1,2 2 1
1 2 1
2 2 1
3 2 1
4 3 3 2 1
5 4 4 3 2
6 4 3
7 4 3
8 5 5 4 3
9 6 6 5 4

Note the brief pile-up at R1 (the bottleneck link!) on startup. However, in the steady state, there is no
queuing. Real sliding-windows protocols generally have some way of minimizing this “initial pileup”.

6.3.1.2 Case 2: winsize = 4

When winsize=4, at each second all four slow links are busy. There is again an initial burst leading to a brief
surge in the queue; RTTactual for Data[4] is 7 seconds. However, RTTactual for every subsequent packet is 4
seconds, and there are no queuing delays (and nothing in the queue) after T=2. The steady-state connection
throughput is 4 packets in 4 seconds, ie 1 packet/second. Note that overall path throughput now equals the
bottleneck-link bandwidth, so this is the best possible throughput.

6.3 Linear Bottlenecks 175

An Introduction to Computer Networks, Release 1.9.21

T A sends R1 queues R1 sends R2 sends R3 sends R4 sends B ACKs
0 1,2,3,4 2,3,4 1
1 3,4 2 1
2 4 3 2 1
3 4 3 2 1
4 5 5 4 3 2 1
5 6 6 5 4 3 2
6 7 7 6 5 4 3
7 8 8 7 6 5 4
8 9 9 8 7 6 5

At T=4, R1 has just finished sending Data[4] as Data[5] arrives from A; R1 can begin sending packet 5
immediately. No queue will develop.

Case 2 is the “congestion knee” of Chiu and Jain [CJ89], defined here in 1.7 Congestion.

6.3.1.3 Case 3: winsize = 6

T A sends R1 queues R1 sends R2 sends R3 sends R4 sends B ACKs
0 1,2,3,4,5,6 2,3,4,5,6 1
1 3,4,5,6 2 1
2 4,5,6 3 2 1
3 5,6 4 3 2 1
4 7 6,7 5 4 3 2 1
5 8 7,8 6 5 4 3 2
6 9 8,9 7 6 5 4 3
7 10 9,10 8 7 6 5 4
8 11 10,11 9 8 7 6 5
9 12 11,12 10 9 8 7 6
10 13 12,13 11 10 9 8 7

Note that packet 7 is sent at T=4 and the acknowledgment is received at T=10, for an RTT of 6.0 seconds. All
later packets have the same RTTactual. That is, the RTT has risen from RTTnoLoad = 4 seconds to 6 seconds.
Note that we continue to send one windowful each RTT; that is, the throughput is still winsize/RTT, but RTT
is now 6 seconds.

One might initially conjecture that if winsize is greater than the bandwidthˆRTTnoLoad product, then the
entire window cannot be in transit at one time. In fact this is not the case; the sender does usually have the
entire window sent and in transit, but RTT has been inflated so it appears to the sender that winsize equals
the bandwidthˆRTT product.

In general, whenever winsize > bandwidthˆRTTnoLoad, what happens is that the extra packets pile up at
a router somewhere along the path (specifically, at the router in front of the bottleneck link). RTTactual is
inflated by queuing delay to winsize/bandwidth, where bandwidth is that of the bottleneck link; this means
winsize = bandwidthˆRTTactual. Total throughput is equal to that bandwidth. Of the 6 seconds of RTTactual
in the example here, a packet spends 4 of those seconds being transmitted on one link or another because

176 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

RTTnoLoad=4. The other two seconds, therefore, must be spent in a queue; there is no other place for packets
wait. Looking at the table, we see that each second there are indeed two packets in the queue at R1.

If the bottleneck link is the very first link, packets may begin returning before the sender has sent the entire
windowful. In this case we may argue that the full windowful has at least been queued by the sender, and
thus has in this sense been “sent”. Suppose the network, for example, is

A R1
1 pkt/sec

R2 R3 B
1 pkt/sec 1 pkt/sec 1 pkt/sec

where, as before, each link transports 1 packet/sec from A to B and is infinitely fast in the reverse direction.
Then, if A sets winsize = 6, a queue of 2 packets will form at A.

6.3.2 RTT Calculations

We can make some quantitative observations of sliding windows behavior, and about queue utilization. First,
we note that RTTnoLoad is the physical “travel” time (subject to the limitations addressed in 5.2 Packet
Delay Variability); any time in excess of RTTnoLoad is spent waiting in a queue somewhere. Therefore, the
following holds regardless of competing traffic, and even for individual packets:

1. queue_time = RTTactual – RTTnoLoad

When the bottleneck link is saturated, that is, is always busy, the number of packets actually in transit (not
queued) somewhere along the path will always be bandwidth ˆ RTTnoLoad.

Second, we always send exactly one windowful per actual RTT, assuming no losses and each packet is
individually acknowledged. This is perhaps best understood by examining the diagrams above, but here is a
simple non-visual argument: if we send Data[N] at time TD, and ACK[N] arrives at time TA, then RTT = TA
– TD, by definition. At time TA the sender is allowed to send Data[N+winsize], so during the RTT interval
TD ď T < TA the sender must have sent Data[N] through Data[N+winsize-1]; that is, winsize many packets
in time RTT. Therefore (whether or not there is competing traffic) we always have

2. throughput = winsize/RTTactual

where “throughput” is the rate at which the connection is sending packets.

This relationship holds even if winsize or the bottleneck bandwidth changes suddenly, though in that case
RTTactual might change from one packet to the next, and the throughput here must be seen as a measurement
averaged over the RTT of one specific packet. If the sender doubles its winsize, those extra packets will
immediately end up in a queue somewhere (perhaps a queue at the sender itself, though this is why in
examples it is often clearer if the first link has infinite bandwidth so as to prevent this). If the bottleneck
bandwidth is cut in half without changing winsize, eventually the RTT must rise due to queuing. See exercise
12.0.

In the sliding windows steady state, where throughput and RTTactual are reasonably constant, the average
number of packets in the queue is just throughputˆqueue_time (where throughput is measured in pack-
ets/sec):

3. queue_usage = throughput ˆ (RTTactual – RTTnoLoad)
= winsize ˆ (1 – RTTnoLoad/RTTactual)

6.3 Linear Bottlenecks 177

An Introduction to Computer Networks, Release 1.9.21

To give a little more detail making the averaging perhaps clearer, each packet spends time (RTTactual –
RTTnoLoad) in the queue, from equation 1 above. The total time spent by a windowful of packets is winsize
ˆ (RTTactual – RTTnoLoad), and dividing this by RTTactual thus gives the average number of packets in the
queue over the RTT interval in question.

In the presence of competing traffic, the throughput referred to above is simply the connection’s current
share of the total bandwidth. It is the value we get if we measure the rate of returning ACKs. If there is
no competing traffic and winsize is below the congestion knee – winsize < bandwidth ˆ RTTnoLoad – then
winsize is the limiting factor in throughput. Finally, if there is no competition and winsize ě bandwidth ˆ
RTTnoLoad then the connection is using 100% of the capacity of the bottleneck link and throughput is equal
to the bottleneck-link physical bandwidth. To put this another way,

4. RTTactual = winsize/bottleneck_bandwidth

queue_usage = winsize – bandwidth ˆ RTTnoLoad

Dividing the first equation by RTTnoLoad, and noting that bandwidth ˆ RTTnoLoad = winsize - queue_usage
= transit_capacity, we get

5. RTTactual/RTTnoLoad = winsize/transit_capacity = (transit_capacity + queue_usage) / tran-
sit_capacity

Regardless of the value of winsize, in the steady state the sender never sends faster than the bottleneck
bandwidth. This is because the bottleneck bandwidth determines the rate of packets arriving at the far
end, which in turn determines the rate of ACKs arriving back at the sender, which in turn determines the
continued sending rate. This illustrates the self-clocking nature of sliding windows.

We will return in 14 Dynamics of TCP to the issue of bandwidth in the presence of competing traffic.
For now, suppose a sliding-windows sender has winsize > bandwidth ˆ RTTnoLoad, leading as above to a
fixed amount of queue usage, and no competition. Then another connection starts up and competes for the
bottleneck link. The first connection’s effective bandwidth will thus decrease. This means that bandwidth ˆ
RTTnoLoad will decrease, and hence the connection’s queue usage will increase.

6.3.3 Graphs at the Congestion Knee

Consider the following graphs of winsize versus

1. throughput

2. delay

3. queue utilization

178 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

winsize winsize winsize

delay
queue
utilization

Graphs of winsize versus throughput, delay and queue utilization.
Vertical dashed line represents winsize = bandwidth x no-load delay

T
h
r
o
u
g
h
p
u
t

The critical winsize value is equal to bandwidth ˆ RTTnoLoad; this is known as the congestion knee. For
winsize below this, we have:

• throughput is proportional to winsize

• delay is constant

• queue utilization in the steady state is zero

For winsize larger than the knee, we have

• throughput is constant (equal to the bottleneck bandwidth)

• delay increases linearly with winsize

• queue utilization increases linearly with winsize

Ideally, winsize will be at the critical knee. However, the exact value varies with time: available bandwidth
changes due to the starting and stopping of competing traffic, and RTT changes due to queuing. Standard
TCP makes an effort to stay well above the knee much of the time, presumably on the theory that maximizing
throughput is more important than minimizing queue use.

The power of a connection is defined to be throughput/RTT. For sliding windows below the knee, RTT is
constant and power is proportional to the window size. For sliding windows above the knee, throughput is
constant and delay is proportional to winsize; power is thus proportional to 1/winsize. Here is a graph, akin
to those above, of winsize versus power:

power

winsize

6.3 Linear Bottlenecks 179

An Introduction to Computer Networks, Release 1.9.21

6.3.4 Simple Packet-Based Sliding-Windows Implementation

Here is a pseudocode outline of the receiver side of a sliding-windows implementation, ignoring lost packets
and timeouts. We abbreviate as follows:

W: winsize
LA: last_ACKed

Thus, the next packet expected is LA+1 and the window is [LA+1, . . . , LA+W]. We have a data structure
EarlyArrivals in which we can place packets that cannot yet be delivered to the receiving application.

Upon arrival of Data[M]:

if MďLA or M>LA+W, ignore the packet
if M>LA+1, put the packet into EarlyArrivals.
if M==LA+1:

deliver the packet (that is, Data[LA+1]) to the application
LA = LA+1 (slide window forward by 1)
while (Data[LA+1] is in EarlyArrivals) {

output Data[LA+1]
LA = LA+1

}
send ACK[LA]

A possible implementation of EarlyArrivals is as an array of packet objects, of size W. We always put packet
Data[M] into position M % W.

At any point between packet arrivals, Data[LA+1] is not in EarlyArrivals, but some later packets may be
present.

For the sender side, we begin by sending a full windowful of packets Data[1] through Data[W], and set-
ting LA=0. When ACK[M] arrives, LA<MďLA+W, the window slides forward from [LA+1. . . LA+W] to
[M+1. . . M+W], and we are now allowed to send Data[LA+W+1] through Data[M+W]. The simplest case
is M=LA+1.

Upon arrival of ACK[M]:

if MďLA or M>LA+W, ignore the packet
otherwise:

set K = LA+W+1, the first packet just above the old window
set LA = M, just below the bottom of the new window
for (i=K; iďLA+W; i++) send Data[i]

Note that new ACKs may arrive while we are in the loop at the last line. We assume here that the sender
stolidly sends what it may send and only after that does it start to process additional arriving ACKs. Some
implementations may take a more asynchronous approach, perhaps with one thread processing arriving
ACKs and incrementing LA and another thread sending everything it is allowed to send.

To add support for timeout and retransmission, each transmitted packet would need to be stored, together
with the time it was sent. Periodically this collection of stored packets must then be scanned, looking for

180 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

packets for which send_time + timeout_interval ď current_time; those packets get retrans-
mitted. When a packet Data[N] is acknowledged (perhaps by an ACK[M] for M>N), it can be deleted.

6.4 Epilog

This completes our discussion of the sliding-windows algorithm in the abstract setting. We will return to
concrete implementations of this in 11.4.1 TFTP and the Sorcerer (stop-and-wait) and in 12.14 TCP
Sliding Windows; the latter is one of the most important mechanisms on the Internet.

6.5 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
1.5 is distinct, for example, from exercises 1.0 and 2.0. Exercises marked with a ♢ have solutions or hints
at 24.6 Solutions for Sliding Windows.

1.0 Sketch a ladder diagram for stop-and-wait if Data[3] is lost the first time it is sent, assuming no sender
timeout (but the sender retransmits on duplicate), and a receiver timeout of 2 seconds. Continue the diagram
to the point where Data[4] is successfully transmitted. Assume an RTT of 1 second.

1.5 Re-draw the Sorcerer’s Apprentice diagram of 6.1.2 Sorcerer’s Apprentice Bug, assuming the sender
now does not retransmit on duplicates, though the receiver still does. ACK[3] is, as before, delayed until the
sender retransmits Data[3].

2.0 Suppose a stop-and-wait receiver has an implementation flaw. When Data[1] arrives, ACK[1] and
ACK[2] are sent, separated by a brief interval; after that, the receiver transmits ACK[N+1] when Data[N]
arrives, rather than the correct ACK[N].

(a). Draw a diagram, including at least three RTTs. Assume no packets are lost.
(b). What is the average throughput, in data packets per RTT? (For normal stop-and-wait, the average
throughput is 1.)
(c). Is there anything the sender can do to detect this receiver behavior before the final packet, assuming no
packets are lost and that the sender must respond to each ACK as soon as it arrives?

(Note that if a Data packet is lost, the receiver may already have acknowledged it, which creates a problem.)

2.5♢ Consider the alternative model of 6.3.1 Simple fixed-window-size analysis:

C S1
infinitely fast

S2
1 pkt/sec

D
1 pkt/sec

(a). Using the formulas of 6.3.2 RTT Calculations, calculate the steady-state queue usage for a window
size of 6.

6.4 Epilog 181

An Introduction to Computer Networks, Release 1.9.21

(b). Again for a window size of 6, create a table like those in 6.3.1 Simple fixed-window-size analysis up
through T=8 seconds.

3.0 Create a table as in 6.3.1 Simple fixed-window-size analysis for the original
A R1 R2 R3 R4 B network with winsize = 8. As in the text examples, assume 1
packet/sec bandwidth delay for the R1ÝÑR2, R2ÝÑR3, R3ÝÑR4 and R4ÝÑB links. The A–R1 link and
all reverse links (from B to A) are infinitely fast. Carry out the table for 10 seconds.

4.0 Create a table as in 6.3.1 Simple fixed-window-size analysis for a network A R1 R2 B. The
A–R1 ink is infinitely fast; the R1–R2 and R2–B each have a 1-second propagation delay, in each direction,
and zero bandwidth delay (that is, one packet takes 1.0 sec to travel from R1 to R2; two packets also take
1.0 sec to travel from R1 to R2). Assume winsize=6. Carry out the table for 8 seconds. Note that with zero
bandwidth delay, multiple packets sent together will remain together until the destination; propagation delay
behaves very differently from bandwidth delay!

5.0 Suppose RTTnoLoad = 4 seconds and the bottleneck bandwidth is 1 packet every 2 seconds.

(a). What window size is needed to remain just at the knee of congestion?
(b). Suppose winsize=6. What is the eventual value of RTTactual?
(c). Again with winsize=6, how many packets are in the queue at the steady state?

6.0 Create a table as in 6.3.1 Simple fixed-window-size analysis for a network A R1 R2 R3 B.
The A–R1 link is infinitely fast. The R1–R2 and R3–B links have a bandwidth delay of 1 packet/second
with no additional propagation delay. The R2–R3 link has a bandwidth delay of 1 packet / 2 seconds, and
no propagation delay. The reverse BÝÑA direction (for ACKs) is infinitely fast. Assume winsize = 6.

(a). Carry out the table for 10 seconds. Note that you will need to show the queue for both R1 and R2.
(b). Continue the table at least partially until T=18, in sufficient detail that you can verify that RTTactual for
packet 8 is as calculated in exercise 5.0. To do this you will need more than 10 packets, but fewer than 16;
the use of hex labels A, B, C for packets 10, 11, 12 is a convenient notation.

Hint: The column for “R2 sends” (or, more accurately, “R2 is in the process of sending”) should look like
this:

T R2 sends
0
1 1
2 1
3 2
4 2
5 3
6 3
.

182 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

6.5 Create a table as in 6.3.1 Simple fixed-window-size analysis for a network A R1 R2 B. The
A–R1 link is infinitely fast. The R1–R2 link has a bandwidth delay of 1 packet / 2 seconds and the R2–B link
has a bandwidth delay of 1 packet/second, each with no additional propagation delay. The reverse BÝÑA
direction (for ACKs) is infinitely fast. Assume winsize = 4. Recommended columns are Time, “A sends”,
“R1 queues”, “R1 sends”, “R2 sends” and “B Acks”. Hint: the “R1 sends” column will look like the “R2
sends” column for the hint in the previous problem, except it will start at T=0 rather than T=1.

Note that bandwidthˆ RTTnoLoad = 1/2ˆ 3 = 1.5, and so, by 6.3.2 RTT Calculations equation 4, the queue
utilization will be 4 – 1.5 = 2.5.

(a). Carry out the table for 8 seconds.
(b). In the steady state, does R1 have 2.5 packets in the queue? If so, what is meant by half a packet?

7.0 Argue that, if A sends to B using sliding windows, and in the path from A to B the slowest link is not
the first link out of A, then eventually A will have the entire window outstanding (except at the instant just
after each new ACK comes in).

7.5♢ Suppose RTTnoLoad is 100 ms and the available bandwidth is 1,000 packets/sec. Sliding windows is
used.

(a). What is the transit capacity for the connection?
(b). If RTTactual rises to 130 ms (due to use of a larger winsize), how many packets are in a queue at any
one time?
(c). If winsize increases by 50, what is RTTactual?

8.0 Suppose RTTnoLoad is 50 ms and the available bandwidth is 2,000 packets/sec. Sliding windows is used
for transmission.

(a). What window size is needed to remain just at the knee of congestion?
(b). If RTTactual rises to 60 ms (due to use of a larger winsize), how many packets are in a queue at any one
time?
(c). What value of winsize would lead to RTTactual = 60 ms?
(d). What value of winsize would make RTTactual rise to 100 ms?

8.5 Suppose stop-and-wait is used (winsize=1), and assume that while packets may be lost, they are never
reordered (that is, if two packets P1 and P2 are sent in that order, and both arrive, then they arrive in that
order). Show that at the point the receiver is waiting for Data[N], the only two packet arrivals possible are
Data[N] and Data[N-1]. (A consequence is that, in the absence of reordering, stop-and-wait can make do
with 1-bit packet sequence numbers.) Hint: if the receiver is waiting for Data[N], it must have just received
Data[N-1] and sent ACK[N-1]. Also, once the sender has sent Data[N], it will never transmit a Data[K] with
K<N.

6.5 Exercises 183

An Introduction to Computer Networks, Release 1.9.21

‹9.0♢ Suppose winsize=4 in a sliding-windows connection, and assume that while packets may be lost, they
are never reordered (that is, if two packets P1 and P2 are sent in that order, and both arrive, then they arrive
in that order). Show that if Data[8] is in the receiver’s window (meaning that everything up through Data[4]
has been received and acknowledged), then it is no longer possible for even a late Data[0] to arrive at the
receiver. (A consequence of the general principle here is that – in the absence of reordering – we can replace
the packet sequence number with (sequence_number) mod (2ˆwinsize+1) without ambiguity.)

10.0 Suppose winsize=4 in a sliding-windows connection, and assume as in the previous exercise that while
packets may be lost, they are never reordered. Give an example in which Data[8] is in the receiver’s window
(so the receiver has presumably sent ACK[4]), and yet Data[1] legitimately arrives. (Thus, the late-packet
bound in the previous exercise is the best possible.)

11.0 Suppose the network is A R1 R2 B, where the A–R1 ink is infinitely fast and the R1–R2
link has a bandwidth of 1 packet/second each way, for an RTTnoLoad of 2 seconds. Suppose also that A
begins sending with winsize = 6. By the analysis in 6.3.1.3 Case 3: winsize = 6, RTT should rise to
winsize/bandwidth = 6 seconds. Give the RTTs of the first eight packets. How long does it take for RTT to
rise to 6 seconds?

12.0 In this exercise we look at the relationship between bottleneck bandwidth and winsize/RTTactual when
the former changes suddenly. Suppose the network is as follows

A R1 R2 R3 B

The A R1 link is infinitely fast. The R1ÑR2 link has a 1 packet/sec bandwidth delay in the R1ÑR2
direction. The remaining links R2ÑR3 and R3ÑB have a 1 sec bandwidth delay in the direction indicated.
ACK packets, being small, travel instantaneously from B back to A.

A sends to B using a winsize of three. Three packets P0, P1 and P2 are sent at times T=0, T=1 and T=2
respectively.

At T=3, P0 arrives at B. At this instant the R1ÑR2 bandwidth is suddenly halved to 1 packet / 2 sec; P3 is
transmitted at T=3 and arrives at R2 at T=5. It will arrive at B at T=7.

(a). Complete the following table of packet arrival times

T A sends R1’s queue R1 sends R2 sends R3 sends B recvs/ACKs
2 P2 P2 P1 P0
3 P3 P3 P2 P1 P0
4 P4 P4 P3 cont P2 P1
5 P5 P5 P4 P3 P2
6 P5 P4 cont P3
7 P6 P3
8
9 P7
10
11 P8

184 6 Abstract Sliding Windows

An Introduction to Computer Networks, Release 1.9.21

(b). For each of P2, P3, P4 and P5, calculate the througput given by winsize/RTT over the course of that
packet’s round trip. Obtain each packet’s RTT from the completed table above.

(c). Once the steady state is reached in which RTTactual = 6, how much time does each packet spend in
transit? How much time does each packet spend in R1’s queue?

6.5 Exercises 185

An Introduction to Computer Networks, Release 1.9.21

186 6 Abstract Sliding Windows

7 IP VERSION 4

There are multiple LAN protocols below the IP layer and multiple transport protocols above, but IP itself
stands alone. The Internet is essentially the IP Internet. If you want to run your own LAN protocol some-
where, or if you want to run your own transport protocol, the Internet backbone will still work just fine for
you. But if you want to change the IP layer, you will encounter difficulty. (Just talk to the IPv6 people, or
the IP-multicasting or IP-reservations groups.)

Currently the Internet uses (mostly, but no longer quite exclusively) IP version 4, with its 32-bit address
size. As the Internet has run out of new large blocks of IPv4 addresses (1.10 IP - Internet Protocol), there
is increasing pressure to convert to IPv6, with its 128-bit address size. Progress has been slow, however,
and delaying tactics such as IPv4-address markets and NAT (7.7 Network Address Translation) – by which
multiple hosts can share a single public IPv4 address – have allowed IPv4 to continue. Aside from the major
change in address structure, there are relatively few differences in the routing models of IPv4 and IPv6. We
will study IPv4 in this chapter and IPv6 in the following; at points where the IPv4/IPv6 difference doesn’t
much matter we will simply write “IP”.

IPv4 (and IPv6) is, in effect, a universal routing and addressing protocol. Routing and addressing are
developed together; every node has an IP address and every router knows how to handle IP addresses. IP
was originally seen as a way to interconnect multiple LANs, but it may make more sense now to view IP as
a virtual LAN overlaying all the physical LANs.

A crucial aspect of IP is its scalability. As of 2019 the Internet had over 109 hosts; this estimate is probably
low. However, at the same time the size of the largest forwarding tables was still under 106 (10.6.5 BGP
Table Size). Ethernet, in comparison, scales poorly, as the forwarding tables need one entry for every active
host.

How many IPv4 hosts are there?

Counting the size of the Internet is not easy. The Internet Systems Consortium used to run a survey based
on DNS; it reached one billion hosts in 2012 and leveled off there. But not all devices get a DNS entry;
behind NAT routers, few do. According to InternetLiveStats.com, as of 2019 there were four billion
Internet users, about 50% of the world’s population, counting an “Internet user” as someone who could
access the Internet in their own home. Facebook reported 2.4 billion monthly active users in June 2019.

Furthermore, IP, unlike Ethernet, offers excellent support for multiple redundant links. If the network
below were an IP network, each node would communicate with each immediate neighbor via their shared
direct link. If, on the other hand, this were an Ethernet network with the spanning-tree algorithm, then one
of the four links would simply be disabled completely.

187

https://www.isc.org
https://www.isc.org/survey
https://www.internetlivestats.com/internet-users/
https://newsroom.fb.com/company-info

An Introduction to Computer Networks, Release 1.9.21

A

C D

B

The IP network service model is to act like a giant LAN. That is, there are no acknowledgments; delivery
is generally described as best-effort. This design choice is perhaps surprising, but it has also been quite
fruitful.

If you want to provide a universal service for delivering any packet anywhere, what else do you need besides
routing and addressing? Every network (LAN) needs to be able to carry any packet. The protocols spell
out the use of octets (bytes), so the only possible compatibility issue is that a packet is too large for a given
network. IPv4 handles this by supporting fragmentation: a network may break a too-large packet up into
units it can transport successfully. While IPv4 fragmentation is inefficient and clumsy, it does guarantee that
any packet can potentially be delivered to any node. (Note, however, that IPv6 has given up on universal
fragmentation; 8.5.4 IPv6 Fragment Header.)

7.1 The IPv4 Header

The IPv4 Header needs to contain the following information:

• destination and source addresses

• indication of ipv4 versus ipv6

• a Time To Live (TTL) value, to prevent infinite routing loops

• a field indicating what comes next in the packet (eg TCP v UDP)

• fields supporting fragmentation and reassembly.

The header is organized as a series of 32-bit words as follows:

Version Total LengthIHL

Fragment Offset

Time to Live

ECN

Identification Flags

DS field

Header ChecksumProtocol

Source Address

Destination Address

IPv4 Options (0-10 rows) Padding

8 160 24 32

The IPv4 header, and basics of IPv4 protocol operation, were originally defined in RFC 791; some minor
changes have since occurred. Most of these changes were documented in RFC 1122, though the DS field

188 7 IP version 4

https://tools.ietf.org/html/rfc791.html
https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

was defined in RFC 2474 and the ECN bits were first proposed in RFC 2481.

The Version field is, for IPv4, the number 4: 0100. The IHL field represents the total IPv4 Header Length,
in 32-bit words; an IPv4 header can thus be at most 15 words long. The base header takes up five words, so
the IPv4 Options can consist of at most ten words. If one looks at IPv4 packets using a packet-capture tool
that displays the packets in hex, the first byte will most often be 0x45.

The Differentiated Services (DS) field is used by the Differentiated Services suite to specify preferen-
tial handling for designated packets, eg those involved in VoIP or other real-time protocols. The Explicit
Congestion Notification bits are there to allow routers experiencing congestion to mark packets, thus indi-
cating to the sender that the transmission rate should be reduced. We will address these in 14.8.3 Explicit
Congestion Notification (ECN). These two fields together replace the old 8-bit Type of Service field.

The Total Length field is present because an IPv4 packet may be smaller than the minimum LAN packet
size (see Exercise 1) or larger than the maximum (if the IPv4 packet has been fragmented over several
LAN packets. The IPv4 packet length, in other words, cannot be inferred from the LAN-level packet size.
Because the Total Length field is 16 bits, the maximum IPv4 packet size is 216 bytes. This is probably
much too large, even if fragmentation were not something to be avoided (though see IPv6 “jumbograms” in
8.5.1 Hop-by-Hop Options Header).

The second word of the header is devoted to fragmentation, discussed below.

The Time-to-Live (TTL) field is decremented by 1 at each router; if it reaches 0, the packet is discarded. A
typical initial value is 64; it must be larger than the total number of hops in the path. In most cases, a value of
32 would work. The TTL field is there to prevent routing loops – always a serious problem should they occur
– from consuming resources indefinitely. Later we will look at various IP routing-table update protocols and
how they minimize the risk of routing loops; they do not, however, eliminate it. By comparison, Ethernet
headers have no TTL field, but Ethernet also disallows cycles in the underlying topology.

The Protocol field contains a value to identify the contents of the packet body. A few of the more common
values are

• 1: an ICMP packet, 7.11 Internet Control Message Protocol

• 4: an encapsulated IPv4 packet, 7.13.1 IP-in-IP Encapsulation

• 6: a TCP packet

• 17: a UDP packet

• 41: an encapsulated IPv6 packet, 8.13 IPv6 Connectivity via Tunneling

• 50: an Encapsulating Security Payload, 22.11 IPsec

A list of assigned protocol numbers is maintained by the IANA.

The Header Checksum field is the “Internet checksum” applied to the header only, not the body. Its only
purpose is to allow the discarding of packets with corrupted headers. When the TTL value is decremented
the router must update the header checksum. This can be done “algebraically” by adding a 1 in the correct
place to compensate, but it is not hard simply to re-sum the 8 halfwords of the average header. The header
checksum must also be updated when an IPv4 packet header is rewritten by a NAT router.

The Source and Destination Address fields contain, of course, the IPv4 addresses. These would normally
be updated only by NAT firewalls.

7.1 The IPv4 Header 189

https://tools.ietf.org/html/rfc2474.html
https://tools.ietf.org/html/rfc2481.html
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

An Introduction to Computer Networks, Release 1.9.21

The source-address field is supposed to be the sender’s IPv4 address, but hardly any ISP checks that traffic
they send out has a source address matching one of their customers, despite the call to do so in RFC 2827.
As a result, IP spoofing – the sending of IP packets with a faked source address – is straightforward. For
some examples, see 12.10.1 ISNs and spoofing, and SYN flooding at 12.3 TCP Connection Establishment.

IP-address spoofing also facilitates an all-too-common IP-layer denial-of-service attack in which a server is
flooded with a huge volume of traffic so as to reduce the bandwidth available to legitimate traffic to a trickle.
This flooding traffic typically originates from a large number of compromised machines. Without spoofing,
even a lengthy list of sources can be blocked, but, with spoofing, this becomes quite difficult.

One IPv4 option is the Record Route option, in which routers are to insert their own IPv4 address into
the IPv4 header option area. Unfortunately, with only ten words available, there is not enough space to
record most longer routes (but see 7.11.1 Traceroute and Time Exceeded, below). The Timestamp option
is related; intermediate routers are requested to mark packets with their address and a local timestamp (to
save space, the option can request only timestamps). There is room for only four xaddress,timestampy pairs,
but addresses can be prespecified; that is, the sender can include up to four IPv4 addresses and only those
routers will fill in a timestamp.

Another option, now deprecated as security risk, is to support source routing. The sender would insert
into the IPv4 header option area a list of IPv4 addresses; the packet would be routed to pass through each
of those IPv4 addresses in turn. With strict source routing, the IPv4 addresses had to represent adjacent
neighbors; no router could be used if its IPv4 address were not on the list. With loose source routing, the
listed addresses did not have to represent adjacent neighbors and ordinary IPv4 routing was used to get from
one listed IPv4 address to the next. Both forms are essentially never used, again for security reasons: if a
packet has been source-routed, it may have been routed outside of the at-least-somewhat trusted zone of the
Internet backbone.

Finally, the IPv4 header was carefully laid out with memory alignment in mind. The 4-byte address fields
are aligned on 4-byte boundaries, and the 2-byte fields are aligned on 2-byte boundaries. All this was once
considered important enough that incoming packets were stored following two bytes of padding at the head
of their containing buffer, so the IPv4 header, starting after the 14-byte Ethernet header, would be aligned on
a 4-byte boundary. Today, however, the architectures for which this sort of alignment mattered have mostly
faded away; alignment is a non-issue for ARM and Intel x86 processors.

7.2 Interfaces

IP addresses (both IPv4 and IPv6) are, strictly speaking, assigned not to hosts or nodes, but to interfaces.
In the most common case, where each node has a single LAN interface, this is a distinction without a dif-
ference. In a room full of workstations each with a single Ethernet interface eth0 (or perhaps Ethernet
adapter Local Area Connection), we might as well view the IP address assigned to the interface
as assigned to the workstation itself.

Each of those workstations, however, likely also has a loopback interface (at least conceptually), providing
a way to deliver IP packets to other processes on the same machine. On many systems, the name “local-
host” resolves to the IPv4 loopback address 127.0.0.1 (the IPv6 address ::1 is also used); see 7.3 Special
Addresses. Delivering packets to the loopback interface is simply a form of interprocess communication; a
functionally similar alternative is named pipes.

Loopback delivery avoids the need to use the LAN at all, or even the need to have a LAN. For simple

190 7 IP version 4

https://tools.ietf.org/html/rfc2827.html
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Named_pipe

An Introduction to Computer Networks, Release 1.9.21

client/server testing, it is often convenient to have both client and server on the same machine, in which
case the loopback interface is a convenient (and fast) standin for a “real” network interface. On unix-based
machines the loopback interface represents a genuine logical interface, commonly named lo. On Windows
systems the “interface” may not represent an actual operating-system entity, but this is of practical concern
only to those interested in “sniffing” all loopback traffic; packets sent to the loopback address are still
delivered as expected.

Workstations often have special other interfaces as well. Most recent versions of Microsoft Windows have
a Teredo Tunneling pseudo-interface and an Automatic Tunneling pseudo-interface; these are both intended
(when activated) to support IPv6 connectivity when the local ISP supports only IPv4. The Teredo protocol
is documented in RFC 4380.

When VPN connections are created, as in 3.1 Virtual Private Networks, each end of the logical connection
typically terminates at a virtual interface (one of these is labeled tun0 in the diagram of 3.1 Virtual Private
Networks). These virtual interfaces appear, to the systems involved, to be attached to a point-to-point link
that leads to the other end.

When a computer hosts a virtual machine, there is almost always a virtual network to connect the host and
virtual systems. The host will have a virtual interface to connect to the virtual network. The host may act as
a NAT router for the virtual machine, “hiding” that virtual machine behind its own IP address, or it may act
as an Ethernet switch, in which case the virtual machine will need an additional public IP address.

What’s My IP Address?

This simple-seeming question is in fact not very easy to answer, if by “my IP address” one means the IP
address assigned to the interface that connects directly to the Internet. One strategy is to find the address
of the default router, and then iterate through all interfaces (eg with the Java NetworkInterface
class) to find an IP address with a matching network prefix; a Python3 example of this approach appears
in 18.5.1 Multicast Programming. Unfortunately, finding the default router (to identify the primary
interface) is hard to do in an OS-independent way, and even then this approach can fail if the Wi-Fi
and Ethernet interfaces both are assigned IP addresses on the same network, but only one is actually
connected.

Routers always have at least two interfaces on two separate IP networks. Generally this means a separate IP
address for each interface, though some point-to-point interfaces can be used without being assigned any IP
address (7.12 Unnumbered Interfaces).

7.2.1 Multihomed hosts

A non-router host with multiple non-loopback network interfaces is often said to be multihomed. Many
laptops, for example, have both an Ethernet interface and a Wi-Fi interface. Both of these can be used
simultaneously, with different IP addresses assigned to each. On residential networks the two interfaces will
often be on the same IP network (eg the same bridged Wi-Fi/Ethernet LAN); at more security-conscious
sites the Ethernet and Wi-Fi interfaces are often on quite different IP networks (though see 7.9.5 ARP and
multihomed hosts).

Multiple physical interfaces are not actually needed here; it is usually possible to assign multiple IP ad-
dresses to a single interface. Sometimes this is done to allow two IP networks (two distinct prefixes) to

7.2 Interfaces 191

https://tools.ietf.org/html/rfc4380.html

An Introduction to Computer Networks, Release 1.9.21

share a single physical LAN; in this case the interface would be assigned one IP address for each IP net-
work. Other times a single interface is assigned multiple IP addresses on the same IP network; this is often
done so that one physical machine can act as a server (eg a web server) for multiple distinct IP addresses
corresponding to multiple distinct domain names.

Multihoming raises some issues with packets addressed to one interface, A, with IP address AIP, but which
arrive via another interface, B, with IP address BIP. Strictly speaking, such arriving packets should be
discarded unless the host is promoted to functioning as a router. In practice, however, the strict interpretation
often causes problems; a typical user understanding is that the IP address AIP should work to reach the host
even if the physical connection is to interface B. A related issue is whether the host receiving such a packet
addressed to AIP on interface B is allowed to send its reply with source address AIP, even though the reply
must be sent via interface B.

RFC 1122, §3.3.4, defines two alternatives here:

• The Strong End-System model: IP addresses – incoming and outbound – must match the physical
interface.

• The Weak End-System model: A match is not required: interface B can accept packets addressed to
AIP, and send packets with source address AIP.

Linux systems generally use the weak model by default. See also 7.9.5 ARP and multihomed hosts.

While it is important to be at least vaguely aware of the special cases that multihoming presents, we empha-
size again that in most ordinary contexts each end-user workstation has one IP address that corresponds to a
LAN connection.

7.3 Special Addresses

A few IPv4 addresses represent special cases.

While the standard IPv4 loopback address is 127.0.0.1, any IPv4 address beginning with 127 can serve as
a loopback address. Logically they all represent the current host. Most hosts are configured to resolve the
name “localhost” to 127.0.0.1. However, any loopback address – eg 127.255.37.59 – should work, eg with
ping. For an example using 127.0.1.0, see 7.8 DNS.

Private addresses are IPv4 addresses intended only for site internal use, eg either behind a NAT firewall or
intended to have no Internet connectivity at all. If a packet shows up at any non-private router (eg at an ISP
router), with a private IPv4 address as either source or destination address, the packet should be dropped.
Three standard private-address blocks have been defined:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

The last block is the one from which addresses are most commonly allocated by DHCP servers (7.10.1 NAT,
DHCP and the Small Office) built into NAT routers.

Broadcast addresses are a special form of IPv4 address intended to be used in conjunction with LAN-layer
broadcast. The most common forms are “broadcast to this network”, consisting of all 1-bits, and “broadcast
to network D”, consisting of D’s network-address bits followed by all 1-bits for the host bits. If you try to

192 7 IP version 4

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

send a packet to the broadcast address of a remote network D, the odds are that some router involved will
refuse to forward it, and the odds are even higher that, once the packet arrives at a router actually on network
D, that router will refuse to broadcast it. Even addressing a broadcast to one’s own network will fail if the
underlying LAN does not support LAN-level broadcast (eg ATM).

The highly influential early Unix implementation Berkeley 4.2 BSD used 0-bits for the broadcast bits, in-
stead of 1’s. As a result, to this day host bits cannot be all 1-bits or all 0-bits in order to avoid confusion
with the IPv4 broadcast address. One consequence of this is that a Class C network has 254 usable host
addresses, not 256.

7.3.1 Multicast addresses

Finally, IPv4 multicast addresses remain as the last remnant of the Class A/B/C strategy: multicast ad-
dresses are Class D, with first byte beginning 1110 (meaning that the first byte is, in decimal, 224-239).
Multicasting means delivering to a specified set of addresses, preferably by some mechanism more efficient
than sending to each address individually. A reasonable goal of multicast would be that no more than one
copy of the multicast packet traverses any given link.

Support for IPv4 multicast requires considerable participation by the backbone routers involved. For exam-
ple, if hosts A, B and C each connect to different interfaces of router R1, and A wishes to send a multicast
packet to B and C, then it is up to R1 to receive the packet, figure out that B and C are the intended recipients,
and forward the packet twice, once for B’s interface and once for C’s. R1 must also keep track of what hosts
have joined the multicast group and what hosts have left. Due to this degree of router participation, back-
bone router support for multicasting has not been entirely forthcoming. A discussion of IPv4 multicasting
appears in 20 Quality of Service.

7.4 Fragmentation

If you are trying to interconnect two LANs (as IP does), what else might be needed besides Routing and
Addressing? IPv4 (and IPv6) explicitly assumes all packets are composed on 8-bit bytes (something not
universally true in the early days of IP; to this day the RFCs refer to “octets” to emphasize this requirement).
IP also defines bit-order within a byte, and it is left to the networking hardware to translate properly. Neither
byte size nor bit order, therefore, can interfere with packet forwarding.

There is one more feature IPv4 must provide, however, if the goal is universal connectivity: it must ac-
commodate networks for which the maximum packet size, or Maximum Transfer Unit, MTU, is smaller
than the packet that needs forwarding. Otherwise, if we were using IPv4 to join Token Ring (MTU = 4kB,
at least originally) to Ethernet (MTU = 1500B), the token-ring packets might be too large to deliver to the
Ethernet side, or to traverse an Ethernet backbone en route to another Token Ring. (Token Ring, in its day,
did commonly offer a configuration option to allow Ethernet interoperability.)

So, IPv4 must support fragmentation, and thus also reassembly. There are two potential strategies here:
per-link fragmentation and reassembly, where the reassembly is done at the opposite end of the link (as in
ATM), and path fragmentation and reassembly, where reassembly is done at the far end of the path. The
latter approach is what is taken by IPv4, partly because intermediate routers are too busy to do reassembly
(this is as true today as it was in 1981 when RFC 791 was published), partly because there is no absolute
guarantee that all fragments will go to the same next-hop router, and partly because IPv4 fragmentation has
always been seen as the strategy of last resort.

7.4 Fragmentation 193

https://tools.ietf.org/html/rfc791.html

An Introduction to Computer Networks, Release 1.9.21

An IPv4 sender is supposed to use a different value for the IDENT field for different packets, at least up
until the field wraps around. When an IPv4 datagram is fragmented, the fragments keep the same IDENT
field, so this field in effect indicates which fragments belong to the same packet.

After fragmentation, the Fragment Offset field marks the start position of the data portion of this fragment
within the data portion of the original IPv4 packet. Note that the start position can be a number up to 216,
the maximum IPv4 packet length, but the FragOffset field has only 13 bits. This is handled by requiring the
data portions of fragments to have sizes a multiple of 8 (three bits), and left-shifting the FragOffset value by
3 bits before using it.

As an example, consider the following network, where MTUs are excluding the LAN header:

A R1 R3R2A B
MTU 1500 MTU 1000 MTU 400 MTU 1500

Suppose A addresses a packet of 1500 bytes to B, and sends it via the LAN to the first router R1. The packet
contains 20 bytes of IPv4 header and 1480 of data.

R1 fragments the original packet into two packets of sizes 20+976 = 996 and 20+504=544. Having 980
bytes of payload in the first fragment would fit, but violates the rule that the sizes of the data portions be
divisible by 8. The first fragment packet has FragOffset = 0; the second has FragOffset = 976.

R2 refragments the first fragment into three packets as follows:

• first: size = 20+376=396, FragOffset = 0

• second: size = 20+376=396, FragOffset = 376

• third: size = 20+224 = 244 (note 376+376+224=976), FragOffset = 752.

R2 refragments the second fragment into two:

• first: size = 20+376 = 396, FragOffset = 976+0 = 976

• second: size = 20+128 = 148, FragOffset = 976+376=1352

R3 then sends the fragments on to B, without reassembly.

Note that it would have been slightly more efficient to have fragmented into four fragments of sizes 376,
376, 376, and 352 in the beginning. Note also that the packet format is designed to handle fragments of
different sizes easily. The algorithm is based on multiple fragmentation with reassembly only at the final
destination.

Each fragment has its IPv4-header Total Length field set to the length of that fragment.

We have not yet discussed the three flag bits. The first bit is reserved, and must be 0. The second bit is the
Don’t Fragment, or DF, bit. If it is set to 1 by the sender then a router must not fragment the packet and
must drop it instead; see 12.13 Path MTU Discovery for an application of this. The third bit is set to 1 for
all fragments except the final one (this bit is thus set to 0 if no fragmentation has occurred). The third bit
tells the receiver where the fragments stop.

The receiver must take the arriving fragments and reassemble them into a whole packet. The fragments
may not arrive in order – unlike in ATM networks – and may have unrelated packets interspersed. The
reassembler must identify when different arriving packets are fragments of the same original, and must

194 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

figure out how to reassemble the fragments in the correct order; both these problems were essentially trivial
for ATM.

Fragments are considered to belong to the same packet if they have the same IDENT field and also the same
source and destination addresses and same protocol.

As all fragment sizes are a multiple of 8 bytes, the receiver can keep track of whether all fragments have
been received with a bitmap in which each bit represents one 8-byte fragment chunk. A 1 kB packet could
have up to 128 such chunks; the bitmap would thus be 16 bytes.

If a fragment arrives that is part of a new (and fragmented) packet, a buffer is allocated. While the receiver
cannot know the final size of the buffer, it can usually make a reasonable guess. Because of the FragOffset
field, the fragment can then be stored in the buffer in the appropriate position. A new bitmap is also allocated,
and a reassembly timer is started.

As subsequent fragments arrive, not necessarily in order, they too can be placed in the proper buffer in the
proper position, and the appropriate bits in the bitmap are set to 1.

If the bitmap shows that all fragments have arrived, the packet is sent on up as a completed IPv4 packet. If,
on the other hand, the reassembly timer expires, then all the pieces received so far are discarded.

TCP connections usually engage in Path MTU Discovery, and figure out the largest packet size they can
send that will not entail fragmentation (12.13 Path MTU Discovery). But it is not unusual, for example,
for UDP protocols to use fragmentation, especially over the short haul. In the Network File System (NFS)
protocol, for example, UDP is used to carry 8 kB disk blocks. These are often sent as a single 8+ kB IPv4
packet, fragmented over Ethernet to five full packets and a fraction. Fragmentation works reasonably well
here because most of the time the packets do not leave the Ethernet they started on. Note that this is an
example of fragmentation done by the sender, not by an intermediate router.

Finally, any given IP link may provide its own link-layer fragmentation and reassembly; we saw in
3.5.1 ATM Segmentation and Reassembly that ATM does just this. Such link-layer mechanisms are, how-
ever, generally invisible to the IP layer.

7.5 The Classless IP Delivery Algorithm

Recall from Chapter 1 that any IPv4 address can be divided into a net portion IPnet and a host portion IPhost;
the division point was determined by whether the IPv4 address was a Class A, a Class B, or a Class C. We
also indicated in Chapter 1 that the division point was not always so clear-cut; we now present the delivery
algorithm, for both hosts and routers, that does not assume a globally predeclared division point of the input
IPv4 address into net and host portions. We will, for the time being, punt on the question of forwarding-table
lookup and assume there is a lookup() method available that, when given a destination address, returns
the next_hop neighbor.

Instead of class-based divisions, we will assume that each of the IPv4 addresses assigned to a node’s inter-
faces is configured with an associated length of the network prefix; following the slash notation of 1.10 IP
- Internet Protocol, if B is an address and the prefix length is k = kB then the prefix itself is B/k. As usual,
an ordinary host may have only one IP interface, while a router will always have multiple interfaces.

Let D be the given IPv4 destination address; we want to decide if D is local or nonlocal. The host or router
involved may have multiple IP interfaces, but for each interface the length of the network portion of the

7.5 The Classless IP Delivery Algorithm 195

An Introduction to Computer Networks, Release 1.9.21

address will be known. For each network address B/k assigned to one of the host’s interfaces, we compare
the first k bits of B and D; that is, we ask if D matches B/k.

• If one of these comparisons yields a match, delivery is local; the host delivers the packet to its final
destination via the LAN connected to the corresponding interface. This means looking up the LAN
address of the destination, if applicable, and sending the packet to that destination via the interface.

• If there is no match, delivery is nonlocal, and the host passes D to the lookup() routine of the
forwarding table and sends to the associated next_hop (which must represent a physically connected
neighbor). It is now up to lookup() routine to make any necessary determinations as to how D
might be split into Dnet and Dhost; the split cannot be made outside of lookup().

The forwarding table is, abstractly, a set of network addresses – now also with lengths – each of the form B/k,
with an associated next_hop destination for each. The lookup() routine will, in principle, compare D with
each table entry B/k, looking for a match (that is, equality of the first k = kB bits). As with the local-delivery
interfaces check above, the net/host division point (that is, k) will come from the table entry; it will not be
inferred from D or from any other information borne by the packet. There is, in fact, no place in the IPv4
header to store a net/host division point, and furthermore different routers along the path may use different
values of k with the same destination address D. Routers receive the prefix length /k for a destination B/k as
part of the process by which they receive xdestination,next_hopy pairs; see 9 Routing-Update Algorithms.

In 10 Large-Scale IP Routing we will see that in some cases multiple matches in the forwarding table may
exist, eg 147.0.0.0/8 and 147.126.0.0/16. The longest-match rule will be introduced for such cases to pick
the best match.

Here is a simple example for a router with immediate neighbors A-E:

destination next_hop
10.3.0.0/16 A
10.4.1.0/24 B
10.4.2.0/24 C
10.4.3.0/24 D
10.3.37.0/24 E

The IPv4 addresses 10.3.67.101 and 10.3.59.131 both route to A. The addresses 10.4.1.101, 10.4.2.157 and
10.4.3.233 route to B, C and D respectively. Finally, 10.3.37.103 matches both A and E, but the E match is
longer so the packet is routed that way.

The forwarding table may also contain a default entry for the next_hop, which it may return in cases when
the destination D does not match any known network. We take the view here that returning such a default
entry is a valid result of the routing-table lookup() operation, rather than a third option to the algorithm
above; one approach is for the default entry to be the next_hop corresponding to the destination 0.0.0.0/0,
which does indeed match everything (use of this would definitely require the above longest-match rule,
though).

Default routes are hugely important in keeping leaf forwarding tables small. Even backbone routers some-
times expend considerable effort to keep the network address prefixes in their forwarding tables as short as
possible, through consolidation.

At a site with a single ISP and with no Internet customers (that is, which is not itself an ISP for others),
the top-level forwarding table usually has a single external route: its default route to its ISP. If a site has

196 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

more than one ISP, however, the top-level forwarding table can expand in a hurry. For example, Internet2 is a
consortium of research sites with very-high-bandwidth internal interconnections, acting as a sort of “parallel
Internet”. Before Internet2, Loyola’s top-level forwarding table had the usual single external default route.
After Internet2, we in effect had a second ISP and had to divide traffic between the commercial ISP and the
Internet2 ISP. The default route still pointed to the commercial ISP, but Loyola’s top-level forwarding table
now had to have an entry for every individual Internet2 site, so that traffic to any of these sites would be
forwarded via the Internet2 ISP. See exercise 5.0.

Routers may also be configured to allow passing quality-of-service information to the lookup() method,
as mentioned in Chapter 1, to support different routing paths for different kinds of traffic (eg bulk file-transfer
versus real-time).

For a modest exception to the local-delivery rule described here, see below in 7.12 Unnumbered Interfaces.

7.5.1 Efficient Forwarding-Table Lookup

Fast implementation of the lookup() operation above is tricky, especially in the presence of destina-
tion entries that may not result in unique matches, such as 10.0.0.0/8 and 10.11.0.0/16, which both match
10.11.12.13. Straightforward hashing, in particular, is out, as the prefix-length value k is not available to the
call of lookup().

The simplest approach is a trie, a form of tree in which the child nodes are labeled with bit strings; the
concatenated node labels on a branch represent an address prefix. Node labels can represent single address
bits or larger bit groups. A trie allows straightforward implementation of the longest-match rule by requiring
that we descend in the trie until no further matches are possible.

As an example, we construct a trie for the following forwarding table:

destination next_hop
1.10.0.0/16 A
1.10.104.0/24 B
1.10.105.0/24 C
1.11.0.0/16 D
1.12.116.0/24 E
1.12.117.0/24 F

As all the prefix lengths are multiples of 8 bits, we build the trie using bytes as node labels:

7.5 The Classless IP Delivery Algorithm 197

https://en.wikipedia.org/wiki/Internet2

An Introduction to Computer Networks, Release 1.9.21

104 105 116 117

121110

1

root

Forwarding-table trie

Heavy blue nodes represent matches; light nodes represent non-matches. There is one heavy node for each
entry in the table above. To look up 1.10.105.213 in the trie, we view the address as a list x1,10,105,213y.
From the root, we traverse nodes 1 and 10, arriving at a heavy node representing the destination 1.10.0.0/16.
However, the next element of the address list is 105, and so we continue down to child node 105, thus
matching 1.10.105.0/24. There are no further child nodes, so this match is as long as possible.

A straightforward trie implementation for arbitrary prefix lengths requires single-bit node labels. However,
the Luleå algorithm, [DBCP97], implements lookup with a trie of only three levels, representing address
bits 0-15, 16-23 and 24-31. At the top of the trie, an array of size 216 helps determine the first child node;
similar supplemental data structures assist with the child-node lookups at subsequent levels.

Finally, high-performance switches often implement the lookup() operation using content-addressable
memory. IP forwarding requires the ternary form of this memory, TCAM, described in the final paragraph
of 2.4.2 Switch Hardware. If A/k is an IP address prefix of length k, then A goes in the TCAM memory
register, and the corresponding mask register is used to indicate that only the first k bits matter.

When an IPv4 address is presented to the TCAM for lookup, there may now be multiple matches of differing
lengths. To implement the longest-match rule, we first need to make sure that, in the TCAM sequence of
registers, shorter prefixes come before longer ones. The TCAM encoder circuit then converts the matching
register’s position in the sequence to an address corresponding to the register, with which the rest of the
routing information can be retrieved. This encoder must be designed so that it always prefers longer prefixes
(higher TCAM sequence positions). A longest-match lookup can then be performed in a single memory-
lookup cycle.

When backbone IPv4 routers experience acute difficulties due to growth of the forwarding table, it is often
because the existing table has outgrown the space available in the TCAM hardware.

198 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

7.6 IPv4 Subnets

Subnets were the first step away from Class A/B/C routing: a large network (eg a class A or B) could be
divided into smaller IPv4 networks called subnets. Consider, for example, a typical Class B network such
as Loyola University’s (originally 147.126.0.0/16); the underlying assumption is that any packet can be
delivered via the underlying LAN to any internal host. This would require a rather large LAN, and would
require that a single physical LAN be used throughout the site. What if our site has more than one physical
LAN? Or is really too big for one physical LAN? It did not take long for the IP world to run into this
problem.

Subnets were first proposed in RFC 917, and became official with RFC 950.

Getting a separate IPv4 network prefix for each subnet is bad for routers: the backbone forwarding tables
now must have an entry for every subnet instead of just for every site. What is needed is a way for a site to
appear to the outside world as a single IP network, but for further IP-layer routing to be supported inside the
site. This is what subnets accomplish.

Subnets introduce hierarchical routing: first we route to the primary network, then inside that site we route
to the subnet, and finally the last hop delivers to the host.

Routing with subnets involves in effect moving the IPnet division line rightward. (Later, when we consider
CIDR, we will see the complementary case of moving the division line to the left.) For now, observe that
moving the line rightward within a site does not affect the outside world at all; outside routers are not even
aware of site-internal subnetting.

In the following diagram, the outside world directs traffic addressed to 147.126.0.0/16 to the router R. Inter-
nally, however, the site is divided into subnets. The idea is that traffic from 147.126.1.0/24 to 147.126.2.0/24
is routed, not switched; the two LANs involved may not even be compatible (for example, the ovals might
represent Token Ring while the lines represent Ethernet). Most of the subnets shown are of size /24, mean-
ing that the third byte of the IPv4 address has become part of the network portion of the subnet’s address;
one /20 subnet is also shown. RFC 950 would have disallowed the subnet with third byte 0, but having 0
for the subnet bits generally does work.

7.6 IPv4 Subnets 199

https://tools.ietf.org/html/rfc917.html
https://tools.ietf.org/html/rfc950.html
https://tools.ietf.org/html/rfc950.html

An Introduction to Computer Networks, Release 1.9.21

R

R2147.126.0.0/24
147.126.1.0/24

147.126.2.0/24

147.126.16.0/20

147.126.3.0/24

Internet

A

D

What we want is for the internal routing to be based on the extended network prefixes shown, while exter-
nally continuing to use only the single routing entry for 147.126.0.0/16.

To implement subnets, we divide the site’s IPv4 network into some combination of physical LANs – the
subnets –, and assign each a subnet address: an IPv4 network address which has the site’s IPv4 network
address as prefix. To put this more concretely, suppose the site’s IPv4 network address is A, and consists of
n network bits (so the site address may be written with the slash notation as A/n); in the diagram above, A/n
= 147.126.0.0/16. A subnet address is an IPv4 network address B/k such that:

• The address B/k is within the site: the first n bits of B are the same as A/n’s

• B/k extends A/n: kěn

An example B/k in the diagram above is 147.126.1.0/24. (There is a slight simplification here in that subnet
addresses do not absolutely have to be prefixes; see below.)

We now have to figure out how packets will be routed to the correct subnet. For incoming packets we could
set up some proprietary protocol at the entry router to handle this. However, the more complicated situation
is all those existing internal hosts that, under the class A/B/C strategy, would still believe they can deliver
via the LAN to any site host, when in fact they can now only do that for hosts on their own subnet. We need
a more general solution.

We proceed as follows. For each subnet address B/k, we create a subnet mask for B consisting of k 1-bits
followed by enough 0-bits to make a total of 32. We then make sure that every host and router in the site
knows the subnet mask for every one of its interfaces. Hosts usually find their subnet mask the same way
they find their IP address (by static configuration if necessary, but more likely via DHCP, below).

Hosts and routers now apply the IP delivery algorithm of the previous section, with the proviso that, if a
subnet mask for an interface is present, then the subnet mask is used to determine the number of address bits
rather than the Class A/B/C mechanism. That is, we determine whether a packet addressed to destination
D is deliverable locally via an interface with subnet address B/k and corresponding mask M by comparing
D&M with B&M, where & represents bitwise AND; if the two match, the packet is local. This will generally

200 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

involve a match of more bits than if we used the Class A/B/C strategy to determine the network portion of
addresses D and B.

As stated previously, given an address D with no other context, we will not be able to determine the net-
work/host division point in general (eg for outbound packets). However, that division point is not in fact
what we need. All that is needed is a way to tell if a given destination host address D belongs to the current
subnet, say B; that is, we need to compare the first k bits of D and B where k is the (known) length of B.

In the diagram above, the subnet mask for the /24 subnets would be 255.255.255.0; bitwise ANDing any
IPv4 address with the mask is the same as extracting the first 24 bits of the IPv4 address, that is, the subnet
portion. The mask for the /20 subnet would be 255.255.240.0 (240 in binary is 1111 0000).

In the diagram above none of the subnets overlaps or conflicts: the subnets 147.126.0.0/24 and
147.126.1.0/24 are disjoint. It takes a little more effort to realize that 147.126.16.0/20 does not overlap
with the others, but note that an IPv4 address matches this network prefix only if the first four bits of the
third byte are 0001, so the third byte itself ranges from decimal 32 to decimal 63 = binary 0001 1111.

Note also that if host A = 147.126.0.1 wishes to send to destination D = 147.126.1.1, and A is not subnet-
aware, then delivery will fail: A will infer that the interface is a Class B, and therefore compare the first
two bytes of A and D, and, finding a match, will attempt direct LAN delivery. But direct delivery is now
likely impossible, as the subnets are not joined by a switch. Only with the subnet mask will A realize that
its network is 147.126.0.0/24 while D’s is 147.126.1.0/24 and that these are not the same. A would still be
able to send packets to its own subnet. In fact A would still be able to send packets to the outside world:
it would realize that the destination in that case does not match 147.126.0.0/16 and will thus forward to its
router. Hosts on other subnets would be the only unreachable ones.

Properly, the subnet address is the entire prefix, eg 147.126.65.0/24. However, it is often convenient to
identify the subnet address with just those bits that represent the extension of the site IPv4-network address;
we might thus say casually that the subnet address here is 65.

The class-based IP-address strategy allowed any host anywhere on the Internet to properly separate any
address into its net and host portions. With subnets, this division point is now allowed to vary; for example,
the address 147.126.65.48 divides into 147.126 | 65.48 outside of Loyola, but into 147.126.65 | 48 inside.
This means that the net-host division is no longer an absolute property of addresses, but rather something
that depends on where the packet is on its journey.

Technically, we also need the requirement that given any two subnet addresses of different, disjoint subnets,
neither is a proper prefix of the other. This guarantees that if A is an IP address and B is a subnet address
with mask M (so B = B&M), then A&M = B implies A does not match any other subnet. Regardless of
the net/host division rules, we cannot possibly allow subnet 147.126.16.0/20 to represent one LAN while
147.126.16.0/24 represents another; the second subnet address block is a subset of the first. (We can,
and sometimes do, allow the first LAN to correspond to everything in 147.126.16.0/20 that is not also in
147.126.16.0/24; this is the longest-match rule.)

The strategy above is actually a slight simplification of what the subnet mechanism actually allows: subnet
address bits do not in fact have to be contiguous, and masks do not have to be a series of 1-bits followed by
0-bits. The mask can be any bit-mask; the subnet address bits are by definition those where there is a 1 in the
mask bits. For example, we could at a Class-B site use the fourth byte as the subnet address, and the third
byte as the host address. The subnet mask would then be 255.255.0.255. While this generality was once
sometimes useful in dealing with “legacy” IPv4 addresses that could not easily be changed, life is simpler
when the subnet bits precede the host bits.

7.6 IPv4 Subnets 201

An Introduction to Computer Networks, Release 1.9.21

7.6.1 Subnet Example

As an example of having different subnet masks on different interfaces, let us consider the division of a
class-C network into subnets of size 70, 40, 25, and 20. The subnet addresses will of necessity have different
lengths, as there is not room for four subnets each able to hold 70 hosts.

• A: size 70

• B: size 40

• C: size 25

• D: size 20

Because of the different subnet-address lengths, division of a local IPv4 address LA into net versus host on
subnets cannot be done in isolation, without looking at the host bits. However, that division is not in fact
what we need. All that is needed is a way to tell if the local address LA belongs to a given subnet, say B;
that is, we need to compare the first n bits of LA and B, where n is the length of B’s subnet mask. We do
this by comparing LA&M to B&M, where M is the mask corresponding to n. LA&M is not necessarily the
same as LAnet, if LA actually belongs to one of the other subnets. However, if LA&M = B&M, then LA
must belong subnet B, in which case LA&M is in fact LAnet.

We will assume that the site’s IPv4 network address is 200.0.0.0/24. The first three bytes of each subnet
address must match 200.0.0. Only some of the bits of the fourth byte will be part of the subnet address, so
we will switch to binary for the last byte, and use both the /n notation (for total number of subnet bits) and
also add a vertical bar | to mark the separation between subnet and host.

Example: 200.0.0.10 | 00 0000 / 26

Note that this means that the 0-bit following the 1-bit in the fourth byte is “significant” in that for a subnet
to match, it must match this 0-bit exactly. The remaining six 0-bits are part of the host portion.

To allocate our four subnet addresses above, we start by figuring out just how many host bits we need in
each subnet. Subnet sizes are always powers of 2, so we round up the subnets to the appropriate size. For
subnet A, this means we need 7 host bits to accommodate 27 = 128 hosts, and so we have a single bit in the
fourth byte to devote to the subnet address. Similarly, for B we will need 6 host bits and will have 2 subnet
bits, and for C and D we will need 5 host bits each and will have 8-5=3 subnet bits.

We now start choosing non-overlapping subnet addresses. We have one bit in the fourth byte to choose for
A’s subnet; rather arbitrarily, let us choose this bit to be 1. This means that every other subnet address must
have a 0 in the first bit position of the fourth byte, or we would have ambiguity.

Now for B’s subnet address. We have two bits to work with, and the first bit must be 0. Let us choose
the second bit to be 0 as well. If the fourth byte begins 00, the packet is part of subnet B, and the subnet
addresses for C and D must therefore not begin 00.

Finally, we choose subnet addresses for C and D to be 010 and 011, respectively. We thus have

subnet size address bits in fourth byte host bits in 4th byte decimal range
A 128 1 7 128-255
B 64 00 6 0-63
C 32 010 5 64-95
D 32 011 5 96-127

202 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

As desired, none of the subnet addresses in the third column is a prefix of any other subnet address.

The end result of all of this is that routing is now hierarchical: we route on the site IP address to get to a
site, and then route on the subnet address within the site.

7.6.2 Links between subnets

Suppose the Loyola CS department subnet (147.126.65.0/24) and a department at some other site, we will
say 147.100.100.0/24, install a private link. How does this affect routing?

Each department router would add an entry for the other subnet, routing along the private link. Traffic
addressed to the other subnet would take the private link. All other traffic would go to the default router.
Traffic from the remote department to 147.126.64.0/24 would take the long route, and Loyola traffic to
147.100.101.0/24 would take the long route.

Subnet anecdote

A long time ago I was responsible for two hosts, abel and borel. One day I was informed that machines in
computer lab 1 at the other end of campus could not reach borel, though they could reach abel. Machines
in lab 2, adjacent to lab 1, however, could reach both borel and abel just fine. What was the difference?

It turned out that borel had a bad (/16 instead of /24) subnet mask, and so it was attempting local delivery
to the labs. This should have meant it could reach neither of the labs, as both labs were on a different
subnet from my machines; I was still perplexed. After considerably more investigation, it turned out that
between abel/borel and the lab building was a bridge-router: a hybrid device that properly routed subnet
traffic at the IP layer, but which also forwarded Ethernet packets directly, the latter feature apparently
for the purpose of backwards compatibility. Lab 2 was connected directly to the bridge-router and thus
appeared to be on the same LAN as borel, despite the apparently different subnet; lab 1 was connected to
its own router R1 which in turn connected to the bridge-router. Lab 1 was thus, at the LAN level, isolated
from abel and borel.

Moral 1: Switching and routing are both great ideas, alone. But switching at one layer mixed with routing
at another is not.

Moral 2: Test thoroughly! The reason the problem wasn’t noticed earlier was that previously borel
communicated only with other hosts on its own subnet and with hosts outside the university entirely.
Both of these worked with the bad subnet mask; it was different-subnet local hosts that were the problem.

How would nearby subnets at either endpoint decide whether to use the private link? Classical link-state or
distance-vector theory (9 Routing-Update Algorithms) requires that they be able to compare the private-
link route with the going-around-the-long-way route. But this requires a global picture of relative routing
costs, which, as we shall see, almost certainly does not exist. The two departments are in different routing
domains; if neighboring subnets at either end want to use the private link, then manual configuration is likely
the only option.

7.6 IPv4 Subnets 203

An Introduction to Computer Networks, Release 1.9.21

7.6.3 Subnets versus Switching

A frequent network design question is whether to have many small subnets or to instead have just a few (or
even only one) larger subnet. With multiple small subnets, IP routing would be used to interconnect them;
the use of larger subnets would replace much of that routing with LAN-layer communication, likely Eth-
ernet switching. Debates on this route-versus-switch question have gone back and forth in the networking
community, with one aphorism summarizing a common view:

Switch when you can, route when you must

This aphorism reflects the idea that switching is faster, cheaper and easier to configure, and that subnet
boundaries should be drawn only where “necessary”.

Ethernet switching equipment is indeed generally cheaper than routing equipment, for the same overall
level of features and reliability. And traditional switching requires relatively little configuration, while to
implement subnets not only must the subnets be created by hand but one must also set up and configure
the routing-update protocols. However, the price difference between switching and routing is not always
significant in the big picture, and the configuration involved is often straightforward.

Somewhere along the way, however, switching has acquired a reputation – often deserved – for being faster
than routing. It is true that routers have more to do than switches: they must decrement TTL, update the
header checksum, and attach a new LAN header. But these things are relatively minor: a larger reason many
routers are slower than switches may simply be that they are inevitably asked to serve as firewalls. This
means “deep inspection” of every packet, eg comparing every packet to each of a large number of firewall
rules. The firewall may also be asked to keep track of connection state. All this drives down the forwarding
rate, as measured in packets-per-second.

Traditional switching scales remarkably well, but it does have limitations. First, broadcast packets must be
forwarded throughout a switched network; they do not, however, pass to different subnets. Second, LAN
networks do not like redundant links (that is, loops); while one can rely on the spanning-tree algorithm to
eliminate these, that algorithm too becomes less efficient at larger scales.

The rise of software-defined networking (2.8 Software-Defined Networking) has blurred the distinction
between routing and switching. The term “Layer 3 switch” is sometimes used to describe routers that
in effect do not support all the usual firewall bells and whistles. These are often SDN Ethernet switches
(2.8 Software-Defined Networking) that are making forwarding decisions based on the contents of the
IP header. Such streamlined switch/routers may also be able to do most of the hard work in specialized
hardware, another source of speedup.

But SDN can do much more than IP-layer forwarding, by taking advantage of site-specific layout informa-
tion. One application, of a switch hierarchy for traffic entering a datacenter, appears in 2.8.1 OpenFlow
Switches. Other SDN applications include enabling Ethernet topologies with loops, offloading large-volume
flows to alternative paths, and implementing policy-based routing as in 9.6 Routing on Other Attributes.
Some SDN solutions involve site-specific programming, but others work more-or-less out of the box. Loca-
tions with switch-versus-route issues are likely to turn increasingly to SDN in the future.

7.7 Network Address Translation

What do you do if your ISP assigns to you a single IPv4 address and you have two computers? The solution
is Network Address Translation, or NAT. NAT’s ability to “multiplex” an arbitrarily large number of indi-

204 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

vidual hosts behind a single IPv4 address (or small number of addresses) makes it an important tool in the
conservation of IPv4 addresses. It also, however, enables an important form of firewall-based security. It is
documented in RFC 3022, where this is called NAPT, or Network Address Port Translation.

The basic idea is that, instead of assigning each host at a site a publicly visible IPv4 address, just one such
address is assigned to a special device known as a NAT router. A NAT router sold for residential or small-
office use is commonly simply called a “router”, or (somewhat more precisely) a “residential gateway”.
One side of the NAT router connects to the Internet; the other connects to the site’s internal network. Hosts
on the internal network are assigned private IP addresses (7.3 Special Addresses), typically of the form
or 192.168.x.y or 10.x.y.z. Connections to internal hosts that originate in the outside world are banned.
When an internal machine wants to connect to the outside, the NAT router intercepts the connection, and
forwards the connection’s packets after rewriting the source address to make it appear they came from the
NAT router’s own IP address, shown below as 200.1.2.37.

Internet
NAT

router
host B

host A

host C

10.0.0.10

10.0.0.11

10.0.0.12

200.1.2.37 10.0.0.1

The remote machine responds, sending its responses to the NAT router’s public IPv4 address. The NAT
router remembers the connection, having stored the connection information in a special forwarding table,
and forwards the data to the correct internal host, rewriting the destination-address field of the incoming
packets.

The NAT forwarding table also includes port numbers. That way, if two internal hosts attempt to connect
to the same external host, the NAT router can tell which packets belong to which. For example, suppose
internal hosts A and B each connect from port 3000 to port 80 on external hosts S and T, respectively. Here
is what the NAT forwarding table might look like. No columns for the NAT router’s own IPv4 addresses are
needed; we shall let NR denote the router’s external address.

remote host remote port outside source port inside host inside port
S 80 3000 A 3000
T 80 3000 B 3000

A packet to S from xA,3000y would be rewritten so that the source was xNR,3000y. A packet from xS,80y
addressed to xNR,3000y would be rewritten and forwarded to xA,3000y. Similarly, a packet from xT,80y
addressed to xNR,3000y would be rewritten and forwarded to xB,3000y; the NAT table takes into account
the source host and port as well as the destination.

Sometimes it is necessary for the NAT router to rewrite the internal-side port number as well; this happens if
two internal hosts want to connect, each from the same port, to the same external host and port. For example,
suppose B now opens a connection to xS,80y, also from inside port 3000. This time the NAT router must
remap the port number, because that is the only way to distinguish between packets from xS,80y back to A
and to B. With B’s second connection’s internal port remapped from 3000 to 3001, the new table is

7.7 Network Address Translation 205

https://tools.ietf.org/html/rfc3022.html

An Introduction to Computer Networks, Release 1.9.21

remote host remote port outside source port inside host inside port
S 80 3000 A 3000
T 80 3000 B 3000
S 80 3001 B 3000

The NAT router does not create TCP connections between itself and the external hosts; it simply forwards
packets (with rewriting). The connection endpoints are still the external hosts S and T and the internal
hosts A and B. However, NR might very well monitor the TCP connections to know when they have closed
(by looking for FIN packets, 12.7.1 Closing a connection), and so can be removed from the table. For
UDP connections, NAT routers typically remove the forwarding entry after some period of inactivity; see
11 UDP Transport, exercise 14.0.

NAT still works for some traffic without port numbers, such as network pings, though the above table is then
not quite the whole story. See 7.11 Internet Control Message Protocol.

Done properly, NAT improves the security of a site, by making it impossible for an external host to probe
or to initiate a connection to any of the internal hosts. While this firewall feature is of great importance,
essentially the same effect can be achieved without address translation, and with public IPv4 addresses for
all internal hosts, by having the router refuse to forward incoming packets that are not part of existing
connections. The router still needs to maintain a table like the NAT table above, in order to recognize such
packets. The address translation itself, in other words, is not the source of the firewall security. That said, it
is hard for a NAT router to “fail open”; ie to fail in a way that lets outside connections in. It is much easier
for a non-NAT firewall to fail open.

For the common residential form of NAT router, see 7.10.1 NAT, DHCP and the Small Office.

7.7.1 NAT Problems

NAT router’s refusal to allow inbound connections is a source of occasional frustration. We illustrate some
of these frustrations here, using Voice-over-IP (VoIP) and the call-setup protocol SIP (RFC 3261). The
basic strategy is that each phone is associated with a remote phone server. These phone servers, because
they have to be able to accept incoming connections from anywhere, must not be behind NAT routers. The
phones themselves, however, usually will be:

InternetNAT1 NAT2

Server2

Server1

phone1 phone2

For phone1 to call phone2, phone1 first contacts Server1, which then contacts Server2. So far, all is well.
The final step is for Server2 to contact phone2, which, however, cannot be done normally as NAT2 allows
no inbound connections.

206 7 IP version 4

https://tools.ietf.org/html/rfc3261.html

An Introduction to Computer Networks, Release 1.9.21

One common solution is for phone2 to maintain a persistent connection to Server2 (and ditto for phone1 and
Server1). By having these persistent phone-to-server connections, we can arrange for the phone to ring on
incoming calls.

As a second issue, somewhat particular to the SIP protocol, is that it is common for server and phone to
prefer to use UDP port 5060 at both ends. For a single internal phone, it is likely that port 5060 will pass
through without remapping, so the phone will appear to be connecting from the desired port 5060. However,
if there are two phones inside (not shown above), one of them will appear to be connecting to the server
from an alternative port. The solution here is to have the server tolerate such port remapping.

VoIP systems run into a much more serious problem with NAT, however. Once the call between phone1
and phone2 is set up, the servers would prefer to step out of the loop, and have the phones exchange voice
packets directly. The SIP protocol was designed to handle this by having each phone report to its respective
server the UDP socket (xIP address,porty pair) it intends to use for the voice exchange; the servers then
report these phone sockets to each other, and from there to the opposite phones. This socket information is
rendered incorrect by NAT, however, certainly the IP address and quite likely the port as well. If only one
of the phones is behind a NAT firewall, it can initiate the voice connection to the other phone, but the other
phone will see the voice packets arriving from a different socket than promised and will likely not recognize
them as part of the call. If both phones are behind NAT firewalls, they may not be able to connect directly to
one another at all. The common solution is for the VoIP server of a phone behind a NAT firewall to remain in
the communications path, forwarding packets to its hidden partner. This works, but represents an unwanted
server workload.

If a site wants to make it possible to allow external connections to hosts behind a NAT router or other
firewall, one option is tunneling. This is the creation of a “virtual LAN link” that runs on top of a TCP
connection between the end user and one of the site’s servers; the end user can thus appear to be on one
of the organization’s internal LANs; see 3.1 Virtual Private Networks. Another option is to “open up” a
specific port: in essence, a static NAT-table entry is made connecting a specific port on the NAT router to
a specific internal host and port (usually the same port). For example, all UDP packets to port 5060 on the
NAT router might be forwarded to port 5060 on internal host A, even in the absence of any prior packet
exchange. Gamers creating peer-to-peer game connections must also usually engage in some port-opening
configuration. The Port Control Protocol (RFC 6887) is sometimes used for this. See also 7.7.3 NAT
Traversal, below.

NAT routers work very well when the communications model is of client-side TCP connections, originating
from the inside and with public outside servers as destination. The NAT model works less well for peer-to-
peer networking, as with the gamers above, where two computers, each behind a different NAT router, wish
to establish a connection. Most NAT routers provide at least limited support for “opening” access to a given
internal xhost,porty socket, by creating a semi-permanent forwarding-table entry. See also 12.24 Exercises,
exercise 2.5.

NAT routers also often have trouble with UDP protocols, due to the tendency for such protocols to have the
public server reply from a different port than the one originally contacted. For example, if host A behind a
NAT router attempts to use TFTP (11.2 Trivial File Transport Protocol, TFTP), and sends a packet to port
69 of public server C, then C is likely to reply from some new port, say 3000, and this reply is likely to be
dropped by the NAT router as there will be no entry there yet for traffic from xC,3000y.

7.7 Network Address Translation 207

https://tools.ietf.org/html/rfc6887.html

An Introduction to Computer Networks, Release 1.9.21

7.7.2 Middleboxes

Firewalls and NAT routers are sometimes classed as middleboxes: network devices that block, throttle or
modify traffic beyond what is necessary for basic forwarding. Middleboxes play a very important role in
network security, but they sometimes (as here with VoIP) break things. The word “middlebox” (versus
“router” or “firewall”) usually has a perjorative connotation; middleboxes have, in some circles, acquired a
rather negative reputation.

NAT routers’ interference with VoIP, above, is a direct consequence of their function: NAT handles connec-
tions from inside to outside quite well, but the NAT mechanism offers no support for connections from one
inside to another inside. Sometimes, however, middleboxes block traffic when there is no technical reason
to do so, simply because correct behavior has not been widely implemented. As an example, the SCTP
protocol, 12.22.2 SCTP, has seen very limited use despite some putative advantages over TCP, largely due
to lack of NAT-router support. SCTP cannot be used by residential users because the middleboxes have not
kept up.

A third category of middlebox-related problems is overzealous blocking in the name of security. SCTP
runs into this problem as well, though not quite as universally: a few routers simply drop all SCTP packets
because they represent an “unknown” – and therefore suspect – type of traffic. There is a place for this
block-by-default approach. If a datacenter firewall blocks all inbound TCP traffic except to port 80 (the
HTTP port), and if SCTP is not being used within the datacenter intentionally, it is hard to argue against
blocking all inbound SCTP traffic. But if the frontline router for home or office users blocks all outbound
SCTP traffic, then the users cannot use SCTP.

A consequence of overzealous blocking is that it becomes much harder to introduce new protocols. If a new
protocol is blocked for even a small fraction of potential users, it is just not worth the effort. See also the
discussion at 12.22.4 QUIC Revisited; the design of QUIC includes several elements to mitigate middlebox
problems.

For another example of overzealous blocking by middleboxes, with the added element of spoofed TCP RST
packets, see the sidebar at 14.8.3 Explicit Congestion Notification (ECN).

7.7.3 NAT Traversal

If a server must be located behind a NAT router, the traditional way to make it visible to the outside internet
is to “open up” one or more selected ports, using the Port Control Protocol, above. Surprisingly, it is often
possible to arrange for a UDP connection between a client A and a server B, both behind different NAT
firewalls, without any special NAT-router cooperation. TCP connections can, if desired, then be tunneled
over the UDP connection. See [MEGK10] and the pwnat package.

We will first assume that the server B knows the public IP address Apublic of A’s NAT router, and knows that
A wishes to communicate. B then begins sending a series of UDP packets to an agreed-upon port at Apublic,
using an agreed-upon source port; these packets might be sent at 10-second intervals. The pwnat package
uses port 2222 for both endpoints; we will assume that here. These packets, of course, are dropped by A’s
NAT router.

A now sends a single UDP packet to B’s public IP address, from port 2222 and to port 2222. When A’s NAT
router sees these packets, it will create a NAT-table entry as follows:

208 7 IP version 4

https://github.com/samyk/pwnat

An Introduction to Computer Networks, Release 1.9.21

remote host remote port outside source port inside host inside port
Bpublic 2222 2222[?] A 2222

Assuming that A’s NAT router does not remap port 2222 as the outside source port, the existence of this
NAT-table entry will allow B’s packets to be delivered to A. A can then respond, and the bidirectional
connection is established. Remapping of port 2222 by A’s NAT router would be a serious problem, but is
quite unlikely if no other host at A’s end is using port 2222.

So far, we have assumed that server B knew about A’s interest in advance. A similar trick, using ICMP
(below at 7.11 Internet Control Message Protocol) allows A to notify B of its interest and existence, so that
B can begin sending its series of UDP packets. The idea here is for B to send periodic ICMP Echo Request
(ping-request) packets to a fixed IP address IPblackhole chosen because it is not in use. All these packets
disappear somewhere, but they do create an ICMP opening in B’s NAT router. The client A is assumed
to know B’s public IP address Bpublic, and begins to send ICMP Time Exceeded packets to Bpublic that are
crafted to look like legitimate responses to B’s Echo Request packets. ICMP Time Exceeded messages are
acceptable regardless of their source IP address; their intended use is by intermediate routers reporting a
problem. B’s NAT router will now (hopefully) forward A’s arriving Time Exceeded packets to B. The ICMP
Time Exceeded packet has error-message space for A’s public IP address Apublic; when received, this triggers
B’s sending of UDP packets to xApublic,2222y as above. A and B do have to standardize on a specific ping
query identifier.

How NAT routers handle ICMP replies does vary from implementation to implementation, and some higher-
end NAT devices do notice problems with B’s forged ICMP Time Exceeded packets, either at A’s end or at
B’s. However, for most consumer-grade NAT devices, this strategy works quite well.

7.8 DNS

The Domain Name System, DNS, is an essential companion protocol to IPv4 (and IPv6); an overview can
be found in RFC 1034. It is DNS that permits users the luxury of not needing to remember numeric IP
addresses. Instead of 162.216.18.28, a user can simply enter intronetworks.cs.luc.edu, and DNS will take
care of looking up the name and retrieving the corresponding address. DNS also makes it easy to move
services from one server to another with a different IP address; as users will locate the service by DNS
name and not by IP address, they do not need to be notified.

While DNS supports a wide variety of queries, for the moment we will focus on queries for IPv4 addresses,
or so-called A records. The AAAA record type is used for IPv6 addresses, and, internally, the NS record type
is used to identify the “name servers” that answer DNS queries.

While a workstation can use TCP/IP without DNS, users would have an almost impossible time finding
anything, and so the core startup configuration of an Internet-connected workstation almost always includes
the IP address of its DNS server (see 7.10 Dynamic Host Configuration Protocol (DHCP) below for how
startup configurations are often assigned).

Most DNS traffic today is over UDP, although a TCP option exists. Due to the much larger response sizes,
TCP is often necessary for DNSSEC (22.12 DNSSEC).

DNS is distributed, meaning that each domain is responsible for maintaining its own DNS servers to
translate names to addresses. DNS, in fact, is a classic example of a highly distributed database where each

7.8 DNS 209

https://tools.ietf.org/html/rfc1034.html
http://intronetworks.cs.luc.edu

An Introduction to Computer Networks, Release 1.9.21

node maintains a relatively small amount of data. That said, in days gone by it was common practice for
each domain to maintain its own DNS server; today, domain registrars often provide DNS services for many
of their domain customers.

DNS is hierarchical as well; for the DNS name intronetworks.cs.luc.edu the levels of the hier-
archy are

• edu: the top-level domain (TLD) for educational institutions in the US

• luc: Loyola University Chicago

• cs: The Loyola Computer Science Department

• intronetworks: a hostname associated to a specific IP address

The hierarchy of DNS names (that is, the set of all names and suffixes of names) forms a tree, but it is not
only leaf nodes that represent individual hosts. In the example above, domain names luc.edu and cs.luc.edu
happen to be valid hostnames as well.

The DNS hierarchy is in a great many cases not very deep, particularly for DNS names assigned to commer-
cial websites. Such domain names are often simply the company name (or a variant of it) followed by the
top-level domain (often .com). Still, internally most organizations have many individually named behind-
the-scenes servers with three-level (or more) domain names; sometimes some of these can be identified by
viewing the source of the web page and searching it for domain names.

Top-level domains are assigned by ICANN. The original top-level domains were seven three-letter domains
– .com, .net, .org, .int, .edu, .mil and .gov – and the two-letter country-code domains (eg
.us, .ca, .mx). Now there are hundreds of non-country top-level domains, such as .aero, .biz, .info,
and, apparently, .wtf. Domain names (and subdomain names) can also contain unicode characters, so as to
support national alphabets. Some top-level domains are generic, meaning anyone can apply for a subdomain
although there may be qualifying criteria. Other top-level domains are sponsored, meaning the sponsoring
organization determines who can be assigned a subdomain, and so the qualifying criteria can be a little more
arbitrary.

ICANN still must approve all new top-level domains. Applications are accepted only during specific in-
tervals; the application fee for the 2012 interval was US$185,000. The actual leasing of domain names to
companies and individuals is done by organizations known as domain registrars who work under contract
with ICANN.

The full tree of all DNS names and prefixes is divided administratively into zones: a zone is an independently
managed subtree, minus any sub-subtrees that have been placed – by delegation – into their own zone. Each
zone has its own root DNS name that is a suffix of every DNS name in the zone. For example, the luc.
edu zone contains most of Loyola’s DNS names, but cs.luc.edu has been spun off into its own zone.
A zone cannot be the disjoint union of two subtrees; that is, cs.luc.edu and math.luc.edu must be
two distinct zones, unless both remain part of their parent zone.

A zone can define DNS names more than one level deep. For example, the luc.edu zone can define
records for the luc.edu name itself, for names with one additional level such as www.luc.edu, and for
names with two additional levels such as www.cs.luc.edu. That said, it is common for each zone to
handle only one additional level, and to create subzones for deeper levels.

Each zone has its own authoritative nameservers for the zone, which are charged with maintaining the
records – known as resource records, or RRs – for that zone. Each zone must have at least two nameservers,
for redundancy. IPv4 addresses are stored as so-called A records, for Address. Information about how to

210 7 IP version 4

http://luc.edu
http://cs.luc.edu
https://www.icann.org/
https://en.wikipedia.org/wiki/.wtf

An Introduction to Computer Networks, Release 1.9.21

find sub-zones is stored as NS records, for Name Server. Additional resource-record types are discussed at
7.8.3 Other DNS Records. Each DNS record type also includes a time-to-live field for caching (below).

An authoritative nameserver need not be part of the organization that manages the zone, and a single server
can be the authoritative nameserver for multiple unrelated zones. For example, many domain registrars
maintain single nameservers that handle DNS queries for all their domain customers who do not wish to set
up their own nameservers.

The root nameservers handle the zone that is the root of the DNS tree; that is, that is represented by the DNS
name that is the empty string. As of 2019, there are thirteen of them. The root nameservers contain only
NS records, identifying the nameservers for all the immediate subzones. Each top-level domain is its own
such subzone. The IP addresses of the root nameservers are widely distributed. Their DNS names (which
are only of use if some DNS lookup mechanism is already present) are a.root.servers.net through
m.root-servers.net. These names today correspond not to individual machines but to clusters of up
to hundreds of servers.

7.8.1 DNS Resolvers

We can now put together a first draft of a DNS lookup algorithm. To find the IP address of intronet-
works.cs.luc.edu, a host first contacts a root nameserver (at a known address) to find the nameserver for the
edu zone; this involves the retrieval of an NS record. The edu nameserver is then queried to find the name-
server for the luc.edu zone, which in turn supplies the NS record giving the address of the cs.luc.edu
zone. This last has an A record for the actual host. (This example is carried out in detail below.) The system
(or application) that executes these DNS lookups is known as a DNS resolver. Confusingly, resolvers are
also sometimes known as “nameservers” or, more precisely, non-authoritative nameservers.

To reduce overall DNS traffic, in particular to the root nameservers, it makes sense to cache intermediate
(and final) results, so that in a later query for, say, uchicago.edu, the host can reuse the previously learned
address of the edu nameserver.

For still greater DNS efficiency, we can provide one DNS resolver to handle requests for a large pool of
users. The idea is that, if one user has looked up youtube.com, or facebook.com, those addresses are in hand
locally for the next user. The benefit of this consolidation approach depends on the distribution of lookup
requests, their lifetimes, and how likely it is that two users visit the same site. In recent years this caching
benefit has been getting smaller, at least for “full” DNS names, as the Internet becomes more diverse, and
as cache lifetimes have been shrinking. (The caching benefit for DNS “partial” names, such as .edu and
.com, remains significant.)

Regardless of caching benefits, such pooled-use DNS resolvers are almost universally used. Almost all
ISPs and most companies, for example, provide a resolver to handle the DNS needs of their customers and
employees. We will refer to these as site resolvers. The IP addresses of these site resolvers are generally
supplied via DHCP options (7.10 Dynamic Host Configuration Protocol (DHCP)); such resolvers are thus
the default choice for DNS services.

DNS Policing

It is sometimes suggested that if a site is engaged in illegal activity or copyright infringement, such as
thepiratebay.se, its domain name should be seized. The problem with this strategy is that it is straight-

7.8 DNS 211

http://intronetworks.cs.luc.edu
http://intronetworks.cs.luc.edu
http://uchicago.edu
https://thepiratebay.se/

An Introduction to Computer Networks, Release 1.9.21

forward for users to set up “nonstandard” nameservers (for example the Gnu Name System, GNS) that
continue to list the banned site.

Sometimes, however, users elect to use a DNS resolver not provided by their ISP or company; there are a
number of public DNS servers (that is, resolvers) available. Such resolvers generally serve much larger
areas. Common choices include OpenDNS, Google DNS (at 8.8.8.8), Cloudflare (at 1.1.1.1) and the Gnu
Name System mentioned in the sidebar above, though there are many others. Searching for “public DNS
server” turns up lists of them.

In theory, one advantage of using a public DNS server is that your local ISP can no longer track your DNS
queries. However, some ISPs still do record customer DNS queries, and may even intercept and modify
them. If this is a concern, DNS encryption is necessary. There are two primary proposals:

• DNS over TLS (DoT): RFC 7858

• DNS over HTTPS (DoH): RFC 8484

TLS is an encryption protocol (22.10.2 TLS). HTTPS – secure HTTP – uses TLS encryption, but the two
are not the same. For one thing, eavesdroppers can still identify DoT traffic as DNS traffic (because it is sent
to a special port), but DoH traffic is indistinguishable from HTTPS web traffic.

Both DoT and DoH likely take some deliberate configuration to enable as the standard system resolver.
However, the Firefox browser now supports DoH within the application, that is, without operating-system
support. As of late 2019 it still must be explicitly enabled; by default, the system DNS resolver is used.
However, enabling it just involves clicking a box.

Use of any public DNS server, whether via plain DNS or DoT or DoH, does mean that the public DNS
server now has access to all your DNS queries. Ultimately, the choice depends on how much you trust your
site resolver versus your selected public resolver. In setting up its

Some public DNS servers provide additional services, such as automatically filtering out domain names
associated with security risks, or content inappropriate for young users. Sometimes there is a fee for this
service.

As mentioned earlier, each DNS record comes with a time-to-live (TTL) value, used by resolvers as an
indication of how long they are supposed to keep that record in their caches. DNS TTL lifetimes can be up
to several days; RFC 1035 recommends a minimum TTL of “at least a day”. However, in recent years TTL
values have been getting quite a bit smaller. Below, in 7.8.2 nslookup and dig, we retrieve the TTL values
for facebook.com and google.com from their respective authoritative nameservers; in each case it is
300 seconds (5 minutes).

Authoritative nameservers also provide a TTL value for lookup failures. According to RFC 2308, this is
the TTL value specified in the SOA record. (Originally, the SOA TTL represented the default TTL for
successful lookups.) Lookup-failure TTLs should usually be kept quite short; otherwise there is potential
for large numbers of users to be locked out of a site. Consider, for example, the following scenario for
updating a DNS record for host foo.com. Let us suppose that the lookup-failure TTL is one week:

212 7 IP version 4

https://gnunet.org/gns
https://en.wikipedia.org/wiki/OpenDNS
https://en.wikipedia.org/wiki/Google_Public_DNS
https://blog.cloudflare.com/dns-resolver-1-1-1-1/
https://tools.ietf.org/html/rfc7858.html
https://tools.ietf.org/html/rfc8484.html
https://www.mozilla.org/en-US/firefox/
https://tools.ietf.org/html/rfc1035.html
https://tools.ietf.org/html/rfc2308.html

An Introduction to Computer Networks, Release 1.9.21

Site foo.com Site B (perhaps a large ISP)
Delete foo.com A record

Site B queries for foo.com
Site B gets NXDOMAIN

Immediately reinstall foo.com A record

At this point, Site B will be telling its users for a week that foo.com is unavailable, and site foo.com will
be unable to fix it.

If I send a query to Loyola’s site resolver for google.com, it is almost certainly in the cache. If I send
a query for the misspelling googel.com, this may not be in the cache, but the .com top-level nameserver
almost certainly is in the cache. From that nameserver my local resolver finds the nameserver for the
googel.com zone, and from that finds the IP address of the googel.com host.

There are, as of 2019, around 1500 top-level domains. If, while still using Loyola’s site resolver, I send a
query for a site in one of the more obscure top-level domains, there is a reasonable chance that the top-level
domain will not be in the cache. A consequence of this aspect of caching is that popular top-level domains
are likelier to result in faster lookups.

Applications almost always invoke DNS through library calls, such as Java’s InetAddress.
getByName(). The library forwards the query to the system-designated resolver (though browsers some-
times offer other DNS options; see 22.12.4 DNS over HTTPS). We will return to DNS library calls in
11.1.3.3 The Client and 12.6.1 The TCP Client.

On unix-based systems, traditionally the IPv4 addresses of the local DNS resolvers were kept in a file /
etc/resolv.conf. Typically this file was updated with the addresses of the current resolvers by DHCP
(7.10 Dynamic Host Configuration Protocol (DHCP)), at the time the system received its IPv4 address. It
is possible, though not common, to create special entries in /etc/resolv.conf so that queries about
different domains are sent to different resolvers, or so that single-level hostnames have a domain name
appended to them before lookup. On Windows, similar functionality can be achieved through settings on
the DNS tab within the Network Connections applet.

Recent systems often run a small “stub” resolver locally (eg Linux’s dnsmasq); such resolvers are sometimes
also called DNS forwarders. The entry in /etc/resolv.conf is then an IPv4 address of localhost
(sometimes 127.0.1.1 rather than 127.0.0.1). Such a stub resolver would, of course, still need access to the
addresses of site or public resolvers; sometimes these addresses are provided by static configuration and
sometimes by DHCP (7.10 Dynamic Host Configuration Protocol (DHCP)).

If a system running a stub resolver then runs internal virtual machines, it is usually possible to configure
everything so that the virtual machines can be given an IP address of the host system as their DNS resolver.
For example, often virtual machines are assigned IPv4 addresses on a private subnet and connect to the
outside world using NAT (7.7 Network Address Translation). In such a setting, the virtual machines are
given the IPv4 address of the host system interface that connects to the private subnet. It is then necessary
to ensure that, on the host system, the local resolver accepts queries sent not only to the designated loop-
back address but also to the host system’s private-subnet address. (Generally, local resolvers do not accept
requests arriving from externally visible addresses.)

When someone submits a query for a nonexistent DNS name, the resolver is supposed to return an error
message, technically known as NXDOMAIN (Non eXistent Domain). Some resolvers, however, have been
configured to return the IP address of a designated web server; this is particularly common for ISP-provided

7.8 DNS 213

http://googel.com
https://en.wikipedia.org/wiki/Dnsmasq

An Introduction to Computer Networks, Release 1.9.21

site resolvers. Sometimes the associated web page is meant to be helpful, and sometimes it presents an offer
to buy the domain name from a registrar. Either way, additional advertising may be displayed. Of course,
this is completely useless to users who are trying to contact the domain name in question via a protocol (ssh,
smtp) other than http.

At the DNS protocol layer, a DNS lookup query can be either recursive or non-recursive. If A sends to B
a recursive query to resolve a given DNS name, then B takes over the job until it is finally able to return an
answer to A. If The query is non-recursive, on the other hand, then if B is not an authoritative nameserver
for the DNS name in question it returns either a failure notice or an NS record for the sub-zone that is the
next step on the path. Almost all DNS requests from hosts to their site or public resolvers are recursive.

A basic DNS response consists of an ANSWER section, an AUTHORITY section and, optionally, an ADDI-
TIONAL section. Generally a response to a lookup of a hostname contains an ANSWER section consisting
of a single A record, representing a single IPv4 address. If a site has multiple servers that are entirely equiv-
alent, however, it is possible to give them all the same hostname by configuring the authoritative nameserver
to return, for the hostname in question, multiple A records listing, in turn, each of the server IPv4 addresses.
This is sometimes known as round-robin DNS. It is a simple form of load balancing; see also 18.9.5 load-
balance31.py. Consecutive queries to the nameserver should return the list of A records in different orders;
ideally the same should also happen with consecutive queries to a local resolver that has the hostname in its
cache. It is also common for a single server, with a single IPv4 address, to be identified by multiple DNS
names; see the next section.

The response AUTHORITY section contains the DNS names of the authoritative nameservers responsible
for the original DNS name in question. The ADDITIONAL section contains information the sender thinks
is related; for example, this section often contains A records for the authoritative nameservers.

The Tor Project uses DNS-like names that end in “.onion”. While these are not true DNS names in that
they are not managed by the DNS hierarchy, they do work as such for Tor users; see RFC 7686. These
names follow an unusual pattern: the next level of name is an 80-bit hash of the site’s RSA public key
(22.9.1 RSA), converted to sixteen ASCII bytes. For example, 3g2upl4pq6kufc4m.onion is apparently the
Tor address for the search engine duckduckgo.com. Unlike DuckDuckGo, many sites try different RSA keys
until they find one where at least some initial prefix of the hash looks more or less meaningful; for example,
nytimes2tsqtnxek.onion. Facebook got very lucky in finding an RSA key whose corresponding Tor
address is facebookcorewwwi.onion (though it is sometimes said that fortune is infatuated with the
wealthy). This naming strategy is a form of cryptographically generated addresses; for another example
see 8.6.4 Security and Neighbor Discovery. The advantage of this naming strategy is that you don’t need a
certificate authority (22.10.2.1 Certificate Authorities) to verify a site’s RSA key; the site name does it for
you.

7.8.2 nslookup and dig

Let us trace a non-recursive lookup of intronetworks.cs.luc.edu, using the nslookup tool. The
nslookup tool is time-honored, but also not completely up-to-date, so we also include examples using the
dig utility (supposedly an acronym for “domain Internet groper”). Lines we type in nslookup’s interactive
mode begin below with the prompt “>”; the shell prompt is “#”. All dig commands are typed directly at
the shell prompt.

The first step is to look up the IP address of the root nameserver a.name-servers.net. We can do this
with a regular call to nslookup or dig, we can look this up in our nameserver’s configuration files, or we

214 7 IP version 4

https://en.wikipedia.org/wiki/Tor_(anonymity_network)
https://tools.ietf.org/html/rfc7686.html
https://duckduckgo.com/
https://lists.torproject.org/pipermail/tor-talk/2014-October/035413.html
http://en.wikipedia.org/wiki/Nslookup
https://en.wikipedia.org/wiki/Dig_(command)

An Introduction to Computer Networks, Release 1.9.21

can search for it on the Internet. The address is 198.41.0.4.

We now send our nonrecursive query to this address. The presence of the single hyphen in the nslookup
command line below means that we want to use 198.41.0.4 as the nameserver rather than as the thing to be
looked up; dig has places on the command line for both the nameserver (following the @) and the DNS
name. For both commands, we use the norecurse option to send a nonrecursive query.

nslookup -norecurse - 198.41.0.4
> intronetworks.cs.luc.edu

*** Can't find intronetworks.cs.luc.edu: No answer

dig @198.41.0.4 intronetworks.cs.luc.edu +norecurse

These fail because by default nslookup and dig ask for an A record. What we want is an NS record: the
name of the next zone down to ask. (We can tell the dig query failed to find an A record because there are
zero records in the ANSWER section)

> set query=ns
> intronetworks.cs.luc.edu
edu nameserver = a.edu-servers.net
...
a.edu-servers.net internet address = 192.5.6.30

dig @198.41.0.4 intronetworks.cs.luc.edu NS +norecurse
;; AUTHORITY SECTION:
edu. 172800 IN NS b.edu-servers.net.
;; ADDITIONAL SECTION:
b.edu-servers.net. 172800 IN A 192.33.14.30

The full responses in each case are a list of all nameservers for the .edu zone; we list only the first response
above. Note that the full DNS name intronetworks.cs.luc.edu in the query here is not an exact
match for the DNS name .edu in the resource record returned; the latter is a suffix of the former. Some
newer resolvers send just the .edu part, to limit the user’s privacy exposure.

We send the next NS query to a.edu-servers.net (which does appear in the full dig answer)

nslookup -query=ns -norecurse - 192.5.6.30
> intronetworks.cs.luc.edu
...
Authoritative answers can be found from:
luc.edu nameserver = bcdnswt1.it.luc.edu.
bcdnswt1.it.luc.edu internet address = 147.126.64.64

dig @192.5.6.30 intronetworks.cs.luc.edu NS +norecurse
;; AUTHORITY SECTION:
luc.edu. 172800 IN NS bcdnsls1.it.luc.edu.
;; ADDITIONAL SECTION:
bcdnsls1.it.luc.edu. 172800 IN A 147.126.1.217

(Again, we show only one of several luc.edu nameservers returned).

The next step is to ask the luc.edu nameserver for the cs.luc.edu nameserver.

7.8 DNS 215

An Introduction to Computer Networks, Release 1.9.21

nslookup -query=ns - -norecurse 147.126.1.217
> cs.luc.edu
...
cs.luc.edu nameserver = bcdnsls1.it.luc.edu.

dig @147.126.1.217 intronetworks.cs.luc.edu NS +norecurse
;; AUTHORITY SECTION:
cs.luc.edu. 300 IN SOA bcdnsls1.it.luc.edu.

ãÑpostmaster.luc.edu. 589544360 1200 180 1209600 300

The nslookup command returns the same nameserver as before; dig does also, but at least indicates it
is returning an SOA rather than an NS record. The first data field of the SOA result – bcdnsls1.it.
luc.edu. – is the primary nameserver. All this is a somewhat roundabout way of saying that the same
nameserver handles cs.luc.edu as handles luc.edu; that is, they are part of the same zone. Prior to
2019, cs.luc.edu was a separate zone, but after a significant outage it was folded back into luc.edu.
In any event, we can now ask for the A record directly:

nslookup -query=A - -norecurse 147.126.1.217
> intronetworks.cs.luc.edu
...
Name: intronetworks.cs.luc.edu
Address: 162.216.18.28

dig @147.126.1.217 intronetworks.cs.luc.edu A +norecurse
;; ANSWER SECTION:
intronetworks.cs.luc.edu. 600 IN A 162.216.18.28

This is the first time we get an ANSWER section (versus the AUTHORITY section)

Prior to 2019, the final result from nslookup was in fact this:

intronetworks.cs.luc.edu canonical name = linode1.cs.luc.edu.
Name: linode1.cs.luc.edu
Address: 162.216.18.28

Here we received a canonical name, or CNAME, record. The server that hosts intronetworks.cs.
luc.edu also hosts several other websites, with different names; for example, introcs.cs.luc.edu. This is
known as virtual hosting. Rather than provide separate A records for each website name, DNS was set up
to provide a CNAME record for each website name pointing to a single physical server name linode1.
cs.luc.edu. Only one A record is then needed, for this server. Post-2019, this CNAME strategy is no
longer used. Note that both the CNAME and the corresponding A record was returned, for convenience.
The pre-2019 answer returned by dig (above) made no mention of CNAMEs, because they are often of
little user interest; dig will return CNAMEs however if asked explicitly.

Note that the IPv4 address here, 162.216.18.28, is unrelated to Loyola’s own IPv4 address block
147.126.0.0/16. The server hosting intronetworks.cs.luc.edu is managed by an external provider;
there is no connection between the DNS name hierarchy and the IP address hierarchy.

As another example of the use of dig, we can find the time-to-live values advertised by facebook.com
and google.com:

216 7 IP version 4

http://introcs.cs.luc.edu/

An Introduction to Computer Networks, Release 1.9.21

dig facebook.com
;; ANSWER SECTION:
facebook.com. 78 IN A 157.240.18.35
;; AUTHORITY SECTION:
facebook.com. 147771 IN NS b.ns.facebook.com.

dig google.com
;; ANSWER SECTION:
google.com. 103 IN A 172.217.9.78
;; AUTHORITY SECTION:
google.com. 141861 IN NS ns3.google.com.

The TTLs are 78 and 103 seconds, respectively. But these are the TTLs coming from the local site resolver.
To get the TTL values from facebook.com and google.com directly, we can do this:

dig @b.ns.facebook.com facebook.com
;; ANSWER SECTION:
facebook.com. 300 IN A 157.240.18.35

dig @ns3.google.com google.com
;; ANSWER SECTION:
google.com. 300 IN A 172.217.1.14

That is, both sites’ authoritative nameservers advertise a TTL of 300 seconds (5 minutes).

Finally, if we look up both www.cs.luc.edu and cs.luc.edu, we see they resolve to the same address.
The use of www as a hostname for a domain’s webserver is sometimes considered unnecessary and old-
fashioned; many users prefer the shorter, “naked” domain name, eg cs.luc.edu.

It might be tempting to create a CNAME record for the naked domain, cs.luc.edu, pointing to the full
hostname www.cs.luc.edu. However, RFC 1034 does not allow this:

If a CNAME RR is present at a node, no other data should be present; this ensures that the data
for a canonical name and its aliases cannot be different.

There are, however, several other DNS data records for cs.luc.edu: an NS record (above), a SOA,
or Start of Authority, record containing various administrative data such as the expiration time, and an
MX record, discussed in the following section. All this makes www.cs.luc.edu and cs.luc.edu
ineluctably quite different. RFC 1034 adds, “this rule also insures that a cached CNAME can be used
without checking with an authoritative server for other RR types.”

A better way to create a naked-domain record, at least from the perspective of DNS, is to give it its own A
record. This does mean that, if the webserver address changes, there are now two DNS records that need to
be updated, but this is manageable.

Recently ANAME records have been proposed to handle this issue; an ANAME is like a limited CNAME
not subject to the RFC 1034 restriction above. An ANAME record for a naked domain, pointing to another
hostname rather than to address, is legal. See the Internet draft draft-hunt-dnsop-aname. Some large CDNs
(1.12.2 Content-Distribution Networks) already implement similar DNS tweaks internally. This does not
require end-user awareness; the user requests an A record and the ANAME is resolved at the CDN side.

Finally, there is also an argument, at least when HTTP (web) traffic is involved, that the www not be
deprecated, and that the naked domain should instead be redirected, at the HTTP layer, to the full hostname.

7.8 DNS 217

https://tools.ietf.org/html/rfc1034.html
https://tools.ietf.org/html/rfc1034.html
https://tools.ietf.org/html/rfc1034.html
https://tools.ietf.org/html/draft-hunt-dnsop-aname

An Introduction to Computer Networks, Release 1.9.21

This simplifies some issues; for example, you now have only one website, rather than two. You no longer
have to be concerned with the fact that HTTP cookies with and without the “www” are different. And some
CDNs may not be able to handle website failover to another server if the naked domain is reached via an A
record. But none of these are DNS issues.

7.8.3 Other DNS Records

Besides address lookups, DNS also supports a few other kinds of searches. The best known is probably
reverse DNS, which takes an IP address and returns a name. This is slightly complicated by the fact that
one IP address may be associated with multiple DNS names. What DNS does in this case is to return the
canonical name, or CNAME; a given address can have only one CNAME.

Given an IPv4 address, say 147.126.1.230, the idea is to reverse it and append to it the suffix in-addr.
arpa.

230.1.126.147.in-addr.arpa

There is a DNS name hierarchy for names of this form, with zones and authoritative servers. If all this
has been configured – which it often is not, especially for user workstations – a request for the PTR record
corresponding to the above should return a DNS hostname. In the case above, the name luc.edu is returned
(at least as of 2018).

PTR records are the only DNS records to have an entirely separate hierarchy; other DNS types fit into the
“standard” hierarchy. For example, DNS also supports MX, or Mail eXchange, records, meant to map a
domain name (which might not correspond to any hostname, and, if it does, is more likely to correspond to
the name of a web server) to the hostname of a server that accepts email on behalf of the domain. In effect
this allows an organization’s domain name, eg luc.edu, to represent both a web server and, at a different
IP address, an email server. MX records can even represent a set of IP addresses that accept email.

DNS has from the beginning supported TXT records, for arbitrary text strings. The email Sender Policy
Framework (RFC 7208) was developed to make it harder for email senders to pretend to be a domain they
are not; this involves inserting so-called SPF records as DNS TXT records (or as substrings of TXT records,
if TXT is also being used for something else.

For example, a DNS query for TXT records of google.com (not gmail.com!) might yield (2018)

google.com text = "docusign=05958488-4752-4ef2-95eb-aa7ba8a3bd0e"
google.com text = "v=spf1 include:_spf.google.com ~all"

The SPF system is interested in only the second record; the “v=spf1” specifies the SPF version. This second
record tells us to look up _spf.google.com. That lookup returns

text = "v=spf1 include:_netblocks.google.com include:_netblocks2.google.com
ãÑinclude:_netblocks3.google.com ~all"

Lookup of _netblocks.google.com then returns

text = "v=spf1 ip4:64.233.160.0/19 ip4:66.102.0.0/20 ip4:66.249.80.0/20
ãÑip4:72.14.192.0/18 ip4:74.125.0.0/16 ip4:108.177.8.0/21 ip4:173.194.0.0/16
ãÑip4:209.85.128.0/17 ip4:216.58.192.0/19 ip4:216.239.32.0/19 ~all"

218 7 IP version 4

http://luc.edu
https://tools.ietf.org/html/rfc7208.html

An Introduction to Computer Networks, Release 1.9.21

If a host connects to an email server, and declares that it is delivering mail from someone at google.com,
then the host’s email list should occur in the list above, or in one of the other included lists. If it does not,
there is a good chance the email represents spam.

Each DNS record (or “resource record”) has a name (eg cs.luc.edu) and a type (eg A or AAAA or NS
or MX). Given a name and type, the set of matching resource records is known as the RRset for that name
and type (technically there is also a “class”, but the class of all the DNS records we are interested in is IN,
for Internet). When a nameserver responds to a DNS query, what is returned (in the ANSWER section)
is always an entire RRset: the RRset of all resource records matching the name and type contained in the
original query.

In many cases, RRsets have a single member, because many hosts have a single IPv4 address. However,
this is not universal. We saw above the example of a single DNS name having multiple A records when
round-robin DNS is used. A single DNS name might also have separate A records for the host’s public and
private IPv4 addresses. And perhaps most MX-record (Mail eXchange) RRsets have multiple entries, as
organizations often prefer, for redundancy, to have more than one server that can receive email.

7.8.4 DNS Cache Poisoning

The classic DNS security failure, known as cache poisoning, occurs when an attacker has been able to
convince a DNS resolver that the address of, say, www.example.com is something other than what it really
is. A successful attack means the attacker can direct traffic meant for www.example.com to the attacker’s
own, malicious site.

The most basic cache-poisoning strategy is to send a stream of DNS reply packets to the resolver which
declare that the IP address of www.example.com is the attacker’s chosen IP address. The source IP address
of these packets should be spoofed to be that of the example.com authoritative nameserver; such spoofing
is relatively easy using UDP. Most of these reply packets will be ignored, but the hope is that one will
arrive shortly after the resolver has sent a DNS request to the example.com authoritative nameserver, and
interprets the spoofed reply packet as a legitimate reply.

To prevent this, DNS requests contain a 16-bit ID field; the DNS response must echo this back. The response
must also come from the correct port. This leaves the attacker to guess 32 bits in all, but often the ID field
(and even more often the port) can be guessed based on past history.

Another approach requires the attacker to wait for the target resolver to issue a legitimate request to the
attacker’s site, attacker.com. The attacker then piggybacks in the ADDITIONAL section of the reply
message an A record for example.com pointing to the attacker’s chosen bad IP address for this site. The
hope is that the receiving resolver will place these A records from the ADDITIONAL section into its cache
without verifying them further and without noticing they are completely unrelated. Once upon a time, such
DNS resolver behavior was common.

Most newer DNS resolvers carefully validate the replies: the ID field must match, the source port must
match, and any received DNS records in the ADDITIONAL section must match, at a minimum, the DNS
zone of the request. Additionally, the request ID field and source port should be chosen pseudorandomly in
a secure fashion. For additional vulnerabilities, see RFC 3833.

The central risk in cache poisoning is that a resolver can be tricked into supplying users with invalid DNS
records. A closely related risk is that an attacker can achieve the same result by spoofing an authoritative

7.8 DNS 219

https://tools.ietf.org/html/rfc3833.html

An Introduction to Computer Networks, Release 1.9.21

nameserver. Both of these risks can be mitigated through the use of the DNS security extensions, known as
DNSSEC. Because DNSSEC makes use of public-key signatures, we defer coverage to 22.12 DNSSEC.

7.8.5 DNS and CDNs

DNS is often pressed into service by CDNs (1.12.2 Content-Distribution Networks) to identify their closest
“edge” server to a given user. Typically this involves the use of geoDNS, a slightly nonstandard variation of
DNS. When a DNS query comes in to one of the CDN’s authoritative nameservers, that server

1. looks up the approximate location of the client (10.4.4 IP Geolocation)

2. determines the closest edge server to that location

3. replies with the IP address of that closest edge server

This works reasonably well most of the time. However, the requesting client is essentially never the end
user; rather, it is the DNS resolver being used by the user. Typically such resolvers are the site resolvers
provided by the user’s ISP or organization, and are physically quite close to the user; in this case, the edge
server identified above will be close to the user as well. However, when a user has chosen a (likely remote)
public DNS resolver, as above, the IP address returned for the CDN edge server will be close to the DNS
resolver but likely far from optimal for the end user.

One solution to this last problem is addressed by RFC 7871, which allows DNS resolvers to include the
IP address of the client in the request sent to the authoritative nameserver. For privacy reasons, usually
only a prefix of the user’s IP address is included, perhaps /24. Even so, user’s privacy is at least partly
compromised. For this reason, RFC 7871 recommends that the feature be disabled by default, and only
enabled after careful analysis of the tradeoffs.

A user who is concerned about the privacy issue can – in theory – configure their own DNS software to
include this RFC 7871 option with a zero-length prefix of the user’s IP address, which conveys no address
information. The user’s resolver will then not change this to a longer prefix.

Use of this option also means that the DNS resolver receiving a user query about a given hostname can no
longer simply return a cached answer from a previous lookup of the hostname. Instead, the resolver needs to
cache separately each xhostname,prefixy pair it handles, where the prefix is the prefix of the user’s IP address
forwarded to the authoritative nameserver. This has the potential to increase the cache size by several orders
of magnitude, which may thereby enable some cache-overflow attacks.

7.9 Address Resolution Protocol: ARP

If a host or router A finds that the destination IP address D = DIP matches the network address of one of
its interfaces, it is to deliver the packet via the LAN (probably Ethernet). This means looking up the LAN
address (MAC address) DLAN corresponding to DIP. How does it do this?

One approach would be via a special server, but the spirit of early IPv4 development was to avoid such
servers, for both cost and reliability issues. Instead, the Address Resolution Protocol (ARP) is used. This
is our first protocol that takes advantage of the existence of LAN-level broadcast; on LANs without physical
broadcast (such as ATM), some other mechanism (usually involving a server) must be used.

220 7 IP version 4

https://tools.ietf.org/html/rfc7871.html
https://tools.ietf.org/html/rfc7871.html
https://tools.ietf.org/html/rfc7871.html

An Introduction to Computer Networks, Release 1.9.21

The basic idea of ARP is that the host A sends out a broadcast ARP query or “who-has DIP?” request,
which includes A’s own IPv4 and LAN addresses. All hosts on the LAN receive this message. The host for
whom the message is intended, D, will recognize that it should reply, and will return an ARP reply or “is-at”
message containing DLAN. Because the original request contained ALAN, D’s response can be sent directly
to A, that is, unicast.

A B C D

 A broadcasts “who-has D”
D replies to A, unicast, and includes its LAN address

Additionally, all hosts maintain an ARP cache, consisting of xIPv4,LANy address pairs for other hosts on
the network. After the exchange above, A has xDIP,DLANy in its table; anticipating that A will soon send it
a packet to which it needs to respond, D also puts xAIP,ALANy into its cache.

ARP-cache entries eventually expire. The timeout interval used to be on the order of 10 minutes, but Linux
systems now use a much smaller timeout (~30 seconds observed in 2012). Somewhere along the line, and
probably related to this shortened timeout interval, repeat ARP queries about a timed-out entry are first sent
unicast, not broadcast, to the previous Ethernet address on record. This cuts down on the total amount of
broadcast traffic; LAN broadcasts are, of course, still needed for new hosts. The ARP cache on a Linux
system can be examined with the command ip -s neigh; the corresponding windows command is arp
-a.

The above protocol is sufficient, but there is one further point. When A sends its broadcast “who-has D?”
ARP query, all other hosts C check their own cache for an entry for A. If there is such an entry (that is, if
AIP is found there), then the value for ALAN is updated with the value taken from the ARP message; if there
is no pre-existing entry then no action is taken. This update process serves to avoid stale ARP-cache entries,
which can arise is if a host has had its Ethernet interface replaced. (USB Ethernet interfaces, in particular,
can be replaced very quickly.)

ARP is quite an efficient mechanism for bridging the gap between IPv4 and LAN addresses. Nodes generally
find out neighboring IPv4 addresses through higher-level protocols, and ARP then quickly fills in the miss-
ing LAN address. However, in some Software-Defined Networking (2.8 Software-Defined Networking)
environments, the LAN switches and/or the LAN controller may have knowledge about IPv4/LAN address
correspondences, potentially making ARP superfluous. The LAN (Ethernet) switching network might in
principle even know exactly how to route via the LAN to a given IPv4 address, potentially even making
LAN addresses unnecessary. At such a point, ARP may become an inconvenience. For an example of a
situation in which it is necessary to work around ARP, see 18.9.5 loadbalance31.py.

7.9.1 ARP Finer Points

Most hosts today implement self-ARP, or gratuitous ARP, on startup (or wakeup): when station A starts
up it sends out an ARP query for itself : “who-has A?”. Two things are gained from this: first, all stations
that had A in their cache are now updated with A’s most current ALAN address, in case there was a change,
and second, if an answer is received, then presumably some other host on the network has the same IPv4
address as A.

7.9 Address Resolution Protocol: ARP 221

An Introduction to Computer Networks, Release 1.9.21

Self-ARP is thus the traditional IPv4 mechanism for duplicate address detection. Unfortunately, it does
not always work as well as might be hoped; often only a single self-ARP query is sent, and if a reply is
received then frequently the only response is to log an error message; the host may even continue using
the duplicate address! If the duplicate address was received via DHCP, below, then the host is supposed to
notify its DHCP server of the error and request a different IPv4 address.

RFC 5227 has defined an improved mechanism known as Address Conflict Detection, or ACD. A host
using ACD sends out three ARP queries for its new IPv4 address, spaced over a few seconds and leaving the
ARP field for the sender’s IPv4 address filled with zeroes. This last step means that any other host with that
IPv4 address in its cache will ignore the packet, rather than update its cache. If the original host receives
no replies, it then sends out two more ARP queries for its new address, this time with the ARP field for the
sender’s IPv4 address filled in with the new address; this is the stage at which other hosts on the network
will make any necessary cache updates. Finally, ACD requires that hosts that do detect a duplicate address
must discontinue using it.

It is also possible for other stations to answer an ARP query on behalf of the actual destination D; this is
called proxy ARP. An early common scenario for this was when host C on a LAN had a modem connected
to a serial port. In theory a host D dialing in to this modem should be on a different subnet, but that requires
allocation of a new subnet. Instead, many sites chose a simpler arrangement. A host that dialed in to C’s
serial port might be assigned IP address DIP, from the same subnet as C. C would be configured to route
packets to D; that is, packets arriving from the serial line would be forwarded to the LAN interface, and
packets sent to CLAN addressed to DIP would be forwarded to D. But we also have to handle ARP, and as
D is not actually on the LAN it will not receive broadcast ARP queries. Instead, C would be configured to
answer on behalf of D, replying with xDIP,CLANy. This generally worked quite well.

Proxy ARP is also used in Mobile IP, for the so-called “home agent” to intercept traffic addressed to the
“home address” of a mobile device and then forward it (eg via tunneling) to that device. See 7.13 Mobile
IP.

One delicate aspect of the ARP protocol is that stations are required to respond to a broadcast query. In
the absence of proxies this theoretically should not create problems: there should be only one respondent.
However, there were anecdotes from the Elder Days of networking when a broadcast ARP query would
trigger an avalanche of responses. The protocol-design moral here is that determining who is to respond to
a broadcast message should be done with great care. (RFC 1122 section 3.2.2 addresses this same point in
the context of responding to broadcast ICMP messages.)

ARP-query implementations also need to include a timeout and some queues, so that queries can be resent
if lost and so that a burst of packets does not lead to a burst of queries. A naive ARP algorithm without these
might be:

To send a packet to destination DIP, see if DIP is in the ARP cache. If it is, address the packet
to DLAN; if not, send an ARP query for D

To see the problem with this approach, imagine that a 32 kB packet arrives at the IP layer, to be sent over
Ethernet. It will be fragmented into 22 fragments (assuming an Ethernet MTU of 1500 bytes), all sent at
once. The naive algorithm above will likely send an ARP query for each of these. What we need instead is
something like the following:

To send a packet to destination DIP:
If DIP is in the ARP cache, send to DLAN and return
If not, see if an ARP query for DIP is pending.

222 7 IP version 4

https://tools.ietf.org/html/rfc5227.html
https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

If it is, put the current packet in a queue for D.
If there is no pending ARP query for DIP, start one,

again putting the current packet in the (new) queue for D

We also need:

If an ARP query for some CIP times out, resend it (up to a point)
If an ARP query for CIP is answered, send off any packets in C’s queue

7.9.2 ARP Security

Suppose A wants to log in to secure server S, using a password. How can B (for Bad) impersonate S?

Here is an ARP-based strategy, sometimes known as ARP Spoofing. First, B makes sure the real S is down,
either by waiting until scheduled downtime or by launching a denial-of-service attack against S.

When A tries to connect, it will begin with an ARP “who-has S?”. All B has to do is answer, “S is-at B”.
There is a trivial way to do this: B simply needs to set its own IP address to that of S.

A will connect, and may be convinced to give its password to B. B now simply responds with something
plausible like “backup in progress; try later”, and meanwhile use A’s credentials against the real S.

This works even if the communications channel A uses is encrypted! If A is using the SSH protocol
(22.10.1 SSH), then A will get a message that the other side’s key has changed (B will present its own
SSH key, not S’s). Unfortunately, many users (and even some IT departments) do not recognize this as a
serious problem. Some organizations – especially schools and universities – use personal workstations with
“frozen” configuration, so that the filesystem is reset to its original state on every reboot. Such systems may
be resistant to viruses, but in these environments the user at A will always get a message to the effect that
S’s credentials are not known.

7.9.3 ARP Failover

Suppose you have two front-line servers, A and B (B for Backup), and you want B to be able to step in if A
freezes. There are a number of ways of achieving this, but one of the simplest is known as ARP Failover.
First, we set AIP = BIP, but for the time being B does not use the network so this duplication is not a problem.
Then, once B gets the message that A is down, it sends out an ARP query for AIP, including BLAN as the
source LAN address. The gateway router, which previously would have had xAIP,ALANy in its ARP cache,
updates this to xAIP,BLANy, and packets that had formerly been sent to A will now go to B. As long as B is
trafficking in stateless operations (eg html), B can pick up right where A left off.

7.9.4 Detecting Sniffers

Finally, there is an interesting use of ARP to detect Ethernet password sniffers (generally not quite the issue
it once was, due to encryption and switching). To find out if a particular host A is in promiscuous mode,
send an ARP “who-has A?” query. Address it not to the broadcast Ethernet address, though, but to some
nonexistent Ethernet address.

If promiscuous mode is off, A’s network interface will ignore the packet. But if promiscuous mode is on,
A’s network interface will pass the ARP request to A itself, which is likely then to answer it.

7.9 Address Resolution Protocol: ARP 223

An Introduction to Computer Networks, Release 1.9.21

Alas, Linux kernels reject at the ARP-software level ARP queries to physical Ethernet addresses other than
their own. However, they do respond to faked Ethernet multicast addresses, such as ff:ff:ff:00:00:00 or
ff:ff:ff:ff:ff:fe.

7.9.5 ARP and multihomed hosts

If host A has two interfaces iface1 and iface2 on the same LAN, with respective IP addresses A1 and
A2, then it is common for the two to be used interchangeably. Traffic addressed to A1 may be received via
iface2 and vice-versa, and traffic from A1 may be sent via iface2. In 7.2.1 Multihomed hosts this is
described as the weak end-system model; the idea is that we should think of the IP addresses A1 and A2 as
bound to A rather than to their respective interfaces.

In support of this model, ARP can usually be configured (in fact this is often the default) so that ARP
requests for either IP address and received by either interface may be answered with either physical address.
Usually all requests are answered with the physical address of the preferred (ie faster) interface.

As an example, suppose A has an Ethernet interface eth0 with IP address 10.0.0.2 and a faster Wi-Fi
interface wlan0 with IP address 10.0.0.3 (although Wi-Fi interfaces are not always faster). In this setting,
an ARP request “who-has 10.0.0.2” would be answered with wlan0’s physical address, and so all traffic
to A, to either IP address, would arrive via wlan0. The eth0 interface would go essentially unused.
Similarly, though not due to ARP, traffic sent by A with source address 10.0.0.2 might depart via wlan0.

This situation is on Linux systems adjusted by changing arp_ignore and arp_announce in /proc/
sys/net/ipv4/conf/all.

7.10 Dynamic Host Configuration Protocol (DHCP)

DHCP is the most common mechanism by which hosts are assigned their IPv4 addresses. DHCP started as
a protocol known as Reverse ARP (RARP), which evolved into BOOTP and then into its present form. It is
documented in RFC 2131. Recall that ARP is based on the idea of someone broadcasting an ARP query for
a host, containing the host’s IPv4 address, and the host answering it with its LAN address. DHCP involves
a host, at startup, broadcasting a query containing its own LAN address, and having a server reply telling
the host what IPv4 address is assigned to it, hence the “Reverse ARP” name.

The DHCP response message is also likely to carry, piggybacked onto it, several other essential startup
options. Unlike the IPv4 address, these additional network parameters usually do not depend on the specific
host that has sent the DHCP query; they are likely constant for the subnet or even the site. In all, a typical
DHCP message includes the following:

• IPv4 address

• subnet mask

• default router

• DNS Server

These four items are a standard minimal network configuration; in practical terms, hosts cannot function
properly without them. Most DHCP implementations support the piggybacking of the latter three above,
and a wide variety of other configuration values, onto the server responses.

224 7 IP version 4

https://tools.ietf.org/html/rfc2131.html

An Introduction to Computer Networks, Release 1.9.21

Default Routers and DHCP

If you lose your default router, you cannot communicate. Here is something that used to happen to me,
courtesy of DHCP:

1. I am connected to the Internet via Ethernet, and my default router is via my Ethernet interface

2. I connect to my institution’s wireless network.

3. Their DHCP server sends me a new default router on the wireless network. However, this default
router will only allow access to a tiny private network, because I have neglected to complete the
“Wi-Fi network registration” process.

4. I therefore disconnect from the wireless network, and my wireless-interface default router goes
away. However, my system does not automatically revert to my Ethernet default-router entry;
DHCP does not work that way. As a result, I will have no router at all until the next scheduled
DHCP lease renegotiation, and must fix things manually.

The DHCP server has a range of IPv4 addresses to hand out, and maintains a database of which IPv4 address
has been assigned to which LAN address. Reservations can either be permanent or dynamic; if the latter,
hosts typically renew their DHCP reservation periodically (typically one to several times a day).

7.10.1 NAT, DHCP and the Small Office

If you have a large network, with multiple subnets, a certain amount of manual configuration is inevitable.
What about, however, a home or small office, with a single line from an ISP? A combination of NAT
(7.7 Network Address Translation) and DHCP has made autoconfiguration close to a reality.

The typical home/small-office “router” is in fact a NAT router (7.7 Network Address Translation) coupled
with an Ethernet switch, and usually also coupled with a Wi-Fi access point and a DHCP server. In this
section, we will use the term “NAT router” to refer to this whole package. One specially designated port,
the external port, connects to the ISP’s line, and uses DHCP as a client to obtain an IPv4 address for that
port. The other, internal, ports are connected together by an Ethernet switch; these ports as a group are
connected to the external port using NAT translation. If wireless is supported, the wireless side is connected
directly to the internal ports.

Isolated from the Internet, the internal ports can thus be assigned an arbitrary non-public IPv4 address block,
eg 192.168.0.0/24. The NAT router typically contains a DCHP server, usually enabled by default, that will
hand out IPv4 addresses to everything connecting from the internal side.

Generally this works seamlessly. However, if a second NAT router is also connected to the network (some-
times attempted to extend Wi-Fi range, in lieu of a commercial Wi-Fi repeater), one then has two operating
DHCP servers on the same subnet. This often results in chaos, though is easily fixed by disabling one of the
DHCP servers.

While omnipresent DHCP servers have made IPv4 autoconfiguration work “out of the box” in many cases,
in the era in which IPv4 was designed the need for such servers would have been seen as a significant
drawback in terms of expense and reliability. IPv6 has an autoconfiguration strategy (8.7.2 Stateless
Autoconfiguration (SLAAC)) that does not require DHCP, though DHCPv6 may well end up displacing it.

7.10 Dynamic Host Configuration Protocol (DHCP) 225

An Introduction to Computer Networks, Release 1.9.21

7.10.2 DHCP and Routers

It is often desired, for larger sites, to have only one or two DHCP servers, but to have them support multiple
subnets. Classical DHCP relies on broadcast, which isn’t forwarded by routers, and even if it were, the
DHCP server would have no way of knowing on what subnet the host in question was actually located.

This is generally addressed by DHCP Relay (sometimes still known by the older name BOOTP Relay).
The router (or, sometimes, some other node on the subnet) receives the DHCP broadcast message from a
host, and notes the subnet address of the arrival interface. The router then relays the DHCP request, together
with this subnet address, to the designated DHCP Server; this relayed message is sent directly (unicast), not
broadcast. Because the subnet address is included, the DHCP server can figure out the correct IPv4 address
to assign.

This feature has to be specially enabled on the router.

7.11 Internet Control Message Protocol

The Internet Control Message Protocol, or ICMP, is a protocol for sending IP-layer error and status mes-
sages; it is defined in RFC 792. ICMP is, like IP, host-to-host, and so they are never delivered to a specific
port, even if they are sent in response to an error related to something sent from that port. In other words,
individual UDP and TCP connections do not receive ICMP messages, even when it would be helpful to get
them.

ICMP messages are identified by an 8-bit type field, followed by an 8-bit subtype, or code. Here are the
more common ICMP types, with subtypes listed in the description.

Type Description
Echo Request ping queries
Echo Reply ping responses
Destination Unreachable Destination network unreachable

Destination host unreachable
Destination port unreachable
Fragmentation required but DF flag set
Network administratively prohibited

Source Quench Congestion control
Redirect Message Redirect datagram for the network

Redirect datagram for the host
Redirect for TOS and network
Redirect for TOS and host

Router Solicitation Router discovery/selection/solicitation
Time Exceeded TTL expired in transit

Fragment reassembly time exceeded
Bad IP Header or Parameter Pointer indicates the error

Missing a required option
Bad length

Timestamp Timestamp Reply Like ping, but requesting a timestamp from the destination

226 7 IP version 4

https://tools.ietf.org/html/rfc792.html

An Introduction to Computer Networks, Release 1.9.21

The Echo and Timestamp formats are queries, sent by one host to another. Most of the others are all error
messages, sent by a router to the sender of the offending packet. Error-message formats contain the IP header
and next 8 bytes of the packet in question; the 8 bytes will contain the TCP or UDP port numbers. Redirect
and Router Solicitation messages are informational, but follow the error-message format. Query formats
contain a 16-bit Query Identifier, assigned by the query sender and echoed back by the query responder.

ping Packet Size

The author once had to diagnose a problem where pings were almost 100% successful, and yet file trans-
fers failed immediately; this could have been the result of either a network fault or a file-transfer applica-
tion fault. The problem turned out to be a failed network device with a very high bit-error rate: 1500-byte
file-transfer packets were frequently corrupted, but ping packets, with a default size of 32-64 bytes, were
mostly unaffected. If the bit-error rate is such that 1500-byte packets have a 50% success rate, 50-byte
packets can be expected to have a 98% (» 0.51/30) success rate. Setting the ping packet size to a larger
value made it immediately clear that the network, and not the file-transfer application, was at fault.

ICMP is perhaps best known for Echo Request/Reply, on which the ping tool (1.14 Some Useful Utilities)
is based. Ping remains very useful for network troubleshooting: if you can ping a host, then the network is
reachable, and any problems are higher up the protocol chain. Unfortunately, ping replies are often blocked
by many firewalls, on the theory that revealing even the existence of computers is a security risk. While this
may sometimes be an appropriate decision, it does significantly impair the utility of ping.

Ping can be asked to include IP timestamps (7.1 The IPv4 Header) on Linux systems with the -T option,
and on Windows with -s.

Source Quench was used to signal that congestion has been encountered. A router that drops a packet due to
congestion experience was encouraged to send ICMP Source Quench to the originating host. Generally the
TCP layer would handle these appropriately (by reducing the overall sending rate), but UDP applications
never receive them. ICMP Source Quench did not quite work out as intended, and was formally deprecated
by RFC 6633. (Routers can inform TCP connections of impending congestion by using the ECN bits.)

The Destination Unreachable type has a large number of subtypes:

• Network unreachable: some router had no entry for forwarding the packet, and no default route

• Host unreachable: the packet reached a router that was on the same LAN as the host, but the host
failed to respond to ARP queries

• Port unreachable: the packet was sent to a UDP port on a given host, but that port was not open.
TCP, on the other hand, deals with this situation by replying to the connecting endpoint with a reset
packet. Unfortunately, the UDP Port Unreachable message is sent to the host, not to the application on
that host that sent the undeliverable packet, and so is close to useless as a practical way for applications
to be informed when packets cannot be delivered.

• Fragmentation required but DF flag set: a packet arrived at a router and was too big to be forwarded
without fragmentation. However, the Don’t Fragment bit in the IPv4 header was set, forbidding
fragmentation.

• Administratively Prohibited: this is sent by a router that knows it can reach the network in question,
but has configureintro to drop the packet and send back Administratively Prohibited messages. A
router can also be configured to blackhole messages: to drop the packet and send back nothing.

7.11 Internet Control Message Protocol 227

https://tools.ietf.org/html/rfc6633.html

An Introduction to Computer Networks, Release 1.9.21

In 12.13 Path MTU Discovery we will see how TCP uses the ICMP message Fragmentation required but
DF flag set as part of Path MTU Discovery, the process of finding the largest packet that can be sent to a
specific destination without fragmentation. The basic idea is that we set the DF bit on some of the packets
we send; if we get back this message, that packet was too big.

Some sites and firewalls block ICMP packets in addition to Echo Request/Reply, and for some messages one
can get away with this with relatively few consequences. However, blocking Fragmentation required but
DF flag set has the potential to severely affect TCP connections, depending on how Path MTU Discovery is
implemented, and thus is not recommended. If ICMP filtering is contemplated, it is best to base block/allow
decisions on the ICMP type, or even on the type and code. For example, most firewalls support rule sets of
the form “allow ICMP destination-unreachable; block all other ICMP”.

The Timestamp option works something like Echo Request/Reply, but the receiver includes its own local
timestamp for the arrival time, with millisecond accuracy. See also the IP Timestamp option, 7.1 The IPv4
Header, which appears to be more frequently used.

The type/code message format makes it easy to add new ICMP types. Over the years, a significant number
of additional such types have been defined; a complete list is maintained by the IANA. Several of these later
ICMP types were seldom used and eventually deprecated, many by RFC 6918.

ICMP packets are usually forwarded correctly through NAT routers, though due to the absence of port
numbers the router must do a little more work. RFC 3022 and RFC 5508 address this. For ICMP queries,
like ping, the ICMP Query Identifier field can be used to recognize the returning response. ICMP error
messages are a little trickier, because there is no direct connection between the inbound error message and
any of the previous outbound non-ICMP packets that triggered the response. However, the headers of the
packet that triggered the ICMP error message are embedded in the body of the ICMP message. The NAT
router can look at those embedded headers to determine how to forward the ICMP message (the NAT router
must also rewrite the addresses of those embedded headers).

7.11.1 Traceroute and Time Exceeded

The traceroute program uses ICMP Time Exceeded messages. A packet is sent to the destination (often
UDP to an unused port), with the TTL set to 1. The first router the packet reaches decrements the TTL to
0, drops it, and returns an ICMP Time Exceeded message. The sender now knows the first router on the
chain. The second packet is sent with TTL set to 2, and the second router on the path will be the one to
return ICMP Time Exceeded. This continues until finally the remote host returns something, likely ICMP
Port Unreachable.

For an example of traceroute output, see 1.14 Some Useful Utilities. In that example, the three traceroute
probes for the Nth router are sometimes answered by two or even three different routers; this suggests routers
configured to work in parallel rather than route changes.

Many routers no longer respond with ICMP Time Exceeded messages when they drop packets. For the
distance value corresponding to such a router, traceroute reports ***.

Traceroute assumes the path does not change. This is not always the case, although in practice it is seldom
an issue.

228 7 IP version 4

http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://tools.ietf.org/html/rfc6918.html
https://tools.ietf.org/html/rfc3022.html
https://tools.ietf.org/html/rfc5508.html

An Introduction to Computer Networks, Release 1.9.21

Route Efficiency

Once upon a time (~2001), traceroute showed that traffic from my home to the office, both in the Chicago
area, went through the MAE-EAST Internet exchange point, outside of Washington DC. That inefficient
route was later fixed. A situation like this is typically caused by two higher-level providers who did not
negotiate sufficient Internet exchange points.

Traceroute to a nonexistent site works up to the point when the packet reaches the Internet “backbone”: the
first router which does not have a default route. At that point the packet is not routed further (and an ICMP
Destination Network Unreachable should be returned).

Traceroute also interacts somewhat oddly with routers using MPLS (see 20.12 Multi-Protocol Label Switch-
ing (MPLS)). Such routers – most likely large-ISP internal routers – may continue to forward the ICMP Time
Exceeded message on further towards its destination before returning it to the sender. As a result, the round-
trip time measurements reported may be quite a bit larger than they should be.

7.11.2 Redirects

Most non-router hosts start up with an IPv4 forwarding table consisting of a single (default) router, discov-
ered along with their IPv4 address through DHCP. ICMP Redirect messages help hosts learn of other useful
routers. Here is a classic example:

R1 BR2

A

A is configured so that its default router is R1. It addresses a packet to B, and sends it to R1. R1 receives
the packet, and forwards it to R2. However, R1 also notices that R2 and A are on the same network, and
so A could have sent the packet to R2 directly. So R1 sends an appropriate ICMP redirect message to A
(“Redirect Datagram for the Network”), and A adds a route to B via R2 to its own forwarding table.

7.11.3 Router Solicitation

These ICMP messages are used by some router protocols to identify immediate neighbors. When we look
at routing-update algorithms, 9 Routing-Update Algorithms, these are where the process starts.

7.12 Unnumbered Interfaces

We mentioned in 1.10 IP - Internet Protocol and 7.2 Interfaces that some devices allow the use of point-
to-point IP links without assigning IP addresses to the interfaces at the ends of the link. Such IP interfaces
are referred to as unnumbered; they generally make sense only on routers. It is a firm requirement that
the node (ie router) at each endpoint of such a link has at least one other interface that does have an IP

7.12 Unnumbered Interfaces 229

An Introduction to Computer Networks, Release 1.9.21

address; otherwise, the node in question would be anonymous, and could not participate in the router-to-
router protocols of 9 Routing-Update Algorithms.

The diagram below shows a link L joining routers R1 and R2, which are connected to subnets 200.0.0.0/24
and 201.1.1.0/24 respectively. The endpoint interfaces of L, both labeled link0, are unnumbered.

R1 R2

A B E

200.0.0.0/24 201.1.1.0/24

Two LANs joined by an unnumbered link L

F200.0.0.1 201.1.1.1

L

eth0 link0 link0 eth0

The endpoints of L could always be assigned private IPv4 addresses (7.3 Special Addresses), such as
10.0.0.1 and 10.0.0.2. To do this we would need to create a subnet; because the host bits cannot be all
0’s or all 1’s, the minimum subnet size is four (eg 10.0.0.0/30). Furthermore, the routing protocols to be
introduced in 9 Routing-Update Algorithms will distribute information about the subnet throughout the
organization or “routing domain”, meaning care must be taken to ensure that each link’s subnet is unique.
Use of unnumbered links avoids this.

If R1 were to originate a packet to be sent to (or forwarded via) R2, the standard strategy is for it to treat
its link0 interface as if it shared the IP address of its Ethernet interface eth0, that is, 200.0.0.1; R2
would do likewise. This still leaves R1 and R2 violating the IP local-delivery rule of 7.5 The Classless
IP Delivery Algorithm; R1 is expected to deliver packets via local delivery to 201.1.1.1 but has no interface
that is assigned an IP address on the destination subnet 201.1.1.0/24. The necessary dispensation, however,
is granted by RFC 1812. All that is necessary by way of configuration is that R1 be told R2 is a directly
connected neighbor reachable via its link0 interface. On Linux systems this might be done with the ip
route command on R1 as follows:

ip route

The Linux ip route command illustrated here was tested on a virtual point-to-point link created with
ssh and pppd; the link interface name was in fact ppp0. While the command appeared to work as
advertised, it was only possible to create the link if endpoint IP addresses were assigned at the time of
creation; these were then removed with ip route del and then re-assigned with the command shown
here.

ip route add 201.1.1.1 dev link0

Because L is a point-to-point link, there is no destination LAN address and thus no ARP query.

7.13 Mobile IP

In the original IPv4 model, there was a strong if implicit assumption that each IP host would stay put. One
role of an IPv4 address is simply as a unique endpoint identifier, but another role is as a locator: some prefix
of the address (eg the network part, in the class-A/B/C strategy, or the provider prefix) represents something
about where the host is physically located. Thus, if a host moves far enough, it may need a new address.

230 7 IP version 4

https://tools.ietf.org/html/rfc1812.html

An Introduction to Computer Networks, Release 1.9.21

When laptops are moved from site to site, it is common for them to receive a new IP address at each
location, eg via DHCP as the laptop connects to the local Wi-Fi. But what if we wish to support devices like
smartphones that may remain active and communicating while moving for thousands of miles? Changing
IP addresses requires changing TCP connections; life (and application development) might be simpler if a
device had a single, unchanging IP address.

One option, commonly used with smartphones connected to some so-called “3G” networks, is to treat the
phone’s data network as a giant wireless LAN. The phone’s IP address need not change as it moves within
this LAN, and it is up to the phone provider to figure out how to manage LAN-level routing, much as is
done in 3.7.4.3 Roaming.

But Mobile IP is another option, documented in RFC 5944. In this scheme, a mobile host has a permanent
home address and, while roaming about, will also have a temporary care-of address, which changes from
place to place. The care-of address might be, for example, an IP address assigned by a local Wi-Fi network,
and which in the absence of Mobile IP would be the IP address for the mobile host. (This kind of care-of
address is known as “co-located”; the care-of address can also be associated with some other device – known
as a foreign agent – in the vicinity of the mobile host.) The goal of Mobile IP is to make sure that the mobile
host is always reachable via its home address.

To maintain connectivity to the home address, a Mobile IP host needs to have a home agent back on the
home network; the job of the home agent is to maintain an IP tunnel that always connects to the device’s
current care-of address. Packets arriving at the home network addressed to the home address will be for-
warded to the mobile device over this tunnel by the home agent. Similarly, if the mobile device wishes to
send packets from its home address – that is, with the home address as IP source address – it can use the
tunnel to forward the packet to the home agent.

The home agent may use proxy ARP (7.9.1 ARP Finer Points) to declare itself to be the appropriate
destination on the home LAN for packets addressed to the home (IP) address; it is then straightforward for
the home agent to forward the packets.

An agent discovery process is used for the mobile host to decide whether it is mobile or not; if it is, it then
needs to notify its home agent of its current care-of address.

7.13.1 IP-in-IP Encapsulation

There are several forms of packet encapsulation that can be used for Mobile IP tunneling, but the default one
is IP-in-IP encapsulation, defined in RFC 2003. In this process, the entire original IP packet (with header
addressed to the home address) is used as data for a new IP packet, with a new IP header (the “outer” header)
addressed to the care-of address.

7.13 Mobile IP 231

https://tools.ietf.org/html/rfc5944.html
https://tools.ietf.org/html/rfc2003.html

An Introduction to Computer Networks, Release 1.9.21

Original
IP header

Data

Original packet

Original
IP header

DataOuter header

Encapsulated packet with outer header

A value of 4 in the outer-IP-header Protocol field indicates that IPv4-in-IPv4 tunneling is being used,
so the receiver knows to forward the packet on using the information in the inner header. The MTU of the
tunnel will be the original MTU of the path to the care-of address, minus the size of the outer header. A very
similar mechanism is used for IPv6-in-IPv4 encapsulation (that is, with IPv6 in the inner packet), except
that the outer IPv4 Protocol field value is now 41. See 8.13 IPv6 Connectivity via Tunneling.

IP-in-IP encapsulation presents some difficulties for NAT routers. If two hosts A and B behind a NAT
router send out encapsulated packets, the packets may differ only in the source IP address. The NAT router,
upon receiving responses, doesn’t know whether to forward them to A or to B. One partial solution is for
the NAT router to support only one inside host sending encapsulated packets. If the NAT router knew
that encapsulation was being used for Mobile IP, it might look at the home address in the inner header to
determine the correct home agent to which to deliver the packet, but this is a big assumption. A fuller
solution is outlined in RFC 3519.

7.14 Epilog

At this point we have concluded the basic mechanics of IPv4. Still to come is a discussion of how IP
routers build their forwarding tables. This turns out to be a complex topic, divided into routing within single
organizations and ISPs – 9 Routing-Update Algorithms – and routing between organizations – 10 Large-
Scale IP Routing.

But before that, in the next chapter, we compare IPv4 with IPv6, now twenty years old but still seeing limited
adoption. The biggest issue fixed by IPv6 is IPv4’s lack of address space, but there are also several other
less dramatic improvements.

7.15 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
6.5 is distinct, for example, from exercises 6.0 and 7.0. Exercises marked with a ♢ have solutions or hints
at 24.7 Solutions for IPv4.

1.0. Suppose an Ethernet packet represents a TCP acknowledgment; that is, the packet contains an IPv4
header and a 20-byte TCP header but nothing else. Is the IPv4 packet here smaller than the Ethernet
minimum-packet size, and, if so, by how much?

232 7 IP version 4

https://tools.ietf.org/html/rfc3519.html

An Introduction to Computer Networks, Release 1.9.21

2.0. How can a receiving host tell if an arriving IPv4 packet is unfragmented? Hint: such a packet will be
both the “first fragment” and the “last fragment”; how are these two states marked in the IPv4 header?

3.0. How long will it take the IDENT field of the IPv4 header to wrap around, if the sender host A sends a
stream of packets to host B as fast as possible? Assume the packet size is 1500 bytes and the bandwidth is
600 Mbps.

4.0. The following diagram has routers A, B, C, D and E; E is the “border router” connecting the site to
the Internet. All router-to-router connections are via Ethernet-LAN /24 subnets with addresses of the form
200.0.x. Give forwarding tables for each of A♢, B, C and D. Each table should include each of the listed
subnets and also a default entry that routes traffic toward router E. Directly connected subnets may be listed
with a next_hop of “direct”.

200.0.5 A 200.0.6 B 200.0.7 D 200.0.8 E Internet

200.0.9

C

200.0.10

5.0. (This exercise is an attempt at modeling Internet-2 routing.) Suppose sites S1 . . . Sn each have a
single connection to the standard Internet, and each site Si has a single IPv4 address block Ai. Each site’s
connection to the Internet is through a single router Ri; each Ri’s default route points towards the standard
Internet. The sites also maintain a separate, higher-speed network among themselves; each site has a single
link to this separate network, also through Ri. Describe what the forwarding tables on each Ri will have to
look like so that traffic from one Si to another will always use the separate higher-speed network.

6.0. For each IPv4 network prefix given (with length), identify which of the subsequent IPv4 addresses are
part of the same subnet.

(a). 10.0.130.0/23: 10.0.130.23, 10.0.129.1, 10.0.131.12, 10.0.132.7
(b). 10.0.132.0/22: 10.0.130.23, 10.0.135.1, 10.0.134.12, 10.0.136.7
(c). 10.0.64.0/18: 10.0.65.13, 10.0.32.4, 10.0.127.3, 10.0.128.4
(d).♢ 10.0.168.0/21: 10.0.166.1, 10.0.170.3, 10.0.174.5, 10.0.177.7
(e). 10.0.0.64/26: 10.0.0.125, 10.0.0.66, 10.0.0.130, 10.0.0.62

6.5. Convert the following subnet masks to /k notation, and vice-versa:

(a).♢ 255.255.240.0
(b). 255.255.248.0
(c). 255.255.255.192
(d).♢ /20
(e). /22
(f). /27

7.15 Exercises 233

An Introduction to Computer Networks, Release 1.9.21

7.0. Suppose that the subnet bits below for the following five subnets A-E all come from the beginning of
the fourth byte of the IPv4 address; that is, these are subnets of a /24 block.

• A: 00

• B: 01

• C: 110

• D: 111

• E: 1010

(a). What are the sizes of each subnet, and the corresponding decimal ranges? Count the addresses with
host bits all 0’s or with host bits all 1’s as part of the subnet.
(b). How many IPv4 addresses in the class-C block do not belong to any of the subnets A, B, C, D and E?

8.0. In 7.9 Address Resolution Protocol: ARP it was stated that, in newer implementations, “repeat ARP
queries about a timed out entry are first sent unicast”, in order to reduce broadcast traffic. Suppose host A
uses ARP to retrieve B’s LAN address. A short time later, B changes its LAN address, either through a
hardware swap or through software reconfiguration.

(a). What will happen if A now sends a unicast repeat ARP query for B?
(b). What will happen if A now sends a broadcast repeat ARP query for B?

9.0. Suppose A broadcasts an ARP query “who-has B?”, receives B’s response, and proceeds to send B a
regular IPv4 packet. If B now wishes to reply, why is it likely that A will already be present in B’s ARP
cache? Identify a circumstance under which this can fail.

10.0. Suppose A broadcasts an ARP request “who-has B”, but inadvertently lists the physical address of
another machine C instead of its own (that is, A’s ARP query has IPsrc = A, but LANsrc = C). What will
happen? Will A receive a reply? Will any other hosts on the LAN be able to send to A? What entries will
be made in the ARP caches on A, B and C?

11.0. Suppose host A connects to the Internet via Wi-Fi. The default router is RW. Host A now begins
exchanging packets with a remote host B: A sends to B, B replies, etc. The exact form of the connection
does not matter, except that TCP may not work.

(a). You now plug in A’s Ethernet cable. The Ethernet port is assumed to be on a different subnet from the
Wi-Fi (so that the strong and weak end-system models of 7.9.5 ARP and multihomed hosts do not play a
role here). Assume A automatically selects the new Ethernet connection as its default route, with router RE.
What happens to the original connection to A? Can packets still travel back and forth? Does the return
address used for either direction change?

234 7 IP version 4

An Introduction to Computer Networks, Release 1.9.21

(b). You now disconnect A’s Wi-Fi interface, leaving the Ethernet interface connected. What happens now
to the connection to B? Hint: to what IP address are the packets from B being sent?

See also 9 Routing-Update Algorithms, 9 Routing-Update Algorithms exercise 13.0, and 12 TCP Trans-
port, exercise 13.0.

7.15 Exercises 235

An Introduction to Computer Networks, Release 1.9.21

236 7 IP version 4

8 IP VERSION 6

What has been learned from experience with IPv4? First and foremost, more than 32 bits are needed for
addresses; the primary motive in developing IPv6 was the specter of running out of IPv4 addresses (some-
thing which, at the highest level, has already happened; see the discussion at the end of 1.10 IP - Internet
Protocol). Another important issue is that IPv4 requires (or used to require) a modest amount of effort at
configuration; IPv6 was supposed to improve this.

By 1990 the IETF was actively interested in proposals to replace IPv4. A working group for the so-called
“IP next generation”, or IPng, was created in 1993 to select the new version; RFC 1550 was this group’s
formal solicitation of proposals. In July 1994 the IPng directors voted to accept a modified version of the
“Simple Internet Protocol Plus”, or SIPP (RFC 1710), as the basis for IPv6. The first IPv6 specifications,
released in 1995, were RFC 1883 (now RFC 2460, with updates) for the basic protocol, and RFC 1884
(now RFC 4291, again with updates) for the addressing architecture.

SIPP addresses were originally 64 bits in length, but in the month leading up to adoption as the basis for
IPv6 this was increased to 128. 64 bits would probably have been enough, but the problem is less the actual
number than the simplicity with which addresses can be allocated; the more bits, the easier this becomes,
as sites can be given relatively large address blocks without fear of waste. A secondary consideration in
the 64-to-128 leap was the potential to accommodate now-obsolete CLNP addresses (1.15 IETF and OSI),
which were up to 160 bits in length, but compressible.

IPv6 has to some extent returned to the idea of a fixed division between network and host portions; for most
IPv6 addresses, the first 64 bits is the network prefix (including any subnet portion) and the remaining 64
bits represents the host portion. The rule as spelled out in RFC 2460, in 1998, was that the 64/64 split would
apply to all addresses except those beginning with the bits 000; those addresses were then held in reserve in
the unlikely event that the 64/64 split ran into problems in the future. This was a change from 1995, when
RFC 1884 envisioned 48-bit host portions and 80-bit prefixes.

While the IETF occasionally revisits the issue, at the present time the 64/64 split seems here to stay; for
discussion and justification, see 8.10.1 Subnets and /64 and RFC 7421. The 64/64 split is not automatic,
however; there is no default prefix length as there was in the Class A/B/C IPv4 scheme. Thus, it is misleading
to think of IPv6 as a return to something like IPv4’s classful addressing scheme. Router advertisements must
always include the prefix length, and, when assigning IPv6 addresses manually, the /64 prefix length must
be specified explicitly; see 8.12.3 Manual address configuration.

High-level routing, however, can, as in IPv4, be done on prefixes of any length (usually that means lengths
shorter than /64). Routing can also be done on different prefix lengths at different points of the network.

IPv6 is now twenty years old, and yet usage as of 2015 remains quite modest. However, the shortage in
IPv4 addresses has begun to loom ominously; IPv6 adoption rates may rise quickly if IPv4 addresses begin
to climb in price.

8.1 The IPv6 Header

The IPv6 fixed header is pictured below; at 40 bytes, it is twice the size of the IPv4 header. The fixed
header is intended to support only what every packet needs: there is no support for fragmentation, no header

237

https://tools.ietf.org/html/rfc1550.html
https://tools.ietf.org/html/rfc1710.html
https://tools.ietf.org/html/rfc1883.html
https://tools.ietf.org/html/rfc2460.html
https://tools.ietf.org/html/rfc1884.html
https://tools.ietf.org/html/rfc4291.html
https://tools.ietf.org/html/rfc2460.html
https://tools.ietf.org/html/rfc1884.html
https://tools.ietf.org/html/rfc7421.html

An Introduction to Computer Networks, Release 1.9.21

checksum, and no option fields. However, the concept of extension headers has been introduced to support
some of these as options; some IPv6 extension headers are described in 8.5 IPv6 Extension Headers.
Whatever header comes next is identified by the Next Header field, much like the IPv4 Protocol field. Some
other fixed-header fields have also been renamed from their IPv4 analogues: the IPv4 TTL is now the IPv6
Hop_Limit (still decremented by each router with the packet discarded when it reaches 0), and the IPv4 DS
field has become the IPv6 Traffic Class.

Destination Address

Source Address

Hop LimitNext HeaderPayload Length

Flow LabelTraffic ClassVersion

0 16 32

The Flow Label is new. RFC 2460 states that it

may be used by a source to label sequences of packets for which it requests special handling by
the IPv6 routers, such as non-default quality of service or “real-time” service.

Senders not actually taking advantage of any quality-of-service options are supposed to set the Flow Label
to zero.

When used, the Flow Label represents a sender-computed hash of the source and destination addresses, and
perhaps the traffic class. Routers can use this field as a way to look up quickly any priority or reservation
state for the packet. All packets belonging to the same flow should have the same Routing Extension header,
8.5.3 Routing Header. The Flow Label will in general not include any information about the source and
destination port numbers, except that only some of the connections between a pair of hosts may make use
of this field.

A flow, as the term is used here, is one-way; the return traffic belongs to a different flow. Historically,
the term “flow” has also been used at various other scales: a single bidirectional TCP connection, multiple
related TCP connections, or even all traffic from a particular subnet (eg the “computer-lab flow”).

238 8 IP version 6

https://tools.ietf.org/html/rfc2460.html

An Introduction to Computer Networks, Release 1.9.21

8.2 IPv6 Addresses

IPv6 addresses are written in eight groups of four hex digits, with a-f preferred over A-F (RFC 5952). The
groups are separated by colons, and have leading 0’s removed, eg

fedc:13:1654:310:fedc:bc37:61:3210

If an address contains a long run of 0’s – for example, if the IPv6 address had an embedded IPv4 address –
then when writing the address the string “::” should be used to represent however many blocks of 0000 as
are needed to create an address of the correct length; to avoid ambiguity this can be used only once. Also,
embedded IPv4 addresses may continue to use the “.” separator:

::ffff:147.126.65.141

The above is an example of one standard IPv6 format for representing IPv4 addresses (see 8.11 Using IPv6
and IPv4 Together). 48 bits are explicitly displayed; the :: means these are prefixed by 80 0-bits.

The IPv6 loopback address is ::1 (that is, 127 0-bits followed by a 1-bit).

Network address prefixes may be written with the “/” notation, as in IPv4:

12ab:0:0:cd30::/60

RFC 3513 suggested that initial IPv6 unicast-address allocation be initially limited to addresses beginning
with the bits 001, that is, the 2000::/3 block (20 in binary is 0010 0000).

Generally speaking, IPv6 addresses consist of a 64-bit network prefix (perhaps including subnet bits) fol-
lowed by a 64-bit “interface identifier”. See 8.3 Network Prefixes and 8.2.1 Interface identifiers.

IPv6 addresses all have an associated scope, defined in RFC 4007. The scope of a unicast address is either
global, meaning it is intended to be globally routable, or link-local, meaning that it will only work with
directly connected neighbors (8.2.2 Link-local addresses). The loopback address is considered to have
link-local scope. A few more scope levels are available for multicast addresses, eg “site-local” (RFC 4291).
The scope of an IPv6 address is implicitly coded within the first 64 bits; addresses in the 2000::/3 block
above, for example, have global scope.

Packets with local-scope addresses (eg link-local addresses) for either the destination or the source cannot
be routed (the latter because a reply would be impossible).

Although addresses in the “unique local address” category of 8.3 Network Prefixes officially have global
scope, in a practical sense they still behave as if they had the now-officially-deprecated “site-local scope”.

8.2.1 Interface identifiers

As mentioned earlier, most IPv6 addresses can be divided into a 64-bit network prefix and a 64-bit “host”
portion, the latter corresponding to the “host” bits of an IPv4 address. These host-portion bits are known of-
ficially as the interface identifier; the change in terminology reflects the understanding that all IP addresses
attach to interfaces rather than to hosts.

The original plan for the interface identifier was to derive it in most cases from the LAN address, though the
interface identifier can also be set administratively. Given a 48-bit Ethernet address, the interface identifier
based on it was to be formed by inserting 0xfffe between the first three bytes and the last three bytes, to
get 64 bits in all. The seventh bit of the first byte (the Ethernet “universal/local” flag) was then set to 1.

8.2 IPv6 Addresses 239

https://tools.ietf.org/html/rfc5952.html
https://tools.ietf.org/html/rfc3513.html
https://tools.ietf.org/html/rfc4007.html
https://tools.ietf.org/html/rfc4291.html

An Introduction to Computer Networks, Release 1.9.21

The result of this process is officially known as the Modified EUI-64 Identifier, where EUI stands for
Extended Unique Identifier; details can be found in RFC 4291. As an example, for a host with Ethernet
address 00:a0:cc:24:b0:e4, the EUI-64 identifier would be 02a0:ccff:fe24:b0e4 (the leading 00 becomes 02
when the seventh bit is turned on). At the time the EUI-64 format was proposed, it was widely expected that
Ethernet MAC addresses would eventually become 64 bits in length.

EUI-64 interface identifiers turn out to introduce a major privacy concern: no matter where a (portable)
host connects to the Internet – home or work or airport or Internet cafe – such an interface identifier always
remains the same, and thus serves as a permanent host fingerprint. As a result, EUI-64 identifiers are now
discouraged for personal workstations and mobile devices. (Some fixed-location hosts continue to use EUI-
64 interface identifiers, or, alternatively, administratively assigned interface identifiers.)

RFC 7217 proposes an alternative: the interface identifier is a secure hash (22.6 Secure Hashes) of a
“Net_Iface” parameter, the 64-bit IPv6 address prefix, and a host-specific secret key (a couple other param-
eters are also thrown into the mix, but they need not concern us here). The “Net_Iface” parameter can be
the interface’s MAC address, but can also be the interface’s “name”, eg eth0. Interface identifiers created
this way change from connection point to connection point (because the prefix changes), do not reveal the
Ethernet address, and are randomly scattered (because of the key, if nothing else) through the 264-sized
interface-identifier space. The last feature makes probing for IPv6 addresses effectively impossible; see
exercise 6.0.

Interface identifiers as in the previous paragraph do not change unless the prefix changes, which normally
happens only if the host is moved to a new network. In 8.7.2.1 SLAAC privacy we will see that interface
identifiers are often changed at regular intervals, for privacy reasons.

Finally, interface identifiers are often centrally assigned, using DHCPv6 (8.7.3 DHCPv6).

Remote probing for IPv6 addresses based on EUI-64 identifiers is much easier than for those based on RFC-
7217 identifiers, as the former are not very random. If an attacker can guess the hardware vendor, and thus
the first three bytes of the Ethernet address (2.1.3 Ethernet Address Internal Structure), there are only 224

possibilities, down from 264. As the last three bytes are often assigned in serial order, considerable further
narrowing of the search space may be possible. While it may amount to security through obscurity, keeping
internal global IPv6 addresses hidden is often of practical importance.

Additional discussion of host-scanning in IPv6 networks can be found in RFC 7707 and draft-ietf-opsec-
ipv6-host-scanning-06.

8.2.2 Link-local addresses

IPv6 defines link-local addresses, with so-called link-local scope, intended to be used only on a single LAN
and never routed. These begin with the 64-bit link-local prefix consisting of the ten bits 1111 1110 10
followed by 54 more zero bits; that is, fe80::/64. The remaining 64 bits are the interface identifier for the
link interface in question, above. The EUI-64 link-local address of the machine in the previous section with
Ethernet address 00:a0:cc:24:b0:e4 is thus fe80::2a0:ccff:fe24:b0e4.

The main applications of link-local addresses are as a “bootstrap” address for global-address autoconfigura-
tion (8.7.2 Stateless Autoconfiguration (SLAAC)), and as an optional permanent address for routers. IPv6
routers often communicate with neighboring routers via their link-local addresses, with the understanding
that these do not change when global addresses (or subnet configurations) change (RFC 4861 §6.2.8). If
EUI-64 interface identifiers are used then the link-local address does change whenever the Ethernet hard-

240 8 IP version 6

https://tools.ietf.org/html/rfc4291.html
https://tools.ietf.org/html/rfc7217.html
https://en.wikipedia.org/wiki/Security_through_obscurity
https://tools.ietf.org/html/rfc7707.html
https://tools.ietf.org/html/draft-ietf-opsec-ipv6-host-scanning-06
https://tools.ietf.org/html/draft-ietf-opsec-ipv6-host-scanning-06
https://tools.ietf.org/html/rfc4861.html

An Introduction to Computer Networks, Release 1.9.21

ware is replaced. However, if RFC 7217 interface identifiers are used and that mechanism’s “Net_Iface”
parameter represents the interface name rather than its physical address, the link-local address can be con-
stant for the life of the host. (When RFC 7217 is used to generate link-local addresses, the “prefix” hash
parameter is the link-local prefix fe80::/64.)

A consequence of identifying routers to their neighbors by their link-local addresses is that it is often pos-
sible to configure routers so they do not even have global-scope addresses; for forwarding traffic and for
exchanging routing-update messages, link-local addresses are sufficient. Similarly, many ordinary hosts for-
ward packets to their default router using the latter’s link-local address. We will return to router addressing
in 8.13.2 Setting up a router and 8.13.2.1 A second router.

For non-Ethernet-like interfaces, eg tunnel interfaces, there may be no natural candidate for the interface
identifier, in which case a link-local address may be assigned manually, with the low-order 64 bits chosen to
be unique for the link in question.

When sending to a link-local address, one must separately supply somewhere the link’s “zone identifier”,
often by appending a string containing the interface name to the IPv6 address, eg fe80::f00d:cafe%eth0.
See 8.12.1 ping6 and 8.12.2 TCP connections using link-local addresses for examples of such use of
link-local addresses.

IPv4 also has true link-local addresses, defined in RFC 3927, though they are rarely used; such addresses
are in the 169.254.0.0/16 block (not to be confused with the 192.168.0.0/16 private-address block). Other
than these, IPv4 addresses always implicitly identify the link subnet by virtue of the network prefix.

Once the link-local address is created, it must pass the duplicate-address detection test before being used;
see 8.7.1 Duplicate Address Detection.

8.2.3 Anycast addresses

IPv6 also introduced anycast addresses. An anycast address might be assigned to each of a set of routers
(in addition to each router’s own unicast addresses); a packet addressed to this anycast address would be
delivered to only one member of this set. Note that this is quite different from multicast addresses; a packet
addressed to the latter is delivered to every member of the set.

It is up to the local routing infrastructure to decide which member of the anycast group would receive the
packet; normally it would be sent to the “closest” member. This allows hosts to send to any of a set of
routers, rather than to their designated individual default router.

Anycast addresses are not marked as such, and a node sending to such an address need not be aware of its
anycast status. Addresses are anycast simply because the routers involved have been configured to recognize
them as such.

IPv4 anycast exists also, but in a more limited form (10.6.8 BGP and Anycast); generally routers are
configured much more indirectly (eg through BGP).

8.3 Network Prefixes

We have been assuming that an IPv6 address, at least as seen by a host, is composed of a 64-bit network
prefix and a 64-bit interface identifier. As of 2015 this remains a requirement; RFC 4291 (IPv6 Addressing
Architecture) states:

8.3 Network Prefixes 241

https://tools.ietf.org/html/rfc7217.html
https://tools.ietf.org/html/rfc3927.html
https://tools.ietf.org/html/rfc4291.html

An Introduction to Computer Networks, Release 1.9.21

For all unicast addresses, except those that start with the binary value 000, Interface IDs are
required to be 64 bits long. . . .

This /64 requirement is occasionally revisited by the IETF, but is unlikely to change for mainstream IPv6
traffic. This firm 64/64 split is a departure from IPv4, where the host/subnet division point has depended,
since the development of subnets, on local configuration.

Note that while the net/interface (net/host) division point is fixed, routers may still use CIDR (10.1 Classless
Internet Domain Routing: CIDR) and may still base forwarding decisions on prefixes shorter than /64.

As of 2015, all allocations for globally routable IPv6 prefixes are part of the 2000::/3 block.

IPv6 also defines a variety of specialized network prefixes, including the link-local prefix and prefixes for
anycast and multicast addresses. For example, as we saw earlier, the prefix ::ffff:0:0/96 identifies IPv6
addresses with embedded IPv4 addresses.

The most important class of 64-bit network prefixes, however, are those supplied by a provider or other
address-numbering entity, and which represent the first half of globally routable IPv6 addresses. These are
the prefixes that will be visible to the outside world.

IPv6 customers will typically be assigned a relatively large block of addresses, eg /48 or /56. The former
allows 64–48 = 16 bits for local “subnet” specification within a 64-bit network prefix; the latter allows 8
subnet bits. These subnet bits are – as in IPv4 – supplied through router configuration; see 8.10 IPv6
Subnets. The closest IPv6 analogue to the IPv4 subnet mask is that all network prefixes are supplied to hosts
with an associated length, although that length will almost always be 64 bits.

Many sites will have only a single externally visible address block. However, some sites may be multihomed
and thus have multiple independent address blocks.

Sites may also have private unique local address prefixes, corresponding to IPv4 private address blocks
like 192.168.0.0/16 and 10.0.0.0/8. They are officially called Unique Local Unicast Addresses and are
defined in RFC 4193. These replace an earlier site-local address plan (and official site-local scope) formally
deprecated in RFC 3879 (though unique-local addresses are sometimes still informally referred to as site-
local).

The first 8 bits of a unique-local prefix are 1111 1101 (fd00::/8). The related prefix 1111 1100 (fc00::/8) is
reserved for future use; the two together may be consolidated as fc00::/7. The last 16 bits of a 64-bit unique-
local prefix represent the subnet ID, and are assigned either administratively or via autoconfiguration. The
40 bits in between, from bit 8 up to bit 48, represent the Global ID. A site is to set the Global ID to a
pseudorandom value.

The resultant unique-local prefix is “almost certainly” globally unique (and is considered to have global
scope in the sense of 8.2 IPv6 Addresses), although it is not supposed to be routed off a site. Furthermore,
a site would generally not admit any packets from the outside world addressed to a destination with the
Global ID as prefix. One rationale for choosing unique Global IDs for each site is to accommodate potential
later mergers of organizations without the need for renumbering; this has been a chronic problem for sites
using private IPv4 address blocks. Another justification is to accommodate VPN connections from other
sites. For example, if I use IPv4 block 10.0.0.0/8 at home, and connect using VPN to a site also using
10.0.0.0/8, it is possible that my printer will have the same IPv4 address as their application server.

242 8 IP version 6

https://tools.ietf.org/html/rfc4193.html
https://tools.ietf.org/html/rfc3879.html

An Introduction to Computer Networks, Release 1.9.21

8.4 IPv6 Multicast

IPv6 has moved away from LAN-layer broadcast, instead providing a wide range of LAN-layer multicast
groups. (Note that LAN-layer multicast is often straightforward; it is general IP-layer multicast
(20.5 Global IP Multicast) that is problematic. See 2.1.2 Ethernet Multicast for the Ethernet imple-
mentation.) This switch to multicast is intended to limit broadcast traffic in general, though many switches
still propagate LAN multicast traffic everywhere, like broadcast.

An IPv6 multicast address is one beginning with the eight bits 1111 1111 (ff00::/8); numerous specific such
addresses, and even classes of addresses, have been defined. For actual delivery, IPv6 multicast addresses
correspond to LAN-layer (eg Ethernet) multicast addresses through a well-defined static correspondence;
specifically, if x, y, z and w are the last four bytes of the IPv6 multicast address, in hex, then the correspond-
ing Ethernet multicast address is 33:33:x:y:z:w (RFC 2464). A typical IPv6 host will need to join (that is,
subscribe to) several Ethernet multicast groups.

The IPv6 multicast address with the broadest scope is all-nodes, with address ff02::1; the corresponding
Ethernet multicast address is 33:33:00:00:00:01. This essentially corresponds to IPv4’s LAN broadcast,
though the use of LAN multicast here means that non-IPv6 hosts should not see packets sent to this address.
Another important IPv6 multicast address is ff02::2, the all-routers address. This is meant to be used to
reach all routers, and routers only; ordinary hosts do not subscribe.

Generally speaking, IPv6 nodes on Ethernets send LAN-layer Multicast Listener Discovery (MLD) mes-
sages to multicast groups they wish to start using; these messages allow multicast-aware Ethernet switches
to optimize forwarding so that only those hosts that have subscribed to the multicast group in question
will receive the messages. Otherwise switches are supposed to treat multicast like broadcast; worse, some
switches may simply fail to forward multicast packets to destinations that have not explicitly opted to join
the group.

8.5 IPv6 Extension Headers

In IPv4, the IP header contained a Protocol field to identify the next header; usually UDP or TCP. All
IPv4 options were contained in the IP header itself. IPv6 has replaced this with a scheme for allowing an
arbitrary chain of supplemental IPv6 headers. The IPv6 Next Header field can indicate that the following
header is UDP or TCP, but can also indicate one of several IPv6 options. These optional, or extension,
headers include:

• Hop-by-Hop options header

• Destination options header

• Routing header

• Fragment header

• Authentication header

• Mobility header

• Encapsulated Security Payload header

8.4 IPv6 Multicast 243

https://tools.ietf.org/html/rfc2464.html

An Introduction to Computer Networks, Release 1.9.21

These extension headers must be processed in order; the recommended order for inclusion is as above. Most
of them are intended for processing only at the destination host; the hop-by-hop and routing headers are
exceptions.

8.5.1 Hop-by-Hop Options Header

This consists of a set of xtype,valuey pairs which are intended to be processed by each router on the path. A
tag in the type field indicates what a router should do if it does not understand the option: drop the packet,
or continue processing the rest of the options. The only Hop-by-Hop options provided by RFC 2460 were
for padding, so as to set the alignment of later headers.

RFC 2675 later defined a Hop-by-Hop option to support IPv6 jumbograms: datagrams larger than 65,535
bytes. The need for such large packets remains unclear, in light of 5.3 Packet Size. IPv6 jumbograms are
not meant to be used if the underlying LAN does not have an MTU larger than 65,535 bytes; the LAN world
is not currently moving in this direction.

Because Hop-by-Hop Options headers must be processed by each router encountered, they have the potential
to overburden the Internet routing system. As a result, RFC 6564 strongly discourages new Hop-by-Hop
Option headers, unless examination at every hop is essential.

8.5.2 Destination Options Header

This is very similar to the Hop-by-Hop Options header. It again consists of a set of xtype,valuey pairs, and
the original RFC 2460 specification only defined options for padding. The Destination header is intended
to be processed at the destination, before turning over the packet to the transport layer.

Since RFC 2460, a few more Destination Options header types have been defined, though none is in com-
mon use. RFC 2473 defined a Destination Options header to limit the nesting of tunnels, called the Tunnel
Encapsulation Limit. RFC 6275 defines a Destination Options header for use in Mobile IPv6. RFC 6553,
on the Routing Protocol for Low-Power and Lossy Networks, or RPL, has defined a Destination (and Hop-
by-Hop) Options type for carrying RPL data.

A complete list of Option Types for Hop-by-Hop Option and Destination Option headers can be found at
www.iana.org/assignments/ipv6-parameters; in accordance with RFC 2780.

8.5.3 Routing Header

The original, or Type 0, Routing header contained a list of IPv6 addresses through which the packet should
be routed. These did not have to be contiguous. If the list to be visited en route to destination D was
xR1,R2,. . . ,Rny, then this option header contained xR2,R3,. . . ,Rn,Dy with R1 as the initial destination ad-
dress; R1 then would update this header to xR1,R3,. . . ,Rn,Dy (that is, the old destination R1 and the current
next-router R2 were swapped), and would send the packet on to R2. This was to continue on until Rn ad-
dressed the packet to the final destination D. The header contained a Segments Left pointer indicating the
next address to be processed, incremented at each Ri. When the packet arrived at D the Routing Header
would contain the routing list xR1,R3,. . . ,Rny. This is, in general principle, very much like IPv4 Loose
Source routing. Note, however, that routers between the listed routers R1. . . Rn did not need to examine this
header; they processed the packet based only on its current destination address.

244 8 IP version 6

https://tools.ietf.org/html/rfc2460.html
https://tools.ietf.org/html/rfc2675.html
https://tools.ietf.org/html/rfc6564.html
https://tools.ietf.org/html/rfc2460.html
https://tools.ietf.org/html/rfc2460.html
https://tools.ietf.org/html/rfc2473.html
https://tools.ietf.org/html/rfc6275.html
https://tools.ietf.org/html/rfc6553.html
http://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2
https://tools.ietf.org/html/rfc2780.html

An Introduction to Computer Networks, Release 1.9.21

This form of routing header was deprecated by RFC 5095, due to concerns about a traffic-amplification
attack. An attacker could send off a packet with a routing header containing an alternating list of just two
routers xR1,R2,R1,R2,. . . ,R1,R2,Dy; this would generate substantial traffic on the R1–R2 link. RFC 6275
and RFC 6554 define more limited routing headers. RFC 6275 defines a quite limited routing header to be
used for IPv6 mobility (and also defines the IPv6 Mobility header). The RFC 6554 routing header used for
RPL, mentioned above, has the same basic form as the Type 0 header described above, but its use is limited
to specific low-power routing domains.

8.5.4 IPv6 Fragment Header

IPv6 supports limited IPv4-style fragmentation via the Fragment Header. This header contains a 13-bit
Fragment Offset field, which contains – as in IPv4 – the 13 high-order bits of the actual 16-bit offset of the
fragment. This header also contains a 32-bit Identification field; all fragments of the same packet must carry
the same value in this field.

IPv6 fragmentation is done only by the original sender; routers along the way are not allowed to fragment
or re-fragment a packet. Sender fragmentation would occur if, for example, the sender had an 8 kB IPv6
packet to send via UDP, and needed to fragment it to accommodate the 1500-byte Ethernet MTU.

If a packet needs to be fragmented, the sender first identifies the unfragmentable part, consisting of the
IPv6 fixed header and any extension headers that must accompany each fragment (these would include
Hop-by-Hop and Routing headers). These unfragmentable headers are then attached to each fragment.

IPv6 also requires that every link on the Internet have an MTU of at least 1280 bytes beyond the LAN
header; link-layer fragmentation and reassembly can be used to meet this MTU requirement (which is what
ATM links (3.5 Asynchronous Transfer Mode: ATM) carrying IP traffic do).

Generally speaking, fragmentation should be avoided at the application layer when possible. UDP-based
applications that attempt to transmit filesystem-sized (usually 8 kB) blocks of data remain persistent users
of fragmentation.

8.5.5 General Extension-Header Issues

In the IPv4 world, many middleboxes (7.7.2 Middleboxes) examine not just the destination address but also
the TCP port numbers; firewalls, for example, do this routinely to block all traffic except to a designated
list of ports. In the IPv6 world, a middlebox may have difficulty finding the TCP header, as it must traverse
a possibly lengthy list of extension headers. Worse, some of these extension headers may be newer than
the middlebox, and thus unrecognized. Some middleboxes would simply drop packets with unrecognized
extension headers, making the introduction of new such headers problematic.

RFC 6564 addresses this by requiring that all future extension headers use a common “type-length-value”
format: the first byte indicates the extension-header’s type and the second byte indicates its length. This
facilitiates rapid traversal of the extension-header chain. A few older extension headers – for example the
Encapsulating Security Payload header of RFC 4303 – do not follow this rule; middleboxes must treat these
as special cases.

RFC 2460 states

With one exception [that is, Hop-by-Hop headers], extension headers are not examined or pro-
cessed by any node along a packet’s delivery path, until the packet reaches the node (or each of

8.5 IPv6 Extension Headers 245

https://tools.ietf.org/html/rfc5095.html
https://tools.ietf.org/html/rfc6275.html
https://tools.ietf.org/html/rfc6554.html
https://tools.ietf.org/html/rfc6275.html
https://tools.ietf.org/html/rfc6554.html
https://tools.ietf.org/html/rfc6564.html
https://tools.ietf.org/html/rfc4303.html
https://tools.ietf.org/html/rfc2460.html

An Introduction to Computer Networks, Release 1.9.21

the set of nodes, in the case of multicast) identified in the Destination Address field of the IPv6
header.

Nonetheless, sometimes intermediate nodes do attempt to add extension headers. This can break Path MTU
Discovery (12.13 Path MTU Discovery), as the sender no longer controls the total packet size.

RFC 7045 attempts to promulgate some general rules for the real-world handling of extension headers. For
example, it states that, while routers are allowed to drop packets with certain extension headers, they may
not do this simply because those headers are unrecognized. Also, routers may ignore Hop-by-Hop Option
headers, or else process packets with such headers via a slower queue.

8.6 Neighbor Discovery

IPv6 Neighbor Discovery, or ND, is a set of related protocols that replaces several IPv4 tools, most notably
ARP, ICMP redirects and most non-address-assignment parts of DHCP. The messages exchanged in ND are
part of the ICMPv6 framework, 8.9 ICMPv6. The original specification for ND is in RFC 2461, later
updated by RFC 4861. ND provides the following services:

• Finding the local router(s) [8.6.1 Router Discovery]

• Finding the set of network address prefixes that can be reached via local delivery (IPv6 allows there
to be more than one) [8.6.2 Prefix Discovery]

• Finding a local host’s LAN address, given its IPv6 address [8.6.3 Neighbor Solicitation]

• Detecting duplicate IPv6 addresses [8.7.1 Duplicate Address Detection]

• Determining that some neighbors are now unreachable

8.6.1 Router Discovery

IPv6 routers periodically send Router Advertisement (RA) packets to the all-nodes multicast group. Ordi-
nary hosts wanting to know what router to use can wait for one of these periodic multicasts, or can request an
RA packet immediately by sending a Router Solicitation request to the all-routers multicast group. Router
Advertisement packets serve to identify the routers; this process is sometimes called Router Discovery.
In IPv4, by comparison, the address of the default router is usually piggybacked onto the DHCP response
message (7.10 Dynamic Host Configuration Protocol (DHCP)).

These RA packets, in addition to identifying the routers, also contain a list of all network address prefixes
in use on the LAN. This is “prefix discovery”, described in the following section. To a first approximation
on a simple network, prefix discovery supplies the network portion of the IPv6 address; on IPv4 networks,
DHCP usually supplies the entire IPv4 address.

RA packets may contain other important information about the LAN as well, such as an agreed-on MTU.

These IPv6 router messages represent a change from IPv4, in which routers need not send anything besides
forwarded packets. To become an IPv4 router, a node need only have IPv4 forwarding enabled in its kernel; it
is then up to DHCP (or the equivalent) to inform neighboring nodes of the router. IPv6 puts the responsibility
for this notification on the router itself: for a node to become an IPv6 router, in addition to forwarding
packets, it “MUST” (RFC 4294) also run software to support Router Advertisement. Despite this mandate,
however, the RA mechanism does not play a role in the forwarding process itself; an IPv6 network can

246 8 IP version 6

https://tools.ietf.org/html/rfc7045.html
https://tools.ietf.org/html/rfc2461.html
https://tools.ietf.org/html/rfc4861.html
https://tools.ietf.org/html/rfc4294.html

An Introduction to Computer Networks, Release 1.9.21

run without Router Advertisements if every node is, for example, manually configured to know where the
routers are and to know which neighbors are on-link. (We emphasize that manual configuration like this
scales very poorly.)

On Linux systems, the Router Advertisement agent is most often the radvd daemon. See 8.13 IPv6 Con-
nectivity via Tunneling below.

8.6.2 Prefix Discovery

Closely related to Router Discovery is the Prefix Discovery process by which hosts learn what IPv6
network-address prefixes, above, are valid on the network. It is also where hosts learn which prefixes are
considered to be local to the host’s LAN, and thus reachable at the LAN layer instead of requiring router
assistance for delivery. IPv6, in other words, does not limit determination of whether delivery is local to the
IPv4 mechanism of having a node check a destination address against each of the network-address prefixes
assigned to the node’s interfaces.

Even IPv4 allows two IPv4 network prefixes to share the same LAN (eg a private one 10.1.2.0/24 and a
public one 147.126.65.0/24), but a consequence of IPv4 routing is that two such LAN-sharing subnets can
only reach one another via a router on the LAN, even though they should in principle be able to communicate
directly. IPv6 drops this restriction.

The Router Advertisement packets sent by the router should contain a complete list of valid network-address
prefixes, as the Prefix Information option. In simple cases this list may contain a single globally routable
64-bit prefix corresponding to the LAN subnet. If a particular LAN is part of multiple (overlapping) physical
subnets, the prefix list will contain an entry for each subnet; these 64-bit prefixes will themselves likely
share a common site-wide prefix of length N<64. For multihomed sites the prefix list may contain multiple
unrelated prefixes corresponding to the different address blocks. Finally, site-specific “unique local” IPv6
address prefixes may also be included.

Each prefix will have an associated lifetime; nodes receiving a prefix from an RA packet are to use it only
for the duration of this lifetime. On expiration (and likely much sooner) a node must obtain a newer RA
packet with a newer prefix list. The rationale for inclusion of the prefix lifetime is ultimately to allow sites
to easily renumber; that is, to change providers and switch to a new network-address prefix provided by a
new router. Each prefix is also tagged with a bit indicating whether it can be used for autoconfiguration, as
in 8.7.2 Stateless Autoconfiguration (SLAAC) below.

Each prefix also comes with a flag indicating whether the prefix is on-link. If set, then every node receiving
that prefix is supposed to be on the same LAN. Nodes assume that to reach a neighbor sharing the same
on-link address prefix, Neighbor Solicitation is to be used to find the neighbor’s LAN address. If a neighbor
shares an off-link prefix, a router must be used. The IPv4 equivalent of two nodes sharing the same on-link
prefix is sharing the same subnet prefix. For an example of subnets with prefix-discovery information, see
8.10 IPv6 Subnets.

Routers advertise off-link prefixes only in special cases; this would mean that a node is part of a subnet but
cannot reach other members of the subnet directly. This may apply in some wireless settings, eg MANETs
(3.7.8 MANETs) where some nodes on the same subnet are out of range of one another. It may also apply
when using IPv6 Mobility (7.13 Mobile IP, RFC 3775).

8.6 Neighbor Discovery 247

http://en.wikipedia.org/wiki/Radvd
https://tools.ietf.org/html/rfc3775.html

An Introduction to Computer Networks, Release 1.9.21

8.6.3 Neighbor Solicitation

Neighbor Solicitation messages are the IPv6 analogues of IPv4 ARP requests. These are essentially queries
of the form “who has IPv6 address X?” While ARP requests were broadcast, IPv6 Neighbor Solicitation
messages are sent to the solicited-node multicast address, which at the LAN layer usually represents a
rather small multicast group. This address is ff02::0001:x.y.z.w, where x, y, z and w are the low-order 32
bits of the IPv6 address the sender is trying to look up. Each IPv6 host on the LAN will need to subscribe to
all the solicited-node multicast addresses corresponding to its own IPv6 addresses (normally this is not too
many).

Neighbor Solicitation messages are repeated regularly, but followup verifications are initially sent to the
unicast LAN address on file (this is common practice with ARP implementations, but is optional). Unlike
with ARP, other hosts on the LAN are not expected to eavesdrop on the initial Neighbor Solicitation message.
The target host’s response to a Neighbor Solicitation message is called Neighbor Advertisement; a host
may also send these unsolicited if it believes its LAN address may have changed.

The analogue of Proxy ARP is still permitted, in that a node may send Neighbor Advertisements on behalf
of another. The most likely reason for this is that the node receiving proxy services is a “mobile” host
temporarily remote from the home LAN. Neighbor Advertisements sent as proxies have a flag to indicate
that, if the real target does speak up, the proxy advertisement should be ignored.

Once a node (host or router) has discovered a neighbor’s LAN address through Neighbor Solicitation, it
continues to monitor the neighbor’s continued reachability.

Neighbor Solicitation also includes Neighbor Unreachability Detection. Each node (host or router) contin-
ues to monitor its known neighbors; reachability can be inferred either from ongoing IPv6 traffic exchanges
or from Neighbor Advertisement responses. If a node detects that a neighboring host has become unreach-
able, the original node may retry the multicast Neighbor Solicitation process, in case the neighbor’s LAN
address has simply changed. If a node detects that a neighboring router has become unreachable, it attempts
to find an alternative path.

Finally, IPv4 ICMP Redirect messages have also been moved in IPv6 to the Neighbor Discovery proto-
col. These allow a router to tell a host that another router is better positioned to handle traffic to a given
destination.

8.6.4 Security and Neighbor Discovery

In the protocols outlined above, received ND messages are trusted; this can lead to problems with nodes
pretending to be things they are not. Here are two examples:

• A host can pretend to be a router simply by sending out Router Advertisements; such a host can thus
capture traffic from its neighbors, and even send it on – perhaps selectively – to the real router.

• A host can pretend to be another host, in the IPv6 analog of ARP spoofing (7.9.2 ARP Security).
If host A sends out a Neighbor Solicitation for host B, nothing prevents host C from sending out a
Neighbor Advertisement claiming to be B (after previously joining the appropriate multicast group).

These two attacks can have the goal either of eavesdropping or of denial of service; there are also purely
denial-of-service attacks. For example, host C can answer host B’s DAD queries (below at 8.7.1 Duplicate
Address Detection) by claiming that the IPv6 address in question is indeed in use, preventing B from ever
acquiring an IPv6 address. A good summary of these and other attacks can be found in RFC 3756.

248 8 IP version 6

https://tools.ietf.org/html/rfc3756.html

An Introduction to Computer Networks, Release 1.9.21

These attacks, it is worth noting, can only be launched by nodes on the same LAN; they cannot be launched
remotely. While this reduces the risk, though, it does not eliminate it. Sites that allow anyone to connect,
such as Internet cafés, run the highest risk, but even in a setting in which all workstations are “locked down”,
a node compromised by a virus may be able to disrupt the network.

RFC 4861 suggested that, at sites concerned about these kinds of attacks, hosts might use the IPv6 Authenti-
cation Header or the Encapsulated Security Payload Header to supply digital signatures for ND packets (see
22.11 IPsec). If a node is configured to require such checks, then most ND-based attacks can be prevented.
Unfortunately, RFC 4861 offered no suggestions beyond static configuration, which scales poorly and also
rather completely undermines the goal of autoconfiguration.

A more flexible alternative is Secure Neighbor Discovery, or SEND, specified in RFC 3971. This uses
public-key encryption (22.9 Public-Key Encryption) to validate ND messages; for the remainder of this
section, some familiarity with the material at 22.9 Public-Key Encryption may be necessary. Each message
is digitally signed by the sender, using the sender’s private key; the recipient can validate the message using
the sender’s corresponding public key. In principle this makes it impossible for one message sender to
pretend to be another sender.

In practice, the problem is that public keys by themselves guarantee (if not compromised) only that the
sender of a message is the same entity that previously sent messages using that key. In the second bulleted
example above, in which C sends an ND message falsely claiming to be B, straightforward applications of
public keys would prevent this if the original host A had previously heard from B, and trusted that sender to
be the real B. But in general A would not know which of B or C was the real B. A cannot trust whichever
host it heard from first, as it is indeed possible that C started its deception with A’s very first query for B,
beating B to the punch.

A common solution to this identity-guarantee problem is to create some form of “public-key infrastructure”
such as certificate authorities, as in 22.10.2.1 Certificate Authorities. In this setting, every node is config-
ured to trust messages signed by the certificate authority; that authority is then configured to vouch for the
identities of other nodes whenever this is necessary for secure operation. SEND implements its own version
of certificate authorities; these are known as trust anchors. These would be configured to guarantee the
identities of all routers, and perhaps hosts. The details are somewhat simpler than the mechanism outlined
in 22.10.2.1 Certificate Authorities, as the anchors and routers are under common authority. When trust
anchors are used, each host needs to be configured with a list of their addresses.

SEND also supports a simpler public-key validation mechanism known as cryptographically generated
addresses, or CGAs (RFC 3972). These are IPv6 interface identifiers that are secure hashes (22.6 Secure
Hashes) of the host’s public key (and a few other non-secret parameters). CGAs are an alternative to the
interface-identifier mechanisms discussed in 8.2.1 Interface identifiers. DNS names in the .onion domain
used by TOR also use CGAs.

The use of CGAs makes it impossible for host C to successfully claim to be host B: only B will have the
public key that hashes to B’s address and the matching private key. If C attempts to send to A a neighbor
advertisement claiming to be B, then C can sign the message with its own private key, but the hash of the
corresponding public key will not match the interface-identifier portion of B’s address. Similarly, in the
DAD scenario, if C attempts to tell B that B’s newly selected CGA address is already in use, then again C
won’t have a key matching that address, and B will ignore the report.

In general, CGI addresses allow recipients of a message to verify that the source address is the “owner” of
the associated public key, without any need for a public-key infrastructure (22.9.3 Trust and the Man in
the Middle). C can still pretend to be a router, using its own CGA address, because router addresses are not

8.6 Neighbor Discovery 249

https://tools.ietf.org/html/rfc4861.html
https://tools.ietf.org/html/rfc4861.html
https://tools.ietf.org/html/rfc3971.html
https://tools.ietf.org/html/rfc3972.html

An Introduction to Computer Networks, Release 1.9.21

known by the requester beforehand. However, it is easier to protect routers using trust anchors as there are
fewer of them.

SEND relies on the fact that finding two inputs hashing to the same 64-bit CGA is infeasible, as in general
this would take about 264 tries. An IPv4 analog would be impossible as the address host portion won’t have
enough bits to prevent finding hash collisions via brute force. For example, if the host portion of the address
has ten bits, it would take C about 210 tries (by tweaking the supplemental hash parameters) until it found a
match for B’s CGA.

SEND has seen very little use in the IPv6 world, partly because IPv6 itself has seen such slow adoption, but
also because of the perception that the vulnerabilities SEND protects against are difficult to exploit.

RA-guard is a simpler mechanism to achieve ND security, but one that requires considerable support from
the LAN layer. Outlined in RFC 6105, it requires that each host connects directly to a switch; that is, there
must be no shared-media Ethernet. The switches must also be fairly smart; it must be possible to configure
them to know which ports connect to routers rather than hosts, and, in addition, it must be possible to
configure them to block Router Advertisements from host ports that are not router ports. This is quite
effective at preventing a host from pretending to be a router, and, while it assumes that the switches can
do a significant amount of packet inspection, that is in fact a fairly common Ethernet switch feature. If
Wi-Fi is involved, it does require that access points (which are a kind of switch) be able to block Router
Advertisements; this isn’t quite as commonly available. In determining which switch ports are connected to
routers, RFC 6105 suggests that there might be a brief initial learning period, during which all switch ports
connecting to a device that claims to be a router are considered, permanently, to be router ports.

8.7 IPv6 Host Address Assignment

IPv6 provides two competing ways for hosts to obtain their full IP addresses. One is DHCPv6, based on
IPv4’s DHCP (7.10 Dynamic Host Configuration Protocol (DHCP)), in which the entire address is handed
out by a DHCPv6 server. The other is StateLess Address AutoConfiguration, or SLAAC, in which the
interface-identifier part of the address is generated locally, and the network prefix is obtained via prefix
discovery. The original idea behind SLAAC was to support complete plug-and-play network setup: hosts on
an isolated LAN could talk to one another out of the box, and if a router was introduced connecting the LAN
to the Internet, then hosts would be able to determine unique, routable addresses from information available
from the router.

In the early days of IPv6 development, in fact, DHCPv6 may have been intended only for address assign-
ments to routers and servers, with SLAAC meant for “ordinary” hosts. In that era, it was still common for
IPv4 addresses to be assigned “statically”, via per-host configuration files. RFC 4862 states that SLAAC is
to be used when “a site is not particularly concerned with the exact addresses hosts use, so long as they are
unique and properly routable.”

SLAAC and DHCPv6 evolved to some degree in parallel. While SLAAC solves the autoconfiguration prob-
lem quite neatly, at this point DHCPv6 solves it just as effectively, and provides for greater administrative
control. For this reason, SLAAC may end up less widely deployed. On the other hand, SLAAC gives hosts
greater control over their IPv6 addresses, and so may end up offering hosts a greater degree of privacy by
allowing endpoint management of the use of private and temporary addresses (below).

When a host first begins the Neighbor Discovery process, it receives a Router Advertisement packet. In this
packet are two special bits: the M (managed) bit and the O (other configuration) bit. The M bit is set to

250 8 IP version 6

https://tools.ietf.org/html/rfc6105.html
https://tools.ietf.org/html/rfc6105.html
https://tools.ietf.org/html/rfc4862.html

An Introduction to Computer Networks, Release 1.9.21

indicate that DHCPv6 is available on the network for address assignment. The O bit is set to indicate that
DHCPv6 is able to provide additional configuration information (eg the name of the DNS server) to hosts
that are using SLAAC to obtain their addresses. In addition, each individual prefix in the RA packet has an
A bit, which when set indicates that the associated prefix may be used with SLAAC.

8.7.1 Duplicate Address Detection

Whenever an IPv6 host obtains a unicast address – a link-local address, an address created via SLAAC,
an address received via DHCPv6 or a manually configured address – it goes through a duplicate-address
detection (DAD) process. The host sends one or more Neighbor Solicitation messages (that is, like an ARP
query), as in 8.6 Neighbor Discovery, asking if any other host has this address. If anyone answers, then
the address is a duplicate. As with IPv4 ACD (7.9.1 ARP Finer Points), but not as with the original IPv4
self-ARP, the source-IP-address field of this NS message is set to a special “unspecified” value; this allows
other hosts to recognize it as a DAD query.

Because this NS process may take some time, and because addresses are in fact almost always unique, RFC
4429 defines an optimistic DAD mechanism. This allows limited use of an address before the DAD process
completes; in the meantime, the address is marked as “optimistic”.

Outside the optimistic-DAD interval, a host is not allowed to use an IPv6 address if the DAD process has
failed. RFC 4862 in fact goes further: if a host with an established address receives a DAD query for that
address, indicating that some other host wants to use that address, then the original host should discontinue
use of the address.

If the DAD process fails for an address based on an EUI-64 identifier, then some other node has the same
Ethernet address and you have bigger problems than just finding a working IPv6 address. If the DAD process
fails for an address constructed with the RFC 7217 mechanism, 8.2.1 Interface identifiers, the host is able
to generate a new interface identifier and try again. A counter for the number of DAD attempts is included in
the hash that calculates the interface identifier; incrementing this counter results in an entirely new identifier.

While DAD works quite well on Ethernet-like networks with true LAN-layer multicast, it may be inefficient
on, say, MANETs (3.7.8 MANETs), as distant hosts may receive the DAD Neighbor Solicitation message
only after some delay, or even not at all. Work continues on the development of improvements to DAD for
such networks.

8.7.2 Stateless Autoconfiguration (SLAAC)

To obtain an address via SLAAC, defined in RFC 4862, the first step for a host is to generate its link-local
address (above, 8.2.2 Link-local addresses), appending the standard 64-bit link-local prefix fe80::/64 to its
interface identifier (8.2.1 Interface identifiers). The latter is likely derived from the host’s LAN address
using either EUI-64 or the RFC 7217 mechanism; the important point is that it is available without network
involvement.

The host must then ensure that its newly configured link-local address is in fact unique; it uses DAD (above)
to verify this. Assuming no duplicate is found, then at this point the host can talk to any other hosts on the
same LAN, eg to figure out where the printers are.

The next step is to see if there is a router available. The host may send a Router Solicitation (RS) message
to the all-routers multicast address. A router – if present – should answer with a Router Advertisement

8.7 IPv6 Host Address Assignment 251

https://tools.ietf.org/html/rfc4429.html
https://tools.ietf.org/html/rfc4429.html
https://tools.ietf.org/html/rfc4862.html
https://tools.ietf.org/html/rfc7217.html
https://tools.ietf.org/html/rfc4862.html
https://tools.ietf.org/html/rfc7217.html

An Introduction to Computer Networks, Release 1.9.21

(RA) message that also contains a Prefix Information option; that is, a list of IPv6 network-address prefixes
(8.6.2 Prefix Discovery).

As mentioned earlier, the RA message will mark with a flag those prefixes eligible for use with SLAAC; if
no prefixes are so marked, then SLAAC should not be used. All prefixes will also be marked with a lifetime,
indicating how long the host may continue to use the prefix. Once the prefix expires, the host must obtain a
new one via a new RA message.

The host chooses an appropriate prefix, stores the prefix-lifetime information, and appends the prefix to the
front of its interface identifier to create what should now be a routable address. The address so formed must
now be verified through the DAD mechanism above.

In the era of EUI-64 interface identifiers, it would in principle have been possible for the receiver of a packet
to extract the sender’s LAN address from the interface-identifier portion of the sender’s SLAAC-generated
IPv6 address. This in turn would allow bypassing the Neighbor Solicitation process to look up the sender’s
LAN address. This was never actually permitted, however, even before the privacy options below, as there
is no way to be certain that a received address was in fact generated via SLAAC. With RFC 7217-based
interface identifiers, LAN-address extraction is no longer even potentially an option.

A host using SLAAC may receive multiple network prefixes, and thus generate for itself at least one address
per prefix. RFC 6724 defines a process for a host to determine, when it wishes to connect to destination
address D, which of its own multiple addresses to use. For example, if D is a unique-local address, not
globally visible, then the host will likely want to choose a source address that is also unique-local. RFC
6724 also includes mechanisms to allow a host with a permanent public address (possibly corresponding to a
DNS entry, but just as possibly formed directly from an interface identifier) to prefer alternative “temporary”
or “privacy” addresses for outbound connections; see, for example, 8.7.2.1 SLAAC privacy. Finally, RFC
6724 also defines the sorting order for multiple addresses representing the same destination; see 8.11 Using
IPv6 and IPv4 Together.

At the end of the SLAAC process, the host knows its IPv6 address (or set of addresses) and its default router.
In IPv4, these would have been learned through DHCP along with the identity of the host’s DNS server; one
concern with SLAAC is that it originally did not provide a way for a host to find its DNS server. One strategy
is to fall back on DHCPv6 for this. However, RFC 6106 now defines a process by which IPv6 routers can
include DNS-server information in the RA packets they send to hosts as part of the SLAAC process; this
completes the final step of autoconfiguration.

How to get DNS names for SLAAC-configured IPv6 hosts into the DNS servers is an entirely separate
issue. One approach is simply not to give DNS names to such hosts. In the NAT-router model for IPv4
autoconfiguration, hosts on the inward side of the NAT router similarly do not have DNS names (although
they are also not reachable directly, while SLAAC IPv6 hosts would be reachable). If DNS names are needed
for hosts, then a site might choose DHCPv6 for address assignment instead of SLAAC. It is also possible to
figure out the addresses SLAAC would use (by identifying the host-identifier bits) and then creating DNS
entries for these hosts. Finally, hosts can also use Dynamic DNS (RFC 2136) to update their own DNS
records.

8.7.2.1 SLAAC privacy

A portable host that always uses SLAAC as it moves from network to network and always bases its SLAAC
addresses on the EUI-64 interface identifier (or on any other static interface identifier) will be easy to track:
its interface identifier will never change. This is one reason why the obfuscation mechanism of RFC 7217

252 8 IP version 6

https://tools.ietf.org/html/rfc7217.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6106.html
https://tools.ietf.org/html/rfc2136.html
https://tools.ietf.org/html/rfc7217.html

An Introduction to Computer Networks, Release 1.9.21

interface identifiers (8.2.1 Interface identifiers) includes the network prefix in the hash: connecting to a
new network will then result in a new interface identifier.

Well before RFC 7217, however, RFC 4941 introduced a set of privacy extensions to SLAAC: optional
mechanisms for the generation of alternative interface identifiers, based as with RFC 7217 on pseudorandom
generation using the original LAN-address-based interface identifier as a “seed” value.

RFC 4941 goes further, however, in that it supports regular changes to the interface identifier, to increase
the difficulty of tracking a host over time even if it does not change its network prefix. One first selects a
128-bit secure-hash function F(), eg MD5 (22.6 Secure Hashes). New temporary interface IDs (IIDs) can
then be calculated as follows

(IIDnew,seednew) = F(seedold, IIDold)

where the left-hand pair represents the two 64-bit halves of the 128-bit return value of F() and the arguments
to F() are concatenated together. (The seventh bit of IIDnew must also be set to 0; cf 8.2.1 Interface
identifiers where this bit is set to 1.) This process is privacy-safe even if the initial IID is based on EUI-64.

The probability of two hosts accidentally choosing the same interface identifier in this manner is vanishingly
small; the Neighbor Solicitation mechanism with DAD must, however, still be used to verify that the address
is in fact unique within the host’s LAN.

The privacy addresses above are to be used only for connections initiated by the client; to the extent that the
host accepts incoming connections and so needs a “fixed” IPv6 address, the address based on the original
EUI-64/RFC-7217 interface identifier should still be available. As a result, the RFC 7217 mechanism is still
important for privacy even if the RFC 4941 mechanism is fully operational.

RFC 4941 stated that privacy addresses were to be disabled by default, largely because of concerns about
frequently changing IP addresses. These concerns have abated with experience and so privacy addresses
are often now automatically enabled. Typical address lifetimes range from a few hours to 24 hours. Once
an address has “expired” it generally remains available but deprecated for a few temporary-address cycles
longer.

A consequence of privacy addresses (for either SLAAC or DHCPv6) is that one host will typically have
multiple active addresses for any one network prefix, at any given time. RFC 7934 suggests that a host
might change its address, for privacy reasons, once per day, and that each address would have a lifetime of
seven days. Add to that the use of separate addresses for virtual machines, and perhaps also for containerized
applications, and RFC 7934 suggests that up to 20 addresses might be needed. The number might be quite
a bit higher; some proposals for privacy addresses suggest changing them much more often than once a day
(though the address lifetimes might also be reduced). It would not be entirely unreasonable, in fact, for a
browser to use a separate IPv6 address for each separate website accessed. The use of too many addresses
does add to the memory and traffic requirements of router Neighbor Discovery (8.6 Neighbor Discovery),
however.

DHCPv6 also provides an option for temporary address assignments, again to improve privacy, but one of
the potential advantages of SLAAC is that this process is entirely under the control of the end system.

Regularly (eg every few hours, or less) changing the host portion of an IPv6 address should make external
tracking of a host more difficult, at least if tracking via web-browser cookies is also somehow prevented.
However, for a residential “site” with only a handful of hosts, a considerable degree of tracking may be
obtained simply by observing the common 64-bit prefix.

For a general discussion of privacy issues related to IPv6 addressing, see RFC 7721.

8.7 IPv6 Host Address Assignment 253

https://tools.ietf.org/html/rfc7217.html
https://tools.ietf.org/html/rfc4941.html
https://tools.ietf.org/html/rfc7934.html
https://tools.ietf.org/html/rfc7934.html
https://tools.ietf.org/html/rfc7721.html

An Introduction to Computer Networks, Release 1.9.21

8.7.3 DHCPv6

The job of a DHCPv6 server is to tell an inquiring host its network prefix(es) and also supply a 64-bit host-
identifier, very similar to an IPv4 DHCPv4 server. Hosts begin the process by sending a DHCPv6 request to
the All_DHCP_Relay_Agents_and_Servers multicast IPv6 address ff02::1:2 (versus the broadcast address
for IPv4). As with DHCPv4, the job of a relay agent is to tag a DHCPv6 request with the correct current
subnet, and then to forward it to the actual DCHPv6 server. This allows the DHCPv6 server to be on
a different subnet from the requester. Note that the use of multicast does nothing to diminish the need
for relay agents. In fact, the All_DHCP_Relay_Agents_and_Servers multicast address scope is limited to
the current LAN; relay agents then forward to the actual DHCPv6 server using the site-scoped address
All_DHCP_Servers.

Hosts using SLAAC to obtain their address can still use a special Information-Request form of DHCPv6 to
obtain their DNS server and any other “static” DHCPv6 information.

Clients may ask for temporary addresses. These are identified as such in the “Identity Association” field
of the DHCPv6 request. They are handled much like “permanent” address requests, except that the client
may ask for a new temporary address only a short time later. When the client does so, a different temporary
address will be returned; a repeated request for a permanent address, on the other hand, would usually return
the same address as before. Temporary addresses are typically used to improve privacy, by making it more
difficult to track users by IPv6 address.

When the DHCPv6 server returns a temporary address, it may of course keep a log of this address. When
SLAAC is used, a log is still possible, as each new address must run through the Neighbor Discovery
(8.6 Neighbor Discovery) process. However, SLAAC does place control of the cryptographic mechanisms
for temporary-address creation in the hands of the end user, rather than in a centralized service. For example,
the DHCPv6 temporary-address mechanism might have a flaw that would allow a remote observer to infer
a relationship between different temporary addresses, though the secure-hash mechanism described below
appears to be secure as long as the secret_key portion is not compromised.

A DHCPv6 response contains a list (perhaps of length 1) of IPv6 addresses. Each separate address has an
expiration date. The client must send a new request before the expiration of any address it is actually using.

In DHCPv4, the host portion of addresses typically comes from “address pools” representing small ranges
of integers such as 64-254; these values are generally allocated consecutively. A DHCPv6 server, on the
other hand, should take advantage of the enormous range (264) of possible host portions by allocating values
more sparsely, through the use of pseudorandomness. This is in part to make it very difficult for an outsider
who knows one of a site’s host addresses to guess the addresses of other hosts, cf 8.2.1 Interface identifiers.

The Internet Draft draft-ietf-dhc-stable-privacy-addresses proposes the following mechanism by which a
DHCPv6 server may generate the interface-identifier bits for the addresses it hands out; F() is a secure-hash
function and its arguments are concatenated together:

F(prefix, client_DUID, IAID, DAD_counter, secret_key)

The prefix, DAD_counter and secret_key arguments are as in 8.7.2.1 SLAAC privacy. The client_DUID is
the string by which the client identifies itself to the DHCPv6 server; it may be based on the Ethernet address
though other options are possible. The IAID, or Identity Association identifier, is a client-provided name
for this request; different names are used when requesting temporary versus permanent addresses.

Some older DHCPv6 servers may still allocate interface identifiers in serial order; such obsolete servers
might make the SLAAC approach more attractive.

254 8 IP version 6

https://tools.ietf.org/id/draft-ietf-dhc-stable-privacy-addresses-00.txt

An Introduction to Computer Networks, Release 1.9.21

8.8 Globally Exposed Addresses

Perhaps the most striking difference between a contemporary IPv4 network and an IPv6 network is that on
the former, many hosts are likely to be “hidden” behind a NAT router (7.7 Network Address Translation).
On an IPv6 network, on the other hand, every host may be globally visible to the IPv6 world (though NAT
may still be used to allow connectivity to legacy IPv4 servers).

Legacy IPv4 NAT routers provide a measure of each of privacy, security and nuisance. Privacy in IPv6 can
be handled, as above, through private or temporary addresses.

The degree of security provided via NAT is entirely due to the fact that all connections must be initiated
from the inside; no packet from the outside is allowed through the NAT firewall unless it is a response to
a packet sent from the inside. This feature, however, can also be implemented via a conventional firewall
(IPv4 or IPv6), without address translation. Furthermore, given such a conventional firewall, it is then
straightforward to modify it so as to support limited and regulated connections from the outside world as
desired; an analogous modification of a NAT router is more difficult. (That said, a blanket ban on IPv6
connections from the outside can prove as frustrating as IPv4 NAT.)

Finally, one of the major reasons for hiding IPv4 addresses is that with IPv4 it is easy to map a /24 subnet by
pinging or otherwise probing each of the 254 possible hosts; such mapping may reveal internal structure. In
IPv6 such mapping is meant to be impractical as a /64 subnet has 264 » 18 quintillion hosts (though see the
randomness note in 8.2.1 Interface identifiers). If the low-order 64 bits of a host’s IPv6 address are chosen
with sufficient randomness, finding the host by probing is virtually impossible; see exercise 6.0.

As for nuisance, NAT has always broken protocols that involve negotiation of new connections (eg TFTP,
FTP, or SIP, used by VoIP); IPv6 should make these much easier to manage.

8.9 ICMPv6

RFC 4443 defines an updated version of the ICMP protocol for IPv6. As with the IPv4 version, messages
are identified by 8-bit type and code (subtype) fields, making it reasonably easy to add new message formats.
We have already seen the ICMP messages that make up Neighbor Discovery (8.6 Neighbor Discovery).

Unlike ICMPv4, ICMPv6 distinguishes between informational and error messages by the first bit of the type
field. Unknown informational messages are simply dropped, while unknown error messages must be handed
off, if possible, to the appropriate upper-layer process. For example, “[UDP] port unreachable” messages
are to be delivered to the UDP sender of the undeliverable packet.

ICMPv6 includes an IPv6 version of Echo Request / Echo Reply, upon which the “ping6” command
(8.12.1 ping6) is based; unlike with IPv4, arriving IPv6 echo-reply messages are delivered to the pro-
cess that generated the corresponding echo request. The base ICMPv6 specification also includes formats
for the error conditions below; this list is somewhat cleaner than the corresponding ICMPv4 list:

Destination Unreachable

In this case, one of the following numeric codes is returned:

0. No route to destination, returned when a router has no next_hop entry.

8.8 Globally Exposed Addresses 255

https://tools.ietf.org/html/rfc4443.html

An Introduction to Computer Networks, Release 1.9.21

1. Communication with destination administratively prohibited, returned when a router has a
next_hop entry, but declines to use it for policy reasons. Codes 5 and 6, below, are special cases
of this situation; these more-specific codes are returned when appropriate.

2. Beyond scope of source address, returned when a router is, for example, asked to route a packet to
a global address, but the return address is not, eg is unique-local. In IPv4, when a host with a private
address attempts to connect to a global address, NAT is almost always involved.

3. Address unreachable, a catchall category for routing failure not covered by any other message. An
example is if the packet was successfully routed to the last_hop router, but Neighbor Discovery failed
to find a LAN address corresponding to the IPv6 address.

4. Port unreachable, returned when, as in ICMPv4, the destination host does not have the requested
UDP port open.

5. Source address failed ingress/egress policy, see code 1.

6. Reject route to destination, see code 1.

Packet Too Big

This is like ICMPv4’s “Fragmentation Required but DontFragment flag set”; IPv6 however has no router-
based fragmentation.

Time Exceeded

This is used for cases where the Hop Limit was exceeded, and also where source-based fragmentation was
used and the fragment-reassembly timer expired.

Parameter Problem

This is used when there is a malformed entry in the IPv6 header, an unrecognized Next Header type, or an
unrecognized IPv6 option.

_node information:

8.9.1 Node Information Messages

ICMPv6 also includes Node Information (NI) Messages, defined in RFC 4620. One form of NI query
allows a host to be asked directly for its name; this is accomplished in IPv4 via reverse-DNS lookups
(7.8.3 Other DNS Records). Other NI queries allow a host to be asked for its other IPv6 addresses, or for
its IPv4 addresses. Recipients of NI queries may be configured to refuse to answer.

8.10 IPv6 Subnets

In the IPv4 world, network managers sometimes struggle to divide up a limited address space into a pool
of appropriately sized subnets. In IPv6, this is much simpler: all subnets are of size /64, following the
guidelines set out in 8.3 Network Prefixes.

There is one common exception: RFC 6164 permits the use of 127-bit prefixes at each end of a point-to-
point link. The 128th bit is then 0 at one end and 1 at the other.

256 8 IP version 6

https://tools.ietf.org/html/rfc4620.html
https://tools.ietf.org/html/rfc6164.html

An Introduction to Computer Networks, Release 1.9.21

A site receiving from its provider an address prefix of size /56 can assign up to 256 /64 subnets. As with
IPv4, the reasons for IPv6 subnetting are to join incompatible LANs, to press intervening routers into service
as inter-subnet firewalls, or otherwise to separate traffic.

The diagram below shows a site with an external prefix of 2001::/62, two routers R1 and R2 with in-
terfaces numbered as shown, and three internal LANS corresponding to three subnets 2001:0:0:1::/64,
2001:0:0:2::/64 and 2001:0:0:3::/64. The subnet 2001:0:0:0::/64 (2001::/64) is used to connect to the
provider.

Provider R1
2001:0:0:0::/64

R2

2001:0:0:2::/64

2001:0:0:3::/64

2001:0:0:1::/64

0 1

2

3

1

Interface 0 of R1 would be assigned an address from the /64 block 2001:0:0:0/64, perhaps 2001::2.

R1 will announce over its interface 1 – via router advertisements – that it has a route to ::/0, that is, it has
the default route. It will also advertise via interface 1 the on-link prefix 2001:0:0:1::/64.

R2 will announce via interface 1 its routes to 2001:0:0:2::/64 and 2001:0:0:3::/64. It will also announce the
default route on interfaces 2 and 3. On interface 2 it will advertise the on-link prefix 2001:0:0:2::/64, and
on interface 3 the prefix 2001:0:0:3::/64. It could also, as a backup, advertise prefix 2001:0:0:1::/64 on its
interface 1. On each subnet, only the subnet’s on-link prefix is advertised.

8.10.1 Subnets and /64

Fixing the IPv6 division of prefix and host (interface) lengths at 64 bits for each is a compromise. While it
does reduce the maximum number of subnets from 2128 to 264, in practice this is not a realistic concern, as
264 is still an enormous number.

By leaving 64 bits for host identifiers, this 64/64 split leaves enough room for the privacy mechanisms of
8.7.2.1 SLAAC privacy and 8.7.3 DHCPv6 to provide reasonable protection.

Much of the recent motivation for considering divisions other than 64/64 is grounded in concerns about ISP
address-allocation policies. By declaring that users should each receive a /64 allocation, one hope is that
users will in fact get enough for several subnets. Even a residential customer with only, say, two hosts and
a router needs more than a single /64 address block, because the link from ISP to customer needs to be on
its own subnet (it could use a 127-bit prefix, as above, but many customers would in fact have a need for
multiple /64 subnets). By requiring /64 for a subnet, the hope is that users will all be allocated, for example,
prefixes of at least /60 (16 subnets) or even /56 (256 subnets).

Even if that hope does not pan out, the 64/64 rule means that every user should at least get a /64 allocation.

On the other hand, if users are given only /64 blocks, and they want to use subnets, then they have to break
the 64/64 rule locally. Perhaps they can create four subnets each with a prefix of length 66 bits, and each

8.10 IPv6 Subnets 257

An Introduction to Computer Networks, Release 1.9.21

with only 62 bits for the host identifier. Wanting to do that in a standard way would dictate more flexibility
in the prefix/host division.

But if the prefix/host division becomes completely arbitrary, there is nothing to stop ISPs from handing out
prefixes with lengths of /80 (leaving 48 host bits) or even /120.

The general hope is that ISPs will not be so stingy with prefix lengths. But with IPv6 adoption still relatively
modest, how this will all work out is not yet clear. In the IPv4 world, users use NAT (7.7 Network Address
Translation) to create as many subnets as they desire. In the IPv6 world, NAT is generally considered to be
a bad idea.

Finally, in theory it is possible to squeeze a site with two subnets onto a single /64 by converting the site’s
main router to a switch; all the customer’s hosts now connect on an equal footing to the ISP. But this means
making it much harder to use the router as a firewall, as described in 8.8 Globally Exposed Addresses. For
most users, this is too risky.

8.11 Using IPv6 and IPv4 Together

In this section we will assume that IPv6 connectivity exists at a site; if it does not, see 8.13 IPv6 Connectivity
via Tunneling.

If IPv6 coexists on a client machine with IPv4, in a so-called dual-stack configuration, which is used? If
the client wants to connect using TCP to an IPv4-only website (or to some other network service), there is
no choice. But what if the remote site also supports both IPv4 and IPv6?

The first step is the DNS lookup, triggered by the application’s call to the appropriate address-
lookup library procedure; in the Java stalk example of 11.1.3.3 The Client we use InetAddress.
getByName(). In the C language, address lookup is done with getaddrinfo() or (the now-
deprecated) gethostbyname(). The DNS system on the client then contacts its DNS resolver and asks
for the appropriate address record corresponding to the server name.

For IPv4 addresses, DNS maintains so-called “A” records, for “Address”. The IPv6 equivalent is the
“AAAA” record, for “Address four times longer”. A dual-stack machine usually requests both. The In-
ternet Draft draft-vavrusa-dnsop-aaaa-for-free proposes that, whenever a DNS server delivers an IPv4 A
record, it also includes the corresponding AAAA record, much as IPv4 CNAME records are sent with pig-
gybacked corresponding A records (7.8.2 nslookup and dig). The DNS requests are sent to the client’s
pre-configured DNS-resolver address (probably set via DHCP).

IPv6 and this book

This book is, as of April 2015, available via IPv6. Within the cs.luc.edu DNS zone are defined the
following:

• intronetworks: both A and AAAA records

• intronetworks6: AAAA records only

• intronetworks4: A records only

258 8 IP version 6

https://datatracker.ietf.org/doc/draft-vavrusa-dnsop-aaaa-for-free/
http://intronetworks.cs.luc.edu
http://intronetworks6.cs.luc.edu
http://intronetworks4.cs.luc.edu

An Introduction to Computer Networks, Release 1.9.21

DNS itself can run over either IPv4 or IPv6. A DNS server (authoritative nameserver or just resolver) using
only IPv4 can answer IPv6 AAAA-record queries, and a DNS server using only IPv6 can answer IPv4 A-
record queries. Ideally each nameserver would eventually support both IPv4 and IPv6 for all queries, though
it is common for hosts with newly enabled IPv6 connectivity to continue to use IPv4-only resolvers. See
RFC 4472 for a discussion of some operational issues.

Here is an example of DNS requests for A and AAAA records made with the nslookup utility from the
command line. (In this example, the DNS resolver was contacted using IPv4.)

nslookup -query=A facebook.com
Name: facebook.com
Address: 173.252.120.6

nslookup -query=AAAA facebook.com
facebook.com has AAAA address 2a03:2880:2130:cf05:face:b00c:0:1

A few sites have IPv6-only DNS names. If the DNS query returns only an AAAA record, IPv6 must be
used. One example in 2015 is ipv6.google.com. In general, however, IPv6-only names such as this are
recommended only for diagnostics and testing. The primary DNS names for IPv4/IPv6 sites should have
both types of DNS records, as in the Facebook example above (and as for google.com).

Java getByName()

The Java getByName() call may not abide by system-wide RFC 6742-style preferences; the Java
Networking Properties documentation (2015) states that “the default behavior is to prefer using IPv4
addresses over IPv6 ones”. This can be changed by setting the system property java.net.
preferIPv6Addresses to true, using System.setProperty().

If the client application uses a library call like Java’s InetAddress.getByName(), which returns a
single IP address, the client will then attempt to connect to the address returned. If an IPv4 address is
returned, the connection will use IPv4, and similarly with IPv6. If an IPv6 address is returned and IPv6
connectivity is not working, then the connection will fail.

For such an application, the DNS resolver library thus effectively makes the IPv4-or-IPv6 decision. RFC
6724, which we encountered above in 8.7.2 Stateless Autoconfiguration (SLAAC), provides a configuration
mechanism, through a small table of IPv6 prefixes and precedence values such as the following.

prefix precedence
::1/128 50 IPv6 loopback
::/0 40 “default” match
2002::/16 30 6to4 address; see sidebar in 8.13 IPv6 Connectivity via Tunneling
::ffff:0:0/96 10 Matches embedded IPv4 addresses; see 8.3 Network Prefixes
fc00::/7 3 unique-local plus reserved; see 8.3 Network Prefixes

An address is assigned a precedence by looking it up in the table, using the longest-match rule (10.1 Class-
less Internet Domain Routing: CIDR); a list of addresses is then sorted in decreasing order of precedence.
There is no entry above for link-local addresses, but by default they are ranked below global addresses. This
can be changed by including the link-local prefix fe80::/64 in the above table and ranking it higher than, say,
::/0.

8.11 Using IPv6 and IPv4 Together 259

https://tools.ietf.org/html/rfc4472.html
http://ipv6.google.com
http://google.com
https://tools.ietf.org/html/rfc6742.html
http://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html

An Introduction to Computer Networks, Release 1.9.21

The default configuration is generally to prefer IPv6 if IPv6 is available; that is, if an interface has an IPv6
address that is (or should be) globally routable. Given the availability of both IPv6 and IPv4, a preference for
IPv6 is implemented by assigning the prefix ::/0 – matching general IPv6 addresses – a higher precedence
than that assigned to the IPv4-specific prefix ::ffff:0:0/96. This is done in the table above.

Preferring IPv6 does not always work out well, however; many hosts have IPv6 connectivity through tun-
neling that may be slow, limited or outright down. The precedence table can be changed to prefer IPv4
over IPv6 by raising the precedence for the prefix ::ffff:0.0.0.0/96 to a value higher than that for ::/0. Such
system-wide configuration is usually done on Linux hosts by editing /etc/gai.conf and on Windows
via the netsh command; for example, netsh interface ipv6 show prefixpolicies.

We can see this systemwide IPv4/IPv6 preference in action using OpenSSH (see 22.10.1 SSH), between
two systems that each support both IPv4 and IPv6 (the remote system here is intronetworks.cs.luc.edu).
With the IPv4-matching prefix precedence set high, connection is automatically via IPv4:

/etc/gai.conf: precedence ::ffff:0:0/96 100

ssh: Connecting to intronetworks.cs.luc.edu [162.216.18.28] ...

With the IPv4-prefix precedence set low, new connections use IPv6:

/etc/gai.conf: precedence ::ffff:0:0/96 10

ssh: Connecting to intronetworks.cs.luc.edu
[2600:3c03::f03c:91ff:fe69:f438] ...

Applications can also use a DNS-resolver call that returns a list of all addresses matching a given host-
name. (Often this list will have just two entries, for the IPv4 and IPv6 addresses, though round-robin DNS
(7.8 DNS) can make the list much longer.) The C language getaddrinfo() call returns such a list,
as does the Java InetAddress.getAllByName(). The RFC 6724 preferences then determine the
relative order of IPv4 and IPv6 entries in this list.

If an application requests such a list of all addresses, probably the most common strategy is to try each
address in turn, according to the system-provided order. In the example of the previous paragraph, OpenSSH
does in fact request a list of addresses, using getaddrinfo(), but, according to its source code, tries
them in order and so usually connects to the first address on the list, that is, to the one preferred by the
RFC 6724 rules. Alternatively, an application might implement user-specified configuration preferences to
decide between IPv4 and IPv6, though user interest in this tends to be limited (except, perhaps, by readers
of this book).

The “Happy Eyeballs” algorithm, RFC 8305, offers a more nuanced strategy for deciding whether an
application should connect using IPv4 or IPv6. Initially, the client might try the IPv6 address (that is,
will send TCP SYN to the IPv6 address, 12.3 TCP Connection Establishment). If that connection does not
succeed within, say, 250 ms, the client would try the IPv4 address. 250 ms is barely enough time for the TCP
handshake to succeed; it does not allow – and is not meant to allow – sufficient time for a retransmission.
The client falls back to IPv4 well before the failure of IPv6 is certain.

IPv6 servers

As of 2015, the list of websites supporting IPv6 was modest, though the number has crept up since
then. Some sites, such as apple.com and microsoft.com, require the “www” prefix for IPv6 availability.

260 8 IP version 6

http://www.openssh.com/
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc6724.html
https://tools.ietf.org/html/rfc8305.html

An Introduction to Computer Networks, Release 1.9.21

Networking providers are more likely to be IPv6-available. Sprint.com gets an honorable mention for
having the shortest IPv6 address I found: 2600::aaaa.

A Happy-Eyeballs client is also encouraged to cache the winning protocol, so for the next connection the
client will attempt to use only the protocol that was successful before. The cache timeout is to be on the order
of 10 minutes, so that if IPv6 connectivity failed and was restored then the client can resume using it with
only moderate delay. Unfortunately, if the Happy Eyeballs mechanism is implemented at the application
layer, which is often the case, then the scope of this cache may be limited to the particular application.

As IPv6 becomes more mainstream, Happy Eyeballs implementations are likely to evolve towards placing
greater confidence in the IPv6 option. One simple change is to increase the time interval during which the
client waits for an IPv6 response before giving up and trying IPv4.

We can test for the Happy Eyeballs mechanism by observing traffic with WireShark. As a first example, we
imagine giving our client host a unique-local IPv6 address (in addition to its automatic link-local address);
recall that unique-local addresses are not globally routable. If we now were to connect to, say, google.com,
and monitor the traffic using WireShark, we would see a DNS AAAA query (IPv6) for “google.com” fol-
lowed immediately by a DNS A query (IPv4). The subsequent TCP SYN, however, would be sent only to
the IPv4 address: the client host would know that its IPv6 unique-local address is not routable, and it is not
even tried.

Next let us change the IPv6 address for the client host to 2000:dead:beef:cafe::2, through manual
configuration (8.12.3 Manual address configuration), and without providing an actual IPv6 connection.
(We also manually specify a fake default router.) This address is part of the 2000::/3 block, and is supposed
to be globally routable.

We now try two connections to google.com, TCP port 80. The first is via the Firefox browser.

We see two DNS queries, AAAA and A, in packets 1-4, followed by the first attempt (highlighted in orange)
at T=0.071 to negotiate a TCP connection via IPv6 by sending a TCP SYN packet (12.3 TCP Connec-
tion Establishment) to the google.com IPv6 address 2607:f8b0:4009:80b::200e. Only 250 ms later, at
T=0.321, we see a second DNS A-query (IPv4), followed by an ultimately successful connection attempt
using IPv4 starting at T=0.350. This particular version of Firefox, in other words, has implemented the
Happy Eyeballs dual-stack mechanism.

Now we try the connection using the previously mentioned OpenSSH application, using -p 80 to connect
to port 80. (This example was generated somewhat later; DNS now returns 2607:f8b0:4009:807::1004 as
google.com’s IPv6 address.)

8.11 Using IPv6 and IPv4 Together 261

http://google.com

An Introduction to Computer Networks, Release 1.9.21

We see two DNS queries, AAAA and A, in packets numbered 4 and 6 (pale blue); these are made by the
client from its IPv4 address 10.2.5.19. Half a millisecond after the A query returns (packet 7), the client
sends a TCP SYN packet to google.com’s IPv6 address; this packet is highlighted in orange. This SYN
packet is retransmitted 3 seconds and then 9 seconds later (in black), to no avail. After 21 seconds, the
client gives up on IPv6 and attempts to connect to google.com at its IPv4 address, 173.194.46.105; this
connection (in green) is successful. The long delay shows that Happy Eyeballs was not implemented by
OpenSSH, which its source code confirms.

(The host initiating the connections here was running Ubuntu 10.04 LTS, from 2010. The ultimately failing
TCP connection gives up after three tries over only 21 seconds; newer systems make more tries and take
much longer before they abandon a connection attempt.)

8.12 IPv6 Examples Without a Router

In this section we present a few IPv6 experiments that can be done without an IPv6 connection and without
even an IPv6 router. Without a router, we cannot use SLAAC or DHCPv6. We will instead use link-local
addresses, which require the specification of the interface along with the address, and manually configured
unique-local (8.3 Network Prefixes) addresses. One practical problem with link-local addresses is that
application documentation describing how to include a specification of the interface is sometimes sparse.

8.12.1 ping6

The IPv6 analogue of the familiar ping command, used to send ICMPv6 Echo Requests, is ping6 on
Linux and Mac systems and ping -6 on Windows. The ping6 command supports an option to specify the
interface; eg -I eth0; as noted above, this is mandatory when sending to link-local addresses. Here are a
few ping6 examples:

ping6 ::1: This pings the host’s loopback address; it should always work.

ping6 -I eth0 ff02::1: This pings the all-nodes multicast group on interface eth0. Here are two of the
answers received:

• 64 bytes from fe80::3e97:eff:fe2c:2beb (this is the host I am pinging from)

• 64 bytes from fe80::2a0:ccff:fe24:b0e4 (a second Linux host)

Answers were also received from a Windows machine and an Android phone. A VoIP phone – on the
same subnet but supporting IPv4 only – remained mute, despite VoIP’s difficulties with IPv4 NAT that
would be avoided with IPv6. In lieu of the interface option -I eth0, the “zone-identifier” syntax ping6
ff02::1%eth0 also usually works; see the following section.

262 8 IP version 6

An Introduction to Computer Networks, Release 1.9.21

ping6 -I eth0 fe80::2a0:ccff:fe24:b0e4: This pings the link-local address of the second Linux host answer-
ing the previous query; again, the %eth0 syntax should also work. The destination interface identifier here
uses the now-deprecated EUI-64 format; note the “ff:fe” in the middle. Also note the flipped seventh bit of
the two bytes 02a0; the destination has Ethernet address 00:a0:cc:24:b0:e4.

8.12.2 TCP connections using link-local addresses

The next experiment is to create a TCP connection. Some commands, like ping6 above, may provide for a
way of specifying the interface as a command-line option. Failing that, RFC 4007 defines the concept of
a zone identifier that is appended to the IPv6 address, separated from it by a “%” character, to specify the
link involved. On Linux systems the zone identifier is most often the interface name, eg eth0 or ppp1.
Numeric zone identifiers are also used, in which case it represents the number of the particular interface in
some designated list and can be called the zone index. On Windows systems the zone index for an interface
can often be inferred from the output of the ipconfig command, which should include it with each link-
local address. The use of zone identifiers is often restricted to literal (numeric) IPv6 addresses, perhaps
because there is little demand for symbolic link-local addresses.

The following link-local address with zone identifier creates an ssh connection to the second Linux host in
the example of the preceding section:

ssh fe80::2a0:ccff:fe24:b0e4%eth0

That the ssh service is listening for IPv6 connections can be verified on that host by netstat -a |
grep -i tcp6. That the ssh connection actually used IPv6 can be verified by, say, use of a network
sniffer like WireShark (for which the filter expression ipv6 or ip.version == 6 is useful). If the
connection fails, but ssh works for IPv4 connections and shows as listening in the tcp6 list from the netstat
command, a firewall-blocked port is a likely suspect.

8.12.3 Manual address configuration

The use of manually configured addresses is also possible, for either global or unique-local (ie not con-
nected to the Internet) addresses. However, without a router there can be no Prefix Discovery, 8.6.2 Prefix
Discovery, and this may create subtle differences.

The first step is to pick a suitable prefix; in the example below we use the unique-local prefix
fd37:beef:cafe::/64 (though this particular prefix does not meet the randomness rules for unique-local pre-
fixes). We could also use a globally routable prefix, but here we do not want to mislead any hosts about
reachability.

Without a router as a source of Router Advertisements, we need some way to specify both the prefix and the
prefix length; the latter can be thought of as corresponding to the IPv4 subnet mask. One might be forgiven
for imagining that the default prefix length would be /64, given that this is the only prefix length generally
allowed (8.3 Network Prefixes), but this is often not the case. In the commands below, the prefix length
is included at the end as the /64. This usage is just slightly peculiar, in that in the IPv4 world the slash
notation is most often used only with true prefixes, with all bits zero beyond the slash length. (The Linux
ip command also uses the slash notation in the sense here, to specify an IPv4 subnet mask, eg 10.2.5.37/24.
The ifconfig and Windows netsh commands specify the IPv4 subnet mask the traditional way, eg
255.255.255.0.)

8.12 IPv6 Examples Without a Router 263

https://tools.ietf.org/html/rfc4007.html

An Introduction to Computer Networks, Release 1.9.21

Hosts will usually assume that a prefix configured this way with a length represents an on-link prefix,
meaning that neighbors sharing the prefix are reachable directly via the LAN.

We can now assign the low-order 64 bits manually. On Linux this is done with:

• host1: ip -6 address add fd37:beef:cafe::1/64 dev eth0

• host2: ip -6 address add fd37:beef:cafe::2/64 dev eth0

Macintosh systems can be configured similarly except the name of the interface is probably en0 rather than
eth0. On Windows systems, a typical IPv6-address-configuration command is

netsh interface ipv6 add address "Local Area Connection" fd37:beef:cafe::1/64

Now on host1 the command

ssh fd37:beef:cafe::2

should create an ssh connection to host2, again assuming ssh on host2 is listening for IPv6 connections.
Because the addresses here are not link-local, /etc/host entries may be created for them to simplify entry.

Assigning IPv6 addresses manually like this is not recommended, except for experiments.

On a LAN not connected to the Internet and therefore with no actual routing, it is nonetheless possible to
start up a Router Advertisement agent (8.6.1 Router Discovery), such as radvd, with a manually configured
/64 prefix. The RA agent will include this prefix in its advertisements, and reasonably modern hosts will
then construct full addresses for themselves from this prefix using SLAAC. IPv6 can then be used within the
LAN. If this is done, the RA agent should also be configured to announce only a meaningless route, such as
::/128, or else nodes may falsely believe the RA agent is providing full Internet connectivity.

8.13 IPv6 Connectivity via Tunneling

The best option for IPv6 connectivity is native support by one’s ISP. In such a situation one’s router should
be sending out Router Advertisement messages, and from these all the hosts should discover how to reach
the IPv6 Internet.

If native IPv6 support is not forthcoming, however, a short-term option is to connect to the IPv6 world
using packet tunneling (less often, some other VPN mechanism is used). RFC 4213 outlines the common
6in4 strategy of simply attaching an IPv4 header to the front of the IPv6 packet; it is very similar to the
IPv4-in-IPv4 encapsulation of 7.13.1 IP-in-IP Encapsulation.

There are several available providers for this service; they can be found by searching for “IPv6 tunnel
broker”. Some tunnel brokers provide this service at no charge.

6in4, 6to4

6in4 tunneling should not be confused with 6to4 tunneling, which uses the same encapsulation as 6in4 but
which constructs a site’s IPv6 prefix by embedding its IPv4 address: a site with IPv4 address 129.3.5.7
gets IPv6 prefix 2002:8103:0507::/48 (129 decimal = 0x81). See RFC 3056. There is also a 6over4,
RFC 2529.

264 8 IP version 6

https://tools.ietf.org/html/rfc4213.html
https://tools.ietf.org/html/rfc3056.html
https://tools.ietf.org/html/rfc2529.html

An Introduction to Computer Networks, Release 1.9.21

The basic idea behind 6in4 tunneling is that the tunnel broker allocates you a /64 prefix out of its own address
block, and agrees to create an IPv4 tunnel to you using 6in4 encapsulation. All your IPv6 traffic from the
Internet is routed by the tunnel broker to you via this tunnel; similarly, IPv6 packets from your site reach the
outside world using this same tunnel. The tunnel, in other words, is your link to an IPv6 router.

Generally speaking, the MTU of the tunnel must be at least 20 bytes less than the MTU of the physical
interface, to allow space for the header. At the near end this requires a local configuration change; tunnel
brokers often provide a way for users to set the MTU at the far end. Practical MTU values vary from a
mandatory IPv6 minimum of 1280 to the Ethernet maximum of 1500–20 = 1480.

Setting up the tunnel does not involve creating a stateful connection. All that happens is that the tunnel client
(ie your endpoint) and the broker record each other’s IPv4 addresses, and agree to accept encapsulated IPv6
packets from one another provided these two endpoint addresses are used as source and destination. The
tunnel at the client end is represented by an appropriate “virtual network interface”, eg sit0 or gif0 or
IP6Tunnel. Tunnel providers generally supply the basic commands necessary to get the tunnel interface
configured and the MTU set.

Once the tunnel is created, the tunnel interface at the client end must be assigned an IPv6 address and then
a (default) route. We will assume that the /64 prefix for the broker-to-client link is 2001:470:0:10::/64, with
the broker at 2001:470:0:10::1 and with the client to be assigned the address 2001:470:0:10::2. The address
and route are set up on the client with the following commands (Linux/Mac/Windows respectively; interface
names may vary, and some commands assume the interface represents a point-to-point link):

ip addr add 2001:470:0:10::2/64 dev sit1
ip route add ::/0 dev sit1

ifconfig gif0 inet6 2001:470:0:10::2 2001:470:0:10::1 prefixlen 128
route -n add -inet6 default 2001:470:0:10::1

netsh interface ipv6 add address IP6Tunnel 2001:470:0:10::2
netsh interface ipv6 add route ::/0 IP6Tunnel 2001:470:0:10::1

At this point the tunnel client should have full IPv6 connectivity! To verify this, one can use ping6,
or visit IPv6-only versions of websites (eg intronetworks6.cs.luc.edu), or visit IPv6-identifying sites such
as IsMyIPv6Working.com. Alternatively, one can often install a browser plugin to at least make visible
whether IPv6 is used. Finally, one can use netcat with the -6 option to force IPv6 use, following the
HTTP example in 12.6.2 netcat again.

There is one more potential issue. If the tunnel client is behind an IPv4 NAT router, that router must deliver
arriving encapsulated 6in4 packets correctly. This can sometimes be a problem; encapsulated 6in4 packets
are at some remove from the TCP and UDP traffic that the usual consumer-grade NAT router is primarily
designed to handle. Careful study of the router forwarding settings may help, but sometimes the only fix
is a newer router. A problem is particularly likely if two different inside clients attempt to set up tunnels
simultaneously; see 7.13.1 IP-in-IP Encapsulation.

8.13.1 IPv6 firewalls

It is strongly recommended that an IPv6 host block new inbound connections over its IPv6 interface (eg
the tunnel interface), much as an IPv4 NAT router would do. Exceptions may be added as necessary for

8.13 IPv6 Connectivity via Tunneling 265

http://intronetworks6.cs.luc.edu
http://ismyipv6working.com

An Introduction to Computer Networks, Release 1.9.21

essential services (such as ICMPv6). Using the linux ip6tables firewall command, with IPv6-tunneled
interface sit1, this might be done with the following:

ip6tables --append INPUT --in-interface sit1 --protocol icmpv6 --jump ACCEPT
ip6tables --append INPUT --in-interface sit1 --match conntrack --ctstate

ãÑESTABLISHED,RELATED --jump ACCEPT
ip6tables --append INPUT --in-interface sit1 --jump DROP

At this point the firewall should be tested by attempting to access inside hosts from the outside. At a
minimum, ping6 from the outside to any global IPv6 address of any inside host should fail if the ICMPv6
exception above is removed (and should succeed if the ICMPv6 exception is restored). This can be checked
by using any of several websites that send pings on request; such sites can be found by searching for “online
ipv6 ping”. There are also a few sites that will run a remote IPv6 TCP port scan; try searching for “online
ipv6 port scan”. See also exercise 7.0.

8.13.2 Setting up a router

The next step, if desired, is to set up the tunnel endpoint as a router, so other hosts at the client site can also
enjoy IPv6 connectivity. For this we need a second /64 prefix; we will assume this is 2001:470:0:20::/64
(note this is not an “adjacent” /64; the two /64 prefixes cannot be merged into a /63). Let R be the tunnel
endpoint, with eth0 its LAN interface, and let A be another host on the LAN.

We will use the linux radvd package as our Router Advertisement agent (8.6.1 Router Discovery). In the
radvd.conf file, we need to say that we want the LAN prefix 2001:470:0:20::/64 advertised as on-link
over interface eth0:

interface eth0 {
...
prefix 2001:470:0:20::/64
{

AdvOnLink on; # advertise this prefix as on-link
AdvAutonomous on; # allows SLAAC with this prefix

};
};

If radvd is now started, other LAN hosts (eg A) will automatically get the prefix (and thus a full SLAAC
address). Radvd will automatically share R’s default route (::/0), taking it not from the configuration file
but from R’s routing table. (It may still be necessary to manually configure the IPv6 address of R’s eth0
interface, eg as 2001:470:0:20::1.)

On the author’s version of host A, the IPv6 route is now (with some irrelevant attributes not shown)

default via fe80::2a0:ccff:fe24:b0e4 dev eth0

That is, host A routes to R via the latter’s link-local address, always guaranteed on-link, rather than via the
subnet address.

If radvd or its equivalent is not available, the manual approach is to assign R and A each a /64 address:

On host R: ip -6 address add 2001:470:0:20::1/64 dev eth0

On host A: ip -6 address add 2001:470:0:20::2/64 dev eth0

266 8 IP version 6

An Introduction to Computer Networks, Release 1.9.21

Because of the “/64” here (8.12.3 Manual address configuration), R and A understand that they can reach
each other via the LAN, and do so. Host A also needs to be told of the default route via R:

On host A: ip -6 route add ::/0 via 2001:470:0:10::1 dev eth0

Here we use the subnet address of R, but we could have used R’s link-local address as well.

It is likely that A’s eth0 will also need its MTU configured, so that it matches that of R’s virtual tunnel
interface (which, recall, should be at least 20 bytes less than the MTU of R’s physical outbound interface).

8.13.2.1 A second router

Now let us add a second router R2, as in the diagram below. The R R2 link is via a separate Ethernet LAN,
not a point-to-point link. The LAN with A is, as above, subnet 2001:470:0:20::/64.

R R2 A
eth0 eth1 eth2

2001:470:0:20::/64 subnetfe80::ba5e:ba11 fe80::dead:beef

Tunnel
provider

In this case, it is R2 that needs to run the Router Advertisement agent (eg radvd). If this were an IPv4
network, the interfaces eth0 and eth1 on the R R2 link would need IPv4 addresses from some new subnet
(though the use of private addresses is an option). We can’t use unnumbered interfaces (7.12 Unnumbered
Interfaces), because the R R2 connection is not a point-to-point link.

But with IPv6, we can configure the R R2 routing to use only link-local addresses. Let us assume for
mnemonic convenience these are as follows:

R’s eth0: fe80::ba5e:ba11
R2’s eth1: fe80::dead:beef

R2’s forwarding table will have a default route with next_hop fe80::ba5e:ba11 (R). Similarly,
R’s forwarding table will have an entry for destination subnet 2001:470:0:20::/64 with next_hop
fe80::dead:beef (R2). Neither eth0 nor eth1 needs any other IPv6 address.

R2’s eth2 interface will likely need a global IPv6 address, eg 2001:470:0:20::1 again. Otherwise R2 may
not be able to determine that its eth2 interface is in fact connected to the 2001:470:0:20::/64 subnet.

One advantage of not giving eth0 or eth1 global addresses is that it is then impossible for an outside attacker
to reach these interfaces directly. It also saves on subnets, although one hopes with IPv6 those are not in
short supply. All routers at a site are likely to need, for management purposes, an IP address reachable
throughout the site, but this does not have to be globally visible.

8.14 IPv6-to-IPv4 Connectivity

What happens if you switch to IPv6 completely, perhaps because your ISP (or phone provider) has run out
of IPv4 addresses? Some of the time – hopefully more and more of the time – you will only need to talk
to IPv6 servers. For example, the DNS names facebook.com and google.com each correspond to an
IPv4 address, but also to an IPv6 address (above). But what do you do if you want to reach an IPv4-only

8.14 IPv6-to-IPv4 Connectivity 267

An Introduction to Computer Networks, Release 1.9.21

server? Such servers are expected to continue operating for a long time to come. It is necesary to have some
sort of centralized IPv6-to-IPv4 translator.

An early strategy was NAT-PT (RFC 2766). The translator was assigned a /96 prefix. The IPv6 host would
append to this prefix the 32-bit IPv4 address of the destination, and use the resulting address to contact the
IPv4 destination. Packets sent to this address would be delivered via IPv6 to the translator, which would
translate the IPv6 header into IPv4 and then send the translated packet on to the IPv4 destination. As in IPv4
NAT (7.7 Network Address Translation), the reverse translation will typically involve TCP port numbers
to resolve ambiguities. This approach requires the IPv6 host to be aware of the translator, and is limited to
TCP and UDP (because of the use of port numbers). Due to these and several other limitations, NAT-PT
was formally deprecated in RFC 4966.

Do you still have IPv4 service?

As of 2017, several phone providers have switched many of their customers to IPv6 while on their mobile-
data networks. The change can be surprisingly inconspicuous. Connections to IPv4-only services still
work just fine, courtesy of NAT64. About the only way to tell is to look up the phone’s IP address.

The replacement protocol is NAT64, documented in RFC 6146. This is also based on address translation,
and, as such, cannot allow connections initiated from IPv4 hosts to IPv6 hosts. It is, however, transparent to
both the IPv6 and IPv4 hosts involved, and is not restricted to TCP (though only TCP, UDP and ICMP are
supported by RFC 6146). It uses a special DNS variant, DNS64 (RFC 6147), as a companion protocol.

To use NAT64, an IPv6 client sends out its ordinary DNS query to find the addresses of the destination server.
The DNS resolver (7.8 DNS) receiving the request must use DNS64. If the destination has only an IPv4
address, then the DNS resolver will return to the IPv6 client (as an AAAA record) a synthetic IPv6 address
consisting of a prefix and the embedded IPv4 address of the server, much as in NAT-PT above (though
multiple prefix-length options exist; see RFC 6052). The prefix belongs to the actual NAT64 translator; any
packet addressed to an IPv6 address starting with the prefix will be delivered to the translator. There is no
relationship between the NAT64 translator and the DNS64 resolver beyond the fact that the former’s prefix
is configured into the latter.

The IPv6 client now uses this synthetic IPv6 address to contact the IPv4 server. Its packets will be routed
to the NAT64 translator itself, by virtue of the prefix, much as in NAT-PT. Upon receiving the first packet
from the IPv6 client, the NAT64 translator will assign one of its IPv4 addresses to the new connection. As
IPv4 addresses are in short supply, this pool of available IPv4 addresses may be small, so NAT64 allows
one IPv4 address to be used by many IPv6 clients. To this end, the NAT64 translator will also (for TCP and
UDP) establish a port mapping between the incoming IPv6 source port and a port number allocated by the
NAT64 to ensure that traffic is uniquely reversable. As with IPv4 NAT, if two IPv6 clients try to contact the
same IPv4 server using the same source ports, and are assigned the same NAT64 IPv4 address, then one of
the clients will have its port number changed.

If an ICMP query is being sent, the Query Identifier is used in lieu of port numbers. To extend NAT64 to
new protocols, an appropriate analog of port numbers must be identified, to allow demultiplexing of multiple
connections sharing a single IPv4 address.

After the translation is set up, by creating appropriate table entries, the translated packet is sent on to the IPv4
server address that was embedded in the synthetic IPv6 address. The source address will be the assigned
IPv4 address of the translator, and the source port will have been rewritten in accordance with the new port

268 8 IP version 6

https://tools.ietf.org/html/rfc2766.html
https://tools.ietf.org/html/rfc4966.html
https://tools.ietf.org/html/rfc6146.html
https://tools.ietf.org/html/rfc6146.html
https://tools.ietf.org/html/rfc6147.html
https://tools.ietf.org/html/rfc6052.html

An Introduction to Computer Networks, Release 1.9.21

mapping. At this point packets can flow freely between the original IPv6 client and its IPv4 destination,
with neither endpoint being aware of the translation (unless the IPv6 client carefully inspects the synthetic
address it receives via DNS64). A timer within the NAT64 translator will delete the association between the
IPv6 and IPv4 addresses if the connection is not used for a while.

As an example, suppose the IPv6 client has address 2000:1234::abba, and is trying to reach intronet-
works4.cs.luc.edu at TCP port 80. It contacts its DNS server, which finds no AAAA record but IPv4 address
162.216.18.28 (in hex, a2d8:121c). It takes the prefix for its NAT64 translator, which we will assume is
2000:cafe::, and returns the synthetic address 2000:cafe::a2d8:121c.

abba

intro
networks4NAT64

DNS64 cs.luc.edu

intronetworks4.cs.luc.edu
162.216.18.28
(a2d8:121c)

DNS query for intronetworks4

cs.luc.edu
nameserver

AAAA query

none

A query

162.216.18.28

2000:cafe::/64

2000:cafe::a2d8:121c

TCP connect to
2000:cafe:a2d8:121c

from port 4000

To 162.216.18.28
from port 4002

2000:1234::abba

IPv6 addr src IPv6 port src IPv4 addr src IPv4 addr dest IPv4 port src

2000:1234::abba 4000 200.0.0.1 162.216.18.28 4002

200.0.0.1

not all columns shown

The IPv6 client now tries to connect to 2000:cafe::a2d8:121c, using source port 4000. The first packet
arrives at the NAT64 translator, which assigns the connection the outbound IPv4 address of 200.0.0.1, and
reassigns the source port on the IPv4 side to 4002. The new IPv4 packet is sent on to 162.216.18.28. The
reply from intronetworks4.cs.luc.edu comes back, to x200.0.0.1,4002y. The NAT64 translator looks this up
and finds that this corresponds to x2000:1234::abba,4000y, and forwards it back to the original IPv6 client.

8.15 Epilog

IPv4 has run out of large address blocks, as of 2011. IPv6 has reached a mature level of development. Most
common operating systems provide excellent IPv6 support.

Yet conversion has been slow. Many ISPs still provide limited (to nonexistent) support, and inexpensive
IPv6 firewalls to replace the ubiquitous consumer-grade NAT routers are just beginning to appear. Time will
tell how all this evolves. However, while IPv6 has now been around for twenty years, top-level IPv4 address
blocks disappeared much more recently. It is quite possible that this will prove to be just the catalyst IPv6
needs.

8.15 Epilog 269

An Introduction to Computer Networks, Release 1.9.21

8.16 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises.

1.0. Each IPv6 address is associated with a specific solicited-node multicast address.

(a). Explain why, on a typical Ethernet, if the original IPv6 host address was obtained via SLAAC then the
LAN multicast group corresponding to the host’s solicited-node multicast addresses is likely to be small, in
many cases consisting of one host only. (Packet delivery to small LAN multicast groups can be much more
efficient than delivery to large multicast groups.)

(b). What steps might a DHCPv6 server take to ensure that, for the IPv6 addresses it hands out, the LAN
multicast groups corresponding to the host addresses’ solicited-node multicast addresses will be small?

2.0. If an attacker sends a large number of probe packets via IPv4, you can block them by blocking the
attacker’s IP address. Now suppose the attacker uses IPv6 to launch the probes; for each probe, the attacker
changes the low-order 64 bits of the address. Can these probes be blocked efficiently? If so, what do you
have to block? Might you also be blocking other users?

3.0. Suppose someone tried to implement ping6 so that, if the address was a link-local address and no
interface was specified, the ICMPv6 Echo Request was sent out all non-loopback interfaces. Could the end
result be different than conventional ping6 with the correct interface supplied? If so, how likely is this?

4.0. Create an IPv6 ssh connection as in 8.12 IPv6 Examples Without a Router. Examine the connection’s
packets using WireShark or the equivalent. Does the TCP handshake (12.3 TCP Connection Establishment)
look any different over IPv6?

5.0. Create an IPv6 ssh connection using manually configured addresses as in 8.12.3 Manual address
configuration. Again use WireShark or the equivalent to monitor the connection. Is DAD (8.7.1 Duplicate
Address Detection) used?

6.0. An IPv6 fixed-header is 40 bytes. Taking this as the minimum packet size, how long will it take to send
1015 hosts (one quadrillion) probe packets to a site, if the bandwidth is 1 Gbps?

7.0. Suppose host A gets its IPv6 traffic through tunnel provider H, as in 8.13 IPv6 Connectivity via
Tunneling. To improve security, A blocks all packets that are not part of connections it has initiated, and
makes no exception for ICMPv6 traffic. H is correctly configured to know the MTU of the A–H link. For
(a) and (b), this MTU is 1280, the minimum allowed for IPv6. Much of the Internet, however, allows larger
MTU values.

A H Internet B

(a). If A attempts to send a larger-than-1280-byte IPv6 packet to remote host B, will A be informed of the
resultant failure? Why or why not?

(b). Suppose B attempts to send a larger-than-1280-byte IPv6 packet to A. Will B receive an ICMPv6
Packet Too Big message? Why or why not?

(c). Now suppose the MTU of the A–H link is raised to 1400 bytes. Outline a scenario in which A sends a
packet of size greater than 1280 bytes to remote host B, the packet is too big to make it all the way to B, and
yet A receives no notification of this.

270 8 IP version 6

9 ROUTING-UPDATE ALGORITHMS

How do IP routers build and maintain their forwarding tables?

Ethernet bridges always have the option of fallback-to-flooding for unknown destinations, so they can afford
to build their forwarding tables “incrementally”, putting a host into the forwarding table only when that host
is first seen as a sender. For IP, there is no fallback delivery mechanism: forwarding tables must be built
before delivery can succeed. While manual table construction is possible, it is not practical.

In the literature it is common to refer to router-table construction as “routing algorithms”. We will avoid
that term, however, to avoid confusion with the fundamental datagram-forwarding algorithm; instead, we
will call these “routing-update algorithms”.

The two classes of algorithms we will consider here are distance-vector and link-state. In the distance-
vector approach, often used at smaller sites, routers exchange information with their immediately neighbor-
ing routers; tables are built up this way through a sequence of such periodic exchanges. In the link-state
approach, routers rapidly propagate information about the state of each link; all routers in the organization
receive this link-state information and each one uses it to build and maintain a map of the entire network.
The forwarding table is then constructed (sometimes on demand) from this map.

Both approaches assume that consistent information is available as to the cost of each link (eg that the two
routers at opposite ends of each link know this cost, and agree on how the cost is determined). This require-
ment classifies these algorithms as interior routing-update algorithms: the routers involved are internal to a
larger organization or other common administrative regime that has an established policy on how to assign
link weights. The set of routers following a common policy is known as a routing domain or (from the
BGP protocol) an autonomous system.

The simplest link-weight strategy is to give each link a cost of 1; link costs can also be based on bandwidth,
propagation delay, financial cost, or administrative preference value. Careful assignment of link costs often
plays a major role in herding traffic onto the faster or “better” links.

In the following chapter we will look at the Border Gateway Protocol, or BGP, in which no link-cost cal-
culations are made. BGP is used to select routes that traverse other organizations, and financial rather than
technical factors may therefore play the dominant role in making routing choices.

Generally, all these algorithms apply to IPv6 as well as IPv4, though specific protocols of course may need
modification.

Finally, we should point out that from the early days of the Internet, routing was allowed to depend not just
on the destination, but also on the “quality of service” (QoS) requested; thus, forwarding table entries are
strictly speaking not xdestination, next_hopy but rather xdestination, QoS, next_hopy. Originally, the Type
of Service field in the IPv4 header (7.1 The IPv4 Header) could be used to specify QoS (often then called
ToS). Packets could request low delay, high throughput or high reliability, and could be routed accordingly.
In practice, the Type of Service field was rarely used, and was eventually taken over by the DS field and
ECN bits. The first three bits of the Type of Service field, known as the precedence bits, remain available,
however, and can still be used for QoS routing purposes (see the Class Selector PHB of 20.7 Differentiated
Services for examples of these bits). See also RFC 2386.

In much of the following, we are going to ignore QoS information, and assume that routing decisions
are based only on the destination. See, however, the first paragraph of 9.5 Link-State Routing-Update

271

https://tools.ietf.org/html/rfc2386.html

An Introduction to Computer Networks, Release 1.9.21

Algorithm, and also 9.6 Routing on Other Attributes.

9.1 Distance-Vector Routing-Update Algorithm

Distance-vector is the simplest routing-update algorithm, used by the Routing Information Protocol, or RIP.
Version 2 of the protocol is specified in RFC 2453.

Routers identify their router neighbors (through some sort of neighbor-discovery mechanism), and add a
third column to their forwarding tables representing the total cost for delivery to the corresponding destina-
tion. These costs are the “distance” of the algorithm name. Forwarding-table entries are now of the form
xdestination,next_hop,costy.

Costs are administratively assigned to each link, and the algorithm then calculates the total cost to a desti-
nation as the sum of the link costs along the path. The simplest case is to assign a cost of 1 to each link,
in which case the total cost to a destination will be the number of links to that destination. This is known
as the “hopcount” metric; it is also possible to assign link costs that reflect each link’s bandwidth, or de-
lay, or whatever else the network administrators wish. Thoughtful cost assignments are a form of traffic
engineering and sometimes play a large role in network performance.

At this point, each router then reports the xdestination,costy portion of its table to its neighboring routers at
regular intervals; these table portions are the “vectors” of the algorithm name. It does not matter if neighbors
exchange reports at the same time, or even at the same rate.

Each router also monitors its continued connectivity to each neighbor; if neighbor N becomes unreachable
then its reachability cost is set to infinity.

In a real IP network, actual destinations would be subnets attached to routers; one router might be directly
connected to several such destinations. In the following, however, we will identify all a router’s directly
connected subnets with the router itself. That is, we will build forwarding tables to reach every router.
While it is possible that one destination subnet might be reachable by two or more routers, thus breaking
our identification of a router with its set of attached subnets, in practice this is of little concern. See exercise
4.0 for an example in which subnets are not identified with adjacent routers.

In 18.5 IP Routers With Simple Distance-Vector Implementation we present a simplified working imple-
mentation of RIP using the Mininet network emulator.

9.1.1 Distance-Vector Update Rules

Let A be a router receiving a report xD,cDy from neighbor N at cost cN. Note that this means A can reach D
via N with cost c = cD + cN. A updates its own table according to the following three rules:

1. New destination: D is a previously unknown destination. A adds xD,N,cy to its forwarding table.

2. Lower cost: D is a known destination with entry xD,M,coldy, but the new total cost c is less than cold.
A switches to the cheaper route, updating its entry for D to xD,N,cy. It is possible that M=N, meaning
that N is now reporting a cost decrease to D. (If c = cold, A ignores the new report; see exercise 5.5.)

3. Next_hop increase: A has an existing entry xD,N,coldy, and the new total cost c is greater than cold.
Because this is a cost increase from the neighbor N that A is currently using to reach D, A must
incorporate the increase in its table. A updates its entry for D to xD,N,cy.

272 9 Routing-Update Algorithms

https://tools.ietf.org/html/rfc2453.html

An Introduction to Computer Networks, Release 1.9.21

The first two rules are for new destinations and a shorter path to existing destinations. In these cases, the cost
to each destination monotonically decreases (at least if we consider all unreachable destinations as being at
cost8). Convergence is automatic, as the costs cannot decrease forever.

The third rule, however, introduces the possibility of instability, as a cost may also go up. It represents the
bad-news case, in that neighbor N has learned that some link failure has driven up its own cost to reach D,
and is now passing that “bad news” on to A, which routes to D via N.

The next_hop-increase case only passes bad news along; the very first cost increase must always come from
a router discovering that a neighbor N is unreachable, and thus updating its cost to N to 8. Similarly, if
router A learns of a next_hop increase to destination D from neighbor B, then we can follow the next_hops
back until we reach a router C which is either the originator of the cost=8 report, or which has learned of
an alternative route through one of the first two rules.

9.1.2 Example 1

For our first example, no links will break and thus only the first two rules above will be used. We will start
out with the network below with empty forwarding tables; all link costs are 1.

A

D

C

E

B

1

1

1 1

11

After initial neighbor discovery, here are the forwarding tables. Each node has entries only for its directly
connected neighbors:

A: xB,B,1y xC,C,1y xD,D,1y
B: xA,A,1y xC,C,1y
C: xA,A,1y xB,B,1y xE,E,1y
D: xA,A,1y xE,E,1y
E: xC,C,1y xD,D,1y

Now let D report to A; it sends records xA,1y and xE,1y. A ignores D’s xA,1y record, but xE,1y represents a
new destination; A therefore adds xE,D,2y to its table. Similarly, let A now report to D, sending xB,1y xC,1y
xD,1y xE,2y (the last is the record we just added). D ignores A’s records xD,1y and xE,2y but A’s records
xB,1y and xC,1y cause D to create entries xB,A,2y and xC,A,2y. A and D’s tables are now, in fact, complete.

Now suppose C reports to B; this gives B an entry xE,C,2y. If C also reports to E, then E’s table will have
xA,C,2y and xB,C,2y. The tables are now:

A: xB,B,1y xC,C,1y xD,D,1y xE,D,2y
B: xA,A,1y xC,C,1y xE,C,2y
C: xA,A,1y xB,B,1y xE,E,1y
D: xA,A,1y xE,E,1y xB,A,2y xC,A,2y

9.1 Distance-Vector Routing-Update Algorithm 273

An Introduction to Computer Networks, Release 1.9.21

E: xC,C,1y xD,D,1y xA,C,2y xB,C,2y

We have two missing entries: B and C do not know how to reach D. If A reports to B and C, the tables will
be complete; B and C will each reach D via A at cost 2. However, the following sequence of reports might
also have occurred:

• E reports to C, causing C to add xD,E,2y

• C reports to B, causing B to add xD,C,3y

In this case we have 100% reachability but B routes to D via the longer-than-necessary path B–C–E–D.
However, one more report will fix this: suppose A reports to B. B will received xD,1y from A, and will
update its entry xD,C,3y to xD,A,2y.

Note that A routes to E via D while E routes to A via C; this asymmetry was due to indeterminateness in the
order of initial table exchanges.

If all link weights are 1, and if each pair of neighbors exchange tables once before any pair starts a second
exchange, then the above process will discover the routes in order of length, ie the shortest paths will be the
first to be discovered. This is not, however, a particularly important consideration.

9.1.3 Example 2

The next example illustrates link weights other than 1. The first route discovered between A and B is the
direct route with cost 8; eventually we discover the longer A–C–D–B route with cost 2+1+3=6.

A

B D

C

8 1

2

3

The initial tables are these:

A: xC,C,2y xB,B,8y
B: xA,A,8y xD,D,3y
C: xA,A,2y xD,D,1y
D: xB,B,3y xC,C,1y

After A and C exchange, A has xD,C,3y and C has xB,A,10y. After C and D exchange, C updates its
xB,A,10y entry to xB,D,4y and D adds xA,C,3y; D receives C’s report of xB,10y but ignores it. Now finally
suppose B and D exchange. D ignores B’s route to A, as it has a better one. B, however, gets D’s report
xA,3y and updates its entry for A to xA,D,6y. At this point the tables are as follows:

A: xC,C,2y xB,B,8y xD,C,3y
B: xA,D,6y xD,D,3y
C: xA,A,2y xD,D,1y xB,D,4y
D: xB,B,3y xC,C,1y xA,C,3y

274 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

We have two more things to fix before we are done: A has an inefficient route to B, and B has no route
to C. The first will be fixed when C reports xB,4y to A; A will replace its route to B with xB,C,6y. The
second will be fixed when D reports to B; if A reports to B first then B will temporarily add the inefficient
route xC,A,10y; this will change to xC,D,4y when D’s report to B arrives. If we look only at the A–B route,
B discovers the lower-cost route to A once, first, C reports to D and, second, after that, D reports to B; a
similar sequence leads to A’s discovering the lower-cost route.

9.1.4 Example 3

Our third example will illustrate how the algorithm proceeds when a link breaks. We return to the first
diagram, with all tables completed, and then suppose the D–E link breaks. This is the “bad-news” case: a
link has broken, and is no longer available; this will bring the third rule into play.

A

D

C

E

B

1

1

1 1

11

We shall assume, as above, that A reaches E via D, but we will here assume – contrary to Example 1 – that
C reaches D via A (see exercise 3.5 for the original case).

Initially, upon discovering the break, D and E update their tables to xE,-,8y and xD,-,8y respectively
(whether or not they actually enter 8 into their tables is implementation-dependent; we may consider this
as equivalent to removing their entries for one another; the “-” as next_hop indicates there is no next_hop).

Eventually D and E will report the break to their respective neighbors A and C. A will apply the “bad-news”
rule above and update its entry for E to xE,-,8y. We have assumed that C, however, routes to D via A, and
so it will ignore E’s report.

We will suppose that the next steps are for C to report to E and to A. When C reports its route xD,2y to E,
E will add the entry xD,C,3y, and will again be able to reach D. When C reports to A, A will add the route
xE,C,2y. The final step will be when A next reports to D, and D will have xE,A,3y. Connectivity is restored.

9.1.5 Example 4

The previous examples have had a “global” perspective in that we looked at the entire network. In the next
example, we look at how one specific router, R, responds when it receives a distance-vector report from its
neighbor S. Neither R nor S nor we have any idea of what the entire network looks like. Suppose R’s table
is initially as follows, and the S–R link has cost 1:

9.1 Distance-Vector Routing-Update Algorithm 275

An Introduction to Computer Networks, Release 1.9.21

destination next_hop cost
A S 3
B T 4
C S 5
D U 6

S now sends R the following report, containing only destinations and its costs:

destination cost
A 2
B 3
C 5
D 4
E 2

R then updates its table as follows:

destination next_hop cost reason
A S 3 No change; S probably sent this report before
B T 4 No change; R’s cost via S is tied with R’s cost via T
C S 6 Next_hop increase
D S 5 Lower-cost route via S
E S 3 New destination

Whatever S’s cost to a destination, R’s cost to that destination via S is one greater.

9.2 Distance-Vector Slow-Convergence Problem

There is a significant problem with distance-vector table updates in the presence of broken links. Not only
can routing loops form, but the loops can persist indefinitely! As an example, suppose we have the following
arrangement, with all links having cost 1:

D A B

⟨D,D,1⟩ ⟨D,A,2⟩

1 1

Now suppose the D–A link breaks:

D A B

⟨D,-,�⟩ ⟨D,A,2⟩

If A immediately reports to B that D is no longer reachable (cost = 8), then all is well. However, it is
possible that B reports to A first, telling A that it has a route to D, with cost 2, which B still believes it has.

276 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

This means A now installs the entry xD,B,3y. At this point we have what we called in 1.6 Routing Loops a
linear routing loop: if a packet is addressed to D, A will forward it to B and B will forward it back to A.

Worse, this loop will be with us a while. At some point A will report xD,3y to B, at which point B will
update its entry to xD,A,4y. Then B will report xD,4y to A, and A’s entry will be xD,B,5y, etc. This process
is known as slow convergence to infinity. If A and B each report to the other once a minute, it will take
2,000 years for the costs to overflow an ordinary 32-bit integer.

9.2.1 Slow-Convergence Fixes

The simplest fix to this problem is to use a small value for infinity. Most flavors of the RIP protocol use
infinity=16, with updates every 30 seconds. The drawback to so small an infinity is that no path through
the network can be longer than this; this makes paths with weighted link costs difficult. Cisco IGRP uses a
variable value for infinity up to a maximum of 256; the default infinity is 100.

There are several well-known other fixes:

9.2.1.1 Split Horizon

Under split horizon, if A uses N as its next_hop for destination D, then A simply does not report to N that
it can reach D; that is, in preparing its report to N it first deletes all entries that have N as next_hop. In the
example above, split horizon would mean B would never report to A about the reachability of D because A
is B’s next_hop to D.

Split horizon prevents all linear routing loops. However, there are other topologies where it cannot prevent
loops. One is the following:

D A

C

B ⟨D,A,2⟩

⟨D,A,2⟩

1

1

1
1

Suppose the A-D link breaks, and A updates to xD,-,8y. A then reports xD,8y to B, which updates its
table to xD,-,8y. But then, before A can also report xD,8y to C, C reports xD,2y to B. B then updates to
xD,C,3y, and reports xD,3y back to A; neither this nor the previous report violates split-horizon. Now A’s
entry is xD,B,4y. Eventually A will report to C, at which point C’s entry becomes xD,A,5y, and the numbers
keep increasing as the reports circulate counterclockwise. The actual routing proceeds in the other direction,
clockwise.

Split horizon often also includes poison reverse: if A uses N as its next_hop to D, then A in fact reports
xD,8y to N, which is a more definitive statement that A cannot reach D by itself. However, coming up with
a scenario where poison reverse actually affects the outcome is not trivial.

9.2.1.2 Triggered Updates

In the original example, if A was first to report to B then the loop resolved immediately; the loop occurred
if B was first to report to A. Nominally each outcome has probability 50%. Triggered updates means that

9.2 Distance-Vector Slow-Convergence Problem 277

An Introduction to Computer Networks, Release 1.9.21

any router should report immediately to its neighbors whenever it detects any change for the worse. If A
reports first to B in the first example, the problem goes away. Similarly, in the second example, if A reports
to both B and C before B or C report to one another, the problem goes away. There remains, however, a
small window where B could send its report to A just as A has discovered the problem, before A can report
to B.

9.2.1.3 Hold Down

Hold down is sort of a receiver-side version of triggered updates: the receiver does not use new alternative
routes for a period of time (perhaps two router-update cycles) following discovery of unreachability. This
gives time for bad news to arrive. In the first example, it would mean that when A received B’s report xD,2y,
it would set this aside. It would then report xD,8y to B as usual, at which point B would now report xD,8y
back to A, at which point B’s earlier report xD,2y would be discarded. A significant drawback of hold down
is that legitimate new routes are also delayed by the hold-down period.

These mechanisms for preventing slow convergence are, in the real world, quite effective. The Routing
Information Protocol (RIP, RFC 2453) implements all but hold-down, and has been widely adopted at
smaller installations.

However, the potential for routing loops and the limited value for infinity led to the development of al-
ternatives. One alternative is the link-state strategy, 9.5 Link-State Routing-Update Algorithm. Another
alternative is Cisco’s Enhanced Interior Gateway Routing Protocol, or EIGRP, 9.4.4 EIGRP. While part of
the distance-vector family, EIGRP is provably loop-free, though to achieve this it must sometimes suspend
forwarding to some destinations while tables are in flux.

9.3 Observations on Minimizing Route Cost

Does distance-vector routing actually achieve minimum costs? For that matter, does each packet incur the
cost its sender expects? Suppose node A has a forwarding entry xD,B,cy, meaning that A forwards packets
to destination D via next_hop B, and expects the total cost to be c. If A sends a packet to D, and we follow
it on the actual path it takes, must the total link cost be c? If so, we will say that the network has accurate
costs.

The answer to the accurate-costs question, as it turns out, is yes for the distance-vector algorithm, if we
follow the rules carefully, and the network is stable (meaning that no routing reports are changing, or, more
concretely, that every update report now circulating is based on the current network state); a proof is below.
However, if there is a routing loop, the answer is of course no: the actual cost is now infinite. The answer
would also be no if A’s neighbor B has just switched to using a longer route to D than it last reported to A.

It turns out, however, that we seek the shortest route not because we are particularly trying to save money
on transit costs; a route 50% longer would generally work just fine. (AT&T, back when they were the
Phone Company, once ran a series of print advertisements claiming longer routes as a feature: if the direct
path was congested, they could still complete your call by routing you the long way ‘round.) However, we
are guaranteed that if all routers seek the shortest route – and if the network is stable – then all paths are
loop-free, because in this case the network will have accurate costs.

Here is a simple example illustrating the importance of global cost-minimization in preventing loops. Sup-
pose we have a network like this one:

278 9 Routing-Update Algorithms

https://tools.ietf.org/html/rfc2453.html

An Introduction to Computer Networks, Release 1.9.21

A

B

C D

cost=20

cost=20

cost=1
cost=1

Now suppose that A and B use distance-vector but are allowed to choose the shortest route to within 10%. A
would get a report from C that D could be reached with cost 1, for a total cost of 21. The forwarding entry
via C would be xD,C,21y. Similarly, A would get a report from B that D could be reached with cost 21, for
a total cost of 22: xD,B,22y. Similarly, B has choices xD,C,21y and xD,A,22y.

If A and B both choose the minimal route, no loop forms. But if A and B both use the 10%-overage rule,
they would be allowed to choose the other route: A could choose xD,B,22y and B could choose xD,A,22y.
If this happened, we would have a routing loop: A would forward packets for D to B, and B would forward
them right back to A.

As we apply distance-vector routing, each router independently builds its tables. A router might have some
notion of the path its packets would take to their destination; for example, in the case above A might believe
that with forwarding entry xD,B,22y its packets would take the path A–B–C–D (though in distance-vector
routing, routers do not particularly worry about the big picture). Consider again the accurate-cost question
above. This fails in the 10%-overage example, because the actual path is now infinite.

We now prove that, in distance-vector routing, the network will have accurate costs, provided

• each router selects what it believes to be the shortest path to the final destination, and

• the network is stable, meaning that further dissemination of any reports would not result in changes

To see this, suppose the actual route taken by some packet from source to destination, as determined by
application of the distributed distance-vector algorithm, is longer than the cost calculated by the source.
Choose an example of such a path with the fewest number of links, among all such paths in the network.
Let S be the source, D the destination, and k the number of links in the actual path P. Let S’s forwarding
entry for D be xD,N,cy, where N is S’s next_hop neighbor.

To have obtained this route through the distance-vector algorithm, S must have received report xD,cDy from
N, where we also have the cost of the S–N link as cN and c = cD + cN. If we follow a packet from N to D, it
must take the same path P with the first link deleted; this sub-path has length k-1 and so, by our hypothesis
that k was the length of the shortest path with non-accurate costs, the cost from N to D is cD. But this means
that the cost along path P, from S to D via N, must be cD + cN = c, contradicting our selection of P as a path
longer than its advertised cost.

There is one final observation to make about route costs: any cost-minimization can occur only within
a single routing domain, where full information about all links is available. If a path traverses multiple
routing domains, each separate routing domain may calculate the optimum path traversing that domain. But
these “local minimums” do not necessarily add up to a globally minimal path length, particularly when
one domain calculates the minimum cost from one of its routers only to the other domain rather than to a
router within that other domain. Here is a simple example. Routers BR1 and BR2 are the border routers
connecting the domain LD to the left of the vertical dotted line with domain RD to the right. From A to B,
LD will choose the shortest path to RD (not to B, because LD is not likely to have information about links
within RD). This is the path of length 3 through BR2. But this leads to a total path length of 3+8=11 from

9.3 Observations on Minimizing Route Cost 279

An Introduction to Computer Networks, Release 1.9.21

A to B; the global minimum path length, however, is 4+1=5, through BR1.

BR1

BR2

BA

Domain LD Domain RD

cost=4 cost=1

cost=8cost=3

In this example, domains LD and RD join at two points. For a route across two domains joined at only a
single point, the domain-local shortest paths do add up to the globally shortest path.

9.4 Loop-Free Distance Vector Algorithms

It is possible for routing-update algorithms based on the distance-vector idea to eliminate routing loops –
and thus the slow-convergence problem – entirely. We present brief descriptions of two such algorithms.

9.4.1 DSDV

DSDV, or Destination-Sequenced Distance Vector, was proposed in [PB94]. It avoids routing loops by
the introduction of sequence numbers: each router will always prefer routes with the most recent sequence
number, and bad-news information will always have a lower sequence number then the next cycle of cor-
rected information.

DSDV was originally proposed for MANETs (3.7.8 MANETs) and has some additional features for traffic
minimization that, for simplicity, we ignore here. It is perhaps best suited for wired networks and for small,
relatively stable MANETs.

DSDV forwarding tables contain entries for every other reachable node in the system. One successor of
DSDV, Ad Hoc On-Demand Distance Vector routing or AODV, 9.4.2 AODV , allows forwarding tables
to contain only those destinations in active use; a mechanism is provided for discovery of routes to newly
active destinations.

Under DSDV, each forwarding table entry contains, in addition to the destination, cost and next_hop, the cur-
rent sequence number for that destination. When neighboring nodes exchange their distance-vector reacha-
bility reports, the reports include these per-destination sequence numbers.

When a router R receives a report from neighbor N for destination D, and the report contains a sequence
number larger than the sequence number for D currently in R’s forwarding table, then R always updates to
use the new information. The three cost-minimization rules of 9.1.1 Distance-Vector Update Rules above
are used only when the incoming and existing sequence numbers are equal.

Each time a router R sends a report to its neighbors, it includes a new value for its own sequence number,
which it always increments by 2. This number is then entered into each neighbor’s forwarding-table entry for

280 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

R, and is then propagated throughout the network via continuing report exchanges. Any sequence number
originating this way will be even, and whenever another node’s forwarding-table sequence number for R is
even, then its cost for R will be finite.

Infinite-cost reports are generated in the usual way when former neighbors discover they can no longer reach
one another; however, in this case each node increments the sequence number for its former neighbor by 1,
thus generating an odd value. Any forwarding-table entry with infinite cost will thus always have an odd
sequence number. If A and B are neighbors, and A’s current sequence number is s, and the A–B link breaks,
then B will start reporting A at cost 8 with sequence number s+1 while A will start reporting its own new
sequence number s+2. Any other node now receiving a report originating with B (with sequence number
s+1) will mark A as having cost 8, but will obtain a valid route to A upon receiving a report originating
from A with new (and larger) sequence number s+2.

The triggered-update mechanism is used: if a node receives a report with some destinations newly marked
with infinite cost, it will in turn forward this information immediately to its other neighbors, and so on. This
is, however, not essential; “bad” and “good” reports are distinguished by sequence number, not by relative
arrival time.

It is now straightforward to verify that the slow-convergence problem is solved. After a link break, if there is
some alternative path from router R to destination D, then R will eventually receive D’s latest even sequence
number, which will be greater than any sequence number associated with any report listing D as unreachable.
If, on the other hand, the break partitioned the network and there is no longer any path to D from R, then the
highest sequence number circulating in R’s half of the original network will be odd and the associated table
entries will all list D at cost 8. One way or another, the network will quickly settle down to a state where
every destination’s reachability is accurately described.

In fact, a stronger statement is true: not even transient routing loops are created. We outline a proof. First,
whenever router R has next_hop N for a destination D, then N’s sequence number for D must be greater
than or equal to R’s, as R must have obtained its current route to D from one of N’s reports. A consequence
is that all routers participating in a loop for destination D must have the same (even) sequence number s for
D throughout. This means that the loop would have been created if only the reports with sequence number
s were circulating. As we noted in 9.1.1 Distance-Vector Update Rules, any application of the next_hop-
increase rule must trace back to a broken link, and thus must involve an odd sequence number. Thus, the
loop must have formed from the sequence-number-s reports by the application of the first two rules only.
But this violates the claim in Exercise 10.0.

There is one drawback to DSDV: nodes may sometimes briefly switch to routes that are longer than optimum
(though still correct). This is because a router is required to use the route with the newest sequence number,
even if that route is longer than the existing route. If A and B are two neighbors of router R, and B is closer
to destination D but slower to report, then every time D’s sequence number is incremented R will receive
A’s longer route first, and switch to using it, and B’s shorter route shortly thereafter.

DSDV implementations usually address this by having each router R keep track of the time interval between
the first arrival at R of a new route to a destination D with a given sequence number, and the arrival of the
best route with that sequence number. During this interval following the arrival of the first report with a new
sequence number, R will use the new route, but will refrain from including the route in the reports it sends
to its neighbors, anticipating that a better route will soon arrive.

This works best when the hopcount cost metric is being used, because in this case the best route is likely
to arrive first (as the news had to travel the fewest hops), and at the very least will arrive soon after the first
route. However, if the network’s cost metric is unrelated to the hop count, then the time interval between

9.4 Loop-Free Distance Vector Algorithms 281

An Introduction to Computer Networks, Release 1.9.21

first-route and best-route arrivals can involve multiple update cycles, and can be substantial.

9.4.2 AODV

AODV, or Ad-hoc On-demand Distance Vector routing, is another routing mechanism often proposed for
MANETs, though it is suitable for some wired networks as well. Unlike DSDV, above, AODV messages
circulate only if a link breaks, or when a node is looking for a route to some other node; this second case is
the rationale for the “on-demand” in the name. For larger MANETs, this may result in a significant reduction
in routing-management traffic. AODV is described in [PR99] and RFC 3561.

The “ad hoc” in the name was intended to suggest that the protocol is well-suited for mobile nodes forming
an ad hoc network (3.7.4 Access Points). It is, but the protocol is also works well with infrastructure (those
with access points) Wi-Fi networks.

AODV has three kinds of messages: RouteRequest or RREQ, for nodes that are looking for a path to a
destination, RouteReply or RREP, as the response, and RouteError or RERR for the reporting of broken
links.

AODV performs reasonably well for MANETs in which the nodes are highly mobile, though it does assume
all routing nodes are trustworthy.

AODV is loop-free, due to the way it uses sequence numbers. However, it does not always find the shortest
route right away, and may in fact not find the shortest route for an arbitrarily long interval.

Each AODV node maintains a node sequence number and also a broadcast counter. Every routing message
contains a sequence number for the destination, and every routing record kept by a node includes a field for
the destination’s sequence number. Copies of a node’s sequence number held by other nodes may not be
the most current; however, nodes always discard routes with an older (smaller) sequence number as soon as
they hear about a route with a newer sequence number.

AODV nodes also keep track of other nodes that are directly reachable; in the diagram below we will assume
these are the nodes connected by a line.

If node A wishes to find a route to node F, as in the diagram below, the first step is for A to increment
its sequence number and send out a RouteRequest. This message contains the addresses of A and F, A’s
just-incremented sequence number, the highest sequence number of any previous route to F that is known
to A (if any), a hopcount field set initially to 1, and A’s broadcast counter. The end result should be a route
from A to F, entered at each node along the path, and also a return route from F back to A.

A

B

C

E

D
G

F

RREQ →

R
R

E
Q

 →

The RouteRequest is sent initially to A’s direct neighbors, B and C in the diagram above, using UDP. We
will assume for the moment that the RouteRequest reaches all the way to F before a RouteReply is generated.

282 9 Routing-Update Algorithms

https://tools.ietf.org/html/rfc3561.html

An Introduction to Computer Networks, Release 1.9.21

This is always the case if the “destination only” flag is set, though if not then it is possible for an intermediate
node to generate the RouteReply.

A node that receives a RouteRequest must flood it (“broadcast” it) out all its interfaces to all its directly
reachable neighbors, after incrementing the hopcount field. B therefore sends A’s message to C and D, and
C sends it to B and E. For this example, we will assume that C is a bit slow sending the message to E.

Each node receiving a RouteRequest must hang on to it for a short interval (typically 3 seconds). During
this period, if it sees a duplicate of the RouteRequest, identified by having the same source and the same
broadcast counter, it discards it. This discard rule ensures that RouteRequest messages do not circulate
endlessly around loops; it may be compared to the reliable-flooding algorithm in 9.5 Link-State Routing-
Update Algorithm.

A node receiving a new RouteRequest also records (or updates) a routing-table entry for reaching the source
of the RouteRequest. Unless there was a pre-existing newer route (that is, with larger sequence number),
the entry is marked with the sequence number contained in the message, and with next_hop the neighbor
from which the RouteRequest was received. This process ensures that, as part of each node’s processing of
a RouteRequest message, it installs a return route back to the originator.

We will suppose that the following happen in the order indicated:

• B forwards the RouteRequest to D*

• D forwards the RouteRequest to E and G

• C forwards the RouteRequest to E

• E forwards the RouteRequest to F

Because E receives D’s copy of the RouteRequest first, it ignores C’s copy. This will mean that, at least
initially, the return path will be longer than necessary. Variants of AODV (such as HWMP below) sometimes
allow E to accept C’s message on the grounds that C has a shorter path back to A. This does mean that initial
RouteRequest messages farther on in the network now have incorrect hopcount values, though these will be
corrected by later RouteRequest messages.

After the above messages have been received, each node has a path back to A as indicated by the blue arrows
below:

A

B

C

E

D
G

F

F now increments its own sequence number and creates a RouteReply message; F then sends it to A by
following the highlighted (unicast) arrows above, FÑEÑDÑBÑA. As each node on the path processes
the message, it creates (or updates) its route to the final destination, F; the return route to A had been created
earlier when the node processed the corresponding RouteRequest.

9.4 Loop-Free Distance Vector Algorithms 283

An Introduction to Computer Networks, Release 1.9.21

At this point, A and F can communicate bidirectionally. (Each RouteRequest is acknowledged to ensure
bidirectionality of each individual link.)

This FÑEÑDÑBÑA is longer than necessary; a shorter path is FÑEÑCÑA. The shorter path will be
adopted if, at some future point, E learns that EÑCÑA is a better path, though there is no mechanism to
seek out this route.

If the “destination only” flag were not set, any intermediate node reached by the RouteRequest flooding
could have answered with a route to F, if it had one. Such a node would generate the RouteReply on its own,
without involving F. The sequence number of the intermediate node’s route to F must be greater than the
sequence number in the RouteRequest message.

If two neighboring nodes can no longer reach one another, each sends out a RouteError message, to in-
validate the route. Nodes keep track of what routes pass through them, for just this purpose. One node’s
message will reach the source and the other’s the destination, at which point the route is invalidated.

In larger networks, it is standard for the originator of a RouteRequest to set the IPv4 header TTL value (or
the IPv6 Hop_Limit) to a smallish value (RFC 3561 recommends an intial value of 1) to limit the scope of
the RequestRoute messages. If no answer is received, the originator tries again, with a slightly larger TTL
value. In a large network, this reduces the volume of RouteRequest messages that have gone too far and
therefore cannot be of use in finding a route.

AODV cannot form even short-term loops. To show this, we start with the observation that whenever a
xdestination,next_hopy forwarding entry installed at a node, due either to a RouteRequest or to a RouteReply,
the next_hop is always the node from which the RouteRequest or RouteReply was received, and therefore the
destination sequence number cannot get smaller as we move from the original node to its next_hop. That is,
as we follow any route to a destination, the destination sequence numbers are nondecreasing. It immediately
follows that, for a routing loop, the destination sequence number is constant along the loop. This means that
each node on the route must have heard of the route via the same RouteRequest or RouteReply message, as
forwarded.

The second observation, completing the argument, is that the hopcount field must strictly decrease as we
travel along the route to the destination; the processing rules for RouteRequests and RouteReplies mean
that each node installs a hopcount of one more than that of the neighboring node from which the route was
received. This is impossible for a route that returns to the same node.

9.4.3 HWMP

The Hybrid Wireless Mesh Protocol is based on AODV, and has been chosen for the IEEE 802.11s Wi-
Fi mesh networking standard (3.7.4.4 Mesh Networks). In the discussion here, we will assume HWMP
is being used in a Wi-Fi network, though the protocol applies to any type of network. A set of nodes is
designated as the routing (or forwarding) nodes; ordinary Wi-Fi stations may or may not be included here.

HWMP replaces the hopcount metric used in AODV with an “airtime link metric” which decreases as the
link throughput increases and as the link error rate decreases. This encourages the use of higher-quality
wireless links.

HWMP has two route-generating modes: an on-demand mode very similar to AODV, and a proactive
mode used when there is at least one identified “root” node that connects to the Internet. In this case, the
route-generating protocol determines a loop-free subset of the relevant routing links (that is, a spanning
tree) by which each routing node can reach the root (or one of the roots). This tree-building process does

284 9 Routing-Update Algorithms

https://tools.ietf.org/html/rfc3561.html

An Introduction to Computer Networks, Release 1.9.21

not attempt to find best paths between pairs of non-root nodes, though such nodes can use the on-demand
mode as necessary.

In the first, on-demand, mode, HWMP implements a change to classic AODV in that if a node receives
a RouteRequest message and then later receives a second RouteRequest message with the same sequence
number but a lower-cost route, then the second route replaces the first.

In the proactive mode, the designated root node – typically the node with wired Internet access – periodically
sends out specially marked RouteRequest messages. These are sent to the broadcast address, rather than to
any specific destination, but otherwise propagate in the usual way. Routing nodes receiving two copies
from two different neighbors pick the one with the shortest path. Once this process stabilizes, each routing
node knows the best path to the root (or to a root); the fact that each routing node chooses the best path
from among all RouteRequest messages received ensures eventual route optimality. Routing nodes that have
traffic to send can at any time generate a RouteReply, which will immediately set up a reverse route from
the root to the node in question. Finally, reversing each link to the root allows the root to send broadcast
messages.

HWMP has yet another mode: the root nodes can send out RootAnnounce (RANN) messages. These let
other routing nodes know what the root is, but are not meant to result in the creation of routes to the root.

9.4.4 EIGRP

EIGRP, or the Enhanced Interior Gateway Routing Protocol, is a once-proprietary Cisco distance-vector
protocol that was released as an Internet Draft in February 2013. As with DSDV, it eliminates the risk of
routing loops, even ephemeral ones. It is based on the “distributed update algorithm” (DUAL) of [JG93].
EIGRP is an actual protocol; we present here only the general algorithm. Our discussion follows [CH99].

Each router R keeps a list of neighbor routers NR, as with any distance-vector algorithm. Each R also
maintains a data structure known (somewhat misleadingly) as its topology table. It contains, for each
destination D and each N in NR, an indication of whether N has reported the ability to reach D and, if so, the
reported cost c(D,N). The router also keeps, for each N in NR, the cost cN of the link from R to N. Finally,
the forwarding-table entry for any destination can be marked “passive”, meaning safe to use, or “active”,
meaning updates are in process and the route is temporarily unavailable.

Initially, we expect that for each router R and each destination D, R’s next_hop to D in its forwarding table
is the neighbor N for which the following total cost is a minimum:

c(D,N) + cN

Now suppose R receives a distance-vector report from neighbor N1 that it can reach D with cost c(D,N1).
This is processed in the usual distance-vector way, unless it represents an increased cost and N1 is R’s
next_hop to D; this is the third case in 9.1.1 Distance-Vector Update Rules. In this case, let C be R’s
current cost to D, and let us say that neighbor N of R is a feasible next_hop (feasible successor in Cisco’s
terminology) if N’s cost to D (that is, c(D,N)) is strictly less than C. R then updates its route to D to use the
feasible neighbor N for which c(D,N) + cN is a minimum. Note that this may not in fact be the shortest path;
it is possible that there is another neighbor M for which c(D,M)+cM is smaller, but c(D,M)ěC. However,
because N’s path to D is loop-free, and because c(D,N) < C, this new path through N must also be loop-free;
this is sometimes summarized by the statement “one cannot create a loop by adopting a shorter route”.

If no neighbor N of R is feasible – which would be the case in the D—A—B example of 9.2 Distance-Vector
Slow-Convergence Problem, then R invokes the “DUAL” algorithm. This is sometimes called a “diffusion”

9.4 Loop-Free Distance Vector Algorithms 285

An Introduction to Computer Networks, Release 1.9.21

algorithm as it invokes a diffusion-like spread of table changes proceeding away from R.

Let C in this case denote the new cost from R to D as based on N1’s report. R marks destination D as
“active” (which suppresses forwarding to D) and sends a special query to each of its neighbors, in the form
of a distance-vector report indicating that its cost to D has now increased to C. The algorithm terminates
when all R’s neighbors reply back with their own distance-vector reports; at that point R marks its entry for
D as “passive” again.

Some neighbors may be able to process R’s report without further diffusion to other nodes, remain “passive”,
and reply back to R immediately. However, other neighbors may, like R, now become “active” and continue
the DUAL algorithm. In the process, R may receive other queries that elicit its distance-vector report; as
long as R is “active” it will report its cost to D as C. We omit the argument that this process – and thus the
network – must eventually converge.

9.5 Link-State Routing-Update Algorithm

Link-state routing is an alternative to distance-vector. It is often – though certainly not always – considered
to be the routing-update algorithm class of choice for networks that are “sufficiently large”, such as those of
ISPs. There are two specific link-state protocols: the IETF’s Open Shortest Path First (OSPF, RFC 2328),
and OSI’s Intermediate Systems to Intermediate Systems (IS-IS, documented unofficially in RFC 1142).

In distance-vector routing, each node knows a bare minimum of network topology: it knows nothing about
links beyond those to its immediate neighbors. In the link-state approach, each node keeps a maximum
amount of network information: a full map of all nodes and all links. Routes are then computed locally
from this map, using the shortest-path-first algorithm. The existence of this map allows, in theory, the
calculation of different routes for different quality-of-service requirements. The map also allows calculation
of a new route as soon as news of the failure of the existing route arrives; distance-vector protocols on the
other hand must wait for news of a new route after an existing route fails.

Link-state protocols distribute network map information through a modified form of broadcast of the status
of each individual link. Whenever either side of a link notices the link has died (or if a node notices that
a new link has become available), it sends out link-state packets (LSPs) that “flood” the network. This
broadcast process is called reliable flooding. In general, broadcast mechanisms are not compatible with
networks that have topological looping (that is, redundant paths); broadcast packets may circulate around
the loop endlessly. Link-state protocols must be carefully designed to ensure that both every router sees
every LSP, and also that no LSPs circulate repeatedly. (The acronym LSP is used by IS-IS; the preferred
acronym used by OSPF is LSA, where A is for advertisement.) LSPs are sent immediately upon link-state
changes, like triggered updates in distance-vector protocols except there is no “race” between “bad news”
and “good news”.

It is possible for ephemeral routing loops to exist; for example, if one router has received a LSP but another
has not, they may have an inconsistent view of the network and thus route to one another. However, as soon
as the LSP has reached all routers involved, the loop should vanish. There are no “race conditions”, as with
distance-vector routing, that can lead to persistent routing loops.

The link-state flooding algorithm avoids the usual problems of broadcast in the presence of loops by having
each node keep a database of all LSP messages. The originator of each LSP includes its identity, information
about the link that has changed status, and also a sequence number. Other routers need only keep in their
databases the LSP packet with the largest sequence number; older LSPs can be discarded. When a router

286 9 Routing-Update Algorithms

https://tools.ietf.org/html/rfc2328.html
https://tools.ietf.org/html/rfc1142.html

An Introduction to Computer Networks, Release 1.9.21

receives a LSP, it first checks its database to see if that LSP is old, or is current but has been received before;
in these cases, no further action is taken. If, however, an LSP arrives with a sequence number not seen
before, then in typical broadcast fashion the LSP is retransmitted over all links except the arrival interface.

As an example, consider the following arrangement of routers:

E A B

C D

Suppose the A–E link status changes. A sends LSPs to C and B. Both these will forward the LSPs to D;
suppose B’s arrives first. Then D will forward the LSP to C; the LSP traveling CÑD and the LSP traveling
DÑC might even cross on the wire. D will ignore the second LSP copy that it receives from C and C will
ignore the second copy it receives from D.

It is important that LSP sequence numbers not wrap around. (Protocols that do allow a numeric field to wrap
around usually have a clear-cut idea of the “active range” that can be used to conclude that the numbering has
wrapped rather than restarted; this is harder to do in the link-state context.) OSPF uses lollipop sequence-
numbering here: sequence numbers begin at -231 and increment to 231-1. At this point they wrap around
back to 0. Thus, as long as a sequence number is less than zero, it is guaranteed unique; at the same time,
routing will not cease if more than 231 updates are needed. Other link-state implementations use 64-bit
sequence numbers.

Actual link-state implementations often give link-state records a maximum lifetime; entries must be period-
ically renewed.

9.5.1 Shortest-Path-First Algorithm

The next step is to compute routes from the network map, using the shortest-path-first (SPF) algorithm. This
algorithm computes shortest paths from a given node, A in the example here, to all other nodes. Below is
our example network; we are interested in the shortest paths from A to B, C and D.

A B

C D

3

910

2

11

4

Before starting the algorithm, we note the shortest path from A to D is A-B-C-D, which has cost 3+4+2=9.

The algorithm builds the set R of all shortest-path routes iteratively. Initially, R contains only the 0-length
route to the start node; one new destination and route is added to R at each stage of the iteration. At each

9.5 Link-State Routing-Update Algorithm 287

An Introduction to Computer Networks, Release 1.9.21

stage we have a current node, representing the node most recently added to R. The initial current node is
our starting node, in this case, A.

We will also maintain a set T, for tentative, of routes to other destinations. This is also initialized to empty.

At each stage, we find all nodes which are immediate neighbors of the current node and which do not
already have routes in the set R. For each such node N, we calculate the cost of the route from the start node
to N that goes through the current node. We see if this is our first route to N, or if the route improves on
any route to N already in T; if so, we add or update the route in T accordingly. Doing this, the routes will
be discovered in order of increasing (or nondecreasing) cost.

At the end of this process, we choose the shortest path in T, and move the route and destination node to R.
The destination node of this shortest path becomes the next current node. Ties can be resolved arbitrarily,
but note that, as with distance-vector routing, we must choose the minimum or else the accurate-costs
property will fail.

We repeat this process until all nodes have routes in the set R.

For the example above, we start with current = A and R = {xA,A,0y}. The set T will be {xB,B,3y, xC,C,10y,
xD,D,11y}. The lowest-cost entry is xB,B,3y, so we move that to R and continue with current = B. No path
through C or D can possibly have lower cost.

For the next stage, the neighbors of B without routes in R are C and D; the routes from A to these through B
are xC,B,7y and xD,B,12y. The former is an improvement on the existing T entry xC,C,10y and so replaces
it; the latter is not an improvement over xD,D,11y. T is now {xC,B,7y, xD,D,11y}. The lowest-cost route in
T is that to C, so we move this node and route to R and set C to be current.

Again, xC,B,7ymust be the shortest path to C. If any lower-cost path to C existed, then we would be selecting
that shorter path – or a prefix of it – at this point, instead of the xC,B,7y path; see the proof below.

For the next stage, D is the only non-R neighbor; the path from A to D via C has entry xD,B,9y, an improve-
ment over the existing xD,D,11y in T. The only entry in T is now xD,B,9y; this has the lowest cost and thus
we move it to R.

We now have routes in R to all nodes, and are done.

Here is another example, again with links labeled with costs:

A B

D C

3

1

28

We start with current = A. At the end of the first stage, xB,B,3y is moved into R, T is {xD,D,12y}, and
current is B. The second stage adds xC,B,5y to T, and then moves this to R; current then becomes C. The
third stage introduces the route (from A) xD,B,10y; this is an improvement over xD,D,12y and so replaces it
in T; at the end of the stage this route to D is moved to R.

In both the examples above, the current nodes progressed along a path, AÑBÑCÑD. This is not generally
the case; here is a similar example but with different lengths in which current jumps from B to D:

288 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

A B

D C

3

1

34

As in the previous example, at the end of the first stage xB,B,3y is moved into R, with T = {xD,D,4y}, and
B becomes current. The second stage adds xC,B,6y to T. However, the shortest path in T is now xD,D,4y,
and so it is D that becomes the next current. The final stage replaces xC,B,6y in T with xC,D,5y. At that
point this route is added to R and the algorithm is completed.

Proof that SPF paths are shortest: suppose, by contradiction, that, for some node, a shorter
path exists than the one generated by SPF. Let A be the start node, and let U be the first node
generated for which the SPF path is not shortest. Let T be the Tentative set and let R be the set
of completed routes at the point when we choose U as current, and let d be the cost of the new
route to U. Let P = xA,. . . ,X,Y,. . . ,Uy be the shorter path to U, with cost c<d, where Y is the
first node along the path not to have a route in R (it is possible Y=U).

A

U

Y
X

nodes with routes in R

lower-cost path P

path to U chosen by SPF

At some strictly earlier stage in the algorithm, we must have added a route to node X, as the
route to X is in R. In the following stage, we would have included the prefix xA,. . . ,X,Yy of P
in Tentative. This path to Y has cost ďc. This route must still be in T at the point we chose U
as current, as there is no route to Y in R, but this means we should instead have chosen Y as
current, contradicting the choice of U.

A link-state source node S computes the entire path to a destination D (in fact it computes the path to every
destination). But as far as the actual path that a packet sent by S will take to D, S has direct control only as
far as the first hop N. While the accurate-cost rule we considered in distance-vector routing will still hold,
the actual path taken by the packet may differ from the path computed at the source, in the presence of
alternative paths of the same length. For example, S may calculate a path S–N–A–D, and yet a packet may
take path S–N–B–D, so long as the N–A–D and N–B–D paths have the same length.

Link-state routing allows calculation of routes on demand (results are then cached), or larger-scale calcula-
tion. Link-state also allows routes calculated with quality-of-service taken into account, via straightforward
extension of the algorithm above.

Because the starting node is fixed, the shortest-path-first algorithm can be classified as a single-source
approach. If the goal is to compute the shortest paths between all pairs of nodes in a network, the Floyd-
Warshall algorithm is an alternative, with slightly better performance in networks with large numbers of

9.5 Link-State Routing-Update Algorithm 289

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

An Introduction to Computer Networks, Release 1.9.21

links.

9.6 Routing on Other Attributes

There is sometimes a desire to route on packet attributes other than the destination, or the destination and
QoS bits. For example, we might want to route packets based in part on the packet source, or on the TCP port
number. This kind of routing is decidedly nonstandard, though it is often available, and often an important
component of traffic engineering.

This option is often known as policy-based routing, because packets are routed according to attributes spec-
ified by local administrative policy. (This term should not be confused with BGP routing policy (10.6 Bor-
der Gateway Protocol, BGP), which means something quite different.)

Policy-based routing is not used frequently, but one routing decision of this type can have far-reaching
effects. If an ISP wishes to route customer voice traffic differently from customer data traffic, for example,
it need only apply policy-based routing to classify traffic at the point of entry, and send the voice traffic to
its own router. After that, ordinary routers on the voice path and on the separate data path can continue the
forwarding without using policy-based methods.

Sometimes policy-based routing is used to mark packets for special processing; this might mean different
routing further downstream or it might mean being sent along the same path as the other traffic but with pref-
erential treatment. For two packet-marking strategies, see 20.7 Differentiated Services and 20.12 Multi-
Protocol Label Switching (MPLS).

On Linux systems policy-based routing is part of the Linux Advanced Routing facility, often grouped with
some advanced queuing features known as Traffic Control; the combination is referred to as LARTC.

As a simple example of what can be done, suppose a site has two links L1 and L2 to the Internet, with L1
the default route to the Internet. Perhaps L1 is faster and L2 serves more as a backup; perhaps L2 has been
added to increase outbound capacity. A site may wish to route some outbound traffic via L2 for any of the
following reasons:

• the traffic may involve protocols deemed lower in priority (eg email)

• the traffic may be real-time traffic that can benefit from reduced competition on L2

• the traffic may come from lower-priority senders; eg some customers within the site may be relegated
to using L2 because they are paying less

• a few large-volume elephant flows may be offloaded from L1 to L2

In the first two cases, routing might be based on the destination port numbers; in the third, it might be based
on the source IP address. In the fourth case, a site’s classification of its elephant flows may have accumulated
over time.

Note that nothing can be done in the inbound direction unless L1 and L2 lead to the same ISP, and even
there any special routing would be at the discretion of that ISP.

The trick with LARTC is to be compatible with existing routing-update protocols; this would be a problem if
the kernel forwarding table simply added columns for other packet attributes that neighboring non-LARTC
routers knew nothing about. Instead, the forwarding table is split up into multiple xdest, next_hopy (or xdest,

290 9 Routing-Update Algorithms

http://www.lartc.org/
https://en.wikipedia.org/wiki/Elephant_flow

An Introduction to Computer Networks, Release 1.9.21

QoS, next_hopy) tables. One of these tables is the main table, and is the table that is updated by routing-
update protocols interacting with neighbors. Before a packet is forwarded, administratively supplied rules
are consulted to determine which table to apply; these rules are allowed to consult other packet attributes.
The collection of tables and rules is known as the routing policy database.

As a simple example, in the situation above the main table would have an entry xdefault, L1y (more precisely,
it would have the IP address of the far end of the L1 link instead of L1 itself). There would also be another
table, perhaps named slow, with a single entry xdefault, L2y. If a rule is created to have a packet routed
using the “slow” table, then that packet will be forwarded via L2. Here is one such Linux rule, applying to
traffic from host 10.0.0.17:

ip rule add from 10.0.0.17 table slow

Now suppose we want to route traffic to port 25 (the SMTP port) via L2. This is harder; Linux provides
no support here for routing based on port numbers. However, we can instead use the iptables mechanism
to “mark” all packets destined for port 25, and then create a routing-policy rule to have such marked traffic
use the slow table. The mark is known as the forwarding mark, or fwmark; its value is 0 by default. The
fwmark is not actually part of the packet; it is associated with the packet only while the latter remains
within the kernel.

iptables --table mangle --append PREROUTING \\
--protocol tcp --dest-port 25 --jump MARK --set-mark 1

ip rule add fwmark 1 table slow

Consult the applicable man pages for further details.

The iptables mechanism can also be used to set the appropriate QoS bits – the IPv4 DS bits (7.1 The IPv4
Header) or the IPv6 Traffic Class bits (8.1 The IPv6 Header) – so that a single standard IP forwarding table
can be used, though support for the IPv4 QoS bits is limited.

9.7 ECMP

Equal-Cost MultiPath routing, or ECMP, is a technique for combining two (or more) routes to a destina-
tion into a single unit, so that traffic to that destination is distributed (not necessarily equally) among the
routes. ECMP is supported by EIGRP (9.4.4 EIGRP) and the link-state implementations OSPF and IS-IS
(9.5 Link-State Routing-Update Algorithm). At the Ethernet level, ECMP is supported in spirit (if not in
name) by TRILL and SPB (2.7 TRILL and SPB). It is also supported by BGP (10.6 Border Gateway
Protocol, BGP) for inter-AS routing.

A simpler alternative to ECMP is channel bonding, also known as link aggregation, and often based on
the IEEE 802.3ad standard. In channel bonding, two parallel Ethernet links are treated as a single unit. In
many cases it is simpler and cheaper to bond two or three 1 Gbps Ethernet links than to upgrade everything
to support 10 Gbps. Channel bonding applies, however, in limited circumstances; for example, the two
channels must both be Ethernet, and must represent a single link.

In the absence of channel bonding, equal-cost does not necessarily mean equal-propagation-delay. Even for
two short parallel links, queuing delays on one link may mean that packet delivery order is not preserved. As
TCP usually interprets out-of-order packet delivery as evidence of packet loss (13.3 TCP Tahoe and Fast

9.7 ECMP 291

https://en.wikipedia.org/wiki/Iptables
https://en.wikipedia.org/wiki/Link_aggregation

An Introduction to Computer Networks, Release 1.9.21

Retransmit), this can lead to large numbers of spurious retransmissions. For this reason, ECMP is usually
configured to send all the packets of any one TCP connection over just one of the links (as determined
by a hash function); some channel-bonding implementations do the same, in fact. A consequence is that
ECMP configured this way must see many parallel TCP connections in order to utilize all participating paths
reasonably equally. In special cases, however, it may be practical to configure ECMP to alternate between
the paths on a per-packet basis, using round-robin transmission; this approach typically achieves much better
load-balancing between the paths.

In terms of routing-update protocols, ECMP can be viewed as allowing two (or more) next_hop values, each
with the same cost, to be associated with the same destination.

See 18.9.4 multitrunk.py for an example of the use of software-defined networking to have multiple TCP
connections take different paths to the same destination, in a way similar to the ECMP approach.

9.8 Epilog

At this point we have concluded the basics of IP routing, involving routing within large (relatively) homo-
geneous organizations such as multi-site corporations or Internet Service Providers. Every router involved
must agree to run the same protocol, and must agree to a uniform assignment of link costs.

At the very largest scales, these requirements are impractical. The next chapter is devoted to this issue of
very-large-scale IP routing, eg on the global Internet.

9.9 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
2.5 is distinct, for example, from exercises 2.0 and 3.0. Exercises marked with a ♢ have solutions or hints
at 24.8 Solutions for Routing-Update Algorithms.

1.0. Suppose the network is as follows, where distance-vector routing update is used. Each link has cost
1, and each router initially has entries in its forwarding table only for its immediate neighbors (so A’s table
contains xB,B,1y, xD,D,1y and B’s table contains xA,A,1y, xC,C,1y).

A

D E F

CB

1 1

11

1 1

(a). Suppose each router creates a report from its initial configuration and sends that to each of its
neighbors. What will each router’s forwarding table be after this set of exchanges? The exchanges, in other
words, are all conducted simultaneously; each router first sends out its own report and then processes the
reports arriving from its two neighbors.

292 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

(b). What destinations, with corresponding cost values, will be added to each router’s table after the
simultaneous-and-parallel exchange process of part (a) is repeated a second time? Ignore the next_hop
values.
Hint: for each router, this step will add one additional destination entry. This new destination entry can be
determined without going through the table exchanges in detail.

2.0. Now suppose the configuration of routers has the link weights shown below. Each router again initially
has entries in its forwarding table only for its immediate neighbors.

A

D E F

CB
3 4

1 1

122

(a). As in the previous exercise, give each router’s forwarding table after each router exchanges with its
immediate neighbors simultaneously and in parallel.
(b). How many iterations of such parallel exchanges will it take before C learns to reach F via B; that is,
before it creates the entry xF,B,11y? Count the answer to part (a) as the first iteration.

2.5.♢ A router R has the following distance-vector table:

destination cost next hop
A 2 R1
B 3 R2
C 4 R1
D 5 R3

R now receives the following report from R1; the cost of the R–R1 link is 1.

destination cost
A 1
B 2
C 4
D 3

Give R’s updated table after it processes R1’s report. For each entry that changes, give a brief explanation

3.0. A router R has the following distance-vector table:

9.9 Exercises 293

An Introduction to Computer Networks, Release 1.9.21

destination cost next hop
A 5 R1
B 6 R1
C 7 R2
D 8 R2
E 9 R3

R now receives the following report from R1; the cost of the R–R1 link is 1.

destination cost
A 4
B 7
C 7
D 6
E 8
F 8

Give R’s updated table after it processes R1’s report. For each entry that changes, give a brief explanation,
in the style of 9.1.5 Example 4.

3.5. At the start of Example 3 (9.1.4 Example 3), we changed C’s routing table so that it reached D via A
instead of via E: C’s entry xD,E,2y was changed to xD,A,2y. This meant that C had a valid route to D at the
start.

How might the scenario of Example 3 play out if C’s table had not been altered? Give a sequence of reports
that leads to correct routing between D and E.

4.0. In the following exercise, A-D are routers and the attached subnets N1-N6, which are the ultimate
destinations, are shown explicitly. In the case of N1 through N4, the links are the subnets. Routers still
exchange distance-vector reports with neighboring routers, as usual. In the tables requested below, if a
router has a direct connection to a subnet, you may report the next_hop as “direct”, eg, from A’s table,
xN1,direct,0y

A

D C

B N5

N6

N1

N2

N3 N4

(a). Give the initial tables for A through D, before any distance-vector exchanges.
(b). Give the tables after each router A-D exchanges with its immediate neighbors simultaneously and in
parallel.
(c). At the end of (b), what subnets are not known by what routers?

294 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

5.0. Suppose A, B, C, D and E are connected as follows. Each link has cost 1, and so each forwarding table
is uniquely determined; B’s table is xA,A,1y, xC,C,1y, xD,A,2y, xE,C,2y. Distance-vector routing update is
used.

B

A

D

C

B

E

1 1

11

1

Now suppose the D–E link fails, and so D updates its entry for E to xE,-,8y.

(a). Give A’s table after D reports xE,8y to A
(b). Give B’s table after A reports to B
(c). Give A’s table after B reports to A; note that B has an entry xE,C,2y
(d). Give D’s table after A reports to D.

5.5. In the network below, A receives alternating reports about destination D from neighbors B and C.
Suppose A uses a modified form of Rule 2 of 9.1.1 Distance-Vector Update Rules, in which it updates its
forwarding table whenever new cost c is less than or equal to cold.

A D

B

C

1

11

1

Explain why A’s forwarding entry for destination D never stabilizes.

6.0. Consider the network in 9.2.1.1 Split Horizon:, using distance-vector routing updates. B and C’s table
entries for destination D are shown. All link costs are 1.

D A

C

B ⟨D,A,2⟩

⟨D,A,2⟩

1

1

1
1

Suppose the D–A link breaks and then these update reports occur:

• A reports xD,8y to B (as before)

• C reports xD,2y to B (as before)

9.9 Exercises 295

An Introduction to Computer Networks, Release 1.9.21

• A now reports xD,8y to C (instead of B reporting xD,3y to A)

(a). Give A, B and C’s forwarding-table records for destination D, including the cost, after these three
reports.
(b). What additional reports (a pair should suffice) will lead to the formation of the routing loop?
(c). What (single) additional report will eliminate the possibility of the routing loop?

7.0. Suppose the network of 9.2 Distance-Vector Slow-Convergence Problem is changed to the following.
Distance-vector update is used; again, the D–A link breaks.

D A B

⟨D,D,1⟩ ⟨D,E,2⟩

E

1

11

1

(a). Explain why B’s report back to A, after A reports xD,-,8y, is now valid.
(b). Explain why hold down (9.2.1.3 Hold Down) will delay the use of the new route A–B–E–D.

8.0. Suppose the routers are A, B, C, D, E and F, and all link costs are 1. The distance-vector forwarding
tables for A and F are below. Give the network with the fewest links that is consistent with these tables.
Hint: any destination reached at cost 1 is directly connected; if X reaches Y via Z at cost 2, then Z and Y
must be directly connected.

A’s table

dest cost next_hop
B 1 B
C 1 C
D 2 C
E 2 C
F 3 B

F’s table

dest cost next_hop
A 3 E
B 2 D
C 2 D
D 1 D
E 1 E

9.0. (a) Suppose routers A and B somehow end up with respective forwarding-table entries xD,B,ny and
xD,A,my, thus creating a routing loop. Explain why the loop may be removed more quickly if A and B both

296 9 Routing-Update Algorithms

An Introduction to Computer Networks, Release 1.9.21

use poison reverse with split horizon (9.2.1.1 Split Horizon), versus if A and B use split horizon only.

(b). Suppose the network looks like the following. The A–B link is extremely slow.

C

A

B

Dslow

Suppose A and B send reports to each other advertising their routes to D, and immediately afterwards the
C–D link breaks and C reports to A and B that D is unreachable. After those unreachability reports from C
are processed, A and B’s reports sent to each other before the break finally arrive. Explain why the network
is now in the state described in part (a).

10.0. Suppose the distance-vector algorithm is run on a network and no links break (so by the last paragraph
of 9.1.1 Distance-Vector Update Rules the next_hop-increase rule is never applied).

(a). Prove that whenever A is B’s next_hop to destination D, then A’s cost to D is strictly less than B’s.
Hint: assume that if this claim is true, then it remains true after any application of the rules in
9.1.1 Distance-Vector Update Rules. If the lower-cost rule is applied to B after receiving a report from A,
resulting in a change to B’s cost to D, then one needs to show A’s cost is less than B’s, and also B’s new
cost is less than that of any neighbor C that uses B as its next_hop to D.
(b). Use (a) to prove that no routing loops ever form.

11.0. It was mentioned in 9.5 Link-State Routing-Update Algorithm that link-state routing might give rise
to an ephemeral routing loop. Give a concrete scenario illustrating creation (and then dissolution) of such a
loop.

Hint: consider the following network.

A

B

C C1

B1

C’s next_hop to A is B, due to the relative link weights (not shown) of the A–B1 and A–C1 links. Then B
gets some news. (There are also several other possible scenarios.)

12.0. Use the Shortest-Path-First algorithm to find the shortest path from A to E in the network below. Show
the sets R and T, and the node current, after each step.

9.9 Exercises 297

An Introduction to Computer Networks, Release 1.9.21

A C E

DB
5

2 1 3 1

4 5

13.0. Suppose you take a laptop, plug it into an Ethernet LAN, and connect to the same LAN via Wi-Fi.
From laptop to LAN there are now two routes. Which route will be preferred? How can you tell which way
traffic is flowing? How can you configure your OS to prefer one path or another? (See also 7.9.5 ARP and
multihomed hosts, 7 IP version 4 exercise 11.0, and 12 TCP Transport exercise 13.0.)

298 9 Routing-Update Algorithms

10 LARGE-SCALE IP ROUTING

In the previous chapter we considered two classes of routing-update algorithms: distance-vector and link-
state. Each of these approaches requires that participating routers have agreed first to a common protocol,
and then to a common understanding of how link costs are to be assigned. We will address this further
below in 10.6 Border Gateway Protocol, BGP, but a basic problem is that if one site prefers the hop-count
approach, assigning every link a cost of 1, while another site prefers to assign link costs in proportion to
their bandwidth, then meaningful path cost comparisons between the two sites simply cannot be done.

The term routing domain is used to refer to a set of routers under common administration, using a common
link-cost assignment. Another term for this is autonomous system. While use of a common routing-
update protocol within the routing domain is not an absolute requirement – for example, some subnets may
internally use distance-vector while the site’s “backbone” routers use link-state – we can assume that all
routers have a uniform view of the site’s topology and cost metrics.

One of the things included in the term “large-scale” IP routing is the coordination of routing between mul-
tiple routing domains. Even in the earliest Internet there were multiple routing domains, if for no other
reason than that how to measure link costs was (and still is) too unsettled to set in stone. However, another
component of large-scale routing is support for hierarchical routing, above the level of subnets; we turn to
this next.

10.1 Classless Internet Domain Routing: CIDR

CIDR is the mechanism for supporting hierarchical routing in the Internet backbone. Subnetting moves the
network/host division line further rightwards; CIDR allows moving it to the left as well. With subnetting,
the revised division line is visible only within the organization that owns the IP network address; subnetting
is not visible outside. CIDR allows aggregation of IP address blocks in a way that is visible to the Internet
backbone.

When CIDR was introduced in 1993, the following were some of the justifications for it, all relating to the
increasing size of the backbone IP forwarding tables, and expressed in terms of the then-current Class A/B/C
mechanism:

• The Internet is running out of Class B addresses (this happened in the mid-1990’s)

• There are too many Class C’s (the most numerous) for backbone forwarding tables to be efficient

• Eventually IANA (the Internet Assigned Numbers Authority) will run out of IP addresses (this hap-
pened in 2011)

Assigning non-CIDRed multiple Class C’s in lieu of a single Class B would have helped with the first point
in the list above, but made the second point worse.

Ironically, the current (2013) very tight market for IP address blocks is likely to lead to larger and larger
backbone IP forwarding tables, as sites are forced to use multiple small address blocks instead of one large
block.

299

An Introduction to Computer Networks, Release 1.9.21

By the year 2000, CIDR had essentially eliminated the Class A/B/C mechanism from the backbone Internet,
and had more-or-less completely changed how backbone routing worked. You purchased an address block
from a provider or some other IP address allocator, and it could be whatever size you needed, from /32 to
/15.

What CIDR enabled is IP routing based on an address prefix of any length; the Class A/B/C mechanism of
course used fixed prefix lengths of 8, 16 and 24 bits. Furthermore, CIDR allows different routers, at different
levels of the backbone, to route on prefixes of different lengths. If organization P were allocated a /10 block,
for example, then P could suballocate into /20 blocks. At the top level, routing to P would likely be based
on the first 10 bits, while routing within P would be based on the first 20 bits.

CIDR was formally introduced by RFC 1518 and RFC 1519. For a while there were strategies in place to
support compatibility with non-CIDR-aware routers; these are now obsolete. In particular, it is no longer
appropriate for large-scale routers to fall back on the Class A/B/C mechanism in the absence of CIDR
information; if the latter is missing, the routing should fail.

One way to look at the basic strategy of CIDR is as a mechanism to consolidate multiple network blocks
going to the same destination into a single entry. Suppose a router has four class C’s all to the same destina-
tion:

200.7.0.0/24 ÝÑ foo
200.7.1.0/24 ÝÑ foo
200.7.2.0/24 ÝÑ foo
200.7.3.0/24 ÝÑ foo

The router can replace all these with the single entry

200.7.0.0/22 ÝÑ foo

It does not matter here if foo represents a single ultimate destination or if it represents four sites that just
happen to be routed to the same next_hop.

It is worth looking closely at the arithmetic to see why the single entry uses /22. This means that the first 22
bits must match 200.7.0.0; this is all of the first and second bytes and the first six bits of the third byte. Let
us look at the third byte of the network addresses above in binary:

200.7.000000 00.0/24 ÝÑ foo
200.7.000000 01.0/24 ÝÑ foo
200.7.000000 10.0/24 ÝÑ foo
200.7.000000 11.0/24 ÝÑ foo

The /24 means that the network addresses stop at the end of the third byte. The four entries above cover
every possible combination of the last two bits of the third byte; for an address to match one of the entries
above it suffices to begin 200.7 and then to have 0-bits as the first six bits of the third byte. This is another
way of saying the address must match 200.7.0.0/22.

Most implementations actually use a bitmask, eg 255.255.252.0, rather than the number 22. Note 252 is, in
binary, 1111 1100, with 6 leading 1-bits, so 255.255.252.0 has 8+8+6=22 1-bits followed by 10 0-bits.

The IP delivery algorithm of 7.5 The Classless IP Delivery Algorithm still works with CIDR, with the
understanding that the router’s forwarding table can now have a network-prefix length associated with any
entry. Given a destination D, we search the forwarding table for network-prefix destinations B/k until we

300 10 Large-Scale IP Routing

https://tools.ietf.org/html/rfc1518.html
https://tools.ietf.org/html/rfc1519.html

An Introduction to Computer Networks, Release 1.9.21

find a match; that is, equality of the first k bits. In terms of masks, given a destination D and a list of table
entries xprefix,masky = xB[i],M[i]y, we search for i such that (D & M[i]) = B[i].

But what about the possibility of multiple matches? For subnets, avoiding this was the responsibility of the
subnetting site, but responsibility for avoiding this with CIDR is much too distributed to be declared illegal
by IETF mandate. Instead, CIDR introduced the longest-match rule: if destination D matches both B1/k1
and B2/k2, with k1 < k2, then the longer match B2/k2 match is to be used. (Note that if D matches two
distinct entries B1/k1 and B2/k2 then either k1 < k2 or k2 < k1).

10.2 Hierarchical Routing

Strictly speaking, CIDR is simply a mechanism for routing to IP address blocks of any prefix length; that is,
for setting the network/host division point to an arbitrary place within the 32-bit IP address.

However, by making this network/host division point variable, CIDR introduced support for routing on
different prefix lengths at different places in the backbone routing infrastructure. For example, top-level
routers might route on /8 or /9 prefixes, while intermediate routers might route based on prefixes of length
14. This feature of routing on fewer bits at one point in the Internet and more bits at another point is exactly
what is meant by hierarchical routing.

We earlier saw hierarchical routing in the context of subnets: traffic might first be routed to a class-B site
147.126.0.0/16, and then, within that site, to subnets such as 147.126.1.0/24, 147.126.2.0/24, etc. But with
CIDR the hierarchy can be much more flexible: the top level of the hierarchy can be much larger than the
“customer” level, lower levels need not be administratively controlled by the higher levels (as is the case
with subnets), and more than two levels can be used.

CIDR is an address-block-allocation mechanism; it does not directly speak to the kinds of policy we might
wish to implement with it. Here are four possible applications; the latter two involve hierarchical routing:

• Application 1 (legacy): CIDR allows the allocation of multiple blocks of Class C, or fragments of a
Class A, to a single customer, so as to require only a single forwarding-table entry for that customer

• Application 2 (legacy): CIDR allows opportunistic aggregation of routes: a router that sees the four
200.7.x.0/24 routes above in its table may consolidate them into a single entry.

• Application 3 (current): CIDR allows huge provider blocks, with suballocation by the provider. This
is known as provider-based routing.

• Application 4 (hypothetical): CIDR allows huge regional blocks, with suballocation within the re-
gion, somewhat like the original scheme for US phone numbers with area codes. This is known as
geographical routing.

Each of these has the potential to achieve a considerable reduction in the size of the backbone forwarding
tables, which is arguably the most important goal here. Each involves using CIDR to support the creation of
arbitrary-sized address blocks and then routing to them as a single unit. For example, the Internet backbone
might be much happier if all its routers simply had to maintain a single entry x200.0.0.0/8, R1y, versus 256
entries x200.x.0.0/16, R1y for every value of x. (As we will see below, this is still useful even if a few of the
x’s have a different next_hop.) Secondary CIDR goals include bringing some order to IP address allocation
and (for the last two items in the list above) enabling a routing hierarchy that mirrors the actual flow of most
traffic.

10.2 Hierarchical Routing 301

An Introduction to Computer Networks, Release 1.9.21

Hierarchical routing does introduce one new wrinkle: the routes chosen may no longer be globally optimal,
at least if we also apply the routing-update algorithms hierarchically. Suppose, for example, at the top level
forwarding is based on the first eight bits of the address, and all traffic to 200.0.0.0/8 is routed to router
R1. At the second level, R1 then routes traffic (hierarchically) to 200.20.0.0/16 via R2. A packet sent
to 200.20.1.2 by an independent router R3 might therefore pass through R1, even if there were a lower-
cost path R3ÑR4ÑR2 that bypassed R1. The top-level forwarding entry x200.0.0.0/8,R1y, in other words,
may represent a simplification of the real situation. Prohibiting “back-door” routes like R3ÑR4ÑR2 is
impractical (and would not be helpful either); customers are independent entities.

This non-optimal routing issue cannot happen if all routers agree upon one of the shortest-path mechanisms
of 9 Routing-Update Algorithms; in that case R3 would learn of the lower-cost R3ÑR4ÑR2 path. But then
the potential hierarchical benefits of decreasing the size of forwarding tables would be lost. More seriously,
complete global agreement of all routers on one common update protocol is simply not practical; in fact,
one of the goals of hierarchical routing is to provide a workable alternative. We will return to this below in
10.4.3 Hierarchical Routing via Providers.

10.3 Legacy Routing

Back in the days of NSFNet, the Internet backbone was a single routing domain. While most customers did
not connect directly to the backbone, the intervening providers tended to be relatively compact, geograph-
ically – that is, regional – and often had a single primary routing-exchange point with the backbone. IP
addresses were allocated to subscribers directly by the IANA, and the backbone forwarding tables contained
entries for every site, even the Class C’s.

Because the NSFNet backbone and the regional providers did not necessarily share link-cost information,
routes were even at this early point not necessarily globally optimal; compromises and approximations were
made. However, in the NSFNet model routers generally did find a reasonable approximation to the shortest
path to each site referenced by the backbone tables. While the legacy backbone routing domain was not
all-encompassing, if there were differences between two routes, at least the backbone portions – the longest
components – would be identical.

10.4 Provider-Based Routing

In provider-based routing, large CIDR blocks are allocated to large-scale providers. The different providers
each know how to route to one another. Subscribers (usually) obtain their IP addresses from within their
providers’ blocks; thus, traffic from the outside is routed first to the provider, and then, within the provider’s
routing domain, to the subscriber. We may even have a hierarchy of providers, so packets would be routed
first to the large-scale provider, and eventually to the local provider. There may no longer be a central
backbone; instead, multiple providers may each build parallel transcontinental networks.

Here is a simpler example, in which providers have unique paths to one another. Suppose we have providers
P0, P1 and P2, with customers as follows:

• P0: customers A,B,C

• P1: customers D,E

• P2: customers F,G

302 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

We will also assume that each provider has an IP address block as follows:

• P0: 200.0.0.0/8

• P1: 201.0.0.0/8

• P2: 202.0.0.0/8

Let us now allocate addresses to the customers:

A: 200.0.0.0/16
B: 200.1.0.0/16
C: 200.2.16.0/20 (16 = 0001 0000)

D: 201.0.0.0/16
E: 201.1.0.0/16

F: 202.0.0.0/16
G: 202.1.0.0/16

The routing model is that packets are first routed to the appropriate provider, and then to the customer.
While this model may not in general guarantee the shortest end-to-end path, it does in this case because
each provider has a single point of interconnection to the others. Here is the network diagram:

P0 P1 P2

A B C D E F G

With this diagram, P0’s forwarding table looks something like this:

P0
destination next_hop
200.0.0.0/16 A
200.1.0.0/16 B
200.2.16.0/20 C
201.0.0.0/8 P1
202.0.0.0/8 P2

That is, P0’s table consists of

10.4 Provider-Based Routing 303

An Introduction to Computer Networks, Release 1.9.21

• one entry for each of P0’s own customers

• one entry for each other provider

If we had 1,000,000 customers divided equally among 100 providers, then each provider’s table would have
only 10,099 entries: 10,000 for its own customers and 99 for the other providers. Without CIDR, each
provider’s forwarding table would have 1,000,000 entries.

CIDR enables hierarchical routing by allowing the routing decision to be made on different prefix lengths
in different contexts. For example, when a packet is sent from D to A, P1 looks at the first 8 bits while P0
looks at the first 16 bits. Within customer A, routing might be made based on the first 24 bits.

Even if we have some additional “secondary” links, that is, additional links that do not create alterna-
tive paths between providers, the routing remains relatively straightforward. Shown here are the private
customer-to-customer links C–D and E–F; these are likely used only by the customers they connect. Two
customers, A and E, are multihomed; that is, they have connections to alternative providers: A–P1 and
E–P2. (The term “multihomed” is often applied to any host with multiple network interfaces on different
LANs, which includes any router; here we mean more specifically that there are multiple network interfaces
connecting to different providers.)

Typically, though, while A and E may use their alternative-provider links all they want for outbound traffic,
their respective inbound traffic would still go through their primary providers P0 and P1 respectively.

P0 P1 P2

A B C D E F G

10.4.1 Internet Exchange Points

The long links joining providers in these diagrams are somewhat misleading; providers do not always like
sharing long links and the attendant problems of sharing responsibility for failures. Instead, providers of-
ten connect to one another at Internet eXchange Points or IXPs; the link P0 P1 might actually be
P0 IXP P1, where P0 owns the left-hand link and P1 the right-hand. IXPs can either be third-party
sites open to all providers, or private exchange points. The term “Metropolitan Area Exchange”, or MAE,
appears in the names of the IXPs MAE-East, originally near Washington DC, and MAE-West, originally in
San Jose, California; each of these is now actually a set of IXPs. MAE in this context is now a trademark.

10.4.2 CIDR and Staying Out of Jail

Suppose we want to change providers. One way we can do this is to accept a new IP-address block from the
new provider, and change all our IP addresses. The paper Renumbering: Threat or Menace [LKCT96] was

304 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

frequently cited – at least in the early days of CIDR – as an intimation that such renumbering was inevitably
a Bad Thing. In principle, therefore, we would like to allow at least the option of keeping our IP address
allocation while changing providers.

An address-allocation standard that did not allow changing of providers might even be a violation of the
US Sherman Antitrust Act; see American Society of Mechanical Engineers v Hydrolevel Corporation, 456
US 556 (1982). The IETF thus had the added incentive of wanting to stay out of jail, when writing the
CIDR standard so as to allow portability between providers (actually, antitrust violations usually involve
civil penalties).

The CIDR longest-match rule turns out to be exactly what we (and the IETF) need. Suppose, in the diagrams
above, that customer C wants to move from P0 to P1, and does not want to renumber. What routing changes
need to be made? One solution is for P0 to add a route x200.2.16.0/20, P1y that routes all of C’s traffic to
P1; P1 will then forward that traffic on to C. P1’s table will be as follows, and P1 will use the longest-match
rule to distinguish traffic for its new customer C from traffic bound for P0.

P1
destination next_hop
200.0.0.0/8 P0
202.0.0.0/8 P2
201.0.0.0/16 D
201.1.0.0/16 E
200.2.16.0/20 C

This does work, but all C’s inbound traffic except for that originating in P1 will now be routed through
C’s ex-provider P0, which as an ex-provider may not be on the best of terms with C. Also, the routing is
inefficient: C’s traffic from P2 is routed P2ÑP0ÑP1 instead of the more direct P2ÑP1.

A better solution is for all providers other than P1 to add the route x200.2.16.0/20, P1y. While traffic to
200.0.0.0/8 otherwise goes to P0, this particular sub-block is instead routed by each provider to P1. The
important case here is P2, as a stand-in for all other providers and their routers: P2 routes 200.0.0.0/8 traffic
to P0 except for the block 200.2.16.0/20, which goes to P1.

Having every other provider in the world need to add an entry for C has the potential to cost some money,
and, one way or another, C will be the one to pay. But at least there is a choice: C can consent to renumbering
(which is not difficult if they have been diligent in using DHCP and perhaps NAT too), or they can pay to
keep their old address block.

As for the second diagram above, with the various private links (shown as dashed lines), it is likely that the
longest-match rule is not needed for these links to work. A’s “private” link to P1 might only mean that

• A can send outbound traffic via P1

• P1 forwards A’s traffic to A via the private link

P2, in other words, is still free to route to A via P0. P1 may not advertise its route to A to anyone else.

10.4 Provider-Based Routing 305

An Introduction to Computer Networks, Release 1.9.21

10.4.3 Hierarchical Routing via Providers

With provider-based routing, the route taken may no longer be end-to-end optimal; we have replaced the
problem of finding an optimal route from A to B with the two problems of finding an optimal route from A
to B’s provider P, and then from P’s entry point to B. This strategy mirrors the two-stage hierarchical routing
process of first routing on the address bits that identify the provider, and then routing on the address bits
including the subscriber portion.

This two-stage strategy may not yield the same result as finding the globally optimal route. The result will
be the same if B’s customers can only be reached through P’s single entry-point router RP, which models
the situation that P and its customers look like a single site. However, either or both of the following can
disrupt this model:

• There may be multiple entry-point routers into provider P’s network, eg RP1, RP2 and RP3, with
different costs from A.

• P’s customer B may have an alternative connection to the outside world via a different provider, as in
the second diagram in 10.4 Provider-Based Routing.

Consider the following example representing the first situation (the more important one in practice), in which
providers P1 and P2 have three interconnection points IX1, IX2, IX3 (from Internet eXchange, 10.4.1 In-
ternet Exchange Points). Links are labeled with costs; we assume that P1’s costs happen to be comparable
with P2’s costs.

R1 R2 R3

S1 S2 S3

R1 R2 R3R

S

B

A

1

1

357

43 8

Provider P2

Provider P1

IX1 IX2

IX31

0

0

0

0

0

The globally shortest path between A and B is via the R2–IX2–S2 crossover, with total length 5+1+0+4=10.
However, traffic from A to B will be routed by P1 to its closest crossover to P2, namely the R3–IX3–S3 link.
The total path is 3+0+1+8+4=16. Traffic from B to A will be routed by P2 via the R1–IX1–S1 crossover,
for a length of 3+0+1+7+5=16. This routing strategy is sometimes called hot-potato routing; each provider
tries to get rid of any traffic (the potatoes) as quickly as possible, by routing to the closest exit point.

Not only are the paths taken inefficient, but the AÝÑB and BÝÑA paths are now asymmetric. This can be
a problem if forward and reverse timings are critical, or if one of P1 or P2 has significantly more bandwidth
or less congestion than the other. In practice, however, route asymmetry is seldom important.

As for the route inefficiency itself, this also is not necessarily a significant problem; the primary reason
routing-update algorithms focus on the shortest path is to guarantee that all computed paths are loop-free.

306 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

As long as each half of a path is loop-free, and the halves do not intersect except at their common midpoint,
these paths too will be loop-free.

The BGP “MED” value (10.6.6.3 MULTI_EXIT_DISC) offers an optional mechanism for P1 to agree that
AÝÑB traffic should take the r1–s1 crossover. This might be desired if P1’s network were “better” and
customer A was willing to pay extra to keep its traffic within P1’s network as long as possible.

10.4.4 IP Geolocation

In principle, provider-based addressing may mean that consecutive IP addresses are scattered all over a
continent. In practice, providers (even many mobile providers) do not do this; any given small address
block – perhaps /24 – is used in a limited geographical area. Different blocks are used in different areas. A
consequence of this is that it is possible in principle to determine, from a given IP address, the corresponding
approximate geographical location; this is known as IP geolocation. Even satellite-Internet users can be
geolocated, although sometimes only to within a couple hundred miles. Several companies have created
detailed geolocation maps, identifying many locations roughly down to the zip code, and typically available
as an online service.

IP geolocation was originally developed so that advertisers could serve up regionally appropriate advertise-
ments. It is, however, now used for a variety of purposes including identification of the closest CDN edge
server (1.12.2 Content-Distribution Networks), network security, compliance with national regulations,
higher-level user tracking, and restricting the streaming of copyrighted content.

10.5 Geographical Routing

The classical alternative to provider-based routing is geographical routing; the archetypal model for this is
the telephone area code system. A call from anywhere in the US to Loyola University’s main switchboard,
773-274-3000, would traditionally be routed first to the 773 area code in Chicago. From there the call would
be routed to the north-side 274 exchange, and from there to subscriber 3000. A similar strategy can be used
for IP routing.

Geographical addressing has some advantages. Figuring out a good route to a destination is usually straight-
forward, and close to optimal in terms of the path physical distance. Changing providers never involves
renumbering (though moving may). And approximate IP address geolocation (determining a host’s location
from its IP address) is automatic.

Geographical routing has some minor technical problems. First, routing may be inefficient between imme-
diate neighbors A and B that happen to be split by a boundary for larger geographical areas; the path might
go from A to the center of A’s region to the center of B’s region and then to B. Another problem is that some
larger sites (eg large corporations) are themselves geographically distributed; if efficiency is the goal, each
office of such a site would need a separate IP address block appropriate for its physical location.

But the real issue with geographical routing is apparently the business question of who carries the traffic.
The provider-based model has a very natural answer to this: every link is owned by a specific provider. For
geographical IP routing, my local provider might know at once from the prefix that a packet of mine is to be
delivered from Chicago to San Francisco, but who will carry it there? My provider might have to enter into
different traffic contracts for multiple different regions. If different local providers make different arrange-
ments for long-haul packet delivery, the routing efficiency (at least in terms of table size) of geographical

10.5 Geographical Routing 307

https://en.wikipedia.org/wiki/ZIP_Code

An Introduction to Computer Networks, Release 1.9.21

routing is likely lost. Finally, there is no natural answer for who should own those long inter-region links. It
may be useful to recall that the present area-code system was created when the US telephone system was an
AT&T monopoly, and the question of who carried traffic did not exist.

That said, the top five Regional Internet Registries represent geographical regions (usually continents), and
provider-based addressing is below that level. That is, the IANA handed out address blocks to the geograph-
ical RIRs, and the RIRs then allocated address blocks to providers.

At the intercontinental level, geography does matter: some physical link paths are genuinely more expensive
than other (shorter) paths. It is much easier to string terrestrial cable than undersea cable. However, within
a continent physical distance does not always matter as much as might be supposed. Furthermore, a large
geographically spread-out provider can always divide up its address blocks by region, allowing internal
geographical routing to the correct region.

Here is a diagram of IP address allocation as of 2006: http://xkcd.com/195.

10.6 Border Gateway Protocol, BGP

In 9 Routing-Update Algorithms, we considered interior routing-update protocols: those in which all the
routers involved are under common management. That management can then dictate the routing-update
protocol to be used, and also the rules for assigning per-link costs. For both Distance-Vector and Link State
methods, the per-link cost played an essential role: by trying to minimize the cost, we were assured that no
routing loops would be present in a stable network (9.3 Observations on Minimizing Route Cost).

But now consider the problem of exterior routing; that is, of choosing among routes that pass through inde-
pendent organizations. In the diagram below, suppose that A, B, C and D are each managed independently;
it may be useful to think of A, B and C as three ISPs and D as some destination.

A

B

C

D

Organization (or ISP) A has two routes to destination D – one via B and one via C – and must choose
between them.

If A wanted to use one of the interior routing-update protocols to choose its path to D, it would face several
purely technical problems. First, what if B uses distance-vector while C speaks only in link-state LSP
messages? Second, what if B measures its path costs using the hopcount metric, while C assigns costs based
on bandwidth, or congestion, or pecuniary considerations?

The mixing of unrelated metrics isn’t necessarily useless: all that is required for the shortest-path-is-loop-
free result mentioned above is that the two ends of each link agree on the cost assigned to that link. But
apples-and-oranges comparison of different metrics would completely undermine the intended use of those

308 10 Large-Scale IP Routing

http://xkcd.com/195

An Introduction to Computer Networks, Release 1.9.21

metrics to influence the selection of which links should carry the most traffic. Sharing link-cost information
without a common administrative policy to set those costs does not, in practical terms, make sense.

But A also faces a larger issue: to reach D it must rely on having its traffic carried by an outsider – either
B or C. Outsiders are likely not inclined to offer this service without some form of compensation, either
monetary or through reciprocal exchange. If A reaches an understanding with B on this matter of traffic
carriage, then A does not want its traffic routed via C even if that latter route is of lower technical cost. If A
is paying B, it is going to expect to use B. If A is not paying C, C is going to expect that A not use C.

The Border Gateway Protocol, or BGP, is assigned the job of handling exterior routing; that is, of handling
exchange of routing information between neighboring independent organizations. The current version is
BGP-4, documented in RFC 4271.

BGP’s primary goal is to provide support for what are sometimes called routing policies; that is, for choos-
ing routes based on managerial or administrative input. We address this below in 10.6.4 BGP Filtering and
Routing Policies. (Routing policies have nothing to do with the policy-based routing described in 9.6 Rout-
ing on Other Attributes, in which different packets with the same destination address may be routed differ-
ently because a site has a “policy” to take packet attributes other than destination into account. With BGP,
once a site’s policies to choose a route to a given destination are applied, all traffic to that destination takes
that single route.)

Ultimately, the administrative input used by BGP very likely relates to who is paying what for the traffic
carried. It is also possible, though less common, to use BGP to implement other preferences, such as for
domestic traffic to remain within national boundaries.

The BGP term for a routing domain under coordinated administration, and using one consistent interior pro-
tocol and link-cost metric throughout, is Autonomous System, or AS. That said, all that is strictly required
is that all BGP routers within an AS have the same consistent view of routing, and in fact some Autonomous
Systems do run multiple routing protocols and may even use different metrics at different points. As indi-
cated above, BGP does not support the exchange of link-cost information between Autonomous Systems.
Autonomous Systems are identified by a globally unique AS number, originally 16 bits but now extended
to 32 bits.

A site needs to run BGP (and so needs to have an AS number) if it connects to (or might connect to) more
than one other AS; sites that connect only to a single ISP do not need BGP. Every site running BGP will
have one or more BGP speakers: the devices that run BGP. If there is more than one, they must remain
coordinated with one another so as to present a consistent view of the site’s connections and advertisements;
this coordination process is sometimes called internal BGP to distinguish it from the communication with
neighboring Autonomous Systems. The latter process is then known as external BGP.

The BGP speakers of a site are often not the busy border routers that connect directly to the neighboring AS,
though they are usually located near them and are often on the same subnet. Each interconnection point with
a neighboring AS generally needs its own BGP speaker. Connections between BGP speakers of neighboring
Autonomous Systems – sometimes called BGP peers – are generally configured administratively; they are
not subject to a “neighbor discovery” process like that used by most interior routers.

The BGP speakers must maintain a database of all routes received, not just of the routes actually used. How-
ever, the speakers forward to their neighbors only routes they (and thus their AS) actually use themselves;
this is a firm BGP rule.

Many BGP implementations support Equal-Cost Multi-Path routing (9.7 ECMP), by which two (or
more) links to the same neighbor may be treated as one. The Internet Draft draft-lapukhov-bgp-ecmp-

10.6 Border Gateway Protocol, BGP 309

https://tools.ietf.org/html/rfc4271.html
https://tools.ietf.org/html/draft-lapukhov-bgp-ecmp-considerations-01
https://tools.ietf.org/html/draft-lapukhov-bgp-ecmp-considerations-01

An Introduction to Computer Networks, Release 1.9.21

considerations-01 addresses this further.

10.6.1 AS-paths

At its most basic level, BGP involves the exchange of lists of reachable destinations, like distance-vector
routing without the distance information. But that strategy, alone, cannot detect routing loops. BGP solves
the loop problem by having routers exchange, not just destination information, but also the entire path used
to reach each destination. Paths including each router would be cumbersome; instead, BGP abbreviates the
path to the list of ASes traversed. This is called the AS-path. This allows routers to make sure their routes
do not traverse any AS more than once, and thus do not have loops.

As an example of this, consider the network below, in which we consider Autonomous Systems also to be
destinations. Initially, we will assume that each AS discovers its immediate neighbors. AS3 and AS5 will
then each advertise to AS4 their routes to AS2, but AS4 will have no reason at this level to prefer one route
to the other (BGP does use the shortest AS-path as part of its tie-breaking rule, but, before falling back on
that rule, AS4 is likely to have a commercial preference for which of AS3 and AS5 it uses to reach AS2).

AS1 AS2 AS3

AS5 AS4

Also, AS2 will advertise to AS3 its route to reach AS1; that advertisement will contain the AS-path
xAS2,AS1y. Similarly, AS3 will advertise this route to AS4 and then AS4 will advertise it to AS5.

When AS5 in turn advertises this AS1-route to AS2, it has the potential to create a loop. It does not, however,
because it will include the entire AS-path xAS5,AS4,AS3,AS2,AS1y in the advertisement it sends to AS2.
AS2 will know not to use this route because it will see that it is a member of the AS-path. Thus, BGP is
spared the kind of slow-convergence problem that traditional distance-vector approaches were subject to.

It is theoretically possible that the shortest path (in the sense, say, of the hopcount metric) from one host to
another traverses some AS twice. If so, BGP will not allow this route.

AS-paths potentially add considerably to the size of the AS database. The number of paths a site must keep
track of is proportional to the number of ASes, because there will be one AS-path to each destination AS.
(Actually, an AS may have to record many times that many AS-paths, as an AS may hear of AS-paths that
it elects not to use.) As of 2019 there were about 80 thousand ASes in the world. Let A be the number of
ASes. Typically the average length of an AS-path is about log(A), although this depends on connectivity; in
2019 this average length was about six. The amount of memory required by BGP is

CˆAˆlog(A) + KˆN,

where C and K are constants.

The other major goal of BGP is to allow administrative input to what, for interior routing, is largely a
technical calculation (though an interior-routing administrator can set link costs). BGP is the interface
between ISPs (and between ISPs and their larger customers), and can be used to implement contractual
agreements made regarding which ISPs will carry other ISPs’ traffic. If ISP2 tells ISP1 it has a route to

310 10 Large-Scale IP Routing

https://tools.ietf.org/html/draft-lapukhov-bgp-ecmp-considerations-01
https://tools.ietf.org/html/draft-lapukhov-bgp-ecmp-considerations-01

An Introduction to Computer Networks, Release 1.9.21

destination D, but ISP1 chooses not to send traffic to ISP2, BGP can be used to implement this. Perhaps
more likely, if ISP2 has a route to D but does not want ISP1 to use it until they pay for the privilege, BGP
can be used to implement this as well.

Despite the exchange of AS-path information, temporary routing loops may still exist. This is because BGP
may first decide to use a route and only then export the new AS-path; the AS on the other side may realize
there is a problem as soon as the AS-path is received but by then the loop will have at least briefly been in
existence. See the first example below in 10.6.10 Examples of BGP Instability.

BGP’s predecessor was EGP, which guaranteed loop-free routes by allowing only a single route to any AS,
thus forcing the Internet into a tree topology, at least at the level of Autonomous Systems. The AS graph
could contain no cycles or alternative routes, and hence there could be no redundancy provided by alternative
paths. EGP also thus avoided having to make decisions as to the preferred path; there was never more than
one choice. EGP was sometimes described as a reachability protocol; its only concern was whether a given
network was reachable.

10.6.2 AS-Paths and Route Aggregation

There is some conflict between the goal of reporting precise AS-paths to each destination, and of consoli-
dating as many address prefixes as possible into a single prefix (single CIDR block). Consider the following
network:

AS1 AS2 AS3

AS4

Suppose AS2 has paths

path=xAS2y, destination 200.0.0/23
path=xAS2,AS3y, destination 200.0.2/24
path=xAS2,AS4y, destination 200.0.3/24

If AS2 wants to optimize address-block aggregation using CIDR, it may prefer to aggregate the three des-
tinations into the single block 200.0.0/22. In this case there would be two options for how AS2 reports its
routes to AS1:

• Option 1: report 200.0.0/22 with path xAS2y. But this ignores the ASes AS3 and AS4! These
are legitimately part of the AS-paths to some of the destinations within the block 200.0.0/22; loop
detection could conceivably now fail.

• Option 2: report 200.0.0/22 with path xAS2,AS3,AS4y, which is not a real path but which does
include all the ASes involved. This ensures that the loop-detection algorithm works, but artificially
inflates the length of the AS-path, which is used for certain tie-breaking decisions.

As neither of these options is ideal, the concept of the AS-set was introduced. A list of Autonomous Systems
traversed in order now becomes an AS-sequence. In the example above, AS2 can thus report net 200.0.0/22
with

• AS-sequence=xAS2y

10.6 Border Gateway Protocol, BGP 311

An Introduction to Computer Networks, Release 1.9.21

• AS-set={AS3,AS4}

AS2 thus both achieves the desired aggregation and also accurately reports the AS-path length.

The AS-path can in general be an arbitrary list of AS-sequence and AS-set parts, but in cases of simple
aggregation such as the example here, there will be one AS-sequence followed by one AS-set.

RFC 6472 now recommends against using AS-sets entirely, and recommends that aggregation as above be
avoided. One consequence of this recommendation is that every IP-address prefix announced by any public
Autonomous System will result in a corresponding entry in the forwarding tables of the backbone routers.

10.6.3 Transit Traffic

It is helpful to distinguish between two kinds of traffic, as seen from a given AS. Local traffic is traffic that
either originates or terminates at that AS; this is traffic that “belongs” to that AS. At leaf sites (that is, sites
that connect only to their ISP and not to other sites), all traffic is local.

The other kind of traffic is transit traffic; the AS is forwarding it along on behalf of some nonlocal party.
For ISPs, most traffic is transit traffic. A large almost-leaf site might also carry a small amount of transit
traffic for one particular related (but autonomous!) organization.

The decision as to whether to carry transit traffic is a classic example of an administrative choice, im-
plemented by BGP’s support for routing policies. Most real-world BGP configuration issues relate to the
carriage (or non-carriage) of transit traffic.

10.6.4 BGP Filtering and Routing Policies

As stated above, one of the goals of BGP is to support routing policies; that is, routing based on managerial
or administrative concerns in addition to technical ones. A BGP speaker may be aware of multiple routes to
a destination. To choose the one route that we will use, it may combine a mixture of optimization rules and
policy rules. Some examples of policy rules might be:

• do not use AS13 as we have an adversarial relationship with them

• do not allow transit traffic

BGP implements policy through filtering rules – that is, rules that allow rejection of certain routes – at three
different stages:

1. Import filtering is applied to the lists of routes a BGP speaker receives from its neighbors.

2. Best-path selection is then applied as that BGP speaker chooses which of the routes accepted by the
first step it will actually use.

3. Export filtering is done to decide what routes from the previous step a BGP speaker will actually
advertise. A BGP speaker can only advertise paths it uses, but does not have to advertise every such
path.

While there are standard default rules for all these (accept everything imported, use simple tie-breakers,
export everything), a site will usually implement at least some policy rules through this filtering process (eg
“prefer routes through the ISP we have a contract with”).

312 10 Large-Scale IP Routing

https://tools.ietf.org/html/rfc6472.html

An Introduction to Computer Networks, Release 1.9.21

As an example of import filtering, a site might elect to ignore all routes from a particular neighbor, or to
ignore all routes whose AS-path contains a particular AS, or to ignore temporarily all routes from a neighbor
that has demonstrated too much recent “route instability” (that is, rapidly changing routes). Import filtering
can also be done in the best-path-selection stage, by having the best-path-selection process ignore routes
from selected neighbors.

BGP Breakdowns

In the real world, it sometimes happens that a small regional ISP is misconfigured to attempt to report to
some high-level provider that it can reach, say, every site in the world. Export filtering on the part of the
small ISP and best-path selection and import filtering on the part of the large ISP often – though not always
– catches this. Occasionally, such incidents represent malicious BGP hijacking. See 10.6.11 BGP
Security and Route Registries for one approach to addressing the problems of BGP security.

The next stage is best-path selection, to pick the preferred routes from among all those just imported. The
first step is to eliminate AS-paths with loops. Even if the neighbors have been diligent in not advertising
paths with loops, an AS will still need to reject routes that contain itself in the associated AS-path.

The next step in the best-path-selection stage, generally the most important in BGP configuration, is to
assign a local_preference, or weight, to each route received. An AS may have policies that add a certain
amount to the local_preference for routes that use a certain AS, etc. Very commonly, larger sites will have
preferences based on contractual arrangements with particular neighbors. Provider ASes, for example, will
in general prefer routes learned from their customers, as these are “cheaper”. A smaller ISP that connects to
two larger ones might be paying to route the majority of its outbound traffic through a particular one of the
two; its local_preference values will then implement this choice. After BGP calculates the local_preference
value for every route, the routes with the best local_preference are then selected.

Domains are free to choose their local_preference rules however they wish. In principle this can involve
rather strange criteria; for example, in 10.6.10 Examples of BGP Instability we will consider an example
where AS1 prefers routes with AS-path xAS3,AS2y to the strictly shorter path xAS2y. That example, how-
ever, demonstrates instability; domains are encouraged to set their rules in accordance with some standard
principles, below, to avoid this.

Local_preference values are communicated internally via the LOCAL_PREF path attribute, below. They
are not shared with other Autonomous Systems.

In the event of ties – two routes to the same destination with the same local_preference – a first tie-breaker
rule is to prefer the route with the shorter AS-path. While this superficially resembles a shortest-path
algorithm, the real work should have been done in administratively assigning local_preference values.
The shorter-AS-path tie-breaker is perhaps best thought of as similar in spirit to the smaller-AS-number
tie-breaker (although the sometimes-significant Multi-Exit-Discriminator tie-breaker, next, comes between
them).

The final significant step of the route-selection phase is to apply the Multi-Exit-Discriminator value,
10.6.6.3 MULTI_EXIT_DISC. A site may very well choose to ignore this value entirely.

Finally we get to the trivial tie-breaker rules, though if a tie-breaker rule assigns significant traffic to one
AS over another then it may have economic consequences and shouldn’t be considered “trivial”. If this
situation is detected, it would probably be addressed in the local-preferences phase. The trivial tie-breakers

10.6 Border Gateway Protocol, BGP 313

An Introduction to Computer Networks, Release 1.9.21

take into account the internal routing cost, the numeric value of the AS number, and the numeric value of
the neighbor’s IP address.

After the best-path-selection stage is complete, the BGP speaker has now selected the routes its own Au-
tonomous System will use. These routes are then communicated to the actual routers, which are often
different devices.

The final stage is to decide what rules will be exported to which neighbors. Only routes the BGP speaker
has decided it will use – that is, routes that have made it to this point – can be exported; a site cannot route
to destination D through AS1 but export a route claiming D can be reached through AS2.

It is at the export-filtering stage that an AS can enforce no-transit rules. If it does not wish to carry transit
traffic to destination D, it will not advertise D to any of its AS-neighbors.

The export stage can lead to anomalies. Suppose, for example, that AS1 reaches D and AS5 via AS2, and
announces this to AS4.

AS4 AS1 AS5 D

AS2

AS3

Later, we imagine, AS1 switches to reaching D via AS3, but is forbidden by policy to announce to AS4
any routes with AS-path containing AS3; such a policy is straightforward to implement via export filtering.
Then AS1 must simply withdraw the announcement to AS4 that it could reach D at all, even though the
route to D via AS2 is still there.

10.6.5 BGP Table Size

In principle, there is a one-to-one correspondence between IP address prefixes announced by public Au-
tonomous Systems and entries in the backbone IP forwarding table. (The now-obsolete technique of route
aggregation, 10.6.2 AS-Paths and Route Aggregation, used to create a modest discrepancy here.)

The set of all routes received by a BGP speaker, after import filtering, is sometimes called the Routing Infor-
mation Base, or RIB. The resultant forwarding table created after best-path selection is then the Forwarding
Information Base, or FIB, although the full FIB may also contain routes learned via non-BGP protocols.
Each FIB entry will also contain the actual next-hop router, versus the next-AS information actually received
via BGP. For simplicity, we will refer to the forwarding table generated from BGP records only as the BGP
FIB.

The size of the IPv4 BGP FIB – that is, the number of distinct prefixes in a backbone IPv4 forwarding table
– is plotted in the chart below, based on data courtesy of bgp.potaroo.net, with some modest smoothing
applied.

314 10 Large-Scale IP Routing

http://bgp.potaroo.net/

An Introduction to Computer Networks, Release 1.9.21

0

100000

200000

300000

400000

500000

600000

700000

800000

1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018 2021

The time range is from 1994 to July 2019; at the end, there are 788 thousand IP prefixes from (not shown
in the graph) around 65 thousand Autonomous Systems. The graph is flat from 2001 to 2002, reflecting the
aftereffects of the so-called dot-com bubble. Overall the increase with time is roughly quadratic, but in the
last decade has been closer to linear.

The graph does not entirely represent growth of the Internet; it also represents fragmentation. In recent years,
only smaller address blocks have been available, and so many sites and providers have cobbled together their
Internet presence from multiple such blocks, where they might have preferred a single block.

10.6.6 BGP Path attributes

BGP supports the inclusion of various path attributes when exchanging routing information. Attributes
exchanged with neighbors can be transitive or non-transitive; the difference is that if a neighbor AS does
not recognize a received path attribute then it should pass it along anyway if it is marked transitive, but not
otherwise. Some path attributes are entirely local, that is, internal to the AS of origin. Other flags are used
to indicate whether recognition of a path attribute is required or optional, and whether recognition can be

10.6 Border Gateway Protocol, BGP 315

https://en.wikipedia.org/wiki/Dot-com_bubble

An Introduction to Computer Networks, Release 1.9.21

partial or must be complete.

The AS-path itself is perhaps the most fundamental path attribute. Here are a few other common attributes:

10.6.6.1 NEXT_HOP

This mandatory external attribute allows BGP speaker B1 of AS1 to inform its BGP peer B2 of AS2 what
actual router to use to reach a given destination. If B1, B2 and AS1’s actual border router R1 are all on the
same subnet, B1 will include R1’s IP address as its NEXT_HOP attribute. If B1 is not on the same subnet
as B2, it may not know R1’s IP address; in this case it may include its own IP address as the NEXT_HOP
attribute. Routers on AS2’s side will then look up the “immediate next hop” they would use as the first step
to reach B1, and forward traffic there. This should either be R1 or should lead to R1, which will then route
the traffic properly (not necessarily on to B1).

B1 R1 B2

Rest of AS1

AS1 AS2

AS border

10.6.6.2 LOCAL_PREF

If one BGP speaker in an AS has been configured with local_preference values, used in the best-path-
selection phase above, it uses the LOCAL_PREF path attribute to share those preferences with all other
BGP speakers at a site. In other words, once one BGP speaker has determined the local_preference value of
a given route, the LOCAL_PREF attribute is used to distribute that value uniformly throughout the AS.

10.6.6.3 MULTI_EXIT_DISC

The Multi-Exit Discriminator, or MED, attribute allows one AS to learn something of the internal structure
of another AS, should it elect to do so. Using the MED information provided by a neighbor has the potential
to cause an AS to incur higher costs, as it may end up carrying traffic for longer distances internally; MED
values received from a neighboring AS are therefore only recognized when there is an explicit administrative
decision to do so.

Specifically, if an autonomous system AS1 has multiple links to neighbor AS2, then AS1 can, when adver-
tising an internal destination D to AS2, have each of its BGP speakers provide associated MED values so
that AS2 can know which link AS1 would prefer that AS2 use to reach D. This allows AS2 to route traffic
to D so that it is carried primarily by AS2 rather than by AS1. The alternative is for AS2 to use only the
closest gateway to AS1, which means traffic is likely carried primarily by AS1.

316 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

MED values are considered late in the best-path-selection process; in this sense the use of MED values is a
tie-breaker when two routes have the same local_preference.

As an example, consider the following network (from 10.4.3 Hierarchical Routing via Providers, with
providers now replaced by Autonomous Systems); the numeric values on links are their relative costs. We
will assume that each site has three BGP speakers co-located at the exchange points IX1, IX2 and IX3.

R1 R2 R3

S1 S2 S3

R1 R2 R3R

S

B

A

1

1

357

43 8

AS 2

AS1

IX1 IX2

IX31

0

0

0

0

0

In the absence of the MED, AS1 will send traffic from A to B via the R3–IX3–S3 link, and AS2 will return
the traffic via S1–IX1–R1. These are the links that are closest to R and S, respectively, representing AS1
and AS2’s desire to hand off the outbound traffic as quickly as possible.

However, AS1’s BGP speakers at IX1, IX2 and IX3 can provide MED values to AS2 when advertising
destination A, indicating a preference for AS2ÑAS1 traffic to use the rightmost link:

• IX1: destination A has MED 200

• IX2: destination A has MED 150

• IX3: destination A has MED 100

If this is done, and AS2 abides by this information, then AS2 will route traffic from B to A via IX3; that
is, via the exchange point with the lowest MED value. Note the importance of fact that AS2 is allowed to
ignore the MED; use of it may shift costs from AS1 to AS2!

The relative order of the MED values for R1 and R2 is irrelevant, unless the IX3 exchange becomes disabled,
in which case the numeric MED values above would mean that AS2 should then prefer IX2 for reaching A.

We cannot use MED values to cause A–B traffic to take the path through IX2; that path has minimal cost
only in the global sense, and the only way to achieve global cost minimization is for the two ASes to agree
to use a common distance metric and a common metric-based routing algorithm, in effect becoming one AS.
While AS1 does provide different numeric MED values for the three exchange points, they are used only in
ranking precedence, not as numeric measures of cost (though they are sometimes derived from that).

In the example above, importing and using MED values raises AS2’s costs, by causing it to route AS2-
to-AS1 traffic so that it stays for a longer path within AS2’s network. This is, in fact, almost always the
case when using MED values. Why, then, would AS2 agree to this? One simple reason might be that AS2
and AS1 have, together, negotiated this arrangement; perhaps AS1 gives AS2 a break on interconnection
(“peering”) fees in exchange for AS2’s accepting and using AS1’s MED data. It is also possible that AS2’s

10.6 Border Gateway Protocol, BGP 317

An Introduction to Computer Networks, Release 1.9.21

use of AS1’s MED data may improve the quality of service AS2 can offer to its customers; we will return
to an example of this in 10.6.7.1 MED values and traffic engineering.

Also in the example above, the MED values are used to decide between multiple routes to the same desti-
nation that all pass through the same AS, namely AS1. Some BGP implementations allow the use of MED
values to decide between different routes through different neighbor ASes. The different neighbors must all
have the same local_preference values. For example, AS2 might connect to AS3 and AS4 and receive the
following BGP information:

• AS3: destination A has MED 200

• AS4: destination A has MED 100

Assuming AS2 assigns the same local_preference to AS3 and AS4, it might be configured to use these MED
values as the tie-breaker, and thus routing traffic to A via AS3. On Cisco routers, the always-compare-med
command is used to create this behavior.

MED values are not intended to be used to communicate routing preferences to non-neighboring ASes.

Additional information on the use of MED values can be found in RFC 4451.

10.6.6.4 COMMUNITY

This is simply a tag to attach to routes. Routes can have multiple tags corresponding to member-
ship in multiple communities. Some communities are defined globally; for example, NO_EXPORT and
NO_ADVERTISE. A route marked with one of these two communities will not be shared further. Other
communities may be relevant only to a particular AS.

The importance of communities is that they allow one AS to place some of its routes into specific categories
when advertising them to another AS; the categories must have been created and recognized by the receiving
AS. The receiving AS is not obligated to honor the community memberships, of course, but doing so has
the effect of allowing the original AS to “configure itself” without involving the receiving AS in the pro-
cess. Communities are often used, for example, by (large) customers of an ISP to request specific routing
treatment.

A customer would have to find out from the provider what communities the provider defines, and what their
numeric codes are. At that point the customer can place itself into the provider’s community at will.

Here are some of the community values once supported by a no-longer-extant ISP that we shall call AS1.
The full community value would have included AS1’s AS-number.

value action
90 set local_preference used by AS1 to 90
100 set local_preference used by AS1 to 100, the default
105 set local_preference used by AS1 to 105
110 set local_preference used by AS1 to 110
990 the route will not leave AS1’s domain; equivalent to NO_EXPORT
991 route will only be exported to AS1’s other customers

318 10 Large-Scale IP Routing

https://tools.ietf.org/html/rfc4451.html

An Introduction to Computer Networks, Release 1.9.21

10.6.7 BGP and Traffic Engineering

BGP is the mechanism for inter-autonomous-system traffic engineering. The first-line tools are import and
export filtering and best-path selection. For autonomous systems with multiple interconnection points, the
Multi-Exit Discriminator above also may play a large role.

After establishing basic connectivity, perhaps the most important decision a site makes via its BGP config-
uration is whether or not it will accept transit traffic. As a first example of this, let us consider the case of
configuring a private link, such as the dashed link1 below between “friendly” but unaffiliated sites A and B
(link1 can be either a shared “real” link or a short “jumper” link within an Internet exchange point):

 The Internet

ISP1

ISP2 B

A

link1

Suppose A exports its link1 route to B to its provider ISP1. Then ISP1 may in turn announce this route to
the Internet at large, and so some or all of B’s inbound traffic may be routed through ISP1 (paid by A) and
through A itself. Similarly, B may end up paying to carry A’s traffic if B exports its link1 route to A to ISP2.

Economically, carrying someone else’s transit traffic not desirable unless you are compensated for it. The
primary issue here is the use of the ISP1–A link by B and the ISP2–B link by A; use of the shared link1 might
be a secondary issue depending on the relative bandwidths and A and B’s understandings of appropriate uses
for link1.

Two common options A and B might agree to regarding link1 are no-transit and backup.

For the no-transit option, A and B simply do not export the route to their respective ISPs at all. This is done
via export filtering. If ISP1 does not know A can reach B, it will not send any of B’s traffic to A.

For the backup option, the intent is that traffic to A will normally arrive via ISP1, but if the ISP1 link is down
then A’s traffic will be allowed to travel through ISP2 and B. To achieve this, A and B can export their link1-
route to each other, but arrange for ISP1 and ISP2 respectively to assign this route a low local_preference
value. As long as ISP1 hears of a route to B from its upstream provider, it will reach B that way, and will
not advertise the existence of the link1 route to B; ditto ISP2. However, if the ISP2 route to B fails, then A’s
upstream provider will stop advertising any route to B, and so ISP1 will begin to use the link1 route to B
and begin advertising it to the Internet. The link1 route will be the primary route to B until ISP2’s service is
restored.

A and B must convince their respective ISPs to assign the link1 route a low local_preference; they cannot
mandate this directly. However, if their ISPs recognize community attributes that, as above, allow customers
to influence their local_preference value, then A and B can use this to create the desired local_preference.

To use the shared link for backup outbound traffic, A and B will need a way to send through one another if
their own ISP link is down. If A detects that its ISP link is down, it can simply change its default route to
point to B. One way to automate this is for A and B to view their default-route path (eg to 0.0.0.0/0) to be a
concrete destination within BGP. ISP1 advertises this to A, using BGP, but so does B, and A has configured
its import rules so B’s route to 0.0.0.0/0 has a higher cost. Then A will route to 0.0.0.0/0 through ISP1 – that

10.6 Border Gateway Protocol, BGP 319

An Introduction to Computer Networks, Release 1.9.21

is, will use ISP1 as its default route – as long as it is available, and will switch to B when it is not.

A and B might also wish to use their shared private link for load balancing, but for this BGP offers limited
help. If ISP1 and ISP2 both export routes to A, then A has lost all control over how other sites will prefer
one to the other. A may be able to make one path artificially appear more expensive, perhaps by duplicating
one of the ISPs in the AS-path. A might then be able to keep tweaking this cost until the inbound loads are
comparable, but there is no guarantee (or even likelihood) this will be stable. Outbound load-balancing is
up to A and B’s respective internal routers.

Providers in the business of carrying transit traffic must also make decisions about exactly whose traffic they
will carry; these decisions are again implemented with BGP. In the diagram below, two transit-providing
Autonomous Systems B and C connect to individual sites (or regional ISPs) A and D.

IXP1 IXP2

Transit B

Transit C

A D

In the diagram above, the left and right interconnections are shown taking place at Internet exchange points
IXP1 and IXP2 (10.4.1 Internet Exchange Points). IXPs are typically where such interconnections take
place but are not required; the essential topology is simply this:

A D

Transit B

Transit C

B would like to make sure C does not attempt to save on its long-haul transit costs by forwarding AÝÑD
traffic over to B at IXP1, and DÝÑA traffic over to B at IXP2. B avoids this problem by not advertising to
C that it can reach A and D, and similarly with C. Transit providers are quite careful about not advertising
reachability to any other AS for whom they do not intend to provide transit service, because to do so is likely
to mean getting stuck with that traffic.

If B advertises to A that it can reach D, then A may accept that route, and send all its D-bound traffic via B,
with C not involved at all. B is not likely to do this unless A pays for the privilege. If B and C both advertise
to A that they can reach D, then A has a choice, which it will make via its best-path-selection rules. But in
such a case A will want to be sure that it does not end up paying full price to both B and C to carry its traffic
while using only one of them. Site A might, for example, agree to payment based on the actual volume of
carried traffic, meaning that if it prefers B’s route then it will pay only B.

It is quite possible that B advertises to A that it can reach D, but does not advertise to D that it can reach A.
As we have seen, B advertises to A that it can reach D only if A has paid for this privilege; perhaps D prefers
to do business with C rather than with B. In that case, A-to-D traffic would travel via B, while D-to-A traffic
would travel via C.

In the unlikely event that B and C both advertise to one another at IXP1 their route to D, a routing loop may
even be created. B might forward D-bound traffic to C while C forwards it back to B. But in that case B

320 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

would state, in its next BGP advertisement to C at IXP1, that it reaches D via an AS-path that begins with
C, and C would do similarly. B and C would then see themselves in the AS-paths they receive and would
stop using these routes.

10.6.7.1 MED values and traffic engineering

Let us now address why an AS would bother with importing and using MED values, given that doing so
will almost always increase the site’s cost. Consider the following diagram of autonomous systems AS1 and
AS2, with link costs shown:

R1 R2

S1 S2

R1 R

S

A

DC

1

1

212

3 3

AS 2

AS1

IX1

IX2

0

0

0

0

S3 S4
44

Site DC in the diagram above is a datacenter that wants its user – at site A – to experience high-performance
downloads. Perhaps DC delivers high-performance streaming video, and needs to minimize both congestion
and packet losses. In order to achieve this superior quality, it builds a particularly robust network R1–R–R2,
shown above as AS1.

A first step is to have AS1 connect (or peer) directly to customer networks such as AS2, rather than relying
on the Internet backbone. Two such interconnection points are shown above, IX1 and IX2.

At this point, traffic from A to DC will take IX1 (on the shortest path from A to AS1), and so will travel
most of the way in AS1. This is good, but traffic from A to DC is probably mostly acknowledgments; these
are unlikely to benefit from the special network. The actual data, sent from DC to A, will take IX2, because
that is AS1’s shortest path to reach AS2. The data will thus travel most of the way in AS2, bypassing AS1’s
high-performance network. This is not what DC wants.

However, the picture changes if AS1 agrees to accept MED information from AS2 (and other providers).
If AS2 tells AS1 that AS2’s preferred link for reaching A is via IX1, then traffic from DC to A will travel
through R1 to IX1, and from there onto A. This keeps DC’s outbound traffic in the AS1 network as long as
possible, instead of handing it off to the other network of lower quality. This is what DC wants; this is why
DC built the high-performance network.

Rather than building its own high-performance network, DC might simply contract with an existing high-
performance network. That would make AS1’s business model the following:

• peering with as many potential customer networks as possible

• importing and using the MED information from those networks

10.6 Border Gateway Protocol, BGP 321

An Introduction to Computer Networks, Release 1.9.21

• advertising to potential customers like DC that their network will give DC’s users a better experience

10.6.8 BGP and Anycast

In 7.8.5 DNS and CDNs we discussed how some CDNs use DNS tricks to arrange for user traffic to be
delivered to the closest edge server. Another CDN option is anycast: using the same IP address for all the
edge servers, and arranging for routers to deliver to the closest server. IPv6 routers can be configured to
have some awareness of anycast delivery, but in IPv4 this must be done more passively, using BGP.

To implement the anycast approach, the CDN uses the same IP address block at each of its datacenter
locations. Each customer has a server at each CDN datacenter, and each of these servers is assigned the
same IP address. It is up to the CDN to make sure that the content made available at each server is identical.

At each of its locations, the CDN then announces this address block to its local BGP neighbors. Reachability
information for the address block then propagates, via BGP, throughout the Internet. An AS connected to
a single CDN datacenter will route the CDN’s address block to that datacenter. If AS1 hears about the
CDN from neighbors AS2 and AS3, then AS1 will apply its usual best-path-selection process to determine
whether to route the CDN’s block via AS2 or AS3. Ultimately, every AS on the Internet will deploy exactly
one route to the CDN. Each such route will lead to one of the CDN’s datacenters, but different ASes may
deploy routes to different datacenters.

One advantage to the anycast approach, over the DNS approach, is that users who use a geographically
distant DNS resolver will not pay a penalty. Another is that the BGP best-path-selection process is likely
to produce better routes in general than a process based solely on geographical distance; for example, ASes
may choose best paths based on available bandwidth rather than distance. In IP routing, geography is not
destiny.

It may at first seem odd to have multiple servers with the same public IP address, given that such config-
uration within an organization usually represents a dire error. However, none of the CDN’s data centers
will use these addresses to talk to one another; the CDN will arrange for the use of other IP addresses for
inter-datacenter traffic.

10.6.9 BGP Relationships

Arbitrarily complex policies may be created through BGP, and, as we shall see in the following section,
convergence to a stable set of routes is not guaranteed. Nonconvergence does not mean distance-vector’s
“slow convergence to infinity”, but rather a regular oscillation of routes among competing alternatives.

It turns out, however, that if some constraints are applied to the different AS-to-AS relationships, then better
behavior is obtained. The paper [LG01] analyzed BGP networks in which each AS-to-AS relationship fit
one of the following three business patterns, discussed further below:

1. Customer to provider (the most common pattern)

2. Peer to peer (eg two top-level providers mutually exchanging traffic)

3. Sibling to sibling (for very close AS-to-AS relationships)

A major consequence these relationships is the extent to which the autonomous systems involved accept one
another’s “non-customer” routes (below), and hence the extent to which they provide each other with transit
services. We start with the most basic case, that of customer and provider.

322 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

If autonomous systems C and P have a customer-to-provider relationship, with C as the customer and P
as the provider, then C is paying P to carry some or all of its traffic to the “outside world”. P may not
carry all such traffic, because C may also be a customer of another provider P1. C may also have its own
sub-customers, such as C1:

C

C�

P P�

In offering itself as a provider, P will export all the routes it has, from all sources, to C, in effect telling C
“this is what I can reach”. If C has no other providers it might accept these routes in the form of a single
default-route entry pointing to P; if C has another provider P1 then it might accept some routes from P and
some from P1.

Similarly, C will always export its own routes to P. If C has customers of its own, such as C1, then it will also
export those routes to P. Collectively, we will say that C’s own routes and the routes of its own customers
and sub-customers are its customer routes.

But what about non-customer routes, eg routes learned from other providers? These C generally does not
export. If C were to export to P a route to destination D that it learned from second provider P1, then C might
end up providing transport service to P, carrying P’s D-bound traffic to P1. As a customer, this is probably
not what C intends.

To summarize, a provider does export its non-customer routes to its customer, but a customer generally
does not export its non-customer routes to its providers. This rule is not, in the world of real business
relationships, absolute; ASes may negotiate all sorts of special arrangements. A nominal customer might,
for example, agree to provide transit service for some set of destinations, in exchange for a lower-priced rate
for the handling of its other traffic. Nonetheless, the rule is largely accurate, and provides a helpful starting
point to understanding customer-provider relationships. Below, in 10.6.9.1 BGP No-Valley Theorem, we
will in effect use this rule as a definition of customer-provider relationships.

Now let us consider a peer-to-peer relationship, which is a connection between two transit providers that
have agreed to exchange all their customer traffic with each other; thus carrying transit traffic for one another.
Often the idea is for the interconnection to be seen as equally valuable by both parties (eg because the parties
exchange comparable volumes of traffic); in such a case the relationship would likely be “settlement-free”,
that is, involving no monetary exchange. If, however, the volume flow is significantly asymmetric then
compensation can certainly be negotiated, making the relationship more like customer-to-provider.

As with customers and providers, two peers P1 and P2 each export all their customer routes to the other; that
way, P2 knows it how to reach P1’s customers and vice-versa. By doing this, P1 and P2 each carry transit
traffic for their own customers.

Peers do not, however, generally export their non-customer routes, in either direction. If P1 learns of a route
to destination D from another peer (or provider) P3, it does not export this to P2. If it were to do so, then
P1 would carry non-customer transit traffic from P2 to P3. Instead, P2 is expected also to peer with P3, and
learn of P3’s route to D that way. Alternatively, P3 can become a customer of P1, and thus pay for P1’s

10.6 Border Gateway Protocol, BGP 323

An Introduction to Computer Networks, Release 1.9.21

transit carriage of P3’s traffic.

The so-called tier-1 providers are those that are not customers of anyone; these represent the top-level
“backbone” providers. Each tier-1 AS must, as a rule, peer with every other tier-1 AS, though ASes are free
to negotiate exceptions.

Finally, some autonomous system relationships that do not fit the customer-to-provider or peer-to-peer pat-
terns can be characterized as sibling-to-sibling. Siblings are ISPs that have a close relationship; often
siblings are ASes that, due to mergers, are now part of the same organization. Siblings may also be nominal
competitors who intend to use their mutual link as a cooperative backup, as in 10.6.7 BGP and Traffic
Engineering. Two siblings may or may not have the same upstream ISP as provider.

Siblings typically export everything to one another – both customer and non-customer routes – and thus do
potentially use their connection for transit traffic in both directions (although they may rank routes through
one another at low preference, so as to use the shared link only when nothing else is available).

We can summarize the three kinds of relationships in terms of how they export non-customer routes:

• in peer-to-peer relationships, non-customer routes are not exported in either direction.

• in customer-to-provider relationships, non-customer routes are exported only from the provider to the
customer.

• in sibling-to-sibling relationships, non-customer routes are exported in both directions.

It is possible to make at least some inferences about BGP relationships from sites’ actual export information,
though accuracy is imperfect because sites may negotiate non-standard arrangements; see [LG01].

In the real world, BGP sibling relationships are relatively rare, probably because they do not really fit the
model of traffic carriage as a service. This may be fortunate, as sibling relationships, with universal and
bidirectional route export, tend to introduce the greatest complexity. The non-convergence examples of
10.6.10 Examples of BGP Instability all require sibling relationships.

One problematic sibling case is the following, in which P1 and P2 are providers for C1 and C2, respectively,
and C1 and C2 are siblings:

C1 C2

P2P1

C1 siblings

Suppose P1 exports to C1 a route to destination D. C1 then exports it to sibling C2. If C2 treats this as a
customer route, it will export it to P2, in which case C1 and C2 are now providing transit service to traffic
from P2 bound for D.

Sibling relationships can be tamed considerably, however, if we adopt a requirement that collections of
linked siblings act as a unit, keeping track of the original non-sibling source (that is, customer, provider or
peer) of each route. Let us say that autonomous systems S and S1 are in the same sibling family if there
is a chain of autonomous systems S0. . . Sn so that S=S0, Sn=S1, and each consecutive Si-1 and Si, iďn, are
siblings. We can then define the following property:

Selective Export Property: A sibling family satisfies this property if, whenever one member
of the family learns of a route from a provider (respectively peer or customer) then all other

324 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

members of the family treat the route as a provider (respectively peer or customer) route when
deciding whether to export.

In other words, in the situation diagrammed above, in which C1 has learned of a route to D from its provider
P1, C2 will also treat this route as a non-customer route and will not export it to P2.

In the real world, BGP relationships may not fit any of the above three categories, or else there may be many
sibling relationships for which the selective-export property fails. However, quite often these relationships
do hold to a useful degree.

We can also specialize the relationships to a particular set of destinations, or even to an individual destina-
tion; for example, autonomous systems C and P might be said to have a customer-to-provider relationship
for destination D if C learned its route to D from a non-customer, does not export this route to P, and P does
export to C its own route to D.

BGP certainly allows for complicated variations: if a regional provider is a customer of a large transit
backbone, then the backbone might only announce routes listed in transit agreement (rather than all routes,
as above). There is a supposition here that the regional provider has multiple connections, and has contracted
with that particular transit backbone only for certain routes. But we can fit this into the classification above
either by restricting attention to the set of routes listed in the agreement, or by declaring that in principle the
transit provider exports all routes, but the regional customer doesn’t import the ones it hasn’t paid for.

10.6.9.1 BGP No-Valley Theorem

A consequence of adherence to the above classification and attendant export rules is the no-valley theorem
of [LG01]: Suppose every pair of adjacent ASes has a relationship described by the customer-provider,
peer-to-peer or sibling rules above (now taken to be definitions of these three relationships). In addition,
every sibling family abides by the selective-export property. Let A=A0 be an autonomous system that has
received a route to destination D with AS-path xA1,A2,. . . ,Any. Then: in this AS-path, there is at most one
peer-to-peer link. Links to the left of the peer-to-peer link (that is, closer to A) are either customerÑprovider
links or siblingÑsibling links; that is, they are non-downwards. To the right of the peer-to-peer link, there
are only providerÑcustomer or siblingÑsibling links; that is, these are non-upwards. If there is no peer-to-
peer link, then we can still divide the AS-path into a non-downwards first part and a non-upwards second
part.

Intuitively, autonomous systems on the right (non-upwards) part of the path export the route to D as a
customer route. Autonomous systems on the left (non-downwards) part of the path export the route from
provider to customer.

The no-valley theorem can be seen as an illustration of the power of the restrictions built into the customer-
to-provider and peer-to-peer export rules.

We give an informal argument for the case in which the AS-path has no peer-to-peer link. First, note that
BGP rules mean that each autonomous system ASi in the path has received the route to D from neighbor
ASi+1 with AS-path xAi+1,. . . ,Any.

If the no-valley theorem were to fail, then somewhere along the AS-path in order of increasing i we would
have a downward link followed by, eventually, an upward link. Choose the largest i for which this arrange-
ment appears, and let k be the position of the first subsequent upward link, so that

• Ai to Ai+1 is provider-to-customer

10.6 Border Gateway Protocol, BGP 325

An Introduction to Computer Networks, Release 1.9.21

• Aj to Aj+1 is sibling-to-sibling for i<j<k-1

• Ak-1 to Ak is customer-to-provider.

Then the route to D was acquired by Ak-1 from its provider Ak, and so is a provider route. The set
{Ai+1,. . . ,Ak-1} is a sibling family, and so by the selective-export rule Ai+1 also treats this route to D as
a provider route. It therefore cannot export this non-customer route to different provider Ai, a contradiction.

For the case with a peer-to-peer edge, see exercise 12.0.

If the hypotheses of the no-valley theorem hold only for routes involving a particular destination or set of
destinations, then the theorem is still true for those routes.

The hypotheses of the no-valley theorem are not quite sufficient to guarantee convergence of the BGP
system to a stable set of routes. To ensure convergence in the case without sibling relationships, it is shown
in [GR01] that the following simple local_preference rule suffices:

If AS1 gets two routes r1 and r2 to a destination D, and the first AS of the r1 route is a customer
of AS1, and the first AS of r2 is not, then r1 will be assigned a higher local_preference value
than r2.

More complex rules exist that allow for cases when the local_preference values can be equal; one such rule
states that strict inequality is only required when r2 is a provider route. Other straightforward rules handle
the case of sibling relationships, eg by requiring that siblings have local_preference rules consistent with the
use of their shared connection only for backup.

As a practical matter, whether or not actual BGP relationships are consistent with the rules above, arrange-
ments resulting in actual BGP instability appear rare on the Internet.

10.6.10 Examples of BGP Instability

What if the “normal” rules regarding BGP preferences are not followed? It turns out that BGP allows
genuinely unstable situations to occur; this is a consequence of allowing each AS a completely independent
hand in selecting preference functions. Here are two simple examples, from [GR01].

Example 1: A stable state exists, but convergence to it is not guaranteed. Consider the following network
arrangement:

AS0 D

AS2

AS1

We assume AS1 prefers AS-paths to destination D in the following order:

xAS2,AS0y, xAS0y

That is, xAS2,AS0y is preferred to the direct path xAS0y (one way to express this preference might be
“prefer routes for which the AS-PATH begins with AS2”; perhaps the AS1–AS0 link is more expensive).
Similarly, we assume AS2 prefers paths to D in the order xAS1,AS0y, xAS0y. Both AS1 and AS2 start out

326 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

using path xAS0y; they advertise this to each other. As each receives the other’s advertisement, they apply
their preference order and therefore each switches to routing D’s traffic to the other; that is, AS1 switches
to the route with AS-path xAS2,AS0y and AS2 switches to xAS1,AS0y. This, of course, causes a routing
loop! However, as soon as they export these paths to one another, they will detect the loop in the AS-path
and reject the new route, and so both will switch back to xAS0y as soon as they announce to each other the
change in what they use.

This oscillation may continue indefinitely, as long as both AS1 and AS2 switch away from xAS0y at the
same moment. If, however, AS1 switches to xAS2,AS0y while AS2 continues to use xAS0y, then AS2 is
“stuck” and the situation is stable. In practice, therefore, eventual convergence to a stable state is likely.

AS1 and AS2 might choose not to export their D-route to each other to avoid this instability. Because they
do export this route to one another, they are siblings in the sense of the previous section.

Example 2: No stable state exists. This example is from [VGE00]. Assume that the destination D is attached
to AS0, and that AS0 in turn connects to AS1, AS2 and AS3 as in the following diagram:

D

AS1

AS0

AS3AS2

AS1-AS3 each have a direct route to AS0, but we assume each prefers the AS-path that takes their clockwise
neighbor; that is, AS1 prefers xAS3,AS0y to xAS0y; AS3 prefers xAS2,AS0y to xAS0y, and AS2 prefers
xAS1,AS0y to xAS0y. This is a peculiar, but legal, example of input filtering.

Suppose all initially adopt AS-path xAS0y, and advertise this, and AS1 is the first to look at the incoming
advertisements. AS1 switches to the route xAS3,AS0y, and announces this to AS2 and AS3.

At this point, AS2 sees that AS1 uses xAS3,AS0y; if AS2 switches to AS1 then its path would be
xAS1,AS3,AS0y rather than xAS1,AS0y and so it does not make the switch.

But AS3 does switch: it prefers xAS2,AS0y and this is still available. Once it makes this switch, and
advertises it, AS1 sees that the route it had been using, xAS3,AS0y, has become xAS3,AS1,AS0y. At this
point AS1 switches back to xAS0y.

Now AS2 can switch to using xAS1,AS0y, and does so. After that, AS3 finds it is now using xAS2,AS1,AS0y
and it switches back to xAS0y. This allows AS1 to switch to the longer route, and then AS2 switches back
to the direct route, and then AS3 gets the longer route, then AS2 again, etc, forever rotating clockwise.

Because each of AS1, AS2 and AS3 export their route to D to both their neighbors, they must all be siblings
of one another.

10.6 Border Gateway Protocol, BGP 327

An Introduction to Computer Networks, Release 1.9.21

10.6.11 BGP Security and Route Registries

As indicated in the sidebar BGP Breakdowns in 10.6.4 BGP Filtering and Routing Policies, it is quite easy
for a site to advertise a route to a destination that it in fact cannot reach; BGP neighbors who accept such a
route will find that destination unreachable. BGP is traditionally based on trust, and security is difficult.

One strategy for preventing false BGP claims is to crosscheck destinations advertised by BGP neighbors
with public databases of information about autonomous systems and about assignments of IP address blocks.
Such databases are managed by multiple Internet registries, including the top-level regional registries ARIN,
RIPE, APNIC, AfriNIC and LACNIC mentioned in 1.10.2 The Future of IPv4 and many more sub-
registries. These databases are known as Internet Routing Registries, or IRRs. It is common for some
IRRs to mirror the data held by others. The term “IRR”, in the singular, is sometimes used to denote the
collective union of all the individual IRRs.

Any BGP route report indicates, by virtue of the AS-path, the origin AS for the IP destination address block.
The most basic form of BGP security is origin validation: ensuring that the origin AS appearing in the
AS-path is in fact entitled to be the origin AS for that IP address block; that is, the origin AS either owns the
block or is the designated ISP for the owner of the block.

Origin validation would prevent an autonomous system from advertising itself as the origin AS for someone
else’s active block of IP addresses, thus preventing access to that block; this is known as BGP hijacking. It
would also prevent an AS from finding a block of IP addresses nobody is actually using, and fraudulently
claiming it as its own; this is known as IP-prefix squatting and is surprisingly common.

Origin validation would not, by itself, prevent an AS, say Q, from claiming to have a direct connection to
another AS, say R, that is the valid owner of an IP address block D. If Q is not in fact connected to R, then
traffic routed to D via Q will be lost. While Q could thus block access to D, it would not be able to make
use of those addresses. Ideally, we also want some form of path validation; one form of this might be
verification that each AS along an AS-path is properly connected to the adjacent ASes in the AS-path.

IRR-based validation is intended for customer-provider AS relationships in the sense of 10.6.9 BGP Re-
lationships. Let P be an AS and let Q be its customer; we outline how P can use IRRs – and some modest
coercion – to validate routes received by Q. From the definition of the customer-provider relationship, Q
will only advertise to P its “customer routes”: its own routes, and the customer routes of its own customers.

If Q advertises to P a route to one of its own address blocks A, P ÐQ-A, then P can use the IRR data to
confirm that A is in fact owned by Q; an example of address-block lookup appears in the next section. It is
quite possible that Q will not have listed A with any IRR, so P may elect to require such listing by adopting
a policy that routes from customers will not be accepted without matching IRR address-block records. In
the absence of such requirements, IRR data is notoriously incomplete, though it may still be useful.

Now suppose R is a customer of Q that advertises address block B to Q, and Q in turn advertises B to P:
P ÐQ R-B. The first step is origin validation: P will need to find an IRR record establishing R as the
owner of B. This time, however, for complete validation P will also need evidence that R is a customer of Q.
This second verification – path validation – is beyond the scope of origin validation. However, if this is not
established, Q might potentially be attempting to block access to B, at least partially, by claiming a route to
B via a false connection to R. One approach to path validation is for P to require that Q provides a list of its
customers, in the form of an “AS Set”, below.

There is one additional, though less malicious, common error: accidentally and mistakenly offering transit
service. This happens if an autonomous system, say Q, has a valid route to a non-customer address block

328 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

D (which might even be the entire Internet), and unintentionally advertises this route to a neighboring AS
P. P may now route all its traffic to D via Q, which the latter may be ill-prepared to handle. This is known
as a route leak. IRR validation can prevent route leaks as well as hijacking and prefix squatting: if Q
accidentally advertises to P a non-customer route, then the IRR data can be used to recognize it as such, and
P can then decline to accept it.

If the BGP relationship between Q and P is one of siblings, rather than customer and provider, then Q will
export to P all its routes (and vice-versa). It is probably impractical for P to validate every route it receives
from Q. However, sibling ASes typically have a much closer relationship than provider-customer ASes; P
here might be inclined simply to trust the routes exported by Q.

10.6.11.1 IRR Lookups

IRR records can be accessed by using the whois command, although sometimes other interfaces are also
provided. While whois is perhaps most commonly used to look up information about domains (eg whois
luc.edu), it also supports multiple other query types. Advanced uses of whois usually require specifying
a particular whois server, via the -h option, in addition to the query. In the examples here, we will use the
whois.radb.net server. IRR records are created using the Routing Policy Specification Language,
RPSL, defined in RFC 2622 and with companion usage document RFC 2650; the created records are then
uploaded to the appropriate IRR.

Loyola University owns the 147.126.0.0/16 address block, and advertises this block to its BGP peers. To
use whois to query about this block, we can use the command

whois -h whois.radb.net 147.126.0.0/16

We get back a list of information, including the AS number and the owner (the output here has been abbre-
viated):

route: 147.126.0.0/16
origin: AS7968
descr: Loyola University Chicago

We can also ask about a specific IP address, eg 147.126.2.45. It turns out that Loyola has records for multiple
sub-blocks of 147.126.0.0/16 (to accommodate the assignment of IP addresses to different campuses), and
for this query we get back records for both the top-level /16 block and for 147.126.0.0/20. (Reading closely,
we also find that, while these sub-block records are managed directly by Loyola, the top-level 147.126.0.0/16
block is managed (as of 2020) by proxy by XO Communications.)

We can also query the AS number itself. AS8, in the following example (from the RADB documentation),
belongs to Rice University.

whois -h whois.radb.net as8

The abbreviated output (as of 2020) is

aut-num: AS8
as-name: RICE
descr: Rice University AS
import: from AS2914

10.6 Border Gateway Protocol, BGP 329

https://tools.ietf.org/html/rfc2622.html
https://tools.ietf.org/html/rfc2650.html
https://www.xo.com/

An Introduction to Computer Networks, Release 1.9.21

action pref=700;
accept ANY AND NOT {0.0.0.0/0}

import: from AS3356 4.30.109.33 at 4.30.109.34
action pref=700; med=20;
accept ANY

export: to AS2914 128.241.2.165 at 128.241.2.166
announce RS-RICE-PUBLIC-SUBNETS

export: to AS3356 4.7.145.189 at 4.7.145.190
announce RS-RICE-PUBLIC-SUBNETS

export: to AS3356 4.30.109.33 at 4.30.109.34
announce RS-RICE-PUBLIC-SUBNETS

In this example we see both import and export rules, corresponding to the BGP import and export fil-
ters. The first import rule says that from AS2914 (NTT Communications) we accept any route except a
default route (0.0.0.0/0). The second import rule, for AS3356 (Level3/CenturyLink) includes MED values
(10.6.6.3 MULTI_EXIT_DISC). In addition to validating address blocks, the provider ASes can use the
declared import and export rules to crosscheck against the advertisements received via BGP.

The export rules here contain a Route Set RS-RICE-PUBLIC-SUBNETS (Route Set names must begin
with “RS-“); we can query for more information about this route set with whois -h whois.radb.
net '!iRS-RICE-PUBLIC-SUBNETS'. The use of Route Sets makes export rules easier to write (and
maintain!) when multiple IP-address blocks are being exported.

It is also possible to define AS Sets, which are lists of ASes. This is the preferred way for an AS to supply
to its provider a list of its customers. For example, if we look up AS19754 (The Fusion Network), we get
(among other things)

import: from AS19754:AS-CUSTOMERS accept PeerAS
export: to AS1299 announce AS-TFNNET
export: to AS19754:AS-CUSTOMERS announce ANY

The PeerAS keyword stands for the recipient’s AS number. AS-TFNNET is a single-level AS Set name;
AS19754:AS-CUSTOMERS is a hierarchical AS Set name (AS Set names must be globally unique, so
prepending ones AS-number is often useful). The third line above means that all routes are announced to
the local AS-CUSTOMERS list; that is, transit services are provided to the AS’s customers, as expected.
Any higher-level provider can retrieve this AS-CUSTOMERS list, eg by using the “!i” flag in the whois
query as with the Route Set example above. Note that, in the context of a customer-provider relationship,
a higher-level provider can reasonably infer that any AS to which AS19754 provides transit services is a
customer, and thus that the AS19754:AS-CUSTOMERS AS Set is in fact a customer list for AS19754; the
fact that “CUSTOMER” appears in the name is conventional but not essential.

These and other commands can give a good description, for a given AS, of what networks and what ASes
are its customers, and for whom it provides transit services, assuming the AS has taken care to create the
appropriate records. With suitable automated processing, and suitable BGP support, this approach can be
very effective in validating the information received via BGP.

The organization MANRS (Mutually Agreed Norms for Routing Security) was created in 2014 to improve
routing security and to encourage best practices. One of those best practices is the use of IRR data for BGP
validation.

330 10 Large-Scale IP Routing

https://www.ntt.com/en/services/network/gin.html
https://www.centurylink.com/
https://www.manrs.org/

An Introduction to Computer Networks, Release 1.9.21

10.6.11.2 RPKI

Another, newer, approach to BGP integrity is Resource Public Key Infrastructure, or RPKI, described in
RFC 6840. The idea here is to set up a mechanism by which ASes can obtain cryptographically signed
assurances – known as certificates, and very similar to the certificates of 22.10.2 TLS and 22.10.2.1 Cer-
tificate Authorities – that a given IP address block is in fact owned by the AS that claims to be the origin of
routes to that address block. This achieves the origin validation described above, though other attacks may
still be possible.

An AS wanting to participate in RPKI bundles its AS number and IP address blocks into a “certificate
request”, which it then submits to an appropriate authority for digital signing. Once the request is signed, it
becomes a Route Origin Authorization, or ROA, which other ASes can then use to verify that the first AS
is properly the origin of its claimed address blocks.

The signers of ROAs – akin to certificate authorities, as in 22.10.2.1 Certificate Authorities – are largely
the same organizations that run IRRs: the IANA, the five regional registries ARIN, RIPE, APNIC, AfriNIC
and LACNIC mentioned in 1.10.2 The Future of IPv4, and any local registries delegated by one of these.
Because these are the organizations that hand out IP address blocks, they are in a strong position to verify
address-block ownership.

But IP-address ownership is a legal concern, not a technical one. If an AS sells an address block to someone
else, must the transfer be approved by the appropriate route registry? Most registries have always required
this on paper, but IRRs and RPKI give teeth to this policy. What if an IP-address transfer is part of a legal
action valid in the country of the ASes involved, but is not recognized in the country of the registrar? Who
might be liable if access to someone’s site is blocked due to an improperly signed ROA? For these and other
reasons, ARIN has a somewhat daunting Relying Party Agreement that ASes must sign before being allowed
to participate in ROA creation. An analysis in [YW19] suggests that legal considerations have slowed RPKI
adoption.

The verification of ROAs, along with access to ROAs and IRRs generally, is not part of the BGP protocol.
If an AS wants to use an IRR or ROA to validate its routing decisions, it must obtain the appropriate
information outside of BGP itself. Typically this is done by having the local BGP router communicate with
a local “validation server”, which handles the details of verifications for newly seen routes.

10.7 Epilog

CIDR was a deceptively simple idea. At first glance it is a straightforward extension of the subnet concept,
moving the net/host division point to the left as well as to the right. But it has ushered in true hierarchical
routing, most often provider-based. While CIDR was originally offered as a solution to some early crises in
IPv4 address-space allocation, it has been adopted into the core of IPv6 routing as well.

Interior routing – using either distance-vector or link-state protocols – is neat and mathematical. Exterior
routing with BGP is messy and arbitrary. Perhaps the most surprising thing about BGP is that the Internet
works as well as it does, given the complexity of provider interconnections. The business side of routing
almost never has an impact on ordinary users. To an extent, BGP works well because providers volun-
tarily limit the complexity of their filtering preferences, but that seems to be largely because the business
relationships of real-world ISPs do not seem to require complex filtering.

10.7 Epilog 331

https://tools.ietf.org/html/rfc6840.html
https://www.iana.org/
https://www.arin.net/resources/manage/rpki/rpa.pdf

An Introduction to Computer Networks, Release 1.9.21

10.8 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
5.5 is distinct, for example, from exercises 5.0 and 6.0. Exercises marked with a ♢ have solutions or hints
at 24.9 Solutions for Large-Scale IP Routing.

0.5.♢ Consider the following IP forwarding table that uses CIDR.

destination next_hop
200.0.0.0/8 A
200.64.0.0/10 B
200.64.0.0/12 C
200.64.0.0/16 D

For each of the following IP addresses, indicate to what destination it is forwarded. 64 is 0x40, or 0100
0000 in binary.

(i) 200.63.1.1
(ii) 200.80.1.1
(iii) 200.72.1.1
(iv) 200.64.1.1

1.0. Consider the following IP forwarding table that uses CIDR. IP address bytes are in hexadecimal here,
so each hex digit corresponds to four address bits. This makes prefixes such as /12 and /20 align with
hex-digit boundaries. As a reminder of the hexadecimal numbering, “:” is used as the separator rather than
“.”

destination next_hop
81:30:0:0/12 A
81:3c:0:0/16 B
81:3c:50:0/20 C
81:40:0:0/12 D
81:44:0:0/14 E

For each of the following IP addresses, give the next_hop for each entry in the table above that it matches.
If there are multiple matches, use the longest-match rule to identify where the packet would be forwarded.

(i) 81:3b:15:49
(ii) 81:3c:56:14
(iii) 81:3c:85:2e
(iv) 81:4a:35:29
(v) 81:47:21:97
(vi) 81:43:01:c0

2.0. Consider the following IP forwarding table, using CIDR. As in exercise 1, IP address bytes are in
hexadecimal, and “:” is used as the separator as a reminder.

332 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

destination next_hop
00:0:0:0/2 A
40:0:0:0/2 B
80:0:0:0/2 C
c0:0:0:0/2 D

(a). To what next_hop would each of the following be routed? 63:b1:82:15, 9e:00:15:01, de:ad:be:ef
(b). Explain why every IP address is routed somewhere, even though there is no default entry. Hint: convert
the first bytes to binary.

3.0. Give an IPv4 forwarding table – using CIDR – that will route all Class A addresses (first bit 0) to
next_hop A, all Class B addresses (first two bits 10) to next_hop B, and all Class C addresses (first three bits
110) to next_hop C.

4.0. Suppose a router using CIDR has the following entries. Address bytes are in decimal except for the
third byte, which is in binary.

destination next_hop
37.149.0000 0000.0/18 A
37.149.0100 0000.0/18 A
37.149.1000 0000.0/18 A
37.149.1100 0000.0/18 B

If the next_hop for the last entry were also A, we could consolidate these four into a single entry
37.149.0.0/16Ñ A. But with the final next_hop as B, how could these four be consolidated into two entries?
You will need to assume the longest-match rule.

5.0. Suppose P, Q and R are ISPs with respective CIDR address blocks (with bytes in decimal) 51.0.0.0/8,
52.0.0.0/8 and 53.0.0.0/8. P then has customers A and B, to which it assigns address blocks as follows:

A: 51.10.0.0/16
B: 51.23.0.0/16

Q has customers C and D and assigns them address blocks as follows:

C: 52.14.0.0/16
D: 52.15.0.0/16

(a).♢ Give forwarding tables for P, Q and R assuming they connect to each other and to each of their own
customers.
(b). Now suppose A switches from provider P to provider Q, and takes its address block with it. Give the
changes to the forwarding tables for P, Q and R; the longest-match rule will be needed to resolve conflicts.

5.5 Let P, Q and R be the ISPs of exercise 5.0. This time, suppose customer C switches from provider Q to

10.8 Exercises 333

An Introduction to Computer Networks, Release 1.9.21

provider R. R will now have a new entry 52.14.0.0/16 Ñ C. Give the changes to the forwarding tables of P
and Q.

6.0. Suppose P, Q and R are ISPs as in exercise 5.0. This time, P and R do not connect directly; they
route traffic to one another via Q. In addition, customer B is multihomed and has a secondary connection
to provider R; customer D is also multihomed and has a secondary connection to provider P. R and P use
these secondary connections to send to B and D respectively; however, these secondary connections are not
advertised to other providers. Give forwarding tables for P, Q and R.

7.0. Consider the following network of providers P-S, all using BGP. The providers are the horizontal lines;
each provider is its own AS.

Provider P

Provider S

Provider R

Provider Q

net NR

net NS

net NQ

(a).♢ What routes to network NS will P receive, assuming each provider exports all its routes to its
neighbors without filtering? For each route, list the AS-path.
(b). What routes to network NQ will P receive? For each route, list the AS-path.
(c). Suppose R now uses export filtering so as not to advertise any of its routes to P, though it does continue
to advertise its routes to S. What routes to network NR will P receive, with AS-paths?

8.0. Consider the following network of Autonomous Systems AS1 through AS6, which double as destina-
tions. When AS1 advertises itself to AS2, for example, the AS-path it provides is xAS1y.

AS1 AS2 AS3
:
:
:

AS4 AS5 AS6

(a). If neither AS3 nor AS6 exports their AS3–AS6 link to their neighbors AS2 and AS5 to the left, what
routes will AS2 receive to reach AS5? Specify routes by AS-path.
(b). What routes will AS2 receive to reach AS6?
(c). Suppose AS3 exports to AS2 its link to AS6, but AS6 continues not to export the AS3–AS6 link to
AS5. How will AS5 now reach AS3? How will AS2 now reach AS6? Assume that there are no local
preferences in use in BGP best-path selection, and that the shortest AS-path wins.

334 10 Large-Scale IP Routing

An Introduction to Computer Networks, Release 1.9.21

9.0. Suppose that Internet routing in the US used geographical routing, and the first 12 bits of every IP
address represent a geographical area similar in size to a telephone area code. Megacorp gets the prefix
12.34.0.0/16, based geographically in Chicago, and allocates subnets from this prefix to its offices in all 50
states. Megacorp routes all its internal traffic over its own network.

(a). Assuming all Megacorp traffic must enter and exit in Chicago, what is the route of traffic to and from
the San Diego office to a client also in San Diego?
(b). Now suppose each office has its own link to a local ISP, but still uses its 12.34.0.0/16 IP addresses.
Now what is the route of traffic between the San Diego office and its neighbor?
(c). Suppose Megacorp gives up and gets a separate geographical prefix for each office, eg 12.35.1.0/24 for
San Diego and 12.37.3.0/24 for Boston. Traffic into and out of Megacorp will now take geographically
reasonable paths. However, how must Megacorp now configure its internal IP forwarding tables to ensure
that its internal traffic is still routed entirely over its own network?

10.0. Suppose we try to use BGP’s strategy of exchanging destinations plus paths as an interior routing-
update strategy, perhaps replacing distance-vector routing. No costs or hop-counts are used, but routers
attach to each destination a list of the routers used to reach that destination. Routers can also have route
preferences, such as “prefer my link to B whenever possible”.

(a). Consider the network of 9.2 Distance-Vector Slow-Convergence Problem:

D A B

The D–A link breaks, and B offers A what it thinks is its own route to D. Explain how exchanging path
information prevents a routing loop here.
(b). Suppose the network is as below, and initially each router knows about itself and its immediately
adjacent neighbors. What sequence of router announcements can lead to A reaching F via
AÑDÑEÑBÑCÑF, and what individual router preferences would be necessary? (Initially, for example,
A would reach B directly; what preference might make it prefer AÑDÑEÑB?)

A B C

D E F

(c). Explain why this method is equivalent to using the hopcount metric with either distance-vector or
link-state routing, if routers are not allowed to have preferences and if the router-path length is used as a
tie-breaker.

11.0. In the following AS-path from AS0 to AS4, with customers lower than providers, how far can a
customer route of AS0 be exported towards AS4? How far can a customer route of AS4 be exported towards
AS0?

10.8 Exercises 335

An Introduction to Computer Networks, Release 1.9.21

AS1
/ \

/ \
/ AS2--peer--AS3

/ \
AS0 AS4

12.0. Complete the proof of the no-valley theorem of 10.6.9 BGP Relationships to include peer-to-peer
links.

(a). Show that the existing argument also works if the Ai-to-Ai+1 link was peer-to-peer rather than provider-
to-customer, establishing that an upwards link cannot appear to the right of a peer-to-peer link.

(b). Show that the existing argument works if the Ak-1-to-Ak link was peer-to-peer rather than customer-to-
provider, establishing that a downwards link cannot appear to the left of a peer-to-peer link.

(c). Show that there cannot be two peer-to-peer links.

336 10 Large-Scale IP Routing

11 UDP TRANSPORT

The standard transport protocols riding above the IP layer are TCP and UDP. As we saw in Chapter 1, UDP
provides simple datagram delivery to remote sockets, that is, to xhost,porty pairs. TCP provides a much
richer functionality for sending data, but requires that the remote socket first be connected. In this chapter,
we start with the much-simpler UDP, including the UDP-based Trivial File Transfer Protocol.

We also review some fundamental issues any transport protocol must address, such as lost final packets and
packets arriving late enough to be subject to misinterpretation upon arrival. These fundamental issues will
be equally applicable to TCP connections.

11.1 User Datagram Protocol – UDP

RFC 1122 refers to UDP as “almost a null protocol”; while that is something of a harsh assessment, UDP
is indeed fairly basic. The two features it adds beyond the IP layer are port numbers and a checksum. The
UDP header consists of the following:

Source Port Destination Port

Length Data Checksum

0 16 32

The port numbers are what makes UDP into a real transport protocol: with them, an application can now
connect to an individual server process (that is, the process “owning” the port number in question), rather
than simply to a host.

UDP is unreliable, in that there is no UDP-layer attempt at timeouts, acknowledgment and retransmission;
applications written for UDP must implement these. As with TCP, a UDP xhost,porty pair is known as a
socket (though UDP ports are considered a separate namespace from TCP ports). UDP is also unconnected,
or stateless; if an application has opened a port on a host, any other host on the Internet may deliver packets
to that xhost,porty socket without preliminary negotiation.

An old bit of Internet humor about UDP’s unreliability has it that if I send you a UDP joke, you might not
get it.

UDP packets use the 16-bit Internet checksum (5.4 Error Detection) on the data. While it is seldom done
today, the checksum can be disabled and the field set to the all-0-bits value, which never occurs as an actual
ones-complement sum. The UDP checksum covers the UDP header, the UDP data and also a “pseudo-IP
header” that includes the source and destination IP addresses. If a NAT router rewrites an IP address or port,
the UDP checksum must be updated.

UDP packets can be dropped due to queue overflows either at an intervening router or at the receiving host.
When the latter happens, it means that packets are arriving faster than the receiver can process them. Higher-

337

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

level protocols that define ACK packets (eg UDP-based RPC, below) typically include some form of flow
control to prevent this.

UDP is popular for “local” transport, confined to one LAN. In this setting it is common to use UDP as the
transport basis for a Remote Procedure Call, or RPC, protocol. The conceptual idea behind RPC is that
one host invokes a procedure on another host; the parameters and the return value are transported back and
forth by UDP. We will consider RPC in greater detail below, in 11.5 Remote Procedure Call (RPC); for
now, the point of UDP is that on a local LAN we can fall back on rather simple mechanisms for timeout and
retransmission.

UDP is well-suited for “request-reply” semantics beyond RPC; one can use TCP to send a message and get
a reply, but there is the additional overhead of setting up and tearing down a connection. DNS uses UDP,
largely for this reason. However, if there is any chance that a sequence of request-reply operations will be
performed in short order then TCP may be worth the overhead.

UDP is also popular for real-time transport; the issue here is head-of-line blocking. If a TCP packet is
lost, then the receiving host queues any later data until the lost data is retransmitted successfully, which can
take several RTTs; there is no option for the receiving application to request different behavior. UDP, on
the other hand, gives the receiving application the freedom simply to ignore lost packets. This approach is
very successful for voice and video, which are loss-tolerant in that small losses simply degrade the received
signal slightly, but delay-intolerant in that packets arriving too late for playback might as well not have
arrived at all. Similarly, in a computer game a lost position update is moot after any subsequent update.
Loss tolerance is the reason the Real-time Transport Protocol, or RTP, is built on top of UDP rather than
TCP. It is common for VoIP telephone calls to use RTP and UDP. See also the NoTCP Manifesto.

There is a dark side to UDP: it is sometimes the protocol of choice in flooding attacks on the Internet, as
it is easy to send UDP packets with spoofed source address. See the Internet Draft draft-byrne-opsec-udp-
advisory. That said, it is not especially hard to send TCP connection-request (SYN) packets with spoofed
source address. It is, however, quite difficult to get TCP source-address spoofing to work for long enough
that data is delivered to an application process; see 12.10.1 ISNs and spoofing.

UDP also sometimes enables what are called traffic amplification attacks: the attacker sends a small mes-
sage to a server, with spoofed source address, and the server then responds to the spoofed address with a
much larger response message. This creates a larger volume of traffic to the victim than the attacker would
be able to generate directly. One approach is for the server to limit the size of its response – ideally to the
size of the client’s request – until it has been able to verify that the client actually receives packets sent to its
claimed IP address. QUIC uses this approach; see 12.22.4.4 Connection handshake and TLS encryption.

11.1.1 QUIC

Sometimes UDP is used simply because it allows new or experimental protocols to run entirely as user-space
applications; no kernel updates are required, as would be the case with TCP changes. Google has created
a protocol named QUIC (Quick UDP Internet Connections, chromium.org/quic) in this category, rather
specifically to support the HTTP protocol. QUIC can in fact be viewed as a transport protocol specifically
tailored to HTTPS: HTTP plus TLS encryption (22.10.2 TLS).

QUIC also takes advantage of UDP’s freedom from head-of-line blocking. For example, one of QUIC’s
goals includes supporting multiplexed streams in a single connection (eg for the multiple components of a
web page). A lost packet blocks its own stream until it is retransmitted, but the other streams can continue

338 11 UDP Transport

http://notcp.io/
http://tools.ietf.org/html/draft-byrne-opsec-udp-advisory-00
http://tools.ietf.org/html/draft-byrne-opsec-udp-advisory-00
http://www.chromium.org/quic
https://en.wikipedia.org/wiki/HTTPS

An Introduction to Computer Networks, Release 1.9.21

without waiting. An early version of QUIC supported error-correcting codes (5.4.2 Error-Correcting
Codes); this is another feature that would be difficult to add to TCP.

In many cases QUIC eliminates the initial RTT needed for setting up a TCP connection, allowing data
delivery with the very first packet. This usually this requires a recent previous connection, however, as
otherwise accepting data in the first packet opens the recipient up to certain spoofing attacks. Also, QUIC
usually eliminates the second (and maybe third) RTT needed for negotiating TLS encryption (22.10.2 TLS).

QUIC provides support for advanced congestion control, currently (2014) including a UDP analog of TCP
CUBIC (15.15 TCP CUBIC). QUIC does this at the application layer but new congestion-control mecha-
nisms within TCP often require client operating-system changes even when the mechanism lives primarily at
the server end. (QUIC may require kernel support to make use of ECN congestion feedback, 14.8.3 Explicit
Congestion Notification (ECN), as this requires setting bits in the IP header.) QUIC represents a promising
approach to using UDP’s flexibility to support innovative or experimental transport-layer features.

One downside of QUIC is its nonstandard programming interface, but note that Google can (and does)
achieve widespread web utilization of QUIC simply by distributing the client side in its Chrome browser.
Another downside, more insidious, is that QUIC breaks the “social contract” that everyone should use TCP
so that everyone is on the same footing regarding congestion. It turns out, though, that TCP users are not
in fact all on the same footing, as there are now multiple TCP variants (15 Newer TCP Implementations).
Furthermore, QUIC is supposed to compete fairly with TCP. Still, QUIC does open an interesting can of
worms.

Because many of the specific features of QUIC were chosen in response to perceived difficulties with TCP,
we will explore the protocol’s details after introducing TCP, in 12.22.4 QUIC Revisited.

11.1.2 DCCP

The Datagram Congestion Control Protocol, or DCCP, is another transport protocol build atop UDP, pre-
serving UDP’s fundamental tolerance to packet loss. It is outlined in RFC 4340. DCCP adds a number
of TCP-like features to UDP; for our purposes the most significant are connection setup and teardown (see
12.22.3 DCCP) and TCP-like congestion management (see 14.6.3 DCCP Congestion Control).

DCCP data packets, while numbered, are delivered to the application in order of arrival rather than in order
of sequence number. DCCP also adds acknowledgments to UDP, but in a specialized form primarily for
congestion control. There is no assumption that unacknowledged data packets will ever be retransmitted; that
decision is entirely up to the application. Acknowledgments can acknowledge single packets or, through the
DCCP acknowledgment-vector format, all packets received in a range of recent sequence numbers (SACK
TCP, 13.6 Selective Acknowledgments (SACK), also supports this).

DCCP does support reliable delivery of control packets, used for connection setup, teardown and option
negotiation. Option negotiation can occur at any point during a connection.

DCCP packets include not only the usual application-specific UDP port numbers, but also a 32-bit service
code. This allows finer-grained packet handling as it unambiguously identifies the processing requested by
an incoming packet. The use of service codes also resolves problems created when applications are forced
to use nonstandard port numbers due to conflicts.

DCCP is specifically intended to run in in the operating-system kernel, rather than in user space. This is
because the ECN congestion-feedback mechanism (14.8.3 Explicit Congestion Notification (ECN)) requires
setting flag bits in the IP header, and most kernels do not allow user-space applications to do this.

11.1 User Datagram Protocol – UDP 339

https://tools.ietf.org/html/rfc4340.html

An Introduction to Computer Networks, Release 1.9.21

11.1.3 UDP Simplex-Talk

One of the early standard examples for socket programming is simplex-talk. The client side reads lines of
text from the user’s terminal and sends them over the network to the server; the server then displays them
on its terminal. The server does not acknowledge anything sent to it, or in fact send any response to the
client at all. “Simplex” here refers to the one-way nature of the flow; “duplex talk” is the basis for Instant
Messaging, or IM.

Even at this simple level we have some details to attend to regarding the data protocol: we assume here that
the lines are sent with a trailing end-of-line marker. In a world where different OS’s use different end-of-
line marks, including them in the transmitted data can be problematic. However, when we get to the TCP
version, if arriving packets are queued for any reason then the embedded end-of-line character will be the
only thing to separate the arriving data into lines.

As with almost every Internet protocol, the server side must select a port number, which with the server’s IP
address will form the socket address to which clients connect. Clients must discover that port number or
have it written into their application code. Clients too will have a port number, but it is largely invisible.

On the server side, simplex-talk must do the following:

• ask for a designated port number

• create a socket, the sending/receiving endpoint

• bind the socket to the socket address, if this is not done at the point of socket creation

• receive packets sent to the socket

• for each packet received, print its sender and its content

The client side has a similar list:

• look up the server’s IP address, using DNS

• create an “anonymous” socket; we don’t care what the client’s port number is

• read a line from the terminal, and send it to the socket address xserver_IP,porty

11.1.3.1 The Server

We will start with the server side, presented here in Java. The Java socket implementation is based mostly
on the BSD socket library, 1.16 Berkeley Unix. We will use port 5432; this can easily be changed if, for
example, on startup an error message like “cannot create socket with port 5432” appears. The port we use
here, 5432, has also been adopted by PostgreSQL for TCP connections. (The client, of course, would also
need to be changed.)

Java DatagramPacket type

Java DatagramPacket objects contain the packet data and the xIP_address,porty source or destination.
Packets themselves combine both data and address, of course, but nonetheless combining these in a single
programming-language object is not an especially common design choice. The original BSD socket
library implemented data and address as separate parameters, and many other languages have followed

340 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

that precedent. A case can be made that the Java approach violates the single-responsibility principle,
because data and address are so often handled separately.

The socket-creation and port-binding operations are combined into the single operation new
DatagramSocket(destport). Once created, this socket will receive packets from any host that ad-
dresses a packet to it; there is no need for preliminary connection. In the original BSD socket library, a
socket is created with socket() and bound to an address with the separate operation bind().

The server application needs no parameters; it just starts. (That said, we could make the port number a
parameter, to allow easy change.) The server accepts both IPv4 and IPv6 connections; we return to this
below.

Though it plays no role in the protocol, we will also have the server time out every 15 seconds and display
a message, just to show how this is done. Implementations of real UDP protocols essentially always must
arrange when attempting to receive a packet to time out after a certain interval with no response.

The file below is at udp_stalks.java.

/* simplex-talk server, UDP version */

import java.net.*;
import java.io.*;

public class stalks {

static public int destport = 5432;
static public int bufsize = 512;
static public final int timeout = 15000; // time in milliseconds

static public void main(String args[]) {
DatagramSocket s; // UDP uses DatagramSockets

try {
s = new DatagramSocket(destport);

}
catch (SocketException se) {

System.err.println("cannot create socket with port " + destport);
return;

}
try {

s.setSoTimeout(timeout); // set timeout in milliseconds
} catch (SocketException se) {

System.err.println("socket exception: timeout not set!");
}

// create DatagramPacket object for receiving data:
DatagramPacket msg = new DatagramPacket(new byte[bufsize], bufsize);

while(true) { // read loop
try {

msg.setLength(bufsize); // max received packet size
s.receive(msg); // the actual receive operation
System.err.println("message from <" +

11.1 User Datagram Protocol – UDP 341

https://en.wikipedia.org/wiki/Single_responsibility_principle
http://intronetworks.cs.luc.edu/auxiliary_files/stalk/udp_stalks.java

An Introduction to Computer Networks, Release 1.9.21

msg.getAddress().getHostAddress() + "," + msg.getPort() +
ãÑ">");

} catch (SocketTimeoutException ste) { // receive() timed out
System.err.println("Response timed out!");
continue;

} catch (IOException ioe) { // should never happen!
System.err.println("Bad receive");
break;

}

String str = new String(msg.getData(), 0, msg.getLength());
System.out.print(str); // newline must be part of str

}
s.close();

} // end of main
}

11.1.3.2 UDP and IP addresses

The server line s = new DatagramSocket(destport) creates a DatagramSocket object
bound to the given port. If a host has multiple IP addresses (that is, is multihomed), packets sent to that
port to any of those IP addresses will be delivered to the socket, including localhost (and in fact all IPv4
addresses between 127.0.0.1 and 127.255.255.255) and the subnet broadcast address (eg 192.168.1.255). If
a client attempts to connect to the subnet broadcast address, multiple servers may receive the packet (in this
we are perhaps fortunate that the stalk server does not reply).

Alternatively, we could have used

s = new DatagramSocket(int port, InetAddress local_addr)

in which case only packets sent to the host and port through the host’s specific IP address local_addr
would be delivered. It does not matter here whether IP forwarding on the host has been enabled. In the
original C socket library, this binding of a port to (usually) a server socket was done with the bind() call.
To allow connections via any of the host’s IP addresses, the special IP address INADDR_ANY is passed to
bind().

When a host has multiple IP addresses, the BSD socket library and its descendents do not appear to provide
a way to find out to which these an arriving UDP packet was actually sent (although it is supposed to,
according to RFC 1122, §4.1.3.5). Normally, however, this is not a major difficulty. If a host has only one
interface on an actual network (ie not counting loopback), and only one IP address for that interface, then
any remote clients must send to that interface and address. Replies (if any, which there are not with stalk)
will also come from that address.

Multiple interfaces do not necessarily create an ambiguity either; the easiest such case to experiment with
involves use of the loopback and Ethernet interfaces (though one would need to use an application that,
unlike stalk, sends replies). If these interfaces have respective IPv4 addresses 127.0.0.1 and 192.168.1.1,
and the client is run on the same machine, then connections to the server application sent to 127.0.0.1 will
be answered from 127.0.0.1, and connections sent to 192.168.1.1 will be answered from 192.168.1.1. The
IP layer sees these as different subnets, and fills in the IP source-address field according to the appropriate

342 11 UDP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

subnet. The same applies if multiple Ethernet interfaces are involved, or if a single Ethernet interface is
assigned IP addresses for two different subnets, eg 192.168.1.1 and 192.168.2.1.

Life is slightly more complicated if a single interface is assigned multiple IP addresses on the same subnet,
eg 192.168.1.1 and 192.168.1.2. Regardless of which address a client sends its request to, the server’s reply
will generally always come from one designated address for that subnet, eg 192.168.1.1. Thus, it is possible
that a legitimate UDP reply will come from a different IP address than that to which the initial request was
sent.

If this behavior is not desired, one approach is to create multiple server sockets, and to bind each of the
host’s network IP addresses to a different server socket.

11.1.3.3 The Client

Next is the Java client version udp_stalkc.java. The client – any client – must provide the name of the host
to which it wishes to send; as with the port number this can be hard-coded into the application but is more
commonly specified by the user. The version here uses host localhost as a default but accepts any other
hostname as a command-line argument. The call to InetAddress.getByName(desthost) invokes
the DNS system, which looks up name desthost and, if successful, returns an IP address. (InetAddress.
getByName() also accepts addresses in numeric form, eg “127.0.0.1”, in which case DNS is not neces-
sary.) When we create the socket we do not designate a port in the call to new DatagramSocket(); this
means any port will do for the client. When we create the DatagramPacket object, the first parameter is
a zero-length array as the actual data array will be provided within the loop.

A certain degree of messiness is introduced by the need to create a BufferedReader object to handle
terminal input.

// simplex-talk CLIENT in java, UDP version

import java.net.*;
import java.io.*;

public class stalkc {

static public BufferedReader bin;
static public int destport = 5432;
static public int bufsize = 512;

static public void main(String args[]) {
String desthost = "localhost";
if (args.length >= 1) desthost = args[0];

bin = new BufferedReader(new InputStreamReader(System.in));

InetAddress dest;
System.err.print("Looking up address of " + desthost + "...");
try {

dest = InetAddress.getByName(desthost); // DNS query
}
catch (UnknownHostException uhe) {

System.err.println("unknown host: " + desthost);

11.1 User Datagram Protocol – UDP 343

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/udp_stalkc.java

An Introduction to Computer Networks, Release 1.9.21

return;
}
System.err.println(" got it!");

DatagramSocket s;
try {

s = new DatagramSocket();
}
catch(IOException ioe) {

System.err.println("socket could not be created");
return;

}

System.err.println("Our own port is " + s.getLocalPort());

DatagramPacket msg = new DatagramPacket(new byte[0], 0, dest,
ãÑdestport);

while (true) {
String buf;
int slen;
try {

buf = bin.readLine();
}
catch (IOException ioe) {

System.err.println("readLine() failed");
return;

}

if (buf == null) break; // user typed EOF character

buf = buf + "\n"; // append newline character
slen = buf.length();
byte[] bbuf = buf.getBytes();

msg.setData(bbuf);
msg.setLength(slen);

try {
s.send(msg);

}
catch (IOException ioe) {

System.err.println("send() failed");
return;

}
} // while
s.close();

}
}

The default value of desthost here is localhost; this is convenient when running the client and the
server on the same machine, in separate terminal windows.

344 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

All packets are sent to the xdest,destporty address specified in the initialization of msg. Alternatively, we
could have called s.connect(dest,destport). This causes nothing to be sent over the network, as
UDP is connectionless, but locally marks the socket s allowing it to send only to xdest,destporty. In Java
we still have to embed the destination address in every DatagramPacket we send(), so this offers no
benefit, but in other languages this can simplify subsequent sending operations.

Like the server, the client works with both IPv4 and IPv6. The InetAddress object dest in the server
code above can hold either IPv4 or IPv6 addresses; InetAddress is the base class with child classes
Inet4Address and Inet6Address. If the client and server can communicate at all via IPv6 and if the
value of desthost supplied to the client is an IPv6-only name, then dest will be an Inet6Address
object and IPv6 will be used.

For example, if the client is invoked from the command line with java stalkc ip6-localhost, and
the name ip6-localhost resolves to the IPv6 loopback address ::1, the client will send its packets to
an stalk server on the same host using IPv6 (and the loopback interface).

If greater IPv4-versus-IPv6 control is desired, one can replace the getByName() call with the following,
where dests now has type InetAddress[]:

dests = InetAddress.getAllByName(desthost);

This returns an array of all addresses associated with the given name. One can then find the IPv6 addresses
by searching this array for addresses addr for which addr instanceof Inet6Address.

For non-Java languages, IP-address objects often have an AddressFamily attribute that can be used to
determine whether an address is IPv4 or IPv6. See also 8.11 Using IPv6 and IPv4 Together.

Finally, here is a simple python version of the client, udp_stalkc.py.

#!/usr/bin/python3

from socket import *
from sys import argv

portnum = 5432

def talk():
rhost = "localhost"
if len(argv) > 1:

rhost = argv[1]
print("Looking up address of " + rhost + "...", end="")
try:

dest = gethostbyname(rhost)
except (GAIerror, herror) as mesg: # GAIerror: error in

ãÑgethostbyname()
errno,errstr=mesg.args
print("\n ", errstr);
return;

print("got it: " + dest)
addr=(dest, portnum) # a socket address
s = socket(AF_INET, SOCK_DGRAM)
s.settimeout(1.5) # we don't actually need to set

ãÑtimeout here

11.1 User Datagram Protocol – UDP 345

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/udp_stalkc.py

An Introduction to Computer Networks, Release 1.9.21

while True:
try:

buf = input("> ")
except:

break
s.sendto(bytes(buf + "\n", 'ascii'), addr)

talk()

Why not C?

While C is arguably the most popular language for network programming, it does not support IP addresses
and other network objects as first-class types, and so we omit it here. But see 22.2.2 An Actual Stack-
Overflow Example and 22.10.3 A TLS Programming Example for TCP-based C versions of stalk-like
programs. (The problem is not entirely C’s fault; a network address might be an IPv4 address or an IPv6
address (or even a “named pipe” address); these objects are of different sizes and so addresses must be
handled by reference, which is awkward in C.)

To experiment with these on a single host, start the server in one window and one or more clients in other
windows. One can then try the following:

• have two clients simultaneously running, and sending alternating messages to the same server

• invoke the client with the external IP address of the server in dotted-decimal, eg 10.0.0.3 (note that
localhost is 127.0.0.1)

• run the java and python clients simultaneously, sending to the same server

• run the server on a different host (eg a virtual host or a neighboring machine)

• invoke the client with a nonexistent hostname

One can also use netcat, below, as a client, though netcat as a server will not work for the multiple-
client experiments.

Note that, depending on the DNS server, the last one may not actually fail. When asked for the DNS name
of a nonexistent host such as zxqzx.org, many ISPs will return the IP address of a host running a web server
hosting an error/search/advertising page (usually their own). This makes some modicum of sense when
attention is restricted to web searches, but is annoying if it is not, as it means non-web applications have no
easy way to identify nonexistent hosts.

Simplex-talk will work if the server is on the public side of a NAT firewall. No server-side packets need to
be delivered to the client! But if the other direction works, something is very wrong with the firewall.

11.1.4 netcat

The versatile netcat utility (also sometimes spelled nc) utility enables sending and receiving of individual
UDP (and TCP) packets; we can use it to substitute for the stalk client, or, with a limitation, the server. (The
netcat utility, unlike stalk, supports bidirectional communication.)

346 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

The netcat utility is available for Windows, Linux and Macintosh systems, in both binary and source
forms, from a variety of places and in something of a variety of versions. The classic version is available
from sourceforge.net/projects/nc110; a newer implementation is ncat. The Wikipedia page has additional
information.

As with stalk, netcat sends the final end-of-line marker along with its data. The -u flag is used to request
UDP. To send to port 5432 on localhost using UDP, like an stalk client, the command is

netcat -u localhost 5432

One can then type multiple lines that should all be received by a running stalk server. If desired, the source
port can be specified with the -p option; eg netcat -u -p 40001 localhost 5432.

To act as an stalk server, we need the -l option to ask netcat to listen instead of sending:

netcat -l -u 5432

One can then send lines using stalkc or netcat in client mode. However, once netcat in server mode
receives its first UDP packet, it will not accept later UDP packets from different sources (some versions of
netcat have a -k option to allow this for TCP, but not for UDP). (This situation arises because netcat
makes use of the connect() call on the server side as well as the client, after which the server can
only send to and receive from the socket address to which it has connected. This simplifies bidirectional
communication. Often, UDP connect() is called only by the client, if at all. See the paragraph about
connect() following the Java stalkc code in 11.1.3.3 The Client.)

11.1.5 Binary Data

In the stalk example above, the client sent strings to the server. However, what if we are implementing a
protocol that requires us to send binary data? Or designing such a protocol? The client and server will now
have to agree on how the data is to be encoded.

As an example, suppose the client is to send to the server a list of 32-bit integers, organized as follows.
The length of the list is to occupy the first two bytes; the remainder of the packet contains the consecutive
integers themselves, four bytes each, as in the diagram:

4 2003 3011 4003 10009

packet data layout

The client needs to create the byte array organized as above, and the server needs to extract the values. (The
inclusion of the list length as a short int is not really necessary, as the receiver will be able to infer the
list length from the packet size, but we want to be able to illustrate the encoding of both int and short
int values.)

The protocol also needs to define how the integers themselves are laid out. There are two common ways to
represent a 32-bit integer as a sequence of four bytes. Consider the integer 0x01020304 = 1ˆ2563 + 2ˆ2562

+ 3ˆ256 + 4. This can be encoded as the byte sequence [1,2,3,4], known as big-endian encoding, or as
[4,3,2,1], known as little-endian encoding; the former was used by early IBM mainframes and the latter is

11.1 User Datagram Protocol – UDP 347

http://sourceforge.net/projects/nc110/
https://nmap.org/ncat/
https://en.wikipedia.org/wiki/Netcat

An Introduction to Computer Networks, Release 1.9.21

used by most Intel processors. (We are assuming here that both architectures represent signed integers using
twos-complement; this is now universal but was not always.)

To send 32-bit integers over the network, it is certainly possible to tag the data as big-endian or little-endian,
or for the endpoints to negotiate the encoding. However, by far the most common approach on the Internet –
at least below the application layer – is to follow the convention of RFC 1700 and use big-endian encoding
exclusively; big-endian encoding has since come to be known as “network byte order”.

How one converts from “host byte order” to “network byte order” is language-dependent. It must always be
done, even on big-endian architectures, as code may be recompiled on a different architecture later.

In Java the byte-order conversion is generally combined with the process of conversion from int to
byte[]. The client will use a DataOutputStream class to support the writing of the binary val-
ues to an output stream, through methods such as writeInt() and writeShort(), together with a
ByteArrayOutputStream class to support the conversion of the output stream to type byte[]. The
code below assumes the list of integers is initially in an ArrayList<Integer> named theNums.

ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);
try {

dos.writeShort(theNums.size());
for (int n : theNums) {

dos.writeInt(n);
}

} catch (IOException ioe) { /* exception handling */ }

byte[] bbuf = baos.toByteArray();
msg.setData(bbuf); // msg is the DatagramPacket

ãÑobject to be sent

The server then needs to to the reverse; again, msg is the arriving DatagramPacket. The code below simply
calculates the sum of the 32-bit integers in msg:

ByteArrayInputStream bais = new ByteArrayInputStream(msg.getData(), 0, msg.
ãÑgetLength());
DataInputStream dis = new DataInputStream(bais);
int sum = 0;
try {

int count = dis.readShort();
for (int i=0; i<count; i++) {

sum += dis.readInt();
}

} catch (IOException ioe) { /* more exception handling */ }

A version of simplex-talk for lists of integers can be found in client saddc.java and server sadds.java. The
client reads from the command line a list of character-encoded integers (separated by whitespace), constructs
the binary encoding as above, and sends them to the server; the server prints their sum. Port 5434 is used;
this can be changed if necessary.

In the C language, we can simply allocate a char[] of the appropriate size and write the network-byte-
order values directly into it. Conversion to network byte order and back is done with the following library
calls:

348 11 UDP Transport

http://en.wikipedia.org/wiki/Two%27s_complement
https://tools.ietf.org/html/rfc1700.html
http://intronetworks.cs.luc.edu/auxiliary_files/stalk/saddc.java
http://intronetworks.cs.luc.edu/auxiliary_files/stalk/sadds.java

An Introduction to Computer Networks, Release 1.9.21

• htonl(): host-to-network conversion for long (32-bit) integers

• ntohl(): network-to-host conversion for long integers

• htons(): host-to-network conversion for short (16-bit) integers

• ntohs(): network-to-host conversion for short integers

A certain amount of casting between int * and char * is also necessary. As both casting and byte-order
conversions are error-prone, it is best if all conversions are made in a block, just after a packet arrives or just
before it is sent, rather than on demand throughout the program.

In general, the designer of a protocol needs to select an unambiguous format for all binary data; protocol-
defining RFCs always include such format details. This can be a particular issue for floating-point data,
for which two formats can have the same endianness but still differ, eg in normalization or the size of the
exponent field. Formats for structured data, such as arrays, must also be spelled out; in the example above
the list size was indicated by a length field but other options are possible.

The example above illustrates fixed-field-width encoding. Another possible option, using variable-length
encoding, is ASN.1 using the Basic Encoding Rules (21.6 ASN.1 Syntax and SNMP); fixed-field encoding
sometimes becomes cumbersome as data becomes more hierarchical.

At the application layer, the use of non-binary encodings is common, though binary encodings continue to
remain common as well. Two popular formats using human-readable unicode strings for data encoding are
ASN.1 with its XML Encoding Rules and JSON. While the latter format originated with JavaScript, it is
now widely supported by many other languages.

11.2 Trivial File Transport Protocol, TFTP

We now introduce a real protocol based on UDP: the Trivial File Transport Protocol, or TFTP. While TFTP
supports file transfers in both directions, we will restrict attention to the more common case where the client
requests a file from the server. TFTP does not support a mechanism for authentication; any requestable files
are available to anyone. In this TFTP does not differ from basic web browsing; as with web servers, a TFTP
file server must ensure that requests are disallowed if the file – for example ../../../etc/passwd –
is not within a permitted directory.

Because TFTP is UDP-based, and clients can be implemented very compactly, it is well-suited to the down-
loading of startup files to very compact systems, including diskless systems. Because it uses stop-and-wait,
often uses a fixed timeout interval, and offers limited security, TFTP is typically confined to internal use
within a LAN.

Although TFTP is a very simple protocol, for correct operation it must address several fundamental transport
issues; these are discussed in detail in the following section. TFTP is presented here partly as a way to intro-
duce these transport issues; we will later return to these same issues in the context of TCP (12.11 Anomalous
TCP scenarios).

TFTP, documented first in RFC 783 and updated in RFC 1350, has five packet types:

• Read ReQuest, RRQ, containing the filename and a text/binary indication

• Write ReQuest, WRQ

• Data, containing a 16-bit block number and up to 512 bytes of data

11.2 Trivial File Transport Protocol, TFTP 349

http://en.wikipedia.org/wiki/JSON
https://tools.ietf.org/html/rfc783.html
https://tools.ietf.org/html/rfc1350.html

An Introduction to Computer Networks, Release 1.9.21

• ACK, containing a 16-bit block number

• Error, for certain designated errors. All errors other than “Unknown Transfer ID” are cause for sender
termination.

Data block numbering begins at 1; we will denote the packet with the Nth block of data as Data[N]. Ac-
knowledgments contain the block number of the block being acknowledged; thus, ACK[N] acknowledges
Data[N]. All blocks of data contain 512 bytes except the final block, which is identified as the final block
by virtue of containing less than 512 bytes of data. If the file size was divisible by 512, the final block will
contain 0 bytes of data. TFTP block numbers are 16 bits in length, and are not allowed to wrap around.

Because TFTP uses UDP (as opposed to TCP) it must take care of packetization itself, and thus must choose
a block size small enough to avoid fragmentation (7.4 Fragmentation). While negotiation of the block
size would have been possible, as is done by TCP’s 12.13 Path MTU Discovery, it would have added
considerable complexity.

The TFTP server listens on UDP port 69 for arriving RRQ packets (and WRQ, though we will not consider
those here). For each RRQ requesting a valid file, TFTP server implementations almost always create a
separate process (or thread) to handle the transfer. That child process will then obtain an entirely new UDP
port, which will be used for all further interaction with the client, at least for this particular transfer.

As we shall see below, this port change has significant functional implications in preventing old-duplicate
packets, though for now we can justify it as making the implementer’s life much easier. With the port
change, the server child process responsible for the transfer has to interact with only one client; all arriving
packets must have come from the client for which the child process was created (while it is possible for stray
packets to arrive from other endpoints, the child process can ignore them). Without the port change, on the
other hand, handling multiple concurrent transfers would be decidedly complicated: the server would have
to sort out, for each arriving packet, which transfer it belonged to. Each transfer would have its own state
information including block number, open file, and the time of the last successful packet. The port-change
rule does have the drawback of preventing the use of TFTP through NAT firewalls.

In the absence of packet loss or other errors, TFTP file requests typically proceed as follows:

1. The client sends a RRQ to server port 69.

2. The server creates a child process, which obtains a new port, s_port, from the operating system.

3. The server child process sends Data[1] from s_port.

4. The client receives Data[1], and thus learns the value of s_port. The client will verify that each future
Data[N] arrives from this same port.

5. The client sends ACK[1] (and all future ACKs) to the server’s s_port.

6. The server child process sends Data[2], etc, each time waiting for the client ACK[N] before sending
Data[N+1].

7. The transfer process stops when the server sends its final block, of size less than 512 bytes, and the
client sends the corresponding ACK.

We will refer to the client’s learning of s_port in step 3 as latching on to that port. Here is a diagram; the
server child process (with new port s_port) is represented by the blue line at right.

350 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

 TFTP
no losses

RRQ

Ack 1

Data 2

Data 3, <512 B

Ack 3

Ack 2

Data 1

client server

New port s_port opened
for this transfer

⋮

client latches on
to s_port

We turn next to the complications introduced by taking packet losses and reordering into account.

11.3 Fundamental Transport Issues

The possibility of lost or delayed packets introduces several fundamental issues that any transport strategy
must handle correctly for proper operation; we will revisit these in the context of TCP in 12.11 Anomalous
TCP scenarios. The issues we will consider include

• old duplicate packets

• lost final ACK

• duplicated connection request

• reboots

In this section we will discuss these issues both in general and in particular how TFTP takes them into
account.

11.3.1 Old Duplicate Packets

Perhaps the trickiest issue is old duplicate packets: packets from the past arriving quite late, but which are
mistakenly accepted as current.

For a TFTP example, suppose the client chooses port 2000 and requests file “foo”, and the server then
chooses port 4000 for its child process. During this transfer, Data[2] gets duplicated (perhaps through

11.3 Fundamental Transport Issues 351

An Introduction to Computer Networks, Release 1.9.21

timeout and retransmission) and one of the copies is greatly delayed. The other copy arrives on time,
though, and the transfer concludes.

Now, more-or-less immediately after, the client initiates a second request, this time for file “bar”. Fatefully,
the client again chooses port 2000 and the server child process again chooses port 4000.

At the point in the second transfer when the client is waiting for Data[2] from file “bar”, we will suppose the
old-duplicate Data[2] from file “foo” finally shows up. There is nothing in the packet to indicate anything is
amiss: the block number is correct, the destination port of 4000 ensures delivery to the current server child
process, and the source port of 2000 makes the packet appear to be coming from the current client. The
wrong Data[2] is therefore accepted as legitimate, and the file transfer is corrupted.

An old packet from a previous instance of the connection, as described above, is called an external old
duplicate. An essential feature of the external case is that the connection is closed and then reopened a short
time later, using the same port numbers at each end. As a connection is often defined by its endpoint port
numbers (more precisely, its socket addresses), we refer to “reopening” the connection even if the second
instance is completely unrelated. Two separate instances of a connection between the same socket addresses
are sometimes known as incarnations of the connection, particularly in the context of TCP.

Old duplicates can also be internal, from an earlier point in the same connection instance. For example,
if TFTP allowed its 16-bit block numbers to wrap around, then a very old Data[3] might be accepted in
lieu of Data[3+216]. Internal old duplicates are usually prevented – or rendered improbable – by numbering
the data, either by block or by byte, and using sufficiently many bits that wrap-around is unlikely. TFTP
prevents internal old duplicates simply by not allowing its 16-bit block numbers to wrap around; this is
effective, but limits the maximum file to 512B ˆ (216–1), or about 32 MB. If we were not concerned with
old duplicates, TFTP’s stop-and-wait could make do with 1-bit sequence numbers (6.5 Exercises, exercise
8.5).

Random Ports?

RFC 1350 states “The TID’s [port numbers] chosen for a connection should be randomly chosen, so
that the probability that the same number is chosen twice in immediate succession is very low.” A literal
interpretation is that an implementation should choose a random 16-bit number and ask for that as its TID.
But the author knows of no implementation that actually does this; all seem to create sockets (eg with
Java’s DatagramSocket()) and accept the port number assigned to the new socket by the operating
system. That port number will not be “random” in the statistical sense, but will be very likely different
from any recently used port. Should this be interpreted as noncompliance with the RFC? The author has
no idea.

TFTP’s defense against external old duplicates is based on requiring that both endpoints try to choose a
different port for each separate transfer (RFC 1350 states that each side should choose its port number
“randomly”). As long as either endpoint succeeds in choosing a new port, external old duplicates cannot
interfere; see exercise 7.0. If ports are chosen at random, the probability that both sides will chose the same
pair of ports for the subsequent connection is around 1/232; if ports are assigned by the operating system,
there is an implicit assumption that the OS will not reissue the same port twice in rapid succession. If a
noncompliant implementation on one side reuses its port numbers, TFTP transfers are protected as long
as the other side chooses a new port, though the random probability of failure rises to 1/216. Note that
this issue represents a second, more fundamental reason for having the server choose a new port for each
transfer, unrelated to making the implementer’s life easier.

352 11 UDP Transport

https://tools.ietf.org/html/rfc1350.html
https://tools.ietf.org/html/rfc1350.html

An Introduction to Computer Networks, Release 1.9.21

After enough time, port numbers will eventually be recycled, but we will assume old duplicates have a much
smaller lifetime.

Both the external and internal old-duplicate scenarios assume that the old duplicate was sent earlier, but was
somehow delayed in transit for an extended period of time, while later packets were delivered normally.
Exactly how this might occur remains unclear; perhaps the least far-fetched scenario is the following:

• A first copy of the old duplicate was sent

• A routing error occurs; the packet is stuck in a routing loop

• An alternative path between the original hosts is restored, and the packet is retransmitted successfully

• Some time later, the packet stuck in the routing loop is released, and reaches its final destination

Another scenario involves a link in the path that supplies link-layer acknowledgment: the packet was sent
once across the link, the link-layer ACK was lost, and so the packet was sent again. Some mechanism is
still needed to delay one of the copies.

Most solutions to the old-duplicate problem assume some cap on just how late an old duplicate can be. In
practical terms, TCP officially once took this time limit to be 60 seconds, but implementations now usually
take it to be 30 seconds. Other protocols often implicitly adopt the TCP limit. Once upon a time, IP routers
were expected to decrement a packet’s TTL field by 1 for each second the router held the packet in its queue;
in such a world, IP packets cannot be more than 255 seconds old.

It is also possible to prevent external old duplicates by including a connection count parameter in the
transport or application header. For each consecutive connection, the connection count is incremented by (at
least) 1. A separate connection-count value must be maintained by each side; if a connection-count value
is ever lost, a suitable backup mechanism based on delay might be used. As an example, see 12.12 TCP
Faster Opening.

11.3.2 Lost Final ACK

In most protocols, most packets will be acknowledged. The final packet (almost always an ACK), however,
cannot itself be acknowledged, as then it would not be the final packet. Somebody has to go last. This leaves
some uncertainty on the part of the sender: did the last packet make it through, or not?

In the TFTP setting, suppose the server sends the final packet, Data[3]. The client receives it and sends
ACK[3], and then exits as the transfer is done; however, the ACK[3] is lost.

The server will eventually time out and retransmit Data[3] again. However, the client is no longer there to
receive the packet! The server will continue to timeout and retransmit the final Data packet until it gives up;
it will never receive confirmation that the transfer succeeded.

More generally, if A sends a message to B and B replies with an acknowledgment that is delivered to A,
then A and B both are both certain the message has been delivered successfully. B is not sure, however, that
A knows this.

An alternative formulation of the lost-final-ACK problem is the two-generals problem. Two generals wish
to agree on a time to attack, by exchanging messages. However, the generals must attack together, or not at
all. Because some messages may be lost, neither side can ever be completely sure of the agreement. If the
generals are Alice and Bob (22.5.1 Alice and Bob), the messages might look like this:

11.3 Fundamental Transport Issues 353

An Introduction to Computer Networks, Release 1.9.21

• Alice sends: Attack at noon

• Bob replies: Agreed (ie ACK)

After Bob receives Alice’s message, both sides know that a noon attack has been proposed. After Bob’s
reply reaches Alice, both sides know that the message has been delivered. If Alice’s message was an order
to Bob, this would be sufficient.

But if Alice and Bob must cooperate, this is not quite enough: at the end of the exchange above, Bob does
not know that Alice has received his reply; Bob might thus hesitate, fearing Alice might not know he’s on
board. Alice, aware of this possibility, might hesitate herself.

Alice might attempt to resolve this by acknowledging Bob’s ACK:

• Alice replies: Ok, we’re agreed on noon

But at this point Alice does not know if Bob has received this message. If Bob does not, Bob might still
hesitate. Not knowing, Alice too might hesitate. There is no end. See [AEH75].

Mathematically, there is no perfect solution to the two-generals problem; the generals can never be certain
they are in complete agreement to attack. Suppose, to the contrary, that a sequence of messages did bring
certainty of agreement to both Alice and Bob. Let M1, . . . , Mn be the shortest possible such sequence;
without loss of generality we may assume Alice sent Mn. Now consider what happens if this final message
is lost. From Alice’s perspective, there is no change at all, so Alice must still be certain Bob has agreed.
However, the now-shorter sequence M1, . . . , Mn-1 cannot also bring certainty to Bob, as this sequence has
length less than n, the supposed minimum here. So Bob is not certain, and so Alice’s certainty is misplaced.

In engineering terms, however, the probability of a misunderstanding can often be made vanishingly small.
Typically, if Alice does not receive Bob’s reply promptly, she will resend her message at regular timeout
intervals, until she does receive an ACK. If Bob can count on this behavior, he can be reasonably sure that
one of his ACKs must have made it back after enough time has elapsed.

For example, if Bob knows Alice will try a total of six times if she does not receive a response, and Bob only
receives Alice’s first two message instances, the fact that Alice appears to have stopped repeating her trans-
missions is reasonable evidence that she has received Bob’s response. Alternatively, if each message/ACK
pair has a 10% probability of failure, and Bob knows that Alice will retry her message up to six times over
the course of a day, then by the end of the day Bob can conclude that the probability that all six of his ACKs
failed is at most (0.1)6, or one in a million. It is not necessary in this case that Bob actually keep count of
Alice’s retry attempts.

For a TCP example, see 12 TCP Transport, exercise 12.0.

TFTP addresses the lost-final-ACK problem by recommending (though not requiring) that the receiver enter
into a DALLY state when it has sent the final ACK. In this state, the receiver responds only to duplicates
of the final DATA packet; its response is to retransmit the final ACK. While one lost final ACK is possible,
multiple such losses are unlikely; sooner or later the sender should receive the final ACK and will then exit.

The dally state will expire after an interval. This interval should be at least twice the sender’s timeout
interval, allowing for the sender to make three tries with the final data packet in all. Note that the receiver
has no direct way to determine the sender’s timeout value. Note also that dallying only provides increased
assurance, not certainty: it is possible that all final ACKs were lost.

The TCP analogue of dallying is the TIMEWAIT state (12.9 TIMEWAIT), though TIMEWAIT also has
another role related to prevention of old duplicates.

354 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

11.3.3 Duplicated Connection Request

We would also like to be able to distinguish between duplicated (eg retransmitted) connection requests and
close but separate connection requests, especially when the second of two separate connection requests
represents the cancellation of the first. Here is an outline in TFTP terms of the scenario we are trying to
avoid:

• The client sends RRQ(“foo”)

• The client changes its mind, or aborts, or reboots, or whatever

• The client sends RRQ(“bar”)

• The server responds with Data[1] from the first RRQ, that is, with file “foo”, while the client is
expecting file “bar”

In correct TFTP operation, it is up to the client to send the second RRQ(“bar”) from a new port. As long as
the client does that, changing its mind is not a problem. The server might end up sending Data[1] for file
“foo” off into the void – that is, to the first client port – until it times out, as TFTP doesn’t have a cancellation
message exactly. But the request for file “bar” should succeed normally. One minor issue is that, when a
TFTP application terminates, it may not have preserved anywhere a record of the port it used last, and so
may be unable to guarantee that a new port is different from those used previously. But both strategies of
11.3.1 Old Duplicate Packets – choosing a port number at random, and having the operating system assign
one – are quite effective here.

TFTP does run into a somewhat unexpected issue, however, when the client sends a duplicate RRQ; typically
this happens when the first RRQ times out. It is certainly possible to implement a TFTP server so as to
recognize that the second RRQ is a duplicate, perhaps by noting that it is from the same client socket
address and contains the same filename. In practice, however, this is incompatible with the simplified
implementation approach of 11.2 Trivial File Transport Protocol, TFTP in which the server starts a new
child process for each RRQ received.

What most TFTP server implementations do in this case is to start two sender processes, one for each
RRQ received, from two ports s_port1 and s_port2. Both will send Data[1] to the receiver. The receiver
is expected to “latch on” to the port of the first Data[1] packet it receives, recording its source port. The
second Data[1] will now appear to be from an incorrect port. The TFTP specification requires that a receiver
reply to any packets from an unknown port by sending an ERROR packet with the code “Unknown Transfer
ID” (where “Transfer ID” means “port number”); this causes the sender process that sent the later-arriving
Data[1] to shut down. The sender process that sent the winning Data[1] will continue normally. Were it not
for this duplicate-RRQ scenario, packets from an unknown port could probably be simply ignored.

It is theoretically possible for a malicious actor on the LAN to take advantage of this TFTP “latching on”
behavior to hijack anticipated RRQs. If the actor is aware that host C is about to request a file via TFTP, it
might send repeated copies of bad Data[1] to likely ports on C. When C does request a file, it may receive
the malicious file instead of what it asked for. Because the malicious application must guess the client’s port
number, though, this scenario appears to be of limited importance. However, many diskless devices do load
a boot file on startup via TFTP, and may do so from a predictable port number.

11.3 Fundamental Transport Issues 355

An Introduction to Computer Networks, Release 1.9.21

11.3.4 Reboots

Any ongoing communications protocol has to take into account the possibility that one side may reboot in
between messages from the other side. The primary issue is detection of the reboot, so the other side can
close the now-broken connection.

If the sending side of a TFTP connection reboots, packet exchange simply stops, assuming a typical receiver
that does not retransmit on timeouts. If the receiving side reboots, the sender will continue to send data
packets, but will receive no further acknowledgments. In most cases, the newly rebooted client will simply
ignore them.

The second issue with reboots is that the rebooting system typically loses all memory of what ports it has
used recently, making it difficult to ensure that it doesn’t reuse recently active ports. This leads to some risk
of old duplicates.

Here is a scenario, based on the one at the start of the previous section, in which a client reboot leads to
receipt of the wrong file. Suppose the client sends RRQ(“foo”), but then reboots before sending ACK[1].
After reboot, the client then sends RRQ(“bar”), from the same port; after the reboot the client will be unable
to guarantee not reopening a recently used port. The server, having received the RRQ(“foo”), belatedly
proceeds to send Data[1] for “foo”. The client latches on to this, and accepts file “foo” while believing it is
receiving file “bar”.

In practical terms, this scenario seems to be of limited importance, though “diskless” devices often do use
TFTP to request their boot image file when restarting, and so might be potential candidates.

11.4 Other TFTP notes

We now take a brief look at other aspects of TFTP unrelated to the fundamental transport issues above. We
include a brief outline of an implementation.

11.4.1 TFTP and the Sorcerer

TFTP uses a very straightforward implementation of stop-and-wait (6.1 Building Reliable Transport: Stop-
and-Wait). Acknowledgment packets contain the block number of the data packet being acknowledged; that
is, ACK[N] acknowledges Data[N].

In the original RFC 783 specification, TFTP was vulnerable to the Sorcerer’s Apprentice bug (6.1.2 Sor-
cerer’s Apprentice Bug). Correcting this problem was the justification for updating the protocol in RFC
1350, eleven years later. The omnibus hosts-requirements document RFC 1123 (referenced by RFC 1350)
describes the necessary change this way:

Implementations MUST contain the fix for this problem: the sender (ie, the side originating the
DATA packets) must never resend the current DATA packet on receipt of a duplicate ACK.

11.4.2 TFTP States

The TFTP specification is relatively informal; more recent protocols are often described using finite-state
terminology. In each allowable state, such a specification spells out the appropriate response to all packets.

356 11 UDP Transport

https://tools.ietf.org/html/rfc783.html
https://tools.ietf.org/html/rfc1350.html
https://tools.ietf.org/html/rfc1350.html
https://tools.ietf.org/html/rfc1123.html
https://tools.ietf.org/html/rfc1350.html

An Introduction to Computer Networks, Release 1.9.21

We can apply this approach to TFTP as well.

Above we defined a DALLY state, for the receiver only, with a specific response to arriving Data[N] packets.
There are two other important conceptual states for TFTP receivers, which we might call UNLATCHED and
ESTABLISHED.

When the receiver-client first sends RRQ, it does not know the port number from which the sender will send
packets. We will call this state UNLATCHED, as the receiver has not “latched on” to the correct port. In
this state, the receiver waits until it receives a packet from the sender that looks like a Data[1] packet; that
is, it is from the sender’s IP address, it has a plausible length, it is a DATA packet, and its block number is
1. When this packet is received, the receiver records s_port, and enters the ESTABLISHED state.

Once in the ESTABLISHED state, the receiver verifies for all packets that the source port number is s_port.
If a packet arrives from some other port, the receiver sends back to its source an ERROR packet with
“Unknown Transfer ID”, but continues with the original transfer.

Here is an outline, in java, of what part of the TFTP receiver source code might look like; the code here
handles the ESTABLISHED state. Somewhat atypically, the code here times out and retransmits ACK
packets if no new data is received in the interval TIMEOUT; generally timeouts are implemented only at the
TFTP sender side. Error processing is minimal, though error responses are sent in response to packets from
the wrong port as described in the previous section. For most of the other error conditions checked for, there
is no defined TFTP response.

The variables state, sendtime, TIMEOUT, thePacket, theAddress, thePort, blocknum and
expected_block would need to have been previously declared and initialized; sendtime represents
the time the most recent ACK response was sent. Several helper functions, such as getTFTPOpcode()
and write_the_data(), would have to be defined. The remote port thePort would be initialized at
the time of entry to the ESTABLISHED state; this is the port from which a packet must have been sent if it
is to be considered valid. The loop here transitions to the DALLY state when a packet marking the end of
the data has been received.

// TFTP code for ESTABLISHED state

while (state == ESTABLISHED) {
// check elapsed time
if (System.currentTimeMillis() > sendtime + TIMEOUT) {

retransmit_most_recent_ACK()
sendtime = System.currentTimeMillis()

// receive the next packet
try {

s.receive(thePacket);
}
catch (SocketTimeoutException stoe) { continue; } // try again
catch (IOException ioe) { System.exit(1); } // other errors

if (thePacket.getAddress() != theAddress) continue;
if (thePacket.getPort() != thePort) {

send_error_packet(...); // Unknown Transfer ID; see
ãÑtext

continue;
}
if (thePacket.getLength() < TFTP_HDR_SIZE) continue; // TFTP_HDR_SIZE =

ãÑ4

11.4 Other TFTP notes 357

An Introduction to Computer Networks, Release 1.9.21

opcode = thePacket.getData().getTFTPOpcode()
blocknum = thePacket.getData().getTFTPBlock()
if (opcode != DATA) continue;
if (blocknum != expected_block) continue;
write_the_data(...);
expected_block ++;
send_ACK(...); // and save it too for possible retransmission
sendtime = System.currentTimeMillis();
datasize = thePacket.getLength() - TFTP_HDR_SIZE;
if (datasize < MAX_DATA_SIZE) state = DALLY; // MAX_DATA_SIZE = 512

}

Note that the check for elapsed time is quite separate from the check for the
SocketTimeoutException. It is possible for the receiver to receive a steady stream of “wrong”
packets, so that it never encounters a SocketTimeoutException, and yet no “good” packet arrives
and so the receiver must still arrange (as above) for a timeout and retransmission.

11.4.3 TFTP Throughput

On a single physical Ethernet, the TFTP sender and receiver would alternate using the channel, with very
little “turnaround” time; the effective throughput would be close to optimal.

As soon as the store-and-forward delays of switches and routers are introduced, though, stop-and-wait be-
comes a performance bottleneck. Suppose that the path from sender A to receiver B passes through two
switches: A—S1—S2—B, and that on all three links only the bandwidth delay is significant. Because ACK
packets are so much smaller than DATA packets, we can effectively ignore the ACK travel time from B to
A.

With these assumptions, the throughput is about a third of the underlying bandwidth. This is because only
one of the three links can be active at any given time; the other two must be idle. We could improve
throughput threefold by allowing A to send three packets at a time:

• packet 1 from A to S1

• packet 2 from A to S1 while packet 1 goes from S1 to S2

• packet 3 from A to S1 while packet 2 goes from S1 to S2 and packet 1 goes from S2 to B

This amounts to sliding windows with a winsize of three. TFTP does not support this; in the next chapter
we study TCP, which does.

11.5 Remote Procedure Call (RPC)

A very different communications model, usually but not always implemented over UDP, is that of Remote
Procedure Call, or RPC. The name comes from the idea that a procedure call is being made over the
network; host A packages up a request, with parameters, and sends it to host B, which returns a reply. The
term request/reply protocol is also used for this. The side making the request is known as the client, and
the other side the server.

358 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

One common example is that of DNS: a host sends a DNS lookup request to its DNS server, and receives a
reply. Other examples include password verification, system information retrieval, database queries and file
I/O (below). RPC is also quite successful as the mechanism for interprocess communication within CPU
clusters, perhaps its most time-sensitive application.

While TCP can be used for processes like these, this adds the overhead of creating and tearing down a
connection; in many cases, the RPC exchange consists of nothing further beyond the request and reply and
so the TCP overhead would be nontrivial. RPC over UDP is particularly well suited for transactions where
both endpoints are quite likely on the same LAN, or are otherwise situated so that losses due to congestion
are negligible.

The drawback to UDP is that the RPC layer must then supply its own acknowledgment protocol. This is
not terribly difficult; usually the reply serves to acknowledge the request, and all that is needed is another
ACK after that. If the protocol is run over a LAN, it is reasonable to use a static timeout period, perhaps
somewhere in the range of 0.5 to 1.0 seconds.

client server

Request

Reply

ACK

Nonetheless, there are some niceties that early RPC implementations sometimes ignored, leading to a com-
plicated history; see 11.5.2 Sun RPC below.

It is essential that requests and replies be numbered (or otherwise identified), so that the client can determine
which reply matches which request. This also means that the reply can serve to acknowledge the request;
if reply[N] is not received; the requester retransmits request[N]. This can happen either if request[N] never
arrived, or if it was reply[N] that got lost:

client server

Request[N]

Reply[N]

client server

Request[N]

Reply[N]

Request[N]
timeout

Lost Request Lost Reply

Reply[N]

Request[N]timeout

When the server creates reply[N] and sends it to the client, it must also keep a cached copy of the reply, until

11.5 Remote Procedure Call (RPC) 359

An Introduction to Computer Networks, Release 1.9.21

such time as ACK[N] is received.

After sending reply[N], the server may receive ACK[N], indicating all is well, or may receive request[N]
again, indicating that reply[N] was lost, or may experience a timeout, indicating that either reply[N] or
ACK[N] was lost. In the latter two cases, the server should retransmit reply[N] and wait again for ACK[N].

Finally, let us suppose that the server host delivers to its request-processing application the first copy of
each request[N] to arrive, and that neither side crashes (or otherwise loses state in the middle of any
one request/reply/ACK sequence). Let us also assume that no packet reordering occurs, and every re-
quest[N], reply[N] or ACK[N], retransmitted often enough, eventually makes it to its destination. We then
have exactly-once semantics: while requests may be transmitted multiple times, they are processed (or
“executed”) once and only once.

11.5.1 Network File System

In terms of total packet volume, the application making the greatest use of early RPC was Sun’s Network
File System, or NFS; this allowed for a filesystem on the server to be made available to clients. When the
client opened a file, the server would send back a file handle that typically included the file’s identifying
“inode” number. For read() operations, the request would contain the block number for the data to be
read, and the corresponding reply would contain the data itself; blocks were generally 8 kB in size. For
write() operations, the request would contain the block of data to be written together with the block
number; the reply would contain an acknowledgment that it was received.

Usually an 8 kB block of data would be sent as a single UDP/IPv4 packet, using IPv4 fragmentation by the
sender for transmission over Ethernet.

11.5.2 Sun RPC

The original simple model above is quite serviceable. However, in the RPC implementation developed by
Sun Microsystems and documented in RFC 1831 (and now officially known as Open Network Computing,
or ONC, RPC), the final acknowledgment was omitted. As there are relatively few packet losses on a LAN,
this was not quite as serious as it might sound, but it did have a major consequence: the server could now
not afford to cache replies, as it would never receive an indication that it was ok to delete them. Therefore,
the request was re-executed upon receipt of a second request[N], as in the right-hand “lost reply” diagram
above.

This was often described as at-least-once semantics: if a client sent a request, and eventually received
a reply, the client could be sure that the request was executed at least once, but if a reply got lost then
the request might be transmitted more than once. Applications, therefore, had to be aware that this was a
possibility.

It turned out that for many requests, duplicate execution was not a problem. A request that has the same result
(and same side effects on the server) whether executed once or executed twice is known as idempotent.
While a request to read or write the next block of a file is not idempotent, a request to read or write block
37 (or any other specific block) is idempotent. Most data queries are also idempotent; a second query
simply returns the same data as the first. Even file open() operations are idempotent, or at least can be
implemented as such: if a file is opened the second time, the file handle is simply returned a second time.

360 11 UDP Transport

https://tools.ietf.org/html/rfc1831.html

An Introduction to Computer Networks, Release 1.9.21

Alas, there do exist fundamentally non-idempotent operations. File locking is one, or any form of exclusive
file open. Creating a directory is another, because the operation must fail if the directory already exists. Even
opening a file is not idempotent if the server is expected to keep track of how many open() operations have
been called, in order to determine if a file is still in use.

So why did Sun RPC take this route? One major advantage of at-least-once semantics is that it allowed the
server to be stateless. The server would not need to maintain any RPC state, because without the final ACK
there is no server RPC state to be maintained; for idempotent operations the server would generally not have
to maintain any application state either. The practical consequence of this was that a server could crash and,
because there was no state to be lost, could pick up right where it left off upon restarting.

Statelessness Inaction

Back when the Loyola CS department used Sun NFS extensively, server crashes would bring people
calmly out of their offices to find out what had happened; client-workstation processes doing I/O would
have locked up. Everyone would mill about in the hall until the server was rebooted, at which point they
would return to their work and were almost always able to pick up where they left off. If the server had
not been stateless, users would have been quite a bit less happy.

It is, of course, also possible to build recovery mechanisms into stateful protocols.

And for all that at-least-once semantics might today sound like an egregious shortcut, note that the exactly-
once protocol outlined in the final paragraph of 11.5 Remote Procedure Call (RPC) includes the decidedly
unrealistic requirement that neither side crashes. A few approaches to the reboot problem are reviewed in
11.5.4 RPC Refinements.

The lack of file-locking and other non-idempotent I/O operations, along with the rise of cheap client-
workstation storage (and, for that matter, more-reliable servers), eventually led to the decline of NFS over
RPC, though it has not disappeared. NFS can, if desired, also be run (statefully!) over TCP.

11.5.3 Serial Execution

In some RPC systems, even those with explicit ACKs, requests are executed serially by the server. Serial
execution is automatic if request[N+1] serves as an implicit ACK[N]. This is a problem for file I/O opera-
tions, as physical disk drives are generally most efficient when the I/O operations can be reordered to suit
the geometry of the disk. Disk drives commonly use the elevator algorithm to process requests: the read
head moves from low-numbered tracks outwards to high-numbered tracks, pausing at each track for which
there is an I/O request. Waiting for the Nth read to complete before asking the disk to start the N+1th one is
slow.

The best solution here, from the server application’s perspective, is to allow multiple outstanding requests
and out-of-order replies. This complicates the RPC protocol, however.

11.5.4 RPC Refinements

One basic network-level improvement to RPC concerns the avoidance of IP-level fragmentation. While
fragmentation is not a major performance problem on a single LAN, it may have difficulties over longer

11.5 Remote Procedure Call (RPC) 361

An Introduction to Computer Networks, Release 1.9.21

distances. One possible refinement is an RPC-level large-message protocol, that fragments at the RPC layer
and which supports a mechanism for retransmission, if necessary, only of those fragments that are actually
lost.

Another optimization might address the possibility that the client or the server might crash and reboot. To
detect client restarts we can add to the client side a “boot counter”, incremented on each reboot and then
rewritten to persistent storage. This value is then included in each request, and echoed back in each reply
and ACK. This allows the server to distinguish between requests sent before and after a client reboot; such
requests are conceptually unrelated and the mechanism here ensures they receive different identifiers. See
21.15.3 SNMPv3 Engines for a related example.

On the server side, allowing for crashes and reboots is even more complicated. If the goal is simply to make
the client aware that the server may have rebooted during a request/reply sequence, we might include the
server’s boot counter in each reply[N]; if the client sees a change, there may be a problem with the current
request. We might also include the client’s current estimate of the server’s boot counter in each request, and
have the server deny requests for which there is a mismatch.

In exceptional cases, we can liken requests to database transactions and include on the server side a database-
style crash-recovery journal. The goal is to allow the server, upon restarting, to identify requests that were
in progress at the time of the crash, and either to roll them back or to complete them. This is not trivial, and
can only be done for restricted classes of requests (eg reads and writes).

11.6 Epilog

UDP does not get as much attention as TCP, but between avoidance of connection-setup overhead, avoidance
of head-of-line blocking and high LAN performance, it holds its own.

We also use UDP here to illustrate fundamental transport issues, both abstractly and for the specific protocol
TFTP. We will revisit these fundamental issues extensively in the next chapter in the context of TCP; these
issues played a major role in TCP’s design.

11.7 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
7.5 is distinct, for example, from exercises 7.0 and 8.0. Exercises marked with a ♢ have solutions or hints
at* 24.10 Solutions for UDP.

1.0. Perform the UDP simplex-talk experiments discussed at the end of 11.1.3 UDP Simplex-Talk. Can
multiple clients have simultaneous sessions with the same server?

2.0. Suppose that both sides of a TFTP transfer implement retransmit-on-timeout and neither side imple-
ments retransmit-on-duplicate. What would happen in each of the following cases if the first Data[3] packet
is lost?

(a)♢. Sender timeout = receiver timeout = 2 seconds.
(b). Sender timeout = 1 second; receiver timeout = 3 seconds.
(c). Sender timeout = 3 seconds; receiver timeout = 1 second.

362 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

Assume the actual transfer time is negligible in comparison to the timeout intervals, and that the retransmit-
ted Data[3] is received successfully.

3.0. In the previous exercise, how do things change if the first ACK[3] is the packet that is lost?

4.0. For each state below, spell out plausible responses for a TFTP receiver upon receipt of a Data[N] packet.
Your answers may depend on N and the packet size. Indicate the events that cause a transition from one
state to the next. The TFTP states were proposed in 11.4.2 TFTP States.

(a). UNLATCHED
(b). ESTABLISHED
(c). DALLYING

Example: upon receipt of an ERROR packet, TFTP would in all three states exit.

5.0. In the TFTP-receiver code in 11.4.2 TFTP States, explain why we must check thePacket.
getLength() before extracting the opcode and block number.

6.0. Assume both the TFTP sender and the TFTP receiver implement retransmit-on-timeout but
not retransmit-on-duplicate. Outline a specific TFTP scenario in which the TFTP receiver of
11.4.2 TFTP States sets a socket timeout interval but never encounters a “hard” timeout – that
is, a SocketTimeoutException – and yet must timeout and retransmit. Hint: arrange so
the sender regularly times out and retransmits some packet, at an interval less than the receiver’s
SocketTimeoutException time, but it is not the packet the receiver is waiting for.

7.0. At the end of 11.3.1 Old Duplicate Packets, we claimed that if either side in the TFTP protocol changed
ports, the old-duplicate problem would not occur.

(a). If the client (receiver) changes its port number on a subsequent connection, but the server (sender) does
not, what prevents an old-duplicate data packet sent by the server from being accepted by the new client?
(b). If the server changes its port number on a subsequent connection, but the client does not, what prevents
an old-duplicate DATA[N] packet, with N>1, sent by the server from being accepted by the new client?

7.1 In part (b) of the previous exercise, it was claimed that an old-duplicate DATA[N] could not be accepted
as valid by the new receiver provided N>1. Give an example in which an old-duplicate DATA[1] is accepted
as valid.

7.5. Suppose a TFTP server implementation resends DATA[N] on receipt of a duplicate ACK[N-1], contrary
to 11.4.1 TFTP and the Sorcerer. It receives a file request from a partially implemented TFTP client, that
sends ACK[1] to the correct new port but then never increments the ACK number; the client’s response to
DATA[N] is always ACK[1]. What happens? (Based on a true story.)

8.0. In the simple RPC protocol at the beginning of 11.5 Remote Procedure Call (RPC), suppose that
the server sends reply[N] and experiences a timeout, receiving nothing back from the client. In the text we
suggested that most likely this meant ACK[N] was lost. Give another loss scenario, involving the loss of
two packets. Assume the client and the server have the same timeout interval.

11.7 Exercises 363

An Introduction to Computer Networks, Release 1.9.21

9.0. Suppose a Sun RPC read() request ends up executing twice. Unfortunately, in between successive
read() operations the block of data is updated by another process, so different data is returned. Is this a
failure of idempotence? Why or why not?

10.0. Outline an RPC protocol in which multiple requests can be outstanding, and replies can be sent in
any order. Assume that requests are numbered, and that ACK[N] acknowledges reply[N]. Should ACKs be
cumulative? If not, what should happen if an ACK is lost?

11.0. Consider the request[N]/reply[N]/ACK[N] protocol of 11.5 Remote Procedure Call (RPC), under the
assumption that requests are numbered sequentially, but packets may potentially be delivered out of order.
Thus, request[5] may arrive again after ACK[5] has been sent. and the first request[5] may even arrive after
ACK[6] has been sent.

(a). If requests are handled serially, as in 11.5.3 Serial Execution, what information does the server side
need to maintain in order to avoid duplicate execution of a request?
(b). What information does the server side need to maintain if requests are handled non-serially, that is,
there can be multiple outstanding requests at any one time? Assume that if request[6] arrives before
request[5], the server responds with reply[6] even though there is now a temporary gap in sequence
numbers.

12.0. Suppose an RPC client maintains a boot counter as in 11.5.4 RPC Refinements. Draw diagrams for
cases (a) and (b), and indicate how the boot counter is used to resolve the situation.

(a). The client sends request[N], but reboots before reply[N] is received.
(b). The client sends request[N], and then immediately reboots and sends an unrelated request that just
happens also to be numbered N.
(c). What would happen in the scenario in part (b) if the reply[N] packet did not echo back the
boot-counter value from the request[N] packet?

13.0. In this exercise we explore UDP connection state using netcat (11.1.4 netcat). Let A and B be two
hosts (not necessarily distinct!).

(a). Verify that you can exchange messages between A and B after starting the following; -u is for UDP
and -l is to create the server side (to “listen”).

In a terminal on B: netcat -u -l 5432

In a terminal on A: netcat -u B 5432

(b). Now kill the netcat on A and restart it. A different local port is likely chosen by the second
netcat; verify that communication fails.

(c). Now repeat the process, but this time in addition specify the source port on A with the -p option:

364 11 UDP Transport

An Introduction to Computer Networks, Release 1.9.21

In a terminal on B: netcat -u -l 5432

In a terminal on A: netcat -u -p 2345 B 5432

Verify that killing and restarting the client on A allows communication to continue.

14.0. In this exercise we explore sending UDP packets through NAT routers (7.7 Network Address Trans-
lation), using netcat (11.1.4 netcat). Let A be an internal host, NR the public IP address of the NAT
router, and C an outside host. We will initiate all connections by having A send to C at port 5432, which
must not be firewalled (changing to a different port is straightforward).

(a). Verify that you can send from A to C:
In a terminal on C: netcat -u -l 5432

In a terminal on A: netcat -u C 5432

If this does not work, try changing port numbers or C’s firewall settings.

(b). Try typing text into the terminal on C; netcat supports bidirectional communication. Does the
output appear on A?

(c). Through experimentation, estimate the allowable delay between the A-to-C packets and the C-to-A
response. 1 minute? 5 minutes? 10 minutes?

(d). Try to transmit the reply from C using an entirely separate pair of netcat sessions. For this to have
any chance of working, A’s source port must be known; we will set it here to 40001.

On C: as above
On A: netcat -u -p 40001 C 5432

As soon as data has been transmitted successfully from A to C, try the reverse path. Both A-to-C netcat
processes, above, must first be terminated, to free the ports. Then:

On A: netcat -u -l 40001

On C: netcat -u -p 5432 NR 40001

11.7 Exercises 365

An Introduction to Computer Networks, Release 1.9.21

366 11 UDP Transport

12 TCP TRANSPORT

The standard transport protocols riding above the IP layer are TCP and UDP. As we saw in 11 UDP
Transport, UDP provides simple datagram delivery to remote sockets, that is, to xhost,porty pairs. TCP
provides a much richer functionality for sending data to (connected) sockets.

TCP is quite different in several dimensions from UDP. TCP is stream-oriented, meaning that the appli-
cation can write data in very small or very large amounts and the TCP layer will take care of appropriate
packetization (and also that TCP transmits a stream of bytes, not messages or records; cf 12.22.2 SCTP).
TCP is connection-oriented, meaning that a connection must be established before the beginning of any
data transfer. TCP is reliable, in that TCP uses sequence numbers to ensure the correct order of delivery
and a timeout/retransmission mechanism to make sure no data is lost short of massive network failure. Fi-
nally, TCP automatically uses the sliding windows algorithm to achieve throughput relatively close to the
maximum available.

These features mean that TCP is very well suited for the transfer of large files. The two endpoints open
a connection, the file data is written by one end into the connection and read by the other end, and the
features above ensure that the file will be received correctly. TCP also works quite well for interactive
applications where each side is sending and receiving streams of small packets. Examples of this include
ssh or telnet, where packets are exchanged on each keystroke, and database connections that may carry many
queries per second. TCP even works reasonably well for request/reply protocols, where one side sends a
single message, the other side responds, and the connection is closed. The drawback here, however, is the
overhead of setting up a new connection for each request; a better application-protocol design might be to
allow multiple request/reply pairs over a single TCP connection.

Note that the connection-orientation and reliability of TCP represent abstract features built on top of the IP
layer, which supports neither of them.

The connection-oriented nature of TCP warrants further explanation. With UDP, if a server opens a socket
(the OS object, with corresponding socket address), then any client on the Internet can send to that socket,
via its socket address. Any UDP application, therefore, must be prepared to check the source address of each
packet that arrives. With TCP, all data arriving at a connected socket must come from the other endpoint
of the connection. When a server S initially opens a socket s, that socket is “unconnected”; it is said to
be in the LISTEN state. While it still has a socket address consisting of its host and port, a LISTENing
socket will never receive data directly. If a client C somewhere on the Internet wishes to send data to s, it
must first establish a connection, which will be defined by the socketpair consisting of the socket addresses
(that is, the xIP_addr,porty pairs) at both C and S. As part of this connection process, a new connected child
socket sC will be created; it is sC that will receive any data sent from C. Usually, the server will also create a
new thread or process to handle communication with sC. Typically the server will have multiple connected
children of the original socket s, and, for each one, a process attached to it.

If C1 and C2 both connect to s, two connected sockets at S will be created, s1 and s2, and likely two separate
processes. When a packet arrives at S addressed to the socket address of s, the source socket address will
also be examined to determine whether the data is part of the C1–S or the C2–S connection, and thus whether
a read on s1 or on s2, respectively, will see the data.

If S is acting as an ssh server, the LISTENing socket listens on port 22, and the connected child sockets
correspond to the separate user login connections; the process on each child socket represents the login

367

An Introduction to Computer Networks, Release 1.9.21

process of that user, and may run for hours or days.

In Chapter 1 we likened TCP sockets to telephone connections, with the server like one high-volume phone
number 800-BUY-NOWW. The unconnected socket corresponds to the number everyone dials; the con-
nected sockets correspond to the actual calls. (This analogy breaks down, however, if one looks closely at
the way such multi-operator phone lines are actually configured: each typically does have its own number.)

12.1 The End-to-End Principle

The End-to-End Principle is spelled out in [SRC84]; it states in effect that transport issues are the responsi-
bility of the endpoints in question and thus should not be delegated to the core network. This idea has been
very influential in TCP design.

Two issues falling under this category are data corruption and congestion. For the first, even though essen-
tially all links on the Internet have link-layer checksums to protect against data corruption, TCP still adds
its own checksum (in part because of a history of data errors introduced within routers). For the latter, TCP
is today essentially the only layer that addresses congestion management.

Saltzer, Reed and Clark categorized functions that were subject to the End-to-End principle this way:

The function in question can completely and correctly be implemented only with the knowledge
and help of the application standing at the end points of the communication system. Therefore,
providing that questioned function as a feature of the communication system itself is not possi-
ble. (Sometimes an incomplete version of the function provided by the communication system
may be useful as a performance enhancement.)

This does not mean that the backbone Internet should not concern itself with congestion; it means that
backbone congestion-management mechanisms should not completely replace end-to-end congestion man-
agement.

12.2 TCP Header

Below is a diagram of the TCP header. As with UDP, source and destination ports are 16 bits. The 4-bit
Data Offset field specifies the number of 32-bit words in the header; if no options are present its value is 5.

As with UDP, the checksum covers the TCP header, the TCP data and an IP “pseudo header” that includes
the source and destination IP addresses. The checksum must be updated by a NAT router that modifies any
header values. (Although the IP and TCP layers are theoretically separate, and RFC 793 in some places
appears to suggest that TCP can be run over a non-IP internetwork layer, RFC 793 also explicitly defines
4-byte addresses for the pseudo header. RFC 2460 officially redefined the pseudo header to allow IPv6
addresses.)

368 12 TCP Transport

https://tools.ietf.org/html/rfc793.html
https://tools.ietf.org/html/rfc793.html
https://tools.ietf.org/html/rfc2460.html

An Introduction to Computer Networks, Release 1.9.21

Source Port Destination Port

Sequence Number

Acknowledgment Number

Window Size

Urgent Pointer

PaddingOptions

Checksum

 Data
Offset

Reserved
C
W
R

E
C
E

U
R
G

S
Y
N

P
S
H

A
C
K

R
S
T

F
I
N

0 8 16 24 32

The sequence and acknowledgment numbers are for numbering the data, at the byte level. This allows
TCP to send 1024-byte blocks of data, incrementing the sequence number by 1024 between successive
packets, or to send 1-byte telnet packets, incrementing the sequence number by 1 each time. There is no
distinction between DATA and ACK packets; all packets carrying data from A to B also carry the most
current acknowledgment of data sent from B to A. Many TCP applications are largely unidirectional, in
which case the sender would include essentially the same acknowledgment number in each packet while the
receiver would include essentially the same sequence number.

It is traditional to refer to the data portion of TCP packets as segments.

TCP History

The clear-cut division between the IP and TCP headers did not spring forth fully formed. See [CK74]
for a discussion of a proto-TCP in which the sequence number (but not the acknowledgment number)
appeared in the equivalent of the IP header (perhaps so it could be used for fragment reassembly).

The value of the sequence number, in relative terms, is the position of the first byte of the packet in the data
stream, or the position of what would be the first byte in the case that no data was sent. The value of the
acknowledgment number, again in relative terms, represents the byte position for the next byte expected.
Thus, if a packet contains 1024 bytes of data and the first byte is number 1, then that would be the sequence
number. The data bytes would be positions 1-1024, and the ACK returned would have acknowledgment
number 1025.

The sequence and acknowledgment numbers, as sent, represent these relative values plus an Initial Se-
quence Number, or ISN, that is fixed for the lifetime of the connection. Each direction of a connection has
its own ISN; see below.

TCP acknowledgments are cumulative: when an endpoint sends a packet with an acknowledgment number
of N, it is acknowledging receipt of all data bytes numbered less than N. Standard TCP provides no mecha-
nism for acknowledging receipt of packets 1, 2, 3 and 5; the highest cumulative acknowledgment that could
be sent in that situation would be to acknowledge packet 3.

The TCP header defines some important flag bits; the brief definitions here are expanded upon in the sequel:

• SYN: for SYNchronize; marks packets that are part of the new-connection handshake

12.2 TCP Header 369

An Introduction to Computer Networks, Release 1.9.21

• ACK: indicates that the header Acknowledgment field is valid; that is, all but the first packet

• FIN: for FINish; marks packets involved in the connection closing

• PSH: for PuSH; marks “non-full” packets that should be delivered promptly at the far end

• RST: for ReSeT; indicates various error conditions

• URG: for URGent; part of a now-seldom-used mechanism for high-priority data

• CWR and ECE: part of the Explicit Congestion Notification mechanism, 14.8.3 Explicit Congestion
Notification (ECN)

12.3 TCP Connection Establishment

TCP connections are established via an exchange known as the three-way handshake. If A is the client and
B is the LISTENing server, then the handshake proceeds as follows:

• A sends B a packet with the SYN bit set (a SYN packet)

• B responds with a SYN packet of its own; the ACK bit is now also set

• A responds to B’s SYN with its own ACK

A B

SYN

SYN+ACK

ACK

TCP three-way handshake

Normally, the three-way handshake is triggered by an application’s request to connect; data can be sent only
after the handshake completes. This means a one-RTT delay before any data can be sent. The original TCP
standard RFC 793 does allow data to be sent with the first SYN packet, as part of the handshake, but such
data cannot be released to the remote-endpoint application until the handshake completes. Most traditional
TCP programming interfaces offer no support for this early-data option.

There are recurrent calls for TCP to support data transmission within the handshake itself, so as to achieve
request/reply turnaround comparable to that with RPC (11.5 Remote Procedure Call (RPC)). We return to
this in 12.12 TCP Faster Opening.

The three-way handshake is vulnerable to an attack known as SYN flooding. The attacker sends a large
number of SYN packets to a server B. For each arriving SYN, B must allocate resources to keep track of
what appears to be a legitimate connection request; with enough requests, B’s resources may face exhaustion.
SYN flooding is easiest if the SYN packets are simply spoofed, with forged, untraceable source-IP addresses;
see spoofing at 7.1 The IPv4 Header, and 12.10.1 ISNs and spoofing below. SYN-flood attacks can also
take the form of a large number of real connection attempts from a large number of real clients – often
compromised and pressed into service by some earlier attack – but this requires considerably more resources

370 12 TCP Transport

https://tools.ietf.org/html/rfc793.html

An Introduction to Computer Networks, Release 1.9.21

on the part of the attacker. See 12.22.2 SCTP for an alternative handshake protocol (unfortunately not
available to TCP) intended to mitigate SYN-flood attacks, at least from spoofed SYNs.

To close the connection, a superficially similar exchange involving FIN packets may occur:

• A sends B a packet with the FIN bit set (a FIN packet), announcing that it has finished sending data

• B sends A an ACK of the FIN

• B may continue to send additional data to A

• When B is also ready to cease sending, it sends its own FIN to A

• A sends B an ACK of the FIN; this is the final packet in the exchange

Here’s the ladder diagram for this:

A B

FIN

ACK

FIN

ACK

More DATA (optional)

A typical TCP close

The FIN handshake is really more like two separate two-way FIN/ACK handshakes. We will return to TCP
connection closing in 12.7.1 Closing a connection.

Now let us look at the full exchange of packets in a representative connection, in which A sends strings
“abc”, “defg”, and “foobar” (RFC 3092). B replies with “hello”, and which point A sends “goodbye” and
closes the connection. In the following table, relative sequence numbers are used, which is to say that
sequence numbers begin with 0 on each side. The SEQ numbers in bold on the A side correspond to the
ACK numbers in bold on the B side; they both count data flowing from A to B.

12.3 TCP Connection Establishment 371

https://tools.ietf.org/html/rfc3092.html

An Introduction to Computer Networks, Release 1.9.21

A sends B sends
1 SYN, seq=0
2 SYN+ACK, seq=0, ack=1 (expecting)
3 ACK, seq=1, ack=1 (ACK of SYN)
4 “abc”, seq=1, ack=1
5 ACK, seq=1, ack=4
6 “defg”, seq=4, ack=1
7 seq=1, ack=8
8 “foobar”, seq=8, ack=1
9 seq=1, ack=14, “hello”
10 seq=14, ack=6, “goodbye”
11,12 seq=21, ack=6, FIN seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
13 seq=6, ack=22 ;; ACK of FIN
14 seq=6, ack=22, FIN
15 seq=22, ack=7 ;; ACK of FIN

(We will see below that this table is slightly idealized, in that real sequence numbers do not start at 0.)

Here is the ladder diagram corresponding to this connection:

A B

SYN

SYN+ACK

ACK

“abc”

ACK

“defg”

ACK

“foobar”

“hello”

“goodbye”
FIN

ACK

FIN

ACK

ACK Crossing packets

In terms of the sequence and acknowledgment numbers, SYNs count as 1 byte, as do FINs. Thus, the SYN
counts as sequence number 0, and the first byte of data (the “a” of “abc”) counts as sequence number 1.
Similarly, the ack=21 sent by the B side is the acknowledgment of “goodbye”, while the ack=22 is the

372 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

acknowledgment of A’s subsequent FIN.

Whenever B sends ACN=n, A follows by sending more data with SEQ=n.

TCP does not in fact transport relative sequence numbers, that is, sequence numbers as transmitted do not
begin at 0. Instead, each side chooses its Initial Sequence Number, or ISN, and sends that in its initial
SYN. The third ACK of the three-way handshake is an acknowledgment that the server side’s SYN response
was received correctly. All further sequence numbers sent are the ISN chosen by that side plus the relative
sequence number (that is, the sequence number as if numbering did begin at 0). If A chose ISNA=1000, we
would add 1000 to all the bold entries above: A would send SYN(seq=1000), B would reply with ISNB and
ack=1001, and the last two lines would involve ack=1022 and seq=1022 respectively. Similarly, if B chose
ISNB=7000, then we would add 7000 to all the seq values in the “B sends” column and all the ack values in
the “A sends” column. The table above up to the point B sends “goodbye”, with actual sequence numbers
instead of relative sequence numbers, is below:

A, ISN=1000 B, ISN=7000
1 SYN, seq=1000
2 SYN+ACK, seq=7000, ack=1001
3 ACK, seq=1001, ack=7001
4 “abc”, seq=1001, ack=7001
5 ACK, seq=7001, ack=1004
6 “defg”, seq=1004, ack=7001
7 seq=7001, ack=1008
8 “foobar”, seq=1008, ack=7001
9 seq=7001, ack=1014, “hello”
10 seq=1014, ack=7006, “goodbye”

If B had not been LISTENing at the port to which A sent its SYN, its response would have been RST
(“reset”), meaning in this context “connection refused”. Similarly, if A sent data to B before the SYN
packet, the response would have been RST.

Finally, a RST can be sent by either side at any time to abort the connection. Sometimes routers along
the path send “spoofed” RSTs to tear down TCP connections they are configured to regard as undesired;
see 7.7.2 Middleboxes and RFC 3360. Worse, sometimes external attackers are able to tear down a
TCP connection with a spoofed RST; this requires brute-force guessing the endpoint port numbers and the
current SYN value (RFC 793 does not require the RST packet’s ACK value to match). In the days of 4
kB window sizes, guessing a valid SYN was a one-in-a-million chance, but window sizes have steadily
increased (14.9 The High-Bandwidth TCP Problem); a 4 MB window size makes SYN guessing quite
feasible. See also RFC 4953, the RST-validation fix proposed in RFC 5961 §3.2, and exercise 6.5.

If A sends a series of small packets to B, then B has the option of assembling them into a full-sized I/O buffer
before releasing them to the receiving application. However, if A sets the PSH bit on each packet, then B
should release each packet immediately to the receiving application. In Berkeley Unix and most (if not all)
BSD-derived socket-library implementations, there is in fact no way to set the PSH bit; it is set automatically
for each write. (But even this is not guaranteed as the sender may leave the bit off or consolidate several
PuSHed writes into one packet; this makes using the PSH bit as a record separator difficult. In the program
written to generate the WireShark packet trace, below, most of the time the strings “abc”, “defg”, etc were
PuSHed separately but occasionally they were consolidated into one packet.)

12.3 TCP Connection Establishment 373

https://tools.ietf.org/html/rfc3360.html
https://tools.ietf.org/html/rfc793.html
https://tools.ietf.org/html/rfc4953.html
https://tools.ietf.org/html/rfc5961.html

An Introduction to Computer Networks, Release 1.9.21

As for the URG bit, imagine a telnet (or ssh) connection, in which A has sent a large amount of data to
B, which is momentarily stalled processing it. The application at A wishes to abort that processing by
sending the interrupt character CNTL-C. Under normal conditions, the application at B would have to finish
processing all the pending data before getting to the CNTL-C; however, the use of the URG bit can enable
immediate asynchronous delivery of the CNTL-C. The bit is set, and the TCP header’s Urgent Pointer field
points to the CNTL-C in the current packet, far ahead in the normal data stream. The receiving application
then skips ahead in its processing of the arriving data stream until it reaches the urgent data. For this to
work, the receiving application process must have signed up to receive an asynchronous signal when urgent
data arrives.

The urgent data does appear as part of the ordinary TCP data stream, and it is up to the protocol to determine
the start of the data that is to be considered urgent, and what to do with the unread, buffered data sent ahead
of the urgent data. For the CNTL-C example in the telnet protocol (RFC 854), the urgent data might consist
of the telnet “Interrupt Process” byte, preceded by the “Interpret as Command” escape byte, and the earlier
data is simply discarded.

Officially, the Urgent Pointer value, when the URG bit is set, contains the offset from the start of the current
packet data to the end of the urgent data; it is meant to tell the receiver “you should read up to this point as
soon as you can”. The original intent was for the urgent pointer to mark the last byte of the urgent data, but
§3.1 of RFC 793 got this wrong and declared that it pointed to the first byte following the urgent data. This
was corrected in RFC 1122, but most implementations to this day abide by the “incorrect” interpretation.
RFC 6093 discusses this and proposes, first, that the near-universal “incorrect” interpretation be accepted
as standard, and, second, that developers avoid the use of the TCP urgent-data feature.

12.4 TCP and WireShark

Below is a screenshot of the WireShark program displaying a tcpdump capture intended to represent the
TCP exchange above. Both hosts involved in the packet exchange were Linux systems. Side A uses socket
address x10.0.0.3,45815y and side B (the server) uses x10.0.0.1,54321y.

WireShark is displaying relative TCP sequence numbers. The first three packets correspond to the three-
way handshake, and packet 4 is the first data packet. Every data packet has the flags [PSH, ACK] displayed.
The data in the packet can be inferred from the WireShark Len field, as each of the data strings sent has a
different length.

374 12 TCP Transport

https://tools.ietf.org/html/rfc854.html
https://tools.ietf.org/html/rfc793.html
https://tools.ietf.org/html/rfc1122.html
https://tools.ietf.org/html/rfc6093.html
http://www.wireshark.org/

An Introduction to Computer Networks, Release 1.9.21

The packets are numbered the same as in the table above up through packet 8, containing the string “foobar”.
At that point the table shows B replying by a combined ACK plus the string “hello”; in fact, TCP sent the
ACK alone and then the string “hello”; these are WireShark packets 9 and 10 (note packet 10 has Len=5).
Wireshark packet 11 is then a standalone ACK from A to B, acknowledging the “hello”. WireShark packet
12 (the packet highlighted) then corresponds to table packet 10, and contains “goodbye” (Len=7); this string
can be seen at the right side of the bottom pane.

The table view shows A’s FIN (packet 11) crossing with B’s ACK of “goodbye” (packet 12). In the Wire-
Shark view, A’s FIN is packet 13, and is sent about 0.01 seconds after “goodbye”; B then ACKs them both
with packet 14. That is, the table-view packet 12 does not exist in the WireShark view.

Packets 11, 13, 14 and 15 in the table and 13, 14, 15 and 16 in the WireShark screen dump correspond to
the connection closing. The program that generated the exchange at B’s side had to include a “sleep” delay
of 40 ms between detecting the closed connection (that is, reading A’s FIN) and closing its own connection
(and sending its own FIN); otherwise the ACK of A’s FIN traveled in the same packet with B’s FIN.

The ISN for A in this example was 551144795 and B’s ISN was 1366676578. The actual pcap packet-
capture file is at demo_tcp_connection.pcap.

12.4 TCP and WireShark 375

http://intronetworks.cs.luc.edu/auxiliary_files/wireshark/demo_tcp_connection.pcap

An Introduction to Computer Networks, Release 1.9.21

12.5 TCP Offloading

In the Wireshark example above, the hardware involved used TCP checksum offloading, or TCO, to have
the network-interface card do the actual checksum calculations; this permits a modest amount of parallelism.
As a result, the checksums for outbound packets are wrong in the capture file. WireShark has an option to
disable the reporting of this.

It is also possible, with many newer network-interface cards, to offload the TCP segmentation process to the
LAN hardware; this is most useful when the application is writing data continuously and is known as TCP
segmentation offloading, or TSO. The use of TSO requires TCO, but not vice-versa.

TSO can be divided into large send offloading, LSO, for outbound traffic, and large receive offloading, LRO,
for inbound. For outbound offloading, the host system transfers to the network card a large buffer of data
(perhaps 64 kB), together with information about the headers. The network card then divides the buffer into
1500-byte packets, with proper TCP/IP headers, and sends them off.

For inbound offloading, the network card accumulates multiple inbound packets that are part of the same
TCP connection, and consolidates them in proper sequence to one much larger packet. This means that the
network card, upon receiving one packet, must wait to see if there will be more. This wait is very short,
however, at most a few milliseconds. Specifically, all consolidated incoming packets must have the same
TCP Timestamp value (12.11 Anomalous TCP scenarios).

TSO is of particular importance at very high bandwidths. At 10 Gbps, a system can send or receive close
to a million packets per second, and offloading some of the packet processing to the network card can be
essential to maintaining high throughput. TSO allows a host system to behave as if it were reading or writing
very large packets, and yet the actual packet size on the wire remains at the standard 1500 bytes.

On Linux systems, the status of TCO and TSO can be checked using the command ethtool
--show-offload interface. TSO can be disabled with ethtool --offload interface tso off.

12.6 TCP simplex-talk

Here is a Java version of the simplex-talk server for TCP. As with the UDP version, we start by setting up
the socket, here a ServerSocket called ss. This socket remains in the LISTEN state throughout. The
main while loop then begins with the call ss.accept() at the start; this call blocks until an incoming
connection is established, at which point it returns the connected child socket s. The accept() call
models the TCP protocol behavior of waiting for three-way handshakes initiated by remote hosts and, for
each, setting up a new connection.

Connections will be accepted from all IP addresses of the server host, eg the “normal” IP address, the
loopback address 127.0.0.1 and, if the server is multihomed, any additional IP addresses. Unlike the UDP
case (11.1.3.2 UDP and IP addresses), RFC 1122 requires (§4.2.3.7) that server response packets always
be sent from the same server IP address that the client first used to contact the server. (See exercise 13.0 for
an example of non-compliance.)

A server application can process these connected children either serially or in parallel. The stalk version
here can handle both situations, either one connection at a time (THREADING = false), or by creating a
new thread for each connection (THREADING = true). Either way, the connected child socket is turned
over to line_talker(), either as a synchronous procedure call or as a new thread. Data is then read from

376 12 TCP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

the socket’s associated InputStream using the ordinary read() call, versus the receive() used to
read UDP packets. The main loop within line_talker() does not terminate until the client closes the
connection (or there is an error).

In the serial, non-threading mode, if a second client connection is made while the first is still active, then
data can be sent on the second connection but it sits in limbo until the first connection closes, at which point
control returns to the ss.accept() call, the second connection is processed, and the second connection’s
data suddenly appears.

In the threading mode, the main loop spends almost all its time waiting in ss.accept(); when this returns
a child connection we immediately spawn a new thread to handle it, allowing the parent process to go back
to ss.accept(). This allows the program to accept multiple concurrent client connections, like the UDP
version.

The code here serves as a very basic example of the creation of Java threads. The inner class Talker has
a run() method, needed to implement the runnable interface. To start a new thread, we create a new
Talker instance; the start() call then begins Talker.run(), which runs for as long as the client
keeps the connection open. The file here is tcp_stalks.java.

/* THREADED simplex-talk TCP server */
/* can handle multiple CONCURRENT client connections */
/* newline is to be included at client side */

import java.net.*;
import java.io.*;

public class tstalks {

static public int destport = 5431;
static public int bufsize = 512;
static public boolean THREADING = true;

static public void main(String args[]) {
ServerSocket ss;
Socket s;
try {

ss = new ServerSocket(destport);
} catch (IOException ioe) {

System.err.println("can't create server socket");
return;

}
System.err.println("server starting on port " + ss.getLocalPort());

while(true) { // accept loop
try {

s = ss.accept();
} catch (IOException ioe) {

System.err.println("Can't accept");
break;

}

if (THREADING) {
Talker talk = new Talker(s);

12.6 TCP simplex-talk 377

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/tcp_stalks.java

An Introduction to Computer Networks, Release 1.9.21

(new Thread(talk)).start();
} else {

line_talker(s);
}

} // accept loop
} // end of main

public static void line_talker(Socket s) {
int port = s.getPort();
InputStream istr;
try { istr = s.getInputStream(); }
catch (IOException ioe) {

System.err.println("cannot get input stream"); // most
ãÑlikely cause: s was closed

return;
}
System.err.println("New connection from <" +

s.getInetAddress().getHostAddress() + "," + s.getPort() + ">");
byte[] buf = new byte[bufsize];
int len;

while (true) { // while not done reading the socket
try {

len = istr.read(buf, 0, bufsize);
}
catch (SocketTimeoutException ste) {

System.out.println("socket timeout");
continue;

}
catch (IOException ioe) {

System.err.println("bad read");
break; // probably a socket ABORT; treat as a close

}
if (len == -1) break; // other end closed gracefully
String str = new String(buf, 0, len);
System.out.print("" + port + ": " + str); // str should contain

ãÑnewline
} //while reading from s

try {istr.close();}
catch (IOException ioe) {System.err.println("bad stream close");

ãÑreturn;}
try {s.close();}
catch (IOException ioe) {System.err.println("bad socket close");

ãÑreturn;}
System.err.println("socket to port " + port + " closed");

} // line_talker

static class Talker implements Runnable {
private Socket _s;

public Talker (Socket s) {

378 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

_s = s;
}

public void run() {
line_talker(_s);

} // run
} // class Talker

}

12.6.1 The TCP Client

Here is the corresponding client tcp_stalkc.java. As with the UDP version, the default host to connect to
is localhost. We first call InetAddress.getByName() to perform the DNS lookup. Part of the
construction of the Socket object is the connection to the desired dest and destport. Within the main while
loop, we use an ordinary write() call to write strings to the socket’s associated OutputStream.

// TCP simplex-talk CLIENT in java

import java.net.*;
import java.io.*;

public class stalkc {

static public BufferedReader bin;
static public int destport = 5431;

static public void main(String args[]) {
String desthost = "localhost";
if (args.length >= 1) desthost = args[0];
bin = new BufferedReader(new InputStreamReader(System.in));

InetAddress dest;
System.err.print("Looking up address of " + desthost + "...");
try {

dest = InetAddress.getByName(desthost);
}
catch (UnknownHostException uhe) {

System.err.println("unknown host: " + desthost);
return;

}
System.err.println(" got it!");

System.err.println("connecting to port " + destport);
Socket s;
try {

s = new Socket(dest, destport);
}
catch(IOException ioe) {

System.err.println("cannot connect to <" + desthost + "," +
ãÑdestport + ">");

return;

12.6 TCP simplex-talk 379

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/tcp_stalkc.java

An Introduction to Computer Networks, Release 1.9.21

}

OutputStream sout;
try {

sout = s.getOutputStream();
}
catch (IOException ioe) {

System.err.println("I/O failure!");
return;

}

//==

while (true) {
String buf;
try {

buf = bin.readLine();
}
catch (IOException ioe) {

System.err.println("readLine() failed");
return;

}
if (buf == null) break; // user typed EOF character

buf = buf + "\n"; // protocol requires sender includes \n
byte[] bbuf = buf.getBytes();

try {
sout.write(bbuf);

}
catch (IOException ioe) {

System.err.println("write() failed");
return;

}
} // while

}
}

A Python3 version of the stalk client is available at tcp_stalkc.py.

Here are some things to try with THREADING=false in the server:

• start up two clients while the server is running. Type some message lines into both. Then exit the first
client.

• start up the client before the server.

• start up the server, and then the client. Kill the server and then type some message lines to the client.
What happens to the client? (It may take a couple message lines.)

• start the server, then the client. Kill the server and restart it. Now what happens to the client?

With THREADING=true, try connecting multiple clients simultaneously to the server. How does this behave
differently from the first example above?

380 12 TCP Transport

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/tcp_stalkc.py

An Introduction to Computer Networks, Release 1.9.21

See also exercise 14.0.

12.6.2 netcat again

As with UDP (11.1.4 netcat), we can use the netcat utility to act as either end of the TCP simplex-talk
connection. As the client we can use

netcat localhost 5431

while as the server we can use

netcat -l -k 5431

Here (but not with UDP) the -k option causes the server to accept multiple connections in sequence. The
connections are handled one at a time, as is the case in the stalk server above with THREADING=false.

We can also use netcat to download web pages, using the HTTP protocol. The command below sends an
HTTP GET request (version 1.1; RFC 2616 and updates) to retrieve part of the website for this book; it has
been broken over two lines for convenience.

echo -e 'GET /index.html HTTP/1.1\r\nHOST: intronetworks.cs.luc.edu\r\n'|
netcat intronetworks.cs.luc.edu 80

The \r\n represents the officially mandatory carriage-return/newline line-ending sequence, though \n will
often work. The index.html identifies the file being requested; as index.html is the default it is
often omitted, though the preceding / is still required. The webserver may support other websites as well
via virtual hosting (7.8.2 nslookup and dig); the HOST: specification identifies to the server the specific
site we are looking for. Version 2 of HTTP is described in RFC 7540; its primary format is binary. (For
production command-line retrieval of web pages, cURL and wget are standard choices.)

12.7 TCP state diagram

A formal definition of TCP involves the state diagram, with conditions for transferring from one state
to another, and responses to all packets from each state. The state diagram originally appeared in RFC
793; the following interpretation of the state diagram came from http://commons.wikimedia.org/wiki/File:
Tcp_state_diagram_fixed.svg and was authored by Wikipedia users Sergiodc2, Marty Pauley, and DnetSvg.
The blue arrows indicate the sequence of state transitions typically followed by the server; the brown arrows
represent the client. Arrows are labeled with event / action; that is, we move from LISTEN to SYN_RECD
upon receipt of a SYN packet; the action is to respond with SYN+ACK.

12.7 TCP state diagram 381

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://tools.ietf.org/html/rfc2616.html
https://tools.ietf.org/html/rfc7540.html
https://curl.haxx.se/
https://www.gnu.org/software/wget/
https://tools.ietf.org/html/rfc793.html
https://tools.ietf.org/html/rfc793.html
http://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed.svg
http://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed.svg

An Introduction to Computer Networks, Release 1.9.21

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN

RECEIVED

SYN

SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path

server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK

(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN + ACK-of-FIN / ACK

ACK-of-FIN / -

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

In general, this state-machine approach to protocol specification has proven very effective, and is used for
most protocols. It makes it very clear to the implementer how the system should respond to each packet
arrival. It is also a useful model for the implementation itself.

It is visually impractical to list every possible transition within the state diagram, full details are usually left
to the accompanying text. For example, although this does not appear in the state diagram above, the per-
state response rules of TCP require that in the ESTABLISHED state, if the receiver sends an ACK outside
the current sliding window, then the correct response is to reply with one’s own current ACK. This includes
the case where the receiver acknowledges data not yet sent.

The ESTABLISHED state and the states below it are sometimes called the synchronized states, as in these
states both sides have confirmed one another’s ISN values.

Here is the ladder diagram for the 14-packet connection described above, this time labeled with TCP states.

382 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

A B

SYN

SYN+ACK

ACK

“abc”

ACK

“defg”

ACK

“foobar”

“hello”

“goodbye”
FIN

ACK

FIN

ACK

LISTEN

SYN_RECD

ESTABLISHED

CLOSEWAIT

LAST_ACK

CLOSED

CLOSED

SYN_SENT

ESTABLISHED

FINWAIT_1

TIMEWAIT

FINWAIT_2

ACK

Although it essentially never occurs in practice, it is possible for each side to send the other a SYN, request-
ing a connection, simultaneously (that is, the SYNs cross on the wire). The telephony analogue occurs
when each party dials the other simultaneously. On traditional land-lines, each party then gets a busy signal.
On cell phones, your mileage may vary. With TCP, a single connection is created. With OSI TP4, two
connections are created. The OSI approach is not possible in TCP, as a connection is determined only by
the socketpair involved; if there is only one socketpair then there can be only one connection.

It is possible to view connection states under either Linux or Windows with netstat -a. Most states are
ephemeral, exceptions being LISTEN, ESTABLISHED, TIMEWAIT, and CLOSE_WAIT. One sometimes
sees large numbers of connections in CLOSE_WAIT, meaning that the remote endpoint has closed the
connection and sent its FIN, but the process at your end has not executed close() on its socket. Often
this represents a programming error; alternatively, the process at the local end is still working on something.
Given a local port number p in state CLOSE_WAIT on a Linux system, the (privileged) command lsof
-i :p will identify the process using port p.

The reader who is implementing TCP is encouraged to consult RFC 793 and updates. For the rest of us,
below are a few general observations about closing connections.

12.7.1 Closing a connection

The “normal” TCP close sequence is as follows:

12.7 TCP state diagram 383

https://tools.ietf.org/html/rfc793.html

An Introduction to Computer Networks, Release 1.9.21

A B

FIN

ACK

ACK

Normal close

FIN
ESTABLISHED

FIN_WAIT_1

ESTABLISHED

FIN_WAIT_2

TIMEWAIT

CLOSE_WAIT

LAST_ACK

CLOSED

More Data (optional)

ACK of Data

A’s FIN is, in effect, a promise to B not to send any more. However, A must still be prepared to receive data
from B, hence the optional data shown in the diagram. A good example of this occurs when A is sending a
stream of data to B to be sorted; A sends FIN to indicate that it is done sending, and only then does B sort
the data and begin sending it back to A. This can be generated with the command, on A, cat thefile
| ssh B sort. That said, the presence of the optional B-to-A data above following A’s FIN is relatively
less common.

In the diagram above, A sends a FIN to B and receives an ACK, and then, later, B sends a FIN to A and
receives an ACK. This essentially amounts to two separate two-way closure handshakes.

Either side may elect to close the connection, just as either party to a telephone call may elect to hang up.
The first side to send a FIN – A in the diagram above – takes the Active CLOSE path; the other side takes the
Passive CLOSE path. In the diagram, active-closer A moves from state ESTABLISHED to FIN_WAIT_1
to FIN_WAIT_2 (upon receipt of B’s ACK of A’s FIN), and then to TIMEWAIT and finally to CLOSED.
Passive-closer B moves from ESTABLISHED to CLOSE_WAIT to LAST_ACK to CLOSED.

A simultaneous close – having both sides send each other FINs before receiving the other side’s FIN – is
a little more likely than a simultaneous open, earlier above, though still not very. Each side would send its
FIN and move to state FIN_WAIT_1. Then, upon receiving each other’s FIN packets, each side would send
its final ACK and move to CLOSING. See exercises 4.0 and 4.5.

A TCP endpoint is half-closed if it has sent its FIN (thus promising not to send any more data) and is
waiting for the other side’s FIN; this corresponds to A in the diagram above in states FIN_WAIT_1 and
FIN_WAIT_2. With the BSD socket library, an application can half-close its connection with the appropriate
call to shutdown().

Unrelatedly, A TCP endpoint is half-open if it is in the ESTABLISHED state, but during a lull in the
exchange of packets the other side has rebooted; this has nothing to do with the close protocol. As soon as
the ESTABLISHED side sends a packet, the rebooted side will respond with RST and the connection will
be fully closed.

In the absence of the optional data from B to A after A sends its FIN, the closing sequence reduces to the
left-hand diagram below:

384 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

A B

FIN

ACK

FIN

ACK

Two TCP close scenarios with no B-to-A data

A B

FIN

FIN+ACK

ACK

If B is ready to close immediately, it is possible for B’s ACK and FIN to be combined, as in the right-
hand diagram above, in which case the resultant diagram superficially resembles the connection-opening
three-way handshake. In this case, A moves directly from FIN_WAIT_1 to TIMEWAIT, following the
state-diagram link labeled “FIN + ACK-of-FIN”. In theory this is rare, as the ACK of A’s FIN is generated
by the kernel but B’s FIN cannot be sent until B’s process is scheduled to run on the CPU. If the TCP layer
adopts a policy of immediately sending ACKs upon receipt of any packet, this will never happen, as the ACK
will be sent well before B’s process can be scheduled to do anything. However, if B delays its ACKs slightly
(and if it has no more data to send), then it is possible – and in fact not uncommon – for B’s ACK and FIN
to be sent together. Delayed ACKs, are, as we shall see below, a common strategy (12.15 TCP Delayed
ACKs). To create the scenario of 12.4 TCP and WireShark, it was necessary to introduce an artificial delay
to prevent the simultaneous transmission of B’s ACK and FIN.

12.7.2 Calling close()

Most network programming interfaces provide a close() method for ending a connection, based on the
close operation for files. However, it usually closes bidirectionally and so models the TCP closure protocol
rather imperfectly.

As we have seen in the previous section, the TCP close sequence is is followed more naturally if the active-
closing endpoint calls shutdown() – promising not to send more, but allowing for continued receiving
– before the final close(). Here is what should happen at the application layer if endpoint A of a TCP
connection wishes to initiate the closing of its connection with endpoint B:

• A’s application calls shutdown(), thereby promising not to send any more data. A’s FIN is sent to
B. A’s application is expected to continue reading, however.

• The connection is now half-closed. On receipt of A’s FIN, B’s TCP layer knows this. If B’s application
attempts to read more data, it will receive an end-of-file indication (this is typically a read() or
recv() operation that returns immediately with 0 bytes received).

• B’s application is now done reading data, but it may or may not have more data to send. When
B’s application is done sending, it calls close(), at which point B’s FIN is sent to A. Because
the connection is already half-closed, B’s close() is really a second half-close, ending further
transmission by B.

• A’s application keeps reading until it too receives an end-of-file indication, corresponding to B’s FIN.

12.7 TCP state diagram 385

An Introduction to Computer Networks, Release 1.9.21

• The connection is now fully closed. No data has been lost.

It is sometimes the case that it is evident to A from the application protocol that B will not send more data.
In such cases, A might simply call close() instead of shutdown(). This is risky, however, unless the
protocol is crystal clear: if A calls close() and B later does send a little more data after all, or if B has
already sent some data but A has not actually read it, A’s TCP layer may send RST to B to indicate that not
all B’s data was received properly. RFC 1122 puts it this way:

If such a host issues a CLOSE call while received data is still pending in TCP, or if new data is
received after CLOSE is called, its TCP SHOULD send a RST to show that data was lost.

If A’s RST arrives at B before all of A’s sent data has been processed by B’s application, it is entirely possible
that data sent by A will be lost, that is, will never be read by B.

In the BSD socket library, A can set the SO_LINGER option, which causes A’s close() to block until A’s
data has been delivered to B (or until the SO_LINGER timeout has expired). However, SO_LINGER has no
bearing on the issue above; post-close data from B to A will still cause A to send a RST.

In the simplex-talk program at 12.6 TCP simplex-talk, the client does not call shutdown() (it implicitly
calls close() when it exits). When the client is done, the server calls s.close(). However, the fact
that there is no data at all sent from the server to the client prevents the problem discussed above.

See exercises 14.0 and 15.0.

12.8 TCP Old Duplicates

Conceptually, perhaps the most serious threat facing the integrity of TCP data is external old duplicates
(11.3 Fundamental Transport Issues), that is, very late packets from a previous instance of the connection.
Suppose a TCP connection is opened between A and B. One packet from A to B is duplicated and unduly
delayed, with sequence number N. The connection is closed, and then another instance is reopened, that is, a
connection is created using the same ports. At some point in the second connection, when an arriving packet
with seq=N would be acceptable at B, the old duplicate shows up. Later, of course, B is likely to receive a
seq=N packet from the new instance of the connection, but that packet will be seen by B as a duplicate (even
though the data does not match), and (we will assume) be ignored.

386 12 TCP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

SYN

SYN+ACK

FIN

FIN+ACK
ACK

ACK

SYN

SYN+ACK

ACK

First instance of the connection

Second instance of the connection
B mistakenly accepts the old duplicate
from the first instance

Delayed duplicate packet, red

Port 100

Port 100

Port 2000

Port 2000

A B

For TCP, it is the actual sequence numbers, rather than the relative sequence numbers, that would have to
match up. The diagram above ignores that.

As with TFTP, coming up with a possible scenario accounting for the generation of such a late packet is not
easy. Nonetheless, many of the design details of TCP represent attempts to minimize this risk.

Solutions to the old-duplicates problem generally involve setting an upper bound on the lifetime of any
packet, the MSL, as we shall see in the next section. T/TCP (12.12 TCP Faster Opening) introduced a
connection-count field for this.

TCP is also vulnerable to sequence-number wraparound: arrival of an old duplicates from the same instance
of the connection. However, if we take the MSL to be 60 seconds, sequence-number wrap requires sending
232 bytes in 60 seconds, which requires a data-transfer rate in excess of 500 Mbps. TCP offers a fix for this
(Protection Against Wrapped Segments, or PAWS), but it was introduced relatively late; we return to this in
12.11 Anomalous TCP scenarios.

12.9 TIMEWAIT

The TIMEWAIT state is entered by whichever side initiates the connection close; in the event of a simulta-
neous close, both sides enter TIMEWAIT. It is to last for a time 2ˆMSL, where MSL = Maximum Segment
Lifetime is an agreed-upon value for the maximum lifetime on the Internet of an IP packet. Tradition-
ally MSL was taken to be 60 seconds, but more modern implementations often assume 30 seconds (for a
TIMEWAIT period of 60 seconds).

One function of TIMEWAIT is to solve the external-old-duplicates problem. TIMEWAIT requires that

12.9 TIMEWAIT 387

An Introduction to Computer Networks, Release 1.9.21

between closing and reopening a connection, a long enough interval must pass that any packets from the
first instance will disappear. After the expiration of the TIMEWAIT interval, an old duplicate cannot arrive.

A second function of TIMEWAIT is to address the lost-final-ACK problem (11.3 Fundamental Transport
Issues). If host A sends its final ACK to host B and this is lost, then B will eventually retransmit its final
packet, which will be its FIN. As long as A remains in state TIMEWAIT, it can appropriately reply to a
retransmitted FIN from B with a duplicate final ACK. As with TFTP, it is possible (though unlikely) for the
final ACK to be lost as well as all the retransmitted final FINs sent during the TIMEWAIT period; should this
happen, one side thinks the connection closed normally while the other side thinks it did not. See exercise
12.0.

TIMEWAIT only blocks reconnections for which both sides reuse the same port they used before. If A
connects to B and closes the connection, A is free to connect again to B using a different port at A’s end.

Conceptually, a host may have many old connections to the same port simultaneously in TIMEWAIT; the
host must thus maintain for each of its ports a list of all the remote xIP_address,porty sockets currently in
TIMEWAIT for that port. If a host is connecting as a client, this list likely will amount to a list of recently
used ports; no port is likely to have been used twice within the TIMEWAIT interval. If a host is a server,
however, accepting connections on a standardized port, and happens to be the side that initiates the active
close and thus later goes into TIMEWAIT, then its TIMEWAIT list for that port can grow quite long.

Generally, busy servers prefer to be free from these bookkeeping requirements of TIMEWAIT, so many
protocols are designed so that it is the client that initiates the active close. In the original HTTP protocol,
version 1.0, the server sent back the data stream requested by the http GET message (12.6.2 netcat again),
and indicated the end of this stream by closing the connection. In HTTP 1.1 this was fixed so that the client
initiated the close; this required a new mechanism by which the server could indicate “I am done sending
this file”. HTTP 1.1 also used this new mechanism to allow the server to send back multiple files over one
connection.

In an environment in which many short-lived connections are made from host A to the same port on server
B, port exhaustion – having all ports tied up in TIMEWAIT – is a theoretical possibility. If A makes 1000
connections per second, then after 60 seconds it has gone through 60,000 available ports, and there are
essentially none left. While this rate is high, early Berkeley-Unix TCP implementations often made only
about 4,000 ports available to clients; with a 120-second TIMEWAIT interval, port exhaustion would occur
with only 33 connections per second.

If you use ssh to connect to a server and then issue the netstat -a command on your own host (or, more
conveniently, netstat -a |grep -i tcp), you should see your connection in ESTABLISHED state.
If you close your connection and check again, your connection should be in TIMEWAIT.

12.10 The Three-Way Handshake Revisited

As stated earlier in 12.3 TCP Connection Establishment, both sides choose an ISN; actual sequence num-
bers are the sum of the sender’s ISN and the relative sequence number. There are two original reasons
for this mechanism, and one later one (12.10.1 ISNs and spoofing). The original TCP specification, as
clarified in RFC 1122, called for the ISN to be determined by a special clock, incremented by 1 every 4
microseconds.

The most basic reason for using ISNs is to detect duplicate SYNs. Suppose A initiates a connection to B
by sending a SYN packet. B replies with SYN+ACK, but this is lost. A then times out and retransmits its

388 12 TCP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

SYN. B now receives A’s second SYN while in state SYN_RECEIVED. Does this represent an entirely new
request (perhaps A has suddenly restarted), or is it a duplicate? If A uses the clock-driven ISN strategy, B
can tell (almost certainly) whether A’s second SYN is new or a duplicate: only in the latter case will the ISN
values in the two SYNs match.

While there is no danger to data integrity if A sends a SYN, restarts, and sends the SYN again as part
of a reopening the same connection, the arrival of a second SYN with a new ISN means that the original
connection cannot proceed, because that ISN is now wrong. The receiver of the duplicate SYN should drop
any connection state it has recorded so far, and restart processing the second SYN from scratch.

The clock-driven ISN also originally added a second layer of protection against external old duplicates.
Suppose that A opens a connection to B, and chooses a clock-based ISN N1. A then transfers M bytes
of data, closed the connection, and reopens it with ISN N2. If N1 + M < N2, then the old-duplicates
problem cannot occur: all of the absolute sequence numbers used in the first instance of the connection
are less than or equal to N1 + M, and all of the absolute sequence numbers used in the second instance
will be greater than N2. In fact, early Berkeley-Unix implementations of the socket library often allowed
a second connection meeting this ISN requirement to be reopened before TIMEWAIT would have expired;
this potentially addressed the problem of port exhaustion. Of course, if the first instance of the connection
transferred data faster than the ISN clock rate, that is at more than 250,000 bytes/sec, then N1 + M would
be greater than N2, and TIMEWAIT would have to be enforced. But in the era in which TCP was first
developed, sustained transfers exceeding 250,000 bytes/sec were not common.

The three-way handshake was extensively analyzed by Dalal and Sunshine in [DS78]. The authors noted
that with a two-way handshake, the second side receives no confirmation that its ISN was correctly received.
The authors also observed that a four-way handshake – in which the ACK of ISNA is sent separately from
ISNB, as in the diagram below – could fail if one side restarted.

A B

SYN

ACK

ACK

 Possible four-way handshake
Less secure than three-way version

SYN

For this failure to occur, assume that after sending the SYN in line 1, with ISNA1, A restarts. The ACK
in line 2 is either ignored or not received. B now sends its SYN in line 3, but A interprets this as a new
connection request; it will respond after line 4 by sending a fifth, SYN packet containing a different ISNA2.
For B the connection is now ESTABLISHED, and if B acknowledges this fifth packet but fails to update its
record of A’s ISN, the connection will fail as A and B would have different notions of ISNA.

12.10.1 ISNs and spoofing

The clock-based ISN proved to have a significant weakness: it often allowed an attacker to guess the ISN a
remote host might use. It did not help any that an early version of Berkeley Unix, instead of incrementing the

12.10 The Three-Way Handshake Revisited 389

An Introduction to Computer Networks, Release 1.9.21

ISN 250,000 times a second, incremented it once a second, by 250,000 (plus something for each connection).
By guessing the ISN a remote host would choose, an attacker might be able to mimic a local, trusted host,
and thus gain privileged access.

Specifically, suppose host A trusts its neighbor B, and executes with privileged status commands sent by
B; this situation was typical in the era of the rhost command. A authenticates these commands because
the connection comes from B’s IP address. The bad guy, M, wants to send packets to A so as to pretend
to be B, and thus get a privileged command invoked. The connection only needs to be started; if the ruse
is discovered after the command is executed, it is too late. M can easily send a SYN packet to A with
B’s IP address in the source-IP field; M can probably temporarily disable B too, so that A’s SYN-ACK
response, which is sent to B, goes unnoticed. What is harder is for M to figure out how to guess how to ACK
ISNA. But if A generates ISNs with a slowly incrementing clock, M can guess the pattern of the clock with
previous connection attempts, and can thus guess ISNA with a considerable degree of accuracy. So M sends
SYN to A with B as source, A sends SYN-ACK to B containing ISNA, and M guesses this value and sends
ACK(ISNA+1) to A, again with B listed in the IP header as source, followed by a single-packet command.

This TCP-layer IP-spoofing technique was first described by Robert T Morris in [RTM85]; Morris went on
to launch the Internet Worm of 1988 using unrelated attacks. The IP-spoofing technique was used in the
1994 Christmas Day attack against UCSD, launched from Loyola’s own apollo.it.luc.edu; the attack was
associated with Kevin Mitnick though apparently not actually carried out by him. Mitnick was arrested a
few months later.

RFC 1948, in May 1996, introduced a technique for introducing a degree of randomization in ISN selection,
while still ensuring that the same ISN would not be used twice in a row for the same connection. The ISN
is to be the sum of the 4-µs clock, C(t), and a secure hash of the connection information as follows:

ISN = C(t) + hash(local_addr, local_port, remote_addr, remote_port, key)

The key value is a random value chosen by the host on startup. While M, above, can poll A for its current
ISN, and can probably guess the hash function and the first four parameters above, without knowing the key
it cannot determine (or easily guess) the ISN value A would have sent to B. Legitimate connections between
A and B, on the other hand, see the ISN increasing at the 4-µs rate.

RFC 5925 addresses spoofing and related attacks by introducing an optional TCP authentication mecha-
nism: the TCP header includes an option containing a secure hash (22.6 Secure Hashes) of the rest of the
TCP header and a shared secret key. The need for key management limits when this mechanism can be used;
the classic use case is BGP connections between routers (10.6 Border Gateway Protocol, BGP).

Another approach to the prevention of spoofing attacks is to ask sites and ISPs to refuse to forward outwards
any IP packets with a source address not from within that site or ISP. If an attacker’s ISP implements this,
the attacker will be unable to launch spoofing attacks against the outside world. A concrete proposal can be
found in RFC 2827. Unfortunately, it has been (as of 2015) almost entirely ignored.

See also the discussion of SYN flooding at 12.3 TCP Connection Establishment, although that attack does
not involve ISN manipulation.

12.11 Anomalous TCP scenarios

TCP, like any transport protocol, must address the transport issues in 11.3 Fundamental Transport Issues.

390 12 TCP Transport

https://en.wikipedia.org/wiki/Morris_worm
http://en.wikipedia.org/wiki/Kevin_Mitnick
https://tools.ietf.org/html/rfc1948.html
https://tools.ietf.org/html/rfc5925.html
https://tools.ietf.org/html/rfc2827.html

An Introduction to Computer Networks, Release 1.9.21

As we saw above, TCP addresses the Duplicate Connection Request (Duplicate SYN) issue by noting
whether the ISN has changed. This is handled at the kernel level by TCP, versus TFTP’s application-level
(and rather desultory) approach to handing Duplicate RRQs.

TCP addresses Loss of Final ACK through TIMEWAIT: as long as the TIMEWAIT period has not expired,
if the final ACK is lost and the other side resends its final FIN, TCP will still be able to reissue that final
ACK. TIMEWAIT in this sense serves a similar function to TFTP’s DALLY state.

External Old Duplicates, arriving as part of a previous instance of the connection, are prevented by TIME-
WAIT, and may also be prevented by the use of a clock-driven ISN.

Internal Old Duplicates, from the same instance of the connection, that is, sequence number wraparound, is
only an issue for bandwidths exceeding 500 Mbps: only at bandwidths above that can 4 GB be sent in one
60-second MSL. TCP implementations now address this with PAWS: Protection Against Wrapped Segments
(RFC 1323). PAWS adds a 32-bit “timestamp option” to the TCP header. The granularity of the timestamp
clock is left unspecified; one tick must be small enough that sequence numbers cannot wrap in that interval
(eg less than 3 seconds for 10,000 Mbps), and large enough that the timestamps cannot wrap in time MSL.
On Linux systems the timestamp clock granularity is typically 1 to 10 ms; measurements on the author’s
systems have been 4 ms. With timestamps, an old duplicate due to sequence-number wraparound can now
easily be detected.

The PAWS mechanism also requires ACK packets to echo back the sender’s timestamp, in addition to
including their own. This allows senders to accurately measure round-trip times.

Reboots are a potential problem as the host presumably has no record of what aborted connections need to
remain in TIMEWAIT. TCP addresses this on paper by requiring hosts to implement Quiet Time on Startup:
no new connections are to be accepted for 1*MSL. No known implementations actually do this; instead,
they assume that the restarting process itself will take at least one MSL. This is no longer as certain as it
once was, but serious consequences have not ensued.

12.12 TCP Faster Opening

If a client wants to connect to a server, send a request and receive an immediate reply, TCP mandates one
full RTT for the three-way handshake before data can be delivered. This makes TCP one RTT slower than
UDP-based request-reply protocols. There have been periodic calls to allow TCP clients to include data with
the first SYN packet and have it be delivered immediately upon arrival – this is known as accelerated open.

If there will be a series of requests and replies, the simplest fix is to pipeline all the requests and replies over
one persistent connection; the one-RTT delay then applies only to the first request. If the pipeline connection
is idle for a long-enough interval, it may be closed, and then reopened later if necessary.

An early accelerated-open proposal was T/TCP, or TCP for Transactions, specified in RFC 1644. T/TCP
introduced a connection count TCP option, called CC; each participant would include a 32-bit CC value
in its SYN; each participant’s own CC values were to be monotonically increasing. Accelerated open was
allowed if the server side had the client’s previous CC in a cache, and the new CC value was strictly greater
than this cached value. This ensured that the new SYN was not a duplicate of an older SYN.

Unfortunately, this also bypasses the modest authentication of the client’s IP address provided by the full
three-way handshake, worsening the spoofing problem of 12.10.1 ISNs and spoofing. If malicious host M
wants to pretend to be B when sending a privileged request to A, all M has to do is send a single SYN+Data

12.12 TCP Faster Opening 391

https://tools.ietf.org/html/rfc1323.html
https://tools.ietf.org/html/rfc1644.html

An Introduction to Computer Networks, Release 1.9.21

packet with an extremely large value for CC. Generally, the accelerated open succeeded as long as the CC
value presented was larger that the value A had cached for B; it did not have to be larger by exactly 1.

The recent TCP Fast Open proposal, described in RFC 7413, involves a secure “cookie” sent by the client
as a TCP option; if a SYN+Data packet has a valid cookie, then the client has proven its identity and the
data may be released immediately to the receiving application. Cookies are cryptographically secure, and
are requested ahead of time from the server.

Because cookies have an expiration date and must be requested ahead of time, TCP Fast Open is not fun-
damentally faster from the connection-pipeline option, except that holding a TCP connection open uses
more resources than simply storing a cookie. The likely application for TCP Fast Open is in accessing web
servers. Web clients and servers already keep a persistent connection open for a while, but often “a while”
here amounts only to several seconds; TCP Fast Open cookies could remain active for much longer.

One serious practical problem with TCP Fast Open is that some middleboxes (7.7.2 Middleboxes) remove
TCP options they do not understand, or even block the connection attempt entirely.

12.13 Path MTU Discovery

TCP connections are more efficient if they can keep large packets flowing between the endpoints. Once upon
a time, TCP endpoints included just 512 bytes of data in each packet that was not destined for local delivery,
to avoid fragmentation. TCP endpoints now typically engage in Path MTU Discovery which almost always
allows them to send larger packets; backbone ISPs are now usually able to carry 1500-byte packets. The
Path MTU is the largest packet size that can be sent along a path without fragmentation.

The IPv4 strategy is to send an initial data packet with the IPv4 DONT_FRAG bit set. If the ICMP message
Frag_Required/DONT_FRAG_Set comes back, or if the packet times out, the sender tries a smaller
size. If the sender receives a TCP ACK for the packet, on the other hand, indicating that it made it through
to the other end, it might try a larger size. Usually, the size range of 512-1500 bytes is covered by less
than a dozen discrete values; the point is not to find the exact Path MTU but to determine a reasonable
approximation rapidly.

IPv6 has no DONT_FRAG bit. Path MTU Discovery over IPv6 involves the periodic sending of larger
packets; if the ICMPv6 message Packet Too Big is received, a smaller packet size must be used. RFC
1981 has details.

12.14 TCP Sliding Windows

TCP implements sliding windows, in order to improve throughput. Window sizes are measured in terms
of bytes rather than packets; this leaves TCP free to packetize the data in whatever segment size it elects.
In the initial three-way handshake, each side specifies the maximum window size it is willing to accept, in
the Window Size field of the TCP header. This 16-bit field can only go to 64 kB, and a 1 Gbps ˆ 100
ms bandwidthˆdelay product is 12 MB; as a result, there is a TCP Window Scale option that can also be
negotiated in the opening handshake. The scale option specifies a power of 2 that is to be multiplied by the
actual Window Size value. In the WireShark example above, the client specified a Window Size field of
5888 (= 4 ˆ 1472) in the third packet, but with a Window Scale value of 26 = 64 in the first packet, for an

392 12 TCP Transport

https://tools.ietf.org/html/rfc7413.html
https://tools.ietf.org/html/rfc1981.html
https://tools.ietf.org/html/rfc1981.html

An Introduction to Computer Networks, Release 1.9.21

effective window size of 64 ˆ 5888 = 256 segments of 1472 bytes. The server side specified a window size
of 5792 and a scaling factor of 25 = 32.

TCP may either transmit a bulk stream of data, using sliding windows fully, or it may send slowly generated
interactive data; in the latter case, TCP may never have even one full segment outstanding.

In the following chapter we will see that a sender frequently reduces the actual TCP window size, in order
to avoid congestion; the window size included in the TCP header is known as the Advertised Window Size.
On startup, TCP does not send a full window all at once; it uses a mechanism called “slow start”.

12.15 TCP Delayed ACKs

TCP receivers are allowed briefly to delay their ACK responses to new data. This offers perhaps the most
benefit for interactive applications that exchange small packets, such as ssh and telnet. If A sends a data
packet to B and expects an immediate response, delaying B’s ACK allows the receiving application on B
time to wake up and generate that application-level response, which can then be sent together with B’s ACK.
Without delayed ACKs, the kernel layer on B may send its ACK before the receiving application on B has
even been scheduled to run. If response packets are small, that doubles the total traffic. The maximum ACK
delay is 500 ms, according to RFC 1122 and RFC 2581.

For bulk traffic, delayed ACKs simply mean that the ACK traffic volume is reduced. Because ACKs are
cumulative, one ACK from the receiver can in principle acknowledge multiple data packets from the sender.
Unfortunately, acknowledging too many data packets with one ACK can interfere with the self-clocking
aspect of sliding windows; the arrival of that ACK will then trigger a burst of additional data packets, which
would otherwise have been transmitted at regular intervals. Because of this, the RFCs above specify that an
ACK be sent, at a minimum, for every other data packet. For a discussion of how the sender should respond
to delayed ACKs, see 13.2.1 TCP Reno Per-ACK Responses.

Bandwidth Conservation

Delayed ACKs and the Nagle algorithm both originated in a bygone era, when bandwidth was in much
shorter supply than it is today. In RFC 896, John Nagle writes (in 1984, well before TCP Reno, 13 TCP
Reno and Congestion Management) “In general, we have not been able to afford the luxury of excess
long-haul bandwidth that the ARPANET possesses, and our long-haul links are heavily loaded during
peak periods. Transit times of several seconds are thus common in our network.” Today, it is unlikely that
extra small packets would cause detectable, let alone significant, problems.

The TCP ACK-delay time can usually be adjusted globally as a system parameter. Linux offers a
TCP_QUICKACK option, as a flag to setsockopt(), to disable delayed ACKs on a per-connection basis,
but only until the next TCP system call. It must be invoked immediately after every receive operation to
disable delayed ACKs entirely. This option is also not very portable.

The TSO option of 12.5 TCP Offloading, used at the receiver, can also reduce the number of ACKs sent. If
every two arriving data packets are consolidated via TSO into a single packet, then the receiver will appear
to the sender to be acknowledging every other data packet. The ACK delay introduced by TSO is, however,
usually quite small.

12.15 TCP Delayed ACKs 393

https://tools.ietf.org/html/rfc1122.html
https://tools.ietf.org/html/rfc2581.html
https://tools.ietf.org/html/rfc896.html

An Introduction to Computer Networks, Release 1.9.21

12.16 Nagle Algorithm

Like delayed ACKs, the Nagle algorithm (RFC 896) also attempts to improve the behavior of interactive
small-packet applications. It specifies that a TCP endpoint generating small data segments should queue
them until either it accumulates a full segment’s worth or receives an ACK for the previous batch of small
segments. If the full-segment threshold is not reached, this means that only one (consolidated) segment will
be sent per RTT.

As an example, suppose A wishes to send to B packets containing consecutive letters, starting with “a”.
The application on A generates these every 100 ms, but the RTT is 501 ms. At T=0, A transmits “a”. The
application on A continues to generate “b”, “c”, “d”, “e” and “f” at times 100 ms through 500 ms, but A
does not send them immediately. At T=501 ms, ACK(“a”) arrives; at this point A transmits its backlogged
“bcdef”. The ACK for this arrives at T=1002, by which point A has queued “ghijk”. The end result is that
A sends a fifth as many packets as it would without the Nagle algorithm. If these letters are generated by a
user typing them with telnet, and the ACKs also include the echoed responses, then if the user pauses the
echoed responses will very soon catch up.

The Nagle algorithm does not always interact well with delayed ACKs, or with user expectations; see
exercises 10.0 and 10.5. It can usually be disabled on a per-connection basis, in the BSD socket library by
calling setsockopt() with the TCP_NODELAY flag.

12.17 TCP Flow Control

It is possible for a TCP sender to send data faster than the receiver can process it. When this happens, a TCP
receiver may reduce the advertised Window Size value of an open connection, thus informing the sender to
switch to a smaller window size. This provides support for flow control.

The window-size reduction appears in the ACKs sent back by the receiver. A given ACK is not supposed to
reduce the window size by so much that the upper end of the window gets smaller. A window might shrink
from the byte range [20,000..28,000] to [22,000..28,000] but never to [20,000..26,000].

If a TCP receiver uses this technique to shrink the advertised window size to 0, this means that the sender
may not send data. The receiver has thus informed the sender that, yes, the data was received, but that, no,
more may not yet be sent. This corresponds to the ACKWAIT suggested in 6.1.3 Flow Control. Eventually,
when the receiver is ready to receive data, it will send an ACK increasing the advertised window size again.

If the TCP sender has its window size reduced to 0, and the ACK from the receiver increasing the window
is lost, then the connection would be deadlocked. TCP has a special feature specifically to avoid this: if
the window size is reduced to zero, the sender sends dataless packets to the receiver, at regular intervals.
Each of these “polling” packets elicits the receiver’s current ACK; the end result is that the sender will
receive the eventual window-enlargement announcement reliably. These “polling” packets are regulated by
the so-called persist timer.

12.18 Silly Window Syndrome

The silly-window syndrome is a term for a scenario in which TCP transfers only small amounts of data at
a time. Because TCP/IP packets have a minimum fixed header size of 40 bytes, sending small packets uses

394 12 TCP Transport

https://tools.ietf.org/html/rfc896.html

An Introduction to Computer Networks, Release 1.9.21

the network inefficiently. The silly-window syndrome can occur when either by the receiving application
consuming data slowly or when the sending application generating data slowly.

As an example involving a slow-consuming receiver, suppose a TCP connection has a window size of 1000
bytes, but the receiving application consumes data only 10 bytes at a time, at intervals about equal to the
RTT. The following can then happen:

• The sender sends bytes 1-1000. The receiving application consumes 10 bytes, numbered 1-10. The
receiving TCP buffers the remaining 990 bytes and sends an ACK reducing the window size to 10,
per 12.17 TCP Flow Control.

• Upon receipt of the ACK, the sender sends 10 bytes numbered 1001-1010, the most it is permitted.
In the meantime, the receiving application has consumed bytes 11-20. The window size therefore
remains at 10 in the next ACK.

• the sender sends bytes 1011-1020 while the application consumes bytes 21-30. The window size
remains at 10.

The sender may end up sending 10 bytes at a time indefinitely. This is of no benefit to either side; the sender
might as well send larger packets less often. The standard fix, set forth in RFC 1122, is for the receiver to
use its ACKs to keep the window at 0 until it has consumed one full packet’s worth (or half the window, for
small window sizes). At that point the sender is invited – by an appropriate window-size advertisement in
the next ACK – to send another full packet of data.

The silly-window syndrome can also occur if the sender is generating data slowly, say 10 bytes at a time.
The Nagle algorithm, above, can be used to prevent this, though for interactive applications sending small
amounts of data in separate but closely spaced packets may actually be useful.

12.19 TCP Timeout and Retransmission

When TCP sends a packet containing user data (this excludes ACK-only packets), it sets a timeout. If that
timeout expires before the packet data is acknowledged, it is retransmitted. Acknowledgments are sent
for every arriving data packet (unless Delayed ACKs are implemented, 12.15 TCP Delayed ACKs); this
amounts to receiver-side retransmit-on-duplicate of 6.1.1 Packet Loss. Because ACKs are cumulative, and
so a later ACK can replace an earlier one, lost ACKs are seldom a problem.

For TCP to work well for both intra-server-room and trans-global connections, with RTTs ranging from
well under 1 ms to close to 1 second, the length of the timeout interval must adapt. TCP manages this
by maintaining a running estimate of the RTT, EstRTT. In the original version, TCP then set TimeOut =
2ˆEstRTT (in the literature, the TCP TimeOut value is often known as RTO, for Retransmission TimeOut).
EstRTT itself was a running average of periodically measured SampleRTT values, according to

EstRTT = 𝛼ˆEstRTT + (1-𝛼)ˆSampleRTT

for a fixed 𝛼, 0<𝛼<1. Typical values of 𝛼 might be 𝛼=1/2 or 𝛼=7/8. For 𝛼 close to 1 this is “conservative”
in that EstRTT is slow to change. For 𝛼 closer to 0, EstRTT is more volatile.

There is a potential RTT measurement ambiguity: if a packet is sent twice, the ACK received could be in
response to the first transmission or the second. The Karn/Partridge algorithm resolves this: on packet loss
(and retransmission), the sender

• Doubles Timeout

12.19 TCP Timeout and Retransmission 395

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

• Stops recording SampleRTT

• Uses the doubled Timeout as EstRTT when things resume

Setting TimeOut = 2ˆEstRTT proved too short during congestion periods and too long other times. Jacobson
and Karels ([JK88]) introduced a way of calculating the TimeOut value based on the statistical variability of
EstRTT. After each SampleRTT value was collected, the sender would also update EstDeviation according
to

SampleDev = | SampleRTT – EstRTT |
EstDeviation = 𝛽ˆEstDeviation + (1-𝛽)ˆSampleDev

for a fixed 𝛽, 0<𝛽<1. Timeout was then set to EstRTT + 4ˆEstDeviation. EstDeviation is an estimate of the
so-called mean deviation; 4 mean deviations corresponds (for normally distributed data) to about 5 standard
deviations. If the SampleRTT values were normally distributed (which they are not), this would mean that
the chance that a non-lost packet would arrive outside the TimeOut period is vanishingly small.

For further details, see [JK88] and [AP99].

Keeping track of when packets time out is usually handled by putting a record for each packet sent into
a timer list. Each record contains the packet’s timeout time, and the list is kept sorted by these times.
Periodically, eg every 100 ms, the list is inspected and all packets with expired timeout are then retransmitted.
When an ACK arrives, the corresponding packet timeout record is removed from the list. Note that this
approach means that a packet’s timeout processing may be slightly late.

12.20 KeepAlive

There is no reason that a TCP connection should not be idle for a long period of time; ssh/telnet connections,
for example, might go unused for days. However, there is the turned-off-at-night problem: a workstation
might telnet into a server, and then be shut off (not shut down gracefully) at the end of the day. The
connection would now be half-open, but the server would not generate any traffic and so might never detect
this; the connection itself would continue to tie up resources.

KeepAlive in action

One evening long ago, when dialed up (yes, that long ago) into the Internet, my phone line disconnected
while I was typing an email message in an ssh window. I dutifully reconnected, expecting to find my
message in the file “dead.letter”, which is what would have happened had I been disconnected while
using the even-older tty dialup. Alas, nothing was there. I reconstructed my email as best I could and
logged off.

The next morning, there was my lost email in a file “dead.letter”, dated two hours after the initial crash!
What had happened, apparently, was that the original ssh connection on the server side just hung there,
half-open. Then, after two hours, KeepAlive kicked in, and aborted the connection. At that point ssh sent
my mail program the HangUp signal, and the mail program wrote out what it had in “dead.letter”.

To avoid this, TCP supports an optional KeepAlive mechanism: each side “polls” the other with a dataless
packet. The original RFC 1122 KeepAlive timeout was 2 hours, but this could be reduced to 15 minutes. If
a connection failed the KeepAlive test, it would be closed.

396 12 TCP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

Supposedly, some TCP implementations are not exactly RFC 1122-compliant: either KeepAlives are en-
abled by default, or the KeepAlive interval is much smaller than called for in the specification.

12.21 TCP timers

To summarize, TCP maintains the following four kinds of timers. All of them can be maintained by a single
timer list, above.

• TimeOut: a per-segment timer; TimeOut values vary widely

• 2ˆMSL TIMEWAIT: a per-connection timer

• Persist: the timer used to poll the receiving end when winsize = 0

• KeepAlive, above

12.22 Variants and Alternatives

One alternative to TCP is UDP with programmer-implemented timout and retransmission; many RPC im-
plementations (11.5 Remote Procedure Call (RPC)) do exactly this, with reasonable results. Within a LAN
a static timeout of around half a second usually works quite well (unless the LAN has some tunneled links),
and implementation of a simple timeout-retransmission mechanism is quite straightforward. Implementing
adaptive timeouts as in 12.19 TCP Timeout and Retransmission can, however, be a bit trickier. QUIC
(11.1.1 QUIC) is an example of this strategy.

We here consider four other protocols. The first, MPTCP, is based on TCP itself. The second, SCTP, is a
message-oriented alternative to TCP that is an entirely separate protocol. The last two, DCCP and QUIC,
are attempts to create a TCP-like transport layer on top of UDP.

12.22.1 MPTCP

Multipath TCP, or MPTCP, allows connections to use multiple network interfaces on a host, either sequen-
tially or simultaneously. MPTCP architectural principles are outlined in RFC 6182; implementation details
are in RFC 6824.

To carry the actual traffic, MPTCP arranges for the creation of multiple standard-TCP subflows between the
sending and receiving hosts; these subflows typically connect between different pairs of IP addresses on the
respective hosts.

For example, a connection to a server can start using the client’s wired Ethernet interface, and continue
via Wi-Fi after the user has unplugged. If the client then moves out of Wi-Fi range, the connection might
continue via a mobile network. Alternatively, MPTCP allows the parallel use of multiple Ethernet interfaces
on both client and server for higher throughput.

MPTCP officially forbids the creation of multiple TCP connections between a single pair of interfaces in
order to simulate Highspeed TCP (15.5 Highspeed TCP); RFC 6356 spells out an MWTCP congestion-
control algorithm to enforce this.

12.21 TCP timers 397

https://tools.ietf.org/html/rfc1122.html
https://tools.ietf.org/html/rfc6182.html
https://tools.ietf.org/html/rfc6824.html
https://tools.ietf.org/html/rfc6356.html

An Introduction to Computer Networks, Release 1.9.21

Suppose host A, with two interfaces with IP addresses A1 and A2, wishes to connect to host B with IP ad-
dresses B1 and B2. Connection establishment proceeds via the ordinary TCP three-way handshake, between
one of A’s IP addresses, say A1, and one of B’s, B1. The SYN packets must each carry the MP_CAPABLE
TCP option, to signal one another that MPTCP is supported. As part of the MP_CAPABLE option, A and
B also exchange pseudorandom 64-bit connection keys, sent unencrypted; these will be used to sign later
messages as in 22.6.1 Secure Hashes and Authentication. This first connection is the initial subflow.

Once the MPTCP initial subflow has been established, additional subflow connections can be made. Usually
these will be initiated from the client side, here A, though the B side can also do this. At this point, however,
A does not know of B’s address B2, so the only possible second subflow will be from A2 to B1. New
subflows will carry the MP_JOIN option with their initial SYN packets, along with digital signatures signed
by the original connection keys verifying that the new subflow is indeed part of this MPTCP connection.

At this point A and B can send data to one another using both connections simultaneously. To keep track
of data, each side maintains a 64-bit data sequence number, DSN, for the data it sends; each side also
maintains a mapping between the DSN and the subflow sequence numbers. For example, A might send
1000-byte blocks of data alternating between the A1 and A2 connections; the blocks might have DSN values
10000, 11000, 12000, 13000, The A1 subflow would then carry blocks 10000, 12000, etc, numbering
these consecutively (perhaps 20000, 21000, . . .) with its own sequence numbers. The sides exchange DSN
mapping information with a DSS TCP option. This mechanism means that all data transmitted over the
MWTCP connection can be delivered in the proper order, and that if one subflow fails, its data can be
retransmitted on another subflow.

B can inform A of its second IP address, B2, using the ADD_ADDR option. Of course, it is possible that B2
is not directly reachable by A; for example, it might be behind a NAT router. But if B2 is reachable, A can
now open two more subflows A1 B2 and A2 B2.

All the above works equally well if either or both of A’s addresses is behind a NAT router, simply because
the NAT router is able to properly forward the subflow TCP connections. Addresses sent from one host to
another, such as B’s transmission of its address B2, may be rendered invalid by NAT, but in this case A’s
attempt to open a connection to B2 simply fails.

Generally, hosts can be configured to use multiple subflows in parallel, or to use one interface only as a
backup, when the primary interface is unplugged or out of range. APIs have been proposed that allow an
control over MPTCP behavior on a per-connection basis.

12.22.2 SCTP

The Stream Control Transmission Protocol, SCTP, is an entirely separate protocol from TCP, running di-
rectly above IP. It is, in effect, a message-oriented alternative to TCP: an application writes a sequence of
messages and SCTP delivers each one as a unit, fragmenting and reassembling it as necessary. Like TCP,
SCTP is connection-oriented and reliable. SCTP uses a form of sliding windows, and, like TCP, adjusts the
window size to manage congestion.

An SCTP connection can support multiple message streams; the exact number is negotiated at startup.
A retransmission delay in one stream never blocks delivery in other streams. Within each stream, SCTP
messages are sequentially numbered, and are normally delivered in order of message number. A receiver
can request, however, to receive messages immediately upon successful delivery, that is, potentially out of
order. Either way, the data within each message is guaranteed to be delivered in order and without loss.

398 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

Internally, message data is divided into SCTP chunks for inclusion in packets. One SCTP packet can contain
data chunks from different messages and different streams; packets can also contain control chunks.

Messages themselves can be quite large; there is no set limit. Very large messages may need to be received
in multiple system calls (eg calls to recvmsg()).

SCTP supports an MPTCP-like feature by which each endpoint can use multiple network interfaces.

SCTP connections are set up using a four-way handshake, versus TCP’s three-way handshake. The extra
packet provides some protection against so-called SYN flooding (12.3 TCP Connection Establishment).
The central idea is that if client A initiates a connection request with server B, then B allocates no resources
to the connection until after B has received a response to its own message to A. This means that, at a
minimum, A is a real host with a real IP address.

The full four-way handshake between client A and server B is, in brief, as follows:

• A sends B an INIT chunk (corresponding to SYN), along with a pseudorandom TagA.

• B sends A an INIT ACK, with TagB and a state cookie. The state cookie contains all the information
B needs to allocate resources to the connection, and is digitally signed (22.6.1 Secure Hashes and
Authentication) with a key known only to B. Crucially, B does not at this point allocate any resources
to the incipient connection.

• A returns the state cookie to B in a COOKIE ECHO packet.

• B enters the ESTABLISHED state and sends a COOKIE ACK to A. Upon receipt, A enters the ES-
TABLISHED state.

When B receives the COOKIE ECHO, it verifies the signature. At this point B knows that it sent the cookie to
A and received a response, so A must exist. Only then does B allocate memory resources to the connection.
Spoofed INITs in the first step cost B essentially nothing.

The TagA and TagB in the first two packets are called verification tags. From this point on, B will in-
clude TagA in every packet it sends to A, and vice-versa. Although these tags are sent unencrypted, they
nonetheless make it much harder for an attacker to inject data into the connection.

Data can be included in the third and fourth packets above; ie A can begin sending data after one RTT.

Unfortunately for potential SCTP applications, few if any NAT routers recognize SCTP; this limits the use
of SCTP to Internet paths along which NAT is not used. In principle SCTP could simplify delivery of web
pages, transmitting one page component per message, but lack of NAT support makes this infeasible. SCTP
is also blocked by some middleboxes (7.7.2 Middleboxes) on the grounds that it is an unknown protocol, and
therefore suspect. While this is not quite as common as the NAT problem, it is common enough to prevent by
itself the widespread adoption of SCTP in the general Internet. SCTP is widely used for telecommunications
signaling, both within and between providers, where NAT and recalcitrant middleboxes can be banished.

12.22.3 DCCP

As we saw in 11.1.2 DCCP, DCCP is a UDP-based transport protocol that supports, among other things,
connection establishment. While it is used much less often than TCP, it provides an alternative example of
how transport can be done.

12.22 Variants and Alternatives 399

An Introduction to Computer Networks, Release 1.9.21

DCCP defines a set of distinct packet types, rather than TCP’s independent packet flags; this disallows
unforeseen combinations such as TCP SYN+RST. Connection establishment involves Request and Respond;
data transmission involves Data, ACK and DataACK, and teardown involves CloseReq, Close and Reset.
While one cannot have, for example, a Respond+ACK, Respond packets do carry an acknowledgment field.

Like TCP, DCCP uses a three-way handshake to open a connection; here is a diagram:

A B

Request

Response

ACK

 DCCP “three”-way handshake

The fourth packet, DATA or ACK, is not
considered part of the handshake itself.

CLOSED

REQUEST

PARTOPEN

LISTEN

RESPOND

OPEN

OPEN

DATA or ACK

The OPEN state corresponds to TCP’s ESTABLISHED state. Like TCP, each side chooses an ISN (not
shown in the diagram). Because packet delivery is not reliable, and because ACKs are not cumulative,
the client remains in PARTOPEN state until it has confirmed that the server has received its ACK of the
server’s Response. While in state PARTOPEN, the client can send ACK and DataACK but not ACK-less
Data packets.

Packets are numbered sequentially. The numbering includes all packets, not just Data packets, and is by
packet rather than by byte.

The DCCP state diagram is shown below. It is simpler than the TCP state diagram because DCCP does not
support simultaneous opens.

400 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

CLOSED

OPEN

LISTEN

RESPOND

REQUEST

PARTOPEN

CLOSEREQ CLOSING

TIMEWAIT

CLOSED

open / Request

Response / ACKRequest / Response

ACK / any ACK /

passive open /

server close / CloseReq

Server side Client side

client close / Close

Reset /

Close / Reset Close / Reset

2*MSL timer

DCCP State Diagram

To close a connection, one side sends Close and the other responds with Reset. Reset is used for normal
close as well as for exceptional conditions. Because whoever sends the Close is then stuck with TIMEWAIT,
the server side may send CloseReq to ask the client to send Close.

There are also two special packet formats, Sync and SyncAck, for resynchronizing sequence numbers after
a burst of lost packets.

The other major TCP-like feature supported by DCCP is congestion control; see 14.6.3 DCCP Congestion
Control.

12.22.4 QUIC Revisited

Like DCCP, QUIC is also a UDP-based transport protocol, aimed rather squarely at HTTP plus TLS
(22.10.2 TLS). The fundamental goal of QUIC is to provide TLS encryption protection with as little over-
head as possible, in a manner that competes fairly with TCP in the presence of congestion. Opening a QUIC
connection, encryption included, takes a single RTT. QUIC can also be seen, however, as a complete rewrite

12.22 Variants and Alternatives 401

An Introduction to Computer Networks, Release 1.9.21

of TCP from the ground up; a reading of specific features sheds quite a bit of light on how the corresponding
TCP features have fared over the past thirty-odd years. QUIC is currently (2018) documented in a set of
Internet Drafts:

• Transport basics: draft-ietf-quic-transport

• Loss and congestion management: draft-ietf-quic-recovery

• TLS encryption over QUIC: draft-ietf-quic-tls

• HTTP over QUIC: draft-ietf-quic-http

The last Internet Draft above was retitled in November 2018 as Hypertext Transfer Protocol Version 3
(HTTP/3); that is, it proposes that QUIC should become HTTP version 3. If and when this happens, it
may represent the beginning of the end for TCP, given that most Internet connections are for HTTP or
HTTPS. Still, many TCP design issues (13 TCP Reno and Congestion Management, 14 Dynamics of
TCP, 15 Newer TCP Implementations) carry over very naturally to QUIC; a shift from TCP to QUIC
should best be viewed as evolutionary.

The design of QUIC was influenced by the fate of SCTP above; the latter, as a new protocol above IP, was
often blocked by overly security-conscious middleboxes (7.7.2 Middleboxes).

The fact that the QUIC layer resides within an application (or within a library) rather than within the kernel
has meant that QUIC is able to evolve much faster than TCP. The long-term consequences of having the
transport layer live outside the kernel are not yet completely clear, however; it may, for example, make it
easier for users to install unfair congestion-management schemes.

12.22.4.1 Headers

We will start with the QUIC header. While there are some alternative forms, the basic header is di-
agrammed below, with a 1-byte Type field, an 8-byte Connection ID, and 4-byte Version and
Packet Number fields.

Connection ID

Version

Packet Number

Type

Typical QUIC Long Header

Payload....

Perhaps the most striking thing about this header is that 4-byte alignment – used consistently in the IPv4,
IPv6, UDP and TCP headers – has been completely abandoned. On most contemporary processors, the
performance advantages of alignment are negligible; see the last paragraph at 7.1 The IPv4 Header.

402 12 TCP Transport

https://tools.ietf.org/html/draft-ietf-quic-transport
https://tools.ietf.org/html/draft-ietf-quic-recovery
https://tools.ietf.org/html/draft-ietf-quic-tls
https://tools.ietf.org/html/draft-ietf-quic-http
https://quicwg.org/base-drafts/draft-ietf-quic-http.html
https://quicwg.org/base-drafts/draft-ietf-quic-http.html

An Introduction to Computer Networks, Release 1.9.21

IP packets are identified as such by the Ethernet type field, and TCP and UDP packets are identified as such
by the IPv4-header Protocol field. But QUIC packets are not identified as such by any flag in the preceding
IP or UDP headers; there is in fact no place in those headers for a QUIC marker to go. QUIC appears to
an observer as just another form of UDP traffic. This acts as a form of middlebox defense; QUIC packets
cannot be identified as such in isolation. WireShark, sidebar below, identifies QUIC packets by looking at
the whole history of the connection, and even then must make some (educated) guesses. Middleboxes could
do that too, but it would take work.

The initial Connection ID consists of 64 random bits chosen by the client. The server, upon accept-
ing the connection, may change the Connection ID; at that point the Connection ID is fixed for
the lifetime of the connection. The Connection ID may be omitted for packets whose connection can
be determined from the associated IP address and port values; this is signaled by the Type field. The
Connection ID can also be used to migrate a connection to a different IP address and port, as might
happen if a mobile device moves out of range of Wi-Fi and the mobile-data plan continues the communica-
tion. This may also happen if a connection passes through a NAT router. The NAT forwarding entry may
time out (see the comment on UDP and inactivity at 7.7 Network Address Translation), and the connection
may be assigned a different outbound UDP port if it later resumes. QUIC uses the Connection ID to
recognize that the reassigned connection is still the same one as before.

The Version field gets dropped as soon as the version is negotiated. As part of the version negotiation,
a packet might have multiple version fields. Such packets put a random value into the low-order seven bits
of the Type field, as a prevention against middleboxes’ blocking unknown types. This way, aggressive
middlebox behavior should be discovered early, before it becomes widespread.

QUIC-watching

QUIC packets can be observed in WireShark by using the filter string “quic”. To generate QUIC traffic,
use a Chromium-based browser and go to a Google-operated site, say, google.com. Often the only non-
encrypted fields are the Type field and the packet number. It may be necessary to enable QUIC in the
browser, done in Chrome via chrome://flags; see also chrome://net-internals.

The packet number can be reduced to one or two bytes once the connection is established; this is signaled
by the Type field. Internally, QUIC uses packet numbers in the range 0 to 262; these internal numbers
are not allowed to wrap around. The low-order 32 bits (or 16 bits or 8 bits) of the internal number are
what is transmitted in the packet header. A packet receiver infers the high-order bits from the most recent
acknowledgment.

The initial packet number is to be chosen randomly in the range 0 to 232–1025. This corresponds to TCP’s
use of Initial Sequence Numbers.

Use of 16-bit or 8-bit transmitted packet numbers is restricted to cases where there can be no ambiguity. At
a minimum, this means that the number of outstanding packets (the QUIC winsize) cannot exceed 27–1 for
8-bit packet numbering or 215–1 for 16-bit packet numbering. These maximum winsizes represent the ideal
case where there is no packet reordering; smaller values are likely to be used in practice. (See 6.5 Exercises,
exercise 9.0.)

12.22 Variants and Alternatives 403

https://www.wireshark.org/
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://google.com

An Introduction to Computer Networks, Release 1.9.21

12.22.4.2 Frames and streams

Data in a QUIC packet is partitioned into one or more frames. Each frame’s data is prefixed by a sim-
ple frame header indicating its length and type. Some frames contain management information; frames
containing higher-layer data are called STREAM frames. Each frame must be fully contained in one packet.

The application’s data can be divided into multiple streams, depending on the application requirements.
This is particularly useful with HTTP, as a client may request a large number of different resources (html,
images, javascript, etc) simultaneously. Stream data is contained in STREAM frames. Streams are num-
bered, with Stream 0 reserved for the TLS cryptographic handshake. The HTTP/2 protocol has introduced
its own notion of streams; these map neatly onto QUIC streams.

The two low-order bits of each stream number indicate whether the stream was initiated by the client or by
the server, and whether it is bi- or uni-directional. This design decision means that either side can create
a stream and send data on it immediately, without negotiation; this is important for reducing unnecessary
RTTs.

Each individual stream is guaranteed in-order delivery, but there are no ordering guarantees between differ-
ent streams. Within a packet, the data for a particular stream is contained in a frame for that stream.

One packet can contain stream frames for multiple streams. However, if a packet is lost, streams that
have frames contained in that packet are blocked until retransmission. Other streams can continue without
interruption. This creates an incentive for keeping separate streams in separate packets.

Stream frames contain the byte offset of the frame’s block of stream data (starting from 0), to enable in-order
stream reassembly. TCP, as we have seen, uses this byte-numbering approach exclusively, though starting
with the Initial Sequence Number rather than zero. QUIC’s stream-level numbering by byte is unrelated to
its top-level numbering by packet.

In addition to stream frames, there are a large number of management frames. Here are a few of them:

• RST_STREAM: like TCP RST, but for one stream only.

• MAX_DATA: this corresponds to the TCP advertised window size. As with TCP, it can be reduced
to zero to pause the flow of data and thereby implement flow control. There is also a similar
MAX_STREAM_DATA, applying per stream.

• PING and PONG: to verify that the other endpoint is still responding. These serve as the equivalent of
TCP KEEPALIVEs, among other things.

• CONNECTION_CLOSE and APPLICATION_CLOSE: these initiate termination of the connection;
they differ only in that a CONNECTION_CLOSE might be accompanied by a QUIC-layer error or
explanation message while an APPLICATION_CLOSE might be accompanied by, say, an HTTP
error/explanation messge.

• PAD: to pad out the packet to a larger size.

• ACK: for acknowledgments, below.

12.22.4.3 Acknowledgments

QUIC assigns a new, sequential packet number (the Packet ID) to every packet, including retransmis-
sions. TCP, by comparison, assigns sequence numbers to each byte. (QUIC stream frames do number data

404 12 TCP Transport

An Introduction to Computer Networks, Release 1.9.21

by byte, as noted above.)

Lost QUIC packets are retransmitted, but with a new packet number. This makes it impossible for a receiver
to send cumulative acknowledgments, as lost packets will never be acknowledged. The receiver handles this
as below. At the sender side, the sender maintains a list of packets it has sent that are both unacknowledged
and also not known to be lost. These represent the packets in flight. When a packet is retransmitted, its old
packet number is removed from this list, as lost, and the new packet number replaces it.

To the extent possible given this retransmission-renumbering policy, QUIC follows the spirit of sliding
windows. It maintains a state variable bytes_in_flight, corresponding to TCP’s winsize, listing the
total size of all the packets in flight. As with TCP, new acknowledgments allow new transmissions.

Acknowledgments themselves are sent in special acknowledgment frames. These begin with the number of
the highest packet received. This is followed by a list of pairs, as long as will fit into the frame, consisting of
the length of the next block of contiguous packets received followed by the length of the intervening gap of
packets not received. The TCP Selective ACK (13.6 Selective Acknowledgments (SACK)) option is similar,
but is limited to three blocks of received packets. It is quite possible that some of the gaps in a QUIC ACK
frame refer to lost packets that were long since retransmitted with new packet numbers, but this does not
matter.

The sender is allowed to skip packet numbers occasionally, to prevent the receiver from trying to increase
throughput by acknowledging packets not yet received. Unlike with TCP, acknowledging an unsent packet
is considered to be a fatal error, and the connection is terminated.

As with TCP, there is a delayed-ACK timer, but, while TCP’s is typically 250 ms, QUIC’s is 25 ms. QUIC
also includes in each ACK frame the receiver’s best estimate of the elapsed time between arrival of the most
recent packet and the sending of the ACK it triggered; this allows the sender to better estimate the RTT. The
primary advantage of the design decision not to reuse packet IDs is that there is never any ambiguity as to a
retransmitted packet’s RTT, as there is in TCP (12.19 TCP Timeout and Retransmission). Note, however,
that because QUIC runs in a user process and not the kernel, it may not be able to respond immediately to
an arriving packet, and so the time-delay estimate may be slightly short.

ACK frames are not themselves acknowledged. This means that, in a one-way data flow, the receiver may
have no idea if its ACKs are getting through (a TCP receiver may be in the same situation). The QUIC
receiver may send a PING frame to the sender, which will respond not only with a matching PONG frame
but also an ACK frame acknowledging the receiver’s recent acknowledgment packets.

QUIC adjusts its bytes_in_flight value to manage congestion, much as TCP manages its winsize (or
more properly its cwnd, 13 TCP Reno and Congestion Management) for the same purpose. Specifically,
QUIC attempts to mimic the congestion response of TCP Cubic, 15.15 TCP CUBIC, and so should in
theory compete fairly with TCP Cubic connections. However, it is straightforward to arrange for QUIC to
model the behavior of any other flavor of TCP (15 Newer TCP Implementations).

12.22.4.4 Connection handshake and TLS encryption

The opening of a QUIC connection makes use of the TLS handshake, 22.10.2 TLS, specifically TLS v1.3,
22.10.2.4.3 TLS version 1.3. A client wishing to connect sends a QUIC Initial packet, containing
the TLS ClientHello message. The server responds (with a ServerHello) in a QUIC Handshake
packet. (There is also a Retry packet, for special situations.) The TLS negotiation is contained in QUIC’s

12.22 Variants and Alternatives 405

An Introduction to Computer Networks, Release 1.9.21

Stream 0. While the TLS and QUIC handshake rules are rather precise, there is as yet no formal state-
diagram description of connection opening.

The Initial packet also contains a set of QUIC transport parameters declared unilaterally by the client;
the server makes a similar declaration in its response. These parameters include, among other things, the
maximum packet size, the connection’s idle timeout, and initial value for MAX_DATA, above.

An important feature of TLS v1.3 is that, if the client has connected to the server previously and still has the
key negotiated in that earlier session, it can use that old key to send an encrypted application-layer request
(in a STREAM frame) immediately following the Initial packet. This is called 0-RTT protection (or
encryption). The advantage of this is that the client may receive an answer from the server within a single
RTT, versus four RTTs for traditional TCP (one for the TCP three-way handshake, two for TLS negotiation,
and one for the application request/reply). As discussed at 22.10.2.4.4 TLS v1.3 0-RTT mode, requests
submitted with 0-RTT protection must be idempotent, to prevent replay attacks.

Once the server’s first Handshake packet makes it back to the client, the client is in possession of the key
negotiated by the new session, and will encrypt everything using that going forward. This is known as the
1-RTT key, and all further data is said to be 1-RTT protected. The negotiated key is initially calculated by
the TLS layer, which then exports it to QUIC. The QUIC layer then encrypts the entire data portion of its
packets, using the format of RFC 5116.

The QUIC header is not encrypted, but is still covered by an authentication checksum, making it impos-
sible for middleboxes to rewrite anything. Such rewriting has been observed for TCP, and has sometimes
complicated TCP evolution.

The type field of a QUIC packet contains a special code to mark 0-RTT data, ensuring that the receiver will
know what level of protection is in effect.

When a QUIC server receives the ClientHello and sends off its ServerHello, it has not yet received
any evidence that the client “owns” the IP address it claims to have; that is, that the client is not spoofing
its IP address (12.10.1 ISNs and spoofing). Because of the idempotency restriction on responses to 0-RTT
data, the server cannot give away privileges if spoofed in this way by a client. The server may, however,
be an unwitting participant in a traffic-amplification attack, if the real client can trigger the sending by
the server to a spoofed client of a larger response than the real client sends directly. The solution here is
to require that the QUIC Initial packet, containing the ClientHello, be at least 1200 bytes. The
server’s Handshake response is likely to be smaller, and so represents no amplification of traffic.

To close the connection, one side sends a CONNECTION_CLOSE or APPLICATION_CLOSE. It may con-
tinue to send these in response to packets from the other side. When the other side receives the CLOSE
packet, it should send its own, and then enter the so-called draining state. When the initiator of the close
receives the other side’s echoed CLOSE, it too will enter the draining state. Once in this state, an endpoint
may not send any packets. The draining state corresponds to TCP’s TIMEWAIT (12.9 TIMEWAIT), for
the purpose of any lost final ACKs; it should last three RTT’s. There is no need of a TIMEWAIT analog to
prevent old duplicates, as a second QUIC connection will select a new Connection ID.

QUIC connection closing has no analog of TCP’s feature in which one side sends FIN and the other con-
tinues to send data indefinitely, 12.7.1 Closing a connection. This use of FIN, however, is allowed in
bidirectional streams; the per-stream (and per-direction) FIN bit lives in the stream header. Alternatively,
one side can send its request and close its stream, and the other side can then answer on a different stream.

406 12 TCP Transport

https://tools.ietf.org/html/rfc5116.html

An Introduction to Computer Networks, Release 1.9.21

12.23 Epilog

At this point we have covered the basic mechanics of TCP, but have one important topic remaining: how
TCP manages its window size so as to limit congestion, while maintaining fairness. This turns out to be
complex, and will be the focus of the next three chapters.

12.24 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
4.5 is distinct, for example, from exercises 4.0 and 5.0.

1.0. Experiment with the TCP version of simplex-talk. How does the server respond differently with thread-
ing enabled and without, if two simultaneous attempts to connect are made, from two different client in-
stances?

2.0. Trace the states visited if nodes A and B attempt to create a TCP connection by simultaneously sending
each other SYN packets, that then cross in the network. Draw the ladder diagram, and label the states on
each side. Hint: there should be two pairs of crossing packets. A SYN+ACK counts, in the state diagram,
as an ACK.

2.5. Suppose nodes A and B are each behind their own NAT firewall (7.7 Network Address Translation).

A NAT_A Internet NAT_B B

A and B attempt to connect to one another simultaneously, using TCP. A sends to the public IPv4 address
of NAT_B, and vice-versa for B. Assume that neither NAT_A nor NAT_B changes the port numbers in
outgoing packets, at least for the packets involved in this connection attempt. Show that the connection
succeeds.

3.0. When two nodes A and B simultaneously attempt to connect to one another using the OSI TP4 protocol,
two bidirectional network connections are created (rather than one, as with TCP). If TCP had instead chosen
the TP4 semantics here, what would have to be added to the TCP header? Hint: if a packet from xA,port1y
arrives at xB,port2y, how would the receiver tell to which of the two possible connections it belongs?

4.0. Simultaneous connection initiations are rare, but simultaneous connection termination is relatively
common. How do two TCP nodes negotiate the simultaneous sending of FIN packets to one another? Draw
the ladder diagram, and label the states on each side. Which node goes into TIMEWAIT state? Hint: there
should be two pairs of crossing packets.

4.5. The state diagram at 12.7 TCP state diagram shows a dashed path from FIN_WAIT_1 to TIMEWAIT
on receipt of FIN+ACK. All FIN packets contain a valid ACK field, but that is not what is meant here.
Under what circumstances is this direct arc from FIN_WAIT_1 to TIMEWAIT taken? Explain why this arc
can never be used during simultaneous close. Hint: consider the ladder diagram of a “normal” close.

5.0. (a) Suppose you see multiple connections on your workstation in state FIN_WAIT_1. What is likely
going on? Whose fault is it?

(b). What might be going on if you see connections languishing in state FIN_WAIT_2?

12.23 Epilog 407

An Introduction to Computer Networks, Release 1.9.21

6.0. Suppose that, after downloading a file, the client host is unplugged from the network, so it can send
no further packets. The server’s connection is still in the ESTABLISHED state. In each case below, use the
TCP state diagram to list all states that are reachable by the server.

(a). Before being unplugged, the client was in state ESTABLISHED; ie it had not sent the first FIN.
(b). Before being unplugged the client had sent its FIN, and moved to FIN_WAIT_1.

Eventually, the server connection here would in fact transition to CLOSED due to repeated timeouts. For
this exercise, though, assume only transitions explicitly shown in the state diagram are allowed.

6.5. In 12.3 TCP Connection Establishment we noted that RST packets had to have a valid SYN value,
but that “RFC 793 does not require the RST packet’s ACK value to match”. There is an exception for
RST packets arriving at state SYN-SENT: “the RST is acceptable if the ACK field acknowledges the SYN”.
Explain the reasoning behind this exception. (This is the one RST transition shown in the state diagram at
12.7 TCP state diagram.)

7.0. Suppose A and B create a TCP connection with ISNA=20,000 and ISNB=5,000. A sends three 1000-
byte packets (Data1, Data2 and Data3 below), and B ACKs each. Then B sends a 1000-byte packet DataB
to A and terminates the connection with a FIN. In the table below, fill in the SEQ and ACK fields for each
packet shown.

A sends B sends
SYN, ISNA=20,000

SYN, ISNB=5,000, ACK=______
ACK, SEQ=______, ACK=______
Data1, SEQ=______, ACK=______

ACK, SEQ=______, ACK=______
Data2, SEQ=______, ACK=______

ACK, SEQ=______, ACK=______
Data3, SEQ=______, ACK=______

ACK, SEQ=______, ACK=______
DataB, SEQ=______, ACK=______

ACK, SEQ=_____, ACK=______
FIN, SEQ=______, ACK=______

8.0. Suppose you are downloading a large file, and there is a progress bar showing how much of the file has
been downloaded. For definiteness, assume the progress bar moves 1 mm per MB, the throughput averages
0.5 MB per second (so the progress bar advances at a rate of 0.5 mm/sec), and the winsize is 5 MB.

A packet is now lost, and is retransmitted after a timeout. What will happen to the progress bar? If someone
measured the progress bar at two times 1 second apart, just before and just after the lost packet arrived, what
value would they calculate for the throughput?

9.0. Suppose you are creating software for a streaming-video site. You want to limit the video read-ahead
– the gap between how much has been downloaded and how much the viewer has actually watched – to
approximately 1 MB; the server should pause in sending when necessary to enforce this. On the other hand,

408 12 TCP Transport

https://tools.ietf.org/html/rfc793.html

An Introduction to Computer Networks, Release 1.9.21

you do want the receiver to be able to read ahead by up to this much. You should assume that the TCP
connection throughput will be higher than the actual video-data-consumption rate.

(a). Suppose the TCP window size happens to be exactly 1 MB. If the receiver simply reads each video
frame from the TCP connection, displays it, and then pauses briefly before reading the next frame in
accordance with the frame rate, explain how the flow-control mechanism of 12.17 TCP Flow Control will
achieve the desired effect.

(b). Applications, however, cannot control their TCP window size. Suppose the receiver application reads 1
MB ahead of what is being displayed, and then stops reading, until more can be displayed. Again, explain
how the TCP flow-control mechanism will soon cause the sender to stop sending. (Specifically, the sender
would never send more than winsize+1MB ahead of what was necessary.)

(It is also possible to implement sender pauses via an application-layer protocol.)

10.0. A user moves the computer mouse and sees the mouse-cursor’s position updated on the screen. Sup-
pose the mouse-position updates are being transmitted over a TCP connection with a relatively long RTT.
The user attempts to move the cursor to a specific point. How will the user perceive the mouse’s motion

(a). with the Nagle algorithm
(b). without the Nagle algorithm

10.5. Host A sends two single-byte packets, one containing “x” and the other containing “y”, to host B.
A implements the Nagle algorithm and B implements delayed ACKs, with a 500 ms maximum delay. The
RTT is negligible. How long does the transmission take? Draw a ladder diagram.

11.0. Suppose you have fallen in with a group that wants to add to TCP a feature so that, if A and B1 are
connected, then B1 can hand off its connection to a different host B2; the end result is that A and B2 are
connected and A has received an uninterrupted stream of data. Either A or B1 can initiate the handoff.

(a). Suppose B1 is the host to send the final FIN (or HANDOFF) packet to A. How would you handle
appropriate analogues of the TIMEWAIT state for host B1? Does the fact that A is continuing the
connection, just not with B1, matter?
(b). Now suppose A is the party to send the final FIN/HANDOFF, to B1. What changes to TIMEWAIT
would have to be made at A’s end? Note that A may potentially hand off the connection again and again, eg
to B3, B4 and then B5.

12.0. Suppose A connects to B via TCP, and sends the message “Attack at noon”, followed by FIN. Upon
receiving this, B is sure it has received the entire message.

12.24 Exercises 409

An Introduction to Computer Networks, Release 1.9.21

(a). What can A be sure of upon receiving B’s own FIN+ACK?
(b). What can B be sure of upon receiving A’s final ACK?
(c). What is A not absolutely sure of after sending its final ACK?

13.0. Host A connects to the Internet via Wi-Fi, receiving IPv4 address 10.0.0.2, and then opens a TCP
connection conn1 to remote host B. After conn1 is established, A’s Ethernet cable is plugged in. A’s Ethernet
interface receives IP address 10.0.0.3, and A automatically selects this new Ethernet connection as its default
route. Assume that A now starts using 10.0.0.3 as the source address of packets it sends as part of conn1
(contrary to RFC 1122).

Assume also that A’s TCP implementation is such that when a packet arrives from xBIP, Bporty to xAIP,
Aporty and this socketpair is to be matched to an existing TCP connection, the field AIP is allowed to be any
of A’s IP addresses (that is, either 10.0.0.2 or 10.0.0.3); it does not have to match the IP address with which
the connection was originally negotiated.

(a). Explain why conn1 will now fail, as soon as any packet is sent from A. Hint: the packet will be sent
from 10.0.0.3. What will B send in response? In light of the second assumption, how will A react to B’s
response packet?

(The author regularly sees connections appear to fail this way. Perhaps some justification for this behavior
is that, at the time of establishment of conn1, A was not yet multihomed.)

(b). Now suppose all four fields of the socketpair (xBIP, Bporty, xAIP, Aporty) are used to match an incoming
packet to its corresponding TCP connection. The connection conn1 still fails, though not as immediately.
Explain what happens.

See also 7.9.5 ARP and multihomed hosts, 7 IP version 4 exercise 11.0, and 9 Routing-Update Algorithms
exercise 13.0.

14.0. Modify the simplex-talk server of 12.6 TCP simplex-talk so that line_talker() breaks out of
the while loop as soon as it has printed the first string received (or simply remove the while loop). Once
out of the while loop, the existing code calls s.close().

(a). Start up the modified server, and connect to it with a client. Send a single message line, and use
netstat to examine the TCP states of the client and server. What are these states?

(b). Send two message lines to the server. What are the TCP states of the client and server?

(c). Send three message lines to the server. Is there an error message at the client?

410 12 TCP Transport

https://tools.ietf.org/html/rfc1122.html

An Introduction to Computer Networks, Release 1.9.21

(d). Send two message lines to the server, while monitoring packets with WireShark. The WireShark filter
expression tcp.port == 5431 may be useful for eliminating irrelevant traffic. What FIN packets do
you see? Do you see a RST packet?

15.0. Outline a scenario in which TCP endpoint A sends data to B and then calls close() on its socket,
and after the connection terminates B has not received all the data, even though the network has not failed.
In the style of 12.6.1 The TCP Client, A’s code might look like this:

s = new Socket(dest, destport);
sout = s.getOutputStream();
sout.write(large_buffer)
s.close()

Hint: see 12.7.2 Calling close().

12.24 Exercises 411

http://www.wireshark.org/

An Introduction to Computer Networks, Release 1.9.21

412 12 TCP Transport

13 TCP RENO AND CONGESTION MANAGEMENT

This chapter addresses how TCP manages congestion, both for the connection’s own benefit (to improve its
throughput) and for the benefit of other connections as well (which may result in our connection reducing its
own throughput). Early work on congestion culminated in 1990 with the flavor of TCP known as TCP Reno.
The congestion-management mechanisms of TCP Reno remain the dominant approach on the Internet today,
though alternative TCPs are an active area of research and we will consider a few of them in 15 Newer
TCP Implementations.

The central TCP mechanism here is for a connection to adjust its window size. A smaller winsize means
fewer packets are out in the Internet at any one time, and less traffic means less congestion. A larger winsize
means better throughput, up to a point. All TCPs reduce winsize when congestion is apparent, and increase
it when it is not. The trick is in figuring out when and by how much to make these winsize changes. Many of
the improvements to TCP have come from mining more and more information from the stream of returning
ACKs.

The Anternet

The Harvester Ant Pogonomyrmex barbatus uses a mechanism related to TCP Reno to “decide” how many
ants should be out foraging at any one time [PDG12]. The rate of ants leaving the nest to forage is closely
tied to the rate of returning foragers; if foragers return quickly (meaning more food is available), the total
number of foragers will increase (like the increasing winsize below). The ant algorithm is probabilistic,
however, while most TCP algorithms are deterministic.

Recall Chiu and Jain’s definition from 1.7 Congestion that the “knee” of congestion occurs when the queue
first starts to grow, and the “cliff” of congestion occurs when packets start being dropped. Congestion can
be managed at either point, though dropped packets can be a significant waste of resources. Some newer
TCP strategies attempt to take action at the congestion knee (starting with 15.6 TCP Vegas), but TCP Reno
is a cliff-based strategy: packets must be lost before the sender reduces the window size.

In 20 Quality of Service we will consider some router-centric alternatives to TCP for Internet congestion
management. However, for the most part these have not been widely adopted, and TCP is all that stands in
the way of Internet congestive collapse.

The first question one might ask about TCP congestion management is just how did it get this job? A TCP
sender is expected to monitor its transmission rate so as to cooperate with other senders to reduce overall
congestion among the routers. While part of the goal of every TCP node is good, stable performance for
its own connections, this emphasis on end-user cooperation introduces the prospect of “cheating”: a host
might be tempted to maximize the throughput of its own connections at the expense of others. Putting
TCP nodes in charge of congestion among the core routers is to some degree like putting the foxes in
charge of the henhouse. More accurately, such an arrangement has the potential to lead to the Tragedy of
the Commons. Multiple TCP senders share a common resource – the Internet backbone – and while the
backbone is most efficient if every sender cooperates, each individual sender can improve its own situation
by sending faster than allowed. Indeed, one of the arguments used by virtual-circuit routing adherents is that
it provides support for the implementation of a wide range of congestion-management options under control
of a central authority.

413

http://en.wikipedia.org/wiki/Tragedy_of_the_commons
http://en.wikipedia.org/wiki/Tragedy_of_the_commons

An Introduction to Computer Networks, Release 1.9.21

Nonetheless, TCP has been quite successful at distributed congestion management. In part this has been
because system vendors do have an incentive to take the big-picture view, and in the past it has been quite
difficult for individual users to replace their TCP stacks with rogue versions. Another factor contributing to
TCP’s success here is that most bad TCP behavior requires cooperation at the server end, and most server
managers have an incentive to behave cooperatively. Servers generally want to distribute bandwidth fairly
among their multiple clients, and – theoretically at least – a server’s ISP could penalize misbehavior. So far,
at least, the TCP approach has worked remarkably well.

13.1 Basics of TCP Congestion Management

TCP’s congestion management is window-based; that is, TCP adjusts its window size to adapt to conges-
tion. The window size can be thought of as the number of packets out there in the network; more precisely,
it represents the number of packets and ACKs either in transit or enqueued. An alternative approach often
used for real-time systems is rate-based congestion management, which runs into an unfortunate difficulty
if the sending rate momentarily happens to exceed the available rate.

In the very earliest days of TCP, the window size for a TCP connection came from the AdvertisedWindow
value suggested by the receiver, essentially representing how many packet buffers it could allocate. This
value is often quite large, to accommodate large bandwidthˆdelay products, and so is often reduced out of
concern for congestion. When winsize is adjusted downwards for this reason, it is generally referred to as
the Congestion Window, or cwnd (a variable name first appearing in Berkeley Unix). Strictly speaking,
winsize = min(cwnd, AdvertisedWindow). In newer TCP implementations, the variable cwnd may actually
be used to mean the sender’s estimate of the number of packets in flight; see the sidebar at 13.4 TCP Reno
and Fast Recovery.

If TCP is sending over an idle network, the per-packet RTT will be RTTnoLoad, the travel time with no
queuing delays. As we saw in 6.3.2 RTT Calculations, (RTT–RTTnoLoad) is the time each packet spends
in the queue. The path bandwidth is winsize/RTT, and so the number of packets in queues is winsize ˆ
(RTT–RTTnoLoad) / RTT. Usually all the queued packets are at the router at the head of the bottleneck link.
Note that the sender can calculate this number (assuming we can estimate RTTnoLoad; the most common
approach is to assume that the smallest RTT measured corresponds to RTTnoLoad).

TCP’s self-clocking (ie that new transmissions are paced by returning ACKs) guarantees that, again assum-
ing an otherwise idle network, the queue will build only at the bottleneck router. Self-clocking means that
the rate of packet transmissions is equal to the available bandwidth of the bottleneck link. There are some
spikes when a burst of packets is sent (eg when the sender increases its window size), but in the steady state
self-clocking means that packets accumulate only at the bottleneck.

We will return to the case of the non-otherwise-idle network in the next chapter, in 14.2 Bottleneck Links
with Competition.

The “optimum” window size for a TCP connection would be bandwidth ˆ RTTnoLoad. With this window
size, the sender has exactly filled the transit capacity along the path to its destination, and has used none of
the queue capacity.

Actually, TCP Reno does not do this.

Instead, TCP Reno does the following:

• guesses at a reasonable initial window size, using a form of polling

414 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

• slowly increases the window size if no losses occur, on the theory that maximum available throughput
may not yet have been reached

• rapidly decreases the window size otherwise, on the theory that if losses occur then drastic action is
needed

In practice, this usually leaves TCP’s window size well above the theoretical “optimum”.

One interpretation of TCP’s approach is that there is a time-varying “ceiling” on the number of packets the
network can accept. Each sender tries to stay near but just below this level. Occasionally a sender will
overshoot and a packet will be dropped somewhere, but this just teaches the sender a little more about where
the network ceiling is. More formally, this ceiling represents the largest cwnd that does not lead to packet
loss, ie the cwnd that at that particular moment completely fills but does not overflow the bottleneck queue.
We have reached the ceiling when the queue is full.

In Chiu and Jain’s terminology, the far side of the ceiling is the “cliff”, at which point packets are lost. TCP
tries to stay above the “knee”, which is the point when the queue first begins to be persistently utilized, thus
keeping the queue at least partially occupied; whenever it sends too much and falls off the “cliff”, it retreats.

The ceiling concept is often useful, but not necessarily as precise as it might sound. If we have reached the
ceiling by gradually expanding the sliding-windows window size, then winsize will be as large as possible.
But if the sender suddenly releases a burst of packets, the queue may fill and we will have reached a “tem-
porary ceiling” without fully utilizing the transit capacity. Another source of ceiling ambiguity is that the
bottleneck link may be shared with other connections, in which case the ceiling represents our connection’s
particular share, which may fluctuate greatly with time. Finally, at the point when the ceiling is reached, the
queue is full and so there are a considerable number of packets waiting in the queue; it is not possible for a
sender to pull back instantaneously.

It is time to acknowledge the existence of different versions of TCP, each incorporating different congestion-
management algorithms. The two we will start with are TCP Tahoe (1988) and TCP Reno (1990); the
names Tahoe and Reno were originally the codenames of the Berkeley Unix distributions that included
these respective TCP implementations. The ideas behind TCP Tahoe came from a 1988 paper by Jacobson
and Karels [JK88]; TCP Reno then refined this a couple years later. TCP Reno is still in widespread use
over twenty years later, and is still the undisputed TCP reference implementation, although some modest
improvements (NewReno, SACK) have crept in.

A common theme to the development of improved implementations of TCP is for one end of the connection
(usually the sender) to extract greater and greater amounts of information from the packet flow. For example,
TCP Tahoe introduced the idea that duplicate ACKs likely mean a lost packet; TCP Reno introduced the
idea that returning duplicate ACKs are associated with packets that have successfully been transmitted but
follow a loss. TCP Vegas (15.6 TCP Vegas) introduced the fine-grained measurement of RTT, to detect
when RTT > RTTnoLoad.

It is often helpful to think of a TCP sender as having breaks between successive windowfuls; that is, the
sender sends cwnd packets, is briefly idle, and then sends another cwnd packets. The successive window-
fuls of packets are often called flights. The existence of any separation between flights is, however, not
guaranteed.

13.1 Basics of TCP Congestion Management 415

An Introduction to Computer Networks, Release 1.9.21

13.1.1 The Somewhat-Steady State

We will begin with the state in which TCP has established a reasonable guess for cwnd, comfortably below
the Advertised Window Size, and which largely appears to be working. TCP then engages in some fine-
tuning. This TCP “steady state” – steady here in the sense of regular oscillation – is usually referred to as
the congestion avoidance phase, though all phases of the process are ultimately directed towards avoidance
of congestion. The central strategy is that when a packet is lost, cwnd should decrease rapidly, but otherwise
should increase “slowly”. This leads to slow oscillation of cwnd, which over time allows the average cwnd
to adapt to long-term changes in the network capacity.

As TCP finishes each windowful of packets, it notes whether a loss occurred. The cwnd-adjustment rule
introduced by TCP Tahoe and [JK88] is the following:

• if there were no losses in the previous windowful, cwnd = cwnd +1

• if packets were lost, cwnd = cwnd/2

We are informally measuring cwnd in units of full packets; strictly speaking, cwnd is measured in bytes
and is incremented by the maximum TCP segment size.

This strategy here is known as Additive Increase, Multiplicative Decrease, or AIMD; cwnd = cwnd+1 is
the additive increase and cwnd = cwnd/2 is the multiplicative decrease. Typically, setting cwnd=cwnd/2
is a medium-term goal; in fact, TCP Tahoe briefly sets cwnd=1 in the immediate aftermath of an actual
timeout. With no losses, TCP will send successive windowfuls of, say, 20, 21, 22, 23, 24, This amounts
to conservative “probing” of the network and, in particular, of the queue at the bottleneck router. TCP tries
larger cwnd values because the absence of loss means the current cwnd is below the “network ceiling”; that
is, the queue at the bottleneck router is not yet overfull.

If a loss occurs (including multiple losses in a single windowful), TCP’s response is to cut the window size
in half. (As we will see, TCP Tahoe actually handles this in a somewhat roundabout way.) Informally, the
idea is that the sender needs to respond aggressively to congestion. More precisely, lost packets mean the
queue of the bottleneck router has filled, and the sender needs to dial back to a level that will allow the queue
to clear. If we assume that the transit capacity is roughly equal to the queue capacity (say each is equal to
N), then we overflow the queue and drop packets when cwnd = 2N, and so cwnd = cwnd/2 leaves us with
cwnd = N, which just fills the transit capacity and leaves the queue empty. (When the sender sets cwnd=N,
the actual number of packets in transit takes at least one RTT to fall from 2N to N.)

Of course, assuming any relationship between transit capacity and queue capacity is highly speculative. On
a 5,000 km fiber-optic link with a bandwidth of 10 Gbps, the round-trip transit capacity would be about
60 MB, or 60,000 1kB packets. Most routers probably do not have queues that large. Queue capacities in
excess of the transit capacity are common, however. On the other hand, a competing model of a long-haul
high-bandwidth TCP path is that the queue size should be a small fraction of the bandwidthˆdelay product.
We return to this in 13.7 TCP and Bottleneck Link Utilization and 14.8.1 Bufferbloat.

Note that if TCP experiences a packet loss, and there is an actual timeout (as opposed to a packet loss
detected by Fast Retransmit, 13.3 TCP Tahoe and Fast Retransmit), then the sliding-window pipe has
drained. No packets are in flight. No self-clocking can govern new transmissions. Sliding windows therefore
needs to restart from scratch.

The congestion-avoidance algorithm leads to the classic “TCP sawtooth” graph, where the peaks are at
the points where the slowly rising cwnd crossed above the “network ceiling”. We emphasize that the

416 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

TCP sawtooth is specific to TCP Reno and related TCP implementations that share Reno’s additive-
increase/multiplicative-decrease mechanism.

time

cwnd

TCP Sawtooth, red curve represents the network capacity

During periods of no loss, TCP’s cwnd increases linearly; when a loss occurs, TCP sets cwnd = cwnd/2.
This diagram is an idealization as when a loss occurs it takes the sender some time to discover it, perhaps as
much as the TimeOut interval.

The fluctuation shown here in the red ceiling curve is somewhat arbitrary. If there are only one or two
other competing senders, the ceiling variation may be quite dramatic, but with many concurrent senders the
variations may be smoothed out.

For some TCP sawtooth graphs created through actual simulation, see 16.2.1 Graph of cwnd v time and
16.4.1 Some TCP Reno cwnd graphs.

13.1.1.1 A first look at fairness

The transit capacity of the path is more-or-less unvarying, as is the physical capacity of the queue at the
bottleneck router. However, these capacities are also shared with other connections, which may come and
go with time. This is why the ceiling does vary in real terms. If two other connections share a path with
total capacity 60 packets, the “fairest” allocation might be for each connection to get about 20 packets as its
share. If one of those other connections terminates, the two remaining ones might each rise to 30 packets.
And if instead a fourth connection joins the mix, then after equilibrium is reached each connection might
hope for a fair share of 15 packets.

Will this kind of “fair” allocation actually happen? Or might we end up with one connection getting 90% of
the bandwidth while two others each get 5%?

Chiu and Jain [CJ89] showed that the additive-increase/multiplicative-decrease algorithm does indeed con-
verge to roughly equal bandwidth sharing when two connections have a common bottleneck link, provided
also that

13.1 Basics of TCP Congestion Management 417

An Introduction to Computer Networks, Release 1.9.21

• both connections have the same RTT

• during any given RTT, either both connections experience a packet loss, or neither connection does

To see this, let cwnd1 and cwnd2 be the connections’ congestion-window sizes, and consider the quantity
cwnd1 – cwnd2. For any RTT in which there is no loss, cwnd1 and cwnd2 both increment by 1, and so
cwnd1 – cwnd2 stays the same. If there is a loss, then both are cut in half and so cwnd1 – cwnd2 is also
cut in half. Thus, over time, the original value of cwnd1 – cwnd2 is repeatedly cut in half (during each
RTT in which losses occur) until it dwindles to inconsequentiality, at which point cwnd1 » cwnd2.

Graphical and tabular versions of this same argument are in the next chapter, in 14.3 TCP Fairness with
Synchronized Losses.

The second bulleted hypothesis above we may call the synchronized-loss hypothesis. While it is very
reasonable to suppose that the two connections will experience the same number of losses as a long-term
average, it is a much stronger statement to suppose that all loss events are shared by both connections. This
behavior may not occur in real life and has been the subject of some debate; see [GV02]. We return to this
point in 16.3 Two TCP Senders Competing. Fortunately, equal-RTT fairness still holds if each connection
is equally likely to experience a packet loss: both connections will have the same loss rate, and so, as we
shall see in 14.5 TCP Reno loss rate versus cwnd, will have the same cwnd. However, convergence to
fairness may take rather much longer. In 14.3 TCP Fairness with Synchronized Losses we also look at some
alternative hypotheses for the unequal-RTT case.

13.2 Slow Start

How do we make that initial guess as to the network capacity? What value of cwnd should we begin with?
And even if we have a good target for cwnd, how do we avoid flooding the network sending an initial burst
of packets?

The answer is known as slow start. If you are trying to guess a number in a fixed range, you are likely to
use binary search. Not knowing the range for the “network ceiling”, a good strategy is to guess cwnd=1 (or
cwnd=2) at first and keep doubling until you have gone too far. Then revert to the previous guess, which is
known to have worked. At this point you are guaranteed to be within 50% of the true capacity.

The actual slow-start mechanism is to increment cwnd by 1 for each ACK received. This seems linear,
but that is misleading: after we send a windowful of packets (cwnd many), we have received cwnd ACKs
and so have incremented cwnd-many times, and so have set cwnd to (cwnd+cwnd) = 2ˆcwnd. In other
words, cwnd=cwndˆ2 after each windowful is the same as cwnd+=1 after each packet.

Assuming packets travel together in windowfuls, all this means cwnd doubles each RTT during slow start;
this is possibly the only place in the computer science literature where exponential growth is described as
“slow”. It is indeed slower, however, than the alternative of sending an entire windowful at once.

Here is a diagram of slow start in action. This diagram makes the implicit assumption that the no-load RTT
is large enough to hold well more than the 8 packets of the maximum window size shown.

418 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

Data 1

Data 2-3

Data 1

Data 4-7

Data 8-15

Slow Start with discrete packet flights

For a different case, with a much smaller RTT, see 13.2.3 Slow-Start Multiple Drop Example.

Eventually the bottleneck queue gets full, and drops a packet. Let us suppose this is after N RTTs, so
cwnd=2N. Then during the previous RTT, cwnd=2N-1 worked successfully, so we go back to that previous
value by setting cwnd = cwnd/2.

13.2.1 TCP Reno Per-ACK Responses

During slow start, incrementing cwnd by one per ACK received is equivalent to doubling cwnd after each
windowful. We can find a similar equivalence for the congestion-avoidance phase, above.

During congestion avoidance, cwnd is incremented by 1 after each windowful. To formulate this as a per-
ACK increase, we spread this increment of 1 over the entire windowful, which of course has size cwnd.
This amounts to the following upon each ACK received:

13.2 Slow Start 419

An Introduction to Computer Networks, Release 1.9.21

cwnd = cwnd + 1/cwnd

This is a slight approximation, because cwnd keeps changing, but it works well in practice. Because TCP
actually measures cwnd in bytes, floating-point arithmetic is normally not required; see exercise 13.0. An
exact equivalent to the per-windowful incrementing strategy is cwnd = cwnd + 1/cwnd0, where cwnd0 is
the value of cwnd at the start of that particular windowful. Another, simpler, approach is to use cwnd +=
1/cwnd, and to keep the fractional part recorded, but to use floor(cwnd) (the integer part of cwnd) when
actually sending packets.

Most actual implementations keep track of cwnd in bytes, in which case using integer arithmetic is sufficient
until cwnd becomes quite large.

If delayed ACKs are implemented (12.15 TCP Delayed ACKs), then in bulk transfers one arriving ACK
actually acknowledges two packets. RFC 3465 permits a TCP receiver to increment cwnd by 2/cwnd in
that situation, which is the response consistent with incrementing cwnd by 1 upon receipt of enough ACKs
to acknowledge an entire windowful.

13.2.2 Threshold Slow Start

Sometimes TCP uses slow start even when it knows the working network capacity. After a packet loss and
timeout, TCP knows that a new cwnd of cwndold/2 should work. If cwnd had been 100, TCP halves it to
50. The problem, however, is that after timeout there are no returning ACKs to self-clock the continuing
transmission, and we do not want to dump 50 packets on the network all at once. So in restarting the flow
TCP uses what might be called threshold slow start: it uses slow-start, but stops when cwnd reaches the
target. Specifically, on packet loss we set the variable ssthresh to cwnd/2; this is our new target for
cwnd. We set cwnd itself to 1, and switch to the slow-start mode (cwnd += 1 for each ACK). However,
as soon as cwnd reaches ssthresh, we switch to the congestion-avoidance mode (cwnd += 1/cwnd for
each ACK). Note that the transition from threshold slow start to congestion avoidance is completely natural,
and easy to implement.

TCP will use threshold slow-start whenever it is restarting from a pipe drain; that is, every time slow-start
is needed after its very first use. (If a connection has simply been idle, non-threshold slow start is typically
used when traffic starts up again.)

Threshold slow-start can be seen as an attempt at combining rapid window expansion with self-clocking.

By comparison, we might refer to the initial, non-threshold slow start as unbounded slow start. Note that
unbounded slow start serves a fundamentally different purpose – initial probing to determine the network
ceiling to within 50% – than threshold slow start.

Here is the TCP sawtooth diagram above, modified to show timeouts and slow start. The first two packet
losses are displayed as “coarse timeouts”; the rest are displayed as if Fast Retransmit, below, were used.

420 13 TCP Reno and Congestion Management

https://tools.ietf.org/html/rfc3465.html

An Introduction to Computer Networks, Release 1.9.21

time

cwnd

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

timeout

RFC 2581 allows slow start to begin with cwnd=2.

13.2.3 Slow-Start Multiple Drop Example

Slow start has the potential to cause multiple dropped packets at the bottleneck link; packet losses continue
for quite some time because the TCP sender is slow to discover them. The network topology is as follows,
where the A–R link is infinitely fast and the R–B link has a bandwidth in the RÝÑB direction of 1 packet/ms.

A R B
infinitely fast 1 pkt/ms

Assume that R has a queue capacity of 100, not including the packet it is currently forwarding to B,
and that ACKs travel instantly from B back to A. In this and later examples we will continue to use the
Data[N]/ACK[N] terminology of 6.2 Sliding Windows, beginning with N=1; TCP numbering is not done
quite this way but the distinction is inconsequential.

When A uses slow-start here, the successive windowfuls will almost immediately begin to overlap. A will
send one packet at T=0; it will be delivered at T=1. The ACK will travel instantly to A, at which point A
will send two packets. From this point on, ACKs will arrive regularly at A at a rate of one per second. Here
is a brief chart:

13.2 Slow Start 421

https://tools.ietf.org/html/rfc2581.html

An Introduction to Computer Networks, Release 1.9.21

Time A receives A sends R sends R’s queue
0 Data[1] Data[1]
1 ACK[1] Data[2],Data[3] Data[2] Data[3]
2 ACK[2] 4,5 3 4,5
3 ACK[3] 6,7 4 5..7
4 ACK[4] 8,9 5 6..9
5 ACK[5] 10,11 6 7..11
..
N ACK[N] 2N,2N+1 N+1 N+2 .. 2N+1

At T=N, R’s queue contains N packets. At T=100, R’s queue is full. Data[200], sent at T=100, will be
delivered and acknowledged at T=200, giving it an RTT of 100. At T=101, R receives Data[202] and
Data[203] and drops the latter one. Unfortunately, A’s timeout interval must of course be greater than the
RTT, and so A will not detect the loss until, at an absolute minimum, T=200. At that point, A has sent
packets up through Data[401], and the 100 packets Data[203], Data[205], . . . , Data[401] have all been lost.
In other words, at the point when A first receives the news of one lost packet, in fact at least 100 packets
have already been lost.

Fortunately, unbounded slow start generally occurs only once per connection.

13.2.4 Summary of TCP so far

So far we have the following features:

• Unbounded slow start at the beginning

• Congestion avoidance with AIMD once some semblance of a steady state is reached

• Threshold slow start after each loss

• Each threshold slow start transitioning naturally to congestion avoidance

Here is a table expressing the slow-start and congestion-avoidance phases in terms of manipulating cwnd.

phase cwnd change, loss cwnd change, no loss
per window per window per ACK

slow start cwnd/2 cwnd *= 2 cwnd += 1
cong avoid cwnd/2 cwnd +=1 cwnd += 1/cwnd

Viewing cwnd

Linux users can view the current values of cwnd and ssthresh, as well as a host of other TCP statistics,
using the command ss --tcp --info.

The problem TCP often faces, in both slow-start and congestion-avoidance phases, is that when a packet is
lost the sender will not detect this until much later (at least until the bottleneck router’s current queue has
been sent); by then, it may be too late to avoid further losses.

422 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

13.3 TCP Tahoe and Fast Retransmit

TCP Tahoe has one more important feature. Recall that TCP ACKs are cumulative; if packets 1 and 2 have
been received and now Data[4] arrives, but not yet Data[3], all the receiver can (and must!) do is to send
back another ACK[2]. Thus, from the sender’s perspective, if we send packets 1,2,3,4,5,6 and get back
ACK[1], ACK[2], ACK[2], ACK[2], ACK[2], we can infer two things:

• Data[3] got lost, which is why we are stuck on ACK[2]

• Data 4,5 and 6 probably did make it through, and triggered the three duplicate ACK[2]s (the three
ACK[2]s following the first ACK[2]).

The Fast Retransmit strategy is to resend Data[N] when we have received three dupACKs for Data[N-1];
that is, four ACK[N-1]’s in all. Because this represents a packet loss, we also set ssthresh = cwnd/2,
set cwnd=1, and begin the threshold-slow-start phase. The effect of this is typically to reduce the delay
associated with the lost packet from that of a full timeout, typically 2ˆRTT, to just a little over a single RTT.
The lost packet is now discovered before the TCP pipeline has drained. However, at the end of the next RTT,
when the ACK of the retransmitted packet will return, the TCP pipeline will have drained, hence the need
for slow start.

TCP Tahoe included all the features discussed so far: the cwnd+=1 and cwnd=cwnd/2 responses, slow
start and Fast Retransmit.

Fast Retransmit waits for the third dupACK to allow for the possibility of moderate packet reordering.
Suppose packets 1 through 6 are sent, but they arrive in the order 1,3,4,2,6,5, perhaps due to a router along
the way with an architecture that is strongly parallelized. Then the ACKs that would be sent back would be
as follows:

Received Response
Data[1] ACK[1]
Data[3] ACK[1]
Data[4] ACK[1]
Data[2] ACK[4]
Data[6] ACK[4]
Data[5] ACK[6]

Waiting for the third dupACK is in most cases a successful compromise between responsiveness to lost
packets and reasonable evidence that the data packet in question is actually lost.

However, a router that does more substantial delivery reordering would wreck havoc on connections using
Fast Retransmit. In particular, consider the router R in the diagram below; when sending packets to B it
might in principle wish to alternate on a packet-by-packet basis between the path via R1 and the path via R2.
This would be a mistake; if the R1 and R2 paths had different propagation delays then this strategy would
introduce major packet reordering. R should send all the packets belonging to any one TCP connection via
a single path.

13.3 TCP Tahoe and Fast Retransmit 423

An Introduction to Computer Networks, Release 1.9.21

A R B

R1

R2

In the real world, routers generally go to considerable lengths to accommodate Fast Retransmit; in particular,
use of multiple paths for a single TCP connection is almost universally frowned upon. Some actual data on
packet reordering can be found in [VP97]; the author suggests that a switch to retransmission on the second
dupACK would be risky.

13.4 TCP Reno and Fast Recovery

Fast Retransmit requires a sender to set cwnd=1 because the pipe has drained and there are no arriving
ACKs to pace transmission. Fast Recovery is a technique that often allows the sender to avoid draining the
pipe, and to move from cwnd to cwnd/2 in the space of a single RTT. TCP Reno is TCP Tahoe with the
addition of Fast Recovery.

The idea is to use the arriving dupACKs to pace retransmission. We make the assumption that each arriving
dupACK indicates that some data packet following the lost packet has been delivered successfully; it turns
out not to matter which one. On discovery of the lost packet through Fast Retransmit, we set cwnd=cwnd/2;
the next step is to figure out how many dupACKs we have to wait for before we can resume transmissions
of new data.

Initially, at least, we assume that only one data packet is lost, though in the following section we will see
that multiple losses can be handled via a slight modification of the Fast Recovery strategy.

During the recovery process, we cannot use cwnd directly, as the sliding window cannot budge until the
lost packet is retransmitted. Instead we will use the concept of Estimated FlightSize, or EFS, which is the
sender’s best guess at the number of outstanding packets. Under normal circumstances, EFS is the same
as cwnd. The crucial Fast Recovery observation is that EFS should be decremented by 1 for each arriving
dupACK.

Linux cwnd is Estimated FlightSize

This chapter defines cwnd to be the sender winsize strictly construed. As such, packet N+cwnd cannot be
sent until packet N is ACKed. However, the Linux kernel actually uses cwnd as a synonym for Estimated
FlightSize, which simplifies the Fast-Recovery code. This usage applies, in fact, to all TCP varieties,
though it often makes little difference. See tcp_cwnd_test().

We first outline the general case, and then look at a specific example. Let cwnd = N, and suppose packet 1
is lost (packet numbers here may be taken as relative). Until packet 1 is retransmitted, the sender can only
send up through packet N (Data[N] can be sent only after ACK[0] has arrived at the sender). The receiver
will send N–1 dupACK[0]s representing packets 2 through N.

At the point of the third dupACK, when the loss of Data[1] is discovered, the sender calculates as follows:

424 13 TCP Reno and Congestion Management

http://elixir.free-electrons.com/linux/v4.13.9/source/net/ipv4/tcp_output.c#L1733

An Introduction to Computer Networks, Release 1.9.21

EFS had been cwnd = N. Three dupACKs have arrived, representing three later packets no longer in flight,
so EFS is now N–3. At this point the sender realizes a packet has been lost, which makes EFS = N–4 briefly,
but that packet is then immediately retransmitted, which brings EFS back to N–3.

The sender expects at this point to receive N–4 more dupACKs, followed by one new ACK for the retrans-
mission of the packet that was lost. This last ACK will be for the entire original windowful.

The new target for cwnd is N/2 (for simplicity, we will assume N is even). So, we wait for N/2 – 3 more
dupACKs to arrive, at which point EFS is N–3–(N/2–3) = N/2. After this point the sender will resume send-
ing new packets; it will send one new packet for each of the N/2–1 subsequently arriving dupACKs (recall
that there are N–1 dupACKs in all). These new transmissions will be Data[N+1] through Data[N+(N/2–1)].

After the last of the dupACKs will come the ACK corresponding to the retransmission of the lost packet; it
will be ACK[N], acknowledging all of the original windowful. At this point, there are N/2 – 1 unacknowl-
edged packets Data[N+1] through Data[N+(N/2)–1]. The sender now sends Data[N+N/2] and is thereby
able to resume sliding windows with cwnd = N/2: the sender has received ACK[N] and has exactly one full
windowful outstanding for the new value N/2 of cwnd. That is, we are right where we are supposed to be.

Here is a diagram illustrating Fast Recovery for cwnd=10. Data[10] is lost.

Data[9]
Data[10]
Data[11]

Data[12]
Data[13]

Data[16]
Data[17]

Data[18]

Data[14]
Data[15]

get ACK[9] / send Data[19]

get Data[10]; send ACK[19]

X

send Data[21]

send Data[22]

send Data[23]

 send Data[24]
sliding windows reestablished with cwnd = 5

get Data[19]; send dupACK[9] / 19

dupACK[9]

dupACK[9]

3rd dupACK[9]; EFS=7; resend Data[10]
EFS = 6

EFS = 5

EFS = 4; resume sending with Data[20]

send dupACK[9] / 11

send ACK[9]

send dupACK[9] / 12

send dupACK[9] / 13

send dupACK[9] / 14

send dupACK[9] / 15

send dupACK[9] / 16

send dupACK[9] / 15

send dupACK[9] / 17

send dupACK[9] / 18

send ACK[20]

send ACK[21]

send ACK[22]

send Data[25]

send ACK[23]

send Data[26]

send Data[27]

13.4 TCP Reno and Fast Recovery 425

An Introduction to Computer Networks, Release 1.9.21

Data[9] elicits the initial ACK[9], and the nine packets Data[11] through Data[19] each elicit a dupACK[9].
We denote the dupACK[9] elicited by Data[N] by dupACK[9]/N; these are shown along the upper right.
Unless SACK TCP (below) is used, the sender will have no way to determine N or to tell these dupACKs
apart. When dupACK[9]/13 (the third dupACK) arrives at the sender, the sender uses Fast Recovery to infer
that Data[10] was lost and retransmits it. At this point EFS = 7: the sender has sent the original batch of 10
data packets, plus Data[19], and received one ACK and three dupACKs, for a total of 10+1-1-3 = 7. The
sender has also inferred that Data[10] is lost (EFS –= 1) but then retransmitted it (EFS += 1). Six more
dupACK[9]’s are on the way.

EFS is decremented for each subsequent dupACK arrival; after we get two more dupACK[9]’s, EFS is 5.
The next dupACK[9] (dupACK[9]/16) reduces EFS to 4 and so allows us transmit Data[20] (which promptly
bumps EFS back up to 5). We have

receive send
dupACK[9]/16 Data[20]
dupACK[9]/17 Data[21]
dupACK[9]/18 Data[22]
dupACK[9]/19 Data[23]

We emphasize again that the TCP sender does not see the numbers 16 through 19 in the receive column
above; it determines when to begin transmission by counting dupACK[9] arrivals.

Working Backwards

Figuring out when a fast-recovery sender should resume transmissions of new data is error-prone. Perhaps
the simplest approach is to work backwards from the retransmitted lost packet: it should trigger at the
receiver an ACK for the entire original windowful. When Data[10] above was lost, the “stuck” window
was Data[10]-Data[19]. The retransmitted Data[10] thus triggers ACK[19]; when ACK[19] arrives, cwnd
should be 10/2 = 5 so Data[24] should be sent. That in turn means the four packets Data[20] through
Data[23] must have been sent earlier, via Fast Recovery. There are 10–1 = 9 dupACKs, so to send on the
last four we must start with the sixth. The diagram above indeed shows new Fast Recovery transmissions
beginning with the sixth dupACK.

The next thing to arrive at the sender side is the ACK[19] elicited by the retransmitted Data[10]; at the point
Data[10] arrives at the receiver, Data[11] through Data[19] have already arrived and so the cumulative-ACK
response is ACK[19]. The sender responds to ACK[19] with Data[24], and the transition to cwnd=5 is now
complete.

During sliding windows without losses, a sender will send cwnd packets per RTT. If a “coarse” timeout
occurs, typically it is not discovered until after at least one complete RTT of link idleness; there are additional
underutilized RTTs during the slow-start phase. It is worth examining the Fast Recovery sequence shown
in the illustration from the perspective of underutilized bandwidth. The diagram shows three round-trip
times, as seen from the sender side. During the first RTT, the ten packets Data[9]-Data[18] are sent. The
second RTT begins with the sending of Data[19] and continues through sending Data[22], along with the
retransmitted Data[10]. The third RTT begins with sending Data[23], and includes through Data[27]. In
terms of recovery efficiency, the RTTs send 9, 5 and 5 packets respectively (we have counted Data[10]
twice); this is remarkably close to the ideal of reducing cwnd to 5 instantaneously.

426 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

The reason we cannot use cwnd directly in the formulation of Fast Recovery is that, until the lost Data[10]
is acknowledged, the window is frozen at Data[10]-Data[19]. The original RFC 2001 description of Fast
Recovery described retransmission in terms of cwnd inflation and deflation. Inflation would begin at the
point the sender resumed transmitting new packets, at which point cwnd would be incremented for each
dupACK; in the diagram above, cwnd would finish at 15. When the ACK[20] elicited by the lost packet
finally arrived, the recovery phase would end and cwnd would immediately deflate to 5. For a diagram
illustrating cwnd inflation and deflation, see 17.2.1 Running the Script.

13.5 TCP NewReno

TCP NewReno, described in [JH96] and RFC 2582 (currently RFC 6582), is a modest tweak to Fast Re-
covery which greatly improves handling of the case when two or more packets are lost in a windowful. It is
considered to be a part of contemporary TCP Reno. If two data packets are lost and the first is retransmitted,
the receiver will acknowledge data up to just before the second packet, and then continue sending dupACKs
of this until the second lost packet is also retransmitted. These ACKs of data up to just before the second
packet are sometimes called partial ACKs, because retransmission of the first lost packet did not result
in an ACK of all the outstanding data. The NewReno mechanism uses these partial ACKs as evidence to
retransmit later lost packets, and also to keep pacing the Fast Recovery process.

In the diagram below, packets 1 and 4 are lost in a window 0..11 of size 12. Initially the sender will get
dupACK[0]’s; the first 11 ACKs (dashed lines from right to left) are ACK[0] and 10 dupACK[0]’s. When
packet 1 is successfully retransmitted on receipt of the third dupACK[0], the receiver’s response will be
ACK[3] (the heavy dashed line). This is the first partial ACK (a full ACK would have been ACK[12]). On
receipt of any partial ACK during the Fast Recovery process, TCP NewReno assumes that the immediately
following data packet was lost and retransmits it immediately; the sender does not wait for three dupACKs
because if the following data packet had not been lost, no instances of the partial ACK would ever have been
generated, even if packet reordering had occurred.

The TCP NewReno sender response here is, in effect, to treat each partial ACK as a dupACK[0], except that
the sender also retransmits the data packet that – based upon receipt of the partial ACK – it is able to infer
is lost. NewReno continues pacing Fast Recovery by whatever ACKs arrive, whether they are the original
dupACKs or later partial ACKs or dupACKs.

13.5 TCP NewReno 427

https://tools.ietf.org/html/rfc2001.html
https://tools.ietf.org/html/rfc2582.html
https://tools.ietf.org/html/rfc6582.html

An Introduction to Computer Networks, Release 1.9.21

data[0]
1

2
3
4

7
8

9
10

5
6

11

ACK[0]

3rd dupACK[0]; resend Data[1]

Data[1] received; send ACK[3]

X

X

send Data[13]
send Data[14]
send Data[15]

send Data[16]

resend Data[4]

Also send Data[17]

send Data[18]
send Data[19]

send Data[21]

send Data[20]

get ACK[17]; send Data[23]

send Data[22]; now cwnd = 6

Data[4] received; send ACK[16]

Data[12]; send last dupACK[0]

get ACK[18]; send Data[24]

All is back to normal

get ACK[19]; send Data[25]

four dupACK[3]'s

send ACK[17]

When the receiver’s first ACK[3] arrives at the sender, NewReno infers that Data[4] was lost and resends it;
this is the second heavy data line. No dupACK[3]’s need arrive; as mentioned above, the sender can infer
from the single ACK[3] that Data[4] is lost. The sender also responds as if another dupACK[0] had arrived,
and sends Data[17].

The arrival of ACK[3] signals a reduction in the EFS by 2: one for the inference that Data[4] was lost, and

428 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

one as if another dupACK[0] had arrived; the two transmissions in response (of Data[4] and Data[17]) bring
EFS back to where it was. At the point when Data[16] is sent the actual (not estimated) flightsize is 5, not 6,
because there is one less dupACK[0] due to the loss of Data[4]. However, once NewReno resends Data[4]
and then sends Data[17], the actual flightsize is back up to 6.

There are four more dupACK[3]’s that arrive. NewReno keeps sending new data on receipt of each of these;
these are Data[18] through Data[21].

The receiver’s response to the retransmitted Data[4] is to send ACK[16]; this is the cumulative of all the
data received up to that moment. At the point this ACK arrives back at the sender, it had just sent Data[21]
in response to the fourth dupACK[3]; its response to ACK[16] is to send the next data packet, Data[22].
The sender is now back to normal sliding windows, with a cwnd of 6. Similarly, the Data[17] immediately
following the retransmitted Data[4] elicits an ACK[17] (this is the first Data[N] to elicit an exactly match-
ing ACK[N] since the losses began), and the corresponding response to the ACK[17] is to continue with
Data[23].

As with the previous Fast Recovery example, we consider the number of packets sent per RTT; the diagram
shows four RTTs as seen from the sender side.

RTT First packet Packets sent count
first Data[0] Data[0]-Data[11] 12
second Data[12] Data[12]-Data[15], Data[1] 5
third Data[16] Data[16]-Data[20], Data[4] 6
fourth Data[21] Data[21]-Data[26] 6

Again, after the loss is detected we segue to the new cwnd of 6 with only a single missed packet (in the
second RTT). NewReno is, however, only able to send one retransmitted packet per RTT.

Note that TCP Newreno, like TCPs Tahoe and Reno, is a sender-side innovation; the receiver does not have
to do anything special. The next TCP flavor, SACK TCP, requires receiver-side modification.

13.6 Selective Acknowledgments (SACK)

A traditional TCP ACK is a cumulative acknowledgment of all data received up to that point. If Data[1002]
is received but not Data[1001], then all the receiver can send is a duplicate ACK[1000]. This does indicate
that something following Data[1001] made it through, but nothing more.

To provide greater specificity, TCP now provides a Selective ACK (SACK) option, implemented at the
receiver. If this is available, the sender does not have to guess from dupACKs what has gotten through. The
receiver can send an ACK that says:

• All packets up through 1000 have been received (the cumulative ACK)

• All packets up through 1050 have been received except for 1001, 1022, and 1035.

The second line is the SACK part. Almost all TCP implementations now support this.

Specifically, SACKs include the following information; the additional data beyond the cumulative ACK is
included in a TCP Option field.

• The latest cumulative ACK

13.6 Selective Acknowledgments (SACK) 429

An Introduction to Computer Networks, Release 1.9.21

• The three most recent blocks of consecutive packets received

Thus, if we have lost 1001, 1022, 1035, and now 1051, and the highest received is 1060, the SACK might
say:

• All packets up through 1000 have been received

• 1060-1052 have been received

• 1050-1036 have been received

• 1034-1023 have been received

From this the sender know 1001s and 1022 were not received, but nothing about the packets in between.
However, if the sender has been paying close attention to the previous SACKs received, it likely already
knows that all packets 1002 through 1021 have been received.

The term SACK TCP is typically used to mean that the receiving side supports selective ACKs, and the
sending side is a straightforward modification of TCP Reno to take advantage of them.

In practice, selective ACKs provide at best a modest performance improvement in many situations; TCP
NewReno does rather well, in moderate-loss environments. The paper [FF96] compares Tahoe, Reno,
NewReno and SACK TCP, in situations involving from one to four packet losses in a single RTT. While
Classic Reno performed poorly with two packet losses in a single RTT and extremely poorly with three
losses, the three-loss NewReno and SACK TCP scenarios played out remarkably similarly. Only when
connections experienced four losses in a single RTT did SACK TCP’s performance start to pull slightly
ahead of that of NewReno.

13.7 TCP and Bottleneck Link Utilization

Consider a TCP Reno sender with no competing traffic. As cwnd saws up and down, what happens to
throughput? Do those halvings of cwnd result in at least a dip in throughput? The answer depends to some
extent on the size of the queue ahead of the bottleneck link, relative to the transit capacity of the path. As
was discussed in 6.3.2 RTT Calculations, when cwnd is less than the transit capacity, the link is less than
100% utilized and the queue is empty. When cwnd is more than the transit capacity, the link is saturated
(100% utilized) and the queue has about (cwnd – transit_capacity) packets in it.

The diagram below shows two TCP Reno teeth; in the first, the queue capacity exceeds the path transit
capacity and in the second the queue capacity is a much smaller fraction of the total.

430 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

Network ceiling

Queue

Queue

Transit

Transit

100% queue-filling phase queue-
filling
phase

link-unsaturated phase

Queue capacity � Transit capacity
Bottleneck link is always 100% utilized

Queue capacity < Transit capacity
Bottleneck link is not 100% utilized

In the first diagram, the bottleneck link is always 100% utilized, even at the left edge of the teeth. In
the second the interval between loss events (the left and right margins of the tooth) is divided into a link-
unsaturated phase and a queue-filling phase. In the unsaturated phase, the bottleneck link utilization is
less than 100% and the queue is empty; in the later phase, the link is saturated and the queue begins to fill.

Consider again the idealized network below, with an R–B bandwidth of 1 packet/ms.

A R B
infinitely fast 1 pkt/ms

We first consider the queue ě transit case. Assume that the total RTTnoLoad delay is 100 ms, mostly due to
propagation delay; this makes the bandwidthˆdelay product 100 packets. The question for consideration is
to what extent TCP Reno, once slow-start is over, sometimes leaves the R–B link idle.

The R–B link will be saturated at all times provided A always keeps 100 packets in transit, that is, we
always have cwnd ě 100 (6.3.2 RTT Calculations). If cwndmin = 100, then cwndmax = 2ˆcwndmin =
200. For this to be the maximum, the queue capacity must be at least 99, so that the path can accommodate
199 packets without loss: 100 packets in transit plus 99 packets in the queue. In general, TCP Reno never
leaves the bottleneck link idle as long as the queue capacity in front of that link is at least as large as the path
round-trip transit capacity.

Now suppose instead that the queue size is 49, or about 50% of the transit capacity. Packet loss will occur
when cwnd reaches 150, and so cwndmin = 75. Qualitatively this case is represented by the second diagram
above, though the queue-to-network_ceiling proportion illustrated there is more like 1:8 than 1:3. There are
now periods when the R–B link is idle. During RTT intervals when cwnd=75, throughput will be 75% of
the maximum and the R–B link will be idle 25% of the time.

13.7 TCP and Bottleneck Link Utilization 431

An Introduction to Computer Networks, Release 1.9.21

However, cwnd will be 75 just for the first RTT following the loss. After 25 RTTs, cwnd will be back up
to 100, and the link will be saturated. So we have 25 RTTs with an average cwnd of 87.5 (=&75+100)/2),
meaning the link is 87.5% saturated, followed by 50 RTTs where the link is 100% saturated. The long-term
average here is 95.8% utilization of the bottleneck link. This is not bad at all, given that using 10% of the
link bandwidth on packet headers is almost universally considered reasonable. Furthermore, at the point
when cwnd drops after a loss to cwndmin=75, the queue must have been full. It may take one or two RTTs
for the queue to drain; during this time, link utilization will be even higher.

If most or all of the time the bottleneck link is saturated, as in the first diagram, it may help to consider
the average queue size. Let the queue capacity be Cqueue and the transit capacity be Ctransit, with Cqueue >
Ctransit. Then cwnd will vary from a maximum of Cqueue+Ctransit to a minimum of what works out to be
(Cqueue-Ctransit)/2 + Ctransit. We would expect an average queue size about halfway between these, less the
Ctransit term: 3/4ˆCqueue - 1/4ˆCtransit. If Cqueue=Ctransit, the expected average queue size should be about
Cqueue/2.

See exercises 12.0 and 12.5.

13.7.1 TCP Queue Sizes

From the perspective of link utilization, the previous section suggests that router queues be larger rather than
smaller. A queue capacity at least as large as transit capacity seems like an excellent choice. To configure
a router this way, we first make an educated guess at the average RTT, and then multiply this by the output
bandwidth to get the desired queue capacity. For an average RTT of 50 ms, a bandwidth of 1 Gbps leads to
a queue capacity of about 6 MB, or 4000 packets of 1500 bytes each. If the numbers rise to 100 ms and 10
Gbps, queue capacity needs to be 125 MB.

Unfortunately, while large queues are helpful when the traffic consists exclusively of bulk TCP transfers,
they introduce proportionately large queuing delays that can wreak havoc on real-time traffic. A bottleneck
router with a queue size matching a flow’s bandwidthˆdelay product will double the RTT for that flow, at
points when the queue is full. Worse, if the goal is 100% TCP link utilization always, then the router queue
must be sized for the highest-bandwidth flow with the longest RTT; shorter TCP connections will encounter
a queue much larger than necessary. This problem of large queue capacity leading to excessive delay is
known as bufferbloat; we will return to it at 14.8.1 Bufferbloat.

Because of the delay problems brought on by large queues, TCP connections must sometimes pass through
bottleneck routers with small queues. In this case a tooth of a TCP Reno connection is divided into a large
link-unsaturated phase and a small queue-filling phase.

The need for large buffers, if near-100% queue utilization is the goal, is to a large degree specific to the
TCP Reno sawtooth. Some other TCP implementations (in particular TCP Vegas, 15.6 TCP Vegas), do
not overfill the queue. However, TCP Vegas does not compete well with TCP Reno, at least with traditional
FIFO queuing (14.1 A First Look At Queuing) (but see 19.6.1 Fair Queuing and Bufferbloat).

The worst case for TCP link utilization is if the queue size is close to zero. Using again a bandwidthˆdelay
product 100 of packets, a zero-sized queue will mean that cwndmax will be 100 (or 101), and so cwndmin
will be 50. Link utilization therefore ranges, over the lifetime of the tooth, from a low of 50/100 = 50%
to a high of 100%; the average utilization is 75%. While this is not ideal, and while some non-Reno TCP
variants have attempted to improve this figure, 75% link utilization is not all that bad, and can be compared
with the 10% of the bandwidth consumed as packet headers (though that figure assumes 512 bytes of data

432 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

per packet, which is low). (A literally zero-sized queue will not work at all well; one reason – though not
the only one – is that TCP Reno sends a two-packet burst whenever cwnd is incremented.)

Traffic mix has a major influence on the appropriate queue size. For example, the analysis of the previous
section assumed a single long-term TCP connection. The link-utilization situation improves with increasing
numbers of TCP connections, at least if the losses are unsynchronized, because the halving of one connec-
tion’s cwnd has a proportionately smaller impact on the total queue use. In [AKM04] it is shown that for a
router with N TCP connections with unsynchronized losses, a queue size of (RTTaverage ˆ bandwidth)/?N
is sufficient to keep the link almost always saturated. Larger values of N here are typically associated with
“core” (backbone) routers. The paper [EGMR05] proposes even smaller buffer capacities, on the order of
the logarithm of the maximum window size. The argument makes two important assumptions, however:
first, that we are willing to tolerate a link utilization somewhat less than 100% (though greater than 75%),
and second, perhaps more importantly, that TCP is modified so as to spread out any packet bursts – even
bursts of size two – over small intervals of time.

There are other problems created by too-small queues, even if we are willing to accept 75% link utiliza-
tion. Internet traffic, not unlike city-bus traffic, tends to “bunch up”; queues serve as a way to keep these
packet bunches from leading to unnecessary losses. For one example of unexpected traffic bunching, see
16.4.1.3 Transient queue peaks. Increased traffic randomization helps reduce the need for very large
queues, but may increase the bunching effect. Internet “core” routers see more highly randomized traffic
than end-user or “edge” routers; queues in the latter are often the most difficult to configure.

We will return to the issue of link utilization in 16.2.6 Single-sender Throughput Experiments and (for two
senders) 16.3.10.2 Higher bandwidth and link utilization, using the ns simulator to get experimental data.
See also exercise 12.0.

Finally, the queue capacity does not necessarily have to remain static. We will return to this point in
14.8 Active Queue Management. Furthermore, many queue-size problems ultimately spring from the
fact that all traffic is being dumped into a single FIFO queue; we will look at alternative queuing strategies
in 19 Queuing and Scheduling. For a particular example related to bufferbloat, see 19.6.1 Fair Queuing
and Bufferbloat.

13.8 Single Packet Losses

Again assuming no competition on the bottleneck link, the TCP Reno additive-increase policy has a simple
consequence: at the end of each tooth, only a single packet will be lost.

To see this, let A be the sender, R be the bottleneck router, and B be the receiver:

A R B

Let T be the bandwidth delay at R, so that packets leaving R are spaced at least time T apart. A will
therefore transmit packets T time units apart, except for those times when cwnd has just been incremented
and A sends a pair of packets back-to-back. Let us call the second packet of such a back-to-back pair the
“extra” packet. To simplify the argument slightly, we will assume that the two packets of a pair arrive at R
essentially simultaneously.

13.8 Single Packet Losses 433

An Introduction to Computer Networks, Release 1.9.21

Only an extra packet can result in an increase in queue utilization; every other packet arrives after an interval
T from the previous packet, giving R enough time to remove a packet from its queue.

A consequence of this is that cwnd will reach the sum of the transit capacity and the queue capacity without
R dropping a packet. (This is not necessarily the case if a cwnd this large were sent as a single burst.)

Let C be this combined capacity, and assume cwnd has reached C. When A executes its next cwnd += 1
additive increase, it will as usual send a pair of back-to-back packets. The second of this pair – the extra –
is doomed; it will be dropped when it reaches the bottleneck router.

At this point there are C = cwnd – 1 packets outstanding, all spaced at time intervals of T. Sliding windows
will continue normally until the ACK of the packet just before the lost packet arrives back at A. After this
point, A will receive only dupACKs. A has received C = cwnd–1 ACKs since the last increment to cwnd,
but must receive C+1 = cwnd ACKs in order to increment cwnd again. This will not happen, as no more
new ACKs will arrive until the lost packet is transmitted.

Following this, cwnd is reduced and the next sawtooth begins; the only packet that is lost is the “extra”
packet of the previous flight.

See 16.2.3 Single Losses for experimental confirmation, and exercise 14.0.

13.9 TCP Assumptions and Scalability

In the TCP design portrayed above, several embedded assumptions have been made. Perhaps the most im-
portant is that every loss is treated as evidence of congestion. As we shall see in the next chapter, this fails
for high-bandwidth TCP (when rare random losses become significant); it also fails for TCP over wireless
(either Wi-Fi or other), where lost packets are much more common than over Ethernet. See 14.9 The
High-Bandwidth TCP Problem and 14.10 The Lossy-Link TCP Problem.

The TCP cwnd-increment strategy – to increment cwnd by 1 for each RTT – has some assumptions of
scale. This mechanism works well for cross-continent RTT’s on the order of 100 ms, and for cwnd in the
low hundreds. But if cwnd = 2000, then it takes 100 RTTs – perhaps 20 seconds – for cwnd to grow
10%; linear increase becomes proportionally quite slow. Also, if the RTT is very long, the cwnd increase is
slow. The absolute set-by-the-speed-of-light minimum RTT for geosynchronous-satellite Internet is 480 ms,
and typical satellite-Internet RTTs are close to 1000 ms. Such long RTTs also lead to slow cwnd growth;
furthermore, as we shall see below, such long RTTs mean that these TCP connections compete poorly with
other connections. See 14.11 The Satellite-Link TCP Problem.

Another implicit assumption is that if we have a lot of data to transfer, we will send all of it in one single
connection rather than divide it among multiple connections. The web http protocol violates this routinely,
though. With multiple short connections, cwnd may never properly converge to the steady state for any of
them; TCP Reno does not support carrying over what has been learned about cwnd from one connection
to the next. A related issue occurs when a connection alternates between relatively idle periods and full-on
data transfer; most TCPs set cwnd=1 and return to slow start when sending resumes after an idle period.

Finally, TCP’s Fast Retransmit assumes that routers do not significantly reorder packets.

434 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

13.10 TCP Parameters

In TCP Reno’s Additive Increase, Multiplicative Decrease strategy, the increase increment is 1.0 and the
decrease factor is 1/2. It is natural to ask if these values have some especial significance, or what are the
consequences if they are changed.

Neither of these values plays much of a role in determining the average value of cwnd, at least in the short
term; this is largely dictated by the path capacity, including the queue size of the bottleneck router. It seems
clear that the exact value of the increase increment has no bearing on congestion; the per-RTT increase is
too small to have a major effect here. The decrease factor of 1/2 may play a role in responding promptly to
incipient congestion, in that it reduces cwnd sharply at the first sign of lost packets. However, as we shall see
in 15.6 TCP Vegas, TCP Vegas in its “normal” mode manages quite successfully with an Additive Decrease
strategy, decrementing cwnd by 1 at the point it detects approaching congestion (to be sure, it detects this
well before packet loss), and, by some measures, responds better to congestion than TCP Reno. In other
words, not only is the exact value of the AIMD decrease factor not critical for congestion management, but
multiplicative decrease itself is not mandatory.

There are two informal justifications in [JK88] for a decrease factor of 1/2. The first is in slow start: if at
the Nth RTT it is found that cwnd = 2N is too big, the sender falls back to cwnd/2 = 2N-1, which is known
to have worked without losses the previous RTT. However, a change here in the decrease policy might best
be addressed with a concomitant change to slow start; alternatively, the reduction factor of 1/2 might be left
still to apply to “unbounded” slow start, while a new factor of 𝛽 might apply to threshold slow start.

The second justification for the reduction factor of 1/2 applies directly to the congestion avoidance phase;
written in 1988, it is quite remarkable to the modern reader:

If the connection is steady-state running and a packet is dropped, it’s probably because a new
connection started up and took some of your bandwidth. . . . [I]t’s probable that there are now
exactly two conversations sharing the bandwidth. I.e., you should reduce your window by half
because the bandwidth available to you has been reduced by half. [JK88], §D

Today, busy routers may have thousands of simultaneous connections. To be sure, Jacobson and Karels
go on to state, “if there are more than two connections sharing the bandwidth, halving your window is
conservative – and being conservative at high traffic intensities is probably wise”. This advice remains apt
today.

But while they do not play a large role in setting cwnd or in avoiding “congestive collapse”, it turns out that
these increase-increment and decrease-factor values of 1 and 1/2 respectively play a great role in fairness:
making sure competing connections get the bandwidth allocation they “should” get. We will return to this
in 14.3 TCP Fairness with Synchronized Losses, and also 14.7 AIMD Revisited.

13.11 Epilog

TCP Reno’s core congestion algorithm is based on algorithms in Jacobson and Karel’s 1988 paper [JK88],
now twenty-five years old, although NewReno and SACK have been almost universally added to the standard
“Reno” implementation.

There are also broad changes in TCP usage patterns. Twenty years ago, the vast majority of all TCP traffic
represented downloads from “major” servers. Today, over half of all Internet TCP traffic is peer-to-peer

13.10 TCP Parameters 435

An Introduction to Computer Networks, Release 1.9.21

rather than server-to-client. The rise in online video streaming creates new demands for excellent TCP
real-time performance.

In the next chapter we will examine the dynamic behavior of TCP Reno, focusing in particular on fairness
between competing connections, and on other problems faced by TCP Reno senders. Then, in 15 Newer
TCP Implementations, we will survey some attempts to address these problems.

13.12 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
12.5 is distinct, for example, from exercises 12.0 and 13.0. Exercises marked with a ♢ have solutions or
hints at 24.11 Solutions for TCP Reno.

1.0. Consider the following network, with each link other than the first having a bandwidth delay of 1
packet/second. Assume ACKs travel instantly from B to R (and thus to A). Assume there are no propagation
delays, so the RTTnoLoad is 4; the bandwidthˆRTT product is then 4 packets. If A uses sliding windows
with a window size of 6, the queue at R1 will eventually have size 2.

A R1
infinitely fast

R2
1 pkt/sec

R3 R4 B
1 pkt/sec 1 pkt/sec 1 pkt/sec

Suppose A uses threshold slow start (13.2.2 Threshold Slow Start) with ssthresh = 6, and with cwnd
initially 1. Complete the table below until two rows after cwnd = 6; for these final two rows, cwnd has
reached ssthresh and so A will send only one new packet for each ACK received. How big will the
queue at R1 grow?

T A sends R1 queues R1 sends B receives/ACKs cwnd
0 1 1 1
1
2
3
4 2,3 3 2 1 2
5 3 2
6
7
8 4,5 5 4 2 3

Note that if, instead of using slow start, A simply sends the initial windowful of 6 packets all at once, then
the queue at R1 will initially hold 6-1 = 5 packets.

2.0. Consider the following network from 13.2.3 Slow-Start Multiple Drop Example, with links labeled
with bandwidths in packets/ms. Assume ACKs travel instantly from B to R (and thus to A).

436 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

A R B
infinitely fast 1 pkt/ms

A begins sending to B using unbounded slow start, beginning with Data[1] at T=0. Initially, cwnd = 1.
Write out a table of packet transmissions and deliveries assuming R’s queue size is 5 (not counting the
packet currently being forwarded). Stop with the arrival at A of the first dupACK triggered by the arrival at
B of the packet that followed the first packet that was dropped by R. No retransmissions will occur by then.

T A sends R queues R drops R sends B receives/ACKs
0 Data[1] Data[1]

3.0. Consider the network from exercise 2.0 above. A again begins sending to B using unbounded slow
start, but this time R’s queue size is 2, not counting the packet currently being forwarded. Make a table
showing all packet transmissions by A, all packet drops by R, and other columns as are useful. Assume
no retransmission mechanism is used at all (no timeouts, no fast retransmit), and that A sends new data
only when it receives new ACKs (dupACKs, in other words, do not trigger new data transmissions). With
these assumptions, new data transmissions will eventually cease; continue the table until all transmitted data
packets are received by B.

4.0. Suppose a connection starts with cwnd=1 and increments cwnd by 1 each RTT with no loss, and sets
cwnd to cwnd/2, rounding down, on each RTT with at least one loss. Lost packets are not retransmitted,
and propagation delays dominate so each windowful is sent more or less together. Packets 5, 13, 14, 23 and
30 are lost. What is the window size each RTT, up until the first 40 packets are sent? What packets are sent
each RTT? Hint: in the first RTT, Data[1] is sent. There is no loss, so in the second RTT cwnd = 2 and
Data[2] and Data[3] are sent.

5.0. Suppose TCP Reno is used to transfer a large file over a path with bandwidth high enough that, during
slow start, cwnd can be treated as doubling each RTT as in 13.2 Slow Start. Assume the receiver places
no limits on window size.

(a). How many RTTs will it take for the window size to first reach ~8,000 packets (about 213), assuming
unbounded slow start is used and there are no packet losses?
(b). Approximately how many packets will have been sent and acknowledged by that point?
(c). Now assume the bandwidth is 100 packets/ms and the RTT is 80 ms, making the bandwidthˆdelay
product 8,000 packets. What fraction of the total bandwidth will have been used by the connection up to
the point where the window size reaches 8000? Hint: the total bandwidth is 8,000 packets per RTT.

6.0. (a) Repeat the diagram in 13.4 TCP Reno and Fast Recovery, done there with cwnd=10, for a
window size of 8. Assume as before that the lost packet is Data[10]. There will be seven dupACK[9]’s,
which it may be convenient to tag as dupACK[9]/11 through dupACK[9]/17. Be sure to indicate clearly
when sending resumes.
(b). Suppose you try to do this with a window size of 6. Is this window size big enough for Fast Recovery
still to work? If so, at what dupACK[9]/N does new data transmission begin? If not, what goes wrong?

13.12 Exercises 437

An Introduction to Computer Networks, Release 1.9.21

7.0. Suppose the window size is 100, and Data[1001] is lost. There will be 99 dupACK[1000]’s sent, which
we may denote as dupACK[1000]/1002 through dupACK[1000]/1100. TCP Reno is used.

(a). At which dupACK[1000]/N does the sender start sending new data?
(b). When the retransmitted data[1001] arrives at the receiver, what ACK is sent in response?
(c). When the acknowledgment in (b) arrives back at the sender, what data packet is sent?

Hint: express EFS in terms of dupACK[1000]/N, for Ně1004. The third dupACK is dupACK[1000]/1004;
what is EFS at that point after retransmission of Data[1001]?

8.0. Suppose the window size is 40, and Data[1001] is lost. Packet 1000 will be ACKed normally. Packets
1001-1040 will be sent, and 1002-1040 will each trigger a duplicate ACK[1000].

(a). What actual data packets trigger the first three dupACKs? (The first ACK[1000] is triggered by
Data[1000]; don’t count this one as a duplicate.)
(b). After the third dupACK[1000] has been received and the lost data[1001] has been retransmitted, how
many packets/ACKs should the sender estimate as in flight?

When the retransmitted Data[1001] arrives at the receiver, ACK[1040] will be sent back.

(c). What is the first Data[N] sent for which the response is ACK[N], for N>1000?
(d). What is the first N for which Data[N+20] is sent in response to ACK[N] (this represents the point when
the connection is back to normal sliding windows, with a window size of 20)?

9.0. Recall (13.2 Slow Start) that during slow start cwnd is incremented by 1 for each arriving ACK,
resulting in the transmission of two new data packets. Suppose slow-start is modified so that, on each ACK,
three new packets are sent rather than two; cwnd will now triple after each RTT, taking values 1, 3, 9, 27,
. . . .

(a). For each arriving ACK, by how much must cwnd now be incremented?
(b). Suppose a path has mostly propagation delay. Progressively larger windowfuls are sent, with sizes
successive powers of 3, until a cwnd is reached where a packet loss occurs. What window size can the
sender be reasonably sure does work, based on earlier experience?

10.0. Suppose in the example of 13.5 TCP NewReno, Data[4] had not been lost.

(a). When Data[1] is received, what ACK would be sent in response?
(b). At what point in the diagram is the sender able to resume ordinary sliding windows with cwnd = 6?

438 13 TCP Reno and Congestion Management

An Introduction to Computer Networks, Release 1.9.21

11.0. Suppose in the example of 13.5 TCP NewReno, Data[1] and Data[2] had been lost, but not Data[4].

(a). The third dupACK[0] is sent in response to what Data[N]?
(b). When the retransmitted Data[1] reaches the receiver, ACK[1] is the response. When this ACK[1]
reaches the sender, which Data packets are sent in response?

12.0. Suppose two TCP connections have the same RTT and share a bottleneck link, on which there is no
other traffic. The size of the bottleneck queue is negligible when compared to the bandwidth ˆ RTTnoLoad
product. Loss events occur at regular intervals, and are completely synchronized. Show that the two con-
nections together will use 75% of the total bottleneck-link capacity, as in 13.7 TCP and Bottleneck Link
Utilization (there done for a single connection).

See also Exercise 18.0 of the next chapter.

12.5. In 13.7 TCP and Bottleneck Link Utilization we showed that, if the bottleneck router queue capacity
was 50% of a TCP Reno connection’s transit capacity, and there was no other traffic, then the bottleneck-link
utilization would be 95.8%.

(a). Suppose the queue capacity is 1/3 of the transit capacity. Show the bottleneck link utilization is 11/12,
or 91.7%. Draw a diagram of the tooth, and find the relative lengths of the link-unsaturated and
queue-filling phases. You may round off cwndmax to 4/3 the transit capacity (the value of cwnd just before
the packet loss; the exact value of cwndmax is higher by 1).
(b).♢ Derive a formula for the link utilization in terms of the ratio f<1 of queue capacity to transit capacity.
Make the same simplifying assumption as in part (a).

13.0. In 13.2.1 TCP Reno Per-ACK Responses we stated that the per-ACK response of a TCP sender was
to increment cwnd as follows:

cwnd = cwnd + 1/cwnd

(a). What is the corresponding formulation if the window size is in fact measured in bytes rather than
packets? Let SMSS denote the sender’s maximum segment size, and let bwnd = SMSSˆcwnd denote the
congestion window as measured in bytes. Hint: solve this last equation for cwnd and plug the result in
above.
(b). What is the appropriate formulation of cwnd = cwnd + 1/cwnd if delayed ACKs are used
(12.15 TCP Delayed ACKs) and we still want cwnd to be incremented by 1 for each windowful? Assume
we are back to measuring cwnd in packets.

14.0. In 13.8 Single Packet Losses we simplified the argument slightly by assuming that when A sent a pair
of packets, they arrived at R “essentially simultaneously”.

Give a scenario in which it is not the “extra” packet (the second of the pair) that is lost, but the packet that
follows it. Hint: see 16.3.4.1 Single-sender phase effects.

13.12 Exercises 439

An Introduction to Computer Networks, Release 1.9.21

440 13 TCP Reno and Congestion Management

14 DYNAMICS OF TCP

In this chapter we introduce, first and foremost, the possibility that there are other TCP connections out
there competing with us for throughput. In 6.3 Linear Bottlenecks (and in 13.7 TCP and Bottleneck Link
Utilization) we looked at the performance of TCP through an uncontested bottleneck; now we allow for
competition.

We also look more carefully at the long-term behavior of TCP Reno (and Reno-like) connections, as the
value of cwnd increases and decreases according to the TCP sawtooth. In particular we analyze the av-
erage cwnd; recall that the average cwnd divided by the RTT is the connection’s average throughput (we
momentarily ignore here the fact that RTT is not constant, but the error this introduces is usually small).

Although the focus of this chapter is on TCP Reno, many, though not all, of the ideas presented here
apply to non-Reno TCPs as well, and even to non-TCP mechanisms such as QUIC. Several non-Reno TCP
alternatives are presented in the following chapter. The section on TCP Friendliness addresses how to
compare TCP Reno’s competitive behavior to other alternatives.

We also consider some router-based mechanisms such as RED and ECN that take advantage of TCP’s
behavior to provide better overall performance.

The chapter closes with a summary of the central real-world performance problems faced by TCP today;
this then serves to introduce the proposed TCP fixes in the following chapter.

14.1 A First Look At Queuing

In what order do we transmit the packets in a router’s outbound-interface queue? The conventional answer
is in the order of arrival; technically, this is FIFO (First-In, First-Out) queuing. What happens to a packet
that arrives at a router whose queue for the desired outbound interface is full? The conventional answer is
that it is dropped; technically, this is known as tail-drop.

While FIFO tail-drop remains very important, there are alternatives. In an admittedly entirely different
context (the IPv6 equivalent of ARP), RFC 4681 states, “When a queue overflows, the new arrival SHOULD
replace the oldest entry.” This might be called “head drop”; it is not used for router queues.

Queuing Theory

While there are lots of queues in this chapter, we avoid the language of traditional queuing theory. That’s
because queues created through sliding windows are highly deterministic in terms of both arrivals and
departures (so-called “D/D/1” queues). From a queuing-theory perspective, interesting queues tend to
have random (eg Poisson) arrival or service times, or both; eg “M/M/1” queues. The advantage, for us, of
sliding-windows queues is that they are a good deal more tractable than the general case. When analyzing
independent messages, however, M/M/1 queuing is much more important; see for example [LK78].

An alternative drop-policy mechanism that has been considered for router queues is random drop. Under
this policy, if a packet arrives but the destination queue is full, with N packets waiting, then one of the N+1
packets in all – the N waiting plus the new arrival – is chosen at random for dropping. The most recent

441

https://tools.ietf.org/html/rfc4681.html
https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/M/M/1_queue

An Introduction to Computer Networks, Release 1.9.21

arrival has thus a very good chance of gaining an initial place in the queue, but also a reasonable chance of
being dropped later on. See [AM90].

While random drop is seldom if ever put to production use its original form, it does resolve a peculiar
synchronization problem related to TCP’s natural periodicity that can lead to starvation for one connection.
This situation – known as phase effects – will be revisited in 16.3.4 Phase Effects. Mathematically,
random-drop queuing is sometimes more tractable than tail-drop because a packet’s loss probability has
little dependence on arrival-time race conditions with other packets.

14.1.1 Priority Queuing

A quite different alternative to FIFO is priority queuing. We will consider this in more detail in 19.3 Pri-
ority Queuing, but the basic idea is straightforward: whenever the router is ready to send the next packet, it
looks first to see if it has any higher-priority packets to send; lower-priority packets are sent only when there
is no waiting higher-priority traffic. This can, of course, lead to complete starvation for the lower-priority
traffic, but often there are bandwidth constraints on the higher-priority traffic (eg that it amounts to less than
10% of the total available bandwidth) such that starvation does not occur.

In an environment of mixed real-time and bulk traffic, it is natural to use priority queuing to give the real-
time traffic priority service, by assignment of such traffic to the higher-priority queue. This works quite well
as long as, say, the real-time traffic is less than some fixed fraction of the total; we will return to this in
20 Quality of Service.

14.2 Bottleneck Links with Competition

So far we have been ignoring the fact that there are other TCP connections out there. A single connection
in isolation needs not to overrun its bottleneck router and drop packets, at least not too often. However,
once there are other connections present, then each individual TCP connection also needs to consider how
to maximize its share of the aggregate bandwidth.

Consider a simple network path, with bandwidths shown in packets/ms. The minimum bandwidth, or path
bandwidth, is 3 packets/ms.

14.2.1 Example 1: linear bottleneck

Below is the example we considered in 6.3 Linear Bottlenecks; bandwidths are shown in packets/ms.

A R1
10 pkts/ms

R2
6 pkts/ms

R3 R4 B
3 pkts/ms 3 pkts/ms 8 pkts/ms

The bottleneck link for AÑB traffic is at R2, and the queue will form at R2’s outbound interface.

We claimed earlier that if the sender uses sliding windows with a fixed window size, then the network will
converge to a steady state in relatively short order. This is also true if multiple senders are involved; however,
a mathematical proof of convergence may be more difficult.

442 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

14.2.2 Example 2: router competition

The bottleneck-link concept is a useful one for understanding congestion due to a single connection. How-
ever, if there are multiple senders in competition for a link, the situation is more complicated. Consider the
following diagram, in which links are labeled with bandwidths in packets/ms:

R1

R2

R3 C
4 pkts/ms

A

B

10 pkts/ms

10 pkts/ms 10 pkts/ms

2 pkts/ms

For a moment, assume R3 uses priority queuing, with the BÝÑC path given priority over AÝÑC. If B’s
flow to C is fixed at 3 packets/ms, then A’s share of the R3–C link will be 1 packet/ms, and A’s bottleneck
will be at R3. However, if B’s total flow rate drops to 1 packet/ms, then the R3–C link will have 3 packets/ms
available, and the bottleneck for the A–C path will become the 2 packet/ms R1–R3 link.

Now let us switch to the more-realistic FIFO queuing at R3. If B’s flow is 3 packets/ms and A’s is 1
packet/ms, then the R3–C link will be saturated, but just barely: if each connection sticks to these rates, no
queue will develop at R3. However, it is no longer accurate to describe the 1 packet/ms as A’s share: if A
wishes to send more, it will begin to compete with B. At first, the queue at R3 will grow; eventually, it is
quite possible that B’s total flow rate might drop because B is losing to A in the competition for R3’s queue.
This latter effect is very real.

In general, if two connections share a bottleneck link, they are competing for the bandwidth of that link.
That bandwidth share, however, is precisely dictated by the queue share as of a short while before. R3’s
fixed rate of 4 packets/ms means one packet every 250 µs. If R3 has a queue of 100 packets, and in that
queue there are 37 packets from A and 63 packets from B, then over the next 25 ms (= 100 ˆ 250 µs) R3’s
traffic to C will consist of those 37 packets from A and the 63 from B. Thus the competition between A and
B for R3–C bandwidth is first fought as a competition for R3’s queue space. This is important enough to
state as as rule:

Queue-Competition Rule: in the steady state, if a connection utilizes fraction 𝛼ď1 of a FIFO
router’s queue, then that connection has a share of 𝛼 of the router’s total outbound bandwidth.

Below is a picture of R3’s queue and outbound link; the queue contains four packets from A and eight from
B. The link, too, contains packets in this same ratio; presumably packets from B are consistently arriving
twice as fast as packets from A.

14.2 Bottleneck Links with Competition 443

An Introduction to Computer Networks, Release 1.9.21

R3 C

A

B

In the steady state here, A and B will use four and eight packets, respectively, of R3’s queue capacity. As
acknowledgments return, each sender will replenish the queue accordingly. However, it is not in A’s long-
term interest to settle for a queue utilization at R3 of four packets; A may want to take steps that will lead in
this setting to a gradual increase of its queue share.

Although we started the discussion above with fixed packet-sending rates for A and B, in general this leads
to instability. If A and B’s combined rates add up to more than 4 packets/ms, R3’s queue will grow without
bound. It is much better to have A and B use sliding windows, and give them each fixed window sizes; in
this case, as we shall see, a stable equilibrium is soon reached. Any combination of window sizes is legal
regardless of the available bandwidth; the queue utilization (and, if necessary, the loss rate) will vary as
necessary to adapt to the actual bandwidth.

If there are several competing flows, then a given connection may have multiple bottlenecks, in the sense
that there are several routers on the path experiencing queue buildups. In the steady state, however, we can
still identify the link (or first link) with minimum bandwidth; we can call this link the bottleneck. Note that
the bottleneck link in this sense can change with the sender’s winsize and with competing traffic.

14.2.3 Example 3: competition and queue utilization

In the next diagram, the bottleneck R–C link has a normalized bandwidth of 1 packet per ms (or, more
abstractly, one packet per unit time). The bandwidths of the A–R and B–R links do not matter, except they
are greater than 1 packet per ms. Each link is labeled with the propagation delay, measured in the same
time unit as the bandwidth; the delay thus represents the number of packets the link can be transporting at
the same time, if sent at the bottleneck rate.

444 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

A

B

R C
delay d

delay dA

delay dB

The network layout here, with the shared R–C link as the bottleneck, is sometimes known as the singlebell
topology. A perhaps-more-common alternative is the dumbbell topology of 14.3 TCP Fairness with
Synchronized Losses, though the two are equivalent for our purposes.

Suppose A and B each send to C using sliding windows, each with fixed values of winsize wA and wB.
Suppose further that these winsize values are large enough to saturate the R–C link. How big will the queue
be at R? And how will the bandwidth divide between the AÝÑC and BÝÑC flows?

For the two-competing-connections example above, assume we have reached the steady state. Let 𝛼 denote
the fraction of the bandwidth that the AÝÑC connection receives, and let 𝛽 = 1-𝛼 denote the fraction that
the BÝÑC connection gets; because of our normalization choice for the R–C bandwidth, 𝛼 and 𝛽 also
represent respective throughputs. From the Queue-Competition Rule above, these bandwidth proportions
must agree with the queue proportions; if Q denotes the combined queue utilization of both connections,
then that queue will have about 𝛼Q packets from the AÝÑC flow and about 𝛽Q packets from the BÝÑC
flow.

We worked out the queue usage precisely in 6.3.2 RTT Calculations for a single flow; we derived there the
following:

queue_usage = winsize – throughput ˆ RTTnoLoad

where we have here used “throughput” instead of “bandwidth” to emphasize that this is the dynamic share
rather than the physical transmission capacity.

This equation remains true for each separate flow in the present case, where the RTTnoLoad for the AÝÑC
connection is 2(dA+d) (the factor of 2 is to account for the round-trip) and the RTTnoLoad for the BÝÑC
connection is 2(dB+d). We thus have

𝛼Q = wA – 2𝛼(dA+d)

𝛽Q = wB – 2𝛽(dB+d)

or, alternatively,

𝛼[Q + 2d + 2dA] = wA

𝛽[Q + 2d + 2dB] = wB

If we add the first pair of equations above, we can obtain the combined queue utilization:

Q = wA + wB – 2d – 2(𝛼dA+𝛽dB)

The last term here, 2(𝛼dA+𝛽dB), represents the number of A’s packets in flight on the A–R link plus the
number of B’s packets in flight on the B–R link.

14.2 Bottleneck Links with Competition 445

An Introduction to Computer Networks, Release 1.9.21

We can solve these equations exactly for 𝛼, 𝛽 and Q in terms of the known quantities, but the algebraic
solution is not particularly illuminating. Instead, we examine a few more-tractable special cases.

14.2.3.1 The equal-delays case

We consider first the special case of equal delays: dA = dB = d’. In this case the term (𝛼dA+𝛽dB) simplifies
to d’, and thus we have Q = wA + wB – 2d – 2d’. Furthermore, if we divide corresponding sides of the
second pair of equations above, we get 𝛼/𝛽 = wA/wB; that is, the bandwidth (and thus the queue utilization)
divides in exact accordance to the window-size proportions.

If, however, dA is larger than dB, then a greater fraction of the AÝÑC packets will be in transit, and so fewer
will be in the queue at R, and so 𝛼 will be somewhat smaller and 𝛽 somewhat larger.

14.2.3.2 The equal-windows case

If we assume equal winsize values instead, wA = wB = w, then we get

𝛼/𝛽 = [Q + 2d + 2dB] / [Q + 2d + 2dA]

The bandwidth ratio here is biased against the larger of dA or dB. That is, if dA > dB, then more of A’s
packets will be in transit, and thus fewer will be in R’s queue, and so A will have a smaller fraction of the
the bandwidth. This bias is, however, not quite proportional: if we assume dA is double dB and dB = d =
Q/2, then 𝛼/𝛽 = 3/4, and A gets 3/7 of the bandwidth to B’s 4/7.

Still assuming wA = wB = w, let us decrease w to the point where the link is just saturated, but Q=0. At this
point 𝛼/𝛽 = [d+dB]/[d +dA]; that is, bandwidth divides according to the respective RTTnoLoad values. As w
rises, additional queue capacity is used and 𝛼/𝛽 will move closer to 1.

14.2.3.3 The fixed-wB case

Finally, let us consider what happens if wB is fixed at a large-enough value to create a queue at R from the
B–C traffic alone, while wA then increases from zero to a point much larger than wB. Denote the number
of B’s packets in R’s queue by QB; with wA = 0 we have 𝛽=1 and Q = QB = wB – 2(dB+d) = throughput ˆ
(RTT – RTTnoLoad).

As wA begins to increase from zero, the competition will decrease B’s throughput. We have 𝛼 =
wA/[Q+2d+2dA]; small changes in wA will not lead to much change in Q, and even less in Q+2d+2dA,
and so 𝛼 will initially be approximately proportional to wA.

For B’s part, increased competition from A (increased wA) will always decrease B’s share of the bottleneck
R–C link; this link is saturated and every packet of A’s in transit there must take away one slot on that link
for a packet of B’s. This in turn means that B’s bandwidth 𝛽 must decrease as wA rises. As B’s bandwidth
decreases, QB = 𝛽Q = wB – 2𝛽(dB+d) must increase; another way to put this is as the transit capacity falls,
the queue utilization rises. For QB = 𝛽Q to increase while 𝛽 decreases, Q must be increasing faster than 𝛽
is decreasing.

Finally, we can conclude that as wA gets large and 𝛽Ñ0, the limiting value for B’s queue utilization QB at R
will be the entire windowful wB, up from its starting value (when wA=0) of wB – 2(dB+d). If dB+d had been

446 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

small relative to wB, then QB’s increase will be modest, and it may be appropriate to consider QB relatively
constant.

We remark again that the formulas here are based on the assumption that the bottleneck bandwidth is one
packet per unit time; see exercise 0.5 for the necessary adjustments for conventional bandwidth measure-
ments.

14.2.3.4 The iterative solution

Given d, dA, dB, wA and wB, one way to solve for 𝛼, 𝛽 and Q is to proceed iteratively. Suppose an initial
x𝛼,𝛽y is given, as the respective fractions of packets in the queue at R. Over the next period of time, 𝛼
and 𝛽 must (by the Queue Rule) become the bandwidth ratios. If the A–C connection has bandwidth 𝛼
(recall that the R–C connection has bandwidth 1.0, in packets per unit time, so a bandwidth fraction of
𝛼 means an actual bandwidth of 𝛼), then the number of packets in bidirectional transit will be 2𝛼(dA+d),
and so the number of A–C packets in R’s queue will be QA = wA – 2𝛼(dA+d); similarly for QB. At that
point we will have 𝛼new = QA/(QA+QB). Starting with an appropriate guess for 𝛼 and iterating 𝛼Ñ 𝛼new a
few times, if the sequence converges then it will converge to the steady-state solution. Convergence is not
guaranteed, however, and is dependent on the initial guess for 𝛼. One guess that often leads to convergence
is wA/(wA+wB).

14.2.4 Example 4: cross traffic and RTT variation

In the following diagram, let us consider what happens to the A–B traffic when the CÝÑD link ramps
up. Bandwidths shown are expressed as packets/ms and all queues are FIFO. (Because the bandwidth is not
equal to 1.0, we cannot apply the formulas of the previous section directly.) We will assume that propagation
delays are small enough that only an inconsequential number of packets from C to D can be simultaneously
in transit at the bottleneck rate of 5 packets/ms. All senders will use sliding windows.

A R1 R2 R3 B

D

C

100 pkts/ms

100 pkts/ms

5 pkts/ms

100 pkts/ms

2 pkts/ms 100 pkts/ms

Let us suppose the A–B link is idle, and the CÝÑD connection begins sending with a window size chosen
so as to create a queue of 30 of C’s packets at R1 (if propagation delays are such that two packets can be in
transit each direction, we would achieve this with winsize=34).

Now imagine A begins sending. If A sends a single packet, is not shut out even though the R1–R2 link is
100% busy. A’s packet will simply have to wait at R1 behind the 30 packets from C; the waiting time in the

14.2 Bottleneck Links with Competition 447

An Introduction to Computer Networks, Release 1.9.21

queue will be 30 packets ˜ (5 packets/ms) = 6 ms. If we change the winsize of the CÝÑD connection, the
delay for A’s packets will be directly proportional to the number of C’s packets in R1’s queue.

To most intents and purposes, the CÝÑD flow here has increased the RTT of the AÝÑB flow by 6 ms. As
long as A’s contribution to R1’s queue is small relative to C’s, the delay at R1 for A’s packets looks more
like propagation delay than bandwidth delay, because if A sends two back-to-back packets they will likely
be enqueued consecutively at R1 and thus be subject to a single 6 ms queuing delay. By varying the CÝÑD
window size, we can, within limits, increase or decrease the RTT for the AÝÑB flow.

Let us return to the fixed CÝÑD window size – denoted wC – chosen to yield a queue of 30 of C’s packets
at R1. As A increases its own window size from, say, 1 to 5, the CÝÑD throughput will decrease slightly,
but C’s contribution to R1’s queue will remain dominant.

As in the argument at the end of 14.2.3.3 The fixed-wB case, small propagation delays mean that wC will
not be much larger than 30. As wA climbs from zero to infinity, C’s contribution to R1’s queue rises from 30
to at most wC, and so the 6ms delay for AÝÑB packets remains relatively constant even as A’s winsize rises
to the point that A’s contribution to R1’s queue far outweighed C’s. (As we will argue in the next paragraphs,
this can actually happen only if the R2–R3 bandwidth is increased). Each packet from A arriving at R1 will,
on average, face 30 or so of C’s packets ahead of it, along with anywhere from many fewer to many more
of A’s packets.

If A’s window size is 1, its one packet at a time will wait 6 ms in the queue at R1. If A’s window size
is greater than 1 but remains small, so that A contributes only a small proportion of R1’s queue, then A’s
packets will wait only at R1. Initially, as A’s winsize increases, the queue at R1 grows but all other queues
remain empty.

However, if A’s winsize grows large enough that its packets consume 40% of R1’s queue in the steady state,
then this situation changes. At the point when A has 40% of R1’s queue, by the Queue Competition Rule it
will also have a 40% share of the R1–R2 link’s bandwidth, that is, 40% ˆ 5 = 2 packets/ms. Because the
R2–R3 link has a bandwidth of 2 packets/ms, the A–B throughput can never grow beyond this. If the C–D
contribution to R1’s queue is held constant at 30 packets, then this point is reached when A’s contribution to
R1’s queue is 20 packets.

Because A’s proportional contribution to R1’s queue cannot increase further, any additional increase to A’s
winsize must result in those packets now being enqueued at R2.

We have now reached a situation where A’s packets are queuing up at both R1 and at R2, contrary to the
single-sender principle that packets can queue at only one router. Note, however, that for any fixed value of
A’s winsize, a small-enough increase in A’s winsize will result in either that increase going entirely to R1’s
queue or entirely to R2’s queue. Specifically, if wA represents A’s winsize at the point when A has 40%
of R1’s queue (a little above 20 packets if propagation delays are small), then for winsize < wA any queue
growth will be at R1 while for winsize > wA any queue growth will be at R2. In a sense the bottleneck link
“switches” from R1–R2 to R2–R3 at the point winsize = wA.

In the graph below, A’s contribution to R1’s queue is plotted in green and A’s contribution to R2’s queue is
in blue. It may be instructive to compare this graph with the third graph in 6.3.3 Graphs at the Congestion
Knee, which illustrates a single connection with a single bottleneck.

448 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

A's winsize

queue
utilization

W
A

R
1

R
2

In Exercise 5.0 we consider some minor changes needed if propagation delay is not inconsequential.

14.2.5 Example 5: dynamic bottlenecks

The next example has two links offering potential competition to the AÝÑB flow: CÝÑD and EÝÑF.
Either of these could send traffic so as to throttle (or at least compete with) the AÝÑB traffic. Either of
these could choose a window size so as to build up a persistent queue at R1 or R3; a persistent queue of 20
packets would mean that AÝÑB traffic would wait 4 ms in the queue.

A R1 R2 R3 R4

D

C

100 pkts/ms

100 pkts/ms

5 pkts/ms

100 pkts/ms

2 pkts/ms 5 pkts/ms
B

100 pkts/ms

E

F

100 pkts/ms

100 pkts/ms

Despite situations like this, we will usually use the term “bottleneck link” as if it were a precisely defined
concept. In Examples 2, 3 and 4 above, a better term might be “competitive link”; for Example 5 we perhaps
should say “competitive links.

14.2.6 Packet Pairs

One approach for a sender to attempt to measure the physical bandwidth of the bottleneck link is the packet-
pairs technique: the sender repeatedly sends a pair of packets P1 and P2 to the receiver, one right after the
other. The receiver records the time difference between the arrivals.

Sooner or later, we would expect that P1 and P2 would arrive consecutively at the bottleneck router R, and
be put into the queue next to each other. They would then be sent one right after the other on the bottleneck

14.2 Bottleneck Links with Competition 449

An Introduction to Computer Networks, Release 1.9.21

link; if T is the time difference in arrival at the far end of the link, the physical bandwidth is size(P1)/T. At
least some of the time, the packets will remain spaced by time T for the rest of their journey.

The theory is that the receiver can measure the different arrival-time differences for the different packet
pairs, and look for the minimum time difference. Often, this will be the time difference introduced by the
bandwidth delay on the bottleneck link, as in the previous paragraph, and so the ultimate receiver will be
able to infer that the bottleneck physical bandwidth is size(P1)/T.

Two things can mar this analysis. First, packets may be reordered; P2 might arrive before P1. Second, P1
and P2 can arrive together at the bottleneck router and be sent consecutively, but then, later in the network,
the two packets can arrive at a second router R2 with a (transient) queue large enough that P2 arrives while
P1 is in R2’s queue. If P1 and P2 are consecutive in R2’s queue, then the ultimate arrival-time difference is
likely to reflect R2’s (higher) outbound bandwidth rather than R’s.

Additional analysis of the problems with the packet-pair technique can be found in [VP97], along with a
proposal for an improved technique known as packet bunch mode.

14.3 TCP Fairness with Synchronized Losses

This brings us to the question of just what is a “fair” division of bandwidth. A starting place is to assume
that “fair” means “equal”, though, as we shall see below, the question does not end there.

For the moment, consider again two competing TCP connections: Connection 1 (in blue) from A to C and
Connection 2 (in green) from B to D, through the same bottleneck router R, and with the same RTT. The
router R will use tail-drop queuing.

R R2

D

CA

B

The layout illustrated here, with the shared link somewhere in the middle of each path, is sometimes known
as the dumbbell topology.

For the time being, we will also continue to assume the synchronized-loss hypothesis: that in any one
RTT either both connections experience a loss or neither does. (This assumption is suspect; we explore
it further in 14.3.3 TCP RTT bias and in 16.3 Two TCP Senders Competing). This was the model
reviewed previously in 13.1.1.1 A first look at fairness; we argued there that in any RTT without a loss, the
expression (cwnd1 - cwnd2) remained the same (both cwnds incremented by 1), while in any RTT with a
loss the expression (cwnd1 - cwnd2) decreased by a factor of 2 (both cwnds decreased by factors of 2).

Here is a graphical version of the same argument, as originally introduced in [CJ89]. We plot cwnd1 on
the x-axis and cwnd2 on the y-axis. An additive increase of both (in equal amounts) moves the point (x,y)
= (cwnd1,cwnd2) along the line parallel to the 45° line y=x; equal multiplicative decreases of both moves
the point (x,y) along a line straight back towards the origin. If the maximum network capacity is Max, then
a loss occurs whenever x+y exceeds Max, that is, the point (x,y) crosses the line x+y=Max.

450 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

cwnd1

cwnd2

cwnd1 = cwnd2

cwnd1+cwnd2 = Max

Max

Additive-increase
follows this line

Multiplicative increase/decrease
follows this line from/to origin

initial state

Beginning at the initial state, additive increase moves the state at a 45° angle up to the line x+y=Max, in
small increments denoted by the small arrowheads. At this point a loss would occur, and the state jumps
back halfway towards the origin. The state then moves at 45° incrementally back to the line x+y=Max, and
continues to zigzag slowly towards the equal-shares line y=x.

Any attempt to increase cwnd faster than linear will mean that the increase phase is not parallel to the line
y=x, but in fact veers away from it. This will slow down the process of convergence to equal shares.

Finally, here is a timeline version of the argument. We will assume that the A–C path capacity, the B–D path
capacity and R’s queue size all add up to 24 packets, and that in any RTT in which cwnd1 + cwnd2 > 24,
both connections experience a packet loss. We also assume that, initially, the first connection has cwnd=20,
and the second has cwnd=1.

T A–C B–D
0 20 1
1 21 2
2 22 3 total cwnd is 25; packet loss
3 11 1
4 12 2
5 13 3

Continued on next page

14.3 TCP Fairness with Synchronized Losses 451

An Introduction to Computer Networks, Release 1.9.21

Table 1 – continued from previous page
T A–C B–D
6 14 4
7 15 5
8 16 6
9 17 7
10 18 8 second packet loss
11 9 4
12 10 5
13 11 6
14 12 7
15 13 8
16 14 9
17 15 10 third packet loss
18 7 5
19 8 6
20 9 7
21 10 8
22 11 9
23 12 10
24 13 11
25 14 12 fourth loss
26 7 6 cwnds are quite close
. . .
32 13 12 loss
33 6 6 cwnds are equal

So far, fairness seems to be winning.

14.3.1 Example 2: Faster additive increase

Here is the same kind of timeline – again with the synchronized-loss hypothesis – but with the additive-
increase increment changed from 1 to 2 for the B–D connection (but not for A–C); both connections start
with cwnd=1. Again, we assume a loss occurs when cwnd1 + cwnd2 > 24

452 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

T A–C B–D
0 1 1
1 2 3
2 3 5
3 4 7
4 5 9
5 6 11
6 7 13
7 8 15
8 9 17 first packet loss
9 4 8
10 5 10
11 6 12
12 7 14
13 8 16
14 9 18 second loss
15 4 9 essentially where we were at T=9

The effect here is that the second connection’s average cwnd, and thus its throughput, is double that of
the first connection. Thus, changes to the additive-increase increment lead to very significant changes in
fairness. In general, an additive-increase value of 𝛼 increases throughput, relative to TCP Reno, by a factor
of 𝛼.

14.3.2 Example 3: Longer RTT

For the next example, we will return to standard TCP Reno, with an increase increment of 1. But here
we assume that the RTT of the A–C connection is double that of the B–D connection, perhaps because of
additional delay in the A–R link. The longer RTT means that the first connection sends packet flights only
when T is even. Here is the timeline, where we allow the first connection a hefty head-start. As before, we
assume a loss occurs when cwnd1 + cwnd2 > 24.

T A–C B–D
0 20 1
1 2
2 21 3
3 4
4 22 5 first loss
5 2
6 11 3
7 4
8 12 5
9 6
10 13 7
11 8

Continued on next page

14.3 TCP Fairness with Synchronized Losses 453

An Introduction to Computer Networks, Release 1.9.21

Table 2 – continued from previous page
T A–C B–D
12 14 9
13 10
14 15 11 second loss
15 5
16 7 6
17 7
18 8 8 B–D has caught up
20 9 10 from here on only even values for T shown
22 10 12
24 11 14 third loss
26 5 8 B–D is now ahead
28 6 10
30 7 12
32 8 14
34 9 16 fourth loss
35 8
36 4 9
38 5 11
40 6 13
42 7 15
44 8 17 fifth loss
45 8
46 4 9 exactly where we were at T=36

The interval 36ďT<46 represents the steady state here; the first connection’s average cwnd is 6 while the
second connection’s average is (8+9+. . . +16+17)/10 = 12.5. Worse, the first connection sends a windowful
only half as often. In the interval 36ďT<46 the first connection sends 4+5+6+7+8 = 30 packets; the second
connection sends 125. The cost of the first connection’s longer RTT is quadratic; in general, as we argue
more formally below, if the first connection has RTT = 𝜆 > 1 relative to the second’s, then its bandwidth will
be reduced by a factor of 1/𝜆2.

Is this fair?

Early thinking was that there was something to fix here; see [F91] and [FJ92], §3.3 where the Constant-
Rate window-increase algorithm is discussed. A more recent attempt to address this problem is TCP Hybla,
[CF04]; discussed later in 15.12 TCP Hybla.

Alternatively, we may simply define TCP Reno’s bandwidth allocation as “fair”, at least in some contexts.
This approach is particularly common when the issue at hand is making sure other TCP implementations
– and non-TCP flows – compete for bandwidth in roughly the same way that TCP Reno does. While TCP
Reno’s strategy is now understood to be “greedy” in some respects, “fixing” it in the Internet at large is
generally recognized as a very difficult option.

454 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

14.3.3 TCP RTT bias

Let us consider more carefully the way TCP allocates bandwidth between two connections sharing a bottle-
neck link with relative RTTs of 1 and 𝜆>1. We claimed above that the slower connection’s bandwidth will
be reduced by a factor of 1/𝜆2; we will now show this under some assumptions. First, uncontroversially,
we will assume FIFO droptail queuing at the bottleneck router, and also that the network ceiling (and hence
cwnd at the point of loss) is “sufficiently” large. We will also assume, for simplicity, that the network
ceiling C is constant.

We need one more assumption: that most loss events are experienced by both connections. This is the
synchronized losses hypothesis, and is the most debatable; we will explore it further in the next section.
But first, here is the general argument with this assumption.

Let connection 1 be the faster connection, and assume a steady state has been reached. Both connections
experience loss when cwnd1+cwnd2 ě C, because of the synchronized-loss hypothesis. Let c1 and c2
denote the respective window sizes at the point just before the loss. Both cwnd values are then halved.
Let N be the number of RTTs for connection 1 before the network ceiling is reached again. During this
time c1 increases by N; c2 increases by approximately N/𝜆 if N is reasonably large. Each of these increases
represents half the corresponding cwnd; we thus have c1/2 = N and c2/2 = N/𝜆. Taking ratios of respective
sides, we get c1/c2 = N/(N/𝜆) = 𝜆, and from that we can solve to get c1 = C𝜆/(1+𝜆) and c2 = C/(1+𝜆).

To get the relative bandwidths, we have to count packets sent during the interval between losses. Both
connections have cwnd averaging about 3/4 of the maximum value; that is, the average cwnds are 3/4 c1
and 3/4 c2 respectively. Connection 1 has N RTTs and so sends about 3/4 c1ˆN packets. Connection 2, with
its slower RTT, has only about N/𝜆 RTTs (again we use the assumption that N is reasonably large), and so
sends about 3/4 c2ˆN/𝜆 packets. The ratio of these is c1/(c2/𝜆) = 𝜆2. Connection 1 sends fraction 𝜆2/(1+𝜆2)
of the packets; connection 2 sends fraction 1/(1+𝜆2).

14.3.4 Synchronized-Loss Hypothesis

The synchronized-loss hypothesis is based on the idea that, if the queue is full, late-arriving packets from
each connection will find it so, and be dropped. Once the queue becomes full, in other words, it stays full
for long enough for each connection to experience a packet loss.

That said, it is certainly possible to come up with hypothetical situations where losses are not synchronized.
Recall that a TCP Reno connection’s cwnd is incremented by only 1 each RTT; losses generally occur when
this single extra packet generated by the increment to cwnd arrives to find a full queue. Generally speaking,
packets are leaving the queue about as fast as they are arriving; actual overfull-queue instants may be rare.
It is certainly conceivable that, at least some of the time, one connection would overflow the queue by one
packet, and halve its cwnd, in a short enough time interval that the other connection misses the queue-full
moment entirely. Alternatively, if queue overflows lead to effectively random selection of lost packets (as
would certainly be true for random-drop queuing, and might be true for tail-drop if there were sufficient
randomness in packet arrival times), then there is a finite probability that all the lost packets at a given loss
event come from the same connection.

The synchronized-loss hypothesis is still valid if either or both connection experiences more than one packet
loss, within a single RTT; the hypothesis fails only when one connection experiences no losses.

We will return to possible failure of the synchronized-loss hypothesis in 14.5.2 Unsynchronized TCP
Losses. In 16.3 Two TCP Senders Competing we will consider some TCP Reno simulations in which

14.3 TCP Fairness with Synchronized Losses 455

An Introduction to Computer Networks, Release 1.9.21

actual measurement does not entirely agree with the synchronized-loss model. Two problems will emerge.
The first is that when two connections compete in isolation, a form of synchronization known as phase
effects (16.3.4 Phase Effects) can introduce a persistent perhaps-unexpected bias. The second is that the
longer-RTT connection often does manage to miss out on the full-queue moment entirely, as discussed above
in the second paragraph of this section. This results in a larger cwnd than the synchronized-loss hypothesis
would predict.

14.3.5 Loss Synchronization

The synchronized-loss hypothesis assumes all losses are synchronized. There is another side to this phe-
nomenon that is an issue even if only some reasonable fraction of loss events are synchronized: synchronized
losses may represent a collective inefficiency in the use of bandwidth. In the immediate aftermath of a syn-
chronized loss, it is very likely that the bottleneck link will go underutilized, as (at least) two connections
using it have just cut their sending rate in half. Better utilization would be achieved if the loss events could
be staggered, so that at the point when connection 1 experiences a loss, connection 2 is only halfway to its
next loss. For an example, see exercise 18.0.

This loss synchronization is a very real effect on the Internet, even if losses are not necessarily all synchro-
nized. A major contributing factor to synchronization is the relatively slow response of all parties involved
to packet loss. In the diagram above at 14.3 TCP Fairness with Synchronized Losses, if A increments its
cwnd leading to an overflow at R, the A–R link is likely still full of packets, and R’s queue remains full,
and so there is a reasonable likelihood that sender B will also experience a loss, even if its cwnd was not
particularly high, simply because its packets arrived at the wrong instant. Congestion, unfortunately, takes
time to clear.

14.3.6 Extreme RTT Ratios

What happens to TCP fairness if one TCP connection has a 100-fold-larger RTT than another? The short
answer is that the shorter connection may get 10,000 times the throughput. The longer answer is that this
isn’t quite as easy to set up as one might imagine. For the arguments above, it is necessary for the two
connections to have a common bottleneck link:

R

A

B

C

100 ms delay

0.1 ms delay

1 ms delay

10 pkts/ms

In the diagram above, the A–C connection wants its cwnd to be about 200 ms ˆ 10 packets/ms = 2,000
packets; it is competing for the R–C link with the B–D connection which is happy with a cwnd of 22. If R’s
queue capacity is also about 20, then with most of the bandwidth the B–C connection will experience a loss
about every 20 RTTs, which is to say every 22 ms. If the A–C link shares even a modest fraction of those
losses, it is indeed in trouble.

456 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

However, the A–C cwnd cannot fall below 1.0; to test the 10,000-fold hypothesis taking this constraint into
account we would have to scale up the numbers on the B–C link so the transit capacity there was at least
10,000. This would mean a 400 Gbps R–C bandwidth, or else an unrealistically large A–R delay.

As a second issue, realistically the A–C link is much more likely to have its bottleneck somewhere in the
middle of its long path. In a typical real scenario along the lines of that diagrammed above, B, C and R are
all local to a site, and bandwidth of long-haul paths is almost always less than the local LAN bandwidth
within a site. If the A–R path has a 1 packet/ms bottleneck somewhere, then it may be less likely to be as
dramatically affected by B–C traffic.

A few actual simulations using the methods of 16.3 Two TCP Senders Competing resulted in an average
cwnd for the A–C connection of between 1 and 2, versus a B–C cwnd of 20-25, regardless of whether the
two links shared a bottleneck or if the A–C link had its bottleneck somewhere along the A–R path. This may
suggest that the A–C connection was indeed saved by the 1.0 cwnd minimum.

14.4 Notions of Fairness

There are several definitions for fair allocation of bandwidth among flows sharing a bottleneck link. One
is equal-shares fairness; another is what we might call TCP-Reno fairness: to divide the bandwidth the
way TCP Reno would. There are additional approaches to deciding what constitutes a fair allocation of
bandwidth.

14.4.1 Max-Min Fairness

A natural generalization of equal-shares fairness to the case where some flows may be capped is max-
min fairness, in which no flow bandwidth can be increased without decreasing some smaller flow rate.
Alternatively, we maximize the bandwidth of the smallest-capacity flow, and then, with that flow fixed,
maximize the flow with the next-smallest bandwidth, etc. A more intuitive explanation is that we distribute
bandwidth in tiny increments equally among the flows, until the bandwidth is exhausted (meaning we have
divided it equally), or one flow reaches its externally imposed bandwidth cap. At this point we continue
incrementing among the remaining flows; any time we encounter a flow’s external cap we are done with it.

As an example, consider the following, where we have connections A–D, B–D and C–D, and where the
A–R link has a bandwidth of 200 kbps and all other links are 1000 kbps. Starting from zero, we increment
the allocations of each of the three connections until we get to 200 kbps per connection, at which point the
A–D connection has maxed out the capacity of the A–R link. We then continue allocating the remaining
400 kbps equally between B–D and C–D, so they each end up with 400 kbps.

A

C

R D
1000 kbps

200 kbps

1000 kbps

B
1000 kbps

14.4 Notions of Fairness 457

An Introduction to Computer Networks, Release 1.9.21

As another example, known as the parking-lot topology, suppose we have the following network:

A B C D

There are four connections: one from A to D covering all three links, and three single-link connections A–B,
B–C and C–D. Each link has the same bandwidth. If bandwidth allocations are incrementally distributed
among the four connections, then the first point at which any link bandwidth is maxed out occurs when all
four connections each have 50% of the link bandwidth; max-min fairness here means that each connection
has an equal share.

14.4.2 Proportional Fairness

A bandwidth allocation of rates xr1,r2,. . . ,rNy for N connections satisfies proportional fairness if it is a
legal allocation of bandwidth, and for any other allocation xs1,s2,. . . ,sNy, the aggregate proportional change
satisfies

(r1–s1)/s1 + (r2–s2)/s2 + . . . + (rN–sN)/sN < 0

Alternatively, proportional fairness means that the sum log(r1)+log(r2)+. . . +log(rN) is minimized. If the
connections share only the bottleneck link, proportional fairness is achieved with equal shares. However,
consider the following two-stage parking-lot network:

A B C

Suppose the A–B and B–C links have bandwidth 1 unit, and we have three connections A–B, B–C and A–C.
Then a proportionally fair solution is to give the A–C link a bandwidth of 1/3 and each of the A–B and B–C
links a bandwidth of 2/3 (so each link has a total bandwidth of 1). For any change ∆b in the bandwidth for
the A–C link, the A–B and B–C links each change by -∆b. Equilibrium is achieved at the point where a 1%
reduction in the A–C link results in two 0.5% increases, that is, the bandwidths are divided in proportion
1:2. Mathematically, if x is the throughput of the A–C connection, we are minimizing log(x) + 2log(1-x).

Proportional fairness partially addresses the problem of TCP Reno’s bias against long-RTT connections;
specifically, TCP’s bias here is still not proportionally fair, but TCP’s response is closer to proportional
fairness than it is to max-min fairness. See [HBT99].

14.5 TCP Reno loss rate versus cwnd

It turns out that we can express a connection’s average cwnd in terms of the packet loss rate, p, eg p =
10-4 = one packet lost in 10,000. The relationship comes by assuming that all packet losses are because
the network ceiling was reached. We will also assume that, when the network ceiling is reached, only one

458 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

packet is lost, although we can dispense with this by counting a “cluster” of related losses (within, say, one
RTT) as a single loss event.

Let C represent the network ceiling – so that when cwnd reaches C a packet loss occurs. While C is constant
only for a very stable network, C usually does not vary by much; we will assume here that it is constant.
Then cwnd varies between C/2 and C, with packet drops occurring whenever cwnd = C is reached. Let N
= C/2. Then between two consecutive packet loss events, that is, over one “tooth” of the TCP connection, a
total of N+(N+1)+ . . . +2N packets are sent in N+1 flights; this sum can be expressed algebraically as 3/2
N(N+1) » 1.5 N2. The loss rate is thus one packet out of every 1.5 N2, and the loss rate p is 1/(1.5 N2).

The average cwnd in this scenario is 3/2 N (that is, the average of N=cwndmin and 2N=cwndmax). If we
let M = 3/2 N represent the average cwnd, cwndmean, we can express the above loss rate in terms of M: the
number of packets between losses is 2/3 M2, and so p=3/2 M-2.

Now let us solve this for M=cwndmean in terms of p; we get M2 = 3/2 p-1 and thus

M = cwndmean = 1.225 p-1/2

where 1.225 is the square root of 3/2. Seen in this form, a given network loss rate sets the window size; this
loss rate is ultimately be tied to the network capacity. If we are interested in the maximum cwnd instead of
the mean, we multiply the above by 4/3.

From the above, the bandwidth available to a connection is now as follows (though RTT may not be con-
stant):

bandwidth = cwnd/RTT = 1.225/(RTT ˆ ?p)

In [PFTK98] the authors consider a TCP Reno model that takes into account the measured frequency of
coarse timeouts (in addition to fast-recovery responses leading to cwnd halving), and develop a related
formula with additional terms.

As the bottleneck queue capacity increases, both cwnd and the number of packets between losses (1/p)
increase, connected as above. Once the queue is large enough that the bottleneck link is 100% utilized,
however, the bandwidth no longer increases.

Another way to view this formula is to recall that 1/p is the number of packets per tooth; that is, 1/p is
the tooth “area”. Squaring both sides, the formula says that the TCP Reno tooth area is proportional to
the square of the average tooth height (that is, to cwndmean) as the network capacity increases (that is, as
cwndmean increases).

14.5.1 Irregular teeth

In the preceding, we assumed that all teeth were the same size. What if they are not? In [OKM96], this
problem was considered under the assumption that every packet faces the same (small) loss probability (and
so the intervals between packet losses are exponentially distributed). In this model, it turns out that the
above formula still holds except the constant changes from 1.225 to 1.309833.

To understand how irregular teeth lead to a bigger constant, imagine sending a large number K of packets
which encounter n losses. If the losses are regularly spaced, then the TCP graph will have n equally sized
teeth, each with K/n packets. But if the n losses are randomly distributed, some teeth will be larger and some
will be smaller. The average tooth height will be the same as in the regularly-spaced case (see exercise 13.0).
However, the number of packets in any one tooth is generally related to the square of the height of that tooth,

14.5 TCP Reno loss rate versus cwnd 459

An Introduction to Computer Networks, Release 1.9.21

and so larger teeth will count disproportionately more. Thus, the random distribution will have a higher total
number of packets delivered and thus a higher mean cwnd.

See also exercise 17.0, for a simple simulation that generates a numeric estimate for the constant 1.309833.

Note that losses at uniformly distributed random intervals may not be an ideal model for TCP either; in
the presence of congestion, loss events are far from statistical independence. In particular, immediately
following one loss another loss is unlikely to occur until the queue has time to fill up.

14.5.2 Unsynchronized TCP Losses

In 14.3.3 TCP RTT bias we considered a model in which all loss events are fully synchronized; that is,
whenever the queue becomes full, both TCP Reno connections always experience packet loss. In that model,
if RTT2/RTT1 = 𝜆 then cwnd1/cwnd2 = 𝜆 and bandwidth1/bandwidth2 = 𝜆2, where cwnd1 and cwnd2 are
the respective average values for cwnd.

What happens if loss events for two connections do not have such a neat one-to-one correspondence? We will
derive the ratio of loss events (or, more precisely, TCP loss responses) for connection 1 versus connection 2
in terms of the bandwidth and RTT ratios, without using the synchronized-loss hypothesis.

Note that we are comparing the total number of loss events (or loss responses) here – the total number of TCP
Reno teeth – over a large time interval, and not the relative per-packet loss probabilities. One connection
might have numerically more losses than a second connection but, by dint of a smaller RTT, send more
packets between its losses than the other connection and thus have fewer losses per packet.

Let losscount1 and losscount2 be the number of loss responses for each connection over a long time interval
T. For i=1 and i=2, the ith connection’s per-packet loss probability is pi = losscounti/(bandwidthi ˆ T) =
(losscounti ˆ RTTi)/(cwndiˆ T). But by the result of 14.5 TCP Reno loss rate versus cwnd, we also have
cwndi = k/?pi, or pi = k2/cwndi

2. Equating, we get

pi = k2/cwndi
2 = (losscounti ˆ RTTi) / (cwndi ˆ T)

and so

losscounti = k2T / (cwndi ˆ RTTi)

Dividing and canceling, we get

losscount1/losscount2 = (cwnd2/cwnd1) ˆ (RTT2/RTT1)

We will make use of this in 16.4.2.2 Relative loss rates.

We can go just a little further with this: let 𝛾 denote the losscount ratio above:

𝛾 = (cwnd2/cwnd1) ˆ (RTT2/RTT1)

Therefore, as RTT2/RTT1 = 𝜆, we must have cwnd2/cwnd1 = 𝛾/𝜆 and thus

bandwidth1/bandwidth2 = (cwnd1/cwnd2) ˆ (RTT2/RTT1) = 𝜆2/𝛾.

Note that if 𝛾=𝜆, that is, if the longer-RTT connection has fewer loss events in exact inverse proportion to
the RTT, then bandwidth1/bandwidth2 = 𝜆 = RTT2/RTT1, and also cwnd1/cwnd2 = 1.

460 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

14.6 TCP Friendliness

Suppose we are sending packets using a non-TCP real-time protocol. How are we to manage congestion? In
particular, how are we to manage congestion in a way that treats other connections – particularly TCP Reno
connections – fairly?

For example, suppose we are sending interactive audio data in a congested environment. Because of the
real-time nature of the data, we cannot wait for lost-packet recovery, and so must use UDP rather than TCP.
We might further suppose that we can modify the encoding so as to reduce the sending rate as necessary –
that is, that we are using adaptive encoding – but that we would prefer in the absence of congestion to keep
the sending rate at the high end. We might also want a relatively uniform rate of sending; the TCP sawtooth
leads to periodic variations in throughput that we may wish to avoid.

Our application may not be windows-based, but we can still monitor the number of packets it has in flight
on the network at any one time; if the packets are small, we can count bytes instead. We can use this count
instead of the TCP cwnd.

We will say that a given communications strategy is TCP Friendly if the number of packets on the network
at any one time is approximately equal to the TCP Reno cwndmean for the prevailing packet loss rate p. Note
that – assuming losses are independent events, which is definitely not quite right but which is often Close
Enough – in a long-enough time interval, all connections sharing a common bottleneck can be expected to
experience approximately the same packet loss rate.

The point of TCP Friendliness is to regulate the number of the non-Reno connection’s outstanding packets
in the presence of competition with TCP Reno, so as to achieve a degree of fairness. In the absence of
competition, the number of any connection’s outstanding packets will be bounded by the transit capacity
plus capacity of the bottleneck queue. Some non-Reno protocols (eg TCP Vegas, 15.6 TCP Vegas, or
constant-rate traffic, 14.6.2 RTP) may in the absence of competition have a loss rate of zero, simply
because they never overflow the queue.

Another way to approach TCP Friendliness is to start by defining “Reno Fairness” to be the bandwidth
allocations that TCP Reno assigns in the face of competition. TCP Friendliness then simply means that the
given non-Reno connection will get its Reno-Fair share – not more, not less.

We will return to TCP Friendliness in the context of general AIMD in 14.7 AIMD Revisited.

14.6.1 TFRC

TFRC, or TCP-Friendly Rate Control, RFC 3448, uses the loss rate experienced, p, and the formulas above
to calculate a sending rate. It then allows sending at that rate; that is, TFRC is rate-based rather than window-
based. As the loss rate increases, the sending rate is adjusted downwards, and so on. However, adjustments
are done more smoothly than with TCP, giving the application a more gradually changing transmission rate.

From RFC 5348:

TFRC is designed to be reasonably fair when competing for bandwidth with TCP flows, where
we call a flow “reasonably fair” if its sending rate is generally within a factor of two of the
sending rate of a TCP flow under the same conditions. [emphasis added; a factor of two might
not be considered “close enough” in some cases.]

14.6 TCP Friendliness 461

https://tools.ietf.org/html/rfc3448.html
https://tools.ietf.org/html/rfc5348.html

An Introduction to Computer Networks, Release 1.9.21

The penalty of having smoother throughput than TCP while competing fairly for bandwidth is that TFRC
responds more slowly than TCP to changes in available bandwidth.

TFRC senders include in each packet a sequence number, a timestamp, and an estimated RTT.

The TFRC receiver is charged with sending back feedback packets, which serve as (partial) acknowledg-
ments, and also include a receiver-calculated value for the loss rate over the previous RTT. The response
packets also include information on the current actual RTT, which the sender can use to update its estimated
RTT. The TFRC receiver might send back only one such packet per RTT.

The actual response protocol has several parts, but if the loss rate increases, then the primary feedback
mechanism is to calculate a new (lower) sending rate, using some variant of the cwnd = k/?p formula, and
then shift to that new rate. The rate would be cut in half only if the loss rate p quadrupled.

Newer versions of TFRC have a various features for responding more promptly to an unusually sudden
problem, but in normal use the calculated sending rate is used most of the time.

14.6.2 RTP

The Real-Time Protocol, or RTP, is sometimes (though not always) coupled with TFRC. RTP is a UDP-
based protocol for streaming time-sensitive data.

Some RTP features include:

• The sender establishes a rate (rather than a window size) for sending packets

• The receiver returns periodic summaries of loss rates

• ACKs are relatively infrequent

• RTP is suitable for multicast use; a very limited ACK rate is important when every packet sent might
have hundreds of recipients

• The sender adjusts its cwnd-equivalent up or down based on the loss rate and the TCP-friendly
cwnd=k/?p rule

• Usually some sort of “stability” rule is incorporated to avoid sudden changes in rate

As a common RTP example, a typical VoIP connection using a DS0 (64 kbps) rate might send one packet
every 20 ms, containing 160 bytes of voice data, plus headers.

For a combination of RTP and TFRC to be useful, the underlying application must be rate-adaptive, so that
the application can still function when the available rate is reduced. This is often not the case for simple
VoIP encodings; see 20.11.4 RTP and VoIP.

We will return to RTP in 20.11 Real-time Transport Protocol (RTP).

The UDP-based QUIC transport protocol (11.1.1 QUIC) uses a congestion-control mechanism compatible
with Cubic TCP (15.15 TCP CUBIC), which isn’t quite the same as TCP Reno. But QUIC could just as
easily have used TFRC to achieve TCP-Reno-friendliness.

462 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

14.6.3 DCCP Congestion Control

We saw DCCP earlier in 11.1.2 DCCP and 12.22.3 DCCP. DCCP also includes a set of congestion-
management “profiles”; a connection can choose the profile that best fits its needs. The two standard ones
are the TCP-Reno-like profile (RFC 4341) and the TFRC profile (RFC 4342).

In the Reno-like profile, every packet is acknowledged (though, as with TCP, ACKs may be sent on the
arrival of every other Data packet). Although DCCP ACKs are not cumulative, use of the TCP-SACK-like
ACK-vector format ensures that acknowledgments are received reliably except in extreme-loss situations.

The sender maintains cwnd much as a TCP Reno sender would. It is incremented by one for each RTT
with no loss, and halved in the event of packet loss. Because sliding windows is not used, cwnd does
not represent a window size. Instead, the sender maintains an Estimated FlightSize (13.4 TCP Reno and
Fast Recovery), which is the sender’s best guess at the number of outstanding packets. In RFC 4341 this
is referred to as the pipe value. The sender is then allowed to send additional packets as long as pipe <
cwnd.

The Reno-like profile also includes a slow start mechanism.

In the TFRC profile, an ACK is sent at least once per RTT. Because ACKs are sent less frequently, it may
occasionally be necessary for the sender to send an ACK of ACK.

As with TFRC generally, a DCCP sender using the TFRC profile has its rate limited, rather than its window
size.

DCCP provides a convenient programming framework for use of TFRC, complete with (at least in the Linux
world), a traditional socket interface. The developer does not have to deal with the TFRC rate calculations
directly.

14.7 AIMD Revisited

TCP Tahoe chose an increase increment of 1 on no losses, and a decrease factor of 1/2 otherwise.

Another approach to TCP Friendliness is to retain TCP’s additive-increase, multiplicative-decrease strategy,
but to change the numbers. Suppose we denote by AIMD(𝛼,𝛽) the strategy of incrementing the window size
by 𝛼 after a window of no losses, and multiplying the window size by (1-𝛽)<1 on loss (so 𝛽=0.1 means the
window is reduced by 10%). TCP Reno is thus AIMD(1,0.5).

Any AIMD(𝛼,𝛽) protocol also follows a sawtooth, where the slanted top to the tooth has slope 𝛼. All
combinations of 𝛼>0 and 0<𝛽<1 are possible. The dimensions of one tooth of the sawtooth are somewhat
constrained by 𝛼 and 𝛽. Let h be the maximum height of the tooth and let w be the width (as measured in
RTTs). Then, if the losses occur at regular intervals, the height of the tooth at the left (low) edge is (1-𝛽)h
and the total vertical difference is 𝛽h. This vertical difference must also be 𝛼w, and so we get 𝛼w = 𝛽h,
or h/w = 𝛼/𝛽; these values are labeled on the rightmost teeth in the diagram below. These equations mean
that the proportions of the tooth (h to w) are determined by 𝛼 and 𝛽. Finally, the mean height of the tooth is
(1-𝛽/2)h.

We are primarily interested in AIMD(𝛼,𝛽) cases which are TCP Friendly (14.6 TCP Friendliness). TCP
friendliness means that an AIMD(𝛼,𝛽) connection with the same loss rate as TCP Reno will have the same
mean cwnd. Each tooth of the sawtooth represents one loss. The number of packets sent per tooth is, using
h and w as in the previous paragraph, (1-𝛽/2)hw.

14.7 AIMD Revisited 463

https://tools.ietf.org/html/rfc4341.html
https://tools.ietf.org/html/rfc4342.html
https://tools.ietf.org/html/rfc4341.html

An Introduction to Computer Networks, Release 1.9.21

Geometrically, the number of packets sent per tooth is the area of the tooth, so two connections with the
same per-packet loss rate will have teeth with the same area. TCP Friendliness means that two connections
will have the same mean cwnd and thus the same average tooth height. If the teeth of two connections have
the same area and the same average height, they must have the same width (in RTTs), and thus that the rates
of loss per unit time must be equal, not just the rates of loss per number of packets.

The diagram below shows a TCP Reno tooth (blue) together with some unfriendly AIMD(𝛼,𝛽) teeth on the
left (red) and two friendly teeth on the right (green), the second friendly tooth is superimposed on the Reno
tooth.

h

w

�w=�h

Unfriendly Reno FriendlyReno

AIMD teeth; Reno tooth has guide-lines showing midpoints

�w/2

3
2

w

The additional dashed lines within the central Reno tooth demonstrate the Reno 1ˆ1ˆ2 proportions, and
show that the horizontal dashed line, representing cwndmean, is at height 3/2 w, where w is, as before, the
width.

In the rightmost green tooth, superimposed on the Reno tooth, we can see that h = (3/2)ˆw + (𝛼/2)ˆw. We
already know h = (𝛼/𝛽)ˆw; setting these expressions equal, canceling the w and multiplying by 2 we get
(3+𝛼) = 2𝛼/𝛽, or 𝛽 = 2𝛼/(3+𝛼). Solving for 𝛽 we get

𝛼 = 3𝛽/(2-𝛽)

or 𝛼 » 1.5𝛽 for small 𝛽. As the reduction factor 1-𝛽 gets closer to 1, the protocol can remain TCP-friendly
by appropriately reducing 𝛼; eg AIMD(1/5, 1/8).

Having a small 𝛽 means that a connection does not have sudden bandwidth drops when losses occur; this can
be important for applications that rely on a regular rate of data transfer (such as voice). Such applications
are sometimes said to be slowly responsive, in contrast to TCP’s cwnd = cwnd/2 rapid response.

14.7.1 AIMD and Convergence to Fairness

While TCP-friendly AIMD(𝛼,𝛽) protocols will converge to fairness when competing with TCP Reno (with
equal RTTs), a consequence of decreasing 𝛽 is that fairness may take longer to arrive; here is an example.
We will assume, as above in 14.3.3 TCP RTT bias, that loss events for the two competing connections are
synchronized. Recall that for two same-RTT TCP Reno connections (that is, AIMD(𝛼,𝛽) where 𝛽=1/2),
if the initial difference in the connections’ respective cwnds is D, then D is reduced by half on each loss
event.

464 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

Now suppose we have two AIMD(𝛼,𝛽) connections with some other value of 𝛽, and again with a difference
D in their cwnd values. The two connections will each increase cwnd by 𝛼 each RTT, and so when losses
are not occurring D will remain constant. At loss events, D will be reduced by a factor of 1-𝛽. If 𝛽=1/4,
corresponding to 𝛼=3/7, then at each loss event D will be reduced only to 3/4 D, and the “half-life” of D
will be almost twice as large. The two connections will still converge to fairness as DÑ0, but it will take
twice as long.

14.8 Active Queue Management

Active Queue Management (AQM) means that routers take some active steps to manage their queues. The
primary goal of AQM is to reduce excessive queuing delays; cf 14.8.1 Bufferbloat. A secondary goal is
to improve the performance of TCP connections – which constitute the vast majority of Internet traffic –
through the router. By signaling to TCP connections that they should reduce cwnd, overall queuing delays
are also reduced.

Generally routers manage their queues either by marking packets or by dropping them. All routers drop
packets when there is no more space for new arrivals, but this falls into the category of active management
when packets are dropped before the queue has run completely out of space. Queue management can be
done at the congestion “knee”, when queues just start to build (and when marking is more appropriate), or
as the queue starts to become full and approaches the “cliff”.

Broadly speaking, the priority queuing and random drop mechanisms (14.1 A First Look At Queuing, above)
might be considered forms of AQM, at least if the goal was to manage the overall queue size. So might
fair queuing and hierarchical queuing (19 Queuing and Scheduling). The mechanisms most commonly
associated with the AQM category, though, are RED, below, and its successors, especially CoDel. For a
discussion of the potential benefits of fair queuing to queue management, see 19.6.1 Fair Queuing and
Bufferbloat.

14.8.1 Bufferbloat

As we saw in 13.7 TCP and Bottleneck Link Utilization, TCP Reno connections are happiest when the
queue capacity at the bottleneck router exceeds the bandwidth ˆ delay transit capacity. But it is easy to
get carried away here. The calculations of 13.7.1 TCP Queue Sizes suggested that an optimum backbone-
router buffer size for TCP Reno might be hundreds of megabytes. Because RAM is cheap, and because
more space is hard to say no to, queue sizes in the real world often tend to be at the larger end of the
scale. Excessive delay due to excessive queue capacity is known as bufferbloat. Of course, “excessive” is a
matter of perspective; if the only traffic you’re interested in is bulk TCP flows, large queues are good. But if
you’re interested in real-time traffic like voice and interactive video, or even simply in fast web-page loads,
bufferbloat becomes a problem. Large queues can also lead to delay variability, or jitter.

Backbone routers are one class of offender here, but not the only. Many residential routers have a queue
capacity several times the average bandwidth ˆ delay product, meaning that queuing delay potentially
becomes much larger than propagation delay. Even end-systems often have large queues; on Linux systems,
the default queue size can be several hundred packets.

All these delay-related issues do not play well with interactive traffic or real-time traffic (RFC 7567). As
a result, there are proposals for running routers with much smaller queues; see, for example, [WM05] and

14.8 Active Queue Management 465

https://tools.ietf.org/html/rfc7567.html

An Introduction to Computer Networks, Release 1.9.21

[EGMR05]. This may reduce the bottleneck link utilization of a single TCP flow to 75%. However, with
multiple TCP flows having unsynchronized losses, the situation will often be much better.

Still, for router managers, deciding on a queue capacity can be a vexing issue. The CoDel algorithm, below,
offers great promise, but we start with some earlier strategies.

14.8.2 DECbit

In the congestion-avoidance technique proposed in [RJ90], routers encountering early signs of congestion
marked the packets they forwarded; senders used these markings to adjust their window size. The system
became known as DECbit in reference to the authors’ employer and was implemented in DECnet (closely
related to the OSI protocol suite), though apparently there was never a TCP/IP implementation. The idea
behind DECbit eventually made it into TCP/IP in the form of ECN, below, but while ECN – like TCP’s other
congestion responses – applies control near the congestion cliff, DECbit proposed introducing control when
congestion was still minimal, just above the congestion knee. DECbit was never a solution to bufferbloat;
in the DECbit era, memory was expensive and queue capacities were seldom excessive.

The DECbit mechanism allowed routers to set a designated “congestion bit”. This would be set in the data
packet being forwarded, but the status of this bit would be echoed back in the corresponding ACK (otherwise
the sender would never hear about the congestion).

DECbit routers defined “congestion” as an average queue size greater than 1.0; that is, congestion meant that
the connection was just past the “knee”. Routers would set the congestion bit whenever this average-queue
condition was met.

The target for DECbit senders would then be to have 50% of packets marked as “congested”. If fewer than
50% of packets were marked, cwnd would be incremented by 1; if more than 50% were marked, then cwnd
would be decreased by a factor of 0.875. Note this is very different from the TCP approach in that DECbit
begins marking packets at the congestion “knee” while TCP Reno responds only to packet losses which
occur at the “cliff”.

A consequence of this knee-based mechanism is that DECbit shoots for very limited queue utilization,
unlike TCP Reno. At a congested router, a DECbit connection would attempt to keep about 1.0 packets
in the router’s queue, while a TCP Reno connection might fill the remainder of the queue. Thus, DECbit
would in principle compete poorly with any connection where the sender ignored the marked packets and
simply tried to keep cwnd as large as possible. As we will see in 15.6 TCP Vegas, TCP Vegas also strives
for limited queue utilization; in 16.5 TCP Reno versus TCP Vegas we investigate through simulation how
fairly TCP Vegas competes with TCP Reno.

14.8.3 Explicit Congestion Notification (ECN)

ECN is the TCP/IP equivalent of DECbit, though the actual mechanics are quite different. The current
version is specified in RFC 3168, modifying an earlier version in RFC 2481. The IP header contains a
two-bit ECN field, consisting of the ECN-Capable Transport (ECT) bit and the Congestion Experienced
(CE) bit; the ECN field is shown in 7.1 The IPv4 Header. The ECT bit is set by a sender to indicate to
routers that it is able to use the ECN mechanism. (These are actually the older RFC 2481 names for the
bits, but they will serve our purposes here.) The TCP header contains an additional two bits: the ECN-Echo
bit (ECE) and the Congestion Window Reduced (CWR) bit; these are shown in the fourth row in 12.2 TCP
Header.

466 14 Dynamics of TCP

https://tools.ietf.org/html/rfc3168.html
https://tools.ietf.org/html/rfc2481.html
https://tools.ietf.org/html/rfc2481.html

An Introduction to Computer Networks, Release 1.9.21

The original goal of ECN was to improve TCP throughput by eliminating most actual packet losses and the
resultant timeouts. Bufferbloat was, again, not at issue.

ECN and Middleboxes

In the early days of ECN, some non-ECN-aware firewalls responded to packets with the CWR or ECE bits
set by dropping them and returning a spoofed RST packet to the sender. See RFC 3360 for details and a
discussion of this nonstandard use of RST. This is a good example of how “middleboxes” are sometimes
obstacles to protocol evolution; see 7.7.2 Middleboxes.

Routers set the CE bit in the IP header when they might otherwise drop the packet (or possibly when the
queue is at least half full, or in lieu of a RED drop, below). As in DECbit, receivers echo the CE status back
to the sender in the ECE bit of the next ACK; the reason for using the ECE bit is that this bit belongs to the
TCP header and thus the TCP layer can be assured of control of it.

TCP senders treat ACKs with the ECE bit set the same as if a loss occurred: cwnd is cut in half. Because
there is no actual loss, the arriving ACKs can still pace continued sliding-windows sending. The Fast
Recovery mechanism is not needed.

When the TCP sender has responded to an ECE bit (by halving cwnd), it sets the CWR bit. Once the receiver
has received a packet with the CE bit set in the IP layer, it sets the ECE bit in all subsequent ACKs until
it receives a data packet with the CWR bit set. This provides for reliable communication of the congestion
information, and helps the sender respond just once to multiple packet losses within a single windowful.

Note that the initial packet marking is done at the IP layer, but the generation of the marked ACK and the
sender response to marked packets is at the TCP layer (the same is true of DECbit though the layers have
different names).

Only a packet that would otherwise have been dropped has its CE bit set; the router does not mark all
waiting packets once its queue reaches a certain threshold. Any marked packet must, as usual, wait in the
queue for its turn to be forwarded. The sender finds out about the congestion after one full RTT, versus
one full RTT plus four packet transmission times for Fast Retransmit. A much earlier, “legacy” strategy
was to require routers, upon dropping a packet, to immediately send back to the sender an ICMP Source
Quench packet. This is a faster way (the fastest possible way) to notify a sender of a loss. It was never
widely implemented, however, and was officially deprecated by RFC 6633.

Because ECN congestion is treated the same way as packet drops, ECN competes fairly with TCP Reno.

RFC 3540 is a proposal (as of 2016 not yet official) to slightly amend the mechanism described above to
support detection of receivers who attempt to conceal evidence of congestion. A receiver would do this by
not setting the ECE bit in the ACK when a data packet arrives marked as having experienced congestion.
Such an unscrupulous (or incorrectly implemented) receiver may then gain a greater share of the bandwidth,
because its sender maintains a larger cwnd than it should. The amendment also detects erasure of the ECE
bit (or other ECN bits) by middleboxes.

The new strategy, known as the ECN nonce, treats the ECN bits ECT and CE as a single unit. The value
00 is used by non-ECN-aware senders, and the value 11 is used by routers as the congestion marker. ECN-
aware senders mark data packets by randomly choosing 10 (known as ECT(0)) or 01 (known as ECT(1)).
This choice encodes the nonce bit, with ECT(0) representing a nonce bit of 0 and ECT(1) representing 1;
the nonce bit can also be viewed as the value of the second ECN bit.

14.8 Active Queue Management 467

https://tools.ietf.org/html/rfc3360.html
https://tools.ietf.org/html/rfc6633.html
https://tools.ietf.org/html/rfc3540.html

An Introduction to Computer Networks, Release 1.9.21

The receiver is now expected, in addition to setting the ECE bit, to also return the one-bit running sum of the
nonce bits in a new TCP-header bit called the nonce-sum (NS) bit, which immediately precedes the CRW
bit. This sum is over all data packets received since the previous packet loss or congestion-experienced
packet. The point of this is that if the receiver attempts to conceal congestion by leaving the ECE bit zero,
the receiver cannot properly set the NS bit, because it does not know which of ECT(0) or ECT(1) was used.
For each packet marked as experiencing congestion, the receiver has a 50% chance of guessing correctly,
but over time successful guessing becomes increasingly unlikely. If ECN-noncompliance is detected, the
sender must now stop using ECN, and may choose a smaller cwnd as a precaution.

Although we have described ECN as a mechanism implemented by routers, it can just as easily be imple-
mented by switches, and is available in many commercial switches.

14.8.4 RED

“Traditional” routers drop packets only when the queue is full; senders have no overt indication before
then that the cliff is looming. ECN improves this by informing TCP connections of the impending cliff so
they can reduce cwnd without actually losing packets. The idea behind Random Early Detection (RED)
routers, introduced in [FJ93], is that the router is allowed to drop an occasional packet much earlier, say
when the queue is less than half full. These early packet drops provide a signal to senders that they should
slow down; we will call them signaling losses. While packets are indeed lost, they are dropped in such
a manner that usually only one packet per windowful (per connection) will be lost. Classic TCP Reno, in
particular, behaves poorly with multiple losses per window and RED is able to avoid such multiple losses.
The primary goal of RED was, as with ECN, to improve TCP performance. Note that RED preceded ECN
by six years.

RED is, strictly speaking, a queuing discipline in the sense of 19.4 Queuing Disciplines; FIFO is another.
It is often more helpful, however, to think of RED as a technique that an otherwise-FIFO router can use to
improve the performance of TCP traffic through it.

Designing an early-drop algorithm is not trivial. A predecessor of RED known as Early Random Drop
(ERD) gateways simply introduced a small uniform drop probability p, eg p=0.01, once the queue had
reached a certain threshold. This addresses the TCP Reno issue reasonably well, except that dropping with
a uniform probability p leads to a surprisingly high rate of multiple drops in a cluster, or of long stretches
with no drops. More uniformity was needed, but drops at regular intervals are too uniform.

The actual RED algorithm does two things. First, the base drop probability – pbase – rises steadily from a
minimum queue threshold qmin to a maximum queue threshold qmax (these might be 40% and 80% respec-
tively of the absolute queue capacity); at the maximum threshold, the drop probability is still quite small.
The base probability pbase increases linearly in this range according to the following formula, where pmax is
the maximum RED-drop probability; the value for pmax proposed in [FJ93] was 0.02.

pbase = pmax ˆ (avg_queuesize – qmin)/(qmax – qmin)

Second, as time passes after a RED drop, the actual drop probability pactual begins to rise, according to the
next formula:

pactual = pbase / (1 – countˆpbase)

Here, count is the number of packets sent since the last RED drop. With count=0 we have pactual = pbase,
but pactual rises from then on with a RED drop guaranteed within the next 1/pbase packets. This provides a
mechanism by which RED drops are uniformly enough spaced that it is unlikely two will occur in the same

468 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

window of the same connection, and yet random enough that it is unlikely that the RED drops will remain
synchronized with a single connection, thus targeting it unfairly.

A significant drawback to RED is that the choice of the various parameters is decidedly ad hoc. It is not clear
how to set them so that TCP connections with both small and large bandwidthˆdelay products are handled
appropriately, or even how to set them for a given output bandwidth. The probability pbase should, for
example, be roughly 1/winsize, but winsize for TCP connections can vary by several orders of magnitude.
RFC 2309, from 1998, recommended RED, but its successor RFC 7567 from 2015 has backed away from
this, recommending instead that an appropriate AQM strategy be implemented, but that the details should
be left to the discretion of the router manager.

In 20.8 RED with In and Out we will look at an application of RED to quality-of-service guarantees.

14.8.5 ADT

The paper [SKS06] proposes the Adaptive Drop-Tail algorithm, in which the maximum queue capacity is
adjusted at intervals (of perhaps 5 minutes) in order to maintain a specific desired link-utilization target
(perhaps 95%). At the end of each interval, the available queue capacity is increased or decreased (perhaps
by 5%) depending on whether the link utilization was under or over the target. ADT does not selectively drop
packets otherwise; if there is space for an arriving packet within the current queue capacity, it is accepted.

ADT does a good job adjusting the overall queue capacity to meet circumstances that change slowly; an
example might be the size of the user pool. However, ADT does not respond to short-term fluctuations. In
particular, it does not attempt to respond to fluctuations occurring within a single TCP Reno tooth. ADT
also does not maintain additional queue space for transient packet bursts.

14.8.6 CoDel

The CoDel queue-management algorithm (pronounced “coddle”) attempts, like RED, to use signaling losses
to encourage connections to reduce their queue utilization. This allows CoDel to maintain a large total queue
capacity, available to absorb bursts, while at the same time maintaining on average a much smaller level of
actual queue utilization. To achieve this, CoDel is able to distinguish between transient queue spikes and
“standing-queue” utilization, persisting over multiple RTTs; the canonical example of the latter is TCP
Reno’s queue buildup towards the right-hand edge of each sawtooth. Unlike RED, CoDel has essentially no
tunable parameters, and adapts to a wide range of bandwidths and traffic types. See [NJ12] and the Internet
Draft draft-ietf-aqm-codel-06. Reducing bufferbloat is an explict goal of CoDel.

CoDel measures the minimum value of queue utilization over a designated short time period known as
the Interval. The Interval is intended to be a little larger than most connection RTTnoLoad values; it is
typically 100 ms. Through this minimum-utilization statistic, CoDel will easily be able to detect a TCP Reno
connection’s queue-building phase, which except for short-RTT connections will last for many Intervals.

CoDel measures this queue utilization in terms of the time the packet spends in the queue (its “sojourn time”)
rather than the size of the queue in bytes. While these two measures are proportional at any one router, the
use of time rather than space means that the CoDel algorithm is independent of the outbound bandwidth,
and so does not need to be configured for that bandwidth.

CoDel’s target for the minimum queue utilization is typically 5% of the interval, or 5 ms, although 10%
is also reasonable. If the minimum utilization is smaller, no action is taken. If the minimum utilization

14.8 Active Queue Management 469

https://tools.ietf.org/html/rfc2309.html
https://tools.ietf.org/html/rfc7567.html
https://tools.ietf.org/html/draft-ietf-aqm-codel-06

An Introduction to Computer Networks, Release 1.9.21

becomes larger, then CoDel enters its “dropping mode”, drops a packet, and begins scheduling additional
packet drops. This lasts until the minimum utilization is again below the target, and CoDel returns to its
“normal mode”.

Once dropping mode begins, the second drop is scheduled for one Interval after the first drop, though the
second drop may not occur if CoDel is able to return to normal mode. While CoDel remains in dropping
mode, additional packet drops are scheduled after times of Interval/?2, Interval/?3, etc; that is, the dropping
rate accelerates in proportion to?n until the minimum time packets spend in the queue is small enough again
that CoDel is able to return to normal mode.

If the traffic consists of a single TCP Reno connection, CoDel will drop one of its packets as soon as the
queue utilization hits 5%. That will cause cwnd to halve, most likely making even a second packet drop
unnecessary. If the connection’s RTT was approximately equal to the Interval, then its link utilization will
be the same as if the queue capacity was fixed at 5% of the transit capacity, or 79% (13.12 Exercises, 12.5).
However, if there are a modest number of unsynchronized TCP connections, the link-utilization rate climbs
to above 90% ([NJ12], figs 5 and 8).

If the traffic consists of several TCP Reno connections, a few drops should be all that are necessary to force
most of the connections to halve their cwnds, and thus greatly reduce their collective queue utilization.
However, even if the traffic consists of a single fixed-rate UDP connection, with too high a rate for the
bottleneck, CoDel still works. In this case it drops as many packets as it needs to in order to drive down the
queue utilization, and this cycle repeats as necessary. An additional feature of CoDel is that if the dropping
mode is re-entered quickly, the dropping rate picks up where it left off.

For an example application of CoDel, see 19.10.2 Limiting Delay.

14.9 The High-Bandwidth TCP Problem

The TCP Reno algorithm has a serious consequence for high-bandwidth connections: the cwnd needed
implies a very small – unrealistically small – packet-loss rate p. “Noise” losses (losses not due to congestion)
are not frequent but no longer negligible; these keep the window significantly smaller than it should be. The
following table, from RFC 3649, is based on an RTT of 0.1 seconds and a packet size of 1500 bytes, for
various throughputs. The cwnd values represent the bandwidthˆRTT products.

TCP Throughput (Mbps) RTTs between losses cwnd Packet Loss Rate P
1 5.5 8.3 0.02
10 55 83 0.0002
100 555 833 2 ˆ 10-6

1000 5555 8333 2 ˆ 10-8

10,000 55555 83333 2 ˆ 10-10

Note the very small value of the loss probability needed to support 10 Gbps; this works out to a bit error rate
of less than 2 ˆ 10-14. For fiber optic data links, alas, a physical bit error rate of 10-13 is often considered
acceptable; there is thus no way to support the window size of the final row above. (The use of error-
correcting codes on OTN links, 4.2.3 Optical Transport Network, can reduce the bit error rate to less than
10-15.) Another source of “noise” losses are queue overflows within Ethernet switches; switches tend to
have much shorter queues than routers. At 10 Gbps, a switch is forwarding one packet every microsecond;
at that rate a burst does not have to last long to overrun the switch’s queue.

470 14 Dynamics of TCP

https://tools.ietf.org/html/rfc3649.html

An Introduction to Computer Networks, Release 1.9.21

Here is a similar table, expressing cwnd in terms of the packet loss rate:

Packet Loss Rate P cwnd RTTs between losses
10-2 12 8
10-3 38 25
10-4 120 80
10-5 379 252
10-6 1,200 800
10-7 3,795 2,530
10-8 12,000 8,000
10-9 37,948 25,298
10-10 120,000 80,000

The above two tables indicate that large window sizes require extremely small drop rates. This is the high-
bandwidth-TCP problem: how do we maintain a large window when a path has a large bandwidthˆdelay
product? The primary issue is that non-congestive (noise) packet losses bring the window size down, poten-
tially far below where it could be. A secondary issue is that, even if such random drops are not significant,
the increase of cwnd to a reasonable level can be quite slow. If the network ceiling were about 2,000 pack-
ets, then the normal sawtooth return to the ceiling after a loss would take 1,000 RTTs. This is slow, but the
sender would still average 75% throughput, as we saw in 13.7 TCP and Bottleneck Link Utilization. Per-
haps more seriously, if the network ceiling were to double to 4,000 packets due to decreases in competing
traffic, it would take the sender an additional 2,000 RTTs to reach the point where the link was saturated.

In the following diagram, the network ceiling and the ideal TCP sawtooth are shown in green. The ideal
TCP sawtooth should range between 50% and 100% of the ceiling; in the diagram, “noise” or non-congestive
losses occur at the red x’s, bringing down the throughput to a much lower average level.

time

cwnd

 TCP without (green) and with (red) random losses
In this diagram, red random losses occur 3-4 times as often as green congestion losses

14.9 The High-Bandwidth TCP Problem 471

An Introduction to Computer Networks, Release 1.9.21

14.10 The Lossy-Link TCP Problem

Closely related to the high-bandwidth problem is the lossy-link problem, where one link on the path has a
relatively high non-congestive-loss rate; the classic example of such a link is Wi-Fi. If TCP is used on a
path with a 1.0% loss rate, then 14.5 TCP Reno loss rate versus cwnd indicates that the sender can expect
an average cwnd of only about 12, no matter how high the bandwidthˆdelay product is.

The only difference between the lossy-link problem and the high-bandwidth problem is one of scale; the
lossy-link problem involves unusually large values of p while the high-bandwidth problem involves cir-
cumstances where p is quite low but not low enough. For a given non-congestive loss rate p, if the
bandwidthˆdelay product is much in excess of 1.22/?p then the sender will be unable to maintain a cwnd
close to the network ceiling.

14.11 The Satellite-Link TCP Problem

A third TCP problem, only partially related to the previous two, is that encountered by TCP users with very
long RTTs. The most dramatic example of this involves satellite Internet links (3.9.2 Satellite Internet).
Communication each way involves routing the signal through a satellite in geosynchronous orbit; a round
trip involves four up-or-down trips of ~36,000 km each and thus has a propagation delay of about 500ms.
If we take the per-user bandwidth to be 1 Mbps (satellite ISPs usually provide quite limited bandwidth,
though peak bandwidths can be higher), then the bandwidthˆdelay product is about 40 packets. This is not
especially high, even when typical queuing delays of another ~500ms are included, but the fact that it takes
many seconds to reach even a moderate cwnd is an annoyance for many applications. Most ISPs provide an
“acceleration” mechanism when they can identify a TCP connection as a file download; this usually involves
transferring the file over the satellite portion of the path using a proprietary protocol. However, this is not
much use to those using TCP connections that involve multiple bidirectional exchanges; eg those using VPN
connections.

14.12 Epilog

TCP Reno’s core congestion algorithm is based on algorithms in Jacobson and Karel’s 1988 paper [JK88],
now twenty-five years old. There are concerns both that TCP Reno uses too much bandwidth (the greediness
issue) and that it does not use enough (the high-bandwidth-TCP problem).

In the next chapter we consider alternative versions of TCP that attempt to solve some of the above problems
associated with TCP Reno.

14.13 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
2.5 is distinct, for example, from exercises 2.0 and 3.0. Exercises marked with a ♢ have solutions or hints
at 24.12 Solutions for Dynamics of TCP.

0.5. In the section 14.2.3 Example 3: competition and queue utilization, we derived the formula

472 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

Q = wA + wB – 2d – 2(𝛼dA+𝛽dB)

under the assumption that the bottleneck bandwidth was 1 packet per unit time. Give the formula when the
bottleneck bandwidth is r packets per unit time. Hint: the formula above will apply if we measure time in
units of 1/r; only the delays d, dA and dB need to be re-scaled to refer to “normal” time. A delay d measured
in “normal” time corresponds to a delay d1 = rˆd measured in 1/r units.

1.0. Consider the following network, where the bandwidths marked are all in packets/ms. C is sending to D
using sliding windows and A and B are idle.

C

100

A 100 R1 5 R2 100 B

100

D

Suppose the one-way propagation delay on the 100 packet/ms links is 1 ms, and the one-way propagation
delay on the R1–R2 link is 2 ms. The RTTnoLoad for the C–D path is thus about 8 ms, for a bandwidthˆdelay
product of 40 packets. If C uses winsize = 50, then the queue at R1 will have size 10.

Now suppose A starts sending to B using sliding windows, also with winsize = 50. What will be the size of
the queue at R1?

Hint: by symmetry, the queue will be equally divided between A’s packets and C’s, and A and C will each
see a throughput of 2.5 packets/ms. RTTnoLoad, however, does not change. The number of packets in transit
for each connection will be 2.5 packets/ms ˆ RTTnoLoad.

2.0. In the previous exercise, give the average number of data packets (not ACKs) in transit on each
individual link:

(a).♢ for the original case in which C is the only sender, with winsize = 50 (the only active links here are
C–R1, R1–R2 and R2–D).
(b). for the new case in which B is also sending, also with winsize = 50. In this case all links are active.

Each link will also have an equal number of ACK packets in transit in the reverse direction. Hint: since
winsize ě bandwidthˆdelay, packets are sent at the bottleneck rate.

2.5.♢ Consider the following network, with links labeled with one-way propagation delays in milliseconds
(so, ignoring bandwidth delay, A’s RTTnoLoad is 40 ms and B’s is 20 ms). The bottleneck link is R–D, with
a bandwidth of 6 packets/ms.

A 15

R 5 D

14.13 Exercises 473

An Introduction to Computer Networks, Release 1.9.21

B 5

Initially B sends to D using a winsize of 120, the bandwidthˆround-trip-delay product for the B–D path. A
then begins sending as well, increasing its winsize until its share of the bandwidth is 2 packets/ms.

What is A’s winsize at this point? How many packets do A and B each have in the queue at R?

It is perhaps easiest to solve this by repeated use of the observation that the number of packets in transit
on a connection is always equal to RTTnoLoad times the actual bandwidth received by that connection. The
algebraic methods of 14.2.3 Example 3: competition and queue utilization can also be used, but bandwidth
there was normalized to 1; all propagation delays given here would therefore need to be multiplied by 6.

3.0. Consider the C–D path from the diagram of 14.2.4 Example 4: cross traffic and RTT variation:

C 100 R1 5 R2 100 D

Link numbers are bandwidths in packets/ms. Assume C is the only sender.

(a).♢ Give propagation delays for the links C–R1 and R2–D so that there will be an average of 5 packets in
transit on the C–R1 and R2–D links, in each direction, if C uses a winsize sufficient to saturate the
bottleneck R1–R2 link.
(b). Give propagation delays for all three links so that, when C uses a winsize equal to the round-trip transit
capacity, there are 5 packets each way on the C–R1 link, 10 on the R1–R2 link, and 20 on the R2–D link.

3.5. Suppose we have the network layout below of 14.2.4 Example 4: cross traffic and RTT variation,
except that the R1–R2 bandwidth is 6 packets/ms and the R2–R3 bandwidth is 3 pkts/ms. The delays are as
shown, making the C–D RTTnoLoad 10 ms and the A–B RTTnoLoad 16 ms. A connects to B and C connects
to D.

(a).♢ Find window sizes wA and wC so that the A–B and C–D connections share the bottleneck R1–R2
bandwidth equally, and there is no queue.

(b). Show that increasing each of wA and wC by 30 packets leaves each connection with 30 packets in R1’s
queue – so the bandwidth is still shared equally – and none in R2’s. Hint: As in (a), the A–B bandwidth
cannot exceed 3 packets/ms, and C’s packets can only accumulate at R1. To show A cannot have less than
50% of the bandwidth, observe that, if this happened, then A can have no queue at R2 (because packets
now leave faster than they arrive), and so all of A’s extra packets must also queue at R1.

474 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

A R1 R2 R3 B

D

C

6 pkts/ms 3 pkts/ms

3 ms delay 3 ms delay

 Links A—R1, B—R1, R2—D, R3—B:
1 ms propagation delay, 100 pkts/ms bandwidth

4.0. Suppose we have the network layout of 3.5 above. Suppose also that the A–B and C–D connections have
settled upon window sizes as in 3.5(b), so that each contributes 30 packets to R1’s queue. Each connection
thus has 50% of the R1–R2 bandwidth and there is no queue at R2.

. . . R2 will then be sending 3 packets/ms to R3 and so will have no queue.

Now A’s winsize is incremented by 10, initially, at least, leading to A contributing more than 50% of R1’s
queue. When the steady state is reached, how will these extra 10 packets be distributed between R1 and R2?
Hint: As A’s winsize increases, A’s overall throughput cannot rise due to the bandwidth restriction of the
R2–R3 link.

5.0. Suppose we have the network layout of exercise 3.5, but modified so that the round-trip C–D RTTnoLoad
is 5 ms. The round-trip A–B RTTnoLoad may be different.

The R1–R2 bandwidth is 6 packets/ms, so with A idle the C–D throughput is 6 packets/ms.

(a). Suppose that A and C have window sizes such that, with both transmitting, each has 30 packets in the
queue at R1. What is C’s winsize? Hint: C’s throughput is now 3 packets/ms.
(b). Now suppose C’s winsize, with A idle, is 60. In this case the C–D transit capacity would be 5 ms ˆ 6
packets/ms = 30 packets, and so C would have 60–30 = 30 packets in R1’s queue. A then begins sending,
with a winsize chosen so that A and C’s contributions to R1’s queue are equal; C’s winsize remains at 60.
What will be C’s (and thus A’s) queue usage at R1? Hint: find the transit capacity for a throughput of 3
packets/ms.
(c). Suppose the A–B RTTnoLoad is 10 ms. If C’s winsize is 60, find the winsize for A that makes A and C’s
contributions to R1’s queue equal.

6.0. One way to address the reduced bandwidth TCP Reno gives to long-RTT connections is for all connec-
tions to use an increase increment of RTT2 instead of 1; that is, everyone uses AIMD(RTT2,1/2) instead of
AIMD(1,1/2) (or AIMD(kˆRTT2,1/2), where k is an arbitrary scaling factor that applies to everyone).

(a). Construct a table in the style of of 14.3.2 Example 3: Longer RTT above, showing the result of two
connections using this strategy, where one connection has RTT = 1 and the other has RTT = 2. Start the
connections with cwnd=RTT2, and assume a loss occurs when cwnd1 + cwnd2 > 24.

14.13 Exercises 475

An Introduction to Computer Networks, Release 1.9.21

(b). Explain why this strategy might not be desirable if one connection is over a direct LAN with an RTT of
1 ms, while the second connection has a very long path and an RTT of 1.0 sec. (Hint: the cwnd-increment
value for the short-RTT connection would have to apply whether or not the long-RTT connection was
present.)

7.0. For each value 𝛼 or 𝛽 below, find the other value so that AIMD(𝛼,𝛽) is TCP-friendly.

(a). 𝛽 = 1/5
(b). 𝛽 = 2/9
(c). 𝛼 = 1/5

Then pick the pair that has the smallest 𝛼, and draw a sawtooth diagram that is approximately proportional:
𝛼 should be the slope of the linear increase, and 𝛽 should be the decrease fraction at the end of each tooth.

8.0. Suppose two TCP flows compete. The flows have the same RTT. The first flow uses AIMD(𝛼1,𝛽1)
and the second uses AIMD(𝛼2,𝛽2); neither flow is necessarily TCP-Reno-friendly. The two connections,
however, compete fairly with one another; that is, they have the same average packet-loss rates. Show that

𝛼1/𝛽1 = (2-𝛽2)/(2-𝛽1) ˆ 𝛼2/𝛽2.

Assume regular losses, and use the methods of 14.7 AIMD Revisited. Hint: first, apply the argument there
to show that the two flows’ teeth must have the same width w and same average height. The average height
is no longer 3w/2, but can still be expressed in terms of w, 𝛼 and 𝛽. Use a diagram to show that, for any
tooth, average_height = hˆ(1–𝛽/2), with h the right-edge height of the tooth. Then equate the two average
heights of the h1/𝛽1 and h2/𝛽2 teeth. Finally, use the 𝛼iw = 𝛽ihi relationships to eliminate h1 and h2.

8.5. Using the result of the previous exercise, show that AIMD(𝛼1,𝛽) is equivalent to (in the sense of
competing fairly with) AIMD(𝛼2,0.5), with 𝛼2 = 𝛼1ˆ(2–𝛽)/3𝛽.

9.0. Suppose two 1 kB packets are sent as part of a packet-pair probe, and the minimum time measured
between arrivals is 5 ms. What is the estimated bottleneck bandwidth?

10.0. Consider the following three causes of a 1-second network delay between A and B. In all cases, assume
ACKs travel instantly from B back to A.

(i) An intermediate router with a 1-second-per-packet bandwidth delay; all other bandwidth
delays negligible
(ii) An intermediate link with a 1-second propagation delay; all bandwidth delays negligible
(iii) An intermediate router with a 100-ms-per-packet bandwidth delay, and a steadily
replenished queue of 10 packets, from another source (as in the diagram in 14.2.4 Example 4:
cross traffic and RTT variation).

(a). Suppose that, in each of these cases, the packet-pair technique (14.2.6 Packet Pairs) is used to measure
the bandwidth. Assuming no packet reordering, what is the minimum time interval we could expect in each
case?

(b). What would be the corresponding values of the measured bandwidths? (For purposes of bandwidth
measurement, you may assume that the “negligible” bandwidth delay in case (ii) is 0.01 sec.)

476 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

11.0. Consider again the three-link parking-lot network from 14.4.1 Max-Min Fairness:

A B C D

(a). Suppose we have two end-to-end connections, in addition to one single-link connection for each link.
Find the max-min-fair allocation.
(b). Suppose we have a single end-to-end connection, and one B–C and C–D connection, but two A–B
connections. Find the max-min-fair allocation.

12.0. Consider the two-link parking-lot network:

A B C

Suppose there are two A–C connections, one A–B connection and one A–C connection. Find the allocation
that is proportionally fair.

13.0. Suppose we use TCP Reno to send K packets over R RTT intervals. The transmission experiences n
not-necessarily-uniform loss events; the TCP cwnd graph thus has n sawtooth peaks of heights N1 through
Nn. At the start of the graph, cwnd = A, and at the end of the graph, cwnd = B. Show that the sum N1 + . . .
+ Nn is 2(R+A-B), and in particular the average tooth height is independent of the distribution of the loss
events.

14.13 Exercises 477

An Introduction to Computer Networks, Release 1.9.21

A

R

B

R+A-B

N
1

N
2

N
3

N
4

N
4
/2

N
3
/2

N
2
/2

N
1
/2

13.5. Suppose the bandwidthˆdelay product for a network path is 1000 packets. The only traffic on the
path is from a single TCP Reno connection. For each of the following cases, find the average cwnd and the
approximate number of packets between losses (the reciprocal of the loss rate). Your answers, collectively,
should reflect the formula in 14.5 TCP Reno loss rate versus cwnd.

(a).♢ The bottleneck queue capacity is close to zero.
(b). The bottleneck queue capacity is 1000 packets.
(c). The bottleneck queue capacity is 3000 packets.

14.0. Suppose TCP Reno has regularly spaced sawtooth peaks of the same height, but the packet losses come
in pairs, with just enough separation that both losses in a pair are counted separately. N is large enough that
the spacing between the two losses is negligible. The net effect is that each large-scale tooth ranges from
height N/4 to N. As in 14.5 TCP Reno loss rate versus cwnd, cwndmean = K/?p for some constant K. Find
the constant. Hint: from the given information one can determine both cwndmean and the number of packets
sent in one tooth. The loss rate is p = 2/(number of packets sent in one tooth).

478 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

N

N/4 3/4 N

15.0. As in the previous exercise, suppose a TCP transmission has large-scale teeth of height N. Between
each pair of consecutive large teeth, however, there are K-1 additional losses resulting in K-1 additional tiny
teeth; N is large enough that these tiny teeth can be ignored. A non-Reno variant of TCP is used, so that
between these tiny teeth cwnd is assumed not to be cut in half; during the course of these tiny teeth cwnd
does not change much at all. The large-scale tooth has width N/2 and height ranging from N/2 to N, and
there are K losses per large-scale tooth. Find the ratio cwnd/(1/?p), in terms of K. When K=1 your answer
should reduce to that derived in 14.5 TCP Reno loss rate versus cwnd.

N

N/2 N/2

K=4 shown

16.0. Suppose a TCP Reno tooth starts with cwnd = c, and contains N packets. Let w be the width of the
tooth, in RTTs as usual. Show that w = (c2 + 2N)1/2 – c. Hint: the maximum height of the tooth will be c+w,
and so the average height will be c + w/2. Find an equation relating c, w and N, and solve for w using the
quadratic formula.

16.5. Suppose we have a non-Reno implementation of TCP, in which the formula relating the cwnd c to the
time t, as measured in RTTs since the most recent loss event, is c = t2 (versus TCP Reno’s c = c0 + t). The
sawtooth then looks like the following:

The number of packets sent in a tooth of width T RTTs, which is the reciprocal of the loss rate p, is now
approximately kˆT3 (this may be accepted on faith, or shown by integrating t2 from 0 to T). The average

14.13 Exercises 479

An Introduction to Computer Networks, Release 1.9.21

cwnd is therefore kˆT3/T = kˆT2.

Derive a formula expressing the average cwnd in terms of the loss rate p. Hint: the exponent for p should
be –2/3, versus –1/2 in the formula in 14.5 TCP Reno loss rate versus cwnd.

16.6. Using the TCP assumptions of exercise 16.5 above, cwnd is incremented by about 2t per each RTT.
Show that the cwnd increment rule can be expressed as

cwnd += 𝛼cwnd1/2

and find the value of 𝛼.

16.7. Using the same TCP assumptions as in exercise 16.5 above, show that cwnd is still proportional to
p-2/3, where p is the loss rate, assuming the following:

• the top boundary of each tooth follows the curve cwnd = c(t) = t2, as before.

• each tooth has a right boundary at t=T and a left boundary at t=T1, where c(T1) = 0.5ˆc(T).

(In the previous exercise we assumed, in effect, that T1 = 0 and that cwnd dropped to 0 after each loss event;
here we assume multiplicative decrease is in effect with 𝛽=1/2.) The number of packets sent in one tooth is
now kˆ(T3 – T1

3), and the mean cwnd is this divided by T–T1.

TT1

h

h/2
c(t) = t2

Note that as the teeth here become higher, they become proportionately narrower. Hint: show T1 =
(0.5)0.5ˆT, and then eliminate T1 from the above equations.

17.0. Suppose in a TCP Reno run each packet is equally likely to be lost; the number of packets N in each
tooth will therefore be distributed exponentially. That is, N = -k log(X), where X is a uniformly distributed
random number in the range 0<X<1 (k, which does not really matter here, is the mean interval between
losses). Write a simple program that simulates such a TCP Reno run. At the end of the simulation, output
an estimate of the constant C in the formula cwndmean = C/?p. You should get a value of about 1.31, as in
the formula in 14.5.1 Irregular teeth.

Hint: There is no need to simulate packet transmissions; we simply create a series of teeth of random size,
and maintain running totals of the number of packets sent, the number of RTT intervals needed to send them,
and the number of loss events (that is, teeth). After each loss event (each tooth), we update:

• total_packets += packets sent in this tooth

• RTT_intervals += RTT intervals in this tooth

• loss_events += 1 (one tooth = one loss event)

If a loss event marking the end of one tooth occurs at a specific value of cwnd, the next tooth begins at
height c = cwnd/2. If N is the random value for the number of packets in this tooth, then by the previous

480 14 Dynamics of TCP

An Introduction to Computer Networks, Release 1.9.21

exercise the tooth width in RTTs is w = (c2 + 2N)1/2 – c; the next peak (that is, loss event) therefore occurs
when cwnd = c+w. Update the totals as above and go on to the next tooth. It should be possible to run this
simulation for 1 million teeth in modest time.

18.0. Suppose two TCP connections have the same RTT and share a bottleneck link, for which there is
no other competition. The size of the bottleneck queue is negligible when compared to the bandwidth ˆ
RTTnoLoad product. Loss events occur at regular intervals.

In Exercise 12.0 of the previous chapter, you were to show that if losses are synchronized then the two
connections together will use 75% of the total bottleneck-link capacity

Now assume the two TCP connections have no losses in common, and, in fact, alternate losses at regular
intervals as in the following diagram.

C

Both connections have a maximum cwnd of C. When Connection 1 experiences a loss, Connection 2 will
have cwnd = 75% of C, and vice-versa.

(a). What is the combined transit capacity of the paths, in terms of C? (Because the queue size is
negligible, the transit capacity is approximately the sum of the cwnds at the point of loss.)
(b). Find the bottleneck-link utilization. Hint: Again because the queue size is negligible, this is
approximately the ratio of the average total cwnd to the transit capacity of part (a). It should be at least
85%.

14.13 Exercises 481

An Introduction to Computer Networks, Release 1.9.21

482 14 Dynamics of TCP

15 NEWER TCP IMPLEMENTATIONS

Since the rise of TCP Reno, several TCP alternatives to Reno have been developed; each attempts to address
some perceived shortcoming of Reno. While many of them are very specific attempts to address the high-
bandwidth problem we considered in 14.9 The High-Bandwidth TCP Problem, some focus primarily or
entirely on other TCP Reno foibles. One such issue is TCP Reno’s “greediness” in terms of queue utilization;
another is the lossy-link problem (14.10 The Lossy-Link TCP Problem) experienced by, say, Wi-Fi users.

Generally speaking, a TCP implementation can respond to congestion at the cliff – that is, it can respond
to packet losses – or can respond to congestion at the knee – that is, it can detect the increase in RTT
associated with the filling of the queue. These strategies are sometimes referred to as loss-based and delay-
based, respectively; the latter term because of the rise in RTT. TCP implementers can tweak both the loss
response – the multiplicative decrease of TCP Reno – and also the way TCP increases its cwnd in the
absence of loss. There is a rich variety of options available.

The concept of monitoring the RTT to avoid congestion at the knee was first introduced in TCP Vegas
(15.6 TCP Vegas). One striking feature of TCP Vegas is that, in the absence of competition, the queue
may never fill, and thus there may not be any congestive losses. The TCP sawtooth, in other words, is not
inevitable.

When losses do occur, most of the mechanisms reviewed here continue to use the TCP NewReno recovery
strategy. As most of the implementations here are relatively recent, the senders can generally expect that the
receiving end will support SACK TCP, which allows more rapid recovery from multiple losses.

15.1 Choosing a TCP on Linux

On Linux systems, the TCP congestion-control mechanism can be set by writing an appropriate string
to /proc/sys/net/ipv4/tcp_congestion_control (or, equivalently, by passing the string
as a parameter to the sysctl net.ipv4.tcp_congestion_control command). The stan-
dard options on the author’s system as of 2013 are listed below (as of 2016, several are now only
available if loaded explicitly, eg with modprobe). The list comes from /proc/sys/net/ipv4/
tcp_available_congestion_control.

• highspeed

• htcp

• hybla

• illinois

• vegas

• veno

• westwood

• bic

• cubic

483

An Introduction to Computer Networks, Release 1.9.21

We review several of these below; see 15.4 A Roadmap for an overview. TCP Cubic is currently (2013) the
default Linux congestion-control implementation; TCP Bic was a precursor.

The TCP congestion-control mechanism can also be set on a per-connection basis. Non-root users can select
any mechanism listed in /proc/sys/net/ipv4/tcp_allowed_congestion_control; entries
in tcp_available_congestion_control can be copied to this by the root user.

Many TCP flavors are not available by default, but can be loaded via modprobe. The modules containing
the TCP implementations are generally in /lib/modules/$(uname -r)/kernel/net/ipv4. Executing ls tcp_*
in this directory yields (on the author’s system in 2017) the following:

• tcp_bic.ko

• tcp_cdg.ko

• tcp_dctcp.kp

• tcp_highspeed.ko

• tcp_htcp.ko

• tcp_hybla.ko

• tcp_illinois.ko

• tcp_scalable.ko

• tcp_vegas.ko

• tcp_veno.ko

• tcp_westwood.ko

• tcp_yeah.ko

To load, eg, TCP Vegas, use modprobe tcp_vegas (without the “.ko”). This will
last until the next reboot (or until the module is manually unloaded). At this point
/proc/sys/net/ipv4/tcp_available_congestion_control will contain “vegas” (not tcp_vegas).

In the C language, we can select the Linux congestion control mechanism, after socket creation but before
connection, by including the setsockopt() call below; see 22.2.2 An Actual Stack-Overflow Example
and 22.10.3 A TLS Programming Example for complete C examples (though without this call).

#include <netinet/in.h>
#include <netinet/tcp.h>
...
char * cong_algorithm = "vegas";
int slen = strlen(cong_algorithm) + 1;
int rc = setsockopt(sock, IPPROTO_TCP, TCP_CONGESTION, cong_algorithm, slen);
if (rc < 0) { /* error */ }

Checking the return code is essential to determine if the algorithm request succeeded.

In Python3 (and Python2) we can do this as well; the file below is also available at tcp_stalkc_cong.py. See
also 18.6.1.1 sender.py.

484 15 Newer TCP Implementations

http://intronetworks.cs.luc.edu/auxiliary_files/stalk/tcp_stalkc_cong.py

An Introduction to Computer Networks, Release 1.9.21

#!/usr/bin/python3
stalk client allowing specification of the TCP congestion algorithm

from socket import *
from sys import argv

default_host = "localhost"
portnum = 5431

cong_algorithm = 'vegas'

def talk():
global cong_algorithm
rhost = default_host
if len(argv) > 1:

rhost = argv[1]
if len(argv) > 2:

cong_algorithm = argv[2]
print("Looking up address of " + rhost + "...", end="")
try:

dest = gethostbyname(rhost)
except gaierror as mesg: # host not found

errno,errstr=mesg.args
print("\n ", errstr);
return;

print("got it: " + dest)
addr=(dest, portnum)
s = socket()

TCP_CONGESTION = 13 # defined in /usr/include/netinet/tcp.h
cong = bytes(cong_algorithm, 'ascii')
try:

s.setsockopt(IPPROTO_TCP, TCP_CONGESTION, cong)
except OSError as mesg:

errno, errstr = mesg.args
print ('congestion mechanism {} not available: {}'.format(cong_

ãÑalgorithm, errstr))
return

res=s.connect_ex(addr) # make the actual connection
if res!=0:

print("connect to port ", portnum, " failed")
exit()

while True:
try:

buf = input("> ")
except:

break;
buf = buf + "\n"
s.send(bytes(buf, 'ascii'))

talk()

15.1 Choosing a TCP on Linux 485

An Introduction to Computer Networks, Release 1.9.21

As of version 3.5, Python did not define the constant TCP_CONGESTION; the value 13 above was found
in the C include file mentioned in the comment. Fortunately, Python simply passes the parameters of s.
setsockopt() to the underlying C call, and everything works. Supposedly TCP_CONGESTION is pre-
defined in Python 3.6.

15.2 High-Bandwidth Desiderata

One goal of all TCP implementations that attempt to fix the high-bandwidth problem is to be unfair to TCP
Reno: the whole point is to allow cwnd to increase more aggressively than is permitted by Reno. Beyond
that, let us review what else a TCP version should do.

First is the backwards-compatibility constraint: any new TCP should exhibit reasonable fairness with TCP
Reno at lower bandwidthˆdelay products. In particular, it should not ever have a significantly lower cwnd
than a competing TCP Reno would get. But also it should not take bandwidth unfairly from a TCP Reno
connection: the above comment about unfairness to Reno notwithstanding, the new TCP, when competing
with TCP Reno, should leave the Reno connection with about the same bandwidth it would have if it were
competing with another Reno connection. This is possible because at higher bandwidthˆdelay products
TCP Reno does not efficiently use the available bandwidth; the new TCP should to the extent possible
restrict itself to consuming this previously unavailable bandwidth rather than eating significantly into the
bandwidth of a competing TCP Reno connection.

There is also the self-fairness issue: multiple connections using the new TCP should receive similar band-
width allocations, at least with similar RTTs. For dissimilar RTTs, the bandwidth proportions should ideally
be no worse than they would be under TCP Reno.

Ideally, we also want relatively rapid convergence to fairness; fairness is something of a hollow promise
if only connections transferring more than a gigabyte will benefit from it. For TCP Reno, two connections
halve the difference in their respective cwnds at each shared loss event; as we saw in 14.7.1 AIMD and
Convergence to Fairness, slower convergence is possible.

It is harder to hope for fairness between competing new implementations. However, at the very least, if new
implementations tcp1 and tcp2 are competing, then neither should get less than TCP Reno would get.

Some new TCPs make use of careful RTT measurements, and, as we shall see below, such measurements
are subject to a considerable degree of noise. Any new TCP implementation should be reasonably robust in
the face of inaccuracies in RTT measurement; a modest or transient measurement error should not make the
protocol behave badly, in either the direction of low cwnd or of high.

Finally, a new TCP should ideally try to avoid clusters of multiple losses at each loss event. Such multiple
losses, for example, are a problem for TCP NewReno without SACK: as we have seen, it takes one RTT
to retransmit each lost packet. Even with SACK, multiple losses complicate recovery. Yet if a new TCP
increments cwnd by an amount N>1 after each RTT, then there is potential for the network ceiling to be
exceeded by N within one RTT, making a cluster of N losses reasonably likely to occur. These losses are
likely distributed among all connections, not just the new-TCP one.

All TCPs addressing the high-bandwidth issue will need a cwnd-increment N that is fairly large, at least
some of the time, apparently conflicting with this no-multiple-losses ideal. One trick is to reduce N when
packet loss appears to be imminent. TCP Illinois and TCP Cubic do have mechanisms in place to reduce
multiple losses.

486 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

15.3 RTTs

The exact performance of some of the faster TCPs we consider – for that matter, the exact performance of
TCP Reno – is influenced by the RTT. This may affect individual TCP performance and also competition
between different TCPs. For reference, here are a few typical RTTs from Chicago to various other places:

• US West Coast: 50-100 ms

• Europe: 100-150 ms

• Southeast Asia: 100-200 ms

15.4 A Roadmap

We start with Highspeed TCP, an early and relatively simple attempt to address the high-bandwidth-TCP
problem.

After that is the group TCP Vegas, FAST TCP, TCP Westwood, TCP Illinois and Compound TCP. These all
involve so-called delay-based congestion control, in which the sender carefully monitors the RTT for the
minute increases that signal queuing. TCP Vegas, which dates from 1995, is the earliest TCP here and in
fact predates widespread recognition of the high-bandwidth-TCP problem. Its goal – then and now – was to
prove that one could build a TCP that, in the absence of competition, could transfer arbitrarily long streams
of data with no losses and with 100% bottleneck-link utilization.

The next group, consisting of TCP Veno, TCP Hybla and DCTCP, represent special-purpose TCPs. While
TCP Veno may be a reasonable high-bandwidth TCP candidate, its primary goal is to improve TCP perfor-
mance over lossy links such as Wi-Fi. TCP Hybla is targeted at satellite-Internet users with very long RTTs
while DCTCP is for internal connections within a datacenter (which, among other things, have very short
RTTs).

The last triad represents newer, non-delay-based attempts to solve the high-bandwidth-TCP problem: H-
TCP, TCP Cubic and TCP BBR. TCP Cubic has become the default TCP on Linux.

15.5 Highspeed TCP

An early proposed fix for the high-bandwidth-TCP problem is HighSpeed TCP, documented in RFC 3649
(Floyd, 2003). Highspeed TCP is sometimes called HS-TCP, but we use the longer name here to avoid
confusion with the entirely unrelated H-TCP, below.

Highspeed TCP adjusts the additive-increase and multiplicative-decrease parameters 𝛼 and 𝛽 so that, for
larger values of cwnd, the rate of cwnd increase between losses is much faster, and the cwnd de-
crease at loss events is much smaller. This allows efficient use of all the available bandwidth for large
bandwidthˆdelay products. Correspondingly, when cwnd is in the range where TCP Reno works well,
Highspeed TCP’s throughput is only modestly larger than TCP Reno’s, so the two compete relatively fairly.

The threshold for Highspeed TCP diverging from TCP Reno is a loss rate less than 10–3, which for TCP
Reno occurs when cwnd = 38. Beyond that point, Highspeed TCP gradually increases 𝛼 and decreases 𝛽.
The overall effect is to outperform TCP Reno by a factor N = N(cwnd) according to the table below. This N

15.3 RTTs 487

https://tools.ietf.org/html/rfc3649.html

An Introduction to Computer Networks, Release 1.9.21

can also be interpreted as the “unfairness” of Highspeed TCP with respect to TCP Reno; fairness is arguably
“close to” 1.0 until cwndě1000, at which point TCP Reno is likely not using the full bandwidth available
due to the high-bandwidth TCP problem.

cwnd N(cwnd)
1 1.0
10 1.0
100 1.4
1,000 3.6
10,000 9.2
100,000 23.0

An algebraic expression for N(cwnd), for Ně38, is

N(cwnd) = 0.23ˆcwnd0.4

At cwnd=38 this is about 1.0; for smaller cwnd we stick with N=1.

To specify the details of Highspeed TCP, we start by considering a 10 Gbps link, which was the fastest gen-
erally available at the time Highspeed TCP was developed. If the RTT is 100 ms, then the bandwidthˆdelay
product works out to 83,000 packets. The central strategy of Highspeed TCP is to choose the desired loss rate
for an average cwnd of 83,000 to be 1 packet in 107; this number was empirically determined. This is quite
a bit larger than the corresponding TCP Reno loss rate of 1 packet in 5ˆ109 (14.9 The High-Bandwidth
TCP Problem); in this context, a larger congestion loss rate is better. The loss rate is the reciprocal of the
tooth area; it turns out (below) that we have a great deal of latitude in choosing the tooth area by adjusting
the 𝛼 and 𝛽 window-growth parameters. After determining 𝛼 and 𝛽 for cwnd = 83,000, Highspeed TCP
then uses interpolation to cover cwnd values in between 38 and 83,000. (The Highspeed TCP rules do
extend to larger cwnds too, but there is not necessarily an expectation that they will work well there.)

We start with the TCP Reno relationship cwnd = 1.225ˆp–0.5, from 14.5 TCP Reno loss rate versus cwnd
(RFC 3649 uses a numerator of 1.20 in this formula.) We fit the relationship cwnd = kˆp–𝛼 to the above
two pairs of (cwnd,p) values, (38,10–3) and (83000,10–7). This turns out to yield

cwnd = 0.12 ˆ p–0.835

From this we can derive the TCP Reno multiplier N(cwnd) above, by using the TCP Reno relationship
cwnd = 1.2ˆNˆp–0.5 for N synchronized connections, eliminating p and then solving for N.

The next step is to define the additive-increase and multiplicative-decrease values 𝛼 = 𝛼(cwnd) and 𝛽 =
𝛽(cwnd), thus allowing us to build an actual implementation. While 𝛼 and 𝛽 are allowed to vary with
cwnd, we will assume they do so only slowly, so that for any given steady-state connection the 𝛼 values are
relatively constant (the 𝛽 value is that at the maximum cwnd). This gives us a standard AIMD tooth:

488 15 Newer TCP Implementations

https://tools.ietf.org/html/rfc3649.html

An Introduction to Computer Networks, Release 1.9.21

h

w

w=h

w/2

average
 cwnd

When cwnd is 83,000 we want the loss rate to be 10–7, meaning that the area of the tooth, wˆcwnd =
wˆhˆ(1-𝛽/2), should be 107. From this we get w = 107/83,000 = 120.5 RTTs. We also have, very gen-
erally, 𝛼w = 𝛽h, and combining this with cwnd = hˆ(1-𝛽/2), we get 𝛼 = 𝛽h/w = cwndˆ(2𝛽/(1-𝛽/2))/w
» 1378ˆ𝛽/(1-𝛽/2). RFC 3649 suggests 𝛽=0.1 at this cwnd, making 𝛼 = 73. The value of 𝛽 for val-
ues of cwnd between 38 and 83,000 is determined by logarithmic interpolation between 0.5 and 0.1; the
corresponding value of 𝛼(cwnd) is then set by the formula.

The 1-in-107 loss rate – corresponding to a bit error rate of about one in 1.2ˆ1011 – is large enough that it
is at least two orders of magnitude higher than the rate of noise-induced non-congestive packet losses. On
the other hand, it is small enough that the Highspeed TCP derived from it competes reasonably fairly with
TCP Reno, at least with bandwidthˆdelay products small enough that TCP Reno alone performs reasonably
well.

It may be helpful to view Highspeed TCP in terms of the cwnd graph between losses. For ordinary TCP,
the graph increases linearly. For Highspeed TCP, the graph is slightly convex (lying above its tangent). This
means that there is a modest increase in the rate of cwnd increase, as time goes on (up to the point of packet
loss).

15.5 Highspeed TCP 489

https://tools.ietf.org/html/rfc3649.html

An Introduction to Computer Networks, Release 1.9.21

time t

cwnd

TCP Reno: cwnd(t) linear

time t

cwnd

Highspeed TCP: cwnd(t) convex

This might be an appropriate time to point out that in TCP Reno, the cwnd-versus-time graph between
losses is actually slightly concave (lying below its tangent). We do get a strictly linear graph if we plot
cwnd as a function of the count of elapsed RTTs, but the RTTs are themselves slowly increasing as a
function of time once the queue starts filling up. At that point, the cwnd-versus-time graph bends slightly
down. If the bottleneck queue capacity matches the total path transit capacity, the RTTs for a full queue are
about double the RTTs for an empty queue.

In general, when Highspeed-TCP competes with a new TCP Reno flow it is N times as aggressive, and grabs
N times the bandwidth, where N = N(cwnd) is as above. For cwnd = 83,000, the formula above yields N =
21. This may be surprising, as for this value of cwnd Highspeed TCP is AIMD(73,0.1), which is equivalent
to AIMD(459,0.5) (either via the formula above or by 14.13 Exercises, exercise 8.0). We might naively
suppose that AIMD(459,0.5) would out-compete TCP Reno – AIMD(1,0.5) – by a factor of 459, by the
reasoning of 14.3.1 Example 2: Faster additive increase. But this is true only if losses are synchronized,
which, for such lopsided differences in 𝛼, is manifestly not the case. Because Highspeed TCP uses the lion’s
share of the queue, it encounters the lion’s share of loss events, and TCP Reno is able to do much better than
the 𝛼 values alone would suggest.

Finally, with a little math we can compare Highspeed TCP with an AIMD-type flavor of TCP with an
additive-increase rule (per RTT) of the form

cwnd += 𝛼ˆcwndk

For TCP Reno, k=0, and in the example of exercises 16.5 and 16.6 of 14.13 Exercises we have k=1/2. For
compatibility with Highspeed TCP, it turns out what we need is k=0.8. We will return to this in 15.10 Com-
pound TCP, which intentionally mimics the behavior of Highspeed TCP when queue utilization is low.

15.6 TCP Vegas

TCP Vegas, introduced in [BP95], is the only new TCP version we consider here that dates from the previ-
ous century. The goal was not directly to address the high-bandwidth problem, but rather to improve TCP
throughput generally; indeed, in 1995 the high-bandwidth problem had not yet surfaced as a practical con-

490 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

cern. The ambitious goal of TCP Vegas is essentially to eliminate congestive losses, and to try to keep the
bottleneck link 100% utilized at all times. Recall from 13.7 TCP and Bottleneck Link Utilization that, with
a large queue, the average bottleneck-link utilization for TCP Reno can be as low as 75%.

TCP Vegas achieves this improvement by, like DECbit, recognizing TCP congestion at the knee, that is, at
the point where the bottleneck link has become saturated and further cwnd increases simply result in RTT
increases. A TCP Vegas sender alone or in competition only with other TCP Vegas connections will seldom
if ever approach the “cliff” where packet losses occur.

To accomplish this, no special router cooperation – or even receiver cooperation – is necessary. Instead, the
sender uses careful monitoring of the RTT to keep track of the number of “extra packets” (ie packets sitting
in queues) it has injected into the network. In the absence of competition, the RTT will remain constant,
equal to RTTnoLoad, until cwnd has increased to the point when the bottleneck link has become saturated and
the queue begins to fill (6.3.2 RTT Calculations). By monitoring the bandwidth as well, a TCP sender can
even determine the actual number of packets in the bottleneck queue, as bandwidth ˆ (RTT – RTTnoLoad).
TCP Vegas uses this information to attempt to maintain at all times a small but positive number of packets
in the bottleneck queue.

This TCP Vegas strategy is now often referred to as delay-based congestion control, as opposed to TCP
Reno’s loss-based congestion control. TCP Reno’s periodic losses followed by the halving of cwnd is what
leads to the “TCP sawtooth”; TCP Vegas, however, has no sawtooth.

A TCP sender can readily measure its throughput. The simplest measurement is cwnd/RTT as in 6.3.2 RTT
Calculations; this amounts to averaging throughput over an entire RTT. Let us denote this bandwidth esti-
mate by BWE; for the time being we will accept BWE as accurate, though see 15.8.1 ACK Compression
and Westwood+ below. TCP Vegas estimates RTTnoLoad by the minimum RTT (RTTmin) encountered during
the connection. The “ideal” cwnd that just saturates the bottleneck link is BWEˆRTTnoLoad. Note that
BWE will be much more volatile than RTTmin; the latter will typically reach its final value early in the
connection, while BWE will fluctuate up and down with congestion (which will also act on RTT, but by
increasing it).

As in 6.3.2 RTT Calculations, any TCP sender can estimate queue utilization as

queue_use = cwnd – BWEˆRTTnoLoad = cwnd ˆ (1 – RTTnoLoad/RTTactual)

TCP Vegas then adjusts cwnd regularly to maintain the following:

𝛼 ď queue_use ď 𝛽

which is the same as

BWEˆRTTnoLoad + 𝛼 ď cwnd ď BWEˆRTTnoLoad + 𝛽

Typically 𝛼 = 2-3 packets and 𝛽 = 4-6 packets. We increment cwnd by 1 if cwnd falls below the lower
limit (eg if BWE has increased). Similarly, we decrement cwnd by 1 if BWE drops and cwnd exceeds
BWEˆRTTnoLoad + 𝛽. These adjustments are conceptually done once per RTT. Typically a TCP Vegas
sender would also set cwnd = cwnd/2 if a packet were actually lost, though this does not necessarily
happen nearly as often as with TCP Reno.

TCP Vegas achieves its goal quite well. If one monitors the number of packets in queues, through real
measurement or in simulation, the number does indeed stay between 𝛼 and 𝛽. In the absence of competition
from TCP Reno, a single TCP Vegas connection will never experience congestive packet loss. This is a
remarkable achievement.

15.6 TCP Vegas 491

An Introduction to Computer Networks, Release 1.9.21

The use of returning ACKs to determine BWE is subject to errors due to “ACK compression”, 15.8.1 ACK
Compression and Westwood+. This is generally not a major problem with TCP Vegas, however.

15.6.1 TCP Vegas versus TCP Reno

Despite its striking ability to avoid congestive losses in the absence of competition, TCP Vegas encounters
a potentially serious fairness problem when competing with TCP Reno, at least for the case when queue
capacity exceeds or is close to the transit capacity (13.7 TCP and Bottleneck Link Utilization). TCP Vegas
will try to minimize its queue use, while TCP Reno happily fills the queue. And whoever has more packets
in the queue has a proportionally greater share of bandwidth.

To make this precise, suppose we have two TCP connections sharing a bottleneck router R, the first using
TCP Vegas and the second using TCP Reno. Suppose further that both connections have a path transit
capacity of 10 packets, and R’s queue capacity is 40 packets. If 𝛼=3 and 𝛽=5, TCP Vegas might keep an
average of four packets in the queue. Unfortunately, TCP Reno then gobbles up most of the rest of the
queue space, as follows. There are 40-4 = 36 spaces left in the queue after TCP Vegas takes its quota, and
10 in the TCP Reno connection’s path, for a total of 46. This represents the TCP Reno connection’s network
ceiling, and is the point at which TCP Reno halves cwnd; therefore cwnd will vary from 23 to 46 with an
average of about 34. Of these 34 packets, if 10 are in transit then 24 are in R’s queue. If on average R has 24
packets from the Reno connection and 4 from the Vegas connection, then the bandwidth available to these
connections will also be in this same 6:1 proportion. The TCP Vegas connection will get 1/7 the bandwidth,
because it occupies 1/7 the queue, and the TCP Reno connection will take the other 6/7.

To put it another way, TCP Vegas is potentially too “civil” to compete with TCP Reno.

Even worse, Reno’s aggressive queue filling will eventually force the TCP Vegas cwnd to decrease; see
Exercise 4.0 below.

This Vegas-Reno fairness problem is most significant when the queue size is an appreciable fraction of the
path transit capacity. During periods when the queue is empty, TCPs Vegas and Reno increase cwnd at the
same rate, so when the queue size is small compared to the path capacity, TCP Vegas and TCP Reno are
much closer to being fair.

In 16.5 TCP Reno versus TCP Vegas we compare TCP Vegas with TCP Reno in simulation. With a transit
capacity of 220 packets and a queue capacity of 10 packets, TCPs Vegas and Reno receive almost exactly
the same bandwidth.

TCP Reno’s advantage here assumes a router with a single FIFO queue. That advantage can disappear
if a different queuing discipline is in effect. For example, if the bottleneck router used fair queuing (to
be introduced in 19.5 Fair Queuing) on a per-connection basis, then the TCP Reno connection’s queue
greediness would not be of any benefit, and both connections would get similar shares of bandwidth with
the TCP Vegas connection experiencing lower delay. See 19.6.1 Fair Queuing and Bufferbloat.

Let us next consider how TCP Vegas behaves when there is an increase in RTT due to the kind of cross
traffic shown in 14.2.4 Example 4: cross traffic and RTT variation and again in the diagram below. Let
A–B be the TCP Vegas connection and assume that its queue-size target is 4 packets (eg 𝛼=3, 𝛽=5). We will
also assume that the RTTnoLoad for the A–B path is about 5ms and the RTT for the C–D path is also low. As
before, the link labels represent bandwidths in packets/ms, meaning that the round-trip A–B transit capacity
is 10 packets.

492 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

A R1 R2 R3 B

D

C

100 pkts/ms

100 pkts/ms

5 pkts/ms

100 pkts/ms

2 pkts/ms 100 pkts/ms

Initially, in the absence of C–D traffic, the A–B connection will send at a rate of 2 packets/ms (the R2–R3
bottleneck), and maintain a queue of four packets at R2. Because the RTT transit capacity is 10 packets, this
will be achieved with a window size of 10+4 = 14.

Now let the C–D traffic start up, with a winsize so as to keep about four times as many packets in R1’s queue
as A, once the new steady-state is reached. If all four of the A–B connection’s “queue” packets end up now
at R1 rather than R2, then C would need to contribute at least 16 packets. These 16 packets will add a delay
of about 16/5 » 3ms; the A–B path will see a more-or-less-fixed 3ms increase in RTT. A will also see a
decrease in bandwidth due to competition; with C consuming 80% of R1’s queue, A’s share wll fall to 20%
and thus its bandwidth will fall to 20% of the R1–R2 link bandwidth, that is, 1 packet/ms. Denote this new
value by BWEnew. TCP Vegas will attempt to decrease cwnd so that

cwnd » BWEnewˆRTTnoLoad + 4

A’s estimate of RTTnoLoad, as RTTmin, will not change; the RTT has gotten larger, not smaller. So we have
BWEnewˆRTTnoLoad » 1 packet/ms ˆ 5 ms = 5 packets; adding the 4 reserved for the queue, the new value
of cwnd is now about 9, down from 14.

On the one hand, this new value of cwnd does represent 5 packets now in transit, plus 4 in R1’s queue; this
is indeed the correct response. But note that this division into transit and queue packets is an average. The
actual physical A–B round-trip transit capacity remains about 10 packets, meaning that if the new packets
were all appropriately spaced then none of them might be in any queue.

15.7 FAST TCP

FAST TCP is closely related to TCP Vegas; the idea is to keep the fixed-queue-utilization feature of TCP
Vegas to the extent possible, but to provide overall improved performance, in particular in the face of com-
petition with TCP Reno. Details can be found in [JWL04] and [WJLH06]. FAST TCP is patented; see
patent 7,974,195.

As with TCP Vegas, the sender estimates RTTnoLoad as RTTmin. At regular short fixed intervals (eg 20ms)
cwnd is updated via the following weighted average:

cwndnew = (1-𝛾)ˆcwnd + 𝛾ˆ((RTTnoLoad/RTT)ˆcwnd + 𝛼)

where 𝛾 is a constant between 0 and 1 determining how “volatile” the cwnd update is (𝛾»1 is the most
volatile) and 𝛼 is a fixed constant, which, as we will verify shortly, represents the number of packets the

15.7 FAST TCP 493

https://patents.google.com/patent/US7974195B2/en

An Introduction to Computer Networks, Release 1.9.21

sender tries to keep in the bottleneck queue, as in TCP Vegas. Note that the cwnd update frequency is not
tied to the RTT.

If RTT is constant for multiple consecutive update intervals, and is larger than RTTnoLoad, the above will
converge to a constant cwnd, in which case we can solve for it. Convergence implies cwndnew = cwnd =
((RTTnoLoad/RTT)ˆcwnd + 𝛼), and from there we get cwndˆ(RTT–RTTnoLoad)/RTT = 𝛼. As we saw in
6.3.2 RTT Calculations, cwnd/RTT is the throughput, and so 𝛼 = throughput ˆ (RTT–RTTnoLoad) is then
the number of packets in the queue. In other words, FAST TCP, when it reaches a steady state, leaves 𝛼
packets in the queue. As long as this is the case, the queue will not overflow (assuming 𝛼 is less than the
queue capacity).

Whenever the queue is not full, though, we have RTT = RTTnoLoad, in which case FAST TCP’s cwnd-update
strategy reduces to cwndnew = cwnd + 𝛾ˆ𝛼. For 𝛾=0.5 and 𝛼=10, this increments cwnd by 5. Furthermore,
FAST TCP performs this increment at a specific rate independent of the RTT, eg every 20ms; for long-haul
links this is much less than the RTT. FAST TCP will, in other words, increase cwnd very aggressively until
the point when queuing delays occur and RTT begins to increase.

When FAST TCP is competing with TCP Reno, it does not directly address the queue-utilization competition
problem experienced by TCP Vegas. FAST TCP will try to limit its queue utilization to 𝛼; TCP Reno,
however, will continue to increase its cwnd until the queue is full. Once the queue begins to fill, TCP Reno
will pull ahead of FAST TCP just as it did with TCP Vegas. However, FAST TCP does not reduce its cwnd
in the face of TCP Reno competition as quickly as TCP Vegas.

Additionally, FAST TCP can often offset this Reno-competition problem in other ways as well. First, the
value of 𝛼 can be increased from the value of around 4 packets originally proposed for TCP Vegas; in
[TWHL05] the value 𝛼=30 is suggested. Second, for high bandwidthˆdelay products, the queue-filling
phase of a TCP Reno sawtooth (see 13.7 TCP and Bottleneck Link Utilization) becomes relatively smaller.
In the earlier link-unsaturated phase of each sawtooth, TCP Reno increases cwnd by 1 each RTT. As noted
above, however, FAST TCP is allowed to increase cwnd much more rapidly in this earlier phase, and so
FAST TCP can get substantially ahead of TCP Reno. It may fall back somewhat during the queue-filling
phase, but overall the FAST and Reno flows may compete reasonably fairly.

494 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

Network ceiling

 Queue
capacity

Transit

�

 FAST TCP cwnd curve (blue)
superimposed on TCP Reno sawtooth

The diagram above illustrates a FAST TCP graph of cwnd versus time, in blue; it is superimposed over one
sawtooth of TCP Reno with the same network ceiling. Note that cwnd rises rapidly when it is below the
path transit capacity, and then levels off sharply.

15.8 TCP Westwood

TCP Westwood represents an attempt to use the RTT-monitoring strategies of TCP Vegas to address the
high-bandwidth problem; recall that the issue there is to distinguish between congestive and non-congestive
losses. TCP Westwood can also be viewed as a refinement of TCP Reno’s cwnd=cwnd/2 strategy, which is
a greater drop than necessary if the queue capacity at the bottleneck router is less than the transit capacity.
It remains a form of loss-based congestion control.

As in TCP Vegas, the sender keeps a continuous estimate of bandwidth, BWE, and estimates RTTnoLoad by
RTTmin. The minimum window size to keep the bottleneck link busy is, again as in TCP Vegas, BWE ˆ
RTTnoLoad. In TCP Vegas, BWE was calculated as cwnd/RTT; we will continue to use this for the time
being but in fact TCP Westwood has used a wide variety of other algorithms, some of which are discussed
in the following subsection, to infer the available average bandwidth from the returning ACKs.

The core TCP Westwood innovation is to, on loss, reduce cwnd as follows:

cwnd = max(cwnd/2, BWEˆRTTnoLoad) if cwnd > BWEˆRTTnoLoad

no change, if cwnd ď BWEˆRTTnoLoad

The product BWEˆRTTnoLoad represents what the sender believes is its current share of the “transit ca-
pacity” of the path. This product represents how many packets can be in transit (rather than in queues) at
the current bandwidth BWE. The RTTnoLoad estimate as RTTmin is relatively constant, but BWE may be

15.8 TCP Westwood 495

An Introduction to Computer Networks, Release 1.9.21

markedly reduced in the presence of competing traffic. A TCP Westwood sender never drops cwnd below
what it believes to be the current transit capacity for the path.

Consider again the classic TCP Reno sawtooth behavior:

• cwnd alternates between cwndmin and cwndmax = 2ˆcwndmin.

• cwndmax » transit_capacity + queue_capacity (or at least the sender’s share of these)

As we saw in 13.7 TCP and Bottleneck Link Utilization, if transit_capacity < cwndmin, then Reno does
a reasonably good job keeping the bottleneck link saturated. However, if transit_capacity > cwndmin, then
when Reno drops to cwndmin, the bottleneck link is not saturated until cwnd climbs to transit_capacity. For
high-speed networks, this latter case is the more likely one.

Westwood, on the other hand, would in that situation reduce cwnd only to transit_capacity, a smaller reduc-
tion. Thus TCP Westwood potentially better handles a wide range of router queue capacities. For bottleneck
routers where the queue capacity is small compared to the transit capacity, TCP Westwood would in theory
have a higher, finer-pitched sawtooth than TCP Reno: the teeth would oscillate between the network ceiling
(= queue+transit) and the transit_capacity, versus Reno’s oscillation between the network ceiling and half
the ceiling.

In the event of a non-congestive (noise-related) packet loss, if it happens that cwnd is less than tran-
sit_capacity then TCP Westwood does not reduce the window size at all. That is, non-congestive losses
with cwnd < transit_capacity have no effect. When cwnd > transit_capacity, losses reduce cwnd only to
transit_capacity, and thus the link stays saturated. This can be useful in lossy wireless environments; see
[MCGSW01].

In the large-cwnd, high-bandwidth case, non-congestive packet losses can easily lower the TCP Reno cwnd
to well below what is necessary to keep the bottleneck link saturated. In TCP Westwood, on the other hand,
the average cwnd may be lower than it would be without the non-congestive losses, but it will be high
enough to keep the bottleneck link saturated.

TCP Westwood uses BWEˆRTTnoLoad as a floor for reducing cwnd. TCP Vegas shoots to have the actual
cwnd be just a few packets above this.

TCP Westwood is not any more aggressive than TCP Reno at increasing cwnd in no-loss situations. So
while it handles the non-congestive-loss part of the high-bandwidth TCP problem very well, it does not
particularly improve the ability of a sender to take advantage of a sudden large rise in the network ceiling.

TCP Westwood is also potentially very effective at addressing the lossy-link problem, as most non-
congestive losses would result in no change to cwnd.

15.8.1 ACK Compression and Westwood+

So far, we have been assuming that ACKs never encounter queuing delays. They in fact will not, if they
are traveling in the reverse direction from all data packets. But while this scenario covers any single-sender
model and also systems of two or more competing senders, real networks have more complicated traffic
patterns, and returning ACKs from an AÝÑB data flow can indeed experience queuing delays if there is
third-party traffic along some link in the BÝÑA path.

Delay in the delivery of ACKs, leading to clustering of their arrival, is known as ACK compression; see
[ZSC91] and [JM92] for examples. ACK compression causes two problems. First, arriving clusters of ACKs

496 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

trigger corresponding bursts of data transmissions in sliding-windows senders; the end result is an uneven
data-transmission rate. Normally the bottleneck-router queue can absorb an occasional burst; however, if
the queue is nearly full such bursts can lead to premature or otherwise unexpected losses.

The second problem with late-arriving ACKs is that they can lead to inaccurate or fluctuating measurements
of bandwidth, upon which both TCP Vegas and TCP Westwood depend. For example, if bandwidth is
estimated as cwnd/RTT, late-arriving ACKs can lead to inaccurate calculation of RTT. The original TCP
Westwood strategy was to estimate bandwidth from the spacing between consecutive ACKs, much as is
done with the packet-pairs technique (14.2.6 Packet Pairs) but smoothed with a suitable running average.
This strategy turned out to be particularly vulnerable to ACK-compression errors.

For TCP Vegas, ACK compression means that occasionally the sender’s cwnd may fail to be decremented
by 1; this does not appear to be a significant impact, perhaps because cwnd is changed by at most ˘1 each
RTT. For Westwood, however, if ACK compression happens to be occurring at the instant of a packet loss,
then a resultant transient overestimation of BWE may mean that the new post-loss cwnd is too large; at a
point when cwnd was supposed to fall to the transit capacity, it may fail to do so. This means that the sender
has essentially taken a congestion loss to be non-congestive, and ignored it. The influence of this ignored
loss will persist – through the much-too-high value of cwnd – until the following loss event.

To fix these problems, TCP Westwood has been amended to Westwood+, by increasing the time interval over
which bandwidth measurements are made and by inclusion of an averaging mechanism in the calculation of
BWE. Too much smoothing, however, will lead to an inaccurate BWE just as surely as too little.

Suitable smoothing mechanisms are given in [FGMPC02] and [GM03]; the latter paper in particular exam-
ines several smoothing algorithms in terms of their resistance to aliasing effects: the tendency for intermit-
tent measurement of a periodic signal (the returning ACKs) to lead to much greater inaccuracy than might
initially be expected. One smoothing filter suggested by [GM03] is to measure BWE only over entire RTTs,
and then to keep a cumulative running average as follows, where BWMk is the measured bandwidth over
the kth RTT:

BWEk = 𝛼ˆBWEk-1 + (1–𝛼)ˆBWMk

A suggested value of 𝛼 is 0.9. For Westwood+ simulations, see [GM04].

15.9 TCP Illinois

The general idea behind TCP Illinois, described in [LBS06], is to use the usual AIMD(𝛼,𝛽) strategy but to
have 𝛼 = 𝛼(RTT) be a decreasing function of the current RTT, rather than a constant. When the queue is
empty and RTT is equal to RTTnoLoad, then 𝛼 will be large, and cwnd will increase rapidly. Once RTT starts
to increase, however, 𝛼 will decrease rapidly, and the cwnd growth will level off. This leads to the same
kind of concave cwnd graph as we saw above in FAST TCP; a consequence of this is that for most of the
time between consecutive loss events cwnd is large enough to keep the bottleneck link close to saturated,
and so to keep throughput high.

The actual 𝛼() function is not of RTT, but rather of delay, defined to be RTT – RTTnoLoad. As with TCP
Vegas, RTTnoLoad is estimated by RTTmin. As a connection progresses, the sender maintains continually
updated values not only for RTTmin but also for RTTmax. The sender then sets delaymax to be RTTmax –
RTTmin.

We are now ready to define 𝛼(delay). We first specify the highest value of 𝛼, 𝛼max, and the lowest, 𝛼min. In

15.9 TCP Illinois 497

An Introduction to Computer Networks, Release 1.9.21

[LBS06] these are 10.0 and 0.1 respectively; in the Linux 3.5 kernel they are 10.0 and 0.3. We also define
delaythresh to be 0.01ˆdelaymax (the 0.01 is another tunable parameter). We then define 𝛼(delay) as follows

𝛼(delay) = 𝛼max if delay ď delaythresh

𝛼(delay) = k1/(delay+k2) if delaythresh ď delay ď delaymax

where k1 and k2 are chosen so that, for the lower formula, 𝛼(delaythresh) = 𝛼max and 𝛼(delaymax) = 𝛼min. In
case there is a sudden spike in delay, delaymax is updated before the above is evaluated, so we always have
delay ď delaymax. Here is a graph:

�
max

�
min

delay
thresh

� = �(delay)
delay

max

Whenever RTT = RTTnoLoad, delay=0 and so 𝛼(delay) = 𝛼max. However, as soon as queuing delay just
barely starts to begin, we will have delay > delaythresh and so 𝛼(delay) begins to fall – rather precipitously
– to 𝛼min. The value of 𝛼(delay) is always positive, though, so cwnd will continue to increase (unlike TCP
Vegas) until a congestive loss eventually occurs. However, at that point the change in cwnd is very small,
which minimizes the probability that multiple packets will be lost.

Note that, as with FAST TCP, the increase in delay is used to trigger the reduction in 𝛼.

TCP Illinois also supports having 𝛽 be a decreasing function of delay, so that 𝛽(small_delay) might be
0.2 while 𝛽(larger_delay) might match TCP Reno’s 0.5. However, the authors of [LBS06] explain that
“the adaptation of 𝛽 as a function of average queuing delay is only relevant in networks where there are
non-congestion-related losses, such as wireless networks or extremely high speed networks”.

15.10 Compound TCP

Compound TCP, or CTCP, is Microsoft’s entry into the advanced-TCP field, although it is now available for
Linux as well; see [TSZS06]. The idea behind Compound TCP is to add a delay-based component to TCP
Reno. To this end, CTCP supplements TCP Reno’s cwnd with a delay-based contribution to the window
size known as dwnd; the total window size is then

498 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

winsize = cwnd + dwnd

(As usual, winsize is also not allowed to exceed the receiver’s advertised window size.) The per-RTT
increment of cwnd is now 1/winsize (though note that dwnd has a separate per-RTT increment).

As in TCP Vegas, CTCP maintains RTTmin as a stand-in for RTTnoLoad, and also maintains a bandwidth
estimate BWE = winsize/RTTactual. These allow estimation of the current number of packets in the queue,
denoted diff in [TSZS06], as diff = cwnd ˆ (1 – RTTnoLoad/RTTactual).

When diff is less than 𝛾 packets, where the parameter 𝛾 is configurable but 𝛾=30 is a good starting point,
CTCP increases winsize (per RTT) according to the rule

winsize += 𝛼ˆwinsizek

where the exponent k is chosen to be 0.8. (In [TSZS06] this increase is achieved by having cwnd be
incremented by 1, and dwnd by 𝛼ˆwinsizek – 1.) This amounts to a fairly aggressive increase; for TCP
Reno we have k=0. The choice of k=0.8 is intended to make CTCP competitive with Highspeed TCP; we
will return to the justification of this below. We will also choose 𝛼=1/8, which we will take as given. The
value 𝛾=30 here plays very roughly a similar role as Fast TCP’s 𝛼, also 30, in that both represent a threshold
for queue utilization.

When CTCP encounters a loss, we set

winsize = winsizeˆ(1–𝛽)

While 𝛽 is potentially configurable, typically we will have the usual 𝛽=1/2.

Finally we have the case where diff > 𝛾; that is, the queue has grown “significantly”. If dwnd is also
positive, it is decremented. The variable cwnd continues to increase, but cwnd and dwnd will cancel each
other out over the short term, leading to a roughly constant value for winsize. When dwnd drops to 0,
however, this cancellation ends, and TCP Reno’s cwnd += 1 per RTT takes over; dwnd has no more effect
until after the next packet loss. Considering all these cases, a rough graph of the growth of CTCP’s winsize
is the following:

diff < �

winsize

 diff � �
dwnd > 0

 diff � �
dwnd = 0

Compound TCP

We next derive k=0.8 as the value that leads to fair competition with Highspeed TCP. To do this we need
a modest bit of calculus; the derivation can be skipped if preferred. We start with a hypothetical TCP

15.10 Compound TCP 499

An Introduction to Computer Networks, Release 1.9.21

adjusting cwnd according to the rule cwnd += 𝛼 ˆ cwnd0.8, per RTT, and show this TCP does indeed
compete fairly with Highspeed TCP. If we measure time in RTTs, and denote cwnd by c = c(t), and extend
c(t) to a continuous function of t, this increment rule becomes dc/dt = 𝛼ˆc0.8. Taking reciprocals, we get
dt/dc = (1/𝛼) ˆ c–0.8. We can now integrate both sides, which yields t = k1ˆc0.2 (ignoring the constant
of integration), or c = k2ˆt5. Integrating again, we get the number of packets in one tooth (the area) to
be proportional to T6, where T is the time at the right edge of the tooth. (We are inappropriately ignoring
the left edge of the tooth, but by the argument of exercise 16.7 in 14.13 Exercises this turns out not to
matter.) This area is the reciprocal of the loss rate p. Solving for T, we get T proportional to (1/p)1/6. As the
average cwnd is proportional to T5 (the area divided by T), by substitution we can conclude that cwnd is
proportional to p–5/6 = p–0.833 (versus the original exponent in 15.5 Highspeed TCP of –0.835).

Calculating winsize0.8 is hard to do rapidly, so in practice the exponent 0.75 is used. With that value the
exponentiation can be done with two applications of a fast square-root algorithm.

CTCP turns out to compete reasonably fairly one-on-one with Highspeed TCP, by virtue of the choice of
k=0.8. However, when competing with a set of TCP Reno connections, CTCP leaves the Reno connections
with nearly the same bandwidth they would have had if they were competing with one more TCP Reno
connection instead. That is, CTCP resists “stealing” bandwidth. CTCP does, however, make effective use
of the bandwidth that TCP Reno leaves unclaimed due to the high-bandwidth TCP problem.

15.11 TCP Veno

TCP Veno ([FL03]) is a synthesis of TCP Vegas and TCP Reno, which attempts to use the RTT-monitoring
ideas of TCP Vegas while at the same time remaining about as “aggressive” as TCP Reno in using queue
capacity. TCP Veno has generally been presented as an option to address TCP’s lossy-link problem, rather
than the high-bandwidth problem per se.

A TCP Veno sender estimates the number N of packets likely in the bottleneck queue as Nqueue = cwnd -
BWEˆRTTnoLoad, like TCP Vegas. TCP Veno then modifies the TCP Reno congestion-avoidance rule as
follows, where the parameter 𝛽, representing the queue-utilization value at which TCP Veno slows down,
might be around 5.

if Nqueue<𝛽, cwnd = cwnd + 1 each RTT
if Nqueueě𝛽, cwnd = cwnd + 0.5 each RTT

The above strategy makes cwnd growth less aggressive once link saturation is reached, but does continue
to increase cwnd (half as fast as TCP Reno) until the queue is full and congestive losses occur.

When a packet loss does occur, TCP Veno uses its current value of Nqueue to attempt to distinguish between
non-congestive and congestive loss, as follows:

if Nqueue<𝛽, the loss is probably not due to congestion; set cwnd = (4/5)ˆcwnd
if Nqueueě𝛽, the loss probably is due to congestion; set cwnd = (1/2)ˆcwnd as usual

The idea here is that most router queues will have a total capacity much larger than 𝛽, so a loss with fewer
than 𝛽 likely does not represent a queue overflow. Note that, by comparison, TCP Westwood leaves cwnd
unchanged if it thinks the loss is not due to congestion, and its threshold for making that determination is
Nqueue=0.

If TCP Veno encounters a series of non-congestive losses, the above rules make it behave like AIMD(1,0.8).

500 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

Per the analysis in 14.7 AIMD Revisited, this is equivalent to AIMD(2,0.5); this means TCP Veno will
be about twice as aggressive as TCP Reno in recovering from non-congestive losses. This would provide
a definite improvement in lossy-link situations with modest bandwidthˆdelay products, but may not be
enough to make a major dent in the high-bandwidth problem.

15.12 TCP Hybla

TCP Hybla ([CF04]) has one very specific focus: to address the TCP satellite problem (3.9.2 Satellite
Internet) of very long RTTs. TCP Hybla selects a more-or-less arbitrary “reference” RTT, called RTT0, and
attempts to scale TCP Reno so as to behave like a TCP Reno connection with an RTT of RTT0. In the paper
[CF04] the authors suggest RTT0 = 25ms.

Suppose a TCP Reno connection has, at a loss event at time t0, reduced cwnd to cwndmin. TCP Reno will
then increment cwnd by 1 for each RTT, until the next loss event. This Reno behavior can be equivalently
expressed in terms of the current time t as follows:

cwnd = (t–t0)/RTT + cwndmin

What TCP Hybla does is to use the above formula after replacing the actual RTT (or RTTnoLoad) with RTT0.
Equivalently, TCP Hybla defines the ratio of the two RTTs as 𝜚 = RTT/RTT0, and then after each windowful
(each time interval of length RTT) increments cwnd by 𝜚2 instead of by 1. In the event that RTT < RTT0, 𝜚
is set to 1, so that short-RTT connections are not penalized.

Because cwnd now increases each RTT by 𝜚2, which can be relatively large, there is a good chance that
when the network ceiling is reached there will be a burst of losses of size ~𝜚2. Therefore, TCP Hybla
strongly recommends that the receiving end support SACK TCP, so as to allow faster recovery from multiple
packet losses. Another recommended feature is the use of TCP Timestamps; this is a standard TCP option
that allows the sender to include its own timestamp in each data packet. The receiver is to echo back the
timestamp in the corresponding ACK, thus allowing more accurate measurement by the receiver of the actual
RTT.

Finally, to further avoid having these relatively large increments to cwnd result in multiple packet losses,
TCP Hybla recommends some form of pacing to smooth out the actual transmission times. Rather than
sending out four packets upon receipt of an ACK, for example, we might estimate the time T to the next
transmission batch (eg when the next ACK arrives) and send the packets at intervals of T/4. At the time
TCP Hybla was developed, pacing was poorly supported, but see 15.16 TCP BBR below, where pacing is
essential.

TCP Hybla applies a similar 𝜚-fold scaling mechanism to threshold slow start, when a value for ssthresh
is known. But the initial unbounded slow start is much more difficult to scale. Scaling at that point would
mean repeatedly doubling cwnd and sending out flights of packets, before any ACKs have been received;
this would likely soon lead to congestive collapse.

15.13 DCTCP

Unlike the other TCP flavors in this chapter, Data Center TCP (DCTCP) is intended for use only by connec-
tions starting and ending within the same datacenter. DCTCP is not meant to be used on the Internet at large,

15.12 TCP Hybla 501

An Introduction to Computer Networks, Release 1.9.21

as it makes no pretense of competing fairly with TCP Reno. DCTCP was first described in [AGMPS10],
and is now also specified in RFC 8257.

A datacenter is a highly specialized networking environment. Round-trip times on the Internet at large might
be 50-100 ms, but round-trip times in a datacenter are usually well under 1 ms. Communicating nodes in a
datacenter are under common management, and so there is no “chicken and egg” problem regarding software
installation: if a new TCP feature is desired, it can be made available everywhere. Finally, cost-saving is
an issue: datacenters have lots of switches and routers, and cheaper models generally have smaller queue
capacities. Even with a 1-ms RTT, though, a 10 Gbps connection can have a bandwidthˆdelay product of
1.25 MB (800 packets); we would like to have queues be much smaller than this.

Recall that TCP Reno can be categorized as AIMD(1,0.5) (14.7 AIMD Revisited). The basic idea of DCTCP
is to use AIMD(1,𝛽) for values of 𝛽 much smaller than 0.5. As the window-size reduction on packet loss is
1–𝛽, this means that cwnd is relatively constant. If the transit capacity of a path is M, then the queue space
needed to keep the minimum cwnd at M (and thus to keep the bottleneck link 100% utilized) is Mˆ𝛽/(1-𝛽)
»Mˆ𝛽 if 𝛽»0.

This small 𝛽 comes at the price of out-competing TCP Reno by a large margin. By Exercise 8.5 of 14.13 Ex-
ercises, AIMD(1,𝛽) is equivalent in terms of fairness to AIMD(𝛼,0.5) for 𝛼 = (2–𝛽)/3𝛽, and by the argument
in 14.3.1 Example 2: Faster additive increase an AIMD(𝛼,0.5) connection out-competes TCP Reno by a
factor of 𝛼. For 𝛽 = 1/8 we have 𝛼 = 5. For connections within a datacenter we can achieve fairness by im-
plementing DCTCP everywhere, but introduction of DCTCP in the outside world DCTCP would be highly
uncooperative.

The next step is to specify 𝛽. For the moment, we will make a simplifying assumption that there is only
one connection, and no other traffic; in this case, the queue utilization increases by 1 for each RTT (once
the queue becomes nonempty). We now determine 𝛽 dynamically: we simply count the number D of RTTs
before the queue is sufficiently full, and let 𝛽 = 1/2D. (In [AGMPS10] and RFC 8257, 1/D is denoted by 𝛼,
making 𝛽 = 𝛼/2, but to avoid confusion with the 𝛼 in AIMD(𝛼,𝛽) we will write out the DCTCP 𝛼 as alpha
when we return to it below.)

D RTTs

Wmin Wmax

D

DCTCP tooth

We can now relate D to cwnd and to the amplitude of cwnd variation. Let Wmax denote the maximum
cwnd, and Wmin the minimum. Making the usual large-window simplifying assumptions, we have

Wmin + D = Wmax, because cwnd increases by 1 each RTT
Wmin = Wmax ˆ (1–1/2D)

502 15 Newer TCP Implementations

https://tools.ietf.org/html/rfc8257.html
https://tools.ietf.org/html/rfc8257.html

An Introduction to Computer Networks, Release 1.9.21

Eliminating Wmin and solving, we get Wmax = 2D2, or D =?(Wmax/2). Note that D is also the amplitude of
the queue variation, assuming we keep the bottleneck link saturated, and so is the absolute minimum queue
capacity needed. If the goal is keeping the queue small, this compares quite favorably to TCP Reno, in
which D = Wmin = Wmax/2.

Now let K represent the maximum queue capacity; the next step is to relate K and D. We need to ensure that
we can avoid having K be much larger than D. We have Wmax = TC + K, where TC is the transit capacity of
the link, that is, bandwidthˆdelay. We can express the minimum queue utilization as Qmin = K – D = K –
?((TC+K)/2. If we choose K = TC, which is necessary with TCP Reno to avoid underutilized bandwidth,
we certainly will have K much larger than D. However, to ensure Qmin ě 0 we need K = ?((TC+K)/2, or
K2 = TC/2 + K/2, which, because TC is relatively large (perhaps 800 packets), simply requires K just a bit
larger than ?(TC/2). That is, K need not be much larger than D. At this point, we can afford to be more
concerned with K’s being too small, and thereby allowing intervals where the bottleneck link is idle.

Empirically, a workable value for the queue capacity K is around 65 for 10 Gbps Ethernet, which is moder-
ately above ?(TC/2) but still very affordable. It is large enough that link utilization remains near 100%.

We now need to address the simplifying assumption that there was only one connection. First, there might
be N connections, quite possibly synchronized. This means that the queue variation is NˆD. It also means
D will be somewhat smaller, though, as the total cwnd will be increasing N times faster.

A more serious issue is that there is also a lot of other traffic in a datacenter, so much so that queue utilization
is dominated by a more-or-less random component. Instead of measuring when the queue utilization reaches
a set level, we must measure when the average utilization reaches that level. DCTCP achieves this with a
clever application of ECN (14.8.3 Explicit Congestion Notification (ECN)). The use of ECN to detect queue
fullness, rather than packet drops, has the added advantage of avoiding packet losses and timeouts. Within a
datacenter, DCTCP may very well rely on switch-based ECN rather than router-based.

In normal ECN, once the receiver has seen a packet with the CE bit, it is supposed to mark ECE (CE echo)
in all returning ACKs until the sender acknowledges having responded to the congestion through the use of
the CWR bit. DCTCP modifies this by having the receiver mark only ACKs to packets that arrive with CE
set. This allows the sender to gauge the severity of congestion: if every other data packet has its CE bit set,
then half the returning ACKs will be marked. (Delayed ACKs may complicate this, as the two data packets
being acknowledged may have different CE marks, but mostly this is both infrequent and not serious, and in
any event DCTCP recommends sending two separate ACKs with different ECE marks in such a case.)

Classically, having every other data packet marked should never happen: all data packets arriving at the
router before the queue capacity K is reached should be unmarked, and all packets arriving after K is reached
should be marked. But due to the random queue fluctuations described in the previous paragraph, this all-
unmarked-then-all-marked pattern may be riddled with exceptions. What the DCTCP sender does is to
measure the average marking rate, using an averaging interval at least as long as one “tooth”. If there are
D–1 unmarked RTTs and 1 marked RTT, then the average marking rate should be 1/D.

This is exactly what DCTCP looks for: once a significant number of marked ACKs arrives, indicating that
congestion is experienced, the DCTCP sender looks at its running average of the marked fraction, and takes
that to be 1/D. (More precisely, DCTCP denotes by alpha the marked fraction, and sets D = 1/alpha, and
then 𝛽 = 1/2D = alpha/2.) DCTCP then reduces its cwnd by 1–𝛽 as above. The actual algorithm does not
involve the queue capacity K, as a TCP sender is unlikely to know K.

While it is not part of DCTCP proper, another common configuration choice for intra-data-center connec-
tions is to reduce the minimum TCP retransmission timeout (RTO). The RTO value is computed adaptively,

15.13 DCTCP 503

An Introduction to Computer Networks, Release 1.9.21

as in 12.19 TCP Timeout and Retransmission, but is subject to a minimum. As late as 2011, RFC 6298
recommended (but did not require) a minimum RTO of 1.0 seconds, which is three orders of magnitude too
large for a datacenter.

There is no global Linux minimum-RTO configuration setting, but this can be altered on a per-destination
basis using the ip route command:

ip route change to 10.1.2.0/24 via 10.0.2.1 dev eth0 rto_min 20ms

The actual RTO values of current TCP connections can be viewed using the Linux command ss --info.
On recent versions of Windows, a global minimum RTO can be set, for the custom template, using netsh
interface tcp set supplemental template=custom minRto=20

15.13.1 TCP Incast

There is one particular congestion issue, mostly but not entirely exclusive to datacenters, that DCTCP does
not handle directly: the TCP incast problem. Imagine one node sending out multiple simultaneous queries
to “helper” nodes, and expecting more-or-less-simultaneous responses. One example might be a request for
a large data block that has been distributed over multiple file-server systems; another might be a MapReduce
request for calculation results. Either way, all the respondents may reply at about the same time, and all the
responses may arrive together at the router and lead to queue overflow and packet loss. DCTCP (and any
other TCP) cannot be of much help if each individual connection may be sending only one packet. This is
one reason for having a slightly larger queue capacity than the DCTCP analysis alone might suggest.

The TCP incast problem is made much worse when (as is often the case) the helper-node requests must be
executed serially; we saw this issue before with RPC in 11.5.3 Serial Execution. Sometimes serialization
requirements can be eliminated through careful design; sometimes they cannot.

15.14 H-TCP

H-TCP, or TCP-Hamilton, is described in [LSL05]. Like Highspeed-TCP it primarily allows for faster
growth of cwnd; unlike Highspeed-TCP, the cwnd increment is determined not by the size of cwnd but
by the elapsed time since the previous loss event. The threshold for accelerated cwnd growth is generally
set to be 1.0 seconds after the most recent loss event. Using an RTT of 50 ms, that amounts to 20 RTTs,
suggesting that when cwndmin is less than 20 then H-TCP behaves very much like TCP Reno.

The specific H-TCP acceleration rule first defines a time threshold tL. If t is the elapsed time in seconds
since the previous loss event, then for tďtL the per-RTT window-increment 𝛼 is 1. However, for t>tL we
define

𝛼(t) = 1 + 10(t–tL) + (t–tL)2/4

We then increment cwnd by 𝛼(t) after each RTT, or, equivalently, by 𝛼(t)/cwnd after each received ACK.

At t=tL+1 seconds (nominally 2 seconds), 𝛼 is 12. The quadratic term dominates the linear term when t–tL
> 40. If RTT = 50 ms, that is 800 RTTs.

Even if cwnd is very large, growth is at the same rate as for TCP Reno until t>tL; one consequence of this
is that, at least in the first second after a loss event, H-TCP competes fairly with TCP Reno, in the sense that

504 15 Newer TCP Implementations

https://tools.ietf.org/html/rfc6298.html
https://en.wikipedia.org/wiki/MapReduce

An Introduction to Computer Networks, Release 1.9.21

both increase cwnd at the same absolute rate. H-TCP starts “from scratch” after each packet loss, and does
not re-enter its “high-speed” mode, even if cwnd is large, until after time tL.

A full H-TCP implementation also adjusts the multiplicative factor 𝛽 as follows (the paper [LSL05] uses
𝛽 to represent what we denote by 1–𝛽). The RTT is monitored, as with TCP Vegas. However, the RTT
increase is not used for per-packet or per-RTT adjustments; instead, these measurements are used after each
loss event to update 𝛽 so as to have

1–𝛽 = RTTmin/RTTmax

The value 1–𝛽 is capped at a maximum of 0.8, and at a minimum of 0.5. To see where the ratio above comes
from, first note that RTTmin is the usual stand-in for RTTnoLoad, and RTTmax is, of course, the RTT when the
bottleneck queue is full. Therefore, by the reasoning in 6.3.2 RTT Calculations, equation 5, 1–𝛽 is the ratio
transit_capacity / (transit_capacity + queue_capacity). At a congestion event involving a single uncontested
flow we have cwnd = transit_capacity + queue_capacity, and so after reducing cwnd to (1–𝛽)ˆcwnd, we
have cwndnew = transit_capacity, and hence (as in 13.7 TCP and Bottleneck Link Utilization) the bottleneck
link will remain 100% utilized after a loss. The cap on 1–𝛽 of 0.8 means that if the queue capacity is smaller
than a quarter of the transit capacity then the bottleneck link will experience some idle moments.

When 𝛽 is changed, H-TCP also adjusts 𝛼 to 𝛼1 = 2𝛽𝛼(t) so as to improve fairness with other H-TCP
connections with different current values of 𝛽.

15.15 TCP CUBIC

TCP Cubic attempts, like Highspeed TCP, to solve the problem of efficient TCP transport when
bandwidthˆdelay is large. TCP Cubic allows very fast window expansion; however, it also makes attempts
to slow the growth of cwnd sharply as cwnd approaches the current network ceiling, and to treat other TCP
connections fairly. Part of TCP Cubic’s strategy to achieve this is for the window-growth function to slow
down (become concave) as the previous network ceiling is approached, and then to increase rapidly again
(become convex) if this ceiling is surpassed without losses. This concave-then-convex behavior mimics the
graph of the cubic polynomial cwnd = t3, hence the name (TCP Cubic also improves an earlier TCP version
known as TCP BIC).

a

b

y = (x�a)3 + b

As mentioned above, TCP Cubic is currently (2013) the default Linux congestion-control implementation.

15.15 TCP CUBIC 505

An Introduction to Computer Networks, Release 1.9.21

TCP Cubic is documented in [HRX08]. TCP Cubic is not described in an RFC, but there is an Internet Draft
http://tools.ietf.org/id/draft-rhee-tcpm-cubic-02.txt.

TCP Cubic has a number of interrelated features, in an attempt to address several TCP issues:

• Reduction in RTT bias

• TCP Friendliness when most appropriate

• Rapid recovery of cwnd following its decrease due to a loss event, maximizing throughput

• Optimization for an unchanged network ceiling (corresponding to cwndmax)

• Rapid expansion of cwnd when a raised network ceiling is detected

The eponymous cubic polynomial y=x3, appropriately shifted and scaled, is used to determine changes in
cwnd. No special algebraic properties of this polynomial are used; the point is that the curve, while steadily
increasing, is first concave and then convex; the authors of [HRX08] write “[t]he choice for a cubic function
is incidental and out of convenience”. This y=x3 polynomial has an inflection point at x=0 where the tangent
line is horizontal; this is the point where the graph changes from concave to convex.

We start with the basic outline of TCP Cubic and then consider some of the bells and whistles. We assume
a loss has just occurred, and let Wmax denote the value of cwnd at the point when the loss was discovered.
TCP Cubic then sets cwnd to 0.8ˆWmax; that is, TCP Cubic uses 𝛽 = 0.2. The corresponding 𝛼 for TCP-
Friendly AIMD(𝛼,𝛽) would be 𝛼=1/3, but TCP Cubic uses this 𝛼 only in its TCP-Friendly adjustment,
below.

We now define a cubic polynomial W(t), a shifted and scaled version of w=t3. The parameter t represents
the elapsed time since the most recent loss, in seconds. At time t>0 we set cwnd = W(t). The polynomial
W(t), and thus the cwnd rate of increase, as in TCP Hybla, is no longer tied to the connection’s RTT; this is
done to reduce if not eliminate the RTT bias that is so deeply ingrained in TCP Reno.

We want the function W(t) to pass through the point representing the cwnd just after the loss, that is, xt,Wy
= x0,0.8ˆWmaxy. We also want the inflection point to lie on the horizontal line y=Wmax. To fully determine
the curve, it is at this point sufficient to specify the value of t at this inflection point; that is, how far
horizontally W(t) must be stretched. This horizontal distance from t=0 to the inflection point is represented
by the constant K in the following equation; W(t) returns to its pre-loss value Wmax at t=K. C is a second
constant.

W(t) = Cˆ(t–K)3 + Wmax

It suffices algebraically to specify either C or K; the two constants are related by the equation obtained by
plugging in t=0. K changes with each loss event, but it turns out that the value of C can be constant, not only
for any one connection but for all TCP Cubic connections. TCP Cubic specifies for C the ad hoc value 0.4;
we can then set t=0 and, with a bit of algebra, solve to obtain

K = (Wmax/2)1/3 seconds

If Wmax = 250, for example, K=5; if RTT = 100 ms, this is 50 RTTs.

When each ACK arrives, TCP Cubic records the arrival time t, calculates W(t), and sets cwnd = W(t). At
the next packet loss the parameters of W(t) are updated.

If the network ceiling does not change, the next packet loss will occur when cwnd again reaches the same
Wmax; that is, at time t=K after the previous loss. As t approaches K and the value of cwnd approaches
Wmax, the curve W(t) flattens out, so cwnd increases slowly.

506 15 Newer TCP Implementations

http://tools.ietf.org/id/draft-rhee-tcpm-cubic-02.txt

An Introduction to Computer Networks, Release 1.9.21

This concavity of the cubic curve, increasing rapidly but flattening near Wmax, achieves two things. First,
throughput is boosted by keeping cwnd close to the available path transit capacity. In 13.7 TCP and
Bottleneck Link Utilization we argued that if the path transit capacity is large compared to the bottleneck
queue capacity (and this is the case for which TCP Cubic was designed), then TCP Reno averages 75%
utilization of the available bandwidth. The bandwidth utilization increases linearly from 50% just after a
loss event to 100% just before the next loss. In TCP Cubic, the initial rapid rise in cwnd following a loss
means that the average will be much closer to 100%. Another important advantage of the flattening is that
when cwnd is finally incremented to the point of loss, it likely is just over the network ceiling; the connection
has an excellent chance that only one or two packets are lost rather than a large burst. This facilitates the
NewReno Fast Recovery algorithm, which TCP Cubic still uses if the receiver does not support SACK TCP.

Once t>K, W(t) becomes convex, and in fact begins to increase rapidly. In this region, cwnd > Wmax, and
so the sender knows that the network ceiling has increased since the previous loss. The TCP Cubic strategy
here is to probe aggressively for additional capacity, increasing cwnd very rapidly until the new network
ceiling is encountered. The cubic increase function is in fact quite aggressive when compared to any of the
other TCP variants discussed here, and time will tell what strategy works best. As an example in which
the TCP Cubic approach seems to pay off, let us suppose the current network ceiling is 2,000 packets, and
then (because competing connections have ended) increases to 3,000. TCP Reno would take 1,000 RTTs for
cwnd to reach the new ceiling, starting from 2,000; if one RTT is 50 ms that is 50 seconds. To find the time
t-K that TCP Cubic will need to increase cwnd from 2,000 to 3,000, we solve 3000 = W(t) = Cˆ(t–K)3 +
2000, which works out to t-K » 13.57 seconds (recall 2000 = W(K) here).

The constant C=0.4 is determined empirically. The cubic inflection point occurs at t = K = (Wmaxˆ𝛽/C)1/3.
A larger C reduces the time K between the a loss event and the next inflection point, and thus the time
between consecutive losses. If Wmax = 2000, we get K=10 seconds when 𝛽=0.2 and C=0.4. If the RTT were
50 ms, 10 seconds would be 200 RTTs.

For TCP Reno, on the other hand, the interval between adjacent losses is Wmax/2 RTTs. If we assume a
specific value for the RTT, we can compare the Reno and Cubic time intervals between losses; for an RTT
of 50 ms we get

Wmax Reno Cubic
2000 50 sec 10 sec
250 6.2 sec 5 sec
54 1.35 sec 3 sec

For smaller RTTs, the basic TCP Cubic strategy above runs the risk of being at a competitive disadvantage
compared to TCP Reno. For this reason, TCP Cubic makes a TCP-Friendly adjustment in the window-
size calculation: on each arriving ACK, cwnd is set to the maximum of W(t) and the window size that TCP
Reno would compute. The TCP Reno calculation can be based on an actual count of incoming ACKs, or be
based on the formula (1-𝛽)ˆWmax + 𝛼ˆt/RTT.

Note that this adjustment is only “half-friendly”: it guarantees that TCP Cubic will not choose a window
size smaller than TCP Reno’s, but places no restraints on the choice of a larger window size.

A consequence of the TCP-Friendly adjustment is that, on networks with modest bandwidthˆdelay prod-
ucts, TCP Cubic behaves exactly like TCP Reno.

TCP Cubic also has a provision to detect if a given Wmax is lower than the previous value, suggesting
increasing congestion; in this situation, cwnd is lowered by an additional factor of 1–𝛽/2. This is known as

15.15 TCP CUBIC 507

An Introduction to Computer Networks, Release 1.9.21

fast convergence, and helps TCP Cubic adapt more quickly to reductions in available bandwidth.

The following graph is taken from [RX05], and shows TCP Cubic connections competing with each other
and with TCP Reno.

The diagram shows four connections, all with the same RTT. Two are TCP Cubic and two are TCP Reno.
The red connection, cubic-1, was established and with a maximum cwnd of about 4000 packets when the
other three connections started. Over the course of 200 seconds the two TCP Cubic connections reach a fair
equilibrium; the two TCP Reno connections reach a reasonably fair equilibrium with one another, but it is
much lower than that of the TCP Cubic connections.

On the other hand, here is a graph from [LSM07], showing the result of competition between two flows using
an earlier version of TCP Cubic over a low-speed connection. One connection has an RTT of 160ms and the
other has an RTT a tenth that. The bottleneck bandwidth is 1 Mbit/sec, meaning that the bandwidthˆdelay
product for the 160ms connection is 13-20 packets (depending on the packet size used).

508 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

Note that the longer-RTT connection (the solid line) is almost completely starved, once the shorter-RTT
connection starts up at T=100. This is admittedly an extreme case, and there have been more recent fixes to
TCP Cubic, but it does serve as an example of the need for testing a wide variety of competition scenarios.

15.16 TCP BBR

TCP BBR returns to the central idea of TCP Vegas: to measure the available bandwidth and RTTmin, and
to base the number of in-flight packets on the measured bandwidthˆdelay product. “BBR” here stands for
Bottleneck Bandwidth and RTT; it is described in [CGYJ16] and in an Internet Draft. There are some large
differences from TCP Vegas, however; ultimately, these differences enable TCP BBR to compete reasonably
fairly with TCP Reno. One important difference is that TCP BBR does not engage in the high-precision
monitoring of RTT for increases above RTTnoLoad. As a result, TCP BBR does not fit the TCP Vegas delay-
based congestion-control model; it is for that reason sometimes referred to as congestion-based congestion
control.

TCP BBR is, in practice, rate-based rather than window-based; that is, at any one time, TCP BBR sends at
a given calculated rate, instead of sending new data in direct response to each received ACK. Each arriving
ACK does potentially update the current rate, much as each arriving ACK in TCP Reno slides the sender’s
window forwards; however, the connection between arriving ACKs and new data transmissions is decidedly
indirect.

Rate-based sending requires some form of pacing support by the underlying LAN layer, so that packets

15.16 TCP BBR 509

https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00

An Introduction to Computer Networks, Release 1.9.21

can be sent at equal time intervals. On a 10 Gbps link, this time interval can be as small as a microsecond;
conventional timers don’t work well at these time scales. Linux TCP BBR implementations generally use
the pacing support built into the so-called Fair Queuing (FQ) queuing discipline (which is not actually a true
Fair Queuing implementation in the sense of 19.5 Fair Queuing).

Throughout the lifetime of a connection, TCP BBR maintains an estimate for RTTmin, which is nominally
the stand-in for RTTnoLoad except that it may go up in the presence of competition; see below. TCP BBR also
maintains a current bandwidth estimate, which we denote BWE. As with TCP Vegas, BWE is much more
volatile than RTTmin as it better reflects the current degree of bandwidth competition. After each RTT, TCP
BBR records the throughput during that RTT; BWE is then the maximum of the last ten per-RTT throughput
measurements. That BWE is the maximum rate recorded over the past ten RTTs, rather than the average,
will be important below.

The fundamental congestion indicators for TCP BBR are changes to its BWE and RTTmin estimates; packet
losses are not used directly as evidence of congestion. As we shall see below, TCP BBR reduces its sending
rate in response to decreases in BWE; this is TCP BBR’s primary congestion response. When losses do
occur, TCP BBR does enter a recovery mode, but it is much less conservative than TCP Reno’s halving
of cwnd. TCP BBR’s initial response to a loss is to limit the number of packets in flight (FlightSize) to
the number currently in flight, which allows it to continue to send new data at the rate of arriving ACKs.
This is not necessarily a reduction in FlightSize, and, if it is, FlightSize may be allowed to grow, even if
additional losses are discovered. Overall, this strategy is quite effective at handling non-congestive losses
without losing throughput.

In its core state, known as PROBE_BW, TCP BBR continually updates BWE as above and then sets its
base sending rate to BWE. It then sets its cwnd target (or, more properly, its FlightSize target, as losses may
have occurred) to 2 ˆ BWE ˆ RTTmin. This results in a bottleneck queue utilization equal to the transit
capacity. If the actual available bandwidth does not change, then sending at rate BWE will send new packets
at exactly the rate of returning ACKs and so FlightSize will not change. TCP BBR does allow for faster
initial growth (see STARTUP mode, below) to reach the FlightSize target.

If the actual available bandwidth falls, BWE will not reflect that for ten RTTs. As a result, TCP BBR may
for a while send faster than the rate of returning ACKs. If this happens, the bottleneck queue utilization
will rise. Eventually, BWE will fall to match the rate of returning ACKs. Similarly, if the actual available
bandwidth rises, queue utilization will fall. However, it will not fall to zero – and so cause sending to starve
– in a single RTT unless the bandwidth doubles, and after that the increased bandwidth will be reflected in
the updated BWE.

TCP BBR must, like every TCP flavor, regularly probe to see if additional bandwidth is available. TCP
BBR does this by periodically (currently every eight RTTs, where RTT is measured as RTTmin) increasing
its sending rate by an additional factor of 1.25; that is, it sets a variable pacing_gain to 1.25 and sends at
the new rate pacing_gainˆ BWE. The increase lasts one RTT interval. If there was no competition, and
if the bottleneck link was fully utilized, this pacing_gain increase results in no change to BWE. All that
happens is that the queue builds up, and the 1.25-fold larger flight of packets results in an RTT that is also
1.25 times larger. In the next RTT interval, TCP BBR sets pacing_gain to 0.75, which causes the newly
created additional queue to dissipate. After that it resumes its regular rate, that is, with pacing_gain =
1.0, for the next six RTT intervals.

Consider, however, what happens if TCP BBR is competing, perhaps with TCP Reno. Increasing the sending
rate by a factor of 1.25 now results in greater queue (or bottleneck link) utilization, which results in an
immediate increase in BWE for that RTT. At this point, recall that BWE is the maximum of the last ten
per-RTT measurements; the end result is that BWE is set to this elevated value for the next ten RTTs. In

510 15 Newer TCP Implementations

http://manpages.ubuntu.com/manpages/xenial/man8/tc-fq.8.html

An Introduction to Computer Networks, Release 1.9.21

the following RTT, pacing_gain drops to 0.75 as before, but this time TCP BBR has measured a larger
BWE, and this change to BWE persists.

Here is a concrete example of BWE increase. To simplify the analysis, we will assume TCP BBR’s Flight-
Size is BWEˆ RTTmin, dropping the factor of 2. Suppose a TCP BBR connection and a TCP Reno connec-
tion share a bottleneck link with a bandwidth of 2 packets/ms. The RTTmin (= RTTnoLoad) of each connection
is 80 ms, making the transit capacity 160 packets. Finally, suppose that each connection has 80 packets in
flight, exactly filling the transit capacity but with no queue utilization (so RTTmin = RTTactual). Over the
course of the eight-RTT pacing_gain cycle, the Reno connection’s cwnd rises by 8, to 88 packets.
This means the total queue utilization is now 8 packets, divided on average between BBR and Reno in the
proportion 80 to 88.

Now the BBR cycle with pacing_gain=1.25 arrives; for the next RTT, the BBR connection has 80ˆ1.25
= 100 packets in flight. The total number of packets in flight is now 188. The RTT climbs to 188/2 = 94
ms, and the next BBR BWE measurement is 100 packets in 94 ms, or 1.064 packets/ms (the precise value
may depend on exactly when the measurement is recorded). For the following RTT, pacing_gain drops
to 0.75, but the higher BWE persists. For the rest of the pacing_gain cycle, TCP BBR calculates a base
rate corresponding to 1.064ˆ 80 = 85 packets in flight per RTT, which is close to the TCP Reno cwnd. See
also exercise 14.0.

TCP BBR also has another mechanism, arguably more important in the long run, for maintaining its fair
share of the bandwidth. Periodically (every ~10 seconds), TCP BBR connections re-measure RTTmin, en-
tering PROBE_RTT mode. In this state the number of packets in flight drops to four, and stays there for at
least one RTTactual as measured for these four packets (with a minimum of 200 ms). Afterwards the connec-
tion returns to PROBE_BW mode with a freshly estimated RTTmin. The value of BWE is picked up where
it was left off, so that if RTTmin increases, then so does the sending rate BWE ˆ RTTmin. A certain amount
of potential throughput is “wasted” during these PROBE_RTT intervals, but as they amount to ~200 ms out
of every 10 sec, or 2%, the impact is negligible.

If, during the PROBE_RTT mode, competing connections keep some packets in the bottleneck queue, then
the queuing delay corresponding to those packets will be incorporated into the new RTTmin measurement;
because of this, RTTmin may significantly exceed RTTnoLoad and thus cause TCP BBR to send at a more
competitive rate. Suppose, for example, that in the BBR-vs-Reno scenario above, Reno has gobbled up
a total of 240 spots in the bottleneck queue, thus increasing the RTT for both connections to (240+80)/2
= 160. During a PROBE_RTT cycle, TCP BBR will drop its link utilization essentially to zero, but TCP
Reno will still have 240 packets in transit, so TCP BBR will measure RTTmin as 240/2 = 120 ms. After the
PROBE_RTT phase is over, TCP BBR will increase its sending rate by 50% over what it had been when
RTTmin was 80.

Note that, in any one RTT, we can either measure bottleneck bandwidth or RTT, but not both. If the number
of packets in flight is larger than the transit capacity then the packet return rate reflects the bottleneck
bandwidth. Conversely, we can measure RTTmin only if the number of packets in flight is smaller than the
transit capacity.

When a connection is first opened, a TCP BBR connection is in STARTUP mode, which is similar to TCP
Reno’s slow start. In this mode, pacing_gain is 2.89 (2/log(2)) consistently, which leads to exponential
growth of the number of packets in flight. STARTUP mode ends when an additional RTT yields no improve-
ment in BWE. At this point TCP BBR has overfilled the queue substantially (just as a TCP Reno connection
does in slow start), and so the connection enters DRAIN mode to reduce the queue. This is accomplished
by setting pacing_gain = 1/2.89. The connection transitions from DRAIN to PROBE_RTT when the
number of packets in flight drops to 2 ˆ BWE ˆ RTTmin.

15.16 TCP BBR 511

An Introduction to Computer Networks, Release 1.9.21

Below is a diagram of TCP BBR competing with TCP Reno in a setting where the bottleneck queue capacity
is eight times the bandwidthˆdelay product, which is 40 ms. It was produced using the Mininet network
emulator, 18.7 TCP Competition: Reno vs BBR. The large queue capacity was contrived specifically to
be beneficial to TCP Reno, in that in a similar setting with a queue capacity approximately equal to the
bandwidthˆdelay product TCP BBR often ends up quite a bit ahead of TCP Reno. Such large queues
are, however, a not-uncommon real-world situation on high-capacity backbone links (14.8.1 Bufferbloat).
Acting alone, Reno’s cwnd would range between 4.5 and 9 times the bandwidthˆdelay product, which
works out to keeping the queue over 70% full on average.

The lower part of the diagram shows each connection’s share of the 10 Mbps (1.25 kBps) bottleneck band-
width. The upper part shows the number of packets “in flight” (for TCP Reno, outside of Fast Recovery,
that is of course cwnd). The Reno sawtooth pattern is clearly visible.

A dominant feature of the graph is the spikes every 10 seconds (down for BBR, correspondingly up for
Reno) caused by TCP BBR’s periodic PROBE_RTT mode.

0

500 KBps

1000 KBps

0 50 100 150 200 250 300

Reno
BBR

For the first ten seconds, TCP Reno does indeed run away with all the bandwidth. But after the first
PROBE_RTT event TCP BBR begins to catch up, and the two tie at around T=60 seconds. After that
Reno mostly stays a little ahead of TCP BBR, typically with about 58% of the bandwidth versus BBR’s
42%, but the point here is that, even in circumstances favorable to Reno, BBR does not collapse.

It is evident from the graph, particularly during the first 60 seconds, that the PROBE_RTT intervals do not
lead to sudden jumps in throughput. Almost all of the change in throughput occurs during the PROBE_BW
intervals. That said, it is the PROBE_RTT interval at T=10 that triggers the ensuing turnaround in through-
put.

In addition to the sharp PROBE_RTT spikes every 10 seconds, we also see smaller spikes at a rate of about
6 every 10 seconds. These represent the pacing-gain cycling within BBR’s PROBE_BW phase. If eight
RTTmin times amount to 10/6 seconds, then RTTmin must be about 200 ms. When the queue is completely
full, RTTactual is 9 ˆ 40 ms = 360 ms, but during TCP BBR’s PROBE_RTT cycles RTTactual does indeed
drop considerably, which accounts for the 200 ms value. This value is then used as RTTmin for the next ten
seconds.

512 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

Experimental results in [CGYJ16] indicate that TCP BBR has been much more successful than TCP Cubic
in addressing the high-bandwidth TCP problem on parts of Google’s network. This is presumably because
TCP BBR does not necessarily reduce throughput at all when faced with occasional non-congestive losses.

15.17 Epilog

TCP Reno’s core congestion algorithm is based on algorithms in Jacobson and Karel’s 1988 paper [JK88],
now (2017) approaching thirty years old. There are concerns both that TCP Reno uses too much bandwidth
(the greediness issue) and that it does not use enough (the high-bandwidth-TCP problem).

There are also broad changes in TCP usage patterns. Twenty years ago, the vast majority of all TCP traffic
represented downloads from “major” servers. Today, over half of all Internet TCP traffic is peer-to-peer
rather than server-to-client. The rise in online video streaming creates new demands for excellent TCP
real-time performance.

So which TCP version to use? That depends on circumstances; some of the TCPs above are primarily
intended for relatively specific environments; for example, TCP Hybla for satellite links and TCP Veno
for mobile devices (including wireless laptops). If the sending and receiving hosts are under common
management, and especially if intervening traffic patterns are relatively stable, one can run a few simple
throughput-comparison experiments to find which TCP version works best.

But there are two problems with this experimental approach. First, intervening traffic patterns are often not
stable; a TCP version that worked well in one traffic environment might perform poorly in another. TCP
Vegas, after all, does well in a Vegas-only environment; problems arise only when there is competing TCP
Reno traffic, or the equivalent. Second, and perhaps more seriously, the best-performing TCP version might
achieve its throughput at the expense of other users’ TCP traffic. As a simple example, consider the effect
of simply increasing the TCP Reno additive-increase value, perhaps from AIMD(1,0.5) to AIMD(10,0.5).
As we saw in 14.3.1 Example 2: Faster additive increase, this gives the faster-incrementing TCP an unfair
(in fact tenfold) advantage. If the goal is to find a TCP version that all users will be happy with, this will not
be effective.

Then there is the question of what TCP to use on a server that is serving up large volumes of data, to a range
of disparate hosts and with a wide variety of competing-traffic scenarios. Here, experimentation is even
more difficult. Many trials will be needed to determine reliably which TCP version works best in the most
cases, even ignoring the impact on competing traffic. These issues suggest a need for continued research
into how to update and improve TCP, and Internet congestion-management generally.

Finally, while most new TCPs are designed to hold their own in a Reno world, there is some question that
perhaps we would all be better off with a radical rather than incremental change. Might TCP Vegas be a
better choice, if only the queue-grabbing greediness of TCP Reno could be restrained? Questions like these
are today entirely hypothetical, but it is not impossible to envision an Internet backbone that implemented
non-FIFO queuing mechanisms (19 Queuing and Scheduling) that fundamentally changed the rules of the
game.

15.17 Epilog 513

An Introduction to Computer Networks, Release 1.9.21

15.18 Exercises

1.0. How would TCP Vegas respond if it estimated RTTnoLoad = 100ms, with a bandwidth of 1 packet/ms,
and then due to a routing change the RTTnoLoad increased to 200ms without changing the bandwidth? What
cwnd would be chosen? Assume no competition from other senders.

2.0. Suppose a TCP Vegas connection from A to B passes through a bottleneck router R. The RTTnoLoad is
50 ms and the bottleneck bandwidth is 1 packet/ms.

(a). If the connection keeps 4 packets in the queue (eg 𝛼=3, 𝛽=5), what will RTTactual be? What value of
cwnd will the connection choose? What will be the value of BWE?
(b). Now suppose a competing (non-Vegas) connection keeps 6 packets in the queue to the Vegas
connection’s 4, eventually meaning that the other connection will have 60% of the bandwidth. What will be
the Vegas connection’s steady-state values for RTTactual, cwnd and BWE?

3.0. Suppose a TCP Vegas connection has R as its bottleneck router. The transit capacity is M, and the
queue utilization is currently Q>0 (meaning that the transit path is 100% utilized, although not necessarily
by the TCP Vegas packets). The current TCP Vegas cwnd is cwndV. Using the formulas from 6.3.2 RTT
Calculations, show that the number of packets TCP Vegas calculates are in the queue, queue_use, is

queue_use = cwndVˆQ/(Q+M)

4.0. Suppose that at time T=0 a TCP Vegas connection and a TCP Reno connection share the same path,
and each has 100 packets in the bottleneck queue, exactly filling the transit capacity of 200. TCP Vegas uses
𝛼=1, 𝛽=2. By the previous exercise, in any RTT with cwndV TCP Vegas packets and cwndR TCP Reno
packets in flight and cwndV+cwndR>200, Nqueue is cwndV/(cwndV+cwndR) multiplied by the total queue
utilization cwndV+cwndR–200.

Continue the following table, where T is measured in RTTs, up through the next two RTTs where cwndV
is not decremented; that is, find the next two rows where the TCP Vegas queue share is less than 2. (After
each of these RTTs, cwndV is not decremented.) This can be done either with a spreadsheet or by simple
algebra. Note that the TCP Reno cwndR will always increment.

T cwndV cwndR TCP Vegas queue share
0 100 100 0
1 101 101 1
2 102 102 2
3 101 103 (101/204)x4 = 1.980 < 𝛽

4 101 104 Vegas has (101/205)ˆ5 = 2.463 packets in queue
5 100 105 Vegas has (100/205)ˆ5 = 2.435 packets in queue
6 99 106 (99/205)ˆ5 = 2.439

This exercise attempts to explain the linear decrease in the TCP Vegas graph in the diagram in 16.5 TCP
Reno versus TCP Vegas. Competition with TCP Reno means not only that cwndV stops increasing, but in
fact it decreases by 1 most RTTs.

514 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

5.0. Suppose that, as in the previous exercise, a FAST TCP connection and a TCP Reno connection share
the same path, and at T=0 each has 100 packets in the bottleneck queue, exactly filling the transit capacity
of 200. The FAST TCP parameter 𝛾 is 0.5. The FAST TCP and TCP Reno connections have respective
cwnds of cwndF and cwndR. You may use the fact that, as long as the queue is nonempty, RTT/RTTnoLoad
= (cwndF+cwndR)/200.

Find the value of cwndF at T=40, where T is counted in units of 20 ms until T = 40, using 𝛼=4, 𝛼=10 and
𝛼=30. Assume RTT » 20 ms as well. Use of a spreadsheet is recommended. The table here uses 𝛼=10.

T cwndF cwndR
0 100 100
1 105 101
2 108.47 102
3 110.77 103
4 112.20 104

6.0. Suppose A sends to B as in the layout below. The packet size is 1 kB and the bandwidth of the bottleneck
R–B link is 1 packet / 10 ms; returning ACKs are thus normally spaced 10 ms apart. The RTTnoLoad for the
A–B path is 200 ms.

A R B

C

However, large amounts of traffic are also being sent from C to A; the bottleneck link for that path is R–A
with bandwidth 1 kB / 5 ms. The queue at R for the R–A link has a capacity of 40 kB. ACKs are 50 bytes.

(a). What is the maximum possible arrival time difference on the A–B path for ACK[0] and ACK[20], if
there are no queuing delays at R in the AÑB direction? ACK[0] should be forwarded immediately by R;
ACK[20] should have to wait for 40 kB at R
(b). What is the minimum possible arrival time difference for the same ACK[0] and ACK[20]?

7.0. Suppose a TCP Veno and a TCP Reno connection compete along the same path; there is no other traffic.
Both start at the same time with cwnds of 50; the total transit capacity is 160. Both share the next loss event.
The bottleneck router’s queue capacity is 60 packets; sometimes the queue fills and at other times it is empty.
TCP Veno’s parameter 𝛽 is zero, meaning that it shifts to a slower cwnd increment as soon as the queue just
begins filling.

(a). In how many RTTs will the queue begin filling?
(b). At the point the queue is completely filled, how much larger will the Reno cwnd be than the Veno
cwnd?

8.0. Suppose two connections use TCP Hybla. They do not compete. The first connection has an RTT of
100 ms, and the second has an RTT of 1000 ms. Both start with cwndmin = 0 (literally meaning that nothing

15.18 Exercises 515

An Introduction to Computer Networks, Release 1.9.21

is sent the first RTT).

(a). How many packets are sent by each connection in four RTTs (involving three cwnd increases)?
(b). How many packets are sent by each connection in four seconds? Recall 1+2+3+. . . +N = N(N+1)/2.

9.0. Suppose that at time T=0 a TCP Illinois connection and a TCP Reno connection share the same path,
and each has 100 packets in the bottleneck queue, exactly filling the transit capacity of 200. The respective
cwnds are cwndI and cwndR. The bottleneck queue capacity is 100.

Find the value of cwndI at T=50, where T is the number of elapsed RTTs. At this point cwndR is, of course,
150.

T cwndI cwndR
0 100 100
1 101 101
2 ? 102

You may assume that the delay, RTT – RTTnoLoad, is proportional to queue_utilization = cwndI+cwndR–
200𝛼. Using this expression to represent delay, delaymax = 100 and so delaythresh = 1. When calculating
𝛼(delay), assume 𝛼max = 10 and 𝛼min = 0.1.

10.0. Assume that a TCP connection has an RTT of 50 ms, and the time between loss events is 10 seconds.

(a). For a TCP Reno connection, what is the bandwidthˆdelay product?
(b). For an H-TCP connection, what is the bandwidthˆdelay product?

11.0. For each of the values of Wmax below, find the change in TCP Cubic’s cwnd over one 100 ms RTT at
each of the following points:

i. Immediately after the previous loss event, when t = 0.
ii. At the midpoint of the tooth, when t=K/2
iii. At the point when cwnd has returned to Wmax, at t=K

(a). Wmax = 250 (making K=5)
(b). Wmax = 2000 (making K=10)

12.0. Suppose a TCP Reno connection is competing with a TCP Cubic connection. There is no other traffic.
All losses are synchronized. In this setting, once the steady state is reached, the cwnd graphs for one tooth
will look like this:

516 15 Newer TCP Implementations

An Introduction to Computer Networks, Release 1.9.21

r

c

0.8 c

0.5 r

One tooth, TCP Cubic v TCP Reno

(r/2)×RTT

(c/2)1/3

Let c be the maximum cwnd of the TCP Cubic connection (c=Wmax) and let r be the maximum of the TCP
Reno connection. Let M be the network ceiling, so a loss occurs when c+r reaches M. The width of the
tooth for TCP Reno is (r/2)ˆRTT, where RTT is measured in seconds; the width of the TCP Cubic tooth is
(c/2)1/3. For the examples here, ignore the TCP-Friendly feature of TCP Cubic.

(a). If M = 200 and RTT = 50 ms = 0.05 sec, show that at the steady state r » 130.4 and c = M–r » 69.6.
(b). Find equilibrium r and c (to the nearest integer) for M=1000 and RTT = 50 ms. Hint: use of a
spreadsheet or scripting language makes trial-and-error quite practical.
(c). Find equilibrium r and c for M = 1000 and RTT = 100 ms.

13.0. Suppose a TCP Westwood connection has the path A R1 R2 B. The R1–R2 link is the bot-
tleneck, with bandwidth 1 packet/ms, and RTTnoLoad is 200 ms. At T=0, with cwnd = 300 so the queue
at R1 has 100 A–B packets, the R1 R2 throughput for A’s packets falls to 1 packet / 2 ms, perhaps due to
competition. At that same time, and perhaps also due to competition, a single A–B packet is lost at R1.

(a). Suppose A responds to the loss using the original BWE of 1 packet/ms. What transit capacity will A
calculate, and how will A update its cwnd?

(b). Now suppose A uses the new throughput of 1 packet / 2 ms as its BWE. What transit capacity will A
calculate, and how will A update its cwnd?

(c). Suppose A calculates BWE as cwnd/RTT. What value of BWE does A obtain by measuring the RTT
of the packet just before the one that was lost?

15.18 Exercises 517

An Introduction to Computer Networks, Release 1.9.21

14.0. In 15.16 TCP BBR we estimated the impact on TCP BBR’s BWE value during the interval when
pacing_gain=1.25. Suppose now that the BBR and Reno connections each have 800 packets in transit,
instead of 80. Assume the bottleneck bandwidth rises tenfold to 20 packets/ms, so RTTnoLoad is still 80 ms.
During the 8-RTT pacing-gain cycle, Reno increases its cwnd to 808. If BWE is measured at the optimum
point after BBR’s pacing_gain=1.25 rate increase, what is the new value of BWE?

Between the idea
And the reality
Between the motion
And the act
Falls the Shadow

– TS Eliot, The Hollow Men

Try to leave out the part that readers tend to skip.
– Elmore Leonard, 10 Rules for Writing

518 15 Newer TCP Implementations

16 NETWORK SIMULATIONS: NS-2

In previous chapters, especially 14 Dynamics of TCP, we have at times made simplifying assumptions
about TCP Reno traffic. In the present chapter we will look at actual TCP behavior, through simulation,
enabling us to explore the accuracy of some of these assumptions. The primary goal is to provide comparison
between idealized TCP behavior and the often-messier real behavior; a secondary goal is perhaps to shed
light on some of the issues involved in simulation. For example, in the discussion in 16.3 Two TCP Senders
Competing of competition between TCP Reno connections with different RTTs, we address several technical
issues that affect the relevance of simulation results.

Parts of this chapter may serve as a primer on using the ns-2 simulator, though a primer focused on the goal
of illuminating some of the basic operation and theory of TCP through experimentation. However, some of
the outcomes described may be of interest even to those not planning on designing their own simulations.

Simulation is frequently used in the literature when comparing different TCP flavors for effective throughput
(for example, the graphs excerpted in 15.15 TCP CUBIC were created through simulation). An alternative
to simulation, network emulation, involves running actual system networking software in a multi-node en-
vironment created through containerization or virtualization; we present this in 18 Mininet. An important
advantage of simulation over emulation, however, is that as emulations get large and complex they also get
bogged down, and it can be hard to distinguish results from artifacts.

We begin this chapter by looking at a single connection and analyzing how well the TCP sawtooth utilizes
the bottleneck link. We then turn to competition between two TCP senders. The primary competition
example here is between TCP Reno connections with different RTTs. This example allows us to explore
the synchronized-loss hypothesis (14.3.4 Synchronized-Loss Hypothesis) and to introduce phase effects,
transient queue overflows, and other unanticipated TCP behavior. We also introduce some elements of
designing simulation experiments. The second example compares TCP Reno and TCP Vegas. We close
with a straightforward example of a wireless simulation.

16.1 The ns-2 simulator

The tool used for much research-level network simulations is ns, for network simulator and originally de-
veloped at the Information Sciences Institute. The ns simulator grew out of the REAL simulator developed
by Srinivasan Keshav [SK88]; later development work was done by the Network Research Group at the
Lawrence Berkeley National Laboratory.

We will describe in this chapter the ns-2 simulator, hosted at www.isi.edu/nsnam/ns. There is now also
an ns-3 simulator, available at www.nsnam.org. Because ns-3 is not backwards-compatible with ns-2 and
the programming interface has changed considerably, we take the position that ns-3 is an entirely different
package, though one likely someday to supercede ns-2 entirely. While there is a short introduction to ns-3 in
this book (17 The ns-3 Network Simulator), its use is arguably quite a bit more complicated for beginners,
and the particular simulation examples presented below are well-suited to ns-2. While ns-3 supports more
complex and realistic modeling, and is the tool of choice for serious research, this added complexity comes
at a price in terms of configuration and programming. The standard ns-2 tracefile format is also quite easy
to work with using informal scripting.

519

http://www.isi.edu
http://www.isi.edu/nsnam/ns
http://www.nsnam.org

An Introduction to Computer Networks, Release 1.9.21

Research-level use of ns-2 often involves building new modules in C++, and compiling them in to the
system. For our purposes here, the stock ns-2 distribution is sufficient. The simplest way to install ns-2 is
probably with the “allinone” distribution, which does still require compiling but comes with a very simple
install script. (As of 2014, the ns-allinone-2.35 version appeared to compile only with gcc/g++ no more
recent than version 4.6.)

The native environment for ns-2 (and ns-3) is Linux. Perhaps the simplest approach for Windows users is to
install a Linux virtual machine, and then install ns-2 under that. It is also possible to compile ns-2 under the
Cygwin system; an older version of ns-2 may still be available as a Cygwin binary.

To create an ns-2 simulation, we need to do the following (in addition to a modest amount of standard
housekeeping).

• define the network topology, including all nodes, links and router queuing rules

• create some TCP (or UDP) connections, called Agents, and attach them to nodes

• create some Applications – usually FTP for bulk transfer or telnet for intermittent random packet
generation – and attach them to the agents

• start the simulation

Once started, the simulation runs for the designated amount of time, driven by the packets generated by
the Application objects. As the simulated applications generate packets for transmission, the ns-2 system
calculates when these packets arrive and depart from each node, and generates simulated acknowledgment
packets as appropriate. Unless delays are explicitly introduced, node responses – such as forwarding a
packet or sending an ACK – are instantaneous. That is, if a node begins sending a simulated packet from
node N1 to N2 at time T=1.000 over a link with bandwidth 60 ms per packet and with propagation delay
200 ms, then at time T=1.260 N2 will have received the packet. N2 will then respond at that same instant, if
a response is indicated, eg by enqueuing the packet or by forwarding it if the queue is empty.

Ns-2 does not necessarily require assigning IP addresses to every node, though this is possible in more
elaborate simulations.

Advanced use of ns-2 (and ns-3) often involves the introduction of randomization; for example, we will in
16.3 Two TCP Senders Competing introduce both random sliding-windows delays and traffic generators
that release packets at random times. While it is possible to seed the random-number generator so that
different runs of the same experiment yield different outcomes, we will not do this here, so the random-
number generator will always produce the same sequence. A consequence is that the same ns-2 script
should yield exactly the same result each time it is run.

16.1.1 Using ns-2

The scripting interface for ns-2 uses the language Tcl, pronounced “tickle”; more precisely it is object-Tcl,
or OTcl. For simple use, learning the general Tcl syntax is not necessary; one can proceed quite successfully
by modifying standard examples.

The network simulation is defined in a Tcl file, perhaps sim.tcl; to run the simulation one then runs the
command

ns sim.tcl

520 16 Network Simulations: ns-2

http://www.cygwin.com

An Introduction to Computer Networks, Release 1.9.21

The result of running the ns-2 simulation will be to create some files, and perhaps print some output. The
most common files created are the ns-2 trace file – perhaps sim.tr – which contains a record for every
packet arrival, departure and queue event, and a file sim.nam for the network animator, nam, that allows
visual display of the packets in motion (the ns-3 version of nam is known as NetAnim). The sliding-windows
video in 6.2 Sliding Windows was created with nam.

Within Tcl, variables can be assigned using the set command. Expressions in [...] are evaluated.
Numeric expressions must also use the expr command:

set foo [expr $foo + 1]

As in unix-style shell scripting, the value of a variable X is $X; the name X (without the $) is used when
setting the value (in Perl and PHP, on the other hand, many variable names begin with $, which is included
both when evaluating and setting the variable). Comments are on lines beginning with the ‘#’ character.
Comments can not be appended to a line that contains a statement (although it is possible first to start a new
logical line with ;).

Objects in the simulation are generally created using built-in constructors; the constructor in the line below
is the part in the square brackets (recall that the brackets must enclose an expression to be evaluated):

set tcp0 [new Agent/TCP/Reno]

Object attributes can then be assigned values; for example, the following sets the data portion of the packets
in TCP connection tcp0 to 960 bytes:

$tcp0 set packetSize_ 960

Object attributes are retrieved using set without a value; the following assigns variable ack0 the current
value of the ack_ field of tcp0:

set ack0 [$tcp0 set ack_]

The goodput of a TCP connection is, properly, the number of application bytes received. This differs from
the throughput – the total bytes sent – in two ways: the latter includes both packet headers and retransmitted
packets. The ack0 value above includes no retransmissions; we will occasionally refer to it as “goodput”
in this sense.

16.2 A Single TCP Sender

For our first script we demonstrate a single sender sending through a router. Here is the topology we will
build, with the delays and bandwidths:

A R B
10 Mbps

10 ms delay 50 ms delay

800 kbps = 100 pkt/s

The smaller bandwidth on the R–B link makes it the bottleneck. The default TCP packet size in ns-
2 is 1000 bytes, so the bottleneck bandwidth is nominally 100 packets/sec or 0.1 packets/ms. The

16.2 A Single TCP Sender 521

An Introduction to Computer Networks, Release 1.9.21

bandwidthˆRTTnoLoad product is 0.1 packets/ms ˆ 120 ms = 12 packets. Actually, the default size of 1000
bytes refers to the data segment, and there are an additional 40 bytes of TCP and IP header. We therefore
set packetSize_ to 960 so the actual transmitted size is 1000 bytes; this makes the bottleneck bandwidth
exactly 100 packets/sec.

We want the router R to have a queue capacity of 6 packets, plus the one currently being transmitted; we
set queue-limit = 7 for this. We create a TCP connection between A and B, create an ftp sender on top
that, and run the simulation for 20 seconds. The nodes A, B and R are named; the links are not.

The ns-2 default maximum window size is 20; we increase that to 100 with $tcp0 set window_ 100;
otherwise we will see an artificial cap on the cwnd growth (in the next section we will increase this to
65000).

The script itself is in a file basic1.tcl, with the 1 here signifying a single sender.

basic1.tcl simulation: A---R---B

#Create a simulator object
set ns [new Simulator]

#Open the nam file basic1.nam and the variable-trace file basic1.tr
set namfile [open basic1.nam w]
$ns namtrace-all $namfile
set tracefile [open basic1.tr w]
$ns trace-all $tracefile

#Define a 'finish' procedure
proc finish {} {

global ns namfile tracefile
$ns flush-trace
close $namfile
close $tracefile
exit 0

}

#Create the network nodes
set A [$ns node]
set R [$ns node]
set B [$ns node]

#Create a duplex link between the nodes

$ns duplex-link $A $R 10Mb 10ms DropTail
$ns duplex-link $R $B 800Kb 50ms DropTail

The queue size at $R is to be 7, including the packet being sent
$ns queue-limit $R $B 7

some hints for nam
color packets of flow 0 red
$ns color 0 Red
$ns duplex-link-op $A $R orient right
$ns duplex-link-op $R $B orient right
$ns duplex-link-op $R $B queuePos 0.5

522 16 Network Simulations: ns-2

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/basic1.tcl

An Introduction to Computer Networks, Release 1.9.21

Create a TCP sending agent and attach it to A
set tcp0 [new Agent/TCP/Reno]
We make our one-and-only flow be flow 0
$tcp0 set class_ 0
$tcp0 set window_ 100
$tcp0 set packetSize_ 960
$ns attach-agent $A $tcp0

Let's trace some variables
$tcp0 attach $tracefile
$tcp0 tracevar cwnd_
$tcp0 tracevar ssthresh_
$tcp0 tracevar ack_
$tcp0 tracevar maxseq_

#Create a TCP receive agent (a traffic sink) and attach it to B
set end0 [new Agent/TCPSink]
$ns attach-agent $B $end0

#Connect the traffic source with the traffic sink
$ns connect $tcp0 $end0

#Schedule the connection data flow; start sending data at T=0, stop at T=10.0
set myftp [new Application/FTP]
$myftp attach-agent $tcp0
$ns at 0.0 "$myftp start"
$ns at 10.0 "finish"

#Run the simulation
$ns run

After running this script, there is no command-line output (because we did not ask for any); however, the
files basic1.tr and basic1.nam are created. Perhaps the simplest thing to do at this point is to view the
animation with nam, using the command nam basic1.nam.

In the animation we can see slow start at the beginning, as first one, then two, then four and then eight
packets are sent. A little past T=0.7, we can see a string of packet losses. This is visible in the animation
as a tumbling series of red squares from the top of R’s queue. After that, the TCP sawtooth takes over;
we alternate between the cwnd linear-increase phase (congestion avoidance), packet loss, and threshold
slow start. During the linear-increase phase the bottleneck link is at first incompletely utilized; once the
bottleneck link is saturated the router queue begins to build.

16.2.1 Graph of cwnd v time

Here is a graph of cwnd versus time, prepared (see below) from data in the trace file basic1.tr:

16.2 A Single TCP Sender 523

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/basic1.trace
http://intronetworks.cs.luc.edu/auxiliary_files/ns2/basic1.nam

An Introduction to Computer Networks, Release 1.9.21

Slow start is at the left edge. Unbounded slow start runs until about T=0.75, when a timeout occurs; bounded
slow start runs from about T=1.2 to T=1.8. After that, all losses have been handled with fast recovery (we
can tell this because cwnd does not drop below half its previous peak). The first three teeth following slow
start have heights (cwnd peak values) of 20.931, 20.934 and 20.934 respectively; when the simulation is
extended to 1000 seconds all subsequent peaks have exactly the same height, cwnd = 20.935. The spacing
between the peaks is also constant, 1.946 seconds.

Because cwnd is incremented by ns-2 after each arriving ACK as described in 13.2.1 TCP Reno Per-
ACK Responses, during the linear-increase phase there are a great many data points jammed together; the
bunching effect is made stronger by the choice here of a large-enough dot size to make the slow-start points
clearly visible. This gives the appearance of continuous line segments. Upon close examination, these line
segments are slightly concave, as discussed in 15.5 Highspeed TCP, due to the increase in RTT as the
queue fills. Individual flights of packets can just be made out at the lower-left end of each tooth, especially
the first.

16.2.2 The Trace File

To examine the simulation (or, for that matter, the animation) more quantitatively, we turn to a more detailed
analysis of the trace file, which contains records for all packet events plus (because it was requested)
variable-trace information for cwnd_, ssthresh_, ack_ and maxseq_; these were the variables for
which we requested traces in the basic1.tcl file above.

The bulk of the trace-file lines are event records; three sample records are below. (These are in the de-
fault event-record format for point-to-point links; ns-2 has other event-record formats for wireless. See
use-newtrace in 16.6 Wireless Simulation below.)

r 0.58616 0 1 tcp 1000 ------- 0 0.0 2.0 28 43
+ 0.58616 1 2 tcp 1000 ------- 0 0.0 2.0 28 43
d 0.58616 1 2 tcp 1000 ------- 0 0.0 2.0 28 43

524 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

The twelve event-record fields are as follows:

1. r for received, d for dropped, + for enqueued, - for dequeued. Every arriving packet is enqueued,
even if it is immediately dequeued. The third packet above was the first dropped packet in the entire
simulation.

2. the time, in seconds.

3. the number of the sending node, in the order of node definition and starting at 0. If the first field was
“+”, “-” or “d”, this is the number of the node doing the enqueuing, dequeuing or dropping. Events
beginning with “-” represent this node sending the packet.

4. the number of the destination node. If the first field was “r”, this record represents the packet’s arrival
at this node.

5. the protocol.

6. the packet size, 960 bytes of data (as we requested) plus 20 of TCP header and 20 of IP header.

7. some TCP flags, here represented as “-------” because none of the flags are set. Flags include E
and N for ECN and A for reduction in the advertised winsize.

8. the flow ID. Here we have only one: flow 0. This value can be set via the fid_ variable in the Tcl
source file; an example appears in the two-sender version below. The same flow ID is used for both
directions of a TCP connection.

9. the source node (0.0), in form (node . connectionID). ConnectionID numbers here are simply an
abstraction for connection endpoints; while they superficially resemble port numbers, the node in
question need not even simulate IP, and each connection has a unique connectionID at each end.
ConnectionID numbers start at 0.

10. the destination node (2.0), again with connectionID.

11. the packet sequence number as a TCP packet, starting from 0.

12. a packet identifier uniquely identifying this packet throughout the simulation; when a packet is for-
warded on a new link it keeps its old sequence number but gets a new packet identifier.

The three trace lines above represent the arrival of packet 28 at R, the enqueuing of packet 28, and then the
dropping of the packet. All these happen at the same instant.

Mixed in with the event records are variable-trace records, indicating a particular variable has been
changed. Here are two examples from t=0.3833:

0.38333 0 0 2 0 ack_ 3
0.38333 0 0 2 0 cwnd_ 5.000

The format of these lines is

1. time

2. source node of the flow

3. source port (as above, an abstract connection endpoint, not a simulated TCP port)

4. destination node of the flow

5. destination port

16.2 A Single TCP Sender 525

An Introduction to Computer Networks, Release 1.9.21

6. name of the traced variable

7. value of the traced variable

The two variable-trace records above are from the instant when the variable cwnd_ was set to 5. It was
initially 1 at the start of the simulation, and was incremented upon arrival of each of ack0, ack1, ack2 and
ack3. The first line shows the ack counter reaching 3 (that is, the arrival of ack3); the second line shows the
resultant change in cwnd_.

The graph above of cwnd v time was made by selecting out these cwnd_ lines and plotting the first field
(time) and the last. (Recall that during the linear-increase phase cwnd is incremented by 1.0/cwnd with
each arriving new ACK.)

The last ack in the tracefile is

9.98029 0 0 2 0 ack_ 808

Since ACKs started with number 0, this means we sent 809 packets successfully. The theoretical bandwidth
was 100 packets/sec ˆ 10 sec = 1000 packets, so this is about an 81% goodput. Use of the ack_ value this
way tells us how much data was actually delivered. An alternative statistic is the final value of maxseq_
which represents the number of distinct packets sent; the last maxseq_ line is

9.99029 0 0 2 0 maxseq_ 829

As can be seen from the cwnd-v-time graph above, slow start ends around T=2.0. If we measure goodput
from then until the end, we do a little better than 81%. The first data packet sent after T=2.0 is at 2.043184;
it is data packet 72. 737 packets are sent from packet 72 until packet 808 at the end; 737 packets in 8.0
seconds is a goodput of 92%.

It is not necessary to use the tracefile to get the final values of TCP variables such as ack_ and maxseq_;
they can be printed from within the Tcl script’s finish() procedure. The following example illustrates
this, where ack_ and maxseq_ come from the connection tcp0. The global line lists global variables
that are to be made available within the body of the procedure; tcp0 must be among these.

proc finish {} {
global ns nf f tcp0
$ns flush-trace
close $namfile
close $tracefile
set lastACK [$tcp0 set ack_]
set lastSEQ [$tcp0 set maxseq_]
puts stdout "final ack: $lastACK, final seq num: $lastSEQ"
exit 0

}

For TCP sending agents, useful member variables to set include:

• class_: the identifying number of a flow

• window_: the maximum window size; the default is much too small.

• packetSize_: we set this to 960 above so the total packet size would be 1000.

Useful member variables either to trace or to print at the simulation’s end include:

• maxseq_: the number of the last packet sent, starting at 1 for data packets

526 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

• ack_: the number of the last ACK received

• cwnd_: the current value of the congestion window

• nrexmitpack_: the number of retransmitted packets

To get a count of the data actually received, we need to look at the TCPsink object, $end0 above. There is no
packet counter here, but we can retrieve the value bytes_ representing the total number of bytes received.
This will include 40 bytes from the threeway handshake which can either be ignored or subtracted:

set ACKed [expr round ([$end0 set bytes_] / 1000.0)]

This is a slightly better estimate of goodput. In very long simulations, however, this (or any other) byte
count will wrap around long before any of the packet counters wrap around.

In the example above every packet event was traced, a consequence of the line

$ns trace-all $trace

We could instead have asked only to trace particular links. For example, the following line would request
tracing for the bottleneck (RÝÑB) link:

$ns trace-queue $R $B $trace

This is often useful when the overall volume of tracing is large, and we are interested in the bottleneck link
only. In long simulations, full tracing can increase the runtime 10-fold; limiting tracing only to what is
actually needed can be quite important.

16.2.3 Single Losses

By examining the basic1.tr file above for packet-drop records, we can confirm that only a single drop occurs
at the end of each tooth, as was argued in 13.8 Single Packet Losses. After slow start finishes at around
T=2, the next few drops are at T=3.963408, T=5.909568 and T=7.855728. The first of these drops is of
Data[254], as is shown by the following record:

d 3.963408 1 2 tcp 1000 ------- 0 0.0 2.0 254 531

Like most “real” implementations, the ns-2 implementation of TCP increments cwnd (cwnd_ in the trace-
file) by 1/cwnd on each new ACK (13.2.1 TCP Reno Per-ACK Responses). An additional packet is sent
by A whenever cwnd is increased this way past another whole number; that is, whenever floor(cwnd) in-
creases. At T=3.95181, cwnd_ was incremented to 20.001, triggering the double transmission of Data[253]
and the doomed Data[254]. At this point the RTT is around 190 ms.

The loss of Data[254] is discovered by Fast Retransmit when the third dupACK[253] arrives. The first
ACK[253] arrives at A at T=4.141808, and the dupACKs arrive every 10 ms, clocked by the 10 ms/packet
transmission rate of R. Thus, A detects the loss at T=4.171808; at this time we see cwnd_ reduced by half
to 10.465; the tracefile times for variables are only to 5 decimal places, so this is recorded as

4.17181 0 0 2 0 cwnd_ 10.465

16.2 A Single TCP Sender 527

An Introduction to Computer Networks, Release 1.9.21

That represents an elapsed time from when Data[254] was dropped of 207.7 ms, more than one RTT. As
described in 13.8 Single Packet Losses, however, A stopped incrementing cwnd_ when the first ACK[253]
arrived at T=4.141808. The value of cwnd_ at that point is only 20.931, not quite large enough to trigger
transmission of another back-to-back pair and thus eventually a second packet drop.

16.2.4 Reading the Tracefile in Python

Deeper analysis of ns-2 data typically involves running some sort of script on the tracefiles; we will mostly
use the Python (python3) language for this, although the awk language is also traditional. The following is
the programmer interface to a simple module (library) nstrace.py:

• nsopen(filename): opens the tracefile

• isEvent(): returns true if the current line is a normal ns-2 event record

• isVar(): returns true if the current line is an ns-2 variable-trace record

• isEOF(): returns true if there are no more tracefile lines

• getEvent(): returns a twelve-element tuple of the ns-2 event-trace values, each cast to the correct
type. The ninth and tenth values, which are node.port pairs in the tracefile, are returned as (node port)
sub-tuples.

• getVar(): returns a seven-element tuple of ns-2 variable-trace values

• skipline(): skips the current line (useful if we are interested only in event records, or only in variable-
trace records, and want to ignore the other type of record)

We will first make use of this in 16.2.6.1 Link utilization measurement; see also 16.4 TCP Loss Events
and Synchronized Losses. The nstrace.py file above includes regular-expression checks to verify that each
tracefile line has the correct format, but, as these are slow, they are disabled by default. Enabling these
checks is potentially useful, however, if some wireless trace records are also included.

16.2.5 The nam Animation

Let us now re-examine the nam animation, in light of what can be found in the trace file.

At T=0.120864, the first 1000-byte data packet is sent (at T=0 a 40-byte SYN packet is sent); the actual
packet identification number is 1 so we will refer to it as Data[1]. At this point cwnd_ = 2, so Data[2] is
enqueued at this same time, and sent at T=0.121664 (the delay exactly matches the A–R link’s bandwidth
of 8000 bits in 0.0008 sec). The first loss occurs at T=0.58616, of Data[28]; at T=0.59616 Data[30] is lost.
(Data[29] was not lost because R was able to send a packet and thus make room).

From T=.707392 to T=.777392 we begin a string of losses: packets 42, 44, 46, 48, 50, 52, 54 and 56.

At T=0.76579 the first ACK[27] makes it back to A. The first dupACK[27] arrives at T=0.77576; another
arrives at T=0.78576 (10 ms later, exactly the bottleneck per-packet time!) and the third dupACK arrives at
T=0.79576. At this point, Data[28] is retransmitted and cwnd is halved from 29 to 14.5.

At T=0.985792, the sender receives ACK[29]. DupACK[29]’s are received at T=1.077024, T=1.087024,
T=1.097024 and T=1.107024. Alas, this is TCP Reno, in Fast Recovery mode, and it is not implementing

528 16 Network Simulations: ns-2

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/nstrace.py

An Introduction to Computer Networks, Release 1.9.21

Fast Retransmit while Fast Recovery is going on (TCP NewReno in effect fixes this). Therefore, the con-
nection experiences a hard timeout at T=1.22579; the last previous event was at T=1.107024. At this point
ssthresh is set to 7 and cwnd drops to 1. Slow start is used up to ssthresh = 7, at which point the sender
switches to the linear-increase phase.

16.2.6 Single-sender Throughput Experiments

According to the theoretical analysis in 13.7 TCP and Bottleneck Link Utilization, a queue size of close
to zero should yield about a 75% bottleneck utilization, a queue size such that the mean cwnd equals the
transit capacity should yield about 87.5%, and a queue size equal to the transit capacity should yield close
to 100%. We now test this.

We first increase the per-link propagation times in the basic1.tcl simulation above to 50 and 100 ms:

$ns duplex-link $A $R 10Mb 50ms DropTail
$ns duplex-link $R $B 800Kb 100ms DropTail

The bottleneck link here is 800 kbps, or 100 kBps, or 10 ms/packet, so these propagation-delay changes
mean a round-trip transit capacity of 30 packets (31 if we include the bandwidth delay at R). In the table
below, we run the simulation while varying the queue-limit parameter from 3 to 30. The simulations
run for 1000 seconds, to minimize the effect of slow start. Tracing is disabled to reduce runtimes. The
“received” column gives the number of distinct packets received by B; if the link utilization were 100% then
in 1,000 seconds B would receive 100,000 packets.

queue_limit received utilization %, RÑB
3 79767 79.8
4 80903 80.9
5 83313 83.3
8 87169 87.2
10 89320 89.3
12 91382 91.4
16 94570 94.6
20 97261 97.3
22 98028 98.0
26 99041 99.0
30 99567 99.6

In ns-2, every arriving packet is first enqueued, even if it is immediately dequeued, and so queue-limit
cannot actually be zero. A queue-limit of 1 or 2 gives very poor results, probably because of problems
with slow start. The run here with queue-limit = 3 is not too far out of line with the 75% predicted by
theory for a queue-limit close to zero. When queue-limit is 10, then cwnd will range from 20 to
40, and the link-unsaturated and queue-filling phases should be of equal length. This leads to a theoretical
link utilization of about (75%+100%)/2 = 87.5%; our measurement here of 89.3% is in good agreement. As
queue-limit continues to increase, the link utilization rapidly approaches 100%, again as expected.

16.2 A Single TCP Sender 529

An Introduction to Computer Networks, Release 1.9.21

16.2.6.1 Link utilization measurement

In the experiment above we estimated the utilization of the RÑB link by the number of distinct packets
arriving at B. But packet duplicate transmissions sometimes occur as well (see 16.2.6.4 Packets that are
delivered twice); these are part of the RÑB link utilization but are hard to estimate (nominally, most packets
retransmitted by A are dropped by R, but not all).

If desired, we can get an exact value of the RÑB link utilization through analysis of the ns-2 trace file. In
this file R is node 1 and B is node 2 and our flow is flow 0; we look for all lines of the form

- time 1 2 tcp 1000 ------- 0 0.0 2.0 x y

that is, with field1 = ‘-‘, field3 = 1, field4 = 2, field6 = 1000 and field8 = 0 (if we do not check field6=1000
then we count one extra packet, a simulated SYN). We then simply count these lines; here is a simple script
to do this in Python using the nstrace module above:

#!/usr/bin/python3
import nstrace
import sys

def link_count(filename):
SEND_NODE = 1
DEST_NODE = 2
FLOW = 0
count = 0

nstrace.nsopen(filename)
while not nstrace.isEOF():

if nstrace.isEvent():
(event, time, sendnode, dest, dummy, size, dummy, flow, dummy,

ãÑdummy, dummy, dummy) = nstrace.getEvent()
if (event == "-" and sendnode == SEND_NODE and dest == DEST_NODE

ãÑand size >= 1000 and flow == FLOW):
count += 1

else:
nstrace.skipline()

print ("packet count:", count);

link_count(sys.argv[1])

For completeness, here is the same program implemented in the Awk scripting language.

BEGIN {count=0; SEND_NODE=1; DEST_NODE=2; FLOW=0}
$1 == "-" { if ($3 == SEND_NODE && $4 == DEST_NODE && $6 >= 1000 && $8 ==

ãÑFLOW) {
count++;

}
}

END {print count;}

530 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

16.2.6.2 ns-2 command-line parameters

Experiments where we vary one parameter, eg queue-limit, are facilitated by passing in the parameter
value on the command line. For example, in the basic1.tcl file we can include the following:

set queuesize $argv
...
$ns queue-limit $R $B $queuesize

Then, from the command line, we can run this as follows:

ns basic1.tcl 5

If we want to run this simulation with parameters ranging from 0 to 10, a simple shell script is

queue=0
while [$queue -le 10]
do

ns basic1.tcl $queue
queue=$(expr $queue + 1)

done

If we want to pass multiple parameters on the command line, we use lindex to separate out arguments
from the $argv string; the first argument is at position 0 (in bash and awk scripts, by comparison, the
first argument is $1). For two optional parameters, the first representing queuesize and the second
representing endtime, we would use

if { $argc >= 1 } {
set queuesize [expr [lindex $argv 0]]

}
if { $argc >= 2 } {

set endtime [expr [lindex $argv 1]]
}

16.2.6.3 Queue utilization

In our previous experiment we examined link utilization when queue-limit was smaller than the
bandwidthˆdelay product. Now suppose queue-limit is greater than the bandwidthˆdelay product,
so the bottleneck link is essentially never idle. We calculated in 13.7 TCP and Bottleneck Link Utilization
what we might expect as an average queue utilization. If the transit capacity is 30 packets and the queue
capacity is 40 then cwndmax would be 70 and cwndmin would be 35; the queue utilization would vary from
70-30 = 40 down to 35-30 = 5, averaging around (40+5)/2 = 22.5.

Let us run this as an ns-2 experiment. As before, we set the A–R and R–B propagation delays to 50 ms
and 100 ms respectively, making the RTTnoLoad 300 ms, for about 30 packets in transit. We also set the
queue-limit value to 40. The simulation runs for 1000 seconds, enough, as it turns out, for about 50
TCP sawteeth.

At the end of the run, the following Python script maintains a running time-weighted average of the queue
size. Because the queue capacity exceeds the total transit capacity, the queue is seldom empty.

16.2 A Single TCP Sender 531

An Introduction to Computer Networks, Release 1.9.21

#!/usr/bin/python3
import nstrace
import sys

def queuesize(filename):
QUEUE_NODE = 1
nstrace.nsopen(filename)
sum = 0.0
size= 0
prevtime=0
while not nstrace.isEOF():

if nstrace.isEvent(): # counting regular trace lines
(event, time, sendnode, dnode, proto, dummy, dummy, flow, dummy,

ãÑdummy, seqno, pktid) = nstrace.getEvent()
if (sendnode != QUEUE_NODE): continue
if (event == "r"): continue
sum += size * (time -prevtime)
prevtime = time
if (event=='d'): size -= 1
elif (event=="-"): size -= 1
elif (event=="+"): size += 1

else:
nstrace.skipline()

print("avg queue=", sum/time)

queuesize(sys.argv[1])

The answer we get for the average queue size is about 23.76, which is in good agreement with our theoretical
value of 22.5.

16.2.6.4 Packets that are delivered twice

Every dropped TCP packet is ultimately transmitted twice, but classical TCP theory suggests that relatively
few packets are actually delivered twice. This is pretty much true once the TCP sawtooth phase is reached,
but can fail rather badly during slow start.

The following Python script will count packets delivered two or more times. It uses a dictionary, COUNTS,
which is indexed by sequence numbers.

#!/usr/bin/python3
import nstrace
import sys

def dup_counter(filename):
SEND_NODE = 1
DEST_NODE = 2
FLOW = 0
count = 0
COUNTS = {}
nstrace.nsopen(filename)

532 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

while not nstrace.isEOF():
if nstrace.isEvent():

(event, time, sendnode, dest, dummy, size, dummy, flow, dummy,
ãÑdummy, seqno, dummy) = nstrace.getEvent()

if (event == "r" and dest == DEST_NODE and size >= 1000 and flow
ãÑ== FLOW):

if (seqno in COUNTS):
COUNTS[seqno] += 1

else:
COUNTS[seqno] = 1

else:
nstrace.skipline()

for seqno in sorted(COUNTS.keys()):
if (COUNTS[seqno] > 1): print(seqno, COUNTS[seqno])

dup_counter(sys.argv[1])

When run on the basic1.tr file above, it finds 13 packets delivered twice, with TCP sequence numbers 43,
45, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61 and 62. These are sent the second time between T=1.437824 and
T=1.952752; the first transmissions are at times between T=0.83536 and T=1.046592. If we look at our
cwnd-v-time graph above, we see that these first transmissions occurred during the gap between the end of
the unbounded slow-start phase and the beginning of threshold-slow-start leading up to the TCP sawtooth.
Slow start, in other words, is messy.

16.2.6.5 Loss rate versus cwnd: part 1

If we run the basic1.tcl simulation above until time 1000, there are 94915 packets acknowledged and 512
loss events. This yields a loss rate of p = 512/94915 = 0.00539, and so by the formula of 14.5 TCP Reno
loss rate versus cwnd we should expect the average cwnd to be about 1.225/?p » 16.7. The true average
cwnd is the number of packets sent divided by the elapsed time in RTTs, but as RTTs are not constant here
(they get significantly longer as the queue fills), we turn to an approximation. From 16.2.1 Graph of cwnd
v time we saw that the peak cwnd was 20.935; the mean cwnd should thus be about 3/4 of this, or 15.7.
While not perfect, agreement here is quite reasonable.

See also 16.4.3 Loss rate versus cwnd: part 2.

16.3 Two TCP Senders Competing

Now let us create a simulation in which two TCP Reno senders compete for the bottleneck link, and see how
fair an allocation each gets. According to the analysis in 14.3 TCP Fairness with Synchronized Losses,
this is really a test of the synchronized-loss hypothesis, and so we will also examine the ns-2 trace files for
losses and loss responses. We will start with “classic” TCP Reno, but eventually also consider SACK TCP.
Note that, in terms of packet losses in the immediate vicinity of any one queue-filling event, we can expect
TCP Reno and SACK TCP to behave identically; they differ only in how they respond to losses.

The initial topology will be as follows (though we will very soon raise the bandwidths tenfold, though not
the propagation delays):

16.3 Two TCP Senders Competing 533

An Introduction to Computer Networks, Release 1.9.21

A

B

R D
800 Kbps = 100 pkt/s

8 Mbps

10 ms delay

8 Mbps

varying delay

100 ms delay

Broadly speaking, the simulations here will demonstrate that the longer-delay B–D connection receives less
bandwidth than the A–D connection, but not quite so much less as was predicted in 14.3 TCP Fairness with
Synchronized Losses. The synchronized-loss hypothesis increasingly fails as the B–R delay increases, in that
the B–D connection begins to escape some of the packet-loss events experienced by the A–D connection.

We admit at the outset that we will not, however, obtain a quantitative answer to the question of bandwidth
allocation. In fact, as we shall see, we run into some difficulties even formulating the proper question. In
the course of developing the simulation, we encounter several potential problems:

1. The two senders can become synchronized in an unfortunate manner

2. When we resolve the previous issue by introducing randomness, the bandwidth division is sensitive
to the method selected

3. As R’s queue fills, the RTT may increase significantly, thus undermining RTT-based measurements
(16.3.9 The RTT Problem)

4. Transient queue spikes may introduce unexpected losses

5. Coarse timeouts may introduce additional unexpected losses

The experiments and analyses below divide into two broad categories. In the first category, we make use
only of the final goodput measurements for the two connections. We consider the first two points of the
list above in 16.3.4 Phase Effects, and the third in 16.3.9 The RTT Problem and 16.3.10 Raising the
Bandwidth. The first category concludes with some simple loss modeling in 16.3.10.1 Possible models.

In the second category, beginning at 16.4 TCP Loss Events and Synchronized Losses, we make use of
the ns-2 tracefiles to extract information about packet losses and the extent to which they are synchronized.
Examples related to points four and five of the list above are presented in 16.4.1 Some TCP Reno cwnd
graphs. The second category concludes with 16.4.2 SACK TCP and Avoiding Loss Anomalies, in which
we demonstrate that SACK TCP is, in terms of loss and recovery, much better behaved than TCP Reno.

16.3.1 The Tcl Script

Below is a simplified version of the ns-2 script for our simulation; the full version is at basic2.tcl. The most
important variable is the additional one-way delay on the B–R link, here called delayB. Other defined
variables are queuesize (for R’s queue_limit), bottleneckBW (for the R–D bandwidth), endtime
(the length of the simulation), and overhead (for introducing some small degree of randomization, below).
As with basic1.tcl, we set the packet size to 1000 bytes total (960 bytes TCP portion), and increase the
advertised window size to 65000 (so it is never the limiting factor).

534 16 Network Simulations: ns-2

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/basic2.tcl

An Introduction to Computer Networks, Release 1.9.21

We have made the delayB value be a command-line parameter to the Tcl file, so we can easily experi-
ment with changing it (in the full version linked to above, overhead, bottleneckBW, endtime and
queuesize are also parameters). The one-way propagation delay for the A–D path is 10 ms + 100 ms =
110 ms, making the RTT 220 ms plus the bandwidth delays. At the bandwidths above, the bandwidth delay
for data packets adds an additional 11 ms; ACKs contribute an almost-negligible 0.44 ms. We return to the
script variable RTTNL, intended to approximate RTTnoLoad, below.

With endtime=300, the theoretical maximum number of data packets that can be delivered is 30,000. If
bottleneckBW = 0.8 Mbps (100 packets/sec) then the R–D link can hold ten RÝÑD data packets in
transit, plus another ten DÝÑR ACKs.

In the finish() procedure we have added code to print out the number of packets received by D for each
connection; we could also extract this from the trace file.

To gain better control over printing, we have used the format command, which works something like C’s
sprintf. It returns a string containing spliced-in numeric values replacing the corresponding %d or %f
tokens in the control string; this returned string can then be printed with puts.

The full version linked to above also contains some nam directives, support for command-line arguments,
and arranges to name any tracefiles with the same base filename as the Tcl file.

NS basic2.tcl example of two TCPs competing on the same link.

Create a simulator object
set ns [new Simulator]

#Open the trace file
set trace [open basic2.tr w]
$ns trace-all $trace

############## some globals (modify as desired) ##############

queuesize on bottleneck link
set queuesize 20
default run time, in seconds
set endtime 300
"overhead" of D>0 introduces a uniformly randomized delay d, 0ďdďD; 0

ãÑturns it off.
set overhead 0
delay on the A--R link, in ms
set basedelay 10
ADDITIONAL delay on the B--R link, in ms
set delayB 0
bandwidth on the bottleneck link, either 0.8 or 8.0 Mbit
set bottleneckBW 0.8
estimated no-load RTT for the first flow, in ms
set RTTNL 220

############## arrange for output ##############

set outstr [format "parameters: delayB=%f overhead=%f bottleneckBW=%f"
ãÑ$delayB $overhead $bottleneckBW]
puts stdout $outstr

16.3 Two TCP Senders Competing 535

An Introduction to Computer Networks, Release 1.9.21

Define a 'finish' procedure that prints out progress for each connection
proc finish {} {

global ns tcp0 tcp1 end0 end1 queuesize trace delayB overhead RTTNL
set ack0 [$tcp0 set ack_]
set ack1 [$tcp1 set ack_]
counts of packets *received*
set recv0 [expr round ([$end0 set bytes_] / 1000.0)]
set recv1 [expr round ([$end1 set bytes_] / 1000.0)]
see numbers below in topology-creation section
set rttratio [expr (2.0*$delayB+$RTTNL)/$RTTNL]
actual ratio of throughputs fast/slow; the 1.0 forces floating point
set actualratio [expr 1.0*$recv0/$recv1]
theoretical ratio fast/slow with squaring; see text for discussion

ãÑof ratio1 and ratio2
set rttratio2 [expr $rttratio*$rttratio]
set ratio1 [expr $actualratio/$rttratio]
set ratio2 [expr $actualratio/$rttratio2]
set outstr [format "%f %f %d %d %f %f %f %f %f" $delayB $overhead

ãÑ$recv0 $recv1 $rttratio $rttratio2 $actualratio $ratio1 $ratio2]
puts stdout $outstr
$ns flush-trace
close $trace
exit 0

}

############### create network topology ##############

A
\
\
R---D (Destination)
/
/
B

#Create four nodes
set A [$ns node]
set B [$ns node]
set R [$ns node]
set D [$ns node]

set fastbw [expr $bottleneckBW * 10]
#Create links between the nodes; propdelay on B--R link is 10+$delayB ms
$ns duplex-link $A $R ${fastbw}Mb ${basedelay}ms DropTail
$ns duplex-link $B $R ${fastbw}Mb [expr $basedelay + $delayB]ms DropTail
this last link is the bottleneck; 1000 bytes at 0.80Mbps => 10 ms/packet
A--D one-way delay is thus 110 ms prop + 11 ms bandwidth
the values 0.8Mb, 100ms are from Floyd & Jacobson

$ns duplex-link $R $D ${bottleneckBW}Mb 100ms DropTail

$ns queue-limit $R $D $queuesize

536 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

############## create and connect TCP agents, and start ##############

Agent/TCP set window_ 65000
Agent/TCP set packetSize_ 960
Agent/TCP set overhead_ $overhead

#Create a TCP agent and attach it to node A, the delayed path
set tcp0 [new Agent/TCP/Reno]
$tcp0 set class_ 0
set the flowid here, used as field 8 in the trace
$tcp0 set fid_ 0
$tcp0 attach $trace
$tcp0 tracevar cwnd_
$tcp0 tracevar ack_
$ns attach-agent $A $tcp0

set tcp1 [new Agent/TCP/Reno]
$tcp1 set class_ 1
$tcp1 set fid_ 1
$tcp1 attach $trace
$tcp1 tracevar cwnd_
$tcp1 tracevar ack_
$ns attach-agent $B $tcp1

set end0 [new Agent/TCPSink]
$ns attach-agent $D $end0

set end1 [new Agent/TCPSink]
$ns attach-agent $D $end1

#Connect the traffic source with the traffic sink
$ns connect $tcp0 $end0
$ns connect $tcp1 $end1

#Schedule the connection data flow
set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0

set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1

$ns at 0.0 "$ftp0 start"
$ns at 0.0 "$ftp1 start"
$ns at $endtime "finish"

#Run the simulation
$ns run

16.3 Two TCP Senders Competing 537

An Introduction to Computer Networks, Release 1.9.21

16.3.2 Equal Delays

We first try this out by running the simulation with equal delays on both A–R and R–B. The following values
are printed out (arranged here vertically to allow annotation)

value variable meaning
0.000000 delayB Additional B–R propagation delay, compared to A–R delay
0.000000 overhead overhead; a value of 0 means this is effectively disabled
14863 recv0 Count of cumulative A–D packets received at D (that is, goodput)
14771 recv1 Count of cumulative B–D packets received at D (again, goodput)
1.000000 rttratio RTT_ratio: B–D/A–D (long/short)
1.000000 rttratio2 The square of the previous value
1.006228 actualratioActual ratio of A–D/B–D goodput, that is, 14863/14771 (note change in order

versus RTT_ratio)
1.006228 ratio1 actual_ratio/RTT_ratio
1.006228 ratio2 actual_ratio/RTT_ratio2

The one-way A–D propagation delay is 110 ms; the bandwidth delays as noted above amount to 11.44 ms,
10 ms of which is on the R–D link. This makes the A–D RTTnoLoad about 230 ms. The B–D delay is, for
the time being, the same, as delayB = 0. We set RTTNL = 220, and calculate the RTT ratio (within Tcl, in
the finish() procedure) as (2ˆdelayB + RTTNL)/RTTNL. We really should use RTTNL=230 instead of 220
here, but 220 will be closer when we later change bottleneckBW to 8.0 Mbit/sec rather than 0.8, below.
Either way, the difference is modest.

Note that the above RTT calculations are for when the queue at R is empty; when the queue contains 20
packets this adds another 200 ms to the AÝÑD and BÝÑD times (the reverse direction is unchanged). This
may make a rather large difference to the RTT ratio, and we will address it below, but does not matter yet
because the propagation delays so far are identical.

In the model of 14.3.3 TCP RTT bias we explored a model in which we expect that ratio2, above, would
be about 1.0. The final paragraph of 14.5.2 Unsynchronized TCP Losses hints at a possible model (the 𝛾=𝜆
case) in which ratio1 would be about 1.0. We will soon be in a position to test these theories experimentally.
Note that the order of B and A in the goodput and RTT ratios is reversed, to reflect the expected inverse
relationship.

In the 300-second run here, 14863+14771 = 29634 packets are sent. This means that the bottleneck link is
98.8% utilized.

In 16.4.1 Some TCP Reno cwnd graphs we will introduce a script (teeth.py) to count and analyze the
teeth of the TCP sawtooth. Applying this now, we find there are 67 loss events total, and thus 67 teeth,
and in every loss event each flow loses exactly one packet. This is remarkably exact conformance to the
synchronized-loss hypothesis of 14.3.3 TCP RTT bias. So far.

16.3.3 Unequal Delays

We now begin increasing the additional B–R delay (delayB). Some preliminary data are in the table below,
and point to a significant problem: goodput ratios in the last column here are not varying smoothly. The
value of 0 ms in the first row means that the B–R delay is equal to the A–R delay; the value of 110 ms in

538 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

the last row means that the B–D RTTnoLoad is double the A–D RTTnoLoad. The column labeled (RTT ratio)2

is the expected goodput ratio, according to the model of 14.3 TCP Fairness with Synchronized Losses; the
actual A–D/B–D goodput ratio is in the final column.

delayB RTT ratio A–D goodput B–D goodput (RTT ratio)2 goodput ratio
0 1.000 14863 14771 1.000 1.006
5 1.045 4229 24545 1.093 0.172
23 1.209 22142 6879 1.462 3.219
24 1.218 17683 9842 1.484 1.797
25 1.227 14958 13754 1.506 1.088
26 1.236 24034 5137 1.529 4.679
35 1.318 16932 11395 1.738 1.486
36 1.327 25790 3603 1.762 7.158
40 1.364 20005 8580 1.860 2.332
41 1.373 24977 4215 1.884 5.926
45 1.409 18437 10211 1.986 1.806
60 1.545 18891 9891 2.388 1.910
61 1.555 25834 3135 2.417 8.241
85 1.773 20463 8206 3.143 2.494
110 2.000 22624 5941 4.000 3.808

For a few rows, such as the first and the last, agreement between the last two columns is quite good. However,
there are some decidedly anomalous cases in between (particularly the numbers in bold). As delayB
changes from 35 to 36, the goodput ratio jumps from 1.486 to 7.158. Similar dramatic changes in goodput
appear as delayB ranges through the sets {23, 24, 25, 26}, {40, 41, 45}, and {60, 61}. These values were,
admittedly, specially chosen by trial and error to illustrate relatively discontinuous behavior of the goodput
ratio, but, still, what is going on?

16.3.4 Phase Effects

This erratic behavior in the goodput ratio in the table above turns out to be due to what are called phase
effects in [FJ92]; transmissions of the two TCP connections become precisely synchronized in some way
that involves a persistent negative bias against one of them. What is happening is that a “race condition”
occurs for the last remaining queue vacancy, and one connection consistently loses this race the majority of
the time.

16.3.4.1 Single-sender phase effects

We begin by taking a more detailed look at the bottleneck queue when no competition is involved. Consider
a single sender A using a fixed window size to send to destination B through bottleneck router R (so the
topology is A–R–B), and suppose the window size is large enough that R’s queue is not empty. For the sake
of definiteness, assume R’s bandwidth delay is 10 ms/packet; R will send packets every 10 ms, and an ACK
will arrive back at A every 10 ms, and A will transmit every 10 ms.

Now imagine that we have an output meter that reports the percentage that has been transmitted of the packet
R is currently sending; it will go from 0% to 100% in 10 ms, and then back to 0% for the next packet.

16.3 Two TCP Senders Competing 539

An Introduction to Computer Networks, Release 1.9.21

Our first observation is that at each instant when a packet from A fully arrives at R, R is always at exactly
the same point in forwarding some earlier packet on towards B; the output meter always reads the same
percentage. This percentage is called the phase of the connection, sometimes denoted 𝜑.

We can determine 𝜑 as follows. Consider the total elapsed time for the following:

• R finishes transmitting a packet and it arrives at B

• its ACK makes it back to A

• the data packet triggered by that ACK fully arrives at R

In the absence of other congestion, this R-to-R time includes no variable queuing delays, and so is constant.
The output-meter percentage above is determined by this elapsed time. If for example the R-to-R time is
83 ms, and Data[N] leaves R at T=0, then Data[N+winsize] (sent by A upon arrival of ACK[N]) will arrive
at R when R has completed sending packets up through Data[N+8] (80 ms) and is 3 ms into transmitting
Data[N+9]. We can get this last as a percentage by dividing 83 by R’s 10-ms bandwidth delay and taking
the fractional part (in this case, 30%). Because the elapsed R-to-R time here is simply RTTnoLoad minus the
bandwidth delay at R, we can also compute the phase as

𝜑 = fractional_part(RTTnoLoad ˜ (R’s bandwidth delay)).

If we ratchet up the winsize until the queue becomes full when each new packet arrives, then the phase
percentage represents the fraction of the time the queue has a vacancy. In the scenario above, if we start the
clock at T=0 when R has finished transmitting a packet, then the queue has a vacancy until T=3 when a new
packet from A arrives. The queue is then full until T=10, when R starts transmitting the next packet in its
queue.

Finally, even in the presence of competition through R, the phase of a single connection remains constant
provided there are no queuing delays along the bidirectional A–B path except at R itself, and there only in
the forward direction towards B. Other traffic sent through R can only add delay in integral multiples of R’s
bandwidth delay, and so cannot affect the A–B phase.

16.3.4.2 Two-sender phase effects

In the present simulation, we can by the remark in the previous paragraph calculate the phase for each
sender; let these be 𝜑A and 𝜑B. The significance of phase to competition is that whenever A and B send
packets that happen to arrive at R in the same 10-ms interval while R is forwarding some other packet, if the
queue has only one vacancy then the connection with the smaller phase will always win it.

As a concrete example, suppose that the respective RTTnoLoad’s of A and B are 221 and 263 ms. Then A’s
phase is 0.1 (fractional_part(221˜10)) and B’s is 0.3. The important thing is not that A’s packets take less
time, but that in the event of a near-tie A’s packet must arrive first at R. Imagine that R forwards a B packet
and then, four packets (40 ms) later, forwards an A packet. The ACKs elicited by these packets will cause
new packets to be sent by A and B; A’s packet will arrive first at R followed 2 ms later by B’s packet. Of
course, R is not likely to send an A packet four packets after every B packet, but when it does so, the arrival
order is predetermined (in A’s favor) rather than random.

Now consider what happens when a packet is dropped. If there is a single vacancy at R, and packets from
A and B arrive in a near tie as above, then it will always be B’s packet that is dropped. The occasional
packet-pair sent by A or B as part of the expansion of cwnd will be the ultimate cause of loss events, but
the phase effect has introduced a persistent degree of bias in A’s favor.

540 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

We can visualize phase effects with ns-2 by letting delayB range over, say, 0 to 50 in small increments, and
plotting the corresponding values of ratio2 (above). Classically we expect ratio2 to be close to 1.00. In the
graph below, the blue curve represents the goodput ratio; it shows a marked (though not perfect) periodicity
with period 5 ms.

The orange curve represents (RTT_ratio)2; according to 14.3 TCP Fairness with Synchronized Losses we
would expect the blue and orange curves to be about the same. When the blue curve is high, the slower B–D
connection is proportionately at an unexpected disadvantage. Seldom do phase effects work in favor of the
B–D connection, because A’s phase here is quite small (0.144, based on A’s exact RTTnoLoad of 231.44 ms).
(If we change the A–R propagation delay (basedelay) to 12 ms, making A’s phase 0.544, the blue curve
oscillates somewhat more evenly both above and below the orange curve, but still with approximately the
same amplitude.)

Recall that a 5 ms change in delayB corresponds to a 10 ms change in the A–D connection’s RTT, equal to
router R’s transmission time. What is happening here is that as the B–D connection’s RTT increases through
a range of 10 ms, it cycles through from phase-effect neutrality to phase-effect deficit and back.

16.3.5 Minimizing Phase Effects

In the real world, the kind of precise transmission synchronization that leads to phase effects is seldom
evident, though perhaps this has less to do with rarity and more with the fact that head-to-head TCP compe-
titions are difficult to observe intimately. Usually, however, there seems to be sufficient other traffic present
to disrupt the synchronization. How can we break this synchronization in simulations? One way or another,
we must inject some degree of randomization into the bulk TCP flows.

Techniques introduced in [FJ92] to break synchronization in ns-2 simulations were random “telnet” traffic
– involving smaller packets sent according to a given random distribution – and the use of random-drop
queues (not included in the standard ns-2 distribution). The second, of course, means we are no longer
simulating FIFO queues.

A third way of addressing phase effects is to make use of the ns-2 overhead variable, which introduces
some modest randomization in packet-departure times at the TCP sender. Because this technique is simpler,

16.3 Two TCP Senders Competing 541

An Introduction to Computer Networks, Release 1.9.21

we will start with it. One difference between the use of overhead and telnet traffic is that the latter has
the effect of introducing delays at all nodes of the network that carry the traffic, not just at the TCP sources.

16.3.6 Phase Effects and overhead

For our first attempt at introducing phase-effect-avoiding randomization in the competing TCP flows, we will
start with ns-2’s TCP overhead attribute. This is equal to 0 by default and is measured in units of seconds.
If overhead > 0, then the TCP source introduces a uniformly distributed random delay of between 0 and
overhead seconds whenever an ACK arrives and the source is allowed to send a new packet. Because
the distribution is uniform, the average delay so introduced is thus overhead/2. To introduce an average
delay of 10 ms, therefore, one sets overhead = 0.02. Packets are always sent in order; if packet 2 is
assigned a small overhead delay and packet 1 a large overhead delay, then packet 2 waits until packet
1 has been sent. For this reason, it is a good idea to keep the average overhead delay no more than the
average packet interval (here 10 ms).

The following graph shows four curves representing overhead values of 0, 0.005, 0.01 and 0.02 (that is,
5 ms, 10 ms and 20 ms). For each curve, ratio1 (not the actual goodput ratio and not ratio2) is plotted as
a function of delayB as the latter ranges from 25 to 55 ms. The simulations run for 300 seconds, and
bottleneckBW = 0.8. (We will return to the choice of ratio1 here in 16.3.9 The RTT Problem; the
corresponding ratio2 graph is however quite similar, at least in terms of oscillatory behavior.)

The dark-blue curve for overhead = 0 is wildly erratic due to phase effects; the light-blue curve for
overhead = 0.005 has about half the oscillation. Even the light-green overhead = 0.01 curve exhibits
some wiggling; it is not until overhead = 0.02 for the darker green curve that the graph really settles
down. We conclude that the latter two values for overhead are quite effective at mitigating phase effects.

One crude way to quantify the degree of graph oscillation is by calculating the mean deviation; the respective
deviation values for the curves above are are 1.286, 0.638, 0.136 and 0.090.

Recall that the time to send one packet on the bottleneck link is 0.01 seconds, and that the average delay
introduced by overhead d is d/2; thus, when overhead is 0.02 each connection would, if acting alone,
have an average sender delay equal to the bottleneck-link delay (though overhead delay is like propagation
delay, and so a high overhead will not prevent queue buildup).

542 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

Compared to the 10-ms-per-packet R–D transmission time, average delays of 5 and 10 ms per flow
(overhead of 0.01 and 0.02 respectively) may not seem disproportionate. They are, however, quite large
when compared to the 1.0 ms bandwidth delay on the A–R and B–R legs. Generally, if the goal is to re-
duce phase effects then overhead should be comparable to the bottleneck-router transmission rate. Using
overhead > 0 does increase the RTT, but in this case not considerably.

We conclude that using overhead to break the synchronization that leads to phase effects appears to have
worked, at least in the sense that with the value of overhead = 0.02 the goodput ratio increases more-or-
less monotonically with increasing delayB.

The problem with using overhead this way is that it does not correspond to any physical network delay
or other phenomenon. Its use here represents a decidedly ad hoc strategy to introduce enough randomization
that phase effects disappear. That said, it does seem to produce results similar to those obtained by injecting
random “telnet” traffic, introduced in the following section.

16.3.7 Phase Effects and telnet traffic

We can also introduce anti-phase-effect randomization by making use of the ns-2 telnet application to gener-
ate low-to-moderate levels of random traffic. This requires an additional two Agent/TCP objects, represent-
ing A–D and B–D telnet connections, to carry the traffic; this telnet traffic will then introduce slight delays
in the corresponding bulk (ftp) traffic. The size of the telnet packets sent is determined by the TCP agents’
usual packetSize_ attribute.

For each telnet connection we create an Application/Telnet object and set its attribute interval_; in
the script fragment below this is set to tninterval. This represents the average packet spacing in seconds;
transmissions are then scheduled according to an exponential random distribution with interval_ as its
mean. We remark that “real” telnet terminal-login traffic seldom if ever follows an exponential random
distribution, though this is not necessarily a concern as there are other common traffic patterns (eg web
traffic or database traffic) that fit this model better.

Actual (simulated) transmissions, however, are also constrained by the telnet connection’s sliding window.
It is quite possible that the telnet application releases a new packet for transmission, but it cannot yet be sent
because the telnet TCP connection’s sliding window is momentarily frozen, waiting for the next ACK. If
the telnet packets encounter congestion and the interval_ is small enough then the sender may have a
backlog of telnet packets in its outbound queue that are waiting for the sliding window to advance enough
to permit their departure.

set tcp10 [new Agent/TCP]
$ns attach-agent $A $tcp10
set tcp11 [new Agent/TCP]
$ns attach-agent $B $tcp11

set end10 [new Agent/TCPSink]
set end11 [new Agent/TCPSink]
$ns attach-agent $D $end10
$ns attach-agent $D $end11

set telnet0 [new Application/Telnet]
set telnet1 [new Application/Telnet]

set tninterval 0.001 ;# see text for discussion

16.3 Two TCP Senders Competing 543

An Introduction to Computer Networks, Release 1.9.21

$telnet0 set interval_ $tninterval
$tcp10 set packetSize_ 210

$telnet1 set interval_ $tninterval
$tcp11 set packetSize_ 210

$telnet0 attach-agent $tcp10
$telnet1 attach-agent $tcp11

“Real” telnet packets, besides not necessarily being exponentially distributed, are most often quite small.
In the simulations here we use an uncharacteristically large size of 210 bytes, leading to a total packet
size of 250 bytes after the 40-byte simulated TCP/IP header is attached. We denote the latter number by
actualSize. See exercise 9.

The bandwidth theoretically consumed by the telnet connection is simply actualSize/$tninterval;
the actual bandwidth may be lower if the telnet packets are encountering congestion as noted above. It is
convenient to define an attribute tndensity that denotes the fraction of the R–D link’s bandwith that the
Telnet application will be allowed to use, eg 2%. In this case we have

$tninterval = actualSize / ($tndensity * $bottleneckBW)

For example, if actualSize = 250 bytes, and $bottleneckBW corresponds to 1000 bytes every 10 ms,
then the telnet connection could saturate the link if its packets were spaced 2.5 ms apart. However, if we
want the telnet connection to use up to 5% of the bottleneck link, then $tninterval should be 2.5/0.05
= 50 ms (converted for ns-2 to 0.05 sec).

The first question we need to address is whether telnet traffic can sufficiently dampen phase-effect oscilla-
tions, and, if so, at what densities. The following graph is the telnet version of that above in 16.3.6 Phase
Effects and overhead; bottleneckBW is still 0.8 but the simulations now run for 3000 seconds. The telnet
total packet size is 250 bytes. The given telnet density percentages apply to each of the A–D and B–D telnet
connections; the total telnet density is thus double the value shown.

544 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

As we hoped, the oscillation does indeed substantially flatten out as the telnet density increases from 0 (dark
blue) to 1% (bright green); the mean deviation falls from 1.36 to 0.084. So far the use of telnet is very
promising.

Unfortunately, if we continue to increase the telnet density past 1%, the oscillation increases again, as can
be seen in the next graph:

The first two curves, plotted in green, correspond to the “good” densities of the previous graph, with the
vertical axis stretched by a factor of two. As densities increase, however, phase-effect oscillation returns,
and the curves converge towards the heavier red curve at the top.

What appears to be happening is that, beyond a density of 1% or so, the limiting factor in telnet transmission
becomes the telnet sliding window rather than the random traffic generation, as mentioned in the third
paragraph of this section. Once the sliding window becomes the limiting factor on telnet packet transmission,
the telnet connections behave much like – and become synchronized with – their corresponding bulk-traffic
ftp connections. At that point their ability to moderate phase effects is greatly diminished, as actual packet

16.3 Two TCP Senders Competing 545

An Introduction to Computer Networks, Release 1.9.21

departures no longer have anything to do with the exponential random distribution that generates the packets.

Despite this last issue, the fact that small levels of random traffic can lead to large reductions in phase effects
can be taken as evidence that, in the real world, where other traffic sources are ubiquitous, phase effects will
seldom be a problem.

16.3.8 overhead versus telnet

The next step is to compare the effect on the original bulk-traffic flows of overhead randomization and
telnet randomization. The graphs below plot ratio1 as a function of delayB as the latter ranges from 0 to
400 in increments of 5. The bottleneckBW is 0.8 Mbps, the queue capacity at R is 20, and the run-time
is 3000 seconds.

The four reddish-hued curves represent the result of using telnet with a packet size of 250, at densities
ranging from 0.5% to 5%. These may be compared with the three green curves representing the use of
overhead, with values 0.01, 0.015 and 0.02. While telnet with a density of 1% is in excellent agreement
with the use of overhead, it is also apparent that smaller telnet densities give a larger ratio1 while larger
densities give a smaller. This raises the awkward possibility that the exact mechanism by which we introduce
randomization may have a material effect on the fairness ratios that we ultimately observe. There is no
“right” answer here; different randomization sources or levels may simply lead to differing fairness results.

The advantage of using telnet for randomization is that it represents an actual network phenomenon, unlike
overhead. The drawback to using telnet is that the effect on the bulk-traffic goodput ratio is, as the graph
above shows, somewhat sensitive to the exact value chosen for the telnet density.

In the remainder of this chapter, we will continue to use the overhead model, for simplicity, though we
do not claim this is a universally appropriate approach.

546 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

16.3.9 The RTT Problem

In all three of the preceding graphs (16.3.6 Phase Effects and overhead, 16.3.7 Phase Effects and telnet
traffic and 16.3.8 overhead versus telnet), the green curves on the graphs appear to show that, once sufficient
randomization has been introduced to disrupt phase effects, ratio1 converges to 1.0. This, however, is in fact
an artifact, due to the second flaw in our simulated network: RTT is not very constant. While RTTnoLoad
for the A–D link is about 220 ms, queuing delays at R (with queuesize = 20) can almost double that by
adding up to 20 ˆ 10 ms = 200 ms. This means that the computed values for RTTratio are too large, and
the computed values for ratio1 are thus too small. While one approach to address this problem is to keep
careful track of RTTactual, a simpler strategy is to create a simulated network in which the queuing delay is
small compared to the propagation delay and so the RTT is relatively constant. We turn to this next.

16.3.10 Raising the Bandwidth

In modern high-bandwidth networks, queuing delays tend to be small compared to the propagation delay;
see 13.7 TCP and Bottleneck Link Utilization. To simulate such a network here, we simply increase the
bandwidth of all the links tenfold, while leaving the existing propagation delays the same. We achieve this by
setting bottleneckBW = 8.0 instead of 0.8. This makes the A–D RTTnoLoad equal to about 221 ms; queuing
delays can now amount to at most an additional 20 ms. The value of overhead also needs to be scaled
down by a factor of 10, to 0.002 sec, to reflect an average delay in the same range as the bottleneck-link
packet transmission time.

Here is a graph of results for bottleneckBW = 8.0, time = 3000, overhead = 0.002 and queuesize = 20.
We still use 220 ms as the estimated RTT, though the actual RTT will range from 221 ms to 241 ms. The
delayB parameter runs from 0 to 400 in steps of 1.0.

The first observation to make is that ratio1 is generally too large and ratio2 is generally too small, when
compared to 1.0. In other words, neither is an especially good fit. This appears to be a fairly general
phenomenon, in both simulation and the real world: TCP Reno throughput ratios tend to be somewhere
between the corresponding RTT ratio and the square of the RTT ratio.

The synchronized-loss hypothesis led to the prediction (14.3 TCP Fairness with Synchronized Losses) that

16.3 Two TCP Senders Competing 547

An Introduction to Computer Networks, Release 1.9.21

the goodput ratio would be close to RTT_ratio2. As this conclusion appears to fail, the hypothesis too must
fail, at least to a degree: it must be the case that not all losses are shared.

Throughout the graph we can observe a fair amount of “noise” variation. Most of this variation appears
unrelated to the 5 ms period we would expect for phase effects (as in the graph at 16.3.4.2 Two-sender
phase effects). However, it is important to increment delayB in amounts much smaller than 5 ms in order
to rule this out, hence the increment of 1.0 here.

There are strong peaks at delayB = 110, 220 and 330. These delayB values correspond to increasing
the RTT by integral multiples 2, 3 and 4 respectively, and the peaks are presumably related to some kind of
higher-level phase effect.

16.3.10.1 Possible models

If the synchronized-loss fairness model fails, with what do we replace it? Here are two ad hoc options. First,
we can try to fit a curve of the form

goodput_ratio = Kˆ(RTT_ratio)𝛼

to the above data. If we do this, the value for the exponent 𝛼 comes out to about 1.58, sort of a “compromise”
between ratio2 (𝛼=2) and ratio1 (𝛼=1), although the value of the exponent here is somewhat sensitive to the
details of the simulation.

An entirely different curve to fit to the data, based on the appearance in the graph that ratio2 » 0.5 past 120,
is

goodput_ratio = 1/2 ˆ (RTT_ratio)2

We do not, however, possess for either of these formulas a model for the relative losses in the two primary
TCP connections that is precise enough to offer an explanation of the formula (though see the final paragraph
of 16.4.2.2 Relative loss rates).

16.3.10.2 Higher bandwidth and link utilization

One consequence of raising the bottleneck bandwidth is that total link utilization drops, for delayB = 0, to
80% of the bandwidth of the bottleneck link, from 98%; this is in keeping with the analysis of 13.7 TCP
and Bottleneck Link Utilization. The transit capacity is 220 packets and another 20 can be in the queue at
R; thus an ideal sawtooth would oscillate between 120 and 240 packets. We do have two senders here, but
when delayB = 0 most losses are synchronized, meaning the two together behave like one sender with an
additive-increase value of 2. As cwnd varies linearly from 120 to 240, it spends 5/6 of the time below the
transit capacity of 220 packets – during which period the average cwnd is (120+220)/2 = 170 – and 1/6 of
the time with the path 100% utilized; the weighted average estimating total goodput is thus (5/6)ˆ170/220
+ (1/6)ˆ1 = 81%.

When delayB = 400, combined TCP Reno goodput falls to about 51% of the bandwidth of the bottleneck
link. This low utilization, however, is indeed related to loss and timeouts; the corresponding combined good-
put percentage for SACK TCP (which as we shall see in 16.4.2 SACK TCP and Avoiding Loss Anomalies
is much better behaved) is 68%.

548 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

16.4 TCP Loss Events and Synchronized Losses

If the synchronized-loss model is not entirely accurate, as we concluded from the graph above, what does
happen with packet losses when the queue fills?

At this point we shift focus from analyzing goodput ratios to analyzing the underlying loss events, using the
ns-2 tracefile. We will look at the synchronization of loss events between different connections and at how
many individual packet losses may be involved in a single TCP loss response.

One of the conclusions we will reach is that TCP Reno’s response to queue overflows in the face of competi-
tion is often quite messy, versus the single-loss behavior in the absence of competition as described above in
16.2.3 Single Losses. If we are trying to come up with a packet-loss model to replace the synchronized-loss
hypothesis, it turns out that we would do better to switch to SACK TCP, though use of SACK TCP will not
change the goodput ratios much at all. (The fact that Selective ACKs are nearly universal in the real world
is another good reason to enable them here.)

Packets are dropped when the queue fills. It may be the case that only a single packet is dropped; it may
be the case that multiple packets are dropped from each of multiple connections. We will refer to the set of
packets dropped as a drop cluster. After a packet is dropped, TCP Reno discovers this just over one RTT
after it was sent, through Fast Retransmit, and then responds by halving cwnd, through Fast Recovery.

TCP Reno retransmits only one lost packet per RTT; TCP NewReno does the same but SACK TCP may
retransmit multiple lost packets together. If enough packets were lost from a TCP Reno/NewReno connec-
tion, not all of them may be retransmitted by the point the retransmission-timeout timer expires (typically
1-2 seconds), resulting in a coarse timeout. At that point, TCP abandons its Fast-Recovery process, even if
it had been progressing steadily.

Eventually the TCP senders that have experienced packet loss reduce their cwnd, and thus the queue uti-
lization drops. At that point we would classically not expect more losses until the senders involved have had
time to grow their cwnds through the additive-increase process to the point of again filling the queue. As
we shall see in 16.4.1.3 Transient queue peaks, however, this classical expectation is not entirely correct.

It is possible that the packet losses associated with one full-queue period are spread out over sufficient time
(more than one RTT, at a minimum) that TCP Reno responds to them separately and halves cwnd more than
once in rapid succession. We will refer to this as a loss-response cluster, or sometimes as a tooth cluster.

In the ns-2 simulator, counting individual lost packets and TCP loss responses is straightforward enough.
For TCP Reno, there are only two kinds of loss responses: Fast Recovery, in which cwnd is halved, and
coarse timeout, in which cwnd is set to 1.

Counting clusters, however, is more subjective; we need to decide when two drops or responses are close
enough to one another that they should be counted as part of the same cluster. We use the notion of gran-
ularity here: two or more losses separated by less time than the granularity time interval are counted as a
single event. We can also use granularity to decide when two loss responses in different connections are to
be considered parts of the same event, or to tie loss responses to packet losses.

The appropriate length of the granularity interval is not as clear-cut as might be hoped. In some cases a
couple RTTs may be sufficient, but note that the RTTnoLoad of the B–D connection above ranges from 0.22
sec to over 1.0 sec as delayB increases from 0 to 400 ms. In order to cover coarse timeouts, a granularity
of from two to three seconds often seems to work well for packet drops.

If we are trying to count losses to estimate the loss rate as in the formula cwnd = 1.225/?p as in 14.5 TCP

16.4 TCP Loss Events and Synchronized Losses 549

An Introduction to Computer Networks, Release 1.9.21

Reno loss rate versus cwnd, then we should count every loss response separately; the argument in 14.5 TCP
Reno loss rate versus cwnd depended on counting all loss responses. The difference between one fast-
recovery response and two in rapid succession is that in the latter case cwnd is halved twice, to about a
quarter of its original value.

However, if we are interested in whether or not losses between two connections are synchronized, we need
again to make use of granularity to make sure two “close” losses are counted as one. In this setting, a
granularity of one to two seconds is often sufficient.

16.4.1 Some TCP Reno cwnd graphs

We next turn to some examples of actual TCP behavior, and present a few hopefully representative cwnd
graphs. In each figure, the red line represents the longer-path (B–D) flow and the green line represents the
shorter (A–D) flow. The graphs are of our usual simulation with bottleneckBW = 8.0 and overhead
= 0.002, and run for 300 seconds.

ns-2 sensitivity

Some of the graphs here were prepared with an earlier version of the basic2.tcl simulation script above in
which the nodes A and B were reversed, which means that packet-arrival ties at R may be resolved in a
different order. That is enough sometimes to lead to noticeably different sets of packet losses.

While the immediate goal is to illuminate some of the above loss-clustering issues above, the graphs serve
as well to illustrate the general behavior of TCP Reno competition and its variability. We will also use one
of the graphs to explore the idea of transient queue spikes.

In each case we can count teeth visually or via a Python script; see 16.4.2.1 Counting teeth in Python. In
the latter case we must use an appropriate granularity interval (eg 2.0 seconds) if we want the count to agree
even approximately with the visual count. Many times the tooth count is quite dependent on the exact value
of the granularity.

16.4.1.1 delayB = 0

550 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

We start with the equal-RTTs graph, that is, delayB = 0. In this figure the teeth (loss events) are almost
completely synchronized; the only unsynchronized loss events are the green flow’s losses at T=100 and
at about T=205. The two cwnd graphs, though, do not exactly move in lockstep. The red flow has three
coarse timeouts (where cwnd drops to 0), at about T=30, T=125 and T=145; the green flow has seven coarse
timeouts.

The red graph gets a little ahead of the green in the interval 50-100, despite synchronized losses there. Just
before T=50 the green graph has a fast-recovery response followed by a coarse timeout; the next three green
losses also involve coarse timeouts. Despite perfect loss synchronization in the range from T=40 to T=90,
the green graph ends up set back for a while because its three loss events all involve coarse timeouts while
none of the red graph’s do.

16.4.1.2 delayB = 25

In this delayB = 25 graph, respective packet losses for the red and green flows are marked along the top,
and the cwnd graphs are superimposed over a graph of the averaged queue utilization in gold. The time
scale for queue-utilization averaging is about one RTT here. The queue graph is scaled vertically (by a
factor of 8) so the queue values (maximum 20) are numerically comparable to the cwnd values (the transit
capacity is about 230).

There is one large red tooth from about T=40 to T=90 that corresponds to three green teeth; from about
T=220 to T=275 there is one red tooth corresponding to two green teeth. Aside from these two points,
representing three isolated green-only losses, the red and green teeth appear quite well synchronized.

We also see evidence of loss-response clusters. At around T=143 the large green tooth peaks; halfway
down there is a little notch ending at T=145 that represents a fast-recovery loss event interpreted by TCP
as distinct. There is actually a third event, as well, representing a coarse timeout shortly after T=145, and
then a fourth fast-recovery event at about T=152 which we will examine shortly. At T»80, the red tooth has
a fast-recovery loss event followed very shortly by a coarse timeout; this happens for both flows at about
T=220.

Overall, the red path has 11 teeth if we use a tooth-counting granularity of 3 seconds, and 8 teeth if the
granularity is 5 seconds. We do not count anything that happens in the slow-start phase, generally before
T=3.0, nor do we count the “tooth” at T=300 when the graph ends.

16.4 TCP Loss Events and Synchronized Losses 551

An Introduction to Computer Networks, Release 1.9.21

The slope of the green teeth is slightly greater than the slope of the red teeth, representing the longer RTT
for the red connection.

As for the queue graph, there is perhaps more “noise” than expected, but generally the right edges of the
teeth – the TCP loss responses – are very well aligned with peaks representing the queue filling up. Recall
that the transit capacity for flow1 here is about 230 packets and the queue capacity is about 20; we therefore
in general expect the sum of the two cwnds to range between 125 and 250, and that the queue should mostly
remain empty until the sum reached 230. We can indeed confirm visually that in most cases the tooth peaks
do indeed add up to about 250.

16.4.1.3 Transient queue peaks

The loss in the graph above at around T=152 is a little peculiar; this is fully 10 seconds after the primary
tooth peak that preceded it. Let us zoom in on it a little more closely, this time without any averaging of the
queue-utilization graph.

There are two very sharp, narrow peaks in the queue graph, just before T=146 and just after T=152, each
causing packet drops for both flows. Neither peak, especially the latter one, appears to have much to do with
the gradual queue-filling and loss event at T=143. Neither one of these transient queue peaks is associated
with the sum of the cwnds approaching the maximum of about 250; at the T»146 peak the sum of the
cwnds is about 22+97 = 119 and at T»152 the sum is about 21+42 = 63. ACKs for either sender cannot
return from the destination D faster than the bottleneck-link rate of 1 packet/ms; this might suggest new
packets from senders A and B cannot arrive at R faster than a combined rate of 1 packet/ms. What is going
on?

What is happening is that each flow sends a flight of about 20 packets, spaced 1 ms apart, but by coincidence
these two flights begin arriving at R at the same moment. The runup in the queue near T=152 occurs from
T=152.100 to the first drop at T=152.121. During this 21 ms interval, a flight of 20 packets arrive from
node A (flow 0), and a flight of 19 packets arrive from node B (flow 1). These 39 packets in 21 ms means
the queue utilization at R must increase by 39-21 = 18, which is sufficient to overflow the queue as it was
not quite empty beforehand. The ACK flights that triggered these data-packet flights were indeed spaced 1
ms apart, consistent with the bottleneck link, but the ACKs (and the data-packet flights that triggered those
ACKs) passed through R at quite different times, because of the 25-ms difference in propagation delay on
the A–R and B–R links.

552 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

Transient queue peaks like this complicate any theory of relative throughput based on gradually filling the
queue. Fortunately, while transient peaks themselves are quite common (as can be seen from the zoomed
graph above), only occasionally do they amount to enough to overflow the queue. And, in the examples
created here, the majority of transient overflow peaks (including the one analyzed above) are within a few
seconds of a TCP coarse timeout response and may have some relationship to that timeout.

The existence of transient queue peaks can be used to argue that queues should always have a reasonable
“surge” capacity; or, more specifically, that bufferbloat should not be addressed simply by reducing the
queue capacity to a very small level (14.8.1 Bufferbloat). However, transient peaks are relatively infrequent.

16.4.1.4 delayB = 61

For this graph, note that the red and green loss events at T=130 are not quite aligned; the same happens at
T=45 and T=100.

We also have several multiple-loss-response clusters, at T=40, T=130, T=190 and T=230.

The queue graph gives the appearance of much more solid yellow; this is due to a large number of transient
queue spikes. Under greater magnification it becomes clear these spikes are still relatively sparse, however.
There are transient queue overflows at T=46 and T=48, following a “normal” overflow at T=44, at T=101
following a normal overflow at T=99, at T=129 and T=131 following a normal overflow at T=126, and at
T=191 following a normal overflow at T=188.

16.4 TCP Loss Events and Synchronized Losses 553

An Introduction to Computer Networks, Release 1.9.21

16.4.1.5 delayB = 120

Here we have (without the queue data) a good example of highly unsynchronized teeth: the green graph has
12 teeth, after the start, while the red graph has five. But note that the red-graph loss events are a subset of
the green loss events.

16.4.2 SACK TCP and Avoiding Loss Anomalies

Neither the coarse timeouts nor the “clustered” loss responses in the graphs above were anticipated in our
original fairness model in 14.3 TCP Fairness with Synchronized Losses. It is time to see if we can avoid
these anomalies and thus obtain behavior closer to the classic sawtooth. It turns out that SACK TCP fills the
bill quite nicely.

In the following subsection (16.4.2.1 Counting teeth in Python) is a script for counting loss responses
(“teeth”). If we run it on the tracefiles from our TCP Reno simulations with bottleneckBW = 8.0 and
time = 300, we find that, for each flow, about 30-35% of all loss responses are coarse timeouts. There is
little if any dependence on the value for delayB.

If we change the two tcp connections in the simulation to Agent/TCP/Newreno, the coarse-timeout
fraction falls by over half, to under 15%. This is presumably because TCP NewReno is better able to handle
multiple packet drops.

However, when we change the TCP connections to use SACK TCP, the situation improves dramatically.
We get essentially no coarse timeouts. Runs for 3000 seconds, typically involving 100-200 cwnd-halving
adjustments per flow, almost never have more than one coarse timeout and the majority of the time have
none.

Clusters of multiple loss responses also vanish almost entirely. In these 3000-second runs, there are usually
1-2 cases where two loss responses occur within 1.0 seconds (over 4 RTTs for the A–D connection) of one
another.

SACK TCP’s smaller number of packet losses results in a marked improvement in goodput. Total link
utilization ranges from 80.4% when delayB = 0 down to 68.3% when delayB = 400. For TCP Reno, the
corresponding utilization range is from 77.5% down to 51.5%.

554 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

Note that switching to SACK TCP is unlikely to have a significant impact on the distribution of packet
losses; SACK TCP differs from TCP Reno only in the way it responds to losses.

The SACK TCP sender is specified in ns-2 via Agent/TCP/Sack1. The receiver must also be SACK-
aware; this is done by creating the receiver with Agent/TCPSink/Sack1.

When we switch to SACK TCP, the underlying fairness situation does not change much. Here is a graph
similar to that above in 16.3.10 Raising the Bandwidth. The run time is 3000 seconds, bottleneckBW
is 8 Mbps, and delayB runs from 0 to 400 in increments of 5. (We did not use an increment of 1, as in the
similar graph in 16.3.10 Raising the Bandwidth, because we are by now confident that phase effects have
been taken care of.)

Ratio1 is shown in blue and ratio2 in green. We again try to fit curves as in 16.3.10.1 Possible models above.
For the exponential model, goodput_ratio = Kˆ(RTT_ratio)𝛼, the value for the exponent 𝛼 comes out this
time to about 1.31, noticeably below TCP Reno’s value of 1.57. There remains, however, considerable
“noise” despite the less-frequent sampling interval, and it is not clear the difference is significant. The
second model, goodput_ratio » 0.5 ˆ (RTT_ratio)2, still also appears to remain a good fit.

16.4.2.1 Counting teeth in Python

Using our earlier Python nstrace.py module, we can easily count the times cwnd_ is reduced; these events
correspond to loss responses. Anticipating more complex scenarios, we define a Python class flowstats
to hold the per-flow information, though in this particular case we know there are exactly two flows.

We count every time cwnd_ gets smaller; we also keep a count of coarse timeouts. As a practical matter,
two closely spaced reductions in cwnd_ are always due to a fast-recovery event followed about a second
later by a coarse timeout. If we want a count of each separate TCP response, we count them both.

We do not count anything until after STARTPOINT. This is to avoid counting losses related to slow start.

#!/usr/bin/python3
import nstrace
import sys

16.4 TCP Loss Events and Synchronized Losses 555

An Introduction to Computer Networks, Release 1.9.21

counts all points where cwnd_ drops.

STARTPOINT = 3.0 # wait for slow start to be done

class flowstats: # python object to hold per-flow data
def __init__(self):

self.toothcount = 0
self.prevcwnd = 0
self.CTOcount = 0 # Coarse TimeOut count

def countpeaks(filename):
global STARTPOINT
nstrace.nsopen(filename)

flow0 = flowstats()
flow1 = flowstats()

while not nstrace.isEOF():
if nstrace.isVar(): # counting cwnd_ trace lines

(time, snode, dummy, dummy, dummy, varname, cwnd) = nstrace.
ãÑgetVar()

if (time < STARTPOINT): continue
if varname != "cwnd_": continue
if snode == 0: flow=flow0
else: flow=flow1
if cwnd < flow.prevcwnd:

flow.toothcount += 1 # count this as a tooth
if cwnd == 1.0: flow.CTOcount += 1 # coarse timeout

flow.prevcwnd=cwnd
else:

nstrace.skipline()

print ("flow 0 teeth:", flow0.toothcount, "flow 1 teeth:", flow1.
ãÑtoothcount)

print ("flow 0 coarse timeouts:", flow0.CTOcount, "flow 1 coarse timeouts:
ãÑ", flow1.CTOcount)

countpeaks(sys.argv[1])

A more elaborate version of this script, set up to count clusters of teeth and clusters of drops, is available in
teeth.py. If a new cluster starts at time T, all teeth/drops by time T + granularity are part of the same cluster;
the next tooth/drop after T + granularity starts the next new cluster.

16.4.2.2 Relative loss rates

At this point we accept that the A–D/B–D throughput ratio is generally smaller than the value predicted by
the synchronized-loss hypothesis, and so the A–D flow must have additional losses to account for this. Our
next experiment is to count the loss events in each flow, and to identify the loss events common to both
flows.

The following graph demonstrates the rise in A–D losses as a percentage of the total, using SACK TCP. We

556 16 Network Simulations: ns-2

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/teeth.py

An Introduction to Computer Networks, Release 1.9.21

use the tooth-counting script from the previous section, with a granularity of 1.0 sec. With SACK TCP it is
rare for two drops in the same flow to occur close to one another; the granularity here is primarily to decide
when two teeth in the two different flows are to be counted as shared.

The blue region at the bottom represents the percentage of all loss-response events (teeth) that are shared
between both flows. The green region in the middle represents the percentage of all loss-response events
that apply only to the faster A–D connection (flow 0); these rise to 30% very quickly and remain at about
50% as delayB ranges from just over 100 up to 400. The uppermost yellow region represents the loss
events that affected only the slower B–D connection (flow 1); these are usually under 10%.

As a rough approximation, if we assume a 50/50 division between shared (blue) and flow-0-only (green)
loss events, we have losscount0/losscount1 = 𝛾 = 2. Applying the formula of 14.5.2 Unsynchronized TCP
Losses, we get bandwidth0/bandwidth1 = (RTT_ratio)2/2, or ratio2 = 1/2. While it is not at all clear this
will continue to hold as delayB continues to increase beyond 400, it does suggest a possible underlying
explanation for the second formula of 16.3.10.1 Possible models.

16.4.3 Loss rate versus cwnd: part 2

In 14.5 TCP Reno loss rate versus cwnd we argued that the average value of cwnd was about K/?p, where
the constant K was somewhere between 1.225 and 1.309. In 16.2.6.5 Loss rate versus cwnd: part 1 above
we tested this for a single connection with very regular teeth; in this section we will test this hypothesis in
the two-connections simulation. In order to avoid coarse timeouts, which were not included in the original
model, we will use SACK TCP.

Over the lifetime of a connection, the average cwnd is the number of packets sent divided by the number
of RTTs. This simple relationship is slightly complicated by the fact that the RTT varies with the fullness
of the bottleneck queue, but, as before, this effect can be minimized if we choose models where RTTnoLoad
is large compared with the queuing delay. We will as before set bottleneckBW = 8.0; at this bandwidth
queuing delays add less than 10% to RTTnoLoad. For the longer-path flow1, RTTnoLoad » 220 + 2ˆdelayB
ms. We will for both flows use the appropriate RTTnoLoad as an approximation for RTT, and will use the
number of packets acknowledged as an approximation for the number transmitted. These calculations give
the true average cwnd values in the table below. The estimated average cwnd values are from the formula

16.4 TCP Loss Events and Synchronized Losses 557

An Introduction to Computer Networks, Release 1.9.21

K/?p, where the loss ratio p is the total number of teeth, as counted earlier, divided by the number of that
flow’s packets.

With the relatively high value for bottleneckBW it takes a long simulation to get a reasonable number
of losses. The simulations used here ran 3000 seconds, long enough that each connection ended up with
100-200 losses.

Here is the data, for each flow, using K=1.225. The bold columns represent the extent by which the ratio of
the estimated average cwnd to the true average cwnd differs from unity. These error values are reasonably
close to zero, suggesting that the formula cwnd = K/?p is reasonably accurate.

delayB true avg cwnd0 est avg cwnd0 er-
ror0

true avg cwnd1 est avg cwnd1 er-
ror1

0 89.2 93.5 4.8% 87.7 92.2 5.1%
10 92.5 95.9 3.6% 95.6 99.2 3.8%
20 95.6 99.2 3.7% 98.9 101.9 3.0%
40 104.9 108.9 3.8% 103.3 105.6 2.2%
70 117.0 121.6 3.9% 101.5 102.8 1.3%
100 121.9 126.9 4.1% 104.1 104.1 0%
150 125.2 129.8 3.7% 112.7 109.7 -2.6%
200 133.0 137.5 3.4% 95.9 93.3 -2.7%
250 133.4 138.2 3.6% 81.0 78.6 -3.0%
300 134.6 138.8 3.1% 74.2 70.9 -4.4%
350 135.2 139.1 2.9% 69.8 68.4 -2.0%
400 137.2 140.6 2.5% 60.4 58.5 -3.2%

The table also clearly shows the rise in flow0’s cwnd, cwnd0, and also the fall in cwnd1.

A related observation is that the absolute number of losses – for either flow – slowly declines as delayB
increases, at least in the delayB ď 400 range we have been considering. For flow 1, with the longer RTT,
this is because the number of packets transmitted drops precipitously (almost sevenfold) while cwnd – and
therefore the loss-event probability p – stays relatively constant. For flow 0, the total number of packets
sent rises as flow 1 drops to insignificance, but only by about 50%, and the average cwnd0 (above) rises
sufficiently fast (due to flow 1’s decline) that

total_losses = total_sent ˆ p = total_sent ˆ K/cwnd2

generally does not increase.

16.5 TCP Reno versus TCP Vegas

In 15.6 TCP Vegas we described an alternative to TCP Reno known as TCP Vegas; in 15.6.1 TCP Vegas
versus TCP Reno we argued that when the capacity of a FIFO bottleneck queue was significant relative to
the transit capacity, TCP Vegas would be at a disadvantage, but competition might be fairer when the queue
capacity was small. Here we will test that theory.

In our standard model in 16.3 Two TCP Senders Competing with bottleneckBW = 8.0 Mbps, A–R and
B–R delays of 10 ms and an R–D delay of 100 ms, the transit capacity for the A–D and B–D paths is 220

558 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

packets. We will simulate a competition between TCP Reno and TCP Vegas for queue sizes from 10 to 220;
as earlier, we will use overhead = 0.002.

In our first attempt, with the default TCP Vegas parameters of 𝛼=1 and 𝛽=3, things start out rather evenly:
when the queuesize is 10 the Reno/Vegas goodput ratio is 1.02. However, by the time the queue size is 220,
the ratio has climbed almost to 22; TCP Vegas is swamped. Raising 𝛼 and 𝛽 helps a little for larger queues
(perhaps at the expense of performance at small queue sizes); here is the graph for 𝛼=3 and 𝛽=6:

The vertical axis plots the Reno-to-Vegas goodput ratio; the horizontal axis represents the queue capacity.
The performance of TCP Vegas falls off quite quickly as the queue size increases. One reason the larger 𝛼
may help is that this slightly increases the range in which TCP Vegas behaves like TCP Reno. (For a rather
different outcome using fair queuing rather than FIFO queuing, see 19.6.1 Fair Queuing and Bufferbloat.)

To create an ns-2 TCP Vegas connection and set 𝛼 and 𝛽 one uses

set tcp1 [new Agent/TCP/Vegas]
$tcp1 set v_alpha_ 3
$tcp1 set v_beta_ 6

In prior simulations we have also made the following setting, in order to make the total TCP packetsize
including headers be 1000:

Agent/TCP set packetSize_ 960

It turns out that for TCP Vegas objects in ns-2, the packetSize_ includes the headers, as can be verified
by looking at the tracefile, and so we need

16.5 TCP Reno versus TCP Vegas 559

An Introduction to Computer Networks, Release 1.9.21

Agent/TCP/Vegas set packetSize_ 1000

Here is a cwnd-v-time graph comparing TCP Reno and TCP Vegas; the queuesize is 20, bottleneckBW
is 8 Mbps, overhead is 0.002, and 𝛼=3 and 𝛽=6. The first 300 seconds are shown. During this period the
bandwidth ratio is about 1.1; it rises to close to 1.3 (all in TCP Reno’s favor) when T=1000.

The red plot represents TCP Reno and the green represents TCP Vegas. The green plot shows some spikes
that probably represent implementation artifacts.

Five to ten seconds before each sharp TCP Reno peak, TCP Vegas has its own softer peak. The RTT has
begun to rise, and TCP Vegas recognizes this and begins decrementing cwnd by 1 each RTT. At the point of
packet loss, TCP Vegas begins incrementing cwnd again. During the cwnd-decrement phase, TCP Vegas
falls behind relative to TCP Reno, but it may catch up during the subsequent increment phase because TCP
Vegas often avoids the cwnd = cwnd/2 multiplicative decrease and so often continues after a loss event
with a larger cwnd than TCP Reno.

We conclude that, for smaller bottleneck-queue sizes, TCP Vegas does indeed hold its own. Unfortunately,
in the scenario here the bottleneck-queue size has to be quite small for this to work; TCP Vegas suffers in
competition with TCP Reno even for moderate queue sizes. That said, queue capacities out there in the real
Internet tend to increase much more slowly than bandwidth, and there may be real-world situations were
TCP Vegas performs quite well when compared to TCP Reno.

16.6 Wireless Simulation

When simulating wireless networks, there are no links; all the configuration work goes into setting up the
nodes, the traffic and the wireless behavior itself. Wireless nodes have multiple wireless-specific attributes,
such as the antenna type and radio-propagation model. Nodes are also now in charge of packet queuing;
before this was the responsibility of the links. Finally, nodes have coordinates for position and, if mobility
is introduced, velocities.

For wired links the user must set the bandwidth and delay. For wireless, these are both generally provided
by the wireless model. Propagation delay is simply the distance divided by the speed of light. Bandwidth
is usually built in to the particular wireless model chosen; for the Mac/802_11 model, it is available in

560 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

attribute dataRate_ (which can be set). To find the current value, one can print [Mac/802_11 set
dataRate_]; in ns-2 version 2.35 it is 1mb.

Ad hoc wireless networks must also be configured with a routing protocol, so that paths may be found from
one node to another. We looked briefly at DSDV in 9.4.1 DSDV; there are many others.

The maximum range of a node is determined by its power level; this can be set with node-config
below (using the txPower attribute), but the default is often used. In the ns-2 source code, in file
wireless-phy.cc, the variable Pt_ – for transmitter power – is declared; the default value of
0.28183815 translates to a physical range of 250 meters using the appropriate radio-attenuation model.

We create a simulation here in which one node (mover) moves horizontally above a sequence of fixed-
position nodes (stored in the Tcl array rownodes). The leftmost fixed-position node transmits continuously
to the mover node; as the mover node progresses, packets must be routed through other fixed-position
nodes. The fixed-position nodes here are 200 m apart, and the mover node is 150 m above their line; this
means that the mover reaches the edge of the range of the ith rownode when it is directly above the i+1th
rownode.

We use Ad hoc On-demand Distance Vector (AODV) as the routing protocol. When the mover moves out
of range of one fixed-position node, AODV finds a new route (which will be via the next fixed-position
node) quite quickly; we return to this below. DSDV (9.4.1 DSDV) is much slower, which leads to many
packet losses until the new route is discovered. Of course, whether a given routing mechanism is fast enough
depends very much on the speed of the mover; the simulation here does not perform nearly as well if the
time is set to 10 seconds rather than 100 as the mover moves too fast even for AODV to keep up.

Because there are so many configuration parameters, to keep them together we adopt the common conven-
tion of making them all attributes of a single Tcl object, named opt.

We list the simulation file itself in pieces, with annotation; the complete file is at wireless.tcl. We begin with
the options.

==
Define options
==
set opt(chan) Channel/WirelessChannel ;# channel type
set opt(prop) Propagation/TwoRayGround ;# radio-propagation model
set opt(netif) Phy/WirelessPhy ;# network interface type
set opt(mac) Mac/802_11 ;# MAC type
set opt(ifq) Queue/DropTail/PriQueue ;# interface queue type
set opt(ll) LL ;# link layer type
set opt(ant) Antenna/OmniAntenna ;# antenna model
set opt(ifqlen) 50 ;# max packet in ifq

set opt(bottomrow) 5 ;# number of bottom-row nodes
set opt(spacing) 200 ;# spacing between bottom-

ãÑrow nodes
set opt(mheight) 150 ;# height of moving node

ãÑabove bottom-row nodes
set opt(brheight) 50 ;# height of bottom-row

ãÑnodes from bottom edge
set opt(x) [expr ($opt(bottomrow)-1)*$opt(spacing)+1] ;# x

ãÑcoordinate of topology
set opt(y) 300 ;# y coordinate of topology

16.6 Wireless Simulation 561

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/wireless.tcl

An Introduction to Computer Networks, Release 1.9.21

set opt(adhocRouting) AODV ;# routing protocol
set opt(finish) 100 ;# time to stop simulation

the next value is the speed in meters/sec to move across the field
set opt(speed) [expr 1.0*$opt(x)/$opt(finish)]

The Channel/WirelessChannel class represents the physical terrestrial wireless medium; there is
also a Channel/Sat class for satellite radio. The Propagation/TwoRayGround is a particular radio-
propagation model. The TwoRayGround model takes into account ground reflection; for larger inter-node
distances d, the received power level is proportional to 1/d4. Other models are the free-space model (in
which received power at distance d is proportional to 1/d2) and the shadowing model, which takes into
account other types of interference. Further details can be found in the Radio Propagation Models chapter
of the ns-2 manual.

The Phy/WirelessPhy class specifies the standard wireless-node interface to the network; alternatives
include Phy/WirelessPhyExt with additional options and a satellite-specific Phy/Sat. The Mac/
802_11 class specifies IEEE 802.11 (that is, Wi-Fi) behavior; other options cover things like generic
CSMA/CA, Aloha, and satellite. The Queue/DropTail/PriQueue class specifies the queuing be-
havior of each node; the opt(ifqlen) value determines the maximum queue length and so corresponds
to the queue-limit value for wired links. The LL class, for Link Layer, defines things like the behavior
of ARP on the network.

The Antenna/OmniAntenna class defines a standard omnidirectional antenna. There are many kinds
of directional antennas in the real world – eg parabolic dishes and waveguide “cantennas” – and a few have
been implemented as ns-2 add-ons.

The next values are specific to our particular layout. The opt(bottomrow) value determines the
number of fixed-position nodes in the simulation. The spacing between adjacent bottom-row nodes is
opt(spacing) meters. The moving node mover moves at height 150 meters above this fixed row.
When mover is directly above a fixed node, it is thus at distance ?(2002 + 1502) = 250 from the previous
fixed node, at which point the previous node is out of range. The fixed row itself is 50 meters above the
bottom of the topology. The opt(x) and opt(y) values are the dimensions of the simulation, in meters;
the number of bottom-row nodes and their spacing determine opt(x).

As mentioned earlier, we use the AODV routing mechanism. When the mover node moves out of range
of the bottom-row node that it is currently in contact with, AODV receives notice of the failed transmission
from the Wi-Fi link layer (ultimately this news originates from the absence of the Wi-Fi link-layer ACK).
This triggers an immediate search for a new route, which typically takes less than 50 ms to complete. The
earlier DSDV (9.4.1 DSDV) mechanism does not use Wi-Fi link-layer feedback and so does not look for
a new route until the next regularly scheduled round of distance-vector announcements, which might be
several seconds away. Other routing mechanisms include TORA, PUMA, and OLSR.

The finishing time opt(finish) also represents the time the moving node takes to move across all the
bottom-row nodes; the necessary speed is calculated in opt(speed). If the finishing time is reduced, the
mover speed increases, and so the routing mechanism has less time to find updated routes.

The next section of Tcl code sets up general bookkeeping:

create the simulator object
set ns [new Simulator]

562 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

set up tracing
$ns use-newtrace
set tracefd [open wireless.tr w]
set namtrace [open wireless.nam w]
$ns trace-all $tracefd
$ns namtrace-all-wireless $namtrace $opt(x) $opt(y)

create and define the topography object and layout
set topo [new Topography]

$topo load_flatgrid $opt(x) $opt(y)

create an instance of General Operations Director, which keeps track of
ãÑnodes and
node-to-node reachability. The parameter is the total number of nodes in

ãÑthe simulation.

create-god [expr $opt(bottomrow) + 1]

The use-newtrace option enables a different tracing mechanism, in which each attribute except the first
is prefixed by an identifying tag, so that parsing is no longer position-dependent. We look at an example
below.

Note the special option namtrace-all-wireless for tracing for nam, and the dimension parameters
opt(x) and opt(y). The next step is to create a Topography object to hold the layout (still to be
determined). Finally, we create a General Operations Director, which holds information about the layout
not necessarily available to any node.

The next step is to call node-config, which passes many of the opt() parameters to ns and which
influences future node creation:

general node configuration
set chan1 [new $opt(chan)]

$ns node-config -adhocRouting $opt(adhocRouting) \
-llType $opt(ll) \
-macType $opt(mac) \
-ifqType $opt(ifq) \
-ifqLen $opt(ifqlen) \
-antType $opt(ant) \
-propType $opt(prop) \
-phyType $opt(netif) \
-channel $chan1 \
-topoInstance $topo \
-wiredRouting OFF \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF

Finally we create our nodes. The bottom-row nodes are created within a Tcl for-loop, and are stored in a
Tcl array rownode(). For each node we set its coordinates (X_, Y_ and Z_); it is at this point that the

16.6 Wireless Simulation 563

An Introduction to Computer Networks, Release 1.9.21

rownode() nodes are given positions along the horizontal line y=50 and spaced opt(spacing) apart.

create the bottom-row nodes as a node array $rownode(), and the moving node
ãÑas $mover

for {set i 0} {$i < $opt(bottomrow)} {incr i} {
set rownode($i) [$ns node]
$rownode($i) set X_ [expr $i * $opt(spacing)]
$rownode($i) set Y_ $opt(brheight)
$rownode($i) set Z_ 0

}

set mover [$ns node]
$mover set X_ 0
$mover set Y_ [expr $opt(mheight) + $opt(brheight)]
$mover set Z_ 0

We now make the mover node move, using setdest. If the node reaches the destination supplied in
setdest, it stops, but it is also possible to change its direction at later times using additional setdest
calls, if a zig-zag path is desired. Various external utilities are available to create a file of Tcl commands
to create a large number of nodes each with a designated motion; such a file can then be imported into the
main Tcl file.

set moverdestX [expr $opt(x) - 1]

$ns at 0 "$mover setdest $moverdestX [$mover set Y_] $opt(speed)"

Next we create a UDP agent and a CBR (Constant Bit Rate) application, and set up a connection from
rownode(0) to mover. CBR traffic does not use sliding windows.

setup UDP connection, using CBR traffic

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $rownode(0) $udp
$ns attach-agent $mover $null
$ns connect $udp $null
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 512
$cbr1 set rate_ 200kb
$cbr1 attach-agent $udp
$ns at 0 "$cbr1 start"
$ns at $opt(finish) "$cbr1 stop"

The remainder of the Tcl file includes additional bookkeeping for nam, a finish{} procedure, and the
startup of the simulation.

tell nam the initial node position (taken from node attributes)
and size (supplied as a parameter)

for {set i 0} {$i < $opt(bottomrow)} {incr i} {
$ns initial_node_pos $rownode($i) 10

564 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

}

$ns initial_node_pos $mover 20

set the color of the mover node in nam
$mover color blue
$ns at 0.0 "$mover color blue"

$ns at $opt(finish) "finish"

proc finish {} {
global ns tracefd namtrace
$ns flush-trace
close $tracefd
close $namtrace
exit 0

}

begin simulation

$ns run

The simulation can be viewed from the nam file, available at wireless.nam. In the simulation, the mover
node moves across the topography, over the bottom-row nodes. The CBR traffic reaches mover from
rownode(0) first directly, then via rownode(1), then via rownode(1) and rownode(2), etc. The
motion of the mover node is best seen by speeding up the animation frame rate using the nam control for
this, though doing this means that aliasing effects often make the CBR traffic appear to be moving in the
opposite direction.

Above is one frame from the animation, with the mover node is almost (but not quite) directly over
rownode(3), and so is close to losing contact with rownode(2). Two CBR packets can be seen en
route; one has almost reached rownode(2) and one is about a third of the way from rownode(2) up to
the blue mover node. The packets are not shown to scale; see exercise 17.

The tracefile is specific to wireless networking, and even without the use of use-newtrace has a rather
different format from the link-based simulations earlier. The newtrace format begins with a letter for

16.6 Wireless Simulation 565

http://intronetworks.cs.luc.edu/auxiliary_files/ns2/wireless.nam

An Introduction to Computer Networks, Release 1.9.21

send/receive/drop/forward; after that, each logged attribute is identified with a prefixed tag rather than by
position. Full details can be found in the ns-2 manual. Here is an edited record of the first packet drop (the
initial d indicates a drop-event record):

d -t 22.586212333 -Hs 0 -Hd 5 ... -Nl RTR -Nw CBK ... -Ii 1100 ... -Pn cbr -
ãÑPi 1100 ...

The -t tag indicates the time. The -Hs and -Hd tags indicate the source and destination, respectively.
The -Nl tag indicates the “level” (RouTeR) at which the loss was logged, and the -Nw tag indicates the
cause: CBK, for “CallBacK”, means that the packet loss was detected at the link layer but the information
was passed up to the routing layer. The -Ii tag is the packet’s unique serial number, and the P tags supply
information about the constant-bit-rate agent.

We can use the tracefile to find clusters of drops beginning at times 22.586, 47.575, 72.707 and 97.540,
corresponding roughly to the times when the route used to reach the $mover node shifts to passing through
one more bottom-row node. Between t=72.707 and t=97.540 there are several other somewhat more mys-
terious clusters of drops; some of these clusters may be related to ordinary queue overflow but others may
reflect decreasing reliability of the forwarding mechanism as the path grows longer.

16.7 Epilog

Simulations using ns (either ns-2 or ns-3) are a central part of networks research. Most scientific papers
addressing comparisons between TCP flavors refer to ns simulations to at least some degree; ns is also
widely used for non-TCP research (especially wireless).

But simulations are seldom a matter of a small number of runs. New protocols must be tested in a wide range
of conditions, with varying bandwidths, delays and levels of background traffic. Head-to-head comparisons
in isolation, such as our first runs in 16.3.3 Unequal Delays, can be very misleading. Good simulation
design, in other words, is not easy.

Our simulations here involved extremely simple networks. A great deal of effort has been expended by the
ns community in the past decade to create simulations involving much larger sets of nodes; the ultimate goal
is to create realistic simulations of the Internet itself. We refer the interested reader to [FP01].

16.8 Exercises

1. In the graph in 16.2.1 Graph of cwnd v time, examine the trace file to see what accounts for the dot at
the start of each tooth (at times approximately 4.1, 6.1 and 8.0). Note that the solid parts of the graph are
as solid as they are because fractional cwnd values are used; cwnd is incremented by 1/cwnd on receipt of
each ACK.

2. A problem with the single-sender link-utilization experiment at 16.2.6 Single-sender Throughput Ex-
periments was that the smallest practical value for queue-limit was 3, which is 10% of the path transit
capacity. Repeat the experiment but arrange for the path transit capacity to be at least 100 packets, making a
queue-limit of 3 much smaller proportionally. Be sure the simulation runs long enough that it includes
multiple teeth. What link utilization do you get? Also try queue-limit values of 4 and 5.

566 16 Network Simulations: ns-2

An Introduction to Computer Networks, Release 1.9.21

3. Create a single-sender simulation in which the path transit capacity is 90 packets, and the bottleneck
queue-limit is 30. This should mean cwnd varies between 60 and 120. Be sure the simulation runs
long enough that it includes many teeth.

1. What link utilization do you observe?

2. What queue utilization do you observe?

4. Use the basic2 model with equal propagation delays (delayB = 0), but delay the starting time for the
first connection. Let this delay time be startdelay0; at the end of the basic2.tcl file, you will have

$ns at $startdelay0 "$ftp0 start"

Try this for startdelay0 ranging from 0 to 40 ms, in increments of 1.0 ms. Graph the ratio1 or ratio2
values as a function of startdelay0. Do you get a graph like the one in 16.3.4.2 Two-sender phase
effects?

5. If the bottleneck link forwards at 10 ms/packet (bottleneckBW = 0.8), then in 300 seconds we can
send 30,000 packets. What percentage of this, total, are sent by two competing senders as in 16.3 Two TCP
Senders Competing, for delayB = 0, 50, 100, 200 and 400.

6. Repeat the previous exercise for bottleneckBW = 8.0, that is, a bottleneck rate of 1 ms/packet.

7. Pick a case above where the total is less than 100%. Write a script that keeps track of cwnd0 + cwnd1,
and measure how much time this quantity is less than the transit capacity. What is the average of cwnd0 +
cwnd1 over those periods when it is less than the transit capacity?

8. In the model of 16.3 Two TCP Senders Competing, it is often the case that for small delayB, eg delayB
< 5, the longer-path B–D connection has greater throughput. Demonstrate this. Use an appropriate value of
overhead (eg 0.02 or 0.002).

9. In generating the first graph in 16.3.7 Phase Effects and telnet traffic, we used a packetSize_ of
210 bytes, for an actualSize of 250 bytes. Generate a similar graph using in the simulations a much
smaller value of packetSize_, eg 10 or 20 bytes. Note that for a given value of tndensity, as the
actualSize shrinks so should the tninterval.

10. In 16.3.7 Phase Effects and telnet traffic the telnet connections ran from A and B to D, so the telnet
traffic competed with the bulk ftp traffic on the bottleneck link. Change the simulation so the telnet traffic
runs only as far as R. The variable tndensity should now represent the fraction of the A–R and B–R
bandwidth that is used for telnet. Try values for tndensity of from 5% to 50% (note these densities
are quite high). Generate a graph like the first graph in 16.3.7 Phase Effects and telnet traffic, illustrating
whether this form of telnet traffic is effective at reducing phase effects.

11. Again using the telnet simulation of the previous exercise, in which the telnet traffic runs only as far as
R, generate a graph comparing ratio1 for the bulk ftp traffic when randomization comes from:

• overhead values in the range discussed in the text (eg 0.01 or 0.02 for bottleneckBW = 0.8
Mbps)

• A–R and B–R telnet traffic with tndensity in the range 5% to 50%.

The goal should be a graph comparable to that of 16.3.8 overhead versus telnet. Do the two randomization
mechanisms – overhead and telnet – still yield comparable values for ratio1?

16.8 Exercises 567

An Introduction to Computer Networks, Release 1.9.21

12. Repeat the same experiment as in exercise 8, but using telnet instead of overhead. Try it with
A–D/B–D telnet traffic and tndensity around 1%, and also A–R/B–R traffic as in exercise 10 with a
tndensity around 10%. The effect may be even more marked.

13. Analyze the packet drops for each flow for the Reno-versus-Vegas competition shown in the second
graph (red v green) of 16.5 TCP Reno versus TCP Vegas. In that simulation, bottleneckBW = 8.0
Mbps, delayB = 0, queuesize = 20, 𝛼=3 and 𝛽=6; the full simulation ran for 1000 seconds.

(a). How many drop clusters are for the Reno flow only?
(b). How many drop clusters are for the Vegas flow only?
(c). How many shared drop clusters are there?

Use a drop-cluster granularity of 2.0 seconds.

14. Generate a cwnd-versus-time graph for TCP Reno versus TCP Vegas, like the second graph in
16.5 TCP Reno versus TCP Vegas, except using the default 𝛼=1. Does the TCP Vegas connection per-
form better or worse?

15. Compare two TCP Vegas connections as in 16.3 Two TCP Senders Competing, for delayB varying
from 0 to 400 (perhaps in steps of about 20). Use bottleneckBW = 8 Mbps, and run the simulations for
at least 1000 seconds. Use the default 𝛼 and 𝛽 (usually 𝛼=1 and 𝛽=3). Is ratio1 » 1 or ratio2 » 1 a better
fit? How does the overall fairness compare with what ratio1 » 1 or ratio2 » 1 would predict? Does either
ratio appear roughly constant? If so, what is its value?

16. Repeat the previous exercise for a much larger value of 𝛼, say 𝛼=10. Set 𝛽=𝛼+2, and be sure
queuesize is larger than 2𝛽 (recall that, in ns, 𝛼 is v_alpha_ and 𝛽 is v_beta_). If both connec-
tions manage to keep the same number of packets in the bottleneck queue at R, then both should get about
the same goodput, by the queue-competition rule of 14.2.2 Example 2: router competition. Do they? Is the
fairness situation better or worse than with the default 𝛼 and 𝛽?

17. In nam animations involving point-to-point links, packet lengths are displayed proportionally: if a link
has a propagation delay of 10 ms and a bandwidth of 1 packet/ms, then each packet will be displayed with
length 1/10 the link length. Is this true of wireless as well? Consider the animation (and single displayed
frame) of 16.6 Wireless Simulation. Assume the signal propagation speed is c» 300 m/µsec, that the nodes
are 300 m apart, and that the bandwidth is 1 Mbps.

(a). How long is a single bit? (That is, how far does the signal travel in the time needed to send a single
bit?)
(b). If a sender transmits continuously, how many bits will it send before its first bit reaches its destination?
(c). In the nam animation of 16.6 Wireless Simulation, is it plausible that what is rendered for the CBR
packets represents just the first bit of the packet? Is the scale about right for a single bit?
(d). What might be a more accurate animated representation of wireless packets?

568 16 Network Simulations: ns-2

17 THE NS-3 NETWORK SIMULATOR

In this chapter we take a somewhat cursory look at the ns-3 simulator, intended as a replacement for ns-2.
The project is managed by the NS-3 Consortium, and all materials are available at www.nsnam.org.

Ns-3 represents a rather sharp break from ns-2. Gone is the Tcl programming interface; instead, ns-3 simula-
tion programs are written in the C++ language, with extensive calls to the ns-3 library, although they are often
still referred to as simulation “scripts”. As the simulator core itself is also written in C++, this in some cases
allows improved interaction between configuration and execution. However, configuration and execution
are still in most cases quite separate: at the end of the simulation script comes a call Simulator::Run()
– akin to ns-2’s $ns run – at which point the user-written C++ has done its job and the library takes over.

To configure a simple simulation, an ns-2 Tcl script had to create nodes and links, create network-connection
“agents” attached to nodes, and create traffic-generating applications attached to agents. Much the same
applies to ns-3, but in addition each node must be configured with its network interfaces, and each network
interface must be assigned an IP address.

17.1 Installing and Running ns-3

We here outline the steps for installing ns-3 under Linux from the “allinone” tar file, assuming that all
prerequisite packages (such as gcc) are already in place. Much more general installation instructions can be
found at www.nsnam.org. In particular, serious users are likely to want to download the current Mercurial
repository directly. Information is also available for Windows and Macintosh installation, although perhaps
the simplest option for Windows users is to run ns-3 in a Linux virtual machine.

The first step is to unzip the tar file; this should leave a directory named ns-allinone-3.nn, where nn reflects
the version number (20 in the author’s installation as of this 2014 writing). This directory is the root of the
ns-3 system; it contains a build.py (python) script and the primary ns-3 directory ns-3.nn. All that is
necessary is to run the build.py script:

./build.py

Considerable configuration and then compiler output should ensue, hopefully terminating with a list of
“Modules built” and “Modules not built”.

From this point on, most ns-3 work will take place in the subdirectory ns-3.nn, that is, in ns-allinone-3.nn/ns-
3.nn. This development directory contains the source directory src, the script directory scratch, and the
execution script waf.

The development directory also contains a directory examples containing a rich set of example scripts.
The scripts in examples/tutorial are described in depth in the ns-3 tutorial in doc/tutorial.

17.1.1 Running a Script

Let us now run a script, for example, the file first.cc included in the examples/tutorial directory.
We first copy this file into the directory “scratch”, and then, in the parent development directory, enter the
command

569

https://www.nsnam.org
https://www.nsnam.org
https://code.google.com/p/waf/

An Introduction to Computer Networks, Release 1.9.21

./waf --run first

The program is compiled and, if compilation is successful, is run.

In fact, every uncompiled program in the scratch directory is compiled, meaning that projects in progress
that are not yet compilable must be kept elsewhere. One convenient strategy is to maintain multiple project
directories, and link them symbolically to scratch as needed.

The ns-3 system includes support for command-line options; the following example illustrates the passing
by command line of the value 3 for the variable nCsma:

./waf --run "second --nCsma=3"

17.1.2 Compilation Errors

By default, ns-3 enables the -Werror option to the compiler, meaning that all warnings are treated as errors.
This is good practice for contributed or published scripts, but can be rather exasperating for beginners. To
disable this, edit the file waf-tools/cflags.py (relative to the development directory). Change the line

self.warnings_flags = [['-Wall'], ['-Werror'], ['-Wextra']]

to

self.warnings_flags = [['-Wall'], ['-Wextra']]

Then, in the development directory, run

./waf configure

./waf build

17.2 A Single TCP Sender

We begin by translating the single-TCP-sender script of 16.2 A Single TCP Sender. The full program is in
basic1.cc; we now review most of it line-by-line; some standard things such as #include directives are
omitted.

/*
Network topology:

A----R----B

A--R: 10 Mbps / 10 ms delay
R--B: 800 kbps / 50 ms delay
queue at R: size 7

*/

using namespace ns3;

std::string fileNameRoot = "basic1"; // base name for trace files, etc

570 17 The ns-3 Network Simulator

http://intronetworks.cs.luc.edu/auxiliary_files/ns3/basic1.cc

An Introduction to Computer Networks, Release 1.9.21

void CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t
ãÑnewCwnd)
{

*stream->GetStream () << Simulator::Now ().GetSeconds () << " " << newCwnd
ãÑ<< std::endl;
}

static void
TraceCwnd () // Trace changes to the congestion window
{

AsciiTraceHelper ascii;
Ptr<OutputStreamWrapper> stream = ascii.CreateFileStream (fileNameRoot + ".

ãÑcwnd");
Config::ConnectWithoutContext ("/NodeList/0/$ns3::TcpL4Protocol/SocketList/

ãÑ0/CongestionWindow", MakeBoundCallback (&CwndChange,stream));
}

The function TraceCwnd() arranges for tracing of cwnd; the function CwndChange is a callback, in-
voked by the ns-3 system whenever cwnd changes. Such callbacks are common in ns-3.

The parameter string beginning /NodeList/0/... is an example of the configuration namespace. Each
ns-3 attribute can be accessed this way. See 17.2.2 The Ascii Tracefile below.

int main (int argc, char *argv[])
{

int tcpSegmentSize = 1000;
Config::SetDefault ("ns3::TcpSocket::SegmentSize", UintegerValue

ãÑ(tcpSegmentSize));
Config::SetDefault ("ns3::TcpSocket::DelAckCount", UintegerValue (0));
Config::SetDefault ("ns3::TcpL4Protocol::SocketType", StringValue (

ãÑ"ns3::TcpReno"));
Config::SetDefault ("ns3::RttEstimator::MinRTO", TimeValue (MilliSeconds

ãÑ(500)));

The use of Config::SetDefault() allows us to configure objects that will not exist until some later
point, perhaps not until the ns-3 simulator is running. The first parameter is an attribute string, of the
form ns3::class::attribute. A partial list of attributes is at https://www.nsnam.org/docs/release/3.19/
doxygen/group___attribute_list.html. Attributes of a class can also be determined by a command such as
the following:

./waf --run "basic1 --PrintAttributes=ns3::TcpSocket

The advantage of the Config::SetDefault mechanism is that often objects are created indirectly,
perhaps by “helper” classes, and so direct setting of class properties can be problematic.

It is perfectly acceptable to issue some Config::SetDefault calls, then create some objects (perhaps
implicitly), and then change the defaults (again with Config::SetDefault) for creation of additional
objects.

We pick the TCP congesion-control algorithm by setting ns3::TcpL4Protocol::SocketType.
Options are TcpRfc793 (no congestion control), TcpTahoe, TcpReno, TcpNewReno and
TcpWestwood. TCP Cubic and SACK TCP are not supported natively (though they are available if the
Network Simulation Cradle is installed).

17.2 A Single TCP Sender 571

https://www.nsnam.org/docs/release/3.19/doxygen/group___attribute_list.html
https://www.nsnam.org/docs/release/3.19/doxygen/group___attribute_list.html
http://research.wand.net.nz/software/nsc.php

An Introduction to Computer Networks, Release 1.9.21

Setting the DelAckCount attribute to 0 disables delayed ACKs. Setting the MinRTO value to 500 ms
avoids some unexpected hard timeouts. We will return to both of these below in 17.2.3 Unexpected
Timeouts and Other Phenomena.

Next comes our local variables and command-line-option processing. In ns-3 the latter is handled via
the CommandLine object, which also recognized the --PrintAttributes option above. Using the
--PrintHelp option gives a list of variables that can be set via command-line arguments.

unsigned int runtime = 20; // seconds
int delayAR = 10; // ms
int delayRB = 50; // ms
double bottleneckBW= 0.8; // Mbps
double fastBW = 10; // Mbps
uint32_t queuesize = 7;
uint32_t maxBytes = 0; // 0 means "unlimited"

CommandLine cmd;
// Here, we define command line options overriding some of the above.
cmd.AddValue ("runtime", "How long the applications should send data",

ãÑruntime);
cmd.AddValue ("delayRB", "Delay on the R--B link, in ms", delayRB);
cmd.AddValue ("queuesize", "queue size at R", queuesize);
cmd.AddValue ("tcpSegmentSize", "TCP segment size", tcpSegmentSize);

cmd.Parse (argc, argv);

std::cout << "queuesize=" << queuesize << ", delayRB=" << delayRB <<
ãÑstd::endl;

Next we create three nodes, illustrating the use of smart pointers and CreateObject().

Ptr<Node> A = CreateObject<Node> ();
Ptr<Node> R = CreateObject<Node> ();
Ptr<Node> B = CreateObject<Node> ();

Class Ptr is a “smart pointer” that manages memory through reference counting. The template function
CreateObject acts as the ns-3 preferred alternative to operator new. Parameters for objects created
this way can be supplied via Config::SetDefault, or by some later method call applied to the Ptr
object. For Node objects, for example, we might call A -> AddDevice(...).

A convenient alternative to creating nodes individually is to create a container of nodes all at once:

NodeContainer allNodes;
allNodes.Create(3);
Ptr<Node> A = allNodes.Get(0);
...

After the nodes are in place we create our point-to-point links, using the PointToPointHelper class.
We also create NetDeviceContainer objects; we don’t use these here (we could simply call AR.
Install(A,R)), but will need them below when assigning IPv4 addresses.

// use PointToPointChannel and PointToPointNetDevice
NetDeviceContainer devAR, devRB;

572 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

PointToPointHelper AR, RB;

// create point-to-point link from A to R
AR.SetDeviceAttribute ("DataRate", DataRateValue (DataRate (fastBW * 1000 *

ãÑ1000)));
AR.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (delayAR)));
devAR = AR.Install(A, R);

// create point-to-point link from R to B
RB.SetDeviceAttribute ("DataRate", DataRateValue (DataRate (bottleneckBW *

ãÑ1000 * 1000)));
RB.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (delayRB)));
RB.SetQueue("ns3::DropTailQueue", "MaxPackets", UintegerValue(queuesize));
devRB = RB.Install(R,B);

Next we hand out IPv4 addresses. The Ipv4AddressHelper class can help us with individual LANs (eg
A–R and R–B), but it is up to us to make sure our two LANs are on different subnets. If we attempt to put
A and B on the same subnet, routing will simply fail, just as it would if we were to do this with real network
nodes.

InternetStackHelper internet;
internet.Install (A);
internet.Install (R);
internet.Install (B);

// Assign IP addresses

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.0.0.0", "255.255.255.0");
Ipv4InterfaceContainer ipv4Interfaces;
ipv4Interfaces.Add (ipv4.Assign (devAR));
ipv4.SetBase ("10.0.1.0", "255.255.255.0");
ipv4Interfaces.Add (ipv4.Assign(devRB));

Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

Next we print out the addresses assigned. This gives us a peek at the GetObject template and the ns-3
object-aggregation model. The original Node objects we created earlier were quite generic; they gained their
Ipv4 component in the code above. Now we retrieve that component with the GetObject<Ipv4>()
calls below.

Ptr<Ipv4> A4 = A->GetObject<Ipv4>(); // gets node A's IPv4 subsystem
Ptr<Ipv4> B4 = B->GetObject<Ipv4>();
Ptr<Ipv4> R4 = R->GetObject<Ipv4>();
Ipv4Address Aaddr = A4->GetAddress(1,0).GetLocal();
Ipv4Address Baddr = B4->GetAddress(1,0).GetLocal();
Ipv4Address Raddr = R4->GetAddress(1,0).GetLocal();

std::cout << "A's address: " << Aaddr << std::endl;
std::cout << "B's address: " << Baddr << std::endl;
std::cout << "R's #1 address: " << Raddr << std::endl;
std::cout << "R's #2 address: " << R4->GetAddress(2,0).GetLocal() <<

ãÑstd::endl;

17.2 A Single TCP Sender 573

An Introduction to Computer Networks, Release 1.9.21

In general, A->GetObject<T> returns the component of type T that has been “aggregated” to
Ptr<Object> A; often this aggregation is invisible to the script programmer but an understanding of
how it works is sometimes useful. The aggregation is handled by the ns-3 Object class, which contains
an internal list m_aggregates of aggregated companion objects. At most one object of a given type
can be aggregated to another, making GetObject<T> unambiguous. Given a Ptr<Object> A, we
can obtain an iterator over the aggregated companions via A->GetAggregateIterator(), of type
Object::AggregateIterator. From each Ptr<const Object> B returned by this iterator, we
can call B->GetInstanceTypeId().GetName() to get the class name of B.

The GetAddress() calls take two parameters; the first specfies the interface (a value of 0
gives the loopback interface) and the second distinguishes between multiple addresses assigned to
the same interface (which is not happening here). The call A4->GetAddress(1,0) returns an
Ipv4InterfaceAddress object containing, among other things, an IP address, a broadcast address
and a netmask; GetLocal() returns the first of these.

Next we create the receiver on B, using a PacketSinkHelper. A receiver is, in essense, a read-only
form of an application server.

// create a sink on B
uint16_t Bport = 80;
Address sinkAaddr(InetSocketAddress (Ipv4Address::GetAny (), Bport));
PacketSinkHelper sinkA ("ns3::TcpSocketFactory", sinkAaddr);
ApplicationContainer sinkAppA = sinkA.Install (B);
sinkAppA.Start (Seconds (0.01));
// the following means the receiver will run 1 min longer than the sender app.
sinkAppA.Stop (Seconds (runtime + 60.0));

Address sinkAddr(InetSocketAddress(Baddr, Bport));

Now comes the sending application, on A. We must configure and create a BulkSendApplication,
attach it to A, and arrange for a connection to be created to B. The BulkSendHelper class simplifies this.

BulkSendHelper sourceAhelper ("ns3::TcpSocketFactory", sinkAddr);
sourceAhelper.SetAttribute ("MaxBytes", UintegerValue (maxBytes));
sourceAhelper.SetAttribute ("SendSize", UintegerValue (tcpSegmentSize));
ApplicationContainer sourceAppsA = sourceAhelper.Install (A);
sourceAppsA.Start (Seconds (0.0));
sourceAppsA.Stop (Seconds (runtime));

If we did not want to use the helper class here, the easiest way to create the BulkSendApplication
is with an ObjectFactory. We configure the factory with the type we want to create and the
relevant configuration parameters, and then call factory.Create(). (We could have used the
Config::SetDefault() mechanism and CreateObject() as well.)

ObjectFactory factory;
factory.SetTypeId ("ns3::BulkSendApplication");
factory.Set ("Protocol", StringValue ("ns3::TcpSocketFactory"));
factory.Set ("MaxBytes", UintegerValue (maxBytes));
factory.Set ("SendSize", UintegerValue (tcpSegmentSize));
factory.Set ("Remote", AddressValue (sinkAddr));

574 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

Ptr<Object> bulkSendAppObj = factory.Create();
Ptr<Application> bulkSendApp = bulkSendAppObj -> GetObject<Application>();
bulkSendApp->SetStartTime(Seconds(0.0));
bulkSendApp->SetStopTime(Seconds(runtime));
A->AddApplication(bulkSendApp);

The above gives us no direct access to the actual TCP connection. Yet another alternative is to start by
creating the TCP socket and connecting it:

Ptr<Socket> tcpsock = Socket::CreateSocket (A, TcpSocketFactory::GetTypeId
ãÑ());
tcpsock->Bind();
tcpsock->Connect(sinkAddr);

However, there is then no mechanism for creating a BulkSendApplication that uses a pre-existing
socket. (For a workaround, see the tutorial example fifth.cc.)

Before beginning execution, we set up tracing; we will look at the tracefile format later. We use the AR
PointToPointHelper class here, but both ascii and pcap tracing apply to the entire A–R–B network.

// Set up tracing
AsciiTraceHelper ascii;
std::string tfname = fileNameRoot + ".tr";
AR.EnableAsciiAll (ascii.CreateFileStream (tfname));
// Setup tracing for cwnd
Simulator::Schedule(Seconds(0.01),&TraceCwnd); // this Time cannot be 0.

ãÑ0

// This tells ns-3 to generate pcap traces, including "-node#-dev#-" in
ãÑfilename
AR.EnablePcapAll (fileNameRoot); // ".pcap" suffix is added automatically

This last creates four .pcap files, eg

basic1-0-0.pcap
basic1-1-0.pcap
basic1-1-1.pcap
basic1-2-0.pcap

The first number refers to the node (A=0, R=1, B=2) and the second to the interface. A packet arriving at
R but dropped there will appear in the second .pcap file but not the third. These files can be viewed with
WireShark.

Finally we are ready to start the simulator! The BulkSendApplication will stop at time runtime,
but traffic may be in progress. We allow it an additional 60 seconds to clear. We also, after the simulation
has run, print out the number of bytes received by B.

Simulator::Stop (Seconds (runtime+60));
Simulator::Run ();

Ptr<PacketSink> sink1 = DynamicCast<PacketSink> (sinkAppA.Get (0));
std::cout << "Total Bytes Received from A: " << sink1->GetTotalRx () <<

ãÑstd::endl;

17.2 A Single TCP Sender 575

http://www.wireshark.org

An Introduction to Computer Networks, Release 1.9.21

return 0;
}

17.2.1 Running the Script

When we run the script and plot the cwnd trace data (here for about 12 seconds), we get the following:

Compare this graph to that in 16.2.1 Graph of cwnd v time produced by ns-2. The slow-start phase earlier
ended at around 2.0 and now ends closer to 3.0. There are several modest differences, including the halving
of cwnd just before T=1 and the peak around T=2.6; these were not apparent in the ns-2 graph.

After slow-start is over, the graphs are quite similar; cwnd ranges from 10 to 21. The period before was
1.946 seconds; here it is 2.0548; the difference is likely due to a more accurate implementation of the
recovery algorithm.

One striking difference is the presence of the near-vertical line of dots just after each peak. What is happen-
ing here is that ns-3 implements the cwnd inflation/deflation algorithm outlined at the tail end of 13.4 TCP
Reno and Fast Recovery. When three dupACKs are received, cwnd is set to cwnd/2 + 3, and is then allowed
to increase to 1.5ˆcwnd. See the end of 13.4 TCP Reno and Fast Recovery.

17.2.2 The Ascii Tracefile

Below are four lines from the tracefile, starting with the record showing packet 271 (Seq=271001) being
dropped by R.

d 4.9823 /NodeList/1/DeviceList/1/$ns3::PointToPointNetDevice/TxQueue/Drop
ãÑns3::PppHeader (Point-to-Point Protocol: IP (0x0021)) ns3::Ipv4Header (tos
ãÑ0x0 DSCP Default ECN Not-ECT ttl 63 id 296 protocol 6 offset (bytes) 0
ãÑflags [none] length: 1040 10.0.0.1 > 10.0.1.2) ns3::TcpHeader (49153 > 80 [
ãÑACK] Seq=271001 Ack=1 Win=65535) Payload (size=1000)
r 4.98312 /NodeList/2/DeviceList/0/$ns3::PointToPointNetDevice/MacRx

ãÑns3::Ipv4Header (tos 0x0 DSCP Default ECN Not-ECT ttl 63 id 283 protocol 6
ãÑoffset (bytes) 0 flags [none] length: 1040 10.0.0.1 > 10.0.1.2)
ãÑns3::TcpHeader (49153 > 80 [ACK] Seq=258001 Ack=1 Win=65535) Payload
ãÑ(size=1000)576 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

+ 4.98312 /NodeList/2/DeviceList/0/$ns3::PointToPointNetDevice/TxQueue/
ãÑEnqueue ns3::PppHeader (Point-to-Point Protocol: IP (0x0021))
ãÑns3::Ipv4Header (tos 0x0 DSCP Default ECN Not-ECT ttl 64 id 271 protocol 6
ãÑoffset (bytes) 0 flags [none] length: 40 10.0.1.2 > 10.0.0.1)
ãÑns3::TcpHeader (80 > 49153 [ACK] Seq=1 Ack=259001 Win=65535)
- 4.98312 /NodeList/2/DeviceList/0/$ns3::PointToPointNetDevice/TxQueue/

ãÑDequeue ns3::PppHeader (Point-to-Point Protocol: IP (0x0021))
ãÑns3::Ipv4Header (tos 0x0 DSCP Default ECN Not-ECT ttl 64 id 271 protocol 6
ãÑoffset (bytes) 0 flags [none] length: 40 10.0.1.2 > 10.0.0.1)
ãÑns3::TcpHeader (80 > 49153 [ACK] Seq=1 Ack=259001 Win=65535)

As with ns-2, the first letter indicates the action: r for received, d for dropped, + for enqueued, - for
dequeued. For Wi-Fi tracefiles, t is for transmitted. The second field represents the time.

The third field represents the name of the event in the configuration namespace, sometimes called the con-
figuration path name. The NodeList value represents the node (A=0, etc), the DeviceList represents
the interface, and the final part of the name repeats the action: Drop, MacRx, Enqueue, Dequeue.

After that come a series of class names (eg ns3::Ipv4Header, ns3::TcpHeader), from the ns-3
attribute system, followed in each case by a parenthesized list of class-specific trace information.

In the output above, the final three records all refer to node B (/NodeList/2/). Packet 258 has just
arrived (Seq=258001), and ACK 259001 is then enqueued and sent.

17.2.3 Unexpected Timeouts and Other Phenomena

In the discussion of the script above at 17.2 A Single TCP Sender we mentioned
that we set ns3::TcpSocket::DelAckCount to 0, to disable delayed ACKs, and
ns3::RttEstimator::MinRTO to 500 ms, to avoid unexpected timeouts.

If we comment out the line disabling delayed ACKs, little changes in our graph, except that the spacing
between consecutive TCP teeth now almost doubles to 3.776. This is because with delayed ACKs the
receiver sends only half as many ACKs, and the sender does not take this into account when incrementing
cwnd (that is, the sender does not implement the suggestion of RFC 3465 mentioned in 13.2.1 TCP Reno
Per-ACK Responses).

If we leave out the MinRTO adjustment, and set tcpSegmentSize to 960, we get a more serious problem:
the graph now looks something like this:

17.2 A Single TCP Sender 577

https://tools.ietf.org/html/rfc3465.html

An Introduction to Computer Networks, Release 1.9.21

We can enable ns-3’s internal logging in the TcpReno class by entering the commands below, before
running the script. (In some cases, as with WifiHelper::EnableLogComponents(), logging output
can be enabled from within the script.) Once enabled, logging output is written to stderr.

NS_LOG=TcpReno=level_info
export NS_LOG

The log output shows the initial dupACK at 8.54:

8.54069 [node 0] Triple dupack. Reset cwnd to 12960, ssthresh to 10080

But then, despite Fast Recovery proceding normally, we get a hard timeout:

8.71463 [node 0] RTO. Reset cwnd to 960, ssthresh to 14400, restart from
ãÑseqnum 510721

What is happening here is that the RTO interval was just a little too short, probably due to the use of the
“awkward” segment size of 960.

After the timeout, there is another triple-dupACK!

8.90344 [node 0] Triple dupack. Reset cwnd to 6240, ssthresh to 3360

Shortly thereafter, at T=8.98, cwnd is reset to 3360, in accordance with the Fast Recovery rules.

The overall effect is that cwnd is reset, not to 10, but to about 3.4 (in packets). This significantly slows
down throughput.

In recovering from the hard timeout, the sequence number is reset to Seq=510721 (packet 532), as this was
the last packet acknowledged. Unfortunately, several later packets had in fact made it through to B. By
looking at the tracefile, we can see that at T=8.7818, B received Seq=538561, or packet 561. Thus, when
A begins retransmitting packets 533, 534, etc after the timeout, B’s response is to send the ACK the highest
packet it has received, packet 561 (Ack=539521).

578 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

This scenario is not what the designers of Fast Recovery had in mind; it is likely triggered by a too-
conservative timeout estimate. Still, exactly how to fix it is an interesting question; one approach might
be to ignore, in Fast Recovery, triple dupACKs of packets now beyond what the sender is currently sending.

17.3 Wireless

We next present the wireless simulation of 16.6 Wireless Simulation. The full script is at wireless.cc; the
animation output for the netanim player is at wireless.xml. As before, we have one mover node moving
horizontally 150 meters above a row of five fixed nodes spaced 200 meters apart. The limit of transmission is
set to be 250 meters, meaning that a fixed node goes out of range of the mover node just as the latter passes
over directly above the next fixed node. As before, we use Ad hoc On-demand Distance Vector (AODV) as
the routing protocol. When the mover passes over fixed node N, it goes out of range of fixed node N-1, at
which point AODV finds a new route to mover through fixed node N.

As in ns-2, wireless simulations tend to require considerably more configuration than point-to-point simu-
lations. We now review the source code line-by-line. We start with two callback functions and the global
variables they will need to access.

using namespace ns3;

Ptr<ConstantVelocityMobilityModel> cvmm;
double position_interval = 1.0;
std::string tracebase = "scratch/wireless";

// two callbacks
void printPosition()
{

Vector thePos = cvmm->GetPosition();
Simulator::Schedule(Seconds(position_interval), &printPosition);
std::cout << "position: " << thePos << std::endl;

}

void stopMover()
{

cvmm -> SetVelocity(Vector(0,0,0));
}

17.3 Wireless 579

http://intronetworks.cs.luc.edu/auxiliary_files/ns3/wireless.cc
http://intronetworks.cs.luc.edu/auxiliary_files/ns3/wireless.xml

An Introduction to Computer Networks, Release 1.9.21

Next comes the data rate:

int main (int argc, char *argv[])
{

std::string phyMode = "DsssRate1Mbps";

The phyMode string represents the Wi-Fi data rate (and modulation technique). DSSS rates are
DsssRate1Mbps, DsssRate2Mbps, DsssRate5_5Mbps and DsssRate11Mbps. Also available
are ErpOfdmRate constants to 54 Mbps and OfdmRate constants to 150 Mbps with a 40 MHz band-
width (GetOfdmRate150MbpsBW40MHz). All these are defined in src/wifi/model/wifi-phy.cc.

Next are the variables that determine the layout and network behavior. The factor variable allows slowing
down the speed of the mover node but correspondingly extending the runtime (though the new-route-
discovery time is not scaled):

int bottomrow = 5; // number of bottom-row nodes
int spacing = 200; // between bottom-row nodes
int mheight = 150; // height of mover above bottom row
int brheight = 50; // height of bottom row

int X = (bottomrow-1)*spacing+1; // X is the horizontal
ãÑdimension of the field
int packetsize = 500;
double factor = 1.0; // allows slowing down rate and extending runtime; same

ãÑtotal # of packets
int endtime = (int)100*factor;
double speed = (X-1.0)/endtime;
double bitrate = 80*1000.0/factor; // *average* transmission rate, in bits/

ãÑsec
uint32_t interval = 1000*packetsize*8/bitrate*1000; // in microsec
uint32_t packetcount = 1000000*endtime/ interval;
std::cout << "interval = " << interval <<", rate=" << bitrate << ",

ãÑpacketcount=" << packetcount << std::endl;

There are some niceties in calculating the packet transmission interval above; if we do it instead as
1000000*packetsize*8/bitrate then we sometimes run into 32-bit overflow problems or integer-division-
roundoff problems.

Now we configure some Wi-Fi settings.

// disable fragmentation for frames below 2200 bytes
Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold",

ãÑStringValue ("2200"));
// turn off RTS/CTS for frames below 2200 bytes
Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold",

ãÑStringValue ("2200"));
// Set non-unicast data rate to be the same as that of unicast
Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode",

ãÑStringValue (phyMode));

Here we create the mover node with CreateObject<Node>(), but the fixed nodes are created via a
NodeContainer, as is more typical with larger simulations

580 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

// Create nodes
NodeContainer fixedpos;
fixedpos.Create(bottomrow);
Ptr<Node> lowerleft = fixedpos.Get(0);
Ptr<Node> mover = CreateObject<Node>();

Now we put together a set of “helper” objects for more Wi-Fi configuration. We must configure both the
PHY (physical) and MAC layers.

// The below set of helpers will help us to put together the desired Wi-Fi
ãÑbehavior
WifiHelper wifi;
wifi.SetStandard (WIFI_PHY_STANDARD_80211b);
wifi.SetRemoteStationManager ("ns3::AarfWifiManager"); // Use AARF rate

ãÑcontrol

The AARF rate changes can be viewed by enabling the appropriate logging with, at the shell level before
./waf, NS_LOG=AarfWifiManager=level_debug. We are not otherwise interested in rate scaling
(3.7.2 Dynamic Rate Scaling) here, though.

The PHY layer helper is YansWifiPhyHelper. The YANS project (Yet Another Network Simulator)
was an influential precursor to ns-3; see [LH06]. Note the AddPropagationLoss configuration, where
we set the Wi-Fi range to 250 meters. The MAC layer helper is NqosWifiMacHelper; the “nqos” means
“no quality-of-service”, ie no use of Wi-Fi PCF (3.7.7 Wi-Fi Polling Mode).

// The PHY layer here is "yans"
YansWifiPhyHelper wifiPhyHelper = YansWifiPhyHelper::Default ();
// for .pcap tracing
// wifiPhyHelper.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_

ãÑRADIO);

YansWifiChannelHelper wifiChannelHelper; // *not* ::Default() !
wifiChannelHelper.SetPropagationDelay (

ãÑ"ns3::ConstantSpeedPropagationDelayModel"); // pld: default?
// the following has an absolute cutoff at distance > 250
wifiChannelHelper.AddPropagationLoss ("ns3::RangePropagationLossModel",

ãÑ"MaxRange", DoubleValue(250));
Ptr<YansWifiChannel> pchan = wifiChannelHelper.Create ();
wifiPhyHelper.SetChannel (pchan);

// Add a non-QoS upper-MAC layer "AdhocWifiMac", and set rate control
NqosWifiMacHelper wifiMacHelper = NqosWifiMacHelper::Default ();
wifiMacHelper.SetType ("ns3::AdhocWifiMac");
NetDeviceContainer devices = wifi.Install (wifiPhyHelper, wifiMacHelper,

ãÑfixedpos);
devices.Add (wifi.Install (wifiPhyHelper, wifiMacHelper, mover));

At this point the basic Wi-Fi configuration is done! The next step is to work on the positions and motion.
First we establish the positions of the fixed nodes.

MobilityHelper sessile; // for fixed nodes
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>

ãÑ ();

17.3 Wireless 581

An Introduction to Computer Networks, Release 1.9.21

int Xpos = 0;
for (int i=0; i<bottomrow; i++) {

positionAlloc->Add(Vector(Xpos, brheight, 0.0));
Xpos += spacing;

}
sessile.SetPositionAllocator (positionAlloc);
sessile.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
sessile.Install (fixedpos);

Next we set up the mover node. ConstantVelocityMobilityModel is a subclass of
MobilityModel. At the end we print out a couple things just for confirmation.

Vector pos (0, mheight+brheight, 0);
Vector vel (speed, 0, 0);
MobilityHelper mobile;
mobile.SetMobilityModel("ns3::ConstantVelocityMobilityModel"); // no

ãÑAttributes
mobile.Install(mover);
cvmm = mover->GetObject<ConstantVelocityMobilityModel> ();
cvmm->SetPosition(pos);
cvmm->SetVelocity(vel);
std::cout << "position: " << cvmm->GetPosition() << " velocity: " << cvmm->

ãÑGetVelocity() << std::endl;
std::cout << "mover mobility model: " << mobile.GetMobilityModelType() <<

ãÑstd::endl;

Now we configure Ad hoc On-demand Distance Vector routing.

AodvHelper aodv;
OlsrHelper olsr;
Ipv4ListRoutingHelper listrouting;
//listrouting.Add(olsr, 10); // generates less

ãÑtraffic
listrouting.Add(aodv, 10); // fastest to find new

ãÑroutes

Uncommenting the olsr line (and commenting out the last line) is all that is necessary to change to OLSR
routing. OLSR is slower to find new routes, but sends less traffic.

Now we set up the IP addresses. This is straightforward as all the nodes are on a single subnet.

InternetStackHelper internet;
internet.SetRoutingHelper(listrouting);
internet.Install (fixedpos);
internet.Install (mover);

Ipv4AddressHelper ipv4;
NS_LOG_INFO ("Assign IP Addresses.");
ipv4.SetBase ("10.1.1.0", "255.255.255.0"); // there is only one

ãÑsubnet
Ipv4InterfaceContainer i = ipv4.Assign (devices);

Now we create a receiving application UdpServer on node mover, and a sending application

582 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

UdpClient on the lower-left node. These applications generate their own sequence numbers, which show
up in the ns-3 tracefiles marked with ns3::SeqTsHeader. As in 17.2 A Single TCP Sender, we use
Config::SetDefault() and CreateObject<>() to construct the applications.

uint16_t port = 80;
// create a receiving application (UdpServer) on node mover
Address sinkaddr(InetSocketAddress (Ipv4Address::GetAny (), port));
Config::SetDefault("ns3::UdpServer::Port", UintegerValue(port));

Ptr<UdpServer> UdpRecvApp = CreateObject<UdpServer>();
UdpRecvApp->SetStartTime(Seconds(0.0));
UdpRecvApp->SetStopTime(Seconds(endtime+60));
mover->AddApplication(UdpRecvApp);

Ptr<Ipv4> m4 = mover->GetObject<Ipv4>();
Ipv4Address Maddr = m4->GetAddress(1,0).GetLocal();
std::cout << "IPv4 address of mover: " << Maddr << std::endl;
Address moverAddress (InetSocketAddress (Maddr, port));

Here is the UdpClient sending application:

Config::SetDefault("ns3::UdpClient::MaxPackets", UintegerValue(packetcount));
Config::SetDefault("ns3::UdpClient::PacketSize", UintegerValue(packetsize));
Config::SetDefault("ns3::UdpClient::Interval", TimeValue (MicroSeconds

ãÑ(interval)));

Ptr<UdpClient> UdpSendApp = CreateObject<UdpClient>();
UdpSendApp -> SetRemote(Maddr, port);
UdpSendApp -> SetStartTime(Seconds(0.0));
UdpSendApp -> SetStopTime(Seconds(endtime));
lowerleft->AddApplication(UdpSendApp);

We now set up tracing. The first, commented-out line enables pcap-format tracing, which we do not need
here. The YansWifiPhyHelper object supports tracing only of “receive” (r) and “transmit” (t) records;
the PointtoPointHelper of 17.2 A Single TCP Sender also traced enqueue and drop records.

//wifiPhyHelper.EnablePcap (tracebase, devices);

AsciiTraceHelper ascii;
wifiPhyHelper.EnableAsciiAll (ascii.CreateFileStream (tracebase + ".tr"));

// create animation file, to be run with 'netanim'
AnimationInterface anim (tracebase + ".xml");
anim.SetMobilityPollInterval(Seconds(0.1));

If we view the animation with netanim, the moving node’s motion is clear. The mover node, however,
sometimes appears to transmit back to both the fixed-row node below left and the fixed-row node below
right. These transmissions represent the Wi-Fi link-layer ACKs; they appear to be sent to two fixed-row
nodes because what netanim is actually displaying with its blue links is transmission every other node in
range.

We can also “view” the motion in text format by uncommenting the first line below.

17.3 Wireless 583

An Introduction to Computer Networks, Release 1.9.21

//Simulator::Schedule(Seconds(position_interval), &printPosition);

Simulator::Schedule(Seconds(endtime), &stopMover);

Finally it is time to run the simulator, and print some final output.

Simulator::Stop(Seconds (endtime+60));
Simulator::Run ();
Simulator::Destroy ();

int pktsRecd = UdpRecvApp->GetReceived();
std::cout << "packets received: " << pktsRecd << std::endl;
std::cout << "packets recorded as lost: " << (UdpRecvApp->GetLost()) <<

ãÑstd::endl;
std::cout << "packets actually lost: " << (packetcount - pktsRecd) <<

ãÑstd::endl;

return 0;
}

17.3.1 Tracefile Analysis

The tracefile provides no enqueue records, and Wi-Fi doesn’t have fixed links; how can we verify that
packets are being forwarded correctly? One thing we can do with the tracefile is to look at each value of the
UdpServer application sequence number, and record

• when it was received by node mover

• when it was transmitted by any fixed-row node

If we do this, we get output like the following:

packet 0 received at 0.0248642, forwarded by 0 at 0.0201597
packet 1 received at 0.0547045, forwarded by 0 at 0.05
...
packet 499 received at 24.9506, forwarded by 0 at 24.95
packet 500 NOT recd, forwarded by 0 at 25, forwarded by 0 at 25.0019,

ãÑforwarded by 0 at 25.0035, forwarded by 0 at 25.0071, forwarded by 0 at 25.
ãÑ0097, forwarded by 0 at 25.0159, forwarded by 0 at 25.0281
packet 501 received at 25.0864, forwarded by 0 at 25.0767, forwarded by 1 at

ãÑ25.0817
packet 502 received at 25.1098, forwarded by 0 at 25.1, forwarded by 1 at 25.

ãÑ1051
...
packet 1000 NOT recd, forwarded by 0 at 50, forwarded by 1 at 50.001,

ãÑforwarded by 1 at 50.003, forwarded by 1 at 50.0059, forwarded by 1 at 50.
ãÑ0087, forwarded by 1 at 50.0151, forwarded by 1 at 50.0239, forwarded by 1
ãÑat 50.0341
packet 1001 received at 50.082, forwarded by 0 at 50.0683, forwarded by 1 at

ãÑ50.0722, forwarded by 2 at 50.0773
packet 1002 received at 50.1107, forwarded by 0 at 50.1, forwarded by 1 at 50.

ãÑ101, forwarded by 2 at 50.106

584 17 The ns-3 Network Simulator

An Introduction to Computer Networks, Release 1.9.21

...
packet 1499 received at 74.9525, forwarded by 0 at 74.95, forwarded by 1 at

ãÑ74.951, forwarded by 2 at 74.9519
packet 1500 NOT recd, forwarded by 0 at 75, forwarded by 1 at 75.001,

ãÑforwarded by 2 at 75.0019, forwarded by 2 at 75.0039, forwarded by 2 at 75.
ãÑ005, forwarded by 2 at 75.0084, forwarded by 2 at 75.0124, forwarded by 2
ãÑat 75.0277, forwarded by 2 at 75.0361
packet 1501 NOT recd, forwarded by 0 at 75.05
packet 1502 received at 75.1484, forwarded by 0 at 75.1287, forwarded by 1 at

ãÑ75.1299, forwarded by 1 at 75.1314, forwarded by 1 at 75.1326, forwarded by
ãÑ2 at 75.1386, forwarded by 3 at 75.1437
packet 1503 received at 75.1621, forwarded by 0 at 75.15, forwarded by 1 at

ãÑ75.151, forwarded by 2 at 75.1523, forwarded by 3 at 75.1574
...

That is, packets 0-499 were transmitted only by node 0. Packet 500 was never received by mover, but
there were seven transmission attempts; these seven attempts follow the rules described in 3.7.1 Wi-Fi and
Collisions. Packets starting at 501 were transmitted by node 0 and then later by node 1. Similarly, packet
1000 was lost, and after that each packet arriving at mover was first transmitted by nodes 0, 1 and 2, in that
order. In other words, packets are indeed being forwarded rightward along the line of fixed-row nodes until
a node is reached that is in range of mover.

17.3.2 AODV Performance

If we change the line

listrouting.Add(aodv, 10);

to

listrouting.Add(dsdv, 10);

we find that the loss count goes from 4 packets out of 2000 to 398 out of 2000; for OLSR routing the loss
count is 426. As we discussed in 16.6 Wireless Simulation, the loss of one data packet triggers the AODV
implementation to look for a new route. The DSDV and OLSR implementations, on the other hand, only
look for new routes at regularly spaced intervals.

17.4 Exercises

In preparation.

17.4 Exercises 585

An Introduction to Computer Networks, Release 1.9.21

586 17 The ns-3 Network Simulator

18 MININET

Sometimes simulations are not possible or not practical, and network experiments must be run on actual ma-
chines. One can always use a set of interconnected virtual machines, but even pared-down virtual machines
consume sufficient resources that it is hard to create a network of more than a handful of nodes. Mininet is
a system that supports the creation of lightweight logical nodes that can be connected into networks. These
nodes are sometimes called containers, or, more accurately, network namespaces. Virtual-machine tech-
nology is not used. These containers consume sufficiently few resources that networks of over a thousand
nodes have been created, running on a single laptop. While Mininet was originally developed as a testbed for
software-defined networking (2.8 Software-Defined Networking), it works just as well for demonstrations
and experiments involving traditional networking.

A Mininet container is a process (or group of processes) that no longer has access to all the host system’s
“native” network interfaces, much as a process that has executed the chroot() system call no longer has
access to the full filesystem. Mininet containers then are assigned virtual Ethernet interfaces (see the ip-link
man page entries for veth), which are connected to other containers through virtual Ethernet links. The use
of veth links ensures that the virtual links behave like Ethernet, though it may be necessary to disable TSO
(12.5 TCP Offloading) to view Ethernet packets in WireShark as they would appear on the (virtual) wire.
Any process started within a Mininet container inherits the container’s view of network interfaces.

For efficiency, Mininet containers all share the same filesystem by default. This makes setup simple, but
sometimes causes problems with applications that expect individualized configuration files in specified lo-
cations. Mininet containers can be configured with different filesystem views, though we will not do this
here.

Mininet is a form of network emulation, as opposed to simulation. An important advantage of emulation is
that all network software, at any layer, is simply run “as is”. In a simulator environment, on the other hand,
applications and protocol implementations need to be ported to run within the simulator before they can be
used. A drawback of emulation is that as the network gets large and complex the emulation may slow down.
In particular, it is not possible to emulate link speeds faster than the underlying hardware can support. (It is
also not possible to emulate non-Linux network software.)

The Mininet group maintains extensive documentation; three useful starting places are the Overview, the
Introduction and the FAQ.

The goal of this chapter is to present a series of Mininet examples. Most examples are in the form of a
self-contained Python2 file (Mininet does not at this time support Python3). Each Mininet Python2 file
configures the network and then starts up the Mininet command-line interface (which is necessary to start
commands on the various node containers). The use of self-contained Python files arguably makes the
configurations easier to edit, and avoids the complex command-line arguments of many standard Mininet
examples. The Python code uses what the Mininet documentation calls the mid-level API.

The Mininet distribution comes with its own set of examples, in the directory of that name. A few of
particular interest are listed below; with the exception of linuxrouter.py, the examples presented here do not
use any of these techniques.

• bind.py: demonstrates how to give each Mininet node its own private directory (otherwise all nodes
share a common filesystem)

587

https://www.systutorials.com/docs/linux/man/8-ip-link/
http://mininet.org/overview/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/FAQ

An Introduction to Computer Networks, Release 1.9.21

• controllers.py: demonstrates how to arrange for multiple SDN controllers, with different switches
connecting to different controllers

• limit.py: demonstrates how to set CPU utilization limits (and link bandwidths)

• linuxrouter.py: creates a node that acts as a router. Any host node can act as a router, though, provided
we enable forwarding with sysctl net.ipv4.ip_forward=1

• miniedit.py: a graphical editor for Mininet networks

• mobility.py: demonstrates how to move a host from one switch to another

• nat.py: demonstrates how to connect hosts to the Internet

• tree1024.py: creates a network with 1024 nodes

We will occasionally need supplemental programs as well, eg for sending, monitoring or receiving traffic.
These are meant to be modified as necessary to meet circumstances; they contain few command-line option
settings. Most of these supplemental programs are written, perhaps confusingly, in Python3. Python2 files
are run with the python command, while Python3’s command is python3. Alternatively, given that all
these programs are running under Linux, one can make all Python files executable and be sure that the first
line is either #!/usr/bin/python or #!/usr/bin/python3 as appropriate.

18.1 Installing Mininet

Mininet runs only under the Linux operating system. Windows and Mac users can, however, easily run
Mininet in a single Linux virtual machine. Even Linux users may wish to do this, as running Mininet has a
nontrivial potential to affect normal operation (a virtual-switch process started by Mininet has, for example,
interfered with the suspend feature on the author’s laptop).

The Mininet group maintains a virtual machine with a current Mininet installation at their downloads site.
The download file is actually a .zip file, which unzips to a modest .ovf file defining the specifications of
the virtual machine and a much larger (~2 GB) .vmdk file representing the virtual disk image. (Some
unzip versions have trouble with unzipping very large files; if that happens, search online for an alternative
unzipper.)

There are several choices for virtual-machine software; two options that are well supported and free (as of
2017) for personal use are VirtualBox and VMware Workstation Player. The .ovf file should open in either
(in VirtualBox with the “import appliance” option). However, it may be easier simply to create a new Linux
virtual machine and specify that it is to use an existing virtual disk; then select the downloaded .vmdk file
as that disk.

Both the login name and the password for the virtual machine is “mininet”. Once logged in, the sudo
command can be used to obtain root privileges, which are needed to run Mininet. It is safest to do this
on a command-by-command basis; eg sudo python switchline.py. It is also possible to keep a
terminal window open that is permanently logged in as root, eg via sudo bash.

Another option is to set up a Linux virtual machine from scratch (eg via the Ubuntu distribution) and then
install Mininet on it, although the preinstalled version also comes with other useful software, such as the
Pox controller for OpenFlow switches.

588 18 Mininet

http://mininet.org/download/
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/player/playerpro-evaluation.html
https://en.wikipedia.org/wiki/Sudo

An Introduction to Computer Networks, Release 1.9.21

The preinstalled version does not, however, come with any graphical-interface desktop. One can install the
full Ubuntu desktop with the command (as root) apt-get install ubuntu-desktop. This will,
however, add more than 4 GB to the virtual disk. A lighter-weight option, recommended by the Mininet
site, is to install the alternative desktop environment lxde; it is half the size of Ubuntu. Install it with

apt-get install xinit lxde

The standard graphical text editor included with lxde is leafpad, though of course others (eg gedit or emacs)
can be installed as well.

After desktop installation, the command startx will be necessary after login to start the graphical envi-
ronment (though one can automate this). A standard recommendation for new Debian-based Linux systems,
before installing anything else, is

apt-get update
apt-get upgrade

Most virtual-machine software offers a special package to improve compatibility with the host system. One
of the most annoying incompatibilities is the tendency of the virtual machine to grab the mouse and not
allow it to be dragged outside the virtual-machine window. (Usually a special keypress releases the mouse;
on VirtualBox it is the right-hand Control key and on VMWare Player it is Control-Alt.) Installation of
the compatibility package (in VirtualBox called Guest Additions) usually requires mounting a CD image,
with the command

mount /dev/cdrom /media/cdrom

The Mininet installation itself can be upgraded as follows:

cd /home/mininet/mininet
git fetch
git checkout master # Or a specific version like 2.2.1
git pull
make install

The simplest environment for beginners is to install a graphical desktop (eg lxde) and then work within
it. This allows seamless opening of xterm and WireShark as necessary. Enabling copy/paste between the
virtual system and the host is also convenient.

However, it is also possible to work entirely without the desktop, by using multiple ssh logins with X-
windows forwarding enabled:

ssh -X -l username mininet

This does require an X-server on the host system, but these are available even for Windows (see, for example,
Cygwin/X). At this point one can open a graphical program on the ssh command line, eg wireshark & or
gedit mininet-demo.py &, and have the program window display properly (or close to properly).

Finally, it is possible to access the Mininet virtual machine solely via ssh terminal sessions, without X-
windows, though one then cannot launch xterm or WireShark.

18.1 Installing Mininet 589

http://lxde.org/
http://tarot.freeshell.org/leafpad/
https://en.wikipedia.org/wiki/Xterm
https://en.wikipedia.org/wiki/X_Window_System
https://x.cygwin.com/

An Introduction to Computer Networks, Release 1.9.21

18.2 A Simple Mininet Example

Starting Mininet via the mn command (as root!), with no command-line arguments, creates a simple net-
work of two hosts and one switch, h1–s1–h2, and starts up the Mininet command-line interface (CLI). By
convention, Mininet host names begin with ‘h’ and switch names begin with ‘s’; numbering begins with 1.

At this point one can issue various Mininet-CLI commands. The command nodes, for example, yields the
following output:

available nodes are:
c0 h1 h2 s1

The node c0 is the controller for the switch s1. The default controller action her makes s1 behave like an
Ethernet learning switch (2.4.1 Ethernet Learning Algorithm). The command intfs lists the interfaces
for each of the nodes, and links lists the connections, but the most useful command is net, which shows
the nodes, the interfaces and the connections:

h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0

From the above, we can see that the network looks like this:

h1 s1 h2
h1-eth0 s1-eth1 s1-eth2 h2-eth0

18.2.1 Running Commands on Nodes

The next step is to run commands on individual nodes. To do this, we use the Mininet CLI and prefix the
command name with the node name:

h1 ifconfig
h1 ping h2

The first command here shows that h1 (or, more properly, h1-eth0) has IP address 10.0.0.1. Note that the
name ‘h2’ in the second is recognized. The ifconfig command also shows the MAC address of h1-eth0,
which may vary but might be something like 62:91:68:bf:97:a0. We will see in the following section how to
get more human-readable MAC addresses.

There is a special Mininet command pingall that generates pings between each pair of hosts.

We can open a full shell window on node h1 using the Mininet command below; this works for both host
nodes and switch nodes.

xterm h1

Note that the xterm runs with root privileges. From within the xterm, the command ping h2 now fails, as
hostname h2 is not recognized. We can switch to ping 10.0.0.2, or else add entries to /etc/hosts for

590 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

the IP addresses of h1 and h2:

10.0.0.1 h1
10.0.0.2 h2

As the Mininet system shares its filesystem with h1 and h2, this means that the names h1 and h2 are
now defined everywhere within Mininet (though be forewarned that when a different Mininet configuration
assigns different addresses to h1 or h2, chaos will ensue).

From within the xterm on h1 we might try logging into h2 via ssh: ssh h2 (if h2 is defined in /etc/hosts
as above). But the connection is refused: the ssh server is not running on node h2. We will return to this in
the following example.

We can also start up WireShark, and have it listen on interface h1-eth0, and see the progress of our pings.
(We can also usually start WireShark from the mininet> prompt using h1 wireshark &.)

Similarly, we can start an xterm on the switch and start WireShark there. However, there is another option, as
switches by default share all their network systems with the Mininet host system. (In terms of the container
model, switches do not by default get their own network namespace; they share the “root” namespace with
the host.) We can see this by running the following from the Mininet command line

s1 ifconfig

and comparing the output with that of ifconfig run on the Mininet host, while Mininet is running but
outside of the Mininet process itself. We see these interfaces:

eth0
lo
s1
s1-eth1
s1-eth2

We see the same interfaces on the controller node c0, even though the net and intfs commands above
showed no interfaces for c0.

Running WireShark on, say, s1-eth1 is an excellent way to observe traffic on a nearly idle network; by
default, the Mininet nodes are not connected to the outside world. As an example, suppose we start up
xterm windows on h1 and h2, and run netcat -l 5432 on h2 and then netcat 10.0.0.2 5432
on h1. We can then watch the ARP exchange, the TCP three-way handshake, the content delivery and the
connection teardown, with most likely no other traffic at all. Wireshark filtering is not needed.

18.3 Multiple Switches in a Line

The next example creates the topology below. All hosts are on the same subnet.

18.3 Multiple Switches in a Line 591

An Introduction to Computer Networks, Release 1.9.21

s1

h1

s2 s3 s4

h2 h3 h4
h1-eth0 h2-eth0 h3-eth0 h4-eth0

s4-eth1s3-eth1s2-eth1s1-eth1

s1-eth2 s2-eth3 s3-eth3 s4-eth2s3-eth2s2-eth2

The Mininet-CLI command links can be used to determine which switch interface is connected to which
neighboring switch interface.

The full Python2 program is switchline.py; to run it use

python switchline.py

This configures the network and starts the Mininet CLI. The default number of host/switch pairs is 4, but
this can be changed with the -N command-line parameter, for example python switchline.py -N
5.

We next describe selected parts of switchline.py. The program starts by building the network topology
object, LineTopo, extending the built-in Mininet class Topo, and then call Topo.addHost() to create
the host nodes. (We here override __init()__, but overriding build() is actually more common.)

class LineTopo(Topo):
def __init__(self , **kwargs):

"Create linear topology"
super(LineTopo, self).__init__(**kwargs)
h = [] # list of hosts; h[0] will be h1, etc
s = [] # list of switches

for key in kwargs:
if key == 'N': N=kwargs[key]

add N hosts h1..hN
for i in range(1,N+1):

h.append(self.addHost('h' + str(i)))

Method Topo.addHost() takes a string, such as “h2”, and builds a host object of that name. We im-
mediately append the new host object to the list h[]. Next we do the same to switches, using Topo.
addSwitch():

add N switches s1..sN
for i in range(1,N+1):

s.append(self.addSwitch('s' + str(i)))

Now we build the links, with Topo.addLink. Note that h[0]..h[N-1] represent h1..hN. First we build the
host-switch links, and then the switch-switch links.

for i in range(N): # Add links from hi to si
self.addLink(h[i], s[i])

for i in range(N-1): # link switches
self.addLink(s[i],s[i+1])

592 18 Mininet

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/switchline.py

An Introduction to Computer Networks, Release 1.9.21

Now we get to the main program. We use argparse to support the -N command-line argument.

def main(**kwargs):
parser = argparse.ArgumentParser()
parser.add_argument('-N', '--N', type=int)
args = parser.parse_args()
if args.N is None:

N = 4
else:

N = args.N

Next we create a LineTopo object, defined above. We also set the log-level to ‘info’; if we were having
problems we would set it to ‘debug’.

ltopo = LineTopo(N=N)
setLogLevel('info')

Finally we’re ready to create the Mininet net object, and start it. We’ve specified the type of switch here,
though at this point that does not really matter. It does matter that we’re using the DefaultController, as
otherwise the switches will not behave automatically as Ethernet learning switches. The autoSetMacs
option sets the host MAC addresses to 00:00:00:00:00:01 through 00:00:00:00:00:04 (for N=4), which can
be a great convenience when manually examining Ethernet addresses.

net = Mininet(topo = ltopo, switch = OVSKernelSwitch,
controller = DefaultController,
autoSetMacs = True
)

net.start()

The next bit starts /usr/sbin/sshd on each node. This command automatically puts itself in the back-
ground; otherwise we would need to add an ‘&’ to the string to run the command in the background.

for i in range(1, N+1):
hi = net['h' + str(i)]
hi.cmd('/usr/sbin/sshd')

Finally we start the Mininet CLI, and, when that exits, we stop the emulation.

CLI(net)
net.stop()

Using sshd requires a small bit of configuration, if ssh for the root user has not been set up already. We
must first run ssh-keygen, which creates the directory /root/.ssh and then the public and private
key files, id_rsa.pub and id_rsa respectively. There is no need, in this setting, to protect the keys
with a password. The second step is to go to the .ssh directory and copy id_rsa.pub to the (new)
file authorized_keys (if the latter file already exists, append id_rsa.pub to it). This will allow
passwordless ssh connections between the different Mininet hosts.

Because we started sshd on each host, the command ssh 10.0.0.4 on h1 should successfully connect
to h4. The first time a connection is made from h1 to h4 (as root), ssh will ask for confirmation, and then

18.3 Multiple Switches in a Line 593

An Introduction to Computer Networks, Release 1.9.21

store h4’s key in /root/.ssh/known_hosts. As this is the same file for all Mininet nodes, due to the common
filesystem, a subsequent request to connect from h2 to h4 will succeed immediately; h4 has already been
authenticated for all nodes.

18.3.1 Running a webserver

Now let’s run a web server on, say, host 10.0.0.4 of the switchline.py example above. Python includes a
simple implementation that serves up the files in the directory in which it is started. After switchline.py is
running, start an xterm on host h4, and then change directory to /usr/share/doc (where there are some
html files). Then run the following command (the 8000 is the server port number):

python -m SimpleHTTPServer 8000

If this is run in the background somewhere, output should be redirected to /dev/null or else the server will
eventually hang.

The next step is to start a browser. If the lxde environment has been installed (18.1 Installing Mininet),
then the chromium browser should be available. Start an xterm on host h1, and on h1 run the following (the
--no-sandbox option is necessary to run chromium as root):

chromium-browser --no-sandbox

Assuming chromium opens successfully, enter the following URL: 10.0.0.4:8000. If chromium does
not start, try wget 10.0.0.4:8000, which stores what it receives as the file index.html. Either
way, you should see a listing of the /usr/share/doc directory. It is possible to browse subdirectories,
but only browser-recognized filetypes (eg .html) will open directly. A few directories with subdirectories
named html are iperf, iptables and xarchiver; try navigating to these.

18.4 IP Routers in a Line

In the next example we build a Mininet example involving a router rather than a switch. A router here is
simply a multi-interface Mininet host that has IP forwarding enabled in its Linux kernel. Mininet support
for multi-interface hosts is somewhat fragile; interfaces may need to be initialized in a specific order, and
IP addresses often cannot be assigned at the point when the link is created. In the code presented below we
assign IP addresses using calls to Node.cmd() used to invoke the Linux command ifconfig (Mininet
containers do not fully support the use of the alternative ip addr command).

Our first router topology has only two hosts, one at each end, and N routers in between; below is the
diagram with N=3. All subnets are /24. The program to set this up is routerline.py, here invoked as python
routerline.py -N 3. We will use N=3 in most of the examples below. A somewhat simpler version
of the program, which sets up the topology specifically for N=3, is routerline3.py.

r1 r2 r3 h2
10.0.0.10

h1
10.0.0.2 10.0.1.1 10.0.1.2 10.0.2.1 10.0.2.2 10.0.3.1 10.0.3.10

In both versions of the program, routing entries are created to route traffic from h1 to h2, but not back again.
That is, every router has a route to 10.0.3.0/24, but only r1 knows how to reach 10.0.0.0/24 (to which r1

594 18 Mininet

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/routerline.py

An Introduction to Computer Networks, Release 1.9.21

is directly connected). We can verify the “one-way” connectedness by running WireShark or tcpdump
on h2 (perhaps first starting an xterm on h2), and then running ping 10.0.3.10 on h1 (perhaps using
the Mininet command h1 ping h2). WireShark or tcpdump should show the arriving ICMP ping
packets from h1, and also the arriving ICMP Destination Network Unreachable packets from r3 as h2 tries
to reply (see 7.11 Internet Control Message Protocol).

It turns out that one-way routing is considered to be suspicious; one interpretation is that the packets involved
have a source address that shouldn’t be possible, perhaps spoofed. Linux provides the interface configuration
option rp_filter – reverse-path filter – to block the forwarding of packets for which the router does not
have a route back to the packet’s source. This must be disabled for the one-way example to work; see the
notes on the code below.

Despite the lack of connectivity, we can reach h2 from h1 via a hop-by-hop sequence of ssh connections
(the program enables sshd on each host and router):

h1: slogin 10.0.0.2
r1: slogin 10.0.1.2
r2: slogin 10.0.2.2
r3: slogin 10.0.3.10 (that is, h3)

To get the one-way routing to work from h1 to h2, we needed to tell r1 and r2 how to reach destination
10.0.3.0/24. This can be done with the following commands (which are executed automatically if we set
ENABLE_LEFT_TO_RIGHT_ROUTING = True in the program):

r1: ip route add to 10.0.3.0/24 via 10.0.1.2
r2: ip route add to 10.0.3.0/24 via 10.0.2.2

To get full, bidirectional connectivity, we can create the following routes to 10.0.0.0/24:

r2: ip route add to 10.0.0.0/24 via 10.0.1.1
r3: ip route add to 10.0.0.0/24 via 10.0.2.1

When building the network topology, the single-interface hosts can have all their attributes set at once (the
code below is from routerline3.py:

h1 = self.addHost('h1', ip='10.0.0.10/24', defaultRoute='via 10.0.0.2')
h2 = self.addHost('h2', ip='10.0.3.10/24', defaultRoute='via 10.0.3.1')

The routers are also created with addHost(), but with separate steps:

r1 = self.addHost('r1')
r2 = self.addHost('r2')
...

self.addLink(h1, r1, intfName1 = 'h1-eth0', intfName2 = 'r1-eth0')
self.addLink(r1, r2, inftname1 = 'r1-eth1', inftname2 = 'r2-eth0')

Later on the routers get their IPv4 addresses:

r1 = net['r1']
r1.cmd('ifconfig r1-eth0 10.0.0.2/24')
r1.cmd('ifconfig r1-eth1 10.0.1.1/24')

18.4 IP Routers in a Line 595

An Introduction to Computer Networks, Release 1.9.21

r1.cmd('sysctl net.ipv4.ip_forward=1')
rp_disable(r1)

The sysctl command here enables forwarding in r1. The rp_disable(r1) call disables Linux’s
default refusal to forward packets if the router does not have a route back to the packet’s source; this is
often what is wanted in the real world but not necessarily in routing demonstrations. It too is ultimately
implemented via sysctl commands.

18.5 IP Routers With Simple Distance-Vector Implementation

The next step is to automate the discovery of the route from h1 to h2 (and back) by using a simple distance-
vector routing-update protocol. We present a partial implementation of the Routing Information Protocol,
RIP, as defined in RFC 2453.

The distance-vector algorithm is described in 9.1 Distance-Vector Routing-Update Algorithm. In brief, the
idea is to add a cost attribute to the forwarding table, so entries have the form xdestination,next_hop,costy.
Routers then send xdestination,costy lists to their neighbors; these lists are referred to the RIP specification
as update messages. Routers receiving these messages then process them to figure out the lowest-cost route
to each destination. The format of the update messages is diagrammed below:

Addr Family route_tag

IP Address

Netmask

Next_hop Address

metric

The full RIP specification also includes request messages, but the implementation here omits these. The full
specification also includes split horizon, poison reverse and triggered updates (9.2.1.1 Split Horizon and
9.2.1.2 Triggered Updates); we omit these as well. Finally, while we include code for the third next_hop
increase case of 9.1.1 Distance-Vector Update Rules, we do not include any test for whether a link is down,
so this case is never triggered.

The implementation is in the Python3 file rip.py. Most of the time, the program is waiting to read update
messages from other routers. Every UPDATE_INTERVAL seconds the program sends out its own update
messages. All communication is via UDP packets sent using IP multicast, to the official RIP multicast
address 224.0.0.9. Port 520 is used for both sending and receiving.

Rather than creating separate threads for receiving and sending, we configure a short (1 second) recv()
timeout, and then after each timeout we check whether it is time to send the next update. An update can be
up to 1 second late with this approach, but this does not matter.

The program maintains a “shadow” copy RTable of the real system forwarding table, with an added cost
column. The real table is updated whenever a route in the shadow table changes. In the program, RTable is

596 18 Mininet

https://tools.ietf.org/html/rfc2453.html
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/rip.py

An Introduction to Computer Networks, Release 1.9.21

a dictionary mapping TableKey values (consisting of the IP address and mask) to TableValue objects
containing the interface name, the cost, and the next_hop.

To run the program, a “production” approach would be to use Mininet’s Node.cmd() to start up rip.py
on each router, eg via r.cmd('python3 rip.py &') (assuming the file rip.py is located in the same
directory in which Mininet was started). For demonstrations, the program output can be observed if the
program is started in an xterm on each router.

18.5.1 Multicast Programming

Sending IP multicast involves special considerations that do not arise with TCP or UDP connections. The
first issue is that we are sending to a multicast group – 224.0.0.9 – but don’t have any multicast routes
(multicast trees, 20.5 Global IP Multicast) configured. What we would like is to have, at each router, traffic
to 224.0.0.9 forwarded to each of its neighboring routers.

However, we do not actually want to configure multicast routes; all we want is to reach the immediate
neighbors. Setting up a multicast tree presumes we know something about the network topology, and, at
the point where RIP comes into play, we do not. The multicast packets we send should in fact not be
forwarded by the neighbors (we will enforce this below by setting TTL); the multicast model here is very
local. Even if we did want to configure multicast routes, Linux does not provide a standard utility for manual
multicast-routing configuration; see the ip-mroute.8 man page.

So what we do instead is to create a socket for each separate router interface, and configure the socket
so that it forwards its traffic only out its associated interface. This introduces a complication: we need to
get the list of all interfaces, and then, for each interface, get its associated IPv4 addresses with netmasks.
(To simplify life a little, we will assume that each interface has only a single IPv4 address.) The function
getifaddrdict() returns a dictionary with interface names (strings) as keys and pairs (ipaddr,netmask)
as values. If ifaddrs is this dictionary, for example, then ifaddrs['r1-eth0'] might be ('10.
0.0.2','255.255.255.0'). We could implement getifaddrdict() straightforwardly using the
Python module netifaces, though for demonstration purposes we do it here via low-level system calls.

We get the list of interfaces using myInterfaces = os.listdir('/sys/class/net/'). For
each interface, we then get its IP address and netmask (in get_ip_info(intf)) with the following:

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
SIOCGIFADDR = 0x8915 # from /usr/include/linux/sockios.h
SIOCGIFNETMASK = 0x891b
intfpack = struct.pack('256s', bytes(intf, 'ascii'))
ifreq, below, is like struct ifreq in /usr/include/linux/if.h
ifreq = fcntl.ioctl(s.fileno(), SIOCGIFADDR, intfpack)
ipaddrn = ifreq[20:24] # 20 is the offset of the IP addr in ifreq
ipaddr = socket.inet_ntoa(ipaddrn)
netmaskn = fcntl.ioctl(s.fileno(), SIOCGIFNETMASK, intfpack)[20:24]
netmask = socket.inet_ntoa(netmaskn)
return (ipaddr, netmask)

We need to create the socket here (never connected) in order to call ioctl(). The SIOCGIFADDR and
SIOCGIFNETMASK values come from the C language include file; the Python3 libraries do not make these
constants available but the Python3 fcntl.ioctl() call does pass the values we provide directly to the
underlying C ioctl() call. This call returns its result in a C struct ifreq; the ifreq above is a Python

18.5 IP Routers With Simple Distance-Vector Implementation 597

https://alastairs-place.net/projects/netifaces/

An Introduction to Computer Networks, Release 1.9.21

version of this. The binary-format IPv4 address (or netmask) is at offset 20.

18.5.1.1 createMcastSockets()

We are now in a position, for each interface, to create a UDP socket to be used to send and receive on
that interface. Much of the information here comes from the Linux socket.7 and ip.7 man pages. The
function createMcastSockets(ifaddrs) takes the dictionary above mapping interface names to
(ipaddr,netmask) pairs and, for each interface intf, configures it as follows. The list of all the newly
configured sockets is then returned.

The first step is to obtain the interface’s address and mask, and then convert these to 32-bit integer format as
ipaddrn and netmaskn. We then enter the subnet corresponding to the interface into the shadow routing
table RTable with a cost of 1 (and with a next_hop of None), via

RTable[TableKey(subnetn, netmaskn)] = TableValue(intf, None, 1)

Next we create the socket and begin configuring it, first by setting its read timeout to a short value. We then
set the TTL value used by outbound packets to 1. This goes in the IPv4 header Time To Live field (7.1 The
IPv4 Header); this means that no downstream routers will ever forward the packet. This is exactly what we
want; RIP uses multicast only to send to immediate neighbors.

sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, 1)

We also want to be able to bind the same socket source address, 224.0.0.9 and port 520, to all the sockets
we are creating here (the actual bind() call is below):

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

The next call makes the socket receive only packets arriving on the specified interface:

sock.setsockopt(socket.SOL_SOCKET, socket.SO_BINDTODEVICE, bytes(intf, 'ascii
ãÑ'))

We add the following to prevent packets sent on the interface from being delivered back to the sender;
otherwise multicast delivery may do just that:

sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_LOOP, False)

The next call makes the socket send on the specified interface. Multicast packets do have IPv4 destination
addresses, and normally the kernel chooses the sending interface based on the IP forwarding table. This call
overrides that, in effect telling the kernel how to route packets sent via this socket. (The kernel may also be
able to figure out how to route the packet from the subsequent call joining the socket to the multicast group.)

sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_IF, socket.inet_
ãÑaton(ipaddr))

Finally we can join the socket to the multicast group represented by 224.0.0.9. We also need the inter-
face’s IP address, ipaddr.

598 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

addrpair = socket.inet_aton('224.0.0.9')+ socket.inet_aton(ipaddr)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, addrpair)

The last step is to bind the socket to the desired address and port, with sock.bind(('224.0.0.9',
520)). This specifies the source address of outbound packets; it would fail (given that we are using the
same socket address for multiple interfaces) without the SO_REUSEADDR configuration above.

18.5.2 The RIP Main Loop

The rest of the implementation is relatively nontechnical. One nicety is the use of select() to wait for
arriving packets on any of the sockets created by createMcastSockets() above; the alternatives might
be to poll each socket in turn with a short read timeout or else to create a separate thread for each socket.
The select() call takes the list of sockets (and a timeout value) and returns a sublist consisting of those
sockets that have data ready to read. Almost always, this will be just one of the sockets. We then read
the data with s.recvfrom(), recording the source address src which will be used when we, next, call
update_tables(). When a socket closes, it must be removed from the select() list, but the sockets
here do not close; for more on this, see 18.6.1.2 dualreceive.py.

The update_tables() function takes the incoming message (parsed into a list of RipEntry objects
via parse_msg()) and the IP address from which it arrives, and runs the distance-vector algorithm of
9.1.1 Distance-Vector Update Rules. TK is the TableKey object representing the new destination (as
an (addr,netmask) pair). The new destination rule from 9.1.1 Distance-Vector Update Rules is ap-
plied when TK is not present in the existing RTable. The lower cost rule is applied when newcost
< currentcost, and the third next_hop increase rule is applied when newcost > currentcost
but currentnexthop == update_sender.

18.6 TCP Competition: Reno vs Vegas

The next routing example uses the following topology in order to emulate competition between two TCP
connections h1Ñh3 and h2Ñh3. We introduce Mininet features to set, on the links, an emulated bandwidth
and delay, and to set on the router an emulated queue size. Our first application will be to arrange a compe-
tition between TCP Reno (13 TCP Reno and Congestion Management) and TCP Vegas (15.6 TCP Vegas).
The Python2 file for running this Mininet configuration is competition.py.

h1

h2

r1 h3
8 MBit, 110 ms

80 MBit

80 MBit

To create links with bandwidth/delay support, we simply set Link=TCLink in the Mininet() call in
main(). The TCLink class represents a Traffic Controlled Link. Next, in the topology section calls to

18.6 TCP Competition: Reno vs Vegas 599

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/competition.py

An Introduction to Computer Networks, Release 1.9.21

addLink(), we add keyword parameters such as bw=BottleneckBW and delay=DELAY. To imple-
ment the bandwidth limit, Mininet then takes care of creating the virtual-Ethernet links with a rate con-
straint.

To implement the delay, Mininet uses a queuing hierarchy (19.7 Hierarchical Queuing). The hierarchy is
managed by the tc (traffic control) command, part of the LARTC system. In the topology above, Mininet
sets up h3’s queue as an htb queue (19.13.2 Linux HTB, 18.8 Linux Traffic Control (tc)) with a netem
queue below it (see the man page for tc-netem.8). The latter has a delay parameter set as requested, to 110
ms in our example here. Note that this means that the delay from h3 to r will be 110 ms, and the delay from
r to h3 will be 0 ms.

The queue configuration is also handled via the tc command. Again Mininet configures r’s r-eth3 interface
to have an htb queue with a netem queue below it. Using the tc qdisc show command we can see that
the “handle” of the netem queue is 10:; we can now set the maximum queue size to, for example, 25 with
the following command on r:

tc qdisc change dev r-eth3 handle 10: netem limit 25

18.6.1 Running A TCP Competition

In order to arrange a TCP competition, we need the following tools:

• sender.py, to open the TCP connection and send bulk data, after requesting a specific TCP congestion-
control mechanism (Reno or Vegas)

• dualreceive.py, to receive data from two connections and track the results

• randomtelnet.py, to send random additional data to break TCP phase effects.

• wintracker.py, to monitor the number of packets a connection has in flight (a good estimator of cwnd).

18.6.1.1 sender.py

The Python3 program sender.py is similar to tcp_stalkc.py, except that it allows specification of the TCP
congestion algorithm. This is done with the following setsockopt() call:

s.setsockopt(socket.IPPROTO_TCP, TCP_CONGESTION, cong)

where cong is “reno” or “cubic” or some other available TCP flavor. The list is at
/proc/sys/net/ipv4/tcp_allowed_congestion_control.

See also 15.1 Choosing a TCP on Linux.

18.6.1.2 dualreceive.py

The receiver for sender.py’s data is dualreceive.py. It listens on two ports, by default 5430 and 5431, and,
when both connections have been made, begins reading. The main loop starts with a call to select(),
where sset is the list of all (both) connected sockets:

600 18 Mininet

http://www.lartc.org/
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/sender.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/dualreceive.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/randomtelnet.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/wintracker.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/sender.py
http://intronetworks.cs.luc.edu/auxiliary_files/stalk/tcp_stalkc.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/dualreceive.py

An Introduction to Computer Networks, Release 1.9.21

sl,_,_ = select(sset, [], [])

The value sl is a sublist of sset consisting of the sockets with data ready to read. It will normally be a list
consisting of a single socket, though with so much data arriving it may sometimes contain both. We then
call s.recv() for s in sl, and record in either count1 or count2 the running total of bytes received.

If a sender closes a socket, this results in a read of 0 bytes. At this point dualreceive.py must close the
socket, at which point it must be removed from sset as it will otherwise always appear in the sl list.

We repeatedly set a timer (in printstats()) to print the values of count1 and count2 at 0.1 sec-
ond intervals, reflecting the cumulative amounts of data received by the connections. (If the variable
PRINT_CUMULATIVE is set to False, then the values printed are the amounts of data received in the
last 0.1 seconds.) If the TCP competition is fair, count1 and count2 should stay approximately equal.
When printstats() detects no change in count1 and count2, it exits.

In Python, calling exit() only exits the current thread; the other threads keep running.

18.6.1.3 randomtelnet.py

In 16.3.4 Phase Effects we show that, with completely deterministic travel times, two competing TCP
connections can have throughputs differing by a factor of as much as 10 simply because of unfortunate
synchronizations of transmission times. We must introduce at least some degree of packet-arrival-time
randomization in order to obtain meaningful results.

In 16.3.6 Phase Effects and overhead we used the ns2 overhead attribute for this. This is not avail-
ble in real networks, however. The next-best thing is to introduce some random telnet-like traffic, as in
16.3.7 Phase Effects and telnet traffic. This is the purpose of randomtelnet.py.

This program sends packets at random intervals; the lengths of the intervals are exponentially distributed,
meaning that to find the length of the next interval we choose X randomly between 0 and 1 (with a uniform
distribution), and then set the length of the wait interval to a constant times -log(X). The packet sizes are
210 bytes (a very atypical value for real telnet traffic). Crucially, the average rate of sending is held to
a small fraction (by default 1%) of the available bottleneck bandwidth, which is supplied as a constant
BottleneckBW. This means the randomtelnet traffic should not interfere significantly with the competing
TCP connections (which, of course, have no additional interval whatsoever between packet transmissions,
beyond what is dictated by sliding windows). The randomtelnet traffic appears to be quite effective at
eliminating TCP phase effects.

Randomtelnet.py sends to port 5433 by default. We will usually use netcat (12.6.2 netcat again) as the
receiver, as we are not interested in measuring throughput for this traffic.

18.6.1.4 Monitoring cwnd with wintracker.py

At the end of the competition, we can look at the dualreceive.py output and determine the overall throughput
of each connection, as of the time when the first connection to send all its data has just finished. We can also
plot throughput at intervals by plotting successive differences of the cumulative-throughput values.

However, this does not give us a view of each connection’s cwnd, which is readily available when modeling
competition in a simulator. Indeed, getting direct access to a connection’s cwnd is nearly impossible, as it

18.6 TCP Competition: Reno vs Vegas 601

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/randomtelnet.py

An Introduction to Computer Networks, Release 1.9.21

is a state variable in the sender’s kernel.

However, we can do the next best thing: monitor the number of packets (or bytes) a connection has in flight;
this is the difference between the highest byte sent and the highest byte acknowledged. The highest byte
ACKed is one less than the value of the ACK field in the most recent ACK packet, and the highest byte sent
is one less than the value of the SEQ field, plus the packet length, in the most recent DATA packet.

To get these ACK and SEQ numbers, however, requires eavesdropping on the network connections. We
can do this using a packet-capture library such as libpcap. The Pcapy Python2 (not Python3) module is a
wrapper for libpcap.

The program wintracker.py uses Pcapy to monitor packets on the interfaces r-eth1 and r-eth2 of router r.
It would be slightly more accurate to monitor on h1-eth0 and h2-eth0, but that entails separate monitoring
of two different nodes, and the difference is small as the h1–r and h2–r links have negligible delay and no
queuing. Wintracker.py must be configured to monitor only the two TCP connections that are competing.

The way libpcap, and thus Pcapy, works is that we first create a packet filter to identify the packets we want
to capture. The filter for both connections is

host 10.0.3.10 and tcp and portrange 5430-5431

The host is, of course, h3; packets are captured if either source host or destination host is h3. Similarly,
packets are captured if either the source port or the destination port is either 5430 or 5431. The connection
from h1 to h3 is to port 5430 on h3, and the connection from h2 to h3 is to port 5431 on h3.

For the h1–h3 connection, each time a packet arrives heading from h1 to h3 (in the code below we determine
this because the destination port dport is 5430), we save in seq1 the TCP header SEQ field plus the packet
length. Each time a packet is seen heading from h3 to h1 (that is, with source port 5430), we record in ack1
the TCP header ACK field. The packets themselves are captured as arrays of bytes, but we can determine
the offset of the TCP header and read the four-byte SEQ/ACK values with appropriate helper functions:

_,p = cap1.next() # p is the captured packet
...
(_,iphdr,tcphdr,data) = parsepacket(p) # find the headers
sport = int2(tcphdr, TCP_SRCPORT_OFFSET) # extract port numbers
dport = int2(tcphdr, TCP_DSTPORT_OFFSET)
if dport == port1: # port1 == 5430

seq1 = int4(tcphdr, TCP_SEQ_OFFSET) + len(data)
elif sport == port1:

ack1 = int4(tcphdr, TCP_ACK_OFFSET)

Separate threads are used for each connection, as there is no variant of select() available to return the
next captured packet of either connection.

Both the SEQ and ACK fields have had ISNA added to them, but this will cancel out when we subtract. The
SEQ and ACK values are subject to 32-bit wraparound, but subtraction again saves us here.

As with dualreceive.py, a timer fires every 100 ms and prints out the differences seq1-ack1 and
seq2-ack2. This isn’t completely thread-safe, but it is close enough. There is some noise in the results;
we can minimize that by taking the average of several differences in a row.

602 18 Mininet

http://www.tcpdump.org/
https://www.coresecurity.com/corelabs-research/open-source-tools/pcapy
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/wintracker.py

An Introduction to Computer Networks, Release 1.9.21

18.6.1.5 Synchronizing the start

The next issue is to get both senders to start at about the same time. We could use two ssh commands, but
ssh commands can take several hundred milliseconds to complete. A faster method is to use netcat to trigger
the start. On h1 and h2 we run shell scripts like the one below (separate values for $PORT and $CONG are
needed for each of h1 and h2, which is simplest to implement with separate scripts, say h1.sh and h2.sh):

netcat -l 2345
python3 sender.py $BLOCKS 10.0.3.10 $PORT $CONG

We then start both at very close to the same time with the following on r (not on h3, due to the delay on the
r–h3 link); these commands typically complete in under ten milliseconds.

echo hello | netcat h1 2345
echo hello | netcat h2 2345

The full sequence of steps is

• On h3, start the netcat -l ... for the randomtelnet.py output (on two different ports)

• On h1 and h2, start the randomtelnet.py senders

• On h3, start dualreceive.py

• On h1 and h2, start the scripts (eg h1.sh and h2.sh) that wait for the signal and start sender.py

• On r, send the two start triggers via netcat

This is somewhat cumbersome; it helps to incorporate everything into a single shell script with ssh used to
run subscripts on the appropriate host.

18.6.1.6 Reno vs Vegas results

In the Reno-Vegas graph at 16.5 TCP Reno versus TCP Vegas, we set the Vegas parameters 𝛼 and 𝛽 to 3
and 6 respectively. The implementation of TCP Vegas on the Mininet virtual machine does not, however,
support changing 𝛼 and 𝛽, and the default values are more like 1 and 3. To give Vegas a fighting chance, we
reduce the queue size at r to 10 in competition.py. Here is the graph, with the packets-in-flight monitoring
above and the throughput below:

18.6 TCP Competition: Reno vs Vegas 603

An Introduction to Computer Networks, Release 1.9.21

0

500000

1e+06

1.5e+06

2e+06

0 50 100 150 200 250 300 350 400 450

Reno
Vegas

TCP Vegas is getting a smaller share of the bandwidth (overall about 40% to TCP Reno’s 60%), but it is
consistently holding its own. It turns out that TCP Vegas is greatly helped by the small queue size; if the
queue size is doubled to 20, then Vegas gets a 17% share.

In the upper part of the graph, we can see the Reno sawteeth versus the Vegas triangular teeth (sloping down
as well as sloping up); compare to the red-and-green graph at 16.5 TCP Reno versus TCP Vegas. The
tooth shapes are somewhat mirrored in the throughput graph as well, as throughput is proportional to queue
utilization which is proportional to the number of packets in flight.

18.7 TCP Competition: Reno vs BBR

We can apply the same technique to compare TCP Reno to TCP BBR. This was done to create the graph at
15.16 TCP BBR. The Mininet approach is usable as soon as a TCP BBR module for Linux was released
(in source form); to use a simulator, on the other hand, would entail waiting for TCP BBR to be ported to
the simulator.

One nicety is that it is essential that the fq queuing discipline be enabled for the TCP BBR sender. If that is
h2, for example, then the following Mininet code (perhaps in competition.py) removes any existing
queuing discipline and adds fq:

h2.cmd('tc qdisc del dev h2-eth root')
h2.cmd('tc qdisc add dev h2-eth root fq')

The purpose of the fq queuing is to enable pacing; that is, the transmission of packets at regular, very small
intervals.

604 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

18.8 Linux Traffic Control (tc)

The Linux tc command, for traffic control, allows the attachment of any implemented queuing discipline
(19 Queuing and Scheduling) to any network interface (usually of a router). A hierarchical example appears
in 19.13.2 Linux HTB. The tc command is also used extensively by Mininet to control, for example, link
queue capacities. An explicit example, of adding the fq queuing discipline, appears immediately above.

The two examples presented in this section involve “simple” token-bucket filtering, using tbf, and then
“classful” token-bucket filtering, using htb. We will use the latter example to apply token-bucket filtering
only to one class of connections; other connections receive no filtering.

The granularity of tc-tbf rate control is limited by the cpu-interrupt timer granularity; typically tbf is able
schedules packets every 10 ms. If the transmission rate is 6 MB/s, or about four 1500-byte packets per
millisecond, then tbf will schedule 40 packets for transmission every 10 ms. They will, however, most likely
be sent as a burst at the start of the 10-ms interval. Some tc schedulers are able to achieve much finer pacing
control; eg the ‘fq’ qdisc of 18.7 TCP Competition: Reno vs BBR above.

The Mininet topology in both cases involves a single router between two hosts, h1—r—h2. We will here use
the routerline.py example with the option -N 1; the router is then r1 with interfaces r1-eth0 connecting
to h1 and r1-eth1 connecting to h2. The desired topology can also be built using competition.py and
then ignoring the third host.

To send data we will use sender.py (18.6.1.1 sender.py), though with the default TCP congestion algo-
rithm. To receive data we will use dualreceive.py, though initially with just one connection sending any
significant data. We will set the constant PRINT_CUMULATIVE to False, so dualreceive.py prints
at intervals the number of bytes received during the most recent interval; we will call this modified version
dualreceive_incr.py. We will also redirect the stderr messages to /dev/null, and start this on
h2:

python3 dualreceive_incr.py 2>/dev/null

We start the main sender on h1 with the following, where h2 has IPv4 address 10.0.1.10 and 1,000,000 is
the number of blocks:

python3 sender.py 1000000 10.0.1.10 5430

The dualreceive program will not do any reading until both connections are enabled, so we also need to
create a second connection from h1 in order to get started; this second connection sends only a single block
of data:

python3 sender.py 1 10.0.1.10 5431

At this point dualreceive should generate output somewhat like the following (with timestamps in the first
column rounded to the nearest millisecond). The byte-count numbers in the middle column are rather
hardware-dependent

1.016 14079000 0
1.106 12702000 0
1.216 14724000 0
1.316 13666448 0
1.406 11877552 0

18.8 Linux Traffic Control (tc) 605

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/routerline.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/competition.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/sender.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/dualreceive.py

An Introduction to Computer Networks, Release 1.9.21

This means that, on average, h2 is receiving about 13 MB every 100ms, which is about 1.0 Gbps.

Now we run the command below on r1 to reduce the rate (tc requires the abbreviation mbit for
megabit/sec; it treats mbps as MegaBytes per second). The token-bucket filter parameters are rate and
burst. The purpose of the limit parameter – used by netem and several other qdiscs as well – is to
specify the maximum queue size for the waiting packets. Its value here is not very significant, but too low
a value can lead to packet loss and thus to momentarily plunging bandwidth. Too high a value, on the other
hand, can lead to bufferbloat (14.8.1 Bufferbloat).

tc qdisc add dev r1-eth1 root tbf rate 40mbit burst 50kb limit 200kb

We get output something like this:

1.002 477840 0
1.102 477840 0
1.202 477840 0
1.302 482184 0
1.402 473496 0

477840 bytes per 100 ms is 38.2 Mbps. That is received application data; the extra 5% or so to 40 Mbps
corresponds mostly to packet headers (66 bytes out of every 1514, though to see this with WireShark we
need to disable TSO, 12.5 TCP Offloading).

We can also change the rate dynamically:

tc qdisc change dev r1-eth1 root tbf rate 20mbit burst 100kb limit 200kb

The above use of tbf allows us to throttle (or police) all traffic through interface r1-eth1. Suppose we
want to police selected traffic only? Then we can use hierarchical token bucket, or htb. We set up an htb
root node, with no limits, and then create two child nodes, one for policed traffic and one for default traffic.

root htb qdisc, handle 1:

root class, 1000 mbit, classid 1:1

policed leaf class,
40 mbit, classid 1:2

default leaf class,
1000 mbit, classid 1:10

To create the htb hierarchy we will first create the root qdisc and associated root class. We need the raw
interface rate, here taken to be 1000mbit. Class identifiers are of the form major:minor, where major is the
integer root “handle” and minor is another integer.

606 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

tc qdisc add dev r1-eth1 root handle 1: htb default 10
tc class add dev r1-eth1 parent 1: classid 1:1 htb rate 1000mbit

We now create the two child classes (not qdiscs), one for the rate-limited traffic and one for default traffic.
The rate-limited class has classid 1:2 here; the default class has classid 1:10.

tc class add dev r1-eth1 parent 1: classid 1:2 htb rate 40mbit
tc class add dev r1-eth1 parent 1: classid 1:10 htb rate 1000mbit

We still need a classifier (or filter) to assign selected traffic to class 1:2. Our goal is to police traffic to port
5430 (by default, dualreceive.py accepts traffic at ports 5430 and 5431).

There are several classifiers available; for example u32 (man tc-u32) and bpf (man tc-bpf). The latter is
based on the Berkeley Packet Filter virtual machine for packet recognition. However, what we use here –
mainly because it seems to work most reliably – is the iptables fwmark mechanism, used earlier in 9.6 Rout-
ing on Other Attributes. Iptables is intended for filtering – and sometimes modifying – packets; we can
associate a fwmark value of 2 to packets bound for TCP port 5430 with the command below (the fwmark
value does not become part of the packet; it exists only while the packet remains in the kernel).

iptables --append FORWARD --table mangle --protocol tcp --dport 5430 --jump
ãÑMARK --set-mark 2

When this is run on r1, then packets forwarded by r1 to TCP port 5430 receive the fwmark upon arrival.

The next step is to tell the tc subsystem that packets with a fwmark value of 2 are to be placed in class
1:2; this is the rate-limited class above. In the following command, flowid may be used as a synonym for
classid.

tc filter add dev r1-eth1 parent 1:0 protocol ip handle 2 fw classid 1:2

We can view all these settings with

tc qdisc show dev r1-eth1
tc class show dev r1-eth1
tc filter show dev r1-eth1 parent 1:1
iptables --table mangle --list

We now verify that all this works. As with tbf, we start dualreceive_incr.py on h2 and two senders
on h1. This time, both senders send large amounts of data:

h2: python3 dualreceive_incr.py 2>/dev/null
h1: python3 sender.py 500000 10.0.1.10 5430
h1: python3 sender.py 500000 10.0.1.10 5431

If everything works, then shortly after the second sender starts we should see something like the output
below (taken after both TCP connections have their cwnd stabilize). The middle column is the number of
received data bytes to the policed port, 5430.

1.000 453224 10425600
1.100 457568 10230120
1.200 461912 9934728

18.8 Linux Traffic Control (tc) 607

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/dualreceive.py
http://man7.org/linux/man-pages/man8/tc-u32.8.html
http://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://en.wikipedia.org/wiki/Iptables

An Introduction to Computer Networks, Release 1.9.21

1.300 476392 10655832
1.401 438744 10230120

With 66 bytes of TCP/IP headers in every 1514-byte packet, our requested 40 mbit data-rate cap should yield
about 478,000 bytes every 0.1 sec. The slight reduction above appears to be related to TCP competition; the
full 478,000-byte rate is achieved after the port-5431 connection terminates.

18.9 OpenFlow and the POX Controller

In this section we introduce the POX controller for OpenFlow (2.8.1 OpenFlow Switches) switches,
allowing exploration of software-defined networking (2.8 Software-Defined Networking). In the
switchline.py Ethernet-switch example from earlier, the Mininet() call included a parameter
controller=DefaultController; this causes each switch to behave like an ordinary Ethernet learn-
ing switch. By using Pox to create customized controllers, we can investigate other options for switch
operation. Pox is preinstalled on the Mininet virtual machine.

Pox is, like Mininet, written in Python2. It receives and sends OpenFlow messages, in response to events.
Event-related messages, for our purposes here, can be grouped into the following categories:

• PacketIn: a switch is informing the controller about an arriving packet, usually because the switch
does not know how to forward the packet or does not know how to forward the packet without flood-
ing. Often, but not always, PacketIn events will result in the controller providing new forwarding
instructions.

• ConnectionUP: a switch has connected to the controller. This will be the point at which the controller
gives the switch its initial packet-handling instructions.

• LinkEvent: a switch is informing the controller of a link becoming available or becoming unavailable;
this includes initial reports of link availability.

• BarrierEvent: a switch’s response to an OpenFlow Barrier message, meaning the switch has com-
pleted its responses to all messages received before the Barrier and now may begin to respond to
messages received after the Barrier.

The Pox program comes with several demonstration modules illustrating how controllers can be pro-
grammed; these are in the pox/misc and pox/forwarding directories. The starting point for Pox documen-
tation is the Pox wiki (archived copy at poxwiki.pdf), which among other thing includes brief outlines of
these programs. We now review a few of these programs; most were written by James McCauley and are
licensed under the Apache license.

The Pox code data structures are very closely tied to the OpenFlow Switch Specification, versions of which
can be found at the OpenNetworking.org technical library.

18.9.1 hub.py

As a first example of Pox, suppose we take a copy of the switchline.py file and make the following changes:

• change the controller specification, inside the Mininet() call, from
controller=DefaultController to controller=RemoteController.

608 18 Mininet

https://github.com/noxrepo/pox
https://openflow.stanford.edu/display/ONL/POX+Wiki
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/poxwiki.pdf
http://www.apache.org/licenses/LICENSE-2.0
https://www.opennetworking.org/sdn-resources/technical-library

An Introduction to Computer Networks, Release 1.9.21

• add the following lines immediately following the Mininet() call:

c = RemoteController('c', ip='127.0.0.1', port=6633)
net.addController(c)

This modified version is available as switchline_rc.py, “rc” for remote controller. If we now run this mod-
ified version, then pings fail because the RemoteController, c, does not yet exist; in the absence of a con-
troller, the switches’ default response is to do nothing.

We now start Pox, in the directory /home/mininet/pox, as follows; this loads the file pox/forwarding/hub.py

./pox.py forwarding.hub

Ping connectivity should be restored! The switch connects to the controller at IPv4 address 127.0.0.1 (more
on this below) and TCP port 6633. At this point the controller is able to tell the switch what to do.

The hub.py example configures each switch as a simple hub, flooding each arriving packet out all other in-
terfaces (though for the linear topology of switchline_rc.py, this doesn’t matter much). The relevant
code is here:

def _handle_ConnectionUp (event):
msg = of.ofp_flow_mod()
msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
event.connection.send(msg)

This is the handler for ConnectionUp events; it is invoked when a switch first reports for duty. As each
switch connects to the controller, the hub.py code instructs the switch to forward each arriving packet to
the virtual port OFPP_FLOOD, which means to forward out all other ports.

The event parameter is of class ConnectionUp, a subclass of class Event. It is defined in pox/
openflow/__init__.py. Most switch-event objects throughout Pox include a connection field,
which the controller can use to send messages back to the switch, and a dpid field, representing the switch
identification number. Generally the Mininet switch s1 will have a dpid of 1, etc.

The code above creates an OpenFlow modify-flow-table message, msg; this is one of several types of
controller-to-switch messages that are defined in the OpenFlow standard. The field msg.actions is a
list of actions to be taken; to this list we append the action of forwarding on the designated (virtual) port
OFPP_FLOOD.

Normally we would also append to the list msg.match the matching rules for the packets to be forwarded,
but here we want to forward all packets and so no matching is needed.

A different – though functionally equivalent – approach is taken in pox/misc/of_tutorial.py. Here,
the response to the ConnectionUp event involves no communication with the switch (though the connection
is stored in Tutorial.__init__()). Instead, as the switch reports each arriving packet to the controller,
the controller responds by telling the switch to flood the packet out every port (this approach does result in
sufficient unnecessary traffic that it would not be used in production code). The code (slightly consolidated)
looks something like this:

def _handle_PacketIn (self, event):
packet = event.parsed # This is the parsed packet data.
packet_in = event.ofp # The actual ofp_packet_in message.
self.act_like_hub(packet, packet_in)

18.9 OpenFlow and the POX Controller 609

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/switchline_rc.py

An Introduction to Computer Networks, Release 1.9.21

def act_like_hub (self, packet, packet_in):
msg = of.ofp_packet_out()
msg.data = packet_in
action = of.ofp_action_output(port = of.OFPP_ALL)
msg.actions.append(action)
self.connection.send(msg)

The event here is now an instance of class PacketIn. This time the switch sents a packet out message to
the switch. The packet and packet_in objects are two different views of the packet; the first is parsed
and so is generally easier to obtain information from, while the second represents the entire packet as it was
received by the switch. It is the latter format that is sent back to the switch in the msg.data field. The
virtual port OFPP_ALL is equivalent to OFPP_FLOOD.

For either hub implementation, if we start WireShark on h2 and then ping from h4 to h1, we will see the
pings at h2. This demonstrates, for example, that s2 is behaving like a hub rather than a switch.

18.9.2 l2_pairs.py

The next Pox example, l2_pairs.py, implements a real Ethernet learning switch. This is the pairs-based
switch implementation discussed in 2.8.2 Learning Switches in OpenFlow. This module acts at the Ethernet
address layer (layer 2, the l2 part of the name), and flows are specified by (src,dst) pairs of addresses. The
l2_pairs.py module is started with the Pox command ./pox.py forwarding.l2_pairs.

A straightforward implementation of an Ethernet learning switch runs into a problem: the switch needs to
contact the controller whenever the packet source address has not been seen before, so the controller can
send back to the switch the forwarding rule for how to reach that source address. But the primary lookup in
the switch flow table must be by destination address. The approach used here uses a single OpenFlow table,
versus the two-table mechanism of 18.9.3 l2_nx.py. However, the learned flow table match entries will all
include match rules for both the source and the destination address of the packet, so that a separate entry is
necessary for each pair of communicating hosts. The number of flow entries thus scales as O(N2), which
presents a scaling problem for very large switches but which we will ignore here.

When a switch sees a packet with an unmatched (dst,src) address pair, it forwards it to the controller, which
has two cases to consider:

• If the controller does not know how to reach the destination address from the current switch, it tells
the switch to flood the packet. However, the controller also records, for later reference, the packet
source address and its arrival interface.

• If the controller knows that the destination address can be reached from this switch via switch port
dst_port, it sends to the switch instructions to create a forwarding entry for (dst,src)Ñdst_port. At the
same time, the controller also sends to the switch a reverse forwarding entry for (src,dst), forwarding
via the port by which the packet arrived.

The controller maintains its partial map from addresses to switch ports in a dictionary table, which takes
a (switch,destination) pair as its key and which returns switch port numbers as values. The switch is repre-
sented by the event.connection object used to reach the switch, and destination addresses are repre-
sented as Pox EthAddr objects.

610 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

The program handles only PacketIn events. The main steps of the PacketIn handler are as follows. First,
when a packet arrives, we put its switch and source into table:

table[(event.connection,packet.src)] = event.port

The next step is to check to see if there is an entry in table for the destination, by looking up
table[(event.connection,packet.dst)]. If there is not an entry, then the packet gets flooded
by the same mechanism as in of_tutorial.py above: we create a packet-out message containing the
to-be-flooded packet and send it back to the switch.

If, on the other hand, the controller finds that the destination address can be reached via switch port
dst_port, it proceeds as follows. We first create the reverse entry; event.port is the port by which
the packet just arrived:

msg = of.ofp_flow_mod()
msg.match.dl_dst = packet.src # reversed dst and src
msg.match.dl_src = packet.dst # reversed dst and src
msg.actions.append(of.ofp_action_output(port = event.port))
event.connection.send(msg)

This is like the forwarding rule created in hub.py, except that we here are forwarding via the specific port
event.port rather than the virtual port OFPP_FLOOD, and, perhaps more importantly, we are adding
two packet-matching rules to msg.match.

The next step is to create a similar matching rule for the src-to-dst flow, and to include the packet to be
retransmitted. The modify-flow-table message thus does double duty as a packet-out message as well.

msg = of.ofp_flow_mod()
msg.data = event.ofp # Forward the incoming packet
msg.match.dl_src = packet.src # not reversed this time!
msg.match.dl_dst = packet.dst
msg.actions.append(of.ofp_action_output(port = dst_port))
event.connection.send(msg)

The msg.match object has quite a few potential matching fields; the following is taken from the Pox-Wiki:

Attribute Meaning
in_port Switch port number the packet arrived on
dl_src Ethernet source address
dl_dst Ethernet destination address
dl_type Ethertype / length (e.g. 0x0800 = IPv4)
nw_tos IPv4 TOS/DS bits
nw_proto IPv4 protocol (e.g., 6 = TCP), or lower 8 bits of ARP opcode
nw_src IPv4 source address
nw_dst IP destination address
tp_src TCP/UDP source port
tp_dst TCP/UDP destination port

It is also possible to create a msg.match object that matches all fields of a given packet.

18.9 OpenFlow and the POX Controller 611

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-MatchStructure

An Introduction to Computer Networks, Release 1.9.21

We can watch the forwarding entries created by l2_pairs.py with the Linux program ovs-ofctl. Suppose
we start switchline_rc.py and then the Pox module l2_pairs.py. Next, from within Mininet, we
have h1 ping h4 and h2 ping h4. If we now run the command (on the Mininet virtual machine but from a
Linux prompt)

ovs-ofctl dump-flows s2

we get

cookie=0x0, . . . ,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04 actions=output:3
cookie=0x0, . . . ,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:02 actions=output:1
cookie=0x0, . . . ,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:04 actions=output:3
cookie=0x0, . . . ,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:01 actions=output:2

Because we used the autoSetMacs=True option in the Mininet() call in switchline_rc.py, the
Ethernet addresses assigned to hosts are easy to follow: h1 is 00:00:00:00:00:01, etc. The first and fourth
lines above result from h1 pinging h4; we can see from the output port at the end of each line that s1 must
be reachable from s2 via port 2 and s3 via port 3. Similarly, the middle two lines result from h2 pinging
h4; h2 lies off s2’s port 1. These port numbers correspond to the interface numbers shown in the diagram at
18.3 Multiple Switches in a Line.

18.9.3 l2_nx.py

The l2_nx.py example accomplishes the same Ethernet-switch effect as l2_pairs.py, but using only
O(N) space. It does, however, use two OpenFlow tables, one for destination addresses and one for source
addresses. In the implementation here, source addresses are held in table 0, while destination addresses are
held in table 1; this is the reverse of the multiple-table approach outlined in 2.8.2 Learning Switches in
OpenFlow. The l2 again refers to network layer 2, and the nx refers to the so-called Nicira extensions to
Pox, which enable the use of multiple flow tables.

Initially, table 0 is set up so that it tries a match on the source address. If there is no match, the packet is
forwarded to the controller, and sent on to table 1. If there is a match, the packet is sent on to table 1 but not
to the controller.

Table 1 then looks for a match on the destination address. If one is found then the packet is forwarded to the
destination, and if there is no match then the packet is flooded.

Using two OpenFlow tables in Pox requires the loading of the so-called Nicira extensions (hence the “nx”
in the module name here). These require a slightly more complex command line:

./pox.py openflow.nicira --convert-packet-in forwarding.l2_nx

Nicira will also require, eg, nx.nx_flow_mod() instead of of.ofp_flow_mod().

The no-match actions for each table are set during the handling of the ConnectionUp events. An action
becomes the default action when no msg.match() rules are included, and the priority is low; recall
(2.8.1 OpenFlow Switches) that if a packet matches multiple flow-table entries then the entry with the
highest priority wins. The priority is here set to 1; the Pox default priority – which will be used (implicitly)
for later, more-specific flow-table entries – is 32768. The first step is to arrange for table 0 to forward to the
controller and to table 1.

612 18 Mininet

http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

An Introduction to Computer Networks, Release 1.9.21

msg = nx.nx_flow_mod()
msg.table_id = 0 # not necessary as this is the default
msg.priority = 1 # low priority
msg.actions.append(of.ofp_action_output(port = of.OFPP_CONTROLLER))
msg.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1))
event.connection.send(msg)

Next we tell table 1 to flood packets by default:

msg = nx.nx_flow_mod() msg.table_id = 1 msg.priority = 1
msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
event.connection.send(msg)

Now we define the PacketIn handler. First comes the table 0 match on the packet source; if there is a match,
then the source address has been seen by the controller, and so the packet is no longer forwarded to the
controller (it is forwarded to table 1 only).

msg = nx.nx_flow_mod()
msg.table_id = 0
msg.match.of_eth_src = packet.src # match the source
msg.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1))
event.connection.send(msg)

Now comes table 1, where we match on the destination address. All we know at this point is that the packet
with source address packet.src came from port event.port, and we forward any packets addressed
to packet.src via that port:

msg = nx.nx_flow_mod() msg.table_id = 1 msg.match.of_eth_dst = packet.src # this
rule applies only for packets to packet.src msg.actions.append(of.ofp_action_output(port =
event.port)) event.connection.send(msg)

Note that there is no network state maintained at the controller; there is no analog here of the table
dictionary of l2_pairs.py.

Suppose we have a simple network h1–s1–h2. When h1 sends to h2, the controller will add to s1’s table 0
an entry indicating that h1 is a known source address. It will also add to s1’s table 1 an entry indicating that
h1 is reachable via the port on s1’s left. Similarly, when h2 replies, s1 will have h2 added to its table 0, and
then to its table 1.

18.9.4 multitrunk.py

The goal of the multitrunk example is to illustrate how different TCP connections between two hosts can
be routed via different paths; in this case, via different “trunk lines”. This example and the next are not
part of the standard distributions of either Mininet or Pox. Unlike the other examples discussed here, these
examples consist of Mininet code to set up a specific network topology and a corresponding Pox controller
module that is written to work properly only with that topology. Most real networks evolve with time,
making such a tight link between topology and controller impractical (though this may sometimes work well
in datacenters). The purpose here, however, is to illustrate specific OpenFlow possibilities in a (relatively)
simple setting.

18.9 OpenFlow and the POX Controller 613

An Introduction to Computer Networks, Release 1.9.21

The multitrunk topology involves multiple “trunk lines” between host h1 and h2, as in the following dia-
gram; the trunk lines are the s1–s3 and s2–s4 links.

s5

s2

s1

h1 h2s6

s3

s4

Multitrunk topology, N=1, K=2

No packets flooded along this link

The Mininet file is multitrunk12.py and the corresponding Pox module is multitrunkpox.py. The number
of trunk lines is K=2 by default, but can be changed by setting the variable K. We will prevent looping of
broadcast traffic by never flooding along the s2–s4 link.

TCP traffic takes either the s1–s3 trunk or the s2–s4 trunk. We will refer to the two directions h1Ñh2
and h2Ñh1 of a TCP connection as flows, consistent with the usage in 8.1 The IPv6 Header. Only
h1Ñh2 flows will have their routing vary; flows h2Ñh1 will always take the s1–s3 path. It does not
matter if the original connection is opened from h1 to h2 or from h2 to h1.

The first TCP flow from h1 to h2 goes via s1–s3. After that, subsequent connections alternate in round-
robin fashion between s1–s3 and s2–s4. To achieve this we must, of course, include TCP ports in the
OpenFlow forwarding information.

All links will have a bandwidth set in Mininet. This involves using the link=TCLink option; TC here
stands for Traffic Control. We do not otherwise make use of the bandwidth limits. TCLinks can also have a
queue size set, as in 18.6 TCP Competition: Reno vs Vegas.

For ARP and ICMP traffic, two OpenFlow tables are used as in 18.9.3 l2_nx.py. The PacketIn mes-
sages for ARP and ICMP packets are how switches learn of the MAC addresses of hosts, and also how
the controller learns which switch ports are directly connected to hosts. TCP traffic is handled differently,
below.

During the initial handling of ConnectionUp messages, switches receive their default packet-handling
instructions for ARP and ICMP packets, and a SwitchNode object is created in the controller for each
switch. These objects will eventually contain information about what neighbor switch or host is reached by
each switch port, but at this point none of that information is yet available.

The next step is the handling of LinkEvent messages, which are initiated by the discovery module.
This module must be included on the ./pox.py command line in order for this example to work. The
discovery module sends each switch, as it connects to the controller, a special discovery packet in the
Link Layer Discovery Protocol (LLDP) format; this packet includes the originating switch’s dpid value
and the switch port by which the originating switch sent the packet. When an LLDP packet is received by
the neighboring switch, that switch forwards it back to the controller, together with the dpid and port for the
receiving switch. At this point the controller knows the switches and port numbers at each end of the link.
The controller then reports this to our multitrunkpox module via a LinkEvent event.

614 18 Mininet

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/multitrunk12.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/multitrunkpox.py
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

An Introduction to Computer Networks, Release 1.9.21

As LinkEvent messages are processed, the multitrunkpox module learns, for each switch, which
ports connect directly to neighboring switches. At the end of the LinkEvent phase, which generally
takes several seconds, each switch’s SwitchNode knows about all directly connected neighbor switches.
Nothing is yet known about directly connected neighbor hosts though, as hosts have not yet sent any packets.

Once hosts h1 and h2 exchange a pair of packets, the associated PacketIn events tell multitrunkpox
what switch ports are connected to hosts. Ethernet address learning also takes place. If we execute h1
ping h2, for example, then afterwards the information contained in the SwitchNode graph is complete.

Now suppose h1 tries to open a TCP connection to h2, eg via ssh. The first packet is a TCP SYN packet.
The switch s5 will see this packet and forward it to the controller, where the PacketIn handler will
process it. We create a flow for the packet,

flow = Flow(psrc, pdst, ipv4.srcip, ipv4.dstip, tcp.srcport, tcp.dstport)

and then see if a path has already been assigned to this flow in the dictionary flow_to_path. For the
very first packet this will never be the case. If no path exists, we create one, first picking a trunk:

trunkswitch = picktrunk(flow)
path = findpath(flow, trunkswitch)

The first path will be the Python list [h1, s5, s1, s3, s6, h2], where the switches are represented by
SwitchNode objects.

The supposedly final step is to call

result = create_path_entries(flow, path)

to create the forwarding rules for each switch. With the path as above, the SwitchNode objects know
what port s5 should use to reach s1, etc. Because the first TCP SYN packet must have been preceeded by
an ARP exchange, and because the ARP exchange will result in s6 learning what port to use to reach h2,
this should work.

But in fact it does not, at least not always. The problem is that Pox creates separate internal threads
for the ARP-packet handling and the TCP-packet handling, and the former thread may not yet have in-
stalled the location of h2 into the appropriate SwitchNode object by the time the latter thread calls
create_path_entries() and needs the location of h2. This race condition is unfortunate, but cannot
be avoided. As a fallback, if creating a path fails, we flood the TCP packet along the s1–s3 link (even if
the chosen trunk is the s2–s4 link) and wait for the next TCP packet to try again. Very soon, s6 will know
how to reach h2, and so create_path_entries() will succeed.

If we run everything, create two xterms on h1, and then create two ssh connections to h2, we can see the
forwarding entries using ovs-ofctl. Let us run

ovs-ofctl dump-flows s5

Restricting attention only to those flow entries with foo=tcp, we get (with a little sorting)

cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,tp_src=59404,tp_dst=22
actions=output:1

18.9 OpenFlow and the POX Controller 615

An Introduction to Computer Networks, Release 1.9.21

cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,tp_src=59526,tp_dst=22
actions=output:2
cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01,nw_src=10.0.0.2,nw_dst=10.0.0.1,tp_src=22,tp_dst=59404
actions=output:3
cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01,nw_src=10.0.0.2,nw_dst=10.0.0.1,tp_src=22,tp_dst=59526
actions=output:3

The first two entries represent the h1Ñh2 flows. The first connection has source TCP port 59404 and is
routed via the s1–s3 trunk; we can see that the output port from s5 is port 1, which is indeed the port
that s5 uses to reach s1 (the output of the Mininet links command includes s5-eth1<->s1-eth2).
Similarly, the output port used at s5 by the second connection, with source TCP port 59526, is 2, which is
the port s5 uses to reach s2. The switch s5 reaches host h1 via port 3, which can be seen in the last two
entries above, which correspond to the reverse h2Ñh1 flows.

The OpenFlow timeout here is infinite. This is not a good idea if the system is to be running indefinitely,
with a steady stream of short-term TCP connections. It does, however, make it easier to view connections
with ovs-ofctl before they disappear. A production implementation would need a finite timeout, and
then would have to ensure that connections that were idle for longer than the timeout interval were properly
re-established when they resumed sending.

The multitrunk strategy presented here can be compared to Equal-Cost Multi-Path routing, 9.7 ECMP. In
both cases, traffic is divided among multiple paths to improve throughput. Here, individual TCP connections
are assigned a trunk by the controller (and can be reassigned at will, perhaps to improve the load balance).
In ECMP, it is common to assign TCP connections to paths via a pseudorandom hash, in which case the
approach here offers the potential for better control of the distribution of traffic among the trunk links. In
some configurations, however, ECMP may route packets over multiple links on a round-robin packet-by-
packet basis rather than a connection-by-connection basis; this allows much better load balancing.

OpenFlow has low-level support for this approach in the select group mechanism. A flow-table traffic-
matching entry can forward traffic to a so-called group instead of out via a port. The action of a select group
is then to select one of a set of output actions (often on a round-robin basis) and apply that action to the
packet. In principle, we could implement this at s5 to have successive packets sent to either s1 or s2 in
round-robin fashion. In practice, Pox support for select groups appears to be insufficiently developed at the
time of this writing (2017) to make this practical.

18.9.5 loadbalance31.py

The next example demonstrates a simple load balancer. The topology is somewhat the reverse of the
previous example: there are now three hosts (N=3) at each end, and only one trunk line (K=1) (there are
also no left- and right-hand entry/exit switches). The right-hand hosts act as the “servers”, and are renamed
t1, t2 and t3.

616 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

r s

t1h1

h2

h3

t2

t3

10.0.0.1/24

10.0.0.1/24

10.0.0.1/24
10.0.3.1/24

10.0.2.1/24

10.0.1.1/24 c

10.0.1.2/24

10.0.3.2/24

10.0.2.2/24

10.0.0.2/24

The servers all get the same IPv4 address, 10.0.0.1. This would normally lead to chaos, but the servers
are not allowed to talk to one another, and the controller ensures that the servers are not even aware of one
another. In particular, the controller makes sure that the servers never all simultaneously reply to an ARP
“who-has 10.0.0.1” query from r.

The Mininet file is loadbalance31.py and the corresponding Pox module is loadbalancepox.py.

The node r is a router, not a switch, and so its four interfaces are assigned to separate subnets. Each host is
on its own subnet, which it shares with r. The router r then connects to the only switch, s; the connection
from s to the controller c is shown.

The idea is that each TCP connection from any of the hi to 10.0.0.1 is connected, via s, to one of the servers
ti, but different connections will connect to different servers. In this implementation the server choice is
round-robin, so the first three TCP connections will connect to t1, t2 and t3 respectively, and the fourth
will connect again to t1.

The servers t1 through t3 are configured to all have the same IPv4 address 10.0.0.1; there is no address
rewriting done to packets arriving from the left. However, as in the preceding example, when the first packet
of each new TCP connection from left to right arrives at s, it is forwarded to c which then selects a specific
ti and creates in s the appropriate forwarding rule for that connection. As in the previous example, each
TCP connection involves two Flow objects, one in each direction, and separate OpenFlow forwarding entries
are created for each flow.

There is no need for paths; the main work of routing the TCP connections looks like this:

server = pickserver(flow)
flow_to_server[flow] = server
addTCPrule(event.connection, flow, server+1) # ti is at port i+1
addTCPrule(event.connection, flow.reverse(), 1) # port 1 leads to r

The biggest technical problem is ARP: normally, r and the ti would contact one another via ARP to find
the appropriate LAN addresses, but that will not end well with identical IPv4 addresses. So instead we create
“static” ARP entries. We know (by checking) that the MAC address of r-eth0 is 00:00:00:00:00:04, and
so the Mininet file runs the following command on each of the ti:

arp -s 10.0.0.2 00:00:00:00:00:04

This creates a static ARP entry on each of the ti, which leaves them knowing the MAC address for their
default router 10.0.0.2. As a result, none of them issues an ARP query to find r. The other direction is

18.9 OpenFlow and the POX Controller 617

http://intronetworks.cs.luc.edu/auxiliary_files/mininet/loadbalance31.py
http://intronetworks.cs.luc.edu/auxiliary_files/mininet/loadbalancepox.py

An Introduction to Computer Networks, Release 1.9.21

similar, except that r (which is not really in on the load-balancing plot) must think 10.0.0.1 has a single
MAC address. Therefore, we give each of the ti the same MAC address (which would normally lead to
even more chaos than giving them all the same IPv4 address); that address is 00:00:00:00:01:ff. We then
install a permanent ARP entry on r with

arp -s 10.0.0.1 00:00:00:00:01:ff

Now, when h1, say, sends a TCP packet to 10.0.0.1, r forwards it to MAC address 00:00:00:00:01:ff, and
then s forwards it to whichever of t1..t3 it has been instructed by the controller c to forward it to. The
packet arrives at ti with the correct IPv4 address (10.0.0.1) and correct MAC address (00:00:00:00:01:ff),
and so is accepted. Replies are similar: ti sends to r at MAC address 00:00:00:00:00:04.

As part of the ConnectionUp processing, we set up rules so that ICMP packets from the left are always
routed to t1. This way we have a single responder to ping requests. It is entirely possible that some
important ICMP message – eg Fragmentation required but DF flag set – will be lost as a
result.

If we run the programs and create xterm windows for h1, h2 and h3 and, from each, connect to 10.0.0.1
via ssh, we can tell that we’ve reached t1, t2 or t3 respectively by running ifconfig. The Ethernet
interface on t1 is named t1-eth0, and similarly for t2 and t3. (Finding another way to distinguish the ti is
not easy.) An even simpler way to see the connection rotation is to run h1 ssh 10.0.0.1 ifconfig
at the mininet> prompt several times in succession, and note the successive interface names.

If we create three connections and then run ovs-ofctl dump-flows s and look at tcp entries with
destination address 10.0.0.1, we get this:

cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:01:ff,nw_src=10.0.1.1,nw_dst=10.0.0.1,tp_src=35110,tp_dst=22
actions=output:2
cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:01:ff,nw_src=10.0.2.1,nw_dst=10.0.0.1,tp_src=44014,tp_dst=22
actions=output:3
cookie=0x0, . . . ,
tcp,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:01:ff,nw_src=10.0.3.1,nw_dst=10.0.0.1,tp_src=55598,tp_dst=22
actions=output:4

The three different flows take output ports 2, 3 and 4 on s, corresponding to t1, t2 and t3.

18.9.6 l2_multi.py

This final Pox controller example takes an arbitrary Mininet network, learns the topology, and then sets up
OpenFlow rules so that all traffic is forwarded by the shortest path, as measured by hopcount. OpenFlow
packet-forwarding rules are set up on demand, when traffic between two hosts is first seen.

This module is compatible with topologies with loops, provided the spanning_tree module is also loaded.

We start with the spanning_tree module. This uses the openflow.discoverymodule, as in 18.9.4 mul-
titrunk.py, to build a map of all the connections, and then runs the spanning-tree algorithm of 2.5 Spanning
Tree Algorithm and Redundancy. The result is a list of switch ports on which flooding should not occur;
flooding is then disabled by setting the OpenFlow NO_FLOOD attribute on these ports. We can see the ports
of a switch s that have been disabled via NO_FLOOD by using ovs-ofctl show s.

618 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

One nicety is that the spanning_tree module is never quite certain when the network is complete. Therefore,
it recalculates the spanning tree after every LinkEvent.

We can see the spanning_tree module in action if we create a Mininet network of four switches in a loop, as
in exercise 9.0 below, and then run the following:

./pox.py openflow.discovery openflow.spanning_tree forwarding.l2_pairs

If we run ovs-ofctl show for each switch, we get something like the following:

s1: (s1-eth2): . . . NO_FLOOD
s2: (s2-eth2): . . . NO_FLOOD

We can verify with the Mininet links command that s1-eth2 and s2-eth2 are connected interfaces. We can
verify with tcpdump -i s1-eth2 that no packets are endlessly circulating.

We can also verify, with ovs-ofctl dump-flows, that the s1–s2 link is not used at all, not even
for s1–s2 traffic. This is not surprising; the l2_pairs learning strategy learns ultimately learns source
addresses from flooded ARP packets, which are not sent along the s1–s2 link. If s1 hears nothing from
s2, it will never learn to send anything to s2.

The l2_multi module, on the other hand, creates a full map of all network links (separate from the map
created by the spanning_tree module), and then calculates the best route between each pair of hosts. To
calculate the routes, l2_multi uses the Floyd-Warshall algorithm (outlined below), which is a form
of the distance-vector algorithm optimized for when a full network map is available. (The shortest-path
algorithm of 9.5.1 Shortest-Path-First Algorithm might be a faster choice.) To avoid having to rebuild the
forwarding map on each LinkEvent, l2_multi does not create any routes until it sees the first packet (not
counting LLDP packets). By that point, usually the network is stable.

If we run the example above using the Mininet rectangle topology, we again find that the spanning tree has
disabled flooding on the s1–s2 link. However, if we have h1 ping h2, we see that h1Ñh2 traffic does
take the s1–s2 link. Here is part of the result of ovs-ofctl dump-flows s1:

cookie=0x0, . . . , prior-
ity=65535,icmp,in_port=1,. . . ,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,. . . ,icmp_type=8. . .
actions=output:2
cookie=0x0, . . . , prior-
ity=65535,icmp,in_port=1,. . . 0,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,. . . ,icmp_type=0. . .
actions=output:2

Note that l2_multi creates separate flow-table rules not only for ARP and ICMP, but also for ping
(icmp_type=8) and ping reply (icmp_type=0). Such fine-grained matching rules are a matter of preference.

Here is a brief outline of the Floyd-Warshall algorithm. We assume that the switches are numbered
{1,. . . ,N}. The outer loop has the form for k<=N:; at the start of stage k, we assume that we’ve found
the best path between every i and j for which every intermediate switch on the path is less than k. For many
(i,j) pairs, there may be no such path.

At stage k, we examine, with an inner loop, all pairs (i,j). We look to see if there is a path from i to k and
a second path from k to j. If there is, we concatenate the i-to-k and k-to-j paths to create a new i-to-j path,
which we will call P. If there was no previous i-to-j path, then we add P. If there was a previous i-to-j path Q
that is longer than P, we replace Q with P. At the end of the k=N stage, all paths have been discovered.

18.9 OpenFlow and the POX Controller 619

An Introduction to Computer Networks, Release 1.9.21

18.10 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
2.5 is distinct, for example, from exercises 2.0 and 3.0. Exercises marked with a ♢ have solutions or hints
at 24.13 Solutions for Mininet.

1.0. In the RIP implementation of 18.5 IP Routers With Simple Distance-Vector Implementation, add Split
Horizon (9.2.1.1 Split Horizon).

2.0. In the RIP implementation of 18.5 IP Routers With Simple Distance-Vector Implementation, add
support for link failures (the third rule of 9.1.1 Distance-Vector Update Rules)

3.0. Explain why, in the example of 18.9.3 l2_nx.py, table 0 and table 1 will always have the same entries.

4.0. Suppose we try to eliminate the source addresses from the l2_pairs implementation.

• by default, all switches report all packets to the controller, and the controller then tells the switch to
flood the packet.

• if a packet from ha to hb arrives at switch S, and S reports the packet to the controller, and the controller
knows how to reach hb from S, then the controller installs forwarding rules into S for destination hb.
The controller then tells S to re-forward the packet. In the future, S will not report packets to hb to the
controller.

• when S reports to the controller a packet from ha to hb, then the controller notes that ha is reachable
via the port on S by which the packet arrived.

Why does this not work? Hint: consider the switchline example (18.3 Multiple Switches in a Line), with
h1 sending to h4, h4 sending to h1, h3 sending to h1, and finally h1 sending to h3.

5.0. Suppose we make the following change to the above strategy:

• if a packet from ha to hb arrives at switch S, and S reports the packet to the controller, and the
controller knows how to reach both ha and hb from S, then the controller installs forwarding rules into
S for destinations ha and hb. The controller then tells S to re-forward the packet. In the future, S will
not report packets to ha or hb to the controller.

Show that this still does not work for the switchline example.

6.0. Suppose we try to implement an Ethernet switch as follows:

• the default switch action for an unmatched packet is to flood it and send it to the controller.

• if a packet from ha to hb arrives at switch S, and S reports the packet to the controller, and the
controller knows how to reach both ha and hb from S, then the controller installs forwarding rules
into S for destinations ha and hb. In the future, S will not report packets with these destinations to the
controller.

• Unlike in exercise 4.0, the controller then tells S to flood the packet from ha to hb, even though it
could be forwarded directly.

Traffic is sent in the network below:

620 18 Mininet

An Introduction to Computer Networks, Release 1.9.21

h1 h2 h3

s1 s2 s3

(a)♢. Show that, if the traffic is as follows: h1 pings h2, h3 pings h1, then all three switches learn where h3
is.

(b). Show that, if the traffic is as follows: h1 pings h2, h1 pings h3, then none of the switches learn where
h3 is.

Recall that each ping for a new destination starts with a broadcast ARP. Broadcast packets are always sent
to the controller, as there is no destination match.

7.0. In 18.9.5 loadbalance31.py, we could have configured the ti to have default router 10.0.0.3, say, and
then created the appropriate static ARP entry for 10.0.0.3:

ip route add to default via 10.0.0.3 dev ti-eth0
arp -s 10.0.0.3 00:00:00:00:00:04

Everything still works, even though the ti think their router is at 10.0.0.3 and it is actually at 10.0.0.2.
Explain why. (Hint: how is the router IPv4 address actually used by the ti?)

8.0. As discussed in the text, a race condition can arise in the example of 18.9.4 multitrunk.py, where at
the time the first TCP packet the controller still does not know where h2 is, even though it should learn that
after processing the first ARP packet.

Explain why a similar race condition cannot occur in 18.9.5 loadbalance31.py.

9.0. Create a Mininet network with four hosts and four switches as below:

h1 s1 s2 h2

h4 s4 s3 h3

The switches should use an external controller. Now let Pox be that controller, with

./pox.py openflow.discovery openflow.spanning_tree l2_pairs.py

10.0. Create the topology below with Mininet. Run the l2_multi Pox module as controller, with the
openflow.spanning_tree option, and identify the spanning tree created. Also identify the path taken
by icmp traffic from h1 to h2.

18.10 Exercises 621

An Introduction to Computer Networks, Release 1.9.21

h1 s1 s2 s3

s4 s5 s6

s7 s8 s9 h2

622 18 Mininet

19 QUEUING AND SCHEDULING

Is giving all control of congestion to the TCP layer really the only option? As the Internet has evolved,
so have situations in which we may not want routers handling all traffic on a first-come, first-served basis.
Traffic with delay bounds – so-called real-time traffic, often involving either voice or video – is likely to
perform much better with preferential service, for example; we will turn to this in 20 Quality of Service.
But even without real-time traffic, we might be interested in guaranteeing that each of several customers gets
an agreed-upon fraction of bandwidth, regardless of what the other customers are receiving. If we trust only
to TCP Reno’s bandwidth-allocation mechanisms, and if one customer has one connection and another has
ten, then the bandwidth received may also be in the ratio of 1:10. This may make the first customer quite
unhappy.

The fundamental mechanism for achieving these kinds of traffic-management goals in a shared network is
through queuing; that is, in deciding how the routers prioritize traffic. In this chapter we will take a look at
what router-based strategies are available in the toolbox; in the following chapter we will study how some
of these ideas have been applied to develop distributed quality-of-service options.

Previously, in 14.1 A First Look At Queuing, we looked at FIFO queuing – both tail-drop and random-drop
variants – and (briefly) at priority queuing. These are examples of queuing disciplines, a catchall term for
anything that supports a way to accept and release packets. The RED gateway strategy (14.8.4 RED) could
qualify as a separate queuing discipline, too, although one closely tied to FIFO.

Queuing disciplines provide tools for meeting administratively imposed constraints on traffic. Two senders,
for example, might be required to share an outbound link equally, or in the proportion 60%-40%, even if
one participant would prefer to use 100% of the bandwidth. Alternatively, a sender might be required not to
send in bursts of more than 10 packets at a time.

Closely allied to the idea of queuing is scheduling: deciding what packets get sent when. Scheduling may
take the form of sending someone else’s packets right now, or it may take the form of delaying packets that
are arriving too fast.

While priority queuing is one practical alternative to FIFO queuing, we will also look at so-called fair
queuing, in both flat and hierarchical forms. Fair queuing provides a straightforward strategy for dividing
bandwidth among multiple senders according to preset percentages.

Also introduced here is the token-bucket mechanism, which can be used for traffic scheduling but also for
traffic description.

Some of the material here – in particular that involving fair queuing and the Parekh-Gallager theorem – may
give this chapter a more mathematical feel than earlier chapters. Mostly, however, this is confined to the
proofs; the claims themselves are more straightforward.

19.1 Queuing and Real-Time Traffic

One application for advanced queuing mechanisms is to support real-time transport – that is, traffic with
delay constraints on delivery.

623

An Introduction to Computer Networks, Release 1.9.21

In its original conception, the Internet was arguably intended for non-time-critical transport. If you wanted
to place a digital phone call where every (or almost every) byte was guaranteed to arrive within 50 ms, your
best bet might be to use the (separate) telephone network instead.

And, indeed, having an entirely separate network for real-time transport is definitely a workable solution.
It is, however, expensive; there are many economies of scale to having just a single network. There is,
therefore, a great deal of interest in figuring out how to get the Internet to support real-time traffic directly.

The central strategy for mixing real-time and bulk traffic is to use queuing disciplines to give the real-time
traffic the service it requires. Priority queuing is the simplest mechanism, though the fair-queuing approach
below offers perhaps greater flexibility.

We round out the chapter with the Parekh-Gallager theorem, which provides a precise delay bound for real-
time traffic that shares a network with bulk traffic. All that is needed is that the real-time traffic satisfies a
token-bucket specification and is assigned bandwidth guarantees through fair queuing; the volume of bulk
traffic does not matter. This is exactly what is needed for real-time support.

While this chapter contains some rather elegant theory, it is not at all clear how much it is put into practice
today, at least for real-time traffic at the ISP level. We will return to this issue in the following chapter, but
for now we acknowledge that real-time traffic management in general has seen limited adoption.

19.2 Traffic Management

Even if none of your traffic has real-time constraints, you still may wish to allocate bandwidth according
to administratively determined percentages. For example, you may wish to give each of three departments
an equal share of download (or upload) capacity, or you may wish to guarantee them shares of 55%, 35%
and 10%. If you are an ISP, or the manager of a public Wi-Fi access point, you might wish to guarantee
that everyone gets a roughly equal share of the available bandwidth, or, alternatively, that no one gets more
bandwidth than they paid for.

If you want any unused capacity to be divided among the non-idle users, fair queuing is the tool of choice,
though in some contexts it may benefit from cooperation from your ISP. If the users are more like customers
receiving only the bandwidth they pay for, you might want to enforce flat caps even if some bandwidth
thus goes unused; token-bucket filtering would then be the way to go. If bandwidth allocations are not only
by department (or customer) but also by workgroup (or customer-specific subcategory), then hierarchical
queuing offers the necessary control.

In general, network management divides into managing the hardware and managing the traffic; the tools
in this chapter address this latter component. These tools can be used internally by ISPs and at the cus-
tomer/ISP interconnection, but traffic management often makes good economic sense even when entirely
contained within a single organization. Unlike support for real-time traffic, above, use of traffic management
is widespread throughout the Internet, though often barely visible.

19.3 Priority Queuing

To get started, let us fill in the details for priority queuing, which we looked at briefly in 14.1.1 Priority
Queuing. Here a given outbound interface can be thought of as having two (or more) physical queues rep-
resenting different priority levels. Packets are placed into the appropriate subqueue based on some packet

624 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

attribute, which might be an explicit priority tag, or which might be the packet’s destination socket. When-
ever the outbound link becomes free and the router is able to send the next packet, it always looks first to
the higher-priority queue; if it is nonempty then a packet is dequeued from there. Only if the higher-priority
queue is empty is the lower-priority queue served.

Note that priority queuing is nonpreemptive: if a high-priority packet arrives while a low-priority packet is
being sent, the latter is not interrupted. Only when the low-priority packet has finished transmission does
the router again check its high-priority subqueue(s).

Priority queuing can lead to complete starvation of low-priority traffic, but only if the high-priority traffic
consumes 100% of the outbound bandwidth. Often we are able to guarantee (for example, through admission
control) that the high-priority traffic is limited to a designated fraction of the total outbound bandwidth.

19.4 Queuing Disciplines

As an abstract data type, a queuing discipline is simply a data structure that supports the following opera-
tions:

• enqueue()

• dequeue()

• is_empty()

Note that the enqueue() operation includes within it a way to handle dropping a packet in the event that
the queue is full. For FIFO queuing, the enqueue() operation needs only to know the correct outbound
interface; for priority queuing enqueue() also needs to be told – or be able to infer – the packet’s priority
classification.

We may also in some cases find it convenient to add a peek() operation to return the next packet that
would be dequeued if we were actually to do that, or at least to return some important statistic (eg size or
arrival time) about that packet.

As with FIFO and priority queuing, any queuing discipline is always tied to a specific outbound interface.
In that sense, any queuing discipline has a single output.

On the input side, the situation may be more complex. The FIFO queuing discipline has a single input
stream, though it may be fed by multiple physical input interfaces: the enqueue() operation puts all
packets in the same physical queue. A queuing discipline may, however, have multiple input streams; we
will call these classes, or subqueues, and will refer to the queuing discipline itself as classful. Priority
queues, for example, have an input class for each priority level.

When we want to enqueue a packet for a classful queuing discipline, we must first invoke a classifier –
possibly external to the queuing discipline itself – to determine the input class. (In the Linux documentation,
what we have called classifiers are often called filters.) For example, if we wish to use a priority queue to give
priority to VoIP packets, the classifier’s job is to determine which arriving packets are in fact VoIP packets
(perhaps taking into account things like size or port number or source host), so as to be able to provide this
information to the enqueue() operation. The classifier might also take into account pre-existing traffic
reservations, so that packets that belong to flows with reservations get preferred service, or else packet tags
that have been applied by some upstream router; we return to both of these in 20 Quality of Service.

19.4 Queuing Disciplines 625

An Introduction to Computer Networks, Release 1.9.21

The number and configuration of classes is often fixed at the time of queuing-discipline creation; this is
typically the case for priority queues. Abstractly, however, the classes can also be dynamic; an example of
this might be fair queuing (below), which often supports a configuration in which a separate input class is
created on the fly for each separate TCP connection.

FIFO and priority queuing are both work-conserving, meaning that the associated outbound interface is not
idle unless the queue is empty. A non-work-conserving queuing discipline might, for example, artificially
delay some packets in order to enforce an administratively imposed bandwidth cap. Non-work-conserving
queuing disciplines are often called traffic shapers; see 19.9 Token Bucket Filters below for an example.
Because delayed packets have to be assigned transmission times, and kept somewhere until that time is
reached, shaping tends to be more complex internally than other queuing mechanisms.

19.5 Fair Queuing

An important alternative to FIFO and priority is fair queuing. Where FIFO and its variants have a single
input class and put all the incoming traffic into a single physical queue, fair queuing maintains a separate
logical FIFO subqueue for each input class; we will refer to these as the per-class subqueues. Division into
classes can be fine-grained – eg a separate class for each TCP connection – or coarse-grained – eg a separate
class for each arrival interface, or a separate class for each designated internal subnet.

Suppose for a moment that all packets are the same size; this makes fair queuing much easier to visualize.
In this (special) case – sometimes called Nagle fair queuing, and proposed in RFC 970 – the router simply
services the per-class subqueues in round-robin fashion, sending one packet from each in turn. If a per-class
subqueue is empty, it is simply skipped over. If all per-class subqueues are always nonempty this resembles
time-division multiplexing (4.2 Time-Division Multiplexing). However, unlike time-division multiplexing
if one of the per-class subqueues does become empty then it no longer consumes any outbound bandwidth.
Recalling that all packets are the same size, the total bandwidth is then divided equally among the nonempty
per-class subqueues; if there are K such queues, each will get 1/K of the output.

Fair queuing was extended to streams of variable-sized packets in [DKS89], [LZ89] and [LZ91]. Since then
there has been considerable work in trying to figure out how to implement fair queuing efficiently and to
support appropriate variants.

19.5.1 Weighted Fair Queuing

A straightforward extension of fair queuing is weighted fair queuing (WFQ), where instead of giving each
class an equal share, we assign each class a different percentage. For example, we might assign bandwidth
percentages of 10%, 30% and 60% to three different departments. If all three subqueues are active, each gets
the listed percentage. If the 60% subqueue is idle, then the others get 25% and 75% respectively, preserving
the 1:3 ratio of their allocations. If the 10% subqueue is idle, then the other two subqueues get 33.3% and
66.7%.

Weighted fair queuing is, conceptually, a straightforward generalization of fair queuing, although the actual
implementation details are sometimes nontrivial as the round-robin implementation above naturally yields
equal shares. If all packets are still the same size, and we have two per-class subqueues that are to receive
allocations of 40% and 60% (that is, in the ratio 2:3), then we could implement WFQ by having one per-
class subqueue send two packets and the other three. Or we might intermingle the two: class 1 sends its first
packet, class 2 sends its first packet, class 1 sends its second, class 2 sends its second and its third. If the

626 19 Queuing and Scheduling

https://tools.ietf.org/html/rfc970.html

An Introduction to Computer Networks, Release 1.9.21

allocation is to be in the ratio 1:?2, the first sender might always send 1 packet while the second might send
in a pattern – an irregular one – that averages?2: 1, 2, 1, 2, 1, 1, 2,

The fluid-based GPS model approach to fair queuing, 19.5.4 The GPS Model, does provide an algorithm
that has direct, natural support for weighted fair queuing.

19.5.2 Different Packet Sizes and Virtual Finishing Times

If not all the packets are the same size, fair queuing and weighted fair queuing are still possible but we have
a little more work to do. This is an important practical case, as fair queuing is often used when one input
class consists of small-packet real-time traffic.

We present two mechanisms for handling different-sized packets; the two are ultimately equivalent. The first
– 19.5.3 Bit-by-bit Round Robin – is a straightforward extension of the round-robin idea, and the second –
19.5.4 The GPS Model – uses a “fluid” model of simultaneous packet transmission. Both mechanisms share
the idea of a “virtual clock” that runs at a rate inversely proportional to the number of active subqueues; as
we shall see, the point of varying the clock rate in this way is so that the virtual-clock time at which a given
packet would theoretically finish transmission does not depend on activity in any of the other subqueues.

Finally, we present the quantum algorithm – 19.5.5 Deficit Round Robin – which is a more-efficient ap-
proximation to either of the exact algorithms, but which – being an approximation – no longer satisfies a
sometimes-important time constraint.

For a straightforward generalization of the round-robin idea to different packet sizes, we start with a sim-
plification: let us assume that each per-class subqueue is always active, where a subqueue is active if it is
nonempty whenever the router looks at it.

If each subqueue is always active for the equal-sized-packets case, then packets are transmitted in order
of increasing (or at least nondecreasing) cumulative data sent by each subqueue. In other words, every
subqueue gets to send its first packet, and only then do we go on to begin transmitting second packets, and
so on.

Still assuming each subqueue is always active, we can handle different-sized packets by the same idea. For
packet P, let CP be the cumulative number of bytes that will have been sent by P’s subqueue as of the end of
P. Then we simply need to send packets in nondecreasing order of CP.

 Variable-packet-sized fair queuing with all subqueues active

Packet transmission order: Q1, P1, R1, Q2, Q3, R2, Q4, Q5, P2, R3, R4, P3, Q6

P1 P3

Q1

P2

Q2 Q3 Q4 Q5 Q6

R1 R2 R3 R4

In the diagram above, transmission in nondecreasing order of CP means transmission in left-to-right order
of the vertical lines marking packet divisions, eg Q1, P1, R1, Q2, Q3, R2, This ensures that, in the long
run, each subqueue gets an equal share of bandwidth.

19.5 Fair Queuing 627

An Introduction to Computer Networks, Release 1.9.21

A completely equivalent strategy, better suited for generalization to the case where not all subqueues are
always active, is to send each packet in nondecreasing order of virtual finishing times, calculated for each
packet with the assumption that only that packet’s subqueue is active. The virtual finishing time FP of packet
P is equal to CP divided by the output bandwidth. We use finishing times rather than starting times because
if one packet is very large, shorter packets in other subqueues that would finish sooner should be sent first.

19.5.2.1 A first virtual-finish example

As an example, suppose there are two subqueues, P and Q. Suppose further that a stream of 1001-byte
packets P1, P2, P3, . . . arrives for P, and a stream of 400-byte packets Q1, Q2, Q3, . . . arrives for Q; each
stream is steady enough that each subqueue is always active. Finally, assume the output bandwidth is 1 byte
per unit time, and let T=0 be the starting point.

For the P subqueue, the virtual finishing times calculated as above would be P1 at 1001, P2 at 2002, P3
at 3003, etc; for Q the finishing times would be Q1 at 400, Q2 at 800, Q3 at 1200, etc. So the order of
transmission of all the packets together, in increasing order of virtual finish, will be as follows:

Packet virtual finish actual finish
Q1 400 400
Q2 800 800
P1 1001 1801
Q3 1200 2201
Q4 1600 2601
Q5 2000 3001
P2 2002 4002

For each packet we have calculated in the table above its virtual finishing time, and then its actual wallclock
finishing time assuming packets are transmitted in nondecreasing order of virtual finishing time (as shown).

Because both subqueues are always active, and because the virtual finishing times assumed each subqueue
received 100% of the output bandwidth, in the long run the actual finishing times will be about double the
virtual times. This, however, is irrelevant; all that matters is the relative virtual finishing times.

19.5.2.2 A second virtual-finish example

For the next example, however, we allow a subqueue to be idle for a while and then become active. In this
situation virtual finishing times do not work quite so well, at least when based directly on wallclock time.
We return to our initial simplification that all packets are the same size, which we take to be 1 unit; this
allows us to apply the round-robin mechanism to determine the transmission order and compare this to the
virtual-finish order. Assume there are three queues P, Q and R, and P is empty until wallclock time 20. Q is
constantly busy; its Kth packet QK, starting with K=1, has virtual finishing time FK = K.

For the first case, assume R is completely idle. When P’s first packet P1 arrives at time 20, its virtual finishing
time will be 21. At time 20 the head packet in Q will be Q21; the two packets therefore have identical virtual
finishing times. And, encouragingly, under round-robin queue service P1 and Q21 will be sent in the same
round.

628 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

For the second case, however, suppose R is also constantly busy. Up until time 20, Q and R have each sent
10 packets; their next packets are Q11 and R11, each with a virtual finishing time of T=11. When P’s first
packet arrives at T=20, again with virtual finishing time 21, under round-robin service it should be sent in
the same round as Q11 and R11. Yet their virtual finishing times are off by a factor of about two; queue P’s
stretch of inactivity has left it far behind. Virtual finishing times, as we have been calculating them so far,
simply do not work.

The trick, as it turns out, is to measure elapsed time not in terms of packet-transmission times (ie wallclock
time), but rather in terms of rounds of round-robin transmission. This amounts to scaling the clock used
for measuring arrival times; counting in rounds rather than packets means that we run this clock at rate 1/N
when N subqueues are active. If we do this in case 1, with N=1, then the finishing times are unchanged.
However, in case 2, with N=2, packet P1 arrives after 20 time units but only 10 rounds; the clock runs at half
rate. Its calculated finishing time is thus 11, exactly matching the finishing times of the two long-queued
packets Q11 and R11 with which P1 shares a round-robin transmission round.

We formalize this in the next section, extending the idea to include both variable-sized packets and
sometimes-idle subqueues. Note that only the clock that measures arrival times is scaled; we do not scale
the calculated transmission times.

19.5.3 Bit-by-bit Round Robin

Imagine sending a single bit at a time from each active input subqueue, in round-robin fashion. While not
directly implementable, this certainly meets the goal of giving each active subqueue equal service, even if
packets are of different sizes. We will use bit-by-bit round robin, or BBRR, as a way of modeling packet-
finishing times, and then, as in the previous example, send the packets the usual way – one full packet at a
time – in order of increasing BBRR-calculated virtual finishing times.

It will sometimes happen that a larger packet is being transmitted at the point a new, shorter packet arrives
for which a smaller finishing time is computed. The current transmission is not interrupted, though; the
algorithm is non-preemptive.

The trick to making the BBRR approach workable is to find an “invariant” formulation of finishing time that
does not change as later packets arrive, or as other subqueues become active or inactive. To this end, taking
the lead from the example of the previous section, we define the “rounds counter” R(t), where t is the time
measured in units of the transmission time for one bit. When there are any active (nonempty or currently
transmitting) input subqueues, R(t) counts the number of round-robin 1-bit cycles that have occurred since
the last time all the subqueues were empty. If there are K active input subqueues, then R(t) increments by 1
as t increments by K; that is, R(t) grows at rate 1/K.

An important attribute of R(t) is that, if a packet of size S bits starts transmission via BBRR at R0 = R(t0),
then it will finish when R(t) = R0+S, regardless of whether any other input subqueues become active or
become empty. For any packet actively being sent via BBRR, R(t) increments by 1 for each bit of that
packet sent. If for a given round-robin cycle there are K subqueues active, then K bits will be sent in all, and
R(t) will increment by 1.

To calculate the virtual BBRR finishing time of a packet P, we first record RP = R(tP) at the moment of
arrival. We now compute the BBRR-finishing R-value FP as follows; we can think of this as a “time”
measured via the rounds counter R(t). That is, R(t) represents a “virtual clock” that happens sometimes to
run slow. Let S be the size of the packet P in bits. If P arrived on a previously empty input subqueue, then its
BBRR transmission can begin immediately, and so its finishing R-value FP is simply RP+S. If the packet’s

19.5 Fair Queuing 629

An Introduction to Computer Networks, Release 1.9.21

subqueue was nonempty, we look up the (future) finishing R-value of the packet immediately ahead of P in
its subqueue, say Fprev; the finishing R-value of P is then FP = Fprev + S. This is sometimes described as:

Start = max(R(now), Fprev)
FP = Start + S (S = packet size, measured in bits)

As each new packet P arrives, we calculate its BBRR-finishing R-value FP, and then send packets the
conventional one-packet-at-a-time way in increasing order of FP. As stated above, FP will not change if
other subqueues empty or become active, thus changing the rate of the rounds-counter R(t).

The router maintaining R(t) does not have to increment it on every bit; it suffices to update it whenever a
packet arrives or a subqueue becomes empty. If the previous value of R(t) was Rprev, and from then to now
exactly K subqueues were nonempty, and M bit-times have elapsed according to the wall clock, then the
current value of R(t) is Rprev + M/K.

19.5.3.1 BBRR example

As an example, suppose the fair queuing router has three input subqueues P, Q and R, initially empty. The
following packets arrive at the wall-clock times shown.

Packet Queue Size Arrival time, t
P1 P 1000 0
P2 P 1000 0
Q1 Q 600 800
Q2 Q 400 800
Q3 Q 400 800
R1 R 200 1200
R2 R 200 2100

At t=0, we have R(t)=0 and we assign finishing R-values F(P1)=1000 to P1 and F(P2) = F(P1)+1000 = 2000
to P2. Transmission of P1 begins.

When the three Q packets arrive at t=800, we have R(t)=800 as well, as only one subqueue has been active.
We assign finishing R-values for the newly arriving Q1, Q2 and Q3 of F(Q1) = 800+600 = 1400, F(Q2) =
1400+400 = 1800, and F(Q3) = 1800+400 = 2200. At this point, BBRR begins serving two subqueues, so
the R(t) rate is cut in half.

At t=1000, transmission of packet P1 is completed; R(t) is 800 + 200/2 = 900. The smallest finishing R-value
on the books is F(Q1), at 1400, so Q1 is the second packet transmitted. Q1’s real finishing time will be t =
1000+600 = 1600.

At t=1200, R1 arrives; transmission of Q1 is still in progress. R(t) is 800 + 400/2 = 1000; we calculate F(R1)
= 1000 + 200 = 1200. Note this is less than the finishing R-value for Q1, which is currently transmitting, but
Q1 is not preempted. At this point (t=1200, R(t)=1000), the R(t) rate falls to 1/3.

At t=1600, Q1 has finished transmission. We have R(t) = 1000 + 400/3 = 1133. The next smallest finishing
R-value is F(R1) = 1200 so transmission of R1 commences.

At t=1800, R1 finishes. We have R(1800) = R(1200) + 600/3 = 1000 + 200 = 1200 (3 subqueues have been
busy since t=1200). Queue R is now empty, so the R(t) rate rises from 1/3 to 1/2. The next smallest finishing

630 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

R-value is F(Q2)=1800, so transmission of Q2 begins. It will finish at t=2200.

At t=2100, we have R(t) = R(1800) + 300/2 = 1200 + 150 = 1350. R2 arrives and is assigned a finishing time
of F(R2) = 1350 + 200 = 1550. Again, transmission of Q2 is not preempted even though F(R2) < F(Q2). The
R(t) rate again falls to 1/3.

At t=2200, Q2 finishes. R(t) = 1350 + 100/3 = 1383. The next smallest finishing R-value is F(R2)=1550, so
transmission of R2 begins.

At t=2400, transmission of R2 ends. R(t) is now 1350 + 300/3 = 1450. The next smallest finishing R-value
is F(P2) = 2000, so transmission of P2 begins. The R(t) rate rises to 1/2, as queue R is again empty.

At t=3400, transmission of P2 ends. R(t) is 1450 + 1000/2 = 1950. The only remaining unsent packet is Q3,
with F(Q3)=2200. We send it.

At t=3800, transmission of Q3 ends. R(t) is 1950 + 400/1 = 2350.

To summarize:

Packet send-time, wall clock
t

calculated finish R-
value

R-value when
sent

R-value at fin-
ish

P1 0 1000 0 900
Q1 1000 1400 900 1133
R1 1600 1200* 1133 1200
Q2 1800 1800 1200 1383
R2 2200 1550* 1383 1450
P2 2400 2000 1450 1950
Q3 3400 2200 1950 2350

Packets arrive, begin transmission and finish in “real” time. However, the number of queues active in real
time affects the rate of the rounds-counter R(t); this value is then attached to each packet as it arrives as its
virtual finishing time, and determines the order of packet transmission.

The change in R-value from start to finish exactly matches the packet size when the packet is “virtually sent”
via BBRR. When the packet is sent as an indivisible unit, as in the table above, the change in R-value is
usually much smaller, as the R-clock runs slower whenever at least two subqueues are in use.

The calculated-finish R-values are not in fact increasing, as can be seen at the starred (*) values. This is
because, for example, R1 was not yet available when it was time to send Q1.

Computationally, maintaining the R-value counter is inconsequential. The primary performance issue with
BBRR simulation is the need to find the smallest R-value whenever a new packet is to be sent. If n is the
number of packets waiting to be sent, then we can do this in time O(log(n)) by keeping the R-values sorted
in an appropriate data structure.

The BBRR approach assumes equal weights for each subqueue; this does not generalize completely straight-
forwardly to weighted fair queuing as the number of subqueues cannot be fractional. If there are two queues,
one which is to have weight 40% and the other 60%, we could use BBRR with five subqueues, two of which
(2/5) are assigned to the 40%-subqueue and the other three (3/5) to the 60% subqueue. But this becomes
increasingly awkward as the fractions become less simple; the GPS model, next, is a better option.

19.5 Fair Queuing 631

An Introduction to Computer Networks, Release 1.9.21

19.5.4 The GPS Model

An almost-equivalent model to BBRR is the generalized processor sharing model, or GPS; it was first
developed as an application to CPU scheduling. In this approach we imagine the packets as liquid, and the
outbound interface as a pipe that has a certain total capacity. The head packets from each subqueue are all
squeezed into the pipe simultaneously, each at its designated fractional rate. The GPS model is essentially
an “infinitesimal” variant of BBRR. The GPS model has an advantage of generalizing straightforwardly to
weighted fair queuing.

Other fluid models have also been used in the analysis of networks, eg for the study of TCP, though we do
not consider these here. See [MW00] for one example.

For the GPS model, assume there are N input subqueues, and the ith subqueue, 0ďi<N, is to receive fraction
𝛼i > 0, where 𝛼0+𝛼1+ . . . + 𝛼N–1=1. If at some point a set A of input subqueues is active , say A = {0,2,4},
then subqueue 0 will receive fraction 𝛼0/(𝛼0+𝛼2+𝛼4), and subqueues 2 and 4 similarly. The router forwards
packets from each active subqueue simultaneously, each at its designated rate.

The GPS model (and the BBRR model) provides an ideal degree of isolation between input flows: each flow
is insulated from any delay due to packets on competing flows. The ith flow receives bandwidth of at least
𝛼i and packets wait only for other packets belonging to the same flow. When a packet arrives for an inactive
subqueue, forwarding begins immediately, interleaved with any other work the router is doing. Traffic on
other flows can reduce the real rate of a flow, but not its virtual rate.

While GPS is convenient as a model, it is even less implementable, literally, than BBRR. As with BBRR,
though, we can use the GPS model to determine the order of one-packet-at-a-time transmission. As each
real packet arrives, we calculate the time it would finish, if we were using GPS. Packets are then transmitted
under WFQ one at a time, in order of increasing GPS finishing time.

In lieu of the BBRR rounds counter R(t), a virtual clock VC(t) is used that runs at an increased rate 1/𝛼
ě 1 where 𝛼 is the sum of the 𝛼i for the active subqueues. That is, if subqueues 0, 2 and 4 are active,
then the VC(t) clock runs at a rate of 1/(𝛼0+𝛼2+𝛼4). If all the 𝛼i are equal, each to 1/N, then VC(t) always
runs N times faster than R(t), and so VC(t) = NˆR(t); the VC clock runs at wallclock speed when all input
subqueues are active and speeds up as subqueues become idle.

For any one active subqueue i, the GPS rate of transmission relative to the virtual clock (that is, in units of
bits per virtual-second) is always equal to fraction 𝛼i of the full output-interface rate. That is, if the output
rate is 10 Mbps and an active flow has fraction 𝛼 = 0.4, then it will always transmit at 4 bits per virtual
microsecond. When all the subqueues are active, and the VC clock runs at wallclock speed, the flow’s actual
rate will be 4 bits/µsec. When the subqueue is active alone, its speed measured by a real clock will be 10
bit/µsec but the virtual clock will run 2.5 times faster so 10 bits/µsec is 10 bits per 2.5 virtual microseconds,
or 4 bits per virtual microsecond.

To make this claim more precise, let A be the set of active queues, and let 𝛼 again be the sum of the 𝛼j for j
in A. Then VC(t) runs at rate 1/𝛼 and active subqueue i’s data is sent at rate 𝛼i/𝛼 relative to wallclock time.
Subqueue i’s transmission rate relative to virtual time is thus (𝛼i/𝛼)/(1/𝛼) = 𝛼i.

As other subqueues become inactive or become active, the VC(t) rate and the actual transmission rate move
in lockstep. Therefore, as with BBRR, a packet P of size S on subqueue i that starts transmission at virtual
time T will finish at T + S/(rˆ𝛼i) by the VC clock, where r is the actual output rate of the router, regardless
of what is happening in the other subqueues. In other words, VC-calculated finishing times are invariant.

632 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

To round out the calculation of finishing times, suppose packet P of size S arrives on an active GPS subqueue i. The previous packet in that subqueue will have finishing time Fprev, and that will become P’s start time. If P arrives on an inactive subqueue, GPS allows it to begin transmitting immediately. Either way, as with BBRR, P’s start time is Pstart = max(VC(now), Fprev), and its finishing time on the VC clock is FP = Pstart + S/(rˆ𝛼i). In one expression, this finishing time is

FP = max(VC(now), Fprev) + S/(rˆ𝛼i)

In 19.8.1.1 WFQ with non-FIFO subqueues below, we will consider WFQ routers that, as part of a hi-
erarchy, are in effect only allowed to transmit intermittently. In such a case, the virtual clock should be
suspended whenever output is blocked. This is perhaps easiest to see for the BBRR scheduler: the rounds-
counter RR(t) is to increment by 1 for each bit sent by each active subqueue. When no bits may be sent, the
clock should not increase.

As an example of what happens if this is not done, suppose R has two subqueues A and B; the first is empty
and the second has a long backlog. R normally processes one packet per second. At T=0/VC=0, R’s output is
suspended. Packets in the second subqueue b1, b2, b3, . . . have virtual finishing times 1, 2, 3, At T=10,
R resumes transmission, and packet a1 arrives on the A subqueue. If R’s virtual clock had been suspended
for the interval 0ďTď10, a1 would be assigned finishing time T=1 and would have priority comparable to
b1. If R’s virtual clock had continued to run, a1 would be assigned finishing time T=11 and would not be
sent until b11 reached the head of the B queue.

19.5.4.1 The WFQ scheduler

To schedule actual packet transmission under weighted fair queuing, we calculate upon arrival each packet’s
virtual-clock finishing time assuming it were to be sent using GPS. Whenever the sender is ready to start
transmission of a new packet, it selects from the available packets the one with the smallest GPS-finishing-
time value. By the argument above, a packet’s GPS finishing time does not depend on any later arrivals or
idle periods on other subqueues. As with BBRR, small but later-arriving packets might have smaller virtual
finishing times, but a packet currently being transmitted will not be interrupted.

19.5.4.2 Finishing Order under GPS and WFQ

We now look at the order in which packets finish transmission under GPS versus WFQ. The goal is to
provide in 19.5.4.7 Finishing-Order Bound a tight bound on how long packets may have to wait under
WFQ compared to GPS. We emphasize again:

• GPS finishing time: the theoretical finishing time based on parallel multi-packet transmissions under
the GPS model

• WFQ finishing time: the real finishing time assuming packets are sent sequentially in increasing order
of calculated GPS finishing time

One way to view this is as a quantification of the informal idea that WFQ provides a natural priority for
smaller packets, at least smaller packets sent on previously idle subqueues. This is quite separate from
the bandwidth guarantee that a given small-packet input class might receive; it means that small packets
are likely to leapfrog larger packets waiting in other subqueues. The quantum algorithm, below, provides
long-term WFQ bandwidth guarantees but does not provide the same delay assurances.

First, if all subqueues are always active (or if a fixed subset of subqueues is always active), then packets finish
under WFQ in the same order as they do under GPS. This is because under WFQ packets are transmitted
in the order of GPS finishing times according the virtual clock, and if all subqueues are always active the

19.5 Fair Queuing 633

An Introduction to Computer Networks, Release 1.9.21

virtual clock runs at a rate identical to wallclock time (or, if a fixed subset of subqueues is always active, at
a rate proportional to wallclock time).

If all subqueues are always active, we can assume that all packets were in their subqueues as of time T=0;
the finishing order is the same as long as each packet arrived before its subqueue went inactive.

Finally, if all subqueues are always active then each packet finishes at least as early under WFQ as under
GPS. To see this, let Pj be the jth packet to finish, under either GPS or WFQ. At the time when Pj finishes
under WFQ, the router R will have devoted 100% of its output bandwidth exclusively to P1 through Pj.
When Pj finishes under GPS, R will also have transmitted P1 through Pj, and may have transmitted fractions
of later packets as well. Therefore, the Pj finishing time under GPS cannot be earlier.

The finishing order and the relative GPS/WFQ finishing times may change, however, if – as will usually
be the case – some subqueues are sometimes idle; that is, if packets sometimes “arrive late” for some
subqueues.

19.5.4.3 GPS Example 1

As a first example we return to the scenario of 19.5.2.1 A first virtual-finish example. The router’s two
subqueues are always active; each has an allocation of 𝛼=50%. Packets P1, P2, P3, . . . , all of size 1001,
wait in the first queue; packets Q1, Q2, Q3, . . . , all of size 400, wait in the second queue. Output bandwidth
is 1 byte per unit time, and T=0 is the starting point.

The router’s virtual clock runs at wallclock speed, as both subqueues are always active. If Fi represents the
virtual finishing time of Ri, then we now calculate Fi as Fi-1 + 400/𝛼 = Fi-1 + 800. The virtual finishing times
of P1, P2, etc are similarly at multiples of 2002.

Packet virtual finish actual finish time
Q1 800 400
Q2 1600 800
P1 2002 1801
Q3 2400 2201
Q4 3200 2601
Q5 4000 3001
P2 4004 4002

In the table above, the “virtual finish” column is simply double that of the BBRR version, reflecting the fact
that the virtual finishing times are now scaled by a factor of 1/𝛼 = 2. The actual finish times are identical to
what we calculated before.

Note that, in every case, the actual WFQ finish time is always less than or equal to the virtual GPS finish
time.

19.5.4.4 GPS Example 2

If the router has only a single active subqueue, with share 𝛼 and packets P1, P2, P3, . . . , then the calculated
virtual-clock packet finishing times will be equal to the time on the virtual clock at the point of actual finish,
at least if this has been the case since the virtual clock last restarted at T=VC=0. Let r be the output rate of

634 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

the router, let S1, S2, S3 be the sizes of the packets and let F1, F2, F3 be their virtual finishing times with
F0=0. Then

Fi = Fi-1 + Si/(r𝛼) = S1/(r𝛼) + . . . + Si/(r𝛼)

The ith packet’s actual finishing time Ai is (S1 + . . . + Si)/r, which is 𝛼ˆFi. But the virtual clock runs fast
by a factor of 1/𝛼, so the actual finishing time on the virtual clock is Ai/𝛼 = Fi.

19.5.4.5 GPS Example 3

The next example illustrates a smaller but later-arriving packet, in this case Q2, that finishes ahead of P2
under GPS but not under WFQ. P2 can be said to leapfrog Q2 and R1 under WFQ.

Suppose packets P1, Q1, P2, Q2 and R1 arrive at a router at the following times T, and with the following
lengths L. The output bandwidth is 1 length unit per time unit; that is, r=1. The total number of length units
is 24. Each subqueue is allocated an equal share of the bandwidth; eg 𝛼=1/3.

subqueue 1 subqueue 2 subqueue 3
P1: T=0, L=1 Q1: T=0, L=2 R1: T=10, L=5
P2: T=2, L=10 Q2: T=4, L=6

Under WFQ, we send P1 and then Q1; Q1 is second because its finishing time is later. When Q1 finishes the
wallclock time is T=3. At this point, P2 is the only packet available to send; it finishes at T=13.

Up until T=10, we have two packets in progress under GPS (because Q1 finishes under GPS at T=4 and
Q2 arrives at T=4), and so the GPS clock runs at rate 3/2 of wallclock time and the BBRR clock runs at
rate 1/2 of wallclock time. At T=4, when Q2 arrives, the BBRR clock is at 2 and the VC clock is at 6 and
we calculate the BBRR finishing time as 2+6=8 and the GPS finishing time as 6+6/(1/3) = 24. At T=10,
the BBRR clock is at 5 and the GPS clock is 15. R1 arrives then; we calculate its BBRR finishing time as
5+5=10 and its GPS finishing time as 15+5/𝛼 = 30.

Because Q2 has the earlier virtual-clock finishing time, WFQ sends it next after P2, followed by R1.

Here is a diagram of transmission under GPS. The chart itself is scaled to wallclock times. The BBRR clock
is on the scale below; the VC clock always runs three times faster.

The circled numbers represent the size of the portion of the packet sent in the intervals separated by the
dotted vertical lines; for each packet, these add up to the packet’s total size.

19.5 Fair Queuing 635

An Introduction to Computer Networks, Release 1.9.21

Note that, while the transmission order under WFQ is P1, Q1, P2, Q2, R1, the finishing order under GPS is
P1, Q1, Q2, R1, P2. That is, P2 managed to leapfrog Q2 and R1 under WFQ by the simple expedient of being
the only packet available for transmission at T=3.

19.5.4.6 GPS Example 4

As a second example of leapfrogging, suppose we have the following arrivals; in this scenario, the smaller
but later-arriving R1 finishes ahead of P1 and Q2 under GPS, but not under WFQ.

subqueue 1 subqueue 2 subqueue3
P1: T=0, L=1000 Q1: T=0, L=200 R1: T=600, L=100

Q2: T=0, L=300

The following diagram shows how the packets shared the link under GPS over time. As can be seen, the
GPS finishing order is Q1, R1, Q2, P1.

Under WFQ, the transmission order is Q1, Q2, P1, R1, because when Q2 finishes at T=500, R1 has not yet
arrived.

19.5.4.7 Finishing-Order Bound

These examples bring us to the following delay-bound claim, due to Parekh and Gallager [PG93] (see also
[PG94]); we will make use of it below in 19.13.3 Parekh-Gallager Theorem. It is arguably the deepest part
of the Parekh-Gallager theorem.

Claim: For any packet P, the wallclock finishing time of P at a router R under WFQ cannot be later than the
wallclock finishing time of P at R under GPS by more than the time R needs to transmit the maximum-sized
packet that can appear.

Expressed symbolically, if FWFQ and FGPS are the finishing times for P under WFQ and GPS, R’s outbound
transmission rate is r, and Lmax is the maximum packet size that can appear at R, then

FWFQ ď FGPS + Lmax/r

636 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

This is the best possible bound; Lmax/r is the time packet P must wait if it has arrived an instant too late and
another packet of size Lmax has started instead.

Note that, if a packet’s subqueue is inactive, the packet starts transmitting immediately upon arrival under
GPS; however, GPS may send the packet relatively slowly.

To prove this claim, let us number the packets P1 through Pk in order of WFQ transmission, starting from
the most recent point when at least one subqueue of the router became active. (Note that these packets may
be spread over multiple input subqueues.) For each i, let Fi be the finishing time of Pi under WFQ, let Gi be
the finishing time of Pi under GPS, and let Li be the length of Pi; note that, for each i, Fi+1 = Li+1/r + Fi.

If Pk finishes after P1 through Pk-1 under GPS, then the argument above (19.5.4.2 Finishing Order under
GPS and WFQ) for the all-subqueues-active case still applies to show Pk cannot finish earlier under GPS
than it does under WFQ; that is, we have Fk ď Gk.

Otherwise, some packet Pi with i<k must finish after Pk under GPS; Pi has leapfrogged Pk under WFQ,
presumably because Pk was late in arriving. Let Pm be the most recent (largest m<k) such leapfrogger
packet, so that Pm finishes after Pk under GPS but Pm+1 through Pk-1 finish earlier (or are tied); this was
illustrated above in 19.5.4.5 GPS Example 3 for k=5 and m=3.

We next claim that none of the packets Pm+1 through Pk could have yet arrived at R at the time Tstart when
Pm began transmission under WFQ. If some Pi with i>m were present at time Tstart, then the fact that it is
transmitted after Pm under WFQ would imply that the calculated GPS finishing time came after that of Pm.
But, as we argued earlier, calculated virtual-clock GPS finishing times are always the actual virtual-clock
GPS finishing times, and we cannot have Pi finishing both ahead of Pm and behind it.

Recalling that Fm is the finishing time of Pm under WFQ, the time Tstart above is simply Fm - Lm/r. Between
Tstart and Gk, all the packets Pm+1 through Pk must arrive and then, under GPS, depart. The absolute mini-
mum time to send these packets under GPS is the WFQ time for end-to-end transmission, which is (Lm+1 +
.. + Lk)/r = Fk - Fm. Therefore we have

Gk - Tstart ě Fk - Fm

Gk - (Fm - Lm/r) ě Fk - Fm

Fk ď Gk + Lm/r ď Gk + Lmax/r

The last line represents the desired conclusion.

19.5.5 Deficit Round Robin

The BBRR approach has cost O(log n), where n is the number of packets waiting, as outlined earlier. One
simple though approximate alternative that has O(1) performance, introduced in [SV96], is to assign to each
input subqueue a numeric quantum, proportional to that subqueue’s bandwidth share. Each subqueue will
also maintain a deficit representing the cumulative amount of data it was granted permission to send in the
past, but wasn’t able to because the next packet was too large. The deficit will always be smaller than the
size of the subqueue’s head packet. When the subqueue is idle (and so there is no head packet), the deficit
is always set to zero.

At each round, a subqueue will be granted permission to send one additional quantum’s worth of data; that
is, the quantum will be added to the subqueue’s deficit. If this new deficit is larger than the size of the head
packet, then that packet can be sent, and possibly other packets as well. The sizes of the packets sent are

19.5 Fair Queuing 637

An Introduction to Computer Networks, Release 1.9.21

then subtracted from the deficit, which will now be smaller than the size of the new head packet, and the
next subqueue gets a turn.

Often the quantum is a number of bytes at least as large as the network MTU; in this case, each subqueue
will be permitted to send at least one packet on each round. This is not a requirement, however; often the
quantum is small enough that it takes many rounds to accumulate enough of a deficit to send a packet.

One cost of the quantum approach is that the elegant delay bound of 19.5.4.7 Finishing-Order Bound no
longer holds. In fact, a sender may be forced to wait for all other senders each to send a full quantum, even
if the sender has only a small packet. In particular, deficit round robin is not the same as BBRR, even if the
deficit is one bit. The subqueues are always granted the opportunity to send in the round-robin order, rather
than in the order of virtual finishing time. See exercises 3.0 and 5.5.

If the quantum is 1000 bytes, the deficit is zero, and we have two 600-byte packets in the current subqueue,
then the first of the packets is sent and the deficit is updated to 400. If instead we have two 400-byte packets
then the deficit is 0 as sending the two 400-byte packets empties the subqueue. If the quantum is 1000 bytes
and a steady stream of 600-byte packets arrives on one subqueue, they are sent as follows

round quantum + prev deficit packets sent new deficit
1 1000 1 400
2 1400 2,3 200
3 1200 4,5 0

In three rounds the subqueue has been allowed to send 5ˆ600 = 3000 bytes, which is exactly 3 quantums.

We can implement weighted fair queuing using the quantum algorithm by adjusting the quantum sizes in
proportion to the weights; that is, if the weights are 40% and 60% then the respective quanta might be 1000
bytes and 1500 bytes. If the quantums are Q1, Q2, . . . , Qn, and if all subqueues are always nonempty, then
in the long run the ith subqueue will get a share of the bandwidth equal to Qi/(Q1+Q2+ . . . +Qn), just as
with other implementations of fair queuing.

19.5.6 Stochastic Fair Queuing

Stochastic fair queuing ([McK90]) is a different kind of approximation to fair queuing. The ideal is to give
each individual TCP connection through a router its own fair queuing class, so that no connection has an
incentive to keep more than the minimum number of packets in the queue. However, managing so many
separate (and dynamically changing) input classes is computationally intensive. Instead, a hash function is
used to put each TCP connection (as identified by its socketpair) into one of several buckets (the current
default bucket count in the Linux implementation is 1024). The buckets are then used as the fair queuing
input queues.

If two connections hash to the same bucket, each will get only half the bandwidth to which it is entitled.
Therefore the hash function has some additional parameters that allow it to be perturbed at regular intervals;
after perturbation, socketpairs that formerly hashed to the same bucket likely now will not.

The Linux implementation of stochastic fair queuing, known as sfq, uses the quantum-based deficit round
robin algorithm, above. The different subqueues ultimately share a common pool of buffer space. If a packet
arrives when no more space is available, the last packet from the fullest subqueue is dropped. This rewards
flows that hold their queue utilization to modest levels.

638 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

19.6 Applications of Fair Queuing

As we saw in the Queue-Competition Rule in 14.2.2 Example 2: router competition, if a bottleneck router
uses FIFO queuing then it pays a sender, in terms of the bandwidth it receives, to keep as many packets as
possible in the queue. Fair queuing, however, can behave quite differently. If fair queuing is used with a
separate class for each connection, this “greediness” benefit evaporates; a sender need only keep its per-class
queue nonempty in order to be guaranteed its assigned share. Senders can limit their queue utilization to
one or two packets without danger of being crowded out by competing traffic.

As another application of fair queuing, suppose we have three web servers, A, B and C, to which we want to
give equal shares at sending along a 6 Mbps link; all three reach the link through router R. One way would
be to have R restrict them each to 2 Mbps, but that is not work-conserving: if one server is idle then its share
goes unused. Fair queuing offers a better approach: if all three are busy, each gets 2 Mbps; if two are busy
then each gets 3 Mbps, and if only one is busy it gets 6 Mbps. ISPs can also use this strategy internally
whenever they have several flows competing for one outbound link.

A

B

C

R ISP
6 Mbps

Unfortunately, this strategy does not work quite as well with three receivers. Suppose now A, B and C are
three pools of users (eg three departments), and we want to give them each equal shares of an inbound 6
Mbps link:

A

B

C

RISP
6 Mbps

Inbound fair queuing could be used at the ISP (upstream) end of the connection, where the three flows
would be identified by their destinations. But the ISP router is likely not ours to play with. Once the three
flows arrive at R, it is too late to allocate shares; there is nothing to do but deliver the traffic to A, B and C
respectively. We will return to this scenario below in 19.10 Applications of Token Bucket.

Note that for these kinds of applications we need to be able to designate administratively how packets get
classified into different input classes. The automatic classification of stochastic fair queuing, above, will not
help here.

19.6.1 Fair Queuing and Bufferbloat

Fair Queuing provides an alternative approach, at least theoretically, to the bufferbloat problem
(14.8.1 Bufferbloat). In 14.8 Active Queue Management we discussed how FIFO routers can reduce
excessive queue utilization. However, if a router abandoned FIFO and instead awarded each flow its own
fair-queuing subqueue, there would no longer be an incentive for a TCP implementation to, like TCP Reno

19.6 Applications of Fair Queuing 639

An Introduction to Computer Networks, Release 1.9.21

and TCP Cubic (15.15 TCP CUBIC), grab as much queue capacity as possible. The queue-competition
rule of 14.2.2 Example 2: router competition would simply no longer apply. N connections through the
router would each receive 1/N of the bottleneck bandwidth, as long as each flow kept at least one packet in
its subqueue at all times (WFQ might change the proportions, but not the principle).

If end users could count on fair queuing in routers, the best transit choice would become something like TCP
Vegas (15.6 TCP Vegas), which keeps a minimum number of packets in the bottleneck queue. TCP Vegas is
largely unused today because it competes poorly in FIFO queues with TCP Reno (15.6.1 TCP Vegas versus
TCP Reno), but all that would change with fair queuing. Depending on the maximum subqueue capacity,
TCP Reno users in this new routing regime might receive as little as 75% of their “fair share” through the
bottleneck router (13.7 TCP and Bottleneck Link Utilization), but the link itself would never go idle as long
as there were active TCP Vegas connections. Real-time UDP flows (perhaps carrying VoIP traffic) would
also see negligible queuing delay, even in the face of large file transfers going on in parallel.

As a practical matter, a fair-queuing subqueue for each separate TCP connection is expensive. A reasonable
compromise, however, might be to use stochastic fair queuing, or SFQ (19.5.6 Stochastic Fair Queuing). A
drop policy of dropping from the fullest subqueue further penalizes TCP Reno and TCP Cubic, and favors
TCP Vegas.

In 16.5 TCP Reno versus TCP Vegas there is a graph of the relative bandwidth utilization of TCP Reno
versus TCP Vegas. In that graph, TCP Reno outperforms Vegas by at least fourfold for much of the range,
and achieves tenfold greater throughput with the largest queue capacities. Here, by comparison, is a chart
when the bottleneck queue is changed from FIFO to SFQ:

In this graph, TCP Vegas always gets more bandwidth than TCP Reno, though for large queue capacities
Reno comes within 80%. The TCP Reno connection still faces bufferbloat problems, but the TCP Vegas
connection is unaffected. (In the ns-2 simulator, SFQ’s total queue capacity is set with, eg, Queue/SFQ

640 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

set maxqueue_ 100.)

Of course, most routers do not enable fair queuing, stochastic or otherwise, at least not at the level of
individual flows. So Reno and Cubic still win, and Vegas remains an unfruitful choice. Fair queuing costs
money, as there is more packet processing involved. Compounding this is the chicken-and-egg problem:
if one ISP did implement fair queuing, end users would stick to TCP Reno and TCP Cubic because they
worked best everywhere else, and the benefits of using protocols like TCP Vegas would go unrealized.

19.7 Hierarchical Queuing

Any queuing discipline with multiple input classes can participate in a hierarchy: the root queuing discipline
is at the top of the tree, and each of its input classes is fed by a separate lower-level queuing discipline.

Hierarchical Queuing Today

Hierarchical queuing is admittedly somewhat out of fashion. One of its original goals was to support com-
plex sharing of a single link by multiple data streams with different bandwidth and delay requirements;
in today’s Internet providers often instead address this with the brute-force approach of excess bandwidth
capacity. That said, hierarchical queuing offers an elegant and economical alternative, and despite today’s
trends it is not clear if providing excess capacity will always be an option in the future.

The usual understanding of hierarchical queuing is that the non-leaf queuing-discipline nodes are “virtual”:
they do not store data, but only make decisions as to which subqueue to serve. The only physical output
interface is at the root, and all physical queues are attached to the leaf nodes. Each non-leaf queuing-
discipline node is allowed to peek at what packet, if any, its subqueues would dequeue if asked, but any
node will only actually dequeue a packet unless that packet will immediately be forwarded up the tree to the
root. This might be referred to as a leaf-storage hierarchy.

An immediate corollary is that leaf nodes, which now hold all the physical packets, will do all the packet
dropping.

While it is possible to chain real queue objects together so as to construct composite queuing structures in
which packets are not stored only at leaf nodes, the resultant internal-node-storage hierarchy will often not
function as might be expected. For example, a priority-queuing node that immediately forwards each arriv-
ing packet on to its parent has forfeited any control over the priority order of resultant packet transmissions.
Similarly, if we try to avoid the complexity of hierarchical fair queuing, below, by connecting separate WFQ
nodes into a tree so that the internal nodes immediately forward upwards, then either packets simply pile
up at the root, or else the interior links become the bottleneck. For a case where the internal-node-storage
approach does work, see the end of 19.12 Hierarchical Token Bucket.

19.7.1 Generic Hierarchical Queuing

One simple way to enable lazy dequeuing is to require the following properties of the hierarchy’s component
queuing disciplines:

• each node supports a peek() operation to return the packet it would dequeue if asked, and

19.7 Hierarchical Queuing 641

An Introduction to Computer Networks, Release 1.9.21

• any non-leaf node can determine what packet it would itself dequeue simply by calling peek() on
each of its child nodes

With these in place, a dequeue operation at the root node will trigger a depth-first traversal of the entire tree
through peek() calls; eventually one leaf node will dequeue its packet and pass it up towards the root. We
will call this generic hierarchical queuing.

Note that if we have a peek() operation at the leaf nodes, and the second property above for the interior
nodes, we can recursively define peek() at every node.

Many homogeneous queuing-discipline hierarchies support this generic mechanism. Priority queuing, as in
the example below, works, because when a parent node needs to dequeue a packet it finds the highest-priority
nonempty child subqueue, dequeues a packet from it, and sends it up the tree. In this case we do not even
need peek(); all we need is is_empty(). Homogeneous FIFO queuing also works, assuming packets
are each tagged with their arrival time, because for a node to determine which packet it would dequeue it
needs only to peek() at its child nodes and find the earliest-arriving packet.

As an example of where generic hierarchical queuing does not work, imagine a hierarchy consisting of a
queuing discipline node that sends the smallest packet first, fed by two FIFO child nodes. The parent would
have to dequeue all packets from the child nodes to determine the smallest.

Fair queuing is not quite well-behaved with respect to generic hierarchical queuing. There is no problem if
all packets are the same size; in this case the nodes can all implement simple round-robin selection in which
they dequeue a packet from the next nonempty child node and send it immediately up the tree. Suppose,
however, that to accommodate packets of different sizes all nodes use BBRR (or GPS). The problem is that
without timely notification of when packets arrive at the leaf nodes, the interior nodes may not have enough
information to determine the correct rates for their virtual clocks. An appropriate fair-queuing-specific
modification to the generic hierarchical-queuing algorithm is below in 19.8.1 A Hierarchical Weighted
Fair Queuing Algorithm.

19.7.2 Hierarchical Examples

Our first example is of hierarchical priority queuing, though as we shall see shortly it turns out in this case
that the hierarchy collapses. It may still serve to illustrate some principles, however. The basic queuing-
discipline unit will be the two-input-class priority queue, with priorities 0 (high) and 1 (low). We put one
of these at the root, named QR, and then put a pair of such queues (QA and QB in the diagram) at the next
level down, each feeding into one of the input classes of the root queue.

QR

QA QB

0 1

0 1 0 1

A B C D

Generic Hierarchical Queuing

642 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

We now need a classifier, as with any multi-subqueue queuing discipline, to place input packets into one of
the four leaf nodes labeled A, B, C and D above; these likely represent FIFO queues. Once everything is set
up, the dequeuing rules are as follows:

• at the root node, we first see if packets are available in the left (high-priority) subqueue, QA. If so, we
dequeue the packet from there; if not, we go on to the right subqueue QB.

• at either QA or QB, we first see if packets are available in the left input, labeled 0; if so, we dequeue
from there. Otherwise we see if packets are available from the right input, labeled 1. If neither, then
the subqueue is empty.

The catch here is that hierarchical priority queuing collapses to a single layer, with four priority levels 00,
01, 10, and 11 (from high to low):

root

00 01 10 11

A B C D

Flattened Priority Hierarchy

For many other queuing disciplines, however, the hierarchy does not collapse. One example of this might
be a root queuing discipline PQR using priority queuing, with two leaf nodes using fair queuing, FQA and
FQB. (Fair queuing does not behave well as an interior node without modification, as mentioned above, but
it can participate in generic hierarchical queuing just fine as a leaf node.)

PQR

FQA FQB

A1 A2 B1 B2

Priority / Fair Queuing Hierarchy

Senders A1 and A2 receive all the bandwidth, if either is active; when this is the case, B1 and B2 get
nothing. If both A1 and A2 are active, they get equal shares. Only when neither is active do B1 and B2
receive anything, in which case they divide the bandwidth fairly between themselves. The root node will
check on each dequeue() operation whether FQA is nonempty; if it is, it dequeues a packet from FQA
and otherwise dequeues from FQB. Because the root does not dequeue a packet from FQA or FQB unless it
is about to return it via its own dequeue() operation, those two child nodes do not have to decide which

19.7 Hierarchical Queuing 643

An Introduction to Computer Networks, Release 1.9.21

of their internal per-class queues to service until a packet is actually needed.

19.8 Hierarchical Weighted Fair Queuing

Hierarchical weighted fair queuing is an elegant mechanism for addressing naturally hierarchical bandwidth-
allocation problems, even if it cannot be properly implemented by “generic” methods of creating queuing-
discipline hierarchies. There are, fortunately, algorithms specific to hierarchical fair queuing.

The fluid model provides a convenient reference point for determining the goal of hierarchical weighted fair
queuing. Each interior node divides its bandwidth according to the usual one-level WFQ mechanism: if N is
an interior node, and if the ith child of N is guaranteed fraction 𝛼i of N’s bandwidth, and A is the set of N’s
currently active children, then WFQ on N will allocate to active child j the fraction 𝛽j equal to 𝛼j divided by
the sum of the 𝛼i for i in A.

Now we can determine the bandwidth allocated to each leaf node L. Suppose L is at level r (with the root at
level 0), and let 𝛽k be the fraction currently assigned to the node on the root-to-L path at level 0<kďr. Then
L should receive service in proportion to 𝛽1ˆ. . .ˆ𝛽r, the product of the fractions along the root-to-L path.
For example, in the following hierarchical model, leaf node L1 should receive fraction 70%ˆ40%ˆ50% =
14% of the total bandwidth.

FQR

FQA FQB

FQC FQD

L1 L2

70% 30%

50%

60%

50%

...

...

 Hierarchical Weighted Fair Queuing
L1 is guaranteed 70%×40%×50% = 14%

40%

If, however, node FQD becomes inactive, then FQA will assign 100% to FQC, in which case L1 will receive
70%ˆ100%ˆ50% = 35% of the bandwidth.

Alternatively, we can stick to real packets, but simplify by assuming all are the same size and that child
allocations are all equal; in this situation we can implement hierarchical fair queuing via generic hierarchical
queuing. Each parent node simply dequeues from its child nodes in round-robin fashion, skipping over any
empty children.

Hierarchical fair queuing – unlike priority queuing – does not collapse; the hierarchical queuing discipline
is not equivalent to any one-level queuing discipline. Here is an example illustrating this. We form a tree of

644 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

three fair queuing nodes, labeled FQR, FQA and FQB in the diagram. Each grants 50% of the bandwidth to
each of its two input classes.

FQR FQ

A B C D A B C D

FQA FQB

Hierarchical Flat

50%

50%

50% 50% 50%

25% 25% 25% 25%

50%

If all four input classes A,B,C,D are active in the hierarchical structure, then each gets 25% of the total
bandwidth, just as for a flat four-input-class fair queuing structure. However, consider what happens when
only A, B and C are active, and D is idle. In the flat model, A, B and C each get 33%. In the hierarchical
model, however, as long as FQA and FQB are both active then each gets 50%, meaning that A and B split
FQA’s allocation and receive 25% each, while C gets 50%.

As an application, suppose two teams, Left and Right, are splitting a shared outbound interface; each team
has contracted to receive at least 50% of the bandwidth. Each team then further subdivides its allocation
among its own members, again using fair queuing. When A, B and C are the active senders, then Team
Right – having active sender C – still expects to receive its contractual 50%. Team Right may in fact have
decided to silence D specifically so C would receive the full allocation.

Hierarchical fair queuing can not be implemented by computing a finishing time for each packet at the point
it arrives. By way of demonstration, consider the following example from [BZ97], with root node R and
interior child node C.

R

C

A B D

80% 20%

15/16 1/16

When A is idle, B gets 4 times D's bandwidth
When A is active, B gets 1/4 D's bandwidth

If A is idle, but B and D are active, then B should receive four times the bandwidth of D. Assume for
a moment that a large number of packets have arrived for each of B and D. Then B should receive the
entire 80% of C’s share. If transmission order can be determined by packet arrival, then the order will look

19.8 Hierarchical Weighted Fair Queuing 645

An Introduction to Computer Networks, Release 1.9.21

something like

d1, b1, b2, b3, b4,
d2, b5, b6, b7, b8, . . .

Now suppose A wakes up and becomes active. At that point, B goes from receiving 80% of the total
bandwidth to 5% = 80% ˆ 1/16, or from four times D’s bandwidth to a quarter of it. The new b/d relative
rate, not showing A’s packets, must be

b1, d1, d2, d3, d4,
b2, d5, d6, d7, d8, . . .

The relative frequencies of B and D packets have been reversed by the arrival of later A packets. The
packet order for B and D is thus dependent on later arrivals on another queue entirely, and thus cannot be
determined at the point the packets arrive.

After presenting the actual hierarchical-WFQ virtual-clock algorithm, we will return to this example in
19.8.1.2 A Hierarchical-WFQ Example.

19.8.1 A Hierarchical Weighted Fair Queuing Algorithm

The GPS-based WFQ scheduling algorithm is almost suitable for use in the generic-hierarchical-queuing
framework; two adjustments must be made. The first adjustment is that each non-leaf node must be notified
whenever any of its formerly empty subqueues becomes active; the second adjustment is a modification to
how – and more importantly when – a packet’s virtual finishing time is calculated.

As for the active-subqueue notification, each non-leaf node can, of course, check after dequeuing each
packet which of its subqueues is active, using the is_empty() operation. This, however, may be signif-
icantly after the subqueue-activating packet has arrived. A WFQ node needs to know the exact time when
a subqueue becomes active both to record the GPS virtual-clock start time for the subqueue, and to know
when to change the rate of its virtual clock.

Addition of this subqueue-activation notification to hierarchical queuing is straightforward. When a previ-
ously empty leaf node receives a packet, it must send a notification to its parent. Each interior node of the
hierarchy must in turn forward any received subqueue-activation notification to its parent, provided that none
of its other child subqueues were already active. If the interior node already had other active subqueues, then
that node is itself active and no new notification needs to be sent. In this way, when a leaf node becomes
active, the news will be propagated towards the root of the tree until either the root or an already-active
interior node is reached.

To complete the hierarchical WFQ algorithm, we next describe how to modify the algorithm of 19.5.4 The
GPS Model to support subqueues of any type (eg FIFO, priority, or in our case hierarchical subtrees), pro-
vided inactive subqueues notify the WFQ parent when they become active.

19.8.1.1 WFQ with non-FIFO subqueues

Suppose we want to implement WFQ where the per-class subqueues, instead of being FIFO, can be arbitrary
queuing disciplines; again, the case in which we are interested is when the subqueue represents a sub-
hierarchy. The order of dequeuing from each subqueue might be changed by later arrivals (eg as in priority
queuing), and packets in the subqueues might even disappear (as with random-drop queuing). (We will

646 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

assume that nonempty subqueues can only become empty through a dequeuing operation; this holds in all
the cases we will consider here.) The original WFQ algorithm envisioned labeling each packet P with its
finishing time as follows:

FP = max(VC(now), Fprev) + S/𝛼i

Clearly, this labeling of each packet upon its arrival is incompatible with subqueues that might place later-
arriving packets ahead of earlier-arriving ones. The original algorithm must be modified.

It turns out, though, that a WFQ node need only calculate finishing times FP for the packets P that are at the
heads of each of its subqueues, and even that needs only to be done at the time the dequeue() operation is
invoked. No waiting packet needs to be labeled. In fact, a packet P1 might be at the head of one subqueue,
and be passed over in a dequeue() operation for too large an FP1, only to be replaced by a different packet
P2 during the next dequeue() call.

It is sufficient for the WFQ node to maintain, for each of its subqueues, a variable NextStart, representing
the virtual-clock time (according to the WFQ node’s own virtual clock) to be used as the start time for that
subqueue’s next transmitted packet. A subqueue’s NextStart value serves as the max(VC(now), Fprev)
of the single-layer WFQ formula above. When the parent WFQ node is called upon to dequeue a packet, it
calls the peek() operation on each of its subqueues and then calculates the finishing time FP for the packet
P currently at the head of each subqueue as NextStart + size(P)/𝛼, where 𝛼 is the bandwidth fraction
assigned to the subqueue.

If a formerly inactive subqueue becomes active, it by hypothesis notifies the parent WFQ node. The parent
node records the time on its virtual clock as the NextStart value for that subqueue. Whenever a subqueue
is called upon to dequeue packet P, its NextStart value is updated to NextStart + size(P)/𝛼, the
virtual-clock finishing time for P.

The active-subqueue notification is also exactly what is necessary for the WFQ node to maintain its virtual
clock. If A is the set of active subqueues, and the ith subqueue has bandwidth share 𝛼i, then the clock is to
run at rate equal to the reciprocal of the sum of the 𝛼i for i in A. This rate needs to be updated whenever
a subqueue becomes active or inactive. In the first case, the parent node is notified by hypothesis, and the
second case happens only after a dequeue() operation.

There is one more modification needed for non-root WFQ nodes: we must suspend their virtual clocks when
they are not “transmitting”, following the argument at the end of 19.5.4 The GPS Model. Non-root nodes
do not have real interfaces and do not physically transmit. However, we can say that an interior node N is
logically transmitting when the root node R is currently transmitting a packet from leaf node L, and N lies
on the path from R to L. Note that all interior nodes on the path from R to L will be logically transmitting
simultaneously. For a specific non-root node N, whenever it is called upon at time T to dequeue a packet P,
its virtual clock should run during the wallclock interval from T to T + size(P)/r, where r is the root node’s
physical bandwidth. The virtual finishing time of P need not have any direct correspondence to this actual
finishing time T + size(P)/r. The rate of N’s virtual clock in the interval from T to T + size(P)/r will depend,
of course, on the number of N’s active child nodes.

We remark that the dequeue() operation described above is relatively inefficient; each dequeue()
operation by the root results in recursive traversal of the entire tree. There have been several attempts to
improve the algorithm performance. Other algorithms have also been used; the mechanism here has been
taken from [BZ97].

19.8 Hierarchical Weighted Fair Queuing 647

An Introduction to Computer Networks, Release 1.9.21

19.8.1.2 A Hierarchical-WFQ Example

Let us consider again the example at the end of 19.8 Hierarchical Weighted Fair Queuing:

R

C

A B D

80% 20%

15/16 1/16

When A is idle, B gets 4 times D's bandwidth
When A is active, B gets 1/4 D's bandwidth

Assume that all packets are of size 1 and R transmits at rate 1 packet per second. Initially, suppose FIFO
leaf nodes B and D have long backlogs (eg b1, b2, b3, . . .) but A is idle. Both of R’s subqueues are active, so
R’s virtual clock runs at the wall-clock rate. C’s virtual clock is running 16ˆ fast, though. R’s NextStart
values for both its subqueues are 0.

The finishing time assigned by R to di will be 5i. Whenever packet di reaches the head of the D queue,
R’s NextStart for D will be 5(i-1). (Although we claimed in the previous section that hierarchical WFQ
nodes shouldn’t need to assign finishing times beyond that for the current head packet, for FIFO subqueues
this is safe.)

At least during the initial A-idle period, whenever R checks C’s subqueue, if bi is the head packet then R’s
NextStart for C will be 1.25(i-1) and the calculated virtual finishing time will be 1.25i. If ties are decided
in B’s favor then in the first ten seconds R will send

b1, b2, b3, b4, d1, b5, b6, b7, b8, d2

During the ten seconds needed to send the ten packets above, all of the packets dequeued by C come from B.
Having only one active subqueue puts C is in the situation of 19.5.4.4 GPS Example 2, and so its packets’
calculated finishing times will exactly match C’s virtual-clock value at the point of actual finish. C dequeues
eight packets, so its virtual clock runs for only those 8 of the 10 seconds during which one of the bi is being
transmitted. As a result, packet bi finishes at time 16i by C’s virtual clock. At T=10, C’s virtual clock is
8ˆ16 = 128.

Now, at T=10, as the last of the ten packets above completes transmission, let subqueue A become back-
logged with a1, a2, a3, etc. C will assign a finishing time of 128 + 1.0667i to ai (1.0667 = 16/15); C has
already assigned a virtual finishing time of 9ˆ16=144 to b9. None of the virtual finishing times assigned by
C to the remaining bi will change.

At this point the virtual finishing times for C’s packets are as follows:

648 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

packet C finishing time R finishing time
a1 128 + 1.0667 10 + 1.25
a2 128 + 2ˆ1.0667 10 + 2.50
a3 128 + 3ˆ1.0667 10 + 3.75
a4 128 + 4ˆ1.0667 10 + 5
. . .
a15 128 + 15ˆ1.0667 = 144 10 + 15ˆ1.25
b9 144 10 + 16ˆ1.25 = 30

During the time the 16 packets in the table above are sent from C, R will also send four of D’s packets, for
a total of 20.

The virtual finishing times assigned by C to b9 and b10 have not changed, but note that the virtual finishing
times assigned to these packets by R are now very different from what they would have been had A remained
idle. With A idle, these finishing times would have been F9 = 11.25 and F10 = 12.50, etc. Now, with A active,
it is a1 and a2 that finish at 11.25 and 12.50; b9 will now be assigned by R a finishing time of 30 and b10
will be assigned a finishing time of 50. R is still assigning successive finishing times at increments of 1.25
to packets dequeued by C, but B’s contributions to this stream of packets have been bumped far back.

R’s assignments of virtual finishing times to the di are immutable, as are C’s assignments of virtual finishing
times, but R can not assign a final virtual finishing time to any of C’s packets (that is, A’s or B’s) until the
packet has reached the head of C’s queue. R assigns finishing times to C’s packets in the order they are
dequeued, and until a packet is dequeued by C it is subject to potential preemption.

19.9 Token Bucket Filters

Token-bucket filters provide an alternative to fair queuing for providing a traffic allocation to each of several
groups. The main practical difference between fair queuing and token bucket is that if one sender is idle, fair
queuing distributes that sender’s bandwidth among the other senders. Token bucket does not: the bandwidth
a sender is allocated is a bandwidth cap.

Suppose the outbound bandwidth is 4 packets/ms and we want to allocate to one particular sender, A, a
bandwidth of 1 packet/ms. We could use fair queuing and give sender A a bandwidth fraction of 25%, but
suppose we do not want A ever to get more bandwidth than 1 packet/ms. We might do this, for example,
because A is paying a reduced rate, and any excess available bandwidth is to be divided among the other
senders.

The catch is that we want the flexibility to allow A’s packets to arrive at irregular intervals. We could simply
wait 1 ms after each of A’s packets begins transmission, before the next can begin, but this may be too strict.
Suppose A has been dutifully submitting packets at 1ms intervals and then the packet that was supposed to
arrive at T=6ms instead arrives at T=6.5. If the following packet then arrives on time at T=7, does this mean
it should now be held until T=7.5, etc? Or do we allow A to send one late packet at T=6.5 and the next at
T=7, on the theory that the average rate is still 1 packet/ms?

The latter option is generally what we want, and the solution is to define A’s quota in terms of a token-bucket
specification, which allows for specification of both an average rate and also a burst capacity.

19.9 Token Bucket Filters 649

An Introduction to Computer Networks, Release 1.9.21

If a packet does not meet the token-bucket specification, it is non-compliant; we can do any of the following
things:

• delay the packet until the bucket is ready

• drop the packet

• mark the packet as non-compliant

The first option here is often called shaping; the second, more authoritarian option is sometimes known as
policing. Policing is appropriate only at the point when the traffic enters the network (eg at the user/ISP
interface), where the traffic generator still has more-or-less full control over the packet spacing. Further
downstream, congestion delays may lead to packet bunching, which may lead to violations of the token-
bucket specification; such violations cannot, however, be blamed on the traffic generator.

Another use for token-bucket specifications is as a theoretical traffic description, rather than a rule to be
enforced; in this context compliance is a non-issue.

A token-bucket filter can be thought of as a queuing discipline, with an underlying FIFO queue. If non-
compliant packets are delayed, it is non-work-conserving. Dropping non-compliant packets can be viewed
as an alternative to tail-drop. The queuing-discipline definition above in 19.4 Queuing Disciplines does not
provide for marking packets, but this is a straightforward extension.

19.9.1 Token Bucket Definition

The idea behind a token bucket is that there is a notional bucket somewhere, being filled at a steady rate
with tokens (or, if more divisibility is needed, with fluid); any overflow from the bucket is discarded. To
send a packet, we need to be able to take one token from the bucket; if the bucket is empty then the packet
is non-compliant and must suffer special treatment as above. If the bucket is full, however, then the sender
may send a burst of packets corresponding to the bucket capacity (at which point the bucket will be empty).

A common variation is requiring one token per byte rather than per packet, with the fill rate correspondingly
scaled; this allows packet size to be taken into account.

More precisely, a token-bucket specification TB(r,Bmax) includes a token fill rate of r tokens/sec, represent-
ing the rate at which the bucket fills with tokens, and also a bucket capacity (or depth) Bmax>0. The bucket
fills at the rate specified, subject to a maximum of Bmax; we will denote the current capacity by B, or by
B(t) if we need to specify the time. In order for a packet of size S (possibly S=1 for counting size in units of
whole packets) to be within the specification, the bucket must have at least S tokens; that is, BěS. Otherwise
the packet is non-compliant. When the packet is sent, S tokens are removed from the bucket, that is, B=B–S.
It is possible for the packets of a given flow all to be compliant with a given token-bucket specification at
one point (eg one router) in the network but not at another point; this can happen, for example, if more than
Bmax packets pile up at a downstream router due to momentary congestion.

The following graph is a visual representation of a token-bucket constraint. The black and purple curves
plotted are of cumulative bits sent as a function of time, that is, bits(t). When bits(t) is horizontal, the sender
is idle.

650 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

time t

blue line: bits = rt

cumulative
bits sent

red line: TB(r,B) sender can never cross this

B
max

B(t)

Two token-bucket-compliant senders are shown, one black and one purple.
The black sender sends in discrete packets, and the graph is a sequence of steps;
the purple sender sends continuously at different rates on different intervals.
The blue line represents a sender sending steadily at rate r;
the solid red line is the “bucket limit” which a compliant sender may not cross.
The purple sender, by crossing below the blue line, cannot go back to the solid red line.
In fact the purple line cannot cross the dashed red line after falling “behind” at point A.

A

B
max

The blue line represents a sender sending linearly at the rate r, with no burstiness. At vertical distance Bmax
above the blue line is the red line. Graphs for compliant senders cannot cross this, because that would entail
a burst of more than Bmax above the blue line; we give a more formal argument below. As a sender’s graph
approaches the red line, the sender’s current bucket contents decreases; the instantaneous bucket contents
for the black sender is shown at one point as B(t).

The purple sender has fallen below the blue line at one point; as a result, it can never catch up. In fact, after
passing through the vertex at point A the purple graph can never cross the dashed red line. A proof is in
19.11 Token Bucket Queue Utilization, following some numeric token-bucket examples that illustrate how
a token-bucket filter works.

Satellite Token Bucket

When I first got satellite Internet, my service was limited by a token-bucket filter with rate 56 kbps and
bucket 300 megabytes. When the bucket emptied, it took 12 hours to refill. The idea was that someone
could use the Internet intensely but relatively briefly; satellite access is expensive. Within a year, the
provider switched to a flat 300 MB cap per day; the token-bucket rule was apparently not well understood
by customers.

19.9 Token Bucket Filters 651

An Introduction to Computer Networks, Release 1.9.21

If a packet arrives when there are not enough tokens in the bucket to send it, then as indicated above there are
three options. The sender can engage in shaping, making the packet wait until sufficient tokens accumulate.
The sender can engage in policing, dropping the packet. Or the sender can send the packet immediately but
mark it as noncompliant.

One common strategy is to send noncompliant packets – as marked in the third option above – with lower
priority. Alternatively, marked packets may face a greater chance of being dropped by some downstream
router. In ATM networks (3.5 Asynchronous Transfer Mode: ATM) the cell-loss priority bit is often used
to mark noncompliant packets.

Token-bucket specifications supply a framework for making decisions about admission control: a router
can decide whether to accept a new connection (or whether to accept the connection’s quality-of-service
request) based on the requested rate and bucket (queue) requirements.

Token-bucket specifications are the mirror-image equivalent to leaky-bucket specifications, in which the
fluid leaks out of the leaky bucket at rate r and to send a packet we must add S units without overflowing.
The two forms are completely equivalent.

So far we have been using token-bucket specifications to describe traffic; eg traffic arriving at a router. It is
also possible to use token buckets to describe the router itself; in this setting, the leaky-bucket formulation
may be clearer. The router’s queue represents the bucket, and the router’s packet transmissions represent
tokens leaking out of the bucket. Arriving packets are added to the bucket; a bucket overflow represents lost
packets. We will not pursue this interpretation further.

19.9.2 Token-Bucket Examples

Suppose the token-bucket specification is TB(1/3 packet/ms, 4 packets), and packets arrive at the following
times, with the bucket initially full:

0, 0, 0, 2, 3, 6, 9, 12

After all the T=0 packets are processed, the bucket holds 1 token. By the time the fourth packet arrives at
T=2, the bucket volume has risen to 1 2/3; it immediately drops to 2/3 when packet 4 is sent. By T=3, the
bucket volume has reached 1 and the fifth packet can be sent. The bucket is now empty, but fortunately the
remaining packets arrive at 3-ms intervals and can all be sent.

In the next set of packet arrival times, again with TB(1/3,4), we have three bursts of four packets each.

0, 0, 0, 0, 12, 12, 12, 12, 24, 24, 24, 24

Each burst empties the bucket, which then takes 12 ms to refill. All packets are compliant.

In the following set of packet arrival times, still with TB(1/3,4), the burst of four packets at T=0 drains the
bucket. At T=3 the bucket size has increased back to 1, allowing the packet that arrives then to be sent but
also draining the bucket again.

0, 0, 0, 0, 3, 6, 12, 12

At T=6 the same thing happens. From T=6 to T=12 the bucket contents rise from 0 to 2, allowing the two
packets arriving at T=12 to be sent.

Finally, suppose packets arrive at the following times at our TB(1/3,4) filter.

0, 1, 2, 3, 4, 5

652 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

Just after T=0 the bucket size is 3; just before T=1 it is 3 1/3.
Just after T=1 the bucket size is 2 1/3; just before T=2 it is 2 2/3
Just after T=2 the bucket size is 1 2/3; just before T=3 it is 2
Just after T=3 the bucket size is 1; just before T=4 it is 1 1/3
Just after T=4 the bucket size is 1/3; just before T=5 it is 2/3
At T=5 the bucket size is 2/3 and the arriving packet is noncompliant.

We can also represent this in tabular form as follows; note that for the noncompliant packet the bucket is not
decremented.

packet arrival 0 1 2 3 4 5
bucket just before 4 3 1/3 2 2/3 2 1 1/3 2/3
bucket just after 3 2 1/3 1 2/3 1 1/3 2/3

19.9.3 Multiple Token Buckets

It often makes sense to require that a sender comply with two (or more) separate token-bucket specifications.
We can think of these being applied to the traffic sequentially. Often one filter will specify a peak rate, with
a small bucket size, and the other will specify an average rate, with a larger bucket size. Consider, for
example, the following pair:

1. TB(1 packet/ms, 1.5 packets)

2. TB(1/5 packet/ms, 6 packets)

The first specification, meant to apply to the peak rate, mandates 1 ms on average between packets, but
packets can be only 0.5 ms early without being noncompliant. The second specification, meant to apply
over the longer term, states that on average there will be 5 ms between packets, subject to a burst of 6. The
following is compliant, assuming both buckets are initially full.

0, 1, 2.5, 3, 4, 5, 6, 10, 15, 20

The first seven packets arrive at 1 ms intervals (the rate of the first filter) except for the packet that arrived at
T=2.5 instead of T=2. The sender was allowed to send again at T=3 instead of waiting until T=3.5 because
the bucket size in the first filter was 1.5 instead of 1.0. Here are the packet arrivals with the current size
of each bucket at the time of packet arrival, just before the bucket is decremented. At T=2.0, the filter2
bucket would be 4.4.

arrival: T=0 T=1 T=2.5 T=3 T=4 T=5 T=6 T=10 T=15 T=20
Filter 1: 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5
Filter 2: 6 5.2 4.5 3.6 2.8 2 1.2 1.0 1.0 1.0

If we move up each packet in time to the first point when both buckets have reached 1.0, we get the fastest
compliant sequence for this pair of filters. This is the sequence generated by a token-bucket shaper when
there is a steady backlog of packets and each is sent as soon as the bucket capacity (or capacities, when
applicable) is full enough to allow sending. After T=0, the filter1 bucket returns to capacity 1.0 at T=0.5.

19.9 Token Bucket Filters 653

An Introduction to Computer Networks, Release 1.9.21

Continuing, the filter1 bucket allows for additional transmissions at T=1.5, T=2.5, T=3.5, T=4.5 and T=5.5.
At this point filter2 becomes the limiting factor; its bucket is at 0.1 after the T=5.5 packet is sent and does
not return to 1.0 until T=10.0. We get the following:

arrival: T=0 T=0.5 T=1.5 T=2.5 T=3.5 T=4.5 T=5.5 T=10 T=15 T=20
Filter 1: 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5
Filter 2: 6 5.1 4.3 3.5 2.7 1.9 1.1 1.0 1.0 1.0

19.9.4 GCRA

Another formulation of the token-bucket specifications is the Generic Cell Rate Algorithm, or GCRA; this
formulation is frequently used in classification of ATM traffic. A GCRA specification takes two parameters,
a mean packet spacing time T, and an early-arrival allowance 𝜏 . For each packet we compute a theoretical
arrival time, tat, initially zero. A packet may arrive earlier by amount at most 𝜏 . Specifically, if t is the time
of actual arrival, we have two cases:

1. t ě tat–𝜏 : the packet is compliant, and we update tat to max(t,tat) + T

2. t < tat–𝜏 : the packet is too early and is noncompliant; tat is unchanged.

A flow satisfying GCRA(T,𝜏) is equivalent to a token-bucket specification with rate 1/T packets/unit time,
and bucket size (𝜏+1)/T; tat represents the time the bucket would next be full. The time to fill an empty
bucket is 𝜏+1; if the bucket becomes full at time tat then, working backwards, it would contain enough to
send one packet at time tat–𝜏 .

For traffic flows with a more-or-less constant rate, 𝜏 represents the time by which one packet can be late
without permanently falling behind its regular 1/T rate. The GCRA formulation is sometimes more conve-
nient than the token-bucket formulation, particularly when 𝜏<T.

19.10 Applications of Token Bucket

Unlike fair queuing, token-bucket filtering can be implemented at the downstream end of a link, though pos-
sibly with results not quite in agreement with expectations. Let us return to the final scenario of 19.6 Ap-
plications of Fair Queuing:

A

B

C

RISP
6 Mbps

While fair queuing cannot be applied at R to enforce equal shares to A, B and C, we can implement a
token-bucket filter at R that limits each of A, B and C to 2 Mbps.

There are two drawbacks. First, the filter is not work-conserving: if A is idle, B and C will still only receive
2 Mbps. Second, in the absence of feedback there is no guarantee that limiting the traffic at R will eventually
result in reduced utilization of the ISPÝÑR link. While this is true for TCP traffic, due to the self-clocking

654 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

property, it is conceivable that a sender D somewhere is trying to send 8 Mbps of real-time UDP traffic to
A, via ISP and R. Three-quarters of the traffic would then fail to be compliant, and might be dropped by R,
but unless D gets feedback from A that not much of the traffic is getting through, and that it should reduce
its sending rate, the token-bucket filter at R will not achieve what we want. Most protocols do provide this
kind of feedback, but not all.

19.10.1 Guaranteeing VoIP Bandwidth

As a particular instance of the previous situation, suppose we have an Internet connection from our ISP and
want to begin using VoIP for telephony. We would like to reserve something like 64 kbps of bandwidth
for one VoIP line (plus room for headers), so that large downloads do not degrade voice quality. We can
easily do this for the upstream direction, either with fair or priority queuing; priority queuing will not lead
to starvation of other traffic as the total VoIP traffic is limited by the number of lines.

However, the downstream direction may be more of a problem, if we are unable to enlist the ISP to apply
fair or priority queuing at their end. As we argued in 19.6 Applications of Fair Queuing, fair queuing at the
downstream end of a congested link has no effect. A queue buildup at the ISP’s end of the link will mean
that incoming VoIP traffic has to wait in line with traffic from other downloads, and may never receive the
bandwidth it requires. And it is more than likely that the router at the ISP’s end has a rather large queue,
meaning relatively extensive waiting times. We need to limit the total downstream traffic, but are limited to
traffic manipulations at the downstream end.

Token-bucket can provide an answer here. The idea is to limit the aggregate bandwidth of the non-VoIP
traffic entering the site, leaving some room for the VoIP traffic. We create at the downstream site entrance
(node TBF in the diagram below) a token-bucket filter that applies only to non-VoIP traffic (this feature is
represented by the dashed “VoIP bypass” path). The filter’s rate limit will be the total download bandwidth
minus a reservation for VoIP; for example, if we knew that the total bandwidth was 500 bits/ms we might
reserve 100 bits/ms, say, for VoIP traffic by having the token-bucket filter limit delivery of non-VoIP down-
load traffic to 400 bits/ms. In the diagram below, the token-bucket filter is represented conceptually by the
large red dot; the short red segment represents the virtual (not physical) “bottleneck link” for the non-VoIP
traffic.

ISP host2

host1

host3

ISP-to-site link

site

TBF

VoIP bypass

Unfortunately, we encounter three problems. The first is that if no VoIP traffic is flowing then we probably
do not want the 400 bits/ms cap on other traffic; we might arrange this by applying the cap only when
the phone is in use, or by setting aside a small enough bandwidth fraction that it does not have a material
affect on overall bulk bandwidth. The second problem is the (remote) possibility discussed in the previous
example that the sender might keep sending anyway, at 500 bits/ms; our downstream token-bucket filter can

19.10 Applications of Token Bucket 655

An Introduction to Computer Networks, Release 1.9.21

throw away as many bits as it wants but the ISP-to-site link will still be saturated. Third, it is often quite
difficult to determine exactly what the bandwidth of a particular Internet connection is. Especially if, as is
often the case, it is shared, or configured to change with time, or subject to a large-bucket token-bucket cap
by the ISP.

Fortunately, typical VoIP bandwidth needs are low enough that one can often muddle through without pro-
viding any quality-of-service guarantees at all. This remains, however, a good example of the difficulties
often faced by real-time traffic.

19.10.2 Limiting Delay

Now let’s repeat the previous example, but instead of trying to guarantee VoIP bandwidth, we will instead
attempt to limit the total queuing delay. This may mean that, in the presence of large downloads, VoIP traffic
will get only 50 bits/ms, but there should be little if any queuing at the ISP’s router.

Again, we create a token-bucket filter at the site entrance, and set it to limit the total rate of incoming
traffic to just below the download link bandwidth. If packets can arrive at 1,000 kbps, we might set the
token-bucket rate to 900 kbps, or perhaps even a little higher. This means that the bottleneck link in the
downstream direction will now be the “virtual” link from the downstream token-bucket filter to the rest of
the site, shown in red in the diagram of the previous section. A queue will then build up at this token-bucket
filter, at the red dot in the diagram above. However, at least in the steady state for TCP traffic, the queue will
not build at the ISP’s end.

The next step is to enable CoDel, 14.8.6 CoDel, to manage this queue in front of the token-bucket filter.
CoDel achieves this by dropping traffic until the queue has an appropriate size. The end result will be that
downstream traffic encounters no queue at the ISP’s end (again assuming a TCP steady state), and at most a
modestly sized CoDel-regulated queue at the site’s end. Not only have we limited the waiting time for VoIP
traffic, we have limited queuing delays for all traffic.

In exchange, we are giving up 100% utilization of the downstream link, though if delay is causing significant
problems this may be a reasonable tradeoff. It also means CoDel will be throwing away traffic that has
already made it to our site, but, in the long run, that may be well worth it.

If the ISP limits download bandwidth via a token-bucket filter with a significant bucket, as many do in order
to accommodate burstiness, we can copy their upstream bucket size at our downstream end.

19.11 Token Bucket Queue Utilization

Suppose traffic meeting token-bucket specification TB(r,Bmax) arrives at a router R, with no competition
from other traffic. The bucket fill rate r corresponds to the minimum outbound link bandwidth needed by R
to guarantee that the traffic does not build up; we do not want traffic on average arriving faster than it can
depart.

Intuitively, the bucket size Bmax corresponds to the amount of queue space at R that the flow can consume.
To make this more precise, we will argue that, if the output rate from R is at least r, then the number of
untransmitted bits stored at R is never more than Bmax.

To show this more formally, we start by proving the “red line lemma” implicit in the discussion of the graph
in 19.9.1 Token Bucket Definition above, that the sender can never cross the red line. Specifically, assume

656 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

the flow satisfies TB(r,Bmax) and has a full bucket at time t=0. Let bits(t) be the cumulative number of bits
sent (packetized or not) by time t. The blue line is the graph bits = rt and the red line is the graph bits = rt +
Bmax; we show the following:

bits(t) <= rt + Bmax

We first prove this so long as the graph is above the blue line; that is, bits(t) >= rt. We claim that the right-
hand side minus the left-hand side above, rt + Bmax - bits(t), represents the volume B(t) of fluid (or tokens)
in the bucket. Equating and rearranging slightly, we need to show B(t) + bits(t) - rt is always equal to Bmax.
This is true at t=0 when bits(t) = rt = 0 and the bucket is full. We next establish that its rate of change is also
0, and so it is constant.

While the bucket is not full, B(t) is always being filled at rate r. Correspondingly, rt is increasing at rate r, so
B(t) - rt is not affected by the fill rate. Similarly, B(t) is being reduced at exactly the rate bits(t) is increasing.
If we use the packet formulation, then when a packet arrives B(t) is reduced by the packet size and bits(t)
increases by exactly the same amount.

The Calculus Version

For readers familiar with calculus it may help to note dB(t)/dt = r - bits’(t), at least if we assume, say, a
fluid bit-arrival model where bits(t) is differentiable. That is, the bucket volume B(t) increases at rate r
and also decreases at a rate equal to that of arriving data. Therefore, the rate of change of B(t) + bits(t) -
rt is just r - bits’(t) + bits’(t) - r = 0.

This does not quite apply when bits(t) falls below the blue line. However, we have nothing to prove then.
If bits(t) has a later interval above the blue line, starting at time t1, we can reapply the argument above
re-starting the clock and the bits counter at t=t1.

In fact, we can argue that whenever the bits(t) graph passes through a point below the blue line, such as
point A in the diagram above, then bits(t) cannot in the future climb above the new red line (the dashed red
line in the diagram) Bmax units above point A.

19.11.1 Token Bucket Through One Router

We now return to the claim about accumulation at a router R with outbound flow at least r; as before, let
bits(t) represent the cumulative amount of data received. As long as bits(t) is above the blue line, the router
can continuously transmit at rate r and the net number of bits held within the router is bits(r) - rt. By the
argument above, this is bounded by Bmax. If bits(t) falls below the blue line, the router’s queue is empty and
the router can transmit incoming data at least as fast as it is arriving.

While R can never be holding more than Bmax bytes, at the instant just before a packet finishes transmission
it can have Bmax bytes in the queue, plus the currently transmitting packet still taking up an entire buffer. As
a practical matter, then, we may need space equal to Bmax plus one packet.

While a token-bucket specification does not include a delay bound specifically, we can compute an upper
bound to the queuing delay at a router R as Bmax/r; this is the time it takes for one full bucket’s worth of
packets to be transmitted.

If we have N flows each individually satisfying TB(r,B), then the collective traffic will satisfy TB(Nr, NB)
(see exercise 12.0). However, a bucket size of NB will be needed only when all N individual flows have

19.11 Token Bucket Queue Utilization 657

An Introduction to Computer Networks, Release 1.9.21

their bursts “gang up” at a particular instant. Often it is possible to take advantage of theoretical or empir-
ical statistical information and conclude that the collective traffic “most of the time” meets a token-bucket
specification TB(Nr, BN) for BN significantly less than NB.

19.11.2 Token Bucket Through Multiple Routers

If we have a single TB(r,Bmax) flow through N routers, however, the queuing delay is not larger than for a
single router, again assuming no competition. More specifically, assume that the traffic flow arrives at router
R1 satisfying TB(r,B), and passes in turn through R1 to RN. Each router Ri has an outbound bandwidth at
least as large as r. Then the total queuing delay through all N routers remains Bmax/r. If the packets pile up
to the maximum size Bmax, they only do so once.

To prove this we compare the TB sequence of packets with the same sequence of packets sent at a steady
rate r through the same series of routers. If the last bit of packet k is the Nth bit since we began, then for the
steady stream we send packet k at time N/r. We assume the link rates are all reduced to r.

Let t=0 represent the time we start counting bits. For every n, we established above that the nth bit of the
TB packet flow can be transmitted at most Bmax/r seconds ahead of the nth steady-stream bit, which is sent
at time n/r. The steady-stream packets do not encounter queuing delays at all, as each router has always
finished the previous one. The TB packets can each arrive no later than the steady-stream packets, as they
were sent earlier and they cannot cross. Therefore, the maximum delay faced by any TB packet is Bmax/r,
exactly as for traffic through a single router.

19.11.3 Delay Constraints

If a traffic flow arriving at a router R is compliant for token-bucket specification TB(r,B), then as we showed
above the amount of R’s queue space used by the flow will be bounded by B so long as R can devote at least
rate r to the flow’s traffic.

Now let us add a real-time delay constraint: suppose that R is not to be allowed to delay any of the flow’s
packets by more than time D. For the time being, assume that there is no other traffic at R. We now need to
make sure that R has sufficient bandwidth to forward a bucketful of size B within the time interval D. To
send a burst of size B in time D, bandwidth B/D is needed. Therefore, to satisfy the real-time constraint, R
needs outbound bandwidth

s = max(r, B/D)

Example 1: suppose the traffic specification is TB(1/3, 10), where the rate is in (equal-sized) packets/µsec,
and D is 40 µsec. Then B/D is 1/4 packets/µsec, and the necessary outbound bandwidth s is simply r=1/3.

Example 2: now suppose in the previous example that the delay limit D is 20 µsec. In this case, we need s
= B/D = 1/2 packets/µsec.

If there is other traffic, the delay constraint still holds, provided s represents the bandwidth allocated by R
to the flow, and the flow’s packets receive priority service at R, and we first subtract the largest-packet delay
as in 5.3.2 Packet Size and Real-Time Traffic.

Calculations of this sort often play a role in a router’s decision on whether to accept a reservation for an
additional TB(r,B) flow with associated delay constraint.

658 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

19.12 Hierarchical Token Bucket

Token-bucket filters can also be used to form a hierarchy, as in 19.7.1 Generic Hierarchical Queuing. In
this section we will assume that token bucket is used only for shaping; that is, delaying packets until the
bucket has sufficiently filled. As usual, packets will remain in the leaf FIFO queues until they are ready to
be transmitted.

Central to the hierarchy is the conceptual time each internal token-bucket node releases its next packet;
that is, becomes able to inform its parent node (when asked) that it has a packet ready to send, even if the
packet physically remains waiting in one of the leaf queues. If a node N is informed by a child node that
a packet has been released and N’s bucket has sufficient capacity, then N releases the packet in turn to its
parent immediately; otherwise N waits until its bucket fills sufficiently to make the packet compliant. When
a packet arrives at a leaf node, it will be progressively released by each node along the path to the root; when
it is released by the root node it can be sent.

To make token-bucket filters classful, we will assume that each node may have multiple input subqueues,
but treats these as if they were consolidated into a single FIFO subqueue. That is, the node releases packets
to its parent in the order they were released to the node by its children.

Leaf nodes can mark each packet with its release time at the moment of arrival. Interior nodes may only be
able to determine their release times for packets that have been released by their child nodes.

It is now straightforward to define the peek() operation of 19.7.1 Generic Hierarchical Queuing: a node
looks at the set of packets it has released and returns the one with the earliest release time.

In a token-bucket hierarchy it makes a sense to say that two child flows have bucket sizes of 200 and 300,
respectively, while the combined flow is to be limited to a bucket size of 400.

The following diagram illustrates an example of a token-bucket hierarchy. The three token-bucket filters
TB1, TB2 and TB3 have rates in packets/ms and bucket sizes in packets.

TB1

TB(4,70)

TB2

TB(2,3)

FIFO2

TB3

TB(3,6)

FIFO3

A B

Hierarchical Token Bucket

If TB1’s rate is, as here, less than the sum of its child rates, then as long as its children always have packets
ready to send, the children will receive bandwidth in proportion to their token bucket rates. In the example
above, TB1’s rate is 4 packets/ms and yet the sum of the rates of its children is 5 packets/ms. Each child

19.12 Hierarchical Token Bucket 659

An Introduction to Computer Networks, Release 1.9.21

will therefore receive 4/5 its promised rate: TB2 will send at a rate of 2ˆ(4/5) packets/ms while TB3 will
send at rate of 3ˆ(4/5) packets/ms.

To see this, assume FIFO2 and FIFO3 remain nonempty for a period long enough for their buckets to
empty. TB2 and TB3 will then each release packets to TB1 at their respective rates of 2 packets/ms and 3
packets/ms. In the following sequence of release times to TB1, we assume TB3 starts at T=0 and TB2 at
T=0.01, to avoid ties. Packets from A released by TB2 are shown in italic:

0, 0.01, .33, 0.51, .67, 1.0, 1.01, 1.33, 1.51, 1.67, 2.0, 2.01

They will be dequeued by TB1 at 4 packets/ms, once TB1’s bucket is empty. In the long run, TB3 has
released three packets into this sequence for every two of TB2’s, so sender B will receive 3/5 of the dequeu-
ings, and thus 3/5 of the 4 packet/ms root bandwidth.

We can also have each token-bucket node physically forward released packets to FIFO queues attached
to each parent node; we called this an internal-storage hierarchy in 19.7 Hierarchical Queuing. In this
particular case, the leaf-storage and internal-storage mechanisms function identically, provided the internal
links are infinitely fast and the internal queues infinitely large. See exercise 18.0.

There is no point in having a node with a bucket larger than the sum of its child buckets and also a rate larger
than the sum of its child rates. In the example above, in which the sum of the child rates exceeds the parent
rates, A would be able to send at a sustained rate of 2 packets/ms provided B sends at only 2 packets/ms as
well; reducing the child rates to 2ˆ(4/5) and 3ˆ(4/5) packets/ms respectively is not equivalent. If a node’s
rate is larger than the sum of the child rates, then it will be able to handle the child traffic without delay once
the child buckets have emptied. Before that, though, the parent bucket may be the limiting factor.

19.13 Fair Queuing / Token Bucket combinations

At first glance, combining fair queuing with token bucket might seem improbable: the goal of fair queuing is
to be work-conserving, allowing the bandwidth assigned to an idle input class to be divided among the active
input classes, and the goal of token bucket is generally to limit a class to its token-bucket-defined maximum
transmission rate. The usual approach to a hierarchy-based synthesis is to allow the administrator to decide,
at each node of the hierarchy, whether or not the node can “borrow” (without repayment) bandwidth from
inactive siblings. If it can, the set of siblings with mutual borrowing privileges resembles a fair-queuing
scheduler; if not, the node is more like a token-bucket scheduler.

19.13.1 CBQ

CBQ was introduced in [CJ91] and analyzed in [FJ95]. It did not actually use the token-bucket mechanism,
but instead implemented shaping by keeping track of the average idle time (more precisely, non-transmitting
time) for a given input class. Input classes that tried to send too much were restricted, unless the node was
permitted to “borrow” bandwidth from a sibling. When an input class sent less than it was allowed, its
average utilization would fall; if a burst arrived then it would take some time for the average to “catch up”
and thus the node could briefly send faster than its assigned rate. However, the size of the implicit “bucket”
could be controlled only indirectly.

660 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

19.13.2 Linux HTB

The Linux HTB queuing discipline, part of the Traffic Control (tc) system, allows the same general func-
tionality of CBQ, but replaces the average-idle calculations with token-bucket filters. This permits more
direct control of burst sizes, and also avoids some technical timing issues that CBQ users had to watch out
for. For the sake of efficiency, HTB uses the deficit round-robin algorithm for fair queuing; as noted in
19.5.5 Deficit Round Robin, this means less precise control over packet delay.

Although the HTB name comes from “hierarchical token bucket”, it is best viewed as primarily an imple-
mentation of hierarchical weighted fair queuing (19.8 Hierarchical Weighted Fair Queuing). In fact, HTB
doesn’t actually implement “hierarchical token bucket”; token buckets are for shaping, and HTB does shap-
ing only at the leaf nodes of the hierarchy. The higher-level, or interior, nodes are present only to create the
hierarchy for fair queuing.

Each node in the tree has the following attributes:

• its guaranteed rate, r, corresponding to the token-bucket rate

• its burst allowance B, corresponding to the bucket size

• its ceiling rate rceil; leaf nodes never send faster than this

In many cases rceil may simply be the output rate of the root node. For interior nodes, if the configured
ceiling rate is less than the sum of the child rates, the child nodes can still send at their full rates; interior
nodes cannot do rate-limiting. A low ceiling rate will, however, affect borrowing, below.

The most important attribute of each node is its guaranteed rate. The requested rate at each node should be
at least as large as the sum of the child rates. In the following diagram, all rates are in kbps; burst allowances
are not shown. We will assume the root guaranteed rate, 600 kbps, is also its ceiling rate.

R

600

N

200

M

100

N

200

L2

40

L1

40

L3

80

Linux htb

Packets are marked green, yellow or red depending on their situation. Red packets are those that must wait;
eventually they will turn yellow and then green.

Packets are considered green if they are now compliant (perhaps after waiting earlier) for one of the leaf

19.13 Fair Queuing / Token Bucket combinations 661

An Introduction to Computer Networks, Release 1.9.21

token-bucket nodes; green packets are sent as soon as possible.

After L1, L2 and L3 have each emptied their buckets, they will not exhaust node N’s rate. Similarly, after
N and M have emptied their buckets they will use only half of R’s rate. Nodes are allowed to “borrow”
bandwidth – without payback – from their parent’s rates; packets benefiting from such borrowed bandwidth
are marked yellow, and may also be sent immediately if no green packets are waiting. Borrowing is always
in proportion to a node’s guaranteed rate, in the manner of fair queuing. That is, the guaranteed rates of the
child nodes are treated as unnormalized fair-queuing weights; normalized weight fractions are obtained by
dividing by their total. N above would have normalized weight fraction 200/(200+100) = 2/3.

If L1, L2 and L3 engage in borrowing from N, and each has traffic to send, then each gets a total bandwidth
of 50, 50 and 100 kbps, respectively. If L3 is idle, then L1 and L2 each would get 100 kbps. If N and M
borrow in turn from R, they each can send at 400 and 200 kbps respectively, in which case L1, L2 and L3
(again assuming all are active) get 100, 100 and 200 kbps. If M elects not do do any borrowing, because it
has nothing to send, then N will get 600 kbps and L1, L2 and L3 will get 150, 150 and 300.

If fair-queuing behavior is not desired, we can set rceil = r so that a node can never send faster than its
guaranteed rate. This allows HTB to model the token-bucket-only hierarchy of 19.12 Hierarchical Token
Bucket.

A working example of HTB, with one parent and two child nodes, is constructed in 18.8 Linux Traffic
Control (tc).

19.13.3 Parekh-Gallager Theorem

As a final example relating token-bucket specifications and fair queuing, we present the Parekh-Gallager
Theorem, which provides a precise queuing-delay bound on traffic that enters a network meeting a token-
bucket specification TB(r,B) and which has a guaranteed weighted-fair-queuing fraction through each router
along the path.

Specifically, let us assume that the traffic travels from sender A to destination B through N routers R1 . . .
RN. The output rate of the ith router Ri is ri, of which our flow is guaranteed rate fiďri. Let f = min {fi|i<N}.
Suppose the maximum packet size for packets in our flow is S, and the maximum packet size including
competing traffic is Smax. Then the total delay encountered by the flow’s packets is bounded by the sum of
the following:

1. propagation delay (total single-bit delay along all N+1 links)

2. B/f

3. The sum from 1 to N of S/fi

4. The sum from 1 to N of Smax/ri

The second term B/f represents the queuing delay introduced by a single burst of size B; we showed in
19.11.2 Token Bucket Through Multiple Routers that this delay bound applied regardless of the number of
routers.

The third term represents the total store-and-forward delay at each router for packets belonging to our flow
under GPS; the delay at Ri is S/fi.

The final term represents the degree to which fair-queuing may delay a packet beyond the theoretical GPS
time expressed in the third term. If the routers were to use GPS, then the first three terms above would

662 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

bound the packet delay; we established in 19.5.4.7 Finishing-Order Bound that router Ri may introduce an
additional delay above and beyond the GPS delay of at most Smax/ri.

19.14 Epilog

If we want to use 100% the outbound bandwidth, but divide it among several senders according to a prede-
termined ratio, fair queuing is the tool to use. If we want to impose an absolute rather than a relative cap on
traffic, token bucket is appropriate.

Fair queuing has applications to the routing of ordinary packets; for example, if routers implement fair
queuing on a per-connection basis, then TCP senders will have no incentive to maximize queue utilization
and TCP Reno will lose its competitive advantage.

It is for real-time traffic, however, that queuing disciplines such as fair queuing, token bucket and even
priority queuing come into their own as fundamental building blocks. These tools allow us to guarantee a
bandwidth fraction to VoIP traffic, or to allow such traffic to be sent with minimal delay. In the next chapter
20 Quality of Service we will encounter fair queuing and token-bucket specifications repeatedly.

19.15 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises. Exercise
5.5 is distinct, for example, from exercises 5.0 and 6.0. Exercises marked with a ♢ have solutions or hints
at 24.14 Solutions for Queuing and Scheduling.

1.0. Suppose a router uses fair queuing with three input classes, and uses the quantum algorithm of
19.5.2 Different Packet Sizes and Virtual Finishing Times. The first class sends packets of size 900 bytes,
the second sends packets of 400 bytes, and the third sends packets of 200 bytes. List what would be sent by
each flow in each of the first five rounds.

2.0. Suppose we attempt to simulate BBRR as follows with the following strategy we will call SBBRR.
Each subqueue has a bit-position marker that advances by one bit for each bit we have available to send
from that queue. If three queues are active, then in the time it takes us to send three bits, each marker would
advance by one bit. When all the bits of a packet have been ticked through, the packet is sent.

(a). Explain why this is not the same as BBRR fair queuing (even with equal-sized packets).
(b). Is it the same as BBRR if all input queues are active?

3.0. Suppose we modify the SBBRR strategy of the previous exercise so that, if the output link is ever idle,
and no packet has yet had all its bits ticked through by the bit-position marker, then we immediately send
the packet with the fewest bits remaining to be ticked through by the bit-position marker.

Suppose packets P1 of size 1000 and P2 of size 100 arrive on subqueue 1. Just after P1 begins transmission,
packet Q1 of size 400 arrives on subqueue 2. Fair queuing should send the packets in the order P1, Q1, P2;
show that the mechanism described here does not do that.

4.0. Suppose we attempt to implement fair queuing by calculating the finishing time Fj for Pj, the jth packet
in subqueue i, as follows.

• Startj+1 = max(Fj, now) (“now” by wallclock time)

19.14 Epilog 663

An Introduction to Computer Networks, Release 1.9.21

• Fj = Startj + NˆLj

where N is the total number of subqueues, active or not.

(a). Suppose a router has three subqueues; ie N=3. The outbound bandwidth is 1 size unit / 1 time unit. At
T=0, packets P1, P2, P3, P4 and P5 arrive for subqueue 1, each of size 1 unit. At T=2 (by which point P1
and P2 will have finished transmission), packets Q1 and Q2 arrive on subqueue 2, also of size 1. What
finishing times will all the packets be assigned? In what order will they be transmitted?
(b). Is this strategy approximately equivalent to fair queuing if we are given that all subqueues of the router
are always active?

5.0. Suppose we modify the strategy of the previous exercise by letting N be the number of active subqueues
at the time of arrival of packet Pj. What happens if we have three input subqueues, and at T=0 five packets
arrive for subqueue 1, and at T=1 five packets arrive for subqueue 2. Assume all ten packets are of size 1,
and the output bandwidth is again 1 size unit per time unit.

5.5♢. Suppose we have three active subqueues. The first is filled with packets of size 190, the second with
packets of size 1000 and the third with packets of size 1200.

(a). Give the transmission order assuming the packets are transmitted according to BBRR. Continue until
three packets of size ě 1000 bytes are sent.
(b). Give the transmission order assuming the packets are transmitted according to deficit round-robin, with
a quantum of 1000. As before, continue until three packets of size ě 1000 bytes are sent.

6.0. The following packets all arrive at time T=0 at a router with an output rate of one size unit per time
unit.

Subqueue 1: P1 of size 100, P2 of size 500, P3 of size 400
Subqueue 2: Q1 of size 300, Q2 of size 200, Q3 of size 600
Subqueue 3: R1 of size 400, R2 of size

(a). Find the BBRR virtual finishing time of each packet
(b). Give the actual wallclock finishing time of each packet, if the packets were sent via BBRR

6.5. Show that byte-by-byte round-robin leads to the same transmission order as bit-by-bit round-robin
(BBRR). As with BBRR, assume byte-by-byte round-robin involves calculation of virtual finishing times,
and sending packets based on these.

7.0. Calculate GPS finishing times for the following packets, all present at T=0. There are two subqueues,
and their bandwidth fractions are 𝛼 and 𝛽 where 𝛼 = (?5-1)/2 » 0.618 and 𝛽 = 𝛼2 = 1-𝛼. The packet sizes
for the two subqueues are as follows (they follow the Fibonacci sequence, except 2 appears twice):

𝛼: 2, 3, 8, 21, 55, 144, 377, 987

664 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

𝛽: 1, 2, 5, 13, 34, 89, 233, 610

Hint: you will have to evaluate 𝛼 to more decimal places than is shown here.

8.0. Suppose a WFQ router has two subqueues, each with a bandwidth fraction of 𝛼=50%. The router
transmits 1 byte per ms. Initially, the subqueues are empty and T=0 and the GPS virtual clock is 0. At that
moment a packet P1 of size 1000 bytes arrives at the first subqueue. At T=500, a similarly sized packet P2
arrives at the second subqueue. Give, for each of P1 and P2,

(a). Its finishing time under the GPS virtual clock
(b). Its wallclock finishing time
(c). The value of the GPS virtual clock at the moment of WFQ finishing.

9.0. Suppose a router has three subqueues, and an outbound bandwidth of 1 packet per unit time. Twelve
packets arrive at or after T=0, timed so that the router remains busy until finishing the packets at T=12.

(a). What packet arrival schedule leads to the minimum final BBRR clock value?
(b). What schedule leads to the maximum final BBRR clock value?

Hint: the rate of the BBRR clock depends only on the number of active subqueues.

10.0. Suppose packets from three subqueues are sent using the quantum algorithm of 19.5.5 Deficit Round
Robin. The packets are listed below in order of arrival for each subqueue, along with their lengths L; the
packets are all available at time T=0. The quantum is 1000 bytes. Give the order of transmission.

Subqueue 1 Subqueue 2 Subqueue 3
P1, L=700 Q1, L=400 R1, L=500
P2, L=700 Q2, L=500 R2, L=600
P3, L=700 Q3, L=1000 R3, L=200
P4, L=700 Q4, L=200 R4, L=900

11.0. At Disneyland, patrons often wait in a queue that winds slowly through one large waiting room, only
to feed into another queue in another room. Is this an example of hierarchical queuing, eg of one FIFO
queue feeding another, without classes?

12.0. If two traffic streams meet token-bucket specifications of TB(r1,b1) and TB(r2,b2) respectively, show
their commingled traffic must meet TB(r1+r2,b1+b2). Hint: imagine a common bucket of size b1+b2, filled
at rate r1 with red tokens and at rate r2 with blue tokens.

13.0. For each sequence of arrival times, indicate which packets are compliant for the given token-bucket
specification. If a packet is noncompliant, go on to the next arrival without decrementing the bucket.

(a). TB(1/4,5): 0, 0, 0, 2, 3, 4, 5, 7, 9, 11, 15, 18
(b). TB(1/3,6): 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

19.15 Exercises 665

An Introduction to Computer Networks, Release 1.9.21

(c). TB(1/3,6): 0, 2, 4, 6, 8, 10, 12, 14, 16, 18

14.0. Find the fastest sequence (see the end of 19.9.3 Multiple Token Buckets) for the following flows. Both
start at T=0, and all buckets are initially full.

(a). TB(1/4, 4); packets can depart at a minimum of 1 time unit apart. Continue the sequence to at least
T=10
(b). TB(1/2, 4) and TB(1/8, 8); multiple packets can depart at the same instant. Continue to at least T=25.

15.0. Give the fastest sequence of packets compliant for all three of the following token-bucket specifica-
tions. Continue the sequence at least until T=60.

• TB(1/2, 1)

• TB(1/6, 4)

• TB(1/12, 8)

Hint: the first specification means arrival times must always be separated by at least 2. The middle specifi-
cation should kick in by T=12.

16.0. Show that if a GPS traffic flow satisfies a token-bucket specification TB(r,B), then in any interval of
time t1ďtďt2 the amount of traffic is at most B + rˆ(t2–t1). Hint: during the interval t1ďtďt2 the amount of
fluid added to the bucket is exactly rˆ(t2–t1).

17.0. Show that a generic hierarchy of FIFO queuing disciplines, described in 19.7.1 Generic Hierarchical
Queuing, collapses to a single FIFO queue.

18.0. Show that the token-bucket leaf-storage hierarchy of 19.12 Hierarchical Token Bucket produces the
same result as an “internal-storage” hierarchy in which each intermediate token-bucket node contained a
real, infinite-capacity FIFO queue, and each node instantaneously transmitted each packet to the parent’s
FIFO queue as soon as it was released. Show that packets are transmitted by each hierarchy at the same
times. Hint: show that each node in the leaf-storage hierarchy “releases” a packet at the same time the
corresponding internal-storage hierarchy forwards the packet upwards.

19.0. The following Linux htb hierarchies are labeled with their guaranteed rates. Is there any difference in
terms of the bandwidth allocations that would be received by senders A and B?

(a) (b)
R R
100 100

/ \ / \
/ \ / \

L1 L2 L1 L2
60 40 30 20
| | | |
A B A B

20.0. Suppose we know that the real-time traffic through a given router R uses at most 1 Mbps of the total
10 Mbps bandwidth. Consider the following two ways of giving the real-time traffic special treatment:

666 19 Queuing and Scheduling

An Introduction to Computer Networks, Release 1.9.21

i. Using priority queuing, and giving the real-time traffic higher priority.
ii. Using weighted fair queuing, and giving the real-time traffic a 10% share

(a). Show that, if the real-time traffic meets a token-bucket specification with rate 1 Mbps and negligible
bucket size, then the two mechanisms are equivalent, in the sense that if the real-time and non-real-time
traffic flows are sending at fractions 𝛼 and 𝛽, respectively, of the 10 Mbps outbound rate, with 𝛼+𝛽=1 (and
with 𝛼ď10%), then the two methods above will actually send at the same rates.
(b). What differences can be expected if the bucket size is not negligible? Which approach will favor the
real-time fraction?

21.0. In the previous exercise, now suppose we have two separate real-time flows, each guaranteed by a
token-bucket specification not to exceed 1 Mbps. Is there a material difference between any pair of the
following?

i. Sending the two real-time flows at priority 1, and the remaining traffic at priority 2.
ii. Sending the first real-time flow at priority 1, the second at priority 2, and the remaining
traffic at priority 3.
iii. Giving each real-time flow a WFQ share of 10%, and the rest a WFQ share of 80%

22.0. Suppose a router uses priority queuing. There is one low-priority and one high-priority input. The
outbound bandwidth is r.

(a). If the high-priority queue is currently empty, what is the maximum time that an arriving high-priority
packet must wait?

(b). If the high-priority traffic follows a token-bucket description TB(rp,B), with rp < r, what is the
maximum time an arriving high-priority packet must wait? Hint: use 19.11 Token Bucket Queue
Utilization.

Your answer may include symbolic representations of any necessary additional parameters.

19.15 Exercises 667

An Introduction to Computer Networks, Release 1.9.21

668 19 Queuing and Scheduling

20 QUALITY OF SERVICE

So far, the Internet has been presented as a place where all traffic is sent on a best-effort basis and routers
handle all traffic on an equal footing; indeed, this is often seen as a fundamental aspect of the IP layer. Delays
and losses due to congestion are nearly universal. For bulk file-transfers this is usually quite sufficient; one
way to look at TCP congestive losses, after all, is as part of a mechanism to ensure optimum utilization of
the available bandwidth.

Sometimes, however, we may want some traffic to receive a certain minimum level of network services.
We may allow some individual senders to negotiate such services in advance, or we may grant preferential
service to specific protocols (such as VoIP). Such arrangements are known as quality of service (QoS)
assurances, and may involve bandwidth, delay, loss rates, or any combination of these. Even bulk senders,
for example, might sometimes wish to negotiate ahead of time for a specified amount of bandwidth.

While any sender might be interested in quality-of-service levels, they are an especially common concern
for those sending and receiving real-time traffic such as voice-over-IP or videoconferencing. Real-time
senders are likely to have not only bandwidth constraints, but constraints on delay and on loss rates as well.
Furthermore, real-time applications may simply fail – at least temporarily – if these bandwidth, delay and
loss constraints are not met.

In any network, large or small, in which bulk traffic may sometimes create queue backlogs large enough to
cause unacceptable delay, quality-of-service assurances must involve the cooperation of the routers. These
routers will then use the queuing and scheduling mechanisms of 19 Queuing and Scheduling to set aside
bandwidth for designated traffic. This is a major departure from the classic Internet model of “stateless”
routers that have no information about specific connections or flows, though it is a natural feature of virtual-
circuit routing.

In this chapter, we introduce some quality-of-service mechanisms for the Internet. We introduce the theory,
anyway; some of these mechanisms have not exactly been adopted with warm arms by the ISP industry.
Sometimes this is simply the chicken-and-egg problem: ISPs do not like to implement features nobody is
using, but often nobody is using them because their ISPs don’t support them. However, often an ISP’s
problem with a QoS feature comes down costs: routers will have more state to manage and more work to
do, and this will require upgrades. There are two specific cost issues:

• it is not clear how to charge endpoints for their QoS requests (as with RSVP), particularly when the
endpoints are not direct customers

• it is not clear how to compare special traffic like multicast, for the purpose of pricing, with standard
unicast traffic

Nonetheless, VoIP at least is here to stay on a medium scale. Streaming video is here to stay on a large scale.
Quality-of-service issues are no longer quite being ignored, or, at least, not blithely.

Note that a fundamental part of quality-of-service requests on the Internet is sharing among multiple traf-
fic classes; that is, the transmission of “best-effort” and various grades of “premium” traffic on the same
network. One can, after all, lease a SONET line and construct a private, premium-only network; such an
approach is, however, expensive. Support for multiple traffic classes on the same network is sometimes
referred to generically as integrated services, a special case of traffic engineering; see [CSZ92]. It is not to
be confused with the specific IETF protocol suite of that name (20.4 Integrated Services / RSVP). There

669

An Introduction to Computer Networks, Release 1.9.21

are two separate issues in an integrated network:

• how to make sure premium traffic gets the service it requires

• how to integrate different traffic classes on the same network

The first issue is addressed largely through the techniques presented in 19 Queuing and Scheduling, and
applies as well to networks with only a single service level. The present chapter addresses mostly the second
issue.

Quality-of-service requests may be made for both TCP and UDP traffic. For example, an interactive TCP
connection might request a minimum-delay path, while a bulk connection might request a maximum-
bandwidth path and a streaming-prerecorded-video connection might request a specific guaranteed band-
width. However, service quality is a particular concern of real-time traffic such as voice and interactive
video, where delay can be a major difficulty. Such traffic is more likely to use UDP than TCP, because of
the head-of-line blocking problem with the latter. We return to this in 20.3.3 UDP and Real-Time Traffic.

20.1 Net Neutrality

There is a school of thought that says carriers must carry all traffic on an equal footing, and should be
forbidden to charge extra for premium service. This is a strong formulation of the “net neutrality” principle,
and it potentially complicates the implementation of some of the services described here. In principle, it
may not matter whether the premium service involves interaction with routers, as is described in some of
the mechanisms below, or simply involves improved access to best-effort carriage.

There are, however, many weaker formulations of net neutrality; for example, one is that traffic carriage
must be “non-discriminatory”. That is, a carrier could charge more for premium service so long as it did not
single out individual providers for rate throttling.

Without taking sides on the net-neutrality debate, there are good reasons for arguing that additional charges
for specific services from backbone routers are more appropriate than additional charges to avoid rate throt-
tling.

20.2 Where the Wild Queues Are

We stated above that to ensure quality-of-service standards, it is necessary to have the participation of routers
that have significant queue backlogs. It is not always clear, however, which routers these are. In the late
1990’s, it was often claimed there was significant congestion at many (or at least some) “backbone” routers,
where the word is in quotes here as a reminder that the term does not have a precise technical meaning. It is
worth noting that this was also the era of 56 kbps dialup access for most residential users.

In 2003, just a few years later, an analysis of the Internet in [CM03] concluded, “the Internet ‘cloud’ does
not contribute heavily to congestion.” At the time of this writing (2013), it appears that the Internet backbone
continues to have excess capacity, and is seldom congested; delays, therefore, are more likely to be encoun-
tered more locally. A study in [CBcDHL14], using timestamp pings to each end of suspected links, found
that most congestion occurred in high-volume content-delivery networks (1.12.2 Content-Distribution Net-
works), such as those of Netflix and Google, and their interconnections to ISPs.

More concretely, suppose traffic from A to B goes through routers R1, R2 and R3:

670 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

A R1 R2 R3 B

If queuing delays (and losses) occur only at R1 and at R3, then there is no need to involve R2 in any
bandwidth-reservation scheme; the same is true of R1 and R3 if the delays occur only at R2. Unfortunately,
it is not always easy to determine the location of Internet congestion, and an abundance of bandwidth today
may become a dearth tomorrow: bandwidth usage ineluctably grows to consume supply. That said, the early
models for quality-of-service requests assumed that all (or at least most) routers would need to participate;
it is quite possible that this is – practically speaking – no longer true. Another possible consequence is that
adequate QoS levels might – might – be attainable with only the participation of one’s immediate ISP.

20.3 Real-time Traffic

Real-time traffic is traffic with some sort of hard or soft delay bound, presumably larger than the one-way
no-load propagation delay. Such traffic can be said to be delay-intolerant. For voice or video traffic, a
packet arriving after the time at which it is to be played back might as well have been lost.

Fortunately, voice and video are also loss-tolerant, at least to a degree: a lost voice packet simply results in
a momentary voice dropout; a lost video packet might result in replay of the previous video frame. Handling
traffic that is both loss- and delay-intolerant is very difficult; we will not consider that case further.

Much (but not all) real-time traffic is also rate-adaptive. For example, the online-video service hulu.com
can send at resolutions of 288p, 360p, 480p and 720p, approximately corresponding to bandwidths of 480
kbps, 700 kbps, 1 Mbps, and 2.5 Mbps [2012 data]. Hulu’s software can dynamically choose the appropriate
rate. (Hulu transmissions, where the consequence of delay is a pause in the video replay rather than a loss,
are not necessarily “real-time”; see 20.3.2 Streaming Video below.)

As another example of rate-adaptiveness, the voice-grade audio-compression codec Opus (a successor to
an earlier codec known as Speex) might normally be used at a 64 kbps rate, but supports a more-or-less
continuous range of rates down to 8 kbps. While the lower rates have lower voice quality, they can be used
as a fallback in the event that congestion prevents successful use of the 64 kbps rate.

Generally speaking, rate-adaptivity notwithstanding, real-time traffic needs sufficient management that con-
gestion becomes minimal. Real-time traffic should not be allowed to arrive at any router, for example, faster
than it can depart. The most definitive way to achieve this is via some sort of reservation or admission-
control mechanism, where new connections will not be accepted unless resources are available.

20.3.1 Playback Buffer

Real-time applications cannot avoid delay completely, of course, so the received stream will be delivered to
the receiving application (for playback, if it is a voice or video stream) slightly behind the time when it was
sent. Applications can intentionally increase this time by creating a playback buffer or jitter buffer; this
allows the smoothing over of variations in delay (known as jitter).

For example, suppose a VoIP application sends a packet every 20 ms (a typical rate). If the delay is exactly
50 ms, then packets sent at times T=0, 20, 40, etc will arrive at times T=50, 70, 90, etc. Now suppose the
delay is not so uniform, so packets sent at T=0, 20, 40, 60, 80 arrive at times 50, 65, 120, 125, 130.

20.3 Real-time Traffic 671

http://hulu.com
http://opus-codec.org/

An Introduction to Computer Networks, Release 1.9.21

packet sent expected received (rec’d – expected)
1 0 50 50 0
2 20 70 65 -5
3 40 90 120 30
4 60 110 125 15
5 80 130 130 0

The first and the last packet have arrived on time, the second is early, and the third and fourth are late by
30 and 15 ms respectively. Setting the playback buffer capacity to 25 ms means that the third packet is not
received in time to be played back, and so must be discarded; setting the buffer to a value at least 30 ms
means that all the packets are received.

40

60

80

100

120

140

0 20 40 60 80

re
c
e
iv

e
 t

im
e

send time

The diagram above plots the points of the table. The dashed line represents the expected arrival time for
the corresponding send time; packets are late by the amount they are above this line. The solid blue line
represents a playback buffer corresponding to 25 ms; packets arriving at points above the line are lost. The
higher the line, the more playback delay, but also the more that playback can accommodate late packets

For non-interactive voice and video, there is essentially no penalty to making the playback buffer quite
long. But for telephony, if one speaker stops and the other starts, they will perceive a gap of length equal to
the RTT including playback-buffer delay. For voice, this becomes increasingly annoying if the RTT delay
reaches about 200-400 ms.

20.3.2 Streaming Video

Streaming video is something of a gray area. On the one hand, it is not really real-time; viewers do not
necessarily care how long the playback-buffer delay is as long as it is consistent. Playback-buffer delays
of ten seconds to up to a minute are not uncommon. As long as the sender can stay ahead of the playback
application, all is well. The real issue is bandwidth; a playback-buffer delay in the tens of seconds is two
orders of magnitude larger than the delay bounds that a genuine real-time application might request.

672 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

For very large videos, the sender probably coordinates with the playback application to limit how far ahead
it gets; this amounts to using a fixed-size playback buffer. That playback buffer can accommodate some
fluctuation in the delivery rate, but in the long run the delivery bandwidth must be at least as large as the
playback rate. For smaller videos, eg traditional ten-minute YouTube clips, the sender sends as fast as it can
without stopping. If the delivery bandwidth is less than the playback rate then the viewer can hit “pause”
and wait until the entire video has been downloaded.

On the other hand, viewers do not particularly like pauses, especially during long videos. If a viewer starts a
two-hour movie, average network congestion levels may change materially many times during that interval.
The viewer would prefer a more-or-less consistent bandwidth, even if competing traffic ramps up; rate-
adaptive playback is fine until one has signed up for HD-quality viewing. What the viewer here wants is an
average-bandwidth guarantee. This can be supplied by overbuilding the network, by implementing some of
the mechanisms of this chapter, or by various intermediate approaches.

For example, a large-enough network-content provider N might negotiate with a residential Internet carrier
C so that there is sufficient long-haul bandwidth from N to the end-user viewers. If the problem is backbone
congestion, then N might arrange to use BGP’s MED option (10.6.7.1 MED values and traffic engineering)
to carry the traffic as far as possible in its own network; this may also entail the creation of a large number
of peering points with C’s network (10.4.1 Internet Exchange Points). Alternatively, C might be persuaded
to set aside one very large traffic category in its own backbone network (perhaps using 20.7 Differentiated
Services) that is reserved for N’s traffic.

20.3.3 UDP and Real-Time Traffic

The main difficulty with using TCP for real-time traffic is head-of-line blocking: when a loss does occur,
the TCP layer will hold any later data until the lost segment times out and is retransmitted. Even if the
receiving application is able simply to ignore the lost packet, it is not granted that option.

In theory, the TCP timeout interval may be only slightly more than the RTT, which is often well under 100
ms. In practice, however, it is often much larger, due in part to the use of a coarse-grained clock to keep
track of timeouts. TCP implementations are actually discouraged from using smaller timeout intervals; the
following is from RFC 6298 (2011); RTO stands for Retransmission TimeOut:

Whenever RTO is computed, if it is less than 1 second, then the RTO SHOULD be rounded up
to 1 second.

Such a policy makes TCP unsuitable, except in environments with vanishingly small loss rates, whenever
any genuine interactive response is needed; this includes telephony, video telephony, and most forms of
video conferencing that involve real-time feedback between participants. (TCP does work well with video
streaming.) While it is true that the popular video-telephony package Skype does in fact use TCP, this is
not because Skype has figured a way around this limitation; Skype sessions are not infrequently plagued by
congestion-related difficulties. The use of UDP allows an application the option of deciding that lost or late
data should simply be skipped over.

20.4 Integrated Services / RSVP

Integrated Services, or IntServ, was developed by the IETF in the late 1990’s as a first attempt at providing
quality-of-service guarantees for selected Internet traffic. The IntServ model assumed all routers would

20.4 Integrated Services / RSVP 673

http://youtube.com
https://tools.ietf.org/html/rfc6298.html

An Introduction to Computer Networks, Release 1.9.21

participate, or at least all routers along the connection path, though this is not strictly necessary. Connections
were to make reservations using the Resource ReSerVation Protocol RSVP.

Note that this is a major retreat from the datagram-routing stateless-router model. Were virtual circuits
(3.4 Virtual Circuits) the better routing model all along? For better or for worse, the marketplace appears to
have answered this question with an unambiguous “no”; IntServ has seen very limited adoption in the core
Internet.

However, many of the ideas of IntServ are implementable on the internet using an appropriate Content
Distribution Network. After outlining IntServ itself, we describe this CDN alternative in 20.6.1 A CDN
Alternative to IntServ.

Under IntServ, routers maintain soft state about a connection, meaning that reservations must be refreshed
by the sender at regular intervals (eg 30 seconds); if not, the reservation can be discarded. This also means
that reservations can be recovered if the router crashes (though with some small probability of failure).
Traditional virtual-circuit switches maintain hard state, so that if a sender stops sending but fails to “hang
up” properly then the connection is still maintained (and perhaps charged for), and a router crash means the
connection is lost.

IntServ has mostly not been supported by the backbone ISP industry. Partly this is because of practical
difficulties in figuring out how to charge for reservations; if the charge is zero then everyone might make
reservations for every connection. Another issue is that a busy router might have to maintain thousands of
reservations; IntServ thus adds a genuine expense to the ISP’s infrastructure.

At the time IntServ was developed, the dominant application envisioned was teleconferencing, in which
one speaker’s audio/video stream would be sent to a large number of receivers. Because of this, IntServ
was based on IP multicast, to which we therefore turn next. This decision made IntServ somewhat more
complex than would be necessary if point-to-point VoIP were all that was required, and future Internet
reservation mechanisms may jettison multicast support (see 20.9 NSIS). However, multicast and IntServ
do share something fundamental in common: both require the participation of intermediate routers; neither
can be effectively implemented solely in end systems.

20.5 Global IP Multicast

The idea behind IP multicast, following up on 7.3.1 Multicast addresses, is that sender A transmits a stream
of packets (real-time or not) to a set of receivers {B1, B2, . . . , Bn}, in such a way that no one packet of the
stream is transmitted more than once on any one link. This means that it is up to routers on the way to
duplicate packets that need to be forwarded on multiple outbound links. For example, suppose A below
wishes to send to B1, B2 and B3 in the following diagram:

A R1 R2 R3 R4

B1 B2 B3

Then R1 will receive packet 1 from A and will forward it to both B1 and to R2. R2 will receive packet 1
from R1 and forward it to B2 and R3. R3 will forward only to B3; R4 does not see the traffic at all. The

674 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

set of paths used by the multicast traffic, from the sender to all destinations, is known as the multicast tree;
these are shown in bold.

We should acknowledge upfront that, while IP multicast is potentially a very useful technology, as with
IntServ there is not much support for it within the mainstream ISP industry. The central issues are the need
for routers to maintain complex new information and the difficulty in figuring out how to charge for this
kind of traffic. At larger scales ISPs normally charge by total traffic carried; now suppose an ISP’s portion
of a multicast tree is a single path all across the continent, but the tree branches into ten different paths near
the point of egress. Should the ISP consider this to be like one unicast connection, or more like ten?

Once Upon A Time, an ideal candidate for multicast might have been the large-scale delivery of broadcast
television. Ironically, the expansion of the Internet backbone has meant that large-scale video delivery is
now achieved with an individual unicast connection for every viewer. This is the model of YouTube.com,
Netflix.com and Hulu.com, and almost every other site delivering video. Online education also once upon a
time might have been a natural candidate for multicast, and here again separate unicast connections are now
entirely affordable. The bottom line for the future of multicast, then, is whether there is an application out
there that really needs it.

Note that IP multicast is potentially straightforward to implement within a single large (or small) organiza-
tion. In this setting, though, the organization is free to set its own budget rules for multicast use.

Multicast traffic will consist of UDP packets; there is no provision in the TCP specification for “multicast
connections”. For large groups, acknowledgment by every receiver of the multicast UDP packets is imprac-
tical; the returning ACKs could consume more bandwidth than the outbound data. Fortunately, complete
acknowledgments are often unnecessary; the archetypal example of multicast traffic is loss-tolerant voice
and video traffic. The RTP protocol (20.11 Real-time Transport Protocol (RTP)) includes a response mech-
anism from receivers to senders; the RTP response packets are intended to at least give the sender some idea
of the loss rate. Some effort is expended in the RTP protocol (more precisely, in the companion protocol
RTCP) to make sure that these response packets, from multiple recipients, do not end up amounting to more
traffic than the data traffic.

In the original Ethernet model for LAN-level multicast, nodes agree on a physical multicast address, and
then receivers subscribe to this address, by instructing their network-interface cards to forward on up to the
host system all packets with this address as destination. Switches, in turn, were expected to treat packets
addressed to multicast addresses the same as broadcast, forwarding on all interfaces other than the arrival
interface.

Global broadcast, however, is not an option for the Internet as a whole. Routers must receive specific
instructions about forwarding packets. Even on large switched Ethernets, newer switches generally try to
avoid broadcasting every multicast packet, preferring instead to attempt to figure out where the subscribers
to the multicast group are actually located.

In principle, IP multicast routing can be thought of as an extension of IP unicast routing. Under this
model, IP forwarding tables would have the usual xudest,next_hopy entries for each unicast destination,
and xmdest,set_of_next_hopsy entries for each multicast destination. In the diagram above, if G represents
the multicast group of receivers {B1,B2,B3}, then R1 would have an entry xG,{B1,R2}y. All that is needed
to get multicast routing to work are extensions to distance-vector, link-state and BGP router-update algo-
rithms to accommodate multicast destinations. (We are using G here to denote both the actual multicast
group and also the multicast address for the group; we are also for the time being ignoring exactly how a
group would be assigned an actual multicast address.)

These routing-protocol extensions can be done (and in fact it is quite straightforward in the link-state case,

20.5 Global IP Multicast 675

An Introduction to Computer Networks, Release 1.9.21

as each node can use its local network map to figure out the optimal multicast tree), but there are some
problems. First off, if any Internet host might potentially join any multicast group, then each router must
maintain a separate entry for each multicast group; there are no opportunities for consolidation or for hierar-
chical routing. For that matter, there is no way even to support for multicast the basic unicast-IP separation
of addresses into network and host portions that was a crucial part of the continued scalability of IP rout-
ing. The Class-D multicast address block contains 228 » 270 million entries, far to many to support a
routing-table entry for each.

The second problem is that multicast groups, unlike unicast destinations, may be ephemeral; this would
place an additional burden on routers trying to keep track of routing to such groups. An example of an
ephemeral group would be one used only for a specific video-conference speaker.

Finally, multicast groups also tend to be of interest only to their members, in that hosts far and wide on the
Internet generally do not send to multicast groups to which they do not have a close relationship. In the
diagram above, the sender A might not actually be a member of the group {B1,B2,B3}, but there is a strong
tie. There may be no reason for R4 to know anything about the multicast group.

So we need another way to think about multicast routing. Perhaps the most successful approach has been the
subscription model, where senders and receivers join and leave a multicast group dynamically, and there is
no route to the group except for those subscribed to it. Routers update the multicast tree on each join/leave
event. The optimal multicast tree is determined not only by the receiving group, {B1,B2,B3}, but also by
the sender, A; if a different sender wanted to send to the group, a different tree might be constructed. In
practice, sender-specific trees may be constructed only for senders transmitting large volumes of data; less
important senders put up with a modicum of inefficiency.

The multicast protocol most suited for these purposes is known as PIM-SM, defined in RFC 2362. PIM
stands for Protocol-Independent Multicast, where “protocol-independent” means that it is not tied to a
specific routing protocol such as distance-vector or link-state. SM here stands for Sparse Mode, meaning
that the set of members may be widely scattered on the Internet. We acknowledge again that, while PIM-SM
is a reasonable starting point for a realistic multicast implementation, it may be difficult to find an ISP that
implements it.

The first step for PIM-SM, given a multicast group G as destination, is for the designation of a router to
serve as the rendezvous point, RP, for G. If the multicast group is being set up by a particular sender, RP
might be a router near that sender. The RP will serve as the default root of the multicast tree, up until such
time as sender-specific multicast trees are created. Senders will send packets to the RP, which will forward
them out the multicast tree to all group members.

At the bottom level, the Internet Group Management Protocol, IGMP, is used for hosts to inform one of
their local routers (their designated router, or DR) of the groups they wish to join. When such a designated
router learns that a host B wishes to join group G, it forwards a join request to the RP.

The join request travels from the DR to the RP via the usual IP-unicast path from DR to RP. Suppose that
path for the diagram below is xDR,R1,R2,R3,RPy. Then every router in this chain will create (or update)
an entry for the group G; each router will record in this entry that traffic to G will need to be sent to the
previous router in the list (starting from DR), and that traffic from G must come from the next router in the
list (ultimately from the RP).

676 20 Quality of Service

https://tools.ietf.org/html/rfc2362.html

An Introduction to Computer Networks, Release 1.9.21

RP

R3 R4

R2 R1 DR B2R6

S R5 B1

In the above diagram, suppose B1 is first to join the group. B1’s designated router is R5, and the join packet
is sent R5ÑR2ÑR3ÑRP. R5, R2 and R3 now have entries for G; R2’s entry, for example, specifies that
packets addressed to G are to be sent to {R5} and must come from R3. These entries are all tagged with
x*,Gy, to use RFC 2362’s notation, where the “*” means “any sender”; we will return to this below when
we get to sender-specific trees.

Now B2 wishes to join, and its designated router DR sends its join request along the path
DRÑR1ÑR2ÑR3ÑRP. R2 updates its entry for G to reflect that packets addressed to G are to be for-
warded to the set {R5,R1}. In fact, R2 does not need to forward the join packet to R3 at all.

At this point, a sender S can send to the group G by creating a multicast-addressed IP packet and encapsu-
lating it in a unicast IP packet addressed to RP. RP opens the encapsulation and forwards the packet down
the tree, represented by the bold links above.

Note that the data packets sent by RP to DR will follow the path RPÑR3ÑR2ÑR1, as set up above, even if
the normal unicast path from R3 to R1 were R3ÑR4ÑR1. The multicast path was based on R1’s preferred
next_hop to RP, which was assumed to be R2. Traffic here from sender to a specific receiver takes the
exact reverse of the path that a unicast packet would take from that receiver to the sender; as we saw in
10.4.3 Hierarchical Routing via Providers, it is common for unicast IP traffic to take a different path each
direction.

The next step is to introduce source-specific trees for high-volume senders. Suppose that sender S above is
sending a considerable amount of traffic to G, and that there is also an R6–R2 link (in blue below) that can
serve as a shortcut from S to {B1,B2}:

20.5 Global IP Multicast 677

An Introduction to Computer Networks, Release 1.9.21

RP

R3 R4

R2 R1 DR B2R6

S R5 B1

We will still suppose that traffic from R2 reaches RP via R3 and not R6. However, we would like to allow
S to send to G via the more-direct path R6ÑR2. RP would initiate this through special join messages sent
to R6; a message would then be sent from RP to the group G announcing the option of creating a source-
specific tree for S (or, more properly, for S’s designated router R6). For R1 and R5, there is no change; these
routers reach RP and R6 through the same next_hop router R2.

However, R2 receives this message and notes that it can reach R6 directly (or, in general, at least via a
different path than it uses to reach RP), and so R2 will send a join message to R6. R2 and R6 will now each
have general entries for x*,Gy but also a source-specific entry xS,Gy, meaning that R6 will forward traffic
addressed to G and coming from S to R2, and R2 will accept it. R6 may still also forward these packets
to RP (as RP does belong to group G), but RP might also by then have an xS,Gy entry that says (unless the
diagram above is extended) not to forward any further.

The tags x*,Gy and xS,Gy thus mark two different trees, one rooted at RP and the other rooted at R6. Routers
each use an implicit closest-match strategy, using a source-specific entry if one is available and the wildcard
x*,Gy entry otherwise.

As mentioned repeatedly above, the necessary ISP cooperation with all this has not been forthcoming. As
a stopgap measure, the multicast backbone or Mbone was created as a modest subset of multicast-aware
routers. Most of the routers were actually within Internet leaf-customer domains rather than ISPs, let alone
backbone ISPs. To join a multicast group on the Mbone, one first identified the nearest Mbone router and
then connected to it using tunneling. The Mbone gradually faded away after the year 2000.

We have not discussed at all how a multicast address would be allocated to a specific set of hosts wishing to
form a multicast group. There are several large blocks of class-D addresses assigned by the IANA. Some of
these are assigned to specific protocols; for example, the multicast address for the Network Time Protocol is
224.0.1.1 (though you can use NTP quite happily without using multicast). The 232.0.0.0/8 block is reserved
for source-specific multicast, and the 233.0.0.0/8 block is allocated by the GLOP standard; if a site has a
16-bit Autonomous System number with bytes x and y, then that site automatically gets the multicast block
233.x.y.0/24. A fuller allocation scheme waits for the adoption and development of a broader IP-multicast
strategy. This may never happen.

678 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

20.6 RSVP

We next turn to the RSVP (ReSerVation) protocol, which forms the core of IntServ.

The original model for RSVP was to support multicast, so as to support teleconferencing. For this reason,
reservations are requested not by senders but by receivers, as a multicast sender may not even know who all
the receivers are. Reservations are also for one direction; bidirectional traffic needs to make two reservations.

Like multicast, RSVP generally requires participation of intermediate routers.

Reservations include both a flowspec describing the traffic flow (eg a unicast or multicast destination) and
also a filterspec describing how to identify the packets of the flow. We will assume that filterspecs simply
define unidirectional unicast flows, eg by specifying source and destination sockets, but more general filter-
specs are possible. A component of the flowspec is the Tspec, or traffic spec; this is where the token-bucket
specification for the flow appears. Tspecs do not in fact include a bound on total delay; however, the degree
of queuing delay at each router can be computed from the TB(r,Bmax) token-bucket parameters as Bmax/r.

The two main messages used by RSVP are PATH packets, which move from sender to receiver, and the
subsequent RESV packets, which move from receiver to sender.

Initially, the sender (or senders) sends a PATH message to the receiver (or receivers), either via a single
unicast connection or to a multicast group. The PATH message contains the sender’s Tspec, which the
receivers need to know to make their reservations. But the PATH messages are not just for the ultimate
recipients: every router on the path examines these packets and learns the identity of the next_hop RSVP
router in the upstream direction. The PATH messages inform each router along the path of the path state
for the sender.

As an example, imagine that sender A sends a PATH message to receiver B, using normal unicast delivery.
Suppose the route taken is AÑR1ÑR2ÑR3ÑB. Suppose also that if B simply sends a unicast message to
A, however, then the route is the rather different BÑR3ÑR4ÑR1ÑA.

A R1 R3 B

R2

R4

Arrows show path of normal unicast traffic between A and B
RSVP traffic, however, follows the bold links in both directions

As A’s PATH message heads to B, R2 must record that R1 is the next hop back to A along this particular
PATH, and R3 must record that R2 is the next reverse-path hop back to A, and even B needs to note R3 is
the next hop back to A (R1 presumably already knows this, as it is directly connected to A). To convey this
reverse-path information, each router inserts its own IP address at a specific location in the PATH packet,
so that the next router to receive the PATH packet will know the reverse-path next hop. All this path state
stored at each router includes not only the address of the previous router, but also the sender’s Tspec. All
these path-state records are for this particular PATH only.

20.6 RSVP 679

An Introduction to Computer Networks, Release 1.9.21

The PATH packet, in other words, tells the receiver what the Tspec is, and prepares the routers along the
way for future reservations.

The actual traffic from sender A to receiver B will eventually be forwarded along the standard unicast path
(or multicast-tree branch) from A to B, just like PATH messages from A to B. Routers will still have to
check, though, whether each packet forwarded is part of a reservation or not, in order to give reserved traffic
preferential drop rates and reduced queuing delays, and in order to police the reservation to ensure that
the sender is not sending more reserved traffic than agreed. Reserved traffic is identified by source and
destination IP addresses and port numbers. This IP-address-and-port combination can be likened to the VCI
of virtual-circuit routing (3.4 Virtual Circuits), though it is constant along the path.

After receiving the sender’s PATH message, each receiver now responds with its RESV message, request-
ing its reservation. The RESV packets are passed back to the sender not by the default unicast route, but
along the reverse path created by the PATH message. In the example above, the RESV packet would travel
BÑR3ÑR2ÑR1ÑA. Each router (and also B) must look at the RESV message and look up the corre-
sponding PATH record in order to figure out how to pass the reservation message back up the chain. If the
RESV message were sent using normal unicast, via BÑR3ÑR4ÑR1ÑA, then R2 would not see it.

Each router seeing the RESV path must also make a decision as to whether it is able to grant the reservation.
This is the admission control decision. RSVP-compliant routers will typically set aside some fraction of
their total bandwidth for their reservations, and will likely use priority queuing to give preferred service to
this fraction. However, as long as this fraction is well under 100%, bulk unreserved traffic will not be shut
out. Fair queuing can also be used.

Reservations must be resent every so often (eg every ~30 seconds) or they will time out and go away; this
means that a receiver that is shut down without canceling its reservation will not continue to tie up resources.

If the RESV messages are moving up a multicast tree, rather than backwards along a unicast path, then they
are likely to reach a router that already has granted a reservation of equal or greater capacity. In the diagram
below, router R has granted a reservation for traffic from A to receiver B1, reached via R’s interface 1, and
now has a similar reservation from receiver B2 reached via R’s interface 2.

A R

B2

B1

1

2

Assuming R is able to grant B2’s reservation, it does not have to send the RESV packet upstream any further
(at least not as requests for a new reservation); B2’s reservation can be merged with B1’s. R simply will
receive packets from A and now forward them out both of its interfaces 1 and 2, to the two receivers B1 and
B2 respectively.

It is not necessary that every router along the path be RSVP-aware. Suppose A sends its PATH messages to
B via AÑR1ÑR2aÑR2bÑR3ÑB, where every router is listed but R2a and R2b are part of a non-RSVP
“cloud”. Then R2a and R2b will not store any path state, but also will not mark the PATH packets with
their IP addresses. So when a PATH packet arrives at R3, it still bears R1’s IP address, and R3 records
R1 as the reverse-path next hop. It is now possible that when R3 sends RESV packets back to R1, they
will take a different path R3ÑR2cÑR1, but this does not matter as R2a, R2b and R2c are not accepting

680 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

reservations anyway. Best-effort delivery will be used instead for these routers, but at least part of the path
will be covered by reservations. As we outlined in 20.2 Where the Wild Queues Are, it is quite possible
that we do not need the participation of the various R2’s to get the quality of service wanted; perhaps only
R1 and R3 contribute to delays.

In the multicast multiple-sender/multiple-receiver model, not every receiver must make a reservation for
all senders; some receivers may have no interest in some senders. Also, if rate-adaptive data transmission
protocols are used, some receivers may make a reservation for a sender at a lower rate than that at which
the sender is sending. For this to work, some node between sender and receiver must be willing to decode
and re-encode the data at a lower rate; the RTP protocol provides some support for this in the form of RTP
mixers (20.11.1 RTP Mixers). This allows different members of the multicast receiver group to receive the
same audio/video stream but at different resolutions.

From an ISP’s perspective, the problems with RSVP are that there are likely to be a lot of reservations,
and the ISP must figure out how to decide who gets to reserve what. One model is simply to charge for
reservations, but this is complicated when the ISP doing the charging is not the ISP providing service to the
receivers involved. Another model is to allow anyone to ask for a reservation, but to maintain a cap on the
number of reservations from any one site.

These sorts of problems have largely prevented RSVP from being implemented in the Internet backbone.
That said, RSVP is apparently quite successful within some corporate intranets, where it can be used to
support voice traffic on the same LANs as data.

20.6.1 A CDN Alternative to IntServ

The core components of IntServ are, arguably,

• IP multicast

• Traffic reservations

While “true” IntServ implementations of these may never come to widespread (or even narrow) adoption,
for many purposes a content-distribution network (1.12.2 Content-Distribution Networks) can achieve
the same two goals of multicasting and reservations, without requiring any cooperation from the backbone
routing infrastructure.

CDN-based strategies do not necessarily implement actual reservations, but they do attempt to provide cor-
responding traffic guarantees (or almost-guarantees) appropriate to the application. For videoconferencing,
these include sufficient bandwidth and bounded delay. For online gaming, on the other hand, the primary
goal is usually extremely small queuing delay, or “lag”. Player-to-player bandwidth requirements are often
very modest. As of 2019, there are multiple “gaming private networks” (or “optimized gaming networks”)
available to gamers that operate on the principles described here.

Imagine a videoconference presenter at node A, below. Nodes B through G represent video receivers. Ac-
cording to the IntServ strategy, we would create a multicast tree rooted at A, and then A’s video presentation
would be multicast to nodes B through G. The links on this multicast tree – consisting of both the red and the
dashed links in the image below – would each (or mostly each) maintain an appropriate traffic reservation.

20.6 RSVP 681

An Introduction to Computer Networks, Release 1.9.21

A

B

C D

E

F

G
Internet

CDN

1

2

4

3

5

But instead of that, imagine that we have a network – that is, a CDN – consisting of multiple publicly
accessible nodes (called points of presence, or PoPs), all connected by high-speed links (virtual or physical).
These links between nodes are represented by the red lines in the diagram above. Each of the users A-G
then connects to the CDN, using the usual public Internet; these are the dashed lines. These connections will
probably be made under the aegis of a videoconferencing provider that has leased the services of the CDN.
Each user – using software from the provider – attempts to connect to the closest, or at least to a reasonably
close, access point of the CDN.

The CDN will be made aware of A as data source and B-G as subscribers, and will forward A’s incoming
data from 1 to 2, 3 and 4. A’s data will, in keeping with the idea of multicast, not be forwarded along any link
twice. This forwarding will most likely be done within the videoconferencing application layer rather than
by IP-layer multicasting. That is, CDN node 1 will receive A’s data stream and distribute it within the CDN
to nodes 2, 3 and 4 as the CDN sees fit. In other words, application-layer multicasting is straightforward to
implement in software alone.

For real-time traffic, performance may depend on the implementation of the red intra-CDN links. The gold
standard, in terms of support for real-time streaming, is for the red links to be private leased lines – and
routers – over which the CDN has full control. In this case, load and queuing delay can be regulated as
necessary, and true reservations (internal to the CDN) can be granted if necessary. Gaming private networks
often require private links, because delay on the commodity Internet is difficult to minimize. The Google
internal wide-area network (as of 2017), known as B4, has this sort of architecture; it carries huge volumes
of traffic. See [JKMOPSVWZ13].

At the other end, these red links may simply be paths through the public Internet, making the CDN an
“overlay” network vaguely resembling the original Mbone. In this case the CDN’s real-time traffic will
compete with other traffic. This isn’t necessarily bad, however, if the red links – which probably are Internet
“backbone” links – have high capacity. Perhaps more importantly, a CDN is a large customer for the ISPs
that connect it, and likely has a close business relationship with them. If congestion is a business problem
for the CDN, in that it wants to attract videoconferencing providers as clients, it is in a strong position to
negotiate appropriate service guarantees and even partial isolation of its real-time traffic flows.

682 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

Netflix Open Connect

The Netflix CDN used to deliver streamed video consists largely of so-called Open Connect Appliances
(OCAs), each containing upwards of 100 TB (and colored Netflix red). These are distributed – rather
widely – among ISPs and IXPs. Each OCA gets its daily updates (of multiple TB) delivered over the
public Internet. There are no private links. Netflix has no need for them; none of their content is real-
time.

However the intra-CDN links are implemented, data will flow in our multicast scenario as follows:

• From source A to CDN node 1, using the Internet

• Throughout the CDN’s internal links as necessary

• From CDN nodes 1, 2, 3 and 4 to subscribers B through G, using each subscriber’s Internet link

Many teleconferencing and gaming services use this sort of architecture. Subscribers can be charged for
the privilege of using the network, solving the multicast and reservation pricing issues. In principle (though
very seldom in practice) subscribers can be told the network is busy if congestion levels are high, address-
ing the reservation admission issue. More likely, the provider would handle high-use periods by allowing
performance to degrade, while also attempting to provision the network so that it is adequate “most” of the
time.

If the CDN is “small” – perhaps a dozen points of presence – then the dashed normal-Internet links from
users to the CDN might end up handling most of the traffic carriage. However, if the dashed links are not
the sources of congestion, a small CDN might still produce a large performance benefit. Furthermore, if
the CDN is reasonably large, then the dashed links may shrink to intra-city distances, and the red links will
handle the long-haul traffic.

20.7 Differentiated Services

Differentiated Services, or DiffServ, was created as a low-overhead alternative to IntServ; see RFC 2475
for an overall introduction. The idea behind DiffServ is to replace IntServ’s many reservations with a small
handful of service classes: a single regular class (for everyone’s bulk traffic) and a few premium classes
(for what in IntServ would have been everyone’s reserved traffic). For this reason, DiffServ can be described
as providing “coarse-grained” resource allocation versus RSVP’s “fine-grained” per-flow allocations. Like
IntServ, DiffServ is easiest to implement within a single ISP or Autonomous System; however, DiffServ
may be reasonably practical to implement across ISP boundaries as well. A set of routers agreeing on a
common DiffServ policy is called a DS domain; a DS domain might consist of a single ISP but might also
comprise a larger “backbone” ISP and some “regional” customer ISPs that have negotiated a single DiffServ
policy.

Packets are marked for premium service at (and only at) the border routers of each DS domain, as the traffic
in question enters that domain. The DS domain’s interior routers do no marking and no traffic policing. At
these interior routers, priority queuing is generally used to give premium service to the marked packets.

As a simple example of the DiffServ approach, suppose an ISP has a thousand customers. The ith customer
negotiates bandwidth ri for the “premium” portion of its traffic; the ISP ensures that the sum of all the
ri’s is less than a maximum designated rate r. The ISP enforces each premium rate cap ri at the point of

20.7 Differentiated Services 683

https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://tools.ietf.org/html/rfc2475.html

An Introduction to Computer Networks, Release 1.9.21

customer i’s connection, and also marks that customer’s premium traffic. The ISP can now guarantee each
of its customers its individual premium rate simply by ensuring that a bandwidth of at least r is available
throughout its network, and by handling marked premium packets on a priority basis. Only one internal
service class is needed – premium – despite a thousand different individual bandwidth guarantees.

Packets are marked using the six bits of the DS field of the IPv4 header (7.1 The IPv4 Header); these
were part of what was originally the IP Type-of-Service bits. DiffServ traffic classes are known as Per Hop
Behaviors, or PHBs; the name comes from the identification of traffic classes with how each router is to
handle packets of that class. The simplest PHB is the default PHB, meaning the packet gets no special
processing. The other PHB

The Class Selector PHB is for backwards compatibility with the three-bit precedence subfield of the old
IPv4 Type-of-Service field, originally proposed as a three-bit priority field.

The Expedited Forwarding (EF) PHB (20.7.1 Expedited Forwarding) is arguably the best service. It is
meant for traffic that has delay constraints in addition to rate constraints. The newer Voice Admit PHB is
closely related and has been recommended as the preferred PHB for voice telephony. We will look more
closely at this PHB below.

Assured Forwarding, or AF (20.7.2 Assured Forwarding), is really four separate PHBs, corresponding
to four classes 1 through 4. It is meant for providing (soft) service guarantees that are contingent on the
sender’s staying within a certain rate specification. Each AF class has its own rate specification; these
rate specifications are entirely at the discretion of the implementing DS domain. AF uses the first three
bits to denote the AF class, and the second three bits to denote the drop precedence. More detail is at
20.7.2 Assured Forwarding.

Here are the six-bit patterns for the above PHBs; the AF drop-precedence bits are denoted “ddd”.

• 000 000: default PHB (best-effort delivery)

• 001 ddd: AF class 1 (the lowest priority)

• 010 ddd: AF class 2

• 011 ddd: AF class 3

• 100 ddd: AF class 4 (the best)

• 101 110: Expedited Forwarding

• 101 100: Voice Admit

• 11x 000: Network control traffic (RFC 2597)

• xxx 000: Class Selector (traditional IPv4 Type-of-Service)

The goal behind premium PHBs such as EF and AF is for the DS domain to set some rules on admitting
premium packets, and hope that their total numbers to any given destination are small enough that high-level
service targets can be met. This is not exactly the same as a guarantee, and to a significant degree depends on
statistics. The actual specifications are written as per-hop behaviors (hence the PHB name); with appropriate
admission control these per-hop behaviors will translate into the desired larger-scale behavior.

One possible Internet arrangement is that a leaf domain or ISP would support RSVP, but hands traffic off
to some larger-scale carrier that runs DiffServ instead. Traffic with RSVP reservations would be marked on
entry to the second carrier with the appropriate DS class.

684 20 Quality of Service

https://tools.ietf.org/html/rfc2597.html

An Introduction to Computer Networks, Release 1.9.21

20.7.1 Expedited Forwarding

The goal of the EF PHB is to provide low queuing delay to the marked packets; the canonical example
is VoIP traffic, even though the latter now has its own PHB. EF is generally considered to be the best DS
service, though this depends on how much EF traffic is accepted by the DS domain.

Each router in a DS domain supporting EF is configured with a committed rate, R, for EF traffic. Different
routers can have different committed rates. At any one router, RFC 3246 spells out the rule this way (note
that this rule does indeed express a per-hop behavior):

Intuitively, the definition of EF is simple: the rate at which EF traffic is served at a given output
interface should be at least the configured rate R, over a suitably defined interval, independent
of the offered load of non-EF traffic to that interface.

To the EF traffic, in other words, each output interface should appear to offer bandwidth R, with no com-
peting non-EF traffic. In general this means that the network should appear to be lightly loaded, though that
appearance depends very much on strict control of entering EF traffic. Normally R will be well below the
physical bandwidths of the router’s interfaces.

RFC 3246 goes on to specify how this apparent service should work. Roughly, if EF packets have length
L then they should be sent at intervals L/R. If an EF packet arrives when no other EF traffic is waiting, it
can be held in a queue, but it should be sent soon enough so that, when physical transmission has ended,
no more than L/R time has elapsed in total. That is, if R and L are such that L/R is 10µs, but the physical
bandwidth delay in sending is only 2µs, then the packet can be held up to 8µs for other traffic.

Note that this does not mean that EF traffic is given strict priority over all other traffic (though implemen-
tation of EF-traffic processing via priority queuing is a reasonable strategy); however, the sending interface
must provide service to the EF queue at intervals of no more than L/R; the EF rate R must be in effect at
per-packet time scales. Queuing ten EF packets and then sending the lot of them after time 10L/R is not
allowed. Fair queuing can be used instead of priority queuing, but if quantum fair queuing is used then the
quantum must be small.

An EF router’s committed rate R means simply that the router has promised to reserve bandwidth R for EF
traffic; if EF traffic arrives at a router faster than rate R, then a queue of EF packets may build up (though
the router may be in a position to use some of its additional bandwidth to avoid this, at least to a degree).
Queuing delays for EF traffic may mean that someone’s application somewhere fails rather badly, but the
router cannot be held to account. As long as the total EF traffic arriving at a given router is limited to that
routers’ EF rate R, then at least that router will be able to offer good service. If the arriving EF traffic meets
a token-bucket specification TB(R,B), then the maximum number of EF packets in the queue will be B and
the maximum time an EF packet should be held will be B/R.

So far we have been looking at individual routers. A DS domain controls EF traffic only at its border; how
does it arrange things so none of its routers receives EF traffic at more than its committed rate?

One very conservative approach is to limit the total EF traffic entering the DS domain to the common
committed rate R. This will likely mean that individual routers will not see EF traffic loads anywhere close
to R.

As a less-conservative, more statistical, approach, suppose a DS domain has four border routers R1, R2, R3
and R4 through which all traffic must enter and exit, as in the diagram below:

20.7 Differentiated Services 685

https://tools.ietf.org/html/rfc3246.html
https://tools.ietf.org/html/rfc3246.html

An Introduction to Computer Networks, Release 1.9.21

R4

R1

R2

R3

...

...

...

...

DS domain boundary

Suppose in addition the domain knows from experience that exiting EF traffic generally divides equally
between R1-R4, and also that these border routers are the bottlenecks. Then it might allow an EF-traffic
entry rate of R at each router R1-R4, meaning a total entering EF traffic volume of 4ˆR. Of course, if on
some occasion all the EF traffic entering through R1, R2 and R3 happened to be addressed so as to exit via
R4, then R4 would see an EF rate of 3ˆR, but hopefully this would not happen often.

If an individual ISP wanted to provide end-user DiffServ-based VoIP service, it might mark VoIP packets
for EF service as they entered (or might let the customer mark them, subject to the ISP’s policing). The
rate of marked packets would be subject to some ceiling, which might be negotiated with the customer as
a certain number of voice lines. These marked VoIP packets would receive EF service as they were routed
within the ISP.

For calls also terminating within that ISP – or switching over to the traditional telephone network at an
interface within that ISP – this would be all that was necessary, but some calls will likely be to customers of
other ISPs. To address this, the original ISP might negotiate with its ISP neighbors for continued preferential
service; such service might be at some other DS service class(eg AF). Packets would likely need to be re-
marked as they left the original ISP and entered another.

The original ISP may have one larger ISP in particular with which it has a customer-provider relationship.
The larger ISP might feel that with its high-volume internal network it has no need to support preferential
service, but might still agree to carry along the original ISP’s EF marking for use by a third ISP down the
road.

20.7.2 Assured Forwarding

AF, documented in RFC 2597, is simpler than EF, but with little by way of a delay guarantee. The macro-
scopic goal is to grant specific rate assurances to certain traffic classes, eg the traffic from a certain set of
customers. Distinct traffic classes are represented by distinct AF classes, which are limited to four. If a
contributor to a traffic class sends more traffic than that particular contributor is permitted, the excess traffic
is simply marked with a higher drop precedence. Further on in the network, the traffic may or may not be
dropped.

The drop-precedence values for the second three bits for the AF classes are as follows:

• 010: do not drop

• 100: medium

• 110 high

686 20 Quality of Service

https://tools.ietf.org/html/rfc2597.html

An Introduction to Computer Networks, Release 1.9.21

Different priority-queuing levels may used for the different AF classes; this would ensure that all the traffic
needs of AH class 4 are met before AH class 3, and down the line to AH class 1 at the lowest AH priority, just
above bulk (default) traffic. Provided careful limits are placed on how much traffic is admitted to each class,
strict priority queuing need not lead to the starvation of bulk traffic. Use of priority queuing is not mandatory;
another option is fair queuing where the higher-precedence AH classes get a greater fair-queuing-guaranteed
fraction of the total bandwidth, at least relative to their traffic volumes.

Traffic with different drop-precedence values within a single AF class, however, is not assigned to different
subqueues (Priority, Fair or otherwise). Doing that would almost certainly lead to significant reordering
of the overall traffic, and reordering tends to be bad for TCP traffic. If different priority-queuing levels
were used here, for example, higher-drop-precedence packets would be delayed until lower-drop-precedence
queues were emptied; almost any form of queuing using multiple queues for a different output interface
would likely lead to at least some reordering. So long as one TCP connection remains in a single AF class
(eg because all traffic to or from a given site remains in a single AF class), the packets of that connection
should not be reordered.

A classic application of AF is for an ISP to be able to grant different performance levels to different cus-
tomers: gold, silver and bronze (again from the Appendix to RFC 2597). Customers would pay an ISP more
to carry their traffic in a higher category. Along with their AF level, each customer would negotiate with the
ISP their average rate and also their “committed” and “excess” burst (bucket) capacities. As the customer’s
traffic entered the network, it would encounter two token-bucket filters, with rate equal to the agreed-upon
rate and with the two different bucket sizes: TB(r,Bcommitted) and TB(r,Bexcess). Traffic compliant with the
first token-bucket specification would be marked “do not drop”; traffic noncompliant for the first but com-
pliant for the second would be marked “medium” and traffic noncompliant for either specification would be
marked with a drop precedence of “high”. (The use of Bexcess here corresponds to the sum of “committed
burst size” and “excess burst size” in the Appendix to RFC 2597.)

Customers would thus be free to send faster than their agreed-upon rate, subject to the excess traffic being
marked with a lower drop precedence.

This process means that an ISP can have many different Gold customers, each with widely varying rate
agreements, all lumped together in the same AF-4 class. The individual customer rates, and even the sum of
the rates, may have only a tenuous relationship to the actual internal capacity of the ISP, although it is not in
the ISP’s long-term interest to oversubscribe any AF level.

If the ISP keeps the AF class 4 traffic sparse enough, it might outperform EF traffic in terms of delay. The
EF PHB rules, however, explicitly address delay issues while the AF rules do not.

20.8 RED with In and Out

Differentiated Services Assured Forwarding (AF) fits nicely with RIO routers: RED with In and Out (or
In, Middle, and Out); see 14.8.4 RED. In RIO routers, each drop-precedence value (the “In”, “Middle”
and “Out” here) is subject to a different drop threshold. Packets with higher drop-precedence values would
experience RED signaling losses at correspondingly lower degrees of RED queue utilization. This means
that TCP connections with a significant fraction of higher-drop-precedence values would encounter RED-
induced losses sooner – and would thus reduce their congestion window sooner – than connections that
stayed within their committed rate. Because each AF class is sent at a single priority, TCP connections
within a single AF class should not experience problems(eg reordering) other than these RED signaling
losses. All this has the effect of gently encouraging customers to stay within their committed traffic limits.

20.8 RED with In and Out 687

https://tools.ietf.org/html/rfc2597.html
https://tools.ietf.org/html/rfc2597.html

An Introduction to Computer Networks, Release 1.9.21

RIO is likely to have a meaningful effect only on TCP connections; real-time UDP traffic may be affected
slightly or not at all by RED signaling-type losses.

20.9 NSIS

The practical problem with RSVP is the need for routers to participate. One approach to gaining ISP coop-
eration might be a lighter-weight version of RSVP, though that is speculative; Differentiated Services was
supposed to be just that and it too has not been widely adopted within the commercial Internet backbone.

That said, work has been underway for quite some time now on a replacement protocol suite. One candidate
is Next Steps In Signaling, or NSIS, documented in RFC 4080 and RFC 5974.

NSIS breaks the RSVP design into two separate layers: the signal transport layer, charged with figuring out
how to reach the intermediate routers, and the higher signaling application layer, charged with requesting
actual reservations. One advantage of this two-layer approach is that NSIS can be adapted for other kinds
of signaling, although most NSIS signaling can be expected to be related to a specific network flow. For
example, NSIS can be used to tell NAT routers to open up access to a given inside port, in order to allow a
VoIP (or other) connection to proceed.

Generally speaking, NSIS also abandons the multicast-centric approach of RSVP. Signaling traffic travels
hop-by-hop from one NSIS Element, or NE, to the next NE on the path. In cases when the signaling traffic
follows the same path as the data (the “path-coupled” case), the signaling packet would likely be addressed
to the ultimate destination, but recognized by each NE router on the path. NE routers would then add
something to the packet, and perhaps update their own internal state. Nonparticipating (non-NE) routers
would simply forward the signaling packet, like any other IP packet, further towards its ultimate destination.

20.10 Comcast Congestion-Management System

The large ISP Comcast introduced a DiffServ-like scheme to reduce internal congestion; this was eventually
documented in RFC 6057. The effect of the scheme is to reduce bandwidth for those subscribers who
are using the largest amount of bandwidth; this reduction is done only when the ISP’s local network is
experiencing significant congestion. The goal is to avoid saturation of the ISP-level backbone, thus perhaps
improving fairness for other users.

By throttling bulk traffic throughout its network before maximum capacities are reached, this strategy has the
potential to improve the performance of real-time protocols without IntServ- or DiffServ-type mechanisms.

During non-congested operation, all user traffic is tagged within Comcast’s network as Priority Best Ef-
fort (PBE). This is akin to a medium drop precedence for a particular DiffServ Assured Forwarding class
(20.7.2 Assured Forwarding), though RFC 6057 does not claim that DiffServ is actually used. When con-
gestion occurs, traffic of some high-volume users may be tagged instead as Best Effort (BE), meaning that
it has a lower priority and a higher drop precedence.

The mechanism first defines a Near-Congestion State for ports on routers at a certain level of Comcast’s
network. These routers are known as Cable Modem Termination Systems, or CMTS’s. Each CMTS node
serves about 5,000 subscribers. Near-Congestion State is declared when the port utilization exceeding a

688 20 Quality of Service

https://tools.ietf.org/html/rfc4080.html
https://tools.ietf.org/html/rfc5974.html
http://comcast.com
https://tools.ietf.org/html/rfc6057.html
https://tools.ietf.org/html/rfc6057.html

An Introduction to Computer Networks, Release 1.9.21

specific percentage of its maximum for a specific amount of time; typically the utilization threshold is 70-
80% and the time interval is 15 minutes. One CMTS port typically serves 200-300 customers. Previous
experience had established CMTS ports as the likely locus for congestion.

When a particular CMTS port enters the Near-Congestion State, the port’s traffic is monitored on a per-
subscriber basis to see if any subscribers are in an Extended High Consumption State, or EHCS, again
triggered when a subscriber exceeds a given percentage of their subscriber rate for a given number of min-
utes. The threshold for entering EHCS state is typically 70% of the subscriber rate – either the upstream rate
or the downstream rate – for 15 minutes.

When the switch port is in Near-Congestion State and the subscriber’s traffic is in EHCS, then all that sub-
scriber’s traffic is marked Best Effort (BE) rather than PBE, corresponding to a higher AF drop precedence.
Downstream traffic is marked (at the CMTS or even higher up in the network) if it is the user’s down-
stream utilization that is high; upstream traffic is marked at the user’s connection to the network if upstream
utilization is high.

Other routers may then drop BE-marked traffic preferentially, versus PBE-marked traffic. This will occur
only at routers that are actively experiencing congestion, perhaps using a mechanism like RIO (20.8 RED
with In and Out), though RIO was originally intended only for TCP traffic.

A subscriber leaves the EHCS state when the subscriber’s bandwidth drops below 50% of the subscription
rate for 15 minutes, where presumably the 50% rate is measured over some very short timescale. Note that
this means that a user with a TCP sawtooth ranging from 30% to 60% of the maximum might remain in the
EHCS state indefinitely.

Also note that all the subscriber’s traffic will be marked as BE traffic, not just the overage. The intent is to
provide a mild disincentive for sustained utilization within 70% of the subscriber maximum rate.

Token bucket specifications are not used, except possibly over very small timescales to define utilizations
of 50% and 70%. The (larger-scale) token-bucket alternative might be to create a token-bucket specification
for each customer TB(r,B) where r is some fraction of the subscription rate and B is a bucket of modest
size. All compliant traffic would then be marked PBE and noncompliant traffic would be marked BE. Such
a mechanism might behave quite differently, as only traffic actually over the ceiling would be marked.

20.11 Real-time Transport Protocol (RTP)

RTP is a convenient framework for carrying real-time traffic. It runs on top of UDP, largely to avoid head-
of-line blocking (11.1 User Datagram Protocol – UDP), and offers several advantages over raw UDP. It
does not, however, involve interactions with the intervening routers, and therefore cannot offer any service
guarantees.

RTP headers include a sequence number, an application-provided timestamp representing when the attached
data was recorded, and basic mechanisms for handling traffic that is a merger of several original sources
(“contributing sources”) of related content. RTP also includes support for multicast transmission, eg for the
voice and video streams that make up a teleconference. Indeed, teleconferencing is arguably the application
for which RTP was developed, although it is also widely used for point-to-point applications such as VoIP.

Perhaps the most striking feature of RTP is the absence of frequent acknowledgments. There is indeed a
provision for receiver responses, but they are often sent only at several-second intervals, and are frequently
omitted entirely. These responses use the companion RTCP protocol, and the “receiver report” format.

20.11 Real-time Transport Protocol (RTP) 689

An Introduction to Computer Networks, Release 1.9.21

RTCP receiver-report packets are often thought of not as acknowledgments but as a source of statistics about
how the RTP flow is being delivered; in particular, the RTCP packets contain a ratio of how many sender
packets arrived since the previous RTCP report, the highest sequence number received, and a measure of the
degree of jitter.

For multicast, the infrequent acknowledgments make sense. If every receiver of a multicast group sent
acknowledgments totaling 3% of the received-content bandwidth (about the TCP ratio), and if there were
100 receivers in the group (not large for a teleconference), then the total acknowledgment traffic arriving
at the sender would be triple the content traffic. There are, in fact, mechanisms in place to limit the total
RTCP bandwidth to no more than 5% of the outbound content stream; if a multicast stream has thousands
of receivers then those receivers will each respond relatively infrequently (eg at intervals of many seconds,
if not many minutes).

Even in one-to-one transmission settings, though, RTP may not send many acknowledgments. Many VoIP
systems are configured not to send RTCP responses at all by default; when these are enabled, the rate has a
typical minimum of one RTCP response per second. In one second, a VoIP sender may transmit 50 packets.
One explanation for this is that when a voice call is encountering significant congestion, the participants are
expected to hang up, rather than keep the line open.

For two-way voice calls, symmetric RTP is often used (RFC 4961). This means that each party uses the
same port for sending and receiving. This is done only for convenience and to handle NAT routers; the two
separate directions are completely independent and do not serve as acknowledgments for one another, as
would be the case for bidirectional TCP traffic. Indeed, one can block one direction of a VoIP symmetric-
RTP stream and the call continues on indefinitely, transmitting voice only in the other direction. When the
block is removed, the blocked voice flow simply resumes.

20.11.1 RTP Mixers

Mixers are network nodes that take one or more RTP source streams and perform any combination of the
following operations

• consolidation of multiple streams into one

• translation to a different audio or video format

• re-encoding to a lower-bandwidth format

As an example of consolidation, video of several panelists might be consolidated into a single video frame,
in which the current speaker has a larger window. At the audio level, a mixer might combine the streams
from several individual microphones. If all parties are at the same location this kind of consolidation can
be performed by the primary sender, but mixers may be useful if conference participants are geographically
dispersed. As for translation, some participants may prefer to receive in a different format.

Perhaps the most important task for mixers, however, is rate-adaptation. With a unicast connection, if
congestion is experienced then the sender itself can adapt to it by switching the encoding. This is not
appropriate for multicast, however; if one receiver is experiencing congestion it is not unlikely that other
receivers may be doing just fine. Therefore, if a multicast receiver is having trouble receiving at a high data
rate, it is up to it to find a mixer that offers a lower-rate encoding, and switch its subscription/reservation
to that mixer instead. Mixers offering a range of rates might be set up near the sender (or at least logically
near); they might also be geographically distributed to be nearer to clusters of likely receivers. One host
might provide several mixers offering a range of bandwidth options.

690 20 Quality of Service

https://tools.ietf.org/html/rfc4961.html

An Introduction to Computer Networks, Release 1.9.21

One thing mixers do not do is mix audio and video together; separate audio and video streams should be
carried by separate RTP sessions. RTP packets carry timestamps to allow a receiver to synchronize audio
and video playback, so mixing is not necessary. But more importantly, mixing of audio and video makes it
difficult to re-encode to a different format, difficult for a receiver to subscribe only to the audio, and difficult
for the RTCP reports to indicate which original stream was encountering more losses.

An individual sending point in RTP, complete with timing information, is called a synchronization source
or SSRC. At the point of origin, each camera and microphone might be an SSRC. SSRCs are identified by
a 32-bit identifier. Actual SSRC identifiers are to be chosen pseudorandomly (and there is a provision in
the protocol for making sure two different sources do not choose the same SSRC identifier), but for many
practical purposes the SSRC can be thought of as a host identifier, like an IP address.

When a mixer combines multiple SSRCs into one stream (or even when a mixer takes as input only a single
SSRC), the mixer becomes the new synchronization source and creates a new SSRC identifier for all its
output packets; the mixer also generates a new series of synchronization timestamps. However, the SSRC
identifiers for the streams that the mixer used as input are attached to all RTP packets from the mixer; each
of these is now known as a contributing source or CSRC.

20.11.2 RTP Packet Format

The basic RTP header has the following format, from RFC 3550:

P X CC M Payload Type Sequence Number

Timestamp

Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifiers

Ver

The Ver field holds the version, currently 2. The P bit indicates that the RTP packet includes at least one
padding byte at the end; the final padding byte contains the exact count.

The X bit is set if an extension header follows the basic header; we do not consider this further.

The CC field contains the number of contributing source (CSRC) identifiers (below). The total header size,
in 32-bit words, is 3+CC.

The M bit is set to allow the marking, for example, of the first packet of each new video frame. Of course,
the actual video encoding will also contain this information.

The Payload Type field allows (or, more precisely, originally allowed) for specification of the audio/visual
encoding mechanism (eg µ-law/G.711), as described in RFC 3551. Of course, there are more than 27 pos-
sible encodings now, and so these are typically specified via some other mechanism, eg using an extension
header or the separate Session Description Protocol (RFC 4566) or as part of the RTP stream’s “announce-
ment”. RFC 3551 put it this way:

During the early stages of RTP development, it was necessary to use statically assigned
payload types because no other mechanism had been specified to bind encodings to payload

20.11 Real-time Transport Protocol (RTP) 691

https://tools.ietf.org/html/rfc3550.html
https://tools.ietf.org/html/rfc3551.html
https://tools.ietf.org/html/rfc4566.html
https://tools.ietf.org/html/rfc3551.html

An Introduction to Computer Networks, Release 1.9.21

types. . . . Now, mechanisms for defining dynamic payload type bindings have been specified in
the Session Description Protocol (SDP) and in other protocols. . . .

The sequence-number field allows for detection of lost packets and for correct reassembly of reordered
packets. Typically, if packets are lost then the receiver is expected to manage without them; there is no
timeout/retransmission mechanism in RTP.

The timestamp is for synchronizing playback. The timestamp should be sufficiently fine-grained to support
not only smooth playback but also the measurement of jitter, that is, the degree of variation in packet arrival.

Each encoding mechanism chooses its own timestamp granularity. For most telephone-grade voice encod-
ings, for example, the timestamp clock increments at the canonical sampling rate of 8,000 times a second,
corresponding to one DS0 channel (4.2 Time-Division Multiplexing). RFC 3551 suggests a timestamp
clock rate of 90,000 times a second for most video encodings.

Many VoIP applications that use RTP send 20 ms of voice per packet, meaning that the timestamp is incre-
mented by 160 for each packet. The actual amount of data needed to send 20 ms of voice can vary from 160
bytes down to 20 bytes, depending on the encoding used, but the timestamp clock always increments at the
8,000/sec, 160/packet rate.

The SSRC identifier identifies the primary data source (the “synchronization source”) of the stream. In
most cases this is either the identifier for the originating camera/microphone, or the identifier for the mixer
that repackaged the stream.

If the stream was processed by a mixer, the SSRC field identifies the mixer, and the SSRC identifiers of the
original sources are now listed in the CSRC (“contributing sources”) section of the header. If there was no
mixer involved, the CSRC section is empty.

20.11.3 RTP Control Protocol

The RTP Control Protocol, or RTCP, provides a mechanism for exchange of a variety of extra information
between RTP participants. RTCP packets may be Sender Reports (SR packets) or Receiver Reports (RR
packets); we are mostly interested in the latter.

RTCP receiver reports are the only form of acknowledgments for RTP transmission. These are, however,
unlike any other form of acknowledgment we have considered; for one thing, there is generally no question
of retransmitting any lost data. RTCP RR packets should perhaps be thought of as statistical summaries
regarding delivery rather than acknowledgments per se; in some cases they may in effect simply relay to
senders the information “multicast is not working today”.

RTCP packets contain a list of several SSRCs; for each SSRC, the message includes

• the fraction of RTP packets that were lost in the most recent interval

• the cumulative number of packets lost since the session began

• the highest sequence number received

• a measure of the interarrival jitter (below)

• for RR packets, information about the most recent RTCP SR packet

Jitter is measured as the mean deviation in actual arrival times, versus theoretical arrival times, and is mea-
sured in units of the RTP timestamp clock (above). The actual formula is as follows. For each packet Pi,

692 20 Quality of Service

https://tools.ietf.org/html/rfc3551.html

An Introduction to Computer Networks, Release 1.9.21

we can record the actual time of arrival in RTP timestamp units as Ri and we can save the RTP timestamp
included in the packet as Si. We first calculate the ith deviation as follows:

Devi = (Ri - Ri-1) - (Si - Si-1)

For evenly spaced packets, the deviation will be zero. For VoIP packets, Si - Si-1 is likely exactly 160; Ri -
Ri-1 is the actual arrival interval in eighths of milliseconds.

We then calculate the cumulative jitter as follows, where 𝛼 = 15/16:

Ji = 𝛼ˆJi-1 + (1-𝛼)ˆDevi

In a multicast setting, if an RTP receiver is experiencing excessive losses, its most practical option is prob-
ably to find a mixer offering a lower-bandwidth encoding, or that is otherwise more likely to provide low-
congestion service. RTCP packets are not needed for this.

In a unicast setting, an RTP sender can – at least theoretically – use the information provided by RTCP RRs
to adapt its transmission rate downwards, to better make use of the available bandwidth. A sender might
also use TFRC (14.6.1 TFRC) to calculate a TCP-friendly sending rate; there are Internet drafts for this
([GP11]), but as yet no RFC. TFRC also allows for a gradual adjustment in rate to accommodate the new
conditions.

Of course, TFRC can only be used to adjust the sending rate if the sending rate is in fact adaptive, at the
application level. This, of course, requires a rate-adaptive encoding.

RFC 3550 specifies a mechanism to make sure that RTCP packets do not consume more than 5% of the total
RTP bandwidth, and, of that 5%, RTCP RR packets do not account for more than 75%. This is achieved by
each receiver learning from RTCP SR packets how many other receivers there are, and what the total RTP
bandwidth is. From this, and from some related information, each RTP receiver can calculate an acceptable
RTCP reporting interval. This interval can easily be in the hundreds of seconds.

Mixers are allowed to consolidate RTCP information from their direct subscribers, and forward it on to the
originating sources.

20.11.4 RTP and VoIP

Voice-over-IP data is often carried by RTP, although VoIP calls are initially set up using the Session Initiation
Protocol, SIP (RFC 3261), or some other setup protocol such as H.323. As part of the call set-up process,
the SIP nodes organizing the call exchange IP addresses and port numbers for the actual endpoints. Each
endpoint then is informed of the address and port for the other endpoint, and the endpoints more-or-less
immediately begin sending one another RTP packets. If an endpoint is behind a NAT firewall, its associated
SIP server may have to continue forwarding packets.

VoIP calls typically send voice data in packets containing 20ms of audio input. If the standard DS0 G.711
encoding is used, 8 bytes are needed for each millisecond of voice and so each packet has 160ms of data.
The G.711 encoding includes both µ-law and A-law encoders; these are both variations on the idea of having
the 8-bit samples be proportional to the logarithm of the actual sound intensity.

Other voice encoders provide a greater degree of compression. For example, when G.729 voice encoding is
used for VoIP then each packet will carry 20 ms of voice in 20 bytes of data. Each such packet will also,
typically, have 54 bytes of header (14 bytes of Ethernet header, 20 bytes of IP header, 8 bytes of UDP header

20.11 Real-time Transport Protocol (RTP) 693

https://tools.ietf.org/html/rfc3550.html
https://tools.ietf.org/html/rfc3261.html
http://en.wikipedia.org/wiki/G.711

An Introduction to Computer Networks, Release 1.9.21

and 12 bytes of RTP header). Despite a payload efficiency of only 20/74» 27%, this is generally considered
acceptable, if not ideal.

VoIP connections often do not make much use of the data in the RTCP packets; it is not uncommon, in
fact, for RTCP packets not even to be sent. The general presumption is that if the voice quality is not
adequate, the users involved should simply hang up. The most common voice encoders (eg G.711 and, for
that matter, G.729) are not rate-adaptive, and so if a call is encountering congestion there is nothing that
can be done. That said, RTCP packets may provide useful information regarding jitter experienced by the
call. Furthermore, as we mentioned above in 20.3 Real-time Traffic, some voice codecs – such as Opus and
Speex – do support rate-adaptiveness.

20.12 Multi-Protocol Label Switching (MPLS)

Currently, MPLS is a way of tagging certain classes of traffic, and perhaps routing them altogether differently
from other classes of traffic. While IPv4 has always allowed routing based on tagged QoS levels, this feature
was seldom used, and a common assumption for both Integrated and Differentiated Services was that the
priority traffic essentially took the same route as everything else. MPLS allows priority traffic to take an
entirely different route.

MPLS started out as a way of routing IP and non-IP traffic together, and later became a way to avoid the
then-inefficient lookup of an IP address at every router. It has, however, now evolved into a way to support
the following:

• creation of explicit routes for IP traffic, either in bulk or by designated class.

• large-scale virtual private networks (VPNs)

We are mostly interested in MPLS for the first of these; as such, it provides an alternative way for ISPs to
handle real-time traffic. The explicit routes are defined using virtual circuits (3.4 Virtual Circuits).

In effect, virtual-circuit tags are added to each packet, on entrance to the routing domain, allowing packets to
be routed along a predetermined path. The virtual circuit paths need not follow the same route that normal
IP routing would use, though note that link-state routing protocols such as OSPF already allow different
routes for different classes of service.

We note also that the MPLS-labeled traffic might very well use the same internal routers as bulk traffic;
priority or fair queuing would then still be needed at those routers to make sure the MPLS traffic gets the
desired level of service. However, the use of MPLS at least makes the classification problem easier: internal
routers need only look at the tag to determine the priority or fair-queuing class, and deep-packet inspection
can be avoided. MPLS would also allow the option that a high-priority flow would travel on a special path
through its own set of routers that do not also service low-priority traffic.

Generally MPLS is used only within one routing domain or administrative system; that is, within the scope
of one ISP. Traffic enters and leaves looking like ordinary IP traffic, and the use of MPLS internally is
completely invisible. This local scope of MPLS, however, has meant that it has seen relatively widespread
adoption, at least compared to RSVP and IP multicast: no coordination with other ISPs is necessary.

To implement MPLS, we start with a set of participating routers, called label-switching routers or LSRs.
(The LSRs can comprise an entire ISP, or just a subset.) Edge routers partition (or classify) traffic into
large flow classes; one distinct flow (which might, for example, correspond to all VoIP traffic) is called a

694 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

forwarding equivalence class or FEC. Different FECs can have different quality-of-service targets. Bulk
traffic not receiving special MPLS treatment is not considered to be part of any FEC.

A one-way virtual circuit is then created for each FEC. An MPLS header is prepended to each IP packet,
using for the VCI a label value related to the FEC. The MPLS label is a 32-bit field, but only the first 20
bits are part of the VCI itself. The last 12 bits may carry supplemental connection information, for example
ATM virtual-channel identifiers and virtual-path identifiers (3.5 Asynchronous Transfer Mode: ATM).

It is likely that some traffic (perhaps even a majority) does not get put into any FEC; such traffic is then
delivered via the normal IP-routing mechanism.

MPLS-aware routers then add to their forwarding tables an MPLS table that consists of xlabelin, interfacein,
labelout, interfaceouty quadruples, just as in any virtual-circuit routing. A packet arriving on interface
interfacein with label labelin is forwarded on interface interfaceout after the label is altered to labelout.

Routers can also build their MPLS tables incrementally, although if this is done then the MPLS-routed traffic
will follow the same path as the IP-routed traffic. For example, downstream router R1 might connect to two
customers 200.0.1/24 and 200.0.2/24. R1 might assign these customers labels 37 and 38 respectively.

R3 R2 R1

200.0.1.0/24

200.0.2.0/24

R1 might then tell its upstream neighbors (eg R2 above) that any arriving traffic for either of these customers
should be labeled with the corresponding label. R2 now becomes the “ingress router” for the MPLS domain
consisting of R1 and R2.

R2 can push this further upstream (eg to R3) by selecting its own labels, eg 17 and 18, and asking R3 to
label 200.0.1/24 traffic with label 17 and 200.0.2/24 with 18. R2 would then rewrite VCIs 17 and 18 with 37
and 38, respectively, before forwarding on to R1, as usual in virtual-circuit routing. R2 might not be able to
continue with labels 37 and 38 because it might already be using those for inbound traffic from somewhere
else. At this point R2 would have an MPLS virtual-circuit forwarding table like the following:

interfacein labelin interfaceout labelout
R3 17 R1 37
R3 18 R1 38

One advantage here of MPLS is that labels live in a flat address space and thus are easy and simple to look
up, eg with a big array of 65,000 entries for 16-bit labels.

MPLS can be adapted to multicast, in which case there might be two or more labelout, interfaceout combina-
tions for a single input.

Sometimes, packets that already have one MPLS label might have a second (or more) label “pushed” on the
front, as the packet enters some designated “subdomain” of the original routing domain.

When MPLS is used throughout a domain, ingress routers attach the initial label; egress routers strip it
off. A label information base, or LIB, is maintained at each node to hold any necessary packet-handling

20.12 Multi-Protocol Label Switching (MPLS) 695

An Introduction to Computer Networks, Release 1.9.21

information (eg queue priority). The LIB is indexed by the labels, and thus involves a simpler lookup than
examination of the IP header itself.

MPLS has a natural fit with Differentiated Services (20.7 Differentiated Services): the ingress routers could
assign the DS class and then attach an MPLS label; the interior routers would then need to examine only the
MPLS label. Priority traffic could be routed along different paths from bulk traffic.

MPLS also allows an ISP to create multiple, mutually isolated VPNs; all that is needed to ensure isolation is
that there are no virtual circuits “crossing over” from one VPN to another. If the ISP has multi-site customers
A and B, then virtual circuits are created connecting each pair of A’s sites and each pair of B’s sites. A and
B each probably have at least one gateway to the whole Internet, but A and B can communicate with each
other only through those gateways.

MPLS sometimes interacts somewhat oddly with traceroute (7.11.1 Traceroute and Time Exceeded). If
a packet’s TTL reaches 0 at an MPLS router, the router will usually generate the appropriate ICMP Time
Exceeded message, but then attach to it the same MPLS label that had been on the original packet. As a
result, the ICMP message will continue on to the downstream egress router before being sent back to the
original sender. If nothing else, this results in an unusually large round-trip-time report. To the traceroute
initiator it will appear as if all the internal routers in the MPLS domain are the same distance from the
initiator as the egress router.

20.13 Epilog

Quality-of-service guarantees for real-time and other classes of traffic have been an area of active research
on the Internet for over 20 years, but have not yet come into the mainstream. The tools, however, are there.
Protocols requiring global ISP coordination – such as RSVP and IP Multicast – may come slowly if at all,
but other protocols such as Differentiated Services and MPLS can be effective when rolled out within a
single ISP.

Still, after twenty years it is not unreasonable to ask whether integrated networks are in fact the correct
approach. One school of thought says that real-time applications (such as VoIP) are only just beginning to
come into the mainstream, and integrated networks are sure to follow, or else that video streaming will take
over the niche once intended for real-time traffic. Perhaps IntServ was just ahead of its time. But the other
perspective is that the marketplace has had plenty of opportunity to make up its mind and has answered with
a resounding “no”, and it is time to move on. Perhaps having separate networks for bulk traffic and for voice
is not unreasonable or inefficient after all. Or perhaps the Internet will evolve into a network where all traffic
is handled by real-time mechanisms. Time, as usual, may tell, but not, perhaps, quickly.

20.14 Exercises

1. Suppose someone proposes TCP over multicast, in which each router collects the ACKs returning from
the group members reached through it, and consolidates them into a single ACK. This now means that, like
the multicast traffic itself, no ACK is duplicated on any single link.

What problems do you foresee with this proposal? (Hint: who will send retransmissions? How long will
packets need to be buffered for potential retransmission?)

696 20 Quality of Service

An Introduction to Computer Networks, Release 1.9.21

2. In the following network, suppose traffic from RP to R3-R5 is always routed first right and then down,
while traffic from R3–R5 to RP is always routed first left and then up. What is the multicast tree for the
group G = {B1,B2,B3}?

RP R1 R2

R3 R4 R5

B1 B2 B3

3. What should an RSVP router do if it sees a PATH packet but there is no subsequent RESV packet?

4. In 20.7.1 Expedited Forwarding there is an example of an EF router with committed rate R for packets
with length L. If R and L are such that L/R is 10µs, but the physical bandwidth delay in sending is only 2µs,
then the packet can be held up to 8µs for other traffic.

How large a bulk-traffic packet can this router send, in between EF packets? Your answer will involve L.

5. Suppose, in the diagram in 20.7.1 Expedited Forwarding, EF was used for voice telephony and at some
point calls entering through R1, R2 and R3 were indeed all directed to R4.

(a). How might the problem be perceived by users?
(b). How might the ISP respond to reduce the problem?

Note that the ISP has no control over who calls whom.

20.14 Exercises 697

An Introduction to Computer Networks, Release 1.9.21

698 20 Quality of Service

21 NETWORK MANAGEMENT AND SNMP

Network management, broadly construed, consists of all the administrative actions taken to keep a network
running efficiently. This may include a number of non-technical considerations, eg staffing the help desk
and negotiating contracts with vendors, but we will restrict attention exclusively to the technical aspects of
network management.

The ISO and the International Telecommunications Union have defined a formal model for telecommuni-
cations and network management. The original model defined five areas of concern, and was sometimes
known as FCAPS after the first letter of each area:

• fault

• configuration

• accounting

• performance

• security

Most non-ISP organizations have little interest in network accounting (the A in FCAPS is often replaced
with “administration” for that reason, but that is a rather vague category). Network security is arguably its
own subject entirely. As for the others, we can identify some important subcategories:

fault:

• device management: monitoring of all switches, routers, servers and other network hardware to make
sure they are running properly.

• server management: monitoring of the network’s application layer, that is, all network-based soft-
ware services; these include login authentication, email, web servers, business applications and file
servers.

• link management: monitoring of long-haul links to ensure they are working.

configuration:

• network architecture: the overall design, including topology, switching vs routing and subnet layout.

• configuration management: arranging for the consistent configuration of large numbers of network
devices.

• change management: how does a site roll out new changes, from new IP addresses to software
updates and patches?

performance:

• traffic management: using the techniques of 19 Queuing and Scheduling to allocate bandwidth
shares (and perhaps bucket sizes) among varying internal or external clients or customers.

• service-level management: making sure that agreed-upon service targets – eg bandwidth – are met
(depending on the focus, this could also be placed in the fault category).

699

An Introduction to Computer Networks, Release 1.9.21

While all these aspects are important, technical network management narrowly construed often devolves to
an emphasis on fault management and its companion, reliability management: making sure nothing goes
wrong, and, when it does, fixing it promptly. It is through fault management that some network providers
achieve the elusive availability goal of 99.999% uptime.

SNMP versus Management

While SNMP is a very important tool for network management, it is just a tool. Network management
is the process of making decisions to achieve the goals outlined above, subject to resource constraints.
SNMP simply provides some input for those decisions.

By far the most common device-monitoring protocol, and the primary focus for this chapter, is the Simple
Network Management Protocol or SNMP (21.2 SNMP Basics). This protocol allows a device to report
information about its current operational state; for example, a switch or router may report the configuration
of each interface and the total numbers of bytes and packets sent via each interface.

Implicit in any device-monitoring strategy is initial device discovery: the process by which the monitor
learns of new devices. The ping protocol (7.11 Internet Control Message Protocol) is common here,
though there are other options as well; for example, it is possible to probe the UDP port on a node used for
SNMP – usually 161. As was the case with router configuration (9 Routing-Update Algorithms), manual
entry is simply not a realistic alternative.

SNMP and the Application Layer

SNMP can be studied entirely from a network-management perspective, but it also makes an excellent
self-contained case study of the application layer. Like essentially all applications, SNMP defines rules
for client and server roles and for the format of requests and responses. SNMP also contains its own
authentication mechanisms (21.11 SNMPv1 communities and security and 21.15 SNMPv3), generally
unrelated to any operating-system-based login authentication.

It is a practical necessity, for networks of even modest size, to automate the job of checking whether every-
thing is working properly. Waiting for complaints is not an option. Such a monitoring system is known as a
network management system or NMS; there are a wide range of both proprietary and open-source NMS’s
available. At its most basic, an NMS consists of a library of scripts to discover new network devices and
then to poll each device (possibly but not necessarily using SNMP) at regular intervals. Generally the data
received is recorded and analyzed, and alarms are sounded if a failure is detected.

When SNMP was first established, there was a common belief that it would soon be replaced by the OSI’s
Common Management Interface Protocol. CMIP is defined in the International Telecommunication Union’s
X.711 protocol and companion protocols. CMIP uses the same ASN.1 syntax as SNMP, but has a richer
operations set. It remains the network management protocol of choice for OSI networks, and was once upon
a time believed to be destined for adoption in the TCP/IP world as well.

But it was not to be. TCP/IP-based network-equipment vendors never supported CMIP widely, and so any
network manager had to support SNMP as well. With SNMP support essentially universal, there was never
a need for a site to bother with CMIP.

CMIP, unlike SNMP, is supported over TCP, using the CMIP Over Tcp, or CMOT, protocol. One advantage

700 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

of using TCP is the elimination of uncertainty as to whether a request or a reply was received.

21.1 Network Architecture

Before turning to SNMP in depth, we offer a few references to other parts of this book relating to network
architecture. At the LAN and Internetwork layers local to a site, perhaps the main issues are redundancy,
bandwidth and cost. Cabling between buildings, in particular, needs to provide redundancy. See 2.5 Span-
ning Tree Algorithm and Redundancy and 2.6 Virtual LAN (VLAN) for some considerations at the Ethernet
level, and 7.6.3 Subnets versus Switching.

Next, a site must determine what sort of connection to the Internet it will have. ISP contracts vary greatly
in terms of bandwidth, burst bandwidth, and agreed-upon responses in the event of an outage. Some aspects
of service-level specification appear in 19.9 Token Bucket Filters and 20.7.2 Assured Forwarding.

Organizations with geographically dispersed internal networks – ISPs and larger corporations – must decide
how their internal sites should be connected. Should they communicate over the public Internet? Should a
VPN be used (3.1 Virtual Private Networks)? Or should private lines (such as SONET, 4.2.2 SONET , or
carrier Ethernet, 3.2 Carrier Ethernet) be leased between sites? If private lines are used, link monitoring
becomes essential.

One increasingly important architectural decision at the application layer is the extent to which network
software services are outsourced to the cloud, and run on remote servers managed by third parties.

21.2 SNMP Basics

SNMP is far and away the most popular protocol for supporting network device monitoring. At its most
basic level, SNMP allows polling of individual designated device attributes, such as the system name or the
number of packets received via interface eth0. Attributes may, however, be organized into records, sets
and tables. Tables may be indexed contiguously, like an array – eg interface[1], interface[2], interface[3],
etc – or sparsely – eg interface[1], interface[32767].

While the simplest routers and switches may have quite limited provisions for SNMP, virtually all “serious”
networking hardware provides extensive support, for both standard sets of “basic” device attributes and for
proprietary attributes as well. Devices with significant SNMP support are sometimes referred to as managed
devices.

An SNMP node that replies to requests for information is known as an SNMP agent. The network node
doing the SNMP querying is known as the manager; it may be part of an NMS or – more simply – be a
standalone tool known as an SNMP browser or MIB browser (where MIB stands for Management Infor-
mation Base, below). While most MIB browsers are understood to have a graphical user interface, there
are also command-line tools to make SNMP queries, such as the snmpget and snmpwalk commands of
the Net-SNMP project at net-snmp.org. These can be invoked by scripting languages to build a simple if
rudimentary NMS.

SNMP runs exclusively over UDP. The choice of UDP was made to avoid the connection overhead of what
was envisioned to be a simple request-reply protocol; if a manager polls 1,000 devices once a minute, that
is 2,000 packets in all over UDP but might easily be 8,000 packets with TCP and the necessary SYN/FIN
packets. This may be especially significant when the network is congested to near the point of failure.

21.1 Network Architecture 701

http://www.net-snmp.org

An Introduction to Computer Networks, Release 1.9.21

The use of UDP does raise two problems: lost packets and having more data than will fit in one packet. For
the simplest case of manager-initiated data requests, a manager can handle packet loss by polling a device
until a response is received. If a response (or even a request) is too big, the usual strategy is to use IP-layer
fragmentation (7.4 Fragmentation and 8.5.4 IPv6 Fragment Header). This is not ideal, but as most SNMP
data stays within local and organizational networks it is at least workable.

Another consequence of the use of UDP is that every SNMP device needs an IP address. For devices acting
at the IP layer and above, this is not an issue, but an Ethernet switch or hub has no need of an IP address for
its basic function. Devices like switches and hubs that are to use SNMP must be provided with a suitable IP
interface and address. Sometimes, for security, these IP addresses for SNMP management are placed on a
private, more-or-less hidden subnet.

SNMP also supports the writing of attributes to devices, thus implementing a remote-configuration mecha-
nism. As writing to devices has rather more security implications than reading from them, this mechanism
must be used with care. Even for read-only SNMP, however, security is an important issue; see 21.11 SN-
MPv1 communities and security and 21.15 SNMPv3.

Writing to agents may be done either to configure the network behavior of the device – eg to bring an
interface up or down, or to set an IP address – or specifically to configure the SNMP behavior of the agent.

Finally, SNMP supports asynchronous notification through its traps mechanism: a device can be configured
to report an error immediately rather than wait until asked. While traps are quite important at many sites,
we will largely ignore them here.

SNMP is sometimes used for server monitoring as well as device monitoring; alternatively, simple scripts
can initiate connections to services and discern at least something about their readiness. It is one thing,
however, to verify that an email server is listening on TCP port 25 and responds with the correct RFC 5321
(originally RFC 821) EHLO message; it is another to verify that messages are accepted and then actually
delivered.

21.2.1 SNMP versions

SNMP has three official versions, SNMPv1, SNMPv2 and SNMPv3. SNMPv1 made its first appearance
in 1988 in a collection of RFCs starting with RFC 1065 (updated in RFC 1155); the current definition for
“core” attribute reporting was released as RFC 1213 in 1991. We will return to this below in 21.10 MIB-2.

SNMPv2 was introduced in 1993 with RFC 1441. Loosely speaking, SNMPv2 expanded on the basic
information, starting with RFC 1442 (currently RFC 2578), and also introduced improved techniques for
managing tables.

SNMPv2 also included a proposed security mechanism, but it was largely rejected by the marketplace.
Ultimately, a version of SNMPv2 that used the SNMPv1 “community” security mechanism (21.11 SNMPv1
communities and security) was introduced; see RFC 1901. This “community”-security version became
known as SNMPv2c.

SNMPv3 then finally delivered a model for reasonably effective security. The “User-based Security Model”
or USM was first proposed in 1998 in RFC 2264; the final 2002 version is in RFC 3414.

702 21 Network Management and SNMP

https://tools.ietf.org/html/rfc5321.html
https://tools.ietf.org/html/rfc821.html
https://tools.ietf.org/html/rfc1065.html
https://tools.ietf.org/html/rfc1155.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1441.html
https://tools.ietf.org/html/rfc1442.html
https://tools.ietf.org/html/rfc2578.html
https://tools.ietf.org/html/rfc1901.html
https://tools.ietf.org/html/rfc2264.html
https://tools.ietf.org/html/rfc3414.html

An Introduction to Computer Networks, Release 1.9.21

21.3 SNMP Naming and OIDs

A central part of the SNMP protocol is how to name each device attribute in a consistent manner. The
naming scheme chosen was the Object Identifier, or OID, hierarchy.

Starting in 1985, the International Standards Organization (ISO) and the standardization sector of the Inter-
national Telecommunications Union (ITU-T, then known as CCITT) developed the Object Identifier scheme
for naming anything in the world that needed naming. Names, or OIDs, consist of strings of non-negative in-
tegers. In textual representation these component integers are often written separated by periods, eg 1.3.6.1;
the notation { 1 3 6 1 } is also used. The scheme is standardized in ITU-T X.660.

All OIDs used by SNMP begin with the prefix 1.3.6.1. For example, the sysName attribute corresponds to
OID 1.3.6.1.2.1.1.5. The prefix 1.3.6.1.2.1 is known as mib-2, and the one-step-longer prefix 1.3.6.1.2.1.1
is system. Occasionally we will abuse notation and act as if names referred to single additional levels
rather than full prefixes, eg the latter two names in mib-2.system.sysName.

The basic SNMP read operation is Get() (sent via the GetRequest protocol message), which takes an
OID as parameter. The agent receiving the Get request will, if authentication checks out and if the OID
corresponds to a valid attribute, return a pair consisting of the OID and the attribute value. We will return to
this in 21.8 SNMP Operations, and see how multiple attribute values can be requested in a single operation.

OIDs form a tree or hierarchy; the immediate child nodes of, say, 1.3.6.1 of length 4 are all nodes 1.3.6.1.N
of length 5. The root node, with this understanding, is anonymous; OIDs are sometimes rendered with a
leading “.” to emphasize this: .1.3.6.1. Alternatively, the numbers can be thought of as labels on the arcs of
the tree rather than the nodes.

There is no intrinsic way to distinguish internal OID nodes – prefixes – from leaf OID nodes that correspond
to actual named objects. Context is essential here.

It is common to give the numeric labels at any specific level human-readable string equivalents. The three
nodes immediately below the root are, with their standard string equivalents

• itu-t(0)

• iso(1)

• joint-iso-itu-t(2)

The string equivalents can be thought of as external data; when OIDs are encoded only the numeric values
are included.

OID naming has been adopted in several non-SNMP contexts as well. ISO and ITU-T both use OIDs
to identify official standards documents. The X.509 standard uses OID naming in encryption certificates;
see RFC 5280. The X.500 directory standard also uses OIDs; the related RFC 4524 defines several OID
classes prefixed by 0.9.2342.19200300.100.1. As a non-computing example, Health Level Seven names US
healthcare information beginning with the OID prefix 2.16.840.1.113883.

As mentioned above, SNMP uses OIDs beginning with 1.3.6.1; in the OID tree these levels correspond to

• iso(1)

• org(3): organizations

• dod(6): the US Department of Defense, the original sponsor of the Internet

21.3 SNMP Naming and OIDs 703

http://www.iso.org
http://www.itu.int/en/ITU-T
https://tools.ietf.org/html/rfc5280.html
https://tools.ietf.org/html/rfc4524.html
http://www.hl7.org/

An Introduction to Computer Networks, Release 1.9.21

• internet(1), apparently the only sublevel of DOD

Here is a portion of the OID tree showing a few other assignments in the iso subtree, and highlighting the
1.3.6.1 prefix above. More entries are available from oid-info.com/get.

itu-t(0)
iso(1)

standard(0)
registration-authority(1)
member-body(2)
identified-organization(3)

nist(5)
dod(6)
icd-ecma(12) (European Computer Manufacturers Association)
oiw(14) (OSE Implementers Workshop)
edifactboard(15)
ewos(16) (European Workshop on Open Systems)
osf(22) (Open Software Foundation)
nordunet(23)
nato(26)
icao(27) (International Civil Aviation Organization)
. . .
amazon(187) (the author has no idea if Amazon currently uses this)

joint-iso-itu-t(2)

This SNMP 1.3.6.1 prefix is spelled out in RFC 1155 via the syntax

internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }

which means that the string internet has the type OBJECT IDENTIFIER and its actual value is the list
to the right of ::=: 1.3.6.1. The use of iso here represents the OID prefix .1, conceptually different from
just the level iso(1). The formal syntax here is ASN.1, as defined by the ITU-T standard X.680. We will
expand on this below in 21.6 ASN.1 Syntax and SNMP, though the presentation will mostly be informal;
further details can be found at http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx.

After the above, RFC 1155 then defines the OID prefixes for management information, mgmt, and for
private-vendor use, private, as

mgmt OBJECT IDENTIFIER ::= { internet 2 }
private OBJECT IDENTIFIER ::= { internet 4 }

Again, internet represents the newly defined prefix 1.3.6.1. Most general-purpose SNMP OIDs begin
with the mgmt prefix. The private prefix is for OIDs representing vendor-specific information; for
example, the prefix 1.3.6.1.4.1.9 has been delegated to Cisco Systems, Inc. RFC 1155 states that both the
mgmt and private prefixes are delegated by the IAB to the IANA.

Responsibility for assigning names that begin with a given OID prefix can easily be delegated. The Internet
Activities Board, for example, is in charge of 1.3.6.1. (According to RFC 1155, this delegation by the

704 21 Network Management and SNMP

http://oid-info.com/get
https://tools.ietf.org/html/rfc1155.html
http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://tools.ietf.org/html/rfc1155.html
https://tools.ietf.org/html/rfc1155.html
https://tools.ietf.org/html/rfc1155.html

An Introduction to Computer Networks, Release 1.9.21

Department of Defense to the IAB was never made officially; the IAB just began using it.)

21.4 MIBs

A MIB, or Management Information Base, is a set of definitions that associate OIDs with specific at-
tributes, and, along the way, associates each numeric level of the OIDs with a symbolic name. For example,
below is the set of so-called System definitions in the core RFC 1213 MIB known as MIB-2 (21.10 MIB-
2). The mib-2 and system prefixes are first defined as

mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }
system OBJECT IDENTIFIER ::= { mib-2 1 }

that is, 1.3.6.1.2.1 and 1.3.6.1.2.1.1 respectively. The system definitions, which represent actual attributes
that can be retrieved, are as follows

sysDescr { system 1 }
sysObjectID { system 2 }
sysUpTime { system 3 }
sysContact { system 4 }
sysName { system 5 }
sysLocation { system 6 }
sysServices { system 7 }

Most of these attributes represent string values that need to be administratively defined; we will return to
these in 21.10 MIB-2.

The MIB is not the actual attributes themselves; the set of all xOID,valuey pairs stored by an SNMP manager
– perhaps the result of a single set of queries, perhaps the result of a sequence of queries over time – is
sometimes known as the management database, or MDB, though that term is not as universal.

Colloquially, a MIB can be either the abstract set of OID definitions or a particular ASCII file that defines the
set. The latter must be run through a MIB compiler to be used by other software; users of a MIB browser
generally find the information much more useful if the appropriate MIB file is loaded before making SNMP
queries. Some RFCs can be read directly by the MIB compiler, which knows to edit out the non-MIB
discussion.

The Net-SNMP package contains SNMP agents for Linux and Macintosh computers (Microsoft has their
own SNMP-agent software), and command-line tools for making SNMP queries; these latter tools are also
available for Windows. The sysName value, for example, can be retrieved with the snmpget command

snmpget -v1 -c public localhost 1.3.6.1.2.1.1.5.0

The OID here corresponds to { system 5 0 }; the final 0 represents a SNMP convention that indicates this is
a scalar value and is not part of a table. See 21.9 MIB Browsing for further examples.

MIBs serve as both documentation and data. As documentation, they tell the implementer of a given SNMP
agent what information is to be returned for each OID request. As data, they serve to translate numeric OIDs
into human-readable data. For example, if the above snmpget command understands the appropriate MIB
(eg because the MIB file is in the right place), we can type

21.4 MIBs 705

https://tools.ietf.org/html/rfc1213.html

An Introduction to Computer Networks, Release 1.9.21

snmpget -v1 -c public localhost sysName.0

It is not uncommon for an installation to involve several hundred different (possibly overlapping) MIBs, each
defining a different portion of the OID tree. This is particularly true of the private subtree 1.3.6.1.4.1,
for which one might have a separate MIB file for each manufacturer and device.

21.5 SNMPv1 Data Types

SNMP uses OIDs as the indexes for retrieval of attributes. The attributes themselves can have the following
types, as of RFC 1155:

Datatype Description
INTEGER A 32-bit integer
OCTET STRING Either a text string or a network address
Counter A non-negative INTEGER that increases from 0, and can wrap around.
Gauge An INTEGER that can rise and fall but that never wraps around
TimeTicks An INTEGER used to measure time in 1/100ths of a second
OBJECT IDENTIFIER An OID appearing as data
IpAddress An IPv4 address, as an OCTET STRING of fixed length 4
NetworkAddress An IpAddress, in theory allowing for other kinds of addresses later
Opaque Any other data, ultimately an OCTET STRING

The type of the sysName attribute, for example, is OCTET STRING.

When SNMP data values are returned by an agent, they are tagged with their type. Thus, the receiver can
See 21.12 SNMP and ASN.1 Encoding for further details.

When the INTEGER type is used to represent an enumerated type, the value of zero must not be used; an
example is the status type up(1), down(2), testing(3).

21.6 ASN.1 Syntax and SNMP

We have already seen the ASN.1 definition of some OBJECT IDENTIFIERs in 21.3 SNMP Naming and
OIDs.

The attribute corresponding to any single OID is always a scalar type, eg one of the above. However, SNMP
also uses some composite type definitions:

SEQUENCE { fieldname1 type1, fieldname2 type2, . . . }: This defines a record type.

SEQUENCE OF type: This defines a homogeneous list – an array or table – of objects of type
type. In most cases, type represents a SEQUENCE type, and so the list is a list of records, or
table in the database sense.

706 21 Network Management and SNMP

https://tools.ietf.org/html/rfc1155.html

An Introduction to Computer Networks, Release 1.9.21

Note the importance of the keyword OF here to distinguish records from lists.

The OBJECT-TYPE macro is heavily used in MIB definitions. It has the format

objname OBJECT-TYPE
SYNTAX type
ACCESS read-write or read-only or write-only or not-accessible
STATUS mandatory or optional or obsolete
DESCRIPTION descriptive string
INDEX OID used for table indexing
::= OID assigned to objname

The objname, sometimes called the OBJECT DESCRIPTOR, is intended to be globally unique. The value
for SYNTAX must be a valid ASN.1 syntax specification; see 21.10 MIB-2 for examples. The val-
ues for ACCESS and STATUS are, in each case, one of the literal strings shown above. The value for
DESCRIPTION is optional.

Many of the objects so defined will represent tables or other higher-level structures; in this case the Object
ID of the last line will represent an internal node of the OID tree rather than a leaf node, and the ACCESS
will be not-accessible. It is not that the table is actually inaccessible, but rather that the attributes
must be retrieved one by one rather than collectively.

Here is a concrete simple example; other examples appear in the following section. The OID value of
ifEntry here is 1.3.6.1.2.1.2.2.1.

ifInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The total number of octets received on the
interface, including framing characters."

::= { ifEntry 10 }

The data type definitions and the above ASN.1 syntax used for are collectively known as the structure of
management information, or SMI. The SMI in effect defines all the types and structures needed by the
various MIBs. For SNMPv1, the SMI is defined in RFC 1155.

21.7 SNMP Tables

We have seen in 21.4 MIBs how SNMP organizes the OID names for the system group, which consists
of scalar values. Each agent attribute is assigned a permanent OID name; eg { system 5 0 } is the full OID
for the sysName attribute. OIDs for scalar (non-table) attributes always include a final “.0”.

Most agent data, however, comes in the form of tables, that is, lists of records. In SNMP, they are sometimes
referred to as conceptual tables, as the SNMP agent offering the table is often not responsible for its storage
or physical organization. In this sense, SNMP tables resemble database “views”.

These tables can be accessed by linear search or by primary key lookup; the key can be a single attribute
or a set of attributes and is known as the index. SNMP does not support secondary keys on tables, though

21.7 SNMP Tables 707

https://tools.ietf.org/html/rfc1155.html

An Introduction to Computer Networks, Release 1.9.21

it would in principle be possible for an agent to present the same data in two tables, each with a different
index (a related example of this trick appears in 21.14.1.5 Matrix).

SNMP tables are almost always small enough that the agent keeps all the records in main memory; database-
style concerns about disk-storage organization and indexing are not an issue.

As in databases, an SNMP table index acts as a constraint, disallowing two distinct rows with identical index
values. When an SNMP table mirrors a “real” table (eg the IP forwarding table), problems sometimes occur
when the SNMP index is too “small” – has too few attributes – and so the SNMP table may not be able to
accurately represent the original table. See 21.13.12.2 IP-Forward MIB for an example.

In the world of databases, a key with too many attributes may fail to capture an important constraint; it may
also be less efficient. Neither is a concern with SNMP, with the exception of tables that support row creation,
which we may take to be a special case. SNMP table indexes may thus sometimes include attributes that
from a database perspective would likely be omitted from the key; again, see 21.13.12.2 IP-Forward MIB
for examples.

We will look here at three examples of SNMPv1 tables, each part of MIB-2. The goal right now is to present
how the tabular structure is mapped onto the underlying OID-tree structure; we will return to the syntactic
definition of tables in 21.10.2 Table definitions and the interfaces Group and to the semantics of each table
in 21.10 MIB-2. SNMPv2 has made some modest improvements to how tables are defined.

The first example will be the SNMP interface table, ifTable. For each network interface (eg loopback,
Ethernet 0, Ethernet 1, Wireless 0, Point-to-Point 0, etc) a collection of attributes including the device name,
MTU, bitrate, physical address, and the number of bytes and packets received and sent. The index here (as
we shall see later) is an abstractly assigned interface number, known as ifIndex. Here is some sample
data, not showing all columns that the actual MIB-2 table includes, and not (yet) showing any OIDs. The
header of the index column, ifIndex, is in italic; the value is a single integer. The eth0 interface has a
higher number for packets than bytes (octets) because the 32-bit inOctets value has wrapped around.

ifIndex name MTU bitrate inOctets inPackets
1 lo 16436 10,000,000 171 3
2 eth0 1500 100,000,000 37155014 1833455677
3 eth1 1500 100,000,000 0 0
4 ppp0 1420 0 2906687015 2821825

Routes

Although the data here is mostly a mash-up of records from different sources, the 10.38.0.0 route below
was a VPN route using the ppp0 tunnel above. Otherwise, workstation forwarding tables often have just
two entries, for the local subnet and the default route.

The SNMP routing table, ipRouteTable, based on the IP forwarding table of 1.10 IP - Internet
Protocol, has a column representing the destination network, a variety of status and information columns
(eg for RouteAge), and a NextHop column; the index is the destination-network attribute. Again, here is
some sample data with the index column again in italic. The index here – an IP address – is a compound
object: a list of four integers. We return to this below.

708 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

dest mask metric next_hop type
0.0.0.0 0.0.0.0 1 192.168.1.1 indirect(4)
10.0.0.0 255.255.255.0 0 0.0.0.0 direct(3)
10.38.0.0 255.255.0.0 1 192.168.4.1 indirect(4)

(The type column indicates whether the destination is local or nonlocal; the host is on subnet 10.0.0.0/24
and so the middle entry involves local delivery. The use of indirect(4) and direct(3) is an example
of an SNMP enumerated type.)

The indexing of the interfaces table is (usually) dense: the values for ifIndex are typically consecutive
numbers. The routing table, on the other hand, has a sparse index: the index values are likely nowhere near
one another.

The TCP Connections table tcpConnTable lists every TCP connection together with its connection
state as in 12.7 TCP state diagram; one can obtain this on most Linux, Windows or Macintosh systems
with the command netstat -a. The index in this case consists of the four attributes of the connection-
defining socketpair: the local address, the local port, the remote address and the remote port. In this table,
the only attribute not part of the index is an integer representing the connection state (again represented by
an SNMP enumerated type).

localAddr localPort remoteAddr remotePort state
10.0.0.3 31895 147.126.1.209 993 established(5)
10.0.0.3 40113 74.125.225.98 80 timeWait(11)
10.0.0.3 20459 10.38.2.42 22 established(5)

SNMP has adopted conventions for how tabular data such as the above is to be encoded in the OID tree. The
first step in this strategy is to define, statically, an OID prefix for the subtree representing the table; in this
section we will denote this by T (later, in 21.10.2 Table definitions and the interfaces Group, we will see
that T often represents two OID levels of the form Table.Entry, or T.E). Each attribute of the table (that is,
each column) is then assigned a non-leaf OID by appending successive integers to the table prefix, starting
at 1. For example, the root prefix for the interfaces table is T = 1.3.6.1.2.1.2.2.1, known as ifEntry. The
columns shown in the fraction of the interfaces table above have the following OIDs:

OID table column
{ ifEntry 1 } or T.1 The interface number, ifIndex
{ ifEntry 2 } or T.2 The interface name or description
{ ifEntry 4 } or T.4 The interface MTU
{ ifEntry 5 } or T.5 The interface bitrate
{ ifEntry 10 } or T.10 The number of inbound octets (bytes)
{ ifEntry 11 } or T.11 The number of inbound unicast packets

The second step is to establish a convention for converting the index attributes to a list of integers that can be
used as an OID suffix identifying a particular row. This index OID suffix is then appended to the attribute
OID prefix (identifying the column) to obtain the full OID (with no trailing .0 this time) that represents the
name of the table data value.

For the case of the interfaces table, the interface number is used as a single-level OID suffix. The eth1

21.7 SNMP Tables 709

An Introduction to Computer Networks, Release 1.9.21

value for inOctets thus has OID name T.10.3: 10 is the number assigned to the inOctets column and 3
is the ifIndex value for the eth1 row. Written in full, this is 1.3.6.1.2.1.2.2.1.10.3. Note this numbering
has the form T.col.row, the transposition of the more common programming-language row-first convention
T[row][col].

For the routing and TCP tables presented here, IPv4 addresses are written in dotted-decimal notation, eg
10.38.0.0, and then converted to four levels of OID suffix, eg .10.38.0.0. (Note that 10.38.0.0 has the same
textual representation as an IPv4 address and as a four-level OID suffix (though a leading ‘.’ has been added
here to the latter), but logically they are entirely different things).

This OID-suffix encoding may seem obvious, but this is deceptive, and in 21.13.13 TCP-MIB we will see
a newer convention in which the IPv4 address 10.38.0.0 would be encoded as the OID suffix .1.4.10.38.0.0,
where the 1 denotes an IPv4 address (2 for IPv6) and the 4 denotes the address length as an OCTET STRING.
The present rule, for the .10.38.0.0 four-level encoding, comes from RFC 2578, §7.7; the IpAddress type
(for IPv4 only) is defined as IMPLICIT OCTET STRING (SIZE (4)) (in RFC 1155), of predeter-
mined length. An IP address might have been encoded as a single OID level using the address as a single
unsigned 32-bit integer, but this option was not chosen.

In the routing table above, the nextHop column is assigned the number 7, so the nextHop for 10.38.0.0 thus
has the OID T.7.10.38.0.0.

The OID suffix encoding used for indexing has nothing to do with the ASN.1 BER encoding used for data
values, 21.12 SNMP and ASN.1 Encoding.

For the TCP connections table, the two IP addresses involved each translate to four-level OID chunks, as in
the routing table, and the two port numbers each translate to one-level chunks; the resultant OID suffix for
the state of the first connection in the table above would be

.10.0.0.3.31895.147.126.1.209.993

where, for clarity, the port-number levels are shown in italic. The state column is assigned the identifier 1,
so this would all be appended to T.1 (it is common, but, as we see here, not universal, for column-number
assignment to begin with the index columns).

Here is a column-oriented diagram of the interfaces-table fragment from above. As we have been doing, the
table prefix is denoted T and nodes are labeled T.col.row. The topmost T and the first row (with the T.col
OIDs) are internal nodes; these are drawn with the heavier, blue boxes. The lower four rows, with black
boxes, are leaf nodes.

710 21 Network Management and SNMP

https://tools.ietf.org/html/rfc2578.html
https://tools.ietf.org/html/rfc1155.html

An Introduction to Computer Networks, Release 1.9.21

T.1
ifIndex

T.2
ifDesc

T.3
ifMTU

T.4
ifSpeed

T.10
ifInOctets

T.11
ifInUcastPkts

T

T.1.1
1

T.1.2
2

T.1.3
3

T.1.4
4

T.2.1
lo0

T.3.1
16436

T.4.1
10,000,000

T.10.1
171

T.11.1
3

T.2.2
eth0

T.3.2
1500

T.4.2
100,000,000

T.10.2
37155014

T.11.2
18334556773

T.2.3
eth1

T.3.3
1500

T.4.3
100,000,000

T.10.3
0

T.11.3
0

T.2.4
ppp0

T.3.4
1420

T.4.4
0

T.10.4
2906687015

T.11.4
2821825

The diagram above emphasizes the arrangement into columns. The actual OID tree structure, however, is as
in the diagram below; all the leaf nodes in one column above are actually sibling nodes.

21.7 SNMP Tables 711

An Introduction to Computer Networks, Release 1.9.21

T.1

ifIndex

T.2

ifDesc

T.3

ifMTU

T

T.1.1

1

T.1.2

2

T.1.3

3

T.2.1

lo0

T.2.2

eth0

T.2.3

eth1

T.3.1

116436

T.3.2

1500

T.3.3

1500

...

In all three tables here, the index columns are part of the table data. This is unnecessary; all the index
columns are of necessity encoded in the full OID of any table entry. In SNMPv2 it is required (though not
necessarily enforced) to in effect omit the index columns from the table as presented by the agent (though
they are still declared); see 21.13.4 SNMPv2 Indexes.

We also note that, in all three tables here (and in most SNMP tables that serve purely as sources of infor-
mation), new rows cannot be added via the SNMP manager. Some SNMP tables, however, do support row
creation; see 21.14 Table Row Creation.

21.8 SNMP Operations

As mentioned earlier, the fundamental read operation is Get(); the protocol message itself is known as
GetRequest, and also contains the authentication information (that is, the community string for SNMPv1
and SNMPv2c). A request-id is included so multiple outstanding GetRequests aren’t mixed up.

The GetRequest message can contain a list of OIDs (actually encoded as a list of xOID,nully pairs called
a VarBind list). A single-OID get simply entails a VarBind list of length 1.

The agent receiving the GetRequest validates the authentication and then, if successful, looks up each
OID in the received list to find the corresponding value. The filled-in VarBind list of all xOID,valuey pairs
is returned.

If any value cannot be found, eg because the OID represented an interior node of the OID tree instead of an
actual value, or because the OID lay outside the portion of the OID tree that the request was authorized to
access, then in SNMPv1 no values are returned. Only if every OID in the list corresponds to a valid value is
a list of all the xOID,valuey pairs returned. SNMPv2 later relaxed this rule to allow the return of whatever
individual requests were successful.

If the exact OID is not known – which is often the case for tabular data – the GetNext() operation can
be used. It works like Get(), except that for each OID oid in the request list the agent finds the next leaf

712 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

OID strictly following oid in lexicographical order, which we will call oid1. The agent then includes the pair
xoid1,valuey in its response, where value is the value corresponding to oid1. Note that in the GetNext()
case oid1 is not previously known to the manager. Note also that SNMP always returns, with each value, the
corresponding OID, which for tabular data encodes the full index for the value.

The GetNext() operation allows a manager to walk through any subtree of the OID tree. If the root
of the subtree is prefix T, then the first call is to GetNext(T). This returns xoid1,value1y. The next call
to GetNext has parameter oid1; the agent returns xoid2,value2y. The manager continues with the series of
GetNext calls until, finally, the subtree is exhausted and the agent returns either an error or else (more likely)
an xoidN,valueNy for which oidN is no longer an extension of the original prefix p.

As an example, let us start with the prefix 1.3.6.1.2.1.1, the start of the system group. The first call to
GetNext() will return the pair

x1.3.6.1.2.1.1.1.0, sysDescr_valuey

The OID 1.3.6.1.2.1.1.1.0 is the first leaf node below the interior node 1.3.6.1.2.1.1.

The second call to GetNext will take OID 1.3.6.1.2.1.1.1.0 as parameter and GetNext() will return

x1.3.6.1.2.1.1.2.0, sysObjectID_valuey

Here, the OID returned is the next leaf node strictly following 1.3.6.1.2.1.1.1.0. The process will con-
tinue on through {system 3 0}, {system 4 0}, etc, until an OID is found that is not part of the system
group. As we have seen, this will likely be the first entry of the interfaces group, ifNumber.0, with OID
1.3.6.1.2.1.2.1.0.

The action of GetNext() is particularly useful when retrieving a table, such as the interfaces table pre-
sented in the preceding section. In that example the index values are consecutive integers, and so an SNMP
manager could likely guess them. However, guessing the index values for the other two tables – the IP
forwarding table and the TCP connections table – would be well nigh impossible. And without the index
values, we do not have a complete OID.

Consider again the partial-column version of the interfaces table as diagrammed in this format:

21.8 SNMP Operations 713

An Introduction to Computer Networks, Release 1.9.21

T.1
ifIndex

T.2
ifDesc

T.3
ifMTU

T.4
ifSpeed

T.10
ifInOctets

T.11
ifInUcastPkts

T

T.1.1
1

T.1.2
2

T.1.3
3

T.1.4
4

T.2.1
lo0

T.3.1
16436

T.4.1
10,000,000

T.10.1
171

T.11.1
3

T.2.2
eth0

T.3.2
1500

T.4.2
100,000,000

T.10.2
37155014

T.11.2
18334556773

T.2.3
eth1

T.3.3
1500

T.4.3
100,000,000

T.10.3
0

T.11.3
0

T.2.4
ppp0

T.3.4
1420

T.4.4
0

T.10.4
2906687015

T.11.4
2821825

Let us initially call GetNext(T). The next leaf node is the upper left black box, with OID T.1.1. The call to
GetNext(T) returns the pair xT.1.1,1y. We now continue with a call to GetNext(T.1.1); this returns xT.1.2,2y
and represents the black box immediately below the first one. The next two calls to GetNext() return,
successively, xT.1.3,3y and xT.1.4,4y.

Now we call GetNext(T.1.4). The next leaf node following is the first leaf node in the second column, T.2.1;
the value returned is xT.2.1,”lo”y. The next three calls to GetNext, each time supplied with parameter the
value returned by the previous GetNext(), return the next three values making up the second, ifDesc
column of the table.

At the bottom of the second column, the call to GetNext(T.2.4) returns the xOID,valuey pair that is the first
leaf node of the third column, xT.3.1,16436y. At the bottom of the third column, GetNext() jumps to
the top of the fourth column, and so on. In this manner GetNext() iterates through the entire table, one
column at a time.

When we finally get to the last leaf node of the table, shown here as the lower-right T.11.4 (though the actual
ifTable has additional columns). The call to GetNext(T.11.4) returns something outside the table. It will

714 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

either return an error – in the event that there is no next OID that the manager is authorized to receive – or
the next leaf node up and to the right of T. (In the normal MIB-2 collection, this is would be the first entry
of the atTable table.)

Either way, the manager receiving the data can tell that its request for GetNext(T.11.4) has gone past the
end of table T, and so T has been completely traversed.

Here is a diagram of the above sequence of GetNext() operations involved in traversing our partial
interfaces table; it shows the GetNext(T.11.4) at the table’s lower right returning the beyond-the-table
xOID,valuey pair xA,avaluey:

⟨T.1.1, 1⟩

GetNext(T)

⟨T.1.2, 2⟩

GetNext(T.1.1)

⟨T.1.4, 4⟩

...

⟨T.2.1, lo⟩

GetNext(T.1.4)

⟨T.2.2, eth0⟩

...

GetNext(T.2.1)

⟨A, avalue⟩

GetNext(T.11.4)

A is the next OID above and to the
right of T, and avalue is its value.

Diagram of traversing the (partial) interfaces table with GetNext()

Some manager utilities performing this kind of table retrieval – often called a “walk” – will present the data
in the order retrieved, one column at a time, and some will (perhaps as an option) format the data visually

21.8 SNMP Operations 715

An Introduction to Computer Networks, Release 1.9.21

to look more like a table. See Net-SNMP’s snmpwalk and snmptable in 21.9 MIB Browsing.

21.8.1 Multi-attribute Get()

A single Get()/GetNext() request can in fact include a list of attributes to be retrieved. This provides
an efficient way to request entire rows of a table.

A manager in general does not know all the index values of a table, but likely does know all the column
OIDs (as in the blue full-length row above). The manager can speed up the table-retrieval process by asking
for entire rows at a time. The first such GetNext() might be

GetNext(T.1, T.2, T.3, T.4, T.10, T.11)

These are the OIDs of the blue full-length row; these are all non-leaf OIDs. The result is the list of pairs

xT.1.1,1y, xT.2.1,”lo”y, xT.3.1,16436y, xT.4.1,10000000y, xT.10.1,171y, xT.11.1,3y

That is, the table’s entire first row is returned (where we are assuming again that the only columns are 1, 2,
3, 4, 10 and 11). The next call to GetNext() would use the OIDs returned above:

GetNext(T.1.1, T.2.1, T.3.1, T.4.1, T.10.1, T.11.1)

This would then return the table’s entire second row, and so on. When we got to the very last row, the call

GetNext(T.1.4, T.2.4, T.3.4, T.4.4, T.10.4, T.11.4)

would return (assuming now that the columns shown are the only columns that exist)

xT.2.1,”lo”y, xT.3.1,16436y, xT.4.1,10000000y, xT.10.1,171y, xT.11.1,3y, xA,avaluey

where A is the next leaf OID above and to the right of T (assuming no error). At this point the manager
knows, as in the single-attribute-get case, that the entire table has been retrieved.

It does not matter whether the manager uses this multi-attribute form of GetNext() to return all the
columns of the relevant table, or only the subset of columns in which the manager is interested.

We will see in 21.13.3 SNMPv2 GetBulk() that SNMPv2 introduced an operation GetBulk() that can
return multiple rows of multiple columns in a single operation.

Tables are not necessarily static. New dynamic interfaces may be added, and new routes and TCP connec-
tions are added all the time. A manager reading a table using the single-attribute form of GetNext() may
find that only the latter part of a new row is retrieved, or, alternatively, that the first part of a deleted row is
retrieved. The multi-attribute GetNext() offers a little more protection from this.

21.8.2 Set()

SNMP also allows a Set() operation. Not all attributes are writable, of course, and a manager must have
write authority for those that are writable. And there is no SetNext(); the exact OID of each value must
be supplied.

In the system group, the sysName attribute is writable. It has OID 1.3.6.1.2.1.1.5.0; to update this we
would invoke

Set(1.3.6.1.2.1.1.5.0, “newsysname”)

716 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

Like Get(), Set() can be invoked on multiple attributes. Suppose table T has three columns T.1, T.2
and T.3, and two rows:

T.1 T.2 T.3
10 eth0 3.14159
11 eth1 2.71828

We can then change the second eth1 row to x11,ppp1,0.577216y with

Set((T.2.11,ppp1), (T.3.11,0.577216))

We cannot change the indexing this way, but see 21.14 Table Row Creation.

The semantics for multi-attribute Set() explicitly require – and still require – that either all the assignments
succeed, or all fail; that is, multi-attribute Set() operations are atomic. (The usual reason for a failure is
that the manager issuing the Set() lacked write permission for some item.) SNMPv1 had the same all-or-
nothing rule for multi-attribute Get(), but that requirement was relaxed in SNMPv2. The all-or-nothing
Set() semantics mean that certain updates cannot end up completed only half-way.

The multi-attribute Set() semantics do not mean, however, that near-simultaneous assignments by differ-
ent managers are serialized. Suppose, for example, two separate managers both attempt to update attributes
specified by OIDs X and Y, one to 10 and 100 and the other to 20 and 200. If the updates are scheduled at
about the same time,

Set((X,10), (Y,100))
Set((X,20), (Y,200))

then it is possible for the Set()s to be performed in the order (X,20), (X,10), (Y,100), (Y,200), leaving X =
10 and Y = 200. See 21.13.5 TestAndIncr for a workaround.

21.9 MIB Browsing

Tools for individual SNMP reading are widely available, and are very helpful for viewing what is going on.

We have already mentioned the Net-SNMP package. The command snmpget issues a single (perhaps
multi-attribute) Get() request; the very similar snmpgetnext issues a GetNext request. The command
snmpwalk takes an OID representing the root of a subtree, and returns everything in that subtree. Here is
an example that assumes the snmp agent on localhost is configured to use community string “tengwar” (see
21.11 SNMPv1 communities and security):

snmpwalk -v 1 -c tengwar localhost 1.3.6.1.2.1.2.2

The OID here is that of ifTable. Multiple OIDs are permitted for snmpget and snmpgetnext but not
for snmpwalk.

If the appropriate MIB files are loaded, the above command can also be entered as

snmpwalk -v 1 -c tengwar localhost ifTable

21.9 MIB Browsing 717

An Introduction to Computer Networks, Release 1.9.21

This entails putting the RFC1213-MIB file into a special directory (eg $HOME/.snmp/mibs), and then either
adding a line like

mibs +RFC1213-MIB

to the snmp.conf file, or by including the MIB name on the command line:

snmpwalk -v 1 -c tengwar -m RFC1213-MIB localhost ifTable

Note that RFC1213-MIB is the identifier assigned to the MIB file in its first line, as below, and not neces-
sarily the name of the file containing the MIB.

RFC1213-MIB DEFINITIONS ::= BEGIN

If the appropriate MIB file is loaded, the OIDs may be displayed symbolically rather than numerically, but
the data presentation will not change:

iso.3.6.1.2.1.1.5.0 = STRING: "valhal" ;; without MIB
RFC1213-MIB::sysName.0 = STRING: "valhal" ;; with MIB

(Actually, if the data is of type Object ID, then without the MIB the OID will be displayed numerically, and
with the appropriate MIB all or part of it may be displayed symbolically.)

Finally, the Net-SNMP manager package includes snmptable, which is like snmpwalk except that the
data is displayed as a table rather than one column at a time. For the snmptable command, the appropriate
MIB file must be installed. Net-SNMP comes with a mib browser with a graphical interface, tkmib.

The personal edition of the iReasoning MIB browser is not open-source, but it is free, and works well
on Windows, Macs and Linux; SNMPv3 is not supported. The license does prohibit the publication of
benchmark tests without consent.

21.10 MIB-2

We can now turn to the MIB that represents the core of SNMPv1 data, known as MIB-2, and defined in RFC
1213. The “2” here – often represented with a Roman numeral: MIB-II – represents the second iteration of
the definition, but it is still part of SNMPv1. The predecessor MIB-1 was first documented in RFC 1066,
1988.

As we saw in 21.4 MIBs, the MIB-2 OID prefix is 1.3.6.1.2.1.

MIB-2 has since been extended. We look at a few extensions below in 21.13.7 SNMPv2 MIB Changes,
21.13.9 IF-MIB and ifXTable, 21.13.13 TCP-MIB and 21.13.12.2 IP-Forward MIB. In general, serious
network management should make use of these newer versions. However, MIB-2 is still an excellent place
to get started, even if partly obsolete.

The original MIB-2 is divided into ten groups, not all of which are in current use:

• system(1): above

• interfaces(2): above, in brief

• at(3): the ARP cache, 7.9 Address Resolution Protocol: ARP

718 21 Network Management and SNMP

http://www.ireasoning.com/mibbrowser.shtml
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1066.html

An Introduction to Computer Networks, Release 1.9.21

• ip(4): including the IP forwarding table used as an example above

• icmp(5): information about ICMP, 7.11 Internet Control Message Protocol

• tcp(6): including the TCP connections table used as an example above

• udp(7): information about UDP activity

• egp(8): information about the now-obsolete EGP protocol, replaced by BGP

• transmission(10): never used

• snmp(11): about the SNMP agent itself

Originally group 9 was for CMOT, above, but this entry is commented out in RFC 1213 (though it does not
appear at all in MIB-1).

The at group is officially deprecated; the same ARP-cache information is available within the ip group.
The EGP protocol has been entirely replaced by BGP, and management of BGP routers is highly specialized;
RFC 4273 contains a BGP MIB but private MIBs are almost universally used here as well.

The transmission group was included anticipating the day when “definitions for managed transmission media
are defined”. This day has not come to pass.

The Net-SNMP agent implementation returns nothing for the egp and transmission groups.

21.10.1 The system Group

We have already looked at this in 21.4 MIBs and will not say much more, except to note that several
of the entries in this group must be manually configured. This can be done either through editing of the
configuration file, eg snmpd.conf, or else (in the case of read-write attributes) by using SNMP itself.

The sysObjectID value represents a vendor-specific OID for this particular system’s SNMP agent. For
example, the Net-SNMP package installed on my system returns 1.3.6.1.4.1.8072.3.2.10. The 1.3.6.1.4.1 is
the root of the private, vendor-specific, OID tree, and 8072 has been assigned to the Net-SNMP project.
This often represents, in practice, the way an SNMP manager can figure out the vendor of an agent, and
thus determine what vendor-specific information to query. One can use the 8072 discovered here to ask
for the subtree 1.3.6.1.4.1.8072, and find all sorts of Net-SNMP-specific information. Similarly, on one
particular Windows XP installation with Microsoft Network Monitoring installed, the sysObjectID value is
1.3.6.1.4.1.311.1.1.3.1.1; 311 is the OID level assigned to Microsoft in the private subtree 1.3.6.1.4.1.

The system group has been expanded in SNMPv2 with an Object Resource table, sysORTable; see
21.13.7 SNMPv2 MIB Changes.

21.10.2 Table definitions and the interfaces Group

The interfaces group consists of a single INTEGER value ifNumber representing the number of current
network interfaces (including “down” interfaces), and the interfaces table partially introduced earlier. We
take the opportunity here to outline exactly how MIB table definitions – and enumerated types – are struc-
tured using ASN.1.

21.10 MIB-2 719

https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc4273.html

An Introduction to Computer Networks, Release 1.9.21

Some of the interfaces-group definitions have later been updated. See, for example, RFC 2863, which also
redefines the group to use the additional features of the SNMPv2 SMI. We will return to an extension of the
interfaces group in 21.13.9 IF-MIB and ifXTable.

MIB table definitions almost always involve a two-level process: an OID is defined for the table, and then
a second OID is defined for a table entry, that is, for one row of the table. This second OID is usually
generated from the first by appending “.1”, and it is this second OID that represents the table prefix in the
sense of 21.7 SNMP Tables, denoted there by T.

The actual ASN.1, slightly annotated, is as follows:

ifTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfEntry -- note UPPER-CASE-I IfEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A list of interface entries. The number of
entries is given by the value of ifNumber."

::= { interfaces 2 } -- that is, 1.3.6.1.2.1.2.2

ifEntry OBJECT-TYPE -- note lower-case-i ifEntry
SYNTAX IfEntry -- note UPPER-CASE-I IfEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"An interface entry containing objects at the
subnetwork layer and below for a particular interface."

INDEX { ifIndex }
::= { ifTable 1 } -- that is, 1.3.6.1.2.1.2.2.1

Both these entries are not-accessible as they do not represent leaf nodes. The second declaration
above is for the lower-case-i ifEntry; the next definition in RFC 1213 is for the UPPER-CASE-I version.
The latter represents the complete list of all columns of an ifEntry/IfEntry object, together with their types
from (in most cases) 21.5 SNMPv1 Data Types. The PhysAddress type is defined in RFC 1213 as a
synonym for OCTET STRING. Definitions for the OID associated with each column comes later.

It is ifEntry that represents an actual row, and thus includes an INDEX entry to specify the attribute or
attributes that make up the primary key for that row.

We now define IfEntry:

IfEntry ::=
SEQUENCE {

ifIndex INTEGER,
ifDescr DisplayString,
ifType INTEGER,
ifMtu INTEGER,
ifSpeed Gauge,
ifPhysAddress PhysAddress,
ifAdminStatus INTEGER,
ifOperStatus INTEGER,
ifLastChange TimeTicks,
ifInOctets Counter,

720 21 Network Management and SNMP

https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1213.html

An Introduction to Computer Networks, Release 1.9.21

ifInUcastPkts Counter,
ifInNUcastPkts Counter,
ifInDiscards Counter,
ifInErrors Counter,
ifInUnknownProtos Counter,
ifOutOctets Counter,
ifOutUcastPkts Counter,
ifOutNUcastPkts Counter,
ifOutDiscards Counter,
ifOutErrors Counter,
ifOutQLen Gauge,
ifSpecific OBJECT IDENTIFIER

}

Attributes

There can be a certain eye-glazing tedium in some of SNMP’s lengthy attribute lists, such as the one
above. This can be replaced by panic in a hurry, though, when a problem has arisen and the proper
attribute to diagnose it doesn’t seem to be included anywhere.

It would have been possible to plug in the above definition of IfEntry into the SYNTAX specification of the
previous ifEntry, but that is cumbersome. The IfEntry definition is not a stand-alone OBJECT-TYPE and
does not have its own OID.

If all we wanted to do was to implement the interfaces table using the shortest possible OIDs, we would
not have created separate ifTable and ifEntry OIDs. This would mean, however, that we could not use
the OBJECT-TYPE macro to define ifTable, which would have been less consistent (especially as the
ASN.1 syntax also determines the packet encoding, as in 21.12 SNMP and ASN.1 Encoding). Essentially
every table prefix in SNMP is defined using two additional OID levels, as here, rather than one.

We now turn to the 22 specific interface attributes. Here is the definition for the first, ifIndex; it defines
column 1 of the interfaces table to be, in effect, ifEntry.1. As we are now talking about a leaf node, once the
OID suffix is appended to represent the index, the ACCESS is no longer not-accessible.

ifIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A unique value for each interface. Its value ranges
between 1 and the value of ifNumber. The value for each
interface must remain constant at least from one
reinitialization of the entity's network management system
to the next reinitialization."

::= { ifEntry 1 }

The DESCRIPTION clearly indicates that the values for ifIndex, used to specify interfaces, are to be
consecutive integers. Compliance with this rule has been an early casualty, for various reasons, and is
formally withdrawn in RFC 2863. Some vendors simply number physical interfaces non-consecutively. In
other cases, there is some underlying issue with consecutive numbering. For example, one of the author’s

21.10 MIB-2 721

https://tools.ietf.org/html/rfc2863.html

An Introduction to Computer Networks, Release 1.9.21

systems running Net-SNMP returns ifNumber = 3, and then the following table values:

ifIndex ifName
1 lo
2 eth0
549 ppp0

It turns out that ppp0 is a virtual interface corresponding to a VPN tunnel, 3.1 Virtual Private Networks,
and the underlying tunnel regularly fails and is then automatically re-instantiated. Each time it does so, the
ifIndex is incremented by 1.

The rule that interfaces be numbered consecutively was formally deprecated in RFC 2863, an SNMPv2
update of the interface group. This, in turn, makes the ifNumber value rather less useful than it might be;
most SNMP tables are not associated with a count attribute and seem to do just fine.

Most SNMP data values correspond straightforwardly with attributes defined by the hardware and the un-
derlying operating system. The ifIndex value does not, at least not necessarily. Generally the agent must
maintain at least some state to keep the ifIndex value consistent. In some cases, the ifIndex value
may be taken from the relative position of the interface in some internal operating-system table. This is not,
however, universally the case, as with the ifIndex value of 549 for ppp0 in the table above.

The ifIndex value is widely used throughout SNMP, and is often referenced in other tables. SNMPv2 even
defines a special type (a TEXTUAL CONVENTION) for it, named InterfaceIndex (21.13.1 SNMPv2
SMI and Data Types).

As we mentioned earlier, there is no reason to include ifIndex as an actual column in the table; the value
of ifIndex can always be calculated from the OID of any component of the row. The SNMPv2 approach
here – basically to define ifIndex as not-accessible – is described below in 21.13.4 SNMPv2
Indexes.

The ifDescr is a textual description of the interface; it is usually the device name associated with the
interface. RFC 1213 states “this string should include the name of the manufacturer, the product name and
the version of the hardware interface”, but this is inconsistent with Linux device-naming conventions. The
current rule is that it is merely unique.

The ifType attribute is our first example of how ASN.1 handles enumerated types. The value is a small
integer and the hardware type associated with each integer is spelled out as follows. The majority of the
networking technologies in this 1991 list have pretty much vanished from the face of the earth.

ifType OBJECT-TYPE
SYNTAX INTEGER {

other(1), -- none of the following
regular1822(2),
hdh1822(3),
ddn-x25(4),
rfc877-x25(5),
ethernet-csmacd(6),
iso88023-csmacd(7),
iso88024-tokenBus(8),
iso88025-tokenRing(9),
iso88026-man(10),
starLan(11),

722 21 Network Management and SNMP

https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc1213.html

An Introduction to Computer Networks, Release 1.9.21

proteon-10Mbit(12),
proteon-80Mbit(13),
hyperchannel(14),
fddi(15),
lapb(16),
sdlc(17),
ds1(18), -- T-1
e1(19), -- European equiv. of T-1
basicISDN(20),
primaryISDN(21), -- proprietary serial
propPointToPointSerial(22),
ppp(23),
softwareLoopback(24),
eon(25), -- CLNP over IP [11]
ethernet-3Mbit(26),
nsip(27), -- XNS over IP
slip(28), -- generic SLIP
ultra(29), -- ULTRA technologies
ds3(30), -- T-3
sip(31), -- SMDS
frame-relay(32)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The type of interface, distinguished according to
the physical/link protocol(s) immediately 'below'
the network layer in the protocol stack."

::= { ifEntry 3 }

A more serious problem is that over two hundred new technologies are unlisted here. To address this, the
values for ifType have been placed under control of the IANA, as defined in IANAifType; see RFC
2863 and https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib. The IANA can then add new
types without formally updating any RFC.

For the meaning of ifMtu, the interface MTU, see 7.4 Fragmentation. The 32-bit ifSpeed value will
be unusable once speeds exceed 2 Gbps; RFC 2863 defines an ifHighSpeed object with speed measured
in units of Mbps. This entry is part of the ifXTable table, 21.13.9 IF-MIB and ifXTable. RFC 2863
also clarifies that, for virtual interfaces that do not really have a bandwidth, the value to be reported is zero
(though in the example earlier the loopback interface lo was reported to have a bandwidth of 10 Mbps).
The ifPhysAddress is, on Ethernets, the Ethernet address of the interface.

The ifAdminStatus and ifOperStatus attributes are enumerated types: up(1), down(2), testing(3).
If the ifAdminStatus is up(1), and the ifOperStatus disagrees, then there is a likely hardware
malfunction. The ifLastChange attribute reflects the last time, in TimeTicks, there was a change in
ifOperStatus.

The next eleven entries count bytes, packets and errors. The ifInOctets and ifOutOctets count
bytes received and sent (including framing bytes, 4.1.5 Framing, if applicable). The problem with these
is that they may wrap around too fast: in 34 seconds at 1 Gbps. The MIB-2 values are still used, but are
generally supplemented with 64-bit counters defined in ifXTable, 21.13.9 IF-MIB and ifXTable.

21.10 MIB-2 723

https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc2863.html
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc2863.html

An Introduction to Computer Networks, Release 1.9.21

The packet counters are for unicast packets, non-unicast packets, discarded packets, errors, and, for inbound
packets only, packets with unknown protocols. The count of non-unicast packets is separated in ifXTable
into separate counts of broadcast and multicast packets.

The interface queue length is available in ifOutQLen. It takes a considerable amount of traffic to make
this anything other than 0. RFC 1213 says nothing about the timescale for averaging the queue length.

The last member of the classic MIB-2 interfaces group is ifSpecific, which has type ObjectID. It was
to return an OID that may be queried for additional ifType-specific information about the interface. It was
formally deprecated in RFC 2233.

21.10.3 The ip Group

The ip group contains several scalar attributes and three tables.

The first two attributes are writable:

• ipForwarding: a Boolean attribute to enable or disable forwarding

• ipDefaultTTL: the default TTL in outgoing packets (7.1 The IPv4 Header)

The next scalar attributes are as follows. Here and later, we summarize these informally.

• ipInReceives: the number of received IP packets

• ipInHdrErrors: the number of apparent IP packets received with header errors

• ipInAddrErrors: the number of IP packets received with bad destination addresses

• ipForwDatagrams: the number of forwarded IP packets

• ipInUnknownProtos: the number of received IP packets with unknown higher-level protocol

• ipInDiscards: the number of received IP packets that had no errors, but which were still discarded
due to resource limits

• ipInDelivers: the number of received IP packets delivered locally

• ipOutRequests: the number of IP packets originated by this node for delivery elsewhere

• ipOutDiscards: the number of outbound IP packets discarded due to resource limits

• ipOutNoRoutes: the number of outbound IP packets for which there was no route in the IP for-
warding table

• ipReasmTimeout: the value, in seconds, of the IP fragment-reassembly timer

• ipReasmReqds: the number of IP proper fragments received that needed reassembly at this node
(forwarded fragments are reassembled at their destination)

• ipReasmOKs: the number of fragmented IP packets successfully reassembled

• ipReasmFails: the number of fragmented IP packets not successfully reassembled

• ipFragFails: primarily, packets that needed fragmentation but their Dont Fragment bit (7.4 Frag-
mentation) was set

• ipFragCreates: the number of IP fragments created by this node

724 21 Network Management and SNMP

https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc2233.html

An Introduction to Computer Networks, Release 1.9.21

• ipRoutingDiscards: the number of packets that should have been forwarded, but were discarded
due to resource limits

The first table is the ipAddrTable, a list of all IP addresses assigned to this node together with interfaces
and netmasks.

The second table is the ipRouteTable, that is, the forwarding table. We looked briefly at this in
21.7 SNMP Tables. Note that the index consists solely of the destination IP address ipRouteDest,
which is not sufficient for CIDR-based forwarding in which the forwarding-table key is the xdest,netmasky
pair. Traffic to 10.38.0.0/16 might be routed differently than traffic to 10.38.0.0/24!

This table contains four attributes ipRouteMetric1 through ipRouteMetric4. RFC 1213 states
that unused metrics should be set to -1, but many agents simply omit such columns entirely. Agents may
similarly omit ipRouteAge.

The third table is ipNetToMediaTable, which is the ARP-cache table and which replaces a similar now-
deprecated table in the at group. The ipNetToMedia table adds one column, ipNetToMediaType, not
present in the at-group table; this column indicates whether an physical-to-IP-address mapping is invalid(2),
dynamic(3) or static(4). Most ARP entries are dynamic.

For an updated version of the ip group, see 21.13.12.1 IP-MIB and 21.13.12.2 IP-Forward MIB.

21.10.4 The icmp Group

The icmp group consists of 26 counters for various ICMP events. ICMP Echo Request (ping request) packets
have their own counter.

21.10.5 The tcp Group

The tcp group includes the following scalars:

• tcpRtoAlgorithm: the method for calculating the retransmission timeout, normally vanj(4) for
the Jacobson-Karels algorithm in 12.19 TCP Timeout and Retransmission.

• tcpRtoMin: the minimum TCP retransmission timeout, in milliseconds

• tcpRtoMax: the maximum TCP retransmission timeout, again in ms

• tcpMaxConn: if the system imposes a static cap on the number of allowed TCP connections, that is
returned. Most systems have no static cap, though, and return -1.

• tcpActiveOpens: the number of TCP connections opened from this node; specifically, the number
of TCP state transitions CLOSEDÑ SYN_SENT

• tcpPassiveOpens: literally, the number of TCP state transitions LISTENÑ SYN_RECD

• tcpAttemptFails: the number of TCP connections that went to CLOSED without ever being
ESTABLISHED

• tcpEstabResets: the number of TCP connections that went from ESTABLISHED or
CLOSE_WAIT directly to CLOSED, via RST packets

21.10 MIB-2 725

https://tools.ietf.org/html/rfc1213.html

An Introduction to Computer Networks, Release 1.9.21

• tcpCurrEstab: the number of TCP connections currently in either state ESTABLISHED or state
CLOSE_WAIT

• tcpInSegs: the count of received TCP packets, including errors and duplicates (though duplicate
reception is relatively rare)

• tcpOutSegs: the count of sent TCP packets, not including retransmissions

• tcpRetransSegs: the count of TCP packets with at least one retransmitted byte; the packet may
also contain new data

• tcpInErrs: the number of TCP packets received with errors, including checksum errors

• tcpOutRsts: the number of RST packets sent

Perhaps surprisingly, there is no counter provided for total number of TCP bytes sent or received. There is
also no entry for the congestion-management strategy, eg Reno v NewReno v TCP Cubic (15 Newer TCP
Implementations).

The tcp group also includes the tcpConnTable table, which lists, for each connection (identified by
xlocalAddress,localPort,remoteAddress,remotePorty) the connection state. We looked at this earlier in
21.7 SNMP Tables. The table is noteworthy in that four of its five columns are part of the INDEX.
A consequence is that to extract all the information from the table, a manager need only retrieve the
tcpConnState column: the other four attributes will all be encoded in the OID index that is returned
with each tcpConnState value.

We will look at the newer SNMPv2 replacement in 21.13.13 TCP-MIB.

21.10.6 The udp Group

The udp group contains the following scalars:

• udpInDatagrams: a count of the number of UDP packets received and deliverable to a socket

• udpNoPorts: a count of UDP packets received but undeliverable because the port was not open

• udpInErrors: a count of the number of UDP packets undeliverable due to any other errors

• udpOutDatagrams: a count of the number of UDP packets sent

The udp group also contains the table udpTable. This table lists those UDP ports that the node has open.
The table rows have the form xlocalAddr,localPorty, with both columns included in the index. If a UDP
socket accepts connections from anywhere, the localAddr will appear as 0.0.0.0.

21.10.7 The snmp Group

The SNMP group consists of 28 SNMP status and error attributes, numbered from 1 to 30 with 7 and 23 not
used.

726 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

21.11 SNMPv1 communities and security

An SNMPv1 manager authenticates itself to an agent by providing a string known as a community string
that is a combination of both userid and password. That is, the single string identifies the manager (or
manager group) and at the same time authenticates the manager.

The community string identifies a manager as a member of a designated “community”, in the conventional
use of the word, of managers. Of course, at many sites there will be only one manager that interacts with
any given agent.

Community strings are sent unencrypted, and so are vulnerable to sniffing. Even sniffing is not always
necessary; far and away the most popular value – the default for many agents – is the string “public”.
While the community string can be made obscure, and changed frequently, these are not enough; the only
appropriate security practice today is to use SNMPv3 authentication (21.15 SNMPv3).

If a manager sends an incorrect community string, then in SNMPv1 and SNMPv2c there is no reply. SN-
MPv3 relaxed this rule somewhat, 21.15.3 SNMPv3 Engines.

A single agent can support multiple community strings. Each community has an associated subset of the
MIB (a view) that it allows. For example, an agent can be configured so that the community string “system”
allows the manager access to the system group, the community string “tengwar” allows access to the entire
MIB-2 group, and the community string “galadriel” allows access to the preceding plus the private
group(s). Using Net-SNMP (the most common agent on Linux and Macintosh machines) this would be
achieved by the following entries in the snmpd.conf file:

rocommunity system default 1.3.6.1.2.1.1
rocommunity tengwar default 1.3.6.1.2.1
rocommunity galadriel default -V mib2+private

view mib2+private included 1.3.6.1.2.1
view mib2+private included 1.3.6.1.4.1

In order that the galadriel community could contain two disconnected OID subtrees, it was necessary to
make use of the View-based Access Control Model (VACM). Community galadriel has access to the OID-
tree view named “mib2+private”; this view is in turn defined in the last two lines above.

For our purposes here, VACM can be seen as an implementation mechanism for specifying what portion of
the OID tree is accessible to a given community. VACM allows read and write permissions to be granted
to specific OID trees, and also to be excluded from specific subtrees (eg table columns). Using the “mask”
mechanism, access can even be granted to specific rows of a table. We return to VACM for SNMPv3 very
briefly in 21.15.9 VACM for SNMPv3.

On Microsoft operating systems, an SNMP agent is generally included but must be enabled, eg from “Win-
dows components” or “Programs and Features”. After that, the agent must still be configured. This is done
by accessing “Services” (eg through Control Panel Ñ Administrative Tools or by launching services.msc),
selecting “SNMP service”, and clicking on “Properties”. This applet only allows setting the community
name and read vs write permissions; specifying collections of visible OID subtrees (views) is not supported
here (though it may be via SNMP itself).

The community mechanism can offer a reasonable degree of security, if community names are changed
frequently and if eavesdropping is not a concern. Perhaps the real problem with community-based security
is that just how much information can leak out if an attacker knows the community string is not always well

21.11 SNMPv1 communities and security 727

An Introduction to Computer Networks, Release 1.9.21

understood. SNMP access can reveal a site’s complete network and host structure, including VPNs, subnets,
TCP connections, host-to-host trust relationships, and much more. Most sites block the SNMP port 161 at
their firewall; some even go so far as to run SNMP only on a “hidden” network largely invisible even within
the organization.

The view model for OID-tree access is formalized in RFC 3415 as part of SNMPv3; it is called the View-
based Access Control Model or VACM. It allows the creation of named views. The vacmAccessTable
spells out the viewing rights assigned to a given VACM group, which, in a rough sense, corresponds to an
SNMPv1/SNMPv2c community. VACM supports, in addition to views consisting of disjoint unions of OID
subtrees, table views that limit access to a specific set of columns.

21.12 SNMP and ASN.1 Encoding

When SNMP data is entered into a packet, it is encoded according to the ASN.1 Basic Encoding Rules, or
BER. This is a hierarchical syntax-driven binary encoding strategy in which each atomic value (INTEGER,
OCTET STRING, OBJECT IDENTIFIER, etc) is tagged with its type, and each compound structure is
also tagged. This means that the receiver can understand a complex packet format without prior knowledge
of its structure. The BER rules are part of the ITU standard X.690. (ASN.1 also supports several other
encoding-rule formats, including the human-readable XML Encoding Rules, but SNMP uses BER.)

The general representation of an object is a “type-length-value” triple of the following form; the type tag
makes the data self-identifying.

Length Value

Type

Tag
P/C
 bit

Class
 bits

BER encoding

The first two bits of the type field, the class bits, identify the context. Universal types such as INTEGER
and OBJECT IDENTIFIER have class bits 00; application-specific types such as Counter32 and TimeTicks
have class bits 01.

The third bit is 0 for primitive types and 1 for constructed types such as STRUCTURE.

The rest of the first byte is the type tag. If a second byte is needed, the tag bits of the first byte are 11111.

21.12.1 Primitive Types

The standard ASN.1 universal-type primitive tag values used by SNMP are as follows:

00000 NULL
00010 INTEGER
00100 OCTET STRING
00110 OBJECT IDENTIFIER

SNMP also defines several application-specific tags (the following are from RFC 2578):

728 21 Network Management and SNMP

https://tools.ietf.org/html/rfc3415.html
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
https://tools.ietf.org/html/rfc2578.html

An Introduction to Computer Networks, Release 1.9.21

00000 IpAddress
00001 Counter32
00010 Gauge32
00011 TimeTicks
00100 Opaque
00110 Counter64

The second field of the type-length-value structure is the length of the value portion, in bytes. Most lengths
of primitive types will fit into a single byte. If a data item is longer than 127 bytes (true for many composite
types), the multi-byte integer encoding below is used.

The actual data is then encoded into the value field. For nonnegative integers, the integer is converted
to a twos-complement bitstring and then encoded in as few bytes as possible, provided there is at least
one leading 0-bit to represent the sign. Similarly, negative numbers must have at least one leading 1-bit to
represent the sign.

For example, 127 can be encoded as a length=1 INTEGER with value byte 0111 1111, while 128 must
be encoded as a length=2 integer with value bytes 0000 0000 and 1000 0000. The second value byte
represents 128, but the first byte represents the sign; without the first byte the INTEGER represented by a
length of 1 and a value byte of 1000 0000 is –128. Similarly, to encode decimal 10,000,000 (0x989680),
four value bytes are needed as otherwise the leading bit would be 1 and the number would be interpreted
as negative.

For OCTET STRINGs, the string bytes are placed in the value portion and the number of bytes is placed
in the length portion.

Object IDs are generally encoded using one byte per level; there are two exceptions. First, the initial two
levels x.y of the OID are encoded using a single level with value 40ˆx + y; all SNMP OIDs begin with 1.3
and so the first byte is 43 (0x2b). Second, if a level is greater than 127, it is encoded as multiple bytes. The
first bit of the last byte is 0; the first bit of each of the preceding bytes is 1. The seven remaining bits of each
byte contain the bits of the OID level. For example, 1.3.6.1.2.1.128.9 would have a value encoding of the
following bytes in hexadecimal:

2b 06 01 02 01 81 00 09

where 128 is represented as the two seven-bit blocks 0000001 0000000 and the first block is prefixed by 1
and the second block by 0. Note that the encoding of 128 in an OID is quite different from the encoding of
128 as an INTEGER.

21.12.2 Composite Types

Now that we have the encodings of the primitive types we can build structures. For composite types the P/C
bit will be set to 1. The only universal composite type we will consider is

10000 SEQUENCE and SEQUENCE OF

There are also several application-specific composite types; the first three bits of the tag field for these will
be 101.

21.12 SNMP and ASN.1 Encoding 729

An Introduction to Computer Networks, Release 1.9.21

00000 Get-Request
00001 Get-Next-Request
00010 Get-Response
00011 Set-Request
00100 Trap

A VarBind pair is encoded in SNMPv1 as

SEQUENCE { name OBJECT IDENTIFIER, value ObjectSyntax }

ObjectSyntax is specified as a CHOICE that can contain any of the tagged SNMP primitive types
above; the CHOICE syntax adds no bytes so the value is simply encoded as above. The VarBind
pair x1.3.6.1.2.1.1.3.0, 8650000y – the OID is sysUpTime and the value is 24 hours – would then be
represented in hexadecimal bytes as below; the hexadecimal representation of 8650000 is 0x83d600.

30 10 06 08

Encoding of 0x83d600
 type = 02, length = 04

Encoding of 1.3.6.1.2.1.1.3.0
 type = 06, length = 08

Encoding of SEQUENCE of two items; type = 0x30 = 0011 0000, length = 16 = 0x10

02 04 00 83 d6 002b 06 01 02 01 01 03 00

The first byte of 0x30 marks this as a SEQUENCE; recall that the type byte for a SEQUENCE has a P/C
bit of 1 and five low-order bits of 10000, for a numeric value of 48 decimal or 0x30.

The VarBindList is defined to be a SEQUENCE OF VarBind. If we have only the single VarBind
above, the resultant enclosing VarBindList would be as follows; the length field is 0x12 = 18.

30 12 30 10 06 08 2b 06 01 02 01 01 03 00 02 04 00 83 d6 00

The BER encoding rules do not stop with the VarBindList. A slightly simplified ASN.1 specification
for an entire SNMPv1 Get-Request packet portion (or “protocol data unit”) is

SEQUENCE {
request-id INTEGER,
error-status INTEGER,
error-index INTEGER,
variable-bindings VarBindList

}

The encoding of the whole packet would also be by the above BER rules.

The BER encoding mechanism represents a very different approach from the fixed-field layout of, say, the
IP and TCP headers (7.1 The IPv4 Header and 12.2 TCP Header). The latter approach is generally quite
a bit more compact, as only four bytes are needed for a larger integer versus six under BER, and no bytes
are used for SEQUENCE specifications. The biggest advantage of the SNMP BER approach, however, is
that all objects, from entire packets down to individual values, are self-describing. Given the variety of
types used by SNMP, the fact that many are of variable length, and the fact that value “readers” such as MIB

730 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

browsers often operate without having all the type-specifying MIBs loaded, this self-describing feature is
quite useful.

21.13 SNMPv2

SNMPv2 introduced multiple evolutionary changes: to the SMI, to various MIBs, and to the basic protocol
operation. Many new MIBs were added. SNMPv2 also contained a proposal for improved security, but this
was not widely adopted. Eventually most of the SNMP community settled on SNMPv2c, the version of
SNMPv2 that stayed with the community-based security model.

Most of the specification of SNMPv2c is in RFC 1901 through RFC 1909.

Generally SNMPv1 and SNMPv2c agents and managers can interoperate quite easily. Essentially all SN-
MPv2 agents also support SNMPv1 queries, and answer according to the version of the request received.
There is slightly greater confusion between SNMPv1 and SNMPv2 MIB files, but almost all browsers and
managers support both.

21.13.1 SNMPv2 SMI and Data Types

SNMPv2 introduced the OBJECT-IDENTITY macro, which acts like the OBJECT-TYPE macro except
that it leaves out the SYNTAX clause; it serves as a way to define OIDs separately from syntax. In
the OBJECT-TYPE macro, the ACCESS attribute is renamed MAX-ACCESS, and a new access option
read-create (for reading plus row creation) is added.

SNMPv2 also provided new 64-bit versions of some of the basic types, and added some other types. These
definitions are in RFC 2578, originally RFC 1442. A very practical problem with SNMPv1 is that, for
example, the 32-bit inOctets counter can wrap around in 34 seconds at 1 Gbps.

The INTEGER type remains, now declared synonymous with Integer32. The SNMPv1 Counter and Gauge
types have been replaced with Counter32 and Gauge32, and 64-bit versions of both – Counter64 and
Gauge64 – were added (Gauge64 was added somewhat later, in RFC 2856).

A BITS type, for representing individual bits in a word, was also added.

The OBJECT IDENTIFIER type was formally limited to 128 levels.

SNMPv2 also introduced the TEXTUAL-CONVENTION macro, which is an alternative name for a type (or
a primary name for an enumerated type) together with a description of what the type is actually to represent.
Examples include OwnerString, which is an OCTET STRING intended to describe a management station
and perhaps its human operator, EntryStatus which is an enumerated type meant to be used for row
additions (21.14.1 RMON), and InterfaceIndex, which is meant to be the number of an interface
appearing in the MIB-2 ifTable, 21.10.2 Table definitions and the interfaces Group, but used in another
table. For casual MIB reading, textual conventions can simply be thought of as types.

21.13.2 SNMPv2 Get Semantics

When an SNMPv1 agent receives a list of OIDs as part of a Get() request, and one or more of them is un-
available, then an error is returned. Under SNMPv2, the agent returns a list containing the appropriate value

21.13 SNMPv2 731

https://tools.ietf.org/html/rfc1901.html
https://tools.ietf.org/html/rfc1909.html
https://tools.ietf.org/html/rfc2578.html
https://tools.ietf.org/html/rfc1442.html
https://tools.ietf.org/html/rfc2856.html

An Introduction to Computer Networks, Release 1.9.21

for each valid OID. For request OIDs for which the agent is not able to return an actual value, the special
value noSuchInstance (for missing table entries with legal column specifications) or noSuchObject
(for other missing values) is substituted.

The Set() semantics remain unchanged: an SNMPv2 agent does not update any of the OID values in the
request unless it is able to update all of them.

21.13.3 SNMPv2 GetBulk()

SNMPv2 introduced the GetBulk operation as an extension of GetNext. A manager includes an integer N
in its request and the agent then iterates the action of GetNext() N times. All N results (which can each
represent an entire row) can then be returned in a single operation.

For example, suppose a table T has five rows indexed by 11-15, and three columns with OIDs T.1 through
T.3. The OIDs for the table are as follows:

T.1.11 T.2.11 T.3.11
T.1.12 T.2.12 T.3.12
T.1.13 T.2.13 T.3.13
T.1.14 T.2.14 T.3.14
T.1.15 T.2.15 T.3.15

Then a GetBulk request for (T.1,T.2,T.3) with a repetition count of 3 will return the first three rows, with
the following OIDs:

T.1.11 T.2.11 T.3.11
T.1.12 T.2.12 T.3.12
T.1.13 T.2.13 T.3.13

To continue, the next such request would include OIDs (T.1.13, T.2.13, T.3.13) and the result (again as-
suming a count of 3) would be of values with these OIDs:

T.1.14 T.2.14 T.3.14
T.1.15 T.2.15 T.3.15
T.2.11 T.3.11 A

where A is the next leaf OID above and to the right of T.

Note the third row of the second request: the first leaf OID following T.1.15 – the last row of column 1 – is
T.2.11, that is, the first row of column 2. Similarly, T.3.11 follows T.2.15. As T.3.15 is the last leaf OID in
the table, its leaf-OID successor (A) is outside the table.

The GetBulk request format actually partitions the list of requested OIDs into two parts: those OIDs that are
to be requested only once and those for which the request is repeated. Two additional parameters besides
the OID list are included: non-repeaters indicating the number of OIDs to be requested only once and
max-repetitions indicating the number of times the remaining OIDs are retrieved.

As with GetNext, it is possible that a request for rows of the table will return xOID,valuey pairs outside the
table, that is, following the table in the OID-tree order.

732 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

If the total number of OIDs in the request is N ě non-repeaters, then the return packet will contain a
list of xOID,valuey variable bindings of up to length

non-repeaters + (N – non-repeaters)ˆmax-repetitions

GetBulk has considerable potential to return more data than there is room for, so an agent may return fewer
repetitions as it sees fit.

21.13.4 SNMPv2 Indexes

As we saw in 21.7 SNMP Tables, in SNMPv1 the index columns were included in the table. Because every
attribute returned by an agent comes paired with the attribute’s OID, and because the OID of a table item
encodes the row and thus the index value, index columns are unnecessary except in rare cases (one such case
is when all table columns are part of the index, as in udpTable).

SNMPv2 deals with this by requiring the usual INDEX clause in the ASN.1 tableEntry definition, but
then when the tableIndex attribute is defined with OBJECT-TYPE it is assigned a MAX-ACCESS of
not-accessible. Here is an example from the sysORTable of 21.13.7 SNMPv2 MIB Changes; it
is the second “not-accessible” that represents the change.

sysOREntry OBJECT-TYPE
SYNTAX SysOREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry (conceptual row) in the sysORTable."
INDEX { sysORIndex }
::= { sysORTable 1 }

...

sysORIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION ...
::= { sysOREntry 1 }

The INDEX attribute appears in the declaration of sysOREntry in the usual way. But it is now classed as
an auxiliary object, and access to sysORIndex is not-accessible; in SNMPv1 it would have been
read-only and thus an ordinary column.

When direct access to index attributes is suppressed this way, the index data is still available in the accompa-
nying OID, but it is no longer tagged by type as in 21.12 SNMP and ASN.1 Encoding. The sysORIndex
value above, for example, would appear as a single OID level, but the manager would have to use the MIB
to determine that it was meant as an INTEGER and not a TimeTicks or Counter. An IPv4 address used
as an index would appear in the OID as four levels, readily recognizable as an IPv4 address provided the
manager knew where to look. When STRING values appear in the index, the lack of an index column can
be a particular nuisance; for example, the only indication of the username “alice” in the usmUserTable
of 21.15.9.1 The usmUserTable might be the OID fragment 97.108.105.99.101, representing the ASCII
codes for the letters a.l.i.c.e.

21.13 SNMPv2 733

An Introduction to Computer Networks, Release 1.9.21

Generally, an SNMPv2 agent will send back the noSuchObject special value (see 21.13.2 SNMPv2 Get
Semantics) when asked for a not-accessible auxiliary object.

21.13.5 TestAndIncr

SNMPv2 introduced the TestAndIncr textual convention, which introduces something of an aberration
to the usual semantics of Set(). The underlying type is INTEGER, in the range 0..231–1, and Get()
works the usual way. However, if TI is the OID name of a TestAndIncr object, then Set(TI,val) never
sets the value of TI to val. Instead, if the value of the object is already equal to val, then the Set() succeeds
and the value of the object is incremented, that is, set to val + 1. If the value of the object is not equal to val,
an error occurs and no change is made.

A TestAndIncr object acts like a kind of semaphore, though not exactly as there is no way to decrement
the object (though the value does wrap around from 231-1 back to 0). The goal here is to provide a volun-
tary mechanism to enforce serialization when more than one manager may be writing to the same set of
attributes.

As we saw at the example at the end of 21.8.2 Set(), such serialization is not automatic. But now let us revisit
that example using TestAndIncr. Recall that two managers are updating attributes with OIDs X and Y;
this time, however, they agree also to include a TestAndIncr object with OID TI. Then serialization is
assured as long as each manager executes each multi-attribute Set() in the following form, where val :=
Get(TI) means that the manager uses Get() to retrieve the value of TI and stores it in its own local variable
val.

val := Get(TI)
Set((TI,val), (X,xval), (Y,yval))

To see this, suppose manager B’s Get(TI) occurs after manager A’s Set(TI,val) has incremented val. Then
manager B’s Set() operations occur even later, after A’s Set() has completed. The alternative is that
both managers Get() the same value val. Let A be the manager who first succeeds with Set(TI,val). Now
the other manager – B – will have its Set(TI,val) fail, as the value stored at TI is now val+1. Thus all of B’s
Set() operations will fail.

A consequence here is that manager B will have to try again, probably immediately. However, the likelihood
of conflict is low, and B can expect to succeed soon.

Usually only one TestAndIncr object needs to be provided for an entire table, not one per row. For an
actual example, see 21.15.9.1 The usmUserTable.

21.13.6 Table Augmentation

SNMPv2 introduced a mechanism for extending an existing table by adding, in effect, more columns, known
as augmentation. In the new table-entry definition, instead of an INDEX clause there is an AUGMENTS
clause; the argument to which is a table-entry name for the existing table to be extended. The new table-
entry row will be indexed by whatever attributes indexed the table-entry in the AUGMENTS clause.

For example, the ifXTable augments the MIB-2 ifTable, meaning in essence that the ifXTable is
automatically indexed by ifTable’s index, ifIndex. Here is the ifXEntry definition that establishes
that:

734 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

ifXEntry OBJECT-TYPE
SYNTAX IfXEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry containing additional management information
applicable to a particular interface."

AUGMENTS { ifEntry }
::= { ifXTable 1 }

The intent here is that every ifTable row is now extended to include the nineteen additional values defined
for IfXEntry; that is, there is a one-to-one correspondence between rows if ifTable and ifXTable.

If, on the other hand, the new table extends only a few rows of the original table, ie is a sparse extension,
then the new table entry should have an INDEX clause that repeats that of the original table. An exam-
ple is the EtherLike-MIB of 21.13.10 ETHERLIKE-MIB, in which the dot3StatsTable extends the
MIB-2 ifTable by providing additional information for those interfaces that behave like Ethernets. The
dot3StatsEntry definition is

dot3StatsEntry OBJECT-TYPE
SYNTAX Dot3StatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Statistics for a particular interface to an ethernet-like

ãÑmedium."
INDEX { dot3StatsIndex }
::= { dot3StatsTable 1 }

The INDEX is dots3StatsIndex, which is then defined as follows; note the statement in the DESCRIP-
TION (and the REFERENCE) that the dot3StatsIndex is to correspond to ifIndex.

dot3StatsIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION "An index value that uniquely identifies an interface

to an ethernet-like medium. The interface identified
by a particular value of this index is the same interface
as identified by the same value of ifIndex."

REFERENCE "RFC 2863, ifIndex"
::= { dot3StatsEntry 1 }

Finally, it is possible that a new table has a many-to-one, or dense, correspondence to the rows (or a subset
of the rows) of an existing table. In this case, the new table will have an INDEX clause that will include the
index attributes of the original table, and one or more additional attributes. An example is the EtherLike-
MIB dot3CollTable, which keeps, for each interface, a set of histogram buckets giving, for each N, a
count of the number of packets that experienced exactly N collisions before successful transmission. The
dot3CollEntry definition is as follows:

dot3CollEntry OBJECT-TYPE
SYNTAX Dot3CollEntry
MAX-ACCESS not-accessible

21.13 SNMPv2 735

An Introduction to Computer Networks, Release 1.9.21

STATUS current
DESCRIPTION ...
INDEX { ifIndex, dot3CollCount }
::= { dot3CollTable 1 }

The ifIndex entry in the INDEX represents the original table, as before except that here there is also a
second, new INDEX attribute, dot3CollCount.

21.13.7 SNMPv2 MIB Changes

The core MIB for SNMPv2 – essentially the SNMPv2 version of MIB-2 – is RFC 3418, originally RFC
1450.

Some changes appear under the MIB-2 OID prefix: 1.3.6.1.2.1. SNMPv2 also defines a prefix 1.3.6.1.6
specifically for SNMPv2 information.

This MIB adds the Object Resource table, sysORTable, to the system group. It also slightly modifies the
mib-2.snmp group and provides a new snmp group under the SNMPv2 1.3.6.1.6 prefix.

21.13.8 sysORTable

The original system group contained the attribute sysObjectID that identifies the agent and at the same
time suggests a private OID tree that could provide additional information about the agent (21.10.1 The
system Group).

The sysORTable, 1.3.6.1.2.1.1.9 or mib-2.system.9, is an attempt to extend this. It consists of a list of
OIDs that can be queried for further agent information; each OID also has an associated description string
and a sysORUpTime value indicating the time that OID was added.

For example, my system lists the following (where snmpModules = 1.3.6.1.6.3 and mib-2 = 1.3.6.1.2.1):

snmpModules.11.3.1.1 Message Processing MIB
snmpModules.15.2.1.1 User-based security MIB
snmpModules.10.3.1.1 SNMP management architecture
snmpModules.1 SNMPv2 information
mib-2.49 TCP
mib-2.4 IP
mib-2.50 UDP
snmpModules.16.2.2.1 VACM
snmpModules.13.3.1.3 SNMP notification
mib-2.92 SNMP notification logging

Each of the above OID prefixes can theoretically then be accessed for further information. Unfortunately,
on my system several of them are not configured, and a query returns nothing, but sysORTable does not
know that.

736 21 Network Management and SNMP

https://tools.ietf.org/html/rfc3418.html
https://tools.ietf.org/html/rfc1450.html
https://tools.ietf.org/html/rfc1450.html

An Introduction to Computer Networks, Release 1.9.21

21.13.9 IF-MIB and ifXTable

RFC 2863 has addressed the problems with ifSpeed and the byte counters by introducing a new table,
ifXTable (formerly ifExtnsTable with OID mib-2.31.1.2. As such, it is still under the aegis of the
MIB-2 OID, but outside the traditional interfaces group. It does use the SNMPv2 SMI.

The ifXTable table includes definitions for “high capacity” 64-bit counters for in and out octets, in and
out unicast packets, in and out multicast packets and in and out broadcast packets. It also includes the
ifHighSpeed attribute for interface speed, still a 32-bit quantity but now measured in units of 1 Mbps.

The full definition of an ifXTable row is as follows:

IfXEntry ::=
SEQUENCE {

ifName DisplayString,
ifInMulticastPkts Counter32,
ifInBroadcastPkts Counter32,
ifOutMulticastPkts Counter32,
ifOutBroadcastPkts Counter32,
ifHCInOctets Counter64,
ifHCInUcastPkts Counter64,
ifHCInMulticastPkts Counter64,
ifHCInBroadcastPkts Counter64,
ifHCOutOctets Counter64,
ifHCOutUcastPkts Counter64,
ifHCOutMulticastPkts Counter64,
ifHCOutBroadcastPkts Counter64,
ifLinkUpDownTrapEnable INTEGER,
ifHighSpeed Gauge32,
ifPromiscuousMode TruthValue,
ifConnectorPresent TruthValue,
ifAlias DisplayString,
ifCounterDiscontinuityTime TimeStamp

}

The original MIB-2 interfaces group counted multicast and broadcast packets together, eg in
ifInNUcastPkts.

21.13.10 ETHERLIKE-MIB

RFC 3635 (originally RFC 1650) defines a MIB for “Ethernet-like” interfaces. The primary goal is to
enable the collection of statistics on collisions and other Ethernet-specific behaviors. Several new tables are
defined.

The table dot3StatsTable contains additional per-interface attributes; the name refers to the IEEE
designation for Ethernet of 802.3. The table represents a sparse extension of the original ifTable, in the
sense of 21.13.6 Table Augmentation (where this table was used as the example).

The rows of the table mostly consist of counters for various errors and other noteworthy conditions:

• Alignment errors: the number of bits in the frame is not divisible by 8

• CRC checksum failure

21.13 SNMPv2 737

https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc3635.html
https://tools.ietf.org/html/rfc1650.html

An Introduction to Computer Networks, Release 1.9.21

• Frames that experienced exactly one collision

• Frames that experienced more than one collision

• Signal quality errors. SQE is specific to 10 Mbps Ethernet

• Deferred transmissions; when the station tried to send, the line was not idle

• Late collisions: the only way a collision can occur after the slot time is passed is if the physical
Ethernet is too big or if collision-detection is failing. See 2.1.5 The Slot Time and Collisions

• Excessive collisions: the frame experienced 16 collisions and the sender gave up

• Other hardware errors (dot3StatsInternalMacTransmitErrors and
dot3StatsInternalMacReceiveErrors)

• Carrier sense errors (“carrier sense” refers to the collision-detection mechanism; there is no actual
carrier)

• Frames longer than 1500 octets

• For Ethernets that encode data as symbols (eg 100 Mbps Ethernet’s 4B/5B), frames arriving with a
corrupted symbol

There is also an attribute to describe the Ethernet chipset.

The dot3HCStatsTable is like the dot3StatsTable except its counters are 64 bits instead of 32
bits.

The table dot3CollTable lists, for each N, how many packets experienced exactly N collisions before
successful transmission or discard. Ethernet generally allows a maximum N of 16. The table is indexed by
the pair xifIndex,Ny. The dot3StatsTable contains this information for N=0,1,16.

The table dot3ControlTable contains information on those Ethernet-like interfaces that also support
the so-called MAC Control sublayer; the dot3PauseTable is similar.

21.13.11 BRIDGE-MIB

RFC 1286 (now RFC 4188) defined basic management information for Ethernet switches; this is often
complemented by vendor-specific MIBs.

This MIB contains basic information about the switch, such as the number of ports. The dot1dStp section
covers information about the spanning-tree protocol (2.5 Spanning Tree Algorithm and Redundancy).
Perhaps the most interesting member of this MIB is the dot1dTpFdb table, which contains the forwarding
table: the map from MAC addresses to ports created by the Ethernet learning algorithm (2.4.1 Ethernet
Learning Algorithm). The name dot1dTpFdb is an abbreviation of the IEEE 802.1D standard, Transparent
bridging protocol, Forwarding database.

By using this table, a network manager can trace the origin of a packet with a given MAC address. If a switch
S1 has seen the packet, the dot1dTpFdb table reveals the switch port by which the packet arrived. If that
port leads to another switch, S2, the process is repeated; if the port represents a non-switch port, then the
packet originated wherever the other end of that port’s cable terminates. Typically, this allows determination
of the office or apartment unit or hotel room where a device was connected. This tracing is quite hard to
evade, short of breaking into the wiring closet or compromising the switch itself.

738 21 Network Management and SNMP

https://tools.ietf.org/html/rfc1286.html
https://tools.ietf.org/html/rfc4188.html

An Introduction to Computer Networks, Release 1.9.21

This table can also be used to alert network managers whenever a different device is plugged into an office
Ethernet jack, although here MAC-address spoofing (changing the new device’s MAC address to match the
first device’s MAC address) can be used to avoid detection.

This strategy for identifying a device’s physical location does not work quite as well for Wi-Fi, though it
can be used to identify the access point. Wi-Fi, however, generally requires the presentation of credentials;
this gives an alternative approach for tracking users.

The MIB does not contain information about whether internal switch queues have had to drop packets,
though some vendor-specific MIBs can be used instead.

21.13.12 IP-MIB and IP-Forward MIB

The MIB-2 ip group is really about two separate things: strictly local information about IP packets and
delivery, and the forwarding table, which affects a much larger collection of nodes. All nodes have local
IP information, but only routers do significant forwarding. It did not take long for these two subgroups to
separate.

The IP-Forward MIB began in RFC 1354, just over a year after the original MIB-2 in RFC 1312; this
created a new home for forwarding-table information. By the time the first SNMPv2 MIB for the ip group
came out in RFC 2011, the ipRouteTable once part of that group was declared obsolete.

21.13.12.1 IP-MIB

The current version of the IP-MIB is RFC 4293. It allows enabling or disabling of forwarding
(ipForwarding, setting the default TTL (ipDefaultTTL), and, for IPv4 only (as it is not a config-
urable parameter for IPv6) the fragment-reassembly timeout (ipReasmTimeout).

When IP addresses appear in these tables, the defining entry is almost always prefaced by an object of type
InetAddressType, which can take values ipv4(1) and ipv6(2) (and a few other values for special cases).

Two tables are devoted to IP statistics: the ipSystemStatsTable for system-wide IP information and
the ipIfStatsTable for interface-specific information. Each table includes the IP address type (that is
the IP version) in its index, meaning that separate statistics are kept for IPv4 and IPv6 traffic. The system
table is indexed by the IP address type alone; the interface table is indexed by that and the interface number
(the MIB-2 ifIndex).

The ipIfStatsTable contains, for each interface, counts of packets (and octets) in and out for broadcast,
multicast and unicast, counts of forwarded, reassembled and fragmented packets, counts of packets with any
of several kinds of errors, and related additional counts. An entry for the counter refresh rate is also provided.
When appropriate, 64-bit counters are provided; usually the equivalent 32-bit counter is also provided. The
ipSystemStatsTable provides all-interface summaries of these same counts.

The tables ipv4InterfaceTable and ipv6InterfaceTable represent information about what IP
addresses are assigned to each interface. These are indexed by the interface index alone, meaning that the
tables cannot accurately represent an interface with more than one IP address of the same type.

Additional IP-address information is contained in the ipAddressPrefixTable primarily for IPv6 and
the ipAddressTable for both IPv4 and IPv6. These tables contain information about what IP addresses
are assigned to what interfaces and where these addresses came from (eg DHCP, 7.10 Dynamic Host

21.13 SNMPv2 739

https://tools.ietf.org/html/rfc1354.html
https://tools.ietf.org/html/rfc1312.html
https://tools.ietf.org/html/rfc2011.html
https://tools.ietf.org/html/rfc4293.html

An Introduction to Computer Networks, Release 1.9.21

Configuration Protocol (DHCP), or Prefix Discovery, 8.6.2 Prefix Discovery). Indexed by the IP address
itself (and also the ipAddressAddrType), these tables thus support the possibility that one interface has
multiple IP addresses (this is particularly common for IPv6).

The ipNetToPhysicalTable represents the map from local IP addresses to physical LAN addresses, as
created by either ARP for IPv4 or Neighbor Discovery for IPv6. In addition to the interface, the IP address
and the physical address, tle table also contains a timestamp indicating when a given entry was last updated
or refreshed, an indication of whether the address mapping is dynamic, static or invalid, and, finally, an
attribute ipNetToPhysicalState. The values for this last are reachable(1), stale(2) for ex-
pired reachability, delay(3) and probe(4) relating to active updates of the reachability, invalid(5),
unknown(6) and incomplete(7) indicating that ARP is in progress. See 7.9.1 ARP Finer Points.

There is also a simple version of the forwarding table known as the Default Router Table. This contains
a list of “default”, or, more accurately, “initially configured” routes. While this does represent a genuine
forwarding table, it is intended for nodes that do not act as routers and do not engage in routing-update
protocols. The table represents a list of “default” routes by IP address and interface, and also contains
route-lifetime and route-preference values.

The ipv6RouterAdvertTable is used for specifying timers and other attributes of IPv6 router adver-
tisements, 8.6.1 Router Discovery.

Finally, the IP-MIB contains two tables for ICMP statistics” icmpStatsTable and icmpMsgTable.
The latter keeps track, for example, of how many pings (ICMP Echo) and other ICMP messages were sent
out; see 7.11 Internet Control Message Protocol.

21.13.12.2 IP-Forward MIB

Information specific to a host’s IP-forwarding capability was first split out from the MIB-2 ip group in RFC
1354; it was updated to SNMPv2 in RFC 2096 and the current version is RFC 4292. The original MIB-2
ip group left off at OID mib-2.ip.23; the new IP-Forward MIB begins at mib-2.ip.24.

There have been three iterations of an SNMP-viewable IP forwarding table since the original RFC 1213 ip
group’s ipRouteTable at mib-2.ip.21. Here are all four:

• ipRouteTable

• ipForwardTable

• ipCidrRouteTable

• inetCidrRouteTable

Each new version has formally deprecated its predecessors.

The first replacement was ipForwardTable, described in RFC 1354. It defines the OID ipForward
to be mib-2.ip.24; the new table is at ipForward.2. This table added several routing attributes, but
perhaps more importantly changed the indexing. The index for ipRouteTable was the IP destina-
tion network ipRouteDest, alone. The new table’s index also includes a quality-of-service attribute
ipForwardPolicy, usually representing the IPv4 Type of Service field (now usually known as the DS
field, 7.1 The IPv4 Header). This inclusion allows the ipForwardTable to accurately represent routing
based on xdest,QoSy, as discussed in 9 Routing-Update Algorithms. Such routing is sometimes called

740 21 Network Management and SNMP

https://tools.ietf.org/html/rfc1354.html
https://tools.ietf.org/html/rfc1354.html
https://tools.ietf.org/html/rfc2096.html
https://tools.ietf.org/html/rfc4292.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1354.html

An Introduction to Computer Networks, Release 1.9.21

“multipath” routing, because it allows multiple paths to a given destination based on different QoS val-
ues. However, the mask length is not included in the index, making ipForwardTable inadequate for
representing CIDR routing.

The index also includes the next_hop, which for the actual forwarding table does not make sense – the
next_hop is what one is looking up, given the destination – but which works fine for SNMP. See the com-
ments about SNMP indexes with more attributes than expected in 21.7 SNMP Tables. The index even in-
cludes an attribute ipForwardProto that represents the routing-update protocol that is the source of the
table entry: icmp(4), rip(8) (a common distance-vector implementation), is-is(9) and ospf(13)
(two link-state implementations) and bgp(14).

In addition to the next_hop, this table also includes attributes for ipForwardType (eg local vs remote),
ipForwardAge (the time since the last update), ipForwardInfo, ipForwardNextHopAS, and sev-
eral routing metrics. The purpose of ipForwardInfo is to provide an OID that can be accessed to pro-
vide additional information specific to the routing-update algorithm in use. The ipForwardNextHopAS
allows the specification of the next_hop Autonomous System number, usually relevant only when BGP
(10.6 Border Gateway Protocol, BGP) is involved. (If the AS number is not relevant, it is set to zero.)

The second iteration of the SNMP-viewable IP forwarding table is ipCidrRouteTable, appearing in
RFC 2096 and located at ipForward.4 (and returning to the practice of calling it a “route” rather than a
“forward” table). This table adds the address mask, ipCidrRouteMask, to the index, finally allowing
distinct routes to 10.38.0.0/16 and 10.38.0.0/24. The quality-of-service field ipCidrRouteTos remains
in the index (as does the destination), and is now firmly identified with the IPv4 Type of Service (DS) field.
The routing-update algorithm was dropped from the index.

This table also adds an attribute ipCidrRouteStatus of type RowStatus and used for the creation
and deletion of entire rows (that is, forwarding table entries) under the control of SNMP. We will return to
this process in 21.14 Table Row Creation.

The third (and still current) version of the IP forwarding table is inetCidrRouteTable, introduced in
RFC 4292 and located at ipForward.7. The main change introduced by this table is the extension to
support IPv6: the IP-address columns (eg for destination and next_hop) have companion columns for the
address type: ipv4(1) and ipv6(2). See 21.13.13 TCP-MIB for further details.

The next_hop attribute (now two columns, with the addition of the address type) is still part of the index.

The address mask used in ipCidrRouteTable is now updated to be a prefix length,
inetCidrRoutePfxLen. The quality-of-service field inetCidrRoutePolicy is an Object ID, de-
clared to be “an opaque object without any defined semantics”; that is, it is at the implementer’s discretion.
The IPv4 ToS/DS field evolved in IPv6 to the Traffic Class field, 8.1 The IPv6 Header.

Finally, routes are no longer required to list a single associated interface. The table makes use of the
InterfaceIndexOrZero textual convention of RFC 2863, covering just this situation.

21.13.13 TCP-MIB

RFC 4022 contains some extensions to MIB-2’s tcp group. The SNMPv2-based MIB embedded in RFC
4022 repeats the MIB-2 tcp group and then adds new features within the mib-2.tcp (1.3.6.1.2.1.6) tree. RFC
1213 stopped at mib-2.tcp.15; RFC 4022 defines new objects starting at mib-2.tcp.17.

The new tcpConnectionTable is defined at mib-2.tcp.19, versus the original tcpConnTable at

21.13 SNMPv2 741

https://tools.ietf.org/html/rfc2096.html
https://tools.ietf.org/html/rfc4292.html
https://tools.ietf.org/html/rfc2863.html
https://tools.ietf.org/html/rfc4022.html
https://tools.ietf.org/html/rfc4022.html
https://tools.ietf.org/html/rfc4022.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc4022.html

An Introduction to Computer Networks, Release 1.9.21

mib-2.tcp.13. The newer table supports IPv6; like the inetCidrRouteTable above, each IP-address
column now also has a companion address-type column, and addresses themselves are represented as
OCTET STRINGs preceded by a length byte. This follows the rules for InetAddressType and
InetAddress of RFC 4001, and the OID-suffix-encoding rules of RFC 2851 §4.1. Because the length
of an InetAddress isn’t known in advance, the length must be included.

For IPv4 users used to the earlier tcpConnTable, this means that there are extra 1.4.’s prefixing the
IPv4 addresses in the index, as in this example of host 10.0.0.5 connecting from port 54321 to web server
147.126.1.230:

tcpConnectionState.1.4.10.0.0.5.54321.1.4.147.126.1.230.80

The new table also includes a column representing the process ID of the process that has open the local end
of the connection.

This table adheres to the SNMPv2 convention that index columns are not included in the data – the attributes
are marked not-accessible. There are only two accessible columns, tcpConnectionState and
tcpConnectionProcess.

TCP-MIB does not make available per-interface TCP statistics, eg the number of TCP bytes sent by eth0.
Nor does it make available per-connection statistics such as packet-loss and retransmission counts or total
bytes transmitted each way.

21.14 Table Row Creation

SNMPv2 also refined the mechanisms by which a manager can add a row to an agent’s table. In principle,
adding a row to a table is done with the Set() operation. Imagine a table T with three columns indexT,
fruitT and primeT corresponding to T.1, T.2 and T.3. Imagine also that, right now, the table has three
rows with indexT values 10, 11 and 12:

indexT fruitT primeT
T.1 T.2 T.3
10 apple 37
11 blueberry 59
12 cantaloupe 67

Then a new row x13,durian,101y might be added with the following multi-attribute Set() operation. The
entries of the new row will have OIDs T.1.13, T.2.13 and T.3.13, and all we have to do to create the row is
assign to these. Note that we are assigning to OIDs that, in the agent’s current database, do not yet exist.

Set((T.1.13,13), (T.2.13,durian), (T.3.13,101))

Of course, this raises some questions. Will the agent actually allow this? What happens if these Set()
operations are performed individually rather than as a group? Is there any way to delete this newly added
row? And, more seriously, what happens if some other manager tries to insert at the same time the row
x13,feijoa,103y?

We now turn to the specific row-creation mechanism of RMON.

742 21 Network Management and SNMP

https://tools.ietf.org/html/rfc4001.html
https://tools.ietf.org/html/rfc2851.html

An Introduction to Computer Networks, Release 1.9.21

21.14.1 RMON

RMON, for Remote MONitoring, was an early attempt (first appearing in RFC 1271 eight months after
MIB-2’s RFC 1213) at having an SNMP agent take on some monitoring responsibilities of its own. The
current version is in RFC 2819. The original RMON, now often called RMON1, only implemented LAN-
layer monitoring, but this was later extended to the IP and Transport layers in RMON2, RFC 4502. We will
here consider only RMON1.

RMON implements only passive monitoring; there is no capability for the remote agent to send out its own
SNMP queries, or even pings (though see 21.14.3 PING-MIB). Monitoring is implemented by putting
the designated interface into promiscuous mode (2.1 10-Mbps Classic Ethernet) and capturing all traffic.
In modern fully-switched Ethernets, hosts simply do not see traffic not actually addressed to them, and so
RMON would need to be implemented on a switch or router to be of much practical use.

An agent’s RMON activity is controlled by an SNMP manager through the insertion of new rows in various
control tables. The mechanism for doing this is our primary concern here.

RMON statistics are divided into ten groups, of which we will consider only the following:

• statistics: counts of errors and counts of packets in size ranges 0-64, 65-127, 128-255, 255-511,
512-1023 and 1024-1518 octets.

• history: The statistics group data, taken at regular intervals

• hosts: The Ethernet senders and receivers seen by an interface

• host top N: The top-N senders or receivers

• matrix: Information on traffic by xsender,receivery pair

21.14.1.1 Statistics (and use of EntryStatus)

The etherStatsTable is, by default, empty, and is indexed by etherStatsIndex which is an
opaque INTEGER. The column etherStatsDataSource represents the OID of a specific interface
number as defined by ifTable; for example, the interface with ifNumber = 6 would be represented by
mib-2.2.2.1.1.6. One column, etherStatsStatus, has type EntryStatus as follows:

valid(1),
createRequest(2),
underCreation(3),
invalid(4)

The attributes etherStatsDataSource and etherStatsStatus were initially read-write,
which was later changed to status read-create as they can only be written to as part of the creation
of a new row. There is one more read-create attribute, etherStatsOwner, which is a manager-
supplied string identifying that particular manager (perhaps by IP address and hostname and, if a human is
involved, appropriate additional identification).

To enable statistics collection, the SNMP manager creates a row in the agent’s etherStatsTable by
setting the three attributes Status, DataSource and Owner (where we have left off the attribute-name
prefix etherStats for readability). Once this is done and the Status is set to valid, the agent begins
collecting data about the desired interface. The manager can read the data as it desires, by accessing that

21.14 Table Row Creation 743

https://tools.ietf.org/html/rfc1271.html
https://tools.ietf.org/html/rfc1213.html
https://tools.ietf.org/html/rfc2819.html
https://tools.ietf.org/html/rfc4502.html

An Introduction to Computer Networks, Release 1.9.21

particular row. Data collection ends when the manager sets the etherStatsStatus for the row to
invalid, though it is up to the agent whether the row is actually deleted at that point.

The etherStatsIndex column is not actually writable, but the manager must still select a value for the
index. One approach is to read the entire table and identify the first unused index value. Other managers,
however, may be creating new rows in the agent at the same moment, and so a row index that was available
moments before may now be unavailable. We return below to how such conflicts are prevented. One
common strategy for reducing the chance of row-creation collisions is to choose a value for the index at
random.

It is often possible for a manager to create the desired row with a single Set() operation. How-
ever, RFC 2819 requires that the the Status attribute in a request for creation of a new row must be
createRequest, and a second Set() operation is therefore always required to transition to valid.

If T is the tree OID etherStatsEntry and 157 is the manager’s chosen index, and the manager wants
to monitor ifIndex = 6, it could send the following as a single operation.

Set((T.Status.137,createRequest), (T.DataSource.137,mib-2.2.2.1.1.6), (T.Owner.137,owner))

at which point the agent will create the row with status underCreation. The value createRequest is
used only in manager requests and never appears in actual rows on the agent. The manager will then follow
with

Set(T.Status.137,valid)

If the manager wants or needs to create the entry piecemeal, it can do so as follows:

Set(T.Status.137, createRequest)
Set(T.DataSource.137, mib-2.2.2.1.1.6)
Set(T.Owner.137, owner)
. . .
Set(T.Status.137, valid)

Immediately following the first Set(T.Status.137, createRequest) the agent will again create the row and
mark it as underCreation, but this time the new row will be missing several columns.

The Status attribute must be specified in the very first Set() operation for the row.

Existing rows may not have their Status set to createRequest. The primary legal state transitions are
as follows:

744 21 Network Management and SNMP

https://tools.ietf.org/html/rfc2819.html

An Introduction to Computer Networks, Release 1.9.21

non
Existent

under
Creation

valid invalid

createRequest

Changed mind

Normal row completion Normal termination

for more changes,
if allowed

Transition diagram for EntryStatus. When a row is requested with
createRequest, it is actually created as underCreation.

In some cases, a row can be edited by the manager by changing the status from valid back to
underCreation. However, many specific row-creation implementations require that no changes can
be made after a row is marked valid. To change an existing row in such a case, the row should be marked
invalid and a new row created.

These transition rules for createRequest prevent two managers from simultaneously creating rows with
the same index. Suppose, for example, that managers MA and MB each attempt to create a new row 137 by
executing

Set(T.Status.137, createRequest)

If MA’s Set() request is the first to be acted upon, row 137’s Status becomes underCreation. Later,
when MB’s Set() request is processed, the row will no longer be nonexistent. So, from the diagram above,
MB’s arriving createRequest is invalid: there is no createRequest arc from any node other than
nonexistent. MB’s Set() operation above, and therefore any of MB’s other Set() operations, will fail.

This strategy is meant to prevent only accidental row-creation conflict; it will not prevent MB from hijacking
MA’s row, or from marking it as invalid (and thus effectively deleting it). But this is generally understood
as an inconsequential risk; legitimate managers should be trustable.

Any authorized SNMP manager can read all the etherStatsTable records; there is no requirement that
only the creator of a row can read that row.

It is quite possible for multiple rows to be created all referring to the same interface, eg by multiple managers.
Although it is not forbidden, there is no reason for one manager to create two rows for the same interface.

The four-state EntryStatus type appeared in the original SNMPv1 RFC 1271. Updates to RMON to
SNMPv2 have left EntryStatus alone, but SNMPv2 has also introduced the six-state RowStatus type
which is more likely to be used by new MIBs. We will turn to this in 21.14.2 SNMPv2 RowStatus.

21.14.1.2 History

The history group allows for collection of a series of samples of data from the Statistics group, above, at
regular intervals. The group consists of two tables, historyControlTable where the manager creates
rows to manage the process, and etherHistoryTable containing the actual data.

The historyControlTable contains entries for (again omitting the historyControl prefix from
attribute names) DataSource, representing the interface to be examined, and the Status and Owner

21.14 Table Row Creation 745

https://tools.ietf.org/html/rfc1271.html

An Introduction to Computer Networks, Release 1.9.21

attributes as above. As with the etherStatsTable, when the manager creates a new row it specifies a
value for the index, with full name historyControlIndex, again perhaps chosen at random.

The manager must also specify two additional attributes: Interval representing the time in seconds
between data-collection events, and BucketsRequested representing the requested maximum number
of interface records to be kept by the agent. When the agent reaches the maximum, each new record replaces
the oldest previous record.

The control table contains one agent-created attribute: BucketsGranted indicating the actual maximum
number of interface records to be kept.

Once the control table row is marked valid, the agent starts accumulating one statistics record for the
specified interface every Interval seconds. These records are numbered consecutively; the number
of a given record is its SampleIndex. The agent keeps only BucketsRequested records, so once
SampleIndex reaches that value then, whenever record N is added, record N – BucketsRequested
is deleted.

All this data collected by the agent is stored in etherHistoryTable, which contains columns for all
the statistics in etherStatsTable except for the counts of packets in the various size ranges. The table
is indexed by the pair of values Index corresponding to etherControlIndex and the record number
SampleIndex. As such, this table is the disjoint union of multiple independent series of consecutively
numbered records, one series for each Index value in the control table, that is, one series for each manager
request.

As an example, suppose the manager asked for history statistics to be kept for a given interface at a rate of
once a minute, the BucketsGranted is 70, and the control-index value for this request is 491. After one
hour, the table contains records with sample indexes 1-60; the full row-index values are x491,1y through
x491,60y. After one hour and eleven minutes, record x491,71y replaces record x491,1y. After two hours,
records with sample indexes of 51-120 are available. The manager might return once an hour and retrieve
the most recent 60 records.

A manager might also create two control-table records, one holding 25 records taken at 1-hour intervals and
another holding 60 records taken at 1-minute intervals. If all is well, that manager might download the first
table once a day, and entirely ignore the second table. The manager always has available these 1-minute
records for the last hour, though, and can access them as needed if a problem arises (perhaps signaled by
something else entirely).

A manager can easily retrieve only its own rows from the etherHistoryTable. Let T be the root of the
etherHistoryTable, which has columns 1-15. Suppose again a manager has created its controlTable
row with a value for historyControlIndex of 491; the manager can then retrieve the first of its data
rows with the following; note that each OID contains the column number and part of the row index.

GetNext(T.1.491, T.2.491, . . . , T.15.491)

If the history-table rows associated with 491 have sample-index values ranging from 37 to 66, the above
GetNext() will return the row indexed by x491,37y; that is, the values paired with the following OIDs:

T.1.491.37, T.2.491.37, . . . , T.15.491.37

Subsequent GetNext()s will return the subsequent rows associated with control entry 491: row x491,38y,
row x491,39y, etc. If the etherHistoryTable had been indexed in the reverse order, with the sample
index first and the historyControlIndex second, a substantial linear search would be necessary to
locate the first row with a given value for the control index.

746 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

21.14.1.3 Hosts

The host group allows an agent to keep track of what other hosts – in RMON1 identified by their Ethernet
address – are currently active.

Like the historyControlTable, the hostControlTable allows a manager to specify
DataSource, Status and Owner; the manager also specifies TableSize.

Once the control-table entry is valid, the agent starts recording hosts in the hostTable, which is in-
dexed by the control-table index and the host Ethernet address. The agent also records each new host’s
CreationOrder value, an integer record number starting at 1.

The hostTable also maintains counters for the following per-host attributes; these are updated whenever
the agent sees another packet to or from that host. We will revisit these in the hostTopNTable, following.

• InPackets

• OutPackets

• InOctets

• OutOctets

• OutErrors

• OutBroadcastPkts

• OutMulticastPkts

When the number of host entries for a particular control-table index value exceeds TableSize – that is,
the new host’s CreationOrder would exceed TableSize, old entries are removed and all hosts in the
table are given updated CreationOrder values. That is, if the table of size three contains entries for
hosts A, B and C with creationOrder values of 1, 2 and 3, and host D comes along, then A will be
deleted and B, C and D will be given creationOrder values of 1, 2 and 3 respectively. This is quite
different from the record-number assignments in the etherHistoryTable, where the SampleIndex
record numbers are immutable.

A consequence of this is that the CreationOrder values are always contiguous integers starting at 1.

Entries are deleted based on order of creation, not order of last update. The hostTable does not even
have an attribute representing the time a given host’s entry (or entries) was last updated.

As a convenience, the data in hostTable is also made available in hostTimeTable, but there indexed
by the control-table index and the CreationOrder time. This makes for potentially faster lookup; for
example, the manager always knows that the record with CreationOrder = 1 is the oldest record. More
importantly, this alternative index allows the manager to download the most recent entries in a single step.

Whenever a host is deleted because the table is full, the CreationOrder values assigned to other hosts
all change, and so the indexing to hostTimeTable changes. Thus, a manager downloading rows from
hostTimeTable one at a time must be prepared for the possibility that what had earlier been row 3 is
now row 2, and that a host might be duplicated or skipped. To help managers deal with this, the control table
has an entry LastDeleteTime representing the time – in TimeTicks since startup – of the last deletion
and thus CreationOrder renumbering. If a manager sees that this value changes, it can, for example,
start the data request over from the beginning.

21.14 Table Row Creation 747

An Introduction to Computer Networks, Release 1.9.21

21.14.1.4 Host Top N

The hostTopN table is a report prepared by the agent about the top N entries (where N is manager-supplied)
in the hostTable, over an interval of time. The manager specifies in the control table the Status and
Owner attributes, the HostIndex control-table index value from hostControlTable, and also the
Duration (in seconds) and the RateBase indicating which of the following hostTable statistics is to
be used in the ranking:

• InPackets

• OutPackets

• InOctets

• OutOctets

• OutErrors

• OutBroadcastPkts

• OutMulticastPkts

The value of N is in the attribute RequestedSize; the agent may reduce this and communicates any
change (or lack of it) through the attribute GrantedSize.

Once the control-table row becomes valid, the agent then starts maintaining counters for all the entries
in the part of hostTable indexed by HostIndex, and at the end of the Duration sorts the data and
places its top-N results in the hostTopN table. If, during the interval, some hosts were removed from the
hostTable because the table was full, the results may be inaccurate.

All result statistics are inaccessible until the Duration has elapsed and the particular hostTopN
report has run its course, at which point the results become read-only.

21.14.1.5 Matrix

The matrix group allows an agent to collect information on traffic flow indexed by the source and destination
addresses. The manager begins the process by supplying attributes for Status, Owner, the usual Index,
the interface DataSource, and the maximum table size.

Once the row is valid, the agent begins collecting, for every xsource,destinationy pair, counts of the number
of packets, octets and errors. The record for xA,By counts these things sent by A; the corresponding record
for xB,Ay counts the reverse direction. The actual matrixSDTable is indexed by the manager-supplied
Index value and the source and destination Ethernet addresses in that order.

A companion table (or view) is also maintained called matrixDSTable, that lists the same information
but indexed by destination first and then source. This view is not present to supply information about the
reverse direction; that would be obtained by reversing source and destination in the matrixSDTable.
Rather, the matrixDSTable allows a manager to extract all information about a single destination D in a
single SNMP tree-walk operation of the prefix matrixDSTable.Index.D. This is similar to the indexing
discussion at the end of 21.14.1.2 History. See exercise 9.

748 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

21.14.2 SNMPv2 RowStatus

RMON made do with four values for its EntryStatus attribute: createRequest, underCreation,
valid and invalid. SNMPv2 still supports EntryStatus, but the preferred form is the six-value
RowStatus, RFC 2579, with options

• active: like valid

• notReady: the agent knows that the row is not complete

• notInService: the row is complete, but has not yet been activated

• createAndGo: like createRequest followed by valid

• createAndWait: like createRequest

• destroy: like invalid

The createAndGo option allows a manager to make a single new-row request to the agent, and, if suc-
cessful, the agent will immediately set the row status to active. Using EntryStatus requires two steps:
first to set the new row to underCreation and then to set it to valid.

The manager can ask for any status except notReady. Every row created will, however, be marked at the
agent with one of notReady, notInService or active.

As with EntryStatus, the manager must still choose an index value. Pseudorandom selection
remains appropriate in many cases, but the agent may also supply, if the MIB file supports it, a
recommendedNextIndex attribute.

Here is a simplified RowStatus state-transition diagram. Not all links to destroy, or from a node back
to itself, are shown. See RFC 2579, p 9, for more details.

non
Existent

not
Ready

not In
Service

active destroy

createAndWait

partial attributes

Changed mind

request active Normal termination

for more changes,
if allowed

Simplified transition diagram for RowStatus

createAndGo

additional Set(),

agent knows all req'd
attrs now specified

createAndWait

all required attributes

add'l Set(),

partial attributes

After the manager issues a createAndWait, the agent fills in the attributes provided by the manager, and
any other default attributes it has available. The manager, if desired, can now Get() the entire row, and
find out what values are still missing. These values will be reported as noSuchInstance. Alternatively,
the manager may simply know that it has more attributes to Set().

21.14 Table Row Creation 749

https://tools.ietf.org/html/rfc2579.html
https://tools.ietf.org/html/rfc2579.html

An Introduction to Computer Networks, Release 1.9.21

If the agent knows the row is missing attributes necessary for activation, it will set the RowStatus to
notReady, otherwise to notInService. A notInService row can, of course, still have undefined
read-only attributes that the agent will later set after activation. A notInService row can also still
have attributes the manager intends to set before activation, but the agent has given default values in the
interim.

Once the manager has set all the attributes required for activation, it sets the RowStatus attribute to
active, and agent activity begins.

As with EntryStatus, two managers cannot simultaneously create the same row. If they were to try to
do so, the second would be attempting to set RowStatus to createAndWait or createAndGo for a
row entry that already existed, but from the diagram such a transition is not allowed.

21.14.3 PING-MIB

The idea behind the ping MIB is to allow a manager to ask an agent to repeatedly ping a target, 7.11 Internet
Control Message Protocol, and then to report the success rate. Cisco Systems has a ping MIB at ftp://ftp.
cisco.com/pub/mibs/v2/CISCO-PING-MIB.my, but we will use the IETF alternative in RFC 2925/RFC
4560. The latter is officially titled DISMAN-PING-MIB (DISMAN is short for DIStributed MANagement).
Both ping MIBs make use of the RowStatus convention of the previous section.

The manager can ping the target itself, if there are no firewalls in the way, but the result may likely be
different from that obtained by the agent.

The actual MIB supports multiple types of ping besides the usual ICMP Echo Request, but we will consider
only the latter.

The DISMAN version has control table pingCtlTable and the results appear in pingResultsTable;
in the Cisco version the same table is used for both control and results. The results include the minimum,
maximum and average RTT, the number of pings sent and the number of responses. The results table also
has an attribute OperStatus to indicate whether the test has stopped.

The pingCtlTable contains a wide range of options for the actual ping request, including options to
specify the outgoing IP address for multihomed agents. The more familiar options, however, include

• pingCtlTargetAddress: and address type, as IPv6 is supported

• pingCtlDataSize: how big each ping packet is

• pingCtlTimeout: how long before the agent gives up on any one ping

• pingCtlProbeCount: the number of pings to be sent

• pingCtlFrequency: the interval between pings

The table also includes pingCtlRowStatus of type RowStatus, above, and pingCtlOwnerIndex
of type SnmpAdminString, which is a fancier way of identifying the manager than the RMON Owner
attributes, and which can include some SNMPv3 credentials as desired.

The new row is created, RowStatus is set to active (perhaps through createAndGo), and the test
begins.

By setting the control table’s RowStatus to destroy, a manager can attempt to halt a ping series in
progress.

750 21 Network Management and SNMP

ftp://ftp.cisco.com/pub/mibs/v2/CISCO-PING-MIB.my
ftp://ftp.cisco.com/pub/mibs/v2/CISCO-PING-MIB.my
https://tools.ietf.org/html/rfc2925.html
https://tools.ietf.org/html/rfc4560.html
https://tools.ietf.org/html/rfc4560.html

An Introduction to Computer Networks, Release 1.9.21

21.15 SNMPv3

SNMP version 3 added authentication and encryption to SNMPv2c, but made relatively few other changes
except to nomenclature. The original definitions are in RFC 3410 through RFC 3415; RFC 3410 first
appeared as RFC 2570. SNMPv3 introduced the User Security Model, or USM, in which agents allow
manager access only if the manager has presented an appropriate key, derived ultimately from a passphrase.
The agent’s response can be either digitally signed or encrypted, as desired.

SNMPv3 did make several terminology changes. Any SNMP node – either manager or agent – is now
known as an SNMP entity. An entity is divided into two parts; the first is the SNMP engine consisting of
the message dispatcher, the message processor, and the security and access-control subsystems. The second
part consists of the various SNMP applications, consisting, for agents, primarily of the command responder
(responding to Get() and GetNext(), etc). One goal of this architectural division is to separate the
applications from the authentication mechanisms. Another goal, however, is to provide a framework in
which future new applications can easily be supported.

It is the SNMP engine that must implement all the new security provisions.

21.15.1 What Could Possibly Go Wrong?

RFC 3414 analyzes the the risks of inadequate SNMP security, and identifies two primary and two secondary
threats. The primary threats are as follows:

• Unauthorized modification of information in transit: that is, man-in-the-middle attacks in which A’s
message to B is intercepted and modified by an intermediate node M.

• Masquerade: unauthorized operations by a manager (or agent) masquerading as an authorized entity.
Use of guessed or cracked passwords would fall into this category.

The secondary threats are these:

• Message Stream Modification: This includes re-ordering messages, and, perhaps most importantly,
replay attacks. For example, even if no keys are ever discovered, an attacker might learn that a
certain message causes a certain server to reboot. Retransmitting that message could have serious
consequences.

• Disclosure: reading by an eavesdropper of the management information in transit.

All but the last, disclosure, can be addressed by appropriate digital signatures and timestamps; encryption
is only needed when disclosure is an active concern. Because disclosure is not always a significant concern,
and perhaps because when RFC 2574 was written in 1999 the unlicensed export of encryption technology
from the United States was illegal, SNMPv3 defines two separate new levels of security:

• authentication-only, addressing modification, masquerade and replay

• encryption, addressing the above and disclosure

These correspond to three values for the snmpSecurityLevel textual convention (in which “priv” ab-
breviates “privacy”):

• noAuthNoPriv: no authentication

• authNoPriv: authentication, but no encryption

21.15 SNMPv3 751

https://tools.ietf.org/html/rfc3410.html
https://tools.ietf.org/html/rfc3415.html
https://tools.ietf.org/html/rfc3410.html
https://tools.ietf.org/html/rfc2570.html
https://tools.ietf.org/html/rfc3414.html
https://tools.ietf.org/html/rfc2574.html

An Introduction to Computer Networks, Release 1.9.21

• authPriv: encryption of all messages

Encryption (privacy) implies authentication; encrypted messages also include the authentication signatures
described below.

21.15.2 Cryptographic Fundamentals

SNMPv3 authentication is based on cryptographic hash functions: functions which take a data string of
arbitrary length and return a fixed-length hash, in such a way that

• Knowing the hash value sheds no practical light on the original data

• Given a hash value, there is no feasible way to find a message yielding that hash

Further details are at 22.6 Secure Hashes.

The Internet checksum of 5.4 Error Detection fails as a cryptographic hash, for example, because given a
message m and a hash value h1, one can calculate hash(m) = h and then append to m a two-byte string based
on h1–h, yielding a message m1 for which hash(m1) = h1.

The two cryptographic hash functions originally supported by SNMPv3 in RFC 3414 are MD5, which
produces a 128-bit hash, and SHA-1, which produces a 160-bit hash. Since the publication of RFC 3414
in 2002, vulnerabilities in each of these hash functions have been discovered. The SNMP framework in
principle allows easy substitution of new hash functions, but RFC 7860, standardizing the use of the SHA-2
family, did not appear even in draft form until 2013.

If two parties share a secret key k, the basic hash-based way to sign a message m is to append to it the value
hash(m"k), where m"k is the result of appending k to m. An eavesdropper will see m and hash(m"k) but
this will provide no information about k, and, similarly, an attacker will, given a message m, not be able
to generate the value hash(m"k) without knowing k. Because some hash functions are vulnerable to the
so-called “length-extension attack” when used this way, the actual signature is often slightly more involved
(21.15.5 Passwords and Keys and 22.6.1 Secure Hashes and Authentication), but hash(m"k) is a good
example of the basic concept.

The SNMP encryption mechanism is also based on shared secret keys (22.7 Shared-Key Encryption);
that is, public-key encryption is not used. RFC 3414 describes the use of the Data Encryption Standard
cipher, or DES, which uses 56-bit keys. Later, RFC 3826 introduced the use of the Advanced Encryption
Standard cipher, or AES, which in SNMP users a 128-bit key. (Both DES and AES are discussed briefly in
22.7.2 Block Ciphers.) DES is, if anything, even more vulnerable than MD5 and SHA-1, due to the limited
key length; AES is a much stronger choice.

Shared-secret encryption is based, abstractly, on an encrypting function E(p,k) that takes a plaintext message
p and a key k and returns the encrypted ciphertext. Similarly, there is a decrypting function D(c,k) that takes
an encrypted ciphertext message c and the key k and returns the original plaintext.

21.15.3 SNMPv3 Engines

The SNMPv3 engine is the component of an SNMP entity charged with ensuring security. Each SNMPv3
engine – manager or agent – has an identifier known as the snmpEngineID. This is a string that, by default,
incorporates the node’s IP or Ethernet address and additional standard information. While it is common

752 21 Network Management and SNMP

https://tools.ietf.org/html/rfc3414.html
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA-1
https://tools.ietf.org/html/rfc3414.html
https://tools.ietf.org/html/rfc7860.html
http://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc3414.html
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
https://tools.ietf.org/html/rfc3826.html
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

An Introduction to Computer Networks, Release 1.9.21

to leave this default setting unchanged, it is also possible to replace it using a site-based naming scheme,
perhaps including the organization name and a locally assigned serial number; see RFC 3411.

In any SNMPv3 exchange, one SNMPv3 engine is designated authoritative. For a Get() or Set()
request, or any other request that requires a response, it is always the agent that is authoritative. It is the job
of the authoritative engine to validate the message received from the other engine.

For either authentication-only or encrypting security levels, the nonauthoritative engine must present a pair
consisting of the following:

• userName: a human-readable string identifying a person or manager-computer

• authParameters: a string holding data specific to the authentication/encryption mechanism in
use that serves to authenticate the user. This might be thought of as a passphrase, except one goal is
never to send passphrases in the clear.

The authoritative engine must keep a table of all the userName values it recognizes, and, for each, the
appropriate key with which to validate the user.

Any SNMPv3 engine also keeps track of two 32-bit attributes

• snmpEngineTime: the number of seconds since the engine last rebooted

• snmpEngineBoots: the number of times the engine has rebooted

The pair of these, which we will abbreviate as xTime,Bootsy, uniquely identifies a point in time for an entity
(to the nearest second). They are used to prevent replay attacks; two messages sent more than one second
apart will never have the same xTime,Bootsy timestamp.

Note that keeping track of snmpEngineBoots implies that the entity have some form of persistent stor-
age.

When a nonauthoritative engine (for our purposes, the manager) wants to send a request to an author-
itative engine (the agent), the first step is to find out the agent’s snmpEngineID and then its current
xTime,Bootsy value. This is done through an initial two-step discovery process. The first request con-
tains an empty varBindList, an empty engineID, a username of the empty string and a security level of
noAuthNoPriv. The authoritative side sends a response containing its engineID. The second step is to
send a request, again with an empty varBindList but now containing a valid xusername,keyy pair. The
value for xTime,Bootsy is x0,0y. The authoritative engine now responds with a message including its actual
xTime,Bootsy.

21.15.4 Message Authentication

After discovering the authoritative engine’s xTime,Bootsy, the nonauthoritative engine stores the au-
thoritative engine’s snmpEngineBoots and also the difference between the authoritative engine’s
snmpEngineTime and its own clock time. It can now use this difference to approximate the authori-
tative engine’s snmpEngineTime at any point in the future. Every message from the nonauthoritative
engine will include its estimate of the authoritative engine’s current xTime,Bootsy value. Relative drift be-
tween the two engines’ clocks will eventually mean this estimate fails, but, as we shall see, it can be expected
to be close enough for quite a while.

The authoritative engine accepts a non-empty request only if all three of the following hold, where
Time and Boots are the values submitted by the nonauthoritative engine and snmpEngineTime and

21.15 SNMPv3 753

https://tools.ietf.org/html/rfc3411.html

An Introduction to Computer Networks, Release 1.9.21

snmpEngineBoots are the authoritative engine’s own values:

• Boots = snmpEngineBoots

• snmpEngineBoots < 231 – 1

• Time and snmpEngineTime differ by less than 150 seconds

The maximum allowable clock drift, in other words, is 150 seconds. If the two clocks drift by more than
that, the nonauthoritative side must again go through the synchronization process outlined at the end of the
previous section.

The actual message signing is based on a shared secret key, authKey, negotiated previously between user
and agent. Because the key is usually specific to the agent, it is sometimes called a local key, kl.

21.15.5 Passwords and Keys

Users are identified by userName values, and also (usually) have human-readable passwords. These pass-
words must be converted first into keys, in such a way that each xuser,agenty pair has its own unique key.
We will start with a mechanism commonly used for authentication-only security; it is similar for both the
MD5 and SHA-1 hashes. We will denote the hash function (either MD5 or SHA-1) by hash().

The first step is to create a digest based on the password. It would suffice in principle to set the digest to
hash(password). In order to make the passwordÑkey conversion process relatively slow, however, so as to
hamper brute-force attacks, Appendix A of RFC 3414 recommends repeating the password (logically, at
least) to fill a buffer 220 bytes in length. The hash() function is then applied to this megabyte string. (For
another perspective on intentionally slow password operations, see 22.6.2 Password Hashes.)

The next step is to take the engineID of the agent for which the user is generating this particular key and
take the hash of the concatenation of the digest, engineID and digest again:

kl = hash(digest"engineID"digest)

This is now the xuser,agenty shared key, or local key. It must be entered (or computed) on the agent, and
stored there. For MD5 it is 16 bytes long; for SHA-1 it is 20 bytes long.

This mechanism is, strictly speaking, optional; an agent does not know how manager keys were generated,
and thus cannot enforce any particular mechanism when a manager’s key is later changed as below. Any
secure way to generate a unique key kl for each user and each agent would be sufficient. The mechanism
here, though, has the advantage that any manager node can compute a user’s local key directly from the
password and the agent engineID; no keys need be stored by the manager. This allows a manager to use one
password for multiple agents; compromise of any one agent and its attendant local key kl should not affect
the security of other agents or of the original password.

21.15.6 Message Signing

An SNMP message mesg is now signed by a local key kl using the Hash Message Authentication Code,
or HMAC (RFC 2104), as follows:

• kl is extended to a 64-byte ek by padding with zeroes.

• A constant string ipad is formed by repeating the octet 0x36 64 times.

754 21 Network Management and SNMP

https://tools.ietf.org/html/rfc3414.html
https://tools.ietf.org/html/rfc2104.html

An Introduction to Computer Networks, Release 1.9.21

• A constant string opad is formed by repeating 0x5c 64 times.

• Set k1 = ek XOR ipad.

• Set k2 = ek XOR opad.

The authParameter field – the actual digital signature – is now set to be the first 12 bytes of

hash(k2"hash(k1"mesg))

This is slightly more complicated than the hash(mesg"kl) mechanism suggested in 21.15.2 Cryptographic
Fundamentals, in order to make it more resistant to potential vulnerabilities in the hash() function; see
22.6.1 Secure Hashes and Authentication.

The receiver can replicate this authParameter calculation and verify that it matches the value transmitted
in the packet.

21.15.7 Key Changes

Suppose a user wants to change his or her password, and thus the key k. The manager will need to commu-
nicate the new key to the agent in such a way that it is not exposed to eavesdroppers. Here is the mechanism,
where, again, hash() is either MD5 or SHA-1 as appropriate; we will use N to denote the length in bytes
of the result of hash() (either 16 or 20).

The original key is here denoted oldkey and the new key is newkey.

The manager first chooses a string random of N bytes chosen as randomly as possible. A second N-byte
string delta is then calculated as follows:

temp = hash(oldkey"random)

delta = temp XOR newkey

At this point, random and delta are sent – in the clear – from the manager to the agent. The agent can
use random and oldkey to compute temp, and thus newkey = delta XOR temp. An eavesdropper
cannot use random to find out anything about temp without knowing oldkey, and cannot get anything
useful out of delta unless either newkey or temp is known.

The actual process is to combine random and delta into a single 2N-byte keyChange string, written to
one of the key-change columns of usmUserTable, 21.15.9.1 The usmUserTable.

Note that if an eavesdropper saves random and delta, and later discovers the user’s oldkey, then
newkey can be calculated easily. Using the language of 22.9.2 Forward Secrecy, forward secrecy fails
badly. However, if an eavesdropper later discovers newkey, there is no obvious way to find oldkey; see
exercise 10.

To improve forward secrecy, and to simplify mass key generation generally, RFC 2786 outlines an experi-
mental mechanism to use Diffie-Hellman-Merkle key exchange (22.8 Diffie-Hellman-Merkle Exchange) to
create and change keys, instead of the process above.

21.15.8 Creating Additional Users

Suppose we want to add user “alice” to an agent, together with Alice’s local key kl. The problem is that
there is no pre-existing shared key, and so no way to transmit kl to the agent via SNMP without risk of

21.15 SNMPv3 755

https://tools.ietf.org/html/rfc2786.html

An Introduction to Computer Networks, Release 1.9.21

eavesdropping.

One solution is to require out-of-band account creation, that is, for Alice to log on to the agent via, perhaps,
an ssh or direct serial-line connection, and enter there her name and password. This works, but is awkward
on a large network.

The usual way is to create an account for Alice by cloning some other account on the agent. We will assume
that an initial account has been created as in 21.15.5 Passwords and Keys for user “master”. Cloning the
account just requires specification of the names “master” and “alice”; no keys need be sent. The second step
is to update the password for the new “alice” account, which is done via the key-change mechanism of the
previous section. We look at the details of the cloning procedure in the next section.

21.15.9 VACM for SNMPv3

For SNMPv1 and SNMPv2c, VACM created associations between community strings and security groups,
an then between security groups and permitted views of the OID tree. For SNMPv3, user names replace
community strings.

There are three primary VACM tables, defined in RFC 3415. The first is
vacmSecurityToGroupTable, indexed by the “security model” and the “security name”. For
SNMPv3 the model is 3 and the security name is the username; the SNMPv3 rows of the table are thus
effectively indexed by the username. It is not unreasonable to have a separate security group for each user,
eg “grppld” for user “pld”.

The second table is vacmAccessTable, indexed by security group, security model (community or SN-
MPv3) and security level (eg authNoPriv). The table can be used to look up a named view for each
of “read” and “write” privileges (also “trap” privileges, if desired). (This table is also indexed by “con-
textName”, but often there is only one contextName, the default.)

Finally, the named views themselves are stored in vacmViewTreeFamilyTable, indexed by view name
and an OID prefix representing an OID subtree. A given view v consists of all the OID prefixes op for which
xv,opy appears in the table. Some prefixes may have an associated “mask”, typically to allow access to a
designated table row, and some prefixes may represent exclusion of that subtree from the view. Typical
view names are “_all_”, “_none_” and “systemonly”; we created a view “mib2+private” in 21.11 SNMPv1
communities and security.

21.15.9.1 The usmUserTable

Now it is time to look at the actual table in which agents store user names and their associated authentication
credentials, usmUserTable. It has the attributes below, which should all be prefixed by usmUser; the
index attributes are the first two, EngineID and Name. We will consider only those attributes related to
authentication-only security.

756 21 Network Management and SNMP

https://tools.ietf.org/html/rfc3415.html

An Introduction to Computer Networks, Release 1.9.21

EngineID usually the agent’s own engineID
Name eg “alice”
SecurityName usually the same as Name
CloneFrom an indication of the row this entry is cloned from
AuthProtocol MD5 or SHA-1
AuthKeyChange the xrandom, deltay keyChange object of 21.15.7 Key Changes
OwnAuthKeyChange the same but with different permissions; see below
PrivProtocol used for encryption
PrivKeyChange used for encryption
OwnPrivKeyChange used for encryption
Public used for confirming key changes; see below
StorageType hopefully permanent, meaning values persist between reboots
Status of type RowStatus, for row insertion

One can think of the table as also having an implicit authKey column, representing the local key corre-
sponding to Name, that is never directly readable or writable. RFC 3414 states flatly “the authKey is not
accessible via SNMP.” However, the agent must still keep the authKey somewhere, tied to the Name, so it
can validate a given user based on the Name and authParameter supplied in a request.

Because EngineID is usually the agent’s own EngineID, the table is de facto indexed just by Name.

Recall that, as was discussed in 21.13.4 SNMPv2 Indexes, the index attributes, EngineID and Name, will
not be directly accessible, but will be encoded in the OID associated with every other retrieved attribute.
The username “alice” will thus be encoded, using the ASCII string encoding, as 97.108.105.99.101, not
necessarily easily readable by human managers.

We are now in a position explain the cloning process and the key-change process as they play out with this
table.

A specific semantic rule for this table is that the use of Set() to assign a xrandom, deltay keyChange object
to AuthKeyChange or OwnAuthKeyChange causes that user’s hidden authKey to be updated via the
process of 21.15.7 Key Changes. The user cannot confirm directly that this change succeeded, as a read
of these keyChange attributes returns the empty string, so the usual recommended strategy is also to write a
random value to the Public attribute; because Set() operations are atomic, a change to the latter means
the former change succeeded as well.

Because it is possible for multiple managers to be updating the table simultaneously, a single
TestAndIncr object named usmUserSpinLockmay be used to enforce serialization, as in 21.13.5 Te-
stAndIncr. So the full recommended sequence for updating a key is as follows, where keyChange is the
xrandom, deltay keyChange object and index encodes the EngineID and the Name:

rand = random value chosen by the manager
val := Get(usmUserSpinLock)
Set((usmUserSpinLock, val), (AuthKeyChange.index, keyChange), (Public.index,
rand))

This is repeated as necessary until Get(Public) returns rand, indicating that the Set() operations all
succeeded.

21.15 SNMPv3 757

https://tools.ietf.org/html/rfc3414.html

An Introduction to Computer Networks, Release 1.9.21

The above applies for a key change being done by someone with write privileges to the AuthKeyChange
column of usmUserTable.

An alternative to granting ordinary users write access to the AuthKeyChange column is to have them use
the column OwnAuthKeyChange instead. Any user may attempt to write to this column, but the write will
only succeed if the userName by which the request is authenticated is equal to the Name representing the
index for this particular keyChange. In other words, anyone with write access to the OwnAuthKeyChange
column can change his or her own key, and only his or her own key. Write access to this column must still
be granted, however. As we will see below in 21.15.9.2.1 Cloning in Net-SNMP, this security option is of
relatively little practical significance.

To clone a new user from an existing one, the first step is to choose the row to be cloned, represented by the
OID of an index value. Call this cloneRow, and let index again encode the EngineID and Name:

val := Get(usmUserSpinLock)
Set((usmUserSpinLock, val), (CloneFrom.index, cloneRow), (Status.index,
createAndWait))

Typically the key change is then executed before changing the Status to active, though this is not
required.

21.15.9.2 Creating Accounts in Net-SNMP

To create an initial account, the configuration files are used. On the author’s installation of Net-SNMP ver-
sion 5.7.x (in 2016), the administratively written configuration file is /etc/snmp/snmpd.conf and the system-
written configuration file is /var/lib/snmp/snmpd.conf; the latter contains snmpEngineBoots and other
persistent SNMP data. The following line goes in this second file, with SNMP shut down (some earlier
versions of Net-SNMP required that it be placed in /var/net-snmp/snmpd.conf). Its effect is to create an
SNMPv3 user named “master” with MD5-authentication password “saskatchewan”.

createUser master MD5 saskatchewan

When SNMP is then started, the line above is replaced by something like the following (on a single line) in
/var/lib/snmp/snmpd.conf:

usmUser 1 3 0x80001f8880889cb038b1aca650 "master" "master" NULL
\

.1.3.6.1.6.3.10.1.1.2 0x7293f49a82fc950f5c344efd94dbb7db

.1.3.6.1.6.3.10.1.2.1 0x 0x

The new localized key is 0x7293f49a82fc950f5c344efd94dbb7db; the first hex string beginning 0x80001 is
the engineID.

For this new account to be authorized to do anything, we must also add the following permissions entry to
/etc/snmp/snmpd.conf:

rwuser master

The effect of this entry is to create an entry (on SNMP restart) in vacmSecurityToGroupTable asso-
ciating user “master” with its own security group (Net-SNMP names it “grpmaster”), and then an entry in
the vacmAccessTable granting this new group SNMPv3 read and write access to the entire OID tree.

758 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

(In general we could also have used “rouser”, except that we will need “master” to be able to create new
users.)

After permissions (at least read permissions) are enabled, the following snmpget should work

snmpget -v 3 -u master -l authNoPriv -a MD5 -A saskatchewan
localhost 1.3.6.1.2.1.1.4.0

The hostname is “localhost” if this is being run on the same machine that the Net-SNMP agent is running
on; it can also of course be run remotely.

We can make this a little shorter by editing the Net-SNMP per-user manager configuration file
$HOME/.snmp/snmp.conf to add the following lines:

defSecurityName master

defAuthType MD5

defSecurityLevel authNoPriv

defAuthPassphrase saskatchewan

Now the snmpget command can be shortened to

snmpget -v 3 localhost 1.3.6.1.2.1.1.4.0

If we take the password, “saskatchewan”, and repeat it to 220 bytes, the MD5 checksum is
0x3da9dbfc3a78acb675e436746e1f4f8a; this is the “digest” of 21.15.5 Passwords and Keys. From
the /var/lib/snmp/snmpd.conf file (or from the created usmUser entry above) we find the engineID is
0x80001f8880889cb038b1aca650. If we convert these two strings to binary data, concatenate them as
digest"engineID"digest, and take the MD5 checksum, we indeed get

7293f49a82fc950f5c344efd94dbb7db

which is exactly the key entry in the /var/lib/snmp/snmpd.conf file.

21.15.9.2.1 Cloning in Net-SNMP

We can now clone this account while SNMP is running, using the snmpusm command-line utility. The
following line creates an account “pld” cloned from “master”, using the master account (and assuming that
master is an rwuser and not an rouser); we have abbreviated by auth the full credentials -u master -l
authNoPriv -a MD5 -A saskatchewan. We have switched from “localhost” to HOST to empha-
size that this can be run remotely.

snmpusm -v3 auth HOST create pld master

We then change the password to “ramblers”, still using the authority of user “master”; the -Ca option tells
snmpusm to change only the authentication key.

snmpusm -v3 auth -Ca HOST passwd saskatchewan ramblers pld

But before new user pld can do anything, we must grant access. We can again edit /etc/snmp/snmpd.conf on
the machine running the Net-SNMP agent, adding the directive rouser pld (granting read-only access
this time) and then restarting SNMP. We can also, however, manipulate the VACM tables of 21.15.9 VACM
for SNMPv3 using the Net-SNMP snmpvacm command, which works remotely:

snmpvacm -v3 auth HOST createSec2Group 3 pld grppld

21.15 SNMPv3 759

An Introduction to Computer Networks, Release 1.9.21

snmpvacm -v3 auth HOST createAccess grppld 3 2 0 _all_ _none_
none

These two commands create entries in the vacmSecurityToGroupTable and the
vacmAccessTable respectively. The parameters following grppld in the second command include the
USM security model (3), the authNoPriv security level (2), a placeholder (0) for the contextmatch flag
which we are not using, and the views _all_ and _none_ predefined by Net-SNMP. The command here
gives grppld read access to everything, and write access to nothing (the second _none_ denies access
for creation of notifications such as traps).

After all this, user pld can then issue an snmpget using pld’s own credentials with

snmpget -v 3 -u pld -l authNoPriv -a MD5 -A ramblers HOST
1.3.6.1.2.1.1.4.0

If user pld is to be able to change pld’s password (key), write-access must be granted at least to the
usmUserAuthKeyChange column of usmUserTable. We do this by adding the appropriate OID to
the write view for user pld. Views are maintained in the vacmViewTreeFamilyTable as an association
between the view name and a list of OIDs.

The first step is to add the usmUserAuthKeyChange column, 1.3.6.1.6.3.15.1.2.2.1.6, to user pld’s view.
The command below can be applied alone, so that the usmUserAuthKeyChange column is the only
object to which user pld can write, or as part of a series of createView statements adding a series of OID
subtrees to pldwriteview. (An OID can be removed from a view with the deleteView option.) In
the following commands we are still using the initial master account for auth.

snmpvacm -v3 auth HOST createView pldwriteview
1.3.6.1.6.3.15.1.2.2.1.6

Now we apply this new view, pldwriteview, to pld’s group, grppld. We must first clear the previously
granted access.

snmpvacm -v3 auth HOST deleteAccess grppld 3 2

snmpvacm -v3 auth HOST createAccess grppld 3 2 0 _all_
pldwriteview _none_

The password can now be changed from “ramblers” to “ignatius” as follows:

snmpusm -v3 -u pld -l authNoPriv -a MD5 -A ramblers -Ca HOST
passwd ramblers ignatius pld

We granted pld access here to the entire usmUserAuthKeyChange column. In principle this might be
risky, as it allows user pld to write to the key-changing column for any user. One potential approach here
is to grant user pld access only to pld’s own row in usmUserAuthKeyChange; this has the following
rather cumbersome OID (in which the last four levels 3.112.108.100 spell out the three-byte string “pld” in
ASCII):

1.3.6.1.6.3.15.1.2.2.1.6.17.128.0.31.136.128.22.41.105.105.47.232.188.86.0.0.
ãÑ0.0.3.112.108.100

Another approach might be to grant pld write access to the usmUserOwnAuthKeyChange column. The
semantics of this column, outlined above in 21.15.9.1 The usmUserTable, are such that key-change requests

760 21 Network Management and SNMP

An Introduction to Computer Networks, Release 1.9.21

are accepted only for the user who signed the request. This would prevent user pld from even attempting to
change anyone else’s password.

But the risk of full usmUserAuthKeyChange access is minimal: a request authenticated by user pld can
only change the password of another user, say bob, if bob’s previous password is known to pld, as keychange
objects must incorporate the old key/password. But if that password is known, then the password can just
as easily be changed by authenticating the request as user bob rather than as user pld. In any event, the
Net-SNMP snmpusm command does not support writing to usmUserOwnAuthKeyChange.

The command snmpusm does not support making general modifications; if a USM entry here is made
incorrectly, it may be necessary to delete and re-create it.

21.16 Exercises

1. Consider the table below. The first column is the index.

index count veggie
1 401 kale
3 523 kohlrabi
57 607 mâche
92 727 okra

Give the OID for each data value, assuming this table were encoded in SNMP. Assume the columns are
assigned OID levels 1, 2, and 3 in order (including the index column), and the root of the subtree (the
tableEntry OID) is represented by T. Note that rows are not numbered consecutively.

2. Recall that GetBulk() acts like a repeated GetNext(). Why is there no GetBulk() equivalent of
Get()?

3. What happens if we have a three-row, three-column table and ask, using GetBulk(), for the first two
columns with a repetition count of four? What is retrieved? Assume entries are of the form T.col.row, for
col and row each ranging from 1 to 3.

4. Consider the following multi-attribute GetNext() as presented in 21.8.1 Multi-attribute Get():

GetNext(T.1.4, T.2.4, T.3.4, T.4.4, T.10.4, T.11.4)

The answer given in the text explicitly assumed that the only columns existing were those shown: 1, 2, 3, 4,
10 and 11. What would be the result if all columns of ifTable were present? Assume, as before, that row
4 is the final row.

5. Suppose you want an SNMP table identTable to hold xidNum,userNamey pairs, where idnum is to
be an INTEGER and username an OCTET STRING. The INDEX is idnum. Give ASN.1 definitions for the
following:

• identTable

• identEntry

• IdentEntry

• idNum

21.16 Exercises 761

An Introduction to Computer Networks, Release 1.9.21

• userName

Follow the SNMPv2 convention of not including the index column in the actual table data, 21.13.4 SNMPv2
Indexes.

6. (a) What can an SNMP agent do to detect that a manager has created a row in state underCreation
and then crashed, leaving the row abandoned?

(b). What can an SNMP agent do to detect that a manager has created a valid row, and has later crashed?

7. In the RMON hostTopN table (21.14.1.4 Host Top N), the agent does all the report-building work.
Would it be possible for the manager to do this? If not, why not? If so, why do you think RMON provides
this table?

8. In the RMON matrixSDTable (21.14.1.5 Matrix), the table constructed collects data from only a
single interface on the agent (that interface specified by DataSource). Could we get additional Matrix
information by considering other interfaces? Why or why not?

9. The RMON matrix group (21.14.1.5 Matrix) provides two tables with the same information,
matrixSDTable and matrixDSTable.

(a). Suppose we want all the table data about a given destination D, and have only the matrixSDTable.
Explain why every row of matrixSDTable would need to be examined.

(b). Now suppose we repeat the investigation of (a), but this time the manager has previously downloaded
the complete list of all hosts on the LAN by using the RMON hosts tables. If N is the number of hosts on
the LAN, explain how to find all hosts that communicated with D using only N retrieval requests.

(c). Explain how to find all hosts S that sent packets to D even more quickly using the matrixDSTable.
If MďN is the number of such S, your answer should involve N+1 retrieval requests.

10. In the keychange operation of 21.15.7 Key Changes, suppose the manager simply transmitted delta2
= oldkey XOR newkey to the agent.

(a). Suppose an eavesdropper discovers delta2 and also knows a few bits of oldkey. What can the
eavesdropper learn about newkey? Would the same vulnerability apply to the mechanism of 21.15.7 Key
Changes?

(b). Suppose an eavesdropper later discovers newkey. Explain how to recover oldkey, and why this does
not work when the mechanism of 21.15.7 Key Changes is used.

11. List the OID prefixes for which a manager would need to be granted write permission if the manager
were to be able to modify all settings in .1.3.6.1.2.1 and .1.3.6.1.4.1, and change their own local key, but
not have access to columns in usmUserTable that would allow modification of other manager accounts.
(The VACM table has an “exception” option to make this easier).

12. Suppose a manager has write permission only for the usmUserOwnAuthKeyChange column in
usmUserTable, which allows change of only that manager’s password. However, the manager has full
write access to the VACM tables. Explain how the manager can modify the local keys of other managers.

13. Use Wireshark to monitor localhost traffic while you use the Net-SNMP snmpusm command to
change a manager’s own local key. Does the command use the usmUserAuthKeyChange column or
the usmUserOwnAuthKeyChange column?

762 21 Network Management and SNMP

22 SECURITY

How do we keep intruders out of our computers? How do we keep them from impersonating us, or from
listening in to our conversations or downloading our data? Computer security problems are in the news on
almost a daily basis. In this chapter we take a look at just a few of the issues involved in building secure
networks.

For our limited overview here, we will divide attacks into three categories:

1. Attacks that execute the intruder’s code on the target computer

2. Attacks that extract data from the target, without code injection

3. Eavesdropping on or interfering with computer-to-computer communications

The first category is arguably the most serious; this usually amounts to a complete takeover, though occa-
sionally the attacker’s code is limited by operating-system privileges. A computer taken over this way is
sometimes said to have been “owned”. We discuss these attacks below in 22.1 Code-Execution Intrusion.
Perhaps the simplest form of such an attack is through stolen or guessed passwords to a system that offers
remote login to command-shell accounts. More technical forms of attack may involve a virus, a buffer over-
flow (22.2 Stack Buffer Overflow and 22.3 Heap Buffer Overflow), a protocol flaw (22.1.2 Christmas
Day Attack), or some other software flaw (22.1.1 The Morris Worm).

In the second category are intrusions that do not involve remote code execution; a server application may be
manipulated to give up data in ways that its designers did not foresee.

For example, in 2008 David Kernell gained access to the Yahoo email account of then-vice-presidential
candidate Sarah Palin, by guessing or looking up the answers to the forgotten-password security questions
for the account. One question was Palin’s birthdate. Another was “where did you meet your spouse?”,
which, after some research and trial-and-error, Kernell was able to guess was “Wasilla High”; Palin grew up
in and was at one point mayor of Wasilla, Alaska. Much has been made since of the idea that the answers to
many security questions can be found on social-networking sites.

As a second example in this category, in 2010 Andrew “weev” Auernheimer and Daniel Spitler were charged
in the “AT&T iPad hack”. IPad owners who signed up for network service with AT&T had their iPad’s ICC-
ID recorded along with their other information. If one of these owners later revisited the AT&T website,
the site would automatically request the iPad’s ICC-ID and then populate the web form with the user’s
information. If a randomly selected ICC-ID were presented to the AT&T site that happened to match a real
account, that user’s name, phone number and email address would be returned. ICC-ID strings contain 20
decimal digits, but the individual-device portion of the identifier is much smaller and this brute-force attack
yielded 114,000 accounts.

This attack is somewhat like a password intrusion, except that there was no support for running commands
via the “compromised” accounts.

Auernheimer was convicted for this “intrusion” in November 2012, but his sentence was set aside on appeal
in April 2014. Auernheimer’s conviction remains controversial as the AT&T site never requested a password
in the usual sense, though the site certainly released information not intended by its designers.

Finally, the third category here includes any form of eavesdropping. If the password for a login-shell account
is obtained this way, a first-category attack may follow. The usual approach to prevention is the use of

763

http://yahoo.com
http://en.wikipedia.org/wiki/Subscriber_identity_module#ICCID
http://en.wikipedia.org/wiki/Subscriber_identity_module#ICCID

An Introduction to Computer Networks, Release 1.9.21

encryption. Encryption is closely related to secure authentication; encryption and authentication are
addressed below in 22.6 Secure Hashes through 22.10 SSH and TLS.

Encryption does not always work as desired. In 2006 intruders made off with 40 million credit-card records
from TJX Corp by breaking the WEP Wi-Fi encryption (22.7.7 Wi-Fi WEP Encryption Failure) used by
the company, and thus gaining access to account credentials and to file servers. Albert Gonzalez pleaded
guilty to this intrusion in 2009. This was the largest retail credit-card breach until the Target hack of late
2013.

22.1 Code-Execution Intrusion

The most serious intrusions are usually those in which a vulnerability allows the attacker to run executable
code on the target system.

The classic computer virus is broadly of this form, though usually without a network vulnerability: the
user is tricked – often involving some form of social engineering – into running the attacker’s program on
the target computer; the program then makes itself at home more or less permanently. In one form of this
attack, the user receives a file interesting_picture.jpg.exe or IRS_deficiency_notice.
pdf.exe. The attack is made slightly easier by the default setting in Windows of not displaying the final
file extension .exe.

Early viruses had to be completely self-contained, but, for networked targets, once an attacker is able to run
some small initial executable then that program can in turn download additional malware. The target can
also be further controlled via the network.

The reach of an executable-code intrusion may be limited by privileges on the target operating system; if
I am operating a browser on my computer as user “pld” and an intruder takes advantage of a flaw in that
browser, then the intruder’s code will also run as “pld” and not as “root” or “Administrator”. This may
prevent the intruder from rewriting my kernel, though that is small comfort to me if my files are encrypted
and held for ransom.

On servers, it is standard practice to run network services with the minimum privileges practical, though see
22.2.3 Defenses Against Buffer Overflows.

Exactly what is “executable code” is surprisingly hard to state. Scripting languages usually qualify. In 2000,
the ILOVEYOU virus began spreading on Windows systems; users received a file LOVE-LETTER.TXT.
vbs (often with an enticing Subject: line such as “love letter for you”). The .vbs extension, again not
displayed by default, meant that when the file was opened it was automatically run as a visual basic script.
The ILOVEYOU virus was later attributed to Reonel Ramones and Onel de Guzman of the Philippines,
though they were never prosecuted. The year before, the Melissa virus spread as an emailed Microsoft
Word attachment; the executable component was a Word macro.

Under Windows, a number of configuration-file formats are effectively executable; among these are the
program-information-file format .PIF and the screen-saver format .SCR.

22.1.1 The Morris Worm

The classic Morris Worm was launched on the infant Internet in 1988 by Robert Tappan Morris. Once one
machine was infected, it would launch attacks against other machines, either on the same LAN or far away.

764 22 Security

http://en.wikipedia.org/wiki/Program_information_file
http://en.wikipedia.org/wiki/Screensaver#Microsoft_Windows_2
http://en.wikipedia.org/wiki/Robert_Tappan_Morris

An Introduction to Computer Networks, Release 1.9.21

The worm used a number of techniques, including taking advantage of implementation flaws via stack
buffer overflows (22.2 Stack Buffer Overflow). Two of the worm’s techniques, however, had nothing to
do with code injection. One worm module contained a dictionary of popular passwords that were used to
try against various likely system accounts. Another module relied on a different kind of implementation
vulnerability: a (broken) diagnostic feature of the sendmail email server. Someone could connect to the
sendmail TCP port 25 and send the command WIZ <password>; that person would then get a shell
and be able to execute arbitrary commands. It was the intent to require a legitimate sendmail-specific
password, but an error in sendmail’s frozen-configuration-file processing meant that an empty password
often worked.

22.1.2 Christmas Day Attack

The 1994 “Christmas day attack” (12.10.1 ISNs and spoofing) used a TCP protocol weakness combined
with a common computer-trust arrangement to gain privileged login access to several computers at UCSD.
Implementations can be fixed immediately, once the problem is understood, but protocol changes require
considerable negotiation and review.

The so-called “rlogin” trust arrangement meant that computer A might be configured to trust requests for
remote-command execution from computer B, often on the same subnet. But the ISN-spoofing attack meant
that an attacker M could send a command request to A that would appear to come from the trusted peer B,
at least until it was too late. The command might be as simple as “open up a shell connection to M”. At
some point the spoofed connection would fail, but by then the harmful command would have been executed.
The only fix is to stop using rlogin. (Ironically, the ISN spoofing attack was discovered by Morris but was
not used in the Morris worm above; see [RTM85].)

Note that, as with the sendmail WIZ attack of the Morris worm, this attack did not involve network delivery
of an executable fragment (a “shellcode”).

22.2 Stack Buffer Overflow

The stack buffer overflow is perhaps the classic way for an attacker to execute a short piece of machine
code on a remote machine, thus compromising it. Such attacks are always due to an implementation flaw.
A server application reads attacker-supplied data into a buffer, buf, of length buflen. Due to the flaw,
however, the server reads more than buflen bytes of data, and the additional data is written into memory
past the end of buf, corrupting memory. In the C language, there is no bounds checking with native arrays,
and so such an overflow is not detected at the time it occurs. See [AO96] for early examples.

In most memory layouts, the stack grows downwards; that is, a function call creates a new stack frame with
a numerically lower address. Array indexing, however, grows upwards: buf[i+1] is at a higher address
than buf[i]. As a consequence, overwriting the buffer allows rewriting the most recent return address on
the stack. A common goal for the attacker is to supply an overflowing buffer that does two things:

1. it includes a shellcode - a small snippet of machine code that, when executed, does something bad
(traditionally but not necessarily by starting a shell with which the attacker can invoke arbitrary com-
mands).

2. it overwrites the stack return address so that, when the current function exits, control is returned not
to the caller but to the supplied shellcode.

22.2 Stack Buffer Overflow 765

An Introduction to Computer Networks, Release 1.9.21

In the diagram below, the left side shows the normal layout: the current stack frame has a buffer into which
the attacker’s message is read. When the current function exits, control is returned to the address stored in
return_address.

The right side shows the result after the attacker has written shellcode to the buffer, and, by overflow, has
also overwritten the return_address field on the stack so that it now points to the shellcode. When the
function exits, control will be passed to the code at return_address, that is, to the shellcode rather than
to the original caller. The shellcode is here shown below return_address in memory, but it can also be
above it.

22.2.1 Return to libc

A variant attack is for the attacker to skip the shellcode, but instead to overwrite the stack return address
with the address of a known library procedure. The libc library is popular here, making this known as
the return-to-libc approach. The goal of the attacker is to identify a library procedure that, in the current
context of the server process being attacked, will do something that the attacker finds useful.

One version of this attack is to overwrite the stack address with the address of the system() call, and to
place on the stack just above this return address a pointer to the string “/bin/sh” (often present in the envi-
ronment strings of the attacked process). When the current function exits, control branches to system(),
which now thinks it has been called with parameter /bin/sh. A shell is launched.

Return-to-libc attacks often involve no shellcode at all. The attack of 22.3.2 A JPEG heap vulnerability
uses some return-to-libc elements but also does involve injected shellcode.

A practical problem with any form of the stack-overflow attack is knowing enough about the memory layout
of the target machine so that the attacker can determine exactly where the shellcode is loaded. This is
made simpler by standardized versions of Windows in which many library routines are at fixed, well-known
addresses.

766 22 Security

An Introduction to Computer Networks, Release 1.9.21

22.2.2 An Actual Stack-Overflow Example

Why the code here?

In many accounts of computer vulnerabilities, there is an understandable reluctance to explain the actual
mechanics, lest some attacker learn how to exploit the flaw. This secrecy, however, sometimes has the
unfortunate side-effect of making vulnerabilities seem almost magical. The goal in presenting this twenty-
year-old example in detail is simply to strip away the aura of mystery surrounding many exploits.

To put together an actual example, we modify a version of TCP simplex-talk (12.6 TCP simplex-talk) writ-
ten in the C language. On the server side, all we have to do is read the input with the infamous gets(char
* buf), which reads in data up to a newline (or NUL) character into the array buf, with no size restric-
tions. To be able to use gets() this way, we must arrange for the standard-input stream of the reading
process to be the network connection. There is a version of gets() that reads from an arbitrary input
stream, namely fgets(char * buf, int bufsize, FILE *stream), but fgets() is not as
vulnerable as gets() as it will not read more than bufsize characters into buf. (It is possible, of course,
for a programmer to supply a value of bufsize much larger than the actual size of buf[].)

One drawback of using gets() is that the shellcode string must not have any NULL (zero) bytes.
Sometimes this takes some subterfuge; in the example below, the shellcode includes the string "/bin/
shNAAAABBBB"; the N and the BBBB will be replaced with zeroes by the injected code itself, after it is
read.

Alternatively, we can also have the server read its the data with the call

recv(int socket, char * buf, int bufsize, int flags)

but supply an incorrect (and much too large) value for the parameter bufsize. This approach has the
practical advantage of allowing the attacker to supply a buffer with NUL characters (zero bytes) and with
additional embedded newline characters.

On the client side – the attacker’s side – we need to come up with a suitable shellcode and create a too-large
buffer containing, in the correct place, the address of the start of the shellcode. Guessing this address used
to be easy, in the days when every process always started with the same virtual-memory address. It is now
much harder precisely to make this kind of buffer-overflow attack more difficult; we will cheat and have our
server print out an address on startup that we can then supply to the client.

An attack like this depends on knowing the target operating system, the target cpu architecture (so as to
provide an executable shellcode), the target memory layout, and something about the target server imple-
mentation (so the attacker knows what overflow to present, and when). Alas, all but the last of these are
readily guessable. Once upon a time vulnerabilities in server implementations were discovered by reading
source code, but it has long been possible to search for overflow opportunities making use only of the binary
executable code.

The shellcode presented here assumes that the server system is running 32-bit code. 64-bit Linux systems
can be configured to run 32-bit code as well, though a simpler alternative is often to create a 32-bit virtual
machine to run the server side. It would also be possible to migrate the shellcode to 64-bit format.

22.2 Stack Buffer Overflow 767

An Introduction to Computer Networks, Release 1.9.21

22.2.2.1 The server

The overflow-vulnerable server, oserver.c, is more-or-less a C implementation of the tcp simplex-talk server
of 12.6 TCP simplex-talk. For the 32-bit shellcode below to work, the server must be run as a 32-bit
program.

The server contains an explicit call to bind() which was handled implicitly by the ServerSocket()
constructor in the Java version.

For each new connection, a new process to handle it is created with fork(); that new process then calls
process_connection(). The process_connection() function then reads a line at a time from
the client into a buffer pcbuf of 80 bytes. Unfortunately for the server, it may read well more than 80 bytes
into pcbuf.

For the stack overflow to work, it is essential that the function that reads too much data into the
buffer – thus corrupting the stack – must return. Therefore the protocol has been modified so that
process_connection() returns if the arriving string begins with “quit”.

We must also be careful that the stack overflow does not so badly corrupt any local variables
that the code fails afterwards to continue running, even before returning. All local variables in
process_connection() are overwritten by the overflow, so we save the socket itself in the global
variable gsock.

We also call setstdinout(gsock) so that the standard input and standard output within
process_connection() is the network connection. This allows the use of the notoriously vulnera-
ble gets(), which reads from the standard input (alternatively, recv() or fgets() with an incorrect
value for bufsize may be used). The call to setstdinout() also means that the shell launched by the
shellcode will have its standard input and output correctly set up. We could, of course, make the appropriate
dup()/fcntl() calls from the shellcode, but that would increase its complexity and size.

Because the server’s standard output is now the TCP connection, it prints incoming strings to the terminal
via the standard-error stream.

On startup, the server prints an address (that of mbuf[]) within its stack frame; we will refer to this as
mbuf_addr. The attacking client must know this value. No real server is so accommodating as to print its
internal addresses, but in the days before address randomization, 22.2.3.2 ASLR, the server’s stack address
was typically easy to guess.

Whenever a connection is made, the server here also prints out the distance, in bytes, between the
start of mbuf[] in main() and the start of pcbuf – the buffer that receives the overflow – in
process_connection(). This latter number, which we will call addr_diff, is constant, and must
be compiled into the exploit program (it does change if new variables are added to the server’s main() or
process_connection()). The actual address of pcbuf[] is thus mbuf_addr – addr_diff. This will
be the address where the shellcode is located, and so is the address with which we want to overwrite the
stack. We return to this below in 22.2.2.3 The exploit, where we introduce a “NOPslide” so that the attacker
does not have to get the address of pcbuf[] exactly right.

Linux provides some protection against overflow attacks (22.2.3 Defenses Against Buffer Overflows), so the
server must disable these. As mentioned above, one protection, address randomization, we defeat by having
the server print a stack address. The server must also be compiled with the -fno-stack-protector
option to disable the stack canary of 22.2.3.1 Stack canary, and the -z execstack option to disable
making the stack (and other data areas) non-executable, 22.2.3.3 Making the stack non-executable.

768 22 Security

http://intronetworks.cs.luc.edu/auxiliary_files/overflow/oserver.c

An Introduction to Computer Networks, Release 1.9.21

gcc -fno-stack-protector -z execstack -o oserver oserver.c

Even then we are dutifully warned by both the compiler and the linker:

warning: 'gets' is deprecated
warning: the 'gets' function is dangerous and should not be used.

In other words, getting this vulnerability still to work in 2014 takes a bit of effort.

The server here does work with the simplex-talk client of 12.6 TCP simplex-talk, but with the #USE_GETS
option enabled it does not handle a client exit gracefully, unless the client sends “quit”.

22.2.2.2 The shellcode

The shellcode must be matched to the operating system and to the cpu architecture; we will assume Linux
running on a 32-bit Intel x86. Our goal is to create a shellcode that launches /bin/sh. The approach here
is taken from [SH04].

The shellcode must be a string of machine instructions that is completely self-contained; data references
cannot depend on the linker for address resolution. Not only must the code be position-independent, but the
code together with its data must be position-independent.

So-called “Intel syntax” is used here, in which the destination operand comes first, eg mov eax,37. The
nasm assembler is one of many that supports this format.

Direct system calls in Linux are made using interrupts, using the int 0x80 opcode and parameter. The
x86 architecture has four general-purpose registers eax, ebx, ecx and edx; when invoking a system call
via an interrupt, the first of these holds a code for the particular system routine to be invoked and the others
hold up to three parameters. (Below, in 22.3.2 A JPEG heap vulnerability, we will also make use of register
edi.) The system call we want to make is

execve(char * filename, char *argv[], char *envp[])

We need eax to contain the numeric value 11, the 32-bit-Linux syscall value corresponding to execve
(perhaps defined in /usr/include/i386-linux-gnu/asm/unistd_32.h). (64-bit Linux uses
59 as the syscall value for execve.) We load this with mov al 11; al is a shorthand for the low-order
byte of register eax. We first zero eax by subtracting it from itself. We can also, of course, use mov eax
11, but then the 11 expands into four bytes 0x0b000000, and we want to avoid including NUL bytes in the
code.

We also need ebx to point to the NUL-terminated string /bin/sh. The register ecx should point to an ar-
ray of pointers [“/bin/sh”, 0] in memory (the null-terminated argv[]), and edx should point to a null word
in memory (the null-terminated envp[]). We include in the shellcode the string “/bin/shNAAAABBBB”,
and have the shellcode insert a NUL byte to replace the N and a zero word to replace the “BBBB”, as the
shellcode must contain no NUL bytes at the time it is read in by gets(). The shellcode will also replace
the “AAAA” with the address of “/bin/sh”. We then load ecx with the address of “AAAA” (now containing
the address of “/bin/sh” followed by a zero word) and edx with the address of “BBBB” (now just a zero
word).

22.2 Stack Buffer Overflow 769

http://www.nasm.us/

An Introduction to Computer Networks, Release 1.9.21

Loading the address of a string is tricky in the x86 architecture. We want to calculate this address relative to
the current instruction pointer IP, but no direct access is provided to IP. The workaround in the code below
is to jump to shellstring near the end, but then invoke call start, where start: is the label for
our main code up at the top. The action of call start is to push the address of the byte following call
start onto the stack; this happens to be the address of shellstring:. Back up at start:, the pop
ebx pops this address off the stack and leaves it in ebx, where we want it.

Our complete shellcode is as follows (the actual code is in shellcode.s):

jmp short shellstring
start:
pop ebx ;get the address of the string in ebx
sub eax, eax ;zero eax by subtracting it from itself
mov [ebx+7], al ;put a NUL byte where the N is in the string
mov [ebx+8], ebx ;put the address of the string where the AAAA is
mov [ebx+12], eax ;put a zero (NULL) word into where the BBBB is
mov al, 11 ;execve is syscall 11
lea ecx, [ebx+8] ;load the address of where the AAAA was
lea edx, [ebx+12] ;load the address of where the BBBB was, now NULL
int 0x80 ;call the kernel. WE HAVE A SHELL!
shellstring:
call start ;pushes address of string below and jumps to start:
db '/bin/shNAAAABBBB' ;the string. AAAA and BBBB get filled in as above

We run this through the commands

nasm -f elf shellcode.s
ld -o shellcode shellcode.o
objdump -d shellcode

and then, creating a string with the bytes produced, come up with the following:

char shellcode[] =
"\xeb\x16\x5b\x29\xc0\x88\x43\x07\x89\x5b\x08\x89"
"\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80"
"\xe8\xe5\xff\xff\xff/bin/sh/NAAAABBBB";

We can test this (on a 32-bit system) with a simple C program defining the above and including

int main(int argc, char **argv) {
void (*func)() = (void (*)()) shellcode;
func();

}

We can verify that the resulting shell has not inherited the parent environment with the env and set
commands.

Additional shellcode examples can be found in [AHLR07].

770 22 Security

http://intronetworks.cs.luc.edu/auxiliary_files/overflow/shellcode.s

An Introduction to Computer Networks, Release 1.9.21

22.2.2.3 The exploit

Now we can assemble the actual attack. We start with a C implementation of the simplex-talk client, and
add a feature so that when the input string is “doit”, the client

• sends the oversized buffer containing the shellcode, terminated with a newline to make gets()
happy

• also sends “quit”, terminated with a newline, to force the server’s process_connection() to
return, and thus to transfer control to the code pointed to by the now-overwritten return_address
field of the stack

• begins a loop – copylines() – to copy the local terminal’s standard input to the network connec-
tion (hopefully now with a shell at the other end), and to copy the network connection to the local
terminal’s standard output

On startup, the client accepts a command-line parameter representing the address (in hex) of a variable close
to the start of the server’s main() stack frame. When the server starts, it prints this address out; we simply
copy that when starting the client. A second command-line parameter is the server hostname.

The full client code is in netsploit.c.

All that remains is to describe the layout of the malicious oversized buffer, created by buildbadbuf().
We first compute our guess for the address of the start of the vulnerable buffer pcbuf in the server’s
process_connection() function: we take the address passed in on the command line, which is actu-
ally the address of mbuf in the server’s main(), and add to it the known constant (pcbuf - mbuf). This
latter value, 147 in the version tested by the author, is stored in netsploit.c’s BUF_OFFSET.

This calculation of the address of the server’s pcbuf should be spot-on; if we now store our shellcode at the
start of pcbuf and arrange for the server to jump to our calculated address, the shellcode should run. Real
life, however, is not always so accommodating, so we introduce a NOP slide: we precede our shellcode
with a run of NOP instructions. A jump anywhere into the NOPslide should lead right into the shellcode. In
our example here, we make the NOPslide 20 bytes long, and add a fudge factor of between 0 and 20 to our
calculated address (FUDGE is 10 in the actual code).

We need the attack buffer to be large enough that it overwrites the stack return-address field, but small
enough that the server does not incur a segmentation fault when overfilling its buffer. We settle on a
BADBUFSIZE of 161 (160 plus 1 byte for a final newline character); it should be comparable to but perhaps
slightly larger than the BUF_OFFSET value of, in our case, 147).

The attack buffer is now

• 25 bytes of NOPs

• shellcode (46 bytes in the version above)

• 90 bytes worth of the repeated calculated address (baseaddr-BUF_OFFSET+FUDGE in the code

• 1 byte newline, as the server’s gets() expects a newline-terminated string

Here is a diagram like the one above, but labeled for this particular attack. Not all memory regions are drawn
to scale, and there are more addresses between the two stack frames than just return address.

22.2 Stack Buffer Overflow 771

http://intronetworks.cs.luc.edu/auxiliary_files/overflow/netsploit.c

An Introduction to Computer Networks, Release 1.9.21

We double-check the bad buffer to make sure it contains no NUL bytes and no other newline characters.

If we wanted a longer NOPslide, we would have to hope there was room above the stack’s return-address
field. In that case, the attack buffer would consist of a bunch of repeated address guesses, then the NOPslide,
and finally the shellcode.

After the command “doit”, the netsploit client prompt changes to 1>. We can then type ls, and, if the
shellcode has successfully started, we get back a list of files on the server. As earlier, we can also type env
and set to verify that the shell did not inherit its environment from any “normal” shell. Note that any shell
commands that need to write to the stderr stream will fail, as this stream was not set up; this includes any
mistyped commands.

22.2.3 Defenses Against Buffer Overflows

How to prevent this sort of attack? The most basic approach is to make sure that array bounds are never
violated (and also that similar rules for the use of dynamically allocated memory, such as not using a block
after it has been freed, are never violated). Some languages enforce this automatically through “memory-
safe” semantics; while this is not a guarantee that programs are safe, it does eliminate an important class of
vulnerabilities. In C, memory- and overflow-related bugs can be eliminated through careful programming,
but the task is notoriously error-prone.

Another basic approach, applicable to almost all remote-code-execution attacks, is to make sure that the
server runs with the minimum permissions possible. The server may not have write permission to anything
of substance, and may in fact be run in a so-called “chroot” environment in which any access to the bulk of
the server’s filesystem is disabled.

One issue with this approach is that a server process on a unix-derived system that wants to listen on a port
less than 1024 needs special privileges to open that port. Traditionally, the process would start with root
privileges and, once the socket was opened, would downgrade its privileges with calls to setgid() and
setuid(). This is safe in principle, but requires careful attention to the man pages; use of seteuid(),

772 22 Security

An Introduction to Computer Networks, Release 1.9.21

for example, allows the shellcode to recover the original privileges. Linux systems now support assigning to
an unprivileged process any of several “capabilities” (see man capabilities). The one most relevant
here is CAP_NET_BIND_SERVICE, which, if set, allows a process to open privileged ports. Still, to assign
these capabilities still requires some privileged intervention when the process is started.

22.2.3.1 Stack canary

The underlying system can also provide some defenses. One of these, typically implemented within the
compiler, is the stack canary: an additional word on the stack near the return address that is set to a pseudo-
random value. A copy of this word is saved elsewhere. When the function calls return (either explicitly
or implicitly), this word is checked to make sure the stack copy still agrees with the saved-elsewhere copy;
a discrepancy indicates that the stack was overwritten.

In the gcc compiler, a stack canary can be enabled with the compiler option -fstack-protector. To
compile the stack exploit in 22.2.2.3 The exploit, we needed to add -fno-stack-protector.

22.2.3.2 ASLR

Another operating-system-based defense is Address-Space Layout Randomization, or ASLR. In its sim-
plest form, this means that each time the server process is restarted, the stack will have a different starting
address. For example, restarting the oserver program above five times yields addresses (in hex) of bf8d22b7,
bf84ed87, bf977d87, bfcc5cb7 and bfa302d7. There are at least four hex digits (16 bits) of entropy here; if
the server did not print its stack address it might take 216 guesses for the attacker to succeed.

Still, 216 guesses might take an attacker well under an hour. Worse, the attacker might simply create a
stack-buffer-overflow attack with a very long NOPslide; the longer the NOPslide the more room for error
in guessing the shellcode address. With a NOPslide of length 210 = 1024 bits, guessing the correct stack
address will take only 26 = 64 tries. (Some implementations squeeze out 19 bits of address-space entropy,
meaning that guessing the correct address increases to 29 = 512 tries.)

For 64-bit systems, however, ASLR is much more effective. Brute-force guessing of the stack address takes
a prohibitively long time.

ALSR also changes the heap layout and the location of libraries each time the server process is restarted.
This is to prevent return-to-libc attacks, 22.2.1 Return to libc. For a concrete example of an attacker’s use
of non-randomized library addresses, see 22.3.2 A JPEG heap vulnerability.

On Linux systems, ASLR can be disabled by writing a 0 to /proc/sys/kernel/randomize_va_space; values 1
and 2 correspond to partial and full randomization.

Windows systems since Vista (2007) have had ASLR support, though earlier versions of the linker required
the developer to request ASLR with the /DYNAMICBASE switch.

22.2.3.3 Making the stack non-executable

A more sophisticated idea, if the virtual-memory hardware supports it, is to mark those pages of memory
allocated to the stack as non-executable, meaning that if the processor’s instruction register is loaded with
an address on those pages (due to branching to stack-based shellcode), a hardware-level exception will

22.2 Stack Buffer Overflow 773

An Introduction to Computer Networks, Release 1.9.21

immediately occur. This immediately prevents attacks that place a shellcode on the stack, though return-to-
libc attacks (22.2.1 Return to libc) are still possible.

In the x86 world, AMD introduced the per-page NX bit, for No eXecute, in their x86-64 architecture;
CPUs with this architecture began appearing in 2003. Intel followed with its XD, for eXecute Disabled,
bit. Essentially all x86-64 CPUs now provide hardware NX/XD support; support on 32-bit CPUs generally
requires so-called Physical Address Extension mode.

The NX idea applies to all memory pages, not just stack pages. This sometimes causes problems with
applications such as just-in-time compilation, where the code page is written and then immediately executed.
As a result, it is common to support NX-bit disabling in software. On Linux systems, the compiler option
-z execstack disables NX-bit protection; this was used above in 22.2.2.1 The server. Windows has a
similar /NXCOMPAT option for requesting NX-bit protection.

While a non-executable stack prevents the stack-overflow attack described above, injecting shellcode onto
the heap is still potentially possible. The OpenBSD operating system introduced write or execute in 2003;
this is abbreviated W^X after the use of “^” as the XOR operator in C. A memory page may be writable or
executable, but not both. This is strong protection against virtually all shellcode-injection attacks, but may
still be vulnerable to some return-to-libc attacks (22.2.1 Return to libc).

See [AHLR07], chapter 14, for some potential attack strategies against systems with non-executable pages.

22.3 Heap Buffer Overflow

As with stack overflows, heap overflows all rely on some software flaw that allows data to be written beyond
the confines of the designated buffer. A buffer on the heap is subject to the same software-failure overflow
prospects as a buffer on the stack. An important difference, however, is that buffers on the heap are not in
clear proximity to an obvious return address. Despite that difference, heap overflows can also be used to
enable remote-code-execution attacks.

Perhaps the simplest heap overflow is to take advantage of the fact that some heap pages contain executable
code, representing application-loaded library pages. If the page with the overflowable buffer is pointed to
by p, and the following page in memory pointed to by q contains code, then all an attacker has to do is to
have the overflow fill the q page with a long NOPslide and a shellcode. When at some point a call is made
to the code pointed to by q, the shellcode is executed instead. A drawback to this attack is that the layout of
heap pages like this is seldom known. On the other hand, the fact that heap pages do sometimes legitimately
contain executable code means that uniformly marking the heap as non-executable, as is commonly done
with the stack, may not be an option.

22.3.1 A Linux heap vulnerability

We now describe an actual Linux heap vulnerability from 2003, following [AB03], based on version 2.2.4
of the glibc library. The vulnerable server code is simply the following:

char *p = malloc(1024);
char *q = malloc(1024);
gets(p); // read the attacker's input
free(q); // block q is last allocated and first freed
free(p);

774 22 Security

http://en.wikipedia.org/wiki/OpenBSD

An Introduction to Computer Networks, Release 1.9.21

As with the stack-overflow example, the gets(p) results in an overflow from block p into block q, over-
writing not just the data in block q but also the block headers maintained by malloc(). While there is
no guarantee in general that block q will immediately follow block p in memory, in practice this usually
happens unless there has been a great deal of previous allocate/free activity.

The vulnerability here relies on some features of the 2003-era (glibc-2.2.4) malloc(). All blocks are
either allocated to the user or are free; free blocks are kept on a doubly linked list. We will assume the data
portion of each block is always a power of 2; there is a separate free-block list for each block size. When
two adjacent blocks are both free, malloc() coalesces them and moves the joined block to the free-block
list of the next size up.

All blocks are prefixed by a four-byte field containing the size, which we will assume here is the actual size
1032 including the header and alignment rather than the user-available size of 1024. As the three low-order
bits of the size are always zero, one of these bits is used as a flag to indicate whether the block is allocated
or free. Crucially, another bit is used to indicate whether the previous block is allocated or free.

In addition to the size-plus-flags field, the first two 32-bit words of a free block are the forward and backward
pointers linking the block into the doubly linked free-block list; the size-plus-flag field is also replicated as
the last word of the block:

p
size and status

user data

p
size and status

forward pointer

backward pointer

copy of size

Allocated block Free block
The forward and backward pointers
link the block into the free-block list

The strategy of the attacker, in brief, is to overwrite the p block in such a way that, when block q is freed,
malloc() thinks block p is also free, and so attempts to coalesce them, in the process unlinking block
p. But p was not in fact free, and the forward and backward pointers manipulated by malloc() as
part of the unlinking process are in fact provided by the attacker. As we shall see, this allows writing two
attacker-designated 32-bit words to two attacker-designated memory locations; if one of the locations holds
a return address and is updated so as to point to attacker-supplied shellcode also in block p, the system has
been compromised.

The normal operation of free(q), for an arbitrary block q, includes the following:

• Get the block size (size) and flags at address q-4

• Check the following block at address p+size to see if it is free; if so, merge (we are not interested
in this case)

22.3 Heap Buffer Overflow 775

An Introduction to Computer Networks, Release 1.9.21

• Check the flags to see if the preceding block is free; if so, load its size prev_size from address
q-8, the address of the copy of size field in the diagram above; from that calculate a pointer to
the previous block as p = q - prev_size; then unlink block p (as the coalesced block will go
on a different free-block list).

For our specific block q, however, the attacker can overwrite the final size field of block p, prev_size
above, and can also overwrite the flag at address q-4 indicating whether or not block p is free. The attacker
can not overwrite the header of block p that would properly indicate that block p was still in use, but the
free() code did not double-check that.

We will suppose that the attacker has overwritten block p to include the following:

• setting the previous-block-is-free flag in the header of block q to true

• setting the final size field of block p to a desired value, badsize

• placing value ADDR_F at address q-badsize; this is where free() will believe the previous
block’s forward pointer is located

• placing the value ADDR_B at address q-badsize+4; this is where free()will believe the previous
block’s backward pointer is located

When the free(q) operation is now executed, the system will calculate the previous block as at address
p1 = q-badsize and attempt to unlink the false “block” p1. The normal unlink is

(p->backward) -> forward = p->forward;
(p->forward) -> backward = p->backward;

Alas, when unlinking p1 the result is

*ADDR_B = ADDR_F

*(ADDR_F + 4) = ADDR_B

where, for the pointer increment in the second line, we take the type of ADDR_F to be char * or void
*.

At this point the jig is pretty much up. If we take ADDR_B to be the location of a return address on the
stack, and ADDR_F to be the location of our shellcode, then the shellcode will be executed when the current
stack frame returns. Extending this to a working example still requires a fair bit of attention to details; see
[AB03].

One important detail is that the data we use to overwrite block p generally cannot contain NUL bytes,
and yet a small positive number for badsize will have several NUL bytes. One workaround is to have
badsize be a small negative number, meaning that the false previous-block pointer p1 will actually come
after q in memory.

22.3.2 A JPEG heap vulnerability

In 2004 Microsoft released vulnerability notice MS04-028 (and patch), relating to a heap buffer overflow
in Windows XP SP1. Microsoft had earlier provided a standard library for displaying JPEG images, known
as GDI for Graphics Device Interface. If a specially formed JPEG image were opened via the GDI library,
an overflow on the heap would occur that would launch a shellcode. While most browsers had their own,

776 22 Security

http://support.microsoft.com/kb/833987
http://en.wikipedia.org/wiki/JPEG

An Introduction to Computer Networks, Release 1.9.21

unaffected, JPEG-rendering subroutines, it was often not difficult to convince users to open a JPEG file
supplied as an email attachment or via an html download link.

The problem occurred in the processing of the JPEG “comment” section, normally invisible to the user. The
section begins with the flag 0xFFFE, followed by a two-byte length field (in network byte order) that was to
include its own two bytes in the total length. During the image-file loading, 2 was subtracted from the length
to get the calculated length of the actual data. If the length field had contained 1, for example, the calculated
length would be -1, which would be interpreted as the unsigned value 232 - 1. The library, thinking it had
that amount of space, would then blithely attempt to write that many bytes of comment into the next heap
page, overflowing it. These bytes in fact would come from the image portion of the JPEG file; the attacker
would place here a NOPslide, some shellcode, and, as we shall see, a few other carefully constructed values.

As with the Linux heap described above in 22.3.1 A Linux heap vulnerability, blocks on the WinXP heap
formed a doubly-linked list, with forward and backward pointers known as flink and blink. As before,
the allocator will attempt to unlink a block via

blink -> forward = flink;
flink -> backward = blink;

The first of these simplifies to *blink = flink, as the offset to field forward is 0; this action allows
the attacker to write any word of memory (at address blink) with any desired value.

The JPEG-comment-overflow operation eventually runs out of heap and results in a segmentation fault, at
which point the heap manager attempts to allocate more blocks. However, the free list has already been
overwritten, and so, as above, this block-allocation attempt instead executes *blink = flink.

The attacker’s conceptual goal is to have flink hold an instruction that branches to the shellcode, and
blink hold the address of an instruction that will soon be executed, or, equivalently, to have flink hold
the address of the shellcode and blink represent a location soon to be loaded and used as the target of a
branch. The catch is that the attacker doesn’t exactly know where the heap is, so a variant of the return-to-
libc approach described in 22.2.1 Return to libc is necessary. The strategy described in the remainder of
this section, described in [JA05], is one of several possible approaches.

In Windows XP SP1, location 0x77ed73b4 holds a pointer to the entry point of the Undefined
Exception Filter handler; if an otherwise-unhandled program exception occurs, Windows creates an
EXCEPTION_POINTERS structure and branches to the address stored here. It is this address, which we
will refer to as UEF, the attack will overwrite, by setting blink = UEF. A call to the Undefined Exception
Filter will be triggered by a suitable subsequent program crash.

When the exception occurs (typically by the second operation above, flink -> backward = blink),
before the branch to the address loaded from UEF, the EXCEPTION_POINTERS structure is created on the
heap, overwriting part of the JPEG comment buffer. The address of this structure is stored in register edi.

It turns out that, scattered among some standard libraries, there are half a dozen instructions at known
addresses of the form call DWORD [edi+0x74], that is, “call the subroutine at 32-bit address edi +
0x74” ([AHLR07], p 186). All these call instructions are intended for contexts in which register edi
has been set up by immediately preceding instructions to point to something appropriate. In our attacker’s
context, however, edi points to the EXCEPTION_POINTERS structure; 0x74 bytes past edi is part of the
attacker’s overflowed JPEG buffer that is safely past this structure and will not have been overwritten by it.
One such call instruction happens to be at address 0x77d92a34, in user32.dll. This address is the
value the attacker will put in flink.

22.3 Heap Buffer Overflow 777

An Introduction to Computer Networks, Release 1.9.21

So now, when the exception comes, control branches to the address stored in UEF. This address now points
to the above call DWORD [edi+0x74], so control branches again, this time into the attacker-controlled
buffer. At this point, the processor lands on the NOPslide and ends up executing the shellcode (sometimes
one more short jump instruction is needed, depending on layout).

This attack depends on the fact that a specific instruction, call DWORD [edi+0x74], can be found at a
specific, fixed address, 0x77d92a34. Address-space layout randomization (22.2.3.2 ASLR) would have
prevented this; it was introduced by Microsoft in Windows Vista in 2007.

22.3.3 Cross-Site Scripting (XSS)

In its simplest form, cross-site scripting involves the attacker posting malicious javascript on a third-party
website that allows user-posted content; this javascript is then executed by the target computer when the
victim visits that website. The attacker might leave a comment on the website of the following form:

I agree with the previous poster completely
<script> do_something_bad() </script>

Unless the website in question does careful html filtering of what users upload, any other site visitor who so
much as views this comment will have the do_something_bad() script executed by his or her browser.
The script might email information about the target user to the attacker, or might attempt to exploit a browser
vulnerability on the target system in order to take it over completely. The script and its enclosing tags will
not appear in what the victim actually sees on the screen.

The do_something_bad() code block will usually include javascript function definitions as well as
function calls.

In general, the attacker can achieve the same effect if the victim visits the attacker’s website. However, the
popularity (and apparent safety) of the third-party website is usually important in practice; it is also common
for the attack to involve obtaining private information from the victim’s account on that website.

22.3.4 SQL Injection

SQL is the close-to-universal query language for databases; in a SQL-injection attack the attacker places a
carefully chosen SQL fragment into a website form, in such a way that it gets executed. Websites typically
construct SQL queries based on form data; the attacker’s goal is to have his or her data treated as additional
SQL. This is supposed to be prevented by careful quoting, but quoting often ends up not quite careful
enough. A successful attacker has managed to run SQL code on the server that gives him or her unintended
privileges or information.

As an example, suppose that the form has two fields, username and password. The system then runs
the following sub-query that returns an empty set of records if the xusername,passwordy pair is not found;
otherwise the user is considered to be authenticated:

select * from PASSWORDS p
where p.user = 'username' and p.password = 'password';

The strings username and password are taken from the web form and spliced in; note that each is enclosed
in single quotation marks supplied by the server. The attacker’s goal is to supply username/password values

778 22 Security

http://en.wikipedia.org/wiki/JavaScript

An Introduction to Computer Networks, Release 1.9.21

so that a nonempty set of records will be returned, thus authenticating the attacker. The following values are
successful here, where the quotation marks in username are supplied by the attacker:

username: ' OR 1=1 OR 'x'='y

password: foo

The spliced-together query built by the server is now

select * from PASSWORDS p
where p.user = '' OR 1=1 OR 'x'='y' and p.password = 'foo';

Note that of the eight single-quote marks in the where-clause, four (the first, sixth, seventh and eighth) came
from the server, and four (the second through fifth) came from the attacker.

The where-clause here appears to SQL to be the disjunction of three OR clauses (the last of which is
'x'='y' and p.password = 'foo'). The middle OR clause is 1=1 which is always true. There-
fore, the login succeeds.

For this attack to work, the attacker must have a pretty good idea what query the server builds from the
user input. There are two things working in the attacker’s favor here: first, these queries are often relatively
standard, and second, the attacker can often discover a great deal from the error messages returned for
malformed entries. In many cases, these error messages even reveal the table names used.

See also xkcd.com/327.

22.4 Network Intrusion Detection

The idea behind network intrusion detection is to monitor one’s network for signs of attack. Many newer
network intrusion-detection systems (NIDS) also attempt to halt the attack, but the importance of simple
monitoring and reporting should not be underestimated. Many attacks (such as password guessing, or buffer
overflows in the presence of ASLR) take multiple (thousands or millions) of tries to succeed, and a NIDS
can give fair warning.

There are also host-based intrusion-detection systems (HIDS) that run on and monitor a specific host; we
will not consider these further.

Most NIDS detect intrusions based either on traffic anomalies or on pattern-based signatures. As an
example of the former, a few pings (7.11 Internet Control Message Protocol) might be acceptable but a
large number, or a modest number addressed to nonexistent hosts, might be cause for concern.

As for signatures, the attack in 22.3.2 A JPEG heap vulnerability can be identified by the hex strings
0xFFFE0000 or 0xFFFE0001. What about the attack in 22.2.2.3 The exploit? Using the shellcode itself as
signature tends to be ineffective as shellcode is easy to vary. The NOPslide, too, can be replaced with a wide
variety of other instructions that just happen to do nothing in the present context, such as sub eax,eax.
One of the most common signatures used by NIDSs for overflow attacks is simply the presence of overly
long strings; the false-positive rate is relatively low. In general, however, coming up with sufficiently specific
signatures can be nontrivial. An attack that keeps changing in relatively trivial ways to avoid signature-based
detection is sometimes said to be polymorphic.

22.4 Network Intrusion Detection 779

http://xkcd.com/327

An Introduction to Computer Networks, Release 1.9.21

22.4.1 Evasion

The NIDS will have to reassemble TCP streams (and sometimes sequences of UDP packets) in order to
match signatures. This raises the possibility of evasion: the attacker might arrange the packets so that the
NIDS reassembles them one way and the target another way. The possibilities for evasion are explored in
great detail in [PN98]; see also [SP03].

One simple way to do this is with overlapping TCP segments. What happens if one packet contains bytes
1-6 of a TCP connection as “help” and a second packet contains bytes 2-7 as “armful”?

h e l p
a r m f u l

These can be reassembled as either “helpful” or “harmful”; the TCP specification does not say which is pre-
ferred and different operating systems routinely reassemble these in different ways. If the NIDS reassembles
the packets one way, and the target the other, the attack goes undetected. If the attack is spread over multiple
packets, there may be many more than two ways that reassembly can occur, increasing the probability that
the NIDS and the target will differ.

Another possibility is that one of the overlapping segments has a header irregularity (in either the IP or TCP
header) that causes it to be rejected by the target but not by the NIDS, or vice-versa. If the packets are

h e l p
h a r m f u l

and both systems normally prefer data from the first segment received, then both would reassemble as
“helpful”. But if the first packet is rejected by the target due to a header flaw, then the target receives
“harmful”. If the flaw is not recognized by the NIDS, the NIDS does not detect the problem.

A very similar problem occurs with IPv4 fragment reassembly, although IPv4 fragments are at this point
intrinsically suspicious.

One approach to preventing evasion is to configure the NIDS with information about how the actual target
does its reassembly, so the NIDS can match it. An even safer approach is to have the NIDS reassemble any
overlapping packets and then forward the result on to the potential target.

22.5 Cryptographic Goals

For the remainder of this chapter we turn to the use of cryptographic techniques in networking, to protect
packet contents. Different techniques address different issues; three classic goals are the following:

1. Message confidentiality: eavesdroppers should not be able to read the contents.

2. Message integrity: the recipient should be able to verify that the message was received correctly,
even in the face of a determined adversary along the way.

3. Sender authentication: the recipient should be able to verify the identity of the sender.

Briefly, confidentiality is addressed through encryption (22.7 Shared-Key Encryption and 22.9 Public-
Key Encryption), integrity is addressed through secure hashes (22.6 Secure Hashes), and authentication is
addressed through secure hashes and public-key signatures.

780 22 Security

An Introduction to Computer Networks, Release 1.9.21

Encryption by itself does not ensure message integrity. In 22.7.4 Stream Ciphers we give an example
using the message “Transfer $ 02000 to Mallory”. It is encrypted by XORing with the corresponding
number of bytes of the keystream (22.7 Shared-Key Encryption), and decrypted by XORing again. If the
attacker XORs the two bytes in bold with the byte (‘0’ XOR ‘2’), the message becomes “Transfer $ 20000
to Mallory”; if the attacker XORs those bytes in the encrypted message with (‘0’ XOR ‘2’) then the result
will decrypt to the $20,000 transfer.

Similarly, integrity does not automatically ensure authentication. Two parties can negotiate a temporary key
to guarantee message integrity without ever establishing each other’s identities as is necessary for authen-
tication. For example, if Alice connects to a website using SSL/TLS, but the site never purchased an SSL
certificate (22.10.2 TLS and 22.10.2.1 Certificate Authorities), or Alice does not trust the site’s certifi-
cate authority (22.10.2.1 Certificate Authorities), then Alice has message integrity for her session, but not
authentication.

To the above list we might add resistance to message replay. Consider messages such as the following:

1. “I, Alice, authorize the payment to Bob of $1000 from my account”

2. My facebook.com authentication cookie is Zg8yPCDwbzJ-59Hc-DvHt67qrS

Alice does not want the first message to be executed by her bank more than once, though doing so would
violate none of the three rules above. The owner of the second message might be happy to replay it multiple
times, but would not want someone else to be able to do so. One straightforward way to prevent replay
attacks is to introduce a message timestamp or count.

We might also desire resistance to denial-of-service attacks. Such attacks are generally related to imple-
mentation failures. Attacks in which SSL users end up negotiating a very early version of the protocol,
and thus a much less secure encryption mechanism, are arguably of this type; see the POODLE sidebar at
22.10 SSH and TLS.

Finally, one sometimes sees message non-repudiation as a goal. However, in the technical – as opposed to
legal – realm we can never hope to prove Alice herself signed a message; the best we can do is to prove
that Alice’s key was used to sign the message. At this point non-repudiation is, for our purposes here, quite
similar to authentication. See, however, the final example of 22.6.1 Secure Hashes and Authentication.

22.5.1 Alice and Bob

Cryptographers usually use Alice and Bob, instead of A and B, as the names of the parties sending each
other encrypted messages. This tradition dates back at least to [RSA78]. Other parties sometimes include
Eve the eavesdropper and Mallory the active attacker (and launcher of man-in-the-middle attacks). (In this
article the names Aodh and Bea are introduced, though not specifically for cryptography; the Irish name
Aodh is pronounced, roughly, as “Eh”.)

22.6 Secure Hashes

How can we tell if a file has been changed? One way is to create a record of the file’s checksum, using,
for the sake of argument, the Internet checksum of 5.4 Error Detection. If the potential file corruption is
random, this will fail to detect a modified file with probability only 1 in 216.

22.6 Secure Hashes 781

http://www.maa.org/external_archive/columns/colm/cardcolm200502.html
http://www.maa.org/external_archive/columns/colm/cardcolm200502.html

An Introduction to Computer Networks, Release 1.9.21

Alas, if the modification is intentional, it is trivial to modify the file so that it has the same checksum as
the original. If the original file has checksum c1, and after the initial modification the checksum is now c2,
then all we have to do to create a file with checksum c1 is to append the 16-bit quantity c2 – c1 (where the
subtraction is done using ones-complement; we need to modify this slightly if the number of bytes in the
first-draft modified file is odd). The CRC family of checksums is almost as easily tricked.

The goal of a cryptographically secure hash is to provide a hash function – we will not call it a “checksum”
as hashes based on simple sums all share the insecurity above – for which this trick is well-nigh impossible.
Specifically, we want a hash function such that:

• Knowing the hash value should shed no practical light on the message

• Given a hash value, there should be no feasible way to find a message yielding that hash

A slightly simpler problem than the second one above is to find two messages that have the same hash; this
is sometimes called the collision problem. When the collision problem for a hash function has been solved,
it is (high) time to abandon it as potentially no longer secure.

If a single bit of the input is changed, the secure-hash-function output is usually entirely different.

Hashes popular in the 1990s were the 128-bit MD5 (RFC 1321, based on MD4, [RR91]) and the 160-
bit SHA-1 (developed by the NSA); SNMPv3 (21.15 SNMPv3) originally supported both of these
(21.15.2 Cryptographic Fundamentals). MD5 collisions (two messages hashing to the same value) were
reported in 2004, and collisions where both messages were meaningful were reported in 2005; such collision
attacks mean it can no longer be trusted for security purposes.

Hash functions currently (2014) believed secure include the SHA-2 family, which includes variants ranging
from 224 bits to 512 bits (and known individually as SHA-224 through SHA-512).

A common framework for constructing n-bit secure-hash functions is the Merkle-Dåmgard construction
([RM88], [ID89]); it is used by MD5, SHA-1 and SHA-2. The initial n-bit state is specified. To this is
then applied a set of transformations Hi(x,y) that each take an n-bit block x and some additional bits y and
return an updated n-bit block. These transformations are usually similar to the rounds functions of a block
cipher; see 22.7.2 Block Ciphers for a typical example. In encryption, the parameter y would be used to
hold the key, or a substring of the key; in secure-hash functions, the parameter y holds a substring of the
input message. The set of transformations is applied repeatedly as the process iterates over the entire input
message; the result of the hash is the final n-bit state.

In the MD5 hash function, the input is processed in blocks of 64 bytes. Each block is divided into sixteen
32-bit words. One such block of input results in 64 iterations from a set of sixteen rounds-functions Hi, each
applied four times in all. Each 32-bit input word is used as the “key” parameter to one of the Hi four times.
If the total input length is not a multiple of 512 bits, it is padded; the padding includes a length attribute so
two messages differing only by the amount of padding should not hash to the same value.

While this framework in general is believed secure, and is also used by the SHA-2 family, it does suffer
from what is sometimes called the length-extension vulnerability. If h = hash(m), then the value h is simply
the final state after the above mechanism has processed message m. An attacker knowing only h can then
initialize the above algorithm with h, and continue it to find the hash h1 = hash(m"m1), for an arbitrary
message m1 concatenated to the end of m, without knowing m. If the original message m was padded to
message mp, then the attacker will find h1 = hash(mp

"m1), but that is often enough. This vulnerability must
be considered when using secure-hash functions for message authentication, below.

782 22 Security

https://tools.ietf.org/html/rfc1321.html
https://www.nsa.gov/

An Introduction to Computer Networks, Release 1.9.21

The SHA-3 family of hash functions does not use the Merkle-Dåmgard construction and is believed not
vulnerable to length-extension attacks.

22.6.1 Secure Hashes and Authentication

Secure hash functions can be used to implement message authentication. Suppose the sender and receiver
share a secret, pre-arranged “key”, K, a random string of length comparable to the output of the hash. Then,
in principle, the sender can append to the message m the value h = hash(K"m). The receiver, knowing K,
can recalculate this value and verify that the h appended to the message is correct. In theory, only someone
who knew K could calculate h.

This particular hash(K"m) implementation is undermined by the length-extension vulnerability of the pre-
vious section. If the hash function exhibits this vulnerability and the sender transmits message m together
with hash(K"m), then an attacker can modify this to message m"m1 together with hash(K"m"m1), with-
out knowing K.

This problem can be defeated by reversing the order and using hash(m"K), but this now introduces potential
collision vulnerabilities: if the hash function has the length-extension vulnerability and two messages m1
and m2 hash to the same value, then so will m1

"K and m2
"K.

Taking these vulnerabilities into account, RFC 2104 defines the Hash Message Authentication Code, or
HMAC, as follows; it can be used with any secure-hash function whether or not it has the length-extension
vulnerability. The 64-byte length here comes from the typical input-block length of many secure-hash
functions; it may be increased as necessary. (SHA-512, of the SHA-2 family, has a 128-byte input-block
length and would be a candidate for such an increase.)

• The shared key K is extended to 64 bytes by padding with zeroes.

• A constant string ipad is formed by repeating the octet 0x36 (0011 0110) 64 times.

• A constant string opad is formed by repeating 0x5c (0101 1100) 64 times.

• We set K1 = K XOR ipad.

• We set K2 = K XOR opad.

Finally, the HMAC value is

HMAC = hash(K2 " hash(K1"mesg))

The values 0x36 (0011 0110) and 0x5c (0101 1100) are not critical, but the XOR of them has, by intent, a
reasonable number of both 0-bits and 1-bits; see [BCK96].

The HMAC algorithm is, somewhat surprisingly, believed to be secure even when the underlying hash
function is vulnerable to some kinds of collision attacks; see [MB06] and RFC 6151. That said, a hash
function vulnerable to collision attacks may have other vulnerabilities as well, and so HMAC-MD5 should
still be phased out.

Negotiating the pre-arranged key K can be a significant obstacle, just as it can be for ciphers using pre-
arranged keys (22.7 Shared-Key Encryption). If Alice and Bob meet in person to negotiate the key K,

22.6 Secure Hashes 783

https://tools.ietf.org/html/rfc2104.html
https://tools.ietf.org/html/rfc6151.html

An Introduction to Computer Networks, Release 1.9.21

then Alice can use HMAC for authentication of Bob, as long as K is not compromised: if Alice receives a
message signed with K, she knows it must have come from Bob.

Sometimes, however, K is negotiated on a per-session basis, without definitive “personal” authentication
of the other party. This is akin to Alice and someone claiming to be “Bob” selecting an encryption key
using the Diffie-Hellman-Merkle mechanism (22.8 Diffie-Hellman-Merkle Exchange); such key selection
is secure and does not require that Alice or Bob have any prior knowledge of one another. In the HMAC
setting, Alice can be confident that any HMAC-signed message was sent by the same “Bob” that negotiated
the key, and not by a third party (assuming neither side has leaked the key K). This is true even if Alice is
not sure “Bob” is the real Bob, or has no idea who “Bob” might be. The signature guarantees the message
integrity, but also serves as authentication that the sender is the same entity who sent the previous messages
in the series.

Finally, if Alice receives a message from Bob signed with HMAC using a pre-arranged secret key K
(22.6.1 Secure Hashes and Authentication), Alice may herself trust the signature, but she cannot prove
to anyone else that K was used to sign the message without divulging K. She also cannot prove to anyone
else that Bob is the only other party who knows K. Therefore this signature mechanism provides authenti-
cation but not non-repudiation.

22.6.2 Password Hashes

A site generally does not store user passwords directly; instead, a hash of the password, h(p), is stored.
The cryptographic hash functions above, eg MD5 and SHA-n, work well as long as the password file itself
is not compromised. However, these functions all execute very quickly – by design – and so an attacker
who succeeds in obtaining the password file can usually extract passwords simply by calculating the hash of
every possible password. There are about 214 six-letter English words, and so there are about 238 passwords
consisting of two such words and three digits. Such passwords are usually considered rather strong, but
brute-force calculation of h(p) for 238 possible values of p is quite feasible for the hashes considered so far.
Checking 108 MD5-hashed passwords per second is quite feasible; this means 238 = 256ˆ 230 » 256ˆ 109

passwords can be checked in under 45 minutes. Use of a GPU increases the speed at least 10-fold.

Special hashes have been developed to address this. Two well-known ones are scrypt ([CP09] and this
Internet Draft) and bcrypt. A newer entrant is Argon2, while PBKDF2 is an old stalwart. The goal here is
to develop a hash that takes – ideally – the better part of a second to calculate even once, and which cannot
easily be sped up by large precomputed tables. Typically these are something like a thousand to a million
times slower than conventional hash functions like MD5 and the SHA-2 family; a millionfold-slower hash
function is the equivalent of making the passwords longer by 20 random bits (106 » 220). See [ACPRT16]
for a theoretical analysis of the effectiveness of scrypt in this context. See also RFC 2898, section 4.2,
though the proposal there is only a thousandfold slower.

(Good password tables also incorporate a salt, or nonce: a random string s is chosen and appended to the
password before hashing; the password record is stored as the pair xs,h(p"s)y. This means that cracking the
password for one user will not expose a second user who has chosen exactly the same password, so long as
the second user has a different salt s. Salting, however, does not change the scenarios outlined above.)

784 22 Security

http://en.wikipedia.org/wiki/Graphics_processing_unit
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
http://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/PBKDF2
https://tools.ietf.org/html/rfc2898.html

An Introduction to Computer Networks, Release 1.9.21

22.6.3 CHAP

Secure hashes can also be used to provide secure password-based login authentication in the presence of
eavesdropping. Specific implementations include CHAP, the Challenge-Handshake Authentication Proto-
col (RFC 1994) and Microsoft’s MS-CHAP (version 1 in RFC 2433 and version 2 in RFC 2759). The
general idea is that the server sends a random string (the “challenge”) and the client then creates a response
consisting of a secure hash of the challenge string concatenated with the user’s password (and possibly other
information). Assuming the secure hash is actually secure, only someone in possession of the user password
could have created this response. By the same token, an eavesdropper cannot figure out the password from
the response.

While such protocols can be quite secure in terms of verifying to the server that the client knows the pass-
word, the CHAP strategy has a fundamental vulnerability: the server must store the plaintext password rather
than a secure hash of it (as in the previous section). An attacker who makes off with the server’s password
file then has everything; no brute-force password cracking is needed. For this reason, newer authentication
protocols often will create an encrypted channel first (eg using TLS, 22.10.2 TLS), and then use that secure
channel to exchange credentials. This may involve transmission of the plaintext password, which clearly
allows the server to store only hashed passwords. However, as the next example shows, it is possible to
authenticate without having the server store plaintext passwords and without having the plaintext password
transmitted at all.

22.6.4 SCRAM

SCRAM (Salted Challenge-Response Authentication Mechanism), RFC 5802, is an authentication protocol
with the following features:

• The client password is not transmitted in the clear

• The server does not store the plaintext client password

• If the server’s hashed credentials are compromised, an attacker still cannot authenticate

We outline a very stripped-down version of the protocol: password salting has been removed for clarity, and
the exchange itself has been greatly simplified. The ClientKey is a hashed version of the password; what
the server stores is a secure hash of the ClientKey called StoredKey:

StoredKey = hash(ClientKey)

The exchange begins with the server sending a random nonce string to the client. The client now calculates
the ClientSignature as follows:

ClientSignature = hash(StoredKey, nonce)

Only an attacker who has eavesdropped on this exchange can replicate the ClientSignature, but the server
can compute it. The client then sends the following to the server:

ClientKey XOR ClientSignature

Because the server can calculate ClientSignature, it can extract ClientKey, and verify that h(ClientKey) =
StoredKey. An attacker who has obtained StoredKey from the server can generate ClientSignature, but
cannot generate ClientKey.

22.6 Secure Hashes 785

https://tools.ietf.org/html/rfc1994.html
https://tools.ietf.org/html/rfc2433.html
https://tools.ietf.org/html/rfc2759.html
https://tools.ietf.org/html/rfc5802.html

An Introduction to Computer Networks, Release 1.9.21

However, an attacker who has both exfiltrated StoredKey from the server and eavesdropped on a client-
server exchange is able to generate the ClientSignature and thus extract the ClientKey. The attacker can
then authenticate at a later time using ClientKey. For this reason, a secure tunnel is still needed for the
authentication. Given the presence of such a tunnel, the SCRAM approach appears to offer a relatively
modest security improvement over sending the password as plaintext. Note, though, that with SCRAM the
server does not see the password at all, so if the client mistakenly connects to the wrong server, the password
is not revealed.

See below at 22.8.2 Simultaneous Authentication of Equals for another, mutual, form of password authen-
tication.

22.7 Shared-Key Encryption

Secure hashes can provide authentication, but to prevent eavesdropping we need encryption. While public-
key encryption (22.9 Public-Key Encryption) is perhaps more glamorous, the workhorse of the encryption
world is the shared-key cipher, or shared-secret or symmetric cipher, in which each party has possession
of a key K, used for both encryption and decryption.

Shared-key ciphers are often quite fast; public-key encryption is generally slower by several orders of mag-
nitude. As a result, if two parties without a shared key wish to communicate, they will almost always used
public-key encryption only to exchange a key for a shared-key cipher, which will then be used for the actual
message encryption.

Typical key lengths for shared-key ciphers believed secure range from 128 bits to 256 bits. For most shared-
key ciphers there are no known attacks that are much faster than brute force, and 2256 » 1077 is quite a large
number.

Shared-key ciphers can be either block ciphers, encrypting data in units of blocks that might typically be 8
bytes long, or stream ciphers, which generate a pseudorandom keystream. Each byte (or even bit) of the
message is then encrypted by (typically) XORing it with the corresponding byte of the keystream.

22.7.1 Session Keys

The more messages a key is used to encrypt, the more information a potential eavesdropper may have
with which to launch a codebreaking attack. If Alice and Bob have a pre-arranged shared secret key K, is
therefore quite common for them to encrypt the bulk of their correspondence with temporary session keys,
each one used for a time period that may range from minutes to days. The secret key K might then be used
only to exchange new session keys and to forestall man-in-the-middle attacks (22.9.3 Trust and the Man in
the Middle) by signing important messages (22.6.1 Secure Hashes and Authentication). If Diffie-Hellman-
Merkle key exchange (ref:diffie-hellman) is used, K might be reserved only for message signing.

Sometimes session keys are entirely different keys, chosen randomly; if such a key is discovered, the attacker
learns nothing about the secret key K. Other times, the session key is a mash-up of K and some additional
information (such as an initialization vector, 22.7.3 Cipher Modes), that is transmitted in the clear. The
session key might then be the concatenation of K and the initialization vector, or the XOR of the two. Either
approach means that an eavesdropper who figures out the session key also has the secret key K, but the use
of such session keys still may make any codebreaking attempt much more difficult.

786 22 Security

An Introduction to Computer Networks, Release 1.9.21

In 22.9.2 Forward Secrecy we consider the reverse problem of how Alice and Bob might keep a session
key private even if the secret key is compromised.

22.7.2 Block Ciphers

As mentioned, a block cipher encrypts data one block at a time, typically with a key length rather longer
than the block size. A typical block cipher proceeds by the iterated application of a sequence of round
functions, each updating the block and using some round-dependent substring of the key as auxiliary input.
If we start with a block of plaintext P and apply all the round functions in turn, the result is the ciphertext
block C = E(P,K) = EK(P). The process can be reversed so that P = D(C,K) = DK(C).

A common framework is that of the Feistel network. In such an arrangement, the block is divided into two
or more words sized for the machine architecture; an 8-byte block is typically divided into two 32-bit words
which we can call L and H for Low and High. A typical round function is now of the following form, where
K is the key and F(x,K) takes a word x and the key K and returns a new word:

xL,Hy ÝÑ xH, L XOR F(H,K)y

Visually, this is often diagrammed as

L H

XOR F

K

One round here scrambles only half the block, but the other half gets scrambled in the next round (some-
times the operation above is called a half-round for that reason). The total number of rounds is typically
somewhere between 10 and 50. Much of the art of designing high-quality block ciphers is to come up with
round functions that result in overall very fast execution, without introducing vulnerabilities. The more
rounds, the slower.

The internal function F, often different for each round, may look at only a designated subset of the bits of
the key K. Note that the operation above is invertible – that is, can be decrypted – regardless of F; given the
right-hand side the receiver can compute F(H,K) and thus, by XORing this with L XOR F(H,K), can recover
L. This remains true if, as is sometimes the case, the XOR operation is replaced with ordinary addition.

Crypto Law

The Salsa20 cipher mentioned here is a member of Daniel Bernstein’s “snuffle” family of ciphers based

22.7 Shared-Key Encryption 787

An Introduction to Computer Networks, Release 1.9.21

on secure-hash functions. In the previous century, the US government banned the export of ciphers but
not secure-hash functions. They also at one point banned the export (and thus publication) of one of
Bernstein’s papers; he sued. In 1999, the US Court of Appeals for the Ninth Circuit found in his favor.
The decision, 176 F.3d 1132, is the only appellate decision of which the author is aware that contains (in
the footnotes) not only samples of C code, but also of Lisp.

A simple F might return the result of XORing H and a subset of the bits of K. This is usually a little too
simple, however. Ordinary modulo-32 addition of H and a subset of K often works well; the interaction of
addition and XORing introduces considerable bit-shuffling (or diffusion in the language of cryptography).
Other operations used in F(H,K) include Boolean AND and OR operations. 32-bit multiplication introduces
considerable bit-shuffling, but is often computationally more expensive. The Salsa20 cipher of [DB08] uses
only XOR and addition, for speed.

It is not uncommon for the round function also to incorporate “bit rotation” of one or both of L and H; the
result of bit-rotation of 1000 1110 two places to the left is 0011 1010.

If a larger blocksize is desired, say 128 bits, but we still want to avail ourselves of the efficiency of 32-bit
operations, the block can be divided into xA,B,C,Dy. The round function might then become

xA,B,C,Dy ÝÑ xB,C,D, (A XOR F(B,C,D,K)) y

As mentioned above, many secure-hash functions use block-cipher round functions that then use successive
chunks of the message being hashed in place of the key. In the MD5 algorithm, block A above is transformed
into the 32-bit sum of input-message fragment M, a constant K, and G(B,C,D) which can be any of several
Boolean combinations of B, C and D.

An alternative to the Feistel-network framework for block ciphers is the use of so-called substitution-
permutation networks.

The first block cipher in widespread use was the federally sanctioned Data Encryption Standard, or DES
(commonly pronounced “dez”). It was developed at IBM by 1974 and then selected by the US National
Bureau of Standards (NBS) as a US standard after some alterations recommended by the National Security
Agency (NSA). One of the NSA’s recommendations was that a key size of 56 bits was sufficient; this was in
an era when the US government was very concerned about the spread of strong encryption. For years, many
people assumed the NSA had intentionally introduced other weaknesses in DES to facilitate government
eavesdropping, but after forty years no such vulnerability has been discovered and this no longer seems so
likely. The suspicion that the NSA had in the 1970’s the resources to launch brute-force attacks against
DES, however, has greater credence.

In 1997 an academic team launched a successful brute-force attack on DES. The following year the Elec-
tronic Frontier Foundation (EFF) built a hardware DES cracker for about US$250,000 that could break DES
in a few days.

In an attempt to improve the security of DES, triple-DES or 3DES was introduced. It did not become an
official standard until the late 1990’s, but a two-key form was proposed in 1978. 3DES involves three
applications of DES with keys xK1,K2,K3y; encrypting a plaintext P to ciphertext C is done by C =
EK3(DK2(EK1(P))). The middle deciphering option DK2 means the algorithm reduces to DES when K1 =
K2 = K3; it also reduces exposure to a particular vulnerability known as “meet in the middle” (no rela-
tion to “man in the middle”). In [MH81] it is estimated that 3DES with three distinct keys has a strength
roughly equivalent to 2ˆ56 = 112 bits. That same paper also uses the meet-in-the-middle attack to show

788 22 Security

http://epic.org/crypto/export_controls/bernstein_decision_9_cir.html
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://www.nsa.gov/

An Introduction to Computer Networks, Release 1.9.21

that straightforward “double-DES” encryption C = EK2(EK1(P)) has an effective keystrength of only 56 bits
– no better than single DES – if sufficient quantities of plaintext and corresponding ciphertext are known.

As concerns about the security of DES continued to mount, the US National Institute of Standards and
Technology (NIST, the new name for the NBS) began a search for a replacement. The result was the
Advanced Encryption Standard, AES, officially approved in 2001. AES works with key lengths of 128, 192
and 256 bits. The algorithm is described in [DR02], and is based on the Rijndael family of ciphers; the name
Rijndael (“rain-dahl”) is a combination of the authors’ names.

Earlier non-DES ciphers include IDEA, the International Data Encryption Algorithm, described in [LM91],
and Blowfish, described in [BS93]. Both use 128-bit keys. The IDEA algorithm was patented; Blowfish
was intentionally not patented. A successor to Blowfish is Twofish.

22.7.3 Cipher Modes

The simplest encryption “mode” for a block cipher is to encrypt each input block independently. That is, if
Pi is the ith plaintext block, then the ith ciphertext block Ci is E(Pi,K). This is known as electronic codebook
or ECB mode.

ECB is vulnerable to known-plaintext attacks. Suppose the attacker knows that the message is of the fol-
lowing form, where the vertical lines are the block boundaries:

Bank Transfer | to MALLORY | Amount $1000

If the attacker also knows the ciphertext for “Amount $100,000”, and is in a position to rewrite the message
(or to inject a new message), then the attacker can combine the first two blocks above with the third $100,000
block to create a rather different message, without knowing the key. At http://en.wikipedia.org/wiki/Block_
cipher_mode_of_operation there is a remarkable example of the failure of ECB to fail to effectively conceal
an encrypted image.

As a result, ECB is seldom used. A common alternative is cipher block chaining or CBC mode. In this
mode, each plaintext block is XORed with the previous ciphertext block before encrypting:

Ci = E(K,Ci-1 XOR Pi)

To decrypt, we use

Pi = D(K,Ci) XOR Ci-1

If we stop here, this means that if two messages begin with several identical plaintext blocks, the encrypted
messages will also begin with identical blocks. To prevent this, the first ciphertext block C0 is a random
string, known as the initialization vector, or IV. The plaintext is then taken to start with block P1. The IV
is sent in the clear, but contains no private information.

CBC works well when encrypting reliable streams of data, such as are delivered by TCP. But CBC is more
difficult if some packets might be lost, as may occur with UDP transport. If one cipher block is lost, say
Ci-1, then we cannot decrypt Ci, because we need to XOR the lost block into the final mix. We can decrypt
Ci+1, and subsequent cipher blocks, but if Ci starts a packet, then that packet is effectively lost, and so the
nondelivery of one packet leads to the effective loss of two.

See exercise 5.0.

22.7 Shared-Key Encryption 789

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

An Introduction to Computer Networks, Release 1.9.21

22.7.4 Stream Ciphers

Conceptually, a stream cipher encodes one byte at a time. The cipher generates a pseudorandom keystream.
If Ki is the ith byte of the keystream, then the ith plaintext byte Pi is encrypted as Ci = Pi XOR Ki. A stream
cipher can be viewed as a special form of pseudorandom number generator or PRNG, though PRNGs used
for numeric methods and simulations are seldom secure enough for cryptography.

Simple XORing of the plaintext with the keystream may not seem secure, but if the keystream is in fact
truly random then this cipher is unbreakable: to an attacker, all possible plaintexts are equally likely. A truly
random keystream means that the entire keystream must be shared ahead of time, and no portion may ever
be reused; this cipher is known as the one-time pad.

Stream ciphers do not, by themselves, provide authenticity. An attacker can XOR something with the
encrypted message to change it. For example, if the message is known to be

Transfer $ 02000 to Mallory
^^

then the attacker can XOR the two bytes over the “^” with ‘0’ XOR ‘2’, changing the character ‘0’ to a ‘2’
and the ‘2’ to a ‘0’. The attacker does this to the encrypted stream, but the decrypted plaintext stream retains
the change. Appending an authentication code such as HMAC, 22.6.1 Secure Hashes and Authentication,
prevents this.

Stream ciphers are, in theory, well suited to the encryption of data sent a single byte at a time, such as data
from a telnet session. The ssh protocol (22.10.1 SSH), however, generally uses block ciphers; when it has
to send a single byte it pads the block with random data.

22.7.4.1 RC4

The RC4 stream cipher was quite widely used. It was developed by Ron Rivest at RSA Security in 1987, but
never formally published. The code was leaked, however, and so the internal details are widely available.
“Unofficial” implementations are sometimes called ARC4 or ARCFOUR, the “A” for “Alleged”.

RC4 was designed for very fast implementation in software; to this end, all operations are on whole bytes.
RC4 generates a keystream of pseudorandom bytes, each of which is XORed with the corresponding plain-
text byte. The keystream is completely independent of the plaintext.

The key length can range from 5 up to 256 bytes. The unofficial protocol contains no explicit mechanism
for incorporating an initialization vector, but an IV is well-nigh essential for stream ciphers; otherwise an
identical keystream is generated each time. One simple approach is to create a session key by concatenating
the IV and the secret RC4 key; alternatively (and perhaps more safely) the IV and the RC4 key can be
XORed together.

RC4 was the basis for the ill-fated WEP Wi-Fi encryption, 22.7.7 Wi-Fi WEP Encryption Failure, due in
part to WEP’s requirement that the 3-byte IV precede the 5-byte RC4 key. The flaw there did not affect
other applications of RC4, but newer attacks have suggested that RC4 be phased out.

Internally, an RC4 implementation maintains the following state variables:

An array S[] representing a permutation iÑS[i] of all bytes
two 8-bit integer indexes to S[], i and j

790 22 Security

An Introduction to Computer Networks, Release 1.9.21

S[] is guaranteed to represent a permutation (ie is guaranteed to be a 1-1 map) because it is initialized to the
identity and then all updates are transpositions (involving swapping S[i] and S[j]).

Initially, we set S[i] = i for all i, and then introduce 256 transpositions. This is known as the key-scheduling
algorithm. In the following, keylength is the length of the key key[] in bytes.

J=0;
for I=0 to 255:

J = J + S[I] + key[I mod keylength];
swap S[I] and S[J]

As we will see in 22.7.7 Wi-Fi WEP Encryption Failure, 256 transpositions is apparently not enough.

After initialization, I and J are reset to 0. Then, for each keystream byte needed, the following is executed,
where I and J retain their values between calls:

I = (I+1) mod 256
J = J + S[I] mod 256
swap S[I] and S[J]
return S[S[I] + S[J] mod 256]

For I = 1, the first byte returned is S[S[1] + S[S[1]]].

22.7.5 Block-cipher-based stream ciphers

It is possible to create a stream cipher out of a block cipher. The first technique we will consider is counter
mode, or CTR mode. The sender and receiver agree on an initial block, B, very similar to an initialization
vector. The first block of the keystream, K0, is simply the encrypted block E(B,K). The ith keystream block,
for i>0, is Ki = E(B+i,K), where “B+i” is the result of treating B as a long number and performing ordinary
arithmetic.

Going from B+1 to B+(i+1) typically changes only one or two bits before encryption, but no significant
vulnerability based on this has ever been found, and this form of counter mode is now widely believed to be
as secure as the underlying block cipher.

Note that the E(B+i), for different i, can also be computed in parallel; CBC encryption, by comparison,
cannot be parallelized. Similarly, if cipher block j never arrives, then E(B+j) need never be computed.

A related technique is to generate the keystream by starting with a secret key K and taking a secure hash
of each of the successive concatenations K"1, K"2, etc. The drawback to this approach is that many
secure-hash functions have not been developed with this use in mind, and unforeseen vulnerabilities may
exist.

Stream ciphers in general face an error-recovery problem, if the underlying transport is unreliable and so
blocks may be lost. However, resynchronization after lost packets becomes trivial if each packet contains
the block number i of the first cipher block of the packet; in some arrangements it is sufficient to include the
packet number. The receiver can then easily compute E(B+i,K), etc, and decrypt the packet.

This technique is used in WPA2 encryption used by Wi-Fi. Individual Wi-Fi packets are, of course, fre-
quently lost, but each packet contains a 6-byte packet number that enables decryption in the absence of
previous packets. The packet numbers do not help eavesdroppers, as in the absence of losses they can be
determined simply by keeping track of the packet count.

22.7 Shared-Key Encryption 791

An Introduction to Computer Networks, Release 1.9.21

The keystream calculated by counter mode is completely independent of the plaintext. This is not always
the case. In cipher feedback mode, or CFB, we initialize C0 to the initialization vector, and then define the
keystream blocks Ki for i>0 as follows:

Ki = EK(Ci-1)

As usual, Ci = Pi XOR Ki for i>0, so the right-hand side above is EK(Pi-1 XOR Ki-1). The evolution of
the keystream thus depends on earlier plaintext. However, if a cipher block is lost, the receiver now faces
resynchronization problems.

22.7.6 Encryption and Authentication

If the ciphertext is modified in transit, most decryption algorithms will happily “decrypt” it anyway, though
perhaps to gibberish; encryption provides no implicit validity check. Worse, it is sometimes possible for an
attacker to modify the ciphertext so as to produce a meaningful, intentional change in the resultant plaintext.
Examples of this appear above in 22.7.4 Stream Ciphers and 22.7.3 Cipher Modes; for CBC block ciphers
see exercise 5.0.

It is therefore common practice to include HMAC authentication signatures (22.6.1 Secure Hashes and
Authentication) with each encrypted message; the use of HMAC rather than a simple checksum ensures
that an attacker cannot modify messages and have them still appear to be valid. HMAC may not identify
the sender as positively as public-key digital signatures, 22.9.1.1 RSA and Digital Signatures, but it does
positively identify the sender as the same entity with whom the receiver negotiated the key. This is all that
is needed.

Appending an HMAC signature does more than prevent garbled messages; there are attacks that, in the
absence of such signatures, allow full decryption of messages (particularly if the attacker can create multiple
ciphertexts and find out which ones the recipient was able to decrypt successfully). See [SV02] for an
example.

There are three options for combining encryption with HMAC; for consistency with the literature we replace
HMAC with the more general MAC (for Message Authentication Code):

• MAC-then-encrypt: calculate the MAC signature on the plaintext, append it, and encrypt the whole

• encrypt-and-MAC: calculate the MAC signature on the plaintext, encrypt the message, and append to
that the MAC

• encrypt-then-MAC: encrypt the plaintext and calculate the MAC of the ciphertext; append the MAC
to the ciphertext

These are analyzed in [BN00], in which it is proven that encrypt-then-MAC in general satisfies some
stronger cryptographic properties than the others, although these properties may hold for the others in special
cases. Encrypt-then-MAC means that no decryption is attempted of a forged or spoofed message.

22.7.7 Wi-Fi WEP Encryption Failure

The WEP (Wired-Equivalent Privacy) mechanism was the first Wi-Fi encryption option, introduced in 1999;
see 3.7.5 Wi-Fi Security. It used RC4 encryption with either a 5-byte or 13-byte secret key; this was always
appended to a 3-byte initialization vector that, of necessity, was sent in the clear. The RC4 session key was
thus either 8 or 16 bytes; the shorter key was more common.

792 22 Security

An Introduction to Computer Networks, Release 1.9.21

There is nothing inherently wrong with that strategy, but the designers of WEP made some design choices
that were, in retrospect, infelicitous:

• the secret key was appended to the IV (rather than, say, XORed with it)

• the IV was only three bytes long

• a new RC4 keystream and new IV was used for each packet

The third choice above was perhaps the more serious mistake. One justification for this choice, however,
was that otherwise lost packets (which are common in Wi-Fi) would represent gaps in the received stream,
and the receiver might have trouble figuring out the size of the gap and thus how to decrypt the later arrivals.

A contributing issue is that the first byte of the plaintext – a header byte from the Wi-Fi packet – is essentially
known. This first byte is generally from the Logical Link Control header, and contains the same value as the
Ethernet Type field (see 3.7.4 Access Points). All IP packets share the same value. Thus, by looking at the
first byte of the encrypted packet, an attacker knows the first byte of the keystream.

A theoretical WEP vulnerability was published in [FMS01] that proved all-too-practical in the real world.
We will let K[] denote the 8-byte key, with K[0],K[1],K[2] representing the three-byte initialization vector
and K[i] for 3ďi<8 representing the secret key. The attacker monitors the airwaves for IVs of a particular
form; after about 60 of these are collected, the attacker can make an excellent guess at K[3]. Now a slightly
different group of IVs is collected, allowing a guess at K[4] and so on. The bytes of the secret key thus fail
sequentially. The attack requires about the same (modest) time for each key byte discovered, so a 16-byte
total key length does not add much more security versus the 8-byte key.

Because the IV is only three bytes, the time needed to collect packets containing the necessary special IV
values is modest.

We outline the attack on the first secret byte, K[3]. The IV’s we are looking for have the form

x3,-1,Xy

where -1 = 255 for 8-bit bytes; these are sometimes called weak IVs. One IV in 216 is of this form, but a
more careful analysis (which we omit) can increase the usable fraction of IVs substantially.

To see why these IVs are useful, we need to go back to the RC4 key-scheduling algorithm, 22.7.4.1 RC4.
We start with an example in which the first six bytes of the key is

K[] = [3,-1,5,4,-14,3]

The IV here is x3,-1,5y.

Recall that the array S is initialized with S[i] = i; this represents S = S0. At this point, I and J are also 0. We
now run the following loop, introducing one transposition to S per iteration:

for I=0 to 255:
J = J + S[I] + K[I mod keylength];
swap S[I] and S[J]

The first value of J, when I = 0, is K[0] which is 3. After the first transposition, S is as follows, where the
swapped values are in bold:

22.7 Shared-Key Encryption 793

An Introduction to Computer Networks, Release 1.9.21

3 1 2 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

For the next iteration, I is 1 and J is 3+1+(-1) = 3 again. After the swap, S is

3 0 2 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Next, I is 2 and J is 3+2+5 = 10. In general, if the IV were x3,-1,Xy, J would be 5+X.

3 0 10 1 4 5 6 7 8 9 2 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

At this point, we have processed the three-byte IV; the next iteration involves the first secret byte of K. I is
3 and J becomes 10+1+K[3] = 15:

3 0 10 15 4 5 6 7 8 9 2 11 12 13 14 1 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Recall that the first byte returned in the keystream is S[S[1] + S[S[1]]]. At this point, that would
be S[0+3] = 15.

From this value, 15, and the IV x3,-1,5y, the attacker can calculate, by repeating the process above, that
K[3] = 4.

If the IV were x3,-1,Xy, then, as noted above, in the I=2 step we would have J = 5+X, and then in the I=3
step we would have J = 6 + X + K[3]. If Y is the value of the first byte of the keystream, using S[] as of
this point, then K[3] = Y – X – 6 (assuming that X is not -5 or -4, so that S[0] and S[1] are not changed
in step 3).

If none of S[0], S[1] and S[3]] are changed in the remaining 252 iterations, the value we predict here
after three iterations – eg 15 – would be the first byte of the actual keystream. Treating future selections of
the value J as random, the probability that one iteration does not select J in the set {0,1,3} – and thus leaves
these values alone – is 253/256. The probability that the remaining iterations do not change these values in
S[] is thus about (253/256)252 » 5%

A 5% success rate is not terribly impressive, on the face of it. But 5% of the time we identify K[3]
correctly, and the other 95% of the time the (incorrect) values we calculate for K[3] are uniformly, randomly
distributed in the range 0 to 255. With 60 guesses, we expect about three correct guesses. The other 57 are
spread about with, most likely, no more than two guesses for any one value. If we look for the value guessed

794 22 Security

An Introduction to Computer Networks, Release 1.9.21

most often, it is likely to be the true value of K[3]; increasing the number of x3,-1,Xy IVs will increase the
certainty here.

For the sake of completeness, in the next two iterations, I is 4 and 5 respectively, and J is 15+4+(-14) = 5
and 5+4+3=12 respectively. The corresponding contents of S[] are

3 0 10 15 5 4 6 7 8 9 2 11 12 13 14 1 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 0 10 15 5 12 6 7 8 9 2 11 4 13 14 1 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Now that we know K[3], the next step is to find K[4]. Here, we search the traffic for IVs of the form
x4,-1,Xy, but the general strategy above still works.

The [FMS01] attack, as originally described, requires on average about 60 weak IVs for each secret key
byte, and a weak IV turns up about every 216 packets. Each key byte, however, requires a different IV, so
any one IV has one chance per key byte to be a weak IV. To guess a key thus requires 60ˆ65536» 4 million
packets.

But we can do quite a bit better. In [TWP07], the number of packets needed is only about 40,000 on average.
At that point the attack is entirely practical.

This vulnerability was used in the attack on TJX Corp mentioned in the opening section.

22.8 Diffie-Hellman-Merkle Exchange

How do two parties agree on a secret key K? They can meet face-to-face, but that can be expensive or even
not possible. We would like to be able to encrypt, for example, online shopping transactions, which often
occur at the spur of the moment.

Diffie, Hellman and Merkle

Diffie and Hellman’s paper [DH76] appeared in 1976, but they reference Merkle’s later-published paper
[RM78] as “submitted”. In [MH04], Hellman suggested that the name of the key-exchange algorithm
here should bear the names of all three contributors. The algorithm was apparently discovered in 1974 by
Malcolm Williamson at GCHQ, but Williamson’s work was classified.

One approach is to use public-key encryption, below, but that came two years later. The Diffie-Hellman-
Merkle approach, from [DH76] and [RM78], allows private key exchange without public keys.

The goal here is for Alice and Bob to exchange information over a public network so that, at the end,
Alice and Bob have determined a common key, and no eavesdropper can determine it without extraordinary
computational effort.

22.8 Diffie-Hellman-Merkle Exchange 795

http://en.wikipedia.org/wiki/Malcolm_J._Williamson
http://www.gchq.gov.uk

An Introduction to Computer Networks, Release 1.9.21

As a warmup, we begin with a simple example. Alice and Bob each choose a number; say Alice chooses 7
and Bob chooses 9. Alice sends to Bob the value A = 37 = 2187, and Bob sends to Alice the value B = 39

= 19683. Alice then computes B7 = 39ˆ7, and Bob computes A7 = 37ˆ9. If they each use 32-bit arithmetic,
they have each arrived at 2111105451 (the exact value is 1144561273430837494885949696427).

The catch here is that any intruder with a calculator can recover 7 from A and 9 from B, by factoring. But if
we make the arithmetic a little more complicated, this becomes extremely difficult.

In the actual protocol, Alice and Bob agree, publicly, on a large prime p (typically several hundred digits)
and a small value g, discussed below. Alice then chooses a<p, and sends to Bob the value A = ga mod p.
Similarly, Bob chooses b<p and sends to Alice the value B = gb mod p.

As before, Alice and Bob now compute Ba mod p and Ab mod p, which both equal gaˆb mod p. This
becomes their shared secret, from which a key can be derived.

The question is whether an eavesdropper who knows A and B and g can compute a and b. This is the dis-
crete logarithm problem, as in some mod-p sense a = logg(A). It is indeed believed to be computationally
intractable, provided that the order of g – the smallest k>0 such that gk = 1 modulo p, is large. In Diffie-
Hellman-Merkle key exchange, g is a so-called primitive root modulo p, meaning that its order is p–1, the
largest possible value. A naive attempt to compute a from A is to try each gi for i<p until one finds a match;
this is much too slow to be practical.

There is some work involved in finding a suitable primitive root g given p, but that can be public, and is
usually not too time-consuming; see the next section. Traditionally, reusing the same p and g was regarded
as safe; in fact, popular (p,g) pairs for various lengths of p were published in RFC 2409 and RFC 3526,
and were (and still are) widely deployed. However, (p,g) reuse must be done with care; in particular, p must
be large enough. Otherwise one may be vulnerable to the logjam attack described in [ABDGHSTVWZ15].
For a fixed prime p, it turns out that relatively fast discrete-logarithm computation – that is, finding a from
ga, modulo p – is possible if an attacker is able to pre-compute a very large table. For 512-bit primes, the
average logarithm-calculation time in [ABDGHSTVWZ15], once the table was constructed, was 90 seconds.
Time for calculation of the table itself took almost 105 core-hours, though that could be compressed into
as little as one week with highly parallel hardware. By comparison, the authors were able to factor 512-bit
RSA keys in about 5,000 core-hours; see 22.9.1.2 Factoring RSA Keys.

The authors of [ABDGHSTVWZ15] conjecture that the NSA has built such a table for some well-known
(and commonly used) 1024-bit primes. However, for those with fewer computational resources, the logjam
attack also includes strategies for forcing common server implementations to downgrade to the use of 512-
bit primes using TLS implementation vulnerabilities; cf the POODLE attack (first sidebar at 22.10 SSH
and TLS).

The Diffie-Hellman-Merkle exchange is vulnerable to a man-in-the-middle attack, discussed in greater
detail in 22.9.3 Trust and the Man in the Middle. If Mallory intercepts Alice’s ga and sends Bob his own
ga’, and similarly intercepts Bob’s gb and replaces it with his own gb’, then the Alice–Mallory link will
negotiate key gaˆb’ and the Mallory-Bob link will negotiate ga’ˆb. Mallory then remains in the middle,
intercepting, decryping, re-encrypting and forwarding each message between Alice and Bob. The usual fix
is for Alice and Bob to sign their ga and gb; see 22.9.2 Forward Secrecy.

796 22 Security

https://tools.ietf.org/html/rfc2409.html
https://tools.ietf.org/html/rfc3526.html
https://www.nsa.gov/

An Introduction to Computer Networks, Release 1.9.21

22.8.1 Fast Arithmetic

It is important to note that the basic arithmetic operations here – eg calculating ga mod p – can be done in
polynomial time with respect to the number of binary digits in p, sometimes called the bit-length of p. This
is not completely obvious, as the naive approach of multipying out gˆgˆ. . .ˆg, a times, takes O(p) steps
when a»p, which is exponential with respect to the bit-length of p. The trick is to use repeated squaring: to
compute g41, we note 41 = 101001 in binary, that is, 41 = 25 + 23 + 1, and so

g41 = ((((g2)2)2)2)2 ˆ ((g2)2)2 ˆ g

A simple python3 implementation of this appears at 22.13 RSA Key Examples.

It is also worth noting that even finding large primes is not obviously polynomial in the number of digits. We
can, however, use fast probabilistic primality testing, and note that the Prime Number Theorem guarantees
that the number of candidates we must test to find a prime near a given number n is O(log n).

Finally, there is in general no fast algorithm for finding a primitive root g modulo p – a number such that gk

= 1 mod p for k=p-1, but not for any smaller k. The straightforward approach involves factoring p-1, and
in general factoring of large numbers is believed to be quite hard. However, finding primitive roots can be
done for “special” primes, for example, primes p of the form p = 2q+1 for a second prime q. In this case,
g<p is a generator if g2 ‰ 1 mod p and gq = -1 mod p. Such special primes are straightforward to find,
usually by searching first for the prime q and then checking if 2q+1 is also prime. However, this process is
often considered too slow to be performed on demand, as part of an interactive exchange; instead, p and g
are calculated in advance.

22.8.2 Simultaneous Authentication of Equals

The Simultaneous Authentication of Equals protocol, or SAE, is an approach to mutual password authenti-
cation: each side has the password, and each side verifies to the other that it knows the password. Note that
an exchange of passwords cannot achieve this. It can be compared to the WPA2 four-way handshake used
in Wi-Fi, 3.7.5.1 WPA2 Four-way handshake; in fact, in the WPA3 standard SAE is partly replacing the
four-way handshake. The SAE protocol was introduced in [DH08]; a later variant, known as Dragonfly, is
described in RFC 7664. The version used in WPA3 is defined in the IEEE standard 802.11-2016. All are
essentially the same protocol, with later versions including various technical cryptographic refinements.

A secondary outcome of SAE, beyond mutual authentication, is that each side generates a shared secret that
can be used as an encryption key. In this sense, SAE acts as a key-exchange protocol; cf 22.8 Diffie-
Hellman-Merkle Exchange, and, in fact, parts of SAE strongly resemble Diffie-Hellman-Merkle key ex-
change.

The SAE protocol will be presented here using arithmetic modulo a large prime number, although elliptic
curves (sidebar at 22.9.1 RSA) can also be used.

Each side, Alice and Bob, initially knows a password, likely a string, and each side agrees on a large prime
number p. Each side also agrees on a number g (known as the generator) such that the order of g modulo p –
the smallest k>0 such that gk = 1 modulo p – is large. For most purposes a primitive root modulo p would be
sufficient, though RFC 7664 (but not [DH08]) requires that the order of g modulo p be a large prime divisor
q of p-1. (If p=2q+1 for prime q, then g can be the square of a primitive root modulo p.) The requirement
that q be prime is not used in the analysis here.

22.8 Diffie-Hellman-Merkle Exchange 797

http://en.wikipedia.org/wiki/Fermat_primality_test
http://en.wikipedia.org/wiki/Prime_number_theorem
https://tools.ietf.org/html/rfc7664.html
https://tools.ietf.org/html/rfc7664.html

An Introduction to Computer Networks, Release 1.9.21

Each side initially determines, from the string-format password, a numeric value PW < p. This starts with
a hash of the password, modulo p, to create a seed value. PW is then calculated as seed(p–1)/q mod p. This
ensures PWq mod p = 1.

The authentication starts with each side choosing random values rand and mask, each less than the value
of q. Alice’s values are randA and maskA, and likewise for Bob. Each side then computes the following:

scal = (rand + mask) mod q
elem = PW–mask mod p

The names here reflect the fact that scal is a scalar value, and elem is an element of the group generated
by g, though for mod-p arithmetic this distinction is purely one of convention. The negative exponent in the
second formula here refers to the multiplicative inverse mod p; PW–mask represents the (unique modulo p)
number X such that X ˆ PWmask mod p = 1.

Let Alice’s scal and elem be denoted scalA and elemA, and Bob’s scalB and elemB. The first step
of the protocol is for Alice and Bob to exchange their scal and elem values.

One way to view this is that each side’s value of rand represents that side’s contribution to the key, and this
value is hidden, or “masked”, with mask.

Each side now computes a secret K as follows. Alice computes

K = (PWscalB ˆ elemB)randA mod p

while Bob computes

K = (PWscalA ˆ elemA)randB mod p

We now show these two values of K are in fact equal. Since scal = rand+mask mod q, we can find N so
scal = rand+mask+Nq in ordinary integer arithmetic. We now start with Alice’s value of K:

K = (PWscalB ˆ elemB)randA

= (PW(randB+maskB+Nq) ˆ PW–maskB)randA

= (PWrandB)randA (because PWq mod p = 1)
= PWrandB ˆ randA

This last value is the same for both Alice and Bob. For comparison with Diffie-Hellman-Merkle key ex-
change, note that there Alice and Bob both arrive at the same shared secret gaˆb.

The second, and final, step of the protocol involves an exchange of verification tokens. This is the password-
verification step. Alice sends to Bob a value like the following, where Hash() is a suitable secure-hash
function.

Hash(K"elemA"scalA"elemB"scalB)

Bob sends something similar. Alice and Bob have now each verified to the other that they knew the password.
If Alice did not really know PW, and used an incorrect value instead, then she will get a different K, and
Bob will know when the second-step tokens are exchanged.

Perhaps more importantly, an attacker who eavesdrops on the Alice-Bob exchange obtains nothing of use;
there is no known offline dictionary attack. In this, SAE is much more resistant to eavesdropping than, say,
the WPA2 handshake used by Wi-Fi. The second SAE step is protected by a secure-hash function, and,
for the first step, knowing scal and elem convey nothing about PW, in large part due to the difficulty of
solving the discrete logarithm problem.

798 22 Security

An Introduction to Computer Networks, Release 1.9.21

The SAE protocol does require that Alice and Bob each keep a copy of the password cleartext, not a copy of
the password hash. This seems unavoidable, given that Bob and Alice must each authenticate to one another.

22.9 Public-Key Encryption

In public-key encryption, each party has a public encryption key KE and a private decryption key KD. Alice
can publish her KE to the world. If Bob has Alice’s KE, he can encrypt a message with it and send it to her;
only someone in possession of Alice’s KD can read it. The fundamental idea behind public-key encryption
is that knowledge of KE should not offer any meaningful information about KD.

22.9.1 RSA

Public-key encryption was outlined in [DH76], but the best-known technique is arguably the RSA algorithm
of [RSA78]. (The RSA algorithm was discovered in 1973 by Clifford Cocks at GCHQ, but was classified.)

To construct RSA keys, one first finds two very large primes p and q, perhaps 1024 binary digits each. These
primes should be chosen at random, by choosing random N’s in the right range and then testing them for
primality until success. Let n = pˆq.

It now follows from Fermat’s little theorem that, for any integer m, m(p-1)(q-1) = 1 mod n (it suffices to show
m(p-1)(q-1) = 1 mod p and m(p-1)(q-1) = 1 mod q).

One then finds positive integers e and d so that eˆd = 1 mod (p-1)(q-1); given any e relatively prime to both
p-1 and q-1 it is possible to find d using the Extended Euclidean Algorithm (a simple Python implementation
appears below in 22.13 RSA Key Examples). From the claim in the previous paragraph, we now know meˆd

= (me)d = m mod p.

If we take m as a message (that is, as a bit-string of length less than the bit-length of n, rather than as an
integer), we encrypt it as c = me mod n. We can decrypt c and recover m by calculating cd mod n = meˆd

mod n = m.

The public key is the pair xn,ey; the private key is d.

Elliptic-curve cryptography

One of the concerns with RSA is that a faster factoring algorithm will someday make the encryption
useless. A newer alternative is the use of elliptic curves; for example, the set of solutions modulo a large
prime p of the equation y2 = x3 + ax + b. This set has a natural (but nonobvious) product operation
completely unrelated to modulo-p multiplication, and, as with modulo-p arithmetic, finding n given B
= An appears to be quite difficult. Several cryptographic protocols based on elliptic curves have been
proposed; see Wikipedia.

As with Diffie-Hellman-Merkle (22.8.1 Fast Arithmetic), the operations above can all be done in polyno-
mial time with respect to the bit-lengths of p and q.

The theory behind the security of RSA is that, if one knows the public key, the only way to find d in practice
is to factor n. And factoring is a hard problem, with a long history. There are much faster ways to factor

22.9 Public-Key Encryption 799

http://en.wikipedia.org/wiki/Clifford_Cocks
http://www.gchq.gov.uk
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

An Introduction to Computer Networks, Release 1.9.21

than to try every candidate less than ?n, but it is still believed to require, in general, close-to-exponential
time with respect to the bit-length of n. See 22.9.1.2 Factoring RSA Keys below.

RSA encryption is usually thousands of times slower than comparably secure shared-key ciphers. However,
RSA needs only to be used to encrypt a secret key for a shared-key cipher; it is this latter key that actually
protects the document.

For this reason, if a message is encrypted for multiple recipients, it is usually not much larger than if it were
encrypted for only one: the additional space needed for each additional recipient is just the encrypted key
for the shared-key cipher.

Similarly, for digital-signature purposes Alice doesn’t have to encrypt the entire message with her private
key; it is sufficient (and much faster) to encrypt a secure hash of the message.

If Alice and Bob want to negotiate a session key using public-key encryption, it is sufficient for Alice to
know Bob’s public key; Alice does not even need a public key. Alice can choose a session key, encrypt it
with Bob’s public key, and send it to Bob.

We will look at an actual calculation of an RSA key and then an encrypted message in 22.13 RSA Key
Examples.

22.9.1.1 RSA and Digital Signatures

RSA can also be used for strong digital signatures (as can any public-key system in which the roles of the
encryption and decryption keys are symmetric, and can be reversed). Suppose, as above, Alice’s public key
is the pair xn,ey and her private key is the exponent d. If Alice wants to sign a message m to Bob, she simply
encrypts it using the exponent d from her private key; that is, she computes c = md mod n. Bob, along with
everyone else in the world, can then decrypt the resulting ciphertext c with Alice’s public exponent e (that
is, ce). If this yields a valid message, then Alice (or someone in possession of her key) must have been the
sender.

Generally, for signature purposes Alice will encrypt not her entire message but simply a secure hash of it,
and then send both the message and the RSA-encrypted hash. Bob decrypts the encrypted hash, and the
signature checks out if the result matches the hash of the corresponding message.

The advantage of a public-key signature over an HMAC signature is that the former uses a key with long-
term persistence, and can be used to identify the individual who sent the message. The drawback is that
HMAC signatures are much faster.

It is common for Alice to sign her message to Bob and then encrypt the message plus signature – perhaps
with Bob’s public key – before sending it all to Bob.

Just as Alice probably prefers not to sign undated documents with her handwritten signature, she will likely
prefer to apply her digital signature only to documents containing a timestamp. This helps deter replay
attacks.

22.9.1.2 Factoring RSA Keys

The security of RSA depends largely on the difficulty in factoring the key modulus n = pq (though it is the-
oretically possible that an RSA vulnerability exists that does not entail factoring). As of 2015, the factoring
algorithm that appears to be the fastest for larger keys is the so-called number-field sieve; an early version

800 22 Security

http://en.wikipedia.org/wiki/General_number_field_sieve

An Introduction to Computer Networks, Release 1.9.21

of this technique was introduced in [JP88]. A heuristic estimate of the time needed to factor a number n via
this algorithm is exp(1.923ˆlog(n)1/3ˆlog(log(n))2/3), where exp(x) = ex and log(x) is the natural logarithm.
To a first approximation this is exp(kˆL1/3), where L is the bit-length of N. This is sub-exponential (because
of the exponent 1/3) but still extremely slow.

Side Channels

Those placing serious reliance on the relative security levels outlined here should also be aware of the
existence of so-called side-channel attacks, eg making use of electromagnetic leakage from a computer to
infer a key.

The first factorization of an RSA modulus with 512 bits occurred in 1999 and was published in [CDLMR00];
this was part of the RSA factoring challenge. It took seven calendar months, using up to 300 processors in
parallel. Fifteen years later, [ABDGHSTVWZ15] reported being able to do such a factorization in eight days
on a 24-core machine (~5,000 core-hours), or in seven hours using 1800 cores. Some of the speedup is due
to software implementation improvements, but most is due to faster hardware.

If we normalize the number-field-sieve factoring time of a 512-bit n to 1, we get the following table of
estimated relative costs for factoring larger n:

key length in bits relative factoring time
512 1
1024 8,000,000
1536 8ˆ1011

2048 8ˆ1015

3072 3ˆ1022

4096 8ˆ1027

From this we might conclude that 1024-bit keys are potentially breakable by a very determined and well-
funded adversary, while the 2048-bit key length appears to be much safer. In 2011 NIST’s recommended
key length for RSA encryption increased to 2048 bits (publication 800-131A, Table 6). This is quite a bit
larger than the 128-to-256-bit recommendation for shared-key ciphers, but RSA factoring attacks are much
faster than trying all keys by brute force.

Note that some parts of the factoring algorithm are highly parallelizable while other parts are less so;
relative factoring times when using highly parallel hardware may therefore differ quite a bit. See also
22.13.1 Breaking the key.

22.9.2 Forward Secrecy

Suppose Alice and Bob exchange a shared-key-cipher session key KS using their RSA keys. Later, their
RSA keys are compromised. If the attacker has retained Alice and Bob’s prior communications, the attacker
can go back and decrypt KS, and then use KS to decrypt the entire session protected by KS.

This is not true, however, if Alice and Bob had used Diffie-Hellman-Merkle key exchange. In that case,
there is no encryption used in the process of negotiating KS, so no later encryption compromise can reveal
KS.

22.9 Public-Key Encryption 801

https://en.wikipedia.org/wiki/Side-channel_attack
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
http://www.nist.gov/
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

An Introduction to Computer Networks, Release 1.9.21

This property is called forward secrecy, or, sometimes, perfect forward secrecy (other times, perfect for-
ward secrecy adds the further requirement that the compromise of any other session key negotiated by Alice
and Bob does not reveal information about KS).

The advantage using public-key encryption along with Diffie-Hellman-Merkle key exchange, then, is that
Alice can sign the key KS she sends to Bob. Assuming Bob is confident he has Alice’s real public key, a
man-in-the-middle attack (22.9.3 Trust and the Man in the Middle) becomes impossible.

It is now common for public-key encryption to be used to sign all the transactions that are part of the Diffie-
Hellman-Merkle exchange. When this is done, Alice and Bob gain both forward secrecy and protection
from man-in-the-middle attacks.

One drawback of forward secrecy, as described here, is that the Diffie-Hellman-Merkle key exchange nom-
inally requires synchronous exchanges. If Alice is encrypting an email message to Bob, synchronous ex-
changes are probably not an option, as Bob may be offline at the time.

One approach to forward secrecy in asynchronous communication, used by the X3DH protocol, is for Alice
and Bob to generate prekeys. In the key exchange described above in 22.8 Diffie-Hellman-Merkle Ex-
change, Alice and Bob agree on a prime p and a generator g, and choose random values a and b respectively.
They then exchange ga mod p and gb mod p. A prekey for Bob is simply a precomputed gb, shared with a
server and signed by Bob. To avoid reuse, Bob will typically generate (and share) many prekeys. When Al-
ice wants to send her asynchronous message, she simply asks the server for one of Bob’s prekeys. With that
and her own ga, she can then calculate the session key KS and encrypt the message. Alice’s ga must then be
sent along with her encrypted message, so Bob can also calculate KS and decrypt the message. This prekey
approach appears to be quite secure, though it does either commit everyone to using the same key-exchange
prime p and generator g (the usual approach), or else requires the generation of a set of prekeys for every
potential correspondent.

22.9.3 Trust and the Man in the Middle

Suppose Alice wants to send Bob a message. Where does she find Bob’s public key EB?

If Alice goes to a public directory that is not completely secure and trustworthy, she may find a key that in
fact belongs to Mallory instead. Alice may now fall victim to a man-in-the-middle attack, like that at the
end of 22.8 Diffie-Hellman-Merkle Exchange:

• Alice encrypts Bob’s message using Mallory’s public key EMal, thinking it is Bob’s

• Mallory intercepts and decrypts the message, using his own decryption key DMal

• Mallory re-encrypts the message with Bob’s real public key EBob

• Bob decrypts the message with DBob

Despite Mallory’s inability to break RSA directly, he has read (and may even modify) Alice’s message.

Alice can, of course, get Bob’s key directly from Bob. Of course, if Alice met Bob, the two could also
exchange a key for a shared-key cipher.

Wi-Fi in the Middle

802 22 Security

https://signal.org/docs/specifications/x3dh/

An Introduction to Computer Networks, Release 1.9.21

One of the easiest settings at which to launch a man-in-the-middle attack is a public Wi-Fi hotspot, either
as the hotspot owner or by setting up a rogue access point to which some customers mistakenly connect.

We now come to the mysterious world of trust. Alice might trust Charlie for Bob’s key, but not Dave. Alice
doesn’t have to meet Charlie to get Bob’s key; all she needs is

• a trusted copy of Charlie’s public key

• a copy of Bob’s public key, together with Bob’s name, signed by Charlie

At the same time, Alice might trust Dave but not Charlie for Evan’s key. And Bob might not trust Charlie or
Dave for Alice’s key. Mathematically, the trust relationship is neither symmetric nor transitive. To handle
the possibility that trust might erode with time, signed keys often have an expiration date.

At the small scale, key-signing parties are sometimes held in which participants exchange some keys di-
rectly and others indirectly through signing. This approach is sometimes known as the web of trust. At the
large scale, certificate authorities (22.10.2.1 Certificate Authorities) are entities built into the TLS frame-
work (22.10.2 TLS) that verify that a website’s public key is as claimed; you are implicitly trusting these
certificate authorities if your browser vendor trusts them. Both the web of trust and certificate authorities
are examples of “public-key infrastructure” or PKI, which is, broadly, any mechanism for reliably tying
public keys to their owners. For applications of public-key encryption that manage to avoid the need for
PKI, by use of cryptographically generated addresses, see 8.6.4 Security and Neighbor Discovery and
the discussion of .onion addresses at the end of 7.8 DNS.

22.9.4 End-to-End Encryption

Many communications applications are based on the model of encryption from each end-user to the central
server. For example, Alice and Bob might both use https (based on TLS, 22.10.2 TLS) to encrypt their in-
teractions with their email provider. This means Alice and Bob are now trusting that provider, who decrypts
messages from Alice, stores them, and re-encrypts them when delivering them to Bob.

This model does protect Alice and Bob from Internet eavesdroppers who have not breached the security of
the email provider. However, it also allows government authorities to order the email provider to turn over
Alice and Bob’s correspondence.

If Alice and Bob do not wish to trust an intermediary, or their (or someone else’s) government, they need
to implement end-to-end encryption. That is, Alice and Bob must negotiate a key, use that key to encrypt
messages between them, and not divulge the key to anyone else. This is quite a bit more work for Alice
and Bob, and even more complicated if Alice wishes to use end-to-end encryption with a large number of
correspondents.

Of course, even with end-to-end encryption Alice may still be compelled by subpoena to turn over her
correspondence with Bob, but that is a different matter. Alice’s private key may also be seized under a
search warrant. It is common (though not universal) to protect private keys with a password; this is good
practice, but protecting a key having an effective length of 256 bits with a password having an effective
length of 32 bits leaves something to be desired. The mechanisms of 22.6.2 Password Hashes provide only
limited relief. The mechanism of 22.9.2 Forward Secrecy may be more useful here, assuming Alice can
communicate to Bob that her previous key is now compromised; see also 22.10.2.3 Certificate revocation.

22.9 Public-Key Encryption 803

An Introduction to Computer Networks, Release 1.9.21

22.10 SSH and TLS

We now look at two encryption mechanisms in popular use on the Internet. The first is the Secure Shell,
SSH, used to allow login to remote systems, remote command execution, file transfer and even some forms
of VPN tunneling. Public-key-encryption is optional; if it is used, the public keys are generally transported
manually.

POODLE

The 2014 POODLE attack was based in part on a long-known flaw in SSL 3.0. But SSL 3.0 is fifteen
years obsolete (though it was not officially deprecated until 2015); the other flaw was a broken version-
negotiation implementation in which the disruption of a few packets by an attacker could force both client
and server to settle on SSL 3.0 even when both supported the latest TLS version. See 22.10.2.4 TLS
Connection Setup.

The second example is the Transport Layer Security protocol, TLS, which is a successor of the Secure
Sockets Layer, or SSL. Many people still refer to TLS by the SSL name even though TLS replaced SSL in
1999, though, to be fair, TLS is effectively an update of SSL, and TLS v1.0 could easily have been named
SSL v4.0. TLS is used to encrypt web traffic for the HTTP Secure protocol, https; it is also used to encrypt
traffic for several other applications and can be used, with appropriate programming, for any application.

If Alice wants to contact a server S using either SSH or TLS, at some point she will have to trust a public
key claimed to be from S. A common approach with SSH is for Alice to accept the key on faith the first time
it is presented, but then to save it for all future verifications. Under TLS, the key from S that Alice receives
will have been signed by a certificate authority (22.10.2.1 Certificate Authorities); Alice presumably trusts
this certificate authority. (SSH does now support certificate authorities too, but their use with SSH seems
not yet to be common.)

Both SSH and TLS eventually end up negotiating a shared-secret session key, which is then used for most
of the actual data encryption.

22.10.1 SSH

The SSH protocol establishes an encrypted communications channel between two hosts, after establishing
the identities of each endpoint. Its primary use is to enable secure remote-command execution with input
and output via the secure channel; this includes the remote execution of an interactive shell, which is in
effect a telnet-style terminal login with encryption. The companion program scp uses the SSH protocol to
implement secure file transfer. Finally, ssh supports secure port forwarding from one machine (and port)
to another; unrelated applications can then connect to one machine and find themselves securely talking to
another. The current version of the SSH protocol is 2.0, and is defined in RFC 4251. The authentication
and transport sub-protocols are defined in RFC 4252 and RFC 4253 respectively.

One of the first steps in an SSH connection is for the endpoints to negotiate which secret-key cipher (and
mode) to use. Support of the following ciphers is “recommended” and there is a much longer list of “op-
tional” ciphers (which include RC4 and Blowfish); the table below includes those added by RFC 4344:

804 22 Security

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://tools.ietf.org/html/rfc4251.html
https://tools.ietf.org/html/rfc4252.html
https://tools.ietf.org/html/rfc4253.html
https://tools.ietf.org/html/rfc4344.html

An Introduction to Computer Networks, Release 1.9.21

cipher modes nominal keylength
3DES CBC, CTR 168 bits
AES CBC, CTR 192 bits
AES CTR 128 bits
AES CTR 256 bits

SSH supports a special name format for including new ciphers for local use.

The SSH protocol also allows the endpoints to negotiate a public-key-encryption mechanism, a secure-hash
function, and even a key-exchange algorithm although only minor variants of Diffie-Hellman-Merkle key
exchange are implemented.

If Alice wishes to connect to a server S, the server clearly wants to verify Alice’s identity, either through a
password or some other means. But it is just as important for Alice to verify the identity of S, to prevent
man-in-the-middle attacks and the possibility that an attacker masquerading as S is simply collecting Alice’s
password for later use.

The SSH protocol is not designed to minimize the number of round-trip packet exchanges, making SSH
connection setup quite a bit slower than TLS connection setup (22.10.2.4 TLS Connection Setup). A
connection may involve quite a few round trips to get started: the TCP three-way handshake, the protocol
version exchange, the “Key Exchange Init” exchange, the actual Diffie-Hellman-Merkle key exchange, the
“NewKeys” exchange, and the “Service Request” exchange (all but the first are documented in RFC 4253).
Still, multi-second delays can usually be reduced through performance tuning; enabling diagnostic output
(eg with the -v option) is often helpful. A common delay culprit is a server-side DNS lookup of the client,
fixable with a server-side configuration setting of UseDNS no or the equivalent.

In the following subsections we focus on the “common” SSH configuration and ignore some advanced
options.

22.10.1.1 Server Authentication

To this end, one of the first steps in SSH connection negotiation is for the server to send the public half of
its host key to Alice. Alice verifies this key, which is typically in her known_hosts file. Alice also asks
S to sign something with its host key. If Alice can then decrypt this with the public host key of S, she is
confident that she is talking to the real S.

If this is Alice’s first attempt to connect to S, however, she should get a message like the one below:

The authenticity of host ‘S (10.2.5.1)’ can’t be established.
RSA key fingerprint is da:2e:e3:94:84:6b:bf:6d:2f:e4:c3:76:68:72:a5:a0.
Are you sure you want to continue connecting (yes/no)?

If Alice is cautious, she may contact the administrator of S and verify the key fingerprint. More likely, she
will simply choose “yes”, in which case the host key of S will be added to her own known_hosts file;
this latter strategy is sometimes referred to as trust on first use.

If she later re-connects to S after the host key of S has been changed, she will get a rather more dire message,
and, under the default configuration, she will not be allowed to continue until she manually removes the old,
now-incorrect, host key for S from her known_hosts file.

22.10 SSH and TLS 805

https://tools.ietf.org/html/rfc4253.html

An Introduction to Computer Networks, Release 1.9.21

See also the ARP-spoofing scenario at 7.9.2 ARP Security, and the comment there about how this applies
to SSH.

SSH v2.0 now also supports a certificate-authority mechanism for verifying server host keys, replacing the
known_hosts file.

22.10.1.2 Key Exchange

The next step is for Alice’s computer and S to negotiate a session key. After the cipher and key-exchange
algorithms are negotiated, Alice’s computer and S use the chosen key-exchange algorithm to agree on a
session key for the chosen cipher.

The two directions of the connection generally get different session keys. They can even use different
encryption algorithms.

At this point the channel is encrypted.

22.10.1.3 Client Authentication

The server now asks Alice to authenticate herself. If password authentication is used, Alice types in her
password and it and her username are sent to the server, over the now-encrypted connection. This does
expose the server to brute-force password-guessing attacks, and is not infrequently disabled.

Alice may also have set up RSA authentication (other types of public-key authentication are also possible).
For this, Alice must create a public/private key pair (often in files id_rsa.pub and id_rsa), and the
public key must have been previously installed on S. On Unix-based systems it is often installed on S in
the authorized_keys file in the .ssh subdirectory of Alice’s home directory. If Alice now sends a
message to S signed by her private key, S is in a position to verify the signature. If this succeeds, Alice can
log in without supplying a password to S.

It is common though not universal practice for Alice’s private-key file (on her own computer) to be protected
by a password. If this is the case, Alice will need to supply that password, but it is used only on Alice’s end of
the connection. (The default password hash is MD5, which may not be a good choice; see 22.6.2 Password
Hashes.)

Public-key authentication is tried before password authentication. If Alice has created a public key, it is
likely to be tried even if she has not copied it to S.

If S is set up to require public-key authentication, Alice may not have any direct way to install her public key
on S herself, and may need the cooperation of the administrators of S. It is possible that the latter will send
Alice a public/private keypair chosen by them specifically for S, rather than allowing Alice to choose her
own keypair. The standard SSH user configuration does support different private keys for different servers.

In several command-line implementations of ssh, the various stages of authentication can be observed from
the client side by using the ssh or slogin command with the -v option.

22.10.1.4 The Session

Once an SSH connection has started, a new session key is periodically negotiated. RFC 4253 recommends
this after one hour or after 1 GB of data is exchanged.

806 22 Security

https://tools.ietf.org/html/rfc4253.html

An Introduction to Computer Networks, Release 1.9.21

Data is then sent in packets generally with size a multiple of the block size of the cipher. If not enough data
is available, eg because only a single keystroke (byte) is being sent, the packet is padded with random data
as needed. Every packet is required to be padded with at least four bytes of random data to thwart attacks
based on known plaintext/ciphertext pairs. Included in the encrypted part of the packet is a byte indicating
the length of the padding.

22.10.2 TLS

Transport Layer Security, or TLS, is an IETF extension of the Secure Socket Layer (SSL) protocol origi-
nally developed by Netscape Communications. SSL went through published versions 2.0 and 3.0; the latter
was introduced in 1996 and was officially deprecated by RFC 7568 in 2015 (see the POODLE sidebar above
at 22.10 SSH and TLS). TLS 1.0 was introduced in 1999, as the IETF took ownership of the specification
from Netscape. The current version of TLS is 1.2, specified in RFC 5246 (plus updates listed there). A draft
of TLS 1.3 is in progress (2018); see draft-ietf-tls-tls13.

The original and still primary role for TLS is encrypting web connections and verifying for the client the
authenticity of the server. TLS can, however, be embedded in any network application.

Unlike SSH, client authentication, while possible, is not common; web servers often have no pre-existing
relationship with the client. Also unlike SSH, the public-key mechanisms are all based on established
certificate authorities, or CAs, whereas the most common way for an SSH server’s host key to end up on
a client is for it to have been accepted by the user during the first connection. Browsers (and other TLS
applications as necessary) have embedded lists of certificate authorities, known as trust stores, trusted by
the browser vendor. SSH requires no such centralized trust.

If Bob wishes to use TLS on his web server SBob, he must first arrange for a certificate authority, say CA1,
to sign his certificate. A certificate contains the full DNS name of SBob, say bob.int, a public key KS used
by SBob, and also an expiration date. TLS uses the ITU-T X.509 certificate format.

The .int domain

For Bob to actually have a domain name in the .int top-level domain, as in the example here, Bob’s
organization must be established by international treaty.

Now imagine that Alice connect to Bob’s server SBob using TLS. Early in the process SBob will send her its
signed certificate, claiming public key KS. Alice’s browser will note that the certificate is signed by CA1,
and will look up CA1 on its list of trusted certificate authorities. If found, the next step is for the browser to
use CA1’s public key, also on the list, to verify the signature on the certificate SBob sent.

If everything checks out, Alice’s browser now knows that CA1 certifies bob.int has public key KS. As SBob
has presented this key KS, and is able to verify that it possesses the matching private key, this is proof that
SBob is legitimately the server with domain name bob.int.

Assuming, of course, that CA1 is correct.

As with SSH, once Alice has accepted the public key KS of SBob, a secret-key cipher is negotiated and the
remainder of the exchange is encrypted.

22.10 SSH and TLS 807

http://en.wikipedia.org/wiki/Netscape
https://tools.ietf.org/html/rfc7568.html
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/draft-ietf-tls-tls13
https://en.wikipedia.org/wiki/X.509

An Introduction to Computer Networks, Release 1.9.21

22.10.2.1 Certificate Authorities

A certificate authority, or CA, is just an entity in the business of signing certificates: messages that include
a name SBob and a verified public key KS. The purpose of the certificate authority is to prevent man-in-the-
middle attacks (22.9.3 Trust and the Man in the Middle); Alice wants to be sure she is not really connected
to SBad instead of to SBob.

What the CA is actually signing is that the particular public key KS belongs to domain bob.int, just like
Charlie might sign Bob’s public key on an individual basis. The difference here is that the CA is likely to be
a large organization, and the CA’s public key is likely to be embedded in the network application software
somewhere. (Real CA’s usually have a two-layer key signing arrangement, in which Bob’s public key would
be signed by one of the CA’s subsidiary keys, but the effect is the same.)

A certificate specific for bob.int will not work for www.bob.int, even though both DNS names might direct
to the same server SBob. If SBob presents a certificate for bob.int to a browser that has arrived at SBob via the
url http://www.bob.int, the user should see a warning. It is straightforward, however, for the server either
to support two certificates, or (if the certificate authority supports this) a single certificate for www.bob.int
with a Subject Alternative Name also entered on the certificate for bob.int alone. It is also possible to obtain
“wildcarded” certificates for *.bob.int (though this does not match bob.int; it also does not match names with
two additional levels such as www.foo.bob.int). RFC 6125, §7.2, recommends against wildcard certificates,
though they remain widely used.

Firefox Certificates

As of this writing, certificate authorities for the popular Firefox browser are found in PreferencesÑ Ad-
vancedÑ View Certificates. It is an interesting list, if only because, for such highly trusted organizations,
few people have heard of more than a handful of them. The policy for becoming a Firefox CA is here.

Popular browsers all use preset lists of CAs provided by (and presumably trusted by) either the browser ven-
dor or the host operating-system vendor. If Alice is also willing to trust these CAs, she can feel comfortable
using the key she receives to send private messages to Bob. That “if”, however, is sometimes controver-
sial. Just because Alice trusts her browser and operating system (eg not to contain malware), that does not
automatically imply that Alice should trust these vendors’ judgment when it comes to CAs.

On the face of it, Bob’s certificate authority CA1 is just signing that domain name bob.int has public key KS.
This isn’t quite the same, however, as attesting that the certificate-signing request actually came from Bob.
All depends on how thorough CA1 is in checking the identity of its customer, and since those customers
typically choose the least expensive CA, there is sometimes an incentive to cut corners.

A certificate authority’s failure to verify the identity of the party making the certificate-signing request can
enable a man-in-the-middle attack (22.9.3 Trust and the Man in the Middle). Suppose, for example, that
Mallory is able to obtain a signed certificate from another certificate authority CA2 linking bob.int to key
Kbad controlled by Mallory. If Mallory can now position his server SBad in the middle between Alice and
SBob,

Alice SBad SBob

then Alice can be tricked into connecting to SBad instead of SBob. Alice will request a certificate, but from
SBad instead of SBob, and get Mallory’s from CA2 instead of Bob’s actual certificate from CA1. Mallory
opens a second connection from SBad to SBob (this is easy, as Bob makes no attempt to verify Alice’s

808 22 Security

http://www
https://en.wikipedia.org/wiki/Subject_Alternative_Name
https://tools.ietf.org/html/rfc6125.html
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/

An Introduction to Computer Networks, Release 1.9.21

identity), and forwards information from one connection to the other. As far as TLS is concerned everything
checks out. From Alice’s perspective, Mallory’s false certificate vouches for the key Kbad of SBad, CA2 has
signed this certificate, and CA2 is trusted by Alice’s browser. There is no “search” at any point through the
other CAs to see if any of them have any contrary information about SBob. In fact, there is not necessarily
even contact with CA2, though see 22.10.2.3 Certificate revocation below.

Certificate Errors

Sometimes certificate signatures fail to verify, either because they are expired or were improperly signed
or the certificate authority is not recognized. The browser then receives the appropriate TLS error message
and communicates the problem to the user. Examples can be found at badssl.com; click the buttons there
to see different errors.

If the certificate authority CA1 were also the domain registrar with whom Bob registered the DNS name
bob.int, it would be especially well-positioned to verify that Bob is really the owner of the bob.int do-
main. But this is not generally the case. Quite often, the CA’s primary verification method is to send an
email to, say, bob@bob.int (or perhaps to the DNS administrative contact listed in the WHOIS database
for domain bob.int). If someone responds to this email, it is assumed they must be legitimately part of
the bob.int domain. Another authentication strategy is for CA1 to send a special file to be placed at, say,
bob.int/foo/bar/special.html; again, the idea is that only the domain owner would be able to do this. Note,
however, that in the man-in-the-middle attack above, it does not matter what CA1 does; what matters is the
verification policy used by CA2.

If Alice is very careful, she may click on the “lock” icon in her browser and see that the certificate authority
signing her connection to SBad is CA2 rather than CA1. But if Alice has a secure way of finding Bob’s “real”
certificate authority, she might as well use it to find Bob’s key KS. As she often does not, this is of limited
utility in practice.

The second certificate authority CA2 might be a legitimate certificate authority that has been tricked, coerced
or bribed into signing Mallory’s certificate. Alternatively, it might be Mallory’s own creation, inserted by
Mallory into Alice’s browser through some other vulnerability.

Superfish

The “Superfish” vulnerability of 2015 involved an operating-system module (based on LSP, WFP or, in
principle, iptables) that could intercept all browser TLS connections (thus acting as the man in the middle),
together with software that could act as a certificate authority, generating new certificates (like Mallory’s
from CA2) on the fly. The apparent goal was to inject advertising into TLS-secured connections.

Mallory’s machinations here do require both the man-in-the-middle attack and the bad certificate. If Alice
is able to establish a direct connection with SBob, then the latter will send its true key KS signed by CA1.

As another attack, Mallory might obtain a certificate for b0b.int and hope Alice doesn’t notice the spelling
difference between B0B and BOB. When this is done, Mallory often also sends Alice a disguised link to
b0b.int in the hope she will click on it. Unicode domain names make this even easier, as Unicode provides
many character pairs that are different but which look identical.

Certificates tend to come with a number of constraints. First among them is that most certificates issued by

22.10 SSH and TLS 809

https://badssl.com/
http://en.wikipedia.org/wiki/Layered_Service_Provider
http://en.wikipedia.org/wiki/Windows_Filtering_Platform
http://en.wikipedia.org/wiki/Iptables

An Introduction to Computer Networks, Release 1.9.21

CAs to end users (either corporations or individuals) are marked as “not a certificate authority”, meaning
that the certificate cannot be used to sign additional certificates. That is, the certificate trust relationship is
not transitive. If Bob gets a certificate for bob.int, he cannot use it to sign a certificate for Alice or, for that
matter, Google. The second major restriction is on names: a certificate is almost always tied to a specific
DNS name. As described above, multiple names can be accepted via the “subject alternative name” attribute,
or by using a “wildcard” name like *.foo.com. Finally, certificates often contain restrictions on how they
can be used, in the “extended key usage” attribute. A typical entry is “TLS web server authentication”,
expressed as an OID (21.3 SNMP Naming and OIDs). These restrictions are enforced by the TLS library;
it is possible outside that library to use the keys inside certificates for whatever you want.

Extended-Validation certificates were introduced in 2007 as a way of providing greater assurances that the
certificate issued to bob.int was in fact generated by a request from Bob himself; Mallory should in theory
have a much harder time obtaining an EV certificate for bob.int from CA2. Desktop browsers that have
secured a TLS connection using an EV certificate typically add the name of the domain owner, highlighted
in green and/or with a green padlock icon, to the address bar. Financial institutions often use EV certificates.
So does mozila.org.

Of course, if Alice does not know Bob is using an EV certificate, she can still be tricked by Mallory as
above. Alternatively, perhaps Alice is using a mobile device; most mobile browsers give little if any visual
indication of EV certificates. Because the majority of browsing today (2018) is done on mobile devices, this
severely limits the usefulness of these certificates.

22.10.2.2 Certificate pinning

Another strategy intended as a more direct prevention of man-in-the-middle attacks is certificate pinning.
Conceptually, Alice (or her browser) makes a note the first time she connects to SBob that the certificate
authority is CA1 or that Bob’s public key is KS, or both. Future connections to SBob must match at least
one of these credentials. This form of pinning depends on Alice’s having reached the real SBob on the first
connection, sometimes called “trust on first use”. A similar trust-on-first-use strategy is often (though not
always) used with SSH, 22.10.1.1 Server Authentication.

In the pinning protocol described in RFC 7469, it is SBob that initiates the pinning by including a “pin
directive” in its initial HTTP connection. This requests Alice’s browser to pin the desired certificates, though
the pinned correspondence between a site and its keys is always maintained at the browser side. The pin
directive also specifies which keys (KS or CA1 or both) are pinned, and for how long.

If SBob sends a pin directive for KS, then Alice’s browser remembers KS, and any new certificate at SBob
will be a mismatch. If SBob pins CA1, then SBob can have CA1 issue a new key and it will still pass pin-
validation. If CA1 is later compromised, though, SBob is not protected against any new rogue certificates it
issues. (This is generally a minor concern, as CA1 compromise will always mean that new visitors to SBob
will be vulnerable to man-in-the-middle attacks.)

Bob can also obtain, along with KS, a backup certificate KS-backup, and have SBob’s pin directives pin both
of these. Then, if KS is compromised, KS-backup is ready to go. Hopefully, key compromise is a rare event,
so there is a very small chance that both KS and KS-backup are compromised within the pin’s lifetime. Key
compromise pretty much follows from any server compromise, however, and if intruders break in, KS-backup
cannot be put into production until Bob is sure the site is secure. That may take some time.

If KS and KS-backup are both compromised, and CA1 wasn’t pinned, SBob may simply become inaccessible
to returning visitors. Automatic unpinning of revoked certificates would help, but certificate revocation (see

810 22 Security

https://www.mozilla.org/
https://tools.ietf.org/html/rfc7469.html

An Introduction to Computer Networks, Release 1.9.21

following section) has its own difficulties. The user may have an option to disable pin validation for this
particular site, but it’s not supposed to be as simple as clicking “ok”, and in any event if the site is your bank
you may be loath to do this.

22.10.2.3 Certificate revocation

Suppose the key r underlying the certificate for bob.int has been compromised, and Mallory has the private
key. Then, if Mallory can trick Alice into connecting to SBad instead of SBob, the original CA1 will validate
the connection. SBad can prove to Alice that it has the secret key corresponding to KS, and all the certificate
does is to attest that bob.int has key KS. Mallory’s deception works even if Bob noticed the compromise and
updated SBob’s key to K2; the point is that Mallory still has the original key, and CA1’s certificate attesting
to that original key is still valid.

There is a mechanism by which a certificate can be revoked. Revocation information, however, must be
kept at some central directory; a server can continue to serve up a revoked certificate and unless the clients
actively check, they will be none the wiser. This is the reason certificates have expiration dates.

The original revocation mechanism was the global certificate revocation list. A newer alternative is the
Online Certificate Status Protocol, OCSP, described in RFC 6960. If Alice receives a certificate signed by
CA1, she can send the serial number of the certificate to a designated “OCSP responder” run by or on behalf
of CA1. If the certificate is still valid, the responder site will return a signed confirmation of that.

Of course, an eavesdropper watching Alice’s traffic arriving at the OCSP responder – and the OCSP respon-
der itself – now knows that Alice is visiting bob.int. An eavedropper closer to Alice, however, knows that
anyway.

More seriously, someone running a man-in-the-middle attack close to Alice can probably intercept and block
Alice’s OCSP request. If Alice receives no response, what should she do? Maybe there is a problem, but
maybe the responder site is simply down or the Internet is simply slow. Most browsers that actually do
revocation checks assume the latter – known as soft fail – making revocation checks of dubious value. The
alternative of refusing to allow access to the original site – hard fail – leads to many false positives.

As of 2016, there is no generally accepted solution. One minimal approach, in the event of OCSP soft
fail, is to use hard fail with EV certificates, or at least to downgrade EV certificates to ordinary ones upon
OCSP non-response. Another approach is OCSP stapling, in which the server site periodically (perhaps
daily) requests a signed and dated update from its CA’s OCSP server indicating that the site’s certificate is
still valid. This OCSP report is then “stapled” to the ServerHello message (below), if requested by the
client. This allows the client to verify that the certificate was still valid quite recently.

Of course, if the client is the victim of a man-in-the-middle attack then the (fake) server will not staple an
OCSP validity report, and the client must fall back to the regular OCSP lookup process. But this case can
be expected to be infrequent, making a hard fail after OCSP non-response a reasonable option.

Google’s Chrome browser implements CRLSets in lieu of checking OCSP servers, described here. This is
a list of revoked certificates downloaded regularly to the browser. Unfortunately, the full list is much too
large, so CRLSets are limited to emergency revocations and certificate revocations due to key compromise;
even then the list is not complete.

22.10 SSH and TLS 811

https://tools.ietf.org/html/rfc6960.html
https://dev.chromium.org/Home/chromium-security/crlsets

An Introduction to Computer Networks, Release 1.9.21

22.10.2.4 TLS Connection Setup

The typical TLS client-side user is interested in viewing a web page as quickly as possible, placing a pre-
mium on rapid negotiation of the TLS connection. If sites were to load noticeably more slowly when
encryption was used, encryption might not be used routinely. As a result, the connection-setup process,
known as the TLS handshake protocol, is designed to complete in two RTTs. The goals of the handshake
protocol are to agree on the encryption and authentication mechanisms to be used, to provide authentication
as necessary, and to negotiate the encryption keys. Here is an outline of a typical exchange, with some
options omitted:

client (Alice) server (Bob)

ClientHello
• preferred TLS version
• session ID (empty for new connec-

tions)
• list of ciphers acceptable to client
• ServerName (optional extension)
• start of key exchange (optional)

ServerHello
• chosen version
• chosen cipher
• server key exchange (optional)
• server certificate (separate message)

(client now knows the key)
optional client certificate
optional other data (may be encrypted)
Finished message

Finished message (encrypted)

The client initiates the connection by sending its ClientHello message, which contains its preferred
TLS/SSL-protocol version number, a session identifier, some random bytes (a cryptographic nonce), and a
list of cipher suites: tuples consisting of a key-exchange algorithm, a shared-key encryption algorithm and
a secure-hash algorithm. The list of cipher suites is ranked by the client according to preference.

Many large servers host multiple websites through “virtual hosting”. Each website will have its own certifi-
cate, and the server needs to be able to know which one to send in its reply. In settings like this, the client
includes the server’s DNS name in a ServerName extension; the Server Name Indication (SNI) is defined in
RFC 6066.

Choosing your cipher

In theory, any TLS client can choose which cipher suites it will accept. In practice, for most software

812 22 Security

https://tools.ietf.org/html/rfc6066.html

An Introduction to Computer Networks, Release 1.9.21

applications this is non-trivial. In the Firefox browser, see about:config, under security.ssl3 (yes,
ssl3 is in theory not the same as tls).

The server then responds with its ServerHello. This contains the final protocol-version number, gen-
erally the maximum of the version proposed by the client and the highest version supported by the server.
The ServerHello also contains the server’s choice of a cipher suite from the client’s list, and some more
random bytes (the server’s nonce). The server also sends its certificate, if requested (which it almost always
is). Exactly which certificate is sent may depend on the server name sent by the client in the optional Server-
Name extension. The certificate is considered to be a separate “message” at the TLS protocol level, not part
of the ServerHello, but everything is sent together.

Having received the server’s certificate, the client application’s next step is to validate this certificate, by
checking its signature against the client’s list of trusted certificate authorities, the client’s “trust store”.
This step does not involve any network communication. While most operating systems maintain a list of
generally trusted certificates, the client application can trust all, some or none of this list; the client can also
load application-specific certificates. If the certificate does not check out, the client is free to continue the
connection, perhaps pausing to add the server certificate to its trust store (hopefully after user interaction
confirming this).

The client then responds with its key-exchange response, and its own certificate if applicable (which it
seldom is). It immediately follows that with its Finished message, the first message that is encrypted
with the just-negotiated cipher suite. The server then replies with its encrypted Finished message, and
encrypted application-layer communication can then begin.

Most browsers allow the user to click on the padlock icon for the TLS-secured connection to find out what
cipher suite was actually agreed upon.

A client starting a brand-new connection leaves the Session ID field empty in the ClientHello message.
However, if a client wishes to resume a previous session, it includes here the Session ID from that previous
session. The server must, of course, also recognize that session.

Once upon a time, some broken TLS servers failed to respond properly if a client proposed a version number
greater than what the server supported; the server would close the connection instead of returning a lower
version number. As a result, many clients were programmed to try again with the next-lower version in the
event of any connection-setup failure. This meant that an attacker could force a client to propose an obsolete
version (eg SSL 3.0) simply by interrupting earlier connection-setup attempts, perhaps with a TCP RST
packet. A consequence was the POODLE vulnerability mentioned in the sidebar in 22.10 SSH and TLS.

An application’s choice of TLS (versus unencrypted communication) is often signaled by the use of a special
port number; for example, the standard http port is 80 while the standard https port is 443. Alternatively,
there may be some initial negotiation; for example, in the SMTP email protocol (RFC 5321) it is common
for the client to connect to the server on the standard port 25 without encryption, but then to negotiate the
use of TLS using the STARTTLS extension to SMTP (RFC 3207). This adds multiple extra RTTs, but for
non-interactive protocols this is usually of only minor concern.

Occasionally applications do sometimes get confused about whether TLS is in use. Web browsers connect-
ing to port 80 (HTTP) or port 443 (HTTPS) can usually figure things out correctly, even if the “http://” or
“https://” part of the URL is missing. However, browsers connecting to nonstandard webservers running on
nonstandard ports may receive a very cryptic binary response if TLS was required but the “https://” URL
prefix was missing.

22.10 SSH and TLS 813

https://tools.ietf.org/html/rfc5321.html
https://tools.ietf.org/html/rfc3207.html

An Introduction to Computer Networks, Release 1.9.21

22.10.2.4.1 Domain Fronting

Government censorship of websites and other Internet services – such as encrypted messaging – is ram-
pant in many parts of the world. We saw above that the ServerName extension is included in many
ClientHello messages in order to request the correct certificate. This is sent in the clear, and can be
used by censors to block selected traffic.

One censorship workaround, known as domain fronting, is to ask for one hostname, say alice.org, in
the ClientHello ServerName extension, but then request a second, different hostname, badbob.net,
within the application-layer protocol, after encryption is in place. For example, an HTTP GET request
(12.6.2 netcat again) almost always contains a HOST: header; this is where badbob.net would be
specified. Of course, this only works if alice.org and badbob.net are hosted at the same IP address,
but large HTTP servers often do handle multiple websites on a single server using a mechanism known as
virtual hosting (7.8.2 nslookup and dig). To block badbob.net, a censor must now also block alice.
org. The hope is that censors will be unwilling to do that.

Domain fronting is even easier when CDNs (1.12.2 Content-Distribution Networks) are involved; virtual
hosting is not necessary. A CDN accepts connections to the websites of a large number of customers (often
a much larger number than a single server can support using virtual hosting) a each edge server of their
network. The edge servers have certificates for each of the customers, and so appear legitimate to users.
After the connection, the edge server might then answer some requests with cached data, but will forward
other requests on to the actual web server. To enable domain fronting in this environment, badbob.net
might only need to become a customer of the same CDN as alice.org.

CDNs and large hosting providers sometimes do not think highly of domain fronting, particularly as some
censors have shown willingness to block critical domains like google.com just to block an unwanted
application. Google and Amazon Web Services disabled domain fronting for their CDN customers in 2018.

Before the initial connection to the server, the client will usually make a DNS request to obtain the server’s
IP address. These too can be blocked, or monitored, although there are workarounds.

22.10.2.4.2 TLS key exchange

Perhaps the most important part of the TLS handshake is to negotiate the encyption keys. The keys them-
selves are all derived from the TLS master secret. The key derivations are done in deterministic ways (eg
using secure hashes, or a stream-cipher algorithm), and can be done by either side once the master secret is
known.

In all cases, the client should know the master secret after receiving the ServerHello and related packets.
At this point – after one RTT – the client can begin sending encrypted messages to the server. At this point,
the client can even begin sending encrypted data, although it is possible that the client is not yet fully
authenticated to the server.

Negotiation of the master secret depends on the cipher suite chosen. In the RSA key-exchange method,
the client chooses a random pre-master secret. This is sent to the server in the third leg of the exchange,
after the client has received the server’s certificate in the ServerHello stage. The pre-master secret
is encrypted with the public RSA key from the server’s certificate, thus conveying it securely to the server.
Both sides calculate the master secret from the pre-master secret and both sides’ cryptographic nonces, using

814 22 Security

https://en.wikipedia.org/wiki/Virtual_hosting

An Introduction to Computer Networks, Release 1.9.21

a secure hash or the pseudorandom keystream of a stream cipher (22.7.4 Stream Ciphers). The inclusion
of the server nonce means tha the client does not unilaterally specify the key.

If Diffie-Hellman-Merkle key-exchange is used (22.8 Diffie-Hellman-Merkle Exchange), then the server
proposes the prime p and primitive root g during the ServerHello phase, as part of its selection of one
of the cipher suites listed in the ClientHello. The server (Bob) also includes gb mod p. The client
chooses its exponent a, and sends ga mod p to the server. The pre-master secret is gaˆb mod p, which the
client, as in the RSA case, knows at the end of the first RTT. The client’s ga mod p cannot be encrypted
using the master key, but everything else sent by the client at that point can be. There is also a version of
Diffie-Hellman-Merkle exchange that uses elliptic-curve cryptography.

22.10.2.4.3 TLS version 1.3

Version 1.3 of TLS, RFC 8446, makes numerous improvements to the protocol. Among other things, it
prunes the list of acceptable cipher suites of all algorithms no longer considered secure, and also of all key-
exchange algorithms that do not support forward secrecy, 22.9.2 Forward Secrecy. The version-negotiation
process has also been improved, to prevent version-downgrade attacks, and the 0-RTT mode (below) enables
faster connection startup.

Of the two key-exchange methods in the previous section, Diffie-Hellman-Merkle does support forward
secrecy while RSA may not, depending on the latter’s choice of the pre-master secret. The proposal to drop
RSA key exchange has caused concern in some enterprise settings, particularly the banking industry, where
widespread use is often made of middleboxes that are able to decrypt and monitor internal TLS connections
(that is, connections where both endpoints are under control of the same enterprise). This monitoring is
done for a variety of reasons, including regulatory compliance and malware detection.

To enable such monitoring using TLS v1.2, all TLS connections between the enterprise and the outside
Internet terminate at the site’s border, at a special TLS-proxy appliance. From there, connections to inte-
rior systems are re-encrypted, but using a static RSA pre-master secret that is shared with the monitoring
equipment. The same applies to any TLS connections that are entirely internal to the enterprise.

To enable this kind of monitoring under TLS v1.3, one approach is to have the monitoring occur at the
TLS-proxy appliance, though this means that device will have to be considerably bigger, more complicated
and more expensive; additionally, it will not help with entirely internal TLS connections. Another approach
is to have the TLS proxy, and at least one endpoint of internal TLS connections, turn over all session keys to
the monitors. This raises other security concerns. For two proposed amendments to the original TLS v1.3
proposal, see the Internet Drafts draft-rhrd-tls-tls13-visibility and draft-green-tls-static-dh-in-tls13.

TLS v1.3 requires that all messages after the ServerHello be encrypted (except possibly one last client-
to-server key-exchange message that should be intrinsically secure). The client knows the master secret at
this point, and the server will know it as soon as it hears from the client.

22.10.2.4.4 TLS v1.3 0-RTT mode

Finally, TLS v1.3 adds a so-called O-RTT mode, in which the client can send encrypted messages from the
very beginning, assuming an appropriate master secret has been negotiated during a previous connection.
For HTTPS interactions, this is a common case. The 0-RTT mode, in particular, allows the client to send
secure data along with its ClientHello. The server can respond with 0-RTT-protected data along with its

22.10 SSH and TLS 815

https://tools.ietf.org/html/rfc8446.html
https://tools.ietf.org/html/draft-rhrd-tls-tls13-visibility
https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13

An Introduction to Computer Networks, Release 1.9.21

ServerHello, if it chooses to. After that, everything should be protected with the new session’s master
secret; this is known as 1-RTT protection.

To send 0-RTT data, the client must resume the earlier session by including the previous Session ID in its
ClientHello message. The server can refuse 0-RTT data, and demand 1-RTT protection, but usually
will not.

The advantage of 0-RTT data is that, if the server accepts it, an answer can return to the client in a single
RTT. This is particularly significant in QUIC (11.1.1 QUIC and 12.22.4 QUIC Revisited), in which the
TLS handshake is carried out in parallel with the QUIC connection handshake (a replacement for the TCP
three-way handshake). This means that the response comes just one RTT after the very first message from
the client. QUIC requires TLS v1.3 (or later).

0-RTT protection is not quite as strong ast 1-RTT protection. For one, forward secrecy does not apply. More
seriously, a participant receiving 0-RTT data is vulnerable to replay attacks. An attacker cannot modify a
previously intercepted 0-RTT message (without breaking the cipher), but can resend it.

At a minimum, the recipient of a 0-RTT request should accept it only if it is idempotent: yielding the same
results and side-effects whether executed once or twice (11.5.2 Sun RPC). This is generally automatic for
simple HTTP GET requests. Idempotency is not itself a security guarantee – after all, the request “delete all
files” is idempotent. The point, however, is that the particular request must, if part of a replay attack, have
been executed before, and if it was safe once, it should be safe twice. A TLS server can also suppport other
anti-replay mechanisms, such as a database of past requests.

Another consequence of mixing 0-RTT and 1-RTT data is that the recipient needs to be able to tell which
requests received 0-RTT protection and which received full 1-RTT protection.

22.10.3 A TLS Programming Example

In this section we introduce a simple pair of programs, tlsserver.c and tlsclient.c, that communicate via TLS.
They somewhat resemble the simplex-talk program in 12.6 TCP simplex-talk, except that neither reads
from the command line. Instead, the client sends a message to the server (which may ignore it), and then
the server sends a message back. This structure will allow us later to point the client at a “real” TLS-using
(that is, HTTPS-using) web server, instead of tlsserver, have the client send an HTTP GET request
(12.6.2 netcat again), and obtain the web server’s response.

Both programs are written in C, in order to use the OpenSSL library, a descendant of the original Netscape
SSL implementation. The openssl package also includes some important command-line utilities for certifi-
cate creation. While OpenSSL library documentation remains notoriously spare, parts of the library have
now been audited, and OpenSSL remains the most widely used implementation of TLS.

The code shown here is intended simply as a demonstration; it should not be considered a model of how
to implement secure connections.

22.10.3.1 Making a certificate

The first step is to create the appropriate application certificate, and create our own certificate authority to
sign it. For each step we will use the openssl command, also used below at 22.13 RSA Key Examples
with additional explanation. We start with the certificate authority. The first step is to create the key our

816 22 Security

http://intronetworks.cs.luc.edu/auxiliary_files/tls/tlsserver.c
http://intronetworks.cs.luc.edu/auxiliary_files/tls/tlsclient.c
https://www.openssl.org/
https://www.openssl.org/docs/fips.html

An Introduction to Computer Networks, Release 1.9.21

certificate authority will use; this is what the genrsa option below achieves. We choose a key length of
4096 bits.

openssl genrsa -out CAkey.pem 4096

The resultant file says it is a “private key”, but it is in fact a public/private key pair.

The next step is to create a self-signed certificate. The req option asks for a signing “request”, the -new
option indicates this is a new request, and the -x509 option tells openssl to forget making a “request” and
instead make a self-signed certificate. X.509 is actually a format standard.

openssl req -new -x509 -key CAkey.pem -out CAcert.pem -days 10000

The certificate here is set to expire in 10,000 days; real published certificates are not supposed to be valid
for more than about three years. The signing process (self- or not) triggers a series of questions that will
form the “Distinguished Name” of the certificate:

Country Name (2 letter code): US
State or Province Name (full name): Illinois
Locality Name (eg, city):Shabbona
Organization Name (eg, company): An Introduction to Computer Networks
Organizational Unit Name (eg, section): Security
Common Name (e.g. server FQDN or YOUR name): Peter L Dordal
Email Address []:

If we were requesting a certificate for a web server, we would use the hostname as Common Name, but we
are not. The output here, CAcert.pem, represents the concatenation of the above information with the public
key from CAkey.pem, and then signed by the private key from CAkey.pem. The private key itself, however,
is not present in CAcert.pem; this is the file that the TLS client will receive as its certificate authority. We
can read the information from the file as follows:

openssl x509 -in CAcert.pem -text

This produces the following, somewhat edited for space. We can see that the certificate is self-signed because
the Issuer: is the same as the Subject:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 14576542390929842281 (0xca4a481320cbe069)

Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=Illinois, L=Shabbona, O=An Introduction to Computer

ãÑNetworks, OU=Security, CN=Peter L Dordal
Validity

Not Before: Jan 10 20:17:55 2017 GMT
Not After : May 28 20:17:55 2044 GMT

Subject: C=US, ST=Illinois, L=Shabbona, O=An Introduction to Computer
ãÑNetworks, OU=Security, CN=Peter L Dordal

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (4096 bit)
Modulus:

22.10 SSH and TLS 817

https://en.wikipedia.org/wiki/X.509

An Introduction to Computer Networks, Release 1.9.21

00:b0:70:06:7e:38:1d:29:35:a7:ca:40:bf:fd:6e:
e5:26:7b:ee:0d:e7:d7:c2:61:8e:42:5f:b9:85:8c:
...
d4:12:cf

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
D1:74:15:F5:31:CB:DD:FA:D6:AE:81:7A:40:AA:64:7A:55:96:2E:08

X509v3 Authority Key Identifier:

ãÑkeyid:D1:74:15:F5:31:CB:DD:FA:D6:AE:81:7A:40:AA:64:7A:55:96:2E:08

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: sha256WithRSAEncryption
2a:d2:35:43:c2:5d:1c:5d:e2:88:ed:4e:aa:d2:b5:d6:e9:26:
60:f0:37:ea:29:56:14:62:58:01:78:b0:6f:ee:ab:40:17:36:
...
eb:3d:da:79:5c:90:4d:c9

-----BEGIN CERTIFICATE-----
MIIF8TCCA9mgAwIBAgIJAMpKSBMgy+BpMA0GCSqGSIb3DQEBCwUAMIGOMQswCQYD
VQQGEwJVUzERMA8GA1UECAwISWxsaW5vaXMxETAPBgNVBAcMCFNoYWJib25hMS0w
...
ywhRBNEO1XXB7bFrkkv93q4G3Re2zyw2/5BDEn7rPdp5XJBNyQ==
-----END CERTIFICATE-----

We now create the application key and then the application signature request. This request we will then
sign with the above certificate CAfile.pem to generate the application certificate.

openssl genrsa -out appkey.pem 2048
openssl req -new -key appkey.pem -out appreq.pem -days 10000

The certificate request here again requires entering a Distinguished Name. This time we enter as follows;
the Organization Name must match the CAcert.pem above:

Country Name (2 letter code): US
State or Province Name (full name): Illinois
Locality Name (eg, city): no fixed abode
Organization Name (eg, company): An Introduction to Computer Networks
Organizational Unit Name (eg, section): TLS server
Common Name (e.g. server FQDN or YOUR name): Odradek
Email Address []:

We are also asked for a “challenge password”, but we leave this blank.

Now we come to the final step: the actual signing. Unlike any of the previous openssl commands, this
requires root privileges. It also makes use of the global openssl configuration file (/etc/ssl/openssl.cnf),
which, among other things, references a file “serial” to assign the certificate a serial number. (We did not
have to do any of this to create the self -signed certificate.)

openssl ca -in appreq.pem -out appcert.pem -days 10000 -cert CAcert.pem -
ãÑkeyfile CAkey.pem

818 22 Security

An Introduction to Computer Networks, Release 1.9.21

We now have our application certificate in appcert.pem, which we deliver to the application section, be-
low. If we read it with openssl x509 -in appcert.pem -text, we find that the Issuer is that of
CAfile.pem, but the Subject is as above, with Common Name = Odradek.

22.10.3.2 TLSserver

The complete server is at tlsserver.c, along with the certificate and key files appcert.pem and appkey.pem
(both stored with an additional .text suffix to prevent an accidental click from loading them directly into
a browser). To compiler the server under Linux, with the OpenSSL library installed in the usual place, we
use

gcc -o tlsserver tlsserver.c -lssl -lcrypto

The server should be run in the same directory with its certificate and key files.

In the following we go through the important lines of the full program stripped of any error checking. Most
OpenSSL library methods return 1 on success and 0 on failure. Different kinds of failure may require
different error-message libraries.

SSL_library_init();

This does what it sounds like: initializes the SSL subsystem. Loading error strings may also be useful. The
next steps commit us to the versions of SSL we agree to accept.

method = SSLv23_server_method();
ctx = SSL_CTX_new(method);
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1

ãÑ| SSL_OP_NO_TLSv1_1);

Somewhat paradoxically, SSLv23_server_method() accepts all SSL and TLS versions. In the third
line above, we then disable everything earlier than TLS version 1.1. In openssl version 1.1.0 (the num-
bering is unrelated to the TLS versioning), SSLv23_server_method() can be replaced with the more
appropriately named TLS_server_method().

The variable ctx represents a TLS context, which is a set of TLS state information. Our server will use the
same context for all incoming connections.

Next we load the server certificate and key files into our newly created TLS context. Recall that the server
side gets our application certificate appcert.pem; the client side will get our certificate-authority certifi-
cate CAcert.pem.

int cfile_result = SSL_CTX_use_certificate_file(ctx, "./appcert.pem", SSL_
ãÑFILETYPE_PEM);
int kfile_result = SSL_CTX_use_PrivateKey_file (ctx, "./appkey.pem", SSL_

ãÑFILETYPE_PEM);

The server needs the key file to sign messages. Next we create an ordinary TCP socket listening on port
4433; createSocket() is defined at the end of the tlsserver.c file.

sock = createSocket(4433);

22.10 SSH and TLS 819

http://intronetworks.cs.luc.edu/auxiliary_files/tls/tlsserver.c
http://intronetworks.cs.luc.edu/auxiliary_files/tls/appcert.pem.text
http://intronetworks.cs.luc.edu/auxiliary_files/tls/appkey.pem.text

An Introduction to Computer Networks, Release 1.9.21

Finally we get to the main loop. We accept a TCP connection, create a new connection-specific SSL object
from our context, and tie the new SSL object to the socket.

while(1) {
int childsock = accept(sock, (struct sockaddr*)&addr, &len);
SSL* ssl = SSL_new(ctx);
SSL_set_fd(ssl, childsock);
SSL_accept(ssl);
SSL_write(ssl, reply, strlen(reply));

}

SSL_accept() is where the handshaking described in 22.10.2.4 TLS Connection Setup takes place. At
this point, the server writes its reply message over the now-encrypted channel, and is done.

We argued in 1.15 IETF and OSI that TLS can in some ways be regarded as a true Presentation layer. Note,
however, that the Application layer here (that is, tlsserver.c) is responsible for accepting childsock, and
passing it to TLS through SSL_set_fd(); the Application layer, in other words, does interact directly
with TCP.

22.10.3.3 TLSclient

The complete client is at tlsclient.c; its certificate is CAcert.pem (again with a .text suffix). Again we go
through the sequence of SSL library calls with error-checking removed. As with the server, we start with
initialization; this time, we also load error strings:

SSL_library_init(); // "SSL_library_init() always returns '1'
ERR_load_crypto_strings();
SSL_load_error_strings();

Next we again choose what TLS versions we will allow, this time starting with
SSLv23_client_method():

method = SSLv23_client_method();
ctx = SSL_CTX_new(method);
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3|SSL_OP_NO_

ãÑTLSv1|SSL_OP_NO_TLSv1_1);

If we instead use method = TLSv1_1_client_method(), the connection should fail, this call allows
only TLS version 1.1, and the server requires TLS version 1.2 or better.

The next step is to load the trust store, that is, the certificates from the certificate authorities we have elected
to trust. If we do nothing, the trust store will be empty. We first load a standard certificate directory (direc-
tories are supplied to SSL_CTX_load_verify_locations() as the third parameter and individual
files as the second). Certificates in a directory must be named (possibly using symbolic links) by their hash
values; see the c_rehash utility. If all we wanted was to be able to trust our own server’s appcert.pem,
we could just load our own certificate-authority certificate CAcert.pem, but we will need the standard
certificate directory if we want to point tlsclient at a real HTTPS server rather than at tlsserver.

SSL_CTX_load_verify_locations(ctx, NULL, "/etc/ssl/certs")

820 22 Security

http://intronetworks.cs.luc.edu/auxiliary_files/tls/tlsclient.c
http://intronetworks.cs.luc.edu/auxiliary_files/tls/CAcert.pem.text
https://www.openssl.org/docs/man1.1.0/apps/c_rehash.html

An Introduction to Computer Networks, Release 1.9.21

Next we load our own certificate CAcert.pem, which is then added to the trust store, in addition to the
standard certificates. We can add multiple individual certificates by making multiple calls, or by concatenat-
ing all the certificates into a single file. The certificates must be separated by their BEGIN CERTIFICATE
and END CERTIFICATE lines.

SSL_CTX_load_verify_locations(ctx, "CAcert.pem", NULL);

Now we’re ready to connect to the server. The last line below initiates the TLS handshake, starting with
ClientHello.

sock = openConnection(hostname, port);
ssl = SSL_new(ctx);
SSL_set_fd(ssl, sock);
SSL_connect(ssl);

Next the client retrieves (and, in our case prints) the certificate supplied by the server. If the server is
tlsserver, this will normally be appcert.pem, with CN=Odradek.

cert = SSL_get_peer_certificate(ssl);
certname = X509_get_subject_name(cert);
// print certname

The printed certname does indeed show CN=Odradek, from appcert.pem. If we were writing a web
browser, this is the point where we would verify that the site hostname matches the CN field of the certificate.

After the client receives the application certificate, it must verify its signature, with the call below. This is
where the client uses its trust store.

ret = SSL_get_verify_result(ssl);

If one of the certificate authorities in the trust store vouches for the signature on the application certificate,
the return value above is X509_V_OK, and all is well. If we comment out the loading of CAcert.pem,
however, we get “unable to get local issuer certificate”. If, with tlsclient still not loading CAcert.pem,
we have the server send CAcert.pem (and CAkey.pem), instead of its proper certificate, we get an error
“self-signed certificate”. A full list of certificate-verification errors is listed with the verify command.

If validation fails, the connection is still encrypted, but is vulnerable to a man-in-the-middle attack. Re-
gardless of what happened during validation, our particular tlsclient goes on to write an HTTP GET
request to the server, and then read the server’s response (the companion tlsserver program does not in
fact read the GET request). Generally speaking, however, continuing the TLS session after a certificate
validation failure is a very bad idea.

SSL_write(ssl, request, req_len); // ignored by tlsserver program
do {

bytesread = SSL_read(ssl, buf, sizeof(buf));
fwrite(buf, bytesread, 1, stdout);

} while(bytesread > 0);

The written request here is ignored by tlsserver; it is an HTTP GET request of the form GET / HTTP/
1.1\r\nHost: hostname\r\n\r\n. If we point tlsclient at a real webserver, say

22.10 SSH and TLS 821

https://www.openssl.org/docs/man1.1.0/apps/verify.html

An Introduction to Computer Networks, Release 1.9.21

tlsclient google.com 443

then we should again get an X509_V_OK verification result because we loaded the default certificate-
authority library.

We can also point the built-in openssl client at tlsserver; by default it connects to localhost at port
4433:

openssl s_client

Of course, verification fails. This is because s_client doesn’t know about our certificate authority. We
can add it, however, on the command line:

openssl s_client -CAfile CAcert.pem

Now the verification is successful.

22.11 IPsec

The SSH software package was built from the ground up to implement the SSH protocol. All modern web
browsers incorporate TLS libraries to enable secure web connections. What can you do if you want to add
encryption (or authentication) to a network application that doesn’t have it built in? Or, alternatively, how
can you as a system administrator ensure that everyone’s traffic is protected, regardless of what software
they are using?

IPsec, for “IP security”, is one answer. It is a general-purpose security protocol which typically behaves as if
it were a network sublayer below the IP layer (or, in transport mode, below the Transport layer). In this it is
akin to Wi-Fi (3.7.5 Wi-Fi Security), which implements encryption within the LAN layer; in both Wi-Fi and
IPsec the encryption is transparent to the communicating applications. In terms of actual implementation it
is most often incorporated within the IP layer, but can be implemented as an external network appliance.

IPsec can be used to protect anything from individual TCP (or UDP) connections to all traffic between a
pair of routers. It is often used to implement VPN-like access from “outside” hosts to private subnets behind
NAT routers. It is easily adapted to support any encryption or authentication mechanism. IPsec supports
two packet formats: the authentication header, AH, for authentication only, and the encapsulating secu-
rity payload, ESP, below, for either authentication or encryption or both. The ESP format is much more
common and is the only one we will consider here. The AH format dates from the days when most export
of encryption software from the United States was banned (see the sidebar ‘Crypto Law’ at 22.7.2 Block
Ciphers), and, in any event, the ESP format can be used for authentication only. The ESP packet format is
as follows:

822 22 Security

An Introduction to Computer Networks, Release 1.9.21

32 bits

Security Parameters Index (SPI)

Sequence number

Integrity Check Value (variable length)

Payload (variable length)

Padding

Pad Length Next Header

ESP packet layout

The SPI identifies the security association, below. The sequence number is there to prevent replay attacks.
Senders must increment it on every transmission, but receivers care only if the received numbers are not
strictly increasing; gaps due to lost packets do not matter. The cryptographic algorithm applied to the
payload and the integrity-check algorithm are negotiated at connection set-up. The Padding field is used
first to bring the Payload length up to a multiple of the applicable encryption blocksize, and then to round
up the total to a multiple of four bytes. The Next Header field describes the data that is inside the Payload,
eg TCP or UDP for Transport mode or IP for Tunnel mode. It corresponds to the Protocol field of 7.1 The
IPv4 Header or the Next Header field of 8.1 The IPv6 Header.

IPsec has two primary modes: transport and tunnel. In transport mode, the IPsec endpoints are also typ-
ically the traffic endpoints, and only the transport-layer header (eg TCP header) and data are encrypted or
protected. In the more-common tunnel mode one of the IPsec endpoints is often a router (or “security gate-
way”); encryption or protection includes the original IP headers, so that an eavesdropper cannot necessarily
identify the actual traffic endpoints.

IPsec is documented in a wide range of RFCs. A good overview of the architectural principles is found in
RFC 4301. The ESP packet format is described in RFC 4303.

A word of warning: while IPsec does support modern encryption, it also continues to support outdated
algorithms as well; users must take care to ensure that the encryption negotiated is sufficient. IPsec has also
attracted, in recent years, rather less attention from the security community than SSH or TLS, and “many
eyes make all bugs shallow”. Or at least some bugs.

22.11.1 Security Associations

In order for a given connection or node-to-node path to receive IPsec protection, it is first necessary to set up
a pair of security associations. A security association consists of all necessary encryption/authentication
attributes – algorithms, keys, rekeying rules, etc – together with a set of selectors to identify the covered

22.11 IPsec 823

https://tools.ietf.org/html/rfc4301.html
https://tools.ietf.org/html/rfc4303.html

An Introduction to Computer Networks, Release 1.9.21

traffic. A given security association covers traffic in one direction only; bidirectional traffic requires a
separate security association for each direction. For outbound traffic – that is, traffic going from unprotected
(internal) to IPsec-protected status – the selector consists of the destination IP address (or set of addresses)
and possibly also the source IP address (or set of source addresses) and port or protocol values. Inbound
ESP packets carry a 32-bit Security Parameters Index, or SPI, that for unicast traffic identifies the security
association. However, that security association must still be checked against the packet for an actual match.

The destination and source IP addresses need not be the same as the IP addresses of the IPsec endpoints. As
an example, consider the following tunnel-mode arrangement, in which traveling host A wants to connect to
private subnet 10.1.2.0/24 through security gateway B. IPv4 addresses are shown, but the same arrangement
can be created with IPv6.

A B 10.1.2.0/24

host security gateway

200.4.5.6 100.7.8.9
Internet

The A-to-B IPsec security association’s selector will include the entire subnet 10.1.2.0/24 in its set of des-
tination addresses. A packet from A to 10.1.2.3 arriving at A’s IPsec interface will match this selector, and
will be encapsulated and sent (via normal Internet routing) to B at 100.7.8.9. B will de-encapsulate the
packet, and then forward it on to 10.1.2.3 using its normal IP forwarding table. B might actually be the
NAT router at its site, with external address 10.7.8.9 and internal subnet 10.1.2.0/24, or B might simply be
a publicly visible host at its site that happens to have a route to the private 10.1.2.0/24 subnet.

The action of forwarding the encapsulated packet from A to B closely resembles IP forwarding, but isn’t
quite. It is unlikely A will have a true forwarding-table entry for 10.1.2.0/24 at all; it will very likely
have only a single default route to its local ISP connection. Delivery of the packet cannot be understood
simply by examining A’s IP forwarding table. A might even have a forwarding-table entry for 10.1.2.0/24
to somewhere else, but the IPsec “pseudo-route” to B’s 10.1.2.0/24 is still the one taken. This can easily
lead to confusion; for complex arrangements with multiple overlapping security associations, this can lead
to nontrivial difficulties in figuring out just how a packet is forwarded.

A second routing issue exists at B’s end. Host 10.1.2.3 will see the packet from A arrive with address
200.4.5.6. Its reply back to A will be delivered to A using the tunnel only if the B-site routing infrastructure
routes the packet back to B. If B is the NAT router, this will happen as a matter of course, but otherwise
some deliberate action may need to be taken to avoid having 10.1.2.3-to-A traffic take an unsecured route.
Additionally, the B-to-A security association needs to list 10.1.2.0/24 in its list of source addresses. The
IPsec “pseudo-route” now resembles the policy-based routing of 9.6 Routing on Other Attributes, with
routing based on both destination and source addresses. A packet for A arriving at B with source address
10.2.4.3 should not take the IPsec tunnel. (To add confusion, Linux IPsec pseudo-routes do not actually
show up in the Linux policy-based routing tables.)

Security associations are created through a software management interface, eg via the Linux ipsec com-
mand and the associated configuration file ipsec.conf. It is possible for an application to request creation of
the necessary security associations, but it is more common for these to be set up before the IPsec-protected
application starts up.

A request for the creation of a security association typically triggers the invocation of the Internet Key
Exchange, IKE, protocol; the current version 2 is often abbreviated IKEv2. IKEv2 is described in RFC

824 22 Security

https://wiki.strongswan.org/projects/strongswan/wiki/IpsecCommand
https://wiki.strongswan.org/projects/strongswan/wiki/IpsecConf
https://tools.ietf.org/html/rfc7296.html
https://tools.ietf.org/html/rfc7296.html

An Introduction to Computer Networks, Release 1.9.21

7296. IKEv2 typically uses public keys to negotiate a session key (22.7.1 Session Keys); IKEv2 may then
renegotiate the session key at intervals. In the simplest (and not very secure) case, both sides have been
manually configured with a session key, and IKEv2 has little to do beyond verifying that the two sides have
the same key.

NAT traversal of IPsec packets is particularly tricky. For AH packets it is impossible, because the crypto-
graphic authentication code in the packet covers the original IP addresses, as well as the packet transport
data. That is not an issue for ESP packets, but even there the incoming packet must match the receivers’s
security-association selector, which it will not if that was negotiated using the sender’s original IP address.
An additional problem is that many NAT routers fail to forward (or fail to forward properly) packets outside
of protocols ICMP, UDP and TCP.

As a result, IPsec has its very own NAT-traversal mechanism, outlined in RFC 3715, RFC 3947 and RFC
3948. IPsec packets are encapsulated in UDP packets, with their original headers. After de-encapsulation
at the IPsec receiving end, it is these original headers that are used in the security-association check. Addi-
tionally, a keepalive mechanism is defined in which the IPsec nodes send regular small packets to make sure
the NAT mapping for the connection does not time out.

22.12 DNSSEC

The DNS Security Extensions, DNSSEC, make it possible for authoritative nameservers to provide authen-
ticated responses to DNS queries, by using digital signatures, below. The primary goal of DNSSEC is to
prevent cache poisoning (7.8.4 DNS Cache Poisoning) by allowing resolvers to verify any DNS records
received.

DNSSEC is documented in RFC 4033, RFC 4034, RFC 4035 and updates. RFC 6891 outlines a general
framework for extensions to DNS, known as EDNS; these extensions include new record types. EDNS in
particular defines the DNSSEC OK, or DO, flag; this is used to signal that the receiving nameserver should
return a DNSSEC-aware response.

The basic idea behind DNSSEC is for each zone, including the root zone, to digitally sign all of its RRsets
– sets of DNS resource records matching a given name (eg cs.luc.edu) and type (eg A records, AAAA
records, or MX records) – with a public-key signature. Each zone except the root zone then has its parent
zone sign its public key. The root-zone public key must be pre-loaded into the resolver or end-system,
much as the root-zone IP addresses must be pre-loaded. This sort of linked sequence of digital-signature
verifications is often called a chain of trust. The root keys are known as the trust anchors; these can be
compared to certificate authorities, 22.10.2.1 Certificate Authorities.

The root zone implemented support for DNSSEC in 2010, after .gov and with the .org zone not far behind;
other top-level domains including .com, .net and .edu became DNSSEC-aware by the following year.

In order to support all these signed records and keys, DNSSEC introduced several additional DNS record
types:

• RRSIG: a signature for an RRset.

• DNSKEY: the public half of the keypair used to sign zone records.

• DS: a “delegation signer” record in a parent zone containing a signature for a child zone’s zone-signing
key.

22.12 DNSSEC 825

https://tools.ietf.org/html/rfc7296.html
https://tools.ietf.org/html/rfc7296.html
https://tools.ietf.org/html/rfc3715.html
https://tools.ietf.org/html/rfc3947.html
https://tools.ietf.org/html/rfc3948.html
https://tools.ietf.org/html/rfc3948.html
https://tools.ietf.org/html/rfc4033.html
https://tools.ietf.org/html/rfc4034.html
https://tools.ietf.org/html/rfc4035.html
https://tools.ietf.org/html/rfc6891.html

An Introduction to Computer Networks, Release 1.9.21

• NSEC and NSEC3: the next DNS name in sequence, used to affirm securely that a given hostname
does not exist.

In slightly more detail, each DNSSEC authoritative nameserver creates, for each zone, a Zone Signing Key,
or ZSK. For each possible RRset the nameserver creates an RRSIG signature record, signed by the ZSK.
The public half of the zone’s ZSK is available in a record of type DNSKEY, and with DNS name equal to
the zone name. Finally, a hash of the public ZSK is signed by the parent’s ZSK and made available in the
parent zone as a record of type DS, again with name equal to the child zone’s name.

If a DNSSEC-aware query arrives for xname,typey, the nameserver will return both that RRset and also the
RRSIG record for that name and type. For example, if we use the dig tool to query for the A record for
isc.org, and include the +dnssec flag for DNSSEC-aware results, dig isc.org A +dnssec, we
receive (in part, and with formatting applied)

isc.org. 52 IN A 149.20.64.69
isc.org. 52 IN RRSIG A 5 2 60 20190328000617

ãÑ20190226000617 19923 isc.org.

ãÑKrBysOlbe4L6sJJOJNbJhfAuNt11q+6A2cQTnr3CXeFwxYJTXdqAkSwg

ãÑQzGHpIrVfOw2dn6GdqXQ6umqU1cnFNtXumdvUp45+XSCoZC6YciR4xNs
f8YMR5F66LIcMZewP11ofWOV6/

ãÑm9rSfR38FRnDkPf3Jg+O2+qvSKQ+Mq
lV8=

Note that RRSIG records must always be piggybacked onto the original query, as there is no independent
way to request “RRSIG records matching type type”. DNS queries may contain only one type. The RRSIG
records are part of the DNS ANSWER section, not the ADDITIONAL section; these records are an essential
part of the response.

We can obtain the isc.org zone’s public ZSK by requesting the record with name isc.org and type
DNSKEY. We can verify this key by asking for the record with name isc.org and type DS from the .org
nameserver.

To fetch the A record for www.example.com, a DNSSEC resolver (often called a validating resolver)
would (if nothing has been cached) start by asking the root zone for the appropriate NS record, just as with
plain DNS (7.8.2 nslookup and dig). The root zone replies with the NS record (and A record) pointing
to the .com authoritative nameserver, and, because the DNSSEC OK bit in the request has been set, also
includes the corresponding RRSIG record. The resolver can validate the RRSIG signature because it knows
by prearrangement the root-zone KSK.

The resolver also asks the root nameserver for the DS record for .com. This is a signature for the KSK that
the .com nameserver uses, signed by the root key. It will be used in the next step.

The resolver now switches to sending its requests to the authoritative nameserver for the .com zone. It asks
for the NS record for example.com, and receives the appropriate NS and A records. Because DNSSEC
is involved, it also receives the corresponding RRSIG records. The latter are signed with the KSK for .
com. The resolver obtains this KSK by requesting the DNSKEY record from the .com nameserver. This
KSK can then be validated by using the signed DS record previously obtained from the root zone, and the
validated KSK can then in turn be used to validate the RRSIG records.

Note that the DNSKEY and DS records for the .com DNS name form a pair, with the latter signing the

826 22 Security

https://en.wikipedia.org/wiki/Dig_(command)

An Introduction to Computer Networks, Release 1.9.21

former (or a hash of the former). The DNSKEY record, though, is obtained from the .com nameserver,
while the corresponding DS record is obtained from the parent (root, in this case) nameserver.

The resolver also asks the .com nameserver for the DS record for example.com; this will be used in the
next step.

In the final stage, the resolver sends its requests to the example.com namserver. This time it asks for
the A record for www.example.com. This address is returned, along with the corresponding RRSIG.
The resolver gets the example.com ZSK by requesting the DNSKEY record. The resolver obtained
a signature for this ZSK in the previous DS record (obtained from the .com nameserver), and so can
validate this example.com ZSK, and so in turn can validate the RRSIG for the address record for www.
example.com.

The DNS queries involved are summarized in the following diagram. Each request shows the xname,typey
pair. Responses are indicated only for queries that traditional, non-DNSSEC DNS would make, to emphasize
RRSIG records are included. These queries are shown with black paths. The DS/DNSKEY requests for the
.com zone are shown with blue paths; the DS/DNSKEY requests for the example.com zone are shown
in green.

validating
resolver

.com
authoritative
nameserver

root
authoritative
nameserver

example.com
authoritative
nameserver

request: (example.com,NS)
response; NS+A+RRSIG

request: (.com,DS)

request: (example.com,NS)
response; NS+A+RRSIG

request: (.com,DNSKEY)

request: (example.com,DS)

request: (www.example.com,A)
 response: A+RRSIG

request:
(example.com,DNSKEY)

The chain of key validations can be summarized as follows:

• The known root ZSK validates the .com ZSK, through the DNSKEY/DS pair for the DNS name
.com

• The .com ZSK validates the example.com ZSK, and is itself validated via the DNSKEY/DS pair
for the DNS name .com

• The example.com ZSK validates the A record for www.example.com, and is itself validated via

22.12 DNSSEC 827

An Introduction to Computer Networks, Release 1.9.21

the DNSKEY/DS pair for the DNS name example.com

It is possible that the resolver knows, likely through caching, the IP address of the example.com name-
server. In this case, if the RRSIG and DS credentials were not also cached, the resolver might go through
the above process from the bottom up (example.com to .com to root) to validate the information.

If example.com had not yet implemented DNSSEC support, but a subdomain cs.example.com did,
then the chain of trust between the subdomain and the root zone would be broken. In this case, a resolver
could only use DNSSEC to validate records for cs.example.com if it already had the ZSK for this
domain, known, as with the root zones, as the trust anchor. Trust anchors for such isolated zones, or “islands
of security”, are often made available through manual configuration.

Any and all of the records above might be cached by the validating resolver, following a previous query.
Caching works for DNSSEC just as it works for ordinary DNS. The key-related records, like all DNS
records, each have a time-to-live (TTL) value; the resolver must abide by these.

The diagram above shows two separate requests to the root nameserver, three to the .com nameserver, and
two to the example.com nameserver. That is inefficient. Fortunately, it is not mandatory: clients can
request everything at once. It is also likely that many of these records will be cached (particularly requests
to the root and .com nameservers).

For improved security, some authoritative nameservers may be configured with two keys: a shorter zone-
signing key, used to sign the RRSIGs, and then a longer key-signing key, or KSK; the latter is the one
signed in the parent-zone DS record. The DNSKEY records return both ZSK and KSK; this is sufficient to
maintain the chain of trust.

As an example of a ZSK/KSK pair, let us send the following DNSKEY request to the .com domain (having
previously looked up the NS record to get the .com nameserver IP address, 192.12.94.30)

dig @192.12.94.30 com DNSKEY +dnssec

We get back two keys. The shorter one, as is explained below, is the ZSK and the longer is the KSK (this
output has been formatted so the key data lines up neatly).

com. 86400 IN DNSKEY 256 3 8 AQO+kWUV3rtj/
ãÑVi6FLBfxMRcFoz69Go6xVwa99AWzENDi98y9CIJfx6w

n9aR0SWsCk/
ãÑoY+hreX6egC7nyyxQ5bxq52aovlZI34Cn+hpy/YGGO2HS

b44AWONsjuZTAfGYLBdaJi2Wg+Z0IVqPw/
ãÑLp0Ysu9I8orc2KyNIPQGA/

rTgXOw==
com. 86400 IN DNSKEY 257 3 8 AQPDzldNmMvZFX4NcNJ0uEnKDg7tmv/

ãÑF3MyQR0lpBmVcNcsIszxNFxsB

ãÑfKNW9JYCYqpik8366LE7VbIcNRzfp2h9OO8HRl+H+E08zauK8k7evWEm
u/6od+2boggPoiEfGNyvNPaSI7FOIroDsnw/

ãÑtaggzHRX1Z7SOiOiPWPN

ãÑIwSUyWOZ79VmcQ1GLkC6NlYvG3HwYmynQv6oFwGv/KELSw7ZSdrbTQ0H

ãÑXvZbqMUI7BaMskmvgm1G7oKZ1YiF7O9ioVNc0+7ASbqmZN7Z98EGU/Qh
2K/

ãÑBgUe8Hs0XVcdPKrtyYnoQHd2ynKPcMMlTEih2/2HDHjRPJ2aywIpK

828 22 Security

An Introduction to Computer Networks, Release 1.9.21

Nnv4oPo/

The numbers 256 and 257 immediately following the DNSKEY type label represent a 16-bit flag field. Both
have the bit set in the 256 position, indicating the keys are there for zone-signing generally. The longer key
also has the bit set in the 1 position; this is the “Secure Entry Point” flag and, rather loosely, indicates that
this key is the KSK. More specifically, the SEP flag is used to mark a key for which a DS record will be
created in the parent zone. See RFC 3757 for further details.

After the 256/257 is a 3, and then an 8. The 8 means that the keys and signatures use RSA and SHA-256, as
specified in RFC 5702.

The keys are encoded in base64 (RFC 4648). The first key has 176 encoded bytes (3 lines of 56, plus 8).
Decoding it with the Python b64decode function in the base64 library, we get a byte string of length
130. The first byte is 0x01, with seven leading zero bits; the number of bits from the first nonzero bit to the
end is 1033. The second has 344 bytes, or 2057 bits after stripping the leading 0-bits. In common parlance,
these are 1024-bit and 2048-bit keys respectively. A 1024-bit RSA keylength is not terribly secure, but is
meant for relatively short-term use (~30 days). The 2048-bit KSK provides excellent security.

Each RRSIG record contains a Key Tag field, consisting of a 16-bit hash of information about the key.
This makes it much easier, when there are multiple DNSKEY records, to help figure out which one was
used to create the RRSIG signature. The fallback, if necessary, is to re-calculate the signature with each
available key, and see which one matches the RRSIG. Multiple DNSKEY records occur when separate ZSK
and KSK keys have been created, as above. They also occur anytime a key is in the process of being updated,
as in the next paragraph.

To change the KSK for the example.com nameserver, the first step is to create the new key, and then to
create new RRSIGs for each RRset. A new DNSKEY record is also created. The new KSK public key must
then be communicated to the parent zone, in order for the latter to create the corresponding DS record. For
a while, the RRSIG and DNSKEY (and DS, at the parent nameserver, if the KSK is being changed) record
sets returned will contain records for both KSKs; the receiving resolver can use the Key Tag field (above)
to figure out which key goes with which RRSIG. Eventually the old KSK will expire, eg when its TTL is
reached, and the older records can be removed.

Signing failure responses for non-existent DNS names is also important, but is a little trickier. First, the
RRset in question is empty. An empty set can be signed, but the signed response can now be replayed,
perhaps to convince someone later that an existing DNS name is not valid. It would be possible to prevent
this by including the non-existent DNS name in the signed response, but that would require that the signing
private key be available whenever necessary. One of the goals of the RRset/RRSIG strategy above, however,
is to make possible the pre-signing of all record sets, so the actual private key can then be secured offline.

To get around this, the original strategy for authenticating non-existence was to return a record containing
the previous legitimate DNS name, and then an NSEC record listing the subsequent legitimate DNS name,
according to alphabetical order. The NSEC record corresponding to a valid DNS host name is the next
valid DNS name in sequence. For example, if a query asked for information about nonexistent host foo.
example.com, the results returned might be the DNS name erl.example.com and then the NSEC
record for erl indicating that the next record following was gateway.example.com. The nameserver
can prepare signatures for such records ahead of time for each consecutive pair of DNS names. The NSEC
record corresponding to the last valid hostname wraps around to the first, usually the zone name itself.

The drawback to this strategy is that it makes it easy for someone to enumerate all the valid DNS names in a
zone, by sequential querying. To prevent this, the NSEC approach was updated to NSEC3, which does much

22.12 DNSSEC 829

https://tools.ietf.org/html/rfc3757.html
https://tools.ietf.org/html/rfc5702.html
https://tools.ietf.org/html/rfc4648.html

An Introduction to Computer Networks, Release 1.9.21

the same thing, except that cryptographic hashes of each hostname are returned instead, and the ordering
used is that of the hashed values. An attacker can now enumerate the hashed values of each DNS name, but
this doesn’t help discover the actual hostnames without considerable effort. The necessary signatures can,
as with the NSEC approach, all be prepared in advance.

22.12.1 Using DNSSEC

If you are managing an authoritative nameserver, eg for your own website, enabling DNSSEC takes some
deliberate effort. To enable DNSSEC requires configuring the nameserver software to be DNSSEC-aware,
creating the keys, and forwarding the appropriate DS record to the parent zone.

For sites that have done this, however, there is no guarantee that the DNSSEC validation benefits will
actually be available to a given user workstation; that depends on the resolver the workstation uses. If
it supports DNSSEC, then DNS results from DNSSEC-aware authoritative nameservers will be validated
according to the DNSSEC process.

Most user workstations are configured to use the site resolver provided by the local ISP. Some of these
support DNSSEC; many do not. It is possible to switch to a DNSSEC-validating resolver manually, eg
a public DNS server, but most users do not do this. Typical workstation “stub resolvers” do not perform
DNSSEC validation by default; the popular Linux dnsmasq resolver can be configured to use DNSSEC by
adding the --dnssec command-line flag in the appropriate startup file.

Does dnssec-failed.org exist?

If your site DNS resolver performs DNSSEC validation, clicking on the link here to www.dnssec-
failed.org will simply fail. To verify the site actually exists without changing resolvers, first get the NS
record for dnssec-failed.org from the .org nameserver; as of 2019 this was dns101.comcast.net
at 69.252.250.103. Then dig @69.252.250.103 www.dnssec-failed.org should give you
the desired A records (two in 2019: 68.87.109.242 and 69.252.193.191).

The simplest way to tell if a resolver supports DNSSEC, and validates the DNSSEC responses received is to
look up one of several DNS names that have intentionally been misconfigured. One of these is www.dnssec-
failed.org, managed (2019) by Comcast. A validating resolver will return the NXDOMAIN (Non-eXistent
DOMAIN) error message (or, in other words, zero records in the ANSWER section); clicking on the link
should yield a browser error message like “Hmm. We’re having trouble finding that site.” A non-DNSSEC-
validating resolver will return an A record, and the link should work normally. Some partially DNSSEC-
aware (but non-validating) resolvers still manage to return an address (see below).

Another way to gauge the degree of resolver support for DNSSEC is to use the dig command(7.8.2 nslookup
and dig). In the example below, the dns_server should be the IP address of the resolver; if omitted (along
with the @ sign) then the default resolver is used. The +dnssec argument sets the DNSSEC OK flag in the
query.

dig @dns_server isc.org A +dnssec

This command returns something like the following if the resolver does not support DNSSEC at all (this is
from the OpenDNS resolver at 208.67.222.222, as of 2019).

830 22 Security

https://en.wikipedia.org/wiki/Dnsmasq
http://dnssec-failed.org
http://dnssec-failed.org
http://dnssec-failed.org
http://dnssec-failed.org
https://en.wikipedia.org/wiki/Dig_(command)

An Introduction to Computer Networks, Release 1.9.21

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15612
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;isc.org. IN A
;; ANSWER SECTION:
isc.org. 60 IN A 149.20.64.69

There is no RRSIG record, the flags on the second line do not include the ad flag (for “authenticated
data”), and the EDNS line does not include the do flag (for “DNSSEC OK”).

For resolvers understanding DNSSEC, the following might appear (this is from the Google resolver at
8.8.8.8):

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60302
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512
;; QUESTION SECTION:
;isc.org. IN A
;; ANSWER SECTION:
isc.org. 59 IN A 149.20.64.69
isc.org. 59 IN RRSIG A 5 2 60 20190403233441

ãÑ20190304233441 28347 isc.org. KlUPLww/FO3rOV3rDiuEH2ttUDSA/
ãÑPtpCaHTGTSyHMaIGlOU3YoHn8hP FJtCkhoopF/
ãÑZ6dFXPxAq1LpwtEP9KqU+PxQYGSsZESg1KkEWIaoiE2MB
ãÑhHsGqDnJG2GJhyBfCESIt21QY9Q28+nraTG0OUHiKwE8H2c0/PM2VTXP clQ=

Note the RRSIG record, the ad flag in the second line, and the do flag in the fourth.

Without the +dnssec argument, we should get an ordinary DNS response, without RRSIG, ad or do.

Occasional intermediate results may also sometimes appear, eg having the RRSIG record and the do flag
but missing the ad flag.

If we try the same lookup with the domain name www.dnssec-failed.org, some resolvers return no
answer (that is, NXDOMAIN) while others return A and RRSIG records. However, we should not see any
resolver return with the ad flag, as due to an artificially induced key error the data cannot in this case be
authenticated.

22.12.2 DNS-based Authentication of Named Entities

The idea behind DNS-based Authentication of Named Entities, or DANE, is to have DNSSEC sign not just
the usual DNS records, but also TLS certificates. By doing so, DANE replaces the need for TLS certificate
authorities (22.10.2.1 Certificate Authorities). See RFC 6698 and updates.

The basic idea behind DANE is that a domain owner can make their public TLS keys available on their
authoritative DNS nameserver. The same chain of trust that authenticates A records from this nameserver
will also authenticate the certificates. That is, certificates are signed by local KSKs, and those in turn are
signed by parent KSKs, until the root zone is reached. The long list of certificate-authority keys stored in
browsers would be reduced to the much shorter list of root-zone DNSSEC keys.

22.12 DNSSEC 831

https://tools.ietf.org/html/rfc6698.html

An Introduction to Computer Networks, Release 1.9.21

certificates are stored as DNS objects of type TLSA. Certificates are specific to applications, so the do-
main name (eg www.example.com) is prefixed with the port and transport protocol, each with a leading
underscore “_” (443 is the port number for https traffic):

_443._tcp.www.example.com

DANE solves a number of problems. First, it makes (or potentially makes) expensive certificate authori-
ties unnecessary. Second, certificate authorities have to verify that someone asking for a certificate for a
given domain is actually the owner of that domain; under DANE, this is solved by having the domain’s
authoritative nameserver be responsible for both the domain and the keys.

Finally, DANE simplifies the process of adding new certificates, and makes this pretty much a do-it-yourself
operation. Once the owners of a domain have created a zone-signing key and had it signed in the parent-
zone DS record, they can create as many additional certificates as they want. The validation library used
by clients (whether incorporated into the TLS library or not) would be able to ensure that certificates so
issued are for the domain in question, or a subdomain, and also verify the port and protocol constraints
above. Each such DANE certificate would be verifiable through the DNSSEC chain of trust. More-flexible
certificate creation would eliminate the need for the “private” (self-signed) certificates often used to validate
access to VPNs and email servers. Under DANE, certificates could become lightweight objects created on
a moment’s notice. (Of course, no browser currently supports any of this.)

While DANE is intended for the creation of TLS (X.509) certificates, other forms of verifiable public keys
would also be possible. See RFC 6394 for further examples.

While compromise of an authoritative nameserver using DANE could lead to false TLS certificates, this can
also happen with conventional certificate authorites, who generally use control of the domain as evidence
that the entity requesting the certificate actually owns that domain.

Compromise of the .com nameserver would allow the distribution of false DANE-based TLS certificates
for any .com domain. But if that happens we are all in trouble, regardless of DANE.

There is one subtle difference, which is that of trust. Under the conventional certificate-authority regime,
uses can in principle decide which CAs they trust. While this is rarely exercised by browser users, it is
available as a potential option. Under DANE, to trust the certificate for example.com is to trust the .com
and root nameservers; there is no choice.

For some, the fact that the .com and root nameservers are under control of the United States government
(through IANA and agreements with IANA) is of concern. It is easy enough for other governments to create
their own hierarchy, starting with the two-letter country-code domain and an associated trust-anchor key, but
it is still a government in charge. However, while certificate authorities are private entities, it is not clear to
what extent they can or would resist government demands to issue misleading certificates.

22.12.3 Why Isn’t DNSSEC More Popular?

SSH and TLS have been adopted eagerly by system and website administrators. Even SNMPv3 (21.15 SN-
MPv3) has seen widespread adoption, following early concerns about deployment difficulties. But while
many governments (such as the United States) have mandated DNSSEC for their own websites, and while
organizations with ties to Internet governance have been early adopters (especially ICANN; see this state-
ment), DNSSEC adoption by major Internet corporations has been vanishingly small. Using the dig tool,

832 22 Security

https://tools.ietf.org/html/rfc6394.html
http://icann.org
https://www.icann.org/news/announcement-2019-02-22-en
https://www.icann.org/news/announcement-2019-02-22-en

An Introduction to Computer Networks, Release 1.9.21

it is straightforward to verify that none of the domains in the table below support DNSSEC (none return
RRSIG records when A records are requested with the +dnssec flag, as of 2019):

apple.com alibaba.com amazon.com ebay.com expedia.com
facebook.com google.com microsoft.com netflix.com salesforce.com
tencent.com twitter.com uber.com yahoo.com youtube.com.

Google has supported DNSSEC at their public resolver, 8.8.8.8, since 2013, but not at their authoritative
nameservers. Paypal.com is one of the few large sites that has adopted DNSSEC.

These companies are seriously interested in Internet security. Why do they turn their backs on DNSSEC?

The primary answer is that if a site enables DNSSEC, and some third party makes the wrong DNSSEC-
configuration mistake, then the site becomes unreachable, for at least some users. It goes dark. It is cast into
the void.

And there is no error message for those users.

If a TLS certificate is faulty, at least the end user gets a message in their browser; see the sidebar “Certificate
Errors” at 22.10.2.1 Certificate Authorities. The browser directly manages the TLS connection, and, if
something goes wrong, the browser learns what, and can inform the user. The majority of certificate errors
have to do with misspellings and expirations and updates and other things under control of the domain
owner; pretty much the only other major source of TLS errors is the certificate authority, and the domain
owner can keep an eye on them.

But with DNS, most browsers farm out lookups to a system resolver library; that library likely does not
return anything to the browser that might distinguish DNSSEC validation errors from NXDOMAIN errors.
The site or public resolver that the local system sends its DNS queries to likely also does not return different
results for validation errors versus NXDOMAIN. And while an error in DNSSEC validation can occur at
the root, it can also occur at any lower level in the DNS hierarchy. It is impossible for domain owners to
track potential problems at every possible resolver.

A second reason sites choose not to make use of DNSSEC is that it is often perceived as unnecessary. If
a user receives a corrupted address through DNS, the problem should be detected through TLS certificate-
signing failure. There have been remarkably few DNS-based attacks for which DNSSEC would have made
the difference in terms of detection.

A large-scale series of DNS attacks in 2018 involved changing the IP addresses retrieved via DNS for
selected hostnames to those of servers under the attackers’ control, just as with cache-poisoning attacks
(7.8.4 DNS Cache Poisoning). These attacks, however, entailed the compromise of the authoritative
nameservers involved; the attacks were achieved through stolen DNS-administrator credentials (and possi-
bly through misfeatures in the DNS-configuration software within some domain registrars). See this FireEye
blog for more details. DNSSEC does not protect against an attacker who is able to compromise a zone’s
authoritative nameserver. Nameserver credentials (all login credentials, really) must be guarded carefully.

The counter argument is that DNSSEC certainly has the potential to block some attacks, and that more
security is always better than less. This latter concept is called the defense in depth principle. It is, in
the abstract, hard to argue with. In the concrete, on the other hand, it depends. DNSSEC is complex,
and introduces its own risks. The defense-in-depth principle has been used to argue for regular password

22.12 DNSSEC 833

https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://en.wikipedia.org/wiki/Defense_in_depth_(computing)

An Introduction to Computer Networks, Release 1.9.21

changes, but that policy seems to have the paradoxical effect of encouraging users to choose shorter, easier-
to-remember passwords. The real question is whether DNSSEC adds enough to Internet security to be worth
the change.

Eventually, as most public DNS servers and ISP-based site resolvers gain experience with DNSSEC, switch-
ing over to it at the server side will become safer and safer. It is likely that, eventually, the going-dark risk
will be seen as negligible; at that point, DNSSEC starts to make a lot of sense even if the added benefit is
modest.

Another concern is that DNSSEC is old, and the world of DNSSEC still contains a great many legacy 1024-
bit RSA keys. By today’s standards, those are not considered long enough for long-term use. But DNSSEC
does not mandate such short keys. As we saw in an example above, the .com key-signing key was 2048
bits; root keys and other top-level KSKs are similar.

There is still the issue that the domain hierarchy is more tightly controlled by governments, but while some
individual users may be concerned about this, it is not clear that large Internet companies are.

22.12.4 DNS over HTTPS

An entirely different approach to securing DNS – or at least to reducing DNS problems – has been taken by
Mozilla in their Firefox browser. The idea behind DNS over HTTPS – DoH – is to abandon the use of site
resolvers, and have Firefox send DNS queries to one central DNS resolver, secured by TLS. The specifics
are in RFC 8484.

One stated goal is to eliminate DNS cache-poisoning attacks by, in essence, switching Firefox users to
one large, highly secure resolver (a “trusted recursive resolver” or TRR) that gets all its data directly from
authoritative nameservers. Another goal is to prevent ISP eavesdropping on (and even interference with)
DNS requests sent to local ISP-provided resolvers. Of course, the ISP-eavesdropping concern is simply
replaced by the concern that the central DNS resolver is collecting DNS queries.

The TRR partner selected by Mozilla is Cloudflare, manager of a large CDN. There is an agreement nego-
tiated between Mozilla and Cloudflare that personally identifiable data in DNS requests is to be discarded
after 24 hours, and never shared with outside parties.

Use of DoH by Firefox is controlled by the about:config setting network.trr.mode; a value of 0
prefers the normal system resolver and a value of 5 completely disables DoH. One can also set the resolver
itself, eg to a non-Cloudflare one, though it must be one that understands DNS-over-HTTP queries.

The DoH specification spells out how DNS queries are to be mapped onto HTTP GET requests; traditional
DNS queries and responses look nothing like HTTP.

There is a separate approach, DNS over TLS; it is outlined in RFC 7858. The goal is simply to prevent
eavesdropping on DNS traffic from hosts to their individually chosen resolvers.

22.13 RSA Key Examples

In this section we create a short RSA key, using the openssl package, available for Windows, Macs and
Linux. We then break it, via factoring.

The first step is to create an RSA key with length 96 bits; this length was chosen for easy factorability.

834 22 Security

https://www.mozilla.org
https://tools.ietf.org/html/rfc8484.html
https://www.cloudflare.com/
https://tools.ietf.org/html/rfc7858.html

An Introduction to Computer Networks, Release 1.9.21

openssl genrsa -out key96.pem 96

The resultant file is as follows:

-----BEGIN RSA PRIVATE KEY-----
MFICAQACDQCo1hzP6/gTzbNAEHcCAwEAAQINAJzcEHi8aYSO0iizgQIHANkzC28P
jwIHAMb/VQH8mQIHALc+9ZqRyQIHAKkfQ43msQIGJxhmMMOs
-----END RSA PRIVATE KEY-----

This is in the so-called PEM format, which means that the two lines in the middle are the base64 encoding
of the ASN.1 encoding (21.12 SNMP and ASN.1 Encoding) of the actual data. Despite the PRIVATE KEY
label, the file in fact contains both private and public keys. SSH private keys, typically generated with the
ssh-keygen command, are also in PEM format.

We can extract the PEM-file data with the next command:

openssl rsa -in key96.pem -text

The output is the following:

Private-Key: (96 bit)
modulus:

00:a8:d6:1c:cf:eb:f8:13:cd:b3:40:10:77
publicExponent: 65537 (0x10001)
privateExponent:

00:9c:dc:10:78:bc:69:84:8e:d2:28:b3:81
prime1:

00:d9:33:0b:6f:0f:8f
prime2:

00:c6:ff:55:01:fc:99
exponent1:

00:b7:3e:f5:9a:91:c9
exponent2:

00:a9:1f:43:8d:e6:b1
coefficient:

27:18:66:30:c3:ac

The default OpenSSL encryption exponent, denoted e in 22.9.1 RSA, is 65537 = 216+1. (The default
exponent used to be 3, but see exercise 10.0)

We next convert all these hex numbers to decimal; the corresponding notation of 22.9.1 RSA is in paren-
theses.

modulus (n) 52252327837124407964427358327
privateExponent (d) 48545702997494592199601992577
prime1 (p) 238813258387343
prime2 (q) 218799945153689
exponent1 201481036403145
exponent2 185951742453425
coefficient 42985747170220

22.13 RSA Key Examples 835

An Introduction to Computer Networks, Release 1.9.21

We now verify some arithmetic, using any tool that supports large integers (eg python3, used here, or the
unix bc command). First we check n = pq:

>>> 238813258387343 * 218799945153689
52252327837124407964427358327

Next we check that ed = 1 mod (p-1)(q-1):

>>> e=65537
>>> d=48545702997494592199601992577
>>> p=238813258387343
>>> q=218799945153689
>>> (p-1)*(q-1)
52252327837123950351223817296
>>> e*d % 52252327837123950351223817296
1

To encrypt a message m, we must use efficient mod-n calculations; here is an implementation of the repeated-
squaring algorithm (mentioned above in 22.8.1 Fast Arithmetic) in python3. (This function is built into
python as pow(x,e,n).)

def power(x,e,n): # computes x^e mod n
pow = 1
while e>0:

if e%2 == 1: pow = pow*x % n
x = x*x % n
e = e//2 # // denotes integer division

return pow

Let m be the string “Rivest”. In hex this is 0x526976657374; in decimal, 90612911403892.

>>> m=0x526976657374
>>> c=power(m,e,n)
>>> c
38571433489059199500953769621
>>> power(c,d,n)
90612911403892

What about the last three numbers in the PEM file, exponent1, exponent2 and coefficient? These
are pre-computed values to speed up decryption. Their values are

• exponent1 = d mod (p-1)

• exponent2 = d mod (q-1)

• coefficient is the solution of coefficient ˆ q = 1 mod p

22.13.1 Breaking the key

Finally, let us break this 96-bit key and decrypt the message with ciphertext c above. The hard part is
factoring n; we use the Gnu/Linux factor command:

836 22 Security

An Introduction to Computer Networks, Release 1.9.21

> factor 52252327837124407964427358327
52252327837124407964427358327: 218799945153689 238813258387343

The factors are indeed the values of p and q, above. Factoring took 2.584 seconds on the author’s laptop. Of
course, 96-bit RSA keys were never secure; recall that the current recommendation is to use 2048-bit keys.

The Gnu/Linux factor command uses Pollard’s rho algorithm, and, while serviceable, is not especially
well suited to factoring the product of two large primes. The author was able to factor a 200-bit modulus in
just over 5 seconds using the msieve program, one of several large-number-factoring programs available on
the Internet. Msieve implements a version of the number-field-sieve algorithm mentioned in 22.9.1.2 Fac-
toring RSA Keys.

We are almost done; we now need to find the decryption key d, knowing e, p-1 and q-1. For this we need an
implementation of the extended Euclidean algorithm; the following Python implementation is taken from
WikiBooks:

def egcd(a, b):
if a == 0:

return (b, 0, 1)
else:

g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)

A call to egcd(a,b) returns a triple (g,x,y) where g is the greatest common divisor of a and b, and
x and y are solutions to g = ax + by. From 22.9.1 RSA, we need d to be positive and to satisfy 1 =
de + (p-1)(q-1)y. The x value (the second value) returned by egcd(e, (p-1)*(q-1)) satisfies the
second part, but it may be negative in which case we need to add (p-1)(q-1) to get a positive value which is
congruent mod (p-1)(q-1). This x value is -3706624839629358151621824719; after adding (p-1)(q-1) we
get d=48545702997494592199601992577.

This is the value of d we started with. If c is the ciphertext, we now calculate m = pow(c,d,n) as before,
yielding m=90612911403892, or, in hex, 52:69:76:65:73:74, “Rivest”.

22.14 Exercises

Exercises are given fractional (floating point) numbers, to allow for interpolation of new exercises.

1.0 Modify the netsploit.c program of 22.2.2.3 The exploit so that the NOPslide is about 1024 bytes long,
and the NOPslide and shellcode are now above the overwritten return address in memory.

2.0 Disable ASLR on a Linux system by writing the appropriate value to
/proc/sys/kernel/randomize_va_space. Now get the netsploit attack to work without having the at-
tacked server print out a stack address. You are allowed beforehand to run a test copy of the server that
prints its address.

3.0 Below are a set of four possible TCP-segment reassembly rules. These rules (and more) appear in
[SP03]. Recall that, once values for all positions jďi are received, these values are acknowleged and released
to the application; there must be some earlier “hole” for segments to be subject to reassembly at all.

1. Always accept the first value received for each position.

22.14 Exercises 837

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm
http://sourceforge.net/projects/msieve/
https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm

An Introduction to Computer Networks, Release 1.9.21

2. Always accept the last value received for each position, up until the value is released to the application.

3. [“BSD”] For each new segment, discard each position from that segment if that position was supplied
by an earlier packet with a left edge less than or equal to that of the new packet. Values in any
remaining positions replace any previously received values.

4. [“Linux”] Same as the previous rule, except that we only discard positions that were supplied by an
earlier packet with a left edge strictly smaller than that of the new packet.

For each of the following two sets of packet arrivals, give the reassembled packet. Values in the same column
have the same position. Reassembled packets will all begin with “daa” and “ebb” respectively.

(a).

a a a a a
b b b b b b b
c c c c

d

(b).

a a a a a
b b b b b

c c c c c c
d d d

e

4.0 Suppose a network intrusion-detection system is 10 hops from the attacker, but the target is 11 hops,
behind one more router R. Outline a strategy of tweaking the TTL field so that the NIDS receives TCP
stream “helpful” and the target receives “harmful”. Segments should either be disjoint or cover exactly the
same range of bytes; you may assume that the target accepts the first segment for any given range of bytes.

5.0 Suppose Alice encrypts blocks P1, P2 and P3 using CBC mode (22.7.3 Cipher Modes). The initializa-
tion vector is C0. The encrypt and decrypt operations are E(P) = C and D(C) = P. We have

• C1 = E(C0 XOR P1)

• C2 = E(C1 XOR P2)

• C3 = E(C2 XOR P3)

Suppose Mallory intercepts C2 in transit, and replaces it with C2’ = C2 XOR M; C1 and C3 are transmitted
normally; that is, Bob receives [C1’,C2’,C3’] where C1’ = C1 and C3’ = C3. Bob now attempts to decrypt;
C1’ decrypts normally to P1 while C2’ decrypts to gibberish.

Show that C3’ decrypts to P3 XOR M. (This is sometimes used in attacks to flip a specific bit or byte, in
cases where earlier gibberish does not matter.)

6.0 Suppose Alice uses a block-based stream cipher (22.7.5 Block-cipher-based stream ciphers); block i
of the keystream is Ki and Ci = Ki XOR Pi. Alice sends C1, C2 and C3 as in the previous exercise, and
Mallory again replaces C2 by C2 XOR M. What are the three plaintext blocks Bob deciphers?

7.0 Show that if p and q are primes with p = 2q + 1, then g is a primitive root mod p if g‰1, g2‰1, and
gq‰1. (This exercise requires familiarity with modular arithmetic and primitive roots.)

838 22 Security

An Introduction to Computer Networks, Release 1.9.21

8.0 Suppose we have a short message m, eg a bank PIN number. Alice wants to send message M to Bob
that, without revealing m immediately, can be used later to verify that Alice knew m at the time M was sent.
During this later verification, Alice may reveal m itself.

(a). Suppose Alice simply sends M = hash(m). Explain how Bob can quickly recover m.

(b). How can Alice construct M using a secure-hash function, avoiding the problem of (a)? Hint: as part of
the later verification, Alice can supply additional information to Bob.

9.0 In the example of 22.7.7 Wi-Fi WEP Encryption Failure, suppose the IV is x4,-1,5y and the first two
bytes of the key are x10,20y. What is the first keystream byte S[S[1] + S[S[1]]]?

10.0 Suppose Alice uses encryption exponent e=3 to three friends, Bob, Charlie and Deborah, with respec-
tive encryption moduli nB, nC and nD, all of which are relatively prime. Alice sends message m to each,
encrypted as

• CB = m3 mod nB

• CC = m3 mod nC

• CD = m3 mod nD

If Mallory intercepts all three encrypted messages, explain how he can efficiently decrypt m. Hint: the
Chinese Remainder Theorem implies that Mallory can find C < nBnCnD such that

• C = CB mod nB

• C = CC mod nC

• C = CD mod nD

(One simple way to avoid this risk is for Alice to include a timestamp and the recipient’s name in each
message, ensuring that she never sends exactly the same message twice.)

11.0 Repeat the key-creation of 22.13 RSA Key Examples using a 110-bit key. Extract the modulus from
the key file, convert it to decimal, and attempt to factor it. Can you do the factoring in under a minute?

12.0 Below are a series of public RSA keys and encrypted messages; the encrypted message is c and the
modulus is n=pq. In each case, find the original message, using the methods of 22.13.1 Breaking the
key; you will have to factor n and then find d. For some keys, the Gnu/Linux factor command will be
sufficient; for the larger keys consider msieve or some other fast factorer.

Each number below is in decimal. The encryption exponent e is always 65537; the encryption is c =
power(message,e,n). Each message is an ASCII string; that is, after the numeric message is converted
to a string, the byte values are each in the range 32-127. The following Python function may be useful in
converting numeric messages to strings:

def int2ascii(n):
if n==0: return ""
return int2ascii(n // 256) + chr(n % 256)

(a) [64 bits] c=13467824835325843134
n=15733922878520524621

22.14 Exercises 839

http://sourceforge.net/projects/msieve/

An Introduction to Computer Networks, Release 1.9.21

(b) [96 bits] c=8007751471156136764029275727
n=57644199986835279860947893727

(c) [104 bits] c=6642328489179330732282037747645
n=17058317327334907783258193953123

(d) [127 bits] c=95651949760509273124353927897611145475
n=122096824047754908887766043915630626757
Limit for Gnu/Linux factor without the GMP library

(e) [185 bits] c=14898070767615435522751082309577192810119252877170446296
n=36881105206579952723396854897336450502002018818436622611

(f) [210 bits] c=1030865591241775131254813948981782525587720826169501849049177362
n=1089313781487492651628882855744766776820791642308868127824231021

(g) [280 bits]

c=961792929180423930042975913300802531765775361218349440433358416557620430721970697783

n=1265365011260907658483984328995361695181000868013851878620685943648084220336740539017

(h) [304 bits]

c=17860252858059565448950681133486824440185752167054796213786228492658586864179401029486173539

n=26294146550372428669569992924076340150116542153388301312743129088600749884420889043685502979

840 22 Security

https://gmplib.org/

23 BIBLIOGRAPHY

Note that RFCs are not included here.

841

An Introduction to Computer Networks, Release 1.9.21

842 23 Bibliography

24 SELECTED SOLUTIONS

In this chapter we present solutions (in some cases partial solutions) to exercises marked with a ♢.

24.1 Solutions for An Overview of Networks

1.18 Exercises

Exercise 2.7

A
B,C,D direct
E D (or C)

B
A,C direct
D A
E C

C
A,B,E direct
D E (or A)

D
A,E direct
B A
C E (or A)

E
C,D direct
A C (or D)
B C

Exercise 7.0(d) (destination D):

According to S1’s forwarding table, the next_hop to D is S2.
According to S2’s table, the next_hop to D is S5.
According to S5’s table, the next_hop to D is S6.

843

An Introduction to Computer Networks, Release 1.9.21

According to S6’s table, the next_hop to D is S12.

The path from S1 to D is thus S1–S2–S5–S6–S12.

Exercise 7.5(a)

The shortest path from A to F is A–S1–1–S2–2–S5–1–S6–F, for a total cost of 1+2+1 = 4.

24.2 Solutions for Ethernet

2.10 Exercises

Exercise 2.7

When A sends to D, all switches use fallback-to-flooding as no switch knows where D is. All switches
S1-S4, though, learn where A is.
When D sends to A, S2 knows where A is and so routes the packet directly to S1, which also knows where
A is. S3 and S4 do not learn where D is.
When A sends to B, all switches again use fallback-to-flooding, but no switch learns anything new.
When B sends to D, S4 uses fallback-to-flooding as it does not know where D is. However, S2 does know
where D is, and so S2 forwards the packet only to D. S2 and S4 learn where B is.

switch known destinations
S1 AD
S2 ABD
S3 A
S4 AB

Exercise 8.5

(a). S1, as root, keeps all three of its links to S3, S4 and S5. Of S2’s three links in the direction of the root
(that is, to S3, S4 and S5), it keeps only its link to S3 as S3 has the lowest ID.

S1 S2

S5S4S3

844 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

The path from S2 to S5 is S2–S3–S1–S5.

Exercise 12.0

1. h1Ñh2: this packet is reported to C, as destination h2 is not known by S. C installs on S the rule that h1
can be reached via port 1. The packet is then flooded.

2. h2Ñh1: this packet is not reported to C, as destination h1 is known by S. The packet is not flooded.

3. h3Ñh1: this packet is again not reported to C. S delivers the packet normally, without flooding.

4. h2Ñh3: this packet is reported to C, as destination h3 is not known by S. C installs on S the rule that h2
can be reached via port 2. The packet is then flooded.

Exercise 13.0

Table for S1 only:

h1Ñh2: S1 reports to C and learns where h1 is
h2Ñh1: S1 does not report, and forwards normally; destination h1 is known
h1Ñh3: S1 reports to C as h3 is not known, but S1 already knows where h1 is
h3Ñh1: S1 does not report, and forwards normally; destination h1 is known
h2Ñh3: S1 reports to C and learns where h2 is
h3Ñh2: S1 does not report, and forwards normally; destination h2 is known

S1’s table ends up with forwarding entries for h1 and h2, but not h3.

24.3 Solutions for Other LANs

3.11 Exercises

Exercise 3(b)

One simple strategy is for stations to compare themselves to one another according to the numeric value of
their MAC addresses. The station with the smallest MAC address becomes S0, the station with the next-
smallest address becomes S1, etc.

Exercise 4.5

The three sending nodes can be laid out at the vertices of an equilateral triangle, with the receiving node in
the center. Alternatively, with impermeable walls the following arrangement works:

24.3 Solutions for Other LANs 845

An Introduction to Computer Networks, Release 1.9.21

sender1

receiver sender2

sender1

The latter arrangement generalizes to almost any number of senders. For the former, senders can be laid out
at the vertices of a square, or tetrahedron, or possibly a pentagon, but geometry enforces an eventual limit.

Exercise 5(b)

If T is the length of the contention interval, in µsec, then transmission and contention alternate with lengths
151–T–151–T–. . . . The fraction of bandwidth lost to contention is T/(T+151).

Exercise 10.5

The connections are as follows, where the VCI number is shown between the endpoints of each link:

A–1–S1–2–S2–3–S4–2–D
B–1–S2–2–S4–1–S3–3–S1–2–A

24.4 Solutions for Links

Exercise 3.5

The binary ASCII for the three letters is

N 0100 1110
e 0110 0101
t 0111 0100

If we look up the 4-bit “nybbles” in the right column above in the 4B/5B table at 4.1.4 4B/5B, we get

data symbol
0100 01010
1110 11100
0110 01110
0101 01011
0111 01111
0100 01010

Putting all these symbols together, the encoding is (with spaces added for readability)

01010 11100 01110 01011 01111 01010

846 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

24.5 Solutions for Packets

5.6 Exercises

Exercise 3

(a). The bandwidth delay for a 600-byte packet is 300 µsec. The packet has a 300 µsec bandwidth delay
and a 600 µsec propagation delay for each link, for a total of 2ˆ900 = 1800 µsec. We have the following
timeline:

T=0 A begins sending the packet
T=300 A finishes sending the packet
T=600 S begins receiving the packet
T=900 S finishes receiving the packet and begins sending to B
T=1200 S finishes sending the packet
T=1500 B begins receiving the packet
T=1800 B finishes receiving the packet

(b). The bandwidth delay for each 300-byte packet is now 150 µsec, so the first packet arrives at S at
T=750. The second packet arrives one bandwidth delay – 150 µsec – later, at T=900 µsec. The first packet
takes another 750 µsec to travel from S to B, arriving at T=1500; the second packet arrives 150 µsec later at
T=1650. Here is the timeline:

T=0 A begins sending packet 1
T=150 A finishes sending packet 1, starts on packet 2
T=300 A finishes sending packet 2
T=600 S begins receiving packet 1
T=750 S finishes receiving packet 1 and begins sending it to B

S begins receiving packet 2
T=900 S finishes receiving packet 2 and begins sending it to B
T=1350 B begins receiving packet 1
T=1500 B has received all of packet 1 and starts receiving packet 2
T=1650 B finishes receiving packet 2

Here’s the data for (b) in ladder-diagram format (not quite to scale):

24.5 Solutions for Packets 847

An Introduction to Computer Networks, Release 1.9.21

T=0

T=150

T=300

T=600

T=750

T=900

T=1150

T=1350

T=1500

T=1650

The long propagation delay means that A finishes all transmissions before S begins receiving anything, and
S finishes all transmissions before B begins receiving anything. With a smaller propagation delay, these
A/S/B events are likely to overlap.

Exercise 15(a)

The received data is 10100010 and the received code bits are 0111. We first calculate the four code bits for
the received data:

1: parity over all bits 1: parity over second half: 10100010 0: parity over these bits: 10100010 0: parity
over these bits: 10100010

So the incorrect received code bits are 0111.

The first bit of the received code tells us that the error is in the data (rather than the code bits). The second
– correct – bit of the received code tells us that the error is in the first half, that is, in the non-bold bits of
10100010.

The third bit of the received code tells us that the error is in the bold bits of 10100010, so we’re down to
the third or fourth bit. Finally, the fourth bit of the received code tells us the error is in the bold bits of
10100010, which means the fourth bit is it, and the corrected data is 10110010 (making the data the same
as that in the example in 5.4.2.1 Hamming Codes).

24.6 Solutions for Sliding Windows

6.5 Exercises

Exercise 2.5

The network is

848 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

C S1
infinitely fast

S2
1 pkt/sec

D
1 pkt/sec

(a). The second part of formula 4 of 6.3.2 RTT Calculations is queue_usage = winsize – bandwidth ˆ
RTTnoLoad. We know winsize = 6, bandwidth = 1 packet/sec and RTTnoLoad = 4, so this works out to 2
packets in the queue.

(b). At T=0, C sends packets 1-6 to S1. S1 begins sending packet 1 to S2; packets 2-6 are queued.
At T=1, S1 begins sending packet 2 to S2; S2 begins sending packet 1 to D
At T=2, S1 begins sending packet 3 to S2 and S2 begins sending packet 2 to D. Packet 1 has reached D,
which begins sending ACK1 to S2.
At T=3, S1 begins sending packet 4 to S2, S2 begins sending packet 3 to D, D begins sending ACK2 to S2,
and S2 begins sending ACK1 to S1.
At T=4, S1 begins sending packet 5 to S1, S2 begins sending packet 4 to D, D begins sending ACK3 to S2,
and S2 begins sending ACK2 to S1. ACK1 has arrived at S1, and is instantly forwarded to C. The window
slides forward by one, from [1-6] to [2-7], and C sends new packet 7, which instantly arrives at S1 and is
placed in the queue there.

Here is the table. The column “S1ÑS2” is the data packet S1 is currently sending to S2; the column
“S2ÑS1” is the ACK that S2 is currently sending to S1; similarly for “S2ÑD” and “DÑS2”.

T C sends S1 queues S1ÑS2 S2ÑD ACK DÑS2 S2ÑS1
0 1,2,3,4,5,6 2,3,4,5,6 1
1 3,4,5,6 2 1
2 4,5,6 3 2 1
3 5,6 4 3 2 1
4 7 6,7 5 4 3 2
5 8 7,8 6 5 4 3
6 9 8,9 7 6 5 4
7 10 9,10 8 7 6 5
8 11 10,11 9 8 7 6

Exercise 7.5

(a). The formula, from 6.2.1 Bandwidth ˆ Delay, is winsize = bandwidth ˆ RTTnoLoad = 1000 pkts/sec ˆ
0.1 sec = 100 packets.
(b). This is the first line of formula 3 of 6.3.2 RTT Calculations. For convenience, we switch to units of
ms. Queue_usage = throughput ˆ (RTTactual – RTTnoLoad) = 1 pkt/ms ˆ (130ms – 100ms) = 30 packets.
(c). We use formula 4 of 6.3.2 RTT Calculations. We have RTTactual = winsize / bandwidth = (100+50)/(1
pkt/ms) = 150 ms.

24.6 Solutions for Sliding Windows 849

An Introduction to Computer Networks, Release 1.9.21

Exercise 9.0

If Data[8] is in the receiver’s window, then Data[4] must have been received. For the sender to have sent
Data[4] it must have previously received ACK[0]. Therefore, all transmissions of Data[0] must precede the
first transmission of Data[4], and so must precede the first successful transmission of Data[4]. Because of
non-reordering, no Data[0] can arrive after Data[4].

24.7 Solutions for IPv4

7.15 Exercises

Exercise 4.0

Forwarding table for A:

destination next_hop
200.0.5.0/24 direct
200.0.6.0/24 direct
default B

Exercise 6.0(d)

The subnet prefix is 10.0.168.0/21. The /21 means that the prefix consists of the first two bytes (16 bits) and
the first 5 (=21-16) bits of the third byte.

Expressing the third byte, 168, in binary, we get 10101|000.

We now convert the third byte of each of the four addresses to binary, and see which match this to the first
five bits. Bits after the “|” mark are ignored.

10.0.166.1: 166 = 10100|110; not a match
10.0.170.3: 170 = 10101|010; this is a match
10.0.174.5: 174 = 10101|110; this is a match
10.0.177.7: 177 = 10110|001; not a match

Exercise 6.5

(a). 240 is 11110000 in binary, and so adds 4 1-bits. Together with the 16 1-bits from the first two bytes of
the mask, this is /20
(d). /20 is 16 1-bits (two bytes) plus 4 additional 1-bits. Four 1-bits starting a byte is 11110000, or 240; the
full mask is 255.255.240.0

24.8 Solutions for Routing-Update Algorithms

9.9 Exercises

Exercise 2.5

850 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

For destination A, R1’s report is likely the same as it sent earlier, when R’s route to A was first established.
There is no change.

For destination B, R’s total distance using R1 would be 2+1 = 3. This is tied with R’s route to B using
next_hop R2, and so there is no change.

For destination C, R1 is reporting an increase in cost. R’s next_hop to C is R1, and so R must increase its
cost to C to 4+1 = 5.

For destination D, R’s total cost using R1 is 3+1 = 4, cheaper than R’s previous cost of 5 using next_hop
R3. R changes to the R1 route.

The updated table is

destination cost next hop
A 2 R1 no change; same next_hop
B 3 R2 no change; tie
C 5 R1 source increase
D 4 R1 lower-cost route found

24.9 Solutions for Large-Scale IP Routing

10.8 Exercises

Exercise 0.5

(i) 200.63.1.1 matches only A, as 63 = 0011 1111 in binary and 64 = 0100 0000. The first two bits do not
match, ruling out the /10 prefix.
(ii) 200.80.1.1 matches A and B, but not C, as 80 = 0101 0000. Destination B is the longer match.
(iii) 200.72.1.1 matches A, B and C, but not D, as 72 = 0100 1000. Destination C is the longest match.
(iv) 200.64.1.1 matches A, B, C and D; D is the longest match.

Exercise 5(a)

P’s table

destination next hop
52.0.0.0/8 Q
53.0.0.0/8 R
51.10.0.0/16 A
51.23.0.0/16 B

Q’s table

24.9 Solutions for Large-Scale IP Routing 851

An Introduction to Computer Networks, Release 1.9.21

destination next hop
51.0.0.0/8 P
53.0.0.0/8 R
52.14.0.0/16 C
52.15.0.0/16 D

R’s table

destination next hop
51.0.0.0/8 P
52.0.0.0/8 Q

Exercise 7(a)

P will receive a route from Q with AS-path xQ,Sy, and a route from R with AS-path xR,Sy.

24.10 Solutions for UDP

Exercise 2(a)

Two seconds after Data[3] was sent and lost, both sender and receiver will time out. The sender will re-
transmit Data[3]; the receiver will retransmit ACK[2]. The latter will be ignored, as the sender is not
retransmitting on duplicates. When the retransmitted Data[3] arrives at the receiver, the receiver will send
ACK[3] and the transfer will continue.

24.11 Solutions for TCP Reno

12.24 Exercises

Exercise 12.5(b)

Let t be the transit capacity; then the total cwndmax is t(1+f). At this point it is convenient to normalize
the units of capacity measurement so t(1+f) = 2. Then the link-unsaturated and queue-filling phases have
lengths in the proportion t–1 to ft. The average height of the tooth during the link-unsaturated phase is
(t+1)/2, and the average utilization percentage is thus (t+1)/2t. This gives a utilization of

(t+1)/2t ˆ (t–1) + ft

We next eliminate t. After normalization, we have t(1+f) = 2, and so t = 2/(1+f). Plugging this in above and
simplifying gives

utilization = (3 + 6f – f 2)/4(1+f)

24.12 Solutions for Dynamics of TCP

14.13 Exercises

852 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

Exercise 2(a)

Because the window size of 50 is larger than the bandwidthˆdelay product is 40 packets, packets are sent at
the bottleneck rate of 5 packets/ms. As packets spend 1 ms on the C–R1 link, on average this link must be
carrying 5 packets. The same applies to the R2–D link; for the R1–R2 link with a 2.0 ms propagation delay,
the number of packets carried will be 2.0ˆ5 = 10.

Alternatively, from the bandwidthˆdelay product of 40 packets we conclude 40 packets are in transit. Of
these, half are acknowledgments. The other half are distributed in proportion to the link propagation delays,
yielding 5, 10, and 5 packets.

Exercise 2.5

At the point when A’s bandwidth is 2 packets/ms, B’s bandwidth is 4 packets/ms, and so B has 4ˆ20 = 80
packets in transit. As B’s winsize is 120, this leaves 120–80 = 40 packets in R’s queue.

For A to have half as much bandwidth, it must have half the queue capacity, or 20 packets. With a bandwidth
of 2 packets/ms and an RTTnoLoad of 40 ms, A will have 2ˆ40 = 80 packets in transit. A’s winsize is then
20+80 = 100.

We can confirm this using the following formulas from 14.2.3 Example 3: competition and queue utiliza-
tion:

𝛼Q = wA – 2𝛼(dA+d)
𝛽Q = wB – 2𝛽(dB+d)

However, these formulas were derived under the assumption that the bottleneck bandwidth was normalized
to 1. To apply them here, we need to measure time in units of 1/6 ms; that is, all times need to be multiplied
by 6. We have:

dA = 90
dB = 30
d = 30
wB = 120
𝛼=1/3, 𝛽=2/3

Substituting these into the second formula, we get the total queue utilization Q = 180 – 120 = 60, in agree-
ment with our earlier answer. From the first formula we now solve for wA = 𝛼(Q + 2(dA+d)) = (1/3)ˆ(60 +
240) = 100, also in agreement with our earlier answer.

Exercise 3(a)

The bottleneck bandwidth is 5 packets/ms, and as the bottleneck link is saturated, this will be the transmis-
sion rate on all links. For 5 packets to be in transmission, we need a propagation delay of 5 packets / (5
packets/ms) = 1.0 ms.

Exercise 3.5

24.12 Solutions for Dynamics of TCP 853

An Introduction to Computer Networks, Release 1.9.21

(a). If the A–B connection has a bandwidth of 3 packets/sec and a RTTnoLoad of 16 ms, then a window size
of 3ˆ16 = 48 is necessary. Similarly, the window size for the C–D connection is 3ˆ10 = 30 packets.

It remains to show that these window sizes actually result in an equal division of bandwidth. The A–B
bandwidth cannot exceed 50% in the steady state, because of the limitation imposed by the R2–R3 link.
If the C–D bandwidth exceeds 50%, then the bandwidth-delay product exceeds 30 = wC, and so the C–D
connection can have no packets in the queue at R1, leaving the A–B connection with no queuing delays.
This means A sends wA packets in 16 ms, for a bandwidth of 3 pkts/ms.

Exercise 13.5(a)

The cwnd will vary between 500 and 1000, with an average of 750 packets. Losses occur at intervals of
500 RTTs, during which 500*750 packets have been sent.

24.13 Solutions for Mininet

Exercise 6.0(a)

When h1 sends its broadcast ARP, the controller learns where h1 is relative to s1, s2 and s3.

When h2 replies to h2, there is not yet a rule for h1 at s2, and so s2 sends the packet to the controller, which
installs rules for destinations h1 and h2 in s2. The packet is then flooded. When it arrives at s1, the controller
installs rules for h1 and h2 and s1. The packet also arrives at s3, by flooding, so the controller installs rules
for h1 and h2 in s3.

When h3 sends its broadcast packet, all of s1-s3 see the packet. Because the packet is broadcast, all three
switches report the packet to the controller.

When h1 replies to h3, no switches have a rule for destination h3, and the controller knows how to reach h1
and h3 from each switch, so a new rule for reaching h3 is installed at each switch.

24.14 Solutions for Queuing and Scheduling

Exercise 5.5(a)

Because all three subqueues are always active, the bit-by-bit virtual clock always moves in lockstep with the
real clock, and we can calculate finishing times according to the real clock. Here are transmissions, in order,
with finishing times taken to be cumulative bytes.

854 24 Selected Solutions

An Introduction to Computer Networks, Release 1.9.21

Queue size finishing time
1 190 190
1 190 380
1 190 570
1 190 760
1 190 950
2 1000 1000
1 190 1140
3 1200 1200
1 190 1330
1 190 1520
1 190 1710
1 190 1900
2 1000 2000
1 190 2090
1 190 2280
3 1200 2400
1 190 2470

Exercise 5.5(b)

Initially each subqueue has a deficit of 0.

Queue packets sent deficit
1 5, =950 bytes 50
2 1 0
3 pass 1000
1 5, =950 bytes 100
2 1 0
3 1 800
1 5, =950 bytes 150
2 1 0
3 1 600
1 6, =1140 bytes 10
2 1 0
3 1 400

24.14 Solutions for Queuing and Scheduling 855

An Introduction to Computer Networks, Release 1.9.21

856 24 Selected Solutions

INDICES AND TABLES

• genindex

• search

857

An Introduction to Computer Networks, Release 1.9.21

858 Indices and tables

BIBLIOGRAPHY

[ABDGHSTVWZ15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Ben-
jamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, Paul Zimmermann, “Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice”, preprint at weakdh.org, May 2015.

[AEH75] Eralp Akkoyunlu, Kattamuri Ekanadham and R V Huber, “Some constraints and tradeoffs in the
design of network communications”, SOSP ‘75: Proceedings of the fifth ACM symposium on Operating
systems and principles, November 1975.

[AO96] Aleph One (Elias Levy), “Smashing The Stack For Fun And Profit”, Phrack volume 7 number 49,
1996, available at http://insecure.org/stf/smashstack.html.

[AGMPS10] Mohammad Alizadeh, Albert Greenberg, David Maltz, Jitendra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta and Murari Sridharan, “Data Center TCP (DCTCP)”, Proceedings of ACM
SIGCOMM 2010, September 2010.

[AP99] Mark Allman and Vern Paxson, “On Estimating End-to-End Network Path Properties”, Proceedings
of ACM SIGCOMM 1999, August 1999.

[ACPRT16] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin and Stefano Tessaro, “Scrypt is
Maximally Memory-Hard”, Cryptology ePrint Archive, Report 2016/989, 2016, available at https://
eprint.iacr.org/2016/989.

[AHLR07] Chris Anley, John Heasman, Felix “FX” Linder and Gerardo Richarte, “The Shellcoder’s Hand-
book”, second edition, Wiley, 2007.

[AKM04] Guido Appenzeller, Isaac Keslassy and Nick McKeown, “Sizing Router Buffers”, ACM SIG-
COMM Computer Communication Review, October 2004

[JA05] John Assalone, “Exploiting the GDI+ JPEG COM Marker Integer Underflow Vul-
nerability”, Global Information Assurance Certification technical note, January 2005,
available at www.giac.org/paper/gcih/679/exploiting-gdi-plus-jpeg-marker-integer-underflow-
vulnerability/106878.

[PB62] Paul Baran, “On Distributed Computing Networks”, Rand Corporation Technical Report P-2626,
1962.

[BCL09] Steven Bauer, David Clark and William Lehr, “The Evolution of Internet Conges-
tion”, Telecommunications Policy Research Conference (TPRC) 2009, August 2009, available at
ssrn.com/abstract=1999830.

859

https://weakdh.org/
http://insecure.org/stf/smashstack.html
https://eprint.iacr.org/2016/989
https://eprint.iacr.org/2016/989
http://www.giac.org/paper/gcih/679/exploiting-gdi-plus-jpeg-marker-integer-underflow-vulnerability/106878
http://www.giac.org/paper/gcih/679/exploiting-gdi-plus-jpeg-marker-integer-underflow-vulnerability/106878
http://ssrn.com/abstract=1999830

An Introduction to Computer Networks, Release 1.9.21

[MB06] Mihir Bellare, “New Proofs for NMAC and HMAC: Security without Collision-Resistance”, Ad-
vances in Cryptology - CRYPTO ‘06 Proceedings, Lecture Notes in Computer Science volume 4117,
Springer-Verlag, 2006.

[BCK96] Mihir Bellare, Ran Canetti and Hugo Krawczyk, “Keying Hash Functions for Message Authen-
tication”, Advances in Cryptology - CRYPTO ‘96 Proceedings, Lecture Notes in Computer Science
volume 1109, Springer-Verlag, 1996.

[BN00] Mihir Bellare and Chanathip Namprempre, “Authenticated Encryption: Relations among notions
and analysis of the generic composition paradigm”, Advances in Cryptology — ASIACRYPT 2000 /
Lecture Notes in Computer Science volume 1976, Springer-Verlag, 2000; updated version July 2007.

[BZ97] Jon Bennett and Hui Zhang, “Hierarchical Packet Fair Queueing Algorithms”, IEEE/ACM Trans-
actions on Networking, volume 5, October 1997.

[DB08] Daniel Bernstein, “The Salsa20 family of stream ciphers”, Chapter, New Stream Cipher Designs,
Matthew Robshaw and Olivier Billet, editors, Springer-Verlag, 2008.

[JB05] John Bickett, “Bit-rate Selection in Wireless Networks”, MS Thesis, Massachusetts Institute of
Technology, 2005.

[BCTCU16] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro and Steve Uhlig, “Open Connect
Everywhere: A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN”, ARXIV, arXiv
e-print (arXiv:1606.05519), June 2016.

[BP95] Lawrence Brakmo and Larry Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global
Internet”, IEEE Journal on Selected Areas in Communications, volume 13 number 8, 1995.

[BBGO08] Vladimir Brik, Suman Banerjee, Marco Gruteser and Sangho Oh, “Wireless Device Identifica-
tion with Radiometric Signatures”, Proceedings of the 14th ACM International Conference on Mobile
Computing and Networking (MobiCom ‘08), September 2008.

[AB03] Andreis Brouwer, “Hackers Hut”, http://www.win.tue.nl/~aeb/linux/hh/hh.html, April 1, 2003

[CF04] Carlo Caini and Rosario Firrincieli, “TCP Hybla: a TCP enhancement for heterogeneous networks”,
International Journal of Satellite Communications and Networking, volume 22, pp 547-566, 2004.

[CGYJ16] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh and Van Jacobson,
“BBR Congestion-Based Congestion Control”, ACM Queue, volume 14 number 5, September-October
2016.

[CM03] Zehra Cataltepe and Prat Moghe, “Characterizing Nature and Location of Congestion on the Public
Internet”, Proceedings of the Eighth IEEE International Symposium on Computers and Communication,
2003.

[CDLMR00] Stefania Cavallar, Bruce Dodson, Arjen K Lenstra, Walter Lioen, Peter Montgomery, Brian
Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gerard Guillerm, Paul Leyland, Joel Marchand,
François Morain, Alec Muffett, Craig Putnam, Chris Putnam and Paul Zimmermann, “Factorization of
a 512-bit RSA Modulus”, Advances in Cryptology — EUROCRYPT 2000, Lecture Notes in Computer
Science volume 1807, Springer-Verlag, 2000.

[CK74] Vinton G Cerf and Robert E Kahn, “A Protocol for Packet Network Intercommunication”, IEEE
Transactions on Communications, volume 22 number 5, May 1974.

860 Bibliography

http://arxiv.org/abs/1606.05519
http://www.win.tue.nl/~aeb/linux/hh/hh.html

An Introduction to Computer Networks, Release 1.9.21

[CJ89] Dah-Ming Chiu and Raj Jain, “Analysis of the Increase/Decrease Algorithms for Congestion Avoid-
ance in Computer Networks”, Journal of Computer Networks volume 17, pp. 1-14, 1989.

[CJ91] David Clark and Van Jacobson, “Flexible and efficient resource management for datagram net-
works”, Presentation, September 1991

[CSZ92] David Clark, Scott Shenker and Lixia Zhang, “Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism”, Proceedings of ACM SIGCOMM 1992, Au-
gust 1992.

[CBcDHL14] David Clark, Steven Bauer, kc claffy, Amogh Dhamdhere, BBradley Huffaker, William
Lehr, and Matthew Luckie, “Measurement and Analysis of Internet Interconnection and Congestion”,
Telecommunications Policy Research Conference (TPRC) 2014, September 2014.

[DR02] Joan Daemen and Vincent Rijmen, “The Design of Rijndael: AES – The Advanced Encryption
Standard.”, Springer-Verlag, 2002.

[DS78] Yogen Dalal and Carl Sunshine, “Connection Management in Transport Protocols”, Computer Net-
works 2, 1978.

[ID89] Ivan Dåmgard, “A Design Principle for Hash Functions”, Advances in Cryptology - CRYPTO ‘89
Proceedings, Lecture Notes in Computer Science volume 435, Springer-Verlag, 1989.

[DBCP97] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink, “Small forwarding
tables for fast routing lookups”, Proceedings of the ACM SIGCOMM ‘97 conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, September 1997.

[DKS89] Alan Demers, Srinivasan Keshav and Scott Shenker, “Analysis and Simulation of a Fair Queueing
Algorithm”, ACM SIGCOMM Proceedings on Communications Architectures and Protocols, 1989.

[DH76] Whitfield Diffie and Martin Hellman, “New Directions in Cryptography”, IEEE Transactions on
Information Theory, volume IT-22, November 1976.

[EGMR05] Mihaela Enachescu, Ashish Goel, Yashar Ganjali, Nick McKeown and Tim Roughgarden. “Part
III: Routers with Very Small Buffers”, ACM SIGCOMM Computer Communication Review, volume
35 number 2, July 2005.

[FF96] Kevin Fall and Sally Floyd, “Simulation-based Comparisons of Tahoe, Reno and SACK TCP”,
ACM SIGCOMM Computer Communication Review, July 1996.

[FRZ13] Nick Feamster, Jennifer Rexford and Ellen Zegura, “The Road to SDN: An Intellectual History of
Programmable Networks”, ACM Queue, December 2013.

[FGMPC02] Roberto Ferorelli, Luigi Grieco, Saverio Mascolo, G Piscitelli, P Camarda, “Live Internet
Measurements Using Westwood+ TCP Congestion Control”, IEEE Global Telecommunications Con-
ference, 2002.

[F91] Sally Floyd, “Connections with Multiple Congested Gateways in Packet-Switched Networks, Part 1”,
ACM SIGCOMM Computer Communication Review, October 1991.

[FJ92] Sally Floyd and Van Jacobson, “On Traffic Phase Effects in Packet-Switched Gateways”, Internet-
working: Research and Experience, volume 3, pp 115-156, 1992.

[FJ93] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for Congestion Avoidance”,
IEEE/ACM Transactions on Networking, volume 1, August 1993.

Bibliography 861

An Introduction to Computer Networks, Release 1.9.21

[FJ95] Sally Floyd and Van Jacobson, “Link-sharing and Resource Management Models for Packet Net-
works”, IEEE/ACM Transactions on Networking, volume 3, June 1995.

[FP01] Sally Floyd and Vern Paxson, “Difficulties in Simulating the Internet”, IEEE/ACM Transactions on
Networking, volume 9, August 2001.

[FMS01] Scott Fluhrer, Itsik Mantin and Adi Shamir, “Weaknesses in the Key Scheduling Algorithm of
RC4”, SAC ‘01 Revised Papers from the 8th Annual International Workshop on Selected Areas in
Cryptography, Springer-Verlag, 2001.

[FL03] Cheng Fu and Soung Liew, “TCP Veno: TCP Enhancement for Transmission over Wireless Access
Networks”, IEEE Journal on Selected Areas in Communications, volume 21 number 2, February 2003.

[LG01] Lixin Gao, “On Inferring Autonomous System Relationships in the Internet”, IEEE/ACM Transac-
tions on Networking, volume 9, December 2001.

[GR01] Lixin Gao and Jennifer Rexford, “Stable Internet Routing without Global Coordination”,
IEEE/ACM Transactions on Networking, volume 9, December 2001.

[JG93] Jose J Garcia-Lunes-Aceves, “Loop-Free Routing Using Diffusing Computations”, IEEE/ACM
Transactions on Networking, volume 1, February 1993.

[GP11] L Gharai and C Perkins, “RTP with TCP Friendly Rate Control”, Internet Draft, http://tools.ietf.
org/html/draft-gharai-avtcore-rtp-tfrc-00.

[GV02] Sergey Gorinsky and Harrick Vin, “Extended Analysis of Binary Adjustment Algorithms”, Tech-
nical Report TR2002-39, Department of Computer Sciences, University of Texas at Austin, 2002.

[GM03] Luigi Grieco and Saverio Mascolo, “End-to-End Bandwidth Estimation for Congestion Control in
Packet Networks”, Proceedings of the Second International Workshop on Quality of Service in Multi-
service IP Networks, 2003.

[GM04] Luigi Grieco and Saverio Mascolo, Performance Evaluation and Comparison of Westwood+, New
Reno, and Vegas TCP Congestion Control, ACM SIGCOMM Computer Communication Review, vol-
ume 34 number 2, April 2004.

[GG03] Marco Gruteser and Dirk Grunwald, “Enhancing Location Privacy in Wireless LAN Through Dis-
posable Interface Identifiers:A Quantitative Analysis”, Proceedings of the 1st ACM International Work-
shop on Wireless Mobile Applications and Services on WLAN Hotspots (WMASH ‘03), September,
2003.

[HRX08] Sangtae Ha, Injong Rhee and Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Vari-
ant”, ACM SIGOPS Operating Systems Review - Research and developments in the Linux kernel,
volume 42 number 5, July 2008.

[SH04] Steve Hanna, “Shellcoding for Linux and Windows Tutorial”, http://www.vividmachines.com/
shellcode/shellcode.html, July 2004

[DH08] Dan Harkins, “Simultaneous Authentication of Equals: A Secure, Password-Based Key Exchange
for Mesh Networks”, 2008 Second International Conference on Sensor Technologies and Applications
(Sensorcomm 2008), August 2008.

[MH04] Martin Hellman, “Oral history interview with Martin Hellman”, Charles Babbage Institute, 2004.
Retrieved from the University of Minnesota Digital Conservancy, http://purl.umn.edu/107353.

862 Bibliography

http://tools.ietf.org/html/draft-gharai-avtcore-rtp-tfrc-00
http://tools.ietf.org/html/draft-gharai-avtcore-rtp-tfrc-00
http://www.vividmachines.com/shellcode/shellcode.html
http://www.vividmachines.com/shellcode/shellcode.html
http://purl.umn.edu/107353

An Introduction to Computer Networks, Release 1.9.21

[JH96] Janey Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme for TCP”, ACM
SIGCOMM Symposium on Communications Architectures and Protocols, August 1996.

[HVB01] Gavin Holland, Nitin Vaidya and Paramvir Bahl, “A rate-adaptive MAC protocol for multi-Hop
wireless networks”, MobiCon ‘01: Proceedings of the 7th annual International Conference on Mobile
Computing and Networking, 2001.

[CH99] Christian Huitema, Routing in the Internet, second edition, Prentice Hall, 1999.

[HBT99] Paul Hurley, Jean-Yves Le Boudec and Patrick Thiran, “A Note on the Fairness of Additive In-
crease and Multiplicative Decrease”, Proceedings of ITC-16, 1999.

[JK88] Van Jacobson and Michael Karels, “Congestion Avoidance and Control”, Proceedings of the Sig-
comm ‘88 Symposium, volume 18(4), 1988.

[JKMOPSVWZ13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen
Stuart and Amin Vahdat, “B4: Experience with a Globally-Deployed Software Defined WAN”, Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, August 12-16, 2013.

[JWL04] Cheng Jin, David Wei and Steven Low, “FAST TCP: Motivation, Architecture, Algorithms, Per-
formance”, IEEE INFOCOM 2004 Proceedings, March 2004.

[KM97] Ad Kamerman and Leo Monteban, “WaveLAN-II: A high-performance wireless LAN for the un-
licensed band”, AT&T Bell Laboratories Technical Journal, volume 2 number 3, 1997.

[SK88] Srinivasan Keshav, “REAL: A Network Simulator” (Technical Report), University of California at
Berkeley, 1988.

[KKCQ06] Jongseok Kim, Seongkwan Kim, Sunghyun Choi and Daji Qiao, “CARA: Collision-Aware Rate
Adaptation for IEEE 802.11 WLANs”, IEEE INFOCOM 2006 Proceedings, April 2006.

[LK78] Leonard Kleinrock, “On Flow Control in Computer Networks”, Proceedings of the International
Conference on Communications, June 1978.

[LH06] Mathieu Lacage and Thomas Henderson, “Yet Another Network Simulator”, Proceedings of WNS2
‘06: Workshop on ns-2: the IP network simulator, 2006.

[LM91] Xuejia Lai and James L. Massey, “A Proposal for a New Block Encryption Standard”, EURO-
CRYPT ‘90 Proceedings of the workshop on the theory and application of cryptographic techniques on
Advances in cryptology, Springer-Verlag, 1991.

[LKCT96] Eliot Lear, Jennifer Katinsky, Jeff Coffin and Diane Tharp, “Renumbering: Threat or Menace?”,
Tenth USENIX System Administration Conference, Chicago, 1996.

[LSL05] DJ Leith, RN Shorten and Y Lee, “H-TCP: A framework for congestion control in high-speed and
long-distance networks”, Hamilton Institute Technical Report, August 2005.

[LSM07] DJ Leith, RN Shorten and G McCullagh, “Experimental evaluation of Cubic-TCP”, Extended
version of paper presented at Proc. Protocols for Fast Long Distance Networks, 2007.

[LBS06] Shao Liu, Tamer Basar and R Srikant, “TCP-Illinois: A Loss and Delay-Based Congestion Control
Algorithm for High-Speed Networks”, Proceedings of the 1st international conference on performance
evaluation methodologies and tools, 2006.

Bibliography 863

An Introduction to Computer Networks, Release 1.9.21

[AM90] Allison Mankin, “Random Drop Congestion Control”, ACM SIGCOMM Symposium on Commu-
nications Architectures and Protocols, 1990.

[MCGSW01] Saverio Mascolo, Claudio Casetti, Mario Gerla, MY Sanadidi, Ren Wang, “TCP westwood:
Bandwidth estimation for enhanced transport over wireless links”, MobiCon ‘01: Proceedings of the
7th annual International Conference on Mobile Computing and Networking, 2001.

[McK90] Paul McKenney, “Stochastic Fairness Queuing”, IEEE INFOCOM ‘90 Proceedings, June 1990.

[MABPPRST08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-
nifer Rexford, Scott Shenker and Jonathan Turner, “OpenFlow: Enabling innovation in campus net-
works”, ACM SIGCOMM Computer Communications Review, April 2008.

[RM78] Ralph Merkle, “Secure Communications over Insecure Channels”, Communications of the ACM,
volume 21, April 1978.

[RM88] Ralph Merkle, “A Digital Signature Based on a Conventional Encryption Function”, Advances in
Cryptology — CRYPTO ‘87, Lecture Notes in Computer Science volume 293, Springer-Verlag, 1988.

[MH81] Ralph Merkle and Martin Hellman, “On the Security of Multiple Encryption”, Communications of
the ACM, volume 24, July 1981.

[MB76] Robert Metcalfe and David Boggs, “Ethernet: Distributed Packet Switching for Local Computer
Networks”, Communications of the ACM, volume 19 number 7, 1976.

[MW00] Jeonghoon Mo and Jean Walrand, “Fair End-to-End Window-Based Congestion Control”,
IEEE/ACM Transactions on Networking, volume 8 number 5, October 2000.

[JM92] Jeffrey Mogul, “Observing TCP Dynamics in Real Networks”, ACM SIGCOMM Symposium on
Communications Architectures and Protocols, 1992.

[MM94] Mart Molle, “A New Binary Logarithmic Arbitration Method for Ethernet”, Technical Report
CSRI-298, Computer Systems Research Institute, University of Toronto, 1994.

[RTM85] Robert T Morris, “A Weakness in the 4.2BSD Unix TCP/IP Software”, AT&T Bell Laboratories
Technical Report, February 1985.

[MEGK10] Andreas Müller, Nathan Evans, Christian Grothof and Samy Kamkar, “Autonomous NAT
Traversal”, IEEE Tenth International Conference on Peer-to-Peer Computing, August 2010.

[NJ12] Kathleen Nichols and Van Jacobson, “Controlling Queue Delay”, ACM Queue, May 2012.

[OKM96] Teunis Ott, JHB Kemperman and Matt Mathis, “The stationary behavior of ideal TCP congestion
avoidance”, Technical Report, 1996.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley and Jim Kurose, “Modeling TCP Throughput: A
Simple Model and its Empirical Validation”, ACM SIGCOMM conference on Applications, technolo-
gies, architectures, and protocols for computer communication, 1998.

[PG93] Abhay Parekh and Robert Gallager, “A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks - The Single-Node Case”, IEEE/ACM Transactions on Networking,
volume 1 number 3, June 1993.

[PG94] Abhay Parekh and Robert Gallager, “A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks - The Multiple Node Case”, IEEE/ACM Transactions on Networking,
volume 2 number 2, April 1994.

864 Bibliography

An Introduction to Computer Networks, Release 1.9.21

[VP97] Vern Paxson, “End-to-End Internet Packet Dynamics”, ACM SIGCOMM conference on Applica-
tions, technologies, architectures, and protocols for computer communication, 1997.

[PWZMTQ17] Changhua Pei, Zhi Wang, Youjian Zhao, Zihan Wang, Yuan Meng, Dan Pei, Yuanquan
Peng, Wenliang Tang and Xiaodong Qu, “Why It Takes So Long to Connect to a WiFi Access Point”,
IEEE International Conference on Computer Communications, May 2017.

[CP09] Colin Percival, “Stronger Key Derivation Via Sequential Memory-Hard Functions”, BSDCan - The
Technical BSD Conference, May 2009.

[PB94] Charles Perkins and Pravin Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers”, ACM SIGCOMM Computer Communications Review, vol-
ume 24 number 4, October 1994.

[PR99] Charles Perkins and Elizabeth Royer, “Ad-hoc On-Demand Distance Vector Routing”, Proceedings
of the Second IEEE Workshop on Mobile Computing Systems and Applications, February 1999.

[RP85] Radia Perlman, “An Algorithm for Distributed Computation of a Spanning Tree in an Extended
LAN”, ACM SIGCOMM Computer Communication Review 15(4), 1985.

[RP04] Radia Perlman, “Rbridges: Transparent Routing”, IEEE INFOCOM 2004 Proceedings, March
2004.

[JP88] John M Pollard, “Factoring with Cubic Integers”, unpublished manuscript circulated 1988; in-
cluded in “The Development of the Number Field Sieve”, Lecture Notes in Mathematics volume 1554,
Springer-Verlag, 1993.

[PDG12] Balaji Prabhakar, Katherine N Dektar and Deborah M Gordon, “The Regulation of Ant Colony
Foraging Activity without Spatial Information”, PLoS Computational Biology 8(8), http://journals.plos.
org/ploscompbiol/article?id=10.1371/journal.pcbi.1002670

[PN98] Thomas Ptacek and Timothy Newsham, “Insertion, Evasion, and Denial of Service: Eluding Net-
work Intrusion Detection”, Technical report, Secure Networks Inc, January 1998.

[RJ90] Kadangode Ramakrishnan and Raj Jain, “A Binary Feedback Scheme for Congestion Avoidance in
Computer Networks”, ACM Transactions on Computer Systems, volume 8 number 2, May 1990.

[RX05] Injong Rhee and Lisong Xu, “Cubic: A new TCP-friendly high-speed TCP variant,” 3rd Interna-
tional Workshop on Protocols for Fast Long-Distance Networks, February 2005.

[RR91] Ronald Rivest, “The MD4 message digest algorithm”, Advances in Cryptology - CRYPTO ‘90
Proceedings, Springer-Verlag, 1991.

[RSA78] Ronald Rivest, Adi Shamir and Leonard Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, volume 21, February 1978.

[SRC84] Jerome Saltzer, David Reed and David Clark, “End-to-End Arguments in System Design”, ACM
Transactions on Computer Systems, volume 2 number 4, November 1984.

[BS93] Bruce Schneier, “Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish)”, Fast
Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag,
1994.

[SM90] Nachum Shacham and Paul McKenney, “Packet recovery in high-speed networks using coding and
buffer management”, IEEE INFOCOM ‘90 Proceedings, June 1990.

Bibliography 865

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002670
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002670

An Introduction to Computer Networks, Release 1.9.21

[SP03] Umesh Shankar and Vern Paxson, “Active Mapping: Resisting NIDS Evasion without Altering
Traffic”, Proceedings of the 2003 IEEE Symposium on Security and Privacy, 2003.

[SV96] M Shreedhar and George Varghese, “Efficient Fair Queuing Using Deficit Round Robin”,
IEEE/ACM Transactions on Networking, volume 4 number 3, June 1996.

[JS05] John Ivan Simon, “John Simon on Music: Criticism, 1979-2005”, Applause Books, 2005.

[SKS06] Rade Stanojević, Christopher Kellett and Robert Shorten, “Adaptive Tuning of Drop-Tail Buffers
for Reducing Queuing Delays”, IEEE Communications Letters, volume 10 number 7, August 2006.

[TSZS06] Kun Tan, Jingmin Song, Qian Zhang and Murari Sidharan, “Compound TCP: A Scalable and
TCP-friendly Congestion Control for High-speed Networks”, 4th International Workshop on Protocols
for Fast Long-Distance Networks (PFLDNet), 2006.

[TWHL05] Ao Tang, Jintao Wang, Sanjay Hegde and Steven Low, “Equilibrium and Fairness of Networks
Shared by TCP Reno and Vegas/FAST”, Telecommunications Systems special issue on High Speed
Transport Protocols, 2005.

[TWP07] Erik Tews, Ralf-Philipp Weinmann and Andrei Pyshkin, “Breaking 104-bit WEP in less than 60
seconds”, WISA‘07 Proceedings of the 8th International Conference on Information Security Applica-
tions, Springer-Verlag, 2007.

[VMCCP16] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo Cardoso and Frank Piessens,
“Why MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mecha-
nisms”, ACM Asia Conference on Computer and Communications Security, May 2016.

[VP17] Mathy Vanhoef and Frank Piessens, “Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2”,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Octo-
ber 2017.

[VGE00] Kannan Varadhan, Ramesh Govindan and Deborah Estrin, “Persistent Route Oscillations in Inter-
domain Routing”, Computer Networks, volume 32, January, 2000.

[SV02] Serge Vaudenay, “Security Flaws Induced by CBC Padding – Applications to SSL, IPSEC,
WTLS. . . ”, EUROCRYPT ‘02 Proceedings, 2002.

[WJLH06] David Wei, Cheng Jin, Steven Low and Sanjay Hegde, “FAST TCP: Motivation, Architecture,
Algorithms, Performance”, ACM Transactions on Networking, December 2006.

[WM05] Damon Wischik and Nick McKeown, “Part I: Buffer Sizes for Core Routers”, ACM SIGCOMM
Computer Communication Review, volume 35 number 2, July 2005.

[YW19] Christopher S Yoo and David Wishnick, “Lowering Legal Barriers to RPKI Adoption”, U of Penn
Law School, Public Law Research Paper No. 19-02, January 8, 2019. Available at SSRN: https://ssrn.
com/abstract=3308619.

[LZ89] Lixia Zhang, “A New Architecture for Packet Switching Network Protocols”, PhD Thesis, Mas-
sachusetts Institute of Technology, 1989.

[LZ91] Lixia Zhang, “VirtualClock: A New Traffic Control Algorithm for Packet-Switched Networks”,
ACM Transactions on Computer Systems, volume 9 number 2, May 1991.

[ZSC91] Lixia Zhang, Scott Shenker and David Clark, “Observations on the Dynamics of a Congestion
Control Algorithm: The Effects of Two-Way Traffic”, ACM SIGCOMM Symposium on Communica-
tions Architectures and Protocols, 1991.

866 Bibliography

https://ssrn.com/abstract=3308619
https://ssrn.com/abstract=3308619

INDEX

Symbols
.onion addresses, 214
/64, IPv6, 257
/etc/resolv.conf, 213
0-RTT protection, QUIC, 406
0-RTT protection, TLS v1.3, 815
1-RTT protection, QUIC, 406
1-RTT protection, TLS v1.3, 815
127.0.1.1, 213
2-D parity, 159
2.4 GHz, 99
3DES, 788
4B/5B, 139
4G, 124
5 GHz, 99
6LoWPAN, 98
6in4, IPv6, 264
802.11, 98
802.11i, IEEE, 114
802.11r handoff, 111
802.16, 124
802.1D, IEEE, 59
802.1Q, 69
802.1X, IEEE, 117
802.3, IEEE Ethernet, 46

A
A and AAAA records, DNS, 258
A record, DNS, 210
accelerated open, TCP, 391
access point, CDN, 33
access point, Wi-Fi, 107
accurate costs, 278
ACD, IPv4, 221
ACK compression, 496
ACK, TCP, 369
acknowledgment, 30

acknowledgment number, TCP, 369
acknowledgments, QUIC, 404
ACKs of unsent data, TCP, 382
ACK[N], 165
active close, TCP, 384
active queue management, 465
active subqueue, 627
ad hoc configuration, Wi-Fi, 107
ad hoc wireless network, 122
adaptive droptail algorithm, 469
ADDITIONAL, DNS, 214
additive increase, multiplicative decrease, 416
address, 14
address configuration, manual IPv6, 263
address ownership, QUIC, 406
address randomization, 773
Address Resolution Protocol, 220
AddressFamily, 345
Administratively Prohibited, 227
admission control, RSVP, 680
ADT, 469
advertised window size, 393
aero, 210
AES, 789
AF drop precedence, 686
AfriNIC, 29
agent configuration, SNMP, 726
agent, SNMP, 701
AH, IPsec, 822
AIMD, 416, 463
algorithm, AODV, 282
algorithm, distance-vector, 272
algorithm, DSDV, 280
algorithm, EIGRP, 285
algorithm, Ethernet learning, 59
algorithm, exponential backoff, 51
algorithm, fair queuing bit-by-bit round-robin, 629

867

An Introduction to Computer Networks, Release 1.9.21

algorithm, fair queuing GPS, 631
algorithm, fair queuing, quantum, 637
algorithm, Floyd-Warshall, 619
algorithm, hierarchical weighted fair queuing, 646
algorithm, HWMP, 284
algorithm, Karn/Partridge, 395
algorithm, link-state, 286
algorithm, loop-free distance vector, 280
algorithm, Nagle, 393
algorithm, Shortest-Path First, 287
algorithm, spanning-tree, 63
algorithms, forwarding table lookup, 197
Alice, 781
alignment, memory, 190
all-nodes multicast address, 243
all-routers multicast address, 243
ALOHA, 55
AMI, 141
ANSWER, DNS, 214
anternet, 413
anycast address, IPv6, 241
anycast, via BGP, 322
Aodh, 781
AODV, 282, 585
APNIC, 29
AQM, 465
ARC4, 790
ARCFOUR, 790
architecture, network, 701
argon2, 784
ARIN, 29
arithmetic, fast, 796
ARP, 220
ARP cache, 221
ARP failover, 223
ARP spoofing, 223
ARPANET, 37
ARQ protocols, 165
AS-path, 310
AS-set, 311
ASLR, 773
ASN.1, 704, 706
ASN.1 enumerated type, 722
association, Wi-Fi, 107
Assured Forwarding, 686
Assured Forwarding PHB, 684
asymmetric routes, 306
Asynchronous Transfer Mode, 92

at-least-once semantics, 360
ATM, 15, 92
augmentation, SNMP, 734
authentication header, IPsec, 822
authentication with secure-hash functions, 783
authenticator, WPA, 117
authoritative nameserver, 210
AUTHORITY, DNS, 214
autoconfiguration, IPv4, 225
autonomous system, 271, 299, 309

B
B8ZS, 141
backbone, 28
backoff, Ethernet, 51
backup link, BGP, 319
backwards compatibility, TCP, 486
bad news, distance-vector, 273
badssl.com, 809
band width, wireless, 95
bandwidth, 14
bandwidth ˆ delay, 152, 171
bandwidth delay, 149
bandwidth guarantees, 655
base station, WiMAX, 125
basic encoding rules, 728
BBR TCP, 509
BBRR, 629
bcrypt, 784
BDP, 171
beacon packets, Wi-Fi, 108
beacon, Wi-Fi, 111
beefcafe, 263
BER, 728
Berkeley Packet Filter, 607
Berkeley Unix, 40
best-effort, 25, 30
best-path selection, BGP, 312
BGP, 308, 324
BGP relationships, 322
BGP routing registries, 327
BGP security, 327
BGP speaker, 309
BGP table size, 314
big-endian, 15
binary data, 347
bind(), 342
bit stuffing, 140

868 Index

An Introduction to Computer Networks, Release 1.9.21

bit-by-bit round robin, 629
biz, 210
BLAM, 53
Blowfish, 789
Bluetooth, 98
Bob, 781
boot counter, 362
border gateway protocol, 308
border routers, 279
bottleneck link, 173, 442
BPDU message, spanning tree, 64
bpf, 607
bps, 14, 22
broadcast IPv4 address, 192
broadcast, Ethernet, 23
broadcast, MANETs, 123
BSD, 40
buffer overflow, 34
buffer overflow, heap, 774
bufferbloat, 432, 465, 639
bugs, 823
byte stuffing, 140

C
CA, 807
cache poisoning, DNS, 219
cache, DNS, 211, 212
CAM table, 63
canonical name, DNS, 216
Canopy, 130
capture effect, Ethernet, 53
care-of address, 231
carrier Ethernet, 86
CBC mode, 789
CDN and IntServ, 681
CDN closest edge server, 220
CDNs, 33
cell-loss priority bit, ATM, 92
censorship, 813
certificate authorities, 803
certificate authority, 807
certificate pinning, 810
certificate revocation, 811
certificate revocation list, 811
CFB mode, 791
CGA, 249
chain of trust, 825
challenge-handshake authentication, 784

channel width, 95
channel, Wi-Fi, 100
chap authentication, 784
checksum offloading, 59, 375
checksum, TCP, 368
checksum, UDP, 337
Christmas day attack, 390
chrome://flags, 403
chrome://net-internals, 403
CIDR, 299
cipher feedback mode, 791
cipher modes, 789
Cisco, 68, 285, 318
class A/B/C addressing, 24
Class Selector PHB, 684
class, queuing discipline, 625
classful queuing discipline, 625
Classless Internet Domain Routing, 299
clear-to-send, Wi-Fi, 102
client, 31
client-server, 33
ClientHello, TLS, 812
ClientKey, 785
ClientSignature, 785
cliff, 20, 415
CLNP, 39
clock recovery, 137
clock synchronization, 137
close, TCP, 371, 385
closest CDN edge server, 220
CMIP, 700
CMNS, 39
CMOT, 700
CNAME, DNS, 216
CoDel, 469
collision, 22, 45
collision attack, MD5, 782
collision avoidance, 102
collision detection, 46, 54, 56
collision detection, wireless, 94
collision domain, 59
collision problem, hash, 781
collision, Wi-Fi, 101
commands, Mininet, 590
community attribute, BGP, 318, 319
community, SNMP, 726
concave cwnd graph, 489
configuring FreeRADIUS, 118

Index 869

An Introduction to Computer Networks, Release 1.9.21

configuring WPA2-Enterprise, 118
congestion, 20, 26, 31
congestion avoidance phase, 415
congestion bit, 466
congestion window, 414
connect(), 344, 347
connection, 14
connection table, virtual circuit, 89
connection-oriented, 367
connection-oriented networking, 26
connectionless networking, 26
conservative, 38
Content-Addressable Memory, 63
content-addressable memory, 198
Content-Distribution Networks, 33
contention, 20
contention interval, 54
contributing source, RTP, 691
control packet, Wi-Fi, 99
control packet, Wi-Fi ACK, 101
control packet, Wi-Fi RTS/CTS, 102
convergence to TCP fairness, 464, 486
convex cwnd graph, 489
counter mode, 791
CRC code, 157
cross-site scripting, 778
crossbar switch, 62
cryptographically generated address, 214, 249
CSMA, 54
CSMA persistence, 54
CSMA/CA, 102
CSMA/CD, 46
CSRC, 691
CTR mode, 791
CTS, Wi-Fi, 102
Cubic, TCP, 505
cumulative ACK, 170
customer, BGP, 322
cut-through, 21
cwnd, 414
CWR, 369, 466
cyclical redundancy check, 157

D
DAD, IPv6, 251
DALLY, TFTP, 354
DANE, 831
dark website, 833

Data Center TCP, 501
data rate, 14
data types, SNMPv1, 706
datacenter, 76
Datagram Congestion Control Protocol, 339
datagram forwarding, 14
Data[N], 165
DCCP, 339
DCCP congestion control, 462
DCCP connection establishment, 399
DCTCP, 501
deadbeef, 332
DECbit, 466
DECnet, 466
default forwarding entry, 196
default route, 17, 28
defense in depth, security, 833
deflation, cwnd, 426
delay constraints, 658
delay, bandwidth, 149
delay, largest-packet, 155
delay, propagation, 149
delay, queuing, 149
delay, store-and-forward, 149
delay-based congestion control, 491
delayed ACKs, 393, 420
denial of service attack, 190
dense wavelength-division multiplexing, 146
DES, 788
Destination Unreachable, 227
DHCP, 224
DHCP Relay, 225
DHCPv6, 250, 253
Differentiated Services, 189, 683
Diffie-Hellman-Merkle key exchange, 795
DiffServ, 683
DIFS, Wi-Fi, 101, 122
dig, 35, 214
digital signatures, RSA, 800
discrete logarithm problem, 796
distance vector, loop-free versions, 280
distance-vector, 29
distance-vector routing update, 272
distribution network, Wi-Fi, 111
DIX Ethernet, 46
DNS, 30, 209, 224, 343, 345, 346, 358, 379
DNS A and AAAA records, 258
DNS and CDNs, 220

870 Index

An Introduction to Computer Networks, Release 1.9.21

DNS and IPv6, 250, 252, 258
DNS attack, 2018, 833
DNS authentication, 831
DNS over HTTPS, 834
DNS resolver, 211
DNS server, public, 212
DNS time-to-live, 212
DNS, round-robin, 214
DNSKEY, DNS, 825
DNSSEC, 825
DNSSEC OK flag, 825
dnssec-failed.org, 830
DoH, 834
domain fronting, 813
Domain Name System, 209
domain name system, 30
domain registrar, 210
domain registrar, DNS, 210
Dont Fragment bit, 194
doze mode, Wi-Fi, 109
draft standard, 39
Dragonfly, 797
drop precedence, DiffServ AF, 686
DS, 189
DS domain, 683
DS field, IPv4 header, 684
DS, DNS, 825
DS1 line, 142
DS3 line, 143
DSDV, 280, 585
DSO channel, 142
dual stack, 258
DuckDuckGo, 214
dumbbell network topology, 450
duplicate address detection, IPv4, 221
duplicate connection request, 354
duplicate-address detection, IPv6, 251
durian, 742
DWDM, 146
dynamic rate scaling, 104

E
EAP, 117
EAPOL, 117
EasyConnect, Wi-Fi, 120
EasyMesh Wi-Fi, 112
ECB mode, 789
ECE, 369, 466

Echo Request/Reply, 227
ECMP, 291, 616
ECN, 189, 466
ECN and VPNs, 86
ECT, 466
edge server, CDN, 33
edge server, closest, 220
EFS, 424
EGP, 311
EIGRP, 285
elephant flow, 290
elevator algorithm, 361
elliptic-curve cryptography, 799
eNB, LTE, 125
encapsulated security payload, IPsec, 822
encoding, 347
encrypt-and-MAC, 792
encrypt-then-MAC, 792
encryption, 786
end-to-end encryption, 803
End-to-End principle, 165, 368
engines, SNMPv3, 752
enumerated type, SNMP, 722
equal-cost multipath routing, 291, 616
error message, ICMP, 226
error-correcting code, 159
error-detection code, 155
ESP, IPsec, 822
ESS, Wi-Fi, 111
estimated flightsize, 424
Ethernet, 22
Ethernet address, 23
Ethernet hub, 46
Ethernet repeater, 46
Ethernet switch, 59
Ethernet switch hardware, 61
ethtool, Linux, 375
Euclidean algorithm, 799
EUI-64 identifier, 239
evasion, intrusion detection, 779
exactly-once semantics, 360
Expedited Forwarding, 684
Expedited Forwarding PHB, 684
expiration date, certificate, 811
Explicit Congestion Notification, 189, 466
exponential backoff, Ethernet, 51
exponential backoff, Wi-Fi, 102
exponential growth, 418

Index 871

An Introduction to Computer Networks, Release 1.9.21

export filtering, BGP, 312
extended interface table, SNMP, 736
extended-validation certificates, 810
extender, Wi-Fi, 112
Extensible Authentication Protocol, 117
extension headers, 243
exterior routing, 308
extreme TCP unfairness, 456

F
face:b00c, 259
facebookcorewwwi, 214
factoring RSA keys, 800
fading, 96
fair queuing, 626
fair queuing and AF, 687
fair queuing and EF, 685
fairness, 31
fairness, TCP, 442, 450, 457, 486
fallback to flooding, 59
fast arithmetic, 796
Fast Ethernet, 56
fast handoff, Wi-Fi, 111
Fast Open, TCP, 392
fast primality testing, 797
Fast Recovery, 424
fast retransmit, 422
fastest sequence, token-bucket, 653
FCAPS, 699
Feistel network, 787
FIB, 314
Fibonacci sequence, 664
FIFO queuing, 441
fill time, voice, 142
filtering, BGP, 312
filterspec, 679
FIN, 369
FIN packet, 371
finishing order, WFQ, 633
firewall, 34, 72, 75
fixed wireless, 128
flights of packets, 415
flightsize, 510
flightsize, estimated, 424
flow control, 169
flow control, QUIC, 404
flow control, TCP, 394
Flow Label, 238

flow specification, 649
flow tables, 72
flow, IPv6, 238
flow, TCP, 614
flowspec, RSVP, 679
Floyd-Warshall algorithm, 619
fluid model, fair queuing, 631
foraging, 413
foreign agent, 231
fortune, 214
forward secrecy, 801
forwarding delay, 21
Forwarding Information Base, 314
forwarding table, 15
forwarding, IP, 26
forwarding, MANET, 124
forwarding-table algorithms, 197
four-way handshake, Wi-Fi, 114
foxes, 413
fragment header, IPv6, 245
fragment offset, 194
fragmentation, 25
Fragmentation Required, 227
fragmentation, IP, 193
fragmentation, Wi-Fi, 104
frame, 14
frames, QUIC, 403
framing, 140
FreeRADIUS, 118
frequency band, 95
Friendliness, TCP, 460
Frost, Robert, 88
full-duplex Ethernet, 57
fwmark, 291, 607

G
gamers and CDNs, 681
gaming private networks, 681
generalized processor sharing, 631
generic hierarchical queuing, 641
geoDNS, 220
geographical routing, 307
geolocation, IP, 307
GET request, HTTP, 381
getaddrinfo(), 258
getAllByName(), Java, 343
getAllByName(), java, 345
GetBulk, SNMPv2, 732

872 Index

An Introduction to Computer Networks, Release 1.9.21

getByName(), 259
getByName(), Java, 258
getByName(), java, 345
gethostbyname(), 258
gigabit Ethernet, 57
glibc-2.2.4, 774
global scope, IPv6 addresses, 254
GNS, 211
Gnu DNS, 211
Gnu Name System, 211
goodput, 14, 521
governments, DANE, 832
GPS, fair queuing, 631
granularity, loss counting, 549
gratuitous ARP, 221
greediness in TCP, 454
group, OpenFlow, 616
GTC, EAP, 118

H
H-TCP, 504
half-closed, TCP, 384
half-open, TCP, 384
Hamilton TCP, 504
Hamming code, 159
handoff, Wi-Fi, 111
Handshake packet, QUIC, 405
handshake protocol, TLS, 811
Happy Eyeballs, IPv6, 260
hard fail, OCSP, 811
hardware, Ethernet switch, 61
Hash Message Authentication Code, 783
hash, password, 784
HDLC, 140
head-of-line blocking, 32, 338, 673
header, 14
header, Ethernet, 47
header, IPv4, 188
header, IPv6, 237
header, TCP, 368
header, UDP, 337
heap buffer overflow, 774
heap vulnerability, 774
Hellman (Diffie-Hellman-Merkel), 795
Hello, spanning-tree, 64
henhouse, 413
hidden node problem, 95
hidden-node collisions, 103

hidden-node problem, 103
hierarchical routing, 199, 299, 301
hierarchical token bucket, 658
hierarchical token bucket, Linux, 660
high-bandwidth TCP problem, 470
Highspeed TCP, 487
hijacking, BGP, 328
history, RMON, 745
HMAC, 754, 783
hold down, 278
home address, 231
home agent, 231
host command, 35
host key, ssh, 805
Host Top N, RMON, 747
Host Unreachable, 227
host-specific forwarding, 86
hot-potato routing, 306
htb, Linux, 604, 660
htonl, 348
htons, 348
HTTP, 381, 388
https, 804
hub, Ethernet, 46
hulu, 671
HWMP, 284
Hybla, TCP, 501

I
IAB, 37
IANA, 24, 29, 723
ICANN, 210
ICMP, 226
ICMPv6, 255
IDEA, 789
idempotency and 0-RTT, 815
idempotent, 360
IDENT field, 193
IEEE, 46, 49
IEEE 802.11, 98
IEEE 802.1D, 59
IEEE 802.1Q, 69
IEEE 802.1X, 117
IEEE 802.3 Ethernet, 46
IETF, 37
ifconfig, 35
ifDescr, 722
ifIndex, 721

Index 873

An Introduction to Computer Networks, Release 1.9.21

IFS, Wi-Fi, 101
ifType, SNMP, 722
ifXTable, SNMP, 736
IKEv2, 824
Illinois, TCP, 497
implementations, at least two, 39
import filtering, BGP, 312
incarnation, connection, 351
incast, TCP, 504
inetCidrRouteTable, 741
inflation, cwnd, 426
info, 210
infrastructure configuration, Wi-Fi, 107
Initial packet, QUIC, 405
initial sequence number, TCP, 369, 373, 388
initialization vector, 789
input queue, switch, 62
instability, BGP, 326
integrated services, 673
integrated services, generic, 669
interconnection fabric, 76
interface, 190
interface identifier, ipv6, 239
interface table, extended, SNMP, 736
interior routing, 271
Internet Architecture Board, 37
Internet checksum, 156
Internet Engineering Task Force, 37
Internet exchange point, 304
Internet Key Exchange, 824
Internet Routing Registry, 327
Internet Society, 37
intersymbol interference, 96
intrusion detection, 779
IntServ, 673
IP, 13, 24
ip command (Linux), 35
IP forwarding, 26
IP fragmentation, 193
IP multicast, 674
IP network, 25
IP-in-IP encapsulation, 231
ipconfig, 35
IPsec, 822
iptables, 291, 607
IPv4 header, 188
IPv6, 237, 242
IPv6 /64, 257

IPv6 address configuration, manual, 263
IPv6 addresses, 238
IPv6 connections, link-local, 263
IPv6 extension headers, 243
IPv6 header, 237
ipv6 interface identifier, 239
IPv6 link-local connections, 263
IPv6 multicast, 242
IPv6 Neighbor Discovery, 246
IPv6 programming, 343
IPv6 tunnel, 264
irregular prime, 27
IS-IS, 286
ISM band, 99
ISN, 373, 388
ISOC, 37
ISP, 17
IV, 789
IXP, 304

J
jail, staying out of, 304
Java getAllByName(), 343
java getAllByName(), 345
Java getByName(), 258
java getByName(), 345
javascript, 778
jitter, 33, 432, 465, 671, 692
join, multicast, 676
joining a Wi-Fi network, 108
JPEG heap vulnerability, 776
JSON, 349
jumbogram, IPv6, 244

K
Karn/Partridge algorithm, 395
kB, 14
KeepAlive, TCP, 396
key exchange, TLS, 814
key-scheduling algorithm, RC4, 791
key-signing parties, 803
keystream, 789
KiB, 14
kings, 38
knee, 20, 415, 491
known_hosts, ssh, 805
KRACK attack, WPA, 116

874 Index

An Introduction to Computer Networks, Release 1.9.21

L
LACNIC, 29
ladder diagram, 151
lag and CDNs, 681
LAN, 13, 22
LAN layer, 49
LARTC, 290
latching on, TFTP, 350
layer 3 switch, 204
layers, 13
leaky bucket, alternative formulation, 652
learning, Ethernet switch, 23, 59, 73
legacy routing, 302
length-extension vulnerability, 782
liberal, 38
licensing this book, 3
lightning, 146
limiting delay, 656
link-layer ACK, 101
link-local address, 240
link-state packets, 286
link-state routing update, 286
Linux, 107, 221, 223, 230, 262, 263, 483, 497, 505,

625
Linux advanced routing, 290
Linux htb, 660
Linux IPv6 routing, 246
Linux sfq, 638
Lisp, 787
listen, 31
little-endian, 15
load balancer, Pox, 616
load-balancing, 320
load-balancing, SDN, 77
load-balancing, traditional, 77
local traffic, 312
local-area network, 22
logical link layer, 13
logjam attack, 796
lollipop numbering, 287
longest-match rule, 301, 305
loopback address, 192
loopback interface, 190
loss recovery, sliding windows, 173
loss synchronization, 456
loss synchronization, TCP, 454
loss-based congestion control, 491

loss-tolerant, 338, 670
lossy-link TCP problem, 471
lost final ACK, 353
lost final ACK, TFTP, 354
LRO, TCP, 375
LSA, 286
LSO, TCP, 375
LSP, 286
LTE, 124

M
MAC address, 23
MAC address randomization, 110
MAC layer, 49
MAC-then-encrypt, 792
MAE, 304
MAE-East, 304
man-in-the-middle attack, 796, 802
managed device, SNMP, 701
management frame protection, Wi-Fi, 120
management packet, Wi-Fi, 99, 108
manager, SNMP, 701
Manchester encoding, 138
MANET, 122
mangling, 73, 291
MANRS, 327, 330
manual IPv6 address configuration, 263
MapReduce, 504
market, IPv4 addresses, 29
master secret, TLS, 814
Matrix, RMON, 748
max-min fairness, 457
Maximum Transfer Unit, 193
MB, 14
Mbone, 678
Mbps, 14, 22
MD5, 782
MED, 307, 313, 316
media-access control, 49
Merkle (Diffie-Hellman-Merkel), 795
Merkle-Dåmgard construction, 782
mesh network, 122
mesh network, HWMP, 284
MiB, 14
MIB browsers, 717
MIB-2, 718
MIC, 115
Michael, 115

Index 875

An Introduction to Computer Networks, Release 1.9.21

Microsoft SNMP agent, 727
middlebox, 207
middleboxes, 373
middleboxes and ECN, 467
MIMO, 105
minimal network configuration, 224
minimizing route cost, 278
minimum RTO, TCP, 503
mininet, 585
Mininet commands, 590
MISO, 106
Mitnick, Kevin, 22, 390
mixer, RTP, 690
mobile IP, 230
mobile wireless network, 122
modified EUI-64 identifier, 239
MPLS, 694
MPTCP, 397
msieve, 837
MTU, 193
multi-exit discriminator, 313, 316
multi-protocol label switching, 694
multicast, 242
multicast address allocation, 678
multicast IP address, 193
multicast programming, 597
multicast subscription, 676
multicast tree, 674
multicast, Ethernet, 48
multicast, IP, 24, 674
multihomed, 191, 304
multihoming and ARP, 224
multihoming and TCP, 376
multihoming and UDP, 342
multipath interference, 96
Multipath TCP, 397
multiple addresses, IPv6, 253
multiple flow tables, 74
multiple losses, 486
multiple token buckets, 653
MUST, 37
MX records, DNS, 218

N
Nagle algorithm, 393
naked domain, DNS, 217
nameserver, 210
NAT, 204, 232, 265, 337, 368

NAT and ICMP, 228
NAT and IPsec, 825
NAT problems, 206
NAT Traversal, 208
NAT-PT, IPv6-to-IPv4, 268
NAT64, 268
nc, 346
Neighbor Advertisement, IPv6, 248
neighbor discovery security, 248
Neighbor Discovery, IPv6, 246
Neighbor Solicitation, IPv6, 247
net neutrality, 670
Net-SNMP, 701, 705, 717, 719, 727
Net-SNMP and SNMPv3, 758
netcat, 37, 346, 381
netcat HTTP GET request, 381
netem queue, 600
netsh (Windows), 35
netstat, 36, 383
network address, 25
network address translation, 204
network architecture, 701
network entry, WiMAX, 128
Network File System, 360
network interface, Ethernet, 23
network management, 624
Network Management System, 700
network model

five layer, 13
four layer, 13
seven layer, 38

network number, 25
network prefix, 25
network prefix, IPv6, 241
Network Unreachable, 227
NewReno, TCP, 427
next_hop, 15
NEXT_HOP attribute, BGP, 316
NFS, 360
NMS, 700
no-transit, BGP, 319
no-valley theorem, BGP, 325
node information message, IPv6, 256
non-compliant, token-bucket, 649
non-congestive loss, 471
non-executable stack, 773
non-recursive DNS lookup, 214
non-repudiation, 781, 784

876 Index

An Introduction to Computer Networks, Release 1.9.21

nonce, 784, 785
nonce, cryptographic, 812
nonpersistence, 54
NOPslide, 771
noSuchObject, SNMP, 731
NoTCP Manifesto, 338
NRZ, 137
NRZI, 138
NS record, DNS, 210
ns-2 trace file, 524
ns-2 tracefiles, reading with python, 528
NSEC, 829
NSEC, DNS, 825
NSEC3, DNS, 825
NSFNet, 37
NSIS, 688
nslookup, 35, 214, 259
ntohl, 348
ntohs, 348
number-field sieve, 800
NX page bit, 773
NXDOMAIN, DNS, 213

O
Object ID, SNMP, 702
OBJECT-IDENTITY, SNMP, 731
OBJECT-TYPE, SNMP, 707
OC-3, 144
OCSP, 811
OCSP stapling, 811
OFDM, 95
OFDMA, 95
offloading, TCP, 375
OID, SNMP, 702
old duplicate packets, 351
old duplicates, TCP, 386, 387
OLSR, 585
on-demand mode, HWMP, 284
one-time pad, 790
ones-complement, 156
onion addresses, 214
OpenBSD, 774
OpenFlow, 72
openssl, 119
openSSL programming, 816
Opportunistic Wireless Encryption, 120
Optical Transport Network, 145
optimistic DAD, 251

opus, 671
orthogonal frequency-division multiplexing, 95
OSI, 37
OSPF, 286
OTN, 145
overhead, ns-2, 542

P
packet loss rate, 458
packet pairs, 449
packet size, 153
PAP, EAP, 118
Parekh-Gallager claim, 636
Parekh-Gallager theorem, 662
parking-lot topology, 457
partial ACKs, 427
passive close, TCP, 384
password hash, 784
password sniffing, 22, 223
path attributes, BGP, 315
path bandwidth, 173
Path MTU Discovery, 195, 227
path MTU discovery, TCP, 392
PATH packet, RSVP, 679
PAWS, TCP, 391
PBKDF2, 784
pcap, 37
pcapng, 37
PCF Wi-Fi, 121
PEAP, 118
peer, BGP, 322
peer-to-peer, 33
per-hop behaviors, DiffServ, 684
perfect forward secrecy, 801
persist timer, TCP, 394
persistence, 54
phase effects, TCP, 539
PHBs, DiffServ, 684
physical address, Ethernet, 23
physical layer, 13
PIFS, Wi-Fi, 122
PIM-SM, 676
ping, 35, 227
ping6, 262
pinning, TLS certificates, 810
pipe drain, 173
pipelining, SMTP, 160
PKI, 803

Index 877

An Introduction to Computer Networks, Release 1.9.21

playback buffer, 671
PMK, 802.1X, 117
Pogonomyrmex, 413
Point of Presence, 33
point-to-point protocol, 140
poison reverse, 277
policing, 649
policy-based routing, 72, 290
Pollard’s rho algorithm, 837
polling mode, Wi-Fi, 121
polling, TCP, 394
POODLE vulnerability, 804
Port Control Protocol, 207
port exhaustion, TCP, 388
port numbers, UDP, 337
Port Unreachable, 227
potatoes, hot, 306
power and wireless, 98
power management, Wi-Fi, 109
Pox controller, 608
PPP, 140
PPPoE, 140
pre-master secret, TLS, 814
prefix information, IPv6, 247
prekey, and forward secrecy, 802
presentation layer, 38
presidents, 38
primality testing, fast, 797
Prime Number Theorem, 797
primitive root modulo p, 796
priority for small packets, WFQ, 633
priority queuing, 442, 624
priority queuing and AF, 687
privacy, 94
privacy extensions, SLAAC, 252
private IPv4 address, 192
private IPv6 address, 242
PRNG, 789
proactive mode, HWMP, 284
probe request, Wi-Fi, 110
probing, IPv6 networks, 240
promiscuous mode, 48
propagation delay, 149
proportional fairness, 458
protection against wrapped segments, TCP, 391
protocol graph, 39
protocol-independent multicast, 676
provider, BGP, 322

provider-based routing, 302
proxy ARP, 222
pseudorandom number generator, 789
PSH, 369
PSK, WPA2, 114
PTK, 114
public DNS server, 212
public-key encryption, 799
public-key infrastructure, 803
pulse stuffing, TDM, 143
push, TCP, 369
pwnat, 208
python tracefile script, 530–532, 555
python, reading ns-2 tracefiles, 528

Q
QoS, 669
QoS and routing, 271
quality of service, 17, 26, 271, 669
quantum algorithm, fair queuing, 637
Query Identifier, ICMP, 226
query, ICMP, 226
queue capacity, typical, 432, 465
queue overflow, 26
queue utilization, token bucket, 656
queue-competition rule, 443
queuing delay, 149
queuing discipline, 625
queuing theory, 441
queuing, priority, 624
QUIC, 338, 401
quiet time on startup, TCP, 391

R
race condition, Pox, 615
RADIUS, 117
radvd, 246, 266
random drop queuing, 441
Random Early Detection, 468
randomization of MAC addresses, 110
ranging intervals, WiMAX, 127
ranging, WiMAX and LTE, 126
rate control, Wi-Fi, 104
rate scaling, Wi-Fi, 104
rate-adaptive traffic, 671
RC4, 790
Real-Time Protocol, 462
real-time traffic, 669, 671

878 Index

An Introduction to Computer Networks, Release 1.9.21

Real-time Transport Protocol, 32
reassembly, 25
reassociation, Wi-Fi, 111
reboot and RPC, 362
reboots, 355
Record Route, IP option, 190
recursive DNS lookup, 214
RED, 468
Reed-Solomon codes, 146
regional registry, 29
registry, regional, 29
reliable, 367
reliable flooding, 286
Remote Procedure Call, 358
rendezvous point, multicast, 676
Reno, 40, 415
Reno vs Vegas, 558
repeater, Ethernet, 46
repeaters, Wi-Fi, 112
request for comment, 37
request-to-send, Wi-Fi, 102
request/reply, 32, 358, 367
reservations, 26
reset, TCP, 369
resolver, DNS, 211
resource record, DNS, 210
RESV packet, RSVP, 679
retransmit-on-duplicate, 167
retransmit-on-timeout, 165
return-to-libc attack, 766
reverse DNS, 218
RFC, 37

RFC 1034, 209, 217
RFC 1035, 212
RFC 1065, 702
RFC 1066, 718
RFC 1122, 17, 188, 192, 222, 337, 342, 374,

376, 386, 388, 393, 395–397, 410
RFC 1123, 356
RFC 1142, 286
RFC 1155, 702, 704, 706, 707, 710
RFC 1213, 702, 705, 718–720, 722, 724, 725,

740, 741, 743
RFC 1271, 743, 745
RFC 1286, 738
RFC 1312, 739
RFC 1321, 782
RFC 1323, 391

RFC 1350, 349, 352, 356
RFC 1354, 739, 740
RFC 1441, 702
RFC 1442, 702, 731
RFC 1450, 736
RFC 1518, 300
RFC 1519, 300
RFC 1550, 237
RFC 1644, 391
RFC 1650, 737
RFC 1661, 85
RFC 1700, 15, 348
RFC 1710, 237
RFC 1812, 230
RFC 1831, 360
RFC 1854, 160
RFC 1883, 237
RFC 1884, 237
RFC 1901, 702, 731
RFC 1909, 731
RFC 1948, 390
RFC 1981, 392
RFC 1994, 785
RFC 2001, 427
RFC 2003, 231
RFC 2011, 739
RFC 2026, 39
RFC 2096, 740, 741
RFC 2104, 754, 783
RFC 2119, 37
RFC 2131, 224
RFC 2136, 252
RFC 2233, 724
RFC 2264, 702
RFC 2308, 212
RFC 2309, 469
RFC 2328, 286
RFC 2362, 676
RFC 2386, 271
RFC 2409, 796
RFC 2433, 785
RFC 2453, 272, 278, 596
RFC 2460, 156, 237, 238, 244, 245, 368
RFC 2461, 246
RFC 2464, 243
RFC 2473, 244
RFC 2474, 189
RFC 2475, 683

Index 879

An Introduction to Computer Networks, Release 1.9.21

RFC 2481, 189, 466
RFC 2529, 264
RFC 2570, 751
RFC 2574, 751
RFC 2578, 702, 710, 728, 731
RFC 2579, 749
RFC 2581, 393, 421
RFC 2582, 427
RFC 2597, 684, 686, 687
RFC 2616, 381
RFC 2622, 329
RFC 2650, 329
RFC 2675, 244
RFC 2759, 785
RFC 2766, 268
RFC 2780, 244
RFC 2786, 755
RFC 2819, 743, 744
RFC 2827, 190, 390
RFC 2851, 742
RFC 2856, 731
RFC 2863, 720–723, 737, 741
RFC 2865, 117
RFC 2898, 784
RFC 2925, 750
RFC 3022, 205, 228
RFC 3056, 264
RFC 3092, 371
RFC 3168, 466
RFC 3207, 813
RFC 3246, 685
RFC 3261, 206, 693
RFC 3360, 373, 467
RFC 3410, 751
RFC 3411, 753
RFC 3414, 702, 751, 752, 754, 757
RFC 3415, 728, 751, 756
RFC 3418, 736
RFC 3448, 461
RFC 3465, 420, 577
RFC 3513, 239
RFC 3519, 232
RFC 3526, 796
RFC 3540, 467
RFC 3550, 691, 693
RFC 3551, 691, 692
RFC 3561, 282, 284
RFC 3635, 737

RFC 3649, 470, 487–489
RFC 3715, 825
RFC 3748, 117
RFC 3756, 248
RFC 3757, 829
RFC 3775, 247
RFC 3826, 752
RFC 3833, 219
RFC 3879, 242
RFC 3927, 241
RFC 3947, 825
RFC 3948, 825
RFC 3971, 249
RFC 3972, 249
RFC 4001, 742
RFC 4007, 239, 263
RFC 4022, 741
RFC 4033, 825
RFC 4034, 825
RFC 4035, 825
RFC 4080, 688
RFC 4188, 738
RFC 4193, 242
RFC 4213, 264
RFC 4251, 804
RFC 4252, 804
RFC 4253, 804–806
RFC 4271, 309
RFC 4273, 719
RFC 4291, 237, 239–241
RFC 4292, 740, 741
RFC 4293, 739
RFC 4294, 246
RFC 4301, 823
RFC 4303, 245, 823
RFC 4340, 339
RFC 4341, 463
RFC 4342, 463
RFC 4344, 804
RFC 4380, 191
RFC 4429, 251
RFC 4443, 255
RFC 4451, 318
RFC 4472, 259
RFC 4502, 743
RFC 4524, 703
RFC 4560, 750
RFC 4566, 691

880 Index

An Introduction to Computer Networks, Release 1.9.21

RFC 4620, 256
RFC 4648, 829
RFC 4681, 441
RFC 4861, 240, 246, 249
RFC 4862, 250, 251
RFC 4919, 98
RFC 4941, 253
RFC 4953, 373
RFC 4961, 690
RFC 4966, 268
RFC 5095, 245
RFC 5116, 406
RFC 5227, 222
RFC 5246, 807
RFC 5247, 117
RFC 5280, 703
RFC 5321, 702, 813
RFC 5348, 461
RFC 5508, 228
RFC 5694, 33
RFC 5702, 829
RFC 5802, 785
RFC 5925, 390
RFC 5944, 231
RFC 5952, 239
RFC 5961, 373
RFC 5974, 688
RFC 6040, 86
RFC 6052, 268
RFC 6057, 688
RFC 6066, 812
RFC 6093, 374
RFC 6105, 250
RFC 6106, 252
RFC 6125, 808
RFC 6146, 268
RFC 6147, 268
RFC 6151, 783
RFC 6164, 256
RFC 6182, 397
RFC 6275, 244, 245
RFC 6282, 98
RFC 6298, 504, 673
RFC 6325, 70
RFC 6356, 397
RFC 6394, 832
RFC 6472, 312
RFC 6553, 244

RFC 6554, 245
RFC 6564, 244, 245
RFC 6582, 427
RFC 6633, 227, 467
RFC 6698, 831
RFC 6724, 252, 259, 260
RFC 6742, 259
RFC 6824, 397
RFC 6840, 331
RFC 6887, 207
RFC 6891, 825
RFC 6918, 228
RFC 6960, 811
RFC 7045, 246
RFC 7208, 218
RFC 7217, 240, 241, 251–253
RFC 7296, 86, 824
RFC 7413, 392
RFC 7421, 237
RFC 7469, 810
RFC 7540, 381
RFC 7567, 465, 469
RFC 7568, 807
RFC 761, 38
RFC 7664, 797
RFC 7686, 214
RFC 7707, 240
RFC 7721, 253
RFC 783, 349, 356
RFC 7844, 110
RFC 7858, 212, 834
RFC 7860, 752
RFC 7871, 220
RFC 791, 25, 188, 193
RFC 792, 226
RFC 793, 38, 368, 370, 373, 374, 381, 383, 408
RFC 7934, 253
RFC 8110, 120
RFC 821, 702
RFC 8257, 502
RFC 8305, 260
RFC 8446, 815
RFC 8484, 212, 834
RFC 854, 374
RFC 896, 393, 394
RFC 917, 199
RFC 950, 199
RFC 970, 626

Index 881

An Introduction to Computer Networks, Release 1.9.21

RFC 988, 25
RIB, 314
Rinjdael, 789
RIPE, 29
RMON, 742
ROA, RPKI, 331
roaming, Wi-Fi, 111
root nameserver, 211
round-robin DNS, 214
round-trip time, 151
route, 36
route aggregation, IP, 311
route leak, 328
router, 17
Router Advertisement, IPv6, 246
Router Discovery, IPv6, 246
Router Solicitation, IPv6, 246
routerless IPv6 examples, 262
routing and addressing, 187
routing domain, 271, 299
routing header, IPv6, 244
Routing Information Base, 314
routing loop, 19, 276
routing loop, ephemeral, 286
routing policies, BGP, 312
routing policy database, 290
Routing Policy Specification Language, 329
routing registries, BGP, 327
routing update algorithms, 270
routing, IP, 26
routing, MANET, 124
RPC, 358
RPKI and BGP, 330
RPSL, 329
RR, DNS, 210
RRset, DNS, 219
RRSIG, DNS, 825
RSA, 799
RSA factoring challenge, 800
RST, 369
RSVP, 673, 678
RTCP, 692
RTCP measurement of, 692
RTO, TCP, 395
RTO, TCP minimum, 503
RTP, 32, 462
RTP and VoIP, 692
RTP mixer, 690

RTS, Wi-Fi, 102
RTT, 151
RTT bias in TCP, 454
RTT inflation, 176
RTT-noLoad, 152

S
SACK TCP, 429
SACK TCP in ns-2, 554
SAE, 797
Salsa20, 788
salt, password, 784
satellite Internet, 130
satellite-link TCP problem, 472
sawtooth, TCP, 416, 420, 471, 523, 550, 560
scalable routing, 187
scanning, IPv6 networks, 240
scope, IPv6 address, 239
scope, IPv6 link-local, 240
SCRAM authentication, 785
scrypt, 784
SCTP, 398
SDN, 71
search warrant, 803
secure DNS, 825
secure hash functions, 781
secure neighbor discovery, 249
secure shell, 804
security, 762
security association, IPsec, 823
segment, 14
segmentation, 25
segments, TCP, 369
select group, 616
select() call, 599
Selective ACKs, TCP, 429
selective export property, 324
selector, IPsec, 823
self-ARP, 221
self-clocking, 170
SEND, 249
sequence number, TCP, 369
serial execution, RPC, 361
server, 31
ServerHello, TLS, 813
ServerName extension, TLS, 812
session key, 786
session layer, 38

882 Index

An Introduction to Computer Networks, Release 1.9.21

sfq, 638
SHA-1, 782
SHA-2, 782
Shannon-Hartley theorem, 95
shaping, 649
shared-key ciphers, 786
shared-memory switch, 61
shellcode, 769
shortest-path bridging, 69
Shortest-Path First algorithm, 287
SHOULD, 37
shutdown, TCP, 384, 385
sibling family, BGP, 324
sibling, BGP, 322
SIFS, Wi-Fi, 101
signaling losses, 468
signatures, intrusion, 779
signatures, RSA, 800
silly window syndrome, TCP, 394
SIMO, 106
Simple Network Management Protocol, 700
SimpleHTTPServer, 594
simplex-talk, TCP, 376
simplex-talk, UDP, 339
simultaneous authentication of equals, 797
simultaneous open, TCP, 383
single link-state, 29
single-responsibility principle, 340
singlebell network topology, 445
site resolver, DNS, 211
site-local IPv6 address, 242
size, packet, 153
SLAAC, 250, 251
SLAAC privacy extensions, 252
sliding windows, 31, 170
sliding windows, TCP, 392
slot time, Wi-Fi, 101
slow convergence, 276
small-packet priority, WFQ, 633
SMI, 707
SMTP, 160, 813
SNI, TLS, 812
SNMP, 700, 741
SNMP agent configuration, 726
SNMP agents and managers, 701
SNMP enumerated type, 722
SNMP versions, 702
SNMPv1 data types, 706

SNMPv3 engines, 752
Snorri Sturluson, 119
SO_LINGER, TCP, 386
socket, 31
socket address, 31
socketpair, 367
soft fail, OCSP, 811
soft state, 673
software-defined networking, 71
SONET, 143
Sorcerer’s Apprentice bug, 168
Source Quench, 227, 467
source-specific multicast tree, 677
spanning-tree algorithm, 63
sparse-mode multicast, 676
spatial streams, MIMO, 106
SPB, 69
speex, 671
SPF algorithm, 287
split horizon, 277
spoofing, IP, 189
spoofing, TCP, 373
SQL injection, 778
squatting, IP prefix, 328
SSH, 223
ssh, 803, 804
ssh host key, 805
SSID, Wi-Fi, 107, 111
ssl, 803
SSL programming, 816
SSRC, 691
stack canary, 773
stalk, TCP, 376
stalk, UDP, 339
star topology, 46
STARTTLS, 813
state diagram, TCP, 381
stateless autoconfiguration, 250
stateless forwarding, 17
STM-1, 144
stochastic fair queuing, 638
stop-and-wait transport, 165
stop-and-wait, TFTP, 356
store-and-forward, 21
store-and-forward delay, 149
StoredKey, 785
stream ciphers, 789
Stream Control Transmission Protocol, 398

Index 883

An Introduction to Computer Networks, Release 1.9.21

stream-oriented, 367
streaming video, 32, 672
streams, QUIC, 403
STS-1, 143
STS-3, 144
stub resolver, 213
subnet mask, 200
subnets, 198
subnets, IPv6, 242, 256
subnets, vs switching, 203
subpoena, 803
subqueue, 625
subscription, multicast, 676
Sun RPC, 360
superfish, 809
supplicant, WPA, 117
switch, 17
switch fabrics, 62
switch, crossbar, 62
switch, shared-memory, 61
switching, vs subnets, 203
switchline.py, 591
symbol, data, 58, 139
symmetric ciphers, 786
SYN, 369
SYN flooding, 370
SYN packet, 370
synchronization source, RTP, 691
synchronized loss hypothesis, TCP, 455
synchronized loss, TCP, 418, 450, 454
synchronized states, TCP, 382

T
T/TCP, 391
T1 line, 142
T3 line, 143
tables, SNMP, 707
Tahoe, 40, 415
tail drop, 441
tangle, cords, 98
tbf, Linux, 604
tc, Linux, 290, 604, 660
TCAM, 198
TCO, TCP, 375
TCP, 13, 30, 365
TCP accelerated open, 391
TCP application close, 385
TCP BBR, 509

TCP checksum offloading, 375
TCP close, 371
TCP Cubic, 505
TCP fairness, 450, 457
TCP Fast Open, 392
TCP Friendliness, 460
TCP Hamilton, 504
TCP header, 368
TCP Hybla, 501
TCP Illinois, 497
TCP minimum RTO, 503
TCP NewReno, 427
TCP NewReno in ns-2, 554
TCP old duplicates, 386
TCP Reno, 415, 424
TCP sawtooth, 416, 420, 471, 523, 550, 560
TCP segmentation offloading, 375
TCP state diagram, 381
TCP Tahoe, 415
TCP timeout interval, 673
TCP Vegas, 558, 639
TCP Westwood, 495
TCP Westwood+, 496
TCP, Highspeed, 487
TCP, SACK, 429
TCP_NODELAY, 394
TCP_QUICKACK, 393
TDM, 141
Teredo tunneling, 191
termshark, 37
terrestrial broadband, 128
terrestrial wireless, 128
TestAndIncr, 734
TEXTUAL-CONVENTION, SNMP, 731
TFTP, 349
thepiratebay, 211
thermonuclear, 38
three-way handshake, 370
three-way handshake, TCP, 388
threshold slow start, 420
throughput, 14
tier-1 provider, 324
Time to Live, 189
time-division multiplexing, 141
time-to-live, DNS, 212
timeout and retransmission, 30
timeout interval, TCP, 395, 673
Timestamp, IP option, 190

884 Index

An Introduction to Computer Networks, Release 1.9.21

TIMEWAIT, TCP, 387
TJX attack, 94, 764
tls, 803
TLS client example, 820
TLS connection setup, 811
TLS handshake protocol, 811
TLS programming, 816
TLS server example, 819
TLS version 1.3, 815
token bucket, 649
token bucket queue utilization, 656
token bus Ethernet, 88
token ring, 87
token-bucket applications, 654
token-bucket, RSVP, 679
topology, 18
topology table, EIGRP, 285
Tor project, 214
ToS and routing, 271
TP4, 39
trace file, ns-2, 524
tracefiles, ns-2, reading with python, 528
traceroute, 36, 228
tracking, Wi-Fi, 110
trading, 149
traffic amplification, QUIC, 406
traffic amplification, UDP, 338
traffic anomalies, 779
traffic engineering, 18, 290, 318, 669
traffic management, 624
tragedy of the commons, 413
Trango, 130
transient queue peak, 552
transit capacity, 171
transit traffic, 312, 318
Transmission Control Protocol, 30
transmission, Ethernet, 51
Transport layer, 30
transport mode, IPsec, 823
traps, SNMP, 702
tree, 18
trie, forwarding table, 197
triggered updates, 277
TRILL, 69
triple DES, 788
Trivial File Transport Protocol, 349
TRR, DNS, 834
trust anchor, 825

trust anchors, 249
trust and public keys, 802
trust on first use, SSH, 805
trust on first use, TLS, 810
trust, DANE, 832
trusted recursive resolver, 834
tshark, 37
TSO, TCP, 375
Tspec, 679
TTL, 189
tunnel mode, IPsec, 823
tunnel, IPv6, 264
tunneling, 85, 207
two implementations, 39
two-generals problem, 353
twos-complement, 156
Type of Service, 189

U
u32, 607
UDP, 32, 337, 344, 347
UDP advisory, 338
UDP, for real-time traffic, 673
unbounded slow start, 420
unicast, 23
unique-local IPv6 address, 242
unknown destinations, Ethernet, 59
unlicensed spectrum, 99
unnumbered IP interface, 229
upgrades, network, 20
uplink scheduling, WiMAX and LTE, 126
URG, 369
User Datagram Protocol, 32
usmUserTable, 756
utilities, network, 35

V
VACM, 728
VarBind list, 712
VCI, 89
video, streaming, 672
videoconferencing and CDNs, 681
virtual circuit, 14, 26, 88
virtual hosting, 216
Virtual LANs, 68
virtual link, 85
virtual private network, 85
virtual tributary, 145

Index 885

An Introduction to Computer Networks, Release 1.9.21

VLANs, 68
voice over IP, 26
void, cast into, 833
VoIP, 26
VoIP and RTP, 692
VoIP bandwidth guarantees, 655
voting, 38
VPN, 85
VPNs and ECN, 86

W
W^X, 774
wavelength-division multiplexing, 146
web of trust, 803
web server, 594
weighted fair queuing, 626
WEP encryption failure, 764
WEP, Wi-Fi, 114
Westwood, TCP, 495
Wi-Fi, 98
Wi-Fi EasyMesh, 112
Wi-Fi extender, 112
Wi-Fi fragmentation, 104
Wi-Fi polling mode, 121
Wi-Fi repeaters, 112
Wi-Fi security, 94
Wi-Fi, HWMP mesh, 284
WiMAX, 124
window, 170
window scale option, TCP, 392
window size, 31, 170
Windows, 190, 191
Windows XP SP1 vulnerability, 776
winsize, 170
wireless, 98
wireless LANs, 94
wireless, fixed, 128
wireless, satellite, 130
wireless, terrestrial, 128
WireShark, 261, 403, 575
wireshark, 37
WireShark, TCP example, 374
work-conserving queuing, 626
WPA authenticator, 117
WPA supplicant, 117
WPA, Wi-Fi, 114
WPA-Enterprise, 117
WPA-Personal, 114

WPA2, 791
WPA2-Enterprise, configuring, 118
WPA3, 120, 797
write-or-execute, 774
wtf, 210

X
X3DH encryption, 802
XD page bit, 773
xkcd, 308, 779
XML, 349
XSS, 778

Z
ZigBee, 98
zone identifier, IPv6, 263
zones, DNS, 210
ZSK, DNS, 826

886 Index

	0 Preface
	0.1 Licensing
	0.2 Classroom Use
	0.3 Acknowledgments
	0.4 Progress Notes
	0.5 Technical considerations
	0.6 A Note On the Cover
	0.7 Recent Changes

	1 An Overview of Networks
	1.1 Layers
	1.2 Data Rate, Throughput and Bandwidth
	1.3 Packets
	1.4 Datagram Forwarding
	1.5 Topology
	1.6 Routing Loops
	1.7 Congestion
	1.8 Packets Again
	1.9 LANs and Ethernet
	1.10 IP - Internet Protocol
	1.11 DNS
	1.12 Transport
	1.13 Firewalls
	1.14 Some Useful Utilities
	1.15 IETF and OSI
	1.16 Berkeley Unix
	1.17 Epilog
	1.18 Exercises

	2 Ethernet
	2.1 10-Mbps Classic Ethernet
	2.2 100 Mbps (Fast) Ethernet
	2.3 Gigabit Ethernet
	2.4 Ethernet Switches
	2.5 Spanning Tree Algorithm and Redundancy
	2.6 Virtual LAN (VLAN)
	2.7 TRILL and SPB
	2.8 Software-Defined Networking
	2.9 Epilog
	2.10 Exercises

	3 Other LANs
	3.1 Virtual Private Networks
	3.2 Carrier Ethernet
	3.3 Token Ring
	3.4 Virtual Circuits
	3.5 Asynchronous Transfer Mode: ATM
	3.6 Adventures in Radioland
	3.7 Wi-Fi
	3.8 WiMAX and LTE
	3.9 Fixed Wireless
	3.10 Epilog
	3.11 Exercises

	4 Links
	4.1 Encoding and Framing
	4.2 Time-Division Multiplexing
	4.3 Epilog
	4.4 Exercises

	5 Packets
	5.1 Packet Delay
	5.2 Packet Delay Variability
	5.3 Packet Size
	5.4 Error Detection
	5.5 Epilog
	5.6 Exercises

	6 Abstract Sliding Windows
	6.1 Building Reliable Transport: Stop-and-Wait
	6.2 Sliding Windows
	6.3 Linear Bottlenecks
	6.4 Epilog
	6.5 Exercises

	7 IP version 4
	7.1 The IPv4 Header
	7.2 Interfaces
	7.3 Special Addresses
	7.4 Fragmentation
	7.5 The Classless IP Delivery Algorithm
	7.6 IPv4 Subnets
	7.7 Network Address Translation
	7.8 DNS
	7.9 Address Resolution Protocol: ARP
	7.10 Dynamic Host Configuration Protocol (DHCP)
	7.11 Internet Control Message Protocol
	7.12 Unnumbered Interfaces
	7.13 Mobile IP
	7.14 Epilog
	7.15 Exercises

	8 IP version 6
	8.1 The IPv6 Header
	8.2 IPv6 Addresses
	8.3 Network Prefixes
	8.4 IPv6 Multicast
	8.5 IPv6 Extension Headers
	8.6 Neighbor Discovery
	8.7 IPv6 Host Address Assignment
	8.8 Globally Exposed Addresses
	8.9 ICMPv6
	8.10 IPv6 Subnets
	8.11 Using IPv6 and IPv4 Together
	8.12 IPv6 Examples Without a Router
	8.13 IPv6 Connectivity via Tunneling
	8.14 IPv6-to-IPv4 Connectivity
	8.15 Epilog
	8.16 Exercises

	9 Routing-Update Algorithms
	9.1 Distance-Vector Routing-Update Algorithm
	9.2 Distance-Vector Slow-Convergence Problem
	9.3 Observations on Minimizing Route Cost
	9.4 Loop-Free Distance Vector Algorithms
	9.5 Link-State Routing-Update Algorithm
	9.6 Routing on Other Attributes
	9.7 ECMP
	9.8 Epilog
	9.9 Exercises

	10 Large-Scale IP Routing
	10.1 Classless Internet Domain Routing: CIDR
	10.2 Hierarchical Routing
	10.3 Legacy Routing
	10.4 Provider-Based Routing
	10.5 Geographical Routing
	10.6 Border Gateway Protocol, BGP
	10.7 Epilog
	10.8 Exercises

	11 UDP Transport
	11.1 User Datagram Protocol – UDP
	11.2 Trivial File Transport Protocol, TFTP
	11.3 Fundamental Transport Issues
	11.4 Other TFTP notes
	11.5 Remote Procedure Call (RPC)
	11.6 Epilog
	11.7 Exercises

	12 TCP Transport
	12.1 The End-to-End Principle
	12.2 TCP Header
	12.3 TCP Connection Establishment
	12.4 TCP and WireShark
	12.5 TCP Offloading
	12.6 TCP simplex-talk
	12.7 TCP state diagram
	12.8 TCP Old Duplicates
	12.9 TIMEWAIT
	12.10 The Three-Way Handshake Revisited
	12.11 Anomalous TCP scenarios
	12.12 TCP Faster Opening
	12.13 Path MTU Discovery
	12.14 TCP Sliding Windows
	12.15 TCP Delayed ACKs
	12.16 Nagle Algorithm
	12.17 TCP Flow Control
	12.18 Silly Window Syndrome
	12.19 TCP Timeout and Retransmission
	12.20 KeepAlive
	12.21 TCP timers
	12.22 Variants and Alternatives
	12.23 Epilog
	12.24 Exercises

	13 TCP Reno and Congestion Management
	13.1 Basics of TCP Congestion Management
	13.2 Slow Start
	13.3 TCP Tahoe and Fast Retransmit
	13.4 TCP Reno and Fast Recovery
	13.5 TCP NewReno
	13.6 Selective Acknowledgments (SACK)
	13.7 TCP and Bottleneck Link Utilization
	13.8 Single Packet Losses
	13.9 TCP Assumptions and Scalability
	13.10 TCP Parameters
	13.11 Epilog
	13.12 Exercises

	14 Dynamics of TCP
	14.1 A First Look At Queuing
	14.2 Bottleneck Links with Competition
	14.3 TCP Fairness with Synchronized Losses
	14.4 Notions of Fairness
	14.5 TCP Reno loss rate versus cwnd
	14.6 TCP Friendliness
	14.7 AIMD Revisited
	14.8 Active Queue Management
	14.9 The High-Bandwidth TCP Problem
	14.10 The Lossy-Link TCP Problem
	14.11 The Satellite-Link TCP Problem
	14.12 Epilog
	14.13 Exercises

	15 Newer TCP Implementations
	15.1 Choosing a TCP on Linux
	15.2 High-Bandwidth Desiderata
	15.3 RTTs
	15.4 A Roadmap
	15.5 Highspeed TCP
	15.6 TCP Vegas
	15.7 FAST TCP
	15.8 TCP Westwood
	15.9 TCP Illinois
	15.10 Compound TCP
	15.11 TCP Veno
	15.12 TCP Hybla
	15.13 DCTCP
	15.14 H-TCP
	15.15 TCP CUBIC
	15.16 TCP BBR
	15.17 Epilog
	15.18 Exercises

	16 Network Simulations: ns-2
	16.1 The ns-2 simulator
	16.2 A Single TCP Sender
	16.3 Two TCP Senders Competing
	16.4 TCP Loss Events and Synchronized Losses
	16.5 TCP Reno versus TCP Vegas
	16.6 Wireless Simulation
	16.7 Epilog
	16.8 Exercises

	17 The ns-3 Network Simulator
	17.1 Installing and Running ns-3
	17.2 A Single TCP Sender
	17.3 Wireless
	17.4 Exercises

	18 Mininet
	18.1 Installing Mininet
	18.2 A Simple Mininet Example
	18.3 Multiple Switches in a Line
	18.4 IP Routers in a Line
	18.5 IP Routers With Simple Distance-Vector Implementation
	18.6 TCP Competition: Reno vs Vegas
	18.7 TCP Competition: Reno vs BBR
	18.8 Linux Traffic Control (tc)
	18.9 OpenFlow and the POX Controller
	18.10 Exercises

	19 Queuing and Scheduling
	19.1 Queuing and Real-Time Traffic
	19.2 Traffic Management
	19.3 Priority Queuing
	19.4 Queuing Disciplines
	19.5 Fair Queuing
	19.6 Applications of Fair Queuing
	19.7 Hierarchical Queuing
	19.8 Hierarchical Weighted Fair Queuing
	19.9 Token Bucket Filters
	19.10 Applications of Token Bucket
	19.11 Token Bucket Queue Utilization
	19.12 Hierarchical Token Bucket
	19.13 Fair Queuing / Token Bucket combinations
	19.14 Epilog
	19.15 Exercises

	20 Quality of Service
	20.1 Net Neutrality
	20.2 Where the Wild Queues Are
	20.3 Real-time Traffic
	20.4 Integrated Services / RSVP
	20.5 Global IP Multicast
	20.6 RSVP
	20.7 Differentiated Services
	20.8 RED with In and Out
	20.9 NSIS
	20.10 Comcast Congestion-Management System
	20.11 Real-time Transport Protocol (RTP)
	20.12 Multi-Protocol Label Switching (MPLS)
	20.13 Epilog
	20.14 Exercises

	21 Network Management and SNMP
	21.1 Network Architecture
	21.2 SNMP Basics
	21.3 SNMP Naming and OIDs
	21.4 MIBs
	21.5 SNMPv1 Data Types
	21.6 ASN.1 Syntax and SNMP
	21.7 SNMP Tables
	21.8 SNMP Operations
	21.9 MIB Browsing
	21.10 MIB-2
	21.11 SNMPv1 communities and security
	21.12 SNMP and ASN.1 Encoding
	21.13 SNMPv2
	21.14 Table Row Creation
	21.15 SNMPv3
	21.16 Exercises

	22 Security
	22.1 Code-Execution Intrusion
	22.2 Stack Buffer Overflow
	22.3 Heap Buffer Overflow
	22.4 Network Intrusion Detection
	22.5 Cryptographic Goals
	22.6 Secure Hashes
	22.7 Shared-Key Encryption
	22.8 Diffie-Hellman-Merkle Exchange
	22.9 Public-Key Encryption
	22.10 SSH and TLS
	22.11 IPsec
	22.12 DNSSEC
	22.13 RSA Key Examples
	22.14 Exercises

	23 Bibliography
	24 Selected Solutions
	24.1 Solutions for An Overview of Networks
	24.2 Solutions for Ethernet
	24.3 Solutions for Other LANs
	24.4 Solutions for Links
	24.5 Solutions for Packets
	24.6 Solutions for Sliding Windows
	24.7 Solutions for IPv4
	24.8 Solutions for Routing-Update Algorithms
	24.9 Solutions for Large-Scale IP Routing
	24.10 Solutions for UDP
	24.11 Solutions for TCP Reno
	24.12 Solutions for Dynamics of TCP
	24.13 Solutions for Mininet
	24.14 Solutions for Queuing and Scheduling

	Indices and tables
	Bibliography
	Index

